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Editorial on the Research Topic

Molecular and Cellular Pathways in NK Cell Development

We are delighted to present this Research Topic for Frontiers in Immunology, focusing on
“Molecular and Cellular Pathways in NK Cell Development.”

This collection comprises five primary research articles, seven reviews of the current literature,
and one opinion piece by experts in the field. Natural killer (NK) cells have immense therapeutic
potential. Understanding how to acquire large numbers of functional cells and how to guide their
activity is a focus of basic research with potential clinical application.

Papers included in this collection highlight recent advances in our understanding of NK cell
origins, their cellular developmental stages and regulatory networks during normal hematopoiesis.
These manuscripts also address molecular mechanisms responsible for NK cell defects found in
patients with hematological malignancies and the degree to which NK cell impairments contribute
to disease progression.

Despite having been discovered more than 40 years ago and used in the clinic for
immunotherapy, several aspects of NK cell biology remain unexplored and are still being debated.
In contrast to the mouse hematopoietic hierarchy, the development of human blood lineages is
less characterized. Although the production and maintenance of NK cells are sustained by the
pool of hematopoietic stem cells, the sites of NK cell development and the sequential intermediate
differentiation stages are poorly defined. Cichocki et al. discuss two potential hierarchical models
of human NK cell development: (1) a linear model where the lineage commitment occurs
stepwise from hematopoietic stem cells, through the lymphoid–primed multilineage progenitors,
the common-lymphoid progenitors, to NK cell-restricted progenitors and CD56dim NK cells; and
(2) a branched model where different NK cell populations, CD56dim, CD56bright, and adaptive NK
cells, are generated from both early lymphoid and myeloid progenitors.

NK cells represent the founding member of a family of innate lymphoid cells (ILCs) and are
placed within group 1. The ILC family consists of four subsets: NK cells/ILC1, ILC2, ILC3, and
lymphoid tissue inducer cells. Stokic-Trtica et al. review the function, properties, diversity, and
developmental relationship betweenNK cells and the othermembers of the ILC family. The authors
summarize similarities and differences between NK cells and other ILCs, and discuss different
potential therapeutic strategies to activate and harness anti-tumor immunity mediated by NK cells.
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Among several transcription factors critical for NK cell
development and maturation, Eomes represents a candidate
that drives NK cell lineage-specification. O’Sullivan discusses
heterogeneity within ILC1 cells in mice, where in addition
to Eomes-dependent NK cells, there is a unique population
of Eomes-independent ILC1s. This Eomes-independent ILC1
population represents a distinct lineage of group 1 ILCs rather
than a developmental or functional stage of NK cells.

NK cells are heterogeneous in terms of their tissue location,
phenotype, and function. In addition to the most abundant
and the best studied conventional NK cells found in the blood
and spleen, there are distinct subsets of tissue resident NK
cells and helper ILC1s that have been identified in multiple
organs and tissues including the liver, uterus, thymus, skin,
and adipose tissue among others. Whereas, the development
and regulation of bone marrow dependent conventional NK
cells is well-characterized, the origin and regulation of recently
described unique tissue-specific and tissue resident NK cells
is less understood. Valero-Pacheco and Beaulieu provide a
comprehensive overview of transcriptional regulatory pathways
controlling and driving the development of tissue resident NK
cells and helper ILC1s in mice.

To better characterize diverse populations of human NK
cells, Filipovic et al. developed a 29-paremeter analysis panel to
investigate NK cell subsets across three different tissues: liver,
peripheral blood, and tonsil. This novel approach allows high
dimensional profiling of NK cells in different tissues and can be
applied as a potential diagnostic tool.

Adaptive NK cells represent a distinct long-lived population
of NK cells that emerges after cytomegalovirus (CMV) infection
providing the evidence for virus-specific NK cell immunological
memory. Since NK cells are critical anti-viral effectors, these
memory NK cells represent important potential therapeutic
targets. In their studies, Gyurova et al. investigated changes in
phenotype and function of NK cells from healthy individuals
after treatment with CMV vaccine. Lack of changes in NKG2C+

NK cells was consistent with the absence of CMV infection,
whereas the other NK cell subsets showed dynamic changes
over time.

The origin and regulation of adaptive NK cells is not well-
understood. Truitt et al. investigated CMV driven expansion of
adaptive NK cells in rhesus macaques using lentivirally-barcoded
autologous hematopoietic stem and progenitor transplantation
that enabled tracking of CD56−CD16+ and CD56+CD16− NK
cell generation at the clonal level. The authors used this model
to test the impact of infection on NK cell clonal dynamics
and demonstrate long lasting clonal expansion in response to
RhCMV, providing evidence for a clonal adaptive response and
immunological memory within the NK cell compartment.

NK cell development and maturation have been driven and
controlled by a network of cytokines (including: IL-2, IL-7,
IL-12, IL-15, IL-21, IL-27, and interferons) that signal via the
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway. Gotthardt et al. review the current
understanding of cytokine requirements and the downstream
signaling involved in development and maturation of NK cells
and ILC1s. The Authors also discuss the role of negative

regulators of JAK/STAT signaling—the family of proteins
called suppressor of cytokine signaling (SOCS) and their
potential application as immunotherapeutic strategy. Scarno
et al. previously applied next generation sequencing technology
(NGS) to explore how JAK/STAT pathway regulate NK cells
at different states of differentiation and function. The authors
review how different STAT pathways are required in resting,
effector and adaptive NK cells to control their expansion,
differentiation, and function. Studies by Vian et al. further
support the differential impact of cytokine signaling in NK cells
and ICL1s, by demonstrating a high level of Bcl2 expression in
ILC1s after JAK inhibition compared to NK cells.

IL-15 role plays a central and unique role in NK cell
biology. Pfefferle et al. review new insights into regulation of
NK cell maturation and homeostasis, and discuss metabolic
requirements, intra lineage NK cell plasticity, and transcriptional
reprogramming of NK cells during differentiation and
homeostatic proliferation in response to IL-15.

NK cells undergo phenotypic and functional changes in the
presence of cytokines, and IL-2 has a crucial role in NK cell
activation. Ranganath et al. have demonstrated that blocking IL-2
signaling by daclizumab beta used as a treatment for multiple
sclerosis leads to the expansion of CD56bright NK cells with
enhanced ability to kill autoreactive T cells.

Ample data support a role of NK cells in tumor immune-
surveillance and elimination of malignant transformed cells.
There is clinical evidence supporting potent NK cell anti-tumor
activity in the settings of chronic myeloid leukemia, acute
myeloid leukemia, and myelodysplastic syndromes. However,
disease-associated mechanisms induce NK cell defects and
impairment in their cytotoxic function. Carlsten and Järås
provide an overview of the mechanisms involved in disease-
induced NK cell dysfunctions and discuss potential therapeutic
approaches to restore NK cell function in patients with myeloid
malignancies. They also discuss novel strategies to unleash NK
cells against leukemic cells.

Together, the papers in this collection add new knowledge
on the complex map of NK cell development, while
also suggesting potential novel therapeutic strategies
to modulate NK cell development and activity. These
papers also lend new insights into how to endow NK
cells with potent activity to control hematopoietic and
non-hematopoietic malignancies.

We would like to take this opportunity to thank all the
reviewers for their time and input. We also thank the authors for
their valuable contributions to this Research Topic.
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Human NK Cell Development: One
Road or Many?

Frank Cichocki 1*, Bartosz Grzywacz 2 and Jeffrey S. Miller 1

1Department of Medicine, University of Minnesota, Minneapolis, MN, United States, 2Department of Laboratory Medicine

and Pathology, University of Minnesota, Minneapolis, MN, United States

CD3−CD56+ NK cells develop from CD34+ hematopoietic progenitors (HPCs) in vivo,

and this process can be recapitulated in vitro. The prevailing model is that human NK

cell development occurs along a continuum whereby common lymphocyte progenitors

(CLPs) gradually downregulate CD34 and upregulate CD56. Acquisition of CD94 marks

commitment to the CD56bright stage, and CD56bright NK cells subsequently differentiate

into CD56dim NK cells that upregulate CD16 and killer immunoglobulin-like receptors

(KIR). Support for this linear model comes from analyses of cell populations in secondary

lymphoid tissues and in vitro studies of NK cell development from HPCs. However,

several lines of evidence challenge this linear model and suggest a more branched model

whereby different precursor populations may independently develop into distinct subsets

of mature NK cells. A more definitive understanding of human NK cell development

is needed to inform in vitro differentiation strategies designed to generate NK cells for

immunotherapy. In this review, we summarize current evidence supporting the linear and

branched models of human NK cell development and the challenges associated with

reaching definitive conclusions.

Keywords: NK cell, development, precursor, innate, adaptive, progenitor, immune, differentiation

THE PLASTICITY OF EARLY HUMAN HEMATOPOIESIS

The population of cells comprising human blood is organized as a cellular hierarchy derived
from multipotent stem cells. The first in vivo experiments demonstrating reconstitution of the
hematopoietic system from stem cells were based on rescue of lethal irradiation by bone marrow
transplant inmice (1). Subsequent bonemarrow transplant experiments inmice provided estimates
of the minimal number of hematopoietic stem cells (HSCs) that could reconstitute hematopoiesis
(2) and revealed in vivo proof for the multipotent nature of stem cells (3). The advent of flow
cytometry and cell sorting allowed for purification of hematopoietic stem cells and demonstration
that a small number of these cells could reconstitute all blood cell types in lethally irradiated
mice (4).

Throughout the past two decades there have been numerous studies characterizing
hematopoietic stem cells and determinants of self-renewal or differentiation. In early models
of the hematopoietic differentiation tree, the first branch point segregated common lymphoid
progenitor cells (CLPs) from common myeloid progenitors (CMPs). Subsequent modifications
to the tree have been made based on work showing that the HSC pool is very heterogeneous in
terms of self-renewal and differentiation properties. One landmark discovery that challenged the
standard branched tree paradigm of human hematopoiesis was the identification of a population
of multi-lymphoid progenitor cells (MLPs) that could generate all lymphoid cell types, as well as
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monocytes, macrophages, and dendritic cells (DCs). MLPs were
characterized as a distinct Thy-1neg−lowCD45RA+ population
within the CD34+CD38− HSC pool of both cord blood and
bone marrow. When cultured on the MS-5 murine stromal cell
line, MLPs differentiated into myeloid cells, B cells, and NK
cells at a nearly 1:1:1 ratio. A large fraction of MLPs could also
differentiate into T cells when cultured on OP9 murine stromal
cells transduced with the Notch ligand DL1 (5). This work,
along with other studies showingmacrophage potential in thymic
progenitors, CLPs, and B cell progenitors call into question the
lymphoid-restricted state of the presumed CLP (6–10) and led
to a model whereby multipotential progenitors (MPPs) initially
differentiate into lymphoid-primed multipotential progenitors
(LMPP) (11–14) in route to definitive myeloid and lymphoid
commitment (15, 16).

Several important conclusions can be drawn from these
studies. First, there exists considerable heterogeneity and
plasticity with regards to hematopoiesis and lineage potential
of precursors. Second, precursors with some degree of B and
T cell lineage restriction appear to retain NK cell and myeloid
potential. From an evolutionary perspective, the innate myeloid
and NK cell lineage pathways may represent ancestral programs
that are retained in progenitors. Adaptive immunity, when it
arose, may have been layered onto the ancestral programs,
resulting in further hematopoietic lineage diversification. Third,
signals within the microenvironment in which a progenitor
resides provide instructive signals that strongly influence the
developmental path of a given progenitor.

NK CELL PRECURSORS AND ONTOGENY

One of the first reports aimed at defining the precursor origin
of NK cells was performed by Kumar and colleagues in the
mid 1980’s. The authors transplanted syngeneic bone marrow
cells into lethally irradiated mice that were also depleted of NK
cells by injection of an anti-asialo GM1 antibody. Using this
system, the authors demonstrated that an intact bone marrow
microenvironment was necessary for the development of mature,
lytic NK cells, and that NK cell precursors lack expression
of several surface antigens that define mature NK cells (17).
Subsequently, an early foray into human NK cell ontogeny was
undertaken by Lanier et al. who characterized freshly isolated NK
cells from fetal tissue. The most striking finding from this study
was that fetal NK cells, in contrast to adult peripheral blood NK
cells, expressed intracellular (but not surface) CD3δ and CD3ε.
This led to the hypothesis that NK cells and T cells may share
a common precursor that splits to the T or NK cell lineage
depending on environmental cues (18). Contemporaneously,
Reinherz and colleagues identified a dominant fetal thymocyte
population in mice lacking expression of CD4 and CD8 but
expressing Fc gamma RII/III prior to TCR acquisition in vivo. If
maintained in a thymic environment, these precursors exhibited
stepwise differentiation into canonical CD8+ T cells. If removed
from the thymus, these precursors developed into canonical NK
cells with cytotoxic function (19). Subsequently, in vitro fetal
thymic organ culture experiments using mouse fetal thymocytes

demonstrated that a T/NK-committed progenitor defined as
NK1.1+CD117+CD44+CD25− could efficiently develop into T
cells if cultured in a thymic microenvironment, whereas co-
culture with bone marrow-derived stromal cells resulted in the
generation of mature NK cells (20). Support for a developmental
relationship between NK cells and T cells also comes from
whole-genome microarray analyses of murine splenic leukocyte
populations. At the transcriptome level, NK cells and T cells
cluster within a complex that is distinct from those formed
by subsets of B cells, DCs, and macrophages by principal
components analysis (21).

Compelling evidence exists for the idea that T cell-
determining factors are needed to enforce the development of
precursor cells into the T cell lineage, and the NK cell lineage
becomes the default pathway in the absence of these factors.
Several murine studies have shown that one of the earliest
checkpoints in T cell development is dependent on the zinc-
finger transcription factor Bcl11b. Bcl11b-deficient mice exhibit
impaired thymocyte development between the DN3 to immature
SP stage because of an inability to rearrange the TCR Vβ to Dβ

gene segments (22). Genetic deletion of Bcl11b in conditional
knockout mice results in a loss of T cell identity in developing
DN3 thymocytes and reprograming to a morphological and
transcriptional state resembling that of NK cells (23–25). One
interpretation of these results is that early progenitor cells with
intrinsic T cell potential but low or absent Bcl11b expression
differentiate into NK cells, providing support for the existence
of a common T/NK progenitor. Another interpretation is that
Bcl11b expression is necessary to enforce T cell identity during
development by overriding a more ancestral NK-like program,
and there is no actual NK/T lineage split determined by Bcl11b.
The latter interpretation seems more likely based on a report
of a patient that contained a mutant BCL11B variant causing
dysregulated binding of BCL11B to promoter targets. The patient
exhibited a “leaky” form of severe combined immunodeficiency
(SCID) and very low T cell counts. However, NK cell counts were
within the normal range (26).

There has been a continuous evolution regarding our
understanding of the earliest stages of progenitor cell
commitment to the NK cell lineage. An updated model of
human lymphopoiesis has been put forth postulating that
lymphoid development stems from distinct populations of
CD127− and CD127+ early lymphoid progenitors (ELPs).
Evidence for this model is supported by experiments where
CD34+ HSCs were engrafted into immunodeficient mice and
subsequently phenotyped for surface expression of various
lineage markers. Representation of flow cytometry data using
tree-plots suggested that lymphoid cells differentiated along two
pathways, distinguished by expression of CD127, that originates
from CD34highCD45RA+ progenitors. A series of in vitro
differentiation assays showed that CD127− ELPs could generate
T cells, marginal zone B cells, NK cells, and innate lymphoid
cells (ILCs), while CD127+ ELPs could generate marginal
zone B cells, NK cells, and ILCs. Molecular characterization of
in vitro-generated NK cells identified substantial differences
according to whether cells originated from CD127− or CD127+

NKIPs. NK cells derived from CD127− NKIPs expressed higher
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levels of GZMB, IFNG, and GZMK and secreted higher levels of
IFN-γ and TNF-α when stimulated with PMA. NK cells derived
from CD127+ NKIPs expressed higher levels of genes encoding
several transcription factors including RUNX1, TCF4, NFIL3,
MYC, LEF1, EOMES, ETS1, TCF12, and BCL11B and exhibited
marginally higher degranulation in response to K562 stimulation
(27). Further dissection of the relative contribution of CD127−

and CD127+ NKIPs to the mature peripheral blood NK cell pool
and NK cell subsets in various tissues will be of interest.

Because of the complexity and plasticity of early
hematopoiesis and lineage commitment, it has been challenging
to define lineage-restricted NK cell progenitors. A foundational
study by Chen and colleagues showed that a subpopulation
of CD34+Lin−CD45RA+ cells expressing CD10 could give
rise to T cells, B cells, NK cells, and DCs under supportive
culture conditions (28). Similar results were reported by Miller
et al. who demonstrated that 2% of bone marrow cells with
a CD34+Lin−CD38− phenotype could give rise to at least
three lineages (NK cells, B cells, and myeloid cells) under the
same culture conditions (29). Subsequent work comparing
lymphoid potential of CD34+Lin−CD45RA+ cells isolated
from cord blood concluded that CD34+Lin−CD45RA+CD10+

progenitors predominantly exhibited B cell potential, while
CD34+Lin−CD45RA+CD7+ progenitors skewed more toward
the T cell and NK cell lineages when differentiated in vitro (30).
Support for CD7 expression by the putative NK cell progenitor
came from experiments showing a high cloning efficiency of
CD3−CD56+ NK cells from CD34+CD7bright bone marrow
progenitors (31). Another study of lymphoid and myeloid
lineage commitment using precursors from cord blood described
B cell and NK cell potential from CD34+CD38−CD10+CD7+

progenitors with barely detectable expansion of these cells in
myeloid stromal cultures (32). An important step forward in
identifying a lineage-restricted NK cell progenitor was made
about a decade later with the identification of a very rare
population of cord blood and bone marrow progenitors with a
Lin−CD34+CD38+CD123−CD45RA+CD7+CD10+CD127−

phenotype that gave rise exclusively to NK cells when
co-cultured at limiting dilutions with supporting
stroma and after transplantation into newborn
immune-deficient mice. These NK cell precursors were
shown to be “downstream” of CLP-like cells with a
Lin−CD34+CD38+CD123−CD45RA+CD7+CD10+CD127+

phenotype (33). It would be of considerable interest to revisit
the place of these lineage-restricted NK cell precursors in
the hematopoietic hierarchy in the context of the “two-family”
model, which posits that CD127− and CD127+ ELPs differentiate
independently and can each give rise to NK cells (27).

Another population of lineage-restricted progenitor cells with
NK and T cell potential characterized as Lin−CD34+DNAM-
1brightCXCR4+ has been described. These cells were bone-
marrow-resident, but increased markedly in circulation in
individuals with chronic infections. Ex vivo culture of these
cells with cytokines (FLT3, SCF, IL-7, IL-15) led to the
development of NK cells and TCRα/β+ T cells, but not myeloid
cells. In contrast, cord blood-derived CD34+DNAM−CXCR4−

progenitor cells in the same culture conditions gave rise to

NK and myeloid cells (34). Where these Lin−CD34+DNAM-
1brightCXCR4+ progenitor cells fit within the developmental
hierarchy of NK cells is unclear. It will be of interest to
determine whether cytotoxic lymphocytes that arise from these
unique progenitors play an important role in the anti-viral
immune response.

THE LINEAR MODEL OF NK CELL

DEVELOPMENT

CD3−CD56+ NK cells with cytotoxic function can be generated
in vitro after long-term culture of CD34+ cells isolated from
cord blood, bone marrow, fetal liver, thymus, or secondary
lymphoid tissue with IL-2 or IL-15 (31, 35–38). Based on the
anatomical locations of progenitors and their capacity to develop
into NK cells under supportive conditions, a stepwise model for
development and maturation of human NK cells has been put
forth by Freud and Caliguiri. In this model, HSCs give rise to
“Stage 1” progenitors that retain CD34 expression and acquire
CD45RA and CD10. These cells give rise to “Stage 2” progenitors
marked by loss of CD10 expression and acquisition of CD117.
“Stage 3” is marked by downregulation of CD34 and acquisition
of LFA-1. These cells are presumed to be restricted to the NK
cell lineage given their inability to differentiate into T cells or
DCs in vitro and their capacity for efficient differentiation into
bona fide NK cells in response to IL-15. “Stage 4” is marked
by acquisition of CD94, and these cells represent the CD56bright

NK cell subset. The precursor population for CD56bright cells
has been identified as exhibiting a CD34dimCD45RA+integrin
α4β7 phenotype (38). Further differentiation into “Stage 5” cells is
marked by downregulation of CD94 and acquisition of CD16 and
killer immunoglobulin-like receptors (KIR). These cells represent
the CD56dim NK cell subset (39).

The presumed developmental transition from a CD56bright

to a CD56dim phenotype is perhaps the most controversial
step in this developmental model. A good case can be
made for this developmental pathway. CD56bright NK cells
are the predominant population early after hematopoietic
cell transplant. Their frequency decreases by 3 months post-
transplant, concomitant with an increase in the percentage
of CD56dim NK cells (40). While this pattern of NK cell
reconstitution could reflect a developmental relationship, an
alternative hypothesis is that the abundance of CD56bright NK
cells early post-transplant is due to high levels of homeostatic
expansion of this subset in the setting of lymphopenia induced by
transplant conditioning. Additional support for a developmental
relationship between CD56bright and CD56dim NK cells comes
from the identification of a functionally and phenotypically
intermediate population of CD56dimCD94high NK cells that have
been described as a transitional population between CD56bright

and CD56dimCD94low NK cells (41). However, whether human
NK cells differentiate from CD56bright to CD56dimCD94high

to CD56dimCD94low has not been definitively established.
Interestingly, CD94 has also been used as a marker to define
phenotypically and functionally distinct NK cell subsets in mice.
Murine CD94high NK cells share phenotypic and functional
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properties with human CD56dimCD94high NK cells. When
CD94high and CD94low NK cells were purified and adoptively
transferred into congenic mice, CD94low NK cells became
CD94high but not vice versa (42).

Perhaps the strongest evidence in support of the idea
that CD56bright NK cells differentiate into CD56dim NK cells
comes from studies where CD56bright NK cells were sorted
and stimulated in vitro. In a study by Chan et al., a
fraction of sorted CD56bright NK cells co-cultured with synovial
fibroblasts exhibited CD56 downregulation and had a phenotype
consistent with CD56dim NK cells. The apparent differentiation
of CD56bright NK cells to CD56dim NK cells could be inhibited by
the addition of an antibody that blocks fibroblast growth factor
receptor 1 (FGFR1). Of note, stimulation of CD56bright NK cells
with a combination of IL-2, IL-15, and 721.221 cells did not
induce differentiation to a CD56dim phenotype. CD56bright NK
cells that were adoptively transferred into NOD-SCID mice were
almost uniformly CD56dimCD16+ when analyzed 10 days later in
the blood, spleen, and lymph nodes. Furthermore, CD56bright NK
cells were shown to have longer telomere repeat lengths relative
to CD56dim NK cells, suggesting that they are more naïve (43).
A contemporaneous study by Romagnani et al. reported on the
acquisition of CD56dim NK cell features such as KIR and CD16
upregulation after stimulation of sorted CD56bright NK cells with
IL-2 or IL-15 and confirmed the existence of longer telomere
repeats in CD56bright NK cells (44). The discrepancies between
these two studies with respect to the role of cytokines in driving
maturation of CD56bright NK cells may be due to experimental
techniques, but additional studies are needed to gain a more
definitive understanding of this stage of NK cell maturation.
Indeed, it’s somewhat surprising that no follow up studies looking
deeper into the FGF signaling pathway and its role in driving NK
cell maturation have been published.

The CD56dim NK cell subset in peripheral blood is
heterogeneous mix of cells with respect to the expression of KIR,
CD94, NKG2A, CD62L, and CD57. Relative surface expression
levels of these molecules are indicative of maturation status.
The current model based on analysis of peripheral blood NK
cells from healthy donors and NK cell reconstitution after
hematopoietic cell transplantation suggests that as CD56dim

NK cell mature, they downregulate NKG2A and CD62L and
subsequently acquire KIR and CD57. Sequential maturation
is associated with a gradual decline in proliferative capacity
in response to IL-2 or IL-15 (45, 46). The acquisition of
inhibitory KIR and NKG2A after lineage commitment has been
studied using in vitro models of human NK cell development
from CD34+ precursors (47, 48). However, late stage NK cell
differentiation and maturation is difficult to study using current
culture conditions. NK cell development from CD34 precursors
in vitro is a slow process that takes ∼4 weeks, and CD3−CD56+

NK cells generally exhibit low-to-absent expression of KIR,
CD16, and CD57. Additionally, signaling through the common
γ-chain cytokines IL-2 and IL-15 drives high expression of CD56,
NKG2A, and cytotoxic granule components in cultured NK cells.
Thus, innovative new approaches need to be developed in order
to study the paths of late stage NK cell maturation and the
mechanisms that influence NK cell heterogeneity.

EVIDENCE FOR A NON-LINEAR MODEL

OF NK CELL DEVELOPMENT

The linear model of human NK cell development is a useful
construction. Within it lie some fundamental truths, such as
the concept that multipotent progenitor cells become lineage
restricted and further mature. However, we may need to go
beyond this model to understand NK cell heterogeneity. NK cells
were once thought to be a relatively homogenous lymphocyte
population, particularly in comparison to T and B cells that can
generate remarkable receptor diversity through somatic DNA
recombination. This view has changed with the advent of more
sophisticated technologies for cellular analysis and computing
power. Using mass cytometry with a panel of 28 NK cell
receptors, Horowitz et al. phenotyped peripheral blood NK cells
from five sets of monozygotic twins and 12 unrelated donors with
defined KIR and HLA genotypes. Using a Boolean gating strategy
to analyze the mass cytometry data, they estimated 6,000–30,000
phenotypic populations within an individual and more than
100,000 phenotypes in the entire donor panel. Interestingly, no
single phenotype accounted for more than 7% of the total NK
cells, and subsets comprising the top 50 phenotypes accounted
for an average of only 15% of a given individual’s NK cells.
Hierarchical clustering of NK cell populations on the basis of
surface receptors showed that the major distinguishing receptors
were CD94, NKG2A, CD16, and CD57. Two separate clusters
emerged: a less mature CD94+NKG2A+ cluster and a mature
CD16+CD57+ cluster (49). With the existence of these new
technologies and sophisticated methods of analysis, it will be
exciting to find out how population frequencies shift in the
context of aging and disease. It will also be of interest to know
whether less mature populations such as the CD94+NKG2A+

population continually mature and alter their phenotype or
whether they are more static and fixed at their stage of
differentiation. It is currently unknown whether the astounding
diversity found within the peripheral blood NK cell population
is largely a reflection of a spectrum of maturational states and
stochastic receptor expression influenced by the environment
or whether clonal diversity within the precursor pool dictates
NK cell phenotypes. In this section we review evidence for the
hypothesis that NK cell diversity could be determined at the
precursor level.

The idea that NK cells develop exclusively from CLPs was
challenged by experiments showing that CMPs and granulocytic-
monocytic precursors (GMPs) isolated from cord blood could
efficiently differentiate into NK cells when cultured in the
presence of NK-supporting cytokines and stroma. Additionally,
NK cells derived from myeloid precursors variably expressed
colony-stimulating factor receptor (CSFR) during culture. Both
CSFR− and CSFR+ progenitors gave rise to functional CD56+

NK cells if cultured in NK-supporting conditions, and addition
of colony-stimulating factor (CSF) to NK cell cultures skewed
development toward the monocyte lineage in a dose-dependent
manner. Interestingly, NK cells derived from CSFR+ myeloid
precursors exhibited significantly higher killer immunoglobulin-
like receptor (KIR) expression (50). More KIR acquisition on
NK cells derived from myeloid precursors could be related
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to CSFR, which signals through the transcription factor Myc
(51). Upstream distal KIR promoters have binding sites for
Myc, and Myc overexpression drives KIR gene transcription
(52). Importantly, a fraction of NK cells with a more mature
NKG2A−KIR+ phenotype was identified in cultures where NK
cells were derived from CSFR+ progenitors, and this population
was absent in cultures where NK cells were derived from
CSFR− progenitors (50). Supporting evidence for human NK
cell differentiation from myeloid progenitors was reported in a
more recent study of NK cell reconstitution in humanized mice.
In this model, 80% of CD56+ cells in the bone marrow co-
expressed myeloid markers such as CD33 or CD36. These cells
lacked expression of conventional NK cell markers including
NKG2D and NKp46 and were hypofunctional with regards to
IFN-γ production and cytotoxicity. However, CD56+CD36+ NK
cells sorted from the bone marrow of these mice and cultured
in differentiation media containing stem cell factor (SCF), IL-15,
and FLT-3 ligand exhibited maturation toward the conventional
NK cell lineage as evidenced by loss of CD36 expression and
acquisition of NKp46 and NKG2D. Similar observations were
reported using CD56+CD36+ cells isolated from human cord
blood. Finally, the authors demonstrated that when purified
CD4+CD38+CD123lowCD45RA+ cells with a GMP phenotype
were cultured in conditions supporting NK cell development,
transient CD36 expression was observed followed by significant
upregulation of CD56 (53).

It could be argued that NK cell development from myeloid
progenitors is an artifact of the culture systems used and that
it does not occur in vivo. Indeed, further studies need to
be done in vivo to substantiate in vitro results. Nonetheless,
given the plasticity of hematopoiesis described above, we believe
that it’s likely that some fraction of lineage-committed NK
cells in humans derive from myeloid precursors. This notion
is supported by other studies showing that under certain
circumstances NK cells can share properties with DCs, such
as MHC class II upregulation and antigen-presentation (54,
55). Conversely, there are conditions under which DCs acquire
cytotoxicity characteristic of NK cells (56).

While much of the above discussion has highlighted
hematopoietic plasticity and the multi-lineage potential of
progenitor cells, results from a recent study by Dunbar
and colleagues utilizing autologous transplantation of rhesus
macaques with barcode-labeled CD34+ cells suggest that the NK
cell lineage is ontologically distinct. This contention was based
on analysis of peripheral blood from macaques between 3- and
6.5-months post-transplant. Within this window, many shared
clones were contributing to the granulocyte, monocyte, T cell
and B cell lineages, while the clonal composition of NK cells was
distinct. Additionally, distinct clonal patterns were observed for
the more abundant CD16+CD56− NK cell subset compared to
the less abundant CD16−CD56+ NK cell subset (57).

In a follow up study, the same group reported on NK cell
reconstitution from the same rhesus macaques out to 4 years
post-transplant. In this subsequent analysis, the differences in
clonal contributions to the CD16+CD56− and CD16−CD56+

NK cell populations were still evident, and the CD56−CD16+

NK cell subset exhibited low clonal diversity. Despite technical

challenges related to limited reagents to phenotype macaque
NK cells, the authors also showed that reconstituted NK cells
segregated by expression of KIR also exhibited clonal segregation.
Furthermore, these clonal patterns were maintained after short
term in vivo depletion with an anti-CD16 antibody. This finding
suggests persistence and self-renewal of oligoclonal NK cell
populations (58). If it can be assumed that (a) reconstitution
of hematopoiesis after adoptive transfer of transduced CD34+

progenitors accurately recapitulates NK cell ontogeny, (b)
macaque and human NK cell development are reasonably
equivalent, and (c) macaque CD16+CD56− and CD16−CD56+

NK cells are analogous to CD56dim and CD56bright NK
cells, the results from this study suggest that CD56bright NK
cells and CD56dim NK cells are distinct lineages. This has
obvious implications for the current model of human NK
cell development where CD56bright NK cells are assumed to
be precursors of CD56dim NK cells. While the debate over
whether CD56bright NK cells are precursors of CD56dim NK
cells or an independent lineage may seem somewhat trivial,
it has important implications for generating NK cells for
immunotherapy. It is possible that current culture systems which
predominantly generate cells with a CD56bright phenotype favor
the expansion/differentiation of a particular subset of precursor
clones at the expense of other clones that differentiate into
CD56dim NK cells.

CONSIDERATIONS OF NK CELL

DEVELOPMENT IN RELATION TO ILCS

In recent years, much knowledge has been gained by studying
NK cell development in parallel with the closely related
ILCs and lymphoid tissue inducers (LTi). In one report
describing committed ILC precursors, the immune systems
of PLZFGFPcre+/− mice carrying the ROSA26-floxstop-yellow
fluorescent protein fate (YFP)-mapping allele were analyzed
in detail. GFP marked cells actively expressing promyelocytic
leukemia zinc finger (PLZF), and YFP marked cells that
had previously expressed PLZF at some point during their
development. PLZF is a transcription factor that plays an
important role in the effector differentiation of NKT cells (59,
60). Hematopoietic reconstitution experiments using progenitor
cells from PLZFGFPcre+/− mice demonstrated that the vast
majority of NKT cells expressed YFP, whereas CLPs, B cells,
and T cells were unlabeled. ILC1, ILC2, and ILC3 cells were
YFP-labeled to varying extents. Interestingly, non-recirculating
DX5−CD49a+CD3ε−NK1.1+ NK cells in the liver were heavily
labeled, whereas classical recirculating DX5+CD49a− NK cells
were mostly negative. In a search for the PLZF-expressing
ILC precursor, the authors identified a rare subset of PLZFhigh

cells in fetal liver and adult bone marrow with a Lin−IL-
7Rα+cKit+α4β7high phenotype that demonstrated ILC1, ILC2,
and ILC3 potential at the clonal level. This potential excluded
classical LTi and NK cells, but included non-recirculating
DX5−CD49a+CD3ε−NK1.1+ NK cells. The results of this study
suggest that liver-resident NK cells share a common progenitor
with ILCs and that a distinct PLZF− progenitor gives rise to
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circulating NK cells (61). Whether PLZF expression is associated
with the divergence of canonical NK cells and ILCs in humans has
not yet been determined, and there may be important differences
in PLZF expression patterns between species that limit the
application of knowledge gained from these mouse experiments
to human biology. In contrast to mice, recirculating canonical
NK cells in humans are PLZF+, and PLZF downregulation
through promoter DNA methylation is a hallmark of adaptive
NK cells that arise in response to human cytomegalovirus
(HCMV) (62).

Mice with an inhibitor of DNA binding 2 (Id2) reporter allele
(Id2Gfp/+) have also been employed to track ILC progenitors
(63). Id2 is a transcriptional regulator and inhibitor of E
proteins (64). Genetic deletion of Id2 in mice abrogates the
development of all ILC lineages, including NK cells (65, 66).
In Id2Gfp/+-reporter mice, a Lin−Id2+IL-7Rα+CD25−α4β

+

7
cell population representing a common progenitor to the
ILC1, ILC2, and ILC3 lineages was identified. This progenitor
population was termed the common progenitor to all helper-
like ILCs (CHILP). CHILP cells did not give rise to conventional
NK cells in adoptive transfer experiments, indicating early
divergence of the ILC and NK cell lineages (63). However,
this interpretation has been recently challenged by DiSanto
and colleagues who studied ILC and NK cell development
using Id2RFP-reporter mice. The genomes of these mice contain
an internal ribosome entry site monomeric red fluorescent
protein (IRES-mRFP) cassette within exon 2 of the Id2 gene.
In these mice, RFP was highly expressed in all ILC subsets
and in splenic and liver NK cells (67). In the current
model of ILC development, Lin−CD117+CD135−α4β

+

7 CD25
−

ILC progenitors (ILCP) are considered the earliest precursor
population giving rise to ILCs downstream of CLPs (68, 69).
Analyses of immune cell reconstitution 5 weeks after adoptive
transfer of bone marrow-derived Id2RFP ILCPs into sub-lethally
irradiated immunodeficient mice showed that all ILC subsets
as well as conventional NK cells were present in these mice.
Additionally, when Id2RFP ILCPs were sorted and cultured on
stroma with cytokines, single-cell cultures gave rise to both single
and mixed colonies of ILC1s, ILC2s, ILC3s, and NK cells. To
assess PLZF as a distinguishing factor of ILC progenitors, Id2RFP

mice were crossed with Zbtb16GFPcre mice to generate double-
reporter mice. Zbtb16 is the gene encoding PLZF. Id2+Zbtb16−

and Id2+Zbtb16+ ILCPs were purified from double-reporter
mice and adoptively transferred into immunodeficient mice.
Both populations gave rise exclusively to ILC subsets and NK
cells with no detection of B cells, T cells or myeloid cells. Sorted
Id2+Zbtb16+ ILCPs could also give rise to all ILC subsets as well
as NK cells in single-cell cultures. Results from these experiments
performed with a more sensitive reporter system suggest that
conventional NK cells and ILCs are derived from a common
early precursor and that neither Id2 nor PLZF distinguishes
progenitors with differing lineage potential (67).

Not surprisingly, human ILC development is less well-
characterized. A lineage-committed CD34+ ILC3 precursor
expressing the transcription factor RORγt has been found in
tonsil and intestinal lamina propria tissues but not in the
peripheral blood, bone marrow or thymus (70). Freud and

colleagues also identified a Lin−CD34+CD45RA+CD117+IL-
1R1+RORγt+ progenitor population that expressed ID2 and
could differentiate into all ILC types, including conventional
CD56bright NK cells, in vitro. This progenitor was found in
several different secondary lymphoid tissues (SLT) but not
in hematopoietic tissues or thymus. Intriguingly, RORC1 and
RORC2 (encoding RORγ) transcripts were present in all mature
ILC subsets and CD56bright NK cells but not CD56dim NK cells
(71). This finding contrasts with fate-mapping studies in mice
where RORγt expression was found to be restricted to ILCs,
and a RORγt+ progenitor gave rise to subsets of ILCs but not
NK cells (72, 73). The observation of RORC2 expression in
CD56bright but not CD56dim NK cells raises questions about
the developmental relationship between these two subsets. It’s
possible that RORC2 expression is downregulated during the
presumed developmental transition of CD56bright NK cells into
CD56dim NK cells. Alternatively, RORC2 expression could be a
lineage-defining factor that marks two distinct lineages (71).

While the two studies referenced above describe ILCs
located in SLT, a recent report has extensively characterized
human ILCPs that circulate in peripheral blood. These
cells are found at a low frequency in blood and are
CD45+CD7−CD56−CD25+CD127+CD117+IL1R1+CD69−.
Analysis of progeny from single ILCP cell cultures showed that
all ILC subsets as well as NK cells developed from ILCPs. ILCPs
as defined in this study represented a heterogeneous population
comprised of unipotent and multipotent progenitors, and some
ILCPs exhibited the potential to generate both NK cells and ILCs
at the single-cell level. In addition to peripheral blood, human
ILCPs were identified in cord blood, SLT, fetal liver, and adult
lung. Results from this work support the idea that circulating
ILCPs can seed various tissues, and that environmental factors
within the tissue can “instruct” further differentiation toward the
ILC1, ILC2, ILC2, and NK lineages. Some of this instruction is
likely given by the presence or absence of Notch ligands and the
cytokine milieu (74). Collectively, these studies provide strong
evidence that a precursor population exists in humans that has
the potential to differentiate into ILCs and conventional NK cells.
To what extent the total NK cell pool in humans is derived from
an ILC/NK-restricted precursor is unknown and is a challenging
question to address. It is possible that many tissue-restricted
NK cell populations could arise from an ILC/NK-restricted
precursor, while circulating peripheral blood NK cells arise from
other CLP, CMP, or GMP populations. Because fate-mapping
experiments cannot be carried out in humans for obvious ethical
reasons, the continued refinement of humanized mouse models
for analysis of human NK cell development might be the best
approach for advancing our understanding.

ADAPTIVE NK CELL DEVELOPMENT

Over the past decade there has been considerable interest in
the concept of NK cell memory. The idea that NK cells may
possess attributes of immunological memory began with the
discovery that mouse cytomegalovirus (MCMV) encodes an
MHC-like protein (m157) that engages the activating receptor
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Ly49H on NK cells. This interaction was shown to be important
for host protection against the virus (75, 76). Further analysis
of the Ly49H+ NK cell population in MCMV-infected mice
revealed that these cells expanded robustly in the liver and spleen
after infection. Following a contraction phase, the remaining
Ly49H+ cells remained in lymphoid and non-lymphoid organs
for several months. Adoptive transfer experiments showed that
these “memory” cells could undergo secondary expansion in
response to viral challenge and conferred protective immunity
(77). An analogous population of NK cells expressing the
activating receptor NKG2C expands specifically in response to
HCMV (78). While the Ly49H/m157 interaction is crucial for
host protection against the virus, the same is not true for the
NKG2C/HLA-E interaction. Approximately 4% of humans carry
a homozygous deletion ofKLRC2, the gene that encodes NKG2C.
Because of built-in redundancy in the human response to HCMV,
NK cells from NKG2C−/− individuals can still mount a response
against the virus through other activating receptors (78, 79).
This redundancy is reflected in the epigenetically regulated
diversification of NK cell signaling and function that has been
reported in HCMV seropositive individuals (62, 80). Another

more general form of NK cell memory for haptens or viruses
has also been described in mice. These NK cells are hepatic and
express the chemokine receptor CXCR6 (81). This work has been
extended to humans where it has been shown that a population
of NK cells expressing tissue residency markers (CD69, CD62L,
CXCR6) exhibit recall responses to varicella-zoster virus (VZV)
and appear to be very long lived (82).

Little is known regarding the developmental origin or adaptive
or memory NK cells. There is circumstantial evidence to suggest
that the liver may be a site for NK cell memory acquisition.
Two recent studies have characterized liver-resident NK cells
from biopsied human tissue. These cells express the liver-specific
adhesion molecules CXCR6 and CD49a. High frequencies
of these cells also express NKG2C and KIR (83, 84). It is
possible that the liver is the primary extramedullary site for the
development of adaptive NK cells. These cells could then traffic
to sites of infection, expand upon activation and traffic through
peripheral blood.

The developmental path from CD34+ hematopoietic
progenitor cell to adaptive NK cell has not yet been
elucidated. It may be that the same lineage-restricted

FIGURE 1 | Possible linear and branched models of human NK cell development. In the linear model of human NK cell development, hematopoietic stem cells

differentiate into lymphoid-primed multipotential progenitors, which then become common lymphoid progenitors. Lineage commitment occurs at the NK precursor

stage. These cells then mature first into CD56bright NK cells and then CD56dim NK cells. Differentiation into adaptive NK cells could subsequently occur in response to

viral infection. In the branched model of human NK cell development, hematopoietic stem cells differentiate into lymphoid-primed multipotent progenitors, which then

differentiate toward common lymphoid or myeloid progenitors. Either of these progenitors could give rise to NK cell progenitors. These NK cell progenitors could then

differentiate into CD56bright, CD56dim, or adaptive NK cells. Dashed arrows represent hypothetical routes of development/differentiation.
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Lin−CD34+CD38+CD123−CD45RA+CD7+CD10+CD127−

NK cell precursor that has previous been described (33) can
differentiate into adaptive NK cells under supportive conditions.
Alternatively, there could exist a unique precursor cell that
gives rise to an adaptive NK cell lineage. New experimental
systems and approaches will likely be needed to understand the
ontological relationship between adaptive and canonical NK
cells. Currently, there are no studies that have reported on the
ability to take canonical NK cells from HCMV seronegative
donors and induce and adaptive NK cell state ex vivo.

DISCUSSION

Our understanding of hematopoiesis in general and NK cell
development in particular has advanced considerably over the
past several decades. There is now increased awareness of the
plasticity of hematopoietic progenitor cells and their capacity for
differentiating toward multiple lineages. One major unresolved
question is whether human NK cells arise from a distinct set
of clonal precursors or whether they arise from multi-potent
progenitors that also split off into the T cell, B cell or myeloid
lineages. If NK cells have a particularly unique ontogeny, at
what stage of hematopoiesis do they diverge? Another major
question that remains to be resolved is whether CD56bright NK
cells represent a distinct lineage or whether they are precursors of
CD56dim NK cells. A third major question is the developmental
origin of adaptive NK cells and whether they represent a lineage
distinct from canonical NK cells. To what degree is NK cell
development a linear path from hematopoietic stem cell to
terminally mature NK cell, and to what degree is it a branched
process where different progenitor cell populations give rise to
distinct NK cell lineages (Figure 1)? More in depth investigation
and the development of new approaches and technologies should
shed more light on these difficult questions and provide more

definitive answers. It is also important to keep in mind the
myriad differences between mice and humans with regards to
hematopoiesis and immune cell development.

While these questions are interesting from an academic
perspective, advancements in our understanding of human NK
cell development will be critical for the development of new
immunotherapies. One major challenge is how to successfully
treat patients with solid tumors with an NK cell therapy.
We know that NK cells exist within peripheral tissues where
tumors can arise and can infiltrate the tumor microenvironment.
However, we do not know the precise developmental pathway
these NK cells take, which precursors they differentiate from
or what environmental cues instruct their maturation. With
this knowledge, we could potentially guide the differentiation
of either a subset of CD34+ progenitors or induced pluripotent
stem cells (iPSCs) in vitro to generate NK cells for adoptive
immunotherapy that will home to specific tissues and persist.
Similarly, we know that certain subsets of NK cells respond
specifically to HCMV, VSV, and EBV infections. There is
potential to develop an NK cell-based immunotherapy to
treat patients who have complications from these infections.
For this approach to become a reality, we need a better
understanding of the developmental origins of these virus-
specific NK cell subsets.
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INTRODUCTION

Innate lymphoid cells (ILCs) are rapid producers of both proinflammatory and regulatory
cytokines in response to local injury, inflammation, pathogen infection, or commensal microbiota
perturbation (1). Because most ILCs have been shown to be tissue-resident during homeostasis
(with the exception of circulating NK cells) in almost all organs analyzed, their ability to quickly
respond to tissue stress and inflammation underpins their critical role in regulating tissue
homeostasis and repair during infection or injury (2–4). Recent evidence has suggested that
mature ILCs can be further classified into group 1, 2, and 3 ILCs based on different expression of
transcription factors, cell surface markers, and effector cytokines (1). Mouse group 1 ILCs, which
include natural killer (NK) cells and ILC1, were initially distinguished from other ILCs based on
their constitutive expression of the transcription factor Tbx21 (T-bet), co-expression of activating
receptors NKp46 and NK1.1, and production of interferon (IFN)-γ following activation (5). In
humans, group 1 ILCs are harder to definitively differentiate from other ILCs due to the lack of

lineage defining markers and reported functional plasticity amongst group 2 and group 3 ILCs (6).
ILC1 are recently discovered tissue-resident sentinels that function to protect the host from

bacterial and viral pathogens at initial sites of infection (2, 7, 8). ILC1 rapidly produce IFN-γ
following local dendritic cell activation and interleukin (IL)-12 production to limit viral replication
and promote host survival before the recruitment of circulating lymphocytes into infected tissue
(2). Unlike ILC1, NK cells can be recruited from the circulation into the parenchyma of infected or
cancerous tissues where they display potent perforin-dependent cytotoxicity in addition to rapid
IFN-γ production (9, 10). However, persistent inflammatory signals can also lead to unrestrained
activation of group 1 ILCs during obesity and inflammatory bowel disease (IBD) (3, 11–14). While
these studies suggest important roles for group 1 ILCs during host protection and pathology, gaps
in evidence have inhibited the ability of recent studies to definitively distinguish between the roles
of ILC1 and NK cells in these contexts.

GROUP 1 ILC PHENOTYPIC AND FUNCTIONAL HETEROGENEITY

NK cells, the founding member of ILCs, were initially defined based on the cell surface expression
of NK1.1 in mouse or CD56 in human with the absence of cell surface expression of other
lineage (Lin) defining markers including CD3, CD14, CD19, and TCR proteins (15). In subsequent
mouse studies over the last 30 years, Lin−NK1.1+ cells were found to be heterogeneous for
the expression of activating and inhibitory Ly49 receptors, cell surface integrins [α1β1 (CD49a),
α2β1 (CD49b), αEβ7 (CD103)], cell surface proteins (TRAIL, CD69, CD27, CD11b), transcription
factors (Eomes), chemokine receptors (CXCR6), and cytokine receptors (IL-7Rα) in various organs
(1, 16). Similarly, human Lin−CD56+ cells have been reported to be heterogeneous for the
expression of transcriptions factors (EOMES and T-BET), cell surface markers (CD49a, CD56,
CD16, NKp80, CXCR6, IL-7Rα, CD94, CD69, NKp44), and cytotoxic molecules (Perforin) (1, 16).
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Early studies concluded that cells with an alternative cell surface
or transcription factor phenotype from putative mature NK cells
(mouse: Lin−NK1.1+T-bet+Eomes+CD49b+; human: Lin− IL-
7Rα−CD56dimCD16+) in peripheral organs and blood likely
represented immature NK (iNK) cells (17–21). This hypothesis
is supported by studies demonstrating that subsets of developing
mouse NK cells can be distinguished based on CD27 and
CD11b expression (22, 23). Similarly, previous studies have
suggested that CD56brightCD16− human NK cells in the blood
may be immature precursors to CD56dimCD16+ mature NK
cells (18, 19). However, whether other phenotypic differences
observed in mouse and human group 1 ILCs are due to
tissue-specific microenvironments, distinct lineages of cells,
or developmental/activation states of NK cells is still under
considerable debate and investigation.

Insight into these questions came shortly after the
identification of Lin−IL-7Rα+ “helper” ILCs. Specifically,
genetic evidence suggested that Tbx21-dependent IL-
7Rα+Tbet+Eomes−NK1.1+NKp46+ “ILC1” in the small
intestine did not require Eomes for their development, whereas
NK cells did require Eomes (7). A recent study further supported
these initial data by using Eomes-GFP reporter mice to generate
core transcriptional signatures of Eomes− ILC1 and Eomes+

NK cells from 4 independent tissues. The identified core ILC1
signature led to the discovery of the inhibitory receptor CD200r1
as a stable marker expressed by ILC1 but not NK cells during
homeostasis and inflammation (2). Additional lineage tracing
experiments suggested that CD200r1+Eomes−CD49b− group
1 ILCs constituted a stable lineage during homeostasis, distinct
from CD200r1-Eomes+CD49b+ mature NK (mNK) cells
(2, 7, 24). Functional evidence suggestive of distinct group
1 ILCs in peripheral organs was supported by the findings
that T-bet+Eomes−CD49b− group 1 ILCs (in addition to
ILC2 and ILC3) were long-term tissue-resident cells, whereas
Eomes+CD49b+ mNK cells were derived from the circulation
in almost all organs tested in mouse parabiosis experiments
(2, 4). Similarly, in one human study a subset of donor liver
CXCR6+ group 1 ILCs was found to be maintained up to 13 years
post-liver transplant while donor CXCR6− NK cells were absent,
suggesting that a subset of long-term tissue-resident CXCR6+

group 1 ILCs are conserved in mammals (25). Furthermore,
CD49b−Eomes− group 1 ILCs with a phenotype consistent with
ILC1 in the liver express higher levels of TRAIL than mNK cells
at steady state, and these ILC1 can produce higher levels of tumor
necrosis factor (TNF)-α and IFN-γ following activation ex vivo
(2, 17, 20, 24). While ILC1 in the small intestine were observed to
have poor cytotoxicity and liver group 1 ILCs with a phenotype
consistent with ILC1 express lower levels of granzymes A/B
and perforin at steady state compared to NK cells (7, 24),
peripheral ILC1 express higher transcript levels of granzyme C in
addition to TRAIL and may kill target cells through alternative
mechanisms (2, 24, 26–28). However, it will be important for
future studies to determine whether perforin-independent killing
mechanisms can be used as definitive criteria to functionally
separate ILC1 from NK cells across all mouse and human tissues.
Thus, significant phenotypic and functional heterogeneity has
been demonstrated in group 1 ILCs; however, it is still unclear

to what extent these individual pieces of evidence can be used in
isolation to define group 1 ILC subsets.

DEVELOPMENTAL AND ACTIVATION

STATES OF GROUP 1 ILCs

Collective reports have demonstrated that iNK cells in mouse
bone marrow and periphery can express Ly49 receptors, CD49a,
CD90, TRAIL, CD69, and Eomes, and lack CD49b expression (3,
21, 29–31). Upon adoptive transfer into lymphopenic mice, iNK
cells can induce CD49b expression and retain Eomes expression
(3). During activation, mNK cells can induce expression of
CD49a, CD69, TRAIL, and CD90 while also decreasing Eomes
expression (2, 17, 29, 32), suggesting that iNK and mNK
cell phenotypes can overlap with other reported group 1 ILC
phenotypes based on these markers. Consistent with these
findings, NK cells can repress Eomes expression and induce
CD49a, TRAIL, and CD103 in response to TGFβ and IL-
2 stimulation ex vivo (33, 34). These key findings make the
current dogma of utilizing CD49a, CD49b, and Eomes expression
in Lin−T-bet+NK1.1+NKp46+ cells insufficient to distinguish
between group 1 ILC subsets and activation or developmental
states of NK cells. Furthermore, adipose and small intestine iNK
cells have also been found to be short-term (1 month), but
not long term (4 months) tissue-resident in mouse parabiosis
experiments (3), suggesting that short-term parabiosis (2 weeks-
1 month) experiments are not sufficient to distinguish iNK
cells from ILC1 without additional evidence. Thus, there is
currently insufficient evidence to conclude that T-bet+ group 1
ILCs with the phenotype of CD49a+CD49b+Eomes+NK1.1+ are
either tissue-resident NK (trNK) cells or transitional states of
group 1 ILCs, because these cells may be activated NK cells in
the tissue parenchyma following recruitment from circulation.
Furthermore, CD49a+CD49b−Eomes+NK1.1+ cells may not
represent a transitional subset of group 1 ILC, but instead may
represent iNK cells in peripheral tissues, although further lineage
tracing experiments will be necessary to clarify these issues in
the field.

In the healthy state, mature human group 1 ILCs have been
described to be heterogeneous for cell surface expression of
CD56, CD16, and NKp80 in peripheral tissues (35). However,
CD56 can be expressed on ILC progenitor populations and ILC3
in the tonsil (36), and may be downregulated during activation
in a similar manner to CD16 and NKp80 (37–39). Thus, to
date there are no known stable cell surface markers that can
unequivocally distinguish between human mNK cells (or their
developmental intermediates, which may be tissue-resident) and
other proposed group 1 ILCs in inflamed human tissues, because
activated mNK cells can lose expression of these cell surface
markers during inflammation.

Mouse Group 1 ILC Development
Recent unbiased chromatin accessibility studies in mice suggest
that NK cells can be defined epigenetically as a distinct ILC
lineage through the enrichment of accessible T-bet and Eomes
binding sites compared to other leukocytes (40). Similarly, mNK
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and iNK cells require Eomes for their development (2, 20, 41),
suggesting that Eomes may be the master transcription factor
that defines NK cell lineage identity in mice during homeostasis.
In support of this hypothesis, mNK cells in the peritoneum,
liver, spleen, salivary gland, and adipose tissue were all found
to have a cell-intrinsic developmental requirement for Eomes
and T-bet (2), arguing against tissue-specific transcription factor
developmental requirements formNK cells.While certain studies
have observed that mNK cell numbers are normal in the absence
of T-bet (7, 8, 42), it has been demonstrated previously that
Tbx21−/− NK cells display an immature phenotype and are
functionally deficient (3, 43–45). Therefore, because Tbx21 is
required for optimal mature ILC1 and mNK development (2, 3,
46), Rag2−/−

× Tbx21−/− mice are not a suitable model to test
for the contributions of mature group 1 ILCs in vivo.

The transcription factors Id2 and Nfil3 have also been shown
to be required for mature mouse ILC1 and NK cell development
(47, 48). Certain studies have identified “tissue-resident NK
cells,” “salivary gland ILCs,” and “type 1 ILCs” based on their
development in the absence of Nfil3 (27, 33, 49). However,
similar subsets have been also found to be Nfil3-dependent
in a cell-intrinsic manner in other studies (2, 50). Because
mNK cells can develop in an Nfil3-independent manner during
virus-induced inflammation and aging (33, 51), analysis of
Nfil3−/− mice is likely not sufficient to define group 1 ILC
subsets due to these caveats. Previous studies have also utilized
Zbtb16 fate-mapping studies and Id2 reporter mice to identify
a common helper ILC precursor population that gives rise
to all tissue-resident ILCs, but not mNK cells, to argue that
ILC1 comprise a developmental lineage distinct from NK cells
(7, 52, 53). However, a recent study using dual Zbtb16 and
Id2 reporter mice demonstrated that both NK cells and ILC1
can develop from a Id2+Zbtb16+ shared precursor, suggesting
that these transcription factors alone cannot be used to identify
different group 1 ILC subsets during ontogeny (54). Instead,
several studies have identified the transcription factor Zfp683
(Hobit) as highly expressed in peripheral ILC1 compared to
mNK cells (2, 55, 56). Zfp683−/− mice display a loss of liver
ILC1 but not other ILC populations (including ILC1 in other

tissues) (2, 55), suggesting that mature liver ILC1 have a

unique developmental pathway from other mouse ILCs. While
developmental dependence on Eomes expression can be used to
identify NK lineage cells in peripheral organs of mice, there is
still no definitive evidence that a single transcription factor can
define the development of other group 1 ILC subsets across all
mouse tissues.

DISCUSSION

While collective evidence supports the hypothesis that mouse
group 1 ILCs are composed of Eomes-dependent iNK and mNK
cells, their activation or developmental states may be mistaken
for novel subsets of group 1 ILCs. Eomes-independent ILC1 have
been shown through single- cell sequencing, parabiosis, lineage
tracing, and transcription factor deficient mouse experiments to
be a distinct lineage of group 1 ILCs, and not a developmental
or activation state of NK cells. In human tissues, there is
currently no definitive evidence that can distinguish between
developmental or activation states of group 1 ILCs during
inflammation. Single cell sequencing studies will be needed to
determine the extent of group 1 ILC heterogeneity in various
peripheral tissues, and to identify stable markers that can
distinguish between stable subsets of group 1 ILCs through
lineage tracing in humanized mouse models.
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Robert E. Donahue 1, Amitinder Kaur 5*, Cynthia E. Dunbar 1* and Chuanfeng Wu 1*
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Recent functional, gene expression, and epigenetic studies have suggested the presence

of a subset of mature natural killer (NK) cells responsible for maintaining NK cell

memory. The lack of endogenous clonal markers in NK cells impedes understanding the

genesis of these cell populations. In humans, primates, and mice, this phenotype and

memory or adaptive functions have been strongly linked to cytomegalovirus or related

herpes virus infections. We have used transplantation of lentivirally-barcoded autologous

hematopoietic stem and progenitor cells (HSPC) to track clonal hematopoiesis in

rhesus macaques and previously reported striking oligoclonal expansions of NK-biased

barcoded clones within the CD56−CD16+ NK cell subpopulation, clonally distinct from

ongoing output of myeloid, B cell, T cell, and CD56+16− NK cells from HSPC. These

CD56−CD16+ NK cell clones segregate by expression of specific KIR surface receptors,

suggesting clonal expansion in reaction to specific environmental stimuli. We have now

used this model to investigate the impact of rhesus CMV(RhCMV) infection on NK clonal

dynamics. Following transplantation, RhCMVneg rhesus macaques display less dominant

and oligoclonal CD16+ NK cells biased clones compared to RhCMVpos animals, however

these populations of cells are still clearly present. Upon RhCMV infection, CD16+ NK

cells proliferate, followed by appearance of new groups of expanded NK clones and

disappearance of clones present prior to RhCMV infection. A second superinfection with

RhCMV resulted in rapid viral clearance without major change in the mature NK cell clonal

landscape. Our findings suggest that RhCMV is not the sole driver of clonal expansion

and peripheral maintenance of mature NK cells; however, infection of macaques with this

herpesvirus does result in selective expansion and persistence of specific NK cell clones,

providing further information relevant to adaptive NK cells and the development of NK

cell therapies.
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INTRODUCTION

Natural killer (NK) cells are classically-defined as circulating
and tissue-resident immune effectors responsible for production
of regulatory and supportive cytokines as well as the killing of
infected and malignant cells. NK cells have been historically
considered innate effector cells, lacking both the rearranged
diverse antigen receptors present in B and T cells conferring
specificity and the self-renewal and/or longevity of reactive
clones necessary to confer immune memory. However, there is
increasing direct and correlative evidence for properties of NK
cells providing adaptive memory in mice, non-human primates,
and humans in response to viral infection, immunization, or
cytokine stimulations (1–8). Functional, gene expression, and
epigenetic studies have defined subsets of natural killer cells
potentially responsible for these adaptive properties (1, 6, 9–11).

Clonal expansions are integral in understanding T and B cell
memory; yet, the lack of endogenous clonal markers in NK cells
has impeded understanding of the genesis and maintenance of
putative memory or adaptive NK cell populations. Efforts to
elucidate mechanisms underlying NK memory have focused on
analyzing expression patterns and “pseudo-clonal” expansions of
NK cells with specific patterns of surface receptors known to
interact with MHC molecules or viral targets, specifically Ly49
receptors in mice (9) or killer immunoglobulin-like receptor
(KIR) in humans. The pathways resulting in heterogeneity of
NK cell functions are complex and not completely understood,
with the character of responses to the environment appearing
to depend on the timing and amalgamation of expression of
activating and inhibitory cell surface receptors.

Mouse NK cells are phenotypically and functionally distinct
from human NK cells, limiting extrapolation from this model
organism. The Ly49 family of receptors in the mouse has
been shown to have some analogous functions to human
KIRs; however in terms of their structure, these molecules
are highly dissimilar (12). In contrast to murine models,
non-human primates, specifically rhesus macaques (RMs), are
phylogenetically closely related to humans, and their NK cells
share many phenotypic and functional properties with human
NK cells (13–15).

We have recently utilized genetic barcoding of transplanted
autologous RMhematopoietic stem and progenitor cells (HSPCs)
to track hematopoiesis at a clonal level in vivo (16, 17).
Previously, we observed striking expansions of circulating
mature CD56−CD16+ NK cell clones, clonally distinct from
myeloid, B cell, T cell, and CD56+16− NK cells implying
an independent differentiation and maintenance pathway
distinct from ongoing production from HSPC, perhaps due
to peripheral self-renewal (18). Groups of peripheral expanded
clones appeared rapidly following transplantation and showed
variable degrees of waxing and waning over time, as if in
response to environmental stimuli, similarly to peripheral mature
effector T cell clonal dynamics. Strikingly, these expanded
NK clones segregated by KIR expression long-term, with
specific clones either expressing or not expressing specific
KIRs, for the first-time linking expression of specific interacting
receptors with clonal expansions and suggesting a potential

explanation for maintenance of NK memory. The concept of
NK memory was further strengthened by a study showing
evidence for antigen-specific NK cell memory following SIV/HIV
vaccination in RM indicating the existence of functional memory
NK cells (19).

In humans, recent studies have demonstrated populations
of mature adaptive NK cells with a distinctive signaling,
functional, and transcription factor profiles along with epigenetic
characteristics similar to T effector cells that closely correlated
with seropositivity for the herpesvirus cytomegalovirus (CMV)
(10, 11). Expansions of “pseudoclonal” KIR-segregated NK cells
expressing maturation markers such as CD57 and the activating
receptor NKG2C have been linked to CMV reactivation post-
allogeneic transplantation (20). In the context of reactivation
of CMV post-transplant, increases in the NKG2C+ population
persisted over time (21, 22). Further, NKG2C gene copy number
variation has been shown to play a role in the human NK cell
response to CMV infection (23, 24).

Rhesus CMV (RhCMV) has been considered an emerging
animal model for studying human CMV due to close
phylogenetic relationship, immunogenicity, and identical
life cycles, including latency and reactivation following
immunosuppression (25). Virtually 100% of RM in the
wild or reared in standard captive breeding populations become
RhCMV positive by 1 year after birth (26). The RMs previously
studied in our barcoded transplantation model were all RhCMV
seropositive.We hypothesized that themassive clonal expansions
arising post-transplantation may have arisen wholly or in part
in response to RhCMV reactivation. We have now used this
model to investigate the impact of RhCMV infection on NK
cell clonal dynamics and phenotypic subsets by transplanting
two RhCMV naïve monkeys with autologous barcoded HSPCs
and tracking NK clonal dynamics post-transplantation in
comparison to historical barcoded RhCMVpos recipients. To
then directly test the relationship between RhCMV infection and
NK clonal dynamics, we infected these RhCMVneg animals with
RhCMV 9 months post transplantation. Our results provide new
insights into NK adaptive features and clonal dynamics related to
RhCMV infection and details the phenotype of a model relevant
to the human clinic.

