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Editorial on the Research Topic

Mitochondrial Dysfunction and Cardiovascular Diseases

A deeper understanding of the molecular mechanisms underlying the development and
progression of cardiovascular diseases represents a major goal in cardiovascular medicine.
Mitochondrial dysfunction has emerged as major player in the development of cardiovascular
diseases, with potential therapeutic implications. Mitochondrial dysfunction encompasses
mitochondrial complex disruption, mitochondrial uncoupling, and cristae remodeling and
swelling, which in turn cause ROS accumulation, energy stress, and cell death.

This Research Topic is a collection of original and state-of-the art review articles discussing
and extending our current knowledge about molecular mechanisms responsible for mitochondrial
dysfunction in cardiovascular diseases. Many aspects of mitochondrial biology and therapies
targeting damaged mitochondria have been highlighted.

One of the main feature of mitochondrial dysfunction observed in several cardiovascular
diseases is the exaggerated generation of mitochondrial ROS (1), which represents the
common pathological substrate underlying diabetes-induced complications, such as
cardiomyopathy, as comprehensively described by Kaludercic and Di Lisa in their review
article. Mitochondrial ROS are generated frommultiple sources in cardiomyocytes during diabetes
by a feed-forward/amplification mechanism, which further exacerbates oxidative stress and causes
contractile dysfunction. The authors reviewed current therapies aimed at reducing ROS and
improving cardiac function in diabetic patients. While some systemic antioxidants failed to exert
cardiac protection in clinical trials, mitochondrial-targeted antioxidants such as MitoTEMPOwere
shown to be cardioprotective in preclinical models of diabetic cardiomyopathy.

Sodium glucose cotransporter 2 (SGLT2) inhibitors also appear to be promising drugs to
reduce cardiovascular events in diabetic patients. In this regard, Maejima provided a detailed
overview about themitochondrial-mediatedmechanisms underlying the beneficial effects of SGLT2
inhibitors in heart failure. SGLT2 inhibitors increase ketone bodies, which represent a suitable
source of energy in failing hearts, and also improve sodium metabolism and mitochondrial
dynamics. However, further studies are needed to identify other targets modulated by SGLT2
inhibitors, since SGLT2 does not appear to be expressed in human and rodent cardiomyocytes,
at least in unstressed conditions. A modulation of mitochondrial dynamics may contribute to
the beneficial effects of this class of drugs on mitochondrial function in response to metabolic
derangements (2).

Targeting mitochondria, and in particular mitochondrial ROS, has also emerged as a potential
therapy for patients with dilated cardiomyopathy with ataxia syndrome (DCMA), a rare
genetic disorder caused by a mutation of DNAJ Heat Shock Protein Family (Hsp40) Member
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C19 (DNAJC19), a protein localized in the inner mitochondrial
membrane. Machiraju et al. demonstrated that SS-31, a
mitochondrial targeted antioxidant, also known as elamipretide
or Bendavia, rescues mitochondrial fragmentation, oxidative
stress, and improves mitochondrial fusion in skin fibroblasts
extracted from DCMA patients. However, the therapeutic
potential of SS-31 in improving cardiac function in patients with
DCMA should be assessed in further studies.

Mitochondrial health is facilitated by specific quality control
mechanisms, such as mitophagy, a cargo-specific form of
autophagy selective for elimination of damaged mitochondria
(3). Damaged mitochondria are degraded by mitophagy and
defects in mitophagy were reported to lead to harmful
cardiovascular effects, because of accumulation of defective
mitochondria. In their original article, Thomas et al. found
decreased levels of Parkin protein in the heart of obese mice.
Parkin is a ubiquitin E3 ligase, which represents a canonical
regulator ofmitophagy and proteasome degradation. The authors
also observed a modest increase of infarct size in obese mice
undergoing ischemia/reperfusion (IR) ex-vivo and a cardiac
accumulation of ubiquitinatedmitochondrial proteins at baseline
and in response to IR in obese animals. This study suggested that
mitophagy may be impaired in the context of obesity because
of Parkin downregulation, thereby predisposing the heart to
develop increased injury in response to stress. However, a direct
assessment of mitophagy was not performed in this study and
further work is necessary to clarify the impact of metabolic
alterations on Parkin-dependent and independent mitophagy in
the heart.

The importance of autophagy and mitophagy abnormalities
in aging-induced cardiovascular abnormalities was the
main focus of the review article by Liang and Gustafsson.
The authors reviewed relevant literature supporting the
concept that autophagy declines with aging, leading to age-
related cardiovascular diseases, due to alterations in cellular
energy metabolism and adaption to stress. Either genetic or
pharmacological activation of mitophagy appears to attenuate
aging-related abnormalities, whereas its inhibition seems to
accelerate them (4). It will be important to understand in the
future how aging affects Parkin-dependent and independent
mitophagy in the heart, and the exact molecular mechanisms
through which autophagosome formation and fusion are
impaired by the aging process. Increased oxidative stress and
inflammation appear to play a critical role.

Aside from mitophagy and mitochondrial dynamics,
mitochondrial proteostasis is also emerging as an important
mechanism regulating mitochondrial quality control in the
heart, as described in the paper by Arrieta et al. Mitochondrial
proteostasis regulates biogenesis, folding, and degradation of
mitochondrial proteins and this process appears to be altered
during cardiac stress. In the presence of misfolded protein
accumulation in mitochondria, mitochondrial unfolded protein
response (mtUPR) is activated by means of accumulation
of ATF5, which translocates to the nucleus and stimulates
the upregulation of an adaptive gene response aimed at the
restoration of mitochondrial protein folding and proteostasis.
Previous work showed that stimulation of mtUPR improves

mitochondrial function and reduces cardiac damage in response
to I/R injury and pressure overload. The elucidation of the
integration points between mitochondrial and endoplasmic
reticulum proteostasis represents an important aspect to be
clarified in future studies.

Mitochondria are also massively damaged by anthracycline-
based chemotherapy, and mitochondrial dysfunction contributes
to the development anthracycline-induced cardiotoxicity, as
reviewed by Murabito et al. Doxorubicin, a well-known drug
belonging to the anthracycline class, directly binds cardiolipin
and accumulates into mitochondria, causing disruption of
electron transport chain complexes, thereby contributing to
ROS accumulation. The latter triggers several adverse events,
such as mitochondrial uncoupling, oxidative stress, apoptosis,
ferroptosis, and impairment of calcium metabolism, which then
lead to cardiomyopathy development. In addition, mitochondrial
dynamics and autophagy are impaired by doxorubicin treatment,
further aggravating mitochondrial damage. Different therapeutic
strategies have been suggested to reduce anthracycline-induced
mitochondrial dysfunction and cardiotoxicity. These include
mitochondria-targeted antioxidants, autophagy activators,
or inhibitors of mitochondrial fatty acid beta-oxidation.
However, the signaling pathways involved in the perpetuation of
mitochondrial damage in response to doxorubicin treatment still
need to be clarified. The elucidation of this aspect will be very
important for the discovery of new therapeutic targets for the
prevention of doxorubicin-induced cardiotoxicity and for the
identification of subjects with potentially higher susceptibility to
develop cardiac injury after chemotherapy.

Mitochondrial biogenesis is also critical for the regulation
of mitochondrial turnover and function in cardiovascular
pathophysiology (5). The transcriptional coactivator peroxisome
proliferator-activated receptor γ coactivator 1 alpha (PGC-1α)
represents a major regulator of mitochondrial biogenesis
and metabolism, as discussed in detail by Oka et al. A
dysregulation of PGC-1α signaling during heart failure
occurs at transcriptional and post-transcriptional level,
contributing to the development of cardiac dysfunction,
due to alterations of multiple mechanisms, particularly those
involved in mitochondrial metabolism.

Perturbations of epigenetic mechanisms regulating
mitochondrial function also contribute to cardiovascular
diseases, as reviewed by Mohammed et al. Epigenetic changes
impair mitochondrial function, resulting in a decrease in
mitochondrial metabolites (i.e., NAD, FAD) used as cofactors
by components involved in chromatin modifications. The latter
further exacerbates epigenetic remodeling. Among epigenetic
modulators, HDAC inhibitors or SIRT1-3 activators were shown
to preserve mitochondrial function in different cardiovascular
diseases by reducing epigenetic remodeling.

In conclusion, this Research Topic highlights that alterations
in different mechanisms regulatingmitochondrial quality control
and function directly contribute to the development of
cardiovascular diseases. Mitochondrial dysfunction determines
an impairment of energy production, which is detrimental
for heart function. In addition, mitochondrial damage triggers
cell death pathways. Although the reduction of mitochondrial
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ROS appears to be a valid approach to reduce mitochondrial
dysfunction, an improvement of mitochondrial quality control
and epigenetic mechanisms may also represent an efficacious
strategy in future clinical applications.
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Fatima Iqbal 1, Melissa King 1, Dimple Prasher 2, Arijit Lodha 1, Nerea Jimenez-Tellez 1,
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We used patient dermal fibroblasts to characterize the mitochondrial abnormalities

associated with the dilated cardiomyopathy with ataxia syndrome (DCMA) and to study

the effect of the mitochondrially-targeted peptide SS-31 as a potential novel therapeutic.

DCMA is a rare and understudied autosomal recessive disorder thought to be related to

Barth syndrome but caused by mutations in DNAJC19, a protein of unknown function

localized to the mitochondria. The clinical disease is characterized by 3-methylglutaconic

aciduria, dilated cardiomyopathy, abnormal neurological development, and other

heterogeneous features. Until recently no effective therapies had been identified and

affected patients frequently died in early childhood from intractable heart failure.

Skin fibroblasts from four pediatric patients with DCMA were used to establish

parameters of mitochondrial dysfunction. Mitochondrial structure, reactive oxygen

species (ROS) production, cardiolipin composition, and gene expression were evaluated.

Immunocytochemistry with semi-automated quantification of mitochondrial structural

metrics and transmission electron microscopy demonstrated mitochondria to be

highly fragmented in DCMA fibroblasts compared to healthy control cells. Live-cell

imaging demonstrated significantly increased ROS production in patient cells. These

abnormalities were reversed by treating DCMA fibroblasts with SS-31, a synthetic

peptide that localizes to the inner mitochondrial membrane. Levels of cardiolipin were

not significantly different between control and DCMA cells and were unaffected by

SS-31 treatment. Our results demonstrate the abnormal mitochondria in fibroblasts from

patients with DCMA and suggest that SS-31 may represent a potential therapy for this

devastating disease.

Keywords: mitochondria, cardiomyopathy, fibroblasts, SS-31, DCMA, cardiolipin
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INTRODUCTION

The dilated cardiomyopathy with ataxia syndrome (DCMA),
also known as 3-methylglutaconic aciduria type V, is a rare
and understudied autosomal recessive disorder caused by
mutations in the poorly characterized gene DNAJ Heat Shock
Protein Family (Hsp40) Member C19 (DNAJC19) (1–4). The
DNAJ family of proteins act as molecular chaperones and
are defined by their J-domains which regulate the function
of HSP70 chaperones (5). DNAJC19 is localized to the inner
mitochondrial membrane and although some of its interacting
partners have been identified (4), its precise role is unknown.
DCMAwas first described in the Dariusleut Hutterite population
of southern Alberta who represent the largest population of
patients in the world with only sporadic cases reported elsewhere
(3, 6, 7). In the Hutterites, a genetically-isolated population that
share a common European ancestry and a communal lifestyle,
DCMA is caused by a single homozygous DNAJC19 intronic
pathogenic variant NG_022933.1:c.130-1G>C (rs137854888)
that leads to abnormal splicing and a truncated, non-functional
protein (2). DCMA is a heterogeneous disorder characterized
by 3-methylglutaconic aciduria, dilated cardiomyopathy,
developmental delay, neuromotor abnormalities, growth failure,
prolongation of the QT interval, and various other systemic
features (8). End-stage heart failure leading to death in early
childhood is common and, until recently, no effective therapeutic
had been identified (9). However, the mechanism of disease
remains unknown.

DCMA is phenotypically related to Barth syndrome (3-
methylglutaconic aciduria type II) which is caused by mutations
in the X-linked TAZ gene and whose clinical features partially
overlap those seen in DCMA (10, 11). TAZ encodes the tafazzin
protein which is involved in the remodeling of cardiolipin
(CL), a phospholipid predominantly localized to the inner
mitochondrial membrane (11). CL has important roles in
stabilizing mitochondrial membrane protein complexes and
maintaining mitochondrial structure and membrane curvature
(12). CL acyl chain remodeling is disrupted in cardiomyopathy,
including Barth syndrome, and heart failure (13–16). In cultured
cells, knock-down of DNAJC19 expression was reported to affect
CL remodeling, which may explain the related clinical features
of DCMA and Barth syndrome (4). Although this in vitro
data demonstrated that DNAJC19 deficiency resulted in changes
in CL composition and abnormal mitochondrial structure and
dysfunction, results from DCMA patients have been conflicting.
Both decreased and normal electron transport chain complex
activities in tissues and cells have been reported (3, 6, 7), with
Al Teneiji et al. reporting normal mitochondrial morphology in
skeletal muscle (7). Despite the conflicting findings, the potential
for abnormal mitochondrial structure and function in DCMA
may represent a possible target for therapeutic intervention.

The Szeto-Schiller peptide SS-31 (also known as elamipretide
or Bendavia) interacts specifically with CL to affect membrane
curvature and prevent peroxidative damage (17–19) and has
shown pre-clinical promise as a treatment for mitochondrial
disorders and heart failure (20–22). Our study aimed to
characterize the structure of mitochondria found in primary

dermal fibroblasts isolated from pediatric DCMA patients and to
evaluate the effect of treatment with SS-31.

MATERIALS AND METHODS

Fibroblasts
After obtaining informed consent, clinically-indicated skin
biopsies were obtained from pediatric patients undergoing
investigation for metabolic disease. Fibroblasts were expanded
in the Molecular Genetics Laboratory at the Alberta Children’s
Hospital and subsequently frozen at −80◦C until use. Four
fibroblast strains from patients with biochemically and/or
genetically-confirmed DCMA were selected for this study.
Commercially-available control fibroblast strains derived from
healthy adults or children were obtained from ThermoFisher
Scientific or the Coriell Institute. All fibroblasts were grown in
T25 or T75 cell culture flasks (ThermoFisher Scientific) with
Minimum Essential Medium Eagle supplemented with 10%
fetal bovine serum, 1mM sodium pyruvate, 2mM glutamine,
200µM uridine, and 100 U/ml penicillin-streptomycin (Sigma-
Aldrich). Cells were maintained under mycoplasma-free and
sterile conditions in a tissue culture incubator equilibrated with
5% CO2 at 37◦C and medium was changed every 5 days. SS-
31 (D-Arg-2′6′-dimethylTyr-Lys-Phe-NH2) was synthesized by
China Peptides (23). Experiments using SS-31 were performed
by incubating fibroblasts for 24 h with 100 nM SS-31. A
peptide lacking the methylated tyrosine (D-Arg-Tyr-Lys-Phe-
NH2) which we have named 366401 was synthesized for us by
China Peptides and incubated with fibroblasts for 24 h using two
different concentrations (100 and 300 nM) to assess the effect of
the methylated tyrosine group.

Imaging
To prepare cells for immunocytochemistry, confluent cells were
dissociated using trypsin-EDTA then collected by centrifugation
at 2,000 rpm for 10min. Cell pellets were resuspended in
fresh medium post-passage and seeded onto individual sterilized
microscope coverslips placed on the bottom of a 24-well tissue
culture plate. Cells were then allowed to grow for 48-h prior
to staining. Cells on glass coverslips were washed twice with
Dulbecco’s phosphate-buffered saline (DPBS) then fixed with
pre-warmed 4% paraformaldehyde (J. T. Baker) in DPBS and
incubated at 37◦C for 15min. Cells were then washed three
times with DPBS, quenched with 50mM NH4Cl for 15min
at room temperature (RT) then washed again with DPBS and
stored at 4◦C. When ready to stain, cells were permeabilized
with 0.2% Triton X-100 in PBS for 15min then washed three
times with DPBS, blocked with 10% FBS for 25min at RT
then incubated with 1:1000 TOMM20 primary antibody (Sigma-
Aldrich, cat. HPA011562) diluted in 5% FBS for 1-h at 37◦C.
Cells were then washed three times (5min per wash) with 5% FBS
diluted in DPBS. Cells were then incubated with the AlexaFluor
488 secondary antibody (1:1000, ThermoFisher Scientific, cat.
A11034) in 5% FBS for 1-h at RT. Cells were washed then stored
at 4◦C in the dark until imaged on a Zeiss LSM880 confocal
microscope using a 63X oil objective.
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To quantify mitochondrial fragmentation in fibroblasts,
thirty TOMM20-stained cells per cell line and treatment
were manually graded based on a set fragmentation scale.
Hyperfused cells were assigned a grade of (1), cells with
intermediate fragmentation were assigned (2), and a grade of
(3) was assigned to cells exhibiting substantial mitochondrial
fragmentation (24). Significance was determined using a two-
way ANOVA with a Holm-Sidak correction for multiple
comparisons. To quantitatively assess cellular mitochondrial
networks in an objective manner, a semi-automated ImageJ
plug-in Mitochondrial Network Analysis (MiNA) toolset was
used (25). Briefly, TOMM20-stained fibroblasts were imaged
using a Zeiss LSM880 high-resolution confocal microscope.
Images were then randomly cropped to select 30 individual
cells. These 30 cells were identical to the those used for manual
quantification. Cells were then pre-processed by using ImageJ
functions unsharp mask, CLAHE, and median filtering then
batch processed through MiNa. Raw data from MiNa was
put through R Studio (ggbiplot, vegan, readxl, plyr, scales,
and grid packages) to generate the PCA plots and calculate
significant differences in clustering through Adonis tests. MiNa
output displays mean network size, mean fragment length, and
mitochondrial footprint.Mean network size is calculated through
counting the number of mitochondrial branches per network.
Mean fragment length refers to the average mitochondrial
rod/branch length. Mitochondrial footprint is described as the
total area in the cell expressing mitochondrial marker TOMM20.
Significance was determined using a two-way ANOVA with a
Holm-Sidak correction for multiple comparisons.

To assess mitochondrial ultrastructure using transmission
electron microscopy, DCMA, and control fibroblasts were
cultured in 24-well plates to over 80% confluence. Once grown,
cells were fixed and sent to University of Calgary’s Microscopy
and Imaging Facility. Processed cells were imaged using a Hitachi
H7650 transmission electron microscope.

Reactive Oxygen Species (ROS) Production
Fibroblasts cultured on 35mm glass plates (World Precision
Instruments) to 50% confluence were co-stained with MitoSOX
Red (ThermoFisher Scientific, cat. M36008) and MitoTracker
Green (ThermoFisher Scientific, cat. M7514). Fresh fibroblast
medium (2mL) containing 5µM MitoSOX Red and 70 nM
MitoTracker Green was added to the cells and incubated for
20min at 37◦C. Cells were then washed with DPBS and new
medium was added. Cells were incubated at 37◦C for 20min for
de-staining and then imaged using an Olympus spinning disc
confocal system (Olympus SD OSR) operated using Metamorph
software. Cells were then analyzed using ImageJ. Briefly, each cell
was isolated through a selection tool on both treatment images.
Once identified, remaining fluorescence in the image was cleared.
The cells were then subjected to a defined threshold to keep
brightness consistent. Both channels were then combined using
the image calculator resulting in a cell expressing co-localized
fluorescence. Mean gray intensity of the cells was then calculated
and plotted using GraphPad Prism 7. Seventy individual cells
were quantified per cell line and treatment. Significance was
determined through a one-way ANOVA with a Holm-Sidak
correction for multiple comparisons.

Western Blotting
Control and patient fibroblasts were seeded onto T25 flasks and
allowed to grow overnight at 37◦C and 5% CO2. Cells were
then treated with 100 nM SS-31 or vehicle control for 24-h.
Subsequently, cells were harvested, cell pellets washed and lysed
with RIPA buffer containing protease inhibitors (Amersco, cat.
M250). Total cell lysates (20µg) were resolved on SDS-PAGE gels
and transferred onto PVDF membranes. Blots were probed with
antibodies against OPA1 (BD Bioscience, cat. 612606) at 1:1000
final dilution followed by horseradish peroxidase-conjugated
secondary antibodies. Blots were finally incubated with Clarity
ECL substrate (Biorad) according to manufacturer’s instructions
and imaged on an Amersham Imager AI600. Densitometric
analysis of band intensities were performed using ImageJ and
normalized to a loading control (HSP60). Data was plotted using
Prism 7 (GraphPad Software) and significance was determined
using an one-way ANOVA followed by a Tukey correction for
multiple comparisons.

RNA Preparation and RNA-Seq Analysis
Total RNA was extracted from DCMA fibroblasts (n = 4)
and control fibroblasts (n = 4) using the RNA extraction
Mini kit (Invitrogen) according to the manufacturer’s protocol.
RNA purity was assessed and quantified using Nanodrop and a
Qubit 2.0 fluorometer (ThermoFisher Scientific). The sequencing
library was prepared using 2µg of RNA and the TruSeq Stranded
mRNA library preparation kit (Illumina). RNA sequencing
generating single-end 100 base pair reads was performed on the
Illumina NextSeq500 platform. Raw FASTQ files were generated
using Illumina NextSeq Control software (version 2.02). For
RNA-Seq analysis, initial sequencing quality was inspected
using FASTQC. Next, transcript counts were estimated using
kallisto (26) with reference genome GRCh37 and the default
settings. Kallisto-estimated counts were then summarized to the
gene level using the tximport package in RStudio. Differential
gene expression from the counts data was performed using
the Bioconductor package DESeq2. Read counts for control
and patient fibroblasts were compared to determine the log2-
fold change in abundance for each transcript. Raw p-values
were adjusted for multiple comparisons with the Benjamini-
Hochberg method.

Cardiolipin Analysis
CL mass and species composition were determined as previously
described (27).

Statistical Analysis
The data are presented as mean ± standard deviation (SD)
and analyzed as described above. A p value < 0.05 was
considered significant.

RESULTS

Patient Characteristics
Dermal fibroblasts have often been used to study mitochondrial
dysfunction in human diseases (28–30). The fibroblasts used
in this study came from four individual Hutterite children
from three different families with distinct clinical phenotypes
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(Table 1) despite harboring the same homozygous pathogenic
variant. All patients had evidence of dilated cardiomyopathy by
echocardiography with a globular and/or dilated left ventricle.
Two patients (D1 and D2) had mild left ventricular dysfunction
with a left ventricular ejection fraction (LVEF) of 40–50%
(normal > 50%) and two patients (D3 and D4) had severe
dysfunction with a LVEF < 35%. Each patient also had
other comorbidities, most commonly developmental delay, a

TABLE 1 | Patient information.

ID Family Sex Age Cardiac Other Status

(months) phenotype features

D1 1 F 24 mild LV dysfunction dystonia, DD, FTT, LQT Alive

D2 2 M 33 mild LV dysfunction seizures, DD, FTT, LQT Alive

D3 2 F 13 severe LV dysfunction DD, FTT, LQT Deceased

D4 3 F 19 severe LV dysfunction DD, FTT, LQT Deceased

Clinical characteristics for the four DCMA fibroblast strains used in this study. F, female;

M, male, age in months at the time fibroblasts were collected; LV, left ventricular; DD,

developmental delay; FTT, failure to thrive; LQT, prolonged QT interval.

prolonged QT interval on the electrocardiogram and failure to
thrive. The patients with severe cardiac dysfunction were both
deceased at the time of this study. All studies were approved
by the Conjoint Health Research Ethics Board at the University
of Calgary.

Mitochondrial Fragmentation in DCMA
Fibroblasts Is Reversible by Incubation
With SS-31
TOMM20, an outer mitochondrial membrane protein, was
stained to elucidate mitochondrial structure in DCMA and
control fibroblasts. Qualitatively, mitochondrial networks in all
DCMA fibroblasts appeared fragmented and disorganized in
contrast to control cells which displayed intact and reticular
mitochondrial networks (Figure 1A). After 24 h of incubation
with 100 nM SS-31, the mitochondrial networks in the DCMA
fibroblasts qualitatively appeared to be less fragmented and more
net-like with increased branching of mitochondrial networks
and longer fragments (Figure 1B). Semi-automated analysis
of mitochondrial structure was used to quantify network

FIGURE 1 | Visualization and quantification of TOMM20 staining of mitochondria. (A) Representative example of TOMM20 staining of control and DCMA fibroblasts.

(B) TOMM20 staining of control and DCMA fibroblasts treated with SS-31 (100 nM for 24 h). Scale bar measures 5µm. Inset boxes represent the corresponding

region at higher magnification. (C) Mean network size for control and DCMA fibroblasts representing the number of mitochondrial branches per network. DCMA

mitochondria have significantly smaller mitochondrial networks that were restored by SS-31. (D) Mean fragment length is the average mitochondrial rod/branch length

with DCMA cells having significantly smaller fragments compared to controls that increased with SS-31. (E) Mitochondrial footprint is the total area in the cell

expressing mitochondrial marker TOMM20 and was significantly smaller in DCMA fibroblasts when compared to controls but increased significantly with SS-31. Data

are the mean ± SD of measurements from 30 individual cells for each cell strain (n = 3–4). Groups were compared using a two-way ANOVA, **p < 0.01, ***p < 0.001,

****p < 0.0001. (F) PCA plot incorporating data for all mitochondrial morphological metrics (network size, fragment length, and mitochondrial footprint) from control

fibroblasts and DCMA fibroblasts before and after exposure to SS-31. (G) Manual quantification of mitochondrial morphology from 30 individual cells for control (n = 3)

and DCMA (n = 4) fibroblasts before and after treatment with SS-31 (100 nM for 24 h). Quantification according to a three-point fragmentation scale: (1) hyperfused,

(2) intermediate, and (3) fragmented. Data represent mean ± SD. Significance was determined using a two-way ANOVA with a Holm-Sidak correction for multiple

comparisons. **p < 0.01, ***p < 0.001, ****p < 0.0001.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 November 2019 | Volume 6 | Article 16710

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Machiraju et al. SS-31 in DCMA Fibroblasts

size, fragment length and mitochondrial footprint (25). All
parameters were found to be significantly lower in the DCMA
cells in comparison to controls and the addition of SS-31
resulted in significant improvement in all three mitochondrial
metrics (Figures 1C–E). Principal components analysis (PCA)
encompassing all three mitochondrial morphological metrics
was performed for all cells in the presence and absence
of SS-31 (Figure 1F). The DCMA patient cells clustered
together and were significantly different (p < 0.0001) from
the control cells. In the presence of SS-31, the DCMA
cells exhibited significant improvement (p < 0.0001) in
the combined mitochondrial metrics, migrating away from
the untreated cells and toward the control cluster. Manual
grading of mitochondrial fragmentation was performed to
confirm the accuracy of our semi-automated quantification.
Fibroblasts from DCMA patients displayed a higher percentage
of intermediate and fragmented cells compared to control
and, following treatment with SS-31, DCMA patient cell lines
exhibited more hyperfused and intermediate mitochondria
with a lower relative percentage of fully fragmented cells
(Figure 1G). To further evaluate mitochondrial structure and
the effect of SS-31, transmission electron microscopy (TEM)
of a single DCMA strain (D1) and control fibroblast strain
was performed before and after treatment with 100 nM SS-31
for 24 h. The resulting high-magnification images showed that,
qualitatively, mitochondria in the DCMA cells appeared less
dark, indicating a lower electron density, and had thinner
individual cristae, abnormalities that disappeared after SS-31
exposure. Incubating control andDCMAfibroblasts (D1 andD3)
with peptide 366401 (SS-31 lacking the methylated tyrosine) had
no significant effect on the mitochondrial fragmentation seen in
the DCMA cells.

Increased ROS Production in DCMA
Fibroblasts Is Reversible by Incubation
With SS-31
Mitochondrial ROS production was measured using live-cell
imaging and specific dyes (MitoTracker Green and MitoSOX
Red) to co-localize the mitochondrial network with the relative
fluorescence of mitochondrial superoxide. Semi-automated
mean intensity analysis of the co-localized signals showed
significantly higher (p < 0.0001) mitochondrial ROS formation
in the DCMA fibroblasts compared to controls. Treatment with
SS-31 significantly (p < 0.0001) reduced mitochondrial ROS
production in the DCMA cells and had no effect on the control
cells (Figure 2).

Changes in the Length of OPA1 Are
Reversed by SS-31 in DCMA Fibroblasts
Western blotting was performed on DCMA patient fibroblasts
and a control to ascertain the relative ratio of the long
(L-OPA1) and short (S-OPA1) isoforms of OPA1. All four DCMA
patient lines showed a significant reduction in the ratio of
the long and short forms that was reversed by treatment with
SS-31 (Figure 3).

FIGURE 2 | Live-cell imaging of mitochondrial ROS production. (A) Example

of fibroblasts stained with MitoTracker Green, MitoSOX Red, and merged

images. Scale bar measures 5µm. (B) Intensity of mitochondrial ROS staining

in control and DCMA fibroblasts with and without treatment with SS-31

(100 nM for 24 h). ROS intensity was significantly increased in DCMA

fibroblasts strains but significantly decreased by SS-31. Data are mean ± SD

of measurements from 70 individual cells from each control (n = 1) and DCMA

(n = 4) fibroblast strain. Significance was determined with a one-way ANOVA

and a Holm-Sidak correction for multiple comparisons. ****p < 0.0001.

Total Cardiolipin Is Not Reduced in DCMA
Analysis of 22 individual molecule species of CL did not
identify any significant differences between DCMA and control
fibroblasts. Similarly, total CL was not significantly different
between patient and control cells with or without exposure to
SS-31 (Figure 4).

RNA-Seq Identifies Changes in Gene
Expression Related to DCMA
Comparison between DCMA and control fibroblasts identified
262 transcripts that were significantly differentially-expressed (p
< 4.9 × 10−5). However, there were five transcripts that were
highly significantly different (p < 10−18) (Table 2). Implicated
genes of particular note included DNAJC19 and those involved
in oxidative stress (GSTM1) and mitochondrial biogenesis
(GATD3A) (31, 32).

DISCUSSION

Using dermal fibroblasts collected from four individual
children with DCMA, we have identified defects in
mitochondria, specifically abnormal morphology and
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FIGURE 3 | Western blotting of changes in the ratio of OPA1 isoforms. (A) Western blot of untreated control (C1) and DCMA (D1-D4) fibroblasts showing the long and

short isoforms of OPA1. (B) Densitometric analysis of untreated fibroblasts with D1-D4 plotted relative to C1. The quantity of L-OPA1 is significantly reduced in DCMA

cells. Data represent mean ± SD from two separate replicates. Significance was determined using a Tukey post-hoc test. *p < 0.05; **p ≤ 0.01. (C) Western blot of

C1 and D1-D4 fibroblasts treated with 100 nM SS-31 for 24 h showing the long and short isoforms of OPA1 and the HSP60 loading control. (D) Densitometric

analysis of SS-31 treated fibroblasts. There were no significant differences between any of the groups.

increased ROS production. Our results support previous
in vivo and in vitro observations characterizing DCMA
as a mitochondrial disease, provide a previously-lacking
characterization of mitochondria in DCMA patient fibroblasts
and demonstrate a striking response to the novel peptide
therapeutic SS-31.

Immunocytochemistry for the outer mitochondrial
membrane protein TOMM20 demonstrated that mitochondria
in DCMA fibroblasts were severely fragmented with significantly
reduced mitochondrial fragment length, network size, and
total mitochondrial footprint. TEM provided additional
insight into the mitochondrial abnormalities induced by
mutated DNAJC19, demonstrating that the electron density
and cristae thickness were severely reduced. Reduced electron
density, reflected by a decrease in the relative darkness of the

mitochondrial matrix, suggests that DCMA mitochondria
are likely to be in a lower energetic state in comparison to
control mitochondria that are in a more condensed state and
therefore actively phosphorylating ADP to produce cellular
energy (33). However, in this study, only a single DCMA
cell line was studied and these preliminary observations still
require validation.

The abnormal mitochondrial structure in DCMA fibroblasts
was associated with significantly higher ROS production. ROS are
implicated in numerous roles, including cellular signaling, and
in the correct balance are critically important for maintaining
homeostasis and proper cellular function (34, 35). An increase
in ROS production can cause oxidative stress and subsequent
peroxidative damage, particularly of cardiolipin which is very
susceptible to this type of injury due to its composition and
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FIGURE 4 | Total cardiolipin content. For control (n = 3) and DCMA (n = 4)

fibroblasts, the total cardiolipin content was measured before and after

incubation with SS-31 (100 nM for 24 h). No significant differences were found

between any of the groups.

TABLE 2 | RNA-Seq results.

ID Log2-fold change Adjusted P-value Gene symbol

XM_005270782.5 4.95 5.46 × 10−24 GSTM1

NM_145261.3 −10.87 1.79 × 10−23 DNAJC19

XM_017028479.1 −11.59 4.33 × 10−23 GATD3A

NM_001282418.1 10.21 1.70 × 10−18 STAG2

NM_005049.2 −10.64 4.22 × 10−18 PWP2

Most significantly differentially-expressed genes in DCMA fibroblasts.

location (11). From our observations, it is not clear if the
increased ROS production is the primary insult or secondary
to the abnormal mitochondrial structure. The mitochondrial
structural abnormalities that we visualized are consistent with
an imbalance between mitochondrial fission and fusion. This
conclusion is supported by our finding that DCMA cells
exhibited significantly lower proportions of the L-OPA1 isoform
which is required for mitochondrial fusion and cristae formation
(36). A similar loss of L-OPA1 was observed in genetically-
modified HEK293T cells and associated with abnormalities in
CL composition (4). However, despite the abnormalities in
mitochondrial structure and OPA1 isoform proportions, we did
not see a significant difference in either total CL or individual
CL species between DCMA and control fibroblasts. Given the
purported link between DCMA and Barth syndrome (based on
the presence of excess 3-methylglutaconic acid), this finding
was unexpected. Given the documented abnormalities in CL in

Barth syndrome (37), this finding suggests that the underlying
cause of disease in DCMA and Barth syndrome will be different.
Our RNA-Seq results support our observations of abnormal
mitochondrial structure and function but do not immediately
suggest mechanism.