MATERIALS AND METHODS

Rhesus Macaque Autologous HSPC
Transplantation
Animal studies were carried out on protocols approved by
the National Heart, Lung, and Blood Institute Animal Care
and Use Committee. Indian-origin RhCMVneg RMs (n = 3)
were obtained from the expanded specific-pathogen free colony
maintained at the Tulane National Primate Research Center and
confirmed to be RhCMV-seronegative by whole virion ELISA
screening for RhCMV-specific IgG antibodies. These animals
were housed in isolation from RhCMVpos RMs and special
precautions were taken to maintain their RhCMVneg status
before and after transplantation and before RhCMV inoculation,
including use of one RhCMVneg animal as a blood donor for the
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two transplanted RhCMVneg macaques following conditioning
radiation and before engraftment.

Peripheral blood CD34+ HSPCs were mobilized,
collected via apheresis, immunoselected, and transduced
with diverse barcoded lentiviral libraries as described (16–
18, 27). Following transduction, CD34+ HSPC were infused
into autologous recipients conditioned with 10Gy total
body irradiation.

RhCMV Infection and Monitoring
RhCMV strain 180.92 (28) was used to infect animals in this
study. The virus stock of RhCMV 180.92 used for experimental
infection of RhCMV-seronegative rhesus macaques was derived
after transfection of virion DNA purified from infected cells into
primary rhesus macaque fibroblast lines as previously described
(29) (2× 106 TCID50 was slow thawed on ice, reconstituted with
RPMI (Thermo Fisher, cat# 11875119) to a final volume of 1ml,
and given as a slow IV push. Immediately following inoculation,
infected animals were housed in a regular specific pathogen free
(SPF) room and separated from remaining RhCMVneg animals.

RhCMV DNA copy numbers were determined via real-time
qPCR as described. DNA was extracted from 200 µL plasma,
urine, or saliva using Qiagen QIAamp DNA Mini kit (Qiagen
# 51306) and eluted into 50 µL buffer and three replicates
for each sample were amplified using TaqMan Universal PCR
MasterMix (Thermo Fisher Cat#4304337). Primers and probes
were custom designed for the glycoprotein B gene (UL55) of
RhCMV (Table S2). Absolute quantification of RhCMV copy
number was calculated based on a standard curve of plasmid
containing the target region. RhCMV DNA copy numbers were
expressed as copies per ml of plasma or copies per microgram of
input DNA in saliva or urine.

RhCMV-specific IgG was measured as previously described
(30, 31) by whole virion ELISA, which uses a 96-well plate
coated with purified virion preparation of filtered, fibroblast-
passaged RhCMV strain 180.92 (32) at 1:3000 dilution. Plasma
(1:50 dilution) was incubated in duplicate wells and RhCMV-
binding IgG was detected using 1:500 dilution of an HRP-
conjugated goat anti-monkey IgG Ab (Santa Cruz Biotechnology,
sc-2458) and substrate incubation. The magnitude of the
RhCMV specific IgG binding responses is reported as optical
density (OD) at 450 nm.

T Cell Depletion
The recombinant immunotoxin (termed “A-dmDT390-
scfbDb(C207)”, referred to as FN18) was produced by fusion of
the affinity-matured form of the anti-macaque CD3 monoclonal
antibody C207 expressed as a fold-back single chain Fv diabody
to a truncated diphtheria toxin (DT390) and produced in
yeast (33, 34). This immunotoxin was obtained from the
Massachusetts General Hospital-Dana Farber Cancer Center
Recombinant Protein Expression and Purification Core Facility,
supported by the NIAID/NIH Non-human primate reagent
resource program (https://www.nhpreagents.org/NHP/default.
aspx). 0.25 ug/kg FN18 was administered via IP push twice daily
for 4 days.

Cell Lineage Purification
Blood samples were processed using Lymphocyte Separation
Medium (GE Healthcare, cat# 17144002) to obtain a PB
mononuclear cell (PBMC) layer, followed by red blood cell
lysis with ACK lysis buffer (Quality Biological, cat# 118156101).
PBMCs were stained with a panel of antibodies (Table S1),
and specific subsets (Figure S1E) were sorted via fluorescence-
activated cell sorting to high purity on a BD FACSAria II
instrument. Intracellular staining was performed using the
FoxP3/Transcription Factor Staining Buffer (Thermo Fisher
Cat#00552300). Subsequent analyses were performed using
FlowJo V10 (FlowJo, LLC).

Clonal Tracking via Barcode Retrieval
Each integrated lentiviral provirus includes a marker copGFP
transgene, a 6bp library ID and a 35 or 27 random bp barcode
sequence (35). Use of these documented high diversity barcode
libraries ensures that each barcode uniquely marks individual
engrafting HSPC, as detailed and validated in prior publications
(16, 17, 35). By targeting relatively low transduction of HSPC, the
majority of HSPC contain a single barcode. The barcode is passed
onto each daughter cell and serves as a clonal tag.

DNA was extracted from cell samples using the DNAeasy kit
(Qiagen, cat##69506) and 200 ng DNA was amplified via low-
cycle PCR with primers bracketing the library ID and barcode
(Table S2) with Phusion high fidelity DNA polymerase (Thermo
Fisher, Cat #F530L). PCR products were gel purified (Qiagen,
cat#28706) and sequenced using the Illumina HiSeq2500 or
HiSeq3000 system. Barcode retrieval from the sequencing output
was processed to retrieve valid barcodes and analyzed as
described, using custom Python and R code which can be
accessed at https://github.com/dunbarlabNIH/CMV (16, 17).
Only barcodes contributing above a threshold taking into
account sequencing errors and sampling constraints were
included in analyses (17).

RNA-Flow Discrimination of Rhesus
NKG2C vs. NKG2A
Analysis of NKG2C vs.NKG2A expression on RM NK cells
was carried out using RNA probe-based staining and flow

cytometry (PrimeFlow # 88-18005-204, Affmetrix) as described
(36). Briefly, KLRC1(NKG2A)-Alexa-647 and KLRC2(NKG2C)-
Alexa-488 probe sets complementary to unique sequences in
RM KLRC1 and KLRC2 mRNAs were purchased from Thermo
Fisher (KLRC1 Assay ID VF1-20995-PF, KLRC2 Assay ID
VF4-4221856-PF). Frozen PBMCs were thawed and rested in
RPMI1640 with 10% FBS (Sigma, #F2442) at 37◦C and 5% CO2

for ∼12 h before staining. Surface marker antibody staining was
performed followed by cell fixation and permeabilization for
intracellular antibody and probe staining, using antibodies listed
in Table S1. After staining and hybridization to probe sets, the
cells were analyzed on the BD LSRFortessa II instrument.

Computational and Statistical Analyses
R was used to realize the data and preform statistical analysis.
Code can be found at https://github.com/dunbarlabNIH/CMV.
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RESULTS

Autologous Transplantation With Barcoded
HSPC in RhCMVneg Macaques
We utilized genetic barcoding of RM HSPC to study the
impact of RhCMV infection on the clonal dynamics of NK
and T cells following myeloablative autologous transplantation
(Figure 1A). In this model, a high diversity library of barcodes
is introduced into RM CD34+ HSPC, followed by total
body irradiation (TBI) and autologous transplantation. Each
individual barcode uniquely marks a HSPC and its progeny,
and can be quantitatively retrieved to track the dynamics of
thousands of barcoded clones (16, 18). RMs in our prior studies
(n = 5) (16, 18) were all RhCMV seropositive, indicating prior
infection and the presence of latent virus. Although serum
and saliva were negative for detectable RhCMV DNA before
myeloablative and highly immunosuppressive conditioning with
high dose TBI, samples collected immediately following TBI
and autologous transplantation showed evidence for RhCMV
reactivation, before clearing 3–8 weeks later (Figure 1B). Three
RhCMVneg RM were obtained and two (JD76, JM82) underwent
barcoded HSPC transplantation (Figure 1A, Figure S1A), with

the third macaque (JC95) retained as a blood donor to
support the other two animals following myeloablation until
engraftment. As expected, RhCMV DNA was not detectable in
either serum or saliva collected before or post-transplantation
(Figure 1B, Figure S1B). RhCMV IgG remained negative post-
transplantation. Both RhCMVneg animals recovered neutrophil,
red blood cell and platelet counts in the expected time frame
(Figure S1C). Successful barcoded lentiviral vector transduction
of engrafted HSPC was documented by detection of expression
of the marker CopGFP gene at appreciable levels in engrafted
circulating myeloid and lymphoid cells (Figures S1D,E).

To assess whether RhCMV status affects post-transplantation
cellular immune reconstitution, we analyzed circulating numbers
of T cells, B cells, CD56+CD16− NK cells (analogous to human
CD56bright immature NK cells) and CD56−CD16+ NK cells
(analogous to human CD56dim mature NK cells) (13). RM NK
cells were defined by expression of NKG2 using the anti-human
NKG2A antibody which stains both NKG2A and NKG2C on RM
NK cells (13, 38–40). There was no discernible difference in the
pace or degree of recovery of these cell types post transplantation
comparing RhCMVneg to RhCMVpos animals, including the
mature CD56−CD16+ NK cells of most interest (Figure 1C).
The distribution and staining pattern of CD56+CD16− and
CD56−CD16+ NK cells were also similar between RhCMVneg

and RhCMVpos animals (Figure 1D).

Clonal Dynamics in RhCMVpos vs.
RhCMVneg Animals Post-transplantation
As previously shown in our clonal tracking studies (16, 18),
the CD56−CD16+ subset of NK cells is dominated by a
limited number of very large barcoded clones highly biased
in contributions toward only this NK subset, in comparison
with polyclonal contributions from stable multilineage HSPC
to all other circulating cell types appearing by 2–3 months
post-transplant, as shown for RhCMVpos ZJ31 in Figure 2

and for other RhCMVpos animals in Figure S2. Individual
clonal contributions can be visualized using heatmaps mapping
the fractional contributions of individual barcodes, each
corresponding to an individual clone derived from the same
precursor (Figure 2A, Figure S2), and overall clonal diversity
and richness for the entire population of clones can be
represented via Shannon index plots (Figure 2A, Figure S2).
In RhCMVpos animals, mature circulating CD56−CD16+ NK
cells are of much lower diversity than other lineages, and are
primarily composed of expanded NK-biased clones that can wax
and wane over time. Our previous work has demonstrated that
these mature NK cell clones express specific KIR and likely self-
renew and proliferate independent of ongoing production from
HSPC (16, 18).

As shown in Figures 2A,B, CD56−CD16+ NK-biased clones
arose in both RhCMVneg macaques (JD76 and JM82) after
engraftment. However, in comparison to RhCMVpos animals,
we observed that the CD56−CD16+ NK-biased clones were
relatively smaller and in aggregate dropped to 10% or less
of all clonal contributions in this cell type, in contrast to
persistent contributions at levels of 10–50% from NK-biased
clones in the RhCMVpos animals (Figures 2B,C, Figure S2).
In addition, the clonal diversity of CD56−CD16+ NK cells
in the two RhCMVneg recipients became similar to that of
other lineages over time, in contrast to decreasing and generally
markedly lower diversity in this cell population in RhCMVpos

animals (Figures 2D,E, Figures S2, S3). Taken together, the
results indicate that biased peripherally-expanding NK clones
are still generated post-transplantation in RhCMVneg macaques,
however they are less prominent than in RhCMVpos animals,
suggesting that RhCMV may be a major but not the only driver
of mature NK clonal dynamics.

Impact of RhCMV Infection on NK Cell
Clonal Dynamics in RhCMVneg Macaques
To directly analyze the NK response to RhCMV, we infected
RhCMVneg barcoded macaques JD76 and JM82 with RhCMV
strain 180.92 (28) 9–9.5m post-transplantation. In addition,
we also infected the non-transplanted RhCMVneg macaque
JC95 (Figure 3A). In JM82, CD3+ T cells were depleted
following RhCMV administration in an attempt to reduce
competition for proliferative cytokines by T cells. In all three
macaques, productive infection was detected by 7–10 days after
administration (Figure 3B, Figure S4A). After RhCMV DNA
disappeared from the plasma around 60 days post infection,
it remained undetectable, however small amounts of RhCMV
DNA could found intermittently over time in saliva and
urine, consistent with the normal pattern of virus shedding
(Figure S4A). All three animals seroconverted between days 7
and 21(Figure 3C).

Following RhCMV administration, we enumerated
circulating CD4+ and CD8+ T cells and CD56+CD16−

and CD56−CD16+ NK cells (Figure 3D), B cells (Figure S4B),
and monocytes (Figure S4B), and the fraction of proliferation
in each cell type by Ki67 staining (Figure 3E). In JD76, the
numbers of CD8+ T cells and both NK cell subsets increased
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FIGURE 1 | Experimental design and post-transplant reconstitution. (A) Pictorial representation of the experimental plan. The study includes five RhCMVpos RM and

two RhCMVneg RM (JD76 and JM82) that were autologously transplanted with barcoded CD34+ HSPCs. One RhCMVneg RM(JC95) was left untransplanted as

normal blood donor. (B) RhCMV DNA in plasma of RhCMVpos (ZK22 and ZJ40) and RhCMVneg (JD76 and JM82) RMs before and post transplantations. The cell

(Continued)
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FIGURE 1 | counts for B cells (black line), T cells (red), and CD56−CD16+ NK cells (green) and CD56+CD16− NK cells (blue) over the first 6 months post-transplant

for (C) RhCMVneg and RhCMVpos monkeys. The median and the 25–75% percentile range of cells count from 5 RhCMVpos(ZH33, ZG66, ZH19, ZJ31, and ZK22) for

each lineage are shown. (D) FACS plots showing the CD16 and CD56 expression of CD3−CD20−CD14−NKG2+ NK cells for RhCMVneg (JD76, JM82, and JC95)

and a representative RhCMVpos monkey (ZH33). The schematic of gating for sorts is shown on the left.

FIGURE 2 | Clonal characterization of NK cells post-transplantation. (A) The upper panels show heatmaps of the top 10 barcoded clones chosen by rank order

relative contributions to each sample for RhCMVpos monkey ZJ31 and RhCMVneg monkeys JD76 and JM82 over time post-transplantation. Each column shows a

single sample and each row represents an individual barcode (clone). Contributions from the top 10 clones for each sample are plotted over all samples included in

the analysis. Colors represent the relative percent contribution of the barcoded clone in that sample (column) as shown in the color bar on the right. Clones (rows) with

at least 10-fold greater contribution to CD56−CD16+ NK cells (termed biased clones) than to any other lineage, including T cells, B cells, granulocytes and

CD56+CD16− NK cells are designated with red stars. (B) The stacked bar plots showing the fractional contribution of the biased CD56−CD16+ NK cell clones over

time for RhCMVpos monkey ZJ31 and RhCMVneg monkeys JD76 and JM82 post transplantation. Each colored box represents a barcode clone. (C) The total percent

contribution of CD56-CD16+ NK-biased clones for RhCMVpos (black lines) and RhCMVneg (red and blue lines) RM over time. (D) Shannon diversity plots of each

lineage [T, B, Granulocytes(Grans), CD56−CD16+ NK and CD56+CD16− NK] over time for RhCMVpos ZJ31 and RhCMVneg JD76 and JM82 post transplantation.

(E) Shannon diversity of CD56−CD16+ NK cell lineage in various RM (black: RhCMVpos monkeys, red and blue: RhCMVneg monkeys).

markedly after infection, coincident with increased proliferation.
In JM82, administration of the anti-CD3 immunotoxin delayed
the initial increase in CD8+ T cells, accompanied, as expected, by
more marked initial proliferation of NK cells. In untransplanted
JC95, T cells and CD56−CD16+ NK cells increased following
infection. Overall, there was a rapid and marked immune

response to RhCMV infection in all compartments. Of note, we
also observed a second increase in cell numbers and proliferation
of T and NK subsets at 4-5m post RhCMV infection in all three
animals (Figures 3D,E).

We followed the clonal patterns over time in each lineage
before and after RhCMV infection. As shown in Figure 4A, JD76
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FIGURE 3 | Experimental RhCMV infection. (A) Experimental design for RhCMV infection. RMs were infused with RhCMV 9 and 9.5-months post-transplantation.

JM82 was T-depleted on days 20-23 post-infection (days 297–200 post-transplant). RhCMV plasma viral load and IgG serologies were followed over time and blood

samples were collected for barcode analysis. (B) RhCMV DNA copy number detection in plasma post-infection. The lower limit of detection is estimated by the

(Continued)
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FIGURE 3 | number of copies obtained that received a non-empty read from the qPCR machine on two of three replicates. (C) Anti-RhCMV IgG in plasma

post-infection for the three investigated RMs. (D) Cell counts per ul post-infection for CD4+ and CD8+ T cells and CD56−CD16+ and CD56+CD16− NK cells.

(E) The Ki67+ percentages in each cell population over time before and after RhCMV infection. The shaded boxes on JM82 plots in panel D and E indicate CD3+ T

depletion.

developed a very prominent T cell clonal response, with a number
of T cell clones becoming dominant and strongly biased toward
the T cell lineage, implying peripheral expansion, beginning
at about 1-month post-infection (red stars in Figure 4A),
coinciding with the proliferation and increase in total T cells
observed in this compartment (Figures 3D,E). We confirmed
that these expanding T cell clones were primarily CD8+ T cells
(Figure S4C). In contrast, following peri-infection T depletion in
JM82, no marked changes in T cell clonality were observed at 1
month post-infection; however, groups of enlarging T cell clones
did appear 3 months post RhCMV infection in JM82, upon later
regeneration of the T cell compartment (Figure 4A, red stars on
the left y axis).

In CD56−CD16+ NK cells following RhCMV infection, we
did not observe any immediate (<1 month post infection)
marked changes in the clonal contributions in JD76 examining
the largest contributing clones on heatmap analyses (Figure 4A)
despite an increase in NK CD56−CD16+ cell numbers in
the PB (Figure 3D). No trackable clones increased in relative
contribution more than 10-fold during the first month
post-infection. Thus, the rapid proliferation and increase in
numbers of circulating mature NK cells immediately following
infection in this animal appeared to result from a polyclonal,
clonally non-specific response. However, at 2m post-infection
(11m post-transplantation), when mature NK numbers had
stabilized, the clonal profile markedly changed, with multiple
new NK-biased clones expanding in relative contribution and
persisting for up to 8m post-infection (green stars on the
right of heatmaps in Figure 4A) and a relative decrease in
contributions from some large clones present before infection
(black stars in Figure 4A). These clonal shifts could have
resulted from preferential proliferation or enhanced survival
of specific expanding clones and/or exhaustion or differential
contraction of the disappearing NK clones. The mature
NK clonal pattern in JM82 (T cell depletion) also showed
disappearance of a set of biased NK clones beginning 0.5m
following infection (black stars) and expansion of a new set
of small clones beginning 2m post-infection and persisting
(green stars) (Figure 4A), but most of the marked proliferation
and increase in NK numbers early after infection in this
animal appears to have resulted from a non-specific, pan-
clonal stimulation.

We analyzed autocorrelations (Spearman) of all clonal

contributions to CD56−CD16+ NK over time (Figure 4B),

comparing relatedness of clonal patterns to the immediately

preceding sample. The RhCMVpos animals overall showed
relative stability by 3–6 months post-transplant, indicating
slow and steady clonal modulations, other than one marked
change at 6 months in ZJ31. However, in both RhCMVneg

animals, autocorrelations sharply dipped following RhCMV

infection (marked by arrows Figure 4B), indicating shifts in
clonal composition between adjacent time points. While these
shifts could have occurred for other reasons, the timing is very
suggestive for a link between the clonal shifts and RhCMV
infection. These analyses suggest that RhCMV infection did
significantly impact on mature NK clonal dynamics, resulting in
exhaustion of some clones and relative expansion and persistence
of new clones.

Clonal Pattern Following Re-infection With
RhCMV
We studied potential adaptive/memory responses to RhCMV
by re-inoculating JM82 with RhCMV at 10 months post
the first RhCMV infection (at day 575, or 19.5m post
transplantation), immediately following T cell depletion
(Figure 5A), resulting in clear but short-lived viremia
(Figure 5B). Not surprisingly, RhCMV was cleared much
more quickly than following the initial infection(9 days vs.
57 days post infection) (Figures 3B, 5B). Both CD56−CD16+

and CD56+CD16− NK cells again expanded and proliferated
following re-infection (Figures 5C,D), with some increase in T
cell numbers and marked residual T cell proliferation (Ki67+)
despite anti-CD3 immunotoxin administration. Notably, in
the post-reinfection samples, the peak Ki67 percentage in
CD56−CD16+ NK cells was much higher than post-initial
infection (∼50 vs. 25%). We analyzed the clonal pattern
following re-infection, and did not observe any major new
clonal shifts, as analyzed by both clustering heat map analysis
(Figure 5E) and autocorrelation analysis (Figure 5F), other than
3 defined expanded CD56−CD16+ NK clones appeared at 1m
post-reinfection from the existing clones (red stars on the right
of heatmap, Figure 5E).

Increase in NKG2C+ CD16+ NK Cells
Following RhCMV Infection
It has been hypothesized in the literature that NKG2C, an
activating receptor, is a marker of NK cell adaptive responses in
humans (22, 41), in contrast to NKG2A, the inhibitory isoform
(42). Given the lack of antibodies that discriminate between the
two isoforms in macaques, RNA probe single cell staining and
analysis by FACS was recently shown to be a feasible alternative
methodology for analysis of RM NK cells, and RhCMVpos

macaques were shown to have a higher fraction of NKG2C+

NK cells than RhCMVneg macaques (36). Using this approach,
we analyzed NKG2C and NKG2A expression in CD56−CD16+

NK cells in two RhCMVpos macaques (Figure 6A), as well
as in samples before and after RhCMV infection in the
three RhCMVneg macaques (Figure 6B). The three RhCMVneg

macaques greatly increased the fraction and absolute number of
NKG2C+ NK cells (Figures 6B–D), accounting for almost all of
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FIGURE 4 | Impact of RhCMV infection on immune cell clonality. (A) Heatmaps displaying the contributions from the top 10 clones from each sample plotted over

time in animals JD76 and JM82 before and after RhCMV administration, constructed as explained in the legend to Figure 2. The red arrows on the x axis show when

RhCMV was administered in relation to months post-transplantation. The color scale for fractional clonal contributions is shown on the right. Red stars to the left of

each heat map designate barcodes (clones) that increased fractional contributions >10 fold to T cells between the pre-RhCMV time point and post-RhCMV time

points. Green stars to the right of each heat map designate barcodes that increased fractional contributions >10 fold to CD56−CD16+ NK cells between the

pre-RhCMV time point and post-RhCMV time points. Black stars to the right of each heat map designate barcodes that decreased fractional contributions >10 fold to

CD56−CD16+ NK cells between the pre-RhCMV time point and post-RhCMV time points. (B) Autocorrelation plots display the Spearman correlation between clonal

contributions to adjacent time points in CD56−CD16+ NK cells. Samples with close to identical clonal contributions will have an autocorrelation close to 1 and very

dissimilar clonal contributions will have an autocorrelation near 0. RhCMVpos RM are shown in black and the two barcoded RhCMVneg RM are shown in red(JD76)

and blue(JM82). The autocorrelation between two time points is plotted at the later of the two time points being compared. The arrows in red(JD76) and blue(JM82)

on the bottom of X axis indicate the time of RhCMV infection.
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FIGURE 5 | RhCMV Reinfection. (A) Experimental design. Reinfection of JM82 at day 298 post-initial infection (day 575 post-transplant). T cells were depleted day

294–297 post-initial infection (571–574 post-transplant). (B) RhCMV DNA copies in plasma post-reinfection. (C) Cell counts of CD4+ and CD8+ T cells and

CD56−CD16+ and CD56+CD16− NK cells post-reinfection. (D) Ki67+ percent in each lineage post-reinfection. (E) Heatmap for each lineage pre and post-infection.

Colors represent percent contribution to a sample. Stars indicate NK cells that are 2 times expanded from baseline. (F) Autocorrelation plots display the correlation

(spearman) between adjacent time points of the CD56−CD16+ NK lineage.

the increase in CD56−CD16+ NK cells in these animals following
infection. This proportion stabilized or continued to increase
over time post-infection up to 6m post RhCMV infection. Of
note, the fraction and absolute number of NKG2A/NKG2C

double positive cells increased before the maximal level of
NKG2C+ cells in all three macaques, consistent with a model of
transit through a double positive state before final maturation to
NKG2C+ adaptive NK cells (22, 36).
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Human adaptive NK cells often express both inhibitory
and activating killer immunoglobulin-like receptors (KIR) and
NKG2C (10, 11). We stained the NK cells with both an anti-
human KIR2D (clone NKVFS1) antibody which recognizes the
rhesus KIR3DL01 (43, 44) and the NKG2C probes. As shown
in Figure 6E, in the RhCMVpos monkeys ZJ31 and RQ4753,
more than 88% of the KIR3DL01+ NK cells express NKG2C
as detected by KLRC2 probe. In both monkeys, within the
KIR3DL01− NK population, the fraction of cells expressing
NKG2C is lower than in the KIR3DL01+ NK population. In the 3
RhCMVneg monkeys, two (JD76 and JC95) express KIR3DL01+

on a fraction of their CD56−CD16+ NK cells. Both KIR3DL01
positive and negtive NK cells increased NKG2C expression to a
similar degree following CMV infection in JC95. In contrast in
JD76, there appeared to be differential expansion of NKG2C+

cells expressing this particular KIR following RhCMV infection,
suggesting this KIR potentially could interact specifically with
RhCMV (Figure 6F).

DISCUSSION

We previously reported oligoclonal expansions of mature
macaque NK cells appearing rapidly following transplantation,
maintained independently of ongoing maturation from HSPC,
and clonally-segregating with expression of specific KIR
(18). In the current study, we hypothesized that RhCMV,
reactivated following transplantation, might be driving the
expansion and persistence of these expanded, long-lived
NK clones. The overall pattern of NK cell recovery and
phenotype following transplantation was similar in RhCMVpos

and RhCMVneg animals. Expanded, NK-biased CD16+
mature NK clones still appeared in the two transplanted
RhCMVneg macaques following engraftment, however
the size of individual clones and overall contributions
appeared to be smaller than observed in the majority of
RhCMVpos macaques.

These observations provide some support for the hypothesis
that RhCMV does play a role in the stimulation and maintenance
of these expanded and persistent mature NK cell clones, but
the appearance of CD56−CD16+ expanded, NK-biased clones
even in the CMVneg animals suggest that other stimuli must
contribute to their manifestation. We speculate that additional
latent herpes viruses, such as lymphocryptoviral (LCV), the RM
equivalent of Epstein Barr Virus (EBV), may be stimulating NK
cell clonal expansions due to reactivation post transplantation.
The two RhCMVneg animals we transplanted in this study were
from “specific pathogen free” colonies, defined as negative for
tuberculosis, herpes B virus, type D simian retrovirus, STLV1
(simian equivalent of HTLV1), and SIV (the simian equivalent
of HIV), but were both serologically LCVpos at the time of
transplantation. EBV reactivation occurs frequently following
human HSPC autologous transplantation (45, 46). While recent
work focuses primarily on the link between CMV and NK
cells with adaptive properties, other studies have linked EBV
to mature NK cell responses. For example, it was observed in
the study that human CMVpos students acquiring acute EBV

infection expanded CD56dim NK cells, albeit expressing the
inhibitory receptor NKG2A, not the activating receptor NKG2C
associated with CMV infection (47). A recent publication
analyzed hematopoietic clonal diversity via insertion site retrieval
in children with adenosine deaminase-deficient severe combined
immunodeficiency treated with retroviral gene therapy, revealing
massive expansion of a CD56dim NK cell clone coincident with
EBV reactivation post- transplantation (48).Other reports also
suggest important roles for NK cells in response to EBV in human
(49, 50). Whether EBV plays role in inducing mature clonal
NK expansion would benefit from further investigation in our
barcode model (16, 51).

When we experimentally induced primary RhCMV infection
in the two barcoded RhCMVneg macaques 9–10 months
transplantation, we observed proliferation of T and NK cells
in the PB at 0.5–1 months post-infection and an expansion in
circulating cell numbers. During this acute phase, coinciding
with viremia, clonal patterns in both T and NK cells in
terms of relative contributions from individual clones did
not markedly change, suggesting a non-specific homogeneous
expansion/proliferation of these compartments in response to
inflammatory stimuli such as cytokines. 1–2 months following
infection, new expansions of both T cell clones and mature
CD56−CD16+ NK cell clones appeared. Although we observe
clear changes in the clonal profile following infection and
reinfection, it is difficult to discern if the changes observed
are due to specific NK responses to RhCMV infection, given
the observation of waxing and waning NK expanded clones
in both RhCMVpos and RhCMVneg animals. However, the
autocorrelation analyses presented in Figure 4 suggest a marked
specific change beyond underlying clonal fluctuations occurring
following RhCMV primary infection in the RhCMVneg animals.
In addition, very rapid clearance of a second RhCMV challenge
9 months after the initial infection occurred coincident with
CD56−CD16+ NK cell proliferation, without major clonal NK
shifts, suggesting long-term persistence of the NK RhCMV
reactive clonal repertoire. It could be possible that the
NK cells expansion is stimulated by other proliferating cell
populations such as T cells post RhCMV infection, however,
with T cells depletion in JM82 at the time of first RhCMV
infection and prior to the second RhCMV infection, we still
observed obvious CD56−CD16+ NK expansions post each
RhCMV infection.

The lack of antibodies able to distinguish NKG2A from
NKG2C expression on RM NK cells (40) has hindered direct
comparisons between putative human adaptive NK cell responses
to RhCMV infection or reactivation, characterized by expansion
of NKG2C+ mature NK cells in multiple studies (21, 22, 47).
Using RNA probes able to distinguish expression of the two
genes by flow cytometry (36), as previously used to uncover
higher fractions of NKG2C-expressing cells in RhCMVpos vs.
RhCMVneg animals, we documented increase expression in
CD16+ NK cells in the three animals we monitored before and
after infection, further supporting the relevance of our model
to NK dynamics in humans following RhCMV infection. We
also observed that about 90% of the KIR3DL01+CD16+ NK cells
were NKG2C+ in both RhCMVpos and RhCMVneg monkey post
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FIGURE 6 | Analysis of NKG2A vs. NKG2C transcript expression in CD56-CD16+ NK cells. (A) FACS plots for KLRC1 (NKG2A) and KLRC2 (NKG2C) RNA analysis

for RhCMVpos animals (barcode monkey ZJ31 and untransplanted RQ4753). The right panel shows a barplot for the two animals where the percent KLRC1/NKG2A+,

KLRC2/NKG2C+ double positive (DP) and double negative (DN) CD56−CD16+ NK cells is plotted. (B)The NKG2A/C profile in CD56−CD16+ NK cells over time

(Continued)
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FIGURE 6 | before and post RhCMV infection. (C) Comparison of the percent NKG2C positive CD56−CD16+ NK cells in RhCMVneg and RhCMVpos animals. Lines

connect the pre-infection and latest post-infection sample for the initially RhCMVneg animals, and RhCMVpos animals are shown as black points. (D) Absolute cell

numbers for each cell population in the PB post initial infection over time from JD76, JM82, and JC95. Total CD56−CD16+ NK cell numbers are shown in purple. (E)

left panels show the FACS plots for the expression of KIR3DL01 and KLRC1/KLRC2 on NKG2+ CD56−CD16+ NK cells from two RhCMVpos monkeys. Right panel

shows the a barplot for the two animals where the percent contribution to CD56−CD16+KIR3DL01+ and CD56−CD16+KIR3DL01− NK subpopulations is plotted

for KLRC1/NKG2A+, KLRC2/NKG2C+, double positive (DP) and double negative (DN) cells. (F) Barplots for the two RhCMVneg animals (JC95 and JD76) where the

percent contribution to CD56−CD16+KIR3DL01+ and CD56−CD16+KIR3DL01− NK subpopulations is plotted for KLRC1/NKG2A+, KLRC2/NKG2C+, double

positive (DP) and double negative (DN) cells, samples from pre- and post RhCMV infection are shown.

infection, this results strongly links these two adaptive memory
markers together to provide further evidences for NK adaptive
immune features.

In conclusion, by studying RhCMVneg animals and
subsequently infecting them in a rhesus macaque model
allowing tracking of individual NK cell clones, we have shown
long-lasting clonal expansions arising in response to RhCMV,
suggesting a clonal adaptive response with the potential to
retain immunological memory. These analyses raise additional
questions regarding NK dynamics in response to environmental
cues with relevance to clinical adoptive NK cell transfer which
we will examine in future barcoding experiments in the rhesus
macaque model.
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Natural killer (NK) cells are large granular lymphocytes involved in our defense against

certain virus-infected and malignant cells. In contrast to T cells, NK cells elicit rapid

anti-tumor responses based on signals from activating and inhibitory cell surface

receptors. They also lyse target cells via antibody-dependent cellular cytotoxicity, a

critical mode of action of several therapeutic antibodies used to treat cancer. A body

of evidence shows that NK cells can exhibit potent anti-tumor activity against chronic

myeloid leukemia (CML), acute myeloid leukemia (AML), and myelodysplastic syndromes

(MDS). However, disease-associated mechanisms often restrain the proper functions

of endogenous NK cells, leading to inadequate tumor control and risk for disease

progression. Although allogeneic NK cells can prevent leukemia relapse in certain

settings of stem cell transplantation, not all patients are eligible for this type of therapy.

Moreover, remissions induced by adoptively infused NK cells are only transient and

require subsequent therapy to maintain durable responses. Hence, new strategies are

needed to trigger full and durable anti-leukemia responses by NK cells in patients

with myeloid malignancies. To achieve this, we need to better understand the interplay

between the malignant cells, their microenvironment, and the NK cells. This review

focuses on mechanisms that are involved in suppressing NK cells in patients with

myeloid leukemia and MDS, and means to restore their full anti-tumor potential. It also

discusses novel molecular targets and approaches, such as bi- and tri-specific antibodies

and immune checkpoint inhibitors, to redirect and/or unleash the NK cells against the

leukemic cells.

Keywords: NK cells, myeloid malignancy, cancer immunotherapy, drug development, NK cell dysfunction

INTRODUCTION TO NATURAL KILLER CELLS, THEIR

RECEPTORS, AND ROLE IN THE IMMUNE SYSTEM

The natural killer (NK) cell was discovered in the mid-1970s based on its ability to lyse
certain tumor cells without prior sensitization of the host (1–4). Based on this, and the
understanding that both T and B cells in contrast to NK cells need to undergo somatic gene
rearrangement to become fully functional with specific immunity that quickly respond upon
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recalling, NK cells have for long been considered innate
immune cells. However, more recent data have challenged
this perception by demonstrating that NK cells also can carry
memory-like features (5). Today, NK cells are explored in a
wide variety of contexts, including, but not limited to, infectious
diseases, autoimmunity, pregnancy, and cancer. Thus, from an
unknown cell type with undetermined biological meaning and
significance in the mid-1970s, it has now more than 40 years
later been recognized that NK cells are key components of our
immune system.

NK cells have traditionally been classified as group 1 innate
lymphoid cells and develop from hematopoietic stem cells
(HSCs) while maturing outside the bone marrow compartment
(6, 7). They have the capability to migrate to a number
of tissues to launch immune responses to infections and
cancer (8). The basis for target recognition by NK cells was
revealed in the mid-1980s when the “missing-self ” hypothesis
was postulated (9). However, as predicted by the investigators
at that time, activation signals are needed in addition to
“missing-self ” to trigger cytotoxicity (10). Today, we know that
a delicate interplay between an array of germ-line encoded
receptors expressed on the NK cell surface control NK cell
degranulation (Figure 1) (11, 12), a cytotoxicity mechanism that
lyses target cells via the release of substances such as perforin
and granzymes. The key receptors controlling self-recognition
by human NK cells are HLA class I-binding receptors, including
the Killer Immunoglobulin-like Receptor (KIR) family as well

FIGURE 1 | NK cell receptors, their function, and ligands. Schematic illustration showing how NK cell activity and cytotoxicity are controlled by signals from cell

surface receptors. Cytokines and corresponding cytokine receptors on the NK cell are shown at the lower part of the NK cell. Inhibitory signals triggered by receptors

(red) upon engagement of their ligands (in brackets) are shown on the left side of the NK cell. Activating signals triggered by receptors (green) upon engagement of

their ligands (in brackets) are shown on the right side. Binding of LFA-1 (blue) on NK cells to ICAM-1 on target cells direct the granulae release toward the target cell,

which is needed for efficient target cell lysis.

as the Natural Killer Group 2A (NKG2A) and Leukocyte
immunoglobulin-like receptor subfamily B member 1 (LILRB1,
also referred to as LIR-1) (11). The inhibitory KIRs and the
NKG2A receptor have also been shown to be involved in NK
cell education, a functional maturation process that allows self-
inhibited NK cells to become potent killers upon interaction
with cells losing self-HLA class I expression (13). In contrast
to the inhibitory receptors, an array of activation, co-activation,
and adhesion receptors such as the natural cytotoxicity receptors
(NCRs) NKp30 and NKp46 and the NKG2D, 2B4, and DNAM-
1 receptors trigger NK cell activation following binding to
ligands up-regulated on cells undergoing stress and/or infection
(11). Under normal conditions when NK cells are not heavily
activated by cytokines, at least two of these receptors need
to be stimulated simultaneously to trigger degranulation (14).
This is in contrast to the FcγRIIIA receptor (CD16a), that
upon ligation to the Fc portion of an antibody bound to a
target cell alone potently can trigger degranulation (15). This
process is referred to as antibody-dependent cellular cytotoxicity
(ADCC). Importantly, engagement of the LFA-1 receptor on the
NK cell is required in most situations to direct the granulae
release toward the target cell and thereby trigger efficient
target lysis (15). The latter adds another layer to how NK
cell cytotoxicity is regulated. In addition to target cell lysis
via the release of granzymes and perforin, NK cells also kill
cells via stimulation of death receptors on the target cell
surface, which triggers caspase-dependent apoptosis (16). Both
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TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand
(FasL) on the NK cell surface can trigger caspase-mediated
apoptosis in target cells expressing TRAIL-R1 and/or -R2 and
Fas, respectively (17). Importantly, NK cells do not only kill
infected and tumor-transformed cells via these mechanisms, but
also utilize these receptors to control immune responses by
killing, i.e., T cells (18, 19).

NK cells have several functions in the immune system. Based
on data from individuals with severe NK cell deficiencies and
data from experimental animal models, it has been recognized
that they are highly implicated in controlling Epstein–Barr
virus (EBV) (20–22), but also involved in the defense against
Herpes simplex virus (HSV) infections (23). Moreover, it is well-
established that NK cells can react to cytomegalovirus (CMV)
infection and prevent CMV reactivation following allogeneic
stem cell transplantation (SCT) (24, 25). Beyond their role in
viral infections, NK cells have an immunomodulatory role either
by directly controlling other immune cells (18, 19) or by release
of chemokines and cytokines that can attract and stimulate both
innate and adaptive components of the immune system (26, 27).
NK cells also have a documented role in pregnancy (28). Given
the rapid advances in our understanding of NK cells, additional
functions for these cells in the body will likely be unveiled in the
near future.

The role for NK cells in cancer has been addressed since
the discovery of this lymphocyte subset. Over the years, it has
become clear that NK cells are involved in tumor immune
surveillance (29). Indirect evidence comes from cohort studies
showing that individuals with poor NK cell function early in life
have a higher risk of presenting with cancer compared tomatched
controls (30). Clinical observations also indicate that a ligand
repertoire on acute myeloid leukemia (AML) blasts favoring NK
cell activation is positively linked to better outcome of patients
undergoing chemotherapy (31). More direct evidence from
animal models indicate that knock-out of key NK cell receptors
such as NKG2D and DNAM-1 leads to higher incidence of tumor
formation compared to in mice with wild-type expression of
these receptors (32, 33). Another line of evidence comes from
clinical studies on allogeneic SCT and adoptive NK cell infusion
showing NK cells can be utilized to treat patients with cancers,
including myeloid malignancies (34, 35). This has opened up a
new field focusing on NK cell-based cancer immunotherapies
that all aim to bolster the NK cell tumor targeting capacity
to improve outcomes of patients with cancer (36). In parallel
to this development, more and more studies also demonstrate
that NK cells in patients with cancer are defective, and in some
cases also few in numbers, indicating a potential breach of NK
cell-mediated tumor immune surveillance that may facilitate
disease progression. Dysfunctional NK cells have been reported
in both solid tumors (37) and hematological malignancies,
including myeloid malignancies (38, 39). For some of these
cancers, it has also been proposed that restoration of the NK
cell function after treatment with cytoreductive chemotherapy,
or other targeted drugs, can re-establish NK cell-mediated cancer
control. As will be discussed below, a prime example of this
is chronic myeloid leukemia (CML), but there are also data
reporting that this can occur in other myeloid malignancies

such as AML and myelodysplastic syndromes (MDS) as well
as in chronic myelomonocytic leukemia (CMML). Notably, in
contrast to malignancies of the myeloid lineage, data on the
role for NK cells in targeting B cell-derived leukemias such as
acute lymphoblastic leukemia (ALL) and chronic lymphocytic
leukemia (CLL) are less clear and will not be discussed in
this review.

This review will focus on our current understanding of the
role for NK cells in targeting malignant myeloid cells and
thereby preventing the initiation and/or the progression of AML,
MDS, and CML, and how malignant cells in these diseases
can evade NK cell recognition. Methods to circumvent and/or
restore this imbalance will be discussed. In the emerging era of
immune checkpoint inhibitors and tumor targeting antibodies,
including bi- and tri-specific killer engagers, the review will have
a special focus on the mechanisms governing suppressed NK
cell function in these diseases and means to restore the NK
cell phenotype and function to define potential opportunities
to use such drugs in clinical practice. As other reviews and
articles have comprehensively covered the role of NK cells
in settings of allogeneic SCT and adoptive cell transfer to
treat AML, CML, or MDS, our review will only touch upon
these topics. Instead, this review will have a particular focus
on the endogenous NK cells and their therapeutic potential
and limitations.

EVIDENCE FOR NK CELL-MEDIATED

TARGETING OF MALIGNANT MYELOID

CELLS AND DATA SUPPORTING A ROLE

FOR NK CELLS IN THE TREATMENT AND

CONTROL OF CML, AML, AND MDS

Introduction to CML, AML, and

MDS—Biological and Clinical Similarities

and Differences
Although originating from the myeloid lineage, CML with
its 9;22 translocation that creates the BCR/ABL fusion gene
is biologically and clinically very different from AML and
MDS. From being a disease with high mortality following
transformation to blast crisis, where allogeneic SCT was
considered the only treatment option that could offer a potential
cure, CML is now efficiently treated using tyrosine kinase
inhibitors (TKIs) (40). Unfortunately, similar approaches have
not been equally successful for MDS and AML, diseases that do
not express the BCR/ABL tyrosine kinase fusion gene but are
rather triggered and driven by multiple mutations. In contrast
to CML, the more aggressive AML disease as well as high-
risk MDS are generally associated with dismal outcome. Hence,
there is an urgent need of identifying new and more efficient
treatment options for these malignancies. To successfully design
new therapies that induce durable responses, it is likely key
to understand the underlying disease and how it potentially
compromises the immune system. For deeper understanding
of the CML, AML, and MDS diseases per se, please see
references (41–43).
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NK Cell-Mediated Targeting of

Tumor-Transformed Myeloid Cells via

Natural Cytotoxicity and Its Role in Treating

Patients With Myeloid Malignancies
Preclinical studies have firmly demonstrated that NK cells can kill
leukemic cells of the myeloid lineage. Data derive from studies
using leukemia cell lines, but also freshly isolated leukemic blasts
from patients with CML, AML, or MDS. In addition to these
studies exploring the potential of primary human NK cells,
studies have also demonstrated that NK cell lines can target
primary as well as immortalized AML and CML cells (44).

The first series of experimental studies on this topic were
conducted using AML and CML blasts and published just a
few years after the NK cell was first described. In a small
ex vivo study published already 1983, investigators were able
to show that freshly explanted CML blasts could be lysed by
interferon (IFN)-activated NK cells from healthy donors (45). As
demonstrated in a paper from the group of Ronald Herberman a
few years later (1989), themain basis for prevention of clonogenic
growth of freshly explanted AML and CML blasts or cells
from pre-leukemic patients (today called MDS) was cell-to-cell
interaction, although soluble factors produced by the NK cells
were also involved (46). Importantly, the anti-leukemia activity
was only detectable in these experiments when enriched NK cell
populations were used. The need for cell-to-cell contact to trigger
NK cell-mediated inhibition of autologous CML blast growth has
later been verified in other studies (47).

The more recent studies on this topic have mainly focused
on targeting AML cells with NK cells in vitro. Most studies
have addressed the potential of resting and overnight cytokine-
activated [i.e., interleukin (IL)-2 or IFN] NK cells (39, 45).
Other studies have explored the potential of ex vivo expanded
NK cells (48, 49). The molecular specificity of NK cell-
mediated cytotoxicity of leukemic cells is based on several
receptor–ligand interactions. For instance, the NKG2D and
DNAM-1 receptors as well as the NCRs have been reported
important for the targeting of AML and CML blasts (50–
52), whereas studies on freshly isolated MDS blasts have
revealed that the DNAM-1 receptor is central with contributions
from the NKG2D receptor and the NCRs NKp30 and NKp46
(39). It is also evident from the literature that blockade of
inhibitory KIR, CD94/NKG2A, and LIR-1 augment NK cell-
mediated killing of leukemic blasts (53), indicating that they
express enough HLA class I to at least partially inhibit NK
cells. The role for these activation and inhibition receptors
in targeting of myeloid malignancies by NK cells will be
discussed in more detail in section Means to Restore NK
Cell Function and Trigger Their Cytotoxicity Against Myeloid
Malignancies below.

Exploring Human NK Cells to Target CML,

AML, and MDS Cells Implanted in Animal

Models
Until today, the vast majority of xenografted mouse models
used to explore the anti-leukemia potential of primary human
NK cells have focused on human leukemia cell lines. One

of the major reasons for this is that engraftment of primary
AML, CML, and MDS cells has historically been difficult, with
only recently reaching robust and reliable engraftment rates
in optimized models (54–56). Furthermore, the use of human
leukemia cell lines enables the researcher to introduce luciferase
and/or fluorescent proteins (such as green fluorescent protein;
GFP) to efficiently track the tumor burden in the mice. This is
exemplified in several studies on human xenografted leukemia,
which will be discussed below.

Ex vivo expanded peripheral blood NK cells can prevent
leukemia development in severe combined immunodeficiency
disease (SCID)-beige mice and NOD-scid IL2Rgammanull (NSG)
mice inoculated with K562 cells (49, 57). In line with this,
investigators have also shown that NK cells generated from
CD34+ hematopoietic stem cells ex vivo as well as from cord
blood cells can clear K562 cells in mice (58, 59). Moreover,
cytokine-induced killer cells, featuring a mixed NK and T-cell
phenotype, were capable of mediating potent reduction of tumor
burden in mice engrafted with the AML cell line THP-1 (60). In
contrast to utilizing human leukemia cell lines as targets in the
animal models, the ability of primary human NK cells to target
xenografted primary myeloid leukemia in mice has only been
highlighted in few studies. One example of the latter comes from
a study that efficiently utilized ex vivo expanded human NK cells
expressing a single KIR (61). There are also data addressing the
role for primary human NK cells targeting primary xenografted
autologous myeloid leukemia. As demonstrated by Siegler et al.
(62), ex vivo expanded NK cells are able to target xenografted
autologous AML blasts. In this study, the authors speculate that
up-regulation of the NKG2D receptor and the NCRs following ex
vivo expansion and activation of the NK cells prior to adoptive
infusion into the mice was key to govern the anti-leukemic
effects. Although several models have been used to establish that
primary human NK cells can target leukemic cells implanted in
mice, we predict that development of more advanced models will
be valuable tools to explore how the leukemic cells can negatively
affect the adoptively infused NK cells in detail.

Data on Utilizing NK Cells to Treat Patients

With Myeloid Malignancies
Data supporting NK cell-mediated rejection and control of
myeloid leukemia in patients have been generated from studies
on allogeneic SCT. In 2002, Ruggeri et al. reported that KIR-
ligand mismatching in the graft-vs.-host (GvH) direction of
donor NK cells was key to prevent AML relapse following haplo-
identical SCT (34). In line with these data, Hsu et al. also
demonstrated that the genomic lack of one or more ligands in the
recipient for donor KIR was associated with improved outcome
in AML and MDS in settings of T-cell-depleted HLA-identical
sibling transplantations (63). Studies on large transplantation
cohorts have also linked certain KIR genotypes and KIR–
KIR-ligand genotype pairs that also include activating KIRs to
post-transplant control of leukemia (64–66). More recent data
also indicate the expansion of adaptive NK cell subsets post-
transplantation is linked to improved outcome in AML, which
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adds an additional layer to the role of NK cells in post-transplant
relapse protection (67).

The potential of utilizing mature NK cells in setting of
adoptive cell transfer to treat myeloid leukemia patients was
demonstrated by Miller et al. (35). In this study, 19 patients
with relapsed/refractory AML were treated with overnight IL-
2-activated haplo-identical NK cells. In this patient population
with very advanced high-risk disease, 5 out of 19 patients had
a complete remission (CR). Remarkably, four out of the five
responders had received donor NK cells with a KIR-ligand
mismatch in the GvH direction. Following this publication,
there has been an explosion of clinical trials demonstrating
improved outcome of AML and MDS patients treated with NK
cells in different settings (49, 68–73). Of note, most of these
studies have not been able to demonstrate a beneficial effect
of KIR-ligand mismatching. This may relate to the relative loss
of cell surface HLA class I expression on the myeloid blasts
compared to the lymphocytes. As demonstrated by Verheyden
et al., the relative expression of HLA class I, and especially HLA-
C, was markedly down-regulated on myeloid blasts compared to
autologous T cells potentially leading to reduced inhibition by
HLA-Bw4- and HLA-C-binding KIRs and thereby attenuation of
the role for KIR-ligand mismatching (74). Instead, data indicate
that outcomes following adoptive NK cell therapy are positively
predicted by presence and expansion of donor NK cells and
dampened host immune activation post NK cell infusion as
well as removal of regulatory T cells prior to NK cell infusion
(72, 75). As shown by Romee et al., adoptive infusion of memory-
like NK cells can trigger anti-AML responses while leading to
improved persistence of the NK cells (49). Another factor that
has been highlighted in more recent studies is the dose of
alloreactive NK cells. This has been demonstrated in the setting
of adoptive NK cell infusion as post-consolidation therapy for
elderly patients with AML (70), and also in the setting of pre-
allogeneic SCT for patients with AML, MDS, or CML (71).
Nevertheless, due to the relatively poor persistence of adoptively
infused NK cells, objective clinical responses induced in these
settings are only transient. Hence, these protocols can be used
as a bridge to an allogeneic SCT or maybe to deepen responses
in the post-consolidation setting, but not cure patients with
myeloid malignancies.

Collectively, the capacity of NK cells to target AML, MDS,
and CML blasts in vitro and in xenografted mouse models is
well-documented with clear involvements of the NKG2D and
DNAM-1 receptors, but also the NCRs. Based on data from
CML, AML, and MDS patients undergoing allogeneic SCT, it is
clear that NK cells do have a role in the clearance and control
of myeloid malignancies in certain settings. Although adoptive
NK cell transfer can be effective and adds to the notion that
NK cells can be utilized to target myeloid malignancies, clinical
remissions are only transient. An alternative approach that may
induce durable remissions without the need of cellular therapy
would be to bolster the anti-tumor potential of the endogenous
NK cells. This approach has until now been relatively unexplored
and likely been limited due to leukemia-induced dysfunction of
the NK cells in these patients. With the increased knowledge, we
predict that this approach will be a more viable option in the near

future. NK cell dysfunction in myeloid malignancies and how to
restore it will be described in the following sections of this review.

NK CELL FUNCTION AND MATURATION IN

PATIENTS WITH MYELOID MALIGNANCIES

AT DIAGNOSIS AND UPON TREATMENT

NK Cell Numbers and Function During

Treatment and Disease Progression
The anti-leukemic activity of NK cells inversely correlates to
disease progression in AML—the NK cells are suppressed at
diagnosis, restored at remission, and again suppressed at relapse
(76, 77). Similarly, in MDS, the cytolytic activity of NK cells
is severely altered, even in the presence of IL-2 stimulation in
vitro, as compared to NK cells from healthy donors (78). In
CML, the NK cells decrease in number along disease progression,
respond less to stimuli, and exhibit reduced cytolytic activity
(79, 80). Similar to AML patients in CR, CML patients with
a major molecular response (MMR) to TKIs have restored
cytolytic functions of NK cells (81). In support of NK cells being
involved in immune control of CML cells, patients with a high
percentage of NK cells at the time of TKI discontinuation had
a better long-term outcome (82). Also, the role for “missing-
self ” reactivity by endogenous uneducated NK cells has been
highlighted in CML patients treated with TKI. Patients carrying
non-interacting KIR3DL1 and HLA-B allele pairs, leading to
less inhibition of NK cells upon interaction with CML blasts,
have better outcome upon TKI treatment (83). In AML, higher
cytolytic activity of NK cells predicts a better long-term outcome
of patients at both diagnosis and in remission (84–87). In
addition, high expression of the activating NK cell receptors
NKp30 or NKp46 predicts a better outcome (38, 88–90). The
role for “missing-self ” genotypes has, like for CML, also been
associated with an improved outcome in AML following post-
consolidation treatment with dihydrochloride and low-dose
IL-2 that activates NK cells (91). In a follow-up study, the
investigators identified that the efficacy against AML was linked
to a dimorphism in HLA-B at amino acid −21 that has an
impact on NK cell education (92), again supporting a critical
role for NK cells in this disease. In a separate study, the
outcome following treatment of AML and high-risk MDS with
the hypomethylating agent Azacytidine could be predicted by NK
cell function after three to six cycles (93). Taken together, NK
cell function is often suppressed upon diagnosis and at disease
progression of myeloid malignancies, but restored in remission.
Increased number of NK cells as well as more activated NK
cells at diagnosis and following remission correlate with better
outcome for patients treated with hypomethylating agents, TKI
and IL-2. These findings suggest that NK cells have a central
role in the control of myeloid malignancies by counteracting
disease progression.

Altered Maturation of NK Cells in Myeloid

Malignancies
Normal NK cell differentiation is defined by combinations
of markers that include CD56, CD16a, CD57, KIRs, and
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NKG2A (94). Immature NK cells (CD56brightCD16a−CD57−)
are cytokine-producing cells with low cytotoxic activity, whereas
more mature NK cells (CD56dimCD16a+CD57+) have higher
cytotoxic activity (95). NK cell differentiation is characterized
by down-regulation of NKG2A and up-regulation of KIR,
which alter their reactivity given the HLA class I repertoire
expressed on the target cell. In myeloid malignancies, NK cell
maturation was suggested to be perturbed with a selective
loss of an immature NK cell population in both AML
patients and in leukemic mice (77, 96). This loss of primitive
NK cells was accompanied by an increased percentage of
phenotypically more mature (CD56dimKIR+CD57+) NK cells
in the peripheral blood of AML patients (97). However,
opposing findings of a decreased proportion of mature NK
cells (CD56dimCD16a/CD57bright) in AML and MDS have
also been reported (98). Consistent with previous findings
by Martner et al. (99), Chretien et al. divided the AML
patients into three subtypes based on the NK cell maturation
and found that patients with more immature NK cells had
reduced relapse free and overall survival, suggesting that disease-
induced alterations in NK cell maturation affect patient outcome
(100). Therapies can also affect the differentiation stage of
the NK cells. In first remission, an increased percentage of
immature (CD56bright) NK cells in AML patients has been
observed, possibly because the NK cells are under reconstitution
after intense chemotherapy (101). In CML, treatment with
the TKI dasatinib is associated with differentiation of NK
cells (102). Upon MMR or molecular response (MR), CML
patients have more mature cytolytic NK cells (CD57+CD62L−),
indicating restoration of NK cell function (81). Although several
of the studies described above found that disease-induced
mechanisms and certain treatments influence the maturation
of NK cells in myeloid malignancies, interpretations of how
the maturation stage of NK cells in this context affect their
anti-leukemic activity is so far mainly based on correlative
findings. Hence, more studies are needed to clarify how the
maturation stage of NK cells in myeloid malignancies is
perturbed and affected by treatment both in a short- and, more
importantly, long-term perspective. Single-cell RNA-sequencing,
which is an emerging methodology that recently has increased
our understanding of NK cell regulation (103, 104), has the
potential to further clarify how NK cell maturation is affected
by treatment.

Collectively, disease-induced mechanisms in myeloid

malignancies negatively affect core properties of NK cells such

as their differentiation and cytotoxic potential correlating

to disease progression. Moreover, the NK cell function

during and after treatment is linked to treatment responses

and outcome, suggesting that NK cells play a key role in

controlling myeloid malignancies. By further characterizing

the mechanistic basis for how NK cell dysfunctions

arise and how NK cell differentiation and function is

modulated by treatment may translate into new treatment

opportunities for myeloid malignancies as discussed in more
detail below.

THE IMPACT OF SHARED GENETIC

ABERRATIONS BETWEEN NK CELLS AND

MALIGNANT MYELOID CELLS

The cellular origin of myeloid malignancies is thought to be
a normal HSC that first acquires genetic lesions that give
rise to a pre-malignant clone (105–107). In support of this
hypothesis, early genetic aberrations associated with clonal
hematopoiesis and myeloid malignancies can be found in
multiple hematopoietic lineages, including NK cells, affecting
their function (Figure 2A). Although NK cells isolated from
chronic phase CML patients were found to be BCR/ABL1
negative (108, 109), Nakajima et al. observed BCR/ABL1+ NK
cells in advanced phases of the disease (110). The reason why
BCR/ABL1+ NK cells are found predominantly in advanced
phases of the disease is currently unclear but might be due
to an expansion of the malignant stem cell pool during
disease progression that gradually outcompetes normal HSCs.
By contrast, T cells were always BCR/ABL1 negative, suggesting
that the presence of BCR/ABL1 is not compatible with T cell
development (110). To evaluate the impact of BCR/ABL1 on
NK cell differentiation and function, BCR/ABL1 was introduced
into cord blood CD34+ cells and the NK92 NK cell line (111).
Enforced BCR/ABL1 expression in cord blood CD34+ cells
resulted in altered NK cell differentiation (110), and in NK92
cells, a decreased cytotoxicity was observed (112). Consistent
with these findings, BCR/ABL1+ NK cells from CML patients
grown in culture had reduced cytotoxic and proliferative capacity
(113). In contrast, BCR/ABL1+ dendritic cells selectively activate
NK cells, demonstrating that NK cells can also be affected by
other non-myeloid cell lineages that express BCR/ABL1 (114).

Although early studies did not detect chromosomal
aberrations in NK cells from MDS patients (115, 116), later
studies reported aneuploid NK cells ranging from 20 to 60% in
MDS (78, 117). In addition to acquired mutations shared with
the malignant cells and NK cells in patients, certain congenital
mutations that pre-dispose for MDS/AML are associated with
defects in NK cells. One such example is SAMD9L gain-of-
function mutations that pre-disposes for MDS and are associated
with defects in myeloid cells, B and NK cells (118). Also,
constitutive Gata2 mutations that pre-disposes for MDS/AML
are associated with alterations in NK cells as evidenced by an
accumulation of terminally differentiated NK cells (119). In
AML, DNMT3A mutations, which are early and often initiating
events associated with clonal hematopoiesis (120), are found in
NK cells, but to a lesser extent in B and T cells (121).

Taken together, early genetic aberrations driving malignant
transformation are detected in a substantial fraction of NK cells
in patients with myeloid malignancies. Some of these aberrations
as exemplified by enforced BCR/ABL1 expression in NK cells
negatively affect NK cell cytotoxicity and differentiation. Future
studies combining genetic characterization by massive parallel
sequencing of NK cells with functional NK cell assays are
expected to further clarify the full functional impact of cancer-
associated genetic aberrations co-existing in NK cells.
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FIGURE 2 | Mechanisms behind NK cell dysfunction and

phenotypic/maturation alterations in myeloid malignancies. Schematic

illustration showing how various mechanisms contribute to NK cell dysfunction

and phenotypic/maturation alterations. (A) NK cells arise from hematopoietic

stem cells (HSCs) that through progenitor stages differentiate to mature NK

cells (purple). Initiating genetic aberrations in myeloid malignancies are thought

to arise in HSCs, referred to as pre-malignant HSCs, that among other cell

(Continued)

FIGURE 2 | types give rise to NK cells, which are dysfunctional in their

cytotoxic capacity and have altered maturation. (B) NK cells are regulated by

various secreted factors and cell–cell interactions affecting their cytotoxic and

cytokine-secreting capacity. Regulatory T cells (Tregs), myelo-derived

suppressor cells (MDSC), and malignant myeloid cells contribute to the

suppression of NK cells that become dysfunctional with altered cytokine

secretion and reduced cytotoxic capacity.

MECHANISMS SUPPRESSING NK CELLS

IN MYELOID MALIGNANCIES AND

MEDIATING ESCAPE FROM NK CELL

RECOGNITION

As appreciated from the previous section, NK cells in patients
with CML, AML, andMDS are often, if not always, dysfunctional
compared to healthy control NK cells. An array of mechanisms
has been identified, including but not limited to soluble factors,
cell-to-cell interactions, and other regulatory elements in the
tumor microenvironment (Figure 2B). As described above,
mutations affecting the NK cell population can also contribute
to poor function of these effector cells (118). Below, we will
discuss the so far known mechanisms driving the development
of dysfunctional NK cells in these diseases.

Several studies published today have linked poor NK cell
function with altered NK cell subset composition, phenotype,
and ability to form a fully functional immunological synapse
(38, 39, 122–127). In some cases, these alterations have been
linked to poor clinical outcome (38, 125). Most of these studies
have highlighted down-regulation of key activation NK cell
receptors such as NKG2D, DNAM-1, and the NCRs, down-
regulations that do not seem to correlate with the subtype of
AML or MDS (38, 39, 122–124, 128). Nevertheless, studies have
shown that the loss of these receptors positively correlates to
the leukemia burden in the patients (38, 39, 123) and that it
can be fully, or at least partially, restored in patients achieving
CR following chemotherapy (38). In fact, data show that NK
cell-to-tumor cell interactions can trigger the loss of DNAM-
1 and NCRs (37, 38, 126, 129). Receptor–ligand interactions,
triggering internalization of the activation NK cell receptor, has
been highlighted as one of the most critical mechanisms (37, 38,
129, 130). Loss of activating receptors, such as NKG2D, can also
be triggered by the presence of soluble molecules in the tumor
microenvironment. As shown by Boissel et al. and several other
groups, soluble NKG2D ligands (NKG2D-Ls) including MICA,

MICB, ULBP1, and ULBP2, shedded by the tumor cells per se,
and tumor exosomes expressing NKG2D-Ls trigger the reduction

of NK cell surface NKG2D (131–135). In this context, it should

be highlighted that reports indicate that AML blasts, including

AML stem cells, may also evade NK cell-mediated killing by

expressing low or no NKG2D-Ls (52, 136, 137). The NKG2D
receptor can also be down-modulated via cytokines such as TGF-
β (138). In addition to these mechanisms governing suppressed
NK cell function leading to poor NK cell-mediated targeting of
leukemic cells, data from a pre-clinical animal model on de novo
AML along with collected NK cell from patients with AML have
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indicated that the microRNA (miRNA) miR-29b, a regulator of
T-bet and Eomes, can be elevated in NK cells via AML cell-
induced activation of the transcription factor aryl hydrocarbon
receptor that directly up-regulates miR-29b expression resulting
in incomplete maturation and poor cytotoxicity (96, 139). Other
soluble mechanisms involve the release of Tim-3 that prevent
the release of IL-2 while increasing the release of galectin-9 and
thereby hamper NK cell cytotoxicity and targeting of primary
AML cells (140). Despite that CD137 (4-1BB) is a therapeutic
target for agonistic antibodies in clinical development that
stimulate NK cells and T cells (141), stimulation of CD137
expressed on the surface of activated NK cells has been shown to
suppress their function in AML (142). The CD137Lwas primarily
identified in AML of the monocytic lineage, although it was
found on other AML subtypes too (142). Further studies are
needed to dissect the exact role for this interaction in regulating
NK cell function in myeloid malignancies.

Several other mechanisms behind the escape of myeloid
malignancies from NK cell recognition have also been described.
Data show that down-regulation of ligands for DNAM-1 on
the leukemic cell surface renders the cells resistant to NK
cell targeting (143). Another study suggests that the leukemic
blasts can avoid NK cell recognition by expressing low levels
of NCR and NKG2D ligands, a resistance that can be reverted
following exposure to differentiation-promoting myeloid growth
factors and IFN-γ (136). In a separate study, expression of the
oncogenic fusion proteins PML-RARA and AML1-ETO found
in acute promyelocytic leukemia (APL) and some non-APL
AMLs, respectively, was associated with the loss of the 2B4
ligand CD48 on the leukemia cell surface (144). Interestingly,
CD48 expression was increased on APL cells following exposure
to an HDAC inhibitor (HDACi). On the contrary, increased
levels of IFN-γ in the tumor microenvironment may lead to up-
regulation of HLA class I, and especially HLA-E, on the tumor
cells leading to immune escape by inhibition of NK cells via the
CD94/NKG2A receptor (145). Along these lines, up-regulation
of the glycoprotein CD200 on AML cells resulted in escape from
NK cell-mediated lysis via interaction with the CD200 receptor
on the NK cell surface, a phenomenon that was restored using a
CD200 inhibitory antibody (128).

Factors in the tumormicroenvironment can also play a critical
role. In addition to suppressed NK cell function, it has been
demonstrated that NK cell proliferation can be inhibited by the
tumor while not influencing the NK cell viability and cytotoxicity
per se (146). As shown in CML, AML, and CMML, reactive
oxygen species (ROS) can trigger both apoptosis of NK cells in
the tumor microenvironment but also reduced NK cell function
connected to reduced expression of activation NK cell receptors
(147–149). Data also show that cell-to-cell interactions between
AML cells and mesenchymal stromal cells render the AML cells
less susceptible to NK cells (150). More details on the role for
the tumor microenvironment learnt from other malignancies
are not discussed in this review as they have been reviewed
elsewhere (151).

In conclusions, an array of mechanisms has been proposed
to trigger NK cell suppression, reduced NK cell numbers, and
escape from NK cell-mediated recognition. Most of them have

been addressed in studies on tissue samples from patients or
in ex vivo experiments with NK cell co-cultures. Although
shown in experimental animal mouse models (152), the loss
of function of adoptively infused NK cells in human has not
yet been systematically addressed. Nevertheless, understanding
these mechanisms is key to developing new NK cell-based
therapies against myeloid malignancies, especially those relying
on endogenous NK cells and that may lead to long-term
non-chemotherapy-based control of these diseases. The next
section will discuss means to restore and/or trigger anti-leukemic
responses and tumor control by NK cells.

MEANS TO RESTORE NK CELL FUNCTION

AND TRIGGER THEIR CYTOTOXICITY

AGAINST MYELOID MALIGNANCIES

Dysfunctions of NK cells associated with myeloid malignancies
restrain tumor immune surveillance, but may also limit
therapeutic options that depend on NK cells for their mode-
of-action. In addition to drugs used in the clinic that restore
NK cells such as TKI for CML and hypomethylating agents for
MDS and AML, a number of pharmacological strategies to re-
establish and/or bolster NK cell function, including cytokines,
engineered antibodies, and small-molecule drugs, are currently
being explored with the aim of utilizing the endogenous NK cells
to clear and control myeloid malignancies (Figure 3).

Cytokines Including Histamine and IL-2
In 1998, high-dose IL-2 was the first immunotherapy approved
for metastatic malignant melanoma and showed durable
responses in a subset of patients (153). Although associated with
significant toxicity, IL-2 therapy demonstrated that cytokine-
induced activation of the immune system, including T cells
and NK cells, can have long-term beneficial effects in certain
cancers. IL-2 have in pre-clinical studies shown therapeutic
efficacy by restoring NK cell receptor expression and bolster
NK cell cytotoxicity against autologous AML blasts in vitro
(48), but clinical studies evaluating IL-2 monotherapy in
AML and MDS have been disappointing (154–156). However,
in contrast to monotherapy, Brune et al. demonstrated that
combining histamine with low-dose IL-2 treatment in AML
results in improved leukemia-free survival (157). Histamine
dihydrochloride acts by enhancing the immune-promoting
properties of IL-2 by reducing production of immunosuppressive
reactive oxygen species (ROS) (158), which leads to expansion of
CD56bright NK cells (90, 159). For this therapy, a high expression
of NKp30 and NKp46 on CD16a+ NK cells before and during
treatment predicted leukemia-free and overall survival (90). In
addition to activating NK cells, it is a concern that IL-2 also
stimulates Tregs, which are immunosuppressive and counteract
NK cell activation (160). For histamine with low-dose IL-2
treatment, a promising observation was that the increase in Tregs
was transient, whereas the increase in NK cells was more long-
lasting (161). In contrast to IL-2, IL-15 that activates memory T
cells and bulk NK cells is associated with less toxicity, suggesting
that IL-15 has several advantages over IL-2 in a clinical setting
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FIGURE 3 | Drugs and approaches explored to restore and augment the antileukemia-capacity of NK cells. Schematic illustration showing how drugs can restore,

augment, and direct NK cell-mediated killing of malignant myeloid cells. Drugs promoting NK cell-mediated killing of myeloid malignant cells by directly affecting NK

cells, inhibiting regulatory T cells (Tregs) or myelo-derived suppressor cells (MDSC), and/or affecting malignant myeloid cells are shown. IL-2DT, IL-2 diphtheria toxin

fusion protein. IMiDs, immunomodulatory imide drugs (include thalidomide and analogs such as lenalidomide and pomalidomide). AHRi, aryl hydrocarbon receptor

inhibitor; GSK3βi, GSK3β inhibitor; HMA, hypomethylating agents (includes azacytidine and decitabine).

(160). Partially, by inducing the expression of the activating NK
cell receptor NKp30, IL-15 was found to enhance the cytotoxicity
of NK cells from AML patients (162, 163). When expressed in a
non-secreted form in NK cells, IL-15 stimulated autonomous NK
cell growth and increased their cytotoxicity against leukemia and
lymphoma cells in cultures and in mice (164). However, recent
reports indicate that chronic or repetitive exposure of IL-15 to
NK cells lead to NK cell exhaustion (165, 166), suggesting that
the long-term effects of IL-15 should be carefully monitored in
future studies.

In CML, interferon alpha (IFN-α) was used as a standard
treatment prior to the TKI era. Although the full mechanistic
basis for how IFN-α has antileukemic activity is unknown, IFN-
α has been shown to boost the function of endogenous NK cells
(167). Another cytokine that has been shown to bolster NK cells
in CML is IL-2. In line with findings described above for IL-2 in
AML, Cervantes et al. used IL-2 to stimulate autologous NK cells
and demonstrated selective suppression of CML progenitor cells
relative to corresponding normal progenitors (47).

Small-Molecule Drugs
As discussed in section Mechanisms Suppressing NK Cells in
Myeloid Malignancies and Mediating Escape From NK Cell
Recognition, one mechanism that has been put forward to
explain impaired tumor immune surveillance by NK cells in
myeloid malignancies is long-term exposure of soluble NKG2D
ligands such as MICA, MICB, and ULBP2 secreted by the
malignant blasts. Consistent with this notion, hypomethylating

agents (azacytidine and decitabine) that are used to treat
AML and MDS patients were found to decrease shedding
of MICA, MICB, and ULBP2 and restore NK cell function
(168). In line with these findings, Vasu et al. reported that
decitabine enhances NK cell cytotoxicity induced by an anti-
CD33monoclonal antibody (mAb) against AML blasts associated
with up-regulation of NKG2D (169). In an AML xenograft mouse
model, decitabine treatment potentiatedNK cell-mediated killing
of the AML cells by NKp44 up-regulation, suggesting that
hypomethylating agents are promising drugs for enhancing NK
cell activity by multiple mechanisms (170). Complementary to
decitabine, which up-regulates NKG2D, the HDACi valproic acid
was found to induce the expression of NKG2D-Ls on AML cells,
rendering themmore sensitive to lysis by NK cells (171). Another
approach to enhance NK cell function in AML is inhibition
of glycogen synthase 3 kinase beta (GSK3β). Parameswaran
et al. provided pharmacological and genetic evidence that
inactivation of GSK3β restores NK cells from AML patients
resulting in enhanced killing of autologous leukemic cells (172).
Mechanistically, GSK3β inhibition promoted up-regulation of
LFA-1 on NK cells and its partner ICAM-1 on AML cells,
associated with increased AML–NK cell conjugates (172).

Another clinically approved drug that improves NK cell
function is lenalidomide, used for treatment of multiple
myeloma, 5q- MDS, and B-cell lymphomas (173). In patients
with relapsed/refractory solid tumors or MDS, lenalidomide
treatment was found to increase IL-2 and IL-15 levels
accompanied by restoration of NK cell function (174). Similar to
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AML, lenalidomide and its derivate pomalidomide potentiated
NK cell function (175). The antileukemic activity of these drugs
was associated with down-regulation of HLA class I molecules on
the AML cells (175). Although lenalidomide has been shown to
achieve anti-cancer activity by inducing degradation of essential
proteins for 5q- MDS and multiple myeloma cells (176, 177),
the mechanistic basis for how lenalidomide activates NK cells is
currently unclear.

In CML, a somewhat unexpected finding is that several
TKIs (imatinib, dasatinib, and nilotinib), dasatinib in particular,
induces expansion of NK cells from diagnostic values, indicating
that these therapies promote tumor immune surveillance
mediated by NK cells (178, 179). Moreover, TKI therapy results
in improved NK cell function and killing of leukemic cells (180).
Recent findings revealed that the restored NK cell function
by dasatinib treatment is coupled to down-regulation of the
NK cell inhibitory receptor NKG2A (181). A positive effect of
dasatinib on the immune system was suggested to persist even
long-term after stopping treatment, as a CML patient remained
in MR several years post-treatment, associated with cellular
immunity by memory and effector cytotoxic T lymphocytes and
NK cells (182).

Antibody-Based Therapies That Depend on

NK Cells for Eradicating Myeloid

Malignancies
Therapeutic antibodies can achieve anti-tumor responses not
only by modulating the activity of their protein targets but
also by redirecting effector cells of the immune system to the
cancer cells. By targeting cell surface proteins up-regulated on
the malignant cells, a selective immune response can be activated
against the cancer cells. In particular, NK cells are critical effector
cells for eliciting ADCC. Therapeutic antibodies designed to
induce ADCC are predominantly of IgG1 isotype and bind to
an antigen on cancer cells and to the low-affinity CD16a on NK
cells with their Fc domain. In addition to physically linking the
malignant cells and NK cells together, binding of the antibody to
CD16a is sufficient to activate the NK cells and induce ADCC,
even without additional activation signals (12, 15). One such
example is Rituximab, which targets CD20 on B cells, and is
used today for treatment of several forms of B cell malignancies
(183). Consistent with NK cells playing a key role in mediating
ADCC upon Rituximab treatment, patients homozygous for the
single-nucleotide polymorphism CD16a-158V, which bind IgG1
with higher affinity than CD16a-158F, showed improved clinical
response to Rituximab (184, 185).

For myeloid malignancies, there is a strong rationale to target
a chemotherapy-resistant reservoir of self-renewing leukemia
cells, referred to as leukemia stem cells, as these are associated
with disease relapse after initial responses to therapy (107,
186, 187). Consistent with this hypothesis, antibodies directed
to IL3Rα (CD123), which is up-regulated on AML stem-cell-
enriched cells, showed anti-leukemic activity in pre-clinical
models of AML (188, 189). To enhance the binding to CD16a, an
Fc-engineered anti-CD123 antibody was developed that showed
superior NK-cell mediated killing of leukemia stem cells in

AML and CML (190–192). Similarly, an antibody that binds
to CD133 on myeloid cells and with amino acid substitutions
(S293D/I1332E) in the Fc domain for enhanced binding to
CD16a induced strong degranulation and lysis of CD133-
expressing AML cells in the presence of either autologous
or allogeneic NK cells (193). Interleukin 1 receptor accessory
protein (IL1RAP) is another candidate therapeutic target up-
regulated on leukemia stem cells in myeloid malignancies (194–
196). Consistent with IL1RAP being up-regulated on leukemia
stem cells vs. normal hematopoietic stem and progenitor cells,
IL1RAP-targeting antibodies with enhanced CD16a-binding
capacity induced selective NK cell-mediated ADCC when
exposed to candidate leukemia stem cells (196). Moreover,
Ågerstam et al. demonstrated that IL1RAP-targeting antibodies
exhibited potent antileukemic efficacy in CML and AML
xenograft models (197, 198).

Another promising approach to direct the immune system to
kill cancer cells is the use of bispecific antibody-based modalities
that can be designed to bind one antigen on the cancer cell
and a separate antigen on a cytotoxic immune cell. By using
a Bispecific Killer Engager (BiKE) consisting of a single-chain
variable fragment (scFv) targeting CD16a on NK cells and a
scFv targeting CD33 on AML cells, NK cell-mediated cytotoxicity
and cytokine release could be effectively triggered (199). With
the aim to boost NK cell activity and persistence, as a further
development of the 16 × 33 BiKE targeting CD16a and CD33,
IL-15 Trispecific Killer Engagers (TriKE) referred to as 16 × 15
× 33 TriKEs have been developed (200). When compared to the
16 × 33 BiKE, Vallera et al. demonstrated that the 16 × 15 × 33
TriKE induced superior NK cell cytotoxicity and cytokine release
when exposed to AML cells (200).

Prevent Suppression From the

Microenvironment
Certain types of immune cells are immune suppressive and
can restrain immune-mediated attacks against malignant cells.
Both Tregs and myeloid-derived suppressor cells (MDSCs)
have been shown to restrain NK cells, hence, therapeutic
interventions aimed at depleting either of these cells have the
potential to enhance NK cell activity (201). One approach
to deplete MDSCs is the use of the 16 × 15 × 33 TriKEs,
which, in addition to killing CD33+ malignant cells, are also
effective in killing CD33+ MDSCs, leading to restoration of NK
cell function in MDS (202, 203). In CML patients, dasatinib
treatment is associated with inhibition of Tregs. Consistent with
this hypothesis, the response rate after 18 months’ treatment
with dasatinib was significantly better in CML patients with
low numbers of Tregs that inversely correlated with NK
cell counts, indicating that inhibition of Tregs by dasatinib
enhances NK cell-mediated killing of leukemic cells (102).
The TNF family member receptor activator for NF-KB ligand
(RANKL) is mainly known as a regulator of bone remodeling
but also regulates immune functions. Activation of RANKL
signaling in AML cells result in secretion of immune-modulatory
factors that impaired NK cell function (204). Consistent with
this finding, treatment of AML cells with Denosumab, an
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inhibitory RANKL antibody, resulted in enhanced NK cell
function (204).

Checkpoint Inhibition
Immune checkpoint inhibitors targeting the PD1/PDL1
interaction have been clinically validated and show remarkable
response rates in several forms of cancer. Mechanistically,
the selective anti-tumor effect of the T cells is based on the
recognition of tumor neo-antigens presented on HLA class I
molecules. With a high mutational burden in certain cancers,
more tumor neo-antigens are formed and recognized by the T
cell receptors. As myeloid malignancies have a relatively low
mutational burden, immune checkpoint inhibitors for T cells
are expected to be less effective in disorders such as AML.
However, recent data by Hsu et al. proposed that NK cells
express PD1 and that blockade of the PD1/PDL1 interaction
also activates NK cells that are indispensable for the therapeutic
effect of these therapies (205). Hence, blocking PD1/PDL1 may
show unexpected therapeutic efficacy in myeloid malignancies
by activating NK cells, possibly in combinations with other
therapies, a route that warrants further investigations.

As postulated by the “missing-self ” hypothesis (9), NK cells
are regulated by inhibitory HLA class I molecules that bind to
their cognate KIRs on NK cells. To enhance NK cell activity,
the mAb 1-7F9 that cross-reacts with KIR2D molecules and
block the interaction with virtually all HLA-C molecules was
developed (206). In the presence of NK cells, 1-7F9 induces
selective killing of HLA-C expressing AML cells vs. normal
peripheral blood mononuclear cells (206). When evaluated in
a phase I study in AML, increased expression of the activation
marker CD69 on NK cells was observed and relapse-free survival
compared favorable to historical data from comparable patient
cohorts (207). Blocking KIRs also augments ADCC induced by
antibodies binding to CD20 and CD33, suggesting that KIR
blockade can enhance the efficacy of therapeutic antibodies that
rely on ADCC for killing of cancer cells (206, 208). However,
based on data claiming that the anti-KIR antibody can rapidly
detune NK cell function in vitro and in cancer patients (209),
thereby limiting its therapeutic efficacy, and given the pre-
clinical data indicating that KIR blockade augments ADCC
(206, 208), better responses are likely to be achieved when
combining KIR blockade with other drugs that boost NK cell
cytotoxicity. In addition to tumor-targeting antibodies, drugs
such as lenalidomide that is reported to boost NK cell function
per se, and maybe also decitabine or HDACi as discussed above,
may be relevant. Further studies are needed to fully delineate the
efficacy of such approaches and if it induces durable remissions.
In addition to KIR, a subset of NK cells expresses the inhibitory
receptor NKG2A that bind to HLA-E on healthy and cancer
cells. In line with a key role for NKG2A in immune checkpoint
regulation, Ruggeri et al. demonstrated that targeting of NKG2A
with a blocking antibody resulted in strong NK-cell mediated
anti-leukemic activity in mice engrafted with primary leukemia
cells (210). Similar data for KIR and NKG2A have also been
generated in ex vivo experiments by others (53). Again, it should
be highlighted that targeting these receptors alone may have
limited efficacy due to the risk of detuning of baseline NK

cell cytotoxicity and that combination therapies may generate
better results.

In summary, several clinically approved drugs and drugs in
pre-clinical development can be utilized to improve NK cell
function by distinct mechanisms. Hence, identifying beneficial
combinations of these therapies in a disease- and genotype-
specific manner has the potential to not only restore tumor
immune surveillance in patients with myeloid malignancies, but
also further enhance NK cell activity over normal baseline levels.
If further combined with other immunotherapies or targeted
therapies that neutralize oncogenic drivers, multiple therapies
can be used simultaneously to attack the malignant cells, a
strategy that will minimize the risk for resistance mechanisms to
arise and may ultimately lead to cure of patients.

CONCLUDING REMARKS AND FUTURE

OUTLOOK

In recent years, significant advances have been made in our
understanding of the role for NK cells in myeloid malignancies.
We have become aware of the idea that NK cells in patients
with MDS, AML, and CML most often are dysfunctional,
but also that their phenotype and function can be partially
restored following administration of tumor-targeting drugs such
as TKI, chemotherapy, and hypomethylating agents, and also
by immunostimulatory agents such as cytokine-based therapies.
Data also demonstrate that such restoration of the endogenous
NK cell function can be key in achieving durable responses in
subgroups of patients. Although therapeutic strategies involving
adoptive NK cell infusions hold promise, with objective clinical
response rates of 30–50% in patients with advanced disease such
as relapsed and/or refractory AML and high-risk MDS, these
results are only transient and non-curative today. Therefore, a
tempting and, in many ways, more natural approach to achieve
long-term remissions would be to redirect the endogenous NK
cells to target and control the disease. This notion is based on
the ample support for NK cell-mediated immunosurveillance
of myeloid malignancies along with the abovementioned data
demonstrating that endogenous NK cells can be key to attain
durable remissions, a phenomenon that is in line with that
observed for donor NK cells in preventing leukemia relapse
in certain settings of allogeneic SCT. Identifying therapies that
redirect endogenous NK cells is especially of interest given
the aging population, in which more and more patients are
ineligible for an allogeneic SCT or even to high-intensity
chemotherapy. In addition to its simplicity and potential to serve
the broader population, the current high costs for SCT and
cellular immunotherapies favor this alternative approach.

However, to be able to develop effective therapies that rely
on endogenous NK cells, we need to better understand what
factors that cause tumor evasion fromNK cells and identify drugs
that prevent or neutralize them. We also need to recognize what
drugs can be utilized to selectively augment the tumor killing
capacity of the endogenous NK cells per se and the temporal
aspects of using these drugs. Moreover, to achieve durable
disease control, we need to identify therapies that not only
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activate the NK cells short-term and potentially exhaust them,
but more importantly to develop drugs or approaches/protocols
that stimulate the NK cells for enhanced tumor immune
surveillance long-term. To this end, combinational therapies
and/or sequential therapies may be required for achieving
significant clinical responses. Nevertheless, it will be critical to,
in more detail, understand the processes that govern NK cell
development and how it is perturbed in disease, findings that
may translate into new therapeutic opportunities. Lessons may
also be learnt from studies on ALL, as this leukemia seems
to be less vulnerable to targeting by NK cells compared to
AML. Such studies could potentially improve our understanding
of the molecular specificity of NK cell killing of leukemic
cells in general but also evasion mechanisms employed by
the ALL cells per se as well as factors in the bone marrow
environment of that disease in particular. As mentioned in this
review, both cytokines, antitumor antibodies, including BiKEs,
and TriKEs, and checkpoint inhibitors hold promise for the
treatment of myeloid malignancies but need to be studied in
greater detail until their full potential can be expected. We also
need to identify new molecules to target in order to explore
new therapeutic opportunities as well as biomarkers to monitor
NK cell function during treatment. While this is explored, we
will likely start receiving the first insights into the potential
role for CAR-NK cells in treating cancer, which hopefully will
contribute to our understanding while adding another layer of
immunological pressure to retain the myeloid malignancy in
remission. Compared to CAR-T cells that can induce toxic and
even lethal cytokine release syndromes and neurotoxicity, the
CAR-NK cells are expected to be better tolerated, but their
potential short persistence in patients might limit their clinical
use. Several molecular targets expressed on myeloid leukemia
cells, such as CD123 and CD33 but also NKG2DLs and CD7,
are currently being explored in the CAR field and more efficient
protocols for CAR-NK cell development are being established.
However, the discovery of additional and potentially more
suitable molecular targets is needed to more selectively target

the malignant myeloid cells while sparing normal cells. Another
important aspect is also that the suppressed autologous NK cells
in myeloid malignancies used for reprogramming to CAR-NK
cells need to have restored or ideally enhanced function prior to
reprogramming and that mechanisms potentially dysregulating
the CAR-NK cells following re-infusion need to be controlled.
This also applies if using IPS- or cord blood-derived CAR-NK
cells. Hence, drugs and approaches discussed in this review are
utterly important and need further attention also in relation
to CAR-NK cells against myeloid malignancies to induce and
maintain durable remissions.

Based on the data presented in this review, we strongly believe
that new unique opportunities to better utilize NK cells to induce
long-term remissions in patients with myeloid malignancies will
be a reality in the near future.
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Differentiation of Natural Killer (NK) cells is a stepwise process having its origin in the

bone marrow and proceeding in the periphery, where these cells follow organ specific

trajectories. Several soluble factors and cytokines regulate the distinct stages of NK

cell differentiation, and ultimately, their functional properties. Cytokines activating the

Janus kinases (JAKs) and members of the signal transducer and activator of transcription

(STAT) pathway control distinct aspects of NK cell biology, ranging from development,

terminal differentiation, activation, and generation of cells with adaptive properties. Here,

we discuss how the recent advances of next generation sequencing (NGS) technology

have led to unravel novel molecular aspects of gene regulation, with the aim to provide

genomic views of how STATs regulate transcriptional and epigenetic features of NK cells

during the different functional stages.

Keywords: NK cells, innate lymphoid cells, JAK, STAT, cytokine, transcriptome, transcription factor

INTRODUCTION

Natural Killer (NK) cells are the founding members of the ILC family and represent the innate
counterpart of cytotoxic T lymphocytes (1, 2). Like CD8+ T cells, NK cells are able to kill infected
or transformed cells in a perforin and granzyme dependent manner, as well, these cells are able
to mount a rapid type-1 response by releasing the eponymous cytokine, interferon (IFN)-γ (3, 4).
NK cells share the ability to produce type-1 cytokines with a distinct “helper” prototypical innate
subset, termed ILC1 (5, 6). NK cells differ from ILC1 for their cytotoxic abilities, for a higher
propension to circulate in the bloodstream and for the expression of lineage defining transcription
factors (LDTFs) (7–9). In this regard, both NK cells and ILC1 are regulated by transcription factors
(TFs) of the T-box family; however, while Eomes is expressed and required only by NK cells, T-
bet (encoded by Tbx21) is expressed by both prototypical subsets (10–14). Expression of T-bet is
fundamental for the generation of ILC1, and it also has non-redundant roles in regulating NK cell
turnover, effector functions and egression from bone marrow (10, 11, 15).

Cytokines and other soluble factors regulate several aspects of NK cell biology, acting through
signal-dependent TFs (SDTFs). In particular, cytokines activating the Janus kinases (JAKs) and
members of the signal transducer and activator of transcription (STAT) pathway control NK cell
development, terminal differentiation, acquisition of effector phenotype up to generation of cells
with adaptive features able to provide secondary responses (16, 17). Mammalian genomes contain
four genes encoding for JAKs, namely JAK1, JAK2, JAK3, and TYK2; and seven genes for STATs,
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STAT1-4, STAT5A, STAT5B, and STAT6 (18, 19). Activation
of the JAK tyrosine kinases occurs upon receptor engagement,
and the juxtaposition of JAKs and STATs allows, after
phosphorylation, STAT dimers to dissociate from the membrane
complex and tomigrate into the nucleus, where they bind specific
DNA-motifs modulating gene expression (20).

The role of the JAK/STAT dependent signals on NK cells and
other ILCs has been discussed in recent reviews (16, 17, 21);
herein, we focus on the molecular mechanisms underlying NK
cell differentiation in physiological and pathological contexts.We
discuss how the advances of next generation sequencing (NGS)
technology and the establishment of novel mouse models have
led to a better definition of the genes regulated by STATs, and
their transcriptional and epigenetic control of NK cells during
differentiation and host defense. Finally, we provide an overview
of the JAK inhibitors currently approved for the treatment of
immune-mediated disorders and their possible implication on
NK cells.

STAT5 AS A CENTRAL NODE FOR

DEVELOPMENT, IDENTITY AND

HOMEOSTASIS OF NK CELLS

The bone marrow is the main site for NK cell and ILC
development in the adult, containing distinct progenitors and
precursors able to give rise to cells having different fates (22, 23).
Differentiation proceeds with a pool of circulating progenitors
which move to the periphery, where NK cells and other ILCs
follow organ specific trajectories and acquire distinct effector
functions (24). In the current model, NK cells have a dedicated
pathway of differentiation comprising a pool of committed NK
cell precursors (NKps) (25–27). Their differentiation follows a
stepwise process encompassing distinct developmental and/or
functional stages, discriminated through the expression of CD27
and CD11b levels in mice and CD56 and CD16 in humans
[redefined recently by single cell RNA-seq approach (28, 29)].

The cytokines IL-7 and IL-15 are critical for lymphoid
development by transmitting their signals through the common
IL-2 γ-chain receptor (CD132) and by activating JAK3, JAK1,
and STAT5 (30). Deletion of Jak3 in mice is associated with
reduced numbers of lymphoid and ILC precursors, in contrast
to an accumulation of NKp (31). This evidence is in line with
previous findings demonstrating that IL-15 was required for
the NKp to proceed toward the next maturation stages (25).
Similarly, mice carrying conditional deletion of Jak1 in Ncr1-
expressing cells (Jak1fl/fl Ncr1Cre) show profound defects in NK
cell differentiation and homeostasis; Jak2 deletion, instead, does
not affect NK cell development and survival (32).

JAK3 and JAK1 mainly activate STAT5, which represents a
key multi-lineage TF (MLTF) controlling development of both
adaptive and innate lymphocytes (33, 34). Ablation of the entire
Stat5 locus, comprising both Stat5a and Stat5b, results in a high
perinatal lethality, due to the pleiotropic role of this TF; however,
the few viable Stat5−/− mice show absence of NK cells (35).

Abbreviations: ILC, innate lymphoid cell; IFN, interferon; LDTF, lineage defining

transcription factor; SDTF, signal dependent transcription factor; NK, natural

killer; STAT, Signal Transducer and Activator of Transcription.

Conditional deletion of Stat5 in Ncr1-expressing cells allows to
eliminate the confounding effects related to lymphopenia and
inflammation observed in mice carrying germline ablation; in
these settings, both development and survival of NK cells remain
highly impaired (36).

Due to the massive effect of STAT5 deletion on NK cells,
our understanding of how this SDTF works at the molecular
level has remained elusive; the use of mice bearing only one
allele of STAT5 has helped to clarify this aspect. Between the
two paralogs, Stat5b is more expressed than Stat5a in innate and
adaptive lymphocytes, and its deletion has broad effects on NK
cell differentiation (37–39). Transcriptomic analyses performed
on NK cells retaining only one Stat5 allele (Stat5a−/−Stat5b+/−)
have shed light on the homeostatic impact of this TF on NK
cells, which consists on regulation of over 400 genes (39). The
residual NK cells present in these mice show a developmental
block associated with an accumulation of CD11blow cells, and
a drastic decrease of the expression of the anti-apoptotic gene,
Bcl2. Along with defects in development and survival, STAT5
sustains the expression of most of the genes (52 out of 76)
defining NK cell identity, including NKG2D, perforin and
granzymes, and the LDTF T-bet (39). These findings have
helped to discriminate between the instructive role of STAT5
during NK cell differentiation and its permissive function in
regulating survival.

Upon activation, STAT5 can form dimers but also tetramers
having distinct ability to interact with DNA-regulatory elements
(40, 41). While STAT5 dimers bind to canonical GAS (IFN-γ
activation site, TTCN3GAA) motif, STAT5 tetramers bind to
divergent motifs having an optimal spacing of 2–27 base pairs
between GAS and GAS-like sequences. The relative importance
of STAT5 dimers vs. tetramers in NK cells has been evaluated
by the generation of a mouse model carrying genes encoding
for tetramer defective mutant STAT5 proteins (40, 42). In these
mice, the impaired STAT5 binding to the Bcl2 locus, and the
consequent lower mRNA and protein expression, leads to a more
rapid cell death of NK cells compared to wild type cells (40).
Interestingly, transgenic expression of Bcl2 is able to rescue the
effect of Stat5 deficiency on the homeostatic pool of NK cells
(43). These “Bcl2-rescued” NK cells undergo a functional switch
from tumor-suppressive to tumor-promoting cells, since loss
of STAT5 determines upregulation of the pro-angiogenic factor
VEGFA, which sustains tumor growth (43). Thus, while STAT5
represents a central node in NK cell development, acquisition
of cell identity, and homeostasis (Figure 1), the involvement of
other STATs in regulating these processes appears limited. Of
note, type I IFNs and STAT1 can have distinct indirect effects
on NK cell homeostasis: including the regulation of MHC class
I expression (44), as well as the regulation of the production and
trans-presentation of IL-15 on accessory cells (45–47).

MULTIPLE STATs UNDERLIE EFFECTOR

FUNCTIONS OF NK CELLS

Effector functions of NK cells depend both on cytokines and
on a complex equilibrium between activating and inhibitory
receptors, which bind molecules present on healthy and stressed
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FIGURE 1 | Distinct requirements for STATs in NK cell differentiation. JAK/STAT signals control several aspects of NK cell biology, including development, terminal

differentiation, acquisition of effector functions, and generation of adaptive NK cells. NK cell development begins in the bone marrow from committed precursors and it

is driven by signals inducing STAT5 activation. In homeostatic conditions STAT5 sustains NK cell survival by direct regulation of Bcl2 expression. STAT5 is also

required for terminal differentiation and acquisition of NK cell identity. STAT4 and STAT1 have both specific and shared roles during viral infection. STAT4 controls a

network of TFs required for clonal expansion of NK cells during proliferation. STAT4 and STAT1 compete at genomic level for the expression of IFN-γ and other genes.

STAT3 has a role in restraining NK cell effector functions by inhibiting perforin, granzyme B, and NKG2D expression.

cells includingMHC class I and adhesion molecules (48–52). The
ability of NK cells to sense environmental changes and rapidly
release their effector potentials is favored by a primed epigenetic
and transcriptional state, leading to high basal expression of
cytokine receptors, LDTFs, and SDTFs, including STATs (53).
Although distinct STATs can be easily linked to particular effector
and helper functions, it is now clear that activation of NK cells,
like the other ILCs, can be influenced by complementary actions
of multiple STATs (54–56).

Acting downstream of IL-12, STAT4 is necessary to mount a
proper innate response against pathogens by actively regulating
NK effector functions, including both IFN-γ production and
cytotoxic response (57). The global impact of STAT4 in NK cell
activation has been recently tackled using transcriptomic and
epigenetic approaches (58, 59). Upon cytokine stimulation, over
300 differentially expressed genes are bound by STAT4 within
or in proximity of the locus (59). Along with direct regulation
of key effector genes, STAT4 controls the expression of several
TFs required for a proper antiviral response, including Zbtb32,
Runx1, Runx3, and Irf8. At molecular level, STAT4 binds to the
promoter and intergenic regions of the gene locus of these TFs,
leading to an increase of the permissiveness of the transcription
through modification of the chromatin state, via trimethylation
of histone H3 lysine 4 (59). Mouse models carrying selective
deletion of these TFs have helped to unravel their impact on the

cell cycle program of NK cells during viral infection. The effects
of Zbtb32 on the proliferative burst and protective ability of NK
cells are mediated by antagonizing the anti-proliferative effects of
the TF Blimp-1 (encoded by Prdm1) (60); Irf8, instead, regulates
proliferation acting upstream of Zbtb32 (61). During the course
of viral infection, the expression of STAT4 and STAT1 follows
an opposite fate. Indeed, while STAT4 expression is down-
regulated, STAT1 results progressively up-regulated (58, 62). This
differential expression pattern affects the signaling downstream
of type I IFNs, which mainly activates STAT4 in the early phases
of infection and STAT1 in later phases. The increased levels of
STAT1 cause a displacement of STAT4 from type I IFN receptors,
this switch induces a STAT1 dependent down-regulation of IFN-
γ production in NK cells (62).

The role of STAT3 on NK cells has been dissected by
employing distinct mouse models, showing differential effects
whether deletion of Stat3 gene occurs before or after NK
cell development (63, 64). When Stat3fl/fl mice are crossed
with Tie2-Cre mice, the effects of Stat3 deletion extend to
the whole hematopoietic compartment. In these settings, NK
cells show a decreased expression of NKG2D and impaired
effector functions (63). In line with these findings, NK cells
from subjects with dominant-negative STAT3 mutations show
an impaired expression of NKG2D both at steady state and
after cytokine stimulation (63). On the other hand, specific
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deletion of Stat3 in differentiated NK cells, using Ncr1iCre
Stat3fl/fl mice, leads to an increased expression of DNAM-1,
Perforin, and Granzyme B, and enhanced anti-tumor activity,
as the result of the possible repressive functions of STAT3 on
these cells (64). Considering these conflicting findings, genome-
wide studies aimed at dissecting the transcriptomic impact of
Stat3 deletion on NK cells would be particularly relevant to
discriminate between the direct and indirect roles of this TF in
regulating differentiation and effector functions.

Beyond the homeostatic requirement in sustaining the
expression of NK effector molecules, cytokines activating STAT5
have been used to stimulate NK cell functions in vitro, for
decades (65, 66). Genomic maps of STAT5 distribution obtained
by ChIP-seq analysis have revealed a widespread DNA binding
in untreated and IL-15-treated NK cells. However, the acute
stimulation with IL-15 induces a redistribution of this TF to a
new set of DNA regulatory elements. In these settings, STAT5
binding occurs on almost half of the differentially expressed
genes. Gene set enrichment analysis (GSEA) have confirmed
a positive enrichment for IL-2/STAT5 signaling in STAT5
bound genes (39). In contrast, unbound genes show a positive
enrichment for downstream targets of the mTOR pathway, which
has been shown to mediate IL-15-dependent functions in NK
cells, including proliferation and terminal differentiation, by
regulating CD122 (IL-2Rβ) and CD132 (IL-2Rγ) expression; as
well as metabolism, and acquisition of cytolytic features (67, 68).

SPECIFIC ROLES FOR STATs DURING

FORMATION OF ADAPTIVE NK CELLS

In the context of viral infection, NK cells are able to provide
secondary immune responses by following a differentiation path
which leads to generation of long-lived cells, named “memory” or
“adaptive” NK cells (69, 70). Changes of chromatin accessibility
of NK cells have been tracked in vivo up to 35 days after MCMV
infection, by ATAC-seq (58). This analysis has revealed that the
epigenetic landscape of NK cells is highly dynamic, with the
majority of chromatin remodeling occurring in the first 2 weeks.
These modifications pave the way for a further acquisition of the
transcriptional adaptive state, observed at later time points (58).
Genomic maps of STAT4 and STAT1 distribution in cytokine-
stimulated NK cells have shown a differential DNA occupancy,
being STAT4 mainly localized at putative enhancer sites and
STAT1 at promoter regions (58). In line with these results,
during MCMV infection the chromatin accessibility of putative
enhancer sites and promoters remains less accessible in NK
cells deficient for STAT4 and STAT1, respectively. Moreover,
due to the existing competitive effects between STAT4 and
STAT1, deletion of Stat1 in NK cells leads to an increased DNA
accessibility of non-promoter regions; as well as, to an increased
expression of selected STAT4 regulated genes, such as Ifng.
Conversely, the expression of several STAT1 targets, including
Mx1, Ifit2,Oas2, and Isg20, is upregulated in absence of Stat4 (58).

The interplay between STATs and LDTFs is a further
mechanism underlying acquisition of specific functions in innate
lymphocytes, including the generation of the adaptive phenotype

in NK cells. This is the case for the cross-regulation occurring
between STATs and T-bet (39, 71, 72); while STAT5 induces
T-bet expression in homeostatic conditions (39), STAT4 binds
to Tbx21 locus at a distal enhancer site and promotes T-bet
expression during MCMV infection (72). T-bet and Eomes
are both necessary for NK cell proliferation; however, the
IL-12/STAT4/T-bet axis plays a non-redundant role for the
maintenance of adaptive NK cells (72). We have discussed in
the previous section the network of TFs induced by STAT4,
namely Zbtb32, Runx1, Runx3, and Irf8, which are all necessary
to enhance proliferation and clonal expansion of NK cells (59–
61). As well, expression of STAT1 has a non-redundant role for
survival, regulating a Bcl2-independent mechanism enabling NK
cells to evade cell death after viral infection. In particular, type
1 IFNs and STAT1 are required to prevent a mechanism of NK
cell mediated fratricide, occurring via NKG2D and perforin (73).
Overall, these findings shed light on the complex network of TFs
and molecules regulated by STATs, required for the acquisition of
the adaptive traits by NK cells.

CONCLUSION: TRANSLATIONAL

RELEVANCE OF TARGETING THE

JAK/STAT PATHWAY IN INFLAMMATION

AND CANCER

Manipulation of cytokine signaling in NK cells and other ILCs
is drawing a growing interest for the treatment of inflammatory
diseases and cancer (74, 75). In particular, harnessing NK cell
effector functions against cancer by interfering with cytokine
signaling has led to promising results in several mouse models
(76–79). In this context, the suppressor of cytokine signaling
(SOCS) proteins are a class of natural regulators of the activity
of STATs. The SOCS protein CIS (encoded by Cish) is at the
top among the genes induced by STAT5 activation, and acts
as a negative regulator of IL-15 signaling, preventing excessive
activation (77). Targeting Cish has a huge impact in enhancing
NK cell dependent tumor immunity in several mousemodels (77,
79); thus, given its primary role in restraining NK cell functions,
CIS represents a novel immune checkpoint for these cells.

On the other hand, several small molecules capable to inhibit
JAKs enzymatic activity have been recently developed. At least
five JAK inhibitors (also known as JAKinibs) are now approved
by various regulatory agencies to treat immune-mediated
disorders. These first-generation JAKinibs comprise ruxolitinib,
a JAK1 and JAK2 inhibitor, approved for myeloproliferative
malignancies; tofacitinib, a JAK1, JAK2, JAK3 inhibitor, approved
for rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis;
baricitinib, a JAK1 and JAK2 inhibitor, approved for rheumatoid
arthritis; peficitinib, a pan-JAK inhibitor approved (only in
Japan) for the treatment of rheumatoid arthritis; and oclacitinib,
a JAK1 and JAK2 inhibitor, approved for allergic dermatitis in
dogs (80).

The impact of ruxolitinib in NK cell homeostasis and
functions has been evaluated in humans in distinct contexts.
Myelofibrosis patients undergoing ruxolitinib treatment show
a defect in NK cell number and differentiation, as well as,
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impaired functions upon cytokine stimulation; these effects
have been related to the increased rates of infection observed
in these patients (81). Ruxolitinib also inhibits the generation
and functions of cytokine-induced memory-like NK cells by
interfering with both IL-15 and IL-12 signaling (82). Finally,
Ruxolitinib administration can limit STAT1 activation in patients
carrying STAT1 gain of function mutations. In these patients,
the prolonged STAT1 activation leads to an impaired NK
cell maturation and function, associated with lower STAT5
phosphorylation downstream of IL-15 stimulation, and with
lower levels of perforin. These defects are partially reverted by
ruxolitinib administration (83).

More selective agents have been developed and are currently
being tested. These next-generation inhibitors may possess
the advantage of a reduced toxicity. For example, selective
targeting of JAK1 would spare interfering with many of
JAK2-dependent cytokines involved in hematopoiesis, including

Epo, Tpo, G-CSF, GM-CSF, IL-3, and IL-11. Conversely, their
efficacy could also be limited. Recently, immunogenomic analysis

of mice administered with several JAKinibs, including both

first- and second-generation inhibitors, have highlighted the
impact of blocking either one or both JAK1 and JAK3 on
NK cell homeostasis. Moreover, the JAK1-specific inhibitor
(PF-02384554) was more efficient than the JAK3-specific (PF-
06651600) in blocking the secondary autocrine response to IFN-γ
induced in IL-2 activated NK cells (84).

The optimal degree of JAK inhibition required for an
individual cell type in any given tissue remains unknown.
To this end, selective JAKinibs may be the key to provide
new mechanistic insights in the modulation of the JAK/STAT
pathway in NK cells. This approach could be more effective

than the use of JAK-deficient mice, in which developmental
defects can mask the functional relevance of each JAK. Finally,
we are now aware that JAKinibs can affect the structure of the
epigenome and preferentially impact genes with super-enhancer
structure (85). Notably, several genes encoding for cytokines
or their cognate receptors are located within loci with super-
enhancer architecture. Therapeutically, it will be important to
understand how these drugs, alone or in combination with other
chemotherapeutic agents, can be used to effectively, and safely,
regulate these critical loci and, in turn, immune as well as non-
immune cells.
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Natural Killer (NK) cells are cytotoxic lymphocytes of the innate immune system and play

a critical role in anti-viral and anti-tumor responses. NK cells develop in the bone marrow

from hematopoietic stem cells (HSCs) that differentiate through common lymphoid

progenitors (CLPs) to NK lineage-restricted progenitors (NKPs). The orchestrated action

of multiple cytokines is crucial for NK cell development and maturation. Many of these

cytokines such as IL-2, IL-7, IL-12, IL-15, IL-21, IL-27, and interferons (IFNs) signal via

the Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT) pathway.

We here review the current knowledge about these cytokines and the downstream

signaling involved in the development and maturation of conventional NK cells and

their close relatives, innate lymphoid cells type 1 (ILC1). We further discuss the role of

suppressor of cytokine signaling (SOCS) proteins in NK cells and highlight their potential

for therapeutic application.

Keywords: NK cell, ILC1, development, maturation, cytokine, JAK, STAT, SOCS

INTRODUCTION

Innate lymphoid cells (ILCs) comprise a variety of cell types with the morphological characteristics
of lymphoid cells, but unlike adaptive immune cells, ILCs completely lack rearranged antigen
receptors. In analogy to the classification of T cell subsets, ILCs can be sub-divided into three groups
according to their dependence on distinct transcription factors and to their cytokine expression
repertoire (1). Group 1 ILCs include two major members, conventional NK cells and ILC1s, both
of which are characterized by the ability to produce T helper-1 (Th1) cell signature cytokines
(e.g., interferon-gamma, IFN-γ) and by their functional and developmental dependence on the
transcription factor T-BET. Group 2 cells (ILC2s) produce Th2 cell-type cytokines (e.g., IL-4, IL-5,
IL-9, and IL-13) and depend on GATA3, whereas group 3 cells (ILC3s) are potent producers of
IL-22 and/or IL-17A and are characterized by RORγt expression (1, 2).

NK cells account for 8–15% of circulating cells in the human blood or 2–6% in mouse blood,
and are found throughout the body, in particular in lymphoid organs, lung, liver, uterus and gut
(3). Similar to CD8+ cytotoxic T cells, NK cells are important in the defense against tumors and
the spread of viral infections by producing pro-inflammatory cytokines such as IFN-γ and TNF-α.
However, unlike T cells NK cells do not require prior sensitization and lack antigen-specificity
allowing them to patrol and eliminate a broad range of altered and transformed cells. To do so, the
activity of NK cells is controlled by a delicate balance of inhibitory and activating receptors, which
interact with surface ligands and either prevent or trigger the lysis of a target cell (4, 5). Whereas,
NK cells recirculate via blood and lymph vessels and have a license to kill, ILC1s are mostly

63
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tissue-resident and show low cytotoxic potential. Besides their
common feature of being highly efficient IFN-γ producers,
NK cells and ILC1s share many surface markers as well
as transcription factors that complicates their discrimination
especially under conditions of inflammation or in cancer (6, 7).

In humans, the identification of specific markers for ILC1s
remains challenging (6, 8). In mice, surface expression of
CD49b and expression of the transcription factor Eomesodermin
(EOMES) merge cells under the umbrella of conventional NK
cells. In contrast, CD49a expression and the absence of EOMES
expression assigns cells to the ILC1 lineage (7, 9). However, to add
a layer of complexity it was shown that CD49a expression can be
induced on conventional mouse NK cells in vivo upon viral (10)
and parasite infection (11) and in the tumor microenvironment
(12, 13). Treatment of mouse splenic NK cells with IL-2 and
TGF-β induces the expression of ILC1-associated markers, such
as CD49a and TRAIL (12). On the other hand, expression of
EOMES under the control of the Tbx21 (T-BET) locus induces
ILC1s to acquire an NK cell-like phenotype (14).

The high plasticity within group 1 ILCs and the reversible
trans-differentiation of group 2 and 3 ILCs into ILC1s (15)
complicate the task to dissect the impact of aberrant cytokine
signaling or expression of signaling molecules on those cells. It
might thus be necessary to re-evaluate some previously published
literature on NK cells to determine whether conventional NK
cells and/or ILC1s have been analyzed.

NK CELL DEVELOPMENT AND

MATURATION

NK cells originate from common lymphoid progenitors (CLPs)
in the bone marrow and may traffic to secondary lymphoid
tissues, where they undergo terminal maturation and exit to
the circulation (16, 17). The α-lymphoid progenitor (α-LP)

Abbreviations: BRAF, rapidly accelerated fibrosarcoma isoform B; CHILP,

common helper-like innate lymphoid precursor; CIS, cytokine inducible SH2-

containing protein; Cish, gene coding for CIS protein; CLP, common lymphoid

progenitor; CLPD, chronic lymphoproliferative disorder; DC, dendritic cell;

DNAM1, DNAX accessory molecule 1 (CD226); EILP, early innate lymphoid

cell progenitor; EOMES, Eomesodermin; γc, common gamma chain; GATA3,

GATA-binding protein 3; GH, growth hormone; GOF, gain-of-function; HSC,

hematopoietic stem cell; HSV-1, herpes simplex virus 1; ID2, inhibitor of DNA

binding 2; IFN, interferon; IFN-I, type 1 interferon [e.g., IFN-α (alpha), IFN-

β (beta)]; IFN-II, type 2 interferon [IFN-γ (gamma)]; IFN-III, type 3 interferon

[IFN-λ (lambda)]; IFNAR, interferon-α/β receptor; IL, interleukin; ILC, innate

lymphoid cell; ILCP, innate lymphoid cell precursor; IRF9, interferon regulatory

factor 9; ISGF3, interferon-stimulated gene factor 3; JAK, Janus kinase; Klrk1,

gene coding for NKG2D protein; LCMV, lymphocytic choriomeningitis virus; LIF,

leukemia inhibitory factor; LOF, loss-of-function; mAB, monoclonal antibody;

MCMV, mouse cytomegalovirus; MEK, mitogen-activated protein kinase kinase;

MHC,major histocompatibility complex; NK, natural killer; NKG2D, natural killer

receptor group 2, member D; NKP, NK lineage-restricted progenitor; NKTCL,

NK/T-cell lymphoma; OSM, oncostatin M; PMA, phorbol 12-myristate 13-acetate;

PYK2, protein tyrosine kinase 2; SCID, severe combined immunodeficiency;

SH2, Src homology 2; SOCS, suppressor of cytokine signaling; STAT, signal

transducer and activator of transcription; T-BET, T-box expressed in T cells;

Tbx21, gene coding for T-BET; TGF-β, transforming growth factor beta; Th1,

T-helper cell type 1; Th2, T-helper cell type 2; T-LGL, T-cell large granular

lymphocytic; TRAIL, tumor necrosis factor-related apoptosis-inducing ligand;

TYK2, tyrosine kinase 2; RORγt, retinoic acid-related orphan receptor gamma t;

U-STAT, unphosphorylated STAT; VEGF-A, vascular endothelial growth factor A.

and the early ILC progenitor (EILP) are the first progenitors
with restricted lineage potential for all ILC subsets (18, 19).
Downstream of EILPs are NK precursors (NKPs) giving rise to
conventional NK cells and common helper-like innate lymphoid
precursors (CHILPs), the ancestors of all other ILC subsets
including ILC1s (15). The most distinct characteristic of NKPs
is the acquisition of CD122 (IL2Rβ) expression, which is pivotal
in the transduction of IL-15 signals via JAK1/3 and STAT5.
Loss of one of these components unequivocally precludes NK
cell development (20–23). This already highlights the central
role of the JAK/STAT signaling cascade in NK cell development
and maturation.

Human NK cells, classified as CD3−CD56+NKp46+ cells, can
be further subdivided based on the expression of the low affinity
Fc-receptor CD16 in CD56brightCD16− and CD56dimCD16+

cells. CD56brightCD16− NK cells are more responsive to
stimulation by inflammatory cytokines and are thought to
be immature precursors of CD56dimCD16+ mature NK cells,
which show a higher cytotoxic capacity. The development of
human NK cells can be stratified to five stages (16). The final
maturation of human NK cells is accompanied by the loss of
CD94/NKG2A and CD226 (DNAM1) expression, the acquisition
of killer immunoglobulin-like receptors (KIRs) and CD57, and
the change in the expression pattern of homingmolecules such as
CD62L (24, 25). Recently though, several studies have challenged
this traditional model and suggested that CD56dimCD16+ and
CD56brightCD16− NK cells may arise from separate lineages (26).

Mouse NK cells are defined as CD3−CD49b+NKp46+

cells and in C57BL/6 mice additionally NK1.1+. Their
maturation in the periphery is associated with the upregulation
of CD11b, CD43, KLRG1, and Ly49 receptors, and the
downregulation of CD27 (17). Although the acquisition
or loss of these surface markers is happening on a
continuous scale, it has become customary to distinguish
three subsets of immature (CD27+CD11b−), semi-mature
(CD27+CD11b+) and mature (CD27−CD11b+) NK
cells (27, 28).

In general, compared to their more immature
counterparts, mature NK cells produce less cytokines,
show a reduced proliferative capacity, but become more
cytotoxic against target cells. However, in the process of
terminal differentiation NK cells gradually lose their effector
functions as well as the expression of the activating receptor
DNAM1 (24, 28).

JAK/STAT SIGNALING

Most cytokines that influence group 1 ILC development
or functions signal via the Janus kinase / signal transducer
and activator of transcription (JAK/STAT) pathway (see
Figure 1). Depending on the cell type, developmental status
and microenvironment, JAK/STAT signaling contributes to the
regulation of differentiation, proliferation, migration, survival
or cytotoxicity in response to more than 50 cytokines, growth
factors and hormones (29–31). Many of these cytokines
are crucial for NK cells; their signal transduction and
downstream effects are summarized in Figure 2. To allow
this enormous complexity, the JAK/STAT signaling cascade
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FIGURE 1 | Schematic representation of the canonical JAK/STAT signaling pathway. The JAK/STAT pathway transmits extracellular cytokine signals to the nucleus.

Upon binding of a cytokine to its transmembrane receptor, receptor-associated JAKs are activated and phosphorylate STAT proteins. Activated STAT proteins

translocate as either homo- or hetero-dimers to the nucleus and modulate target gene transcription. In a negative feedback loop, SOCS proteins are expressed and

inhibit the JAK/STAT signaling cascade by suppressing JAK kinase activity, by competing with STAT proteins for binding to the receptor and/or by proteasomal

degradation of the proteins.

transports extracellular signals from the cell membrane to
the nucleus via various steps. In the canonical signaling
cascade, extracellular binding of a cytokine to its corresponding
multimeric receptor leads to conformational changes of the
receptor chains. Receptor-associated JAK kinases come into
close proximity, and sequentially phosphorylate each other and
the intracellular portion of the receptor. This creates docking
sites for STAT proteins that are recruited to the receptors and
phosphorylated on their tyrosine residues by JAK kinases.
STAT phosphorylation provokes detachment from the receptor,
the formation of homo- or hetero-dimers with other STAT
proteins and nuclear translocation. In the nucleus STATs regulate
target gene transcription by binding to promotor or enhancer
motifs or other non-coding intra- and intergenic regions
(29–31) (see Figure 1). In addition, several non-canonical
pathways have been described; these include kinase-independent
functions of JAKs, the formation of higher order STAT
tetramers or multifactorial complexes with other transcription
factors, and pathways building on unphosphorylated STAT
proteins (U-STATs) (31, 32). In NK cells, non-canonical

functions have so far been described for TYK2, STAT1 and
STAT5 (see below).

The JAK/STAT pathway is highly conserved among species.
Mammals express four members of the JAK family (JAK1-3 and
TYK2) and seven STAT proteins (STAT1-4, STAT5A, STAT5B,
and STAT6). STAT5A and STAT5B are highly homologous but
encoded by distinct genes located on the same chromosome
directly adjacent to the Stat3 gene locus indicating that
these three genes derived from the duplication of a common
primordial gene (33, 34). Although distinct members of the
JAK/STAT cascade share high homology, their specific functions
vary considerably. Gene-targeted mice have deepened our
understanding of distinct roles of individual JAK and STAT
proteins (see Figure 3). Deficiency of Jak2 (35) and Stat3 (36)
precludes embryonic development, whereas Jak1- (37) and
Stat5a/b-deficiencies (38) lead to perinatal lethality. Loss of the
other members of the JAK/STAT pathway does not interfere
with viability of the animals, but reveals distinct phenotypes
including the absence of lymph nodes and/or high sensitivity to
infections (39).
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FIGURE 2 | Schematic overview of crucial cytokines in NK cell biology, their associated JAK and STAT proteins, exemplary target genes and biological effects. One

cytokine can lead to the activation of several STAT proteins. STAT proteins predominantly activated by the respective cytokine are depicted in bold font; STAT proteins

that have been reported to be activated to a lesser extent are depicted in light font. The details and references for distinct cytokine signaling cascades and the

functional responses can be found in the corresponding sections of the main text.
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JAK1
JAK1 is involved in the signal transduction of several cytokines
crucial for NK cell biology, for instance the IL-2 family
cytokines including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Most
importantly, IL-15 represents the major cytokine regulating NK
cell development, maturation and function (17, 40). Additionally,
as the major component downstream of IFNs and IL-10, JAK1
plays a pivotal role in NK cell biology (41). It should also be
mentioned that JAK1 associates with the IL-4 receptor family
(transmitting IL-4 and IL-13 signals) and the gp130 receptor
family (transmitting, e.g., IL-6, IL-11, IL-27, LIF, and OSM
signals) (41).

Given the fundamental role of IL-15 and other IL-2 family
cytokines transmitted via the common γ (γc) receptor, it is not
surprising that complete loss of Jak1 leads to perinatal lethality
in mice, accompanied by a strong reduction in the number of
thymocytes and B cells (37). These observations were recently
confirmed in adult mice: inducible deletion of Jak1 leads to
impaired hematopoietic stem cell homeostasis and a pronounced
decrease in immature B220+ NK cells (42).

Using mice with NKp46+ cell-specific deletion of Jak1
uncovered the crucial role of JAK1 in NK cell development and
survival (21). Jak1 deficiency reduces the numbers of NK cells
and ILC1s in a dose-dependent manner. This indicates that other
JAK family members fail to compensate for the loss of JAK1. The
consequences of Jak1 deletion within the NK cell compartment
exceed the effects seen upon loss of the JAK1 downstream effector
STAT5 (21, 22). Different half-lives of JAK1 and STAT5 proteins
may contribute to the difference in NK cell frequency. One may
also reason that the more pronounced depletion of NK cells
results from the combined loss of STAT3 and STAT5-mediated
signals in Jak1-deficient animals.

To the best of our knowledge, no reports on JAK1-deficient
individuals exist so far, suggesting that like in mice, it might
lead to embryonic lethality in humans. A patient harboring a
biallelic JAK1 germlinemutation leading to a partial loss of kinase
activity has been reported. The resulting functional impairment
was associated with a mild immunodeficiency, recurrent atypical
mycobacterial infections and early onset metastatic bladder
carcinoma (43).

JAK2
JAK2 is a critical mediator of growth hormone (GH),
erythropoietin and IFN-II signaling and thus plays a pivotal
role in hematopoiesis (35, 44). In both NK and T cells, IL-
2 signals via JAK1/3 and STAT1/3/5 inducing NK and T cell
proliferation and enhancing NK cell cytotoxicity. However,
unlike in T cells, in NK cells IL-2 additionally activates JAK2
and STAT4 (45). JAK2 in combination with TYK2 mediates the
signal transduction of the IL-12 family members: IL-12 activates
STAT4 and to a lesser degree STAT1, STAT3 and STAT5 (46); IL-
23 activates mainly STAT3 and STAT4, and IL-27 signals mainly
via STAT1 and STAT3 (47). Although it was assumed that IL-
15 signals exclusively via JAK1/3, a recent study described an
IL-15-mediated JAK2 activation in murine NK cells (48).

Germline deletion of Jak2 results in embryonic lethality at
day 12.5 due to impaired hematopoiesis (35). Studies using
Jak2-conditional knockout mice uncovered a mild defect in NK
cell maturation in the absence of JAK2 in the hematopoietic
system (49). In line, treatment of mice with the JAK2 inhibitor
BSK805 reduces NK cell numbers due to decreased proliferation
and an immature maturation profile resulting in an increased
metastatic burden (49). In contrast, deletion of Jak2 in mature
NK cells does not impact on NK cell numbers or maturation

FIGURE 3 | The roles of distinct JAK/STAT and SOCS family members in NK cells. NK cell development, maturation and function are tightly regulated by a plethora of

cytokines, which most prominently use the JAK/STAT pathway for their signal transduction. This figure summarizes the available literature about each member of the

JAK/STAT signaling pathway and some of their negative regulators (SOCS1-3 and CIS), relevant upstream cytokines and the NK cell phenotypes observed in

complete or conditional knockout mice. The individual cells are coded by color: compared to wild-type reduced (blue), unchanged (gray) or increased (red); blank cells

indicate not determined yet. c, complete knockout mice; CIS, cytokine induced SH2-containing protein; CYTO, cytotoxicity; DEV, development; h, hematopoietic

cell-restricted knockout mice; IFN, interferon; IL, interleukin; IFN-γ, IFN-γ production; JAK, Janus kinase; KO, knockout; MAT, maturation; MHC, major

histocompatibility complex; SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator of transcription; TYK2, tyrosine kinase 2.
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(21). It is conceivable that JAK2 is crucial for development
and maturation of early NK cell progenitor stages in the
bone marrow. Alternatively, JAK2-inhibition or deletion may
interfere with other cell types to alter NK cells extrinsically
by changing the cytokine milieu. JAK2 has been reported to
be required for the development of dendritic cells (DCs) (50),
which are potent producers of IL-15 and thus indispensable for
proper NK cell priming (51). DC-mediated NK cell priming is
potentially impaired upon JAK2 inhibition or deletion. Support
for this concept stems from the observation that IL-15 treatment
overcomes the JAK2 inhibitor-mediated increase of tumor
metastasis (49).

JAK3
Together with JAK1, JAK3 transmits signals downstream of the
γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 resulting in
phosphorylation of STAT1, STAT3, STAT4, STAT5 and STAT6
(41, 52). Jak3−/− mice are immunocompromised, display severe
developmental defects in the lymphoid lineage and lack NK, T
and B cells (23, 53). The in vivo administration of Tofacitinib,
which predominantly inhibits JAK3 and to a lesser degree
JAK1 and JAK2, depletes all NK cell subsets in the periphery
of rhesus macaques (54). Likewise, human patients harboring
JAK3mutations suffer from severe combined immunodeficiency
(SCID) lacking NK and T cells (55). A previous study in mice
having a spontaneous Jak3 mutation disclosed the association of
an impaired JAK3 signaling with a differentiation block of NK
and ILC1s at the pre-NKP and ILCP stage (56). In summary,
these findings define a non-redundant role of JAK1 and JAK3 for
NK cell development and the differentiation of EILPs.

Interestingly, quantitative mass spectrometry analysis in
mature NK cells demonstrated a predominance of JAK1 protein
compared to JAK3 (57). It was further proposed that JAK1
dominates JAK3 in the signal transduction of γc cytokines.
While loss of the JAK1 kinase function completely abrogates
downstream signals, loss of the kinase activity of JAK3 in human
cell lines only diminishes STAT5 phosphorylation. It was thus
suggested that JAK3 functions by activating JAK1, but does not
directly induce STAT5 phosphorylation (58). The details of the
molecular interactions in NK cells remain to be determined. It
is currently unclear what effect the conditional deletion of Jak3 in
mature NK cells will have and how it will affect their proliferation
and effector functions.

TYK2
TYK2 associates with the IFN-I (IFNAR1), IL-10Rβ, IL-12Rβ1,
and IL13Rα1 receptors and is thus involved in the signal
transduction of a large number of cytokines including IFN-I,
IL-10, IL-12, IL-23, and IL-27 (46). Despite its broad activity,
Tyk2-deficiency does not preclude survival of mice (59, 60).

NK cells derived from Tyk2−/− mice display impaired IL-
12-mediated signaling resulting in reduced STAT1, STAT3, and
STAT4 activation (61, 62). Although the development of NK
cells in the bone marrow is unaltered, the final maturation
in the periphery is severely impaired as evidenced by fewer
CD27−CD11b+ and KLRG1+ cells in Tyk2-deficient mice.
This translates into impaired IFN-γ production and cytolytic

responses (62) in line with the involvement of STAT4 in the
regulation of IFN-γ and perforin expression, respectively (63, 64).
Mice expressing a kinase-inactive version of TYK2 (Tyk2K923E)
show a milder defect in NK cell maturation and cytotoxicity
compared to Tyk2−/− mice, indicating that TYK2 has kinase-
independent functions (62). Using mice with NKp46+ cell-
specific deletion of Tyk2 revealed that the impact of TYK2
on NK cell maturation and tumor surveillance is cell-extrinsic
and depends on the presence of TYK2 in dendritic cells (65).
Accordingly, the defects in NK cell maturation and cytotoxicity
related to Tyk2-deficiency are reversed upon treatment with
recombinant IL-15/IL-15Rα. However, NK cell-intrinsic TYK2
is required for IL-12-induced IFN-γ production and the defense
against Listeria monocytogenes (65).