Despite our lack in insight into disease mechanism, the
mitochondrially-targeted peptide SS-31 shows promise as
a therapeutic for DCMA, paralleling results seen for other
mitochondrial disorders and heart failure (21, 22). Incubating
cells with SS-31 for just 24 h, and using a concentration
similar to that previously documented to be safe and effective
in vitro (38), the overall mitochondrial structure in patient
fibroblasts improved significantly both qualitatively and
quantitatively. In addition to improved mitochondrial structure,
the amount of mitochondrially-produced ROS also significantly
decreased with exposure to SS-31. Although SS-31 improved
mitochondrial structure and reduced oxidative stress in DCMA
cells, similar to the effects observed in Friedreich ataxia (a
neurodegenerative disease also associated with cardiomyopathy
related to mitochondrial dysfunction), the precise mechanism
of action is not known (21). However, recent work suggests
that SS-31 improves coupling of electron transport chain
complexes CI and CIV which may be responsible for reducing
ROS production (22). We have observed reduced CI and CIV
complex activity in skeletal muscle and liver from DCMA
patients (Khan, unpublished data). Alternatively, due to its
antioxidant activity, SS-31 may be reducing ROS abundance or
it may be specifically protecting cardiolipin from peroxidative
damage. Our results showing no significant changes in the
levels of CL are consistent with those recently published
showing that SS-31 appears to exert its effect by influencing the
function of the electron transport chain rather than affecting
CL directly (22). Interestingly, SS-31 significantly improved the
expression of L-OPA1 and resulted in a healthier balance of
L-OPA1/S-OPA1 in our DCMA cells. CL has been associated
with L-OPA1 and it is hypothesized that their interaction results
in adequate mitochondrial fusion (39). Through protection
of CL, SS-31 could be improving the interaction of L-OPA1
with CL and may provide an explanation for the improved
mitochondrial structure seen in our cells post-treatment.
Although metabolically quiescent, our research has shown
dermal fibroblasts to be an adequate in vitro model for
mitochondrial structural abnormalities. However, it remains
unknown if SS-31 localizes to the mitochondria in DCMA
and further work is required to assess potential mitochondrial
energetic dysfunction. As such, the effect of other potential
therapeutics could be evaluated using our fibroblasts. For
example, the cardiac glycoside digoxin has recently been shown
to improve myocardial function and structure in children with
DCMA but the impact of digoxin on mitochondrial structure
and function remains to be evaluated (9).

CONCLUSION

We have completed a novel in vitro study of the rare
mitochondrial disease DCMA using patient-derived dermal
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fibroblasts. Analysis of mitochondrial morphology identified
multiple abnormalities of mitochondrial structure that may be
contributing to elevated ROS production and decreased organelle
fusion. The observation that SS-31 is able to ameliorate all
of these abnormalities is also a novel and exciting finding.
Since dysfunctional mitochondria most likely underlie the lethal
cardiomyopathy frequently found in this disorder, identification
of SS-31 as a potential therapeutic may have important future
clinical implications.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in GEO under
the accession number GSE133754.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Conjoint Health Research Ethics Board. Written
informed consent to participate in this study was provided by the
participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

PM, XW, AK, TS, and SG conceived and designed the
experiments. PM, XW, TZ, NJ-T, RS, MK, and AR performed
experiments and acquired data. PM, JH, and FI performed data
analysis. BA and DS provided reagents. PM, XW, and SG wrote
the manuscript. All authors read and approved the manuscript.

FUNDING

This work was supported by a research grant from the Children’s
Cardiomyopathy Foundation to SG with additional financial
support from the Department of Pediatrics at the University of
Calgary and the Alberta Children’s Hospital Foundation to SG.

ACKNOWLEDGMENTS

We would like to thank Vincent Ebacher in the Hotchkiss Brain
Institute for his image analysis support. We also acknowledge the
imaging resources of the Charbonneau Microscopy Facility and
theMicroscopy and Imaging Facility at the University of Calgary.

REFERENCES

1. Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, et al.

Gene essentiality and synthetic lethality in haploid human cells. Science.

(2015) 350:1092–96. doi: 10.1126/science.aac7557

2. Davey KM, Parboosingh JS, McLeod DR, Chan A, Casey R, Ferreira P, et al.

Mutation of DNAJC19, a human homologue of yeast inner mitochondrial

membrane co-chaperones, causes DCMA syndrome, a novel autosomal

recessive Barth syndrome-like condition. J Med Genet. (2006) 43:385–93.

doi: 10.1136/jmg.2005.036657

3. Ojala T, Polinati P, Manninen T, Hiippala A, Rajantie J, Karikoski R, et al. New

mutation of mitochondrial DNAJC19 causing dilated and noncompaction

cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res.

(2012) 72 : 432–7. doi: 10.1038/pr.2012.92

4. Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S,

Baker M, et al. DNAJC19, a mitochondrial cochaperone associated with

cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin

remodeling. Cell Metab. (2014) 20 : 158–71. doi: 10.1016/j.cmet.2014.04.016

5. Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as

drivers of functional specificity. Nat Rev Mol Cell Biol. (2010) 11 : 579–92.

doi: 10.1038/nrm2941

6. Ucar SK, Mayr JA, Feichtinger RG, Canda E, Çoker M, Wortmann SB.

Previously unreported biallelic mutation in DNAJC19: are sensorineural

hearing loss and basal ganglia lesions additional features of dilated

cardiomyopathy and ataxia (DCMA) syndrome? JIMD Rep. (2016) 35:39–45.

doi: 10.1007/8904_2016_23

7. Al Teneiji A, Siriwardena K, George K, Mital S, Mercimek-Mahmutoglu S.

Progressive cerebellar atrophy and a novel homozygous pathogenic DNAJC19

variant as a cause of dilated cardiomyopathy ataxia syndrome. Pediatr Neurol.

(2016) 62:58–61. doi: 10.1016/j.pediatrneurol.2016.03.020

8. Sparkes R, Patton D, Bernier F. Cardiac features of a novel autosomal

recessive dilated cardiomyopathic syndrome due to defective

importation of mitochondrial protein. Cardiol Young. (2007) 17:215–7.

doi: 10.1017/S1047951107000042

9. Greenway SC, Dallaire F, Hazari H, Patel D, Khan A. Addition of digoxin

improves cardiac function in children with the dilated cardiomyopathy with

ataxia syndrome: a mitochondrial cardiomyopathy. Can J Cardiol. (2018)

34:972–7. doi: 10.1016/j.cjca.2018.02.019

10. Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R,

Clayton N, et al. Barth syndrome. Orphanet J Rare Dis. (2013) 8:23.

doi: 10.1186/1750-1172-8-23

11. Dudek J, Maack C. Barth syndrome cardiomyopathy. Cardiovasc Res. (2017)

113:399–410. doi: 10.1093/cvr/cvx014

12. Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in

mitochondria. J Cell Biol. (2011) 192:7–16. doi: 10.1083/jcb.201006159

13. Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial

dysfunction and disease. Am J Physiol Cell Physiol. (2007) 292:C33–44.

doi: 10.1152/ajpcell.00243.2006

14. Saini-Chohan HK, Holmes MG, Chicco AJ, Taylor WA, Moore RL,

McCune SA, et al. Cardiolipin biosynthesis and remodeling enzymes are

altered during development of heart failure. J Lipid Res. (2009) 50:1600–8.

doi: 10.1194/jlr.M800561-JLR200

15. Sparagna GC, Chicco AJ, Murphy RC, Bristow MR, Johnson CA, Rees ML,

et al. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental

heart failure. J Lipid Res. (2007) 48:1559–70. doi: 10.1194/jlr.M600551-JLR200

16. Acehan D, Xu Y, Stokes DL, Schlame M. Comparison of lymphoblast

mitochondria from normal subjects and patients with Barth syndrome

using electron microscopic tomography. Lab Invest. (2007) 87:40–8.

doi: 10.1038/labinvest.3700480

17. Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic

agent to restore mitochondrial bioenergetics. Br J Pharmacol. (2014)

171:2029–50. doi: 10.1111/bph.12461

18. Szeto HH, Birk AV. Serendipity and the discovery of novel compounds

that restore mitochondrial plasticity. Clin Pharmacol Ther. (2014) 96:672–83.

doi: 10.1038/clpt.2014.174

19. Szeto HH, Schiller PW. Novel therapies targeting inner mitochondrial

membrane–from discovery to clinical development. Pharm Res. (2011)

28:2669–79. doi: 10.1007/s11095-011-0476-8

20. Birk AV, Liu S, Soong Y, Mills W, Singh P, Warren JD, et al. The

mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria

by interacting with cardiolipin. J Am Soc Nephrol. (2013) 24:1250–61.

doi: 10.1681/ASN.2012121216

21. Zhao H, Li H, Hao S, Chen J, Wu J, Song C, et al. Peptide SS-31

upregulates frataxin expression and improves the quality of mitochondria:

implications in the treatment of Friedreich ataxia. Sci Rep. (2017) 7:9840.

doi: 10.1038/s41598-017-10320-2

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 November 2019 | Volume 6 | Article 16714

https://doi.org/10.1126/science.aac7557
https://doi.org/10.1136/jmg.2005.036657
https://doi.org/10.1038/pr.2012.92
https://doi.org/10.1016/j.cmet.2014.04.016
https://doi.org/10.1038/nrm2941
https://doi.org/10.1007/8904_2016_23
https://doi.org/10.1016/j.pediatrneurol.2016.03.020
https://doi.org/10.1017/S1047951107000042
https://doi.org/10.1016/j.cjca.2018.02.019
https://doi.org/10.1186/1750-1172-8-23
https://doi.org/10.1093/cvr/cvx014
https://doi.org/10.1083/jcb.201006159
https://doi.org/10.1152/ajpcell.00243.2006
https://doi.org/10.1194/jlr.M800561-JLR200
https://doi.org/10.1194/jlr.M600551-JLR200
https://doi.org/10.1038/labinvest.3700480
https://doi.org/10.1111/bph.12461
https://doi.org/10.1038/clpt.2014.174
https://doi.org/10.1007/s11095-011-0476-8
https://doi.org/10.1681/ASN.2012121216
https://doi.org/10.1038/s41598-017-10320-2
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Machiraju et al. SS-31 in DCMA Fibroblasts

22. Chatfield KC, Sparagna GC, Chau S, Phillips EK, Ambardekar AV, Aftab M,

et al. Elamipretide improves mitochondrial function in the failing human

heart. JACC. (2019) 4:147–57. doi: 10.1016/j.jacbts.2018.12.005

23. Wu J, Hao S, Sun XR, Zhang H, Li H, Zhao H., et al. Elamipretide (SS-

31) ameliorates isoflurane-induced long-term impairments of mitochondrial

morphogenesis and cognition in developing rats. Front Cell Neurosci. (2017)

11:119. doi: 10.3389/fncel.2017.00119

24. Sabouny R, Fraunberger E, Geoffrion M, Ng AC, Baird SD, Screaton RA.,

et al. The Keap1-Nrf2 stress response pathway promotes mitochondrial

hyperfusion through degradation of the mitochondrial fission protein Drp1.

Antioxid Redox Signal. (2017) 27:1447–59. doi: 10.1089/ars.2016.6855

25. Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA. A simple

Imagej macro tool for analyzing mitochondrial network morphology

in mammalian cell culture. Acta Histochem. (2017) 119:315–26.

doi: 10.1016/j.acthis.2017.03.001

26. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-

seq quantification. Nat Biotechnol. (2016) 34:525–7. doi: 10.1038/nbt.3519

27. Ravandi A, Leibundgut G, Hung MY, Patel M, Hutchins PM, Murphy

RC, et al. Release and capture of bioactive oxidized phospholipids and

oxidized cholesteryl esters during percutaneous coronary and peripheral

arterial interventions in humans. J Am Coll Cardiol. (2014) 63:1961–71.

doi: 10.1016/j.jacc.2014.01.055

28. James AM, Wei YH, Pang CY, Murphy MP. Altered mitochondrial function

in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations.

Biochem J. (1996) 318 (Pt 2):401–7. doi: 10.1042/bj3180401

29. Onesto E, Colombrita C, Gumina V, Borghi MO, Dusi S, Doretti A.,

et al. Gene-specific mitochondria dysfunctions in human TARDBP

and C9ORF72 fibroblasts. Acta Neuropathol Commun. (2016) 4:47.

doi: 10.1186/s40478-016-0316-5

30. Kogot-Levin A, Saada A, Leibowitz G, Soiferman D, Douiev L,

Raz I, et al. Upregulation of mitochondrial content in cytochrome

c oxidase deficient fibroblasts. PLoS ONE. (2016) 11:e0165417.

doi: 10.1371/journal.pone.0165417

31. Masuda T, Wada Y, Kawamura S. ES1 is a mitochondrial enlarging factor

contributing to form mega-mitochondria in zebrafish cones. Sci Rep. (2016)

6:22360. doi: 10.1038/srep22360

32. Ponamarev MV, She YM, Zhang L, Robinson BH. Proteomics of bovine

mitochondrial RNA-binding proteins: HES1/KNP-I is anew mitochondrial

resident protein. J Proteome Res. (2005) 4:43–52. doi: 10.1021/pr049872g

33. Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical

activity in mitochondria. II. Electron transport-linked ultrastructural

transformations in mitochondria. J Cell Biol. (1968) 37:345–69.

doi: 10.1083/jcb.37.2.345

34. Tsutsui H, Kinugawa S, Matsushima S. Mitochondrial oxidative stress and

dysfunction in myocardial remodelling. Cardiovasc Res. (2009) 81:449–56.

doi: 10.1093/cvr/cvn280

35. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis

and redox regulation in cellular signaling. Cell Signal. (2012) 24:981–90.

doi: 10.1016/j.cellsig.2012.01.008

36. Olichon A, Guillou E, Delettre C, Landes T, Arnauné-Pelloquin

L, Emorine LJ, et al. Mitochondrial dynamics and disease, OPA1.

Biochim Biophys Acta. (2006) 1763:500–9. doi: 10.1016/j.bbamcr.2006.

04.003

37. Mejia EM, Zinko JC, Hauff KD, Xu FY, Ravandi A, Hatch GM. Glucose uptake

and triacylglycerol synthesis are increased in barth syndrome lymphoblasts.

Lipids. (2017) 52:161–5. doi: 10.1007/s11745-017-4232-7

38. Hao S, Ji J, Zhao H, Shang L, Wu J, Li H., et al. Mitochondrion-

targeted peptide SS-31 inhibited oxidized low-density lipoproteins-induced

foam cell formation through both ROS scavenging and inhibition of

cholesterol influx in RAW264.7 cells. Molecules. (2015) 20:21287–97.

doi: 10.3390/molecules201219764

39. Liu R, Chan DC. OPA1 and cardiolipin team up for mitochondrial fusion.Nat

Cell Biol. (2017) 19:760–2. doi: 10.1038/ncb3565

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Machiraju, Wang, Sabouny, Huang, Zhao, Iqbal, King, Prasher,

Lodha, Jimenez-Tellez, Ravandi, Argiropoulos, Sinasac, Khan, Shutt and Greenway.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 November 2019 | Volume 6 | Article 16715

https://doi.org/10.1016/j.jacbts.2018.12.005
https://doi.org/10.3389/fncel.2017.00119
https://doi.org/10.1089/ars.2016.6855
https://doi.org/10.1016/j.acthis.2017.03.001
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1016/j.jacc.2014.01.055
https://doi.org/10.1042/bj3180401
https://doi.org/10.1186/s40478-016-0316-5
https://doi.org/10.1371/journal.pone.0165417
https://doi.org/10.1038/srep22360
https://doi.org/10.1021/pr049872g
https://doi.org/10.1083/jcb.37.2.345
https://doi.org/10.1093/cvr/cvn280
https://doi.org/10.1016/j.cellsig.2012.01.008
https://doi.org/10.1016/j.bbamcr.2006.04.003
https://doi.org/10.1007/s11745-017-4232-7
https://doi.org/10.3390/molecules201219764
https://doi.org/10.1038/ncb3565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


REVIEW
published: 08 January 2020

doi: 10.3389/fcvm.2019.00186

Frontiers in Cardiovascular Medicine | www.frontiersin.org 1 January 2020 | Volume 6 | Article 186

Edited by:

Junichi Sadoshima,

University of Medicine and Dentistry of

New Jersey, United States

Reviewed by:

Junco Shibayama Warren,

The University of Utah, United States

Yoshiyuki Ikeda,

Kagoshima University, Japan

*Correspondence:

Yasuhiro Maejima

ymaeji.cvm@tmd.ac.jp

Specialty section:

This article was submitted to

Cardiovascular Metabolism,

a section of the journal

Frontiers in Cardiovascular Medicine

Received: 03 November 2019

Accepted: 10 December 2019

Published: 08 January 2020

Citation:

Maejima Y (2020) SGLT2 Inhibitors

Play a Salutary Role in Heart Failure

via Modulation of the Mitochondrial

Function.

Front. Cardiovasc. Med. 6:186.

doi: 10.3389/fcvm.2019.00186

SGLT2 Inhibitors Play a Salutary Role
in Heart Failure via Modulation of the
Mitochondrial Function
Yasuhiro Maejima*

Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan

Three cardiovascular outcome trials of sodium glucose cotransporter 2 (SGLT2)

inhibitors, including the EMPA-REG OUTCOME trial, CANVAS Program, and DECLARE

TIMI 58 trial, revealed that SGLT2 inhibitors were superior to a matching placebo

in reducing cardiovascular events, including mortality and hospitalization for heart

failure, in patients with type 2 diabetes. However, the detailed mechanism underlying

the beneficial effects that SGLT2 inhibitors exert on cardiovascular diseases remains

to be elucidated. We herein review the latest findings of the salutary mechanisms

of SGLT2 inhibitors in cardiomyocytes, especially focusing on their mitochondrial

function-mediated beneficial effects. The administration of SGLT2 inhibitors leads to the

elevation of plasma levels of ketone bodies, which are an efficient energy source in

the failing heart, by promoting oxidation of the mitochondrial coenzyme Q couple and

enhancing the free energy of cytosolic ATP hydrolysis. SGLT2 inhibitors also promote

sodium metabolism-mediated cardioprotective effects. These compounds could reduce

the intracellular sodium overload to improve mitochondrial energetics and oxidative

defense in the heart through binding with NHE and/or SMIT1. Furthermore, SGLT2

inhibitors could modulate mitochondrial dynamics by regulating the fusion and fission

of mitochondria. Together with ongoing large-scale clinical trials to evaluate the efficacy

of SGLT2 inhibitors in patients with heart failure, intensive investigations regarding the

mechanism through which SGLT2 inhibitors promote the restoration in cases of heart

failure would lead to the establishment of these drugs as potent anti-heart failure drugs.

Keywords: SGLT2, mitochondria, ketone body, NHE, fusion, fission

INTRODUCTION

Sodium glucose cotransporter (SGLT) is a channel protein that imports glucose into the
intracellular space together with sodium ions (Na+) using the gradient of the Na+ concentration
between inside and outside of the cells (Figure 1A) (1). SGLTs are expressed in limited organs,
including the brain, small intestine, and renal tubule of mammals. Phlorizin, a phloretin that
connects with glucose via glucoside bonding, is a natural compound derived from the bark of
the apple tree root (Figure 1B). The administration of phlorizin leads to renal glycosuria, as this
compound can inhibit SGLT1/2 located on the renal tubule, which results in the alleviation of
hyperglycemia by discharging glucose to urine (Figure 1A) (2, 3). However, the intake of phlorizin
causes severe diarrhea because this compound also inhibits small intestinal SGLT1, thereby
suppressing the reabsorption of glucose together with water in the intestinal tract. To overcome this
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FIGURE 1 | (A) Physiology of glucose reabsorption in the renal proximal tubules and the target of SGLT2 inhibitors. GLUT, glucose transporter; KCNE1, potassium

voltage-gated channel Isk-related family member 1; KCNQ1, potassium voltage-gated channel KQT-like subfamily member 1; NHE, Na+/H+ exchanger; NKA,

Na+/K+ ATPase; SGLT, sodium-dependent glucose transporter. (B) Chemical structural formulas of Phlorizin and SGLT2 inhibitors (Dapagliflozin, Empagliflozin,

Canagliflozin, Ipragliflozin, Tofogliflozin, and Luseogliflozin).
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weakness of phlorizin, intensive analyses were conducted to
investigate the molecular structures of both phlorizin and the
SGLT receptor. Based on these analyses, highly selective SGLT2
inhibitors were developed as a novel type of anti-diabetes
drug (Figure 1B) (4). In recent years, several cardiovascular
outcome studies to test the safety of glucose-lowering drugs have
demonstrated that SGLT2 inhibitors have a potential protective
effect against cardiovascular events that is comparable to existing
anti-heart failure drugs. However, it remains unknown how
SGLT2 inhibitors exert such beneficial effects in patients with
cardiovascular diseases. One of the major reasons why this
has not been elucidated is that SGLT2 is not expressed in
cardiomyocytes (5). Thus, it is largely believed that SGLT2
inhibitors play a protective role via the modulation of the internal
environment outside of the myocardium (6). On the other hand,
several investigators have shown that SGLT2 inhibitors directly
manifest protective effects in the heart (6). In both cases, it
is assumed that SGLT2 inhibitors exert their protective effects
by restoring the mitochondrial function in cardiomyocytes.
We herein review the current understanding on how SGLT2
inhibitors mitigate cardiac dysfunction through mitochondrial
protection-mediated mechanisms.

CLINICAL EVIDENCE OF THE
CARDIOPROTECTIVE EFFECTS OF SGLT2
INHIBITORS

The EMPA-REGOUTCOME trial, a cardiovascular outcome trial
(CVOT) of the SGLT2 inhibitor empagliflozin, demonstrated that
empagliflozin was superior to a matching placebo in reducing
cardiovascular events, including mortality and hospitalization
for heart failure in patients with type 2 diabetes and established
cardiovascular diseases (7, 8) (Table 1). The CANVAS Program,
which consists of the CANVAS study and CANVAS-R, CVOTs
assessed the cardiovascular safety and efficacy of the SGLT2
inhibitor canagliflozin in patients with type 2 diabetes and
established cardiovascular disease, and also revealed that
canagliflozin reduced the risk of a composite outcome of major
adverse cardiovascular events in comparison to a matching
placebo (9) (Table 1). Furthermore, the DECLARE TIMI 58 trial
demonstrated that the SGLT2 inhibitor dapagliflozin reduced the
risk of cardiovascular death or hospitalization for heart failure
in comparison to a matching placebo in patients with type 2
diabetes and either a high cardiovascular risk or established
atherosclerotic cardiovascular disease (10) (Table 1). As most
patients in these trials did not have a diagnosis of heart
failure at the time of study entry, the merit of treatment with
an SGLT2 inhibitor largely reflected the prevention of heart
failure development (11). Furthermore, the fact that reduction
in the risk of hospitalization for heart failure emerged early
after randomization raised the possibility that the mechanisms
of the SGLT2 inhibitor-mediated cardiovascular benefits differ
from those of existing glucose-lowering therapies that exert
their effects independently of glycemic control. Indeed, a series
of preclinical investigations demonstrated the effectiveness of
SGLT2 inhibitors in animal models of non-diabetic heart failure.

Byrne et al. revealed that the administration of empagliflozin
alleviated left ventricular systolic dysfunction in non-diabetic
mice subjected to pressure overload both in vivo and ex vivo
(12). Andreadou et al. and Yurista et al. demonstrated that
the administration of empagliflozin reduced the infarcted area
of the myocardium, thereby improving the cardiac function in
experimental non-diabetic myocardial infarctionmodels (13, 14).
In this background, randomized clinical trials were designed
to explore the effects of SGLT2 inhibitors in patients with
established heart failure with or without diabetes. Recently,
the DAPA-HF trial demonstrated the significant advantage of
dapagliflozin in reducing major adverse outcomes, such as
unexpected hospitalization due to the exacerbation of heart
failure, in patients with established heart failure with a reduced
ejection fraction (HFrEF) (15). However, for SGLT2 inhibitors
to be safely used for the treatment of non-diabetic heart failure,
it is essential to elucidate their mechanism of action in detail.
Thus far, a number of hypothesized mechanisms have proposed
to explain the benefits of SGLT2 inhibitors in heart failure
(6). Some investigators suggested that SGLT2 inhibitor-mediated
natriuresis reduces the plasma volume or interstitial fluid,
thereby favorably influencing ventricular remodeling by reducing
the cardiac volume (16). Other investigators suggested that
SGLT2 inhibitors alleviate heart failure through the suppression
of sympathetic nervous activity, as evidenced by the reduction
in arterial blood pressure without an increase in heart rate
(7, 17). Still others hypothesized that SGLT2 inhibitors enhance
the synthesis of erythropoietin by restoring the activity of
“neural crest-derived” fibroblasts surrounding the renal proximal
tubules, which, in turn, increases the delivery of oxygen to
the failing myocardium (18). Thus, the targets through which
SGLT2 inhibitors exert their protective effects against heart
failure are mainly located outside of the heart. However, some
investigations regarding this issue demonstrated that SGLT2
inhibitors have the potential to directly protect cardiomyocytes.
Most such investigations have argued that SGLT2 inhibitors
directly alleviate cardiac dysfunction through the modulation
of mitochondria-associated mechanisms, including ketone body
metabolism, sodium metabolism, and mitochondrial dynamics.

SGLT2 INHIBITORS INCREASE THE
AMOUNT OF KETONE BODIES, THEREBY
PROMOTING CARDIOPROTECTIVE
EFFECTS

The inhibition of SGLT2 induces glucosuria, which thereby
lowers plasma glucose levels, resulting in a reduction in the
insulin level and an increase in the glucagon level during
the fasting state. Such hormonal changes facilitate lipolysis
in adipose tissue, and—at the same time—promote the
conversion of carbohydrate to fat in whole-body substrate
utilization. Thus, the administration of SGLT2 inhibitors
could elevate ketone body levels in humans (Figure 2) (19).
Ketone bodies, which are composed of acetoacetate (AcAc),
β-hydroxybutyrate (βOHB), and acetone, are exclusively
generated in the liver when the supply of glucose is impaired
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TABLE 1 | Summary of cardiovascular outcome trials with SGLT2 inhibitors.

EMPA-REG Outcome CANVAS Program Declare-TIMI 58

Study drug Empagliflozin Canagliflozin Dapagliflozin

Drug class SGLT2 inhibitor SGLT2 inhibitor SGLT2 inhibitor

Comparator Placebo Placebo Placebo

Selected inclusion

criteria

Adults with T2D at high risk of CV disease;

BMI ≤45 kg/m2; no glucose-lowering therapy

in previous 12 weeks and HbA1c 7.0–9.0%,

or stable glucose-lowering therapy and

HbA1c 7.0–10.0%

T2D; HbA1c 7.0–10.5%; age ≥30 years

with a history of CV events, or age ≥50

years with a high risk of CV events; eGFR

≥30 ml/min/1.73 m2

T2D; HbA1c ≥6.5–

Selected exclusion

criteria

ACS, stroke, or TIA in previous 2 months;

planned cardiac surgery or angioplasty; liver

disease; eGFR 2

T1D; diabetic ketoacidosis; pancreas or

beta-cell transplantation; diabetes

secondary to pancreatitis or

pancreatectomy; severe hypoglycaemic

episode in previous 6 months

T1D; CrCl

Number of

patients

7,020 10,142 17,160

Study aim Assess CV safety outcomes with

empagliflozin compared with placebo, on top

of standard of care, in patients with T2D at

high CV risk

To pool results from the CANVAS and

CANVAS-R trials to assess CV safety

outcomes with canagliflozin compared

with placebo, on top of standard of care,

in patients with poorly controlled T2D and

a history of CV events, or high risk of CV

events

Assess CV outcomes with dapagliflozin

compared with placebo, on top of

standard of care, in patients with T2D who

either have or are at risk of atherosclerotic

CV disease

Primary outcome 3P-MACE (CV death, non-fatal MI or

non-fatal stroke)

3P-MACE (CV death, non-fatal MI or

non-fatal stroke)

Primary safety outcome: non-inferiority for

3P-MACE (CV death, non-fatal MI or

non-fatal ischemic stroke). Co-primary

efficacy outcomes: 3P-MACE; CV death

or hospitalization for heart failure

Other key

outcomes

4P-MACE (3P-MACE or hospitalization for

unstable angina); CV death; hospitalization

for heart failure; all-cause mortality; incident

or worsening nephropathy

Individual components of composite

endpoint; all-cause mortality;

hospitalization for heart failure; progression

of albuminuria

Composite kidney outcome (sustained

≥40% reduction in eGFR to 2, new ESKD,

or kidney or CV death); all-cause mortality;

hospitalization for heart failure

Number of events 772 1,011 –

Start date 2010-07-01 2014-01-01 2013-04-01

Median follow-up 3.1 years CANVAS: ∼5.7 years; CANVAS–R: ∼2.1

years; CANVAS Program: ∼2.4 years

4.2 years

Date of completion 2015-04-01 2017-02-01 2018-09-01

Key results Primary outcome: HR 0.86 (95% CI 0.74,

0.99; p = 0.04 for superiority);

4P-MACE: HR 0.89 (95% CI 0.78, 1.01;

p = 0.08 for superiority);

CV death: HR 0.62 (95% CI 0.49, 0.77;

p < 0.001)

hospitalization for heart failure: HR 0.65 (95%

CI 0.50, 0.85; p = 0.002);

all-cause mortality: HR 0.68 (95% CI 0.57,

0.82; p < 0.001)

incident or worsening nephropathy: HR 0.61

(95% CI 0.53, 0.70; p < 0.001)

CANVAS Program ITT analysis Primary

outcome: 3P-MACE: HR 0.86 (95% CI

0.75, 0.97; p = 0.02 for superiority);

all-cause mortality: HR 0.87 (95% CI 0.74,

1.01); CV death: HR 0.87 (95% CI 0.72,

1.06); hospitalization for HF: HR 0.67

(95% CI 0.52, 0.87); progression of

albuminuria: HR 0.73 (95% CI 0.67, 0.79)

Co-primary efficacy outcomes−3P-MACE:

HR 0.93 (95% CI 0.84, 1.03; p = 0.17 for

superiority); CV death or hospitalization for

heart failure: HR 0.83 (95% CI 0.73, 0.95;

p = 0.005 for superiority); exploratory

outcomes—kidney composite outcome:

HR 0.76 (95% CI 0.67, 0.87); all-cause

mortality: HR 0.93 (95% CI 0.82, 1.04);

hospitalization for heart failure: HR 0.73

(95% CI 0.61, 0.88); CV death: HR 0.98

(95% CI 0.82, 1.17)
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due to either a reduction of exogenous influx or deterioration
of insulin signaling, or when the amount of free fatty acids
(FFAs) is excessive due to the hyperactivation of lipolysis
(20). During such situations, fatty acid β-oxidation is
upregulated, thereby increasing the NADH/NAD+ ratio,

which in turn promotes the conversion of AcAc to βOHB
in the mitochondria of the liver (Figure 2). FFAs, a major
source of ketone bodies, are taken up into hepatocytes, and
β-oxidation transforms FFAs into acetyl-CoA and acetoacetyol-
CoA (AcAc-CoA). 3-hydroxy-3-methylglutaryl-coenzyme A
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FIGURE 2 | SGLT2 inhibitors increase the amount of ketone bodies, thereby promoting cardioprotective effects. The inhibition of SGLT2 reduces plasma glucose

levels, thereby promoting lipolysis in adipose tissue, which in turn enhances the generation of ketone bodies. On the other hand, a growing body of evidence suggests

that ketone bodies are favorable substrates in energy production because the conversion of ketone bodies to acetyl-CoA is much easier in comparison to the

conversion of FFAs and glucose to acetyl-CoA. Furthermore, transcriptional level changes of ketone oxidation-related genes would be associated with the substrate

shift to ketone bodies in the failing heart. Both pink and blue arrows show the changes in heart failure. AcAc CoA, Acetoacetyl CoA; ACAT1, Acetyl-CoA

acetyltransferase; ADP, Adenosine diphosphate; ATP, Adenosine triphosphate; BDH1, Mitochondrial β-hydroxybutyrate dehydrogenase; βOHB, β-hydroxybutyrate;

βOHB CoA, β-hydroxybutyryl CoA; C2-carnitine, Acetylcarnitine; C4-OH carnitine, Hydroxybutyrylcarnitine; CPT1, Carnitine palmitoyltransferase 1; ETC, Electron

transport chain; HMGCL, 3-hydroxy-3-methylglutaryl-coenzyme A lyase; HMGCS2, 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2; and SCOT,

Succinyl-CoA:3-oxoacid-CoA transferase.

synthase 2 (HMGCS2), a rate-limiting mitochondrial enzyme,
catalyzes the condensation of acetyl-CoA and AcAc-CoA to
generate 3-hydroxy-3-methtylglutaryl-CoA (HMG-CoA) (21).

Subsequently, 3-hydroxy-3-methylglutaryl-coenzyme A lyase
(HMGCL) sequentially cleaves HMG-CoA into acetyl-CoA
and AcAc (22, 23). Then, D-β-hydroxybutyrate dehydrogenase
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(BDH1) converts AcAc to βOHB, a more stable form of
ketone body. In addition, both the kidneys and intestines play
a critical role in maintaining ketone body homeostasis by
regulating the ketone-reabsorptive capacity through sodium-
dependent monocarboxylate transporter (SMCT) 1 and 2.
Ketone bodies diffuse into the circulation and are used as an
energy source in various organs (24). In the mitochondria
of the heart, ketone bodies are rapidly converted to acetyl
CoA through catalyzation with several enzymes, such as
βOHB dehydrogenase (BDH1), succinyl-CoA:3-oxoacid-
CoA transferase (SCOT), and mitochondrial acetyl-CoA
acetyltransferase 1 (25).