Tyk2-deficient mice and patients with autosomal recessive
TYK2 mutations are susceptible to infections. NK cells from
TYK2-deficient patients have an impaired, albeit not completely
abrogated, IL-12-mediated IFN-γ production (60). This may
explain why their susceptibility to viral infections is less severe
when compared to patients harboring a STAT1-deficiency (66).
A thorough analysis of peripheral NK cell maturation in the
reported TYK2-deficient patients is pending.

STAT1
STAT1 is the predominant transcription factor activated by IFNs,
irrespective of the subtype. Whereas, type II IFN (IFN-γ) induces
the homo-dimerization of STAT1, type I IFN (IFN-α/β/ε/κ/ω)
and type III IFN (IFN-λ 1-3) signaling triggers the formation
of the ISGF3 complex consisting of STAT1, STAT2, and IRF9. In
addition, STAT1 transmits signals from IL-6, IL-10, IL-12, IL-15,
IL-21, IL-27, and IL-35 (31, 67–71).

IFNs play a pivotal role in NK cell maturation, as they provide
the necessary signals for IL-15 trans-presentation by DCs (51)
and MHC class I expression (37, 72, 73). Stat1-deficient NK cells
show profound defects in NK cell maturation, cytokine-induced
IFN-γ production, cytolytic capacity and memory formation (69,
74–77). In line, NK cells from Ifnar1-deficient animals display
an immature phenotype (78) as well as defects in basal (79)
and virus-induced cytotoxicity (80). The maturation defect seen
in complete Ifnar1-knockout mice was not recapitulated upon
NKp46+ cell-specific Ifnar1 gene deletion (78), suggesting that
NK cell-extrinsic factors, such as the presentation of MHC class
I and/or IFN-mediated trans-presentation of IL-15, play a crucial
role in proper NK cell licensing and maturation. Accordingly,
the transfer of Stat1-deficient bone marrow into wild-type mice
provided sufficient signals for proper NK cell maturation in
vivo (76).

In addition to IFNs, the STAT1/3 activating (70) cytokine IL-
21 is known to drive the maturation of mouse and human NK
cells (81, 82). Recombinant IL-21 treatment not only increases
CD8+ T cell functions (83) but also the cytotoxicity and cytokine
production of NK cells by inducing the expression of perforin and
IFN-γ, respectively (82, 84). However, mice lacking the IL-21R
do not display any defect in NK cell numbers or maturation (85)
arguing against a profound effect of IL-21 on NK cell maturation
under homeostatic conditions in vivo.

Frontiers in Immunology | www.frontiersin.org 6 November 2019 | Volume 10 | Article 259068

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Gotthardt et al. JAK/STAT Signaling in NK Cells

Analogous to IL-21, IL-27 signals mainly via STAT1 and
STAT3 (47, 86). Whereas, IL-27 treatment alone does not have
a major impact on NK cells, co-stimulation with IL-27 and IL-
2, IL-12 or IL-18 leads to enhanced NK cell activation, cytokine
production and cytotoxicity (47, 86–88). Accordingly, loss of IL-
27R inmice leads to reducedNK cell-mediated IFN-γ production
and T-BET expression after influenza virus infection (89). Il27ra-
deficientmice are characterized by an unusual maturation profile,
represented by fewer mature NK cells in the bone marrow,
while more mature NK cells are found in the spleen (89). This
phenotype does not reflect the situation in Stat1-deficient mice
and may suggest an altered dissemination of NK cells rather than
a maturation defect.

However, Stat1-Y701F knock-in mice lacking the tyrosine
residue essential for STAT1 translocation and transcriptional
activity do mirror the impaired maturation phenotype of NK
cells seen in Stat1−/− mice (90). Although the function of STAT1
was considered to depend on the tyrosine phosphorylation, Stat1-
Y701F expressing NK cells are more cytotoxic against tumor
cells than Stat1−/− NK cells. A novel non-canonical function
of STAT1 at the immunological synapse of NK cells regulating
tumor surveillance and cytotoxicity may account for that
effect (90). Whereas STAT1-Y701 phosphorylation is triggered
by cytokine stimulation, non-stimulated primary mouse NK
cells display a constitutive CDK8-mediated phosphorylation of
STAT1-S727 (69). The introduction of a point-mutation (Stat1-
S727A) that prevents the serine phosphorylation event results
in NK cells that produce less IFN-γ upon stimulation, and
have a mild defect in KLRG1 and NKG2A/C/E expression.
Nevertheless, these Stat1-S727A NK cells show enhanced
cytotoxicity against tumors in vitro and in vivo, which
correlates with increased perforin and granzyme B levels (69),
once more highlighting the existence of non-canonical STAT
signaling (32).

Like Tyk2-deficient mice, Stat1-deficient mice are highly
susceptible to bacterial and viral infections (80, 91–93). Biallelic
loss-of-expression or loss-of-function (LOF) STAT1-deficiency in
humans is detrimental, with most patients succumbing to lethal
infections with mycobacteria or herpes simplex virus 1 (HSV-
1) encephalitis before the age of two years (66), which is
accompanied by a profound effect on NK cell cytotoxicity
(94). Unexpectedly, STAT1 gain-of-function (GOF)mutations are
likewise associated with increased susceptibility to infectious
diseases, such as chronic mucocutaneous candidiasis, bacterial
and viral infections, autoimmune diseases and even cancer (95).
STAT1 GOF patients have fewer and highly immature CD56dim

NK cells in the periphery showing reduced cytotoxicity, IFN-
γ production and cytokine-induced proliferation (96, 97). This
defect was partially rescued by treatment with the JAK1/2
inhibitor ruxolitinib (96) and improved the patients’ clinical
picture (98). The mechanism of how STAT1 GOF mutations
result in hyporesponsive NK cells is not fully understood, but
it was paralleled by decreased activation of STAT5 (96), which
is a master regulator for NK cell functions. These observations
indicate that STAT1 signaling needs to be tightly controlled and
neither reduced nor excessive pathway activation is beneficial for
NK cell maturation and function.

STAT2
STAT2 together with STAT1 and IRF9 are activated in response
to IFN-I and IFN-III. This turns STAT2 into a crucial mediator
of antiviral defense. Depending on the viral challenge, Stat2−/−

mice are more (99, 100) or less (101, 102) susceptible to infection
compared to Stat1−/− mice. In the course of lymphocytic
choriomeningitis virus (LCMV) infections, STAT1 and STAT2
are both required for optimal viral control, but STAT2 plays a
subordinate role compared to STAT1: although both Stat1- and
Stat2-deficient NK cells produce increased amounts of IFN-γ
early after LCMV infection, this exclusively drives bodyweight
loss in the absence of STAT1, but not STAT2 (103). Stat2−/− mice
are highly susceptible to MCMV infection and succumb within
the first week after infection (100). In line with a crucial role
of IFN-I signaling in NK cell expansion and memory formation
in the context of MCMV, NK cells from Stat1-, Stat2-, and Irf9-
deficient mice are defective in their ability to expand (74, 104).
As shown in Stat1−/− and Ifnar1−/− mice, also Stat2−/− NK
cells have a defect in NK cell maturation, which could be rescued
in bone marrow chimeras (104), again suggesting an NK cell-
extrinsic role of IFN-I in NK cell maturation.

STAT2-deficient human patients present a higher incidence
of distinct viral infections with astounding variation ranging
from asymptomatic adult carriers of the mutation to infants
succumbing to viral illness. In particular, fatal prolonged
febrile encephalitic illness following measles/mumps/rubella
vaccination has been reported in six vaccinated children with
a STAT2 deficiency (105–107). Unlike STAT1, STAT2-mediated
signaling seems to be dispensable for host defenses against
most viral childhood diseases such as respiratory syncytial virus
bronchiolitis or HSV-1 as well as infections with intracellular
bacteria. This can be partially explained by an unaltered response
to IFN-II in STAT2-deficient patients, and the observation that
depending on the bacterial infection IFN-I can play adverse roles
(108, 109).

Besides its role in antiviral responses, IFN-I has been
implicated in anti-tumor immunity. While the contribution
of STAT2 for T cell-mediated tumor surveillance has been
unequivocally documented (110), the role of STAT2 in NK cell-
mediated tumor surveillance is still enigmatic.

STAT3
Cytokines such as IL-2, IL-10, IL-12, IL-15, IL-21, IL-27,
and IFN-I induce STAT3-Y705 phosphorylation in NK cells
(111, 112). While most of these cytokines positively regulate
NK cell maturation and/or activation, IL-10 is classified as
immunosuppressive cytokine (113).

Several studies reported constitutive STAT3 phosphorylation
of tumor-infiltrating immune cells including NK cells (114,
115). STAT3 phosphorylation is considered to be driven by
inflammatory and immunosuppressive cytokines and growth
factors produced by both tumor and tumor-infiltrating cells
including IL-6, IL-10, or VEGF-A. STAT3 activation in the tumor
stroma has been associated with an impaired tumor immune
surveillance of both NK and CD8+ T cells (116, 117). High IL-
10 levels in the liver also dampen hepatic NK cell responses
and restrain the expression of Ly49 receptors (118). In light of
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recent advances in the discrimination of NK cells and ILC1s,
these observations could potentially indicate a specific role of IL-
10 in ILC1s, which lack most of the Ly49 receptors (119). This
suppressive role is of particular importance in the liver, where
IL-10 ensures that liver NK cells/ILC1s remain immune-tolerant,
but is undesirable in the context of tumor surveillance (113, 115).
Under certain conditions NK cells themselves (120) and the
recently described regulatory ILCs have been reported to produce
IL-10, which inhibits cytokine-induced IFN-γ production of
ILC1s (121).

Studies in mice with constitutive or NKp46+ cell-specific
Stat3-deficiency indeed show that STAT3 suppresses NK cell-
mediated tumor surveillance in melanoma and leukemia models
(111, 114). Loss of Stat3 does not alter classical NK cell
maturation but is paralleled by increased expression of the
activating receptor and maturation marker DNAM1 as well
as increased expression of STAT5 and its downstream targets
perforin and granzyme B (111). It is thus attractive to speculate
that STAT3 represses STAT5-mediated signaling in wildtype NK
cells. As described below, STAT5 represents a master regulator
of NK cell function. The fact that IL-15 stimulation induces
both STAT3 and STAT5 activation in NK cells (111, 113)
endorses the hypothesis that STAT3 is crucial to control IL-
15/STAT5-mediated NK-cell cytotoxicity to prevent detrimental
hyperactivity. This concept warrants testing of a combined
treatment with IL-15 and anti-STAT3 inhibitors in the context
of anti-cancer immunotherapy.

Alternatively, STAT3 acts downstream of the cytokine IL-
10 (111), which has been shown to transcriptionally induce the
tumor promoting factor VEGF-A in NK cells (122). It is thus
attractive to speculate that STAT3 activation inNK cells promotes
tumor progression by dampening their cytolytic activity and
driving tumor angiogenesis.

Besides suppressing cytotoxicity, STAT3 regulates the
expression of the activating receptor NKG2D. IL-10 and IL-21
treatment induces NKG2D expression in a STAT3-dependent
manner in human and mouse NK cells (71, 123). In line, human
NK cells derived from hyper-IgE syndrome patients carrying
STAT3 LOF mutations show a pronounced decrease of NKG2D
expression (71).

STAT3 GOF mutations in NK cells can be found in patients
with chronic lymphoproliferative disorders of NK cells (CLPD-
NKs) (124) as well as aggressive NK cell leukemia (125) and
extranodal NK/T-cell lymphoma (NKTCL) (126, 127). The
identified STAT3mutations enhance the levels of phosphorylated
STAT3 protein and provide a growth advantage to the affected
cells. These findings support the concept that STAT3 has an
oncogenic potential in NK cells and highlight the importance of
tight controls and negative feedback regulators.

STAT4
In contrast to other immune cells such as CD8+ T cells, IL-
2 stimulation induces JAK2 and STAT4 activation in NK cells
and enhances IL-12 signaling by upregulating the expression
of the IL-12R (128, 129). IL-12 is the main driver of STAT4
activation and crucial for IFN-γ production in NK cells and
ILC1s (129–131). Under steady-state conditions, Stat4- as well

as Il12r-deficient mice harbor an unaltered NK cell repertoire
in the periphery. Due to its rather restricted action downstream
of IL-12, Stat4-deficiency in mice manifests in reduced IL-12-
induced NK cell proliferation, IFN-γ production and cytotoxicity
(132, 133). This can be explained by the fact that STAT4 regulates
the induction of T-BET, a transcription factor important for
NK and ILC1s that induces the transcription of important key
players of the cytotoxic machinery, such as IFN-γ, granzyme B
and perforin (131, 134). STAT4 and T-BET are also necessary
for the generation and maintenance of MCMV-specific memory
NK cells (135, 136). In line with the lessons learnt from mice, a
heterozygous missense mutation in STAT4 leading to a defect in
IL-12-dependent IFN-γ immunity was identified in two patients
suffering from acute chronic fungal infections (137).

IL-12 also has a unique and detrimental role in adipose
tissue, as diet-induced obesity is associated with IL-12 production
and the proliferation and subsequent accumulation of adipose-
resident ILC1 and NK cells. IL-12/STAT4 signaling is required
for the increased proliferation and IFN-γ production of all group
1 ILC subsets in the adipose tissue driving M1 macrophage
polarization and obesity-associated insulin resistance (138).

Apart from IL-12, IFN-I has been reported to induce
phosphorylation and dimerization of STAT4 amongst all other
STAT proteins (139). NK cells have particularly high basal STAT4
levels pre-bound to IFNAR1 (103). During the early phase of
viral infections, STAT4 becomes activated initiating a fast IFN-
γ response followed by STAT1 activation, which replaces STAT4
at the IFNAR receptor decreasing the ability to produce IFN-γ
(103). These data exemplify how one cytokine activates several
STAT molecules enabling a tight regulation of cellular responses.

STAT5A and STAT5B
Of all STAT proteins, STAT5 is the major regulator of NK cell
development, maturation, survival and function and is activated
by cytokines such as IL-2, IL-7 and IL-15. Compared to IL-15, IL-
2, and IL-7 play a minor role in the development and survival
of NK cells and ILC1s (140, 141). STAT5 is also implicated
in the development, survival and memory formation of CD8+

T cells, which is regulated by IL-2, IL-7, and IL-15 signaling
(142, 143). IL-2 plays a crucial role in activating CD8+ T and
NK cells against target cells in vivo (144, 145) and it is therefore
commonly added to in vitro culture systems. Although mouse
NKPs express high levels of CD127 (IL-7Rα) (146), NK cell
development and function are unaltered in the absence of IL-7
signaling in mice (147). The only exception are thymic NK cells,
whose development depends on IL-7 and the transcription factor
GATA3 (148). By contrast, in humans IL-7 controls the survival
of immature CD56bright NK cells (149).

Knock-out mice lacking IL-15 or its receptor subunits are
devoid of NK cells proving the indispensable role of IL-15 for
NK cell development (141, 150, 151). IL-15 trans-presentation by
DCs is crucial to prime NK cell maturation and function (51).
As STAT5 is a critical transcription factor downstream of IL-15,
impaired STAT5 signaling impacts strongly on NK cell viability
and function (152, 153).

In general, STAT5 is an umbrella term for two distinct
transcription factors: STAT5A and STAT5B sharing 96%
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sequence homology. Despite largely redundant functions, several
non-redundant and tissue-specific roles have been described
(154–156). Stat5a/b-deficiency in mice is perinatally lethal due
to anemia and hematopoietic failure (38). Early on, STAT5 has
been described to be essential for NK cell development, as the first
STAT5 knockout mice that express an N-terminally truncated
version of Stat5a/b are viable but devoid of peripheral NK cells
(153). Single knockout mice for Stat5a or Stat5b verified the
impact of STAT5 for NK cell development, maturation and
cytoloytic capacity also indicating non-redundant functions of
STAT5A and STAT5B. STAT5B is the dominant isoform for
NK cells as its deletion has a significantly larger impact than
deletion of STAT5A (152, 157). This is explained by a higher
abundance of STAT5B over STAT5A transcripts in NK cells
(157). Mice expressing only one allele of either Stat5a or Stat5b
(Stat5a+/−Stat5b−/− and Stat5a−/−Stat5b+/−) have drastically
diminished numbers of NK and ILC1 progenitors, splenic NK
cells as well as intestinal and liver NK cells (157). Liver-resident
ILC1s and bone marrow NK cells are less sensitive to reduced
STAT5 expression levels. STAT5 was also verified as an upstream
regulator of the transcription factor T-BET (122, 158) and a
recent study showed that both transcription factors co-localize
throughout the genome (157).

The cell-intrinsic role of STAT5 in NK cells was studied using
mice where Stat5a/b deletion is restricted to NKp46+ cells. This
results in a severe reduction of peripheral NK cells (22) as NK cell
survival relies on the expression of anti-apoptotic STAT5 target
genes such as Mcl1 or Bcl2 (122, 159). The residual NK cells
found in the bone marrow of Stat5fl/flNcr1iCreTg mice harbor
an immature phenotype and a major developmental block at
the NKP stage (22). Enforced expression of the anti-apoptotic
factor Bcl-2 rescues survival of Stat5a/b-deficient NK cells, but
does not allow proliferation, maturation and reconstitution of
effector functions (122). Apart from the central role of STAT5
driving the expression of transcription factors pivotal for NK
cell development (ID2, EOMES and T-BET) and regulating the
expression of crucial effector molecules (perforin, granzymes and
IFN-γ), STAT5 has been reported to suppress the expression of
the pro-angiogenic factor VEGF-A in NK cells (122). Further
research is necessary to verify if STAT5 directly acts as a
transcriptional suppressor or competes with the binding of other
activating transcription factors.

Decidual NK cell-derived VEGF-A has a positive impact on
neo-angiogenesis and placenta development during pregnancy
(160–162). In contrast, the expression of VEGF-A in tumor-
infiltrating NK cells promotes tumor formation (122). VEGF-A-
secreting tumor-associated NK cells have also been reported in
patients and are associated with poor disease outcome (163–165).

In line with observations in mice, patients with a STAT5B
LOF mutation harbor significantly reduced NK cell numbers
(166–168). STAT5 GOF mutations are found in malignancies of
innate and innate-like lymphoid cells (125, 127, 169) and drive
tumorigenesis in mouse NKT cells (170).

STATs in general, but STAT5 proteins in particular, are known
to form higher order tetramers. A recent study highlighted the
importance of STAT5 dimers for NK cell development, while the
formation of STAT5 tetramers is a prerequisite for proper NK cell
maturation and survival. The authors speculate that interfering

with STAT5 tetramer formation could be used therapeutically to
restrict the growth of NK cell leukemia and lymphomas (171).

To summarize, STAT5 is a master regulator of NK
cells ensuring their development and survival and regulating
maturation, proliferation, cytotoxicity and their precarious
production of VEGF-A.

STAT6
STAT6 is activated by IL-4 and IL-13 and is involved in Th2
polarization and the development of allergic inflammation (172).
Allergies and IL-4 signaling have been suggested to protect from
cancer development. Indeed, IL-4 overexpression in combination
with phthalic anhydride-induced allergy induction in mice
enhances NK cell activity and reduces tumor burden (173). The
effect of IL-4 on NK cells is highly controversial, as it was
shown that IL-4 treatment of purified NK cells diminishes their
cytotoxic capacity (174), while it enhances NK cell cytotoxicity
and IFN-γ production when applied in vivo (175). IL-4 synergizes
with IL-12 and/or IL-2 to induce IFN-γ production, which
was shown to be partially dependent on STAT6 (176). In vitro
stimulation of mouse NK cells with a mixture of phorbol 12-
myristate 13-acetate (PMA), ionomycin, IL-2, IL-4, and anti-
IFN-γ mAb induces IL-5 and IL-13 production in a STAT6-
dependent manner (177). Also humanNK cells possess the ability
to produce IL-5 and IL-13 upon IL-4 stimulation (178, 179). In

various allergic diseases, such as asthma and allergic rhinitis, NK
cell-derived Th2 cytokine production contributes to eosinophil
infiltration and thereby promotes allergic inflammation (180,
181). Although the involvement of STAT6 in this signaling is
highly probable, it still awaits formal proof.

It was previously shown that loss of STAT6 in mice does not
impact on NK cell development or maturation (177). However,
Stat6-deficiency is associated with higher cytotoxic activity of NK
cells and increased resistance to ectromelia virus infection (182).
The seeming opposing results showing enhanced cytotoxicity
of IL-4/STAT6-activated as well as STAT6-deficient NK cells
certainly call for a more detailed analysis of the role of STAT6
in NK cells in the context of anti-tumor and anti-viral immunity.

SOCS PROTEINS

The family of suppressor of cytokine signaling (SOCS) proteins
has eight members including SOCS1-7 and CIS which represent
important negative regulators of the JAK/STAT signaling
pathway (183, 184). SOCS proteins are characterized by a
central SH2 domain and an extended SH2 sub-domain, a
highly conserved C-terminal SOCS box and a variable N-
terminal region. SOCS proteins exert their eponymous function
by three means: (i) Via their SH2 domain, SOCS proteins
bind to phosphotyrosine residues on cytokine receptors thereby
competing with STAT binding and activation. (ii) Via the SOCS
box they recruit an E3 ubiquitin ligase complex that leads
to proteasomal degradation of signaling molecules including
cytokine receptors and JAK kinases. (iii) The N-terminal domain
of SOCS1 and SOCS3 contains a kinase inhibitory region serving
as pseudo-substrate for JAKs consequently blocking their activity
(183, 184).
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Immunomodulatory effects of SOCS proteins on NK cells
have been reported and suggest them as attractive candidates
for immunotherapies (185). SOCS1, 2, 3 and CIS are rapidly
induced upon cytokine (57, 186) or GH (187) stimulation. In
contrast, little is known about the residual family members SOCS
4-7 that are constitutively expressed in unstimulated cells (185).
SOCS4 and SOCS5 are crucial regulators of anti-viral immunity
in the context of influenza infection (188, 189). SOCS6 negatively
regulates JAK/STAT3 signaling and is epigenetically silenced in
NK cell lymphomas (190). Socs7−/− mice suffer from a severe
cutaneous disease due to hyperactive mast cells and the increased
production of pro-inflammatory cytokines (191).

CIS
The cytokine induced SH2-containing protein (CIS, Cish) is
induced by IL-2 and IL-15 and provides a negative feedback
loop to inhibit JAK/STAT5-mediated signaling in NK cells
(57). CIS interacts with JAK1 to target it for proteasomal
degradation and thereby abrogates IL-15-induced signaling. In
line with the crucial function of the IL-15/STAT5 axis for NK cell
biology, hyperactive IL-15 signaling in Cish−/− mice translates
to enhanced NK cell proliferation and cytotoxic function. This
ultimately leads to resistance toward experimental metastasis (57)
and chemically-induced sarcoma (192).Cish−/− mice react to IL-
2 treatment with a further decrease of tumor burden in models
that are usually unaffected by IL-2 treatment. Additive effects
were also observed when CIS-deficiency was combined with
targeted immunotherapies such as BRAF and MEK inhibitors,
immune checkpoint blockade antibodies, or IFN-I treatment
(192). These data suggest that CIS represents a promising
target in immunotherapy especially in combination with other
immunomodulatory agents (185).

SOCS1
SOCS1 negatively regulates signaling of IFNs and IL-12 (193, 194)
and plays an important role in DC and T cells suppressing
antigen-presentation and antitumor immunity (195). Socs1−/−

mice die shortly after birth due to severe inflammation and
uncontrolled IFN-γ signaling (196). Socs1−/−Ifng−/− double-
knockout mice survive until adulthood (196) and IL-12-treated
NK cells isolated from these mice display an enhanced capacity
to lyse YAC-1 target cells (197). However, Socs1−/−Ifng−/− mice
seem to have slightly reduced NK cell numbers in the periphery
and hampered NK cell proliferation in response to IL-15 (57). A
detailed analysis of the role of SOCS1 in NK cell development,
maturation and function is pending.

SOCS2
SOCS2 is closely related to CIS and induced by STAT5-activating
cytokines, such as GH and IL-15 in mouse and human NK
cells (57, 186, 187). SOCS2 represses NK cell development,
as Socs2−/− mice have increased NK cell numbers in bone
marrow and spleen while T-, B- and myeloid cell numbers are
unaltered (48). The increased NK cell numbers translate into
enhanced tumor surveillance. In contrast to the situation in
Cish-deficientmice and against the expectations, Socs2-deficiency
does not enhance the cytotoxicity or IFN-γ production of NK

cells. Intriguingly, the absence of SOCS2 boosts IL-15-induced
JAK2/STAT5 activation in NK cells (48), which has commonly
been believed to signal via JAK1 and JAK3.

In contrast to murine NK cells, knockdown of SOCS2 has no
impact on the IL-15-induced in vitro differentiation of primary
human NK cell precursors, but severely diminishes the cytotoxic
function of primary NK cells and the human NK cell line NK-92.
The reduced cytotoxicity was assigned to impaired degradation
and accumulation of the focal adhesion kinase PYK2 (198), which
is involved in the formation of the NK/target cell synapse upon
killing (199). Although it is clear that SOCS2 interferes with NK
cell functions, the distinct roles of SOCS2 in human and mouse
NK cells remain enigmatic.

SOCS3
Socs3−/− mice are embryonically lethal due to placental
defects (200) and impaired fetal liver hematopoiesis (201).
SOCS3 counteracts inflammation by inhibiting a variety of
pro-inflammatory signaling pathways (202). Most prominently,
SOCS3 inhibits gp130 receptor/STAT3 signaling by direct
inhibition and/or ubiquitin-mediated degradation of the
receptors or their associated JAK kinases (downstream of
IL-6, IL-11, IL-27, OSM and LIF). SOCS3 was also shown to
negatively regulate IL-12-induced STAT4 activation by blocking
the IL-12Rβ2 subunit via its SH2 domain (203).

In mouse NK cells, SOCS3 is induced upon IL-15 signaling
(57) and is a direct target gene of the helix-loop-helix protein
ID2 (204). Id2 deletion in NKp46+ cells leads to a complete
absence of peripheral NK cells due to impaired IL-15 signaling.
NK cell numbers are rescued by additionally deleting Socs3 (204).
However, loss of Socs3 alone in the presence of ID2 does not
alter the development, maturation or IL-15-induced proliferation
of mouse NK cells (57, 204). CRISPR/Cas9-mediated disruption
of SOCS3 in human NK cells promotes proliferation and
cytotoxicity (205), thereby suggesting that SOCS3may be a useful
target for NK cell-based immunotherapy. However, taking into
account the detrimental effect of Socs3-deficiency in mice, any
envisaged inhibitor treatment will have to be applied specifically
on NK cells to avoid generic adverse side-effects.

CONCLUDING REMARKS

The JAK/STAT pathway is evolutionary highly conserved and
transmits extracellular signals to the nucleus modulating target
gene transcription. Members of this pathway are frequently
altered in cancer including malignancies of innate lymphocytes,
making them an attractive target for drug development. Several
JAK inhibitors are already used for the treatment of rheumatoid
arthritis, psoriasis and myelofibrosis, and entered phase 2 and 3
clinical trials for the treatment of other inflammatory diseases
and cancer. While the first clinically used inhibitors such as
Ruxolitinib or Tofacitinib, proved to target multiple JAK kinases,
more specific compounds found their way into clinical trials
(206, 207).

We and others have previously shown that treatment with
the JAK1/2 inhibitor Ruxolitinib substantially impairs NK cell
functions leading to increased susceptibility to viral infections
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and tumor metastasis (49, 208). In line, in a mouse B
cell lymphoma model Ruxolitinib treatment promotes tumor
progression by enhancing NK cell-derived VEGF-A expression
(122). On the other hand, Ruxolitinib treatment significantly
reduces disease burden in the context of CD56+ T-cell large
granular lymphocytic (T-LGL) leukemia (170) and restores
impaired NK cell functions in patients harboring STAT1 GOF
mutations (96).

JAK inhibitor treatment shall be carefully evaluated to identify
the complex interplay and potential opposing effects on target
and immune cells. While in the context of inflammatory and
immune-related diseases JAK inhibitor-induced dampening of
NK cell functions may be advantageous, NK cell malfunction in
metastatic cancers should be precluded. Besides blocking JAK
kinases, considerable effort is undertaken to develop specific
STAT inhibitors. This could be of particular interest for the field
of immunotherapy, as treatment with STAT3 or STAT6 inhibitors
may enhance NK cell cytotoxicity. Finding ways to efficiently
improve NK cell functions will promote the use of adoptively
transferred NK cells in everyday clinics.

Targeting the negative regulators of the JAK/STAT pathway
also holds great promise as novel immunotherapeutic strategy.
In particular, CIS was shown to be a checkpoint in NK cell-
mediated tumor control making it an attractive candidate for

anti-tumor therapy. The expanding knowledge of immune
checkpoints and potential drug candidates opens a new avenue
for immunotherapy, yet the next challenge is to develop specific
and stable compounds suitable for clinical use.
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Recent studies have demonstrated extraordinary diversity in peripheral blood human

natural killer (NK) cells and have suggested environmental control of receptor expression

patterns on distinct subsets of NK cells. However, tissue localization may influence

NK cell differentiation to an even higher extent and less is known about the receptor

repertoire of human tissue-resident NK cells. Advances in single-cell technologies have

allowed higher resolution studies of these cells. Here, the power of high-dimensional

flow cytometry was harnessed to unravel the complexity of NK cell repertoire diversity

in liver since recent studies had indicated high heterogeneity within liver NK cells.

A 29-color flow cytometry panel allowing simultaneous measurement of surface

tissue-residency markers, activating and inhibitory receptors, differentiation markers,

chemokine receptors, and transcription factors was established. This panel was applied

to lymphocytes across three tissues (liver, peripheral blood, and tonsil) with different

distribution of distinct NK cell subsets. Dimensionality reduction of this data ordered

events according to their lineage, rather than tissue of origin. Notably, narrowing the

scope of the analysis to the NK cell lineage in liver and peripheral blood separated subsets

according to tissue, enabling phenotypic characterization of NK cell subpopulations in

individual tissues. Such dimensionality reduction, coupled with a clustering algorithm,

identified CD49e as the preferred marker for future studies of liver-resident NK cell

subsets. We present a robust approach for diversity profiling of tissue-resident NK

cells that can be applied in various homeostatic and pathological conditions such as

reproduction, infection, and cancer.

Keywords: natural killer cells, liver immunology, tissue-resident cells, high-dimensional, flow cytometry

INTRODUCTION

The last five decades have seen extraordinary developments in the understanding of natural killer
(NK) cell biology. NK cells are innate lymphocytes originally discovered as cells capable of killing
tumor cells and later virally-infected cells (1, 2). One of the major pathways of cell death mediated
by NK cells involves secretion of cytolytic molecules like perforin and granzymes, which makes
NK cells functionally related to their adaptive counterpart, cytotoxic T lymphocytes (CTLs) (3, 4).
However, the mechanisms which trigger the killing of the target cells are fundamentally different
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between these two lineages. NK cells use an array of germline-
encoded receptors to carry out their main tasks associated with
the recognition of non-self: tumor surveillance and clearance
of viral infections (5, 6). Engagement of distinct activating
and inhibitory receptors expressed on the surface of NK cells
by their respective ligands determines the functional response.
Importantly, genetic and environmental determinants shape the
overall diversity of these receptors (7).

Since their discovery, it has become clear that NK cells are
found not only in circulation, but also in lymphoid organs as
well as non-lymphoid organs like uterus and liver (8). The liver is
instrumental in regulating systemic homeostasis, and represents
an organ with a dynamically changing microenvironment (9).
Notably, it is also highly enriched in immune cells and has
a distinct immune composition: NK cells are among the
most abundant, representing 30–40% of human intrahepatic
lymphocytes compared to the 10–15% typically observed in
peripheral blood (10). The microenvironment of the liver has
a complex anatomical organization (11) and is essential in
maintaining tolerance toward antigens derived from the gut,
including the diverse gut microbiome, via the gut-liver axis (12).
Unsurprisingly, a subset of liver NK cells with antigen-specific
memory was described in the mouse (13). These cells express
CXCR6 which, although not required for antigen recognition,
reliably labels this subset of liver NK cells in mouse, but also a
subset residing in human liver (14). Similarly, mouse parabiosis
studies demonstrating existence of liver-resident CD49a+ NK
cells (15) led to the first characterization of a human counterpart
(16). Other studies have shown that liver EomeshiT-betlo NK
cells are absent from blood but also that they do not overlap
entirely with previously identified CD49a+ subset (14, 16–18).
Yet another report, using cytometry by time-of-flight (CyTOF)
followed by flow cytometry validation, identified for the first time
CD49e− NK cells as the human liver-resident NK cell population
(19). Altogether, this suggests an underlying heterogeneity within
liver NK cell subsets.

Given the limited extent to which tissue residency in human
liver samples can be investigated compared to mouse models,
and given the clinical implications for immune responses such
as tolerance and disease, detailed phenotypic characterization of
human liver NK cells is essential. One of the main challenges
in reaching a consensus when comparing literature on liver NK
cells comes from a limited number of markers one could analyze
by conventional flow cytometry. To overcome this, we here
designed a 29-color tissue NK cell-focused panel, demonstrated
its potential on liver, peripheral blood and secondary lymphoid
tissue, and performed deep profiling of liver NK cell diversity in
comparison to peripheral blood NK cells.

MATERIALS AND METHODS

Human Samples
Blood samples used in this study were peripheral blood
mononuclear cells (PBMCs) derived from buffy coats from blood
donations of healthy human volunteers from the local hospital
blood bank. Liver samples were obtained from human adult liver
tissue during resection surgery for primary or secondary liver

malignancies. Human pediatric and adult uninfected tonsils were
obtained from patients undergoing tonsillectomy due to sleep-
disordered breathing or obstructive sleep apnea syndrome. All
samples were from Karolinska University Hospital, Huddinge,
Sweden. None of the samples were matched. All blood and tissue
donors gave oral and written informed consent conforming to
the provisions of the Declaration of Helsinki. The regional Ethics
Committee in Stockholm, Sweden, approved all the protocols
involving collection of blood, liver, and tonsil samples.

Isolation of Peripheral Blood Mononuclear
Cells
Peripheral blood mononuclear cells (PBMCs) were isolated from
buffy coats using density gradient centrifugation. The blood
was diluted with Phosphate Buffered Saline (PBS, Sigma) and
layered onto the Ficoll-Hypaquemedia solution (GEHealthcare).
Samples were centrifuged at room temperature, with brakes
turned off, for 20min at 2,000 revolutions per minute (rpm).
The mononuclear cell layer was carefully removed from the
interface and washed twice with PBS. Cells were frozen in
CoolCell containers (Corning) in heat-inactivated Fetal Bovine
Serum (FBS; Sigma) supplemented with 10% dimethyl sulfoxide
(DMSO; Sigma) and stored in liquid nitrogen until use.

Tissue Dissociation and Cell Isolation
Mononuclear liver cells were isolated from the tumor non-
affected area of the liver tissue as previously described (20). In
brief, the tissue underwent a series of flushing steps to remove
excess sinusoidal blood, followed by a three-step perfusion
protocol in which the final step involved enzymatic processing
(with collagenase XI, Sigma). Supernatant obtained through
these steps was washed and layered onto the Ficoll-Hypaque
media solution for the density gradient centrifugation to isolate
leukocytes in the same way as PBMCs. Whole tonsils were
mechanically processed by cutting and passing through a 100µm
strainer, followed by a 40µm straining step, and finally a density
gradient centrifugation in the same way as liver and blood
samples. Post-isolation, cells from liver and tonsil were frozen
in FBS supplemented with 10% DMSO and stored in liquid
nitrogen, similar to PBMC.

Flow Cytometry
Vials with cryopreserved mononuclear cell suspensions
isolated from peripheral blood, liver, and tonsil were thawed
rapidly in a water bath at 37◦C, and transferred carefully to
complete cell medium (RPMI with 10% FBS, L-glutamine,
Penicillin/Streptomycin). After two washes, cells were
resuspended in FACS buffer (PBS with 2mM EDTA and
2% FBS), filtered through a 40µm strainer (BD Falcon), counted
and stained immediately in 96-well V-bottom plates. All staining
steps were performed at room temperature in the dark and all
washing steps were performed by centrifuging plates for 2min
at 1,800 rpm at room temperature, unless otherwise stated. Cells
were incubated with antibodies against surface antigens diluted
accordingly in 50 µl FACS buffer for 20min (see Table 1 for
dilution details) followed by two washes with 150–200 µl FACS
buffer. In the second staining step cells were stained with the
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LIVE/DEAD Fixable Aqua Dead Cell Stain (Thermo Fisher) and
fluorescently conjugated streptavidin for 20min. This was again
followed by two washes. Next, samples were fixed for 45min
in freshly prepared fixation/permeabilization working solution
from eBioscience Foxp3/Transcription Factor Staining Buffer set
(Thermo Fisher). Fixing solution was removed by centrifugation
and washing once in 1× permeabilization buffer from the same
fix/perm kit. Finally, cells were stained with antibodies against
intracellular antigens diluted in 1× permeabilization buffer from
the same set for 30min. Samples were then washed twice in
1× permeabilization buffer and resuspended in 200 µl FACS
buffer. To remove potential clumps in the cell suspension, the
cells were transferred into 5ml polystyrene round-bottom tubes
(BD Falcon) through the 35µm strainer cap. The cells were
acquired on a FACSymphony A5 instrument (BD Biosciences).
Importantly, in all three steps where fluorescently conjugated
antibodies were added, BD Horizon Brilliant Stain Buffer Plus
(BD Biosciences) was supplemented at 1:5 to minimize staining
artifacts commonly observed when several BD Horizon Brilliant
dyes are used. Single-stained UltraComp eBeads Compensation
Beads (Thermo Fisher) were used according to manufacturer’s
instructions to prepare compensation controls by incubating
with fluorescently conjugated antibodies used in experiments.
The FACSymphony A5 flow cytometer used in this study
was equipped with the following lasers: UV (355 nm), violet
(405 nm), blue (488 nm), yellow/green (561 nm), and red laser
(637 nm). The yellow/green, blue, and violet lasers were tuned
at 200 mW, the red laser was tuned at 140 mW, and the UV
laser was tuned at 60 mW. An instrument cleaning program
and FACSDiva Cytometer Setup and Tracking (CST) software
were run daily with the CST beads, to ensure optimal cytometer
performance. PMT voltages were automatically updated by
applying previously created “application setting” for this study.
This allowed for a rigorous and reproducible approach to panel
optimization. Further information on individual filters and
cytometer configuration, can be found in Table 1, in addition to
details of antibodies used in this study.

Flow Cytometry Analysis
After acquisition on FACSymphony A5 flow cytometer, FCS3.0
files were exported from the BD FACSDiva software and
imported into FlowJo v.10.6.0 (BD Biosciences). Automated
compensation was calculated by FACSDiva software using single-
stained compensation beads. This 29-color compensation matrix
was analyzed in detail in FlowJo through investigating N-
by-N view feature as well as the pairwise expression of all
proteins stained for in this study. Fluorescence minus one (FMO)
experiments were run prior to this study, which also aided
the optimization of the compensation matrix. Based on this,
the compensation matrix was adjusted where necessary due
to over- or under-compensation by the automated algorithm.
After the compensation matrix was adjusted, samples were
concatenated and analyzed using FlowJo plugins (https://flowjo.
com/exchange/#/), namely: Downsample (v.3.0.0), UMAP (v2.2),
and PhenoGraph (v.0.2.1). UMAP was run using the default
settings (Euclidean distance function, nearest neighbors: 15
and minimum distance: 0.5). PhenoGraph was run using the

default number of nearest neighbors (K = 30). Parameters for
running UMAP and PhenoGraph were selected depending on
the experimental question and are specified in the accompanying
text and figure legends. Graphs were made in Prism 8, v8.2.0
(GraphPad Software Inc.). Figure 1A was prepared in BioRender
and all figures were put together in Illustrator CC 2019 (Adobe).

RESULTS

Design of a 29-Color Human NK
Cell-Focused Flow Cytometry Panel
NK cells in all tissues are classified as CD56highCD16− and
CD56lowCD16+ NK cells, commonly referred to as CD56bright

and CD56dim NK cells, respectively (8). These subsets of NK cells
are identified both in circulation and in the liver but in different
frequencies within total NK cells. Peripheral blood is rich in the
CD56dim population and there is generally a lower percentage of
circulating CD56bright NK cells. Contrasting this the liver is rich
in the CD56bright NK cell subset, similarly to other non-lymphoid
(e.g., uterus) and secondary lymphoid organs (e.g., tonsils).
When found outside of circulation, the CD56brightCD16− NK
cell population is typically considered to be the tissue-resident
population (8). Yet, with respect to human liver, and as alluded
to in the introduction, the tissue-resident NK cell population
within this organ has been defined in multiple distinct ways
suggesting a high degree of heterogeneity among these cells. This
was a strong rationale for the current study, where we aimed
to compare the identification of liver NK cells from different
published reports.

We harnessed the power of technical advances within high-
end flow cytometry and designed a comprehensive 29-color NK
cell-focused flow cytometry panel to compare the diversity of
tissue-resident and circulating NK cells. As a starting point, this
was applied to NK cells from three tissue types to demonstrate
its potential: liver, peripheral blood, and tonsil. Details of the
antibodies used in panel design can be found in Table 1. We
carefully considered all aspects of panel design when selecting
fluorochromes for distinct antibodies (21). These considerations
included: (1) titration of every antibody used in the panel, (2)
application of appropriate fluorescence minus one (FMO) and
isotype controls to aid in detecting fluorochrome aggregates and
setting accurate positive gates, (3) alignment of the fluorochrome
brightness with the antigen expression density within a cell,
and (4) avoiding, when possible, high spectral overlap between
fluorochromes on co-expressed markers. In total, we used
32 antibodies, in addition to the dead cell marker (DCM),
to detect 29 fluorescent parameters. The focus of the panel
were surface and intracellular proteins associated with tissue
residency as well as those describing the functional potential
of an NK cell (activating and inhibitory receptors, effector
proteins, activation and differentiation markers, chemotaxis, and
proliferation). The panel was designed to exclude main myeloid
lineages and B cells (Lin channel: DCM, CD14, CD19, CD123)
from future analysis. Since tissue residence is not only a property
of NK cells and resident T cells display similar phenotypes
(22), we assigned separate fluorophores to main T cell subsets
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TABLE 1 | Antibodies used in this study.

Antigen Clone Fluorophore Laser line BD

FACSymphony

filter

Dilution

used

Custom

conjugate

Company Function

CCR5 2D7/CCR5 BUV395 379/28 25 No BD biosciences Cell trafficking

CD16 3G8 BUV496 515/30 200 No BD biosciences NK cell subsets

CD56 NCAM16.2 BUV563 UV (355 nm) 580/20 200 No BD biosciences NK cell subsets

CD49a SR84 BUV615 605/20 25 Yes BD biosciences Tissue residency/cell retention

CD38 HIT2 BUV661 670/25 25 No BD biosciences Maturation/activation

CD69 FN50 BUV737 735/30 50 No BD biosciences Tissue residency/cell

retention/activation

CD45 HI30 BUV805 810/40 100 No BD biosciences Common lymphoid identity

CD49e REA686 VioBright FITC 530/30 100 No Miltenyi biotec Tissue residency/cell retention

NKG2C REA205 Biotin N/A 100 No Miltenyi biotec Activating receptor

Streptavidin N/A BB630 610/20 400 Yes BD biosciences N/A

CD103 Ber-Act8 BB660 Blue (488 nm) 670/30 50 Yes BD biosciences Tissue residency/cell retention

NKG2A 131411 BB700 710/50 25 No BD biosciences Inhibitory receptor

Perforin δG9 BB755 750/30 200 Yes BD biosciences Effector function/cytotoxicity

potential

Granzyme B GB11 BB790 810/40 100 Yes BD biosciences Effector function/cytotoxicity

potential

Eomes WD1928 eFluor 660 670/30 25 No Thermo Fisher Transcription factor

Ki-67 B56 AF700 Red (637 nm) 730/45 100 No BD biosciences Proliferation marker

CD57 TB03 APC-Vio770 780/60 50 No Miltenyi Biotec Maturation

Tim-3 7D3 BV421 450/50 50 No BD biosciences Co-inhibitory

receptor/immune checkpoint

CD14 M5E2 V500 525/50 100 No BD biosciences Non-NK cell lineage exclusion

CD19 SJ25C1 BV510 525/50 100 No BD biosciences Non-NK cell lineage exclusion

CD123 6H6 BV510 525/50 50 No Biolegend Non-NK cell lineage exclusion

LIVE/DEAD

Dead Cell Stain

N/A Fixable Aqua 525/50 100 No Thermo fisher Exclusion of dead cells

CD8 RPA-T8 BV570 Violet (405 nm) 586/15 50 No Biolegend T cell subsets

CD161 DX12 BV605 605/40 25 No BD biosciences Maturation/NK cell subsets

CX3CR1 2A9-1 BV650 677/20 50 No Biolegend Cell trafficking

CXCR6 13B 1E5 BV711 710/50 50 No BD biosciences Cell trafficking

CD3 SK7 BV750 750/30 100 No Biolegend Non-NK cell lineage

exclusion/T cell subsets

NKp46 9E2/NKp46 BV786 810/40 25 No BD biosciences Activating receptor

PLZF R17-809 PE 586/15 50 No BD biosciences Transcription factor

T-bet 4B10 PE-Dazzle 594 610/20 25 No Biolegend Transcription factor

CD4 OKT4 PE-Cy5 670/30 200 No Biolegend T cell subsets

KIR2DL2,

KIR2DL3,

KIR2DS2

GL183 PE-Cy5.5 Yellow-green

(561 nm)

710/50 50 No Beckman coulter Activating and inhibitory

receptors

KIR2DL1,

KIR2DS1

EB6 PE-Cy5.5 710/50 50 No Beckman coulter Activating and inhibitory

receptors

CD127 A019D5 PE-Cy7 780/60 50 No Biolegend T cell subsets/innate lymphoid

cells

Brilliant Stain

Buffer Plus

N/A N/A N/A N/A 5 N/A BD biosciences N/A

Color-coding indicates different lasers and their colors.

to allow for relevant comparisons. Cryopreserved cells from
non-matched liver, peripheral blood, and tonsil donors were
stained with this 29-color panel and acquired flow cytometry
data were then processed and analyzed (Figure 1A). After

optimizing compensation (see section Materials and Methods),
two “clean-up gates” were included in the gating strategy to
remove super-fluorescent fluorochrome aggregates (Figure 1B).
It is important to note that the addition of a specific buffer
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FIGURE 1 | Design of a 29-color human NK cell-focused flow cytometry panel. (A) Summary of the experimental workflow. (B) Gating strategy used for identification

of NK cells and downstream analysis. Two clean-up steps were performed (NKG2C BB630 vs. T-bet PE-Dazzle 594 and CD103 BB660 vs. CD38 BUV661) to remove

fluorochrome aggregates. (C) Representative histograms for the indicated proteins (black line), including an internal negative control for each (gray shaded histogram).

DCM, Dead Cell Marker; Lineage (Lin), CD14/CD19/CD123.

drastically decreased the amount of these aggregates (see
section Materials and Methods). Moreover, their presence was
sample-dependent and likely due to differences in quality when

samples were isolated and frozen. Finally, we observed that
populations with low protein expression levels for a particular
antigen could be successfully distinguished from negative
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populations, which validated the usefulness and efficacy of our
panel (Figure 1C).

Distinct T Cell, ILC, and NK Cell Clusters
Are Robustly Separated by Non-linear
Dimensionality Reduction
To capture the non-linear structure of our single cell data,
we performed dimensionality reduction using a FlowJo
implementation of the recently developed uniform manifold
approximation and projection (UMAP) algorithm (23). UMAP
was performed on live CD45+ cells (gated as single, live,
Lin−CD45+ cells, Figure 1B). CD45+ cells from individual
samples were down-sampled to 25,000 events per sample,
individual samples were electronically barcoded, and finally
concatenated for downstream analyses. A total of 18 samples
were included in the analysis, six for each source material. UMAP
was run using all compensated parameters except the previously
gated CD45 and DCM/Lin. Several clusters were identified
in the resulting UMAP maps. These were pulled together
predominantly according to the defining lineage markers rather
than the tissue of origin (Figures 2A,B). All clusters contained
populations found in liver, peripheral blood, and tonsil or the
combination of the two, apart from one cluster which appeared
to be liver-specific (Figures 2A,B). To determine what defined
these clusters, we analyzed the expression of lineage markers
displayed on the UMAP coordinates. There were two clearly
separated clusters of CD3+ cells, one uniformly co-expressing
CD4, and the other one with more variable levels of CD8. The
IL-7 receptor (CD127) was variably expressed in both of these
two clusters. It was also highly expressed in a small CD3− cluster
close to T cells (Figure 2B, top row), suggesting that these were
innate lymphoid cells (ILCs). Furthermore, the cluster located
in close proximity to the ILCs was characterized by a high
expression of CD56 and absence of CD3. Within this cluster,
a sub-cluster was CD16high, indicating that it may contain
CD56dim (and possibly CD56brightCD16+) NK cells. We color-
mapped UMAP plots by the remaining (NK-focused) parameters
in our panel, which validated our notion that the CD3−CD56+

UMAP cluster contained NK cells (Figure 2B, bottom row and
Supplementary Figure 1A). The above-mentioned liver-specific
cluster localized within the CD3−CD56+ UMAP cluster and
was shown to contain cells expressing high levels of CD49a,
CD69, CXCR6, and Eomes compared to other CD56-positive
cells, as well as low expression of T-bet and CD49e (Figure 2B,
bottom row).

Throughmanual gating analysis during panel optimization for
this study, we observed a degree of donor-to-donor variability,
particularly in the expression of tissue residency markers (data
not shown). We tested the overall robustness of UMAP, as well
as how successful it was in detecting such variability through
three different approaches. Firstly, we deconvoluted individual
donor samples in the concatenated file and displayed them
on the UMAP embeddings of CD45+ cells (Figure 2C). Liver
samples 3 and 5, for example, had sections of the liver-specific
cluster missing, while the other CD56+CD16+CD3− UMAP
cluster demonstrated an even higher level of variability between

non-matched blood and liver donors (Figure 2C). Secondly, we
performed manual flow cytometry gating for NK cells, CD4+

and CD8+ T cells in the concatenated file in all tissues as well
as in each individual tissue and overlaid cells from this analysis
on the UMAP map (Figure 2D, Supplementary Figure 1B).
Manually gated subsets shared the UMAP coordinates with
automatically detected clusters across all tissues. Thirdly, given
the focus on NK cells in our panel, we ran a UMAP analysis
similar to the one in Figure 2A excluding CD56 as a clustering
parameter. Reassuringly, the combined expression of all other
parameters from the panel was specific enough to identify
T cells and NK cells, resulting in nearly identical clustering
(Supplementary Figure 1C).

PhenoGraph Distinguishes Populations of
Tissue-Enriched Lymphocytes and Their
Diversity Across Individuals
To identify cell subsets within our high-dimensional data
visualized with UMAP, we ran PhenoGraph on the CD45+

population (24). PhenoGraph clustering identified 36
populations of lymphocytes (Figure 3A). We labeled the
previously generated two-dimensional UMAP projection
of CD45+ cells by these results and observed that most
PhenoGraph populations were found within CD4+ and CD8+

UMAP clusters. Two populations (#7 and #33) were identified
in the cluster between cells marked by high expression of
CD4 and CD56 and another two (#10 and #28) were spanning
two UMAP clusters (Supplementary Figure 2A). Four out
of the 36 populations had a majority of cells (>91%) falling
within the CD3−CD56+ UMAP cluster (Figure 3B left plot
and Figure 3D, indicated by the arrows). Displaying all 36
PhenoGraph populations’ frequencies as a proportion of the
total CD45+ population within each individual sample showed
a high level of diversity in the lymphocyte repertoire between
samples and across tissues analyzed (Figure 3C). The liver
was the most heterogeneous, with major differences in the
CD4+ cluster, but also in the CD3−CD56+ cluster (Figure 3C).
Analysis of PhenoGraph populations within the CD3−CD56+

UMAP cluster revealed that 3 of them were present only in liver
and blood, while population #27 was the only one that was also
present in tonsil (Figure 3D).

This analysis shows that PhenoGraph, combined with a
dimensionality reduction technique such as UMAP, represents a
powerful approach to visualize the general diversity of immune
cells within an individual, and to assess tissue distribution of
immune cell subsets.

Detection of Human Liver-Enriched NK Cell
Populations in High-Dimensional Space
The scope of this study was to describe the heterogeneity between
tissue-resident and circulating NK cells. We showed that NK
cells from tonsils contributed to the total number of cells in the
CD3−CD56+ UMAP cluster (Supplementary Figure 2B) and
the inclusion of tonsil tissue aided in panel design and validation.
However, the NK cell frequency is low in tonsil compared to liver
and blood (Supplementary Figure 2C) and our panel and study
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FIGURE 2 | UMAP robustly embeds CD45+ cells from distinct tissues and identifies main clusters of lymphocytes. (A) UMAP plot of CD45+ cells. Live, Lin−CD45+

cells from liver, blood, and tonsil tissue were gated (Figure 1B), down-sampled to 25,000 cells per sample which were barcoded and concatenated. Eighteen

samples were included in the analysis (six per source material). CD45 and DCM/Lin were excluded from the list of UMAP running parameters. The resulting UMAP

projection is colored according to the tissue of origin (combined in left panel or individually in right panel). (B) UMAP plots showing expression intensities of lineage

markers (top row), as well as some of the markers distinguishing liver-enriched NK cells from peripheral blood population (bottom row). See

Supplementary Figure 1A for compiled plots of all other parameters. (C) UMAP embeddings from (A), colored by the tissue of origin and displayed for each

individual donor, labeled 1-18. (D) Events in the UMAP embeddings were overlaid with manually gated NK cells, CD4+, and CD8+ T cells and displayed for all tissues

in the concatenated file (top row), or for each tissue separately (following three rows). Representative gates can be found in Supplementary Figure 1B.

aim was not to distinguish and analyse tonsil NK cells in relation
to other ILC1 populations found in this tissue as this has been
reported elsewhere (25). Thus, for the subsequent downstream
analysis of NK cells, we focused on liver and peripheral blood
and performed further UMAP analysis of these cells (gated as
in Figure 3B, left plot). UMAP again separated liver-specific

NK cells from the other big cluster of cells shared between
blood and liver (Figure 4A). Such clustering appeared to be
driven by proteins with specific expression patterns associated
with tissue residency (expression of CXCR6 and CD69 but
absence of CD49e, T-bet, and CD16) since their expression levels
displayed the highest difference between the two big clusters

Frontiers in Immunology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 269285

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Filipovic et al. 29-Color Flow Cytometry

FIGURE 3 | PhenoGraph analysis of the Lin−CD45+ population identifies tissue-enriched clusters and demonstrates their diversity across individuals. PhenoGraph

clustering was performed on Lin−CD45+ barcoded and concatenated cells from all samples, CD45 and DCM/Lin were excluded from the list of running parameters.

(A) Plot of all 36 identified PhenoGraph clusters overlaid on the UMAP projection. (B) Selected PhenoGraph clusters displayed over UMAP embeddings. Previously

identified main lineage UMAP clusters are indicated by black lines (CD3−CD56+ cluster, CD3+CD4+ and CD3+CD8+ cluster). (C) Stacked bars showing relative

abundance of every PhenoGraph cluster within CD45+ cells in each liver, peripheral blood (PB), and tonsil sample. Color coding same as in (A). (D) Relative

abundance of liver, blood, and tonsil CD45+ cells within each detected PhenoGraph cluster. Arrows indicate PhenoGraph clusters within the CD3−CD56+ UMAP

cluster shown in (B).

(low-to-high expression) (Figure 4B). Most of the other proteins
(i.e., NKG2A, CD38, CD161, Tim-3, PLZF) were expressed at
various intermediate-to-high levels in the clusters. (Figure 4B).
As before, we next applied PhenoGraph on total liver and
peripheral blood NK cells. Eighteen populations were identified,
each one with a different contribution to the total population
of NK cells in liver and blood (Figures 4C,D). Populations #1,
#2, #3, #4, #5, #6, and #15 were most highly enriched in liver
over blood (>95% found in liver; Figure 4D). Populations #14

and #18 were present at almost equal frequencies between liver
and blood (“shared” clusters). Populations #9, #10, #11, #12, and
#13 were found at higher frequencies in blood compared to liver
and populations #16 and #17 were almost exclusively detected
in blood (Figure 4E). CD127 was highly expressed in a separate
cluster connecting CD49e− (liver-enriched) and CD49e+ (liver
and blood) UMAP clusters.

PhenoGraph revealed the underlying heterogeneity between
blood and liver CD3−CD56+ cells and demonstrated a higher
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FIGURE 4 | NK-cell focused panel coupled with dimensionality reduction and clustering techniques detects liver-enriched clusters. UMAP and PhenoGraph were run

on CD3−CD56+ UMAP cluster as gated in Figure 3B, containing cells from liver and blood. CD45, DCM/Lin, CD3, and CD4 were excluded from the list of running

parameters for UMAP and PhenoGraph. (A) UMAP projection of concatenated CD3−CD56+ cells from non-matched liver (n = 6) and blood (n = 6) samples, either as

a pseudocolor plot combining all samples (left plot) or colored according to the tissue of origin (plots on the right). (B) Resulting UMAP embeddings, colored according

to the expression of markers from the NK-cell focused panel. (C) UMAP embedding from (A), overlaid with 18 identified PhenoGraph clusters. Color-coding is the

same as indicated by the legend in (D). (D) Donut plots showing frequency of 18 identified PhenoGraph clusters within liver and blood CD3−CD56+ cells.

Liver-enriched clusters are indicated in both sample sources. (E) Relative abundance of liver and blood CD3−CD56+ cells within every detected PhenoGraph cluster.
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diversity of NK cell subsets in liver when compared to blood, with
seven main phenotypes enriched in the liver.

Assessment of Phenotypic Diversity Within
Liver-Enriched NK Cells
Having established that numerous NK cell phenotypes exist
in liver and blood and that they differ we next systematically
analyzed the phenotype of NK cells identified in the 18
PhenoGraph-derived populations. To this end, we summarized
expression levels of all proteins in our 29-color panel for each
population (Figure 5A). One of the most differentially expressed
proteins between these two subsets was CD49e. In fact, CD49e
was the only protein with an expression pattern that reliably
recapitulated clustering according to the tissue of origin. This
was underlined as sorting of the PhenoGraph clusters according
to the increasing levels of CD49e organized the subpopulations
similarly to what was obtained by analyzing tissue-enrichment
(Figures 4E, 5A). Finally, and in contrast to the other more
variable tissue residency markers, CD49e displayed a more
uniform expression. Thus, we could recapitulate previously
described phenotypes: CD49e+ NK cells, predominantly found
in blood or in blood and liver, expressed high levels of T-
bet, CD16, perforin, and granzyme B, for example (#9, #11,
#18). Our panel allowed us for the first time to observe the
simultaneous expression of these proteins on the same cell,
together with additional markers that also appeared to be
differentially expressed between blood and liver. For instance,
CD49e− NK cells displayed generally lower levels of Tim-3,
CX3CR1, and NKp46. However, even within the CD49e− cells,
we observed clusters with a high expression of certain markers
typically associated with the CD49e+ cells, and vice versa. For
example, population #8 was CD103+, while population #15
expressed granzyme B. Similarly, CD49a expression was found
in two CD49e+ populations. One of them was #13, which
expressed CD127, several tissue residency markers (CXCR6,
CD49a, CD103, CD69) and low-to-none of the conventional NK
markers. Together with #6, they appeared to contain the majority
of blood and liver ILCs, respectively.

Next, we compared NK cell populations with different tissue
origins: one liver-enriched population (#3), one which was
present in similar frequencies in blood and liver (“shared,”
#18), and two blood-enriched populations, #10 and #12, which
appeared phenotypically as CD56bright and CD56dim NK cells,
respectively (Figure 5B). The liver-enriched population was
different from the other three populations phenotypically, and
although #18 and #12 were phenotypically very similar and
resembling CD56dim NK cells with respect to CD57, granzyme
B, and perforin expression, population #18 was KIR-positive
whereas #12 was KIR-negative (Figure 5B).

Finally, we observed a high level of heterogeneity within
liver-enriched subsets. Interestingly, variable levels of expression
were characteristic of proteins most commonly associated
with tissue residency. For example, although populations
#4, #5, and #15 were all more common in the liver,
#4 and #5 were CXCR6+CD103+CD69+, while #15 was
CXCR6−CD103−CD69low. Additionally, only #5 had a low level
of CD49a expression, but population #15 was distinguished

from the other two by being NKG2C+CD38lowKIR+PLZF−

(Figure 5C). The only two populations showing clear signs of
proliferation, indicated by a high Ki-67 expression, were #3
(liver-enriched, CD49e−) and #14 (blood-enriched, CD49e+)
(Figure 5D).

Together, these data showed that although commonly
recognized tissue residency markers in liver NK cells were highly
expressed in liver-enriched NK cell subsets compared to blood,
they were not uniformly expressed at high levels when a detailed
analysis was performed on populations of these cells. By contrast,
our analysis found CD49e to robustly separate liver-enriched
from blood- and liver-shared NK cell populations.

DISCUSSION

Flow cytometry is a widely-adopted technology used to
investigate the dynamics of immune responses. In the present
study, we implemented a 29-color state-of-the-art flow cytometry
panel to investigate the diversity of human liver tissue-
resident NK cells. The panel encompasses proteins involved in
tissue residency, transcription factors, maturation, and effector
functions (activating and inhibitory receptors, cytotoxicity
potential, activation). We employed a non-linear dimensionality
reduction technique to visualize the high-dimensional dataset
generated, and used it in conjunction with a clustering approach
to detect cellular phenotypes associated with tissue residency.
We demonstrate that this approach is robust and can be used
to explore NK cell diversity in tissues such as liver and tonsil,
but it can also be applied to other organs (e.g., uterus, lung,
skin, spleen, salivary gland), with only minor alterations. The
analysis framework described here can also be readily adapted
to study tissue-resident NK cells in settings of disease where
clinical parameters can be included as additional parameters in
the analysis.

The technological advances that have led to a significantly
increased resolution in the study of single cells brought with
them the curse of dimensionality (26). This has been the case
with RNA-sequencing methods over the past decade, resulting
in the development of many tools for the analysis of high-
dimensional data (27). An explosion of bulk and single-cell
RNA-sequencing methods has multiple implications for flow
cytometry. Firstly, thousands of protein-coding genes and their
expression levels can be quantified, and researchers now have
more gene candidates than ever to investigate further, including
the downstream biological functions of putative proteins. Flow
cytometry is the first port of call for such experiments, due
to well-established sensitivity and robustness. Secondly, next
generation of flow cytometry analyzers has brought the curse of
dimensionality into the flow cytometry field. On the other hand,
the same tools (or their adaptations) which were developed for
RNA-sequencing analysis can also be used in high-dimensional
cytometry analysis, such as UMAP used in this study. Thirdly,
recently developed methodologies such as CITE-seq and REAP-
seq (28, 29) enable concurrent investigation of transcript and
protein levels, which can mitigate the shortcomings of RNA-
sequencing methods alone, such as weak correlation between
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FIGURE 5 | A 29-color NK-cell focused panel captures phenotypic diversity within liver-enriched NK cells. (A) Heatmap displays Z-score transformed median

expression values for each of the parameters within 18 identified PhenoGraph clusters as described in Figure 4. Color scale was determined for each column

separately, based on the lowest and highest Z-score value of that parameter. (B) Histograms displaying expression levels of selected proteins in PhenoGraph clusters.

Legend indicates whether a cluster is predominantly enriched in liver (#3), present in similar frequencies in liver and blood (shared, #18) or enriched in blood (#10, #12).

(C) Histograms displaying expression levels of selected proteins from (A) in selected liver-enriched clusters (#4, #5, #15). (D) Identification of the two most proliferating

PhenoGraph clusters (#3 and #14) according to their Ki-67 expression level based on analysis in (A), displayed against CD49e.
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the levels of a detected transcript and its translated protein
(30–32). Information obtained from these novel experimental
pipelines can in powerful ways describe the immune landscape
and emphasizes the shift towards the need for high-dimensional
flow cytometry.