The mammalian heart requires a vast amount of energy
to maintain a normal contractile function and intracellular
energy storage is limited. Thus, cardiomyocytes must generate
an enormous amount of adenosine triphosphate (ATP) via
the oxidation of carbon fuel. Under normal conditions, the
predominant energy source of cardiomyocytes is FFAs, which
provide 60% of the myocardial ATP demand by β-oxidation
(26). The remaining 40% of the myocardial ATP demand
is provided by carbohydrate oxidation, including glycolysis.
The proportions of the energy sources of cardiomyocytes
dynamically changes according to conditions such as exercise,
feeding and starvation. When the mitochondrial oxidative
metabolism balance of cardiomyocytes is seriously damaged due
to various stresses including hypoxia and pressure overload,
the major origin of ATP shifts from β-oxidation-mediated
FA degradation to carbohydrate oxidation-mediated glucose
catabolism. Such metabolic adaptation during hypoxia is
reasonable because the glycolysis pathway can work, even
under anaerobic conditions. However, as the efficiency of
ATP production in glycolysis is significantly lower than that
in mitochondrial oxidative metabolism, more efficient energy
sources are required in the failing heart, in which the
oxygen supply is impaired for an extended period of time
(27). From this perspective, ketone bodies are a favorable
substrate for energy production because the conversion of
ketone bodies to acetyl-CoA is much easier in comparison
to the conversion of FFAs and glucose (Figure 2) (28, 29).
More importantly, ketone bodies can lead to the more
efficient oxidation of the mitochondrial coenzyme Q couple
and enhance the free energy of cytosolic ATP hydrolysis.
Furthermore, changes at the transcriptional level of ketone
oxidation-related genes would be associated with the substrate
shift to ketone bodies in the failing heart. Indeed, previous
investigations revealed that ketone metabolism is increased
accompanied with the decrease of fatty acid oxidation in failing
heart, as evidenced by the elevation of the levels of BDH1
and ketone body-derived materials, such as hydroxybutyryl-
carnitine (C4OH-carnitine), βOHB-CoA and acetyl-carnitine
(C2-carnitine) (28, 29) (Figure 2). In addition, a number of
studies have demonstrated that the intake of a ketogenic
diet extends longevity and the health span (30). Shimazu
et al. revealed part of its mechanism. Treatment with βOHB
inhibits histone deacetylase, thereby promoting FoxO3A and
MT2 activity, which, in turn, markedly reduce oxidative stress
and extend the life span in mice (31). Furthermore, ketone

bodies possess anti-inflammatory activity (32). Youm et al.
demonstrated that ketone bodies play an anti-inflammatory
role by inhibiting the activity of the NOD-like receptor pyrin
domain containing protein 3 (NLRP3) inflammasomes in animal
models (33).

Thus, the elevation of ketone levels by SGLT2 inhibitionmight
have a beneficial effect in patients with heart failure through
multiple mechanisms.

SGLT2 INHIBITORS PROMOTE SODIUM
METABOLISM-MEDIATED
CARDIOPROTECTIVE EFFECTS

As the inhibition of SGLT2 induces natriuresis as well
as glycosuria because SGLT2 cotransports glucose with
sodium, SGLT2 blockade could alter intracellular sodium
homeostasis. Sodium plays an important role in mitochondrial
redox regulation and excitation-contraction coupling in
cardiomyocytes (Figure 3) (34, 35). Indeed, to produce energy
in the form of ATP, cardiomyocytes primarily depend on the
mitochondrial oxidative phosphorylation system (OXPHOS).
Nicotinamide adenine dinucleotide (NADH), a reducing
equivalent that is produced from the tricarboxylic acid (TCA)
cycle, donates its electron to complexes I, III and IV of
the electron transport chain (ETC), thereby promoting the
translocation of H+ to the mitochondrial intermembrane
space. The reduced form of flavin adenine dinucleotide
(FADH2) also participates in the ETC reaction by donating
its electron to complex II. The concentration gradient of H+

translocation generated by this reaction drives the conversion
from ADP to ATP at the F1/F0-ATP synthase. The increase
of ADP caused by the increased energy demand enhances
the production of ATP at the F1/F0-ATP synthase, thereby
promoting the oxidization of NADH to NAD+. Concurrently,
the increase of cytosolic Ca2+ transients by β-adrenergic
stimulation promotes the uptake of mitochondrial Ca2+ through
the mitochondrial Ca2+ uniporter (MCU) (36). Then, Ca2+

activates the dehydrogenases of the TCA cycle to promote the
regeneration of NADH (37). Thus, OXPHOS acts in concert
with the TCA cycle to preserve constant ratios of ATP/ADP
and NADH/NAD+ (38). In addition, nicotinamide adenine
dinucleotide phosphate (NADPH) which is produced from
NADH and TCA cycle products such as malate and isocitrate,
plays a critical role in maintaining oxidative defense by donating
electrons to reduced glutathione, thioredoxin, and glutaredoxin
pools. Thus, the mitochondrial Ca2+ uptake is crucial for
preserving the mitochondrial antioxidative capacity as well
as for matching the energy supply to the demand (39). Ca2+

handling in cardiomyocytes is closely coordinated with Na+

handling through the activity of the sarcolemmal Na+/Ca2+

exchanger (NCX) and the mitochondrial Na+/Ca2+ exchanger
(NCLX). The cardiac NCX entirely bails out Ca2+ to the
extracellular space under physiological conditions. However,
NCX sets out to import Ca2+ to the cytosol in the early
phase of the action potential, depending on the membrane
potential and the Na+ and Ca2+ transmembrane gradients
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FIGURE 3 | SGLT2 inhibitors promote sodium metabolism-mediated cardioprotective effects. Failing cardiomyocytes show elevated intracellular Na+ concentrations

due to (1) increased Na+ influx via the late Na+ current (INa), (2) enhanced sarcolemmal Na+/H+ exchanger (NHE) activity, (3) reduced Na+/K+ ATPase (NKA) activity,

and in the case of the diabetic heart, (4) the increased expression and activity of Na+-glucose cotransporter 1 (SGLT1). Intracellular overload of Na+ promotes Ca2+

efflux from mitochondria through the mitochondrial Na+/Ca2+ exchanger (NCLX). The reduction of the Ca2+ concentration in the mitochondrial matrix deteriorates the

Ca2+-induced upregulation of TCA cycle dehydrogenases in response to workload transition, thereby disturbing the regeneration of reducing equivalents that are

essential for preserving the antioxidative capacity and matching the energy supply to the energy demand. SGLT2 inhibitors would have a salutary role in failing

cardiomyocytes through their alleviation of Na+ and Ca2+ handling through NHE inhibition. ADP, adenosine diphosphate; ATP, adenosine triphosphate; ETC, electron

transport chain; MCU, mitochondrial Ca2+ uniporter; NAD+/NADH, nicotine amide dinucleotide oxidized/reduced; NCX, sarcolemmal Na+/Ca2+ exchanger; NKA,

Na+/K+ ATPase; RyR, ryanodine receptor; SERCA, sarcoplasmic reticulum Ca2+ ATPase.

(40). The cardiac NCLX is mainly responsible for the extrusion
of Ca2+ from mitochondria. However, as the kinetics of
NCLX are slower in comparison to the uptake of Ca2+ via

the MCU, it is susceptible to the accumulation of Ca2+ in
mitochondria after increasing the rate and amplitude of cytosolic
Ca2+ transients.
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Heart failure is closely associated with the impairment
of both Ca2+ and Na+ handling in cardiomyocytes. Indeed,
the amplitude and velocity of cytosolic Ca2+ transients are
decreased in failing cardiomyocytes. Furthermore, the elevation
of diastolic cytosolic Ca2+ ([Ca2+]c) and Na+ concentrations
([Na+]c) is observed in failing cardiomyocytes (41, 42). The
impairment of Ca2+ handling is due to the decrease of the
Ca2+ uptake by the sarco/endoplasmic reticulum Ca2+- ATPase
(SERCA) and the leak of Ca2+ from the sarcoplasmic reticulum
(SR) via ryanodine receptors (43, 44). The increase in the
expression and activity of the NCX promotes the export of
Ca2+ into the extracellular space, and thereby also reduces
the Ca2+ load of the SR (45). Furthermore, the reduction of
the release of Ca2+ from the SR results in the impairment of the
mitochondrial Ca2+ uptake and steady-state Ca2+ concentration
([Ca2+]m) (46). On the other hand, excessive influx of Ca2+

into the mitochondria is detrimental to cardiomyocytes. The
elevation of [Ca2+]m triggers depolarization of mitochondrial
inner membrane potential, generation of reactive oxygen species
(ROS), and opening the mitochondrial permeability transition
pore (47, 48), thereby promoting the release of pro-apoptotic
proteins, such as cytochrome c, into the cytosol (49).

Increasing lines of evidence suggest that [Na+]c is significantly
elevated in failing cardiomyocytes as a result of (1) increased
Na+ influx via the late Na+ current (INa) (41), (2) enhancement
of sarcolemmal Na+/H+ exchanger (NHE) activity (50), (3)
reduction of Na+/K+ ATPase (NKA) activity (51), and—in the
case of diabetic heart—(4) the increased expression and activity
of the Na+-glucose cotransporter 1 (SGLT1) (52) (Figure 2).
Generally, the increase of [Na+]c should trigger positive effects
on cytosolic Ca2+ handling because intracellular Na+ overload
prevents the NCX from exporting Ca2+ during the diastolic
phase and promotes the reverse-mode function of the NCX
during the action potential—thereby enhancing additional trans-
sarcolemmal Ca2+ influx to achieve the elevation of Ca2+ in
the SR and increase the amplitude of cytosolic Ca2+ transients.
However, from a metabolic point of view, the elevation of
[Na+]c results in detrimental effects, especially in mitochondria.
As Ca2+ is pumped out of mitochondria to the cytosol by an
NCLX, the elevation of [Na+]c enhances the driving force for
mitochondrial Ca2+ efflux. The decrease of [Ca2+]m suppresses
the Ca2+-induced upregulation of dehydrogenases in the TCA
cycle, thereby attenuating the production of both NADH and
NADPH (46). The decreased production of NADH causes
ATP depletion. The reduction of the amount of NADPH
causes the impairment of mitochondrial antioxidative defense
because the donation of electrons from NADPH is indispensable
for antioxidative enzymes, such as peroxiredoxin, glutathione
peroxidase, and glutaredoxin. Thus, the elevation of [Na+]c
enhances oxidative stress, thereby aggravating the vulnerability
of the heart to arrhythmias and neurohormonal hyperactivation.
Furthermore, the increase of [Na+]c eventually causes the
emission of mitochondrial ROS, which results in the further
deterioration of the intracellular Na+ overload (35). Based on
these facts, reducing the intracellular Na+ overload to improve
mitochondrial energetics and oxidative defense could be a
promising therapeutic strategy for heart failure (Figure 3).

With regard to the beneficial effects of SGLT2 inhibitors on
heart failure, it was initially considered that SGLT2 inhibitors
have no direct effect on cardiomyocytes because SGLT2 is
not expressed in the heart in either healthy subjects or under
pathological conditions (5). However, a recent investigation
demonstrated that empagliflozin reduced [Na+]c and [Ca2+]c
in isolated cardiomyocytes (53). According to this report,
empagliflozin directly reduced myocardial [Na+]c and [Ca2+]c
and elevated [Ca2+]m by suppressing myocardial NHE flux,
independently of glucose transport. Habibi et al. demonstrated
that the administration of empagliflozin mitigates diastolic
dysfunction in db/db mice (54). The author of the present study
found that empagliflozin suppresses the expression of serum- and
glucocorticoid-inducible kinase 1 (SGK1) in the myocardium.
As SGK1 activity may modulate NHE activity through Akt-
mediated signaling, these results suggest that empagliflozin
could restore myocardial [Na+]c in a sustained manner (55).
Examinations using 23Na+ magnetic resonance imaging revealed
that the tissue Na+ content in diabetic patients was markedly
reduced by treatment with dapagliflozin (56). An in silico docking
study demonstrated that three SGLT2 inhibitors, empagliflozin,
dapagliflozin, and canagliflozin, showed high binding affinity
with the extracellular Na+-binding site of NHE (57). In this
study, the authors confirmed—by in vitro experiments—that
empagliflozin, dapagliflozin and canagliflozin directly inhibit the
cardiac NHE flux and reduce [Na+]c.

The expression of NHE is upregulated in the failing
heart, possibly through the acidification of the intracellular
environment due to increased conversion of pyruvate to lactate
(58). Similarly, the NHE activity of cardiomyocytes of the
animal models of type 2 diabetes and the suppression of
[Na+]c by NHE inhibition with cariproride was found to be
cardioprotective (59, 60). Specifically, cariproride significantly
suppressed the elevation of [Na+]c at the end of ischemia
and inhibited ventricular arrhythmia during reperfusion in
a db/db mouse model of ischemia/reperfusion (59). In the
Goto–Kakizaki rat model of type 2 diabetes, which does not
develop hypertension, obesity or hyperlipidemia, the NHE
activity of cardiomyocytes is markedly upregulated, which results
in an increase in [Na+]c. In this model, the intracellular
Na+ overload was closely associated with the Akt-mediated
progression of left ventricular hypertrophy. Consistently, the
administration of cariproride significantly suppressed both
[Na+]c and Akt activation, resulting in the attenuation of cardiac
hypertrophy (60).

There are seven SGLT isoforms (SGLT1 to 6 and sodium-
myoinositol cotransporter 1, SMIT1). Among these, only SGLT1
and SMIT1 are expressed in the mammalian heart. The
overexpression of SMIT1 activates NOX2, increases ROS, and
exacerbates glucotoxicity in cardiomyocytes. Consistently, the
deletion of SMIT1 prevented hyperglycemia-induced NOX2
activation (61). Thus far, the physiological role of SMIT1 in
the heart remains unknown, as the deletion of SMIT1 does
not alter the cardiac phenotype. Interestingly, however, SMIT1
is hardly associated with the glucose uptake in the heart,
regardless of any glycemic conditions. Thus, SMIT1-mediated
NOX2 activation would modulate glucose sensitization, which
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could trigger ionic signaling ([Na+]c and [Ca2+]c via the NCX)
into cells in association with the changes in the extracellular
glucose concentration. Concomitantly, intracellular signaling via
protein kinase C (PKC)-β, a calcium-dependent serine/threonine
kinase, could be the link to ionic changes downstream of SMIT1.
The IC50 of empagliflozin and canagliflozin for SMIT1 are
estimated to be 8.3 and 5.6µM, respectively (62, 63). Indeed,
empagliflozin is even able to reduce [Na+]c in the absence of
glucose (53).

SGLT2 INHIBITORS COULD MODULATE
MITOCHONDRIAL DYNAMICS RESULTING
IN CARDIOPROTECTION

Mitochondria continuously fuse and divide in highly regulated
manners to maintain their functions, which include metabolism,
energy production, intracellular signaling, and the regulation
of apoptosis. The enhancement of mitochondrial fusion
would allow for the making up of “healthy” mitochondria,
resulting in the normalization of the overall mitochondrial
function. In response to various stresses, mitochondria undergo
stress-induced mitochondrial hyperfusion (64), which thereby
enhances ATP production, which—in turn—plays a pro-
survival role. On the other hand, damaged mitochondria must
be removed to preserve mitochondrial homeostasis. To this
end, mitochondrial fission could be enhanced to more easily
remove dysfunctional mitochondria via mitochondria-selective
autophagy, termed mitophagy (65). Several key regulators are
required for the operation of such mitochondrial dynamics.
Mitochondrial fusion is regulated by mitofusin1 (Mfn1),
mitofusin2 (Mfn2), and Opa1 (Figure 4) (66). On the other
hand, mitochondrial fission is regulated by the recruitment
of Dynamin-related protein 1 (Drp1) to specific sites on
the outer mitochondrial membrane in coordination with
mitochondrial fission 1 (Fis1) and mitochondrial fission factor
(Mff) (Figure 4) (67).

The impairment of mitochondrial fusion via the
downregulation of Mfn1 and Mfn2 aggravates cardiac
dysfunction both at baseline and in response to stress (68).
On the other hand, the inhibition of mitochondrial fission by the
pharmacological suppression of Drp1 with Mdivi-1 reduces the
size of infarcts that develop in response to ischemia/reperfusion
(I/R) (69). In contrast, the inhibition of mitochondrial fission by
genetic modulation, such as the knockdown of Fis1 mRNA or
the expression of dominant-negative mutation in Drp1, inhibits
mitophagy which results in metabolic dysfunction in INS1 cells
(70), suggesting that mitochondrial fission has a two-sided
nature with respect to cell survival in the myocardium.

Increasing lines of evidence suggest that SGLT2 inhibitorsmay
modulate mitochondrial dynamics. Ipragliflozin alleviates the
mitochondrial dysfunction induced by a high-fat diet by restoring
the levels of Opa1 and Mfn2 to normal values in vivo without
reducing body weight or blood glucose levels in rat models (71).
Similarly, dapagliflozin normalizes the Mfn1/Mfn2 ratio in the
rat model of metabolic syndrome, thereby suppressing prolonged
ventricular repolarization (72). Empagliflozin restores the

AMP/ATP ratio, thereby activating adenosine monophosphate
(AMP)-activated protein kinase (AMPK) (73). The activation
of AMPK causes an increase in Drp1S637 phosphorylation
and a decrease in Drp1S616 phosphorylation, which results
in the suppression of mitochondrial fission. Another study
demonstrated that empagliflozin normalized the size and number
of mitochondria in the OLETF diabetic rat heart and that the
diabetes-induced excessive reduction in mitochondrial size after
MI was inhibited by empagliflozin via the suppression of Fis1
upregulation and following ROS production, which results in the
reduction of the MI size (74).

Thus, inhibition of SGLT2 is closely associated with the
mitochondrial dynamics through the regulation of fusion and
fission of mitochondria. Although several hypotheses have
been proposed (71, 74, 75), the detailed molecular mechanism
through which mitochondrial fusion and fission are modulated
by the administration of SGLT2 inhibitors is largely unknown.
Furthermore, it remains to be determined whether the effect of
SGLT2 inhibitors on AMPK activity, one of the key molecules in
the regulation of mitochondrial fission, is a class effect or a drug-
specific effect. Indeed, Mancini et al. reported that canagliflozin,
but not dapagliflozin or empagliflozin, could enhance AMPK
activity both in human umbilical vein endothelial cells and
human arterial endothelial cells (76). In addition, the precise roles
of mitochondrial fission and fusion in the development of heart
failure remain to be determined.

FUTURE DIRECTIONS

We reviewed the proposed cardioprotective effect of SGLT2
inhibitors, which is mediated through the improvement of the
mitochondrial function by (1) increasing ketone body usage, (2)
the mitigation of sodium metabolism, and (3) the modulation
mitochondrial dynamics. However, many questions remain
to be solved to validate these hypotheses. Indeed, it remains
controversial whether SGLT2 inhibitors could be directly
involved in the protective effects of cardiomyocytes, which
do not express SGLT2. In particular, regarding the regulation
of mitochondrial dynamics, previous studies merely observed
the change in the expression levels of factors that regulate the
mitochondrial dynamics (e.g., Mfn1 or Drp1) in response to
the administration of SGLT2 inhibitors. Thus, the molecular
mechanism through which these compounds modulate
mitochondrial fusion and fission remains to be elucidated.
Regarding the association with ketone body metabolism, it is
necessary to determine whether the favorable effects induced by
the increase in ketone bodies would be limited in the alteration
of the mitochondrial energy metabolism. Furthermore, the
possibility that these drugs could regulate different target
molecule(s) other than SGLT2 (i.e., have off-target effects) should
be examined. Indeed, the hypothesis that SGLT2 inhibitors
regulate sodium metabolism is based on the fact that SGLT2
inhibitors possess the potential to inhibit both NHE and SMIT1.

As stated above, the DAPA-HF trial demonstrated that
dapagliflozin plays a protective role in patients with established
HFrEF, regardless of the presence of diabetes (15). Currently,
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FIGURE 4 | Hypothesized mechanism of the modulation of mitochondrial dynamics by SGLT2 inhibitors. The inhibition of SGLT2 might be associated with the

mitochondrial dynamics through the regulation of (A) mitochondrial fusion and (B) mitochondrial fission. However, the detailed mechanism as to how SGLT2 inhibitors

modulate the regulators of mitochondrial dynamics is largely unknown. AMPK, AMP-activated protein kinase; Drp1, Dynamin-related protein 1; Fis1, Mitochondrial

fission 1 protein; Mfn, Mitofusin; Ser, Serine.

the EMPEROR-Reduced trial [NCT03057977] to evaluate the
efficacy of empagliflozin vs. placebo on top of guideline-directed
medical therapy in HFrEF patients with or without diabetes
is ongoing (77). If empagliflozin is proven to be beneficial in
patients with HFrEF based on the results of this trial, it would
provide more robust evidence of the beneficial effect of SGLT2
inhibitors on heart failure. At the same time, two randomized
clinical trials are evaluating the effects of SGLT2 inhibitors in
patients with established heart failure with a preserved ejection
fraction (HFpEF), regardless the presence of diabetes. One is the
EMPEROR-Preserved trial [NCT03057951] with empagliflozin
(78), and the other one is the DELIVER trial [NCT03619213]
with dapagliflozin. Several preclinical studies proposed the
mechanism how SGLT2 inhibitor alleviates cardiac diastolic
dysfunction, a major cause of HFpEF. For example, Juni et al.

demonstrated that Empagliflozin suppresses TNF-α-induced
mitochondrial and cytoplasmic ROS accumulation, thereby
restoring cardiac microvascular endothelial cell-derived NO
delivery, which in turn leads to reinstatement of cardiac
relaxation and contraction (79). There are great expectations
regarding the result of these clinical trials because, at the time of
writing, no drugs have been demonstrated to be effective for the
treatment of HFpEF (80).

As is the case with the positive effects, unfavorable
aspects of SGLT2 inhibitor administration for the heart
failure patients should be considered. Increasing lines of
evidence suggest that sarcopenia is one of the major risk
factors for morbidity and mortality of heart failure. Past
clinical observations demonstrated that the skeletal muscle
mass reduction is observed in a given number of patients
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with diabetes who were treated with SGLT2 inhibitors. Also,
the decreased exercise capacity, one of the major causes
of sarcopenia which is the consequence of mitochondrial
dysfunction in skeletal muscles, is an independent predictor of
the poor prognosis of patients with heart failure (81). Thus,
basically, the patients who are susceptible to sarcopenia should
not be prescribed SGLT2 inhibitors. On the other hand, a
recent investigation demonstrated the intriguing result that
Empagliflozin restored decreased exercise endurance capacity by
alleviating skeletal muscle fatty acid oxidation in an animal heart
failure model (82). In any case, we should carefully determine
which kind of patients are optimal for the treatment with
SGLT2 inhibitors.

Taken together, unremitting efforts to elucidate the molecular
mechanism through which the administration of SGLT2
inhibitors alleviates heart failure, as well as clinical studies of
these compounds for non-diabetic heart failure could shift their
classification frommerely anti-diabetic drugs to potent anti-heart
failure drugs.
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The integrity of the proteome in cardiac myocytes is critical for robust heart function.

Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which

encompasses processes that maintain the balance of protein synthesis, folding, and

degradation in ways that allow cells to adapt to conditions that present a potential

challenge to viability (1). While there are processes in various cellular locations in

cardiac myocytes that contribute to proteostasis, those in the cytosol, mitochondria

and endoplasmic reticulum (ER) have dominant roles in maintaining cardiac contractile

function. Cytosolic proteostasis has been reviewed elsewhere (2, 3); accordingly, this

review focuses on proteostasis in the ER and mitochondria, and how they might

influence each other and, thus, impact heart function in the settings of cardiac physiology

and disease.

Keywords: mitochondria, proteostasis, UPR, endoplasmic reticulum, protein folding

ER PROTEOSTASIS

Most secreted and membrane proteins are made in the ER, making it a major site for proteostasis
(4, 5). Moreover, the specialized ER in cardiac myocytes, which includes the sarco/endoplasmic
reticulum, is responsible for contractile calcium handling (6–9), and most of the proteins that
are required for this important function of the heart are made at the ER (10, 11). Thus, ER
proteostasis in the heart, and in particular in cardiac myocytes, is critical for proper cardiac
function. ER proteostasis requires an environment that optimizes a balanced synthesis, folding
and degradation of proteins made in this location (Figure 1A). Conditions, including cardiac
pathologies can perturb the ER environment in ways that decrease the efficiency of ER protein
folding, leading to the accumulation of potentially toxic misfolded proteins, which imbalance and
dysregulate proteostasis, leading to activation of the unfolded protein response (UPR) (Figure 1B)
(12). Misfolded proteins in the ER are detected by 3 well studied transmembrane proteins, ATF6
(activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK (protein kinase R
[PKR]-like ER kinase), each of which exhibits a unique mechanism of activation in response to the
accumulation of misfolded proteins in the ER; thus, ATF6, IRE1, and PERK initiate three different
but complementary branches of the ER unfolded protein response (UPRER) (Figure 1C) (13). The
UPRER can also be activated by other cellular stresses that could impact proteostasis, or may be
independent of it, including changes in ER lipid content (14), hypoxia (15, 16), growth stimuli and
reactive oxygen species (17). Thus, while ATF6, IRE1 and PERK were originally found to all be
activated by overt ER protein misfolding, it is now clear that they are activated differentially by
different pathophysiological stresses and, as a result, the downstream signaling events initiated by
each stress are different yet complementary, as far as their ultimate effects on cell function.
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FIGURE 1 | ER and Mitochondrial Proteostasis- (A) Proteostasis

encompasses processes such as protein synthesis, degradation, and folding.

A balance amongst such processes supports optimal proteome integrity. (B)

Dysregulated proteostasis occurs when environmental conditions, including

cardiac pathology, cause an imbalance in these processes, which activates

adaptive compensatory responses, such as the unfolded protein responses

(UPRs) in various organelles. (C) The UPR in the endoplasmic reticulum (ER) is

called the UPRER. Increased levels of misfolded proteins in the ER activate

three ER transmembrane proteins, ATF6, IRE1, and PERK, which cause

increases in the transcription factors ATF6, XBP1, and ATF4, which together

regulate genes designed to rebalance ER proteostasis. PERK also

phosphorylates eIF2a, which arrests translation of most mRNAs, thus relieving

the protein-folding burden on the ER and allowing for cell survival (D). (E)

Continued dysregulation of proteostasis leads to chronic activation of the

UPRER proximal sensors and cell death. (F) The UPR in mitochondria (mt) is

called the UPRmt. The levels of the mitochondrial proteases, LonP1 and CLpP

decrease upon dysregulation of mitochondrial proteostasis. Decreased LonP1

and CLpP contribute to increasing the level of the transcription factor, ATF5,

which regulates genes designed to rebalance mitochondrial proteostasis. (G)

A potential integration point between the UPRER and the UPRmt is the ability of

the UPRER-activated transcription factor, ATF4 to increase expression of the

UPRmt protease, LonP1. (H) Another potential integration point between the

UPRER and the UPRmt is the ability of PERK to tether the ER to mitochondria

at contact sites called mitochondrial associated membranes (MAMS).

In terms of the canonical role for ER stress, initially, UPRER

signaling is designed to restore proper protein folding to the

ER, constituting an adaptive return to proteostasis and cell
survival (Figure 1D). This restoration takes place at many
levels, including enhanced expression of chaperones to facilitate
protein-folding, increases in the rate at which misfolded proteins
in the ER are degraded through a process called ER associated
degradation (ERAD) (18), and decreases in translation ofmRNAs
that encode proteins that are not required for the restoration
of ER proteostasis (19, 20). However, if these complex initial
events of the UPRER are not sufficient to restore proteostasis,
then continued dysregulation of proteostasis leads to chronic
activation of the proximal sensors and cell death (Figure 1E), and
is thus considered maladaptive (21).

ER PROTEOSTASIS IN CARDIAC

PATHOLOGY

A number of studies have demonstrated important roles for
the UPRER in the heart; most of these studies have focused on
examining ER proteostasis in cardiac myocytes. For example,
the ATF6 branch of the UPRER is mainly adaptive and can
protect the heart during pathophysiological maneuvers involving
ischemia/reperfusion (I/R) and pressure overload in mice (13, 17,
22–26), the latter of which mimics hypertension and stimulates
pathological growth of the heart. The adaptive effects of ATF6
are considered to be largely due to its abilities to serve as
a transcription factor following its activation (17, 25, 27).
Consistent with this are findings that the genes induced by
ATF6 as part of the UPRER are known to participate in adaptive
restoration of proteostasis in the heart by inducing canonical
adaptive UPR genes, such as those proteins that constitute the ER
protein-folding machinery (Figure 2A), thus serving protective
roles (28). Surprisingly, upon activation, ATF6 has been shown
to induce a number of genes not previously thought to be
involved in restoring ER protein folding capacity. For example,
the induction of catalase during cardiac I/R (29), was a surprise,
since catalase is not an ER protein, nor is it known to be
involved in restoration of ER proteostasis. However, in that study
it was shown that ATF6 can transcriptionally induce catalase
during I/R and, as a result, catalase neutralizes damaging reactive
oxygen species that accumulate during reperfusion, which
decreases myocardial damage, thus describing catalase as a non-
canonical adaptive UPR gene (Figure 2A, ischemia/reperfusion).
In another study, it was shown that during acute pressure
overload, ATF6 is necessary for the initial growth of the heart,
which is an adaptive effect (17). In that study, usingmice in which
ATF6 was deleted specifically in cardiac myocytes, it was shown
that ATF6 transcriptionally induces the small GTP binding
protein, Rheb, which is an activator of mTORC1 (Figure 2A,
Cardiac Hypertrophy), a well-studied pathway responsible for
myocardial growth during development and pathology, thus
describing Rheb as a non-canonical adaptive UPR gene induced
during cardiac hypertrophy. Another study involved global
deletion of ATF6 and showed that after acute pressure overload
compensatory hypertrophy was impaired by ATF6 deletion,
while ATF6 deletion led to increased hypertrophy and impaired
function after chronic pressure overload (25). It is interesting to
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FIGURE 2 | Roles for the UPRER and UPRmt in Cardiac Pathology- (A) In mouse models of cardiac ischemia/reperfusion and pathological cardiac hypertrophy there is

evidence for activation of all three arms of the UPRER. (Center) Upon activation each arm of the UPR induces canonical ER stress response genes which support

protection for ATF6 and IRE1/XBP1s and damage for PERK/ATF5. However, the ATF6 and IRE1/XBP1s arms of the UPRER also induce non-canonical gene programs

that foster protection in the heart (left and right). (B) In mouse models of cardiac pathology the LonP1 and ATF5 aspects of the UPRmt are activated and both are

protective in these disease settings.

note that while it was not studied in the context of activating
ATF6, Rheb-mediated mTORC1 activation has been shown to
suppress mitophagy, which is generally considered adaptive
during cardiac pathology (30–32), suggesting that mTORC1
activation via Rheb is not always adaptive in the heart.

Other branches of the UPRER have also been implicated
in the adaptive responses of the heart of pathological stress.
For example, in mouse hearts ischemia/reperfusion activates
the IRE1 branch of the UPRER, leading to the formation of
an active transcription factor, XBP1, which protects cardiac
myocytes from I/R damage, in part, by inducing canonical
adaptive UPR genes (Figure 2, IRE1/XBP1s; canonical) (33).
In that study it was subsequently shown that XBP1 protects
the mouse heart from I/R damage in a non-canonical manner
by transcriptionally inducing key genes responsible for the

hexosamine biosynthetic pathway, which is required for protein
O-GlcNAcylation (Figure 2, I/R non-canonical). Cardiac I/R
was shown to increase protein O-GlcNAcylation in the hearts
of mice (34), suggesting that O-GlcNAcylation is protective.
Moreover, inhibition of O-GlyNAcases increased mitochondrial
OXPHOS enzyme activities, implying that this is one way
that O-GlcNAcylation might be protective (35); however, the
mechanism by which XBP1-mediated protein O-GlcNAcylation
results in cardioprotection remains unclear. In terms of heart
failure, it was shown that XBP1s stimulates adaptive cardiac
growth through activation of mTORC1, which is mediated via
FKBP11 (FK506-binding protein 11), a novel transcriptional
target of XBP1s, thus describing a non-canonical protective for
IRE1/XBP1s in pathological hypertrophy (Figure 2A, IRE1/XBPs
cardiac hypertrophy) (36). It has also been shown that in a
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mouse model of heart failure with preserved ejection fraction
(HFpEF), activation of IRE1 is deficient and restoration of
activated XBP1 ameliorated the HFpEF phenotype (37). While
this study indicates that IRE1 and perhaps the transcription
factor, XBP1, protect against the development of HFpEF,
the genes that are responsible for this protection have not
been identified.

The PERK branch of the UPRER has also been studied in
the heart. In many tissues, including the heart, PERK is known
to be involved in numerous signaling pathways, one of which
leads to activation of the transcription factor, ATF4, which
increases expression of the pro-apoptotic transcription factor,
C/EBP homologous protein (CHOP) (38). Since apoptosis is a
major contributor to the decline in cardiac function observed
during heart failure and other cardiac pathologies (39), and since
CHOP expression is increased in experimental models of heart
disease (40), several studies have focused on the effects of CHOP
gene deletion in the mouse heart. For the most part, those studies
have shown that PERK-mediated induction of CHOP in the
ischemic or hypertrophic heart exacerbates cardiac pathology, in
large part by increasing cardiac myocyte dropout by apoptosis
(41). However, other studies that examined the effects of PERK
deletion suggest that PERK is adaptive in the setting of pressure
overload induced heart failure (42) (Figure 2A, PERK/ATF4).
Studies such as these demonstrate the complex nature of the
UPRER, indicating that depending on the circumstances, the
UPRER can be adaptive or maladaptive.

MITOCHONDRIAL PROTEOSTASIS

Many cardiac physiology and pathology studies have focused on
mitochondria, as they play an undeniably central role in energy
generation in the metabolically demanding cardiac myocyte.
Thus, processes that comprise mitochondrial quality control,
which encompass proteostasis, biogenesis, dynamics (fusion and
fission) and mitophagy, are critical for maintaining cardiac
myocyte viability and heart contractile function (43). Among
the features of mitochondrial quality control, relatively little is
known about mitochondrial proteostasis in the heart. In non-
cardiac cell and tissue types, stresses similar to those occurring
during cardiac pathology cause the misfolding of mitochondrial
proteins, as well as impaired mitochondrial protein import
and decreased translation of mRNAs in mitochondria (44).
Mitochondrial ATP production is at risk when mitochondrial
proteostasis is dysregulated because it often leads to alterations
in the relative quantities of the hundreds of proteins necessary
for oxidative phosphorylation (OXPHOS) (45, 46). Moreover, an
imbalance between nuclear-encoded andmitochondrial-encoded
OXPHOS proteins affects mitochondrial proteostasis in ways
that extend lifespan in mice and worms (47). In fact, since
the mitochondrial proteome comprises proteins made in the
cytosol as well as in mitochondria, the proteostasis balancing
act that must be maintained in mitochondria is particularly
challenging (46). One important first line of defense against mild
mitochondrial damage is carried out by several mitochondrial
proteases, which contribute to the mitochondrial unfolded

protein response (UPRmt) (Figure 1F). In the mitochondrial
matrix, protein turnover is controlled by three AAA proteases:
the soluble mitochondrial Lon protease homolog (LonP1)
and mitochondrial ATP-dependent CLp protease (CLpP), and
the mitochondrial inner membrane-bound m-AAA protease.
In the intermembrane space, mitochondrial protein quality
is ensured by the membrane-bound ATP-dependent zinc
metalloproteinase, YME1L1, the soluble mitochondrial serine
protease, HTRA2, the mitochondrial metalloendopeptidase,
OMA1, and the mitochondrial presenilins-associated rhomboid-
like protein (PARL). These proteases play a variety of roles,
such as degradation of misfolded proteins and balancing
various mitochondrial constituents, such as OXPHOS proteins.
However, most evidence suggests that Lon1 and CLpP are
central to the UPRmt, while the other proteases may play roles
in other aspects of mitochondrial proteostasis and dynamics
(48). Moreover, because of the dire functional consequences
of reductions in the quality of the mitochondrial proteome,
dysregulation of mitochondrial proteostasis is communicated
to various parts of the cell through at least five different
pathways, including peptide-derived signaling, mitochondrial
backup-signaling, mitochondrial translation control (MTC) loss-
induced signaling and the mitochondrial unfolded protein
response, UPRmt.

Although the UPRmt is beginning to be understood more
clearly in mammals (49), much of our knowledge of this process
comes from studies of the nematode, Caenorhabditis elegans.
In fact, UPRmt activation protects C. elegans against ischemic
injury, further supporting potential roles for the UPRmt, in
the ischemic mammalian heart (50). A key regulator of the
UPRmt is the transcription factor, ATFS-1 in C. elegans, which
in mammals is ATF5, a transcription factor that is imported into
mitochondria in an ATP-dependent manner whenmitochondrial
function and protein folding is optimal (46, 51). Under such
conditions, LonP1 and CLpP proteases degrade ATF5 (52).
However, when dysregulated OXPHOS and other stresses lead
to dysregulated mitochondrial proteostasis, LonP1 and CLpP are
diverted toward degrading those misfolded proteins to minimize
their toxic effects; this diversion leads to the accumulation of
intact ATF5 (Figure 1F) (46, 49, 52). Upon accumulation ATF5
is then exported from mitochondria to the nucleus where it acts
as a transcription factor that induces genes encoding proteins
designed to improvemitochondrial protein folding and rebalance
mitochondrial proteostasis (Figure 1F), such as HSPA9, LonP1,
and YME1L. ATF5 also serves as a communicator of metabolic
stress by temporarily limiting the transcription of OXPHOS
genes encoded in nuclear and mitochondrial genomes, while
simultaneously increasing nuclear encoded gene transcription of
all glycolysis components, and this is thought to maintain cellular
ATP levels until mitochondrial dysfunction is resolved (45, 53).

MITOCHONDRIAL PROTEOSTASIS IN

CARDIAC PATHOLOGY

Little is known about the UPRmt in the heart; however, several
recent publications have provided initial evidence that the UPRmt
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is important for optimal cardiac function and recovery from
I/R injury, as well as in the setting of pathological cardiac
hypertrophy (Figure 2B). For example, using LonP1 transgenic
mice, as well as mice that are haploinsufficient for the LonP1
gene, it was shown that this UPRmt protease mitigates cardiac
injury during I/R by preventing oxidative damage, in part by
rebalancing OXPHOS complex subunit levels in an adaptive
manner (54). Moreover, pressure overload in mice was shown
to activate the UPRmt. Additionally, pharmacologic boosting
of the UPRmt reduced cardiac pathology in this model (55,
56). In the same study it was also shown that hearts from
patients with aortic stenosis, which is often associated with left
ventricular overload, exhibited increased expression of genes
associated with the UPRmt. In another study, mice in which
ATF5 was genetically deleted were used to show that the UPRmt

protected the heart against I/R in an ATF5-dependent manner
(53). Moreover, in the same study RNAseq results demonstrated
the induction of numerous genes in an ATF5-dependent manner
during pharmacological induction of the UPRmt. While these
studies implicate roles for the UPRmt in the setting of cardiac
pathology, much remains to be determined about the role of this
mitochondrial proteostasis pathway in the heart. Underscoring
the need for additional studies is a recent report where it was
shown that CLpP, which plays a central role in the UPRmt in C.
elegans, and thought to be important for the UPRmt in mammals
was not required for the mammalian UPRmt (52). In fact, in
that study it was found that CLpP contributes to mitochondrial
cardiomyopathy, such that deletion of CLpP increased de novo
synthesis of OXPHOS proteins leading to increased ATP and
improved cardiac function inmice. On the other hand, a different
study, while not in the heart, but done with C2C12 myoblasts,
demonstrated that knockdown of CLpP altered mitochondrial
morphology and expression of OXPHOS proteins, reduced
oxygen consumption, increased reactive oxygen species and
impairedmyoblast differentiation (57). Interestingly, in this same
study it was shown that knocking down CLpP leads to increases
in the phosphorylation of EIF2α, which is a hallmark feature of
the UPRER.

INTEGRATING ER AND MITOCHONDRIAL

FUNCTION IN CARDIAC MYOCYTES

There is some evidence suggesting that there is a potential
for integration between the UPRmt and the UPRER. One
important piece of this evidence is the physical linkage
between mitochondria and the ER at mitochondrial associated
membranes, or MAMs (58). Although physical linkages between
mitochondria and the ER were reported beginning in the 1960’s,
the term MAM was christened by Jean Vance, who identified a
function for the mitochondrial-ER contact sites in phospholipid
transport between these organelles (59). Subsequently, numerous
studies of MAMs have identified the proteins that tether the
two organelles, including mitofusin2 (60), as well as important
physiological roles for their juxta-positioning, which, in the heart,
have been centered mostly around the movement of calcium
from the ER into mitochondria (61). In this way, MAMs are

responsible for coordinating ER calcium flux with a variety
of mitochondrial functions, including the ATP generation, as
well as apoptosis and mitophagy (62, 63). More recent studies
have implicated specific mitochondrial-ER tethering proteins,
such as FUNDC1, as having important roles in maintaining
normal cardiac contractility in mice (64–66). Studies outside the
cardiac context have shown that there are numerous components
of the UPRER that are associated with MAM structure and
function, including ER chaperones, the IP3 receptor and PERK,
which, if deleted decreases calcium movement from the ER to
mitochondria (67). Relatedly, PERK deletion in the heart disrupts
calcium signaling in cardiac myocytes in mice, in vivo (68).

INTEGRATING ER AND MITOCHONDRIAL

PROTEOSTASIS

While studies on MAMs imply that the proteostasis pathways
in these organelles must be integrated, to date there have been
no studies in the heart that have addressed the molecular details
of such integration beyond those involving MAMs. However,
studies of molecular integration points between mitochondrial
and ER proteostasis pathways have been done in other cell
and tissue types, and the results of such studies could begin
to inform us about whether such integration might also occur
in the heart and, if so, what the functional consequences of
this integration might be in terms of cardiac physiology and
pathology. One potential molecular integration point between
the UPRmt and UPRER that has been studied extensively in
non-cardiac cells and tissues is the integrated stress response
(IRS). The IRS is an elaborate signaling pathway in eukaryotic
cells that is activated in response to an array of stresses
including hypoxia, amino acid starvation, glucose deprivation,
ER stress and viral infection (42, 69, 70). All of these pathways
converge on the activation of kinases, such as PERK, which
phosphorylate eIF2α on serine 51. In addition to causing global
translational repression, a feature that reduces the protein-
folding burden on nearly all of cellular proteostasis, eIF2α
phosphorylation leads to the preferential translation of some
transcription factors that have upstream ORFs in their 5′

UTRs, such as ATF4 (71, 72) and to subsequent changes in
gene expression that are adaptive upon acute ATF4 activation,
but can culminate in apoptosis and necrosis upon chronic
ATF4 activation. Importantly, the PERK/ATF4 signaling axis,
which plays a central role in the IRS and UPRER (38), is also
involved in the UPRmt (69). In fact, like ATF4, the ATF5
transcript also has an ORFs in its 5′ UTR, so ATF5 levels also
increase upon PERK upon activation of either the UPRER or
the UPRmt (73). PERK-mediated increases in ATF4 enhance
the expression of the UPRmt component, LonP1 (Figure 1G)
(74). Related to this finding, but somewhat perplexing is the
observation that chemical inhibition of LonP1 protease activity
using CDDO activates the UPRmt, as well as increasing ATF4
mediated gene induction (75), indicating a possible bidirectional
regulatory linkage between ATF4 and LonP1. Another finding
that could serve as a molecular integration point between
the UPRER and UPRmt was shown in chondrocytes, where
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the ATF6 family member, BBF2H7, induces typical UPRER

genes, as well as the regulator of the UPRmt, ATF5 (76).
In an examination of the effects of drugs that dysregulate
mitochondrial proteostasis in HeLa, 293T, and COS7 cells,
as well as maneuvers that cause mitochondrial proteostatic
stress, in vivo, it was shown that via activation of the ISR,
ATF4 but not ATF5 responds to dysregulated mitochondrial
proteostasis and activates the expression of cytoprotective
genes (77). Moreover, the PERK/ATF4 signaling axis can
affect mitochondrial morphology and functional integrity,
presumably having these effects at least partly through regulating
mitochondrial proteostasis (78). Thus, it seems possible that
through PERK-mediated increases in ATF4 and ATF5, and
perhaps through PERKs role as a tether which holds MAMs
together (Figure 1H), a function that does not require PERK
enzyme activity (79), the UPRER and UPRmt could be integrated
and, in some cases co-activated, which could improve both
ER and mitochondrial function during stresses that dysregulate
proteostasis in these two organelles.

CONCLUSION

The processes that govern mitochondrial and ER proteostasis
are of critical importance for the adaptation of eukaryotic cells
to environmental changes that risk proteome integrity. Even
though the processes involved in mitochondrial proteostasis
have gone relatively unstudied in the heart, it seems likely

that in combination with those that regulate ER proteostasis,

they are critical for cardiac function and, in particular, cardiac
myocyte viability and contractility. In light of this, it is apparent
that mitochondrial and ER proteostasis, which are regulated by
many processes in addition to the UPRs in these organelles,
provide fertile opportunities for future studies that could
lead to the design of novel therapeutics for treating cardiac
pathologies, ranging from ischemic to hypertrophic and dilated
cardiomyopathies. Our hope is that this review has brought such
potential intervention points to light amongst the heart research
community and that it will spawn investigation into these aspects
of proteostasis, with an objective of developingmuch needed new
therapies for treating cardiac pathologies.
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Mitophagy plays a major role in heart physiology. Impairment of Parkin-dependent

mitophagy in heart is known to be deleterious. Obesity is a known cardiovascular

risk factor. Impaired autophagy has been reported in models of obesity or

hyperlipidemia/hypercholesterolemia; however less is known regarding obesity and

mitophagy. The aim of this study was to evaluate the regulation of Parkin expression

in hearts of mice fed a high fat diet. Interestingly, we found a significant decrease in

Parkin protein in hearts of HFD mice compared those fed a low-fat diet. This was

associated with mitochondrial dysfunction in the context of ischemia/reperfusion (I/R).

This downregulation was not associated with a decrease in Parkin mRNA expression. We

did not detect any change in the degradation rate of Parkin and only a slight decrease

in its translation. The reduction of Parkin protein abundance in HFD hearts remains a

mystery and will need further studies. However, Parkin depletion in the setting of obesity

may contribute to cardiovascular risk.

Keywords: mitophagy, Parkin, obesity, ischemia/reperfusion, myocardium, mitochondria

INTRODUCTION

Mitochondrial clearance through mitophagy is a major element of mitochondrial homeostasis and
plays an important role in maintaining cardiac well-being at baseline as well as during stress (1).
Mitophagy occurs through different pathways involving Parkin, BNIP3, or FUNDC1. These appear
to be complementary and differentially activated according to the stimulus (2, 3). Parkin-mediated
mitophagy is generally triggered by mitochondrial inner membrane depolarization, which leads
to PINK1 accumulation on the outer membrane and phosphorylation of targets that recruit
Parkin. Parkin-dependent mitophagy has been well studied in the context of myocardial injury
after ischemia/reperfusion (I/R) (4). Its role in the heart has been reevaluated in the light of
the fact that Parkin deficiency at baseline did not induce cardiac dysfunction; however, Parkin
is required for cardioprotection by ischemic preconditioning or statin administration (5, 6) and
we previously reported that diet-induced obesity increases ischemic injury (7). Moreover, Parkin
deficiency increases severity of ischemia/reperfusion (I/R) injury (8). Interestingly, Parkin plays
an important role in the heart’s transition from fetal to postnatal life involving a metabolic
switch from carbohydrates to fatty acids and amino acids for fuel utilization; this highlights its
potential significance in metabolic remodeling of mitochondria (4). Related to that, obesity is
known to induce metabolic reprogramming of mitochondria as well as mitochondrial dysfunction
(3). However, little is known about the regulation of cardiac mitophagy in the context of obesity.
The aim of this study was to examine how Parkin-mediated mitophagy was regulated in a model of
diet-induced obesity in mice.
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METHODS

Animals and Experimental Design
Eight-week-old male C57Bl/6J mice were housed under standard
conditions in conventional cages with ad libitum food and water.
Ambient temperature was maintained at 20–22◦C. The mice
were fed a low-fat diet (LFD: 10% energy derived from fat;
D12450b; Research Diets) or a high-fat diet (HFD: 60% energy
derived from fat; D12492; Research Diets) for 12 weeks. For
the inhibition of proteasome and autophagy, HFD mice were
treated, respectively, with intraperitoneal injection of Bortezomib
(1 mg/kg) and Chloroquine (50 mg/kg). Mice were sacrificed 6 h
after injections.

Isolated Heart Perfusion
Hearts from anesthetized mice (i.p. pentobarbital 70 mg/kg)
were rapidly excised and cannulated onto the Langendorff
apparatus and perfused in a retrograde manner with Krebs-
Henseleit bicarbonate buffer consisting of: (in g/L) NaCl 6.9,
KCl 0.35, MgSO4 0.14, KH2PO4 0.16, NaHCO3 2.1, CaCl2 0.37,
glucose 2.0, gassed with 95%O2 /5%CO2 (pH 7.4). The buffer
reservoir height was adjusted to achieve a perfusion pressure
of 60–80mm Hg and perfusate temperature was maintained
at 37◦C. Hearts were allowed to stabilize for 15min prior to
induction of global no-flow ischemia via cessation of perfusion
for 30min. Temperature was maintained during ischemia by
immersing the heart in perfusate maintained at 37◦C. Hearts
were then reperfused by restoring flow and maintained for
30min. Pre-ischemic and reperfusion flow rates were measured.
At the end of the experiment atria and ventricles were rapidly
excised and immediately snap frozen in liquid nitrogen or
further processed for mitochondrial isolation. For infarct size
measurement, the hearts were cut into five transverse slices.
Each slice was incubated for 20min in 1% triphenyltetrazolium
chloride solution at 37◦C to differentiate infarcted from viable
myocardial areas. Extension of the area of necrosis was quantified
by planimetric analysis (ImageJ software).

Western Blot Analysis
Total cell lysates were obtained after lysing frozen heart samples
(∼50mg) in ice-cold RIPA buffer containing: (in mM) Tris-HCl
50, NaCl 150, EDTA 2, NaF 50, and detergents Na-deoxycholate
0.5%, SDS 0.1%, NP40 1%, and protease inhibitors cocktail
(Complete, Roche). Mitochondrial fractions were obtained after
homogenization of fresh heart samples (30–50mg) in ice-cold
mitochondrial isolation buffer (250mM sucrose; 1mM EDTA;
10mM HEPES, pH 7.4) containing protease and phosphatase
inhibitors (Complete, Roche). Nuclei and unbroken cells were
eliminated by low-speed spin (1,000 g, 4◦C, 10min). Postnuclear
supernatant was centrifuged (7,000 g, 4◦C, 15min) to obtain
the final mitochondria-enriched pellet and supernatant (crude
cytosol). Themitochondria-enriched fraction was resuspended in
isolation buffer and centrifuged (7,000 g, 4◦C, 5min). The final
pellet was resuspended in ice cold RIPA buffer with inhibitors.
Both total cell lysate and mitochondrial fractions were probed
with primary antibodies against Parkin (sc-32282, Santa Cruz

Biotechnology), Ubiquitinated protein (ab-7780, Abcam), HSP60
(Cell signaling #12165) and CHOP (Cell signaling #5554). Bands
were visualized by enhanced chemiluminescence and quantified
using Image lab (Biorad). All protein expression levels have been
normalized to ponceau staining.

Polysome Profiling
Polysome profiling has been done as previously described
(9). Briefly, heart samples were homogenized in a buffer
containing: (in mM) KCl 100, Tris 20, MgCl2 5, pH 7.5, with
0.4% NP-40, 100µg/ml cycloheximide and 0.1 U/µl RNase
inhibitor (Invitrogen). Homogenates were incubated 15min on
ice and centrifuged at 14,000 rpm for 15min at 4◦C. The
supernatants were loaded onto 15–50% (w/v) sucrose gradients
and centrifuged at 37,000 rpm in a Beckman SW41 Ti rotor for
2 h at 4◦C. Gradient fractions were collected with a BioLogic
LP System. Total RNA was isolated from fractions with Trizol
following the manufacturer’s suggested procedure.

RNA Purification and qRT-PCR
RNA was extracted from snap-frozen heart (∼25mg) using
Trizol RNA isolation reagent. Total RNA (0.5 µg) was reverse-
transcribed and quantitative real-time PCR was then performed
with SYBR Green Core Kit on a thermal cycler (Bio-Rad). mRNA
expression was normalized to 18S or Rplp0 mRNA content and
expressed as fold change compared to control mice using the11

CT method. Primer sequences are shown in Table 1.

Statistical Analysis
All data are expressed as mean ± SEM. Statistical analysis
was performed using Graphpad Prism 6 software package for
Windows with two-tailed unpaired Student’s test (LFD vs. HFD)
or two-way ANOVA with multiple comparisons followed by
post hoc Fisher’s LSD test (LFD vs. HFD on either basal or
I/R conditions). Differences between groups were considered
statistically significant when p < 0.05.

RESULTS

Mice fed with a high-fat diet (HFD) exhibit a significant decrease
in Parkin protein level (Figures 1A,B). In order to validate the
model of diet-induced obesity, metabolic phenotype parameters
were evaluated. The HFD fed mice presented a higher body
weight (Figure 1C) and increased fat mass (Figure 1D). Blood

TABLE 1 | Primer Sequences.

Forward Reverse

Parkin CGTGTGTAGCTGGCTGTCCCAA ACCTCCCATTTGCAGCACGCA

HSP60 CCCGCAGAAATGCTTCGACT ACTTTGCAACAGTGACCCCA

mt-HSP70 TGCCTCCAATGGTGATGCTT CAGCATCCTTAGTGGCCTGT

18S GACTCAACACGGGAAACCTC AGACAAATCGCTCCACCAAC

Rplp0 TCTGGAGGGTGTCCGCAACG GCCAGGACGCGCTTGTACCC
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FIGURE 1 | Decrease of cardiac Parkin protein level in mice after 12 weeks of HFD. The protein expression of Parkin was quantified by densitometric analysis (A) after

Western blot analysis (B) in LFD and HFD mice at baseline (no ischemia reperfusion, fed ad libitum). Body weight (C) was monitored after 12 weeks of LFD or HFD.

The fat mass was calculated after measurement of adipose tissue mass after sacrifice (D). After 1 weeks of HFD, plasma glucose (E) and insulin (F) levels were

determined in mice fasted for 6 h and HOMA-IR was calculated (G). Results (n = 5–8/group) are expressed in mean ± SEM; *p < 0.05 vs. LFD.

glucose (Figure 1E) and insulin levels were higher (Figure 1F),
leading to an increase in HOMA-IR (Figure 1G).

To determine if Parkin level changed acutely during cardiac
ischemia and reperfusion, we isolated hearts from low fat diet
(LFD) and HFD mice and subjected them to 30min global
ischemia and 3 h reperfusion via Langendorff perfusion. We
found that the level of Parkin protein remained low in the
hearts of HFD mice compared to LFD after I/R (Figure 2A).
In our acute I/R model, we saw a modest trend toward
increased infarct size (Figure 2B) and a significant decrease
of coronary reflow in hearts of HFD mice (Figure 2C). Pre-
ischemic coronary flows were not different between LFD and
HFD mice (data not shown). Under basal conditions, the level
of mitochondria-associated Parkin is low in hearts of both
LFD and HFD mice; however, after I/R, Parkin translocated to
mitochondria only in the LFDmice (Figure 2D). Consistent with
this, the quantity of ubiquitinated protein in the mitochondrial
fraction increased after I/R only in the LFD group (Figure 2E).
Interestingly, mitochondrial protein ubiquitin was already high
in the basal state in HFD mice. This likely reflects reduced
clearance of Ub-tagged mitochondrial proteins via mitophagy
or proteasomal degradation. As mitochondrial dysfunction can
trigger the mitochondrial unfolded protein response (10), we
measuredmRNA and protein level for HSP60 and CHOP.mRNA

levels of both HSP60 (Figure 2F) and CHOP (Figure 2G) are
increased in the HFD group under basal conditions with a more
pronounced change for CHOP mRNA. I/R tends to upregulate
both targets, but no significant differences between LFD andHFD
are observed. The densitometry analysis showed that the increase
of HSP60 is maintained at the protein level (Figure 2H) with
a slight but statistically significant upregulation of the protein
upon HFD and I/R. The increase of CHOP mRNA level is not
reflected by an increase of its protein level (Figure 2I) under
basal conditions. Like CHOP mRNA, CHOP protein level is
upregulated by I/R but no significant differences appear between
LFD and HFD groups.

In order to understand the basis for reduced Parkin protein
in HFD mice, we assessed the mRNA expression of Parkin
and found no difference between the groups (Figure 3A). The
observed lack of change in mRNA expression in our model
suggested increased Parkin degradation. To determine if the
decrease in Parkin was related to increased protein degradation,
we treated mice for 6 h with either bortezomib or chloroquine
in vivo to block, respectively, proteasome activity or autophagic
flux. Neither treatment restored Parkin protein levels in HFD
mice hearts (Figure 3B). We then analyzed if there was a change
in translational activity for Parkin, using polysome profiling (9).
When we consider the mRNA distribution, we observed that
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FIGURE 2 | Loss of Parkin, cardiac and mitochondrial homeostasis alteration in HFD mice subjected to ischemia/reperfusion (I/R). Protein expression of Parkin

was quantified by densitometric analysis of Western blots of heart lysates (A) from LFD and HFD mice after I/R. Infarct size was determined by colorimetry and quantified

(Continued)
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FIGURE 2 | by planimetry (B), examples of heart slices are shown on the graph. Flow rate recovery was measured at indicated time point after reperfusion (C). Parkin

(D) and ubiquitinated proteins (E) were detected by Western blot in mitochondrial extracts from hearts of LFD and HFD mice after I/R. Cardiac expression of genes

involved in mitochondrial stress: HSP60 (F) and CHOP (G) were measured by RT-qPCR. The HSP60 (H) and CHOP (I) protein expression levels were quantified by

densitometric analysis of Western blots. Results (n = 4–6/group) are expressed in mean ± SEM; *p < 0.05.

FIGURE 3 | Regulation of Parkin protein abundance. The cardiac mRNA expression of Parkin (A). The protein expression of Parkin was analyzed Western blot

analysis (B) in LFD and HFD mice and HFD mice treated with Bortezomib (1 mg/kg) or Chloroquine (50 mg/kg). UV densitometry tracing of RNA in the sucrose

gradient for polysome profiling (C). Polysome profiling to detect distribution of Parkin mRNA in high-efficiency (HEF) and low-efficiency (LEF) polysomes and the

non-translating (NT) fraction (D). Quantitation of Parkin mRNA translation ratio [(HEF + LEF)/NT] (E). Quantitation of Parkin mRNA level in the HEF (F). Results (n =

5–6/group) are expressed in mean ± SEM.

Parkin mRNA is less abundant in the translating fraction and
more present in the non-translating fraction (Figures 3C–E).
This is confirmed by the significant decrease of Parkin mRNA
in the high efficiency translating fraction (HEF) (Figure 3F).

DISCUSSION

Few studies have examined the regulation of Parkin protein in
the setting of obesity. Parkin is upregulated in vascular walls
(11) or adipose tissue (12) but decreased in the brain substantia
nigra (SN) (13) of obese or diabetic mice. In liver, studies show
both an increase (14) or a decrease (15) in Parkin level upon
obesity. Contrary to our results, Tong et al. observed an increase
in cardiac parkin protein during HFD consumption, although
their paper did not indicate how many weeks of HFD were
performed prior the analysis of Parkin (16). In their study,
Parkin KO mice developed more severe cardiac hypertrophy
and cardiac diastolic dysfunction in response to HFD feeding,
suggesting that upregulation of Parkin-dependent mitophagy is
a homeostatic response to HFD. These data suggest that obesity
affects expression of Parkin protein and mitophagy capacity.
Interestingly, these changes appear to be tissue specific and
affected by the duration of the HFD. Further studies are needed
to understand the effect of Parkin expression variations. In our

case, we demonstrated a significant decrease of Parkin level
in hearts of obese mice fed HFD for 12 weeks. The loss of
Parkin is known to be deleterious for heart physiology (8, 17).
Under basal conditions, Parkin deficient mice did not present
a major phenotype. However, ischemic preconditioning cannot
protect Parkin-deficient mice from ischemia/reperfusion injury
(6). Also, these mice develop more severe cardiac remodeling
after permanent ligation of left ventricular artery (8). Overall,
the lack of Parkin protein in hearts of obese mice is associated
with myocardial injury after I/R as reflected by the trend toward
increased infarct size and the no-reflow phenomenon in the HFD
group. The decrease of total Parkin level may be responsible
for the impairment of its translocation to the mitochondria in
the context of an ischemic stress, as we observed less Parkin
translocated to the mitochondria upon I/R. Moreover, the latter
seems to be associated with an increase in mitochondrial stress
marker in a basal state. This is in agreement with the idea
that Parkin plays a major role in mitochondrial stress, with or
without apparent cardiac dysfunction (4). We cannot exclude
compensation by other mitophagy pathways that may mitigate
injury linked to the reduction of Parkin in the hearts of HFD
mice. This result is consistent with the results of Khang et al.
(13), who described a decrease in Parkin protein level in the
substantia nigra of HFD or db/db mice without any change
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in mRNA expression of Parkin. Interestingly, they showed that
insulin treatment in SH-SY5Y cell line induced a decrease of
Parkin, suggesting a role for insulin signaling in the regulation
of Parkin protein expression. We hypothesize that this modest
decrease in translational efficiency of Parkin mRNA can result in
a gradual decrease in Parkin protein, as well as a limited ability
to rapidly upregulate Parkin translation in response to stress in
HFD mice. However, further studies are needed to understand
how Parkin is regulated in the context of obesity.

CONCLUSION

In conclusion, this paper showed a substantial reduction of
Parkin protein level in the hearts of HFD mice, although we
were unable to discern the mechanism. Moreover, while Parkin
is known to initiate mitophagy (and perhaps other unrecognized
targets) via ubiquitination, little is known regarding regulation of
Parkin abundance itself.
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Metabolic adaption is crucial for the heart to sustain its contractile activity under

various physiological and pathological conditions. At the molecular level, the changes

in energy demand impinge on the expression of genes encoding for metabolic enzymes.

Among the major components of an intricate transcriptional circuitry, peroxisome

proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) plays a critical role

as a metabolic sensor, which is responsible for the fine-tuning of transcriptional

responses to a plethora of stimuli. Cumulative evidence suggests that energetic

impairment in heart failure is largely attributed to the dysregulation of PGC-1α. In

this review, we summarize recent studies revealing how PGC-1α is regulated by

a multitude of mechanisms, operating at different regulatory levels, which include

epigenetic regulation, the expression of variants, post-transcriptional inhibition, and

post-translational modifications. We further discuss how the PGC-1α regulatory cascade

can be impaired in the failing heart.

Keywords: PGC-1α, heart failure, epigenetics, histone methylation, transcriptional control, cardiac metabolism,

mitochondria

INTRODUCTION

Peroxisome proliferator-activated receptor γ coactivator 1 alpha (PGC-1α) belongs to a small
family of transcriptional coactivators, including PGC-1β and PGC-1-related coactivator (PRC),
which possess a common function in mitochondrial physiology. PGC-1α was first identified as
a cofactor for the nuclear hormone receptor peroxisome proliferator-activated receptor gamma
(PPARγ) in adipocytes required for the adaptive thermogenic responses to lower temperature
(1). PGC-1α is expressed in several tissue types and highly expressed in metabolically active
tissues, which includes brown fat and skeletal and cardiac muscle. In the heart, PGC-1α is an
essential molecule in mitochondrial biogenesis and muscle maturation and shares its role with
PGC-1β (2). Cardiac-specific ablation of both PGC-1α and PGC-1β is embryonically lethal due
to cardiomyopathy (2).

In the past two decades, our understanding of the mechanisms by which PGC-1α regulates
cardiac energetics has significantly advanced. PGC-1α binds to several transcription factors,
including PPARγ, PPARα, estrogen-related receptor alpha (ERRα), and nuclear respiratory factor
1 (NRF1) [reviewed in (3)]. This explains how PGC-1α signaling can be amplified to a number of
metabolic pathways. Therefore, PGC-1α target genes are primarily determined by the transcription
factors that PGC-1α interacts with. Gene expression analysis of PGC-1α knockout mice and
transgenic mice that overexpress PGC-1α has revealed PGC-1α target pathways, which include
mitochondrial biogenesis, oxidative phosphorylation (OXPHOS), fatty acid β-oxidation (FAO),
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and glycolysis (4–9). Recent studies showed that PGC-1α also
enhances autophagy (10–12), apoptosis (13–15), and aging (11),
and activates genes that encode enzymes involved in reactive
oxygen species (ROS) detoxification in the brain (9, 16).

PGC-1α is a metabolic sensor that enables the body to
respond to a plethora of stimuli, including exercise, fasting,
and changes in metabolic substrate availability (17). Thus, PGC-
1α expression and function are key determinants of energetic
states in the heart. Numerous studies have shown that PGC-
1α target genes are downregulated in the failing heart (18–20).
Some reports have suggested that downregulation of PGC-1α
is a major cause of mitochondrial impairment and metabolic
defects in the failing heart (7, 8, 21, 22). However, other studies,
including ours, suggest that the expression levels of PGC-1α per
se cannot always explain downregulation of PGC-1α target genes
in the failing heart (23–25). In this review, we carefully analyze
recent findings in an attempt to construct a holistic picture
of the complex mechanisms contributing to impaired PGC-1α
regulatory function in the failing heart. We show that these
mechanisms operate on multiple levels, including epigenetic and
post-transcriptional regulation of PGC-1α expression, as well
as altered PGC-1α function occurring under pathophysiological
stress (Figure 1). We hope that our analysis helps to identify
knowledge gaps in the complex pattern of PGC-1α regulatory
network in the heart, and to provide guidance for future studies
in this exciting field.

PGC-1α EXPRESSION IN HEART FAILURE

Pathological cardiac hypertrophy is a common response to
hypertension, aortic stenosis, and myocardial infarction (37).
Transverse aortic constriction (TAC) is a primary animal model
for cardiac hypertrophy and heart failure (38, 39). A ligature or a
clip is placed across the ascending or descending aorta, leading
to the increase of intracardiac pressure (“pressure overload”).
TAC initially leads to compensated hypertrophy of the heart,
manifested by maintained ejection fraction and temporary
enhancement of cardiac contractility (40), in association with
metabolic substrate switch from fatty acid to glucose metabolism
(41) and a slight increase of glucose oxidation capacity (40).
However, over prolonged periods of a chronic hemodynamic
overload, an apparently inevitable transition to a decompensated
phase takes place, manifested by reduced ejection fraction
and cardiac dilation (19, 23, 28, 42). Despite variability of
cardiac phenotype in the TAC model (43), most studies
using this model have reported energetic abnormalities (19,
20, 23, 44), culminating in a ∼30% reduction of myocardial
ATP (45), a vitally important physiological constant normally
kept within very narrow limits (46). Metabolic remodeling
in the setting of pathological cardiac hypertrophy and failure
includes decreased myocardial capacity for FAO, reduced ATP
production rate, and increased reliance on glucose, concurrent
with downregulation of genes that are involved in FAO and
mitochondrial oxidative phosphorylation (OXPHOS) (41, 47–
50). PGC-1α plays a central role in transcriptional control of
those metabolic genes in the heart. PGC-1α knockout mice

exhibit deficiencies in cardiac energy reserve and function (7, 21)
and the accelerated development of heart failure, in association
with downregulation of OXPHOS genes (8). In cultured
primary rat neonatal cardiomyocytes, PGC-1α expression was
reduced by α1-adrenergic receptor agonist phenylephrine, which
recapitulatesmyocardial remodeling under pressure overload (8).
Thus, the decreased expression of PGC-1α has been postulated
as an important molecular mechanism for energy starvation
and metabolic defects in the failing myocardium. However, the
dynamics of PGC-1α expression in the failing heart may be
more complex. In animal models of failure, most of the studies
showed downregulation of PGC-1α (8, 51–57), but some studies
found no change (24, 25, 58). Likewise, analysis of tissue samples
obtained from patients at the advanced stage of heart failure
showed a variability of outcomes, including decreased gene (59)
or protein (60) expression, unchanged gene expression (61, 62),
or even a slightly increased gene expression of PGC-1α (63). Of
note, in the latter study PGC-1α target genes were coordinately
downregulated, underscoring the fact that PGC-1α signaling may
be compromised at multiple levels.