Along these lines, CyTOF has become a useful tool for
immunologists in recent years, since it had emerged as
technology enabling investigation of more parameters than
possible with conventional flow cytometers at the time (33).
While it is a powerful method, CyTOF implementation in the
experimental workflow may not always be feasible, depending
on the experimental question. Metal isotopes used in CyTOF
essentially mitigate compensation-caused issues during data
analysis, but cells are destroyed during ionization and cannot
be sorted for downstream experiments. Therefore, a flow
cytometry panel informed by CyTOF findings still might have
to be optimized, should one decide to investigate live cells in
downstream applications. Most importantly, flow cytometry is
the highest throughput approach in single-cell analysis, as tens
of thousands of cells can be run per second, at a low cost of
operating (34).

The human NK cell repertoire is highly diverse within
and between individuals (7). The conventional classification
of NK cells into CD56bright and CD56dim subsets captures
only the major differences in the subset-associated phenotypes.
However, this is insufficient to explain the different functions
that phenotypically similar subsets can exhibit in different tissues.
CD56 has an unclear function itself and its “brightness” is
not a good discriminator when it comes to implications of
surface expression on NK cell functions. CD56bright NK cells
are considered to be non-cytotoxic and with immunoregulatory
functions, but they can also exhibit enhanced cytotoxicity and
degranulation against viral and tumor antigens (35). Along
these lines, even absence of CD56 on NK cells marks a
specific subset of CD56neg NK cells resembling CD56dim with
moderate responsiveness and differential expression of several
granule proteins (36, 37). This demonstrates the necessity to
assess NK cell phenotypes (and consequently their biological
functions) as a set of markers, rather than relying on individual
bimodal-expression-based classifications. The panel we designed
represents a collection of markers most commonly described to
be differentially expressed on liver NK cells. Our findings here
substantiate themajor findings of previous studies phenotypically
describing liver NK cells (38), but also combine them and
additionally identify novel differences within liver NK cells.

In more detail, performing dimensionality reduction of
CD45+ cells data in all three tissues ordered events according to
their lineage, instead of the tissue of origin. This was sufficient
to assess the general landscape of T cells, non-NK ILCs, and
NK cells. However, narrowing the scope of the analysis to the
NK cell lineage in liver and blood robustly separated subsets
based on the relative enrichment in the tissue and suggested
that distinct cellular phenotypes drove this separation. Out of all
markers in our panel, CD49e expression most reliably ordered
NK cell populations according to their tissue origin, as liver-
enriched populations were all CD49-negative, corroborating
previous CyTOF findings (19). This suggested that CD49e should

be included in future studies of liver-enriched NK cells, and
validated the importance of this marker in studies of tissue-
resident subsets through another experimental approach. Future
work should also address the exact role of CD49e and what the
lack of expressionmeans for the function of intrahepatic NK cells.
All other liver-enriched populations expressed higher levels of
CXCR6, CD49a, CD103, and CD69 as well as CCR5 compared
to NK cells enriched in blood or shared between blood and liver.

We took a conservative approach when interpreting our
unbiased clustering results in the context of studies that used
manual gating to quantify and describe NK cells. Nonetheless,
we still detected phenotypic similarities to populations described
in those studies. For example, cluster #10 (Figures 4D,E, 5A)
appeared to resemble previously described cytokine-induced
CXCR6+ blood NK cells since this cluster was CD56brightCD69+

and also expressed higher levels of NKG2C than non-CXCR6+

blood-enriched clusters (e.g., cluster #9) (39). An elegant study
demonstrated that liver microenvironment TGF-β is required to
induce and maintain a liver-resident phenotype (40). However,
liver-conditioned media used in that study could not induce
CXCR6 on blood NK cells, in contrast to earlier findings with
cytokines (39). The panel we propose, addressing tissue resident
surface markers as well as transcriptional program associated
with acquisition/loss of tissue residency, will be a valuable tool
in future studies of how tissue residency is maintained as it aids
identification of exact subpopulations in response to dynamic
changes in the microenvironment, given the heterogeneity of
tissue resident subsets. Our results also corroborate recent
findings that liver CXCR6+ NK cells contain a high percentage
of educated NK cells, considered to be NKG2A+ when compared
to blood and liver CXCR6− counterpart (41). In our dataset,
liver-enriched CXCR6+ clusters #3, #4, and #5 are also highly
NKG2A+, while CXCR6− liver-enriched cluster #2 has a high
KIR expression and low levels of NKG2A (Figure 5A). We also
identify cluster #15 in the liver with the highest expression of
NKG2C and lowest expression of CXCR6, similar to previous
studies (41). However, cluster #1 that we identified in liver was
CXCR6+ but NKG2A− as well as KIRlow. Our panel could
therefore be adapted to investigate the relationships between
these clusters in context of education in future studies.

In general, a variable pattern of expression of a majority
of tissue residency markers examined calls for caution when
interpreting the results, but also suggests the existence of
differential gene regulation pathways in distinct liver-enriched
clusters. Multiple levels of gene regulation could be analyzed.
It would be valuable to obtain transcriptome data for these
clusters, for example by performing CITE-seq on single cells with
antibodies used in this study, conjugated to oligonucleotides.
This information could help determine the relationship between
populations we identified here, reveal potential differentiation
trajectories, and answer questions such as why some CD49e-
negative subsets had low levels of CXCR6. However, since
these populations have relatively similar phenotypes, it might
be that posttranscriptional gene regulation is more important
in regulating the functional potential of various subsets of liver
NK cells, in a manner recently suggested to explain increased
granzyme B levels in human educated peripheral blood NK
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cells (42). A limitation of our study is that we used non-
matched samples as well as liver samples from non-affected areas
of patients undergoing liver resection surgery for primary or
secondary tumors. This type of samples has been routinely used
in earlier work describing liver-resident NK cell subsets (14, 16,
17). However, it may be that the heterogeneity of NK cell subsets
we observed in our study between similarly obtained individual
liver samples, for example, originates from a different stage
of malignancy and consequently an altered microenvironment
between individual donors. Since we demonstrated that our
workflow can detect this variability, future studies applying
this approach on larger cohorts of patients with well-defined
underlying pathologies will be useful in addressing the cause of
such variability.

In summary, and in addition to the 29-color panel
developed here, we carried out our analysis via a user-friendly
interface, although thorough understanding of the nature
of high-dimensional data, data transformation methods, and
clustering approaches are still required. We used algorithms
that minimized bias and maximized unsupervised analysis of
the data with caution. Biological knowledge is still essential
to avoid data misinterpretation that might originate from
algorithms attributing fluorochrome aggregates to rare subsets,
for example. Thus, manual analysis is far from obsolete and
will remain essential for the foreseeable future (21). In the
present study, we examined only six samples per sample source.
Regardless, our workflow was robust enough to demonstrate
intra- and inter-sample diversity of cellular phenotypes even
among these samples. In the future, such a workflow can
be applied to large cohorts to give enough statistical power
to confidently identify phenotype metaclusters associated with
disease states or correlating with other molecular biomarkers.
Patient samples usually come with the caveat of limited
sample material, and time and simplicity of experimental
manipulation are often of essence. Therefore, high-dimensional
flow cytometry holds great promise to be a major tool in
investigation of complex immune responses, due to the excellent
sensitivity and high-throughput nature of the approach. We
anticipate similar workflows to the one we describe here to
become a routine in investigating NK cells residing in other
lymphoid and non-lymphoid organs and the immune responses

they are involved in, both during normal homeostasis and
in disease.
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Individuals lacking functional natural killer (NK) cells suffer severe, recurrent infections

with cytomegalovirus (CMV), highlighting the critical role of NK cells in antiviral defense.

Therefore, ongoing attempts to develop an efficacious vaccine to prevent CMV

infection should potentially aim to elicit NK-cell antiviral responses as an accessory to

conventional T- and B-cell based approaches. In this regard, CMV infection provokes

marked phenotypic and functional differentiation of the NK-cell compartment, including

development of adaptive NK cells that exhibit enhanced antiviral activity. We examined

longitudinal blood samples collected from 40 CMV-seronegative adolescents to ascertain

whether a CMV glycoprotein B (gB) vaccine in the absence of CMV infection can stimulate

differentiation or expansion of CMV-associated subsets of NK cells. Study participants

uniformly lacked the CMV-dependent NKG2C+ subset of NK cells, suggesting that an

adjuvanted CMV gB vaccine alone is an inadequate stimulus for sustained expansion of

these cells. In contrast, we observed unexpected dynamic fluctuations in the frequency

of NK cells lacking FcRγ, EAT-2, and SYK, which were independent of vaccination or

CMV infection. Whereas, FcRγneg NK cells in CMV infection are reported to express

increased levels of the maturation marker CD57, the FcRγneg NK cells observed in our

CMV-negative vaccine cohort express less CD57 than their FcRγ+ counterparts. The

FcRγneg NK cells in CMV-negative individuals were also functionally distinct from this

subset in CMV infection, exhibiting comparable IFN-γ production and degranulation

as FcRγ+ NK cells in response to cytokine or antibody-dependent stimuli. These

results suggest that frequencies of some NK cell subsets may increase in response to
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unknown environmental or inflammatory cues distinct from that which occurs after CMV

infection. Greater understanding of the nature of the signals driving CMV-independent

accumulation of these subsets should permit development of mechanisms to facilitate

vaccine-driven expansion of CMV-reactive NK cells.

Keywords: immunization, CMV, innate lymphoid cells, NK cells, memory, FcRγ, CD56, CD57

INTRODUCTION

Cytomegalovirus (CMV) is a significant global cause ofmorbidity
with manifestations of infection ranging from subclinical
disease to death. Congenital infection and the infection of
immunocompromised patients, including transplant recipients,
result in the most severe consequences of CMV in the human
population. Congenital CMV accounts for roughly 400 deaths
and more than 5,000 developmentally impaired children each
year in the United States (1). Therefore, effective strategies to
prevent or control infection are desperately needed.

Unfortunately, CMV has proven to be a challenging target
for vaccine development. To date, most CMV vaccine efforts
focus on elicitation of antibodies against viral glycoproteins or
generation of antiviral T-cell responses (2). Administration of a
MF59-adjuvanted CMV glycoprotein B (gB) vaccine to CMV-
seronegative adolescent girls induced strong gB-specific antibody
responses and afforded 43% protective efficacy (3). The same
vaccine conferred short-lived, 50% protection, against CMV
infection in seronegative post-partum women (4) and reduced
post-transplant viral load when given to patients awaiting a
kidney or liver transplant (5). While promising, these results
indicate that humoral responses against gB may be insufficient
to effectively prevent CMV infection in many individuals. DNA
vaccines aimed at eliciting CMV-reactive T cells have also
affordedminimal protection in a transplant patient-based clinical
trial (6). These advances prompted development of new vaccines
aimed at eliciting both humoral and cellular immunity (7), but
it remains unclear whether other arms of the immune response
must be engaged to effectively prevent CMV infection.

Natural killer (NK) cells are critical antiviral effectors that
produce IFN-γ (8), lyse virus-infected cells (9), and regulate
adaptive immune responses (10–15). NK cells play an important
role in control of CMV infection in both mice and humans
(16, 17). Since NK cells lack the somatically rearranged antigen-
specific receptors characteristic of T and B cells, and because
they were previously thought to be short-lived cells (18),
vaccine triggering of NK cells has historically been considered
of little value. However, recent data suggests that the innate
immune system makes important contributions to vaccine-
elicited protection against infection (19, 20). Specifically, long-
lived populations of adaptive NK cells with antigen-specific
features similar to those of memory T cells have emerged as
potential new targets of vaccines aimed at preventing CMV
infection (21–24).

Immunological memory in virus-specific NK cells is widely
described in the context of murine CMV. In C57BL/6 mice, a
mouse CMV gene product engages an activating NK cell receptor,

Ly49H (Klra8), promoting clonal expansion and contraction of
the Ly49H-expressing subset of NK cells (25–29). Thereafter,
a subset of memory Ly49H+ NK cells with enhanced antiviral
effector functions persists indefinitely (30). Similar types of
adaptive NK cells develop in response to hapten sensitization
(31), vaccinia virus infection (32), and virus-like particle
immunization of mice (33). Likewise, simian immunodeficiency
virus-reactive memory NK cells develop in rhesus macaques after
virus infection or immunization (34). Collectively, animal studies
point to existence of long-lived, virus-dependent subpopulations
of memory NK cells that are likely better antiviral effectors than
their naïve counterparts.

Several types of memory NK cells have been characterized
in humans. These include memory NK cells induced by
cytokines (35), varicella zoster virus exposure (36), antibody-
mediated stimulation (37), or CMV-derived peptides (38). High
frequencies of NK cells expressing the activating receptor
NKG2C are frequently observed in CMV seropositive individuals
(39). These NKG2C+ cells undergo proliferative expansion
during primary CMV infection in transplant patients (40)
and in response to CMV-infected fibroblasts (41), IL-12-
producing infected monocytes (42), and CMV UL40-derived
peptides (38). CMV-associated adaptive NK cells expressing
NKG2C display altered DNA methylation patterns and reduced
expression of signaling molecules, including FcRγ, spleen
tyrosine kinase (SYK), and EWS/FLI1-associated transcript 2
(EAT-2) (43, 44). These FcRγneg, SYKneg, and/or EAT-2neg

NK cells also generally lack expression of the transcription
factor promyelocytic leukemia zinc finger protein (PLZF)
(44). These phenotypic changes are linked to more potent
antibody-dependent activation, expansion, and function of these
adaptive NK cells relative to other NK-cell subsets. NK cells
with reduced expression of FcRγ, SYK, or EAT-2 are also
detected in CMV seronegative individuals, with a minor fraction

(10%) of individuals displaying significant expansions of this
population (44).

The crucial function of NK cells in immune defense against
CMV coupled with the discovery that distinct subsets of NK
cells emerge after infection, collectively suggest that targeted
induction of these subsets of NK cells during immunization
may provide enhanced protection against CMV infection. The
capacity of existing vaccines to elicit transient or sustained
expansion of CMV-associated human NK cells has not been
reported. In this study, we interrogate longitudinal peripheral
blood mononuclear cell (PBMC) samples collected from MF59-
adjuvanted CMV glycoprotein B (gB) vaccine or placebo
recipients who locally participated in clinical trial NCT00133497
(3). Our study reveals vaccine-independent oscillation of FcRγneg
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NK cell frequencies, but not those of NKG2C+ NK cells, in
the blood of CMV seronegative individuals. Phenotypic and
functional characterization of FcRγneg NK cells in this CMV
seronegative cohort reveals distinct features from those reported
for FcRγneg NK cell in individuals infected with CMV. These
finding provoke re-evaluation of the paradigm concerning NK-
cell subset dynamics in humans.

MATERIALS AND METHODS

CMV Vaccine Trial
This study was approved by the Cincinnati Children’s Hospital
Medical Center Institutional Review Board and conducted by
the Cincinnati Vaccine and Treatment Evaluation Unit (VTEU)
as part of CMV vaccine trial NCT00133497. Study participants
were 12- to 17-year-old healthy adolescent females confirmed
CMV seronegative at the start of the study. Only samples from
the Cincinnati site of this clinical trial were available for the
purposes of the present study. Furthermore, only those subjects
with available samples spanning trial duration were used for
experimental analyses. As a result, a total of 40 participants were
randomized into two groups (n = 20/group) receiving either
three doses of CMV gB subunit vaccine in MF59 adjuvant (20

µg gB and 10.75mg MF59, Sanofi Pasteur) or sterile saline
(Sodium chloride 0.9%) placebo by intramuscular injection in
the deltoid on days 0, 30, and 180 of protocol (3). Urine,
saliva and blood were collected throughout time course to assess
CMV infection by PCR and seroconversion to non-vaccine CMV
antigens, respectively. The 40 subjects evaluated longitudinally in
the present study remained CMV negative throughout sampling
period. Three additional vaccine trial participants who were part
of the placebo group and became positive for CMV infection
during longitudinal sampling period were used to examine NK-
cell subset frequencies at time points subsequent to natural
acquisition of CMV infection. Peripheral blood mononuclear
cells (PBMC) were collected and cryopreserved at screening and
various time points (days 0, 1, 30, 60, 180, and 210) of trial (3).

NK-Cell Phenotypic Analyses
PBMC were concomitantly stained and assessed by flow
cytometry during a single experimental run (or block). A
volunteer blood donor with a high percentage of NKG2C+

NK cells extraneous to vaccine trial was selected as a positive
control for NKG2C staining and included in each block of
vaccine trial participant samples to benchmark stain validity
and reproducibility. Expression of FcRγ, SYK, and EAT-2 are
benchmarked against CD4T cells in the same sample, where the
latter cells do not express these proteins (44). Phenotypic analyses
of PBMCs were performed using fluorochrome-conjugated
antibodies. Cells were stained for surface markers using CD3
(OKT3, Biolegend), CD19 (HIB19, BD Biosciences), CD4 (RPA-
T4, BD Biosciences), CD14 (M5E2, BD Biosciences), CD56
(N901, Beckman Coulter), NKG2C (REA205, Miltenyi Biotech),
NKG2A (Z199, Beckman Coulter), CD57 (HCD57, Biolegend),
CD16 (3G8, BD Biosciences), Ki-67 (Ki-67, Biolegend), and
a fixable live-dead stain (Pacific Green, Invitrogen) in FACS
buffer (HBSS supplemented with 5% fetal bovine serum and

2µm EDTA). Following surface staining, cells were fixed in
2% paraformaldehyde (Fisher Scientific) and permeabilized with
0.04% Triton X-100 (Sigma Aldrich). Intracellular staining in
FACS buffer with 2% bovine serum albumin was then performed
to identify FcRγ (polyclonal rabbit, Millipore), EAT-2 (polyclonal
rabbit, ProteinTech Group), SYK (4D10.1, eBioscience) markers.
Intracellular EAT-2 staining was followed by secondary staining
with polyclonal anti-rabbit IgG (Invitrogen).

NK-Cell Functional Analyses
PBMC samples were thawed rapidly in a 37◦Cwater bath and cell
number and viability were determined using 0.4% Trypan Blue
(Thermo Fisher Scientific). Cells were cultured at 5 × 105 per
well in a 96 well U-shaped plate (Corning Life Sciences) at 37◦C
in 5%CO2. Control wells received only media [RPMI 1640media
(Thermo Fisher Scientific) supplemented with 10% fetal bovine
serum], while cytokine-stimulated wells received a combination
of IL-12 (10 ng/ml), IL-15 (100 ng/ml), and IL-18 (100 ng/ml)
(44). After 18 h of culture, Golgi Plug (BD Biosciences) and
Golgi Stop (BD Biosciences) were added for an additional 6 h
at final concentrations of 1µg/ml and 2µM, respectively. To
assess antibody dependent cell cytotoxicity (ADCC), a third well
of 5 × 105 PBMC for each sample were mixed with 1.25 ×

105 P815 cells [2:1 effector to target (E:T) ratio] pre-incubated
with 2.5µg/ml anti-CD32 (Clone 2.4G2, Bio-X-Cell). Cells were
incubated in the presence of Golgi Stop and Golgi Plug for
a total of 6 h (45). Anti-CD107a (H4A3, Biolegend) at 1:200
dilution was added to all cells in the final 6 h of stimulation.
Intracellular staining in FACS buffer was performed to assess
IFN-γ (4S.B3, Biolegend) production. Flow cytometric data for
all phenotypic and functional analyses were obtained using an
LSR Fortessa instrument (BD Biosciences) and analyzed via
FlowJo_v10 software (Treestar).

T-Distributed Stochastic Neighbor
Embedding (t-SNE) Analyses
The tSNE algorithm of FlowJo_v10 was used to visualize
dimensionality of NK cell subsets over time. For each donor,
the data at individual time point was down sampled (gated
on CD56dim NK cells) and then concatenated to create three
dimensionally reduced t-SNE plots. Populations expressing or
lacking various proteins were overlaid on t-SNE plots to identify
subset clusters.

Statistical Analyses
Differences between placebo and vaccine recipients were
compared using mixed effects two way ANOVA with restricted
maximum likelihood. Changes over time (0, 6, 7, 10, and 13
months) and treatment group (placebo and vaccine) in the
proportion of CD56bright and CD56dim cells were evaluated using
generalized linear mixed models with a Poisson distribution,
log link function, and an offset of the logarithm of the total
NK cell count specified. A random intercept and a random
slope and an interaction term between time and treatment
group was included in the model. Correlations between NK
cell markers were determined by linear regression analysis.
Phenotypic differences between groups were determined by
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Student’s t-test and functional differences were assessed by two-
way ANOVA. Graphs were generated using GraphPad Prism
and statistical tests were performed in Prism and SAS 9.4 (SAS
Institute Inc., Cary NC).

RESULTS

CMV gB Vaccine Trial Cohort
To determine whether CMV vaccination strategies can trigger
emergence of CMV-associated NK cell subsets, we examined a
longitudinal series of PBMC from a subset (n = 40, Table 1)
of CMV vaccine trial participants (NCT00133497) for whom a
full set of samples were available. Half of the study participants
received three intramuscular injections of CMV gB in MF59
adjuvant while the placebo group was administered sterile saline
in place of the vaccine (Figure 1A). Vaccine recipients exhibited
a robust gB-specific antibody response (Figure 1B). None of the
selected 40 study participants acquired CMV infection during the
study period, as measured by PCR for CMV in urine and for
seroconversion against non-vaccine CMV antigens (3).

Minimal Variation in Total NK-Cell
Frequencies Over Time
We first assessed the proportion of total NK cells (CD56+

CD3− CD19− CD14− CD4−) in PBMC. Figure 1C depicts the
gating scheme used to identify NK cells in our samples. There
was a broad range (2.0–21.5%) of NK-cell proportions across
study participants (Figure 1D). The mean proportion of NK cells
across all time points is similar in groups receiving placebo or
vaccine (Placebo = 7.4%, Vaccine = 8.6%, p = 0.16), while the
changes in NK cell proportions over time between the placebo
or vaccine group were not statistically significantly different
(p= 0.71).

NK cells can be stratified based on CD56 expression into
CD56dim and CD56bright subsets (Figure 2A) that exhibit distinct
phenotypic and functional characteristics (46). The CD56dim

TABLE 1 | Study participant demographics.

gB/MF59 Placebo Total

Number of subjects 20 20 40

Age category at vaccination, n (%)

12–15 years old 14 (70) 11 (55) 25

15–17 years old 6 (30) 9 (45) 15

Race, n (%)

Black 7 (35) 7 (35) 14

Caucasian 12 (60) 11 (55) 23

Other 1 (5) 2 (10) 3

Ethnic origin, n (%)

Hispanic/latino 1 (5) 0 (0) 1

Not Hispanic/latino 19 (95) 20 (100) 39

Age, race, and ethnicity of female subjects who received either three doses of placebo or

gB/MF59 vaccine (n = 20 per group).

subset comprises amean 88.8± 1.14% (average of all time points)
of circulating NK cells in study participants (Figure 2B), where
the ratio between CD56bright and CD56dim cells in vaccine and
placebo groups is relatively consistent over study time points
(Figure 2C). Specifically, time did not modify the effect between
the placebo and vaccine groups regarding CD56dim cell counts
(p = 0.38). In addition, neither time (p = 0.97) nor treatment
group [mean vaccine: 6.50% (95%CI: 5.34, 7.91%);mean placebo:
5.51% (95% CI: 4.51, 6.74%), p = 0.24] were independently
associated with CD56dim cell counts. For CD56bright cell counts,
timemodified the effect of placebo and vaccine groups (p= 0.01);
wherein CD56bright count increased by a factor of 1.25 (95% CI:
1.07, 1.46%, p = 0.01) in the vaccine group but the change in the
placebo group was not statistically significant (Table 2), which is
consistent with other vaccine studies (47–49).

Absence of CMV-Dependent NKG2C+

NK-Cell Subset
High frequencies of NKG2C-expressing NK cells have been
almost exclusively observed in CMV seropositive individuals
(39). This subset expands after CMV reactivation in organ
or tissue transplant recipients (40), and reflects activation of
this subset by CMV UL40-derived peptides coupled with pro-
inflammatory cytokines (38). Due to the confirmed CMV
negative status of vaccine trial participants throughout the
duration of the vaccine study and the absence of UL40 antigens
in the vaccine formulation, we hypothesized that NKG2C+ NK
cell frequencies would be low at all time points. Using a positive
control PBMC sample known to contain NKG2C+ NK cells
(44), we confirmed that our staining protocol can effectively
detect this subset (Figure 3A). As expected, NKG2C+ NK cells
were largely undetectable in all vaccine trial participants at
baseline and the average absolute change in frequency from
baseline proportions of this subset hardly varied across time in
both placebo (0.046–0.41% range of mean absolute change from
baseline visit) and vaccine (−0.83–0.96% range of mean absolute
change from baseline visit) recipients (Figure 3B). Analysis of
additional samples from vaccine trial participants (n= 3) at time
points after natural acquisition of CMV infection (confirmed by
PCR/seroconversion to non-vaccine CMV antigens) remained
negative for NKG2C+ NK cells over the study timeframe (data
not shown).

CMV- and Vaccine-Independent Dynamic
Changes in NK-Cell Subset Frequencies
Expanded subsets of NK cells that lose expression of FcRγ, EAT-
2, and/or SYK are expanded in approximately half of CMV
seropositive individuals but can also be observed in seronegative
donors, albeit less commonly (≤10% of individuals) and at much
lower frequencies (43, 44). As these subsets can expand upon Fc
receptor engagement by antibody (37, 43), we hypothesized that
robust antibody responses against vaccine antigens may trigger
accumulation of these subsets after vaccine prime and boost
administration. We could detect NK cells within the CD56dim

subset that exhibited loss of FcRγ expression (Figure 4A).
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FIGURE 1 | Longitudinal antibody and NK-cell responses of vaccine study participants. (A) Schematic representation of the timeline of vaccine trial depicting three

administrations of gB/MF59 vaccine or placebo (sterile saline) and timing of urine and blood samples collection. (B) Sera anti-gB antibody titers for placebo (n = 20)

and vaccine (n = 20) recipients analyzed in present study. (C) Representative flow cytometry gating of singlets, live lymphocytes, lineage-negative (CD19, CD14, CD4,

and CD3) CD56+ NK cells based on forward scatter (height and area), side scatter (area), viability dye uptake, and surface marker expression. (D) Resulting

frequencies of gated NK cells in individual vaccine and placebo recipients over sampling period.

These FcRγneg NK cells concomitantly lacked EAT-2 and SYK
expression in most study participants relative to their FcRγ+ NK
cell counterparts (Figure 4A).

Interestingly, we detected a progressive increase in the
frequency of FcRγneg NK cells following prime and boost
immunization in a subset of vaccine recipients (Figure 4B).
However, a similar pattern was observed in some placebo
recipients. Moreover, the majority of individuals given vaccine
(n = 11) or placebo (n = 10) exhibited transient elevations
and depressions in the frequency of FcRγneg NK cells over time
(Figure 4C). A smaller number of individuals in both groups
demonstrated FcRγneg NK cells at baseline that disappeared
over time, or lacked this subset of cells entirely (Figure 4C).
High-dimensional analysis with t-SNE confirmed FcRγneg, EAT-
2neg, and SYKneg NK cells largely cluster as one subset, the
frequency of which changes over time within the selected study
participant (Figure 4D).

Variations in Frequencies of FcRγ
neg NK

Cells Are Not Associated With Proliferation
In addition to increases and decreases in the proportion of
FcRγneg populations among NK cells, the frequency of these cells
among total blood leukocytes (PBL) shows similar patterns of
expansion and contraction (Figure 5A). The marked increases in
the number of FcRγneg NK cells in some individuals over time
are potentially attributable to periods of proliferative expansion.
In fact, adaptive subsets of NK cells that accumulate during
acute CMV infection of solid organ transplant recipients are
characterized by heightened expression of Ki-67, an indication
that these cells are highly proliferative (50). Analysis of Ki-
67 expression over time in a subset of six vaccine trial
participants exhibiting ebb-and-flow representative of FcRγneg

NK-cell within the NK-cell repertoire revealed relatively stable,
low-level expression of Ki-67 on FcRγneg NK cells (Figure 5B).
There was no clear visual relationship between Ki-67 expression
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FIGURE 2 | Stable proportions of CD56dim and CD56bright NK cells over time. (A) Representative gating of CD56bright and CD56dim events within the

Lineage−CD3−CD56+ NK cell gate, and (B) percentage of CD56dim NK cells in each study participant averaged across all time points. Bar represents mean among

treatment group (n = 20/group). (C) Ratio of CD56bright to CD56dim NK cells in each study participant across vaccine trial time points. Statistically significant changes

in subset proportion over time evaluated using generalized linear mixed model as described in Methods, with results of analysis presented in Table 2.

and changes in frequency of FcRγneg NK cells among blood
leukocytes (Figure 5B), and linear regression analysis of all
time points analyzed revealed absence of significant relationship
between the proportion of Ki-67-expressing FcRγneg NK cells
and the fraction of NK cells that are FcRγneg (Figure 5C). Thus,
within the limitations of these measurements and our sampling
intervals, our data provide little evidence in support for the
hypothesis that variations in FcRγneg NK cell frequencies are
attributable to proliferative expansions of these cells.

Distinct CD57 Expression on FcRγ
neg NK

Cells in Absence of CMV
While the proportions of FcRγneg EAT-2neg SYKneg NK cells vary
among individuals and at different time points, the percentage
of NK cells expressing other receptors associated with CMV
infection, including CD57 (range 10–54%) or NKG2A (range
20–84%), exhibited little variation across time (Figure 6A).
In fact, no statistically significant differences in CD57 (p =

0.96) or NKG2A (p = 0.75) expression were observed over
time between placebo and vaccine groups. The temporally
stable but heterogeneous expression of CD57 and NKG2A
among individuals in the present study is consistent with prior

observations (51). As CMV infection is associated with increased
expression of CD57 and down-regulation of NKG2A (52), most
notably among FcRγneg (37) and NKG2Chigh (50) NK cells,
the expression of these receptors was examined on the NK-cell
subsets in vaccine trial participants (Figure 6B). FcRγneg NK cells
detected in CMV-negative individuals in this study segregated
as NKG2Alow relative to FcRγ+ cells (Figure 6B), consistent
with previous studies (37, 44). However, FcRγneg NK cells were
not enriched for expression of the maturation marker CD57
(Figure 6B). In fact, the totality of FcRγneg NK cells observed
across time points and individuals in this study expressed less
CD57 than their FcRγ+ counterparts (Figure 6C). Thus, FcRγneg

NK cells are more prevalent in the NK-cell repertoire in this
longitudinally examined study cohort and frequently exhibit
dynamic changes in frequency over time as well as distinct
CD57 expression patterns relative to FcRγneg NK cells in CMV
infected individuals.

No Functional Impact of FcRγ Loss in CMV
Seronegative Subjects
Signaling alterations of adaptive NK cells in CMV positive
individuals lead to distinct functional capacities as compared to
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conventional NK cells (53). In particular, FcRγneg NK cells in
CMV infected individuals exhibit reduced IFN-γ production in
response to cytokine stimulation (44), but elevated antibody-
dependent effector function (37). Functional responses of

TABLE 2 | Change in NK cell CD56bright and CD56dim subsets over time.

Placebo mean (95% CI) Vaccine mean (95% CI)

CD56DIM (Interaction p = 0.38)

0 month 5.95% (4.73, 7.50%) 6.20% (4.95, 7.76%)

6 months 5.41% (4.29, 6.81%) 6.34% (5.07, 7.94%)

7 months 5.15% (4.09, 6.49%) 6.99% (5.58, 8.75%)

10 months 5.41% (4.30, 6.82%) 6.45% (5.15, 8.07%)

13 months 5.67% (4.49, 7.16%) 6.53% (5.21, 8.20%)

CD56BRIGHT (Interaction p = 0.01)

0 month 0.62% (0.50, 0.77%) 0.58% (0.47, 0.72%)

6 months 0.61% (0.49, 0.76%) 0.60% (0.48, 0.74%)

7 months 0.60% (0.49, 0.75%) 0.69% (0.56, 0.86%)

10 months 0.55% (0.44, 0.68%) 0.70% (0.57, 0.87%)

13 months 0.59% (0.47, 0.73%) 0.72% (0.58, 0.90%)

Mean (95% confidence interval) percentage of CD56dim and CD56bright cells by time and

treatment group.

FcRγneg NK cells in the absence of CMV were examined
at a total of 18 samples from a subset of six vaccine trial
participants scoring positive for FcRγneg NK cells. In contrast
to observations in CMV seropositive individuals, IL-12 and IL-
18 cytokine stimulation did not lead to statistically significant
differences in IFN-γ production (p = 0.41) or degranulation
as measured by CD107a exposure (p = 0.67) between FcRγneg

and FcRγ+ NK cells in the CMV seronegative vaccine cohort
(Figure 7A). FcRγneg and FcRγ+ NK cells also exhibited
comparable degranulation (p = 0.58) and IFN-γ production (p
= 0.38) when stimulated with P815 cells pre-incubated with α-
CD16 antibody (Figure 7A). Of note, FcRγneg NK cells in vaccine
recipients produced slightly more IFN-γ but displayed similar
degranulation in response to α-CD16-bound P815 relative to the
same cells in individuals receiving placebo (data not shown).

CD57+ NK cells are also differentially sensitive to cytokine
and antibody-dependent stimulation compared to CD57neg NK
cells (54). FcRγneg NK cells in the present vaccine cohort exhibit
a distinct CD57 expression pattern compared to FcRγneg NK cells
in CMV seropositive individuals (37, 52). Therefore, functional
responses of CD57neg FcRγneg and CD57+ FcRγneg NK cells were
compared within CMV seronegative vaccine trial participants.
CD57neg and CD57+ FcRγneg NK cells exhibited similar IFN-
γ production after stimulation with IL-12 and IL-18 (p = 0.51)

FIGURE 3 | Absence of NKG2C+ NK cells in vaccine trial cohort. (A) Flow cytometry gating of NKG2C+ events among gated Lineage−CD56dim NK cells in positive

control sample and negligible staining for NKG2C on NK cells in a representative vaccine study participant. (B) For each study participant, the absolute change in

proportion of NKG2C+ NK cells over time relative to measurement at baseline is calculated and presented as average (±standard error of the mean) of treatment

group (n = 20/group).
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FIGURE 4 | Dynamic vaccine-independent changes in NK-cell subset representation within repertoire over time. (A) Representative gating of FcRγneg CD56dim NK

cells (open histogram) relative to CD3+CD4+ T cells (shaded histogram) in the same sample. EAT-2 and SYK expression on gated FcRγneg (blue histogram) and

FcRγ+ (red histogram) subsets of CD56dim NK cells. (B) Proportions of FcRγneg CD56dim NK cells over time in a subset of gB-MF59 (red) or placebo (black) recipients

revealing expansion of these cells within the repertoire. (C) Proportions of FcRγneg CD56dim NK cells over time in remaining study participants grouped based on

pattern of subset contraction (left), absence of subset (middle), or ebb-and-flow changes in repertoire. (D) Location of each adaptive NK-cell subset in t-SNE

distribution of a single study participant CD56dim NK cell repertoire over time course is highlighted in green (FcRγneg), red (EAT-2neg), and blue (SYKneg).
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FIGURE 5 | FcRγneg NK cell subset expansions in absence of increased Ki-67. (A) Frequencies of FcRγneg CD56dim NK cells among PBL over time in a subset of

gB-MF59 (red) or placebo (black) recipients exhibiting ebb-and-flow changes in repertoire. (B) Relationship between percent of FcRγneg NK cells staining Ki-67+ and

expansion of FcRγneg NK cell subset over time. One representative individual is shown from among six vaccine trial participants with marked fluctuations in FcRγneg

NK cell frequencies that were analyzed in this experiment. (C) Regression analysis of the linear relationship between the proportions of Ki-67+ cell within the FcRγneg

NK cell subset and total FcRγneg NK cells. Slope, confidence interval (CI), residual standard error (Sy.x), correlation (r), and significant deviation of slope from zero (p)

are shown.

or α-CD16 antibody bound P815 cells (p = 0.14) (Figure 7B).
However, CD57+ FcRγneg NK cells degranulated more robustly
than their CD57neg FcRγneg NK cell counterparts in response to
either cytokine or P815+α-CD16 stimulation (Figure 7B).

DISCUSSION

Past cross-sectional analyses suggest that adaptive subsets of
NK cells are rarely present in the absence of CMV infection,
whereas the frequencies of these adaptive NK cells are markedly
increased in the majority of CMV seropositive individuals
(43, 44, 50, 55, 56). The present longitudinal analysis of NK
cells in healthy CMV-negative individuals affirms the lack
of NKG2C-expressing NK cells in CMV-naïve persons (44),
yet challenges the paradigm that the FcRγneg NK cell subset
is infrequent or absent in CMV seronegative individuals. In
contrast to the current prototype, the majority (28 of 40, 70%)
of the healthy, demonstrably CMV-negative adolescent women
profiled in this clinical study exhibit measurable frequencies
of FcRγneg NK cells during at least one study time point,

with dynamic changes in the frequency of these cells among
circulating NK cells over time. Changes in frequencies of
these subsets did not correlate with vaccine administration
or vaccine-antigen-specific antibody titers (data not shown),
suggesting that undefined environmental factors promote
oscillations in the representation of these subsets among total
circulating NK cells.

The low frequencies of NKG2C-expressing NK cells across all

time points in the 40 vaccine trial participants is consistent with

absence of CMV infection of these individuals and the purported

link between CMV gene products and expansion of this subset of
NK cells (57–59). Likewise, we observed very low (0.22 ± 0.15%
of live lymphocytes) but highly stable frequencies of infection-
associated CD56neg CD16+ NK cells in our cohort (data not
shown), consistent with absence of CMV and other viruses linked
to this unusual NK-cell population. Within the limitations of
our sampling scheme, our results support the hypothesis that
CMV gB and MF59 are insufficient to stimulate differentiation
or accumulation of NKG2C+ NK cells. Since CMV UL40-
derived peptides presented by HLA-E are critically required
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FIGURE 6 | No change in CD57 and NKG2A over time. (A) Proportions of CD57+ and NKG2A+ CD3−CD56dim NK cells in individual gB/MF59 vaccine (red) and

placebo (black) recipients over time. Mixed effects two way ANOVA with restricted maximum likelihood was used to compare mean differences over time between

both placebo and vaccine groups for each marker. (B) Representative location of FcRγneg (green), CD57+ (purple), and NKG2A+ (pink) cells at single time point in

t-SNE distribution of a single study participant CD56dim NK cell repertoire. (C) Expression of CD57 on FcRγneg and FcRγ+ CD56dim NK cells across all time points and

study participants where the FcRγneg subset was detectable (≥5% of CD56dim NK cells). Statistical significant differences between repeated measures determined by

Student’s t-test.

for HCMV-driven NKG2C expansion (38), incorporation of
UL40 into next generation vaccines may more effectively elicit
NKG2C+ memory NK cell expansion.

In contrast to both the tight link between CMV and NKG2C+

NK cells and the reported rarity of FcRγneg NK cells in CMV-
seronegative individuals, the present longitudinal data suggest
that the latter NK cell subset may be commonly present in
some NK-cell repertoires and can exhibit dynamic changes in
frequency. There was no correlation between numeric increases
in FcRγneg NK cells and expression of the proliferation marker
Ki-67, suggesting that release of this subset from tissues may
be a greater factor in these dynamic changes than proliferative
expansion. However, the timing of experimental sampling in the
present study likely precludes precise determination of a link
between proliferation and FcRγneg NK cell accumulation. The
majority (28 of 40, 70%) CMV seronegative individual in our
study exhibited populations of FcRγneg NK cells >10% during at
least one of the five time points analyzed over a year-long study
period. These data contrast a previous cross-sectional studies
which found expansions of NK cells lacking FcRγ, EAT-2, and/or
SYK in 6 out of 69 CMV seronegative adults (44). The fraction of

study participants scoring positive for FcRγneg NK cell subsets
at any given time point in our study ranged from 30 to 45%,
suggesting that additional factors may distinguish the two study
populations. Moreover, the FcRγneg NK cells measured in this
study appear to differ from those observed in CMV-infected
individuals with regards to expression of the maturation marker
CD57 (37, 44, 50, 54).

In addition to their distinct phenotype, the FcRγneg NK cells
measured here differ in their functional activity as compared to
their counterparts in CMV positive subjects (44). Namely, the
FcRγneg NK cells in the present study exhibit similar capacity
to make IFN-γ and degranulate as FcRγ+ NK cells in responses
to cytokines or antibody-dependent stimuli. We speculate
that CMV-independent FcRγneg NK cells are unlikely to bear
hypomethylation at the IFNG locus as a consequence of CMV
infection (44). As CD57 expression on NK cells is putatively
linked to increased cytolytic potential, decreased sensitivity
to inflammatory cytokines, and reduced proliferative potential
(60), this phenotypic disparity of FcRγneg populations of NK
cells in the absence of CMV may reflect important functional
distinctions as well. The observed increase in degranulation
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FIGURE 7 | No functional impact of FcRγ deficiency in HCMV-negative individuals. Eighteen samples from six vaccine trial participants (3 gM/BF59 and 3 placebo)

scoring positive for FcRγneg NK cells were stimulated with either IL-12+IL-18 for 24 h or P815 cells labeled with α-CD16 antibody for 6 h. Degranulation and IFN-γ

production assessed by addition of fluorochrome-labeled α-CD107a antibody as well as GolgiPlug and GolgiStop during final 6 h of incubation. Proportions of

CD107a+ and IFN-γ+ events among (A) FcRγneg (blue) and FcRγ+ (black) CD3neg CD56dim NK cells or (B) CD57+ (open circles) and CD57neg (closed circles) FcRγneg

NK cells. Statistical significant differences between groups was determined by two-way ANOVA.

of CD57+ FcRγneg relative to CD57neg FcRγneg NK cells we
observe consistent with the notion that CD57+ cells are more
differentiated and have a distinct transcriptional signature in
comparison to CD57− NK cells (54).

A major distinction of the present study population is the
restriction to analysis of adolescent females. The influence of
puberty-associated hormones and other pediatric variables on
adaptive NK cell subsets is unknown. Therefore, it is possible
that the present longitudinal study reveals dynamics of NK
cell subsets that are unique to adolescents, or even adolescent
females, that are not shared by adult CMV seronegative
populations. Of note, NK cells express the alpha and beta
estrogen receptors (ERα and ERβ) and exhibit function
alterations in response to estrogen (61, 62). Moreover, while
KIR, CD57, and NKG2A expression on NK cells remains stable
across menstruation cycles (51, 63), the stability of the FcRγneg

NK cell subset in this setting is less clear. Therefore, increased
prevalence of CMV-associated NK cells or dynamic variation
in the frequencies of the cells may reflect hormonal changes or
environmental influences that are unique to or more common in
adolescent females.

Besides these differences in age and gender of our study
population, the participants in the CMV vaccine trial also
exhibited a greater degree of racial diversity than was represented
in previous cross-sectional studies (44). Specifically, 35% of our

vaccine trial participants were Black (i.e., African American).
Although race assuredly impacts the NK-cell repertoire in the
context of highly polymorphic receptors, including killer-cell
immunoglobulin-like receptors (KIR), the effects of race on
CMV-reactive NK cells and receptors associated with these
subsets are less well-defined. Intriguingly, 100% (15 of 15) of
Black study participants demonstrated detectable FcRγneg NK
cells at one or more time points of study, whereas only 58%
(14 of 24) of Caucasian study participants exhibited FcRγneg

NK cells in their repertoire. Thus, gender, race, genetics, and
local environmental factors may all contribute to the distinct
observations of adaptive NK cell frequencies in our study.

A key unanswered question concerns the nature of the
stimuli provoking longitudinal changes in frequency of NK
cell subsets. A recent study of barcoded hematopoietic cells
in rhesus macaques noted significant fluctuations in the clonal
composition of NK cells over time (64). Our study stringently
controlled for CMV exposure via urine and blood analyses
(3). Moreover, the results do not support a relationship
between CMV gB vaccination or gB-specific antibody titers
and altered frequencies of NK cell subsets. The present results
contrast with marked change in NK-cell phenotype and function
observed following protein subunit or inactivated virus vaccine
administration in CMV seropositive individuals (48, 65–68).
Nonetheless, other subclinical acute infections, vaccinations (e.g.,
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seasonal influenza vaccine), inflammatory events, environmental
exposures (i.e., allergens), or shifts in microbiota composition
could alter the composition of the NK-cell repertoire. We
speculate that these environmental stimuli or associated immune
responses (i.e., antibody elaboration) provoke the expansion,
differentiation, or release of FcRγneg NK cells into the circulation.
The elevated frequency of these NK cell subsets in CMV-positive
individuals may reflect an altered tempo or magnitude of these
natural oscillations, or a greater regularity of the instigating
stimulus. Alternatively, as the frequencies of these subsets appear
to be more stable in CMV-seropositive individuals (40), aspects
of the inflammatory environment during chronic CMV infection
may more efficiently maintain these populations. Given that the
MF59 adjuvant used in this CMV vaccine is designed for optimal
stimulation of T and B-cell responses, future studies aimed at
ascertaining the nature of inflammatory cues promoting adaptive
NK cells will yield key insights into the types of adjuvants that
may be applied to intentional promote sustained expansion of
these NK cell subsets in next generation vaccines.

Our results, to our knowledge, represent the first longitudinal
study of CMV-associated NK-cell subsets in healthy CMV
seronegative individuals. Here, we had the unique ability to gain
insight into the intra-individual variation in the frequency of NK-
cell subsets following gB/MF59 vaccination. We show that the
lack of change in NKG2C expression was consistent with absence
of CMV infection, confirming the stringent association of this
virus with NKG2C+ NK cells. However, we also present evidence
suggesting that presence of FcRγneg, EAT-2neg, and SYKneg NK
cells in the repertoire may be more temporally dynamic and
CMV-independent than previously thought. These data also
reveal potentially important functional differences between CMV
independent FcRγneg NK cells and those accumulating in the
context of CMV infection. Future work examining age and
gender related differences as well as longitudinal analyses of post-
transplant patients may give further insight into the variegated
expression of CMV-associated NK-cell subsets.
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Janus kinase (JAK) inhibitors are widely used in the treatment of multiple autoimmune and

inflammatory diseases. Immunologic and transcriptomic profiling have revealed major

alterations on natural killer (NK) cell homeostasis associated with JAK inhibitions, while

information on other innate lymphoid cells (ILCs) is still lacking. Herein, we observed that,

in mice, the homeostatic pool of liver ILC1 was less affected by JAK inhibitors compared

to the pool of NK cells present in the liver, spleen and bone marrow. JAK inhibition

had overlapping effects on the transcriptome of both subsets, mainly affecting genes

regulating cell cycle and apoptosis. However, the differential impact of JAK inhibition was

linked to the high levels of the antiapoptotic gene Bcl2 expressed by ILC1. Our findings

provide mechanistic explanations for the effects of JAK inhibitors on NK cells and ILC1

which could be of major clinically relevance.
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HIGHLIGHTS

- JAK inhibition has distinct impacts on the homeostatic numbers of NK cells and ILC1.
- Tofacitinib has redundant effects on the transcriptomic programs of NK cells and ILC1.
- Basal expression level of Bcl2 underlies the differential impact of tofacitinib in NK cells and ILC1.

INTRODUCTION

Cytokines are pivotal in the maintenance of an appropriate immune system homeostasis, but
dysregulation of their activity underlies multiple immune-related disorders (1). The elucidation
of the role of the Janus kinase (JAK) family of intracellular tyrosine kinases in the signaling
cascade downstream of cytokine receptors has highlighted this class of molecules as potential
therapeutic targets. Indeed, inhibition of JAK enzymatic activity has proved successful for several
immune-mediated pathologies and these drugs are now approved and prescribed to thousands of
patients around the world (2). Given the clinical relevance of the drugs that target these enzymes,
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more complete knowledge is clearly needed. As such, the
pharmacological manipulation of JAKs represents an interesting
strategy to study the homeostatic requirements of cytokine
signals in different immune cell types ranging from T and B cells
to innate lymphoid cells (ILCs).

ILCs provide rapid immune protection through an array
of effector functions mirroring those associated with T cells
(3). Based on this similarity, ILCs have been divided into five
prototypical subsets: natural killer (NK) cells, ILC1, ILC2, ILC3,
and lymphoid tissue inducer cells (3). NK cells and ILC1 are able
to quickly release the signature cytokine interferon (IFN)-γ and,
for this reason, were initially included within the group of type-1
ILCs (4, 5). The ontogeny of ILC1 and NK cells is thought to have
both overlapping and independent routes (6, 7); among the latter,
evidence in mice shows a distinct usage of T-box transcription
factors with a selective expression and function for Eomes in NK
cells in contrast to a specific requirement for T-bet in ILC1 (8).

In the context of ILC biology, JAK inhibitors (JAKinibs)
have been employed to track different functional outputs,
including cytokine production and cell proliferation upon
cytokine stimulation in vitro (9). Notably, when used in vivo,
JAKinibs have led to a reduction of the number of mouse NK
cells (10). Likewise, patients treated with JAKinibs display a dose-
dependent loss of peripheral blood NK cells (11–13). However,
no information is currently available about the effects of in vivo
treatment of JAKinibs on the phenotype of NK cells or other ILCs
in distinct tissues.

Development and homeostasis of both NK cells and ILC1
depend on the functions of cytokines, primarily IL-15 and
IL-7, which signal through the JAK/STAT pathway (14–16).
Observations in humans, corroborated by studies using animal
models, have shed light on the importance of the downstream
signaling events induced upon activation of JAK3, JAK1, and
STAT5 in the development and effector functions of ILCs (17).
In this regard, patients carrying JAK3 mutations develop severe
combined immunodeficiency associated with loss of T and NK
cells as well as the entire ILC system (18, 19). In mice, Jak3
deficiency blocks NK/ILC differentiation in the bone marrow
(BM) at the ILC precursor and the pre-NK cell progenitor stage;
thus, no ILCs are preserved in these mice (20). Similarly, ablation
of both Stat5a and Stat5b leads to almost total loss of NK cells
(21). This phenotype is also observed when the entire Stat5 locus
or Jak1 are deleted in Ncr1-expressing cells (22, 23). Selective
preservation of Stat5 alleles (Stat5b or Stat5a) has revealed a
critical role of Stat5b more so than Stat5a in regulating ILC
functions (24, 25), as well as a differential susceptibility among
ILCs to tolerate deprivation of STAT5 signals, with NK cells
and ILC1 being the most sensitive (25). The profound effects
on lymphoid development leading to loss of ILC populations
reveal a major limitation in using Jak3, Jak1, and Stat5 deficient
mice. Because many of the downstream effects of the JAK/STAT
pathway affect the functions of the immune system, distinct
compounds capable of blocking JAK enzymatic activity have
been developed as selective immunosuppressant to be used in
immune-mediated diseases (26).

Herein, we studied the impact of JAKinibs on the homeostasis
of two prototypical ILC subsets: NK cells and ILC1. We assessed

the effects of in vivo administration of a JAK1/3 inhibitor,
tofacitinib, vs. a more selective JAK3 inhibitor, PF-06651600,
focusing on NK cells from spleen, liver and BM and ILC1 from
liver. Our data revealed differential effects of these JAKinibs
on the NK cell and ILC1 numbers, the latter subset being less
sensitive to JAK inhibition. By using a transcriptomic approach,
we identified a major cell cycle block in both subsets after
in vivo treatment with tofacitinib, associated with a decreased
expression of antiapoptotic genes, including Bcl2. By using
a pharmacological approach, we demonstrated that the high
expression levels of Bcl2 in ILC1 were associated with the
differential impact of JAK inhibition observed between the two
subsets, arguing for divergent dependence of the homeostasis of
these populations on cytokine signals.

MATERIALS AND METHODS

Mice and Inhibitors
BALB/c and Rag2−/− mice were purchased from Jackson
Laboratory. All animal studies were performed according to
NIH guidelines for the use and care of live animals and were
approved by the NIAMS Institutional Animal Care and Use
Committee. JAKinibs were resuspended in 0.5% methyl cellulose
and animals were dosed orally twice daily with vehicle or 30
mg/kg of tofacitinib (kindly provided by Pfizer) or 20 mg/kg of
PF-06651600 (provided by the National Center for Advancing
Translational Sciences (NCATS), NIH) for 1 week (or 3 days,
where indicated) (27). ABT-199 (Venetoclax, Selleckchem) was
resuspended in 60% Phosal 50PG, 30% PEG 400, and 10% EtOH.
Animals were dosed orally once a day with vehicle or 90 mg/kg
for a week.

Cell Isolation, Flow Cytometry, and Cell

Activation Assays
Cells from spleen, liver and BM were isolated as previously
described (28). Antibodies are listed in Supplemental Figure 1.
Samples were acquired using LSR Fortessa cytometer
(BD Biosciences) and BD FACSDiva software (v.8.0.1, BD
Biosciences) and analyzed with FlowJo software (Tree Star). Cell
sorting was performed using FACSAria III (BD Biosciences). For
the evaluation of IFN-γ expression, cells were left untreated or
stimulated with PMA/Ionomycin (Sigma-Aldrich) for 2 h or IL-2
(1,000 U/ml, Hoffmann-La Roche Inc.) and IL-12 (10 ng/ml), or
IL-12 (10 ng/ml) and IL-18 (100 ng/ml) (R&D Systems) for 6 h
(with the addition of GolgiPlug, from BD Biosciences).

RNA Sequencing and Transcriptomic

Analysis
Cells isolated from spleen and liver were sorted (95–99%
post-sort purity) as described in Supplemental Figures 1A,B.
RNA-seq was performed according to manufacturer’s protocol
(NEBNext Ultra II RNA Library Prep, E7770L). Barcoded
sequencing libraries were sequenced on Illumina HiSeq3000. 50-
bp single end reads were demultiplexed to FastQ using bcl2fastq
2.17.1 and mapped onto mouse genome build mm10 using
TopHat 2.1.1. Gene expression values (RPKM, reads per kilobase
exon per million mapped reads) were calculated with Partek
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Genomic Suites 7.18.0723. RPKM values were log2 transformed
(with a 0.1 offset) and ANOVA was performed to find
differentially expressed genes. Expressed genes having an average
absolute RPKM > 2 were listed in Supplemental Tables 1, 2

for NK and ILC1, respectively (miRs and Snors were excluded)
and used for further analyses. Volcano plots were generated
using R 3.6.0; heatmaps were generated usingMorpheus software
(Broad Institute). DAVID bioinformatics resource was used for
GO analysis.

Statistics
Unpaired t-test and ANOVA were used to quantify statistical
deviation between experimental groups, as indicated in figure
legends. Asterisks denote significant differences ∗P < 0.05; ∗∗P
< 0.01; ∗∗∗P < 0.001.

RESULTS

Distinct Impact of JAK Inhibition on ILC1

and NK Cell Homeostatic Numbers
Immunologic and transcriptomic analysis performed on a wide
range of adaptive and innate immune cells inmice have revealed a
major impact of JAKinibs on the homeostatic pool of splenic NK
cells (10). Building on these findings, we sought to dissect how
prototypical liver ILC1 were affected by JAKinibs in relations to
NK cells present in the liver, spleen and BM.

We used, as a model, mice treated with oral administration
of a JAK1/3 or JAK3/TEC family (29) kinase-selective inhibitors,
tofacitinib and PF-06651600, respectively, for a week, twice daily
at doses comparable to the range approved for clinical use and
which do not provide a total block of JAK3/1 activity (10). We
analyzed lymphocytes isolated from liver, spleen and BM by flow
cytometry and assessed the relative number of NKp46+ cells
(gating strategies in Supplemental Figure 1A). Treatment with
both JAKinibs led to a marked and significant reduction of the
number (represented as ratio relative to control) of NKp46+

cells in all tissues analyzed (Figure 1A). Whereas, splenic and
BM NKp46+ cells mainly comprise NK cells, the liver contains
similar proportions of tissue resident ILC1 and NK cells. When
we dissected liver NKp46+ cells by CD49b (DX5) and Eomes
expression, we observed profound and significant changes of
NK/ILC1 ratios (Figure 1B). This phenotype was associated with
a differential effect in maintaining the homeostatic pools of ILC1
and NK cells. Indeed, while both NK cell and ILC1 numbers
were reduced, NK cells were affected to a greater degree than
ILC1 (Figure 1C and Supplemental Figure 1B). The differential
impact of JAK inhibition on NK cells and ILC1 was independent
by the presence of T and B lymphocytes, since similar results were
obtained inRag2−/− mice (Supplemental Figure 1C). Moreover,
while evidence proving a similar efficacy of inhibiting JAK3 alone
or both JAK1 and JAK3 has remained controversial (10, 30), our
results showed that selectively targeting JAK3 (and TEC kinases),
with PF-06651600, was as efficient as targeting multiple JAKs
using tofacitinib in terms of their impact on the homeostatic
pools of NKp46+ cells.

Together with the effects in liver and spleen, our data provided
evidence for the impact of JAKinibs on the pool of BM NK cells

FIGURE 1 | Effects of tofacitinib and PF-06651600 on ILC1, NK cells, and BM

progenitors. BALB/c mice were dosed orally with tofacitinib, PF-06651600 or

vehicle twice a day for 7 days. (A) Relative cell numbers for CD3ε− NKp46+

cells from liver (left panel), spleen (middle panel) and BM (right panel) are

shown. ANOVA one-way test was applied. (B) Subsets of liver NKp46+ cells

were distinguished by the expression of Eomes and DX5/CD49b. ILC1 were

defined as DX5−Eomes− cells and NK cells as DX5+Eomes+ cells.

Percentages depicted in dot plots are representative. (C) Relative cell numbers

for liver ILC1 and NK cells are shown. ANOVA one-way test was applied.

(A–C) Five independent experiments were combined, and values were

normalized to the mean of vehicle-treated mice in the corresponding

experiment. (D) Relative cell numbers of HSC, CLP, ILCp, and NKP

progenitors are shown. Student’s t-test statistics are comparing samples to

vehicle. Three independent experiments were combined, and values were

normalized to the mean of vehicle-treated mice for each

corresponding experiment. *P < 0.05; **P < 0.01; ***P < 0.001.

(Figure 1A), which led us to evaluate whether JAK inhibition
affected NK cell/ILC progenitors present in this tissue. As shown
in Figure 1D (gating strategies in Supplemental Figure 1D),
treatment with tofacitinib resulted in decreased numbers of HSC,
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CLP, and ILCp, as well as an accumulation of NKP, pointing
to a developmental block at this stage. These findings were in
agreement with a previous report showing that selective ablation
of the Stat5 locus in NK cells led to increased numbers of
NKP (22).

Altogether, our data showed that administration of JAKinibs
at doses within the range approved for clinical use, affected
the homeostatic pool of both ILC1 and NK cells, although the
impact of JAK inhibition was greater on NK cells. This effect
was independent from the presence of adaptive immune cells. In
addition, we showed that the effects of tofacitinib extended to BM
precursors and ILC/NK progenitors.

Tofacitinib Administration Inhibits the

Expression of Genes Regulating Cell Cycle

and Survival in NK Cells
We have previously shown that NK cells with reduction in Stat5b

or Stat5a levels exhibit a loss of their signature traits associated

with a maturation block (25). Therefore, we investigated whether

treatment with JAKinibs could also affect NK cell identity

and/or differentiation by coupling transcriptomic analysis and

flow cytometry.
At the transcriptional level, we observed that the impact

of the 7-days treatment with tofacitinib mainly consisted of a

FIGURE 2 | Impact of tofacitinib on the transcriptome and phenotype of splenic NK cells. (A) Volcano plot for genes expressed by splenic NK cells isolated from mice

treated or not for 1 week with tofacitinib. Representative down-regulated (blue) and up-regulated (red) genes are highlighted. Two mice for treated and three for vehicle

were pooled together for each replicate. (B) MA plot shows transcript abundance (x axis, mean RPKM in NK cells receiving vehicle) and FC (y axis, log2 of tofacitinib

÷ vehicle) for genes associated with NK cell identity. (C) Relative cell number for splenic NKp46+ and (D) NK cell subsets, defined by CD27, CD11b, or KLRG1

expression, at 3 and 7 days of tofacitinib treatment are shown. (E) Expression levels evaluated by flow cytometry for Ki67 (percentage of positive cells), Bcl2 [Mean

Fluorescence Intensity (MFI)], and CD98 (MFI) in NK cells at 3 and 7 days of tofacitinib treatment are shown. (C–E) Statistics were performed using one-way ANOVA.

Two independent experiments were combined (vehicle n = 8; 3-days treatment n = 5; 7-days treatment n = 6), and values were normalized to the mean of

vehicle-treated mice for each corresponding experiment. *P < 0.05; **P < 0.01; ***P < 0.001.
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reduction in gene expression in splenic NK cells (Figure 2A
and Supplemental Table 1), which included down-regulation of
genes involved in NK cell survival (Bcl2 and Bcl2l1), proliferation
(Mki67), and function (Gzmb), in agreement with a previous
report (10). On the other hand, genes defining NK cell identity
[gene list described by the Immgen project (31)] were not
affected by the treatment, except for Gzmb, which was the only
down-regulated gene with a fold-change (FC) higher than 2
(Figure 2B). Similarly, no significant differences in Eomes and
Tbx21 (encoding T-bet) were observed after in vivo treatment
with tofacitinib.

To evaluate the effect of tofacitinib treatment on terminal
differentiation, we measured the number of NK cells expressing
markers associated with distinct maturation stages, namely
CD27, CD11b, and KLRG1 (32, 33). To rule out the effects
of possible mechanisms of cell adaptation or selection which
could occur after the 7-days treatment, mice also received
the drug for only 3 days. As shown in Figure 2C, NK cell

numbers already started to decrease at the early time point,
and to a greater extent at day 7. This reduction was associated
with a global alteration of all the NK cell subsets analyzed
(Figure 2D), and led, after 7 days of treatment, to a selective
decrease of the frequency of terminally differentiated NK cells
expressing KLRG1 (Supplemental Figure 2), suggesting that
JAK inhibition could have cumulative effects during time either
on differentiation or turn-over of this subset.

Finally, we evaluated by flow cytometry the expression
levels of selected downregulated genes present in our dataset
(Supplemental Table 1), including Ki67 (encoded by Mki67) to
track cell cycle, Bcl2 for survival and CD98 (as a surrogate for
Slc7a5 expression). As shown in Figure 2E, expression of these
proteins was significantly affected both at day 3 and 7 after
tofacitinib treatment. Among all the parameters analyzed, only
Bcl2 was downregulated at higher degree at day 3 than day 7,
suggesting that the effect on survival could occur earlier than the
effects on proliferation and differentiation.

FIGURE 3 | Redundant effect of tofacitinib on ILC1 and NK cell transcriptomes. (A) Volcano plot for genes expressed by liver ILC1 isolated from mice treated or not

for 1 week with tofacitinib. Representative down-regulated (blue) and up-regulated (red) genes are highlighted. (B) Scatter plot comparing the effects of tofacitinib on

NK and ILC1. Genes significantly (p < 0.05) up-regulated (FC > 2) and down-regulated (FC < 0.5) in ILC1 are highlighted in red and blue, respectively. (C) Expression

of selected genes in liver and splenic NK cells is depicted by heatmap, comparing mice administered with vehicle or tofacitinib. (D) Forty-five down-regulated genes in

ILC1 having RPKM > 5; FC < 0.5; p-value < 0.05 were selected for GO. Only GO terms with a p-value < 0.05 are represented. More than 10 mice for each group

(vehicle and tofacitinib) were pooled.
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Our results showed that, in contrast to the previously
employed genetic models, acute pharmacological inhibition did
not alter NK cell identity suggesting differential requirements
for acquisition of signature genes vs. homeostasis. Moreover,
except for Bcl2, the impact of JAK inhibition on NK
cells appeared to be cumulative during the time frame
analyzed and encompassed effects on cell cycle as well
as survival.

Redundant Effects of Tofacitinib on the

Transcriptional States and Functions of

ILC1 and NK Cells
To discriminate possible mechanisms underlying the differential
sensitivity to JAKinibs on the homeostatic pool of liver ILC1
and NK cells, we explored the impact of tofacitinib on
the transcriptome of ILC1 (Supplemental Table 2). Similar to
what observed in NK cells, transcriptomic changes in ILC1
mainly consisted of a reduction in gene expression (Figure 3A,
and Supplemental Table 2). Among the few significantly up-
regulated genes, only Tcf7, a transcription factor expressed
by ILC progenitors and required for the development of the
whole ILC compartment (34), reached high expression levels
of 54 RPKM and a FC higher than 2. Similarly to what we
observed in NK cells, genes involved in survival (Bcl2), function
(Gzmb), and proliferation (Mki67) were mainly down-regulated
in ILC1.

To define distinct and shared genes affected by JAK inhibition
on ILC1 and NK cells, we compared the two datasets highlighting
the genes up- and down-regulated in ILC1 (FC > 2; p-value
< 0.05). As shown in Figure 3B, most of the genes down-
regulated in ILC1 followed a similar trend in NK cells (red
ellipse), including Bcl2, Bcl2l1, or Bspry (Figure 3C, group
1). Moreover, we observed a discrete fraction of genes that
was selectively down-regulated in ILC1 (green box). This
group was enriched with genes specifically expressed on ILC1.
Among these genes, Cish, which encodes for cytokine-inducible
SH2 containing protein (CIS), was constitutively expressed on
ILC1 and decreased upon in vivo treatment with tofacitinib
(Figure 3C, group 2). Among the up-regulated genes, Bcl6 was
also induced in NK cells; and vice-versa, genes up-regulated in
NK cells, such as, Fos and Jun followed a similar trend in ILC1
(Figure 3C, group 3).

Gene ontology (GO) analysis showed that transcripts
regulating the response to cytokines/virus, cell cycle and the
apoptotic pathway were enriched among the tofacitinib targets
in ILC1 (Figure 3D). Thus, we sought to measure whether
administration of tofacitinib for 7 days differentially affected the
ability to produce IFN-γ, as well as, the expression of Ki67 and
Bcl2 in liver ILC1 and NK cells. To evaluate the production
of IFN-γ, liver cells were isolated both from untreated and
tofacitinib-treated mice and stimulated with PMA/Ionomycin,
IL-2/IL-12, or IL-12/IL-18. As shown in Figure 4A, a 7-days
treatment with tofacitinib reduced the ability of NK cells to
produce IFN-γ upon PMA/Ionomycin stimulation, while the
potential of NK cells and ILC1 to respond to cytokines was
not altered. These data suggest that the pharmacological block

has limited effects on the cell intrinsic abilities to produce
IFN-γ (Figure 4A).

Next, we tracked the levels of Ki67 and Bcl2 expression on
liver ILC1 and NK cells after 7-days treatment with tofacitinib.
Contrary to the impact observed on the homeostatic pools of
both subsets, tofacitinib inhibited Ki67 expression at greater
degree in ILC1 than in NK cells (Figure 4B). As shown above
for splenic NK cells, the effects of tofacitinib on liver ILC1 were
already detectable at day 3 and greater at day 7 after treatment
(Supplemental Figure 3A). These data provide evidence for the
role of JAKinbs in regulating the overall proliferative states of
both ILC1 and NK cells, in vivo. Relative to Bcl2 expression, we
observed that tofacitinib inhibited this protein in both subsets
(Figure 4C). However, the expression levels of Bcl2 in liver
ILC1 isolated from both untreated and tofacitinib-treated mice
exceeded those observed in untreated NK cells, suggesting that
the relatively high levels of Bcl2 on ILC1 might be responsible
for the limited effect of JAKinibs on the homeostatic pool of
these cells.

Altogether, we showed that the effects of JAK inhibition on
ILC1 and NK cells appeared redundant at the transcriptional and
functional level, with genes involved in survival and proliferation
being mainly affected.

Basal Expression Levels of Bcl2 Are Linked

to the Outcome of JAKinibs on the

Homeostatic Numbers of ILC1 and NK

Cells
The impact of Bcl2 family members in regulating NK cell survival
has been previously addressed using genetic models, which have
demonstrated that Bcl2 and Mcl1 have non-redundant roles in
regulating NK cell survival (35–37), while Bcl2l1 is dispensable
(35). In NK cells, Bcl2 is down-regulated when STAT5 signaling
is altered (25, 38), and its overexpression can rescue the effects
on the NK cell pool associated with Stat5 deficiency (39). In
our dataset, the antiapoptotic genes Bcl2 and Bcl2l1 were both
downregulated in ILC1 and NK cells, while Mcl1 expression
was not altered by tofacitinib treatment, implying differential
mechanisms of homeostatic regulation for these three members
of the Bcl2 family.

Given that Bcl2 protein was expressed at higher levels
by liver ILC1, from both untreated and tofacitinib-treated
mice, compared to untreated NK cells, we hypothesized that
the differential effect of tofacitinib on the size of the two
subsets was dependent on their distinct ability to survive
after perturbation of Bcl2 function. To test this hypothesis,
we treated mice with oral administration of a Bcl2 specific
blocker, namely ABT-199 (Venetoclax) for 7 days (40, 41).
We first analyzed whether the pharmacological block of Bcl2
had parallel effects compared with those observed in genetic
models by evaluation the impact of ABT-199 on splenic
NK cells. As shown in Figure 5A, ABT-199 administration
induced a global decrease of the number of splenic NK cells.
In addition, treatment mainly affected the number of more
differentiated subsets defined according CD27 and CD11b
expression (Figure 5B). These observations were in line with the
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FIGURE 4 | Impact of tofacitinib treatment on the functions of NK cells and ILC1. (A) Bar graphs show the percentage of IFN-γ-positive ILC1 and NK cells, quantified

by flow cytometry, after 2 h stimulation with PMA/Ionomycin (P/I), or 6 h stimulation with IL-2/IL-12 or IL-12/IL-18, in mice treated or not for 1 week with tofacitinib.

Two experiments were combined. (B) Percentage of Ki67-positive ILC1 and NK cells isolated from liver after 7 days administration of tofacitinib or vehicle.

(C) Representative histogram plots (left panel) and bar graphs (MFI, right panel) show Bcl2 protein expression in ILC1 and NK cells from mice treated with tofacitinib or

vehicle. *P < 0.05; ***P < 0.001.

FIGURE 5 | ABT-199 treatment differentially affects the homeostatic pool of liver ILC1 and NK cells. Mice were dosed orally with ABT-199 or vehicle daily for 7 days.

(A) Relative cell numbers of splenic NK cells and (B) NK cell subsets (dissected based on CD27 and CD11b expression) are shown. (C) Liver ILC1 and NK cells in

mice untreated or treated for 7 days with ABT-199 (Venetoclax) or vehicle are depicted. Two experiments were combined (vehicle n = 8; ABT-199 n = 6), and values

were normalized to the mean of vehicle-treated mice for each corresponding experiment. One-way ANOVA was applied. *P < 0.05; **P < 0.01; ***P < 0.001.

low Bcl2 expression levels observed in mature CD11b+ NK cell
subsets (Supplemental Figure 3B) and with previous evidence in
mice showing major defects in mature NK cells associated with
the ablation of Bcl2 gene.

Having established the impact of ABT-199 administration
on splenic NK cells, we next analyzed its effect on the liver

subsets. As shown in Figure 5C, treatment with ABT-199 led to
a significant decrease of both liver ILC1 and NK cells. However,
the number of the NK cell pool was affected at a higher degree
in comparison to the number of ILC1, indicating that the higher
levels of Bcl2 present on ILC1 provided an advantage in term of
survival as compared to NK cells.
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Altogether we showed that pharmacological inhibition of Bcl2
in mice recapitulated the effects observed using genetic models
targeting Bcl2, consisting in a major loss of more differentiated
NK cells. Moreover, we provided evidence for a differential effect
of Bcl2 inhibition in ILC1 and NK cells, the latter being more
sensitive to ABT-199 treatment.

DISCUSSION

To better understand the impact of JAK inhibition in regulation
of NK cells and ILC homeostasis, we have administered JAKinibs
to mice at doses comparable to the range approved for clinical
use. The first unexpected finding we observed was the differential
impact of JAKinibs on the homeostasis of NK cells and ILC1.
This was unanticipated because both subsets were highly affected
when Jak3 and Stat5 were targeted by genetic approaches in
mice (20, 25). Mechanistically, we speculated that the limited
effect of JAKinibs on the pool of ILC1 was linked to their
higher expression levels of Bcl2 compared to NK cells. This
hypothesis is supported by the higher sensitivity of NK cells
compared to ILC1, in respect to the pharmacological block
of Bcl2.

Along with survival, the cell cycle of both NK cells and ILC1
was highly affected by tofacitinib treatment; the drastic reduction
of cells in the G1-S-M phase associated with the low frequency of
Ki67+ cells outline the pivotal role of JAK signals in regulating
the proliferation of these prototypical subsets in vivo, and can
also contribute to the decrease of their homeostatic number.

Interestingly, this aspect, although inferred by results obtained
using in vitro systems, had remained unexplained by employing
genetic approaches, in vivo.

The effects observed on the pool of bone marrow NK
cells and their precursors represent another possible factor
contributing to the to the decreased number of NK cells
in other organs. In this regard, tofacitinib treatment induces
an increase of the chemokine receptor CXCR4, which could
alter mechanisms of bone marrow retention of NK cells (42,
43). Despite the differences on the homeostatic numbers, the
effect of JAK inhibition at the transcriptional level was similar
for both NK cells and ILC1, with a main reduction of the
expression of JAK-targets. No major changes in genes defining
the NK cell identity were observed, indicating a differential
role for JAK-dependent signals in regulating acquisition of
identity and homeostasis. Among the few upregulated genes,
we found the transcription factors Bcl6, Tcf1, Fos, and Jun.
These TFs could be usually repressed by JAK-signals or,
alternatively, up-regulated after tofacitinib treatment allowing
cells to adapt to deprivation of JAK-dependent signals. The
expression of Bcl6 has been related to mechanisms of ILC
plasticity, involving suppression of ILC3 genes and promotion
of NK/ILC1 specific programs (44). Although transitions of
NK cells toward an ILC1-like phenotype occur both under
physiological and pathological conditions, we did not observe
alterations of ILC1 markers, such as Trail and CD49a,
in NK cells after treatment (data not shown). Thus, the

higher expression of Bcl6 in both NK cells and ILC1 after
tofacitinib treatment might be part of a circuit reinforcing
NK/ILC1 phenotypes in absence of proper levels of JAK-
dependent signals.

While most of the genes followed a common transcriptional
trend in NK cells and ILC1 upon tofacitinib treatment, Cish
represented one of the few exceptions, being differentially
targeted by tofacitinib in the two type 1 subsets. As
recently reported, the homeostatic expression of Cish is
very low in NK cells but increases rapidly following IL-
15 stimulation (45). Since Cish levels were downregulated
after in vivo treatment with tofacitinib, the constitutive
expression of Cish in ILC1, instead, could be dependent on
the high levels of JAK-dependent signals acting on these
tissue-resident cells.

Moreover, we noticed that most of the effects observed
in NK cells at day 7 after treatment were also present at an
earlier time point. However, the impact of JAK inhibition
on NK cells appeared to be cumulative, within the time
frame analyzed, in terms of cell numbers, maturation
stages and proliferation, with Bcl2 representing the only
exception. Thus, our data suggest that the limited effects of
tofacitinib on NK cell transcriptome could be independent
from mechanisms of adaptation occurring during the
treatment, which may select or generate cells resistant to
JAK inhibition.

Finally, our study showed that this approach represents both
an opportunity to better understand ILC biology as well as
a strategy to modulate ILC functions during diseases. Since
pharmacological inhibition of JAKs is now successfully utilized
for the treatment of several immune-mediated pathologies, our
study sheds light on the potential effects on immune cells when
this pathway is targeted.
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Natural killer (NK) cells are cytotoxic innate lymphocytes that are well-known for their

ability to kill infected or malignant cells. Beyond their roles in tumor surveillance

and anti-pathogen defense, more recent studies have highlighted key roles for NK

cells in a broad range of biological processes, including metabolic homeostasis,

immunomodulation of T cells, contact hypersensitivity, and pregnancy. Consistent with

the breadth and diversity of these functions, it is now appreciated that NK cells are

a heterogeneous population, comprised of specialized and sometimes tissue-specific

subsets with distinct phenotypes and effector functions. Indeed, in addition to the

conventional NK cells (cNKs) that are abundant and have been well-studied in the

blood and spleen, distinct subsets of tissue-resident NK cells (trNKs) and “helper”

Group 1 innate lymphoid cells (ILC1s) have now been described in multiple organs and

tissues, including the liver, uterus, thymus, adipose tissue, and skin, among others. The

cNK, trNK, and/or helper ILC1 populations that co-exist in these various tissues exhibit

both common and distinct developmental requirements, suggesting that a combination

of lineage–, subset–, and tissue–specific differentiation processes may contribute to

the unique functional properties of these various populations. Here, we provide an

overview of the transcriptional regulatory pathways known to instruct the development

and differentiation of cNK, trNK, and helper ILC1 populations in specific tissues in mice.

Keywords: natural killer cells, tissue-resident NK cells, transcriptional regulation, transcription factors, group 1

innate lymphoid cells

INTRODUCTION

Natural killer (NK) cells are cytotoxic innate lymphocytes that were first identified in 1975 based
on their capacity to spontaneously kill tumor cell lines without prior immunization (1, 2). Over
the past 45 years, our understanding of NK cell biology has grown and evolved, and it is now clear
that NK cells play important roles in diverse biological processes, ranging from tumor surveillance
and anti-pathogen defense tometabolic disorders, inflammatory diseases, stem cell transplantation,
neuronal pruning, and pregnancy (3–9).

The balance of evidence suggests that mouse NK cells and helper ILC1s are distinct lineages
in mice, arising from separate lineage-committed progenitors under homeostatic conditions (10).
They do, however, share extensive phenotypic and functional similarities, including expression of
many markers historically associated with NK cells such as NKp46, robust production of interferon
gamma (IFN-γ) upon activation, and expression of the T-box transcription factor, T-box expressed
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in T cells (T-bet) (10). In certain tissues and inflammatory
settings, NK cells and helper ILC1s can possess such similar
phenotypes that they have been difficult to distinguish,
particularly in the absence of lineage-tracing experiments. These
challenges, along with the historical lag in recognizing NK cells
and helper ILC1s as distinct lineages and the fact that few
truly lineage-discriminating markers have been described, have
resulted in a confusing body of literature in which NK cells
and helper ILC1s have not always been separately identified
or consistently defined. For consistency within this review, we
will discriminate mouse NK cells from mouse helper ILC1s
on the basis of Eomesodermin (Eomes) expression, a common
convention notwithstanding the field’s limited understanding of
conditions under which NK cells might lose, or helper ILC1s
might gain, Eomes.

While most studies on NK cells have focused on population(s)
abundant in the blood and spleen, now commonly referred to
as conventional NK cells (cNKs), unique tissue-specific and/or
tissue-resident NK cell (trNK) populations have recently been
described in diverse tissues, including the uterus, thymus,
intestine, adipose, skin, peritoneal cavity, and salivary, lacrimal,
and mammary glands. As described below, many of these unique
trNK populations exhibit distinct tissue-specific phenotypes,
functions, and developmental requirements. In particular, recent
studies have highlighted notable differences in the transcriptional
regulation of trNK, cNK, and helper ILC1 development,
suggesting that distinct differentiation processes support the
unique functional properties of tissue-specific trNKs. Here, we
review current literature on the transcriptional pathways known
to control the development of various trNK populations in mice,
with a particular focus on regulatory mechanisms that are unique
to trNKs as compared to cNKs and helper ILC1s in each tissue.

OVERVIEW OF cNK DEVELOPMENT IN

THE BONE MARROW

The bone marrow is the primary, but not exclusive, site of
cNK development in adults (11–13). Like T cells and B cells,
cNKs develop from precursor populations with pan-lymphocyte
potential—e.g., common lymphoid progenitors (CLPs) and
lymphoid-primed multipotent progenitors (LMPPs)—via a
stepwise differentiation process in which multi-lineage potential
progressively diminishes as the NK cell fate becomes established
(14, 15). Early innate lymphoid progenitors (EILPs) and
alpha-lymphoid progenitors (αLPs) are among the earliest
developmental intermediates capable of generating NK cell-
committed NK progenitors (NKPs) and helper ILC-committed
ILC precursors (ILCPs), but not T cell- or B cell-committed
precursors (16–18).Mouse NKPs were originally reported to exist
within a pool of Flt3−2B4+CD27+Id2hiIL-7Ra+/− cells in the
bone marrow that lacked all mature immune cell lineage markers
(Lin−), including classical NK cell markers such as NKp46 (19–
21). These included very early NKPs (e.g., pre-NKPs and pre-pro-
NKPs) that lacked the IL-15 receptor β-chain, CD122, as well
as more differentiated “refined” NKPs (rNKPs) that expressed
CD122 and were thus responsive to IL-15, a cytokine known

to critically regulate diverse aspects of cNK development and
function (20, 21). NKPs were shown to give rise to immature
NK cells (iNKs), which had acquired expression of the NK
activing receptors NKp46 and, in some mouse strains, NK1.1
(19). [Of note, later lineage-tracing studies demonstrated that the
markers originally used to identify NKPs, rNKPs, and iNKs in the
bone marrow did not fully exclude all helper ILC lineage cells,
especially helper ILC1s (22)]. Upregulation of CD49b, additional
NK receptors (e.g., Ly49 receptors), and effector molecules such
as perforin and granzymes mark the later stages of differentiation
into mature NK cells (mNKs) (19–21). mNKs continue to mature
in the bone marrow and peripheral tissues, a process marked
by downregulation of CD27 and upregulation of CD11b, with
CD27+CD11b− cells being less mature (but more proliferative)
and CD27−CD11b+ cells being most mature (23–25).

TRANSCRIPTIONAL REGULATION OF cNK

DEVELOPMENT IN THE BONE MARROW

cNK development is controlled by the sequential and coordinated
activities of multiple transcriptional regulators. Among these are
the transcription factors T cell factor 1 (TCF-1) and Nuclear
factor interleukin-3 regulated (Nfil3), both of which are expressed
at or prior to the NKP-ILCP developmental branch point and are
important for proper cNK and helper ILC lineage differentiation
(17, 18, 26–34). Mice lacking TCF-1 have fewer pre-NKPs,
rNKPs, andmNKs in the bonemarrow. And, although peripheral
cNK numbers are only modestly impacted in non-chimeric TCF-
1-deficientmice, they are severely reduced in a competitivemixed
bone marrow chimera environment (18, 34). Notably, TCF-1-
deficient NK cells have an unusual hypermature but pro-apopotic
phenotype linked to granzyme B overexpression, suggesting that
TCF-1 controls cNK development by modulating the timing of
maturation and effector gene expression (34).

Nfil3-deficient mice also have severe and early defects in NK
cell development, reflected in a near-complete loss of cNKs in the
periphery and significantly reduced numbers of NKPs, iNKs, and
mNKs in the bone marrow (17, 26, 27, 31, 33). The requirement
for Nfil3 appears to be restricted to the earliest stages of cNK
development, as loss of Nfil3 at or after the iNK stage has little
impact on cNK numbers or function (35). Nfil3 itself regulates
expression of several other transcription factors important for
NK differentiation and maturation, including Inhibitor of DNA
binding 2 (Id2) and Eomes (discussed below) (26, 31, 32). Id2,
which acts to inhibit E-box family proteins that support B and
T cell differentiation, is indispensable for cNK development.
Id2-deficiency leads to a severe reduction in the peripheral
cNK compartment, owing to its critical roles in promoting
cNK maturation, effector functionality, and sensitivity to IL-15
signaling (36–39).

Like Nfil3, the transcription factors, ETS proto-oncogene
1 (Ets1) and Signal transducer and activator of transcription
5 (Stat5), the histone H2A deubiquitinase, Myb-like, SWIRM
and MPN domains 1 (Mysm1), and the long non-coding RNA
(lncRNA), RNA-demarcated regulatory region of Id2 (Rroid)
also critically regulate cNK development and are important for
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maintaining proper Id2 expression in differentiating cNKs (40–
43). Genetic deficiencies in Ets1, Mysm1, or Rroid all impair
maturation of bone marrow cNKs, resulting in fewer, less
mature, and less functional cNKs in the periphery (42, 43).
Similarly, mature peripheral cNKs are severely reduced in mice
lacking Stat5b, and to a lesser extent Stat5a (43–45), and Stat5
tetramerization was recently shown to support cNK maturation
in the bone marrow and spleen (46).

Other important regulators of cNK development include the
T-box family transcription factors, T-bet and Eomes. Deficiencies
in either factor result in impaired cNK maturation in the bone
marrow, leading to fewer and less mature cNKs in the periphery
(47–52). T-bet in particular is important for modulating
proliferation and supporting survival in maturing cNKs (47).
Eomes and T-bet have both unique and overlapping functions in
developing cNKs. For example, T-bet-deficiency only moderately
impacts peripheral cNK numbers, and has little impact on bone
marrow cNK abundance, whereas Eomes-deficiency substantially
reduces both bonemarrow and peripheral cNK numbers (50, 52).
Moreover, compound deficiencies in both factors are far more
deleterious than deficiencies in either factor alone, resulting in
a near-complete loss of cNKs in the bone marrow and peripheral
organs (48, 50).

Additional transcription factors known to regulate later stages
of cNK cell differentiation and maturation include Kruppel-like
factor 2 (KLF2), GATA binding protein 3 (Gata-3), Runt-related
transcription factor 3 (Runx3), and Zinc-finger E homeobox-
binding 2 (Zeb2). Similar to T-bet, KLF2 restricts abnormal
proliferation and supports survival in maturing cNKs, and KLF2-
deficiency reduces the number of mature cNKs in the periphery
(53). Gata-3 helps sustain Id2, T-bet, and Nfil3 expression in
maturing cNKs, and cNKs lacking Gata-3 exhibit defects in
maturation and bone marrow egress (54). Similarly, Runx3
promotes later stages of cNK maturation, possibly through
cooperative regulation with T-box and Ets family transcription
factors, and cell-specific deletion of Runx3 or its co-regulator
Cbf-β leads to a reduction in the peripheral cNK compartment
(55, 56). And finally, Zeb2 has been shown to act downstream
of T-bet to critically regulate the maturation, survival, and egress
of mature cNKs from the bone marrow. Mice lacking Zeb2 have
more immature cNKs in the bone marrow, and fewer mature
cNKs in the periphery (57).

DEVELOPMENT OF TISSUE-SPECIFIC OR

TISSUE-RESIDENT NK CELLS AND

HELPER ILC1s

Liver
In addition to circulating CD49a−CD49b+Eomes+ cNKs, the
liver harbors a unique population of CD49a+CD49b−Eomes−

ILC1s that are tissue-resident in parabiotic mice (58, 59).
[Different groups refer to these tissue-resident cells as either liver
trNKs or liver ILC1s; here, we will use the ILC1 designation
since these cells are Eomes−]. Liver ILC1s reside in the liver
sinusoids and have been shown to mediate memory-like immune

responses in models of contact hypersensitivity (CHS) and viral
infection (59–62).

Phenotypically, liver ILC1s resemble immature cNKs in
having low or no expression of killer cell lectin-like receptor G1
(KLRG1), CD11b, CD122, and Ly49 receptors such as Ly49A,
Ly49D, Ly49G2, and Ly49H (50, 51, 63, 64). However, liver
ILC1s are transcriptomically distinct from both immature and
mature cNKs and exhibit an activated phenotype at steady state,
characterized by high expression of CD69, CD44, and CD160,
and low expression of CD62L (also known as L-selectin) (51, 59,
64, 65). They also express high levels of tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) and CD127,
as well as chemokine receptors such as CXCR3 and CXCR6 that
support residence in the liver sinusoids (50, 51, 59, 64, 66, 67).
Although activated liver ILC1s retain cytotoxic functionality
against target cells, they differ from cNKs in their higher
production of TNF-α, IL-2, and granulocyte-macrophage colony-
stimulating factor (GM-CSF), their preferential expression of
granzyme C instead of granzyme B, and their reduced expression
of perforin (51, 59, 64, 65). Liver ILC1s also express molecules
involved in immune regulation, including PD-L1, LAG3, CD39,
and CD73, and were recently shown to inhibit T cell function via
the PD-1–PD-L1 axis (68).

The unique phenotype, function, and transcriptome of liver
ILC1s, as well as the finding that they do not give rise to Eomes+

NK cells following adoptive transfer into intact (un-irradiated)
hosts (51), support their identity as a distinct lineage. Consistent
with this, liver ILC1s and cNKs exhibit both common and
distinct developmental requirements. Commonalities include
their shared dependence on IL-15 but not IL-7 signaling
for development, notwithstanding constitutive expression of
CD127 by liver ILC1s (51). Additionally, both liver ILC1s
and liver cNKs require TCF-1, Gata-3, Runx3 and its co-
factor Cbf-β, and T-bet for development, although liver ILC1s
are more severely impacted by T-bet-deficiency than liver
cNKs (18, 50–52, 54, 56, 64).

Distinct developmental requirements include findings that
liver ILC1s require Promyelocytic leukemia zinc finger (PLZF)
and the Aryl hydrocarbon receptor (AhR) for development, two
transcription factors that are dispensable for cNK development
(22, 69). Loss of PLZF significantly impairs liver ILC1
development, similar to its impact on many other helper ILC
sublineages (22). Likewise, mice lacking AhR have reduced
numbers of liver ILC1s, but normal numbers of liver cNKs,
owing to a role for AhR in limiting turnover and susceptibility
to cytokine-induced death in liver ILC1s (69).

Nfil3 has been reported as dispensable for liver ILC1, but
essential for liver cNK, development in some studies (32, 64, 70),
although Nfil3-deficient liver ILC1s were recently reported to
be competitively disadvantaged in mixed bone marrow chimeric
mice (52). Liver ILC1s also do not require KLF2 or Eomes for
development, unlike liver cNKs (50, 52, 53).

Development of liver ILC1s also uniquely depends on
Homolog of Blimp-1 (Hobit), a transcription factor that
supports T cell tissue-residency, in part by suppressing genes
involved in tissue egress (71). Notably, although liver ILC1s are
severely reduced in Hobit-deficient mice, NK and helper ILC1
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populations in other organs remain largely unaffected, suggesting
that Hobit is a liver-specific regulatory factor for ILC1s (52, 71).

Uterus
NK cells are one of the most abundant immune cell types
in the uterus at steady state and during early- and mid-
pregnancy. Uterine NK cells have been shown to regulate diverse
processes in female reproductive biology, and are particularly
critical for remodeling of the uterine vasculature during early
pregnancy [Reviewed in Croy et al. (72)]. At least three
distinct NK and/or ILC1 populations exist in the uterus, each
with unique transcriptional signatures: CD49a−CD49b+Eomes+

cNKs, tissue-resident CD49a+CD49b−Eomes+ trNKs, and
CD49a+CD49b−Eomes− helper ILC1s (73–76). The frequency
and distribution of these populations vary with respect to sexual
maturity and reproductive state (73, 75–77). Uterine helper
ILC1s are most abundant in pre-pubertal mice, and exhibit
preferential expansion during repeat pregnancies, whereas sexual
maturity is associated with a decrease in the frequency of
helper ILC1s and an increase in trNKs and cNKs (75). During
pregnancy, trNKs further proliferate in situ and remain abundant
throughout early decidualization (76). Placentation and mid-
pregnancy are associated with a decrease in trNK cells and an
increase in cNKs, with the latter comprising the majority through
birth and weaning (75).

The origin and developmental requirements of uterine NK
cells are only partially understood, although some appear to
arise from in situ progenitors and others from recruited cells
(77–79). Uterine trNKs develop normally in athymic mice and
do not express CD127 at steady state, indicating that their
development is distinct from thymic NK cells (discussed below)
(64). Uterine NK cell development has been reported to be IL-15-
dependent, although whether uterine trNKs, cNKs, and helper
ILC1s all require IL-15 signaling to the same extent remains to be
determined (80, 81).

With respect to transcriptional regulation of uterine NK and
helper ILC1 development, Nfil3 has been implicated in some but
not all studies, likely owing to differences in strategies used to
identify cNKs, trNKs, and helper ILC1 populations in the uterus.
Nfil3-deficiency is consistently associated with significantly
reduced numbers of cNKs in the uteri of both virgin and pregnant
mice (64, 74, 82). However, Nfil3-deficient mice were reported
to have normal numbers of uterine CD49a+CD49b− cells – a
population that includes trNKs and helper ILC1s—in one study
(64), but reduced trNK and normal helper ILC1 numbers in
another study (74). The latter study showed that trNKs in Nfil3-
deficient mice were able to expand in response to pregnancy,
although defects in decidual vascularization and placentation
persisted, possibly due to the persisting deficit in uterine cNKs
and Group 2 ILCs (ILC2s) (74, 82).

In addition to Nfil3, T-bet and Runx3 have also been
evaluated for their impact on uterine NK cell development. T-
bet-deficiency does not alter the overall abundance of uterine
CD49a+CD49b− cells, although differential effects on trNK
vs. helper ILC1s have not been assessed (64). In contrast,
implantation site NK cells were strikingly absent in pregnant
Runx3−/− mice, although the requirement for Runx3 in

development of specific uterine NK or ILC1 subsets remains
unknown (55, 83).

Thymus
The thymus harbors a unique population of Gata-3+ NK
cells with a CD127+CD11bloCD69hiCD49b+CD49a− surface
phenotype and low expression of Ly49 receptors (84, 85).
Functionally, these thymic NK cells (tNKs) are less cytotoxic
but produce more IFN-γ than splenic cNKs, and are similar
to liver trNKs in their ability to produce TNF-α and GM-
CSF (84). Unlike T cells, tNKs do not require Notch signaling
for development and do not develop from T cell-committed
progenitor cells (86, 87). They can, however, develop from NKPs
in the fetal thymus (88), and from early double-negative (DN) 1
and DN2 thymocyte precursors (70, 89–91).

Themolecular requirements for tNK development are unique.
Unlike cNKs and many other trNK populations, tNK cells
require both IL-7 and IL-15 signaling for development (84, 92).
Moreover, genetic deficiencies that disrupt tetramerization of
Stat5, which signals downstream of both IL-7 and IL-15, reduce
overall tNK numbers (46). tNK cell development is also strictly
dependent on Gata-3, mirroring the requirement for Gata-3 in T
cell development past the DN2 stage (84, 93). tNK development
has been reported as Nfil3-dependent in some (32, 85) but not
all (70) studies, possibly due to differences in mouse strains and
gating strategies across studies.

Ets1 and Id2 also play important roles in tNK development.
Ets1-deficient mice (on a Rag1−/− background) harbor fewer
tNKs overall, and those present have a CD11bhiKLRG1hiCD27lo

phenotype typically associated with mature cNKs (85).
Conversely, Id2-deficient Rag1−/− mice have normal numbers
of tNKs, but these have an abnormal CD27hiCD11b− phenotype
reminiscent of immature cNKs (85).

Both Mysm1 and T-bet are dispensable for tNK development,
although tNK cells do express T-bet (42, 85). They also express
Bcl11b, a zinc finger transcription factor that is essential for T
cell development (94). Bcl11b–deficient thymocytes have been
shown to acquire an NK cell-like phenotype, although whether
these cells represent bona fide tNKs remains unclear (94–96).

Salivary Glands
The salivary glands (SG) contain several tissue-resident NK and
helper ILC1 populations with unique phenotypes and functions
(97–101). Among these, NK lineage cells represent∼80–90% and
helper ILC1s∼10–20% of the total pool, based on lineage tracing
studies involving PLZF–reporter/fate mapping mice and patterns
of Eomes expression (101). Notably, both SG helper ILC1s and
the majority of SG NKs exhibit long-term tissue-residency in
parabiotic mice, and peripheral cNKs are not recruited to the
SG even during viral infection, suggesting that trNKs constitute a
sizeable fraction of the NK lineage compartment (97, 99).

SG NK cells have a distinct surface phenotype, with most co-
expressing both CD49a and CD49b, although small populations
of CD49a−CD49b+ cNK-like cells and CD49a+CD49b− cells
are also present (101). SG helper ILC1s are predominantly
CD49a+CD49b+ or CD49a+CD49b− (101). At steady state, SG
NKs exhibit low or no expression of CD27, CD43, CD127, and
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KLRG1, but express high levels of CD69 and CD44 (97, 98).
∼40% also express CD103 (also known as integrin alpha E), a
marker often associated with tissue residency (98).

Functionally, SG NK cells are poor producers of IFN-γ and
degranulate less than splenic cNKs (97, 98). However, some SG
NK cells do express TRAIL. Notably, SG NKs were shown to cull
activated SG CD4+ T cells in a TRAIL-dependent manner during
chronic viral infection (98, 101, 102). This activity was important
for limiting autoimmune-like tissue destruction, suggesting that
SG NK cells may be critical modulators of pathogenic T cell
responses in the SG (102).

SG NK cells are critically dependent on a non-canonical
Smad4-independent TGF-β signaling pathway for development
or maintenance (100). Mechanistically, TGF-β is thought
to act by modulating Eomes expression—CD49a+ SG NKs
are Eomesmid in contrast to the CD49a− Eomeshi cNK-like
population in the SG—and by enhancing expression of other
factors that support NK cell survival (100). In line with this,
disruption of TGF-β signaling impairs both the abundance and
distinct surface phenotype of SG NK cells (100).

SG NK cell development was initially reported to be
Nfil3-independent (98), but later studies involving PLZF–
reporter/fate-mapping mice and mixed bone marrow chimeric
mice demonstrated that the majority of SG NK cells develop
in an Nfil3-dependent manner, and only a minor fraction are
Nfil3-independent (52, 101). Although the Nfil3-dependent and
-independent populations have similar surface phenotypes and
are functionally hyporesponsive when in the SG, these features
are specifically reversible in the Nfil3-dependent subset following
transfer into the spleen or liver (101). Thus, tissue-specific signals
likely instruct the unique phenotype of SG NK cells.

All SG NK and helper ILC1 populations are T-bethi (98, 100,
101). Although experiments in mixed bone marrow chimeric
mice suggested that T-bet is important for SG ILC1, and to a
lesser extent SG NK, development in a competitive setting (52),
non-chimeric Tbx21−/− mice (T-bet is encoded by Tbx21) have
a relatively intact SG NK compartment (100). Eomes− SG helper
ILC1s do not require Eomes for development (52). However, the
role of Eomes in SG NK development is surprisingly nuanced. As
mentioned above, CD49a− SG cNKs are Eomeshi and CD49a+

SG trNKs are Eomesmid owing to TGF-β-mediated restriction
of Eomes expression in the latter subset (100). Unexpectedly,
cell-specific deletion of Eomes in non-chimeric mice does not
alter the overall abundance of total SG NKs, but rather reduces
the fraction that expresses CD49b and actually enhances the
distinctive surface phenotype of SG NKs (100). These findings
highlight an unusual modulatory role for Eomes in SG NK
development or maintenance, which contrasts with the generally
strict requirement for Eomes in cNK development.

Other transcriptional regulators that have been evaluated for
roles in SG NK and helper ILC1 development include Hobit and
the lncRNA Rroid, as well as Runx3 and its co-factor Cbf-β. Both
SG helper ILC1s and CD49b+ SG NKs develop independently of
Hobit, a feature that distinguishes them from liver ILC1s (52).
Similarly, the SG compartment is largely unperturbed in mice
lacking the lncRNA Rroid (43). In contrast, cell-specific deletion
of Runx3 or Cbf-β results in a significant reduction in the total

SG compartment, underscoring a key role for the Runx pathway
in SG NK and/or helper ILC1 development (56).

Intestines
Several IFN-γ-producing NK and helper ILC1 populations have
been identified in the intestinal mucosa of mice. These include
Lin−CD160+NK1.1+NKp46+ intraepithelial lymphocytes (IEL),
comprised of both Eomes+ NK cells and Eomes− helper ILC1s,
which have been implicated in colitis-associated inflammation
(103, 104). Additionally, the small intestine lamina propria
(siLP) harbors both CD49b+Eomes+ cNK-like cells and
CD49a+Eomes+ trNK-like cells, in addition to a population of
CD49a+CD49b−Eomes− helper ILC1s that contribute to defense
against certain enteric pathogens (99, 104, 105). Phenotypically,
siLP helper ILC1s are CD127+CD62LloCD69hiCD44hi cells that
exhibit low or no expression of CD11b and most Ly49 receptors
(104), but variously express CCR9, CXCR3, and CXCR6,
chemokine receptors associated with lymphocyte homing to
tissues (104, 105). Functionally, siLP helper ILC1s produce
more IFN-γ, TNF-α, and GM-CSF than cNKs, a phenotype
that is reminiscent of liver ILC1s, but have low expression of
cytotoxicity-associated molecules such as granzyme B, perforin,
and CD107a (104, 105). Parabiosis studies demonstrated that
siLP helper ILC1s, and possibly a portion of siLP NK cells, are
genuine tissue-resident cells (99, 105).

With respect to developmental requirements, both siLP NKs
and siLP helper ILC1s are significantly reduced in Il15−/−, but
not Il7Ra−/−, mice, indicating that IL-15 signaling is critical for
the development and/or maintenance of both populations (104).
In contrast to findings in the siLP, the overall IEL compartment
is only modestly reduced in Il15Rα−/− mice, although the
differential impact on NK cells vs. helper ILC1s was not evaluated
(103). Nevertheless, partial gene deficiencies in Stat5a and/or
Stat5b result in fewer helper ILC1s in both the IEL and siLP
compartments, as well as fewer IEL NK cells (45).

In addition to Stat5, several other transcriptional regulators
are known to impact intestinal NK and/or helper ILC1
development. For example, siLP helper ILC1s require T-bet
and Gata-3 for development or maintenance, but not Eomes,
the lncRNA Rroid, or Retinoid-related orphan receptor gamma
t (RORγt) (43, 104, 105). In contrast, siLP NKs require
Eomes but not T-bet (104, 105). The bulk IEL population is
significantly reduced in mice lacking T-bet, Runx3, or Cbf-β,
although the extent to which these factors differentially impact
the Eomes+ NK vs. Eomes− ILC1 fractions remains unclear
(56, 103). In contrast, both AhR and RORγt are dispensable
for IEL NK cell and/or helper ILC1 development (103). And
finally, Nfil3 appears to be required for all described intestinal
populations: siLP NK cells, siLP helper ILC1s, and the IEL
population(s) (103–105).

Adipose Tissue
IFN-γ-producing NK and helper ILC1 populations in the
adipose tissue (AT) have been shown to contribute to obesity-
related metabolic dysfunction, in part by promoting the
differentiation of inflammatory M1 macrophages (106–110).
The AT NK compartment includes sizeable populations of
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CD49a−CD49b+Eomes+ cNKs, and CD49a−CD49b−Eomes+

and CD49a+CD49b−Eomes+ NKs that have been called
immature NK cells by some groups (109, 110). Eomes− helper
ILC1s are also abundant in the AT, the majority of which are
CD49a+CD49b− (109, 110). Parabiosis studies indicate that
AT helper ILC1s and many of the CD49b− NKs are genuine
tissue-resident cells, whereas mature cNKs in the AT are non-
resident (109, 110).

The CD49b− trNK populations in the AT have unique surface
phenotypes. Most are CD90hiCD69hi and variably express many
cNK-associated molecules (e.g., CD11b, KLRG1, Ly49D, and
Ly49H) but not CD127 (109, 110). All NK and helper ILC1
populations in the AT are TRAIL−. CD49b− trNKs and helper
ILC1s express lower levels of granzyme B than mature cNKs
in the AT (110). In addition, AT helper ILC1s produce more
IFN-γ than AT cNK cells, possibly reflecting a central role in
AT macrophage polarization and/or metabolic dysfunction (107,
109, 110).

Important transcriptional regulators of AT NK cells and
ILC1s include Nfil3, which is critical for development of all
cNKs, trNKs, and helper ILC1s in the AT (52, 109, 110). The
roles of T-bet and Eomes, on the other hand, appear to be
subset-specific. T-bet-deficiency selectively affects AT cNKs and
helper ILC1s, particularly in mixed bone marrow chimeras
and in Rag2−/− mice, but has little impact on the CD49b−

trNK compartment (52, 109, 110). In contrast, Eomes is strictly
required for development of cNKs but not helper ILC1s in the
AT (its role in CD49b− trNK development remains unclear)
(52). And lastly, both AT cNKs and helper ILC1s develop in a
Hobit-independent manner (52).

Skin
In addition to CD49a−CD49b+Eomes+ cNKs, mouse skin
harbors a distinct population of CD49a+CD49b−Eomeslo/−

cells that are CD69hiCD127− and are largely tissue-resident
in parabiotic mice (64). This tissue-resident population has
been referred to as a trNK subset, although its lack of Eomes
expression suggests a helper ILC1 identity. Both skin cNKs and
the skin-resident ILC1s require Runx3 and its co-factor Cbf-β for
development (56). The skin-resident ILC1s are similar to liver-
resident cells in requiring T-bet and IL-15, but not Nfil3, for
development (64). Notably, liver- and skin-resident populations
not only share many developmental requirements, but they also
appear to cooperate in inter-organ immune responses involving
the skin and liver. For example, liver ILC1s can mediate hapten-
specific CHS memory responses in the skin, and hapten-specific
memory ILC1s in the skin-draining lymph node were recently
shown to migrate to and reside in the liver (59–61, 64, 111,
112). Altogether these findings point to a unique relationship
between the liver- and skin-resident populations that remains to
be fully defined.

Peritoneum
The peritoneal cavity (PC) contains both
CD49a−CD49b+Eomes+ cNKs and PC-resident CD49a+

CD49b−Eomes− helper ILC1s (52, 64, 113). At steady state,
PC helper ILC1s are CD200r1+CD61+CD27+ cells that lack

expression of Ly49H, CD11b, CD69, and CD103 (52, 113). In
response to viral challenge in the peritoneum, PC helper ILC1s
produce more IFN-γ than PC cNKs (52). Transcription factors
known to regulate the development of PC cNKs include Nfil3,
Eomes, and to a lesser extent, T-bet (52). In contrast, PC helper
ILC1 development is critically dependent on T-bet, but not
Eomes or Nfil3 (52). Additionally, both PC cNKs and helper
ILC1s develop in a Hobit-independent manner, unlike liver
helper ILC1s (52).

Other Tissues
In addition to the populations described above, increasing
evidence suggests that tissue-resident NK and/or helper
ILC1s do or may exist in many other tissues. For example,
in addition to CD49b+CD49a− cNK-like cells, the kidney
contains a minor subset (15–20%) of CD49a+CD49b− cells
that are tissue-resident (114). These trNK and/or helper ILC1s
are TRAIL+CD44hi, but express little CD62L or KLRG1.
Importantly, this tissue-resident population(s) was specifically
associated with tissue damage following ischemic acute
kidney injury, suggesting a unique pathogenic role for these
cells (114).

CD49a−CD49b+ cNK and CD49a+CD49b− trNK (called
ILC1-like in the study) populations have also been described
in the mammary glands (MG) (115). Both subsets are
CD127−T-bet+, but MG cNK cells are Eomeshi, whereas MG
trNKs are Eomeslo (115). In addition, a portion of the MG
trNKs, but few or none of the MG cNKs, express CD103,
Ly49E, and TRAIL (115). Functionally, both MG populations
were poor producers of IFN-γ and TNF-α, but remain
capable of killing tumor cells through a perforin-dependent
pathway (115).

The lacrimal gland (LG) also contains several distinct
populations of Eomes+ NK and Eomes− helper ILCs with still
undefined tissue-residency properties (116). CD49b+CD49a−

cells comprise the majority of the LG compartment, with
CD49b+CD49a+ and CD49b−CD49a+ cells representing
minority populations. Similarly, the majority of cells in the LG
compartment are CD27+KLRG1lowTRAIL−CD127− and are
functionally hyporesponsive, producing less IFN-γ than splenic
cNKs during viral infection (116). However, LG cells that have
been adoptively transferred into lymphocyte-deficient hosts
and then recovered from the spleen and liver, are no longer
hyporesponsive (116). These findings suggest that the altered
functionality of LG NKs and/or helper ILC1s may be instructed
by the LG tissue environment, analogous to the effect of the SG
environment on SG NKs.

Additionally, a distinct population of NKp46+CD3− cells
has been shown to localize to the exocrine pancreas in
young non-obese diabetic (NOD) mice and to infiltrate the
endocrine pancreas in adult NOD mice, possibly reflecting a
role in diabetes-related autoimmunity (117). In NOD mice, this
pancreatic population is generally hyporesponsive to stimulation,
exhibiting reduced IFN-γ production and CD107a upregulation
following receptor crosslinking, but displays higher spontaneous
production of IFN-γ ex vivo, as compared to splenic cNKs
(117). Phenotypically, these cells are CD69hiCD27hiKLRG1+,
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FIGURE 1 | Transcriptional regulators of the development of tissue-specific trNK and helper ILC1 populations in mice. Schematic shows known transcriptional

regulators of trNK or helper ILC1 development or differentiation in specified tissues.

but express little or no CD62L and CD127 (117). Later studies
established that most are CD49b+, although a small number
are CD49a+ (64). Whether the CD49b+ or CD49a+ subsets are
comprised of bona fide tissue-resident NKs and/or helper ILC1s
remains to be determined.

Overall, relatively little is known about the specific
developmental requirements of kidney, MG, LG, and
pancreatic NK cells, with a few exceptions. cNKs in the
MG, bulk CD3−NK1.1+ cells in the LG, and the non-tissue-
resident CD49b+CD49− cNK-like subset in the kidney are all
significantly reduced in Nfil3-mice, suggesting that development
of these populations is fully or partially Nfil3-dependent (114–
116). In contrast, MG trNKs are not significantly reduced in
mice lacking Nfil3, and the tissue-resident CD49a+CD49b− NK
and/or ILC1 subset in the kidney is actually more abundant
(115, 116). Notably, T-bet-deficiency does not significantly alter
the number of CD49a+CD49b− or CD49a−CD49b+ cells in the
kidney (114).

CONCLUDING REMARKS

Recent studies have demonstrated that, like many other immune
cell lineages, unique tissue-resident NK and helper ILC1
populations exist in a broad array of tissues and organs. These
populations exhibit tissue-specific phenotypes and functions,
and have important roles in diverse biological processes with
both positive and negative consequences for organismal health.
Examples include the immunomodulatory function of SG trNKs
in dampening T cell-mediated tissue damage in the SG during
viral infection, and the negative impact of IFN-γ-producing NK
and helper ILC1 populations in the adipose tissue on obesity-
related metabolic dysfunction (102, 106–110). As discussed
above, some but not all trNKs and helper ILC1s share expression
of markers associated with tissue-residency, e.g., CD49a, CD103,
CD200r1, and CD69, although the phenotype and functional
properties of these populations are often unique to the tissue
environment in which they exist.
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While our understanding of the transcriptional networks
that regulate tissue-specific trNKs and helper ILC1s is still very
limited, the balance of evidence suggests that these populations
often exhibit unique developmental requirements that can differ
not only across tissues, but also among the cNK, trNK, and
helper ILC1 populations in a specific tissue (Figure 1). Indeed,
findings that some trNKs and helper ILC1s in the liver, uterus,
skin, kidney, salivary gland, and mammary glands do not
strictly require Nfil3, and that trNKs and/or helper ILC1s in
the kidney, uterus, and adipose tissue do not require T-bet for
development, are particularly notable, given the key roles of
these factors in the development of cNKs and other ILC subsets.
Understanding why some, but not all, trNK and helper ILC1
populations bypass developmental requirements for otherwise
“lineage-defining” factors such Nfil3 and/or T-bet is an important
topic for future studies.

Although this review has focused principally on studies
involving tissue-resident NKs and helper ILC1s in mice, it is
important to note that similar tissue-associated populations have
now been described in diverse human tissues, including the
uterus, adipose, tonsils, intestines, liver, kidney, and lung (118,
119). Most of these tissue-associated populations are CD56bright,
distinguishing them from highly cytotoxic CD56dim cNKs in
peripheral blood, although accurate discrimination of human
trNKs and helper ILC1s is currently limited by the lack of
faithful lineage-tracking markers and tools (120). Nevertheless,
these tissue-associated CD56bright populations as a whole share
many similarities with mouse trNKs and helper ILC1s, including
high expression of tissue residency-associated surface markers
(e.g., CD69, CD49a, and CD103) and chemokine receptors (e.g.,
CXCR6 and CCR5), and low or no expression of CD62L and
CCR7 (121). For example, the human liver harbors a population
of CD56bright cells that are Eomeshigh and express CD49a,
CXCR6, and CD69 (122). These CD56bright cells are long-lived
(up to 13 years) and persist in the liver without recirculation,
suggesting they likely represent bona fide liver trNKs/ILC1s
(122). Notably, these cells also express Hobit, raising the
possibility that Hobit may regulate liver trNK/ILC1 development
in humans, similar to its role in mice (123). Although,
little is currently known about transcriptional regulation of
human trNK/ILC1 development, a better understanding of these

pathways could inform the development of novel therapies to
treat or prevent human disease.

It is now appreciated that NK cells are capable of mediating
adaptive immune responses in certain settings. Indeed, memory
or memory-like responses have been described for tissue-resident
NKs and helper ILC1s in the liver, skin, and uterus (60, 62,
112, 124). Whether trNKs in other tissues are also capable
of immunological memory, and the impact such responses
might have on tissue homeostasis and chronic inflammatory
diseases, remains to be elucidated. Other important and
outstanding questions in the field include: how do tissue-
resident vs. bone marrow-derived progenitors contribute to
the replenishment of tissue-specific trNKs at steady state
and during inflammation? How do tissue-specific signals
shape the phenotype and function of trNKs? And finally,
will the use of single-cell technologies—e.g., scRNA-seq—
reveal new and previously unappreciated heterogeneity in the
trNK populations that exist within various tissues? Addressing
these questions will critically shape our understanding of the
unique biological processes that regulate trNK and helper
ILC1 biology at steady state and in settings of tissue-specific
inflammatory diseases.
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A Corrigendum on

Transcriptional Regulation of Mouse Tissue-Resident Natural Killer Cell Development

by Valero-Pacheco, N., and Beaulieu, A. M. (2020). Front. Immunol. 11:309.
doi: 10.3389/fimmu.2020.00309

In the original article, there was an error. Several words were omitted in the first sentence of a
paragraph which altered the meaning of a sentence. A correction has been made to the section
the Development of Tissue-Specific or Tissue-Resident NK Cells and Helper ILC1s, subsection

Liver, paragraph 2. The corrected paragraph appears below:
“Phenotypically, liver ILC1s resemble immature cNKs in having low or no expression of killer

cell lectin-like receptor G1 (KLRG1), CD11b, CD122, and Ly49 receptors such as Ly49A, Ly49D,
Ly49G2, and Ly49H (50, 51, 63, 64). However, liver ILC1s are transcriptomically distinct from
both immature and mature cNKs and exhibit an activated phenotype at steady state, characterized
by high expression of CD69, CD44, and CD160, and low expression of CD62L (also known as
L-selectin) (51, 59, 64, 65). They also express high levels of tumor necrosis factor (TNF)-related
apoptosis-inducing ligand (TRAIL) and CD127, as well as chemokine receptors such as CXCR3
and CXCR6 that support residence in the liver sinusoids (50, 51, 59, 64, 66, 67). Although activated
liver ILC1s retain cytotoxic functionality against target cells, they differ from cNKs in their higher
production of TNF-α, IL-2, and granulocyte-macrophage colony-stimulating factor (GM-CSF),
their preferential expression of granzyme C instead of granzyme B, and their reduced expression
of perforin (51, 59, 64, 65). Liver ILC1s also express molecules involved in immune regulation,
including PD-L1, LAG3, CD39, and CD73, and were recently shown to inhibit T cell function via
the PD-1–PD-L1 axis (68).”

The authors apologize for this error and state that this does not change the key scientific
conclusions of the article in any way. The original article has been updated.

Copyright © 2020 Valero-Pacheco and Beaulieu. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

128

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01355
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01355&domain=pdf&date_stamp=2020-07-08
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ab1550@njms.rutgers.edu
https://doi.org/10.3389/fimmu.2020.01355
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01355/full
http://loop.frontiersin.org/people/83543/overview
http://loop.frontiersin.org/people/237930/overview
https://doi.org/10.3389/fimmu.2020.00309
https://doi.org/10.3389/fimmu.2020.00309
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


fimmu-11-00714 April 23, 2020 Time: 20:0 # 1

ORIGINAL RESEARCH
published: 24 April 2020

doi: 10.3389/fimmu.2020.00714

Edited by:
Aharon Freud,

The Ohio State University,
United States

Reviewed by:
Stephen Noel Waggoner,

Cincinnati Children’s Hospital Medical
Center, United States

Emily Mace,
Columbia University, United States

*Correspondence:
Catherine A. Blish

cblish@stanford.edu

†These authors have contributed
equally to this work

‡Present address:
Jason D. Fontenot,

Sangamo Therapeutics, Brisbane,
CA, United States

Specialty section:
This article was submitted to

NK and Innate Lymphoid Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 21 November 2019
Accepted: 30 March 2020

Published: 24 April 2020

Citation:
Ranganath T, Simpson LJ,

Ferreira A-M, Seiler C, Vendrame E,
Zhao N, Fontenot JD, Holmes S and

Blish CA (2020) Characterization
of the Impact of Daclizumab Beta on

Circulating Natural Killer Cells by Mass
Cytometry. Front. Immunol. 11:714.

doi: 10.3389/fimmu.2020.00714

Characterization of the Impact of
Daclizumab Beta on Circulating
Natural Killer Cells by Mass
Cytometry
Thanmayi Ranganath1†, Laura J. Simpson1†, Anne-Maud Ferreira2, Christof Seiler2,
Elena Vendrame1, Nancy Zhao1, Jason D. Fontenot3‡, Susan Holmes2 and
Catherine A. Blish1,4*

1 Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States, 2 Department of Statistics,
Stanford University, Stanford, CA, United States, 3 Biogen, Cambridge, MA, United States, 4 Chan Zuckerberg Biohub,
San Francisco, CA, United States

Daclizumab beta is a humanized monoclonal antibody that binds to CD25 and
selectively inhibits high-affinity IL-2 receptor signaling. As a former treatment for
relapsing forms of multiple sclerosis (RMS), daclizumab beta induces robust expansion
of the CD56bright subpopulation of NK cells that is correlated with the drug’s therapeutic
effects. As NK cells represent a heterogeneous population of lymphocytes with a range
of phenotypes and functions, the goal of this study was to better understand how
daclizumab beta altered the NK cell repertoire to provide further insight into the possible
mechanism(s) of action in RMS. We used mass cytometry to evaluate expression
patterns of NK cell markers and provide a comprehensive assessment of the NK
cell repertoire in individuals with RMS treated with daclizumab beta or placebo over
the course of 1 year. Treatment with daclizumab beta significantly altered the NK cell
repertoire compared to placebo treatment. As previously reported, daclizumab beta
significantly increased expression of CD56 on total NK cells. Within the CD56bright NK
cells, treatment was associated with multiple phenotypic changes, including increased
expression of NKG2A and NKp44, and diminished expression of CD244, CD57, and
NKp46. These alterations occurred broadly across the CD56bright population, and were
not associated with a specific subset of CD56bright NK cells. While the changes were
less dramatic, CD56dim NK cells responded distinctly to daclizumab beta treatment, with
higher expression of CD2 and NKG2A, and lower expression of FAS-L, HLA-DR, NTB-
A, NKp30, and Perforin. Together, these data indicate that the expanded CD56bright

NK cells share features of both immature and mature NK cells. These findings show
that daclizumab beta treatment is associated with unique changes in NK cells that may
enhance their ability to kill autoreactive T cells or to exert immunomodulatory functions.

Keywords: natural killer cell, daclizumab beta, multiple sclerosis, immune profiling, CyTOF/ mass cytometry,
uniform manifold approximation and projection, CytoGLMM, clustering
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INTRODUCTION

Natural killer (NK) cells are innate lymphocytes that are best
known for the eponymous function: that of killing other cells. Yet
NK cells also play a critical role in immune regulation by secreting
cytokines that influence the character of the immune response.
NK cell function is controlled by signals received through
activating, inhibitory and cytokine receptors (1). Activating
receptors, examples of which include the natural cytotoxicity
receptors NKp30, NKp44, and NKp46, the C-type lectin receptors
NKG2D and NKG2C, and certain classes of activating Killer-
cell Immunoglobulin-like Receptors (KIRs), generally sense stress
on the target cell and promote NK cell activation. Inhibitory
receptors, including most KIRs, NKG2A, and LILRB1 (CD85j),
generally recognize Major Histocompatibility Class (MHC) I
receptors and dampen NK cell responses to normal healthy cells.
Broadly, NK cells are divided into two major classes. In the
blood, the mature CD56dim NK cells are the predominant subset
and have potent cytotoxic activity, while the relatively immature
CD56bright NK cells are generally present at <10% and primarily
secrete cytokines. Recent studies have demonstrated significant
heterogeneity in the human NK cell repertoire, with a wide range
of NK cell subsets expressing different combinations of these
activating and inhibitory receptors (2–6).

Natural killer cells also express a wide range of cytokine
receptors making them extremely responsive to cytokine
stimulation. NK cells undergo dramatic shifts in phenotype and
function in the presence of cytokines such as IL-2, IL-12, IL-
15, and IL-18, singly and in combination (7–9). IL-2 plays a
particularly critical role in activating NK cells by binding to the
low affinity IL-2 receptor, a heterodimer of CD122 (IL-2Rβ) and
CD132 (IL-2Rγ, otherwise known as the common gamma chain).
In general, NK cells do not express the high affinity IL-2 receptor,
CD25 (IL-2Rγ). The CD56bright NK cell subset expresses much
higher levels of CD122 than the CD56dim subset (10–12).

Daclizumab is a humanized monoclonal antibody that
irreversibly blocks CD25, preventing signaling through the high
affinity IL-2R while increasing IL-2 bioavailability to bind to the
low affinity receptor [reviewed in (13, 14)]. Due to the complex
roles of IL-2 in vivo, daclizumab induces several immunological
changes, including inhibition of T cell activation, reduction in
the frequency and survival of regulatory T cells, and expansion
of CD56bright NK cells (13, 14). It was originally developed as an
intravenous treatment for several disease indications, including
the prevention of transplant rejection and the treatment of severe
uveitis and T cell leukemia (13, 14). Later a subcutaneous form
(daclizumab beta) was developed and approved for the treatment
of relapsing forms of multiple sclerosis (RMS) due to its beneficial
effects including reduction in lesion size and slowed disease
progression (10, 15–18); (19). In these initial trials, daclizumab
beta treatment was associated with adverse events including
cutaneous reactions, malignancies, infections, and transaminase
elevations, though these were not sufficiently severe to preclude
approval. In 2018, daclizumab beta was voluntarily withdrawn
from the market due to the nature and complexity of adverse
events associated with the drug and limited number of patients
treated, which presented challenges in further characterizing its

evolving benefit/risk profile. Subsequently, cases of immune-
mediated encephalitis were confirmed as adverse drug reactions
that can be related to treatment with daclizumab beta.

While no longer used therapeutically, a better understanding
of the effects of daclizumab beta may provide insight into the
pleiotropic effects of IL-2 in the setting of RMS. Surprisingly,
the beneficial effects of daclizumab beta treatment were linked
not to changes in T cell function, but instead were strongly
correlated with expansion of CD56bright NK cells (10, 13, 14,
16). Although CD56bright NK cells generally have poor cytotoxic
activity, the daclizumab beta-expanded CD56bright NK cells could
kill activated, autologous CD4+ T cells, potentially driving the
therapeutic effect by eliminating autoreactive T cells (10, 20). This
study was undertaken to provide a better understanding of the
effects of daclizumab beta on circulating NK cells in vivo.

MATERIALS AND METHODS

Study Subjects
Cryopreserved peripheral blood mononuclear cells (PBMCs)
from daclizumab beta-treated and placebo-treated individuals
living with RMS were chosen from the Biogen SELECT
(NCT00390221) and DECIDE (NCT01064401) studies (19, 21).
Subjects were treated subcutaneously with 150 mg daclizumab
beta every 4 weeks for 52 weeks. For the placebo and
the treatment cohort, we received de-identified PBMCs at 3
timepoints: Baseline, Week 24 and Week 52. For the healthy
donor cohort, leukoreduction system chambers from anonymous
donors were purchased from the Stanford Blood Bank. PBMCs
were isolated by Ficoll density gradient centrifugation and then
cryopreserved in fetal bovine serum (FBS) with 10% dimethyl
sulfoxide (DMSO). We had 16 healthy donors, 17 placebo and
30 daclizumab beta treated individuals. As part of their initial
enrollment, all subjects provided written informed consent.
The studies were approved by the relevant central and local
ethics committees and were conducted in accordance with the
International Conference on Harmonization guidelines for Good
Clinical Practice and the principles of the Declaration of Helsinki.

Antibody Conjugation, Mass Cytometry
Staining and Data Acquisition
Antibodies for mass cytometry were conjugated to heavy
metals using MaxPar R©

× 8 labeling kits (Fluidigm) as
described (22). To ensure antibody stability over time, the
antibody panel was lyophilized into single-use pellets prior
to use (Biolyph). PBMCs were thawed at 37◦C in RPMI-
1640 media (supplemented with 10% FBS, L-glutamine, and
Penicillin-Streoptomycin-Amphotericin) with benzonase. NK
cells were purified by magnetic bead isolation via negative
selection (Miltenyi, cat. 130-092-657) and stained with the NK
cell antibody panel (Supplementary Table S1) as previously
described (4, 23, 24). Cells were resuspended in 1x EQ Beads
(Fluidigm) for normalization before acquisition on a Helios mass
cytometer (Fluidigm).
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Data Analysis
The open source statistical software R1 was used for all
statistical analyses (25). Signal intensities were transformed
using the hyperbolic sine transformation (asinh function) prior
to statistical analysis, with cofactor equal to 5, to account
for heteroskedasticity. We used the custom-made package
CytoGLMM (26, 27) to identify markers predictive of a given
sample type while taking into account the subject effect. To this
end, this package uses a generalized linear mixed model with
paired comparison (used for analyses of the same individual over
time) and generalized linear model with bootstrap resampling
(for cross-sectional comparisons between daclizumab beta-
and placebo-treated individuals). Using the empirical marker
distribution, the model generates the log-odds that the expression
of a given marker is predictive of the sample type (for example,
drug-treated vs. placebo-treated) with the 95% confidence
intervals. For paired comparisons, we computed p-values using
the asymptotic theory implemented in R package mbest (28).
For unpaired comparisons, we computed p-values by inverting
the percentile bootstrap confidence intervals and assuming two-
sided intervals with equal tails (29). To correct for multiple
comparisons, the Benjamini-Hochberg method controlling the
False Discovery Rate (FDR) at level 0.05 was used, which is
conservative as it assumes independence of markers. For paired
analysis on daclizumab beta-treated individuals over time, where
the response variable was timepoint, we used all cells from each
donor. For unpaired analysis using the bootstrap, where the
response variable was daclizumab beta or placebo treatment,
we used 1,000 cells from each sample for the total NK cell
and CD56dim analyses, and used all cells from each sample for
CD56bright. There were fewer than 1,000 CD56bright NK cells
in most samples except for daclizumab beta treated individuals.
The number of subjects used for each analysis is specified in
the figure legends.

UMAP Visualizations
The Uniform Manifold Approximation and Projection (UMAP)
algorithm was used as a visualization and dimensionality
reduction technique for our CyTOF data (30, 31). The
uwot R package provides an implementation of UMAP and
was used with a minimum distance set to 0.1 and nearest
neighbors set to 20. The UMAP loadings were visualized
using Cytobank. Separate analyses were performed on total
NK cells and CD56bright NK cells, including both placebo and
drug treatment at three different timepoints. All markers in
Supplementary Table S1 were used excluding markers used for
gating (CD3, CD19, CD33, CD14, CD56, CD4), and markers
with extremely low or non-specific staining (FcRγ, Ki-67,
KIR2DS2, CXCR6, PD1).