The divergent outcomes of these different studies regarding
PGC-1α expression in heart failure might be, in part, due to
assessment of PGC-1α expression at different time points of the
disease progression (i.e., early vs. advanced stages, compensated
vs. decompensated phases), when PGC-1α expression fluctuates
with respect to time, reflecting a combination of adaptive and
maladaptive responses to the increased workload. Note that
human studies obtain information predominantly from hearts
at advanced or terminal stages of heart failure. These stages of
the disease are rarely reached in animal studies. Moreover, in
human patients with heart failure, PGC-1α expression dynamics
may additionally be confounded by different therapeutic
interventions (60, 61). Patients with heart failure were treated
with various inotropic agents such as β-blockers, diuretics,
and angiotensin-converting enzyme (ACE) inhibitors (60).
Additionally, human heart failure is pathophysiologically
heterogeneous. Depending on the underlying cause, several
distinct pathophysiologic conditions, such as ischemia, volume
and pressure overload, and metabolic disorders (i.e., diabetes)
may contribute to various results of PGC-1α expression. A recent
study demonstrates that ischemia triggers distinct epigenetic
modifications in heart failure patients (64). Diabetes and obesity
are another layer of complexity. In diabetic and prediabetic
humans, there is a consistent decrease in the expression of
OXPHOS genes that are regulated by PGC-1α and PGC-1β
in muscle (65–68). However, cardiac PGC-1α is upregulated
in mice that are fed a high-fat diet and in genetically obese
(ob/ob) mice (69). Thus, it remains unclear how PGC-1α
expression is altered in heart failure patients with diabetes and
insulin resistance. Differences in age when comparing samples
from patients with heart failure and control subjects may also
confound results because PGC-1α levels decrease with aging
(70). Nevertheless, it is clear that numerous mitochondrial genes
and other known targets of PGC-1α, such as glycolytic and FAO
genes, are repressed in human heart failure (61, 63), suggesting
that dysregulation of PGC-1αmay play a role in the pathogenesis
of this disease.
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FIGURE 1 | Multiple levels of PGC-1α signaling dysregulation in heart failure. Dysregulation of the PGC-1α regulatory cascade can occur at the level of gene

expression (A), post-translational modifications (PTM) (B), and PGC-1α function (C). (A) At the gene expression level, the PGC-1α cascade can be modulated via

histone modifications ((de)methylation and (de)acetylation), DNA (de)methylation, by various transcription factors [TFs, reviewed in (17)], and via post-transcriptional

inhibition of the PGC-1α gene by non-coding (nc) RNAs. The histone methyltransferase Smyd1 increases promoter activity of PGC-1α through regulating the

enrichment of the H3K4me3 levels (a gene activation mark) (26). In different animal models of heart failure, reduced expression of PGC-1α was associated with

increased H3K9me3 level (a gene repression mark) (27) or a decreased level of H3K9Ac (a gene activation mark) (28). Sirtuin 1 (Sirt1) is a plausible histone deacetylase

(HDAC) for gene repression of PGC-1α under pressure overload (28), but this remains to be established. DNA hypermethylation is known to suppress PGC-1α in the

skeletal muscle (29–31), but little is known about its role in PGC-1α regulation in the heart (32). The protein expression level of PGC-1α can be reduced through

post-transcriptional inhibition by miRNAs, such as miR-22 (33) and miR-23a (34), but it is unknown whether small ncRNA-mediated PGC-1α repression occurs in

heart failure. (B) PGC-1α activity is known to be regulated by posttranslational modifications (PTMs), including phosphorylation and acetylation [reviewed in (17)].

However, which PTMs of PGC-1α are specific for the development of heart failure remains unknown. Sirt1 deacetylases the PGC-1α protein (35), but it is not known

whether this PTM is a part of PGC-1α dysregulation in the failing heart. (C) PGC-1α’s transcriptional control of metabolic genes (i.e., Acadm, Sdha, Idh3a) largely

depends on interaction with DNA-binding transcriptional factors (TF) [i.e., ERRs, PPARs, reviewed in (36)]. In addition, our recent study showed that PGC-1α recruits

RNA Polymerase II (RNA PolII) to the promoter regions of PGC-1α target genes (25). Moreover, PGC-1α is dissociated from the promoters of its target genes and RNA

PolII in the failing mouse heart (25). We propose that this alteration of PGC-1α behavior in the failing heart is secondary to a PTM of the PGC-1α protein, and intend to

test this hypothesis in our future studies.

Gain and loss of function studies in mice have confirmed
the pivotal role of PGC-1α in cardiac energetics (Tables 1, 2).
Several gain-of-functionmodels showed increasedmitochondrial
biogenesis, however, the sarcomeric structure of the heart was
disrupted due to uncontrolled mitochondrial proliferation (4,
6). More importantly, those transgenic mice developed dilated
cardiomyopathy. In contrast, gain-of-function models with a

modest PGC-1α overexpression do not induce heart failure (23,
24) (∼3 and∼2 fold at the mRNA level, respectively), suggesting
that the development of heart failure in the transgenic mice
was due to excessive PGC-1α expression. More importantly,
maintaining PGC-1α expression during pressure overload did
not show any protective effects on contractile function in this
setting (23, 24).
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TABLE 1 | Cardiac and energetic phenotypes of PGC-1α overexpression mouse

models.

Systemic/Tissue-

specific

Constitutive/

Inducible

Cardiac phenotype References

Cardiac-specific Constitutive Uncontrolled

mitochondrial

proliferation, loss of

sarcomeric structure,

dilated CM

(4)

Cardiac-specific Inducible ↑Mitochondrial number

and size and

upregulation of genes

involved in mitochondrial

biogenesis during

neonatal stages

(6)

↑Mitochondrial

proliferation,

derangements of

mitochondrial

ultrastructure, reversible

CM, and ↑venticular

mass and chamber

dilation in adult mice

Systemic Constitutive ↑FAO and cardiac

output at baseline and

restored expression

levels of FAO genes and

OXPHOS genes at

baseline, no protective

effect on TAC-induced

cardiac dysfunction,

↑VEGF, and ERRα

during pressure

overload

(24)

Cardiac and

skeletal

muscle-specific

Constitutive No change in cardiac

function and energetics

with slight decrease in

mitochondrial number at

baseline, no protective

effect on TAC-induced

cardiac dysfunction

(23)

↑: increase, ↓: decrease.

In loss-of-function models, two independent lines of global
PGC-1α knockout mice were generated. Spiegelman and
colleagues showed normal cardiac phenotype and mitochondrial
contents under basal conditions (8). However, gene expression
analyses revealed upregulation of atrial natriuretic peptide
(ANP), brain natriuretic peptide (BNP), and β-MHC, indicative
of the presence of cardiac dysfunction (7). The PGC-1α−/−

mice generated by the Kelly group exhibited cardiac systolic
dysfunction under basal conditions, and cardiac inotropic and
chronotropic responses to exercise were both blunted (21).
Interestingly, no cardiac dysfunction was observed in those
mice when characterized by the other investigators (53). Despite
the phenotypic variation in these two lines of global PGC-
1α knockout mice, hemodynamic challenge in the form of
transverse aortic banding consistently led to pronounced cardiac
failure in PGC-1α null mice (8, 53). To further investigate the
role of cardiac PGC-1α, three independent groups, including
us, have generated cardiac-specific PGC-1α knockout line

with identical PGC-1α flox and αMHC-Cre lines (25, 71,
72). The Tavi group and we observed the similar degree of
cardiac dysfunction in cardiac-specific PGC-1α knockout mice
under basal conditions (25, 72). In contrast, Patten et al.
reported normal cardiac function in cardiac-specific PGC-1α
knockout mice, but the hearts of female mice exhibited dilated
cardiomyopathy after their second delivery (71). Of note, the
peripartum cardiomyopathy has not been reported in systemic
PGC-1α knockout mice. Taken together, cardiac-specific, rather
than systemic PGC-1α knockout mice, prone to develop heart
failure. The mechanisms by which the cardiac phenotypes are
more pronounced in cardiac-specific PGC-1α knockout mice
than systemic knockout mice are currently unknown. Since loss
of PGC-1α leads to metabolic derangements in various tissues
(Table 2), the complex compensatory mechanisms might take
place andmask the effect of PGC-1α deletion on cardiac function.

Overall, the sum of available knowledge strongly suggests
that dysregulation of PGC-1α expression is an important factor
in cardiac dysfunction and energetic defects in the heart. We
will now review recent advances in our understanding of the
epigenetic regulation of the PGC-1α gene and PGC-1α function.

TRANSCRIPTIONAL REGULATION OF
PGC-1α GENE IN THE HEART

Several transcriptional regulators associated with cardiac
pathophysiology are involved in transcriptional control of
PGC-1α, which include cAMP response element-binding protein
(CREB), nuclear factor of activated T-cells (NFAT), myocyte
enhancer factor 2 (MEF2), Yin Yang 1 (YY1), PPARs, and Sirt1.
Several lines of evidence suggest that some transcription factors
that positively regulates PGC-1α transcription are activated
or upregulated in the failing heart, such as CREB, NFAT,
MEF2, and YY1 (73–75) (Figure 2). The isoforms of PPARs
differentially regulate PGC-1α in the healthy and diseased
hearts. The mouse proximal PGC-1α promoter contains a
typical PPAR response element (PPRE), which is conserved
in rat and human (76). PPARδ, but not PPARα, stimulates
PGC-1α transcription, although both PPARδ and PPARα bind
to the PPRE. PPARγ also stimulates PGC-1α transcription (77).
Interestingly, PPARγ-induced PGC-1α transcription is inhibited
by PPARα possibly through competition of the binding to PPRE
(77). Cardiac-specific PPARα overexpression inhibits PGC-1α
transcription (78). Thus, PPARδ and PPARγ positively regulate
PGC-1α transcription, whereas PPARα negative regulates the
transcription. In the failing heart, PPARα, a negatively regulator
for PGC-1α transcription, is inactivated (79). On the other
hand, PPARδ and PPARγ, which positively regulate PGC-1α
transcription, may also be inactivated, since PPAR target genes
involved in fatty acid metabolism are mostly downregulated
in the failing heart. Taken together, simultaneous stimulation
of the pathways that downregulates and upregulates PGC-1α
transcription may be a mechanism responsible for the diverging
outcome of PGC-1α expression in the failing heart (Figure 2).

Sirt1 deacetylates lysine residues in both histones and non-
histone proteins and regulates the function and transcription
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TABLE 2 | Phenotypes of the heart and other organs in PGC-1α knockout mouse models.

Systemic/Tissue-specific Constitutive/Inducible Cardiac phenotype Effects on other organs References

Systemic Constitutive Constitutively active gluconeogenesis with

reduced mitochondrial function in the liver, lean,

and resistant to diet-induced obesity due to

hyperactivity, lesions in the striatal region of the

brain that controls movement

(5)

Systemic Constitutive ↓Fractional shortening, ↓cardiac

performance response to exercise and

dobutamine

↓Mitochondrial number and respirator capacity

in slow-twitch skeletal muscle with reduced

exercise capacity, loss of thermogenic

response, ↓oxidative capacity in hepatocytes

with hepatic steatosis after short-term

starvation, vacuolar lesions in the central

nervous system

(21)

Systemic Constitutive Normal mitochondrial volume and cardiac

function in adult mice (3 months),

downregulation of OXPHOS genes,

reduced mitochondrial enzymatic activities

with energy deficiency (↓ATP, ↓PCr),

cardiac dysfunction in old mice (7–8

months)

(7)

Systemic Constitutive Normal cardiac function at baseline,

accelerated cardiac dysfunction, and

chamber dilation under pressure overload

(8)

Systemic Constitutive ↑Sensitivity to oxidative stress and

neurodegeneration in the brain

(9)

Cardiac-specific Constitutive Normal cardiac function at baseline,

peripartum cardiomyopathy

(71)

Cardiac-specific Constitutive Dilated CM, ↓glucose, and fatty acid

oxidation, blunted anaerobic metabolism

at baseline

(72)

Cardiac-specific Constitutive Cardiac hypertrophy and failure,

↓OXPHOS genes, accelerated cardiac

dysfunction, accelerated cardiac

dysfunction during TAC

(25)

↑: increase, ↓: decrease.

of PGC-1α (80). In general, deacetylation of the PGC-1α
protein leads to the transactivation of PGC-1α and is known
to coactivate PPARα to enhance the gene expression of
mitochondrial fatty acid oxidation genes (81). However, Sirt1
can either activate or inhibit PGC-1α through deacetylation
in a context dependent manner (35, 82). What determines
the PGC-1α function via Sirt1-mediated deacetylation remains
unclear. In the heart of systemic Sirt1 knockout mice, PGC-1α is
downregulated, indicating that Sirt1 positively regulates PGC-1α
(83). However, PGC-1α is also downregulated in cardiac-specific
Sirt1 overexpression mouse lines, suggesting that gain of Sirt1
function rather inhibits PGC-1α (84, 85). Whether Sirt1 activates
or inhibits PGC-1α in the context of heart failure remains
unknown. In the nucleus, Sirt1 acts as an epigenetic modifier
and deacetylases histone H3K9/H3K14, leading to chromatin
silencing, which occurs at the promoters of myogenin and
myosin heavy chain (MHC) in development (86). In our previous
study, we demonstrated that Sirt1 deacetylates histone H3K9 in
the PGC-1α promoter in the failing heart (28) (Figure 1), which
presumably leads to inactivation of the gene. Thus, upregulation
of Sirt1 in the failing heart (28) might contribute to the reduced
abundancy of PGC-1α.

The transducer of regulated CREB (cAMP response element-
binding protein) binding protein (TORC)1, a coactivator of
CREB, is another transcription factor that induces PGC-1α,
which was identified through screening of 10,000 putative human
full-length cDNA in Hela cells for the induction of PGC-1α
promoter (87). The other two members of the TORC family,
TORC2 and TORC3, also strongly activate PGC-1α transcription.
TORC1, 2, and 3 increase the expression of PGC-1α and
PGC-1α target genes (Cyt c; CoxII; IDH3α) in mouse primary
myotubes (88). In the heart, CREB is activated in response
to both physiological and pathological hypertrophic stimuli,
which is correlated with upregulation of PGC-1α and increased
mitochondrial respiratory rate (89). However, whether TORCs
induce PGC-1α and its target genes in the heart needs to
be elucidated.

An autoregulatory loop controls PGC-1α expression. The
positive feedback loop exists between PGC-1α and MEF2 family
of transcription factors: MEF2s bind to the PGC-1α promoter
and activate it, predominantly through coactivation by PGC-
1α itself (90, 91). This feedback loop allows a stable induction
of PGC-1α. It is worth to note that in cardiac-specific PGC-1α
knockout mice, the mRNA regions of PGC-1α corresponding to
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FIGURE 2 | Transcriptional regulation of PGC-1α in the heart. Positive

regulators for PGC-1α transcription include CREB, NFAT, MEF2, YY1, PPARδ,

and PPARγ, whereas those negatively regulate PGC-1α include PPARα. These

factors are activated (black arrows) or inhibited (blue lines) in the progression of

heart failure. PGC-1α promotes its transcription through co-activation of MEF2

and YY1. Sirt1 either activates and inhibits PGC-1α, thereby positively and

negatively regulates PGC-1α transcription.

targeted (floxed) exons are significantly downregulated while the
other intact regions are rather upregulated (25). This observation
suggests that although the autoregulatory transcription loop can
enhance PGC-1α induction in response to physiological stimuli,
PGC-1α itself might not be essential for PGC-1α transcription.

EPIGENETIC REGULATION OF PGC-1α IN
THE HEART

Epigenetics refers to reversible modifications of the phenotype
without a change in the DNA sequence. In other words,
epigenetic regulatory mechanisms can switch genes on or off and
determine which proteins are transcribed without changing the
inherited genetic program. Epigenetic modifications encompass
histone modifications, DNA methylation, and RNA-associated
silencing (i.e., microRNAs) (92). The histone landscape is an
important part of transcriptional activation (93). The best
characterized histone post-translational modifications (PTMs)
are acetylation and methylation (94) (also summarized in
Figure 3). Histone acetylation is usually associated with gene
activation since this process “relaxes” the chromatin allowing for
the recruitment of the transcription factors and RNA polymerase
(101). This process is mediated by histone acetyltransferases
(HATs) and histone deacetylases (HDACs), which add or remove
the acetyl groups from histones, respectively. On the other hand,
histone methylation is more complex and can occur in various
forms: mono- (me), di- (me2), or tri-methylation (me3), with
each methylation leading to either gene activation or repression.
Histone methylation is catalyzed by histone methyltransferases
(HMTs) and histone demethylases (HDMs) (102). Although a
large body of work has implicated epigenetic modifications in
the development of cardiac disease (102–105), there is a limited
number of studies that have examined epigenetic modifications
of the PGC-1α promoter. Below, we summarize and discuss
recent studies reporting histone methylation or acetylation, and
DNA methylation in the PGC-1α gene. We will also briefly

discuss the potential significance of PGC-1α variants, currently
well-established in the skeletal muscle but largely unknown in
the myocardium.

Histone Methylation and Acetylation
Across PGC-1α Promoters
Histone methylation can be associated with either transcriptional
repression or activation. For example, trimethylation of histone
H3 at lysine 4 (H3K4me3) is an active mark for transcription,
while methylation of histone H3 at lysine 9 (H3K9me3) is
frequently associated with gene silencing or repression. An
excellent overview of histone modifications can be found in
Bannister and Kouzarides (93). Our recent study identified the
striated muscle-specific histone methyltransferase Smyd1 (SET
and MYND domain-containing protein 1) as a novel regulator
of PGC-1α in the heart (26) (Figure 1A, top). Smyd1 is known
to tri-methylate histone H3K4 (H3K4me3), which generally
leads to gene activation (93). Bioinformatic analysis of the heart
from the cardiac-specific Smyd1 knockout mice revealed that
OXPHOS and the TCA cycle were the most perturbed biological
pathways, concomitant with downregulation of the keymetabolic
regulators PGC-1α, PPARα and RXRα. Furthermore, knockdown
of Smyd1 with siRNAs in neonatal rat ventricular cardiomyocytes
led to a significant reduction in PGC-1α expression, without
significant changes in gene expression of PPARα and RXRα

(26). Overall, these data suggested that PGC-1α is a downstream
target of Smyd1. Chromatin immunoprecipitation (ChIP) and
luciferase reporter assay confirmed that Smyd1 transcriptionally
regulates PGC-1α through modulating the H3K4me3 marks on
its promoter region (26). In the hypertrophied mouse heart
chromatin-bound Smyd1 is increased, while overexpression of
Smyd1 in cardiomyocytes prevents cellular hypertrophy under
phenylephrine-induced hypertrophic stress (106). Thus, it is
plausible that Smyd1 plays a role in maintaining PGC-1α
expression as part of adaptive responses to pathological stress
through modulating the H3K4me3 marks on its promoter.
To support this notion, the ablation of Smyd1 gene in the
adult mouse heart led to fulminant heart failure (26). Of
note, Smyd1 also acts as a repressor of genes controlling cell
growth (106), suggesting the intriguing possibility that Smyd1
is multifunctional in epigenetic regulation of genes involved
in metabolic and structural remodeling of the myocardium in
response to chronic hemodynamic stress.

The unique histone methylation marks in the PGC-1α locus
have also been reported in a rat model of high-salt induced-
cardiac hypertrophy and failure. In this model, a downregulation
of PGC-1α and the reduced mitochondrial respiration capacity
in the failing heart were associated with an elevated level
of H3K9me3, a marker of gene repression, on the PGC-1α
promoter (27) (Figure 1A, bottom). Inhibition of histone H3K9
methyltransferases by chaetocin partially normalized PGC-1α
expression and H3K9me3 levels in the PGC-1α gene (27),
confirming a mechanistic link between H3K9me3 marks and
PGC-1α expression. However, it remains unknownwhich specific
enzymes are responsible for the elevation of H3K9me3 levels in
the PGC-1α loci in the failing heart.
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FIGURE 3 | Regulation in gene expression via histone acetylation and methylation. The protruding amino tails of histone proteins can undergo post-translational

modifications that affect the expression of genes in close proximity. (A) Histone acetylation and deacetylation. Histone lysines are acetylated by histone

acetyltransferases (HATs), which use acetyl-CoA as a cosubstrate. Histone deacetylases (HDACs) are grouped in four classes: Classes I, II, and IV are

Zn2+-dependent and release acetate as a coproduct while sirtuins (class II HDACs) consume NAD+ and produce nicotinamide and O-acetyl-ADP-ribose.

β-hydroxybutyrate (βOHB) is a ketone body and can inhibit class I and IIa HDACs, being structurally related to be well-known HDAC inhibitor butyrate (95). (B) Histone

methylation and demethylation. Histones are methylated by histone methyltransferases (HMTs), which require S-adenosylmethionine (SAM) as a consubstrate, yielding

S-adenosylhomocysteine (SAH), which is subsequently hydrolyzed to homocysteine and adenosine by SAH-hydrolase (96) Two classes of histone demethylases

(HDMs) can remove a methyl group: Lysine-specific demethylase 1 (LSD1) requires the reduction of flavin adenine dinucleotide (FAD) (97), while the Jumonji C (JMJC)

domain-containing lysine demethylases catalyze a different demethylation reaction that requires α-ketoglutarate (αKG), O2, and Fe(II) (98). Fumarate and succinate, the

intermediates in the TCA cycle, are the competitive inhibitors (99, 100). (C) Summary of modification sites of histone tails via acetylation and methylation. Other

histone post-translational modifications include phosphorylation, ubiquitination, SUMOylation, ADP-ribosylation citrullination, and biotinylation.

As for transcriptional regulation of PGC-1α through histone
(de)acetylation, we have previously reported that in the TAC
mouse model of heart failure, the reduced mRNA level of
PGC-1α was associated with a significant decrease in H3
lysine 9 acetylation (H3K9Ac) (Figure 1A) (28). Moreover,
the reduced H3K9Ac level on the PGC-1α promoter was
associated with an increase of the promoter occupancy of the
histone deacetylase (HDAC) Sirtuin 1 (Sirt1) (28). This raises
a possibility that Sirt1 contributes to gene repression of PGC-
1α under pressure overload through histone deacetylation of
the promoter. However, direct evidence indicating the role
of Sirt1, or any other HDACs or HATs, in the histone
acetylation marks on the PGC-1α gene in the heart is
lacking. In rat skeletal muscle, the increased level of histone
acetylation at H3 lysine 27 (H3K27Ac) of the PGC-1α gene
was reported in correlation with transcriptional activation after
acute exercise (20min at a speed of 24 m/min on a rodent
treadmill) (107).

In summary, cumulative data suggest that posttranslational
modifications of histone proteins across PGC-1α promoters
occur under physiological stimuli and hemodynamic stress.
However, the endeavor to understand regulation of the PGC-
1α gene through histone modifications has just begun. A
comprehensive profiling of histone methylation and acetylation
marks on the PGC-1α promoter in the healthy and diseased heart
would greatly advance our understanding of the mechanisms of
transcriptional control on the PGC-1α gene.

DNA Methylation of the PGC-1α Gene
DNA methylation also controls transcriptional activity of genes.
The addition of a methyl group on position 5 of cytosine of
the cluster of CpG island (a promoter of the regulatory region
of genes) is typically associated with a closed chromatin state
and leads to gene silencing, which can be passed to the next
generation (108).
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Little is known about DNA methylation of the PGC-1α
gene in the heart. Bisphenol A-induced cardiomyopathy caused
hypermethylation on the PGC-1α gene, in association with
downregulation of PGC-1α (32). More information can be
found in studies concerning other organs and tissues. In the
skeletal muscle from patients of type 2 diabetes mellitus (T2DM),
hypermethylation of the PGC-1α gene was observed at cytosine
residues (non-CpG nucleotides), which was associated with
a reduction in mRNA levels of PGC-1α and mitochondrial
DNA (29). The correlation between DNA hypermethylation
of the PGC-1α promoter and reduced insulin secretion was
also demonstrated in pancreatic islet cells from patients with
T2DM (30). Moreover, it has been reported that diet can
also alter the DNA methylation profile in PGC-1α in skeletal
muscle. High-fat diet in mice leads to the increase in DNA
methylation in PGC-1α at −260 nucleotide site in skeletal
muscle, concurrent with the reduced expression of total PGC-
1α, which was prevented by supplement of bioflavonoid
quercetin and quercetin-rich red onion extract (31). Another
group showed that quercetin attenuates high-cholesterol-induced
cardiac diastolic dysfunction and cholesterol accumulation in
rats, in association with the preserved expression level of PGC-
1α and the reduced oxidative stress (109). Exercise-induced
activation of PGC-1α in the skeletal muscle was associated with
DNA hydroxymethylation (110).

Taken together, these studies suggest that DNA methylation
of the PGC-1α gene may be a general mechanism regulating
PGC-1α expression in response to pathophysiological and dietary
stimuli. If this is the case, DNAmethylationmight also play a role
in modulation of PGC-1α gene expression in the failing heart, but
this needs to be determined in future experiments.

Epigenetics and Mitochondria
Mitochondria are the essential source of epigenetic modifiers.
There is a growing awareness that central components of
intermediary metabolism in mitochondria are cofactors
or cosubstrates of chromatin-modifying enzymes (111)
(Figure 3). The concentrations of those metabolic intermediates
constitute a potential regulatory interface between the
metabolic and chromatin states. In histone acetylation, S-
adenosylmethionine (SAM) is the methyl group donor for both
histone methyltransferases (HMTs) and DNAmethyltransferases
(DNMTs), which is generated from methionine and ATP in
mitochondria (Figure 3B). Two classes of histone demethylases
(HDMs) can remove a methyl group: lysine-specific demethylase
1 (LSD1) requires the reduction of flavin adenine dinucleotide
(FAD) (97), and the Jumonji C (JMJC) domain-containing lysine
demethylases catalyze a different demethylation reaction that
requires α-ketoglutarate (αKG) (98). Fumarate and succinate, the
intermediates in the TCA cycle, are the competitive inhibitors
of HDMs (99, 100). In histone methylation, acetyl-CoA is used
as an acetyl group donor by histone acetyltransferases (HAT),
which is also formed in mitochondria from glycolysis or from
fatty acid oxidation. β-hydroxybutyrate (β-OHB), a ketone body,
can inhibit class I and IIa HDACs, being structurally related to
the well-known HDAC inhibitor butyrate (Figure 3A). Both
caloric restriction of mice and direct administration of βOHB

resulted in enhanced global histone acetylation (95), consistent
with decreased HDAC activity. Thus, the activity of central
chromatin-modifying enzymes is closely linked to changes in the
levels of the metabolites/intermediates in mitochondria.

Recent developments suggest that mitochondrial protein
lysine acetylation (LysAc) modulates the sensitivity of the heart
to stress and is involved in mitochondrial dysfunction and the
development of heart failure [reviewed in (112)]. Myocardial
acetylproteomics revealed that extensive mitochondrial protein
lysine hyperacetylation occurs in the early stages of heart failure
in the mouse TAC heart and in end-stage failing human heart,
in association with reduced catalytic function in succinate
dehydrogenase A and complex II-derived respiration (113),
suggesting the role of LysAc in mitochondrial dysfunction as
the primary metabolic remodeling of heart failure. Protein
LysAc occurs when an acetyl group is added to a lysine
residue by non-enzymatic chemical modification with acetyl-
CoA, or by enzymatic acetylation with acetyltransferases, while
removal of the acetyl group from lysine requires NAD+ and
is mediated by deacetylases, such as sirtuins. Sirtuin 3 (Sirt3)
is mainly localized to the mitochondria (114), and loss of
Sirt3 in mice leads to the increased mitochondrial LysAc (115).
NAD+/NADH ratio is the other determinant of energetic states
and mitochondrial LysAc, and the elevated NADH/NAD+ ratio
has been reported in the human failing heart, in association with
the increased LysAc levels (116). A recent study demonstrated
that increasing myocardial NAD+ level via the supplementation
of its precursor prevents mitochondrial hyperacetylation and
cardiac hypertrophy during pressure overload, concurrent with
improved cardiac function (116).

Myocardial contents of the TCA-cycle intermediates (α-KG;
fumarate; malate) are decreased in the failing heart, where
the mitochondrial capacity of fatty acid oxidation is reduced
(117). Interestingly, the changes in metabolome occur earlier
than downregulation of OXPHOS genes, suggesting that the
regulatory modifications between the metabolic and chromatin
states may occur at the early stage of heart failure. Can PGC-
1α be involved in this mechanism? Recent study of metabolomic
profiling of cardiac-specific PGC-1α knockout mice revealed
that cardiac metabolite contents are significantly altered, which
includes the decreased level of acetyl-CoA (72), an essential
source of epigenetic modifiers (Figure 3). Whether PGC-1α
plays a role in the maintenance of the supply for cofactors or
cosubstrates of epigenetic modifications needs to be investigated.

Post-transcriptional Inhibition of PGC-1α

Expression
Non-coding RNAs (ncRNAs), which are encoded within the
genomes, are generally not translated into proteins. However,
ncRNAs play an important role in the regulation of gene
expression at the post-transcriptional level. ncRNAs that appear
to be involved in epigenetic processes are generally classified into
two subgroups based on their length; the long ncRNAs (>200 nt)
and the small ncRNAs (<30 nt), the latter of which have three
major classes: microRNAs (miRNAs), short interfering RNAs
(siRNAs), and piwi-interacting RNAs (piRNAs) [reviewed in
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(118, 119)]. Among those, miRNAs are the important regulators
of gene expression. miRNAs generally bind to a specific target
mRNA with a complementary sequence to induce cleavage,
degradation, or block translation. It has been estimated that
miRNAs are able to modulate up to 60% of protein-coding genes
in the human genome at the translational level (120). Thus, they
are known to have the potential to fine-tune the expression of
numerous genes.

Several miRNAs have been reported to inhibit PGC-1α
expression in various organs, which include miR-696 and miR-
761 in skeletal muscle (121, 122), miR-199a/214 in brown and
beige adipocyte (123), miR29b in cochlear hair cells (124),
miR19b/221/222 in vessels (125), and miR485-3p and mi485-5p
in breast cancer cells (126). However, very little is known about
miRNAs that post-transcriptionally inhibit PGC-1α expression
in the heart. miR-23a directly downregulates PGC-1α expression
in cardiomyocytes via binding to the 3′UTR of PGC-1α mRNA.
Overexpression of miR-23a led to downregulation of PGC-
1α and mitochondrial damage in culture cardiomyocytes (34).
miR-22 is a muscle-enriched miRNA and post-transcriptionally
inhibits PGC-1α as well as PPAR-α and Sirt1 expression
(33). Cardiomyocyte-specific overexpression of miR-22 in mice
promotes hypertrophic growth and cardiomyopathy, concurrent
with downregulation of PGC-1α, PPAR-α, and Sirt1 (33).
Whereas, geneticmanipulations onmiR-23a andmiR-22 strongly
suggest their involvement in regulation of cardiac metabolism
and growth, it remains to be determined whether these or
other miRNAs contribute to downregulation of PGC-1α in the
failing heart.

Expression of PGC-1α Variants in the Heart
Transcription of a single PGC-1α gene is controlled by multiple
promoters coupled to alternative splicing, which give rise to
coactivator variants with distinct transcript and protein structure
(127). To date, more than ten isoforms of PGC-1α are known
to exist, arising from a combination of various promoters
and alternative splicing. Currently, two promoters have been
identified in the PGC-1α loci of the mouse skeletal muscle:
canonical (proximal) and alternative (Figure 4). The canonical
promoter originates at exon 1a (E1a), where the canonical PGC-
1α-a mRNA isoform and the canonical PGC-1α protein are
generated (the 797 amino acid-long murine full-length protein,
of which 94.7% of the sequence identifies with the 798 amino
acid-long human PGC-1α) (Figure 4). The alternative promoter
is located ∼14 kb upstream of the proximal promoter, which is
highly conserved between species and has been shown to be
active in human skeletal muscle (129, 130). Through alternative
splicing, the alternative promoter directs the transcription of
two different first exons (exon 1b and exon 1c), which generates
the PGC-1α-b and PGC-1α-c mRNA isoforms, respectively (130,
131) (Figure 4). The PGC-1α-b and PGC-1α-c proteins differ
only in the N-termini while the rest of the protein is identical
to the canonical PGC-1α-a. The proteins PGC-1α-a, PGC-1α-
b, and PGC-1α-c are all capable in activating PPARs (α, δ, and
γ) (132). The combination of these two promoters and splicing
provide more variants, such as NT-PGC-1α-1, NT-PGC-1α-c,

PGC-1α2, PGC-1α3, and PGC-1α4 (NT-PGC-1αb) [reviewed
in (127)].

The PGC-1α gene generates a variety of mRNAs under
different biological conditions. Emerging evidence suggests that
specific isoforms are induced by physiological stimuli and
hypertrophic stress in the skeletal muscle. The mRNA transcripts
driven from the alternative promoter of PGC-1α were increased
by exercise in humans (130, 133, 134) and mice (110), while
the mRNA levels of PGC-1α-a driven from the canonical
promoter remained unchanged in the post-exercised mouse
skeletal muscle (132). Interestingly, the protein from the spliced
PGC-1α-b from the alternative promoter [NT-PGC-1α-b, “PGC-
1α-4” in (130)] does not regulate most known PGC-1α targets,
such as the mitochondrial OXPHOS, rather it regulates insulin
growth factor 1 (IGF1) and myostatin pathways and induces
myotube hypertrophy (130). The other study also demonstrated
that the administration of β-adrenergic agonist clenbuterol to
mice increase the PGC-1α mRNA levels (PGC-1α-b and PGC-
1α-c) from the alternative promoter without exercise (132).
These studies suggest that the expression derived from the
alternative promoter of PGC-1α is regulated via activation of an
β-adrenergic receptor.

Amid this wealth of data obtained from the skeletal muscle,
little is known about PGC-1α variants in the heart. One study
reported that the mRNA level of a PGC-1α variant NT-PGC-
1α is decreased in a mouse model of myocardial infarction
(32). It remains unknown whether hemodynamic stress alters
the expression of PGC-1α variants in the heart. It is worth to
point out that the variability of reported mRNA levels of PGC-
1α in the failing heart (8, 23, 24, 55–57), might in part be due to
detecting transcripts of different PGC-1α isoforms. Indeed, it is
not necessary that all those reported PGC-1α transcripts in the
failing heart are the canonical PGC-1α (PGC-1α-a) derived from
the canonical promoter. For instance, detecting total PGC-1α by
targeting exon 2 might mask important changes in the levels
of specific isoforms because most variants include the sequence
from exon 2. On the other hand, the primers that target the
exon 1a will fail to measure the induction or repression of the
alternative promoter.

What determines the activation and repression of the
alternative promoters? In other words, what epigenetic
modifications regulate the alternative PGC-1α promoter? It
is possible that the canonical and alternative promoters are
individually regulated by different histone methylation marks
and modifiers. Our recent study assessed the H3K4me3 levels
at the PGC-1α promoter in Smyd1-knockout mice (26), which
is ∼1 kb upstream from the canonical promoter (Figure 4,
indicated as a yellow star). The reduced enrichment of the
H3K4me3 by loss of Smyd1 (26) suggests that Smyd1 is likely
to regulate the canonical promoters. This is consistent with
global downregulation of OXPHOS genes (26), which are mainly
regulated by PGC-1α-a derived from the canonical promoter
(128). It remains unknown whether Smyd1 can also methylate
the histone proteins within the alternative promoter. A recent
study of the skeletal muscle showed that exercise leads to the
elevation of histone H3K4me3 marks in the alternative promoter
region of PGC-1α, which was correlated with the increases of the
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FIGURE 4 | PGC-1α promoters and isoforms. The PGC-1α loci contains two promoters in the skeletal muscle: the canonical and alternative promoters [Reviewed in

(128)]. Transcription initiated from the upstream alternative promoter of the PGC-1α gene results in the inclusion of new exons E1b or E1c, which generate PGC-1α-b

and PGC-1α-c, respectively. The PGC-1α-b and PGC-1α-c proteins contain two distinct N-termini, which are different from the canonical PGC-1α-a derived from the

exon (E1a) from the canonical promoter. Exercise increases the PGC-1α mRNA levels originated from the alternative promoter, which is correlated with the elevated

H3K4me3 marks in the alternative promoter region of PGC-1α (110) (indicated with an orange star). However, it remains elusive what histone methylation modifiers are

responsible for the increase of the H3K4me3 levels on the alternative protomer of PGC-1α by exercise. In our previous study, the enrichment of the H3K4me3 marks

were assessed in the Smyd1-knockout mouse heart, which was reduced at the canonical promoter (∼−1 kb from E1a, indicated with a yellow star), suggesting that

Smyd1 regulates the expression of the PGC-1α-a mRNA isoform in the heart. It remains unknown whether the PGC-1α variants from the alternative promoter are

involved in metabolic remodeling in the hypertrophied and failing heart.

PGC-1α mRNA levels originated from the alternative promoter
(110) (Figure 4, indicated as a red star). However, it remains
unknown what histone modifiers are responsible for methylation
of the alternative promoter in response to exercise.

Summarizing, the expression and function of PGC-1α variants
in heart muscle have been somewhat overlooked. However,
by analogy with data obtained in the skeletal muscle, it is
likely that the profile of PGC-1α isoforms is changing in
response to pathological stress, and thus may play a role in
adaptive or maladaptive metabolic alterations occurring during
the development of heart failure.

REGULATION OF PGC-1α ACTIVITY BY
POST-TRANSLATIONAL MODIFICATIONS
IN THE HEART

PTMs, which are equally important as the transcriptional
mechanisms, also extensively regulate PGC-1α. To date,
phosphorylation, acetylation, ubiquitination, methylation,
acetylation, and GlcNAcylation of the PGC-1α protein
have been reported. The PTM sites and modulators of the
PGC-1α protein are well-described in (17). In particular,
phosphorylation of PGC-1α via p38 mitogen-activated
protein kinase (MAPK) is clinically relevant. Several diseases,
such as heart failure and cancer, cause the elevation of
the circulating levels of TNFα and other inflammatory
cytokines (i.e., ILα and IL-β) (135), which leads to the
nuclear translocalization of p38 MAP kinase, resulting in
phosphorylation of PGC-1α at T272, S265, and T298 (136).
The phosphorylated PGC-1α via p38 MAP kinase is more
stable to degradation and more transcriptionally active, in
association with increased mitochondrial respiration capacity
and upregulation of OXPHOS genes (136). The expression
and activation of p38 MAPK transiently increase in the
mouse heart during pressure overload (2 and 4 weeks of
TAC) (137). The inhibition of p38 MAPK is beneficial in a
mouse model of right ventricular hypertrophy and failure
that was induced by pulmonary artery banding (138). It

remains elusive whether phosphorylation of PGC-1α via p38
MAPK plays a role in metabolic remodeling in response to
hemodynamic stress. Furthermore, which types of PGC-1α’s
PTMs occur under pathological stress in the heart remains
largely unknown. Our previous study demonstrated that the
NAD-dependent deacetylase Sirt1 is upregulated in pressure
overload-induced heart failure in mice, concurrent with the
increased interaction with PPARα (PGC-1α’s binding partner),
resulting in downregulation of genes involved in OXPHOS
and FAO (28). Given that the PGC-1α protein is deacetylated
by Sirt1 (35), it is plausible that the upregulation of Sirt1
in the failing heart leads to the deacetylation of PGC-1α
(Figure 1C, bottom). The functional consequence of PGC-1α
deacetylation in transcriptional control of its target genes and
mitochondrial biogenesis is not well-established. In skeletal
muscle, most studies have shown that the deacetylation of
PGC-1α by Sirt1 increases the co-activation of its target
transcription factors (17, 35, 139). However, in one study
deacetylation of PGC-1α by Sirt1 did not change exercise-
induced mitochondrial biogenesis (140). In the heart, it remains
unknown how deacetylation of PGC-1α by Sirt1 modulates
its function.

MULTIPLE MECHANISMS BY WHICH
PGC-1α REGULATES TRANSCRIPTION OF
ITS TARGET GENES

In the past two decades, our understanding of the role of
PGC-1α as a co-activator has significantly advanced. PGC-1α
regulates the activity of a large number of transcription factors,
including PPARγ (1), PPARα (141), ERRα (142), Forkhead Box
O1 (FoxO1) (143), and NRF1 (88). PGC-1α also interacts with
p300/CBP, which contains a histone acetyltransferase domain
(144), the transcription activator TRAP/Mediator (145), and
RNA processing factors (146). Thus, PGC-1α can regulate its
target genes via a multitude of mechanisms, which include
chromatin modification, preinitiation complex assembly, and
RNA processing. Our recent study revealed an additional role

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 January 2020 | Volume 7 | Article 252

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Oka et al. Multi-Regulatory Mechanisms of Cardiac PGC-1α

of PGC-1α in transcriptional control of its target genes in the
heart. We demonstrated that PGC-1α recruits RNA polymerase
II (PolII) to the promoters of metabolic genes, which was
dissipated in the failing heart (25) (Figure 1C). Chromatin
immunoprecipitation-sequencing (ChIP-seq) revealed that the
occupancy of PolII to the PGC-1α target gene promoters was
consistently reduced in the mouse heart after 4 days of TAC
surgery, the time point at which neither mRNA nor protein
expression of PGC-1α was changed. ChIP-PCR assays of the
mouse failing heart also showed a decreased interaction of
PGC-1α with the promoters of its target genes (Mcad; Sdha;
Idh3a; Atp5k1) in the TAC mouse heart, concurrent with the
decrease of PolII’s promoter occupancy in those genes (25). In
cardiomyocytes, overexpression of PGC-1α induced recruitment
of PolII to the promoters of PGC-1α target genes, such as
Mcad and Idh3a. Furthermore, in-vitro DNA binding assay
using biotin-labeled DNA comprising 380 bp of the Idh3a
promoter showed that PGC-1α enhances recruitment of PolII
to the promoter, whereas siRNA-mediated PGC-1α knockdown
inhibits it. Therefore, downregulation of OXPHOS genes in the
failing heart is, in part, attributed to the dissociation of PGC-
1α from the target gene promoters, rather than the decreased
expression levels of PGC-1α. In other words, it appears that
pathological stress interferes with the ability of PGC-1α to
bind to its target promoters. To support this notion, PGC-
1α purified from cardiomyocytes treated with α1-adrenergic
agonist phenylephrine had reduced ability to bind to the

Idh3a promoter, mimicking a pathological consequence of heart
failure (25).

It remains unknown what regulates the ability of PGC-
1α to recruit PolII to the promoters of metabolic genes. It
is plausible the PTMs of the PGC-1α protein occur under
pressure overload, which leads to the dissociation of PGC-1α
from the target gene promoters (Figure 1C, bottom). Given
that Sirt1 was upregulated in the TAC mouse heart, concurrent
with downregulation of PGC-1α target genes (28), it is likely
that the deacetylation of PGC-1α by Sirt1 is attributed to the
dissociation of PGC-1α from its target gene promoters and PolII.
To support this notion, less PGC-1α was dissociated from target
gene promoters under pressure overload in Sirt1 knockout mice
(81). It is our future study to determine the specific PTMs that are
responsible for the recruitment of PolII and that interfere with
the ability of PGC-1α to bind to its target gene promoters under
pathological conditions.

In cardiac-specific PGC-1α knockout mice, where the protein
expression was decreased by ∼50%, the promoter occupancy
of PolII in PGC-1α target genes was decreased, similar to
the TAC heart (25). However, maintaining PGC-1α expression
during pressure overload by PGC-1α overexpression did not
prevent mitochondrial impairment in the TAC mouse heart
(24). It is possible that maintaining PGC-1α expression during
pressure overload is not sufficient to preserve its function in the
recruitment of PolII to the promoters of OXPHOS and FAO
genes. The appropriate PTMs of PGC-1α might be required to

FIGURE 5 | Phenotypes of systemic PGC-1α knockout mice. Loss of PGC-1α leads to impaired energy homeostasis in a variety of organs (5, 21). Despite the

reduced density and function of mitochondria in skeletal muscle (21) and abnormality in brown fat tissue with abundant accumulation of large lipid droplets (5),

PGC-1α knockout mice are paradoxically lean and resistant to diet-induced obesity due to hyperactivity, resulted from the lesions in the striatum in the brain (5).

Normal cardiac function (7, 8) and moderate systolic dysfunction (21) have been reported in two different lines of PGC-1α null mice. Nevertheless, both PGC-1α
−/−

models show cardiac dysfunction in response to hemodynamic stress and metabolic challenge (8, 21). CNS, central nervous system.
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normalize its function under pathological stress. Therefore, it is
critical to determine the specific PTMs and PTM modifiers that
are responsible for functional modifications of PGC-1α in the
failing heart (Figure 1C).

ROLE OF PGC-1α IN VARIOUS ORGANS

Heart failure is accompanied by a systemic illness that contributes
to its progressive nature. Recent studies suggest that heart
failure may itself promote systemic metabolic changes such as
insulin resistance, in part through neurohumoral activity (147).
Moreover, patients with chronic heart failure are characterized
by systemic inflammation, as evidenced by elevated circulating
levels of several inflammatory cytokines (148). Thus, interorgan
cross-talk might contribute to the detrimental self-perpetuating
cycle of heart failure (heart failure→altered metabolism in the
other organs→heart failure).

PGC-1α is abundantly expressed in tissues with high energy
demand (149). Loss-of-function study in mice suggests that
PGC-1α dysfunction leads to multisystem energy metabolic
derangements (Table 2, Figure 5). Systemic PGC-1α knockout
mice exhibit neurological disorders, in association with the
severe lesions in the striatum of the brain area that controls
movement (5, 9), which is affected in certain neurogenerative
diseases, such as Huntington’s disease (150). Similarly, PGC-1α
null mice exhibit the accelerated neurodegeneration in response
to oxidative stress (9), indicative of the role of PGC-1α in
the defense system to ROS. It remains elusive whether the
neurological abnormalities in PGC-1α deficiency contribute to
the systemic metabolic abnormalities through the alterations in
circulating hormones and/or signals that originated from the
central nervous system.

Patients with congestive heart failure decrease exercise
capacity. Although cardiac dysfunction is the primary
pathological insult, emerging evidence suggests that myocardial
remodeling in peripheral skeletal muscle occurs independent
of cardiac impairment (151). It has been reported that PGC-1α
is downregulated in skeletal muscle in heart failure patients
(66, 67). Total skeletal muscle PGC-1α deficiency led to a
dramatic reduction in exercise performance, concurrent with
rapid depletion of muscle glycogen store and mitochondrial
biogenic defects (152). In skeletal muscle-specific PGC-1α-KO
mice, reduced mitochondrial function and abnormal glucose
homeostasis in skeletal muscle led to pancreatic dysfunction
in association with the elevated levels of the circulating
IL-6 (153). IL-6 treatment of isolated mouse pancreas islet
suppresses glucose-stimulated insulin secretion (153), suggesting
the cytokine-mediated crosstalk between skeletal muscle
and pancreas.

PGC-1α also plays an essential role in hepatic metabolism.
In the liver, loss of PGC-1α led to impaired gluconeogenesis,
manifested by lacking hormone-stimulated gluconeogenesis
and constitutively activated gluconeogenic gene expression
that is completely insensitive to normal feeding controls
(5). Interestingly, this phenotype was absent in the different
line of PGC-1α knockout mice (21). Consistent with altered

mitochondrial number andmorphology (5), hepatocytes in PGC-
1α knockout mice reduced mitochondrial capacity (21), while
the genes involved in lipogenic genes were upregulated with the
decreased triglyceride contents (21).

Abnormal morphology was also found in brown fat in PGC-
1α knockout mice (5). Induction of thermogenic genes was
severely reduced in brown adipose tissue of mice lacking PGC-
1α, confirming the essential role of PGC-1α in thermogenesis,
while loss of PGC-1α did not affect brown fat differentiation
(154). Unexpectedly, PGC-1α knockout mice are lean and
resistant to diet-induced insulin resistance (5). This is, in part,
due to hyperactivity related to the lesions in striatum in the brain,
as described above (5).

It remains unknown whether hemodynamic stress
directly leads to the alterations in PGC-1α expression
in those organs besides cardiac muscle. The cytokine-
mediated metabolic changes might be one of the possible
mechanisms leading to multisystem metabolic derangements in
heart failure.

CONCLUSIONS

In this review, we summarized multiple mechanisms by which
the PGC-1α regulatory cascade can be impaired in the failing
heart. Whereas, early studies predominantly considered the
regulation of PGC-1α transcription, it is now clear that PGC-1α
dysregulation may occur at multiple levels, including epigenetic
regulation of the PGC-1α gene, post-transcriptional inhibition
via miRNAs, the expression of PGC-1α variants, and post-
translational modifications of the PGC-1α protein. However,
at each of these levels, the current knowledge remains limited
and many questions remain to be answered. At the epigenetic
level, whereas dynamic changes in histone marks across PGC-
1α promoters have been documented, the factors inducing these
changes are largely unknown. We provided evidence that Smyd1
is one of the factors. Our recent work also suggests that Sirt1 may
be involved, but its role needs to be directly demonstrated. What
other histone modifiers are involved in epigenetic regulation of
the PGC-1α gene remains to be established.

A recurrent theme of this review is that the cardiac field is
lagging behind other fields of science in the understanding of
PGC-1α regulation. Whereas, in several organs and tissues DNA
methylation of the PGC-1α gene has been implicated in response
to pathophysiological and dietary stimuli, the prominence of this
mechanism in the heart remains to be established. Likewise, the
cardiac field is lagging behind in the understanding the role of
PGC-1α splice variants in the regulation of the organ (heart)
function and metabolism. Studies performed in skeletal muscle
suggest that PGC-1α splice variants may regulate disjoint sets of
target genes. We cannot exclude a similar arrangement in the
heart muscle. One particular motivation to address this issue is
the fact that reported variability in PGC-1α expression in the
failing heart might result from an indiscriminate detection of
different sets of PGC-1α splice variants in different studies—and
a finer analysis might reveal that a certain PGC-1α variant is
consistently downregulated.
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Whether and which types of PGC-1α’s PTMs occur under
pathological stress in the heart remains largely unknown. We
believe, however, that better understanding of PTMs in this
context may be a key to explaining downregulation of PGC-1α
target genes in those cases when PGC-1α expression is preserved
in the failing heart (19, 23, 25, 61, 62). We have proposed
a hypothesis that under pathological stress PGC-1α undergoes
PTMs which interferes with its ability to recruit polymerase II
to the promoters of OXPHOS and FAO genes. We hope to prove
this hypothesis in our future studies.
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Diabetic cardiomyopathy is a result of diabetes-induced changes in the structure

and function of the heart. Hyperglycemia affects multiple pathways in the diabetic

heart, but excessive reactive oxygen species (ROS) generation and oxidative stress

represent common denominators associated with adverse tissue remodeling. Indeed,

key processes underlying cardiac remodeling in diabetes are redox sensitive, including

inflammation, organelle dysfunction, alteration in ion homeostasis, cardiomyocyte

hypertrophy, apoptosis, fibrosis, and contractile dysfunction. Extensive experimental

evidence supports the involvement of mitochondrial ROS formation in the alterations

characterizing the diabetic heart. In this review we will outline the central role of

mitochondrial ROS and alterations in the redox status contributing to the development of

diabetic cardiomyopathy. We will discuss the role of different sources of ROS involved in

this process, with a specific emphasis on mitochondrial ROS producing enzymes within

cardiomyocytes. Finally, the therapeutic potential of pharmacological inhibitors of ROS

sources within the mitochondria will be discussed.

Keywords: diabetic cardiomyopathy, reactive oxygen species, mitochondria, oxidative stress, diabetic

complication

INTRODUCTION

Chronic hyperglycemia, the major characteristic of type 1 diabetes (T1D), is a life-threatening
risk factor that results in organ and tissue damage in the long term. One of the acute metabolic
complications associated with mortality includes diabetic ketoacidosis occurring mainly in
T1D (1). Instead, type 2 diabetes (T2D) and obesity are characterized by insulin resistance,
hyperlipidemia and hyperinsulinemia that might occur before the onset of hyperglycemia. The
heart is an insulin-dependent tissue, since insulin promotes glucose utilization and suppresses
fatty acid utilization thereby conferring a certain level of metabolic flexibility, i.e., the ability
to adapt substrate oxidation rates to substrate availability, in support of cardiac function
(2). This metabolic flexibility is largely impaired in diabetic hearts, resulting in minimal
glucose utilization, shift to free fatty acid utilization and energetic inefficiency (3). Vascular
complications occurring in diabetes account for increased morbidity and mortality associated
with this disease. In the long term, diabetes may cause microvascular disease, resulting
from the damage of small blood vessels, and/or macrovascular disease, resulting from the
damage of the arteries (4). The latter includes coronary artery disease, peripheral arterial
disease, and stroke, while microvascular complications result in retinopathy, nephropathy and
neuropathy. Diabetic cardiomyopathy (DCM) is a pathology associated with alterations in the
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myocardial structure and function without the coexistence of
other cardiac risk factors such as coronary artery disease,
hypertension, valvular disease (5). DCM is one of the deadliest
complications associated with diabetes (1). The incidence of
heart failure is increased in diabetic patients compared with
age-matched individuals, independently of obesity, hypertension,
dyslipidemia, and coronary artery disease (6). In addition,
diabetes has also been associated with increased rates of
cancer, physical and cognitive disability, tuberculosis and
depression (7–12).

Reactive oxygen species (ROS) and oxidative stress have
been linked both to the onset of diabetes and development of
complications associated with this disease (13). Here, we will
review the pathophysiological features of DCM, the evidence
related to the contribution of ROS to DCM and the role
of different sources of ROS involved in this process. The
present review will focus on mitochondrial sources of ROS in
cardiac myocytes (rather than other cell types in the heart)
and will briefly discuss the advantages and disadvantages of
targeting mitochondrial enzymes to prevent oxidant damage and
postpone or prevent the development of cardiac complications
in diabetes.

DIABETIC CARDIOMYOPATHY

DCM is a result of diabetes-induced changes in the structure and
function of the heart and is diagnosed only if there is cardiac
dysfunction not associated with coronary artery disease (14).
The clinical outcomes associated with ischemic heart disease,
hypertension or heart failure are worse for patients with diabetes
and indeed, cardiovascular complications are the leading cause
of mortality and morbidity in diabetic patients (5, 15, 16). Thus,
a better understanding of DCM-associated pathophysiology and
underlying mechanisms is necessary in order to develop tools for
early diagnosis and treatment strategies.

As an early complication of diabetes, DCM is characterized
by a long latent phase during which the disease progresses, but
is completely asymptomatic. This subclinical period includes an
increase in the left ventricle (LV) mass, fibrosis, abnormalities
in cell signaling and diastolic dysfunction (3, 5). Studies using
magnetic resonance imaging demonstrated that hyperglycemia
and insulin resistance are associated with an increase in LV
mass (3, 17). The increase in cardiac stiffness and fibrosis
detected in diabetic patients frequently evolves to heart failure
with preserved ejection fraction (HFpEF) (18, 19). In some
patients, diastolic dysfunction may progress to pump failure
and impairment in systolic function resulting in heart failure
with reduced ejection fraction (20, 21). Nevertheless, not all
cardiac anomalies observed in T2D are recapitulated in T1D
(22, 23). While T2D is characterized by both morphological
and functional cardiac abnormalities in patients (i.e., LV
hypertrophy, diastolic, and systolic dysfunction), T1D patients
show intact systolic function and impairment in diastolic
function (23). Moreover, not all studies conducted in T1D
patients evidenced an impairment in diastolic function. This
may be explained by the fact that T1D patients are normally
treated with insulin that normalizes insulin-dependent metabolic

processes and therefore likely renders T1D-induced alterations
in the heart less evident (23). Regardless of these differences,
clinical trials showed that the prevalence of heart failure in
diabetic patients ranges from 19 to 26% (24–27), while the
mortality rate is 15–20% in diabetic patients with systolic
dysfunction (21).

Although the exact mechanism of diabetes-associated LV
dysfunction is not known, it appears that hyperglycemia,
hyperinsulinemia, and/or lipotoxicity initiate a series of adaptive
and maladaptive processes contributing to the development
of heart failure. Factors underlying pathological changes
in the diabetic heart are multiple. Metabolic alterations
such as hyperglycemia, insulin resistance and increased free
fatty acid levels, result in the oxidative stress, organelle
dysfunction, inflammation, advanced glycation end products
(AGEs) formation, activation of protein kinase C (PKC),
abnormalities in ion homeostasis, alterations in structural
proteins, apoptosis and fibrosis, changes that eventually result in
diabetes-induced cardiac dysfunction (Figure 1) (28, 29). Despite
a myriad of factors has been shown to collectively contribute to
the development and progression of DCM, causal relationships
and the exact sequence of events among these cellular and
molecular mechanisms are still not entirely clear. Moreover, these
factors frequently interact with each other, making DCM a very
complex disease to treat.

ROS: A COMMON DENOMINATOR IN

DIABETES-INDUCED COMPLICATIONS

ROS formation has gained significant experimental and
clinical evaluation amongst the various mechanisms proposed
(13, 20, 30). Notably, the aforementioned pathogenic factors
and changes either induce or result from oxidative stress. ROS
can be dangerous for biological systems for their capacity to
interact with numerous macromolecules, such as proteins,
lipids and DNA. ROS-induced modification of DNA can be
mutagenic, especially if DNA damage cannot be repaired (31).
ROS may lead to DNA strand breakage and formation of
8-hydroxydeoxyguanosine, a prominent feature in diabetic
hearts (32, 33). While protein oxidation can be reversible
and serve for signaling purposes, oxidative stress may lead to
protein carbonylation that cannot be reversed and results in
toxic aggregate accumulation if carbonylated molecules are
not promptly degraded (34, 35). Membrane lipids are rich in
polyunsaturated fatty acids that can easily be oxidized by ROS, a
process that is also involved in the generation of atherosclerotic
plaques (36). Lipid oxidation results in excess formation of
carbonyl compounds, such as prostanoids and aldehydes,
toxic metabolites that can promote numerous pathologies
(37). In addition to direct macromolecule targeting, high ROS
formation can also decrease the antioxidant capacity of the
diabetic myocardium, contributing thereby to oxidative stress
and resulting myocardial damage. This concept is further
supported by studies demonstrating that overexpression
of antioxidant defense proteins, such as metallothionein
or catalase, could prevent oxidative stress and maladaptive
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FIGURE 1 | A schematic diagram depicting different factors involved in the onset and development of diabetic cardiomyopathy. AGEs, advanced glycation end

products; ECM, extracellular matrix; ER, endoplasmic reticulum; FAO, fatty acid oxidation; RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen

species.

remodeling of the diabetic hearts (22, 38–41). Mitochondrial
ROS production underlies several hyperglycemia-induced
pathogenic mechanisms, such as GAPDH inhibition, activation
of polyol pathway, formation of AGEs, activation of PKC, glucose
auto-oxidation, and activation of the 12/15-lipoxygenases
pathway (13, 30, 42, 43). Activation of these pathways can, in
turn, exacerbate oxidative stress. For instance, the polyol pathway
utilizes NAPDH which is required for GSH regeneration, while
binding of AGEs to their receptor results in ROS formation (44).
Inhibition of AGE formation or AGE receptor gene knock-down
attenuates the development of DCM (45). Moreover, activation
of p53 signaling in T1D and T2D mouse models by an initial
oxidative trigger leads to the upregulation of cytochrome c
oxidase assembly protein, mitochondrial respiration, fatty acid
oxidation, and mitochondrial ROS generation (46). However,
hyperglycemia is not the only factor responsible for cardiac
complications in diabetes, as mentioned before. Lipotoxicity and
increased oxidation of free fatty acids also lead to oxidative stress,
mitochondrial and ER stress, and activation of pro-inflammatory
signals (47–51). Damage to mitochondria results in enhanced
ROS generation and activation of the NLRP3 inflammasome

(52) which, in turn, may promote or exacerbate cardiac
fibrosis. Moreover, high glucose and inflammation provide a
synergistic effect and further enhance ROS formation and all
the downstream events leading to cell dysfunction (53, 54).
Inflammation, angiogenesis, cardiomyocyte hypertrophy and
apoptosis, fibrosis and contractile dysfunction, are processes
susceptible to ROS-dependent modulation in the diabetic heart
(55). Diastolic abnormalities observed in HFpEF are largely
due to increased collagen and cardiomyocyte stiffness (56).
ROS are well-known to target sarcomere proteins thereby
inducing oxidative changes that may impact on sarcomere
and cardiomyocyte stiffness (57, 58). While oxidation of
the proteins forming the thick and thin filaments is mostly
associated with impaired contractility, post-translational
modifications of the elastic filament protein titin are tightly
related to changes in LV stiffness (59). The passive stiffness of
cardiac muscle was shown to be redox-dependent through titin
oxidation and disulfide bridge formation that lead to increased
cardiac stiffness (60). In addition to direct mechanisms,
ROS can modulate sarcomere function also by affecting key
protein kinases or phosphatases to induce post-translational
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modifications (57). In that regard, reduced titin phosphorylation
is an important determinant of diastolic stiffness in HFpEF
(59, 61, 62). This is particularly relevant in diabetic and obese
patients in which oxidative stress impairs NO/cGMP/PKG
signaling and leads to titin hypophosphorylation (59, 63) and
increased cardiomyocyte stiffness along with collagen and
AGEs deposition (59). Thus, enhanced ROS formation and
alteration in the redox status are deeply intertwined with
numerous alterations observed in diabetic hearts, suggesting
that targeting ROS formation/elimination may represent an
attractive therapeutic strategy for the treatment of DCM. Several
cellular and subcellular sources that may account for enhanced
ROS production were described in diabetic cardiovascular
system and other tissues. Enzymes involved in deleterious
ROS generation associated with diabetic complications
include nicotinamide adenine dinucleotide phosphate
oxidases (NOXs) (64–66), xanthine oxidase/oxidoreductase
(XO) (67, 68), arachidonic acid cascade and microsomal
enzymes, uncoupled nitric oxide synthase (NOS) (69), and
mitochondria (13, 70–72).

NOX is a family of membrane-bound enzyme complexes
composed of plasma membrane spanning and cytosolic
components (73, 74). The active NOX complex allows for the
transfer of electrons to molecular oxygen to generate superoxide
(75). NOXs are considered to be one of the major cellular
ROS sources and prominent players in several pathological
conditions (74, 76, 77). NOX2, located in the cell membrane,
and NOX4, localized in perinuclear ER and/or mitochondria,
are expressed in the heart (78, 79). Increased cardiac NOX2
expression/activity has been described both in T1D and T2D,
and contributes to hyperglycemia-induced ROS production (64–
66, 80). NOX4 expression and NOX4-derived ROS are increased
∼14 days after the induction of T1D in rats and contribute to
the development of cardiomyopathy (81). Importantly, reducing
either NOX2 or NOX4 activity in streptozotocin-induced
diabetic hearts blunts myocardial oxidative stress, remodeling
and improves cardiac function (81–83). ROS formation through
NOX following high glucose administration has been associated
with pathways involving sodium/glucose co-transporter 1
(SGLT1), PKCβ, and calcium/calmodulin dependent kinase II
(CaMKII) (84). SGLT1-mediated glucose transport is responsible
for NOX2 activation, since its inhibition efficiently abolished
ROS production induced by exposure to high glucose (85).
Importantly, PKCβ activation by RhoA/Rho kinase pathway
activates Rac1 that, in turn, determines p47phox translocation to
the membrane, event required for NOX2 activation (86). Indeed,
PKCβ inhibition by ruboxistaurin prevented NOX2 activation
and subsequent ROS formation in cardiomyocytes treated with
high glucose (87). An additional mechanism responsible for
NOX activation in hyperglycemic conditions involves CaMKII
activation. High glucose causes an increase in intracellular
levels of Ca2+ that leads to CaMKII hyperphosphorylation
and activation (32). Activated CaMKII is likely responsible
for activation of PKCβ and downstream cascade of events
(86). In that regard, inhibition of CaMKII prevented both
the upregulation of p47phox and p67phox as well as oxidative
stress in streptozotocin-induced model of T1D (32), suggesting

that CaMKII may indeed play a major role in NOX-induced
ROS formation.

XO is a cytoplasmic enzyme that catalyzes the oxidation of
hypoxanthine to xanthine and further converts xanthine to uric
acid (88). It uses oxygen as electron acceptor and produces
superoxide and hydrogen peroxide (H2O2). In addition to their
role in cardiac damage induced by ischemia/reperfusion injury
or pacing-induced heart failure in dogs (89), hypoxanthine and
XO activity are also increased in diabetic subjects (90). The role
of XO in hyperglycemia-induced oxidative stress is documented
by increased ROS formation in the muscle and development of
fibrosis of hyperglycemic streptozotocin-induced diabetic mice
(68, 91, 92). Some investigators reported evidence for beneficial
vascular effects of XO inhibitors in hypercholesterolemic and
diabetic patients (72, 93). Indeed, in T1D patients XO inhibition
reduced the degree of oxidative stress, whereas in T2D patients
it led to significant improvements in peripheral endothelium-
dependent vasorelaxation (67, 90, 93).

NOS uncoupling results in superoxide formation, oxidative
stress and decreased NO bioavailability that may have important
vascular effects in diabetic subjects (94). Indeed, a decrease in the
dimer to monomer ratio, indicative of the enzyme uncoupling,
has been reported within the myocardium of diabetic animals
(95). Consequently, inhibition of NOS activity and uncoupling
by L-NAME, insulin-like growth factor, sepiapterin, ascorbic
acid or N-acetyl-cysteine improved LV function in the diabetic
heart (66, 96–100). In addition to uncoupling, NOS expression
may also be increased in the diabetic hearts (33, 64, 101) and
this is associated with an increase in lipid peroxidation and
peroxynitrite generation (72). Peroxynitrite in turn may also lead
to NOS uncoupling (102). Taken together, these studies suggest
that the increased production of superoxide and peroxynitrite
through NOS uncoupling is a major contributor to suppressed
contractile performance in diabetes (72, 99, 100).

For detailed discussion related to XO, NOX or uncoupled
NOS involvement in DCM, readers are referred to other excellent
reviews (67, 72, 74, 84).