Clustering and Differential Abundance
Tests
We used a clustering method to identify subsets of cells in
the NK and CD56bright cell populations in the placebo and

1https://www.r-project.org/

daclizumab beta treated individuals. The clustering analysis was
performed using the CATALYST package version 1.10.0 [Crowell
et al. (32) CATALYST: Cytometry dATa anALYSis Tools] from
Bioconductor. The clustering method provided by the package
combines two algorithms. The first step uses the FlowSOM
clustering algorithm (33) to cluster the data into 100 high-
resolution clusters. The second step regroups these clusters
into metaclusters using the ConsensusClusterPlus metaclustering
algorithm (34). The default parameters of the cluster function
were used except for the maximum of metaclusters which was
defined to 30. The delta area plot provided by the package was
used to select the optimal number of metaclusters (9 for the
CD56bright cell population; 5 for the NK cell population).

We performed differential abundance tests to highlight
differences in cell clusters due to the Daclizumab beta treatment.
The differential abundance tests were performed with the
diffcyt package version 1.6.0 (35). The diffcyt-DA-edgeR method
uses the edgeR package (36) which fits a negative bionomial
generalized linear model to identify populations that are present
at different frequencies. For each test, we filtered the data
to the comparison of interest. We created the design matrix
corresponding to the experimental design and contrast matrix
specifying the comparison of interest. The differential abundance
test reports adjusted p-values (FDR).

Data Availability
The dataset generated and analyzed for this study can be found in
FlowRepository ID FR-FCM Z2D6.

RESULTS

Characteristics of Study Population
For this study, individuals living with RMS received 150 mg
daclizumab beta or placebo subcutaneously every 4 weeks for
52 weeks. The demographics of the healthy controls, placebo-
treated, and daclizumab beta-treated groups are given in Table 1.
As expected with RMS, we had a high frequency of females in
the trial, with 90% in the daclizumab beta-treated group and 70%
in the placebo group. Peripheral blood samples for our research
study were taken from both the SELECT and DECIDE trials
(19, 21).

Characterization of the NK Repertoire
Frozen peripheral blood samples from baseline (pre-treatment),
24 weeks post-treatment initiation, and 52 weeks post-treatment
initiation were obtained for this study. Purified NK cells from
each sample were stained for mass cytometry using a panel of 41
antibodies conjugated to heavy metals (Supplementary Table S1

TABLE 1 | Demographics of the study population.

Group Total N Pct. Female Age, years: median (range)

Healthy 16 50% 52.5 (27–82)

Placebo 17 70.5% 34 (21–45)

Daclizumab beta 30 90% 32 (19–52)
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and Supplementary Figure S1A). Total NK cells, CD56bright

and CD56dim NK cells were analyzed by gating in FlowJo
(Supplementary Figure S1B). Example staining of each of
the 31 NK markers used in this analysis are shown in
Supplementary Figure S2.

Daclizumab Beta Induces Higher
Frequency of CD56bright NK Cells
The CytoGLMM R package was used to identify which NK
markers predicted daclizumab beta treatment compared to
placebo. This generalized linear model with bootstrap resampling
allows for identification of markers that predict a given outcome,
while controlling for inter-individual variability. The model takes
into account the full distribution of the marker measurements
(rather than a single summary measure such as mean signal
intensity) and yields the log-odds with which that marker predicts
the outcome, with 95% confidence intervals. Among total NK
cells at 24 weeks, NKp30, NTB-A, and CD2 expression predicted
daclizumab beta treatment, while NKG2D, CD244, TIGIT, FAS-
L, and KIR2DL5 predicted placebo treatment (Figure 1A).
After controlling for multiple comparisons, these changes were
not statistically significant. At 52 weeks, among the total
NK cell population, CD56, NKp30, TACTILE, NKp44, and
NTB-A predicted daclizumab beta treatment, while CD244,
CD69, TIGIT, NKp46, and CD57 predicted placebo treatment
(Figure 1A), but these changes were not significant after
correction for multiple comparisons. There were no markers
that significantly predicted placebo or daclizumab treatment at
baseline, indicating that the groups were relatively well matched,
and changes we observe at later time points were not due to
baseline differences between the two groups (Supplementary
Figure S3A). There were only two markers with altered
expression over the course of 52 weeks in the placebo group:
CD16 and KIR2DS4 (Supplementary Figure S3B), which did not
change in the daclizumab beta treated group. This suggests that
the expression changes in 10 markers observed after 52 weeks of
daclizumab beta treatment were due to the treatment rather than
normal drift in marker expression over a year.

Within the daclizumab beta-treated group, most protein
expression changes that occurred in total NK cells by 24 weeks
were preserved at 52 weeks. CD56, NKp44, NKG2A, and CD2
predicted 24 weeks of treatment, while HLA-DR and FAS-
L predicted baseline samples (Figure 1B). With the increased
power from these paired comparisons, the changes in CD56,
NKp44, NKG2A, CD2, and HLA-DR were significant after
correction for multiple comparisons. When comparing baseline
and 52 weeks, CD56, NKp44, NKG2A, and CD2 significantly
predicted 52 weeks of treatment, while CD244, FAS-L, HLA-
DR, NTB-A, and NKG2C significantly predicted baseline
samples (Figure 1B).

CD56 was the most significant predictor of daclizumab
beta treatment, and predicted both 24- and 52-week samples
compared to baseline. Using UMAP visualization, we found
an increase in frequency of CD56bright NK cells by 24 weeks
of daclizumab beta treatment, which continued to increase at
52 weeks (Figure 1C). This increase in CD56bright NK cells was

confirmed by gating in FlowJo (Figure 1D and Supplementary
Figure S1B), which showed that the frequency of CD56bright NK
cells was increased in daclizumab beta-treated subjects compared
to placebo-treated, and increased from baseline to 24 weeks and
52 weeks. There was no significant difference in frequency of
CD56bright NK cells in placebo-treated individuals over time, or
in individuals with MS before treatment compared to healthy
controls (Figure 1D).

Both the CytoGLMM analysis and UMAP visualizations
revealed an increase in the CD56bright population of NK cells
upon daclizumab beta treatment. In order to test whether the
CD56bright population clustered distinctly from other NK cells,
we used the CATALYST package to perform clustering of the
NK cells. We determined that there were 5 metaclusters of NK
cells in our data (Supplementary Figure S4A). These clusters
varied in frequencies and marker expression (Supplementary
Figure S4B). We performed differential abundance tests between
the clusters to determine which clusters were more or less
abundant at 52 weeks of daclizumab beta treatment compared
to placebo (Supplementary Figure S4C). Two clusters showed
differential abundance; cluster 5, representing 19.2% of NK
cells, was less abundant upon 52 weeks of daclizumab beta
treatment, and had high expression of CD16 and CD57. Cluster
2, representing 46.0% of total NK cells, had significantly higher
frequency upon 52 weeks of daclizumab beta treatment, and
had high expression of CD56 and CD2, and low expression of
CD57 and HLA-DR. This analysis confirms that the CD56bright

population is the most significantly altered subset of NK cells
upon daclizumab beta treatment.

Daclizumab Beta Alters Expression of NK
Receptors on the CD56bright Population
As the CD56bright and CD56dim NK cell subsets are distinct, we
next focused solely on the CD56bright NK cells (Supplementary
Figure S1B for gating strategy). The CytoGLMM package was
used to identify which markers predicted daclizumab beta
treatment compared to placebo within the CD56bright population
at 52 weeks. NKp30, Perforin, NKp44, TACTILE, Siglec-7,
KIR2DL3, and CD16 predicted daclizumab beta treatment
compared to placebo after 52 weeks of treatment in the
unadjusted comparison, but were not significant following
adjustment for multiple comparisons (Figure 2A).

In order to determine what changes in NK receptor
expression occurred in response to daclizumab beta in treated
individuals over time, the predictors of baseline or 52 weeks of
treatment were determined using CytoGLMM (Figure 2B). Many
NK receptors significantly predicted 52 weeks of daclizumab
beta treatment: NKG2A, NKp44, CD38, CD8, KIR2DL3,
Siglec-7, TACTILE, KIR3DL1, Perforin, NKp30, and CD16
(Figure 2B). CD244, CD57, NKp46, CD69, TIGIT, DNAM-
1, Syk, KIR2DL5, and NKG2C significantly predicted baseline
samples compared to 52 weeks.

Expression of each of the top three predictors of 52 weeks
of daclizumab beta treatment and the top three predictors
of placebo treatment was visualized using UMAP in both
placebo and daclizumab beta treated groups at baseline and
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FIGURE 1 | Daclizumab beta induces CD56bright NK cells with a distinct phenotype. (A) A generalized linear model with bootstrap resampling was used to identify
NK markers predictive of daclizumab beta- and placebo-treated individuals at 24 (left) and 52 (right) weeks of treatment. Log-odds are logarithm of ratios of the
probability that a cell belongs to each treatment group. An increase in the parameter coefficient corresponds to the strength of the classification power, with the
95% confidence interval represented by the line surrounding the point estimate. Gray lines indicate markers with adjusted p-values > 0.05. Black lines indicate markers

(Continued)
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FIGURE 1 | Continued
with adjusted p-values < 0.05. Total NK cells were used, with subsampling to 1000 cells per individual. Placebo: 24 weeks, n = 14; 52 weeks, n = 16. Daclizumab
beta: 24 weeks, n = 25; 52 weeks, n = 27. (B) A generalized linear mixed model with paired comparison was used for analyses of the same individual over time,
comparing baseline and 24 weeks of daclizumab beta treatment (left), and baseline and 52 weeks of daclizumab beta treatment (right). Total NK cells were used with
no subsampling. Daclizumab beta baseline vs. 24 weeks, n = 21. Daclizumab beta baseline vs. 52 weeks, n = 22. (C) UMAP visualization of all NK cells from
placebo and daclizumab beta treatment groups. Panels on the left are colored by CD56 expression. Baseline, 24 weeks, and 52 weeks samples are shown colored
by density. (D) The frequency of CD56bright NK cells for each individual are shown as a percentage of total NK cells. Healthy donors (n = 16, gray), placebo treatment
(baseline, n = 16; 24 weeks, n = 14; 52 weeks, n = 16; blue), daclizumab beta treatment (baseline, n = 22; 24 weeks, n = 25, 52 weeks, n = 27; pink). *Adjusted
p-value < 0.05, **adjusted p-value < 0.01, ***adjusted p-value < 0.001, ****adjusted p-value < 0.0001. Adjusted p-values calculated on generalized linear mixed
model in (B) using Benjamini-Hochberg method with FDR = 0.05. Adjusted p-values in (D) calculated using one-way ANOVA with Sidak’s multiple comparisons test.

52 weeks (Figure 2C). In the UMAP projections, the plots
show an overall increase in density of CD56bright NK cells at
52 weeks of daclizumab beta treatment (Figure 2C). NKG2A
has higher expression in the CD56bright population of the
daclizumab beta treated group, and particularly higher expression
in the areas of high cell density. Conversely, CD244 predicted
placebo treatment, and had higher expression across the
CD56bright population of placebo-treated individuals compared
to daclizumab beta-treated individuals. The UMAP plots reveal
broad changes in expression of each of these markers across the
CD56bright population, as opposed to small subsets of CD56bright

cells with altered NK marker expression.
The mean signal intensity was calculated for each of the top

six predictors of 52 weeks of daclizumab beta treatment and
the top six predictors of baseline samples in each individual
(Supplementary Figure S5). NKG2A and NKp44 expression
increased in almost every individual by 24 weeks of daclizumab
beta treatment, and tended to stay elevated at 52 weeks.
CD38, CD8, KIR2DL3, and Siglec-7 expression increased in
some but not all subjects, suggesting that the daclizumab beta-
induced CD56bright population is not equivalent in all subjects
receiving daclizumab beta. CD244, CD57, NKp46, CD69, and
TIGIT expression were significantly decreased by 24 weeks of
daclizumab beta treatment in nearly all subjects, while NKG2D
expression varied between individuals. These graphs highlight
the fact that most of the changes in NK receptor expression
observed with daclizumab beta treatment occur within the first
6 months of treatment, and are maintained throughout the
course of treatment.

Daclizumab Beta Treatment Does Not
Alter a Specific Subset of CD56bright NK
Cells
In order to test whether the NK marker expression changes
observed upon daclizumab beta treatment were due to changes
in a particular subset of CD56bright NK cells, we performed
clustering analysis using the CATALYST package. We determined
that there were 9 metaclusters of CD56bright NK cells (Figure 3A)
that varied in metacluster frequency and marker expression
(Figure 3B). We performed a differential abundance test between
clusters in the daclizumab beta and placebo groups at the 52-
week time point (Figure 3C). This test revealed one cluster
that was significantly less abundant in daclizumab beta-treated
individuals; cluster 2, only representing 1.0% of CD56bright NK
cells, had high expression of CD16, CD57, and LILRB1, and

low expression of Syk and Perforin. We performed a differential
abundance test between clusters in the daclizumab beta-treated
group comparing baseline and 52 weeks of treatment, and found
two clusters with significantly altered frequency; both cluster
2, again representing only 1.0% of NK cells, and cluster 4,
representing only 0.7% of NK cells, showed lower abundance
at 52 weeks than at baseline (Figure 3D). Cluster 4 had high
expression of CD57 and Perforin. While these analyses do reveal
significant differences in two subsets of CD56bright NK cells upon
daclizumab beta treatment, the clusters that have differential
abundance represent such a small portion of NK cells that
we conclude that the alterations we observed in NK receptor
expression occur broadly across the CD56bright population, rather
than as a result of a significant shift from one CD56bright

subset to another.

Daclizumab Beta Also Alters NK
Receptor Expression in the CD56dim

Population
While the focus of this study was to determine NK receptor
expression in the daclizumab beta-induced CD56bright

population, it was interesting to find that there were some
distinct changes in NK receptor expression observed in the
CD56dim population as well. Using CytoGLMM, we identified
several weak (low log-odds) predictors of daclizumab beta
treatment compared to placebo in the CD56dim population in
the unadjusted analysis, including NTB-A and CD2 at 24 weeks,
and TACTILE, NTB-A, and CD2 at 52 weeks; these findings
were not significant after correcting for multiple comparisons
(Figure 4A). There were stronger (higher log-odds) predictors of
placebo treatment at both 24 and 52 weeks, including NKG2D,
TIGIT, FAS-L, KIR2DL5, CD69, CD244, and NKp46 in the
unadjusted analysis (Figure 4A). This suggests that daclizumab
beta more strongly decreased expression of several NK receptors
in the CD56dim population rather than increased.

When comparing baseline and 24 or 52 weeks of treatment in
daclizumab beta-treated individuals, we identified two significant
predictors of treatment: CD2 and NKG2A (Figure 4B).
Conversely, FAS-L, HLA-DR, CD16, CD8, NTB-A, NKp30,
and Perforin predicted baseline samples compared to 24 or
52 weeks. Interestingly, several of the markers that predicted
baseline samples in the CD56dim population actually predicted
daclizumab beta treatment in the CD56bright population,
suggesting that distinct responses to daclizumab beta treatment
occur in the CD56bright and CD56dim NK cells.
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FIGURE 2 | Daclizumab beta alters the CD56bright population. (A) A generalized linear model with bootstrap resampling was used to identify NK markers on
CD56bright NK cells predictive of daclizumab beta- and placebo-treated individuals at 52 weeks of treatment. CD56bright NK cells were used with no subsampling.
Placebo: 24 weeks, n = 14; 52 weeks, n = 16. Daclizumab beta: 24 weeks, n = 25; 52 weeks, n = 27. Gray lines indicate markers with adjusted p-values > 0.05.
Black lines indicate markers with adjusted p-values < 0.05. (B) A generalized linear mixed model with paired comparison was used for analyses of the same
individual over time, comparing baseline and 52 weeks of daclizumab beta treatment. CD56bright NK cells were used with no subsampling. Daclizumab beta baseline
vs. 52 weeks, n = 22. Gray lines indicate markers with adjusted p-values > 0.05. Black lines indicate markers with adjusted p-values < 0.05. (C) UMAP visualizations
of CD56bright NK cells from the placebo at baseline (top row) and 52 weeks (second row), or the daclizumab beta-treated at baseline (third row) and 52 weeks
(bottom row) groups. Leftmost panels are colored by cell density. NKG2A, NKp44, and CD38 were predictors of 52 weeks of daclizumab beta treatment. CD244,
CD57, and NKp46 were predictors of baseline samples. Each plot is colored by marker expression, with color scale consistent between groups but specific for each
marker. *Adjusted p-value < 0.05, **adjusted p-value < 0.01, ***adjusted p-value < 0.001. Adjusted p-values calculated using Benjamini-Hochberg method with
FDR = 0.05.
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FIGURE 3 | Daclizumab beta treatment does not alter a specific subset of CD56bright NK cells. (A) The CATALYST package was used to perform clustering on all
CD56bright NK cells from both placebo and daclizumab beta treated groups at all time points. Using the delta area plot provided by the clustering analysis, 9
metaclusters were retained. The metaclusters are displayed in the UMAP space, and colored by metacluster. (B) The heatmap shows the cluster IDs (leftmost
column) hierarchically ordered by similarity (dendrogram calculated using Euclidean distance as a metric and average as a linkage). Markers are labeled at the
bottom of the heatmap. The marker expressions are scaled to values between 0 and 1. Along the right side of the heatmap, the frequency of each cluster among the
total CD56bright NK population is shown in gray bars, with the frequency printed next to it. (C) Differential abundance test between clusters at 52 weeks of treatment
comparing placebo and daclizumab beta treatment. Across the top, Timepoint, Subject ID, and Treatment are shown for each sample (columns). The heatmap
represents the proportion of each metacluster in each sample, with gray showing under-representation and red showing over-representation. The proportions are
first scaled with arcsine-square-root transformation and then z-score normalized in each cluster. The cluster ID is labeled along the left side of the heatmap, ordered
by significance, which is shown along the right side of the heatmap. The differential abundance test reports adjusted p-values (FDR). (D) Differential abundance test
between clusters within the daclizumab beta treated group, comparing baseline and 52 weeks of treatment. Across the top, Timepoint, Subject ID, and Treatment
are shown for each sample (columns). The cluster ID is labeled along the left side of the heatmap, ordered by significance, which is shown along the right side of the
heatmap. The differential abundance test reports adjusted p-values (FDR).

DISCUSSION

While daclizumab beta has been voluntarily withdrawn from
the market, understanding the effects of daclizumab beta may
provide insight into the role of NK cells in the pathogenesis of
RMS and in the potential of other NK cell-based therapeutic

strategies for RMS. Here, we used mass cytometry to profile the
NK cells expanded in the setting of daclizumab beta treatment
of RMS. As observed previously (10), daclizumab beta led to
a dramatic shift in the NK cell repertoire with an increase in
the frequency of CD56bright NK cells and enhanced expression
of NKG2A and CD2. Here, we extended the characterization of
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FIGURE 4 | Daclizumab beta changes NK receptor expression on CD56dim cells distinctly from CD56bright cells. (A) A generalized linear model with bootstrap
resampling was used to identify NK markers on CD56dim NK cells predictive of daclizumab beta- and placebo-treated individuals at 24 (left) and 52 (right) weeks of
treatment. CD56dim NK cells were used with subsampling to 1000 cells per individual. Placebo: 24 weeks, n = 14; 52 weeks, n = 16. Daclizumab beta: 24 weeks,
n = 25; 52 weeks, n = 27. Gray lines indicate markers with adjusted p-values > 0.05. Black lines indicate markers with adjusted p-values < 0.05. (B) A generalized
linear mixed model with paired comparison was used for analyses of the same individual over time, comparing baseline and 24 weeks of daclizumab beta treatment
(left), and baseline and 52 weeks of daclizumab beta treatment (right). CD56dim NK cells were used with no subsampling. Daclizumab beta baseline vs. 24 weeks,
n = 21. Daclizumab beta baseline vs. 52 weeks, n = 22. *Adjusted p-value < 0.05, **adjusted p-value < 0.01, ***adjusted p-value < 0.001. Adjusted p-values
calculated using Benjamini-Hochberg method with FDR = 0.05.
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the phenotype, demonstrating that the expanded CD56bright NK
cells had a unique phenotype that was present by 24 weeks of
treatment and remained at 52 weeks of treatment.

Daclizumab beta treatment was associated with enhanced
expression of the activation markers CD38 and Perforin, the
activating receptors NKp44, TACTILE (CD96), and CD16, and
the inhibitory receptors NKG2A, KIR2DL3, and Siglec-7 within
the CD56bright population. The enhanced expression of a number
of markers of cellular activation and receptors that mediate NK
cell activation suggests that the CD56bright NK cells that emerge
upon daclizumab beta treatment are primed for responsiveness.
At the same time, it is difficult to fully predict the effects of these
alterations in receptor expression profiles. While CD56bright NK
cells normally express NKG2A, the inhibitory receptor that binds
HLA-E, this expression is even higher following daclizumab
beta treatment (Figure 2). While enhanced expression of this
inhibitory receptor could diminish NK cell responsiveness, it is
also possible that these NK cells are “educated” through NKG2A,
leading to their enhanced ability to detect “altered self ” (37, 38).
Along similar lines, the increased expression of KIR2DL3 on the
CD56bright NK cells in daclizumab beta-treated subjects indicates
that at least a subset of these CD56bright NK cells have a more
mature phenotype, and could be educated through this KIR to
enhance their ability to respond to missing self. Thus, daclizumab
beta treatment drives several phenotypic changes in NK cells that
could contribute to enhanced NK cell responsiveness.

Daclizumab beta treatment had less effect on the mature
CD56dim subset that is generally associated with higher cytolytic
activity, yet phenotypic changes still occurred. Similar to
CD56bright NK cells, expression of NKG2A and CD2 on CD56dim

cells was predictive of daclizumab beta treatment. Interestingly,
several markers associated with cellular cytotoxicity, including
FAS-L and Perforin, predicted baseline samples among CD56dim

NK cells, suggesting that the CD56dim NK cells from daclizumab
beta treated subjects may be less efficient at killing. This could
partially explain the killing of autoreactive T cells by CD56bright

NK in the setting of daclizumab beta treatment (10).
In general, CD56bright NK cells are thought of as the immature

subset of NK cells that do not express KIRs, have limited cytolytic
activity, and secrete cytokines. Their expansion following
daclizumab beta treatment could therefore improve outcomes in
RMS through either immunomodulation by cytokine secretion
or by killing autoreactive T cells. Surprisingly, prior work
demonstrated that the daclizumab beta-expanded CD56bright NK
cells can kill activated autologous CD4+ T cells in a granzyme
K dependent manner in vitro (10, 20), which may well explain
the therapeutic effect of daclizumab beta. The fact that there was
a strong correlation between CD56bright NK cell expansion and
T cell contraction following daclizumab beta treatment supports
the idea that the CD56bright NK cells could be limiting disease
by eliminating T cells in vivo (10). One potential explanation for
this surprising cytotoxicity mediated by CD56bright NK cells is
that they are not “conventional” CD56bright NK cells, but instead
fully mature CD56dim NK cells that upregulated CD56 expression
to the point where they were re-classified as CD56bright NK
cells. In fact, prior work demonstrates that IL-2 increases CD56
expression on NK cells (7). However, as visualized by UMAP,

the expanded NK cells in daclizumab beta-treated individuals
cluster in the same region as CD56bright NK cells from placebo-
treated individuals, not with CD56dim NK cells (Supplementary
Figure S4). Instead, the CD56bright NK cells appear to have
acquired key characteristics that could enhance their cytolytic
activity with daclizumab beta treatment, including enhanced
expression of Perforin and CD16. Further, the daclizumab beta-
induced CD56bright NK cells express other markers of maturity,
including KIR2DL3, Siglec-7, CD38, and CD8. Together, these
data are consistent with the idea that the CD56bright NK cells
induced by daclizumab beta treatment are activated and have
acquired sufficient maturity to be cytolytic.

Prior studies have indicated that NK cells may play a role
in MS pathogenesis in the absence of drug treatment. Two
groups have reported that CD56bright NK cells are present in
the CNS in MS lesions (39, 40), suggesting they may play a
role in eliminating activated CD4+ T cells in brain lesions.
Martinez-Rodriguez et al. reported that CMV infection, which
drives an expansion of mature, “adaptive” NKG2C-expressing
NK cells, is associated with a lower risk of disease progression
in MS (41). The CD56bright NK cells observed after daclizumab
beta do not resemble the mature NKG2C-expressing NK cells
seen after CMV infection, but nonetheless could contribute to
protection within the CNS.

Gross et al. report that CD56bright NK cells are present
in CNS lesions in MS, but that NK cells from MS patients
are deficient in killing autologous, activated CD4 + T cells
(40). This defect is attributed to poor expression of DNAM-
1 on NK cells and its ligand, CD155 on CD4+ T cells in the
setting of MS (40), and is consistent with studies revealing that
DNAM-1 polymorphisms may play a role in susceptibility to MS
(42). Independently, CD56bright NK cells have been reported to
mediate killing through NKG2D, TRAIL, and LFA-1 expression
(43). In our study of peripheral blood NK cells, DNAM-
1 expression was predictive of baseline samples, indicating
that DNAM-1 expression is not increased by daclizumab beta
treatment. However, it is important to note that our study
characterized peripheral blood NK cells, and the prior studies
showing DNAM-1-mediated killing were all focused on NK
cells in the CNS.

Several studies suggest that NK cells may be deficient in
the setting of MS (44–50), providing hope that enhancing their
frequency and/or function could improve outcomes. However,
some studies have not demonstrated a defect in NK cell numbers
in MS subjects (40, 51). Another study suggests that ‘regulatory’
NK cells may be more important in disease pathogenesis (52,
54). A limitation of our study was that our control group of
healthy controls was collected independently of the SELECT and
DECIDE trials. For comparison of CD56bright frequencies, we
used local healthy blood bank control subjects, but the potential
for batch effects based on collection of blood samples at different
times and with different methods (e.g., CPT tubes vs. heparin
tubes), precludes our ability to compare NK cells between RMS
subjects and healthy controls without concern for batch effects.

There are several limitations to our study. The first is that
the sample size is quite modest, leading to reduced power to
find differences in this high-dimensional analysis, particularly in
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the cross-sectional comparison between daclizumab beta-treated
and placebo-treated individuals. Second, as discussed above, we
did not have a healthy control group to which we could directly
compare NK cells in RMS patients without concern for batch
effects. Third, we did not perform functional assessments, so
cannot confirm that the enhanced expression of killing and
activation markers on CD56bright NK cells in fact drives better
killing of autologous, activated CD4+ T cells. It is important to
note that enhanced killing of CD4+ T cells was demonstrated
previously in daclizumab beta treated subjects (10, 20).

Overall, these data demonstrate that significant changes
occur in NK cells in response to the increased IL-2 availability
induced by daclizumab beta treatment. These data extend prior
findings indicating that daclizumab beta treatment increases
the frequency of the CD56bright population, which is not due
to an increase of a specific subset of CD56bright NK cells.
NK receptor expression is broadly altered across CD56bright

NK cells, highlighting the unique phenotypic features of these
expanded NK cells. The high expression of activation markers,
activating receptors, and perforin could enhance the ability of
these CD56bright NK cells to control RMS through cytolytic
activity or other immunoregulatory functions. The deep profiling
of NK cells performed here, including in the placebo group, can
also serve as a reference for future studies of NK cell phenotype
in the setting of RMS. While daclizumab beta was voluntarily
withdrawn from the market due to serious adverse events, it
is notable that several other medications used to treat RMS,
including natalizumab, fingolimod, glatiramer acetate, or beta
interferon, are also associated with expanded CD56bright NK cells
in the setting of clinical response (53). Thus, in order to improve
treatment for RMS, it will be critical in future studies to determine
whether specific features of NK cells are associated with clinical
response or serious adverse events.
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Natural killer (NK) cells have a central role within the innate immune system, eliminating

virally infected, foreign and transformed cells through their natural cytotoxic capacity.

Release of their cytotoxic granules is tightly controlled through the balance of a large

repertoire of inhibitory and activating receptors, and it is the unique combination of

these receptors expressed by individual cells that confers immense diversity both

in phenotype and functionality. The diverse, yet unique, NK cell repertoire within an

individual is surprisingly stable over time considering the constant renewal of these

cells at steady state. Here we give an overview of NK cell differentiation and discuss

metabolic requirements, intra-lineage plasticity and transcriptional reprogramming during

IL-15-driven homeostatic proliferation. New insights into the regulation of NK cell

differentiation and homeostasis could pave the way for the successful implementation

of NK cell-based immunotherapy against cancer.

Keywords: natural killer cells (NK cells), IL-15, mTOR, homeostasis, NK cell differentiation

NK CELL DEVELOPMENT

Natural killer (NK) cells are granular lymphocytes able to unleash stored cytotoxic potential to
kill foreign, transformed or infected cells. Compared to other cytotoxic cells, NK cells are not
restricted by the need for prior sensitization and can further orchestrate the early phase of the
adaptive immune response. NK cells are found in significant numbers in blood, bone marrow,
liver, lymphoid organs, lung, and uterus (1) and develop from common lymphoid progenitors
in the bone marrow (2). Identification of NK cell precursors outside the bone marrow, namely
fetal thymocytes (CD34+CD3−CD4−CD8−) and fetal liver cells (CD34+CD38+) suggests that
NK development is not restricted to the bone marrow (3–5). Commitment to the NK cell lineage
requires the transcription factors ID2 and E4BP4 along with IL-15 signaling (6–11). The search
for an NK-restricted precursor identified CD34+CD38+CD45RA+CD7+CD10+CD123−CD127−

cells which can give rise to T-bet+ and Eomes+ NK cells, two transcription factors central for
NK cell maturation in mice (12, 13). Expression of T-bet and Eomes induces CD122 (encoded
by IL2RB) expression on NK cells, a component of both the IL-2 and IL-15 receptor allowing for
survival and effector function signaling to occur (12, 14). Although NK cells belong to the innate
immune system, many aspects of T cell biology share a striking similarity with NK cells (15).

NK CELL DIFFERENTIATION AND FUNCTIONAL SPECIALIZATION

In humans, NK cells are characterized as CD56+CD3− cells. They can be broadly divided into
CD56bright and CD56dim subpopulations based on clear functional and phenotypic differences
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(16–18). CD56bright NK cells are highly responsive to cytokine
priming and fulfill an immunomodulatory role. Expression
of CCR7, CD62L, CXCR3, CCR5, CCR2, and CXCR4 allows
CD56bright cells to home to secondary lymphoid tissues, the liver,
skin and bone marrow, where they represent the dominant NK
cell subset (1, 19–22). Conversely, cytotoxic CD56dim NK cells,
which prioritize activating and inhibitory receptor input, mainly
express CX3CR1 and CXCR1 (22), and account for the majority
of peripheral blood NK cells (23).

CD56bright NK cells have been suggested as precursors
of CD56dim NK cells based on combinatorial approaches
including transcriptional studies (24–27). CD56bright NK cells
can acquire CD16 expression, effectively transitioning into
CD56dim NK cells (18) and CD16+CD56bright NK cells exist
as functional intermediates (28). Furthermore, CD56bright NK
cells are the first lymphocyte population to reconstitute after
stem cell transplantation, with CD16 acquisition, decreased
surface expression of CD56 and cytotoxic effector functions
following at a later time point (29–31). Conversely, in response
to cytokine stimulation CD56dim NK cells can adopt a “bright-
like” phenotype via upregulation of CD56 (32). CD56bright NK
cells also have longer telomers compared to CD56dim NK cells,
evidence for having undergone fewer cell divisions (18), and have
an increased proliferative capacity compared to CD56dim NK
cells (33).

Within the CD56dim NK cell population, further distinctions
of individual subsets based on phenotypic and functional
characteristics can be made (Figure 1) (34). Cells expressing the
inhibitory receptor NKG2A are found on the immature end of
the spectrum, whereas acquisition of killer cell immunoglobulin
like receptors (KIR) gives rise to more differentiated educated
and uneducated NK cells with varying functional potential (35).
The inhibitory signal strength between self-MHC and NKG2A
and KIR fine-tunes the functional potential in a process termed
education (35, 36). Expression of CD57, a carbohydrate epitope
of unknown binding, is associated with terminal maturation,
reduced proliferative capacity, and increased functional potential
(37). At the mature end of the spectrum is a unique group of
NK cells termed adaptive or memory-like NK cells (38, 39) that
can be found in approximately 40% of cytomegalovirus (CMV)
seropositive individuals. Adaptive NK cells are characterized
by single self-KIR expression, epigenetic downregulation of
intracellular signaling molecules and expression of the activating
receptor NKG2C and CD57 (40–45). Functionally, adaptive NK
cells exhibit increased ADCC activity compared to their non-
adaptive counterpart. Although the combination of NKG2A, KIR
and CD57 expression is commonly used to define NK cell subsets
in humans, this is a simplified model considering that up to
100,000 unique subsets exist within healthy individuals (46).

Transcriptional Regulation of Human NK

Cell Differentiation
Recently, several studies have shed light on the transcriptional
regulation of NK cell differentiation. Mouse studies identified
the importance of T-bet and Eomes in the differentiation
step from immature CD27+CD11b− to mature CD27−CD11b+

NK cells22, as well as the role of ZBTB32, IRF2, and
IKZF3 in NK cell differentiation (47–49). Bulk sequencing,
combined with ChIP sequencing, of human CD56bright and
CD56dim NK cells identified the TCF1-LEF-MYC axis within
the CD56bright population and the PRDM1-MAF-ZEB2 axis
within CD56dim NK cells (50). These transcription factor
controlled regulatory schemes within effector cells (CD56dim

NK cells) and proliferative precursor cells (CD56bright NK
cells) dictated their functional programs as well as localization
and trafficking. Expression of BACH2 in CD56bright NK cells
repressed BLIMP1 expression while ZEB2 expression in CD56dim

NK cells repressed TCF1 expression. The first single-cell RNA
sequencing (scRNA seq) study in human NK cells was focused
on characterizing the heterogeneity within peripheral blood and
organs in both mice and humans (51), without detailing the gene
regulatory circuit involved in NK cell differentiation. A recent
study from our group (52) set out to delineate the temporal
transcriptional regulation of human NK cell differentiation
with the aid of scRNA seq. Confirming previous phenotypic
and functional studies, we identified two main transcriptional
islands, which corresponded to the CD56bright and CD56dim

NK cell populations. Intriguingly, they were connected by a
narrow bridge which, based on RNA velocity analysis (53),
identified a transition from the CD56bright to CD56dim island.
This gradual transition between the two main subsets was further
corroborated by mapping a confined set of gene trends along
pseudotime using Palantir (54).

Formation of the Functional Template for

Education
NK cell education is the process whereby NK cells are
functionally tuned via inhibitory interactions mediated between
self-MHC and KIR or NKG2A. This is further fine-tuned by
the signal strength determined by the number of inhibitory
interactions (35, 36). As NK cells do not undergo positive or
negative selection, it was initially assumed that they would
express a minimum of one inhibitory receptor in order to
maintain tolerance to self (55). However, the presence of
NKG2A−KIR− cells and evidence of completely stochastic KIR
repertoires in the developing immune system (56–59) suggested
that alternative mechanisms are in play to ensure tolerance to
self. Indeed, NK cells that lack self-specific inhibitory receptors
circulate in a hypo-responsive state (56, 60, 61). Furthermore,
NK cells have the ability to undergo re-education after transfer
from oneMHC class I environment to another, further validating
the need for sustained inhibitory interactions in order to retain
functionality (62, 63).

Despite education being a dynamic process that forms an
important cornerstone in NK cell functionality, the intracellular
mechanism underlying education remained elusive until
recently. Multiple models have been proposed, including
the arming, the disarming and the rheostat model without a
general consensus being reached (35, 64, 65). Discriminating
between educated and uneducated NK cells required a functional
readout or sequencing of the HLA genes, as no phenotypic
readout existed. Recent work from our lab identified granzyme
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FIGURE 1 | NK cell subsets. Overview of the distinct stages of NK cell differentiation based on phenotypic and functional properties.

B retention as a sensitive and specific phenotypic readout
for education in resting NK cells, putting the core cytolytic
machinery itself in the spotlight in the search for an underlying
mechanism behind NK cell education (66). Transcriptionally,
educated NK cells were identical to uneducated NK cells, but
accumulated granzyme B in dense-core secretory lysosomes
located close to the centrosome. After target cell interaction,
these large granules containing granzyme B were released, in line
with increased cytotoxicity compared to uneducated cells lacking
these particular granules. Pharmacological inhibition of the
protein kinase PIKfyve and genetic silencing of its downstream
target, the lysosome-specific calcium channel TRPML1,
suggested a model where unopposed activating receptor input
leads to remodeling of the lysosomal compartment and loss of
dense-core secretory lysosomes in cells that lack self-specific
receptors. Downstream of such morphological changes, signaling
from acidic calcium stores may fine-tune the cell’s functional
potential through inter-organelle communication with the
endoplasmic reticulum.

Our recent scRNA-seq study (52) identified a gradual
increase in expression of effector molecules and genes involved
in lysosomal function within the CD56dim population.
Furthermore, genes important for vesicle formation and
trafficking, such as RAB27A, were higher expressed within the
CD56dim NK cell subset. Mutations in RAB27A cause Griscelli
syndrome type 2, resulting in a degranulation defect (67), as
Rab27a is recruited to the lytic granules by LFA-1 stimulation,
aiding the granule in docking to the plasma membrane (68, 69).
Hence, CD56dim NK cells are poised for modulation of the
lysosomal compartment mediated via inhibitory and activating
receptor input received at the cell surface, resulting in fine tuning
of their functionality.

NK CELL HOMEOSTASIS

IL-15 is the main cytokine required for NK cell development,
but also for survival, proliferation, metabolism and functionality
(70). The importance of IL-15 signaling in NK cell development

is best observed through mutations in the receptor components
and downstream signaling molecules which, together, present
as immunodeficiencies characterized by a lack of NK cells (71–
74). Immune cells, including DCs, monocytes and other non-
hematopoietic cells trans-present IL-15 on the IL-15Rα chain,
which binds to the heterodimer consisting of IL-2Rβ (CD122)
and the common γ-chain (CD132) found on the NK cell surface.
Downstream signaling is mediated via JAK1/3, allowing for
recruitment and activation of the transcription factor STAT5,
a survival signal for NK cells (73). A downstream target of
STAT5 is the cytokine induced SH2-containing protein (CIS,
encoded by CISH), which functions as a negative feedback loop
by inhibiting the upstream JAK1 (75). Cish−/− knockout mice
presented increased anti-tumor activity and proliferative capacity
as a result of being hyper-responsive to IL-15 signaling (75).
Mathematical modeling has been implemented in an attempt
to better understand the impact of IL-15 receptor signaling
on proliferation. The model predicted that increasing IL-15Rα

expression on the cell surface will accelerate the formation of IL-
15/IL-15R complexes, particularly at low IL-15 concentrations,
until a saturation level is reached and no further proliferative
response can be achieved (76). These results highlight the broad
and central role for IL-15 in NK cell development, differentiation,
homeostasis and priming of effector function.

Quorum sensing, which is a form of chemical communication
in bacteria whereby sensing of an autoinducer is used to
synchronize group behavior, has recently been proposed to also
control immune cell homeostasis (77). For example, colony
stimulating factor 1 (CSF1) produced by the surrounding stromal
cells is proposed to function as the autoinducer in macrophages,
whereby uptake of CSF1 controls the rate of proliferation and
survival to maintain a steady population density at homeostasis
(78). In T cells, IL-2 replaces CSF1 as the autoinducer, which
together with IL-6 has been suggested to also modulate the
differentiation from an effector T cell to a central memory
T cell (79, 80). The logical autoinducer counterpart in NK
cells is IL-15. The threshold for IL-15 induced proliferation
is subset-dependent, as observed by the onset of proliferation
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across the maturation spectrum. This is in line with the
concept of quorum sensing, whereby the level of IL-15 in
the microenvironment dictates the degree of proliferation and
overall size of the population.

The IL-15 mTOR Axis
The unique role of IL-15 in NK cell biology is largely attributed
to the IL-15 mammalian target of rapamycin (mTOR) signaling
axis and the metabolic regulation of NK cells. Mouse studies
identified a dose-dependent downstream signaling pathway,
where high dose IL-15 activated the mammalian target of
rapamycin (mTOR) as well as STAT5. mTOR, a serine/threonine
kinase consisting of the two complexes mTORC1 and mTORC2,
is a master regulator in cells. mTORC1 senses for nutrients in
the microenvironment to control metabolism while mTORC2
is involved in controlling the cytoskeletal organization of the
cell (81–83). Metabolic reprogramming due to environmental
cues has been identified as a key regulatory mechanism behind
immune cell differentiation and function in NK cells and other
immune cells (81–85). In mice, increased cytokine priming led
to metabolic reprogramming, with increased metabolic activity,
and a switch in energy source from oxidative phosphorylation
(OXPHOS) to glycolysis. An increase in metabolism allowed
for IFNγ and granzyme B production, conferring increased
functionality which could be reversed through the use of
rapamycin, an mTOR inhibitor (81). Viral infection can also
activate mTOR leading to metabolic reprogramming, as observed
in murine CMV infection122. It is possible that in a tumor setting,
a lack of available glucose due to high glycolytic activity by the
tumor cells could lead to functional inhibition due to lack of
mTOR activation (81, 86).

In addition to mediating NK cell functionality via modulation
of the cellular metabolism, mTOR may serve as a functional
rheostat during NK cell education (82, 87). Educated NK

cells exhibited higher basal mTOR activity, which was further
increased upon activating receptor ligation and also correlated
with the number of inhibitory receptors expressed (87).
Expression of SHP-1, a phosphatase required to convert
inhibitory receptor input into functional responsiveness, was
required for increased mTOR activity in educated cells (88).
Conversely, continuous activating receptor input in the absence
of inhibitor input dampened mTOR activity. Although education
is not transcriptionally regulated in human NK cells, mTOR
activity is dependent on its localization to the lysosomal
compartment which in turn can be negatively regulated
by TRPML1 (89, 90). The connection between lysosomal
remodeling during education and metabolic regulation through
mTOR is an unexplored area in NK cell biology that warrants
further investigation.

NK Cell Repertoire Dynamics and

Intra-Lineage Plasticity
At the donor level, the NK cell repertoire is vastly diverse and
unique (46). However, once the NK cell repertoire has been fully
formed and in some cases further shaped by pathogens such as
CMV, it is well-maintained over time considering the rather rapid
turnover of the cells (44, 91). Proliferation therefore plays an

important role in replenishing the NK cell pool at steady-state
and in maintaining a stable repertoire. NK cell proliferation has
mainly been examined in viral or disease settings, where it is
associated with rapid cell turnover resulting in subset skewing
toward immature NK cells with higher proliferative potential
(92–94). In a recent study we asked the question of whether or
not stable NK cell repertoires are maintained under homeostatic
proliferation (95). We hypothesized that the observed stability
was either the result of self-renewal from an immature pool of
progenitor cells followed by differentiation, or the result of intra-
lineage plasticity (BOX 1). This process has been observed in
other immune cells (96, 97) but NK cell plasticity has largely
remained unexplored (98).

BOX 1 | Cellular plasticity

Plasticity refers to phenotypic and functional changes occurring within

populations of cells. Intra-lineage plasticity, also known as functional plasticity,

refers to cells of a given lineage adapting to their surroundings in response

to cytokine or receptor input which is translated into transcriptional changes

resulting in an altered phenotype and modified functionality. An example of

this is macrophages transition between an M1 and M2 phenotype, T cells

transitioning from Th to Treg phenotype or ILC subsets transitioning between

ILC1- 3 phenotypes.

We developed a simplified model that induced a linear
onset of IL-15 induced proliferation with maximal retention
of NK cell subsets (based on NKG2A, KIR and CD57) to
mimic homeostatic conditions. We observed subset-specific
proliferation kinetics, which correlated with mTOR activation.
IL-15-induced mTORC1 upregulation prior to proliferation
onset could predict downstream proliferation 3 days later at both
the donor and subset level. Repeated sampling of the same blood
donors over time confirmed stable NK cell repertoires, but also
an intrinsic metabolic set point determining the level of mTOR
activation in response to IL-15 stimulation.

Despite subset-specific proliferation kinetics, the actual subset
frequencies at the population level remained largely stable,
suggesting that the repertoires were maintained through intra-
lineage plasticity. Indeed, sorting individual NK cell subsets prior
to proliferation revealed a surprising degree of cellular plasticity
in both immature and mature subsets. Acquisition of NKG2A in
sorted KIR+ NK cells was associated with increased proliferative
potential and decreased functionality, while the reverse was true
for CD57 acquisition by the same subset. Surprisingly, a fraction
of CD57+ NK cells lost CD57 expression, acquired NKG2A and
started to proliferate, suggesting they may not be terminally
differentiated. Rapidly cycling educated NK cells underwent
transcriptional reprogramming, resulting in a more immature
signature, while slowly cycling educated NK cells acquired amore
mature signature when compared with baseline subsets.

Our simplified in vitro homeostatic NK cell proliferation
model allowed us to examine the central role IL-15 plays in
maintaining NK cell homeostasis (Figure 2). CD57 expression
was associated with a negative influence on mTOR activation
and proliferation but enhanced functional potential. Although it
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FIGURE 2 | The functional dichotomy between proliferation and cytotoxicity

observed during IL-15-induced homeostatic proliferation. The example

illustrates the two distinct fates of sorted CD56dim KIR+ NKG2A−CD57− NK

cell depending on whether they acquire NKG2A or CD57.

is used as a main marker for subset discrimination in NK cells,
the function of CD57 remains unknown (37, 99). In neural cells,
CD57 has mainly been associated with adhesion proteins, while
binding to the IL-6 receptor has also been proposed (100). It
would be interesting to further delineate whether CD57 plays a
functional role, or if it is simply a surrogate marker for other
ongoing cellular modifications.

Due to their differential mTOR activation profile, it is
tempting to speculate that NKG2A+ and CD57+ cells display
distinct metabolic profiles. Metabolic reprogramming is
responsible for the differentiation of naïve T cells into active
effector and later into memory T cells (101–106). The transition
of naïve into effector T cells depends on the upregulation of
glycolysis and the TCA cycle to provide material for de-novo
synthesis of proteins, nucleic acids and lipids, whereas formation
of memory T cells rely on OXPHOS and fatty acid oxidation
(FAO) (107). Such differential use of metabolic programs has
also been observed in Th cell subsets (108). In addition, T cell
memory formation is influenced through the reorganization
of mitochondrial content (109). Interestingly, survival of
memory-like NK cells in mice upon CMV infection is dependent
on sufficient degradation of dysfunctional mitochondria via
mitophagy upon virus clearance (110).

Differences in terms of proliferation speed, phenotype,
and functionality between homeostatic and spontaneous
proliferation have been investigated in murine T cells (111–113).
Spontaneous proliferation, occurring in severely lymphopenic
mice, was characterized by a rapid onset of cell division that
was cytokine-independent. Homeostatic proliferation, on the
other hand, occurred in mildly lymphopenic mice at a slower
division rate and required both cytokine and T cell receptor
(TCR) stimulation. The proliferation-induced phenotype was
reverted after removal of the proliferation cues and cytotoxic
capacity of CD8+ T cells was lost during the initial phase of
intense proliferation (111–113).

Considering the asymmetric PI3K and mTOR activity post-
cell division observed in T cells and its role in controlling
differentiation fate and the functional dichotomy in proliferating
vs. arrested NK cells (101–106), it would be of interest to do
microscopy studies of cellular division or functional interactions
with target cells. Based on the induced transcriptional signature
in rapidly cycling NK cells, which included both RNA-modifying
metabolic genes and actin filament organization genes (95), the
loss of functionality in rapidly cycling cells may be due to
underlying deficits at the immune synapse. Conjugate formation
experiments combined with F-actin staining at the site of
the immune synapse would further shed light on the loss of
functionality observed during intense homeostatic proliferation.

NK Cell Homeostasis in vivo
Given the essential role of IL-15 on NK cells, stimulation of IL-15
signaling pathways has been explored in clinical settings (114–
120). In this regard, three main strategies have been pursued;
using recombinant-human IL-15 (116) generated by E. coli,
an IL-15 superagonist, ALT-803 (114, 115) and transfection
of an IL-15 containing CAR construct (121, 122). These have
been thus far tested in Phase I and II clinical trials, with
recombinant-human IL-15 and ALT-803 both showing moderate
success in inducing NK cell proliferation and activation in
vivo and in particular cases inducing disease remission. A
limitation of this approach has been the induction of some minor
side effects relating to an increased inflammatory environment.
Subcutaneous delivery of the compounds has resulted in a partial
reduction of these side effects (115). Recent pre-clinical studies
have highlighted the potential of combination therapy using
this IL-15 signaling stimulation and other immunotherapeutic
agents such as monoclonal antibodies or check-point blockade
(118, 119). Reflecting this, there are currently more than 100
registered clinical trials exploring IL-15 stimulation via either of
these two methods in a series of different cancer settings (www.
clinicaltrials.gov). In vitro, transfection with an IL-15 containing
CAR construct sustained autonomous NK cell growth over 42
days and increased systemic IL-15 serum levels were observed
in mouse studies (121). However, in 11 patients treated in a
Phase I/II trial, the detection of infused CAR+ NK cells by flow
cytometry was limited to the first 2 weeks post infusion (122).

In the setting of stem cell transplantation, NK cells are
the first lymphocyte population that can be detected following
engraftment (123). Their ability to mediate graft-vs.-leukemia
(GVL) effects is vital for elimination of residual disease, as
increased number of NK cells after transplantation result in
better treatment outcome (124, 125). Insights into the specificity
of NK cell alloreactivity, determined by specific combinations
of KIR and HLA, paved the way for the ground-breaking
discovery of a potential role of NK cells in mediating GVL in
haploidentical HSCT against AML (126, 127). Studies aiming
at harnessing NK cell alloreactivity in the context of HSCT
have recently been reviewed (128, 129). The indication that
NK cells may deliver a potent GVL effect in the setting of
HSCT inspired the whole NK cell community to develop
adoptive NK cell therapy based on transfer of “KIR ligand
mismatched” NK cells across HLA barriers to promote missing
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self-recognition. Whereas many studies did not find a beneficial
effect of genetic KIR ligand mismatch, calculation of the
functional dose of KIR ligand mismatched NK cells was
associated with less relapse after NK cell therapy against
AML (130–132).

A recent series of Phase III clinical trials have brought mTOR
inhibition to the forefront of transplantation (117, 120). In
both of these studies a series of patients received Sirolimus,
an alternate name for rapamycin, as a prophylactic against
graft vs. host disease (GVHD). Sandmaier et al. reported that
inclusion of Sirolimus to the standard calcineurin inhibitor
treatment showed decreased incidence of grade 2–4 acute
GVHD. Similarly, increased overall survival, and progression-
free survival, as well as decreased non-relapse related mortality
was observed in the sirolimus treated group. Due to the
clear improved benefit of Sirolimus treatment, the trial carried
out by Sandmaier et al. was terminated prior to complete
patient recruitment.

On the other hand, a parallel study by Gooptu et al.
did not report significant differences compared to standard
treatment regarding GVHD incidence, progression free survival
nor overall survival (117). This discrepancy may be due
to the differences in standard treatment and dosage of
Sirolimus between the two studies. In the latter study, the
immune reconstitution was evaluated at a series of timepoints
up to 24 months. Sirolimus treatment led to a decreased
lymphocyte cell count in the first 3 months of treatment,
and an increased ratio of regulatory T cells to CD8+ T cells
throughout the first 6 months of treatment. Lower NK cell
counts were observed in the first month following Sirolimus
treatment, although this recovered to similar levels compared
to standard treatment by the 3rd month. Given the phenotypic
and functional heterogeneity of NK cell subsets and the
critical role of mTOR and IL-15 signaling in driving NK cell
plasticity, it would be of great interest to further evaluate
the precise composition of the NK cell compartment during
such therapies.

Cytokine-Based Expansion Protocols for

NK Cell Therapy
There are several up to date and comprehensive reviews
describing the prospects of using various preparations of NK cells
in cell-based immunotherapy (133, 134). These include strategies
based on autologous and allogeneic NK cells that have been
stimulated by various cytokines alone or in combination with
irradiated feeder cells expressing membrane bound cytokines
such as IL-21 or IL-15 (121, 135–138). Therefore, we will focus on
a general discussion on how these protocols may drive dramatic
phenotypic and functional changes to the NK cell repertoire
(34, 95). To expand large numbers of cells for multi-dosing
schemes, many strategies are based on supra-physiological levels
of cytokines, including any combination of IL-2, IL-15, IL-12,
and IL-18 (139, 140). However, this can result in severe and
acute cytokine deprivation post-infusion as the cells become
“addicted” to cytokines (BOX 2). Severe side-effects (141, 142)
prevent patients from being treated with the same cytokines and

persistence is further limited through clearance of infused NK
cells by host immunity.

BOX 2 | Cellular addiction

Cytokine priming results in intracellular signaling changes occurring within

cells. Continuous stimulation with non-physiological cytokine levels can

result in an altered cellular state, which requires further cytokine stimulation

to support survival. This can be referred to as cytokine-dependence

or addiction, whereby cytokine withdrawal can lead to detrimental

consequences to the cell.

The Balance Between Pro- and

Anti-apoptotic Molecules During IL-15

Driven Proliferation
We recently set out to characterize the mechanism behind IL-
15 addiction and withdrawal in expanded NK cells. NK cells
exhibited a dose-dependent IL-15 addiction, where high-doses
induced rapid proliferation, skewing toward a naïve phenotype,
and subsequent crash upon cytokine withdrawal (143). Timing of
IL-15 dosing is crucial for NK cell survival and effector function
as chronic high-dose IL-15 stimulation leads to decreased
viability of NK cells with reduced respiratory spare capacity and
functional activity (144).

Numerous pro- and anti-apoptotic genes make up the
apoptosis network balancing the outcome of the cell during
various types of stimulations (70, 145–147). Within resting
NK cells, BCL-2 has been identified as an important anti-
apoptotic protein which can be further upregulated through IL-
15 stimulation, leading to downstream STAT5, but not mTOR
activation (82, 148). In actively proliferating NK cells, MCL-1
expression is vital to maintain viability (149). BIM is a pro-
apoptotic molecule and its downstream target BAX is directly
inhibited by BCL-2 (147). In murine effector CD8+ T cells,
increased BIM levels are balanced by increased BCL-2 levels,
expression of which dictates the amount of BIM that can
be tolerated (150). Similarly, in murine NK cells, the BCL-
2/BIM ratio was influenced by IL-15 stimulation and withdrawal,
whereby changes in the ratio could render the cells sensitive
to cell death (70, 150, 151). In line with these studies, we
observed an IL-15 dose-dependent increase in BCL-2, MCL-1,
and BIM expression. BCL-2 and MCL-1 were both crucial for
survival in NK cells stimulated with high-dose IL-15 as shown
through blocking experiments. Interestingly, rapidly cycling NK
cells exhibited reduced BCL-2 levels compared to slowly or non-
cycling NK cells during their expansion phase, in line with T cell
proliferation studies (145).

After cytokine withdrawal, anti-apoptotic proteins decreased,
and a potent apoptosis-inducing splice variant, BIM S, (152,
153) was preferentially upregulated in proliferating cells and
remained highly expressed until 24 h after cytokine withdrawal.
This severely altered the pro/anti-apoptotic ratio, exposing
rapidly cycling cells to high levels of toxic BIM S within 24 h
after cytokine withdrawal (Figure 3). The importance of these
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FIGURE 3 | The mechanism by which apoptosis is induced in cycling NK cells

after IL-15 induced cytokine dependence and subsequent withdrawal. The

curves represent expression of BIM short (red) and BCL-2 (blue) over culture

time.

apoptotic proteins in IL-15 mediated survival and function has
also been observed in murine studies (70). How homeostatic
and induced proliferation affects NK cell cytotoxicity, and how
apoptosis is induced in cycling cells upon cytokine withdrawal,
has potentially important implications for current cell therapy
expansion protocols.

CONCLUDING REMARKS

NK cells circulate in a pre-primed state full of effector molecules,
such as granzyme B and perforin, and have a natural ability
to kill cancer cells. Based on their cytotoxic capacity they hold
great potential in the clinic as a cancer treatment, made evident
by the number of ongoing clinical trials. However, to date
most completed and ongoing clinical trials are based on the
transfer of cytokine-activated polyclonal NK cell populations
from donors with very variable NK cell repertoires. To fully
harness the clinical potential of NK cells, future trials need to
be founded on recent breakthroughs in our understanding of

the vast repertoire diversity and the fundamental mechanisms
that govern the intrinsic functional potential of distinct NK cell
subsets at steady state and following cytokine stimulation.

Understanding how NK cells repertoires are formed and
maintained over time, and what functional roles individual
cell subsets perform in a homeostatic setting, are important
to improve current therapies and develop future treatment
strategies. Generating an “ideal” NK cell product for treatment
could involve modifying existing cells to improve functionality,
expanding highly cytotoxic subsets while ensuring retention of
functionality or designing a “synthetic” genetically engineered
killer cell from induced pluripotent stem cells.

Furthermore, we need to understand how NK cells are
functionally shaped by their surroundings. The soluble
factors, metabolic cues, fluctuations in oxygen levels, and
pH encountered by an NK cell in the tumor microenvironment
are very different from steady state and their impact on NK
cell function and persistence cannot be underestimated. This is

particularly difficult to study in the human setting, with mouse
models only providing an approximation.

By understanding the basic biology, from development to
differentiation to receptor and cytokine input, we will build
up our tool kit that can then be applied to design and
develop effective treatment strategies. After all, the “natural”
killing capacity is there, we just need to understand how to
harness it.
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After being described in the 1970s as cytotoxic cells that do not require MHC-dependent

pre-activation, natural killer (NK) cells remained the sole member of innate lymphocytes

for decades until lymphoid tissue-inducer cells in the 1990s and helper-like innate

lymphoid lineages from 2008 onward completed the picture of innate lymphoid cell

(ILC) diversity. Since some of the ILC members, such as ILC1s and CCR6− ILC3s,

share specific markers previously used to identify NK cells, these findings provoked the

question of how to delineate the development of NK cell and helper-like ILCs and how to

properly identify and genetically interfere with NK cells. The description of eomesodermin

(EOMES) as a lineage-specifying transcription factor of NK cells provided a candidate

that may serve as a selective marker for the genetic targeting and identification of

NK cells. Unlike helper-like ILCs, NK cell activation is, to a large degree, regulated

by the engagement of activating and inhibitory surface receptors. NK cell research

has revealed some elegant mechanisms of immunosurveillance, coined “missing-self”

and “induced-self” recognition, thus complementing “non-self recognition”, which is

predominantly utilized by adaptive lymphocytes and myeloid cells. Notably, the balance

of activating and inhibitory signals perceived by surface receptors can be therapeutically

harnessed for anti-tumor immunity mediated by NK cells. This review aims to summarize

the similarities and the differences in development, function, localization, and phenotype

of NK cells and helper-like ILCs, with the purpose to highlight the unique feature of NK

cell development and regulation.

Keywords: NK cells, innate lymphoid cells, immune recognition, immune receptor, innate lymphocytes

INTRODUCTION

In the mid-70s of the last century, two groups independently reported the presence of
small lymphocytes with non-MHC-restricted cytolytic activity against cells expressing tumor
antigens in mice (1–4). Such “natural” killer (NK) cells, capable of cell-mediated, rapid
cytotoxicity in a germline-encoded receptor-dependent fashion upon encountering of target
cells, were observed in humans as well (5). NK cells remained the only subset of innate
lymphocytes for two decades until an additional subset was discovered, which expressed
the integrin α4β7, lymphotoxin (LT)α1β2, and lymphoid cytokine receptors. However, this

newly described cell subset was giving rise to neither T-lymphocytes nor B-lymphocytes.
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They were named lymphoid tissue-inducer (LTi) cells because
they were among the first cells to infiltrate lymph node anlagen
during embryogenesis and hence are instrumental for the
development of most secondary lymphoid tissues (6).

Furthermore, from 2008 onwards, several groups reported the
discovery of new types of non-T and non-B lymphocytes which,
like NK cells and LTi cells, require the transcriptional regulator
inhibitor of DNA-binding 2 (ID2) and the common gamma chain
(γc) of the cytokine interleukins (IL)-2, 4, 7, 9, 15, and 21 for
their development and/or maintenance (7–21). These cells were
termed “innate lymphoid cells” (ILCs), which constitute lineages
of professional cytokine-producing cells that mirror T helper
cells in the utilization of transcription factors (TFs) required to
establish distinct patterns of lineage-specific cytokine production
and effector functions. It became obvious that the different
ILC populations resemble the functional diversity found in T
helper cell subsets, thus establishing a complementary innate
counterpart to T helper cells (22).

In connection with these findings of ILC diversity, a novel
ILC nomenclature was proposed in 2013 and amended in
2018 (22, 23). In analogy to T cells, two principal subsets of
ILCs can be distinguished: cytotoxic ILCs (i.e. conventional NK
cells) and helper-like ILCs (i.e. ILC1, ILC2, and ILC3) (24,
25). The general division of NK cells and helper-like ILCs is
supported by various findings. First, while there is a common
progenitor to all innate lymphocytes, variably referred to as
early innate lymphoid progenitor (EILP) (26) or innate lymphoid
cell progenitor (ILCP) (27), a more restricted common helper-
like innate lymphoid cell progenitor (CHILP) with reduced
potential for helper-like ILC can only be found downstream
of the bifurcation with the NK cell lineage. Second, all helper-
like ILCs but not NK cells require GATA binding protein
3 (GATA-3) for their differentiation (28). Third, helper-like
ILCs are remarkably tissue-resident cells, whereas NK cells
are circulating cells (29–31). Finally, the use of inhibitory
and activating receptors of the KIR and the Ly49 families
was found in NK cells but not in ILCs. Thus, two principal
lineages of innate lymphocytes exist: helper-like ILCs and
cytotoxic ILCs.

In analogy to T cells, ILCs are divided into functional
groups, based on TFs required for their development as
well as their role in immune responses (22). NK cells
are functionally important for immunity against tumors and
intracellular pathogens via classical perforin-dependent, cell-
mediated cytotoxicity and production of interferon-gamma
(IFN-γ). ILC1s are an important source of IFN-γ and tumor
necrosis factor (TNF) to trigger type 1 immune responses and
limit intracellular infections. While NK cells and ILC1s are
functionally both promoting type 1 immune responses, they
are developmentally dependent on two evolutionary related
T-box TFs: eomesodermin (EOMES) and T-box expressed
in T cells (T-bet) (32). NK cells express both EOMES and
T-bet, but their development is only strictly dependent on
EOMES. NK cells develop in T-bet-deficient mice and have
a relatively mild functional defect (16, 33, 34). In contrast,
ILC1s express T-bet but not EOMES and do not develop in
T-bet-deficient mice (21, 35, 36). ILC2s require GATA-3 and

B-cell lymphoma/leukemia 11B (BCL11B) for development and
produce type 2 cytokines, mostly IL-5, IL-9, and IL-13, as well
as other effector molecules, such as amphiregulin, promoting
worm expulsion and tissue remodeling (12–14, 17, 37–42). Group
3 ILCs include fetal LTi cells and can be further divided into
two groups in adult mice based on CCR6 expression with
different developmental requirements and effector mechanisms
(43, 44). Both CCR6+ ILC3s and CCR6− ILC3s are dependent
on the TF RORγt and produce IL-22 to fortify the epithelial
barrier against infections, damage, and genotoxic stress (45–
51). CCR6+ ILC3s also produce IL-17 and protect from fungal
infections, whereas CCR6− ILC3s down-regulate RORγt and IL-
22, up-regulate the TF T-bet. CCR6− ILC3s in addition acquire
the capacity to produce IFN-γ and transform into ILC1-like
cells (19, 44, 52–55).

Helper-like ILCs were reported as tissue-resident cells
enriched at barrier surfaces and underrepresented in secondary
lymphoid organs (29–31). In contrast, NK cells are patrolling
lymphocytes, which express CD62L to migrate from blood to
lymph nodes (21, 30, 56). As patrolling cells, immune recognition
by NK cells is mediated by the interaction of immunoreceptors
that scan target cells for the expression of their ligands. Therefore,
the development and regulation of NK cells depend on the
interaction of the immunoreceptors and their ligands. Although
the expression of some immunoreceptors (e.g. KLRG1, PD-1) has
been reported for helper-like ILCs as well, their activity seems to
be predominantly regulated by soluble factors such as cytokines
and neuronal factors (21, 35, 52, 57–59).