MITOCHONDRIAL ROS FORMATION IN

DCM

The role of mitochondrial ROS formation and dysfunction
in the pathogenesis of diabetes and its complications is
well-established (13, 20, 28). Indeed, cardiac mitochondria
from diabetic patients are dysfunctional, displaying increased
mitochondrial H2O2 emission, impaired mitochondrial
respiratory capacity and increased levels of oxidized or
hydroxynonenal-modified proteins (103–105). Several
mechanisms are likely responsible for mitochondrial dysfunction
in diabetic hearts, including fatty acid-induced mitochondrial
uncoupling, changes in mitochondrial morphology, increased
ROS formation, mitochondrial proteome remodeling, impaired
mitochondrial calcium handling and altered mitochondrial
turnover (20, 28, 106–108). All these events might lead to
compromised cardiac ATP generation and ultimately to cardiac
dysfunction. Impairment in the activity of ATP synthase also
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affects mitochondrial function in the diabetic heart. A recent
study very elegantly showed that hyperglycemia-induced
calpain-1 upregulation in the mitochondria cleaves the ATP
synthase α subunit, resulting in the reduction in the ATP
synthase activity and increased mitochondrial ROS formation
(109) that eventually contribute to the development of DCM.
In addition, excessive mitochondrial ROS formation results
in the increased propensity to permeability transition pore
(PTP) opening that eventually leads to cell death (110). A tight
relationship also exists between alterations in mitochondrial
morphology and ROS formation that may reciprocally modulate
each other. Cardiomyocytes from animal models of T1D, T2D,
and from diabetic patients show increased levels of ROS and
altered mitochondrial morphology, including mitochondrial
fragmentation, cristae disruption and swelling (107, 108). Of
interest, mitochondrial fragmentation induced by chronic
hyperglycemia can be reversed with antioxidants, suggesting
that ROS are causally related to this pro-fission phenotype
and that controlling mitochondrial morphology and dynamics
might represent a therapeutic strategy for the treatment of
DCM (107, 111). Altered mitochondrial function may inhibit
insulin signaling by interfering with oxidation of fatty acyl-
CoA, accumulation of intracellular lipid and diacylglycerol,
PKC activation and through generation of ROS (112). Both
processes lead to insulin receptor substrate 1 phosphorylation
and interference with insulin signal transduction. Reduction in
mitochondrial ROS formation obtained either through cardiac-
specific Mn-SOD overexpression or following stimulation of
AMPK activity, prevented mitochondrial damage and many
fatty acid- or hyperglycemia-induced events, both in vitro and
in vivo (113–116).

Given the tight relationship between mitochondrial
ROS formation, structure/function, and diabetes-induced
complications, it is crucial to dissect and identify sites responsible
for ROS formation in mitochondria exposed to diabetic milieu.
Electron transport chain (ETC), p66Shc, and monoamine
oxidase (MAO) are the major sources of ROS formation in
mitochondria (Figure 2).

Electron Transport Chain
ETC is by far the major site of ATP production in mitochondria
inside any given cell, and especially in cardiomyocytes (more
than 90%). At the inner mitochondrial membrane (IMM),
electrons from NADH and FADH2 are transferred across the
respiratory chain to oxygen, which is reduced to water at the
level of complex IV (117). This process powers the movement
of protons into the intermembrane space and generates a
proton gradient that drives the synthesis of ATP by the ATP
synthase. A small amount of electrons (about 0.1%) can leak
from the ETC and cause superoxide formation due to the
partial reduction of oxygen (118). Superoxide generation may
occur under conditions that decrease the flow of electrons,
particularly at the level of the first three complexes where flavins
or quinones are able to act as single electron donors (117, 119,
120). Notably, ROS formation can also result from the reverse
electron flow through complex I (121). A recent study supported
this pathophysiological concept demonstrating that succinate

accumulates during cardiac ischemia in vivo (121, 122). Upon
reperfusion, accumulated succinate is oxidized by complex II
leading to dramatic ROS formation that is likely attributable to
the reverse electron flow through complex I (122).

Seminal discoveries implicating ETC superoxide production
as the central event in hyperglycemia-induced pathogenic
mechanisms were provided by Brownlee’s group back in 2000
using endothelial cells (123, 124). High intracellular glucose levels
and glucose-derived pyruvate promotemitochondrial respiration
by increasing the availability of reducing equivalents for the ETC
and resulting in mitochondrial membrane hyperpolarization and
superoxide production (123, 125). Furthermore, hyperglycemia-
induced ROS formation is prevented by several interventions,
such as via inhibition of ETC complex II activity, uncoupling
of oxidative phosphorylation, by overexpression of uncoupling
protein-1 and/or Mn-SOD (123). Normalizing levels of
mitochondrial ROS with each of these agents prevents glucose-
induced activation of PKC, hexosamine pathway, formation of
AGEs, sorbitol accumulation, and NFκB activation. A further
confirmation that ETC superoxide production is responsible
for these events comes from experiments performed in Rho
zero (ρ0) endothelial cells lacking mitochondrial ETC function
(30). When exposed to high glucose, ρ0 cells do not display an
increase in ROS production. Similar mechanism has also been
shown to be at play in cardiomyocytes exposed to high glucose.
Indeed, ROS formation is reduced in cardiomyocytes isolated
from diabetic animals in which complex I and II activity is
inhibited or which overexpress catalase, further denoting the
crucial role of ETC in ROS generation in diabetes (41, 86, 126).
Interestingly, the protective effect afforded by complex I or II
inhibition suggests that ETC superoxide production upon high
glucose exposure likely occurs through the reverse electron
transport. It remains to be elucidated whether succinate
accumulation occurs at some point during the development of
cardiovascular complications in diabetes. Cardiac lipotoxicity
is also mediated by mitochondrial ROS formation. Indeed,
exposure to palmitate enhances mitochondrial ROS generation
and leads to increased mitochondrial fission by modulating
DRP1 phosphorylation levels and proteolytic processing
of OPA1 (47).

An initial ROS trigger produced by ETC can promote
activation of processes that eventually amplify the signal
and lead to oxidative stress. Such processes involve the
occurrence of post-translational modifications, such as (but
not limited to) diabetes–induced defects caused by oxidation,
increased methylglyoxal adduct formation and increased
O-GlcNAcylation, that contribute to the impairment in
mitochondrial and systolic function (127–129). Hyperglycemia
alters the function of respiratory chain in mitochondria via
dysregulation of O-GlcNAcylation (130, 131). O-GlcNAc
transferase (OGT) enzyme is located in the IMM and interacts
with complex IV of the respiratory chain in normal conditions.
In streptozotocin-treated rats this enzyme is improperly
localized to the mitochondrial matrix and the impairment
in the OGT-complex IV interaction results in the loss of
complex IV activity and reduced mitochondrial membrane
potential (130). O-GlcNAcylation of proteins involved in
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FIGURE 2 | Mitochondrial sources of ROS in diabetic cardiomyopathy. Diabetic milieu, characterized by hyperglycemia, hyperlipidemia, and inflammation, results in

the up-regulation in the activity of mitochondrial ROS-producing enzymes. Superoxide can be produced by the respiratory chain through forward or reverse electron

transport. In addition, calpain-1 translocates to the mitochondrial matrix in the diabetic heart and cleaves the α subunit of the ATP synthase, leading therefore to the

reduction in its activity and mitochondrial dysfunction. On the other hand, in situations of stress, p66Shc is phosphorylated and translocates to the IMS where it

catalyzes the electron transfer from cytochrome c to oxygen (O2) leading to the formation of hydrogen peroxide (H2O2). Finally, up-regulation of MAO activity upon

exposure to high glucose and pro-inflammatory stimuli results in enhanced formation of H2O2 that can directly increase the susceptibility of mitochondria to undergo

permeability transition. Post-translational modifications, such as oxidation or O-GlcNAcylation of respiratory chain complexes, can impair mitochondrial bioenergetics

and function. All these events are implicated in the pathogenesis of diabetic cardiomyopathy by promoting mitochondrial and ER stress, leading to protein oxidation

and Ca2+ homeostasis impairment, as well as sarcomere and ECM stiffness. AGEs, advanced glycation end products; ECM, extracellular matrix; ER, endoplasmic

reticulum; FAO, fatty acid oxidation; IMM, inner mitochondrial membrane; IMS, intermembrane space; MAO, monoamine oxidase; MnSOD, manganese superoxide

dismutase; OMM, outer mitochondrial membrane; O-GlcNAc, β-linked N-acetylglucosamine; ox, oxidation.

mitochondrial dynamics, such as DRP-1 and OPA1, also
contributes to mitochondrial fragmentation that further
exacerbates organelle dysfunction (132, 133). On the other
hand, methylglyoxal-induced modifications affect Ca2+

homeostasis and indirectly affect mitochondrial function.
Indeed, in the diabetic heart methylglyoxal preferentially
forms adducts with proteins involved in the intracellular
calcium handling such as ryanodine receptor 2 and SERCA2a
(134, 135). Ryanodine receptor glycation is associated with
impaired Ca2+ cycling, increased mitochondrial Ca2+ levels
and mitochondrial dysfunction (136). Collectively, these
studies underline the importance of ETC-derived superoxide

in diabetic conditions and mitochondria as their source
and target.

p66Shc

p66Shc is another important source of ROS in mitochondria.
p66Shc is a cytosolic adaptor protein and, along with p46Shc and
p52Shc, is encoded by the ShcA gene (137, 138). p46Shc and p52Shc

isoforms are formed through alternative translation start sites
(137, 139). While p46Shc and p52Shc isoforms are ubiquitously
expressed, p66Shc promoter may bear epigenetic modifications
resulting in cell type- or specific condition-restricted expression
(140). Under stress conditions, PKCβ phosphorylates p66Shc at
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Ser-36, event required for its translocation tomitochondria (141).
Once in the intermembrane space, p66Shc catalyzes the electron
transfer from cytochrome c to oxygen resulting in the formation
of H2O2 (142). In addition to this mechanism, p66Shc can
promote oxidative stress by activating membrane-bound NOX
or through down-regulation of antioxidant enzymes synthesis
(143). Accordingly, cells and mice lacking p66Shc show reduction
in markers of oxidative stress (139, 144).

A number of studies characterized the pathophysiological
role of p66Shc in cardiovascular diseases, such as maladaptive
hypertrophy, heart failure and ischemia/reperfusion injury (137–
139, 145). Importantly, excessive ROS generation is a major
contributing factor to those cardiac pathologies (146). Since
PKC activation plays a major role in the intracellular signaling
leading to oxidative stress, cell dysfunction and tissue damage
in hyperglycemia, and is required for p66Shc translocation to
mitochondria in response to stress (70), it is tempting to
hypothesize that p66Shc may play a role in cardiovascular
complications induced by hyperglycemia acting as a downstream
target following high glucose-induced PKCβ activation. Indeed,
p66Shc−/− mice have an increased resistance to ROS (70),
less atherosclerosis and preserved aortic endothelium-dependent
vasorelaxation following high-fat diet and in a model of
streptozotocin-induced T1D (147, 148). Moreover, lack of p66Shc

prevented oxidative damage in cardiac progenitor cells and
cardiomyocytes in streptozotocin-induced DCM (149). Unlike
diabetic wild type animals characterized by cardiomyocyte loss,
diabetic p66Shc−/− hearts displayed preserved cardiac progenitor
cell replication and turnover, along with unaltered wall thickness,
chamber volume, LV end-diastolic pressure and diastolic wall
stress (149).

Monoamine Oxidases
Monoamine oxidases (MAOs) are flavoenzymes localized at
the level of the outer mitochondrial membrane. MAOs exist
in two isoforms, A and B, differing in structure, substrate
preference, inhibitor specificity and tissue distribution (150–
153). The physiological role of MAOs consists in the catalysis of
the oxidative deamination of its substrates (i.e., endogenous and
exogenous amines, neurotransmitters). MAOs generate H2O2,
ammonia and corresponding aldehydes as products of catalysis
(154, 155). Over the last decade, several studies have shown
that alterations in redox balance cause by enhanced MAO
activity play a prominent role in promoting the development
of cardiovascular disorders and causing oxidative damage to
cardiomyocytes (37, 146, 156–158). Indeed, MAO contributes
to ischemia/reperfusion injury, maladaptive hypertrophy, heart
failure and vascular dysfunction (37, 139, 159–162). Of note,
evidence for MAO involvement in cardiac disease has also been
demonstrated in patients. Up-regulation of MAO activity and
consequent ROS formation has been identified as a prominent
contributor to the impaired myocardial redox balance in patients
and a major risk factor and predictor for the postoperative atrial
fibrillation (163). In addition, MAO activity was shown to be
increased in left and right ventricles from patients with ischemic
heart disease (164). With regard to the possible involvement of
MAO in diabetes, one study showed an improvement in blood

glucose levels and systolic and diastolic pressures in a patient
with T1D administered with theMAO inhibitor tranylcypromine
(165). Unexpectedly, it has been demonstrated that pioglitazione,
used as an antidiabetic drug in T2D patients, is a specific and
reversible MAO-B inhibitor (166). These findings support a
possible MAO involvement in diabetes-induced complications.

A clear and undeniable evidence for the role of MAO
in the pathogenesis and progression of DCM came from
animal models of T1D showing that MAO inhibition prevents
cardiac dysfunction, death and fibrosis in diabetic mice and
rats (71, 167). Data from our laboratory indicates that MAO
activity is responsible for diastolic stiffness and dysfunction,
some of the earliest signs of DCM in diabetic mice (71).
Indeed, administration of MAO inhibitors is able to prevent
oxidative changes, diastolic dysfunction and myocardial fibrosis
in streptozotocin-treated hearts. In addition, MAO inhibition
prevented mast cell degranulation in diabetic hearts, event that
can contribute to fibrotic remodeling of the myocardial tissue.
This evidence suggests that MAO-generated ROS are at the
basis of diabetes-induced cardiovascular complications and, in
addition to cardiomyocytes, affect also other cell types present in
the heart. Oxidative stress induced by enhancedMAOactivity has
also been implicated in cardiomyocyte andmesenchymal stromal
cell senescence (168–170). It remains to be elucidated whether
ROS produced byMAOmay also promote cardiac progenitor cell
senescence during remodeling induced by diabetes, as is the case
with p66Shc.

Up to date, the mechanisms underlying MAO toxicity
have mostly been attributed to excessive H2O2 and aldehyde
formation that leads to impaired mitochondrial function
(146). Our recent work showed that incubation of primary
cardiomyocytes with high glucose and pro-inflammatory
cytokine IL-1β leads to a MAO-dependent increase in ROS
that, in addition to causing PTP opening and mitochondrial
dysfunction, also results in the endoplasmic reticulum (ER)
stress (71). This evidence indicates that, in addition to
mitochondrial ROS being a trigger for inflammasome activation,
inflammatory processes can also promote mitochondrial ROS
formation by up-regulating MAO activity. MAO inhibition
prevented mitochondrial dysfunction and ER stress, factors that
eventually contribute to the progression of DCM, suggesting that
cardiomyocyte targeting of pro-inflammatory stimuli occurs in
a MAO-dependent manner (71). Given that MAO is localized
at the outer mitochondrial membrane and faces the cytosol, it
is conceivable to imagine that H2O2 produced by MAO can
also affect the function of neighboring organelles. Notably, ER
and mitochondria are adjacent organelles, connected both at
structural and functional level (171). Although our data suggests
that MAO-induced mitochondrial dysfunction occurs upstream
of ER stress, it is tempting to hypothesize that MAOmay directly
modulate ER function also through physical interaction with ER-
resident proteins (mitochondria associated membrane proteins,
for instance). Finally, it cannot be excluded that other products
of MAO activity, such as aldehydes, may also contribute to
diabetes-induced alterations. MAO-dependent oxidative stress
may lead to the inhibition of aldehyde dehydrogenase 2 (ALDH2)
resulting in further accumulation of toxic and reactive aldehydes
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(37). In that regard, it has been demonstrated that stimulation
of ALDH2 activity protects from streptozotocin-induced cardiac
damage (172), suggesting that accumulation of aldehydes may
promote cardiac remodeling in diabetes independently or in
concert with high ROS levels (173).

FEED-FORWARD/AMPLIFICATION LOOP

FOR ROS FORMATION

An intense cross-talk between different cellular ROS sources
is likely to exist since many papers report that inhibition of
a single ROS source prevents the development of cardiac
pathology triggered by oxidative stress (146). For instance,
hyperglycemia does not induce ROS formation in the
ρ0 cells in which the respiratory chain is disrupted, as
well as upon NOX or MAO inhibition (30). In addition,
mitochondrial superoxide scavenging using mitochondria-
targeted antioxidants is able to reduce NOX2 expression and
activity in diabetic myocardium (174), while genetic inhibition
of NOX2 and consequent reduction in superoxide formation
at the mitochondrial level suggest that mitochondrial ROS
formation in hyperglycemic hearts might be NOX2-dependent
(82–84). Such evidence strongly supports the existence of
an “amplification mechanism,” whereby an initial stress (i.e.,
hyperglycemia and/or inflammation), induces the formation of
ROS that, in turn, activates other ROS producing enzymes to start
producing free radicals thus amplifying the original oxidative
trigger (146). The hypothesis of the feed-forward/amplification
mechanism is also supported by the characterization of the
so-called ROS-induced ROS release mechanism, whereby an
initial ROS trigger induces PTP opening that leads to further
ROS formation, instituting thereby a positive feedback loop
for the ROS-induced ROS release (175, 176). This is indeed
the case in adult cardiomyocytes that, when exposed to high
glucose and pro-inflammatory stimuli, display an increase in
MAO-dependent ROS formation that causes PTP opening and
mitochondrial and ER stress (71). Moreover, other processes
may participate in such amplification loop, such as for instance
impairment in autophagy. While low/moderate ROS levels are
required for autophagy initiation, excessive oxidative damage
can impair autophagy resulting in the aberrant clearance of
damaged proteins and/or organelles (177–180). For instance,
AGE accumulation in an experimental model of diabetes
inhibits autophagy, induces ER stress and promotes ROS
formation (181). Either autophagy stimulation with rapamycin
or inhibition of ER stress due to ER chaperone administration
alleviate AGEs-induced deleterious effects on cardiomyocytes,
suggesting that these processes are involved in diabetes-
induced cardiac remodeling. Impairment in the elimination
of damaged and dysfunctional mitochondria in diabetic hearts
results in the accumulation of ROS-producing fragmented
mitochondria (182, 183). Either inhibition of mitochondrial
fragmentation during exposure to high glucose or stimulation
of organelle removal through mitophagy in high-fat diet fed
animals prevents oxidative stress as well as mitochondrial and
cardiac dysfunction (182, 184, 185). However, it appears that

autophagy and mitophagy are independently controlled in
T2D, since autophagy flux was attenuated following 6 weeks
of high-fat diet while mitophagy continued to increase even
after 2 months (184). This suggests that mitophagy may occur
through a non-canonical, alternative autophagy pathway.
In this regard, it has been previously shown that Rab9 is
mobilized to the mitochondria in early stages of diabetes where
it induces activation of alternative autophagy for mitophagy
(186, 187). The mechanisms controlling the activation of
canonical vs. non-canonical autophagy remain unknown to
date. Mitochondrial ROS are implicated in the activation of
the canonical autophagy (178), but on the other hand excessive
mitochondrial ROS formation impairs lysosomal biogenesis,
function and the autophagy process in the cardiac myocytes
(156, 168). Whether alterations in the redox status may represent
the switch for autophagy to become maladaptive, and/or for the
activation of canonical vs. non-canonical autophagy remains to
be defined.

INTERVENTIONS AIMED AT REDUCING

ROS BURDEN IN DCM

Given the large body of evidence linking aberrant ROS formation
and oxidative stress to the development of cardiac diseases,
it is quite straightforward to hypothesize that reducing redox
burden would protect the heart against deleterious changes
induced by diabetes or other pathologies. Nevertheless, large
scale clinical trials using antioxidant therapies have not produced
the desired results (188, 189). Whether this is a consequence
of particular antioxidant molecules used in clinical trials, their
limited absorption and/or reduced cardiac availability, or it can
be explained by the fact that a certain level of ROS is beneficial
and required for signaling and physiological processes, including
the response to insulinmediated by p66Shc-dependent ROS (190),
remains to be elucidated. Another attractive explanation is that
interfering with the complex redox network might result in
compensatory changes (191). Currently, there are no efficient
therapies to treat HFpEF in patients with diabetes. In that regard,
antidiabetic SGLT2 inhibitors (such as empagliflozin) afforded
cardioprotective effects in patients with diabetes (192). SGLT2
inhibitors lead to the reduction in plasma volume and reduced
preload, events that have a favorable effect on cardiac function
and structure (193, 194). Importantly, human and rodent hearts
do not express SGLT2 (195–197), suggesting that the direct
cardioprotective effects of SGLT2 inhibitors are independent
of their action on SGLT2. Indeed, it has been demonstrated
that SGLT2 inhibitors can directly affect cardiomyocytes by
targeting Na+/H+ exchanger 1, reducing intracellular Na+ and
Ca2+ levels, improving mitochondrial function and reducing
inflammation and AMPK activity (197, 198). In addition, SGLT2
inhibitors are able to reduce oxidative stress through Nrf2/ARE
signaling activation and it is likely that these off-target effects
contribute to the cardioprotection observed in clinical trials
(198–200). Another strategy to modulate an oxidative stress-
related pathway is the use of the soluble guanylate cyclase
stimulator vericiguat that targets the cGMP pathway in an
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ROS/NO-independent manner (201). HFpEF is associated with
excessive ROS formation by the coronary microvasculature that
limits NO bioavailability, reduces cGMP levels and therefore
lowers PKG activity (as discussed in section 3). A recent clinical
trial demonstrated an improvement in quality of life in patients
with HFpEF receiving vericiguat for 12 weeks, suggesting that
it could be a promising therapeutic agent in HFpEF (201). To
foster the development of a specific and successful therapy, future
studies should aim either at identifying themolecular ROS targets
(191), the pathways of redox signaling or the specific sources of
ROS that are responsible for deleterious changes in the diseased
heart. While the first two options are just beginning to become
accessible and are still far from being conclusively elucidated,
inhibition of specific ROS sources might prove to be a useful
strategy to prevent alterations in the redox status, andmyocardial
structure and function.

In this regard, inhibitors for some of the ROS sources outlined
in this review are being developed and/or tested in the clinic.
Data obtained in experimental models of diabetes identified
NOX4 as a therapeutic target (81). Indeed, NOX4 inhibitors
are currently being tested for various cardiovascular indications
(76, 202). For instance, GKT-831 is a NOX1/4 dual inhibitor
and the only NOX inhibitor that has reached the clinical trial
stage; in fact, it is currently being tested in clinical trial phase II
for diabetic nephropathy. It remains to be established whether
NOX inhibitors would be effective in limiting cardiovascular
complications in diabetic patients.

In line with the concept of mitochondria as major ROS
producers, employment of mitochondria-targeted antioxidants
such as MitoTEMPO proved to be cardioprotective in
experimental models of DCM (203). On the other hand,
MitoQ was never tested in such setting and neither of the
compounds was ever tested in clinical trials. The paucity of
studies concerning the use of mitochondrial antioxidants in
DCM urges for studies adopting strategies that target specific
mitochondrial ROS sources or their downstream targets (204).
In that regard, it is not possible to inhibit the respiratory
chain in humans in the long term without jeopardizing a
wide array of vital functions. Although genetic inhibition
of p66Shc has proven protective in many cardiovascular

pathologies, pharmacological inhibitors of p66Shc are not
yet available. On the contrary, MAO inhibitors are clinically
available and employed for the treatment of depression and
neurodegenerative diseases (76, 164, 205–207). As mentioned
before, administration of a non-selective MAO inhibitor to a
patient with T1D led to several improvements, including those
at the cardiovascular level (165). Side-effects associated with the
“old” irreversible MAO-A inhibitors have been eliminated since
reversible MAO-A inhibitors or selective MAO-B inhibitors
have been developed (207). Taking into consideration recent
findings obtained in experimental models of DCM, it is
worth assessing whether molecules such as moclobemide or
safinamide could be repurposed for the treatment of patients
with DCM.

CONCLUSIONS

Current consensus is that exacerbated ROS generation
due to hyperglycemia and/or fatty acid oxidation causes
oxidative stress, that in turn promotes the development and
progression of diabetes and its complications. In addition to
the cytosolic sources of ROS, it is now well-documented that
mitochondrial sources represent the major ROS burden in
multiple tissues in both animal and human diabetic subjects.
Pharmacological targeting of specific ROS sources may prove
as a successful therapeutic strategy for the treatment of
DCM. Alternatively, identification of processes and targets
downstream of mitochondrial ROS may hold more promise in
correcting cellular structural and functional derangements in
diabetic individuals.
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Aging is associated with structural and functional changes in the heart and is a major

risk factor in developing cardiovascular disease. Many recent studies have focused

on increasing our understanding of the basis of aging at the cellular and molecular

levels in various tissues, including the heart. It is known that there is an age-related

decline in cellular quality control pathways such as autophagy and mitophagy, which

leads to accumulation of potentially harmful cellular components in cardiac myocytes.

There is evidence that diminished autophagy and mitophagy accelerate the aging

process, while enhancement preserves cardiac homeostasis and extends life span. Here,

we review the current knowledge of autophagy and mitophagy in aging and discuss

how age-associated alterations in these processes contribute to cardiac aging and

age-related cardiovascular diseases.

Keywords: aging, autophagy, mitophagy, mitochondria, heart, PINK1, Parkin, mitophagy receptors

INTRODUCTION

Aging is a major risk factor in developing cardiovascular disease and increases exponentially
with age. Cardiac aging is characterized by the presence of hypertrophy, fibrosis, accumulation
of misfolded proteins, and dysfunctional mitochondria. Current efforts are dedicated to
understanding the biological process of aging and to identify pathways that can be targeted to
extend health and life spans. Interestingly, it has been demonstrated that many of the pathways
that improve health and extend longevity in various organisms all converge on autophagy (1–8).
Autophagy is a catabolic pathway that is responsible for recycling cellular proteins and organelles
to maintain energy homeostasis. It participates in the elimination of pathogens and prevents
activation of inflammation. It is also a key pathway in cellular quality control by eliminating
dysfunctional or unwanted organelles and protein aggregates. However, there is strong evidence
that autophagy is decreased with age in tissues, including the heart (5, 9–15).

The heart requires a lot of energy which is mainly generated by mitochondria via oxidative
phosphorylation. However, aging is associated with altered cardiac mitochondrial metabolism and
mitochondrial respiratory defects (16). The impaired fatty acid and glucose metabolism, combined
with reduced mitochondrial respiration are also believed to underlie the increased susceptibility
to cardiac injury in the elderly population (16). Normally, these dysfunctional mitochondria are
eliminated by autophagosomes in a selective process termed mitophagy. Predictably, reduced
autophagy in aging contributes to accumulation of dysfunctional mitochondria and decreased
ability to adapt to stress.

Altered autophagy and mitophagy overtime are likely central contributors in the aging process.
Here, we review the current knowledge of autophagy and mitophagy in aging and discuss
how age-associated alterations in these processes contribute to cardiac aging and age-related
cardiovascular diseases.
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AUTOPHAGY

Autophagy involves the sequestration of ubiquitinated cargo into
vesicles called autophagosomes and delivery of the content to
lysosomes via fusion. The cargo is degraded inside lysosomes
and the components are recycled to the cytoplasm. Autophagy
is a highly regulated process and consists of several distinct
steps; initiation, nucleation and formation of phagophore,
sequestration of cargo, and fusion of autophagosome with a
lysosome (Figure 1A). The different steps in the process are
regulated by different autophagy-related proteins (Atg) (17).
The mechanistic target of rapamycin (mTOR) functions as
a gate keeper and prevents activation of autophagy. When
mTOR is inhibited, it leads to activation of the unc-51 like
autophagy activating kinase 1 (Ulk1/Atg1) which initiates the
nucleation of the autophagosome via Beclin1 (18). At baseline,
Beclin1 is sequestered by Bcl-2 and Rubicon to suppress
autophagy but its release allows it to initiate autophagosome
formation (19–21). The elongation and maturation of the
growing autophagosome membrane requires two conjugation
pathways. The E1-like and E2-like enzymes Atg7 and Atg10
conjugate Atg5 to Atg12. The Atg5-Atg12 complex then interacts
with Atg16. Atg16 is required for the proper localization of
the complex to the pre-autophagosomal membrane (22). The

FIGURE 1 | Overview of (A) autophagy and (B) mitophagy pathways. Stars and triangle mark proteins that have been reported to be altered with age.

Atg5-12-16 complex then functions as an E3-like enzyme in the
second conjugation pathway, where LC3 is covalently linked to
phosphatidylethanolamine (PE). The conjugation of LC3 to PE
to form LC3II is mediated by Atg7 (E1-like) and Atg3 (E2-like),
respectively (17). LC3II is also involved in cargo recognition
where it binds to adaptor proteins such as p62 (23). Several
proteins in this pathway are altered with age which ultimately
leads to diminished autophagy.

MITOPHAGY

PINK1/Parkin-Mediated Mitophagy
The PINK1/Parkin pathway contains three key elements: a
mitochondrial membrane depolarization sensor (PINK1),
a signal amplifier (Parkin) and a downstream signal
effector (ubiquitin chains) (Figure 1B) (24). Under normal
cellular conditions, PINK1 is partly imported into the inter
mitochondrial membrane space where it is cleaved by resident
proteases such as the presenilin-associated rhomboid-like
protease (PARL) (25, 26). However, this process is disrupted
upon loss of mitochondrial membrane potential, leading to
accumulation of PINK1 on the outer mitochondrial membrane
(OMM), where PINK1 in turn recruits the E3 ubiquitin ligase
Parkin (25, 27, 28). PINK1 phosphorylates both ubiquitin and
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Parkin which contribute to both its activation and anchoring
at the mitochondria (29). PINK1 has also been reported to
phosphorylate MFN2 which then functions as a docking site
for Parkin at mitochondria (30). This allows activated Parkin to
ubiquitinate various outer mitochondrial membrane proteins
(31). However, a recent study reported an alternative function
for MFN2 during mitophagy where MFN2 must be degraded
for mitophagy to proceed (32). MFN2 is known to tether
mitochondria to ER at specific contact sites. McLelland et al.
found that Parkin-mediated ubiquitination and degradation
of MFN2 disrupts the contact sites and releases mitochondria
from the ER. The release provides Parkin full access to its
other substrates and allows for mitophagy to proceed (32).
The mitochondrial proteins ubiquitinated by Parkin are
recognized by various adaptor proteins, such as p62/SQSTM1
and Optineurin (33, 34). These adaptors bind to the ubiquitin-
chains on proteins in the OMM via their ubiquitin-associated
(UBA) domain and simultaneously directly interact with LC3
on the autophagosome via their LC3 Interacting Region (LIR)
motifs (23, 33, 35).

Mitophagy Receptors
Mitochondrial proteins in the OMM can also target
mitochondria to autophagosomes (Figure 1B). BNIP3,
NIX/BNIP3L, FUNDC1, Bcl2L13, FKBP8, and Prohibitin-2
(PHB2) are some of the mitophagy receptors that have been
identified to date (36–41). These proteins are integrated
mitochondrial membrane proteins that are facing the
cytosol. The exception is PHB2, which is localized in the
inner mitochondrial membrane. PHB2 promotes removal
of remaining mitochondrion after outer membrane rupture
(36). The mitophagy receptors contain LIRs and can therefore
bind directly to LC3 on the autophagosome membrane
bypassing the need for ubiquitin and adaptor proteins. The
phospholipid cardiolipin can also function as a mitophagy
receptor (Figure 1B). Cardiolipin is localized on the inner
mitochondrial membrane but is externalized on dysfunctional
mitochondria where it facilitates mitophagy by interacting
with LC3 (42). However, it is possible that, similar to PHB2,
cardiolipin can ensure mitophagy of the inner mitochondrial
compartment after outer mitochondrial membrane rupture.
Although they have all been established as mitophagy receptors,
it is unclear how most of them are activated to induce mitophagy
of mitochondria. These proteins are also known to have
alternative functions and how they switch between the two
functions is not completely clear.

The physiological conditions dictating activation of the two
distinct mitophagy pathways are still unclear and under intense
investigation. Recently, it has been proposed that PINK1/Parkin-
mediated mitophagy plays a minimal role in basal mitophagy
(43, 44) and that this pathway plays a more important role in
stress adaptation and repair (45, 46). Other studies have reported
that mitophagy receptors are key regulators of programmed
mitophagy during development or differentiation (47–49). Thus,
the two different mitophagy pathways appear to have distinct
functions in the cell but additional studies are clearly needed.
Moreover, cross talk clearly exists between the two mitophagy

pathways (50, 51). For instance, the protein phosphatase PGAM5
dephosphorylates FUNDC1 which enhances the interaction
between FUNDC1 and LC3 (52). PGAM5 also coordinates with
PHB2 to promote PINK1/Parkin-mediated mitophagy where
PHB2 decreases PINK1 processing by inhibiting PARL while
PGAM5 stabilizes PINK1 on the OMM (53). Taken together,
there is clearly coordination between these two pathways, and
they can compensate for each other to some extent.

AUTOPHAGY AND AGING

A growing body of data support the anti-aging effects
of enhanced autophagy. Many studies have demonstrated
that enhancing autophagy by limiting caloric intake, genetic
manipulation or pharmacological treatments increases lifespan
in various organisms (1–6). For instance, transgenic mice with
systemic overexpression of Atg5 have enhanced autophagic
activity in tissues which leads to health benefits such as reduced
weight gain with age and extended life spans compared to wild
type mice (2). Although this study did not specifically focus
on the myocardium, the authors reported increased autophagic
activity as well as reduced fibrosis with age in hearts of
the transgenic mice. The cardioprotective effects of enhanced
autophagy during the aging process were recently confirmed by
the Levine group, who developed a Becn1F121A/F121A knock-in
mouse model with constitutively increased basal autophagy due
to a disruption in the Bcl-2 binding to Beclin1. They found that
health and life spans are significantly increased in the knock-
in mice. Moreover, aged Becn1F121A/F121A knock-in mice have
reduced cardiac hypertrophy and interstitial fibrosis compared
to aged-matched wild type mice (20), confirming that preserving
autophagy in the heart delays or even prevents cardiac aging.
In contrast, selective disruption of autophagy in the heart leads
to accelerated cardiac aging with accumulation of ubiquitinated
proteins and dysfunctional mitochondria and development of
cardiac hypertrophy (54). Preserving autophagy is clearly critical
in the heart to prevent biological aging.

MITOPHAGY AND AGING

Reduced mitophagy also recapitulates the age-related
accumulation of dysfunctional mitochondria in tissues. Thus,
the forced increase in autophagy in the above studies can also be
linked to enhancedmitophagy as it would enhance elimination of
dysfunctional mitochondria. Several studies have confirmed that
genetic and pharmacological interventions promoting enhanced
mitophagy also lead to extended life span (55, 56), while
disrupting mitophagy leads to accelerated aging phenotypes
(57, 58). For instance, Urolithin A is a natural compound that
induces mitophagy and extends life span in C.elegans (56).
Both systemic and neuron-specific overexpression of Parkin
in flies slows aging and extends lifespan, although lifespan
extension is greater with ubiquitous Parkin overexpression (59).
A link also exists between Parkin-mediated mitophagy and
NLRP3 inflammasome activation. The NLRP3 inflammasome
is activated by the presence of mitochondrial DNA in the
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cytosol that have been released from damaged mitochondria.
Thus, Parkin-mediated mitophagy of damaged mitochondria
functions to prevent activation of the inflammasome (60).
The PINK1/Parkin pathway also diminishes STING-induced
inflammation by a similar mechanism (61).

Several early studies reported that PINK1 or Parkin
deficiency in Drosophila causes accumulation of dysfunctional
mitochondria, flight muscle degeneration and reduced lifespan
(62–64). Also, Cornelissen et al. found that mitophagic activity
in flight muscle increased with aging in flies and that the
age-dependent rise is abrogated by either PINK1 or Parkin
deficiency (57). Parkin-deficient mice have an accelerated aging
phenotype and accumulate aberrant mitochondria in aging heart
(58, 65) while cardiac specific overexpression of Parkin can
delay cardiac aging by enhancing mitochondrial turnover (65).
These studies present evidence that enhancing mitophagy by
targeting the Parkin pathway is beneficial. However, the anti-
aging effect of Parkin is likely dose-dependent as aged transgenic
mice with higher levels of Parkin overexpression develop cardiac
fibrosis likely due to an imbalance between ubiquitination and
autophagic degradation (66).

Much less is known about what happens to mitophagy
receptors during aging. It was recently reported that mice
deficient in both Akt2 and AMPK are predisposed to cardiac
aging possible due to compromisedmitophagy. These hearts have
reduced levels of several mitophagy proteins including BNIP3
and FUNDC1 (15). A mouse model carrying a proofreading-
defective mtDNA polymerase γ (POLG) accumulate mtDNA
mutations which leads to accelerated aging (67). Unexpectedly,
Parkin plays a minimal role in clearing cardiac mitochondria
in POLG mice as cardiac aging is unaffected by cardiac-
specific overexpression or global deletion of Parkin (66).
Instead, hearts in aged POLG mice have elevated levels
of the mitophagy receptor BNIP3 coupled with enhanced
mitochondrial biogenesis, indicating enhanced baseline
mitochondrial turnover (66). The fact that NIX/BNIP3 double
knockout mice accumulate dysfunctional mitochondria in the
heart at an accelerated rate with age compared to wild type
mice confirms that these mitophagy receptors play a key role in
baseline mitochondrial maintenance (68). Furthermore, Rana
et al. recently demonstrated that promoting Drp1-mediated
mitochondrial fission in midlife leads to increased mitophagy
and rejuvenated mitochondria in flies. This leads to improved
health span and delays the onset of pathology linked to aging
(69). Together, these findings support the notion that reduced
mitophagy might be a significant underlying factor in the
accumulation of dysfunctional mitochondria in aged organisms
contributing to their health decline and mortality. Also, the
mitophagy pathway may represent a therapeutic target to
counteract aging.

AGE-RELATED REDUCTION IN

AUTOPHAGY AND MITOPHAGY

Although autophagy is clearly diminished with age in tissues,
including the heart (5, 9–12), exactly why cardiac autophagy

is reduced during aging is still unclear. Most of our current
knowledge comes from studies in cell lines or other tissues.
Oxidative stress can inhibit autophagy by promoting oxidation
of the autophagy enzymes involved in autophagy (70). Under
baseline conditions when autophagy is not activated, LC3 is
covalently bound to inactive Atg3 and Atg7, which protects
cysteine residues in their catalytic sites from oxidation. However,
the release of LC3 upon activation of autophagy leads to exposure
of the cysteines, making them available to direct oxidation
during high levels of oxidative stress (70). Moreover, Parkin is
also prone to oxidation of its cysteine residues which affects
its E3 ubiquitin ligase activity and promotes its misfolding
and aggregation (71, 72). Also, both PINK1 and Parkin can
be S-nitrosylated which leads to attenuated mitophagy (73,
74). As cardiac aging is characterized by increased oxidative
stress (75, 76), it is possible that this directly contributes
to reduced autophagosome formation and impaired Parkin-
mediated mitophagy in aged myocytes.

Low levels of chronic inflammation has also been linked
to age-related diseases (77). The NLRP3 inflammasome
is a cytosolic protein complex that initiates activation of
inflammatory responses by inducing cell death and triggering
the release of proinflammatory cytokines (77). Deregulation
of the NLRP3 inflammasome has been linked to inhibition of
autophagy and aging. NLRP3-deficient mice have improved
health span and attenuated age-related functional decline,
including reduced bone loss, improved memory and cognitive
performance, and motor performance (78). Recently, it was
reported that aged NLRP3-deficient mice have reduced cardiac
hypertrophy and fibrosis and increased life spans compared to
wild type mice (14). This study linked the NLRP3-deficiency in
aged mice to reduced mTOR suppression resulting in increased
autophagic activity (14).

Moreover, it is also likely that proteins involved in regulating
autophagy are altered with age. For instance, Rubicon is a
negative regulator of Beclin1 and it was recently reported that
Rubicon expression increases in worm, fly and mouse tissues
with age (5). Rubicon knockdown ameliorates age-dependent
phenotypes and extends life span in both worms and flies, while
Rubicon systemic-knockout mice have reduced age-associated
phenotypes such as decreased kidney fibrosis (5). This suggests
that Rubicon could be one of the factors contributing to the
decline in autophagy during aging. However, other regulators
might also be altered with age in tissues.

Finally, lysosomes function in the terminal step of autophagy
(Figure 1) and lysosomal function is compromised with age (79).
For instance, the activity of lysosomal hydrolases responsible
for degrading cargo is dependent on the acidic milieu of the
lysosome. After fusion with an autophagosome, the lysosome
must undergo reacidification to restore the acidic pH and activate
the hydrolases. The v-type ATPase is responsible for maintaining
the acidic milieu by pumping proton into the lysosomal
lumen and studies indicate that the v-ATPase activity and
acidification are reduced with age (80). Lysosomal dysfunction
has been identified in age-related neurological pathologies,
such as Parkinson’s and Alzheimer’s disease (80). Lysosomal
impairment has also been associated with decreased lifespan,
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while enhancing lysosomal functional capacity can promote
longevity (81, 82). In addition, the adult brain contains a pool
of neural stem cells (NSCs) that can generate new neurons but
the function of NSCs declines with age. Interestingly, there is
an age-dependent decrease in lysosome levels in NSCs which
results in fewer lysosomes available to fuse with autophagosomes
(83). It is currently unclear if lysosomal function is altered in the
aged heart.

CONCLUSION

In summary, declines in autophagy and mitophagy in tissues
clearly play a role in the aging process and contribute to
development of age-related diseases. The main questions that
remain unanswered include: why are autophagy and mitophagy
suppressed with age and can these pathways be restored
in the aged heart? Relatively little is still known about the
molecular mechanism underlying the decrease in autophagy
and mitophagy and whether there are tissue specific differences.

Although manipulation of autophagy and mitophagy pathways
are protective in pre-clinical models, the level of activity must be
carefully monitored as excessive autophagy can lead to excessive
degradation of key cellular components. Increased knowledge
into how these pathways are regulated as well as altered with age
will allow for more specific manipulation. Further understanding
will also provide important insights into how future therapies can
protect the heart against age-specific functional decline.
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The molecular signatures of epigenetic regulation and chromatin architecture are

emerging as pivotal regulators of mitochondrial function. Recent studies unveiled a

complex intersection among environmental factors, epigenetic signals, andmitochondrial

metabolism, ultimately leading to alterations of vascular phenotype and increased

cardiovascular risk. Changing environmental conditions over the lifetime induce covalent

and post-translational chemical modification of the chromatin template which sensitize

the genome to establish new transcriptional programs and, hence, diverse functional

states. On the other hand, metabolic alterations occurring in mitochondria affect the

availability of substrates for chromatin-modifying enzymes, thus leading to maladaptive

epigenetic signatures altering chromatin accessibility and gene transcription. Indeed,

several components of the epigenetic machinery require intermediates of cellular

metabolism (ATP, AcCoA, NADH, α-ketoglutarate) for enzymatic function. In the present

review, we describe the emerging role of epigenetic modifications as fine tuners of gene

transcription in mitochondrial dysfunction and vascular disease. Specifically, the following

aspects are described in detail: (i) mitochondria and vascular function, (ii) mitochondrial

ROS, (iii) epigenetic regulation of mitochondrial function; (iv) the role of mitochondrial

metabolites as key effectors for chromatin-modifying enzymes; (v) epigenetic therapies.

Understanding epigenetic routes may pave the way for new approaches to develop

personalized therapies to prevent mitochondrial insufficiency and its complications.

Keywords: epigenetics, mitochondria, vascular disease, oxidative stress, endothelial function

MITOCHONDRIA AND VASCULAR FUNCTION

Mitochondria, defined as semi-autonomous, membrane-bound organelle localized in the
cytoplasm of eukaryotic cells, are emerging as a pivotal player in health, disease, and aging
by regulating reactive oxygen species (ROS) production and contributing to retrograde redox
signalling from the organelle to the cytosol and nucleus (Figure 1) (1, 2). Mitochondria play
an important role in the overall cellular network formed by metabolic signalling and epigenetic
pathways. Indeed, mitochondria drive catabolic and anabolic reactions supplying energy and
metabolites with biosynthetic and signalling roles (3). They also maintain a bidirectional signalling
crosstalk with the nucleus that generates reciprocal activation-repression patterns of gene
expression (3–5). Finally, mitochondria can determine apoptotic and necrotic cell death mediated
by Ca2+ overload and opening of the permeability transition pore (PTP) (6, 7).
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Under physiological conditions, mitochondria undergo
highly coordinated cycles of fission (division of a single organelle
into two or more independent structures) or fusion (the
opposing reaction) (8). Fission and fusion are active processes
which require many specialized proteins, including mechanical
enzymes that physically alter mitochondrial membranes,
and adaptor proteins that regulate the interaction of these
mechanical proteins with organelles. The balance between these
two processes regulates the overall morphology of mitochondria
within any given cell (8–10). The content of mitochondria
in the cytoplasm of eukaryotic cells depend on two major
processes known as mitochondrial biogenesis and mitophagy
(11). Mitochondrial biogenesis is an intricate and not fully
understood process which leads to an increased mitochondrial
mass mainly via replication of mitochondrial DNA (mtDNA)
and expression of nuclear and mitochondrial genes (12).
PGC-1α (Peroxisome proliferator-activated receptor gamma
coactivator−1α) plays a prominent role in mitochondrial
biogenesis by activating the nuclear respiratory factor (Nrf)-1

FIGURE 1 | Main features of healthy and diseased mitochondria, and implications for cardiovascular disease.

and −2 to promote the expression nuclear genes. PGC-1α
also activates transcription factors A and B which regulate
the expression of mitochondrial genes (13, 14). Following
mitochondrial damage, the organelles are being selectively
degraded according to a well-known biological process called
mitophagy, which promotes organelle turnover while preventing
accumulation of dysfunctional mitochondria (Figure 1) (11).
In addition to the selective removal of damaged mitochondria,
mitophagy is also required to adjust mitochondrial numbers to
changing cellular metabolic needs, for steady-state mitochondrial
turnover, and during certain cellular developmental stages, such
as during cellular differentiation of red blood cells (10).
Mitochondrial content may vary based on the cell type and
its function. For example, in endothelial cells mitochondria
occupy around 6% of cytoplasm whereas in cardiomyocytes
this reaches 32% (15). Notably, the blood brain barrier which
consist of highly active endothelial cells has higher mitochondrial
content as compared with endothelial cells present in capillary
beds (15). Mitochondria play a pivotal role in endothelial
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cells. Several biological processes including mitochondrial
biogenesis, fission and fusion as well as mitophagy, have shown
to clearly affect endothelial cell function and metabolism. Several
stimuli including hypoxia, calorie restriction or exercise induce
mitochondrial biogenesis in endothelial cells by increasing the
expression of the peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC-1α). Induction of PGC-1α is associated
with a favorable transcriptional profile which protects endothelial
cells from oxidative damage and apoptosis (16). In line with this
notion, endothelial-specific overexpression of PGC-1α protects
against angiotensin II–induced hypertension (17). By contrast,
loss of endothelial PGC-1α impairs endothelial NO bioactivity
eventually leading to endothelial dysfunction (18). Alterations
of mitochondrial dynamics also contribute to endothelial cell
phenotype. Endothelial cells from patients with diabetes display
mitochondrial fragmentation and increased expression of
fission-1 protein (Fis1) and dynamin-related protein-1 (Drp1).
Of note, in vitro experiments showed that gene silencing Fis1
or Drp1 expression blunted hyperglycemia-induced alterations
in mitochondrial networks, ROS production, endothelial
nitric oxide synthase activation, and cGMP production (19).
Alterations of mitophagy as the result of disturbed Ucp2/PTEN
signaling were also associated with inadequate mitochondrial
biosynthesis and increased apoptosis in endothelium (20).
Altered mitochondrial clearance may also contribute to age-
dependent endothelial dysfunction. Indeed, senescent cells
display altered mitochondrial dynamics and loss of membrane
potential (21). Interestingly enough, overexpression of proteins
involved in the autophagosome formation (ATG5 and ATG12)
was associated with improved mitochondrial performance,
as evidenced by higher membrane potential, increased ATP
production, and decreased damage to mtDNA (22, 23).

MITOCHONDRIAL ROS

Although several cytosolic enzymes (i.e., NADPH,
cyclooxygenases, and xanthine oxidase) are implicated in
redox balance, ROS generated from mitochondrial oxidative
phosphorylation represent the most important source of
oxidative stress in vascular cells (i.e., endothelial cells) (24, 25).

Mitochondrial ROS are responsible for peroxidation of
polyunsaturated fatty acids (PUFAs) present in the cellular
membrane as well as DNA (causing single and double strand
breaks) and protein damage via oxidation of sulfhydryl and
aldehyde groups, protein-protein interactions and fragmentation
(26). In addition, damage of mtDNA may lead to decreased
expression of electron transport chain components or expression
of defective components that produce more ROS, thus creating a
detrimental vicious cycle. mtDNA disruption also correlates with
the extent of atherosclerosis in mouse models and human tissues.
Despite the highly efficient chemical reduction of O2 through
cytochrome c oxidase, mitochondria still generate significant
levels of ROS (27). Cellular and mitochondrial physiological
levels of ROS are reached when production and scavenging are
balanced (28). Mitochondrial dysfunction is believed to play an
important role in a variety of diseases including diabetes, obesity,

dyslipidaemia, hypertension, arrhythmias, and sudden cardiac
death (29–31).

In the setting of cardiovascular risk factors, namely
hyperglycemia, mitochondrial ROS can be regarded as an
upstream biochemical event responsible for the activation of
pro-inflammatory pathways (i.e., NF-kB), protein kinase C
as well as advanced glycation end products (AGEs) (32). An
increasing body of evidence has contributed to unveil different
sources of mitochondrial ROS in endothelial cells. Studies
in isolated mitochondria have shown that superoxide anion
formation at complexes I and III accounts for 0.1-2% of the
total (33). In addition to complexes I and III, the nicotinamide
adenine dinucleotide phosphate oxidase (NOX) 4—a ROS-
generating enzyme involved in endothelial cell senescence,
migration, angiogenesis, and adaptive responses to hypoxia—is
highly expressed in vascular cells and has been localized to
mitochondria (34). Moreover, the monoamine oxidase (MAO)
family of enzymes—which is found in the outer mitochondrial
membrane—generates hydrogen peroxide (H2O2) during
catabolism of catecholamines and has been implicated in
maladaptive cellular hypertrophy and apoptosis (35). MAO-A-
induced ROS are involved in serotonin-induced vasoconstriction
in vascular smooth muscle cells (36). Although endothelial
cells are known to express MAO, its importance for endothelial
function is poorly understood (37). The mitochondrial adaptor
protein p66Shc was recently shown to be causally involved in
mitochondrial ROS generation and cellular death. In conditions
of cellular stress, p66Shc is phosphorylated at ser36 by protein
kinase C beta2 (PKCβ2) and translocates to the mitochondria
where it oxidizes cytochrome c, leading to accumulation of H2O2,
PTP opening, and release of solutes and proapoptotic signals
(38). The causal role of p66Shc in vascular disease is supported
by the notion that its genetic deletion or gene silencing prevents
age and hyperglycemia-induced endothelial dysfunction in mice
(39–41). The prolyl-isomerase 1 (Pin1), which regulates p66Shc

translocation to the mitochondria, has also shown to be causally
implicated in the regulation of mitochondrial oxidative stress
and integrity in experimental models of diabetes (42, 43). The
mitochondrial ATP-sensitive potassium channel (mitoKATP) was
also recently discovered as a potential source of mitochondrial
ROS in cardiac myocytes (44). Although the exact mechanism of
action remains elusive, mitoKATP seems to act as an uncoupling
agent by reducing membrane potential and mitochondrial
calcium. Pharmacological inhibition of mitoKATP was found to
improve endothelial function and to prevent ischemia-induced
cellular apoptosis (44). Several antioxidant enzymes play a pivotal
role in maintaining redox balance in mitochondria. Manganese
superoxide dismutase (MnSOD) represents one of the first line
defense against accumulation of mitochondrial superoxide.
MnSOD is located in the mitochondrial matrix and catalyzes
the conversion of superoxide anion to hydrogen peroxide
(45). Loss of MnSOD in mice leads to impaired endothelium-
dependent vasodilation, suggesting its role in regulating vascular
function. In addition, ApoE−/− MnSOD+/− mice display
early mtDNA damage and accelerated atherosclerosis when
compared to control animals (46). Levels of H2O2 are regulated
by glutathione peroxidase-1, thioredoxin-2, peroxiridoxin-3,
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FIGURE 2 | Environmental factors, chromatin modifications, and mitochondrial damage. Environmental factors lead to specific epigenetic signatures as well as to

alterations of mitochondrial intermediate metabolites (i.e., acetyl-CoA, FAD+, NAD+). These two processes influence each other, thus leading to a vicious cycle

responsible for adverse chromatin modifications, maladaptive transcriptional programs, and vascular dysfunction. ROS, reactive oxygen species.

and glutaredoxin-2 (47). As noted, increased expression of
these enzymes is signaled by AMPK and PGC-1α in response to
H2O2 and other free radicals in endothelial cells (48). Studies
in experimental models have shown that reduced expression of
mitochondrial antioxidant enzymes can induce mitochondrial
damage, endothelial dysfunction, and atherogenesis (45, 46).
Conversely, overexpression of these proteins is protective against
the development of vascular disease (49).

Although the role of mitochondrial ROS in vascular
damage is well-established, only few studies have explored
the specific contribution of mitochondria-derived ROS
in the pathophysiology of endothelial dysfunction in
humans. Mitochondrial ROS production and membrane
hyperpolarization are significantly altered in visceral fat arteries
and peripheral blood mononuclear cells isolated from patients
with obesity and type 2 diabetes (50, 51). Furthermore, impaired
endothelium-dependent vasodilation in freshly isolated arterioles
from diabetic individuals is reversed by mild membrane
depolarization or mitochondria-targeted antioxidants (50).

EPIGENETIC REGULATION OF
MITOCHONDRIAL FUNCTION

Recent evidence indicates that epigenetic changes, defined as
plastic modifications of DNA/histone complexes, are heavily
implicated in the regulation of mitochondrial and vascular
function (52, 53). Studies conducted over the last few years
have unmasked a complex intersection among environmental
factors, mitochondrial metabolism, epigenetic signals and
transcriptional programs (54, 55). Epigenetic changes acquired
during the life time may derail the expression of genes involved
in mitochondrial homeostasis (52). On the other hand, metabolic

alterations occurring in mitochondria may affect the availability
of substrates for chromatin-modifying enzymes, thus leading
to maladaptive epigenetic signatures altering chromatin
accessibility and, hence, gene transcription (Figure 2) (54).
Indeed, the availability of some intermediate mitochondrial
metabolites (ATP, AcCoA, NADH, α-ketoglutarate) has shown
to foster different patterns of epigenetic modifications. For
examples, iron, α-ketoglutarate (α-KG) and O2 are needed
both for histone demethylation—catalysed by iron-containing
jumonji-domain (jmjC) demethylases (56)—as well as for DNA
demethylation of 5-methylcytosine—catalysed by the ten-eleven
translocation family of dioxygenases (TET) (57). Therefore,
mitochondrial sensitivity determined by environmental
factors and lifestyle changes (sedentarism, physical activity,
overnutrition, balanced nutrition) will favor, or prevent, the
effects of metabolic disorders.

CLASSIFICATION OF EPIGENETIC
CHANGES

Epigenetic mechanisms can be divided into three main
categories: (i) chemical modifications of DNA (i.e., methylation);
(ii) post-translational modifications of histone tails; (iii)
regulation of gene expression by non-coding RNAs [i.e.,
microRNAs, long non-coding RNAs (lncRNAs)] (58). In
the present review, we will focus on the modifications of
DNA/histone complexes and their impact on mitochondrial
integrity and functionality.

DNA Methylation
Methylation of DNA mainly takes place at the level of CpG
regions of gene promoters through the attachment of methyl
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group (CH3) from S-adenosyl methionine (SAM) to the
C5 position in the cytosine-paired-with-guanine (CpG)
dinucleotide sequences (59). CpG sequences are generally
located into promoter regions of genes, however, they can also
be located within gene bodies (58). Promoter methylation
is generally associated with transcriptional repression,
while gene body methylation is associated with enhanced
transcription (60). Promoter methylation hampers gene
expression mainly via two mechanisms: (i) by fostering
transcriptional silencing, or (ii) by preventing the recruitment
of transcription factors (61). Specifically, methylated cytosines
are recognized by DNA methyl-binding proteins (MBPs) that
repress gene transcription by preventing the interaction of
transcription factors with the promoter (62). Alternatively,
DNA methylation may recruit specific proteins that may
also favor the recruitment of enzymes catalysing histone
posttranslational modifications (PTMs) with subsequent gene
repression (63, 64).

DNA methylation is a relatively stable epigenetic signature,
it can be tissue-specific and, most importantly, it can be
transmitted to the offspring, a phenomenon known as “epigenetic
inheritance” (65). Different families of enzymes, known as
methyltransferases (DNMTs), are involved in the regulation of
DNA methylation: DNMT1 is responsible for the maintenance
of methylation patterns in the genome by replicating the hemi-
methylated CpG sites (66), whereas Dnmt3a/b are considered
de novo methyltransferases (67). Methylation of DNA is a
dynamic and reversible process governed by methyl-writing and
-erasing enzymes (58). DNA demethylation can be achieved
by either passive or active mechanisms (58). Active DNA
demethylation consists in the removal of the methyl group
by breaking a carbon–carbon bond. DNA demethylation may
follow two main pathways: the first is dependent on cytosine
deamination (AID, APOBEC3G, FTO) while the second is
dependent on the oxidation of methylated cytosines (68). This
latter reaction is catalysed by members of the Ten-eleven
translocation (TET) proteins family (TET1-3) that convert 5-
methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC)
(69, 70). TET1 is mostly found in embryonic stem cells,
whereas TET2 and TET3 are ubiquitously expressed. TET1-
3 proteins could further oxidize 5hmC to 5-formylcytosine
(5fC) and 5-carboxylcytosine (5caC) that are recognized and
excised by the thymine DNA glycosylase (TDG) via the base
excision repair pathway (70, 71). By contrast, passive DNA
demethylation is the result of DNMT1 inhibition during DNA
replication (69).

Histone Modifications
DNA is packaged into repeating units called nucleosomes
by wrapping around multimeric histone proteins. When
nucleosomes are organized into tightly packed bundles
(heterochromatin), the transcriptional machinery is
hampered by a reduction of chromatin accessibility.
Conversely, when chromatin is relaxed (euchromatin),
DNA is more accessible to transcription factors, and gene
transcription may occur (72). Histones are amenable to
many posttranslational modifications (PTMs), which include

methylation, acetylation, ubiquitination, phosphorylation,
SUMOylation, GlcNAcylation, carbonylation, and ADP-
ribosylation (73, 74). Of interest, these modifications may
cluster in different patterns to regulate chromatin accessibility
(59, 72, 75). Albeit the biological significance of many
PTMs remains to be elucidated, considerable advances have
been made in the understanding of lysine acetylation and
methylation (74).

Histone acetylation, characterized by the addition of positively
charged acetyl groups to amino acid residues at the level
of histone tails, reduces the affinity of histones for DNA
thus increasing chromatin accessibility (76). Acetylation occurs
mainly on lysine residues on histones H3 and H4; this mark
mainly associates with activation of transcription by enhancing
chromatin accessibility (77). In this context, bromodomain
and extra-terminal proteins recognize histone acetylation marks
and initiate the assembly of the transcriptional machinery
(78). By contrast, non-acetylated histones have been observed
in transcriptionally silent genes where chromatin is compact
(79). Acetylation is modulated by histone acetyltransferases
(HATs) and histone deacetylases (HDACs) which are involved
in addition or removal of an acetyl group, respectively (80).
This modification is driven by recognition and binding of
transcription factors able to recruit one of a growing family
of HATs, namely CBP/p300, MYST, and GNAT (59, 73). HATs
catalyse the addition of two-carbon acetyl groups to lysine
residues from acetyl-CoA thus leading to gene expression (81).
On the other hand, removal of acetyl groups from histone
residues by HDACs represses gene transcription (82, 83).
Several HDACs have been reported in humans, and they are
subdivided into four classes (Class I, IIa, IIb, III, and IV)
(84, 85).

In contrast to lysine acetylation, which enhances gene
expression, histone methylation may result in different
chromatin states according to the methylated residue and
the number of added methyl groups (79). Histone methylation
is defined as the transfer of methyl group from S-adenosyl-
L-methionine to lysine or arginine residues of histone
proteins by histone methyltransferases (HMTs) (86). Histone
methyltransferases (HMTs) have higher specificity as compared
to HATs (87) and include several families of enzymes (EZH,
SETD, PRDM, PRMT, METTL, and MLL) (88). Recent evidence
indicates that a fine balance between histone methylation
and demethylation plays a pivotal role in the regulation of
chromatin accessibility.

Several lysine demethylases specific for diverse histone lysine
residues have been identified (89). HDMs include members
of UTX/Y, JARID1, JMJD, LSD, PHF, and FBXL enzyme
families (88).

Interestingly, modifications of histones may reciprocally
influence or eventually affect DNA methylation (74). In
this regard, recent evidence suggests that DNA methylase
(DNMTs), histone methyltransferase (HMTs), and histone
acetyltransferase (HATs) are closely interconnected to
regulate chromatin remodeling under specific stimuli (90).
A well-described crosstalk between DNA methylation and
histone H3K9 methylation, mediated by the heterochromatin
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protein 1 (HP1), represents a valid example of how histone
modifications may facilitate the recruitment of enzymes
(DNTM3a/b) involved in DNA methylation (91). Another
example is methyl-CpG binding protein 2 (MECP2),
which recruits the histone methyltransferase SUV39H1
only after binding methylated DNA (92, 93). Therefore,
chromatin modifications may influence each other and
can propagate.

EPIGENETIC REMODELING OF
MITOCHONDRIAL DNA

Increasing evidence suggests that aberrant mitochondrial DNA
(mtDNA) modification play an important role in disease
development and progression (94). Since the vast majority of
mitochondrial proteins are encoded in the nuclear genome,
appropriate communication between the nuclear, cytoplasmic
and mitochondrial compartments is essential for maintaining
proper mitochondrial function. The mitochondrial genome
consists of roughly 1,500 genes distributed across the maternal
mtDNA and nuclear DNA (nDNA) (95). Human mtDNA is
a 16.5-kb circular double-stranded DNA containing a heavy
(H) and a light (L) strand located in the mitochondrial matrix
(96, 97). mtDNA forms an mtDNA–protein complex, known
as nucleoid, with a range of proteins including prohibitins,
ATPase family AAA domain-containing protein 3 (ATAD3),
mitochondrial transcription factor A (TFAM) and POLG (DNA
polymerase gamma, catalytic subunit) (98, 99). In contrast to
nDNA, human mtDNA is maternally inherited, is intronless,
and lacks histones (100). It contains 37 genes encoding 13
subunit of the oxidative phosphorylation (OXPHOS) complexes
I, III, IV, and V; two rRNAs; and 22 tRNAs (2). All other
mitochondrial proteins, including those required for mtDNA
replication and transcription, are encoded in the nucleus and
translocated to the mitochondria using specialized import
systems which often involve N-terminal mitochondrial targeting
sequences (101).

Emerging evidence suggests that mtDNA may also be
regulated at the epigenetic level in the form of mtDNA
methylation (2). While nDNA methylation is a well-established
feature, mtDNA methylation has been a matter of debate
(94, 102). The prevailing opinion was that mtDNA cannot be
methylated for two main reasons: (i) methylase cannot access
mitochondria, and (ii) mtDNA is not complexed with histones
(103). Only recently, mtDNA has been reported to contain
5-methylcytosine (5mC) as well as 5-hydroxymethylcytosine
(5hmC) at CpG dinucleotides. In 2011, Shock et al. have
identified a mitochondrially targeted DNMT1 transcript variant
(mtDNMT1) that uses an upstream alternative translation
start site leading to the inclusion of a mitochondrial targeting
sequence (101). mtDNMT1 binds to the mitochondrial
genome in a manner proportional to the density of CpG
dinucleotides. Of note, cytosine methylation in mtDNA may
play different role. Indeed, mtDNA methylation represses
gene expression from the light-strand promoter. However,
increased or no change in transcription of genes from the

heavy-strand promoter raises the possibility of a different
mode of action (104). This DNMT1 variant is upregulated
by the hypoxia-responsive transcription factors peroxisome
proliferator-activated receptor gamma coactivator 1 alpha
(PGC1a) and nuclear respiratory factor 1 (NRF1) suggesting a
regulatory role of mtDNMT1 during vascular oxidative stress
(Figure 3) (101).

Besides mtDNMT1, no other specific mitochondrially
targeted isoforms of enzymes involved in DNA methylation
or hydroxymethylation are known (100). Nevertheless, other
enzymes, namely DNMT3A/B and ten–eleven translocation
(TET) 1 and 2, have been detected in the mitochondrial protein
fraction (105). Interestingly, the presence of these enzymes in
the mitochondria seems to be tissue specific. Indeed, inside the
mitochondria of ‘excitable tissues’ (heart, skeletal muscle, and
neurons) only DNMT3A but not DNMT3b has been detected
(106). Furthermore, epigenetic modifications of mtDNA can
modulate the activity of nDNA, and vice versa (107). Under
conditions of oxidative stress, such as exposure to hypoxia or
ethanol, DNMT1 is upregulated and suppresses the expression of
ND6 (101), while ND1 is upregulated. Although the significance
of opposite ND1 and ND6 regulation is poorly understood,
a proposed mechanism involves the interaction of MTERF1
(mitochondrial terminator factor 1) with 5-methylcytosine in the
CpG dinucleotides and/or its interaction with mtDNA-bound
mtDNMT1 (94).

An interesting study by Byun et al. showed a higher
mtDNA methylation level in workers highly exposed to airborne
pollutants compared to low airborne pollutant exposed subjects
(108). In line with this finding, in a cohort of 81 individuals
aged 18-91, methylation levels of the mitochondria gene 12S
rRNA inversely correlated with age suggesting that mtDNA
methylation may represent an epigenetic marker of ageing
(109). In the retina of diabetic mice mtDNA methylation
was found associated with mtDNA damage characterized by
increased base mismatches and hypermethylated cytosines.
Interestingly, inhibition of DNA methylation, or regulation of
cytosine deamination, attenuated base mismatches at the D-loop
thus preventing mitochondrial dysfunction and microvascular
damage. In this study epigenetic signals of mtDNA were
driven by oxidative stress as overexpression of Sod2 was
able to prevent diabetes-induced D-loop hypermethylation and
increase in base mismatches (110). Of clinical relevance, retinal
microvasculature from human donors with diabetic retinopathy
presented similar increase in D-loop methylation and decrease
in mtDNA transcription (111). In another study, analysis
of mtDNA methylation by bisulfite sequencing in senescent
endothelial cells showed alteration in the methylation pattern of
several genes regulating mitochondrial function and metabolism
(112). Patients with cardiovascular disease display a significantly
higher mtDNA methylation of genes encoding for cytochrome c
oxidases (MT-CO1, MT-CO2, MT-CO3), tRNA leucine 1 (MT-
TL1) and (1.67%, P = 0.0001) as well as genes involved in
ATP synthesis (MT-ATP6 and MT-ATP8) (113). The latter study
suggests that mtDNA methylation could serve as non-invasive
and easy-to-obtain epigenetic biomarker and may be implicated
in the etiology of CVD (Figure 3).
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FIGURE 3 | Schematic showing the main epigenetic networks regulating mitochondrial functionality and cardiovascular disease. PGC1α, Peroxisome

proliferator-activated receptor gamma coactivator 1-alpha; NRF1, Nuclear respiratory factor 1; mtDNMT1, Mitochondrial DNA methyltransferase 1; MT-CO (1-3),

Cytochrome c oxidase subunit (I, II, III); MT-TL1, Mitochondrially encoded tRNA-Leu 1; MT-ATP (6, 8) Mitochondrially encoded ATP synthase membrane (subunit 6, 8);

FOXO1, Forkhead box O3; PPAR1a, Peroxisome proliferator-activated receptor 1 alpha; GPx, Glutathione peroxidase; ERRα, Estrogen-related receptor alpha; IDH3,

isocitrate dehydrogenase 3; Cyt-c, Cytochrome c; COXV, Cytochrome c oxidase subunit 5; MCAD, Medium-chain acyl-CoA dehydrogenase; CPT-1β, Carnitine

Palmitoyltransferase 1 beta; PDK4, Pyruvate dehydrogenase lipoamide kinase isozyme 4; Nampt, Nicotinamide