IMMUNE RECOGNITION STRATEGIES OF

NK CELLS

The complexity of multicellular organisms demands essential
immune recognition strategies to maintain their self-integrity
in a hostile environment. Almost all organisms, from bacteria
to higher animals, possess recognition systems that allow them
to discriminate between self and non-self and possess effector
mechanisms to defend themselves from an invasion of pathogens.
The immune system of vertebrates consists of two arms: innate
and adaptive. Recognition of non-self molecules is broadly
used by both the innate and the adaptive immune system to
protect the host from infections (60). However, although NK
cells are capable of directly sensing non-self molecules, their
development and activation are regulated to a large extent by the
recognition of self molecules. Discrimination between self and
non-self is mediated by an array of stimulatory and inhibitory
immunoreceptors expressed by NK cells. They either recognize
non-self structures directly (Ly49H, NKG2C/CD94) or indirectly
via binding immune complexes to Fc receptors. Alternatively,
they interact with self MHC I (Ly49s and KIR, “missing-self ”
recognition) or with ligands absent on healthy cells (NKG2D and
NKp30, “induced-self ” recognition). The regulation of NK cells,
which relies on cell surface immunoreceptor–ligand interactions,
is complemented by cytokines, such as type I interferons, IL-12,
IL-15, and IL-18 (61–64).
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Non-self Recognition
The recognition strategy of “microbial non-self ” is approached
differently from the innate and the adaptive immune system.
The cellular components of the innate immune system express
germline-encoded receptors, called pattern recognition receptors
(PRRs), which come in two forms: transmembrane receptors and
secreted receptors (60, 65). These molecules recognize conserved
pathogen-associated molecular patterns (PAMPs) or microbe-
associated molecular patterns (MAMPs). The secreted PRRs lead
to the opsonization of microbes and label them for destruction
either by the complement system or by phagocytosis. PRRs
expressed on the cell surface of innate immune cells, such as Toll-
like receptors (TLRs), lead to the activation of immune signaling
pathways, which trigger inflammatory or antimicrobial effector
responses (66, 67).

Upon recognition of PAMPs and MAMPs on microbes by
antigen-presenting cells (APCs), phagocytosis and processing
of antigens in the lysosomal compartment of these cells are
triggered. T cells express strictly antigen-specific T cell receptors
(TCRs) that are generated by somatic genetic recombination,
thereby providing a vast repertoire of specificities. TCRs
recognize self and non-self peptides presented on APCs via
MHC molecules, providing “signal 1” for T cell activation.
However, TCR ligation by itself is not sufficient for efficient T
cell activation. It requires a co-stimulatory signal (“signal 2”),
e.g. provided by APC-expressed CD80 (B7-1) and CD86 (B7-2),
ligands for the constitutively expressed CD28 receptor on T cells
(68). CD80 and CD86 are not expressed by unstimulated APCs
but are rapidly up-regulated following the encounter of MAMPs
or PAMPs, providing an additional “quality control” for T cell
responses. In addition, stimulated APCs produce cytokines and
IFNs, which further enhance T cell responses (“signal 3”). In the
case of naive CD4+ T lymphocytes, distinct cytokines have been
shown to drive the differentiation into one of three T helper (Th)
subsets. IFN-γ and IL-12 are important for inducing Th1 cells,
IL-4 for Th2 commitment, and TGF-β and IL-6 for Th17 cell
differentiation (69–72).

TLR expression was also described on NK cells, but its
contribution to NK cell activation remains unclear. While the
direct activation of NK cells by TLR engagement has been
reported for human NK cells (73), genetic data from mice
demonstrated that TLR signaling to activate NK cells was cell-
extrinsic via mononuclear phagocytes (62). While recognition
of “non-self ” via PRRs may not be central for NK cells, they
express other families of receptors to directly recognize “non-
self ” molecules such as Ly49H in mice or NKG2C/CD94 in
humans (74–76). Ly49H is a stimulatory receptor that recognizes
the MHC-like protein m157 encoded by murine cytomegalovirus
(MCMV), which is expressed in infected cells and confers host
protection in C57BL/6 (B6) mice. It should be noted though
that, in most inbred mouse strains other than B6, m157 binds
to an inhibitory Ly49 receptor, leading to immune evasion.
NK cells can also recognize non-self peptides in the context
of non-classical MHC I molecules, very similar to the immune
recognition strategy of T cells. For example, subsets of NK
cells expressing the stimulatory receptor NKG2C/CD94 were
shown to recognize the UL40 antigen of human cytomegalovirus

presented in the context of the non-classical MHC-I molecule
HLA-E, and this recognition activates NK cells (77). The different
recognition strategies of immune cells are depicted in Figure 1.

Missing-Self Recognition
In 1981, Klas Kärre formulated the missing-self hypothesis (78).
Missing-self recognition was conceived as the capacity of NK
cells to attack cells that fail to express sufficient levels of class I
MHCmolecules. This concept was discovered while investigating
the role of class I MHC molecules in NK cell and T cell
responses to tumor cells (79, 80). Given the role that the class
I MHC antigen presentation pathway plays in the revelation of
virally infected cells to CD8+ T cells, it is not surprising that
many viruses have evolved mechanisms that interfere with this
pathway, thereby binding CD8+ T cells to virus-infected cells
(81). The missing-self hypothesis predicted that NK cells express
inhibitory class I MHC-specific receptors and that the down-
regulation of MHC-I expression on virus-infected cells or tumors
would unleash NK cells from inhibition. Years after postulating
“missing-self recognition,” various classes of inhibitory MHC
class I-specific NK cell receptors were identified. Ly49 receptors
in mice (82) and the structurally unrelated but functionally
analogous KIR family of inhibitory receptors in humans (83,
84) directly interact with class I MHC molecules. Both human
and mouse NK cells express the heterodimeric CD94/NKG2A
receptor, which monitors class I MHC molecules by another
mechanism. CD94/NKG2A recognizes a non-classical MHC
class I molecule, HLA-E in humans and Qa-1b in mice, when
loaded with peptides that are derived from the signal peptide
of classical class I MHC proteins (85). The inhibitory receptors
have an immune-receptor tyrosine-based inhibitory motif
(ITIM) in their cytoplasmic domain. Upon ligand recognition,
phosphorylation of the ITIM’s tyrosine residue serves as a
signal for recruitment of protein tyrosine phosphatases, SHP-
1 and SHP-2, which inhibit cytotoxic activity by further
dephosphorylating tyrosine residues that are critical for NK cell
activation (86, 87).

Missing-self recognition does not require viral infection or
a malignant transformation of target cells. Uninfected and
untransformed cells can be lysed by NK cells, as demonstrated
in NK cell-mediated rejection of F1 bone marrow grafts (88)
and bone marrow of β2-microglobulin-deficient mice that do
not express class I MHC on the cell surface (89). Since T cells
are not capable of recognizing and killing cells that down-
regulated class I MHC expression due to viral proteins that hijack
their expression pathway, NK cells are able to compensate this
immunological function via missing-self recognition of MHC-
deficient target cells.

Induced-Self Recognition
Induced-self ligands of NK cell receptors are molecules that are
absent or only at a very low level expressed on normal cells
but up-regulated on infected cells, stressed cells, or tumor cells
as a marker of “abnormal self.” Induced-self ligands bind to
stimulatory immunoreceptors on NK cells and mediate their
activation, leading to the lysis of the target cell (63, 90). The
activating NK cell receptor natural killer group 2D family
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FIGURE 1 | Principles of immune recognition. The immune system constantly senses the presence or absence of “self” and “non-self” molecules by stimulatory and

inhibitory receptors. Activation of immune cells is triggered by the direct recognition of microbial “non-self,” “missing-self” recognition, or “induced-self” recognition

(illustrations were created with BioRender.com).

(NKG2D) has served as a paradigm for understanding the
recognition of induced-self antigens. NKG2D binds to several
induced-self ligands. The mouse ligands include RAE1α, RAE1β,
RAE1γ, RAE1δ, RAE1ε, H60 (H60a, H60b, and H60c), and
MULT1 (91–96). These NKG2D ligands belong to a group
of non-classical MHC I molecules and contain α1 and α2
extracellular domains with homology to class I MHC molecules.
In humans, MHC class I polypeptide-related sequence A (MICA)
and B (MICB) represent additional NKG2D ligands that are not
present in mice (91). MICA/B possess an α3 domain homologous

to class I MHC molecules, but they neither require β2-
microglobulin for expression nor do they present peptides (90).
Another example of “induced-self recognition” is the natural
cytotoxicity receptor NKp30 which interacts with the B7-like self-
ligand B7-H6, the expression of which is induced on transformed
cells (97). Thus, immunosurveillance of induced-self ligands
by immunoreceptors such as NKG2D and NKp30 allows the
immune system to detect and eliminate cells that have undergone
“stress.” These receptor–ligand pairs represent interesting targets
of anti-tumor therapies. In Tables 1A and 1B, ligand–receptor
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TABLE 1 | (A) Summary of ligand-receptor interactions and their effect on immune cell activation. (B) Summary of self and non-self effects on immune cells when they are

present or absent. Illustrations created with BioRender.com.
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interactions, as well as the functional consequences for NK cell
activation are summarized.

Notably, NK cell-mediated immune regulation is tightly
linked to both classical and non-classical class I MHC molecules.
NK cells sense the absence of classical MHC-I (“missing-self ”)
but also recognize non-classical MHC-I molecules as non-
self or induced-self ligands. In addition, NK cells require the
recognition of self-MHC ligands not only for their activation
but also for proper development, which will be discussed in the
following chapters.

TRANSCRIPTIONAL REGULATION OF

PROGENITOR COMMITMENT TO ALL

INNATE LYMPHOID CELL LINEAGES

The initial steps of ILC differentiation from precursor cells take
place in the fetal liver and after birth in the adult bone marrow
(BM). In Figure 2, ILC progenitors and their differentiation
stages into ILC subsets are presented.

Hematopoietic stem cells (HSCs) give rise to all blood
cell progenitors, among which common lymphoid progenitors
(CLPs) are precursors of all lymphocytes, belonging to both
adaptive and the innate arms of the immune system. It
is generally believed that the CLP differentiates into the
various lymphocyte subsets by integrating environmental signals
that establish characteristic transcriptional programs, usually
regulated via several key TFs, that lead to a step-wise restriction
of their precursor potential and to the instruction of lymphocyte
subset-specific transcriptional circuitry (99–101).

An important conceptual advance of the last 5 years was
the description of multipotent ILC progenitor cells such as α-
lymphoid progenitor (α4β

+

7 αLP), EILP, CHILP, and ILCP, which
have the developmental potential for ILC lineages but can no
longer differentiate into adaptive lymphocytes or myeloid cells
(21, 26, 27, 98). Early evidence indicated that ILC progenitors
may be contained within a population with phenotypical
characteristics similar to CLPs. Indeed Lin− IL-7Rα+ CXCR6−

cells, which in contrast to CLPs expressed integrin α4β7 but were
negative for FLT3, a receptor tyrosine kinase expressed by the
CLPs (102), gave rise to all three groups of ILCs and T cells but
had lost B cell potential (103). The subsequent acquisition of the
chemokine receptor CXCR6 is indicative of the loss of T cell
potential and Lin− IL-7Rα+ CXCR6+ integrin α4β

+

7 FLT3− cells
are referred to as αLPs (103, 104). It became clear, however, that
αLPs are a quite heterogeneous population of innate lymphocyte
progenitors, which was further explored in subsequent work.

The earliest defined subset of ILC-committed progenitors
downstream of the CLP (and contained within the αLP
population) was characterized by high expression of the
transcriptional regulator T cell factor 1 (TCF-1, encoded by
the Tcf7 gene). Such TCF-1high progenitors are referred to as
EILPs or ILCPs. EILPs already show a substantial expression
of nuclear factor interleukin 3-regulated (NFIL3, also known
as E4BP4) and thymocyte selection-associated high mobility
group box protein (TOX) known to be involved in early ILC
differentiation (see below) (26). While the CLP does not express
ID2, a transcriptional regulator required for the differentiation

of all ILCs (105), EILPs express intermediate level of ID2. The
EILP gives rise to all ILC lineages (including NK cells) but lacks
T and B lymphocyte or myeloid potential (26). Unlike other
ILC progenitors and CLPs, EILPs were IL-7Rα low-expressing
cells and developed independently of IL-7Rα signaling. Therefore
this finding provoked the question on whether EILPs might
constitute an alternative route to ILC development because the
upstream and downstream cells are both IL-7Rα+. However,
it was demonstrated in consecutive work that EILPs developed
from CLP transiently down-regulating IL-7Rα expression and
then differentiated into ILC progenitors with increased IL-7Rα

expression (26, 106).
The existence of a common progenitor for ILCs was already

hypothesized years before their discovery, mainly based on the
phenotype of mice deficient for ID2 (107). ID2 belongs to the
family of helix–loop–helix proteins, which form heterodimers
with E-proteins, thus preventing their binding to DNA and
antagonizing the gene regulatory function of E-proteins during
cell development (108). Since Id2−/− mice lacked all ILCs, it
was hypothesized that this phenotype might be explained by
the existence of a common ILC progenitor, which expresses
ID2 and is developmentally dependent on it (12, 105, 109).
Indeed the analysis of ID2 reporter mice [Id2Gfp/+ mice; (110)]
revealed that both mature and immature ILCs expressed ID2
(17, 111, 112). An interrogation of the αLP population for
ID2 expression revealed a population of ID2high cells within
Lin− IL-7Rα+ CD25− integrin α4β

+

7 FLT3− αLP (21). Upon
transfer and on a clonal level, this cellular subset gave rise to
all three groups of ILCs, including CCR6+ ILC3, but not to
conventional NK cells and was accordingly named CHILP.While
the CHILP did not express any ILC lineage-defining TFs, they
expressed intermediate levels of GATA-3 (17). However, CHILPs
were heterogeneous for the expression of the TF promyelocytic
leukemia zinc finger protein (PLZF) (21). Interestingly, while
PLZF+ CHILP could generate ILC1, ILC2, and CCR6− ILC3,
they lacked the potential to differentiate into CCR6+ (LTi-like)
ILC3s and NK cells (98). These findings might be explained by
data showing that the CHILP contained subsets of CXCR5+ cells,
which gave rise to CCR6+ ILC3s/LTi cells and were not contained
in the PLZF+ population (113, 114). Single-cell sequencing of
ILC progenitors has confirmed the developmental stages of early
ILC commitment and further contributed additional markers,
such as programmed cell death protein 1 (PD-1), to define
PLZF+ precursors (115). Therefore, we will refer to these two
populations of ILC precursors as CHILP-A (ID2+ PLZF− PD-
1−) and CHILP-B (ID2+ PLZF+ PD-1+). Using reporter mice for
several TFs, later studies showed some degree of heterogeneity in
CHILP-A and CHILP-B which could be further subdivided into
cell subsets that were committed to one ILC subset and bona fide
CHILP subsets that still maintained multi-ILC lineage potential
(111–113).

A recent report attempted to challenge the view that ID2high

CHILPs are progenitors to all helper-like ILCs but not to
conventional NK cells (112). This study was based on the
generation of a very bright reporter allele for ID2. Somewhat
expectedly (26), the authors found that ID2int precursors (i.e.
EILP), which could be discriminated in these new reporter
mice, still have NK cell differentiation potential. These results
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FIGURE 2 | Progenitor commitment to innate lymphoid cells (ILCs). Schematic representation of progenitor populations with various differentiation potentials toward

ILCs. The common lymphoid progenitor (CLP) gives rise to B-cells, T cells, and ILCs. The early innate lymphoid progenitors (26) possess the potential for NK cells,

ILC1s, ILC2s, and ILC3s, whereas CHILP-A (21) and CHILP-B (98) possess the potential for ILC1s, ILC2s, and ILC3s as indicated. In square brackets are the

population-defining markers reported in the literature. The transcription factors required for the indicated lineage or transition from one population to another are

indicated within the cells or on the arrows, respectively (illustrations created with BioRender.com).

are supporting previous work which show that EILP expressed
intermediate levels of ID2 and can generate all ILC subsets and
NK cells (26, 106, 116). It is worth noting that during cellular
differentiation processes, TFs often act as gradients rather than
as binary switches. Once past the NK cell bifurcation (Figure 2),
ID2 expression increases (26, 100, 112) and ID2high CHILPs
have a more restricted potential. Collectively, the available
data support a model of ILC differentiation downstream of
CLP with three major bifurcations and consecutively restricted

differentiation potential, namely, TCF1+ ID2int EILP (or
ILCP), ID2high PLZF− CHILP-A, and ID2high PLZF+ CHILP-B
(Figure 2).

Single-cell sequencing data and analysis of multi-color
reporter mice have demonstrated that a further subdivision
of ILC progenitors is technically possible. These findings can
advance the ILC field by defining different ILC progenitors that
have a more restricted differentiation potential and therefore
open the perspective of finding the cues that control the
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commitment and the differentiation of CHILPs into different
ILC cell subsets. However, defining progenitors by clustering
based on highly expressed genes that are detected using single-
cell sequencing comes with the caveat that cell clustering
is not necessarily of biological relevance and differences in
differentiation potential remain to be demonstrated.

Several additional TFs were recognized, which play an
essential role in early commitment to the ILC fate. In addition to
ID2 and PLZF, these TFs include NFIL3, TOX, and GATA-3. The
phenotype of the knockout mice for these TFs was characterized
by a deficiency or a reduction in all or almost all ILC lineages,
except NK and LTi-like cells in GATA-3-deficient mice. NFIL3 is
important for the transition fromCLPs to ILC progenitors, where
the relative expression of this TF increased and its deletion led
to a substantial decrease in ILC progenitor numbers (104, 117–
122). Since the down-regulation of the transcriptional regulator
TOX was described in Nfil3−/− mice in comparison to wild-
type controls, it was proposed that NFIL3 is directly regulating
the expression of TOX, which then acts downstream in ILC
development (104). Indeed Tox−/− mice had a similar phenotype
as that of Nfil3−/− mice and lacked mature ILCs and ILC
progenitors (123, 124). Based on these data, it was proposed
that NFIL3 and TOX orchestrate the transition from CLP to
EILP (106), whereas GATA-3 (28, 125) is required later in ILC
development for the transition to PLZF+ ILCPs. It should be
noted though that NK cells and CCR6+ ILC3s still develop in
GATA-3-deficient mice. Altogether these data indicate that the
developmental potential for NK cell and CCR6+ ILC3s/LTi cell
is consecutively lost during the transition from EILP to CHILP-B
(28, 98, 114, 125, 126).

While ILC progenitors are certainly present in the primary
organs of hematopoiesis, the BM and fetal liver (21, 26, 98),
it should be considered that ILCs may be derived from local
precursors as tissue-resident cells. In mice, fetal ILC precursors
migrated to the intestine before Peyer’s patch organogenesis
and accumulated at the sites where intestinal lymphoid tissue
organogenesis is initiated and became a localized source of
ILC populations (127). While intestinal ILC precursors were
identified based on arginase expression, adult BM ILC precursors
lacked arginase expression, indicating tissue adaption of the ILC
precursor population (127). Since fate-labeling studies suggest
that the ILC pool is generated in different pre- and postnatal time
windows (128) and ILC precursors were also detected in human
blood (27), further research is required to investigate the relation
among ILC precursor cells in different compartments and their
relevance in ontogeny.

MATURATION OF LINEAGE-COMMITTED

NK CELL PRECURSORS

Developmental Stages of NK Cell

Maturation
NK cells develop from a committed NK cell progenitor (NKP) in
the BM, which was first described in 2001 based on the expression
of the IL-2/IL-15 receptor beta chain (CD122), a well-recognized
T-bet target gene (129, 130). In Figure 3A distinct developmental

and maturation stages of NK cells are described. It should be
noted that the major thrust of work on NK cell development
was performed before ILCs with an NK cell phenotype (ILC1,
subsets of ILC3) were recognized. We will critically discuss here
the conventional definition of NKPs and immature NK cells in
the new framework of ILC diversity.

An NKP population, which gave rise only to mature NK
cells but did not possess a potential for T or B-cell lineages,
was originally identified to be within Lin− NK1.1− DX5−

CD122+ cells (129). However, the frequency of such NKP
differentiating into NK cells was only one in 12 in limiting
dilution assays, revealing a highly heterogeneous population and
a requirement for additional markers to further narrow down the
true NKP, also because some T cell potential was still detectable
in this population (131). Technical progress in multicolor flow
cytometry allowed a more accurate definition of the NKP within
Lin− CD27+ CD244+ CD122− IL-7Rα+ FLT3− cells, in which
50% of the cells were giving rise to NKp46+ NK cells (132).
This NKP subset was designated as a pre-NK cell precursor
(pre-NKP), suggesting to be the earliest precursor of NK cells.
Pre-NKPs express natural killer cell receptor 2B4 (CD244) and
lack the expression of other surface markers associated with
NK cells (NKp46, NKG2D, NK1.1, or inhibitory receptors such
as Ly49 and CD94/NKG2A). Under NK cell-promoting culture
conditions, the expression of CD122 is up-regulated, thereby
giving rise to the ‘refined’ NK cell precursor (rNKP), which has
full NK cell potential (132). Apart from CD122, these precursors
also acquire during their differentiation the IL-2 receptor γc
chain, which makes NKPs responsive to IL-15, a cytokine
essential for NK cell differentiation and survival (133–135). Both
pre-NKPs and rNKPs showed the potential of differentiating
into NK cell receptor-positive cells in spleen and liver, albeit
with different frequencies. Since EOMES, a lineage-specifying
TF for NK cells was not analyzed, these studies do not allow
definite conclusions regarding a possible bipotential of NKPs
for NK cells and ILC1s. The notion that the NKP population
might contain committed ILC1 precursors was supported by
Constantinides et al., who demonstrated heterogeneity within the
pre-NKP population, with one subset expressing PLZF and other
markers characteristic for ILC progenitors and another subset
belonging to NKP (56). Therefore, more detailed analyses are
required to delineate the separation of NK and ILC1 lineages in
early precursors.

While NKG2D was already expressed by at least one subset
of NKPs, the expression of NK1.1, NKp46, and CD94/NKG2A
marked the immature NK cell stage (stage 2). The expression
of Fc receptors and Ly49s, which provide inhibitory receptors
for the NK cell education process, defines stage 3 of NK cell
development (136–139). At this stage, “NK cells” display a T-
bet signature, but since T-bet does not allow the distinguishing
between NK cells and ILC1s, the delineation between the two
lineages is difficult until EOMES and DX5 are expressed in
stage 4 (16, 21, 35, 36). Furthermore, surface markers such
as CD69, CD51, or tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL), which are often used to describe
immature NK cells, are phenotypic markers of ILC1s but not
mature NK cells in most tissues (136, 140, 141). Therefore,
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FIGURE 3 | Development of NK cells and ILC1s. (A) Developmental stages of murine conventional NK cells. Representation of markers used for the identification of

individual developmental stages. Markers highlighted in red represent those expressed mainly in the given subset and therefore important for its identification. At each

stage, the expression of the listed markers is depicted as “+”, whereas the absence of expression is indicated by “–” or alternatively “low.” (B) Tissue-specific

non-conventional NK/ILC1 subsets. Representation of markers used for the identification of non-conventional/ILC1 subsets in thymus, intestine, and liver (illustrations

created with BioRender.com).

the view that the T-bet+ EOMES− NKp46+ subset represents
immature NK (iNK) cells is currently questionable (16, 142).

T-bet+ EOMES− “NK cells” represent the major murine liver
NK-like subpopulation during fetal and neonatal developmental
stages. During aging, the ratio between these “T-bet+ EOMES−

immature NK cells” and mature NK cells changed, which
represented another argument favoring the presumption that T-
bet+ EOMES− liver “NK cells” are in fact immature NK cells
that can further mature. This hypothesis was supported by data
demonstrating that EOMES− TRAIL+ “immature” NK cells in
the adult liver gave rise to EOMES+ DX5+ NK cells (16, 142).
Contradicting results were obtained in several other publications
(21, 35, 36). Daussy et al. utilized EOMES reporter allele and
performed extensive phenotypic profiling of the EOMES-positive
and EOMES-negative populations. Even though EOMES− “NK

cells” had an “immature phenotype” and EOMES+ NK cells
had “mature” characteristics, in vivo and in vitro differentiation
experiments did not show any transition between these two
populations. PLZF fate mapping supported these results because
EOMES+ DX5+ NK cells did not derive from PLZF-expressing
progenitors, whereas EOMES− TRAIL+ populations originated
from PLZF+ precursors. In addition, EOMES− TRAIL+ ILC1s
did not differentiate into EOMES+ DX5+ NK cells (35, 36,
56). Moreover, Constantinides et al. demonstrated that ILC1s
predominate over cNK cells during development in murine
liver, while cNK cell number increases during adulthood (56).
Therefore, since ILC1s and NK cells have parallel progression
at an early stage during development and are phenotypically
similar, further analyses have to be performed to separate iNK
cells from ILC1s.
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Mature bona fide NK cell subsets are characterized by the
following: 1) expression of EOMES and DX5 (stage 4); 2)
acquisition of CD11b (stage 5); 3) the consecutive loss of CD27
(stage 6) and the up-regulation of CD43 and KLRG1 (136, 143).
Developmental intermediates were identified among CD11bhi

cells, designated as mature NK cell subsets (136). CD27 is a key
marker of the NK cell lineage, dissecting the mature CD11b+

NK cell pool into two functionally distinct subsets (144, 145).
The CD27low NK cell subset possesses a higher threshold to
stimulation and appears to be tightly regulated by the expression
of NK cell inhibitory receptors. The preceding subset is consisting
of the CD27high NK cells that display a greater effector function,
exhibiting a distinct tissue distribution and responsiveness to
chemokines and productively interacting with dendritic cells
(144, 145).

Cytokine Signals Regulating NK Cell

Development
Although NK cell commitment is not dependent on IL-2, IL-4,
IL-7, IL-9, IL-15, or IL-21, which are executing their function
through a common cytokine receptor γ chain, early NKPs have
the capacity to respond to cytokines through the co-expression
of CD122 and CD127 (146). Since mice lacking IL-2, IL-4, and
IL-7 developed normal numbers of phenotypically mature NK
cells with a regular capacity to exert natural cytotoxicity in
vitro, produce IFN-γ, and kill tumor cells in vivo (146), IL-
15 was identified as the major γc cytokine to promote NK cell
development, and it plays a dominant role in early NK cell
differentiation by maintaining normal numbers of immature and
mature NK cells in the BM and spleen (146, 147). Given that
the close association of T-box TFs and IL-15 responsiveness
via CD122 is a hallmark of many lymphocytes, including ILCs
and unconventional tissue-resident T cells (148–152), IL-15 was
also indispensable for the development of ILC1s and ex-ILC3s
although they co-express CD127 (21, 35, 153). IL-15 activated
NK cells by STAT5 signaling and promoted the expression of the
anti-apoptotic protein MCL1 and, at the same time, restricted
the expression of pro-apoptotic proteins such as BIM and NOXA
(153, 154).

Transcriptional Regulation of NK Cell

Development
NK cell development and function are regulated by a plethora
of TFs expressed at different developmental stages, and at
each stage these sets of TFs constitute regulatory networks
for the establishment of distinct phenotypes. While numerous
TFs that regulate pivotal steps during NK cell development
were identified, the regulation of NK cell development is much
less understood on a molecular level. As a consequence, the
NK cell-specific target genes of TFs are insufficiently defined.
Although TFs were proposed to mainly act during one stage of
NK cell development, it should be considered that they might
regulate NK cell development at various stages and depending
on the amount of TFs being expressed (i.e. TF gradients).
Additional difficulties in assembling the available data into a
satisfying model are represented by the limitations in accurately

recording relatively small NKP populations given the very limited
availability of multicolor flow cytometry and by the separation
of immature NK cells from ILC1s (as already discussed above).
Therefore, although supported by data, the conclusion that
certain TFs act at a certain stage of NK cell development should
be taken with caution as these analyses often pre-dated the
discovery of ILC1s and other ILC subsets expressing NK cell
receptors such as NKp46 and NK1.1. With this in mind, we will
discuss here the major TFmodules that have been associated with
NK cell differentiation.

Developmental defects in NK cells were reported from mice
deficient for the TFs PU.1 and IKAROS that are broadly
expressed early in hematopoiesis before commitment to the
ILC/NK lineage and therefore affect multiple hematopoietic
lineages, including but not limited to NK cells (155–158). Since it
is controversial if PU.1 is expressed during NK cell development
at all, it is unclear whether PU.1 or IKAROS are mediating
effects during NK cell development or whether the phenotypes
might be explained by the effects in upstream hematopoietic
precursors (159).

Various TFs, such as TCF-1, NFIL3, and TOX, that were
already introduced to regulate early commitment to the ILC
lineage are indispensable for NK cell development, likely by
acting on the EILP or upstream progenitors. Mice deficient for
either TCF-1, NFIL3, or TOX lacked NK cells and also other ILC
lineages (117, 123, 160). Since these TFs are already expressed
upstream of the NKP in multipotent ILCPs such as EILP, CHILP-
A, or CHILP-B, mice deficient in these TFs lacked most ILC
lineages. Therefore, at least some of the effects likely occur
already in multipotent precursors before commitment to the NK
cell lineage (106, 124). Whereas, the mechanistic role for TOX
after NK cell commitment is elusive, it was shown that TCF-1
restricts granzyme expression, thus protecting the developing NK
cells from self-destruction (161). While NFIL3 was recognized
as a TF important for the transition from CLPs to early ILC
precursors, it was shown to be also up-regulated in the NKP
cells. Further, its deficiency in mice led to decreased numbers of
NK cells (121, 162). While it was proposed that NFIL3 regulates
ID2 expression (117, 163), Seillet et al. showed that NFIL3
was influencing EOMES expression, whereas ID2 expression in
the absence of NFIL3 remained the same. Moreover, ectopic
expression of EOMES inNfil3−/− hematopoietic progenitor cells
was sufficient to rescue cNK cell development (162).

Mice deficient for the TF ETS-1 had a strong reduction in
mature NK cell numbers (164). Similar to NFIL3, ETS-1 was
already expressed in CHILPs and also in NKPs. ETS-1 regulated
the fitness of CHILPs, but the effects on NK cell development are
probably emerging later with reduction at pre-NKP and rNKP
stages, where ETS-1 might regulate T-bet and ID2 (165, 166).
MEF is another member of the ETS TF family, which regulated
essential functions during NK and NKT cell development,
whereas B and T cells developed in normal proportions (167).
While MEF-deficient mice have reduced NK cells and impaired
effector function, including cytotoxicity and IFN-γ production,
mechanistic insights are scarce (167).

Important regulators of NK cell development include ID2 and
GATA-3, known to regulate early ILC commitment (21, 125).
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However, due to the phenotype of the gene-deficient mice and
their expression pattern, it seems more likely that these TFs
mediate their decisive effects after NK cell commitment. Mice
deficient in ID2 or GATA-3 developed NKPs and immature
NK cells but had a maturation defect of NK cells. In contrast,
they lacked the other ILC lineages (12, 28, 105, 109, 126).
While GATA-3 is required for ILC1 development (21, 28, 168,
169), it was dispensable for the development but not for the
maturation of NK cells. GATA-3-deficient NK cells had an
immature phenotype, were poor producers of IFN-γ, and showed
defects in BM egress because they are retained in the BM due
to the high CXCR4 expression (28, 126, 169). ID2 represents
another transcriptional regulator that was up-regulated during
NK cell development from NKPs and that was essential for
the development of mature NK cells (105, 109, 162). Notably,
unlike other ILC populations, NKPs and immature NK cells
developed in ID2-deficient mice. However, ID2 deficiency causes
loss of terminally differentiated CD11b+ NK cells, indicating a
persistent need for the sequestration of E-proteins during NK
cell maturation (170, 171). In support of this notion, the genetic
deletion of ID2 and ID3, which both bind E-proteins, resulted
in the complete loss of NK cells. It was also proposed that ID2
regulates IL-15 receptor signaling via the suppression of SOCS3.
Interestingly, both ID2 and IL-15 signaling were linked to the
regulation of apoptosis in NK cells via either anti-apoptotic
MCL1 or pro-apoptotic BIM (154, 170, 172). Therefore, ID2
could be a link between sensing of the vital cytokine IL-15 and
cell survival.

Several TFs with a more restricted expression during
hematopoiesis played pivotal roles during the maturation of NK
cells. These include EOMES, T-bet, and ZEB2. Unlike ILC1s,
which only expressed and were developmentally dependent on
T-bet but not EOMES, mature NK cells co-expressed both T-
bet and EOMES. While mice with a conditional deletion of
EOMES lacked NK cells, these cells normally differentiated in
T-bet-deficient mice where they were accumulating in the BM
and the lymph nodes due to the altered expression of S1P5R and
CXCR3. They displayed an immature phenotype characterized
by the persistent expression of CD27 and the reduced CD11b,
CD43, and KLRG1 levels (33, 34, 173, 174). A similar NK cell
maturation phenotype was reported from mice deficient in the
Zinc finger-containing protein (ZEB2) (175). The notion that
ZEB2 and T-bet might cooperatively regulate NK cell maturation
is also supported by data showing that the overexpression of
ZEB2 can partially rescue the phenotype of T-bet-deficient NK
cells (175).

Although EOMES is also expressed by non-hematopoietic
cells as well as in CD8+ T cells, where the TF regulates CD8
memory formation, among ILCs, EOMES represents a specific
TF for NK cells (16, 176, 177). Moreover, mice harboring a
conditional deletion of EOMES using NKp46Cre completely
lacked NK cells but still contain other ILC lineages (178,
179). Therefore, EOMES represents an attractive candidate
for the specific targeting of NK cells by using, for example,
NKp46Cre Eomesfl/fl mice to exclude effects on T cells. While
epigenetic studies provide evidence that the EOMES and the
T-bet promoters are both in an open chromatin configuration

in NK cells, downstream targets of the T-box TFs are not
well-defined in NK cells and were largely extrapolated from
studies that have investigated other cell types (180). However, the
importance of EOMES in NK cell fate and in the expression of
prototypic markers of NK cells is also illustrated by data showing
that the overexpression of EOMES under the Tbx21 regulatory
elements reprogrammed ILC1s to adopt phenotypical hallmarks
of NK cells (178). Since the down-regulation of EOMES in NK
cells mediated by TGF-β drove the NK cells to adopt an ILC1
phenotype, EOMES appears as a major signaling hub that dictate
NK cell identity (181, 182).

Numerous TFs including AIOLOS, PRDM1 (BLIMP1),
FOXO1, IRF2, RUNX3, and KLF2 regulate the late
developmental stages of NK cells with main effects on terminal
maturation and effector functions. PRDM1 (encoding BLIMP1)
was shown to be regulated by T-bet and IL-15. Further, BLIMP1-
deficient mice had fewer KLRG1+ mature NK cells. Although
granzyme B expression was altered in PRDM1-deficient NK
cells, effector functions, including cytotoxicity, remained normal
(183). A similar phenotype was reported for mice deficient in the
IKAROS zinc finger TF member AIOLOS. NK cells developed in
AIOLOS-deficient mice but terminally differentiated CD11b+

NK cells were reduced. While NK cell effector functions were
largely maintained, Aiolos−/− NK cells were hyper-responsive to
tumor cells, resulting in superior tumor surveillance (184).

The conditional deletion of the Krüppel-like TF KLF2
in hematopoietic cells using VavCre resulted in the ablation
of mature CD11b+ NK cells and consequently reduced the
cytotoxicity toward target cells (185). It was proposed that KLF2
regulates the survival of NK cells via the regulation of IL-15
sensing and the expression of homing receptors. Reduced NK
cells were also reported from mice deficient in the Th1 regulator
interferon regulatory factor 2 (IRF-2) (186). IRF-2 deficiency
disturbed mainly mature splenic NK cells, whereas NK cell
development in the BM was only mildly affected. IRF-2 NK
cells were more prone to undergo apoptosis during development
independently from IL-15 (187).

TFs regulating NK cell development involves FOXO proteins
as well. However, the precise role is hard to evaluate because of
data that are difficult to reconcile with a model. WhileWang et al.
found decreased numbers of NK cells in mice with conditional
deletion of FOXO1 using NKp46Cre deleter mice (188), Deng
and colleagues reported increased numbers of mature, hyper-
reactive NK cells using NKp46Cre and also VavCre deleter mice
to genetically ablate FOXO1 (189, 190).

Runt-related TFs (RUNX) are important regulators of
lymphocyte development, including T cells and several ILC
lineages. RUNX members 1–3 form heterodimers with the TF
core-binding factor beta (CBF-β) in order to bind to regulatory
DNA sequences and mediate gene transcription (191, 192).
The RUNX3 isoform is highly expressed in NK cells. Different
strategies were used to genetically interfere with RUNX to
investigate the function in vivo, including the overexpression
of dominant-negative RUNX3 or the conditional deletion of
RUNX3 or CBF-β. While RUNX3 regulated the development of
ILC1s and ILC3s by different mechanisms, ILC2 development
remained intact and RUNX proteins protected ILC2s from
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an exhaustion-like phenotype (192–194). Concerning NK cell
development, the deletion of either RUNX3 or CBF-β altered
NK cell development via the regulation of CD122 and IL-
15 responsiveness. This was accompanied by reduced numbers
of CD11b+ and CD43+ mature NK cells and enhanced
cytokine production (195–197). Consistent with a role later in
development, RUNX and CBF-β were also crucial for NK cell
memory formation following MCMV infection (198).

Finally, TFs that constitute regulatory network during NK cell
development represent a nice example of how these proteins act
as a part of a complex context that dictates their function and
how compensatory mechanisms in their absence could, in some
situations, buffer the entire system.

DEVELOPMENT OF

ILC1s/TISSUE-RESIDENT NK CELLS

NK cells and ILC1s share many phenotypical and functional
properties that make the differentiation between these two innate
lymphocyte subsets, especially in humans, very challenging (59).
In addition, ILC1s comprise several subsets of lymphocytes
previously referred to as “immature,” “tissue-resident,” or
“unusual” NK cells before the revised nomenclature in 2013.
These include TRAIL+ NK cells (142) and thymic NK cells (168)
or (after the revised nomenclature) ILC1s in the BM, the lamina
propria (21), the epithelium of the intestine [intraepithelial
(ie)ILC1s] (20), the salivary glands (199), the adipose tissue (200),
or the uterus (201). ILC1 subsets differ in terms of dependency on
TFs during development, e.g. EOMES and NFIL3, and cytokines,
e.g. IL-7 and IL-15 (21–23, 36, 120, 168, 202). Although these
subsets are often all referred to as ILC1s, it is very difficult to
conclude whether different developmental requirements reflect
the tissue adaption of one cell lineage or different cell lineages
of phenotypically similar cells. Besides the heterogeneity and
the tissue adaptation of ILC1s, differences between mouse and
human ILC1s add an additional layer of complexity to the topic.
For example, it is well-established that murine liver TRAIL+ NK
cells express and are developmentally dependent on T-bet but
not EOMES. However, the human liver contains a population of
CD56bright lymphocytes, which phenotypically resembled ILC1s
but expressed high levels of EOMES and only low levels of
T-bet (203). Nevertheless, the functional and the phenotypical
characterizations of different subsets of ILC1s are contributing
to a better understanding of their biology and diversity as well
as enabling their separation in a more comprehensive way.
While being recognized as tissue-resident cells, ILC1s have been
residing in various tissues, expressing specific markers that are
represented in Figure 3B and which will be discussed below.

The characteristic feature of thymic non-conventional
NK/ILC1 is that they express CD127 and developmentally
depend on IL-7 signaling (168). This is in contrast to splenic
and BM cNK cells, the phenotype and the function of which
were not perturbed in the absence of IL-7. To a lesser extent,
thymic NK cells required IL-15 for their development similar
to NK cells (204). Moreover, thymic non-conventional NK cells
depended on GATA-3 for their development and showed an

elevated expression of this TF in comparison to splenic cNK cells
(168). Phenotypically, thymic NK cells resembled ILC1s rather
than NK cells because of the lack of CD11b and Ly49 receptors
and their expression of CD69. However, whether thymic NK
cells belong to the same lineage as ILC1s and TRAIL+ liver NK
cells requires further clarification, especially because they express
EOMES and DX5, which are usually not found on ILC1s (202).
Thymic NK cells were reduced in Foxn1−/− mice, which do
not develop a functional thymus, suggesting that the thymus is
an organ required for the generation of this ILC1 subset. Data
obtained in reporter mice for TCR-δ germ-line transcription
suggest that thymic NK cells might be derived from lymphocytes
with T cell potential (205). This is in line with data showing that
primitive, double-negative T cell progenitors still possess the
potential to differentiate into cells that phenotypically resemble
NK cells (206). Further, it was proposed that thymic NK cells
might be the counterpart of CD56bright NK cells, which are
potent IFN-γ producers but have weak cytotoxic potential (168).

Based on CD56 expression, a unique subset of ILC1s was
also described in the intestinal epithelium of humans. NKp44+

CD103+ and NKp44− CD103− ieILC1s were discriminated with
similar functional properties, such as strong IFN-γ production.
In addition, ieILC1s showed signs of TGF-β imprinting, such
as CD103 expression, and were phenotypically different from
cNK cells as illustrated by the expression of CD160, CD49a,
CXCR6, CD69, and CD39, which were also found on ILC1s in
other organs (141). Unlike thymic NK cells, ieILC1s lacked the
expression of CD127 (IL-7Rα) but did express IL-2Rβ chain.
The murine counterpart of human ieILC1s localizing within the
gut epithelium co-expressed CD160, NKp46, and NK1.1 (20).
Examining the developmental pathway of ieILC1s in mice, Fuchs
et al. demonstrated the requirement of NFIL3 and T-bet. These
ieILC1s were in part independent of IL-15Rα, indicating that
intraepithelial ILC1s are developmentally distinct from cNK cells
(20). Functionally, and similar to ex-ILC3s, ieILC1s were linked
to the immunopathology in the αCD40 model of colitis due
to their IFN-γ production (20, 52, 207). Further, ILC1s were
enriched in patients with Crohn’s disease and may, therefore,
contribute to the development of inflammatory bowel disease
similar to lamina propria ILC1s (19, 20, 208).

In the lamina propria of the intestine, it was challenging to
identify ILC1s because of the sizeable populations of NK cells and
ex-ILC3s, which all expressed the prototypic makers of ILC1s,
such as NKp46 and NK1.1. Using double-reporter mice for
EOMES (labeling NK cells) and fate-labeling for RORγt (labeling
all ILC3s independent of their RORγt expression), a subset of
lymphocytes within NKp46 and NK1.1 lymphocytes was defined,
which expressed T-bet. This population within NKp46+ NK1.1+

lymphocytes lacked EOMES and RORγt expression and did not
have a history of RORγt expression either. Further, such ILC1s
were developmentally dependent on T-bet, NFIL3, and GATA-
3, but not EOMES or RORγt. Phenotypically, intestinal ILC1s
expressed markers associated with ILC1s in different tissues
such as CD127, CD160, or CD49a, lacked markers of cNK cells
such as CD11b and CD62L, and showed low Ly49 receptor
expression. Despite expressing both CD127 and CD122, ILC1s
were strictly IL-15-dependent and did not require IL-7. Upon
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transfer into alymphoidmice, ILC1s were a stable lineage without
differentiation potential into cNK cells or ex-ILC3s and could
also be found in the BM (35). BM ILC1s phenotypically overlap
with the previously described immature NK cells based on
markers such as CD69 (140). However, markers often connected
to immature NK cells, such as CD69, TRAIL, or CD51, are
rather found on ILC1s, and it should also be noted that they are
not expressed before or after that developmental stage during
NK cell development. In addition, CD69 is considered to be a
marker for cell activation or tissue residency, which is associated
with activated rather than with immature lymphocytes (136,
140). Therefore, additional studies have to address the potential
heterogeneity within EOMES− NK1.1+ cells, previously termed
“immature NK cells” in the BM.

Although cytokine IL-12 was first described as a NK cell-
stimulating factor (209), IL-12 elicited stronger effects on ILC1s
than on NK cells, consistent with higher expression levels of
the components of IL-12 receptor on ILC1s (21, 62, 210). While
ILC1s were potent producers of IFN-γ and TNF, they expressed
less perforin, indicating that they are less cytotoxic and rather
mediate the cytotoxic effect by TNF receptors such as TRAIL.
Functionally, a lack of perforin-mediated cytotoxicity or a loss
of NK cell identity resulted in decreased immunosurveillance of
tumors (181, 182, 211). However, data from different infection
models suggest that there is a spatial and a temporal division of
labor between NK cells and ILC1s. ILC1s protected the digestive
tract from Toxoplasma gondii, Clostridium difficile, or MCMV
infections, which are controlled to a large degree by IFN-γ
secreted by ILC1s (21, 210, 212).

ILC1s, also referred to as tissue-resident NK (trNK) or
TRAIL+ NK cells in the liver (142), differed from conventional
NK cells since they expressed only T-bet as the key TF in mice,
and this expression is favored in the liver microenvironment
(16, 29, 35, 36). On the contrary, the BM provides a
microenvironment that promotes lower expression levels of T-bet
in NK cells, enabling the subsequent expression of EOMES (35).
Another remarkable difference between cNK cells and ILC1s was
the expression of the “homolog of BLIMP1 in T cells” (HOBIT) in
ILC1s (213). This TF is specifically up-regulated in tissue-resident
cells and controlled the expression of molecules associated
with tissue residency, such as CD49a and CD69. Interestingly,
HOBIT was essential for liver ILC1s but not for ILC1s in other
organs investigated (210, 213). In addition, the development
of ILC1s in the liver was demonstrated to be dependent on
PLZF expression and independent of NFIL3, contrary to NK
cells (36, 98).

TRAIL represents a prototypic marker of liver ILC1s as it
is constitutively expressed on both mouse and human ILC1s,
and together with CD49a and CD69, it has been used for
separating liver ILC1s fromNK cells. This type II transmembrane
protein causes apoptosis primarily in tumor cells by binding
to certain death receptors. Recent findings are suggesting that
TRAIL expression is regulated by the activation of the NKp46
receptor in ILC1s since NKp46-deficient mice lack this effector
protein (214–216).

Another important functional hallmark of liver pro-
inflammatory ILC1s is that they are activated via IL-12,

which are produced by conventional dendritic cells upon
infection. After activation with IL-12, ILC1s respond with IFN-γ
secretion to limit viral load and thereby contribute to early
antiviral immunity at sites of primary viral infection (210).
The genetic ablation of liver ILC1s is leading to increased
MCMV load in mice; hence, NK cell responses are not the
only early antiviral response in mice. In addition to rapidly
responding to IL-12, “memory-like” qualities have been
reported for ILC1s in models of contact hypersensitivity
and MCMV infection. This is remarkable because these
cells were originally considered as “immature NK” cells due
to the lack of surface markers characteristic of mature NK
cells (142). ILC1s were described to mediate tissue-resident
memory responses to MCMV depending on glycoprotein m12
(217). Furthermore, previous reports have already linked liver
ILC1s to memory responses during contact hypersensitivity
reactions (29, 218). However, the mechanism underlying
recognition of haptens by ILC1s following memory responses
remains elusive.

Taken together, the experimental evidence obtained from
knockout mice suggests that ILC1s constitute a separate tissue-
resident lineage distinct from cNK cells. Further investigation is
required to answer questions of ILC1 diversity.

EPIGENETIC AND microRNA-MEDIATED

REGULATION OF NK CELL AND ILC1

DEVELOPMENT

Among epigenetic modifications, the deubiquitination of histone
H2A by MYSM1 is important for NK cell generation as the
deletion of this enzyme is causing maturation defects in NK
cells (219). The MYSM1 histone H2A deubiquitinase also
contributed to the development of ILC1s in other organs.
In addition to modifying histones, MYSM1 also functions
as a transcriptional regulator of ID2 expression during the
maturation of NK cells by recruiting NFIL3 to the Id2 gene
locus. MYSM1 was involved in maintaining an active chromatin
configuration at the Id2 locus (219), further promoting its
expression. Another epigenetic mechanism that regulates NK cell
development involves repressive histone marks such as the tri-
methylation of lysine residue 27 of Histone 3 protein during
early NK cell differentiation (220). In the absence of this marker
through the repression of EZH2 enzymatic activity (enhancer
of zeste homolog 2), ILC1 and NK cell lineage commitment
was enhanced, together with increased NK cell survival and
NKG2D-mediated cytotoxicity (220).

Apart from the regulation of gene expression on the
transcriptional level, another epigenetic mechanism is required
for the proper development of ILC1s and the adequate
maturation of NK cells. Available data implicate small non-
coding RNA molecules (221–226), such as microRNAs (miRs),
to regulate posttranscriptional gene expression by binding to
the 3′ untranslated region (UTR) of mRNAs and inducing
either suppression or mRNA translation or its degradation (227).
Deletion of the RNase III enzyme Dicer-1, an enzyme required
for the generation of single-stranded 20–25 bp long non-coding
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RNA molecules, in NKp46-expressing cells revealed the role
of miRs in murine NK cells and ILC1s (223). The number of
NK1.1+ cells in the organs of Dicer-1 mutant mice was affected,
along with the impaired maturation of NK cells. NK cells without
miR showed a diminished function, including reduced target
cell cytotoxicity and IFN-γ production. Additionally, in Dicer-
1-deficient mice, the IL-15 receptor signaling in NK cells was
impaired. This finding explains, at least in part, the decreased
survival of NK cells and the observed perturbations in NK
cell maturation.

The effects of single miRs, such as miR142, miR155, miR150,
andmiR15/16, revealed specific effects and potential target genes.
The conserved miR142 sequence encodes two highly expressed
maturemiRNAs, 142-3p and 142-5p, which have different mRNA
targets (221). The target of the miR142-3p is the 3′ UTR of
Itgav gene that encodes integrin-αV. In the absence of miR142-
3p, this integrin was up-regulated in ILC1s and promoted their
survival. The other product of themiR142 sequence, miR142-5p,
was targeting the 3′ UTR suppressor of cytokine signaling 1 (Socs1)
gene, a negative regulator of IL-15 signaling. Thus, in the absence
of miR142-5p, SOCS1 un-antagonized, leading to impaired IL-15
signaling (221).

In humans, miR155 was shown to down-regulate SH2
containing 5′ inositol phosphatase (SHIP1), which in part
contributes to the regulation of IFN-γ production following
stimulation (225). In mice, miR155 targeted the 3′ UTR of Noxa
transcripts during homeostasis and of Socs1 transcripts during
the activation of NK cells (226). The direct functional target of
miR-150 and miR15/16 was the TF c-Myb, through which the
maturation program was controlled (222, 224).

PLASTICITY TOWARD GROUP 1 ILCs

Although ILCs comprise separate lineages of innate lymphocytes
defined by distinct lineage-specifying TFs, a considerable amount
of plasticity after fate commitment was reported for most ILC
lineages in mice and humans, often connected to a certain
tissue microenvironment or in the context of inflammation
(228). Plasticity is characterized by the down-regulation of
lineage-specifying TFs, such as RORγt for ILC3s or GATA-
3 for ILC2s, and acquisition of master TFs of alternative
cell fates, acquisition of phenotypic characteristics of other
ILC lineages (e.g. up-regulation of NK cell receptors), and
production of cytokines not associated with the original lineage.
The plasticity of ILCs was first described for ILC3s (52, 229).
Fate-labeling for RORγt expression revealed that ILC3s were
able to differentiate into cells phenotypically resembling ILC1s
(referred to as ex-RORγt+ ILC3s or ex-ILC3s) (52, 229–231).
This process was accompanied by the gradual up-regulation
of ILC1 signature genes such as T-bet, NK receptors (NKp46,
NK1.1, and NKG2D), and cytokine receptors (IL12Rβ2), as
well as effector functions (19, 21, 44, 53, 55). During this
process, ex-ILC3s became IFN-γ-producing lymphocytes, which
were responsive to several cytokines, including IL-12 and IL-
23, and promoted inflammation and immunopathology in
experimental models of colitis and Salmonella enterica infection

(44, 52, 207, 229, 232, 233). T-bet deficiency was vice versa
reported to promote colitis in response toHelicobacter typhlonius
that was mediated by IL-17A-producing ILC3s (234, 235). In
humans, differentiation of ILC3s toward CD127+ ILC1s was
described in the intestine of patients with Crohn’s disease
and was promoted by cytokines IL-2 and IL-12 and CD14+

DCs. Interestingly, this process was found to be reversible
and stimulated by IL-1β, IL-23, retinoic acid, and CD14−

DCs (19, 229, 230). Data obtained in fate-labeling studies in
mice using either RORγ tCre (230) or NKp46Cre (236) also
support the model that the plasticity of ILC3s is a reversible
process. Signals regulating NKp46 expression on CCR6− ILC3s
included the Notch-T-bet axis as a positive regulator and TGF-
β signaling as a negative regulator (236). Altogether these
studies provide evidence for the reversible plasticity of CCR6−

ILC3s toward ILC1s, mediated by signals that regulate RORγt
and T-bet.

While the down-regulation of RORγt and the up-regulation
of T-bet occurs at steady state in CCR6− ILC3s, the plasticity
of NK cells or ILC2s might require a trigger, such as
chronic inflammation. The conversion of ILC2s to an ILC1-like
phenotype is triggered by cytokines, such as IL-1, IL-12, and
IL-18, and was described in the context of chronic obstructive
pulmonary disease (237–240). This process is connected to the
up-regulation of T-bet, and the genetic deletion of T-bet using
NKp46Cre resulted in enhanced ILC2 responses, suggesting that
the balance of the lineage-specifying TFs GATA-3 and T-bet
determines ILC2 plasticity (241).

Whether the conversion of NK cells to ILC1-like cells is
occurring at a steady state is difficult to evaluate because of
the lack of fate-labeling studies for the NK lineage-specifying
TF EOMES. However, fate-labeling was carried out using Cre
under the NKp46 promoter, which is expressed in NK cells,
ILC1s, CCR6− ILC3s, and subsets of γδ T cells (138). While
the down-regulation of NKp46 was described for ILC3s (236),
the results did not provide evidence that NK cells down-regulate
NKp46 at steady state (138). It should be considered though that
conversion in other ILC lineages, which also express NKp46,
would not be detected using this fate-labeling strategy. The
first evidence for the potential conversion of NK cells into
ILC1-like cells came from studies that investigated the unusual
subsets of ILC1s in the salivary gland. Unlike ILC1s in other
organs, the salivary gland ILC1s co-expressed EOMES and T-
bet but did not developmentally depend on either of these TFs
and also not on NFIL3, suggesting that they have different
developmental requirements (199, 242). In addition, the salivary
gland ILC1s depicted hallmarks of tissue-resident cells, such as
TGF-β imprinting, that was also reported for ILC1s in different
organs, for instance, the intestine (20). ILC1s in the salivary
gland were reduced in the absence of TGF-β signaling, and
the phenotypical markers of ILC1s, such as CD49a and TRAIL
were down-regulated, whereas EOMES was up-regulated (199).
Furthermore, NK cells that were hyper-responsive to TGF-β,
due to the genetic manipulation of TGF-βRI or deletion of
SMAD4, developed an ILC1-like phenotype in the salivary gland
or within tumor tissue. As a consequence, these ILC1-like NK
cells failed to control tumor growth or viral infection with

Frontiers in Immunology | www.frontiersin.org 14 July 2020 | Volume 11 | Article 813166

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Stokic-Trtica et al. NK and ILC Development

cytomegalovirus (181, 182). Some of the effects that TGF-β has
on the NK/ILC1 fate decisions are mediated via the balance of
the master TFs T-bet and EOMES. Notably, it was reported that
the forced expression of EOMES driven by the T-bet promoter
turned ILC1s into cells with NK cell properties (178). However,
it remains unclear whether this occurs in vivo, and if yes, under
which conditions.

While ILC plasticity after lineage commitment is now
well-established to occur, additional investigation is required
to elucidate how the plastic behavior of ILCs could be
therapeutically harnessed.

SPECIFIC TARGETING TO UNCOVER

FUNCTIONAL SPECIALIZATION OF

GROUP 1 ILC SUBSETS

Despite progress in the generation of genetically modified mice,
specific targeting of ILCs remains a major challenge in the field
because of the large overlap in gene expression between ILCs
and T cells as well as other immune cells. Since a systematic
review of genetic models for the investigation of ILC function
was recently published (243), we aim to focus the discussion
on NK cell receptor (NKR)+ ILCs that comprise conventional
NK cells, ILC1s, and CCR6− ILC3s. Concerning NKR+ ILCs,
specific targeting of each subset is further complicated by shared
receptors such as NKG2D, NKp46, and NK1.1 and TFs such
as T-bet, NFIL3, or TOX within NKR+ ILCs, making them
alone not a suitable target (141). While antibody-mediated
depletion strategies using αNK1.1 or αThy1 were effective,
more specific depletion strategies were developed using genetic
models based on NKp46Cre mice (138, 153, 244). While NKp46
is fairly specific to group 1 ILCs, a second allele is required
to ensure specificity among group 1 ILCs, which is often a
floxed mouse for an essential TF such as EOMES or RORγt.
Following the targeting strategy, the generation of NKp46Cre

Eomesfl/fl resulted in the selective ablation of NK cells, thus
allowing a definitive conclusion about the contribution of NK
cells in an experimental autoimmune encephalomyelitis model
(178, 179). NKp46Cre Rorc(γt)fl/fl mice were likewise generated
to investigate redundant and non-redundant functions of ILC3s
during Citrobacter rodentium infection and in colitis models
(233, 245). While these two strains provide specific targeting
for NK cells and CCR6− ILC3s, respectively, the genetic mouse
models for ILC1s are even more difficult to develop. NKp46Cre

Tbx21fl/fl mice lacked ILC1s (179), but a contribution of NK cells
or CCR6− ILC3s in these mice could not be excluded because
NK cells and CCR6− ILC3s have a migration or maturation
defect in T-bet-deficient mice. It should be also considered that
the phenotype might be dependent on which line of NKp46Cre

deleter mice is used (179, 241). Furthermore, mice deficient for
the TF HOBIT were used to investigate ILC1 function in the liver
because ILC1s, but not NK cells, are reduced in the liver of these
mice. However, the use of this mouse line is limited to TRAIL+

NK cells and not ILC1s in other organs (210, 213). Therefore,
the goal for NKp46Cre to delete a selective TF important for ILC1
subsets in many organs is still not achieved.

REGULATION OF NK CELL

DEVELOPMENT AND FUNCTION BY

RECEPTOR–LIGAND INTERACTION

The activation of NK cells is mediated to a large degree by the
integration of stimulatory and inhibitory signals as measured
by the engagement of NK receptors by its cognate ligands.
NK cells need to be calibrated during development to become
activated if a defined threshold of stimulatory to inhibitory
signals is exceeded, a process coined “NK cell education”
or “licensing.” Classical NK cell education is linked to self
recognition and mediated by inhibitory receptors for class I
MHC, such as Ly49 receptors or KIR (82, 246–248). Thus, this
process requires the timely expression of the corresponding
ligands for the receptors involved in the education process.
Moreover, besides the type of MHC molecule expressed and the
type of receptors on NK cells, the strength of class I MHC–
Ly49 receptor interaction also defines the quality and the quantity
of NK cell education (249). In connection with this, it was
observed that the absence of MHC I on the surface of cells, by
the genetic deletion of β2-microglobulin, TAP, or KbDb, resulted
in the hypo-responsiveness of NK cells (250–252). In line with
these findings, NK cells with mutations in ITIMs required for
inhibitory signaling were functionally impaired. Further, the
deletion of intracellular downstream signaling molecules, SH-
2-domain-containing protein tyrosine phosphatase 1 (SHP1)
and SH-2-domain-containing inositol-5-phosphatase (SHIP),
resulted in the hypo-responsiveness of NK cells (253–255). On
a molecular level, the MHC I education process was linked to
the reorganization of the nanostructure of immunoreceptors and
confinement in domains, thus generating the basis for different
activation thresholds (251, 252, 256).

Interestingly, Ly49s were strongly underrepresented but not
totally absent on ILC1s, suggesting differences between NK
cell and ILC1 education. However, with respect to ILC1s,
fundamental questions remain unanswered. These questions
include whether ILC1s require an education process at all
and, if so, whether the education is regulated by cell-bound
immunoreceptor–ligand interaction. If this is true, how much
of education is regulated by inhibitory receptors such as
CD94/NKG2A expressed by ILC1s? Due to the lack of data
for ILC1 education, we focus on the regulation of NK cell
development and activation (21, 141).

NK cell education not only is limited to self recognition
of MHC I molecules but also involves self recognition of
non-MHC ligands such as those provided by the receptor–
ligand pairs CD155-TIGIT, CD48-2B4, and CLR-b-NKRP1-B
(252). Moreover, it became apparent that stimulatory receptors
mediating induced-self recognition are involved in the NK cell
education process as well. NKG2D is a stimulatory receptor,
which recognizes induced-self ligands and which regulates NK
cell education (90). NKG2D is already expressed early on
from the NKP stage. For induced-self ligands, it is however
incompletely understood when these ligands are expressed under
homeostatic conditions and which cell types would be involved
in this process (132, 257, 258). Parallel to the finding that
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NK cells from MHC I-deficient mice were hypo-responsive,
a similar paradoxical phenotype was uncovered for NKG2D-
deficient mice having hyper-responsive NK cells despite the
lack of an important stimulatory NK cell receptor. Notably,
mice deficient for NKG2D (Klrk1−/−) were hyper-responsive,
resulting in the superior control of MCMV infection and tumor
growth (257, 258). However, immunosurveillance of tumors
expressing NKG2D ligands was impaired in NKG2D-deficient
mice (259). Mechanistically, NKG2D regulated signaling via the
natural cytotoxicity receptor NKp46 and the signaling molecule
CD3ζ (258). While the precise timing of NK cell education is not
well-defined, some studies suggested that NK cell education is
not limited to a time window during development but represents
a continuous process. This is supported by studies that used
adoptive transfer of uneducated NK cells in MHC I-sufficient
hosts that could restore NK cell functionality (260, 261). In
addition, data obtained in models that overexpressed ligands
for stimulatory receptors such as m157 or NKG2D ligands,
in which the NK cells were persistently exposed to a receptor
engagement, revealed that NK cells adapted to this stimuli, for
instance by the down-regulation of the stimulatory receptor
(262–264). Although it remains elusive if the adaptation of
NK cell reactivity to sustained activation by stimulatory ligands
due to overexpression is the underlying similar mechanism
described for NK cell education, the findings become relevant
in the context of anti-tumor immunity where, for instance,
NKG2D ligands might be continuously expressed or shedded
from the tumor cells, thus saturating their receptors. Although it
is controversial if the chronic expression or shedding of NKG2D
ligands should be regarded as a tumor escape mechanism or if it
is promoting tumor immunosurveillance, these findings indicate
the importance of the regulation of NK cell activity by receptor–
ligand interaction (265–267). Apart from the chronic expression

of induced-self ligands on tumor cells, blocking antibodies for
inhibitory receptors targeting KIR or NKG2A are evaluated
in clinical trials to promote anti-tumor immunity (267). The

blockade of inhibitory receptors on NK cells has the potential
to complement T cell immunotherapy because the efficiency of
T cell checkpoint blockade correlated with the production of
neoantigens by tumor cells present on MHC I. However, the
tumor cells that did not produce neoantigens or escaped MHC
I-peptide recognition by CD8+ T cells (268) could be recognized
and lysed byNK cells expressing inhibitory receptors to detect the
presence of MHC I. However, data available so far might indicate
that there is a narrow therapeutic window defined by the blocking
of the inhibitory receptor and the effects on NK cell education,
rendering the cells hypo-responsive (267).

In summary, NK cells need education mediated by the
engagement of inhibitory and stimulatory receptors during
development. NK cell education is required for both adequate
reactivity and tolerance toward self. Blocking of inhibitory
NK cell receptors during anti-tumor therapy can complement
checkpoint blockade and illustrates the transfer of basic
knowledge for human therapy.
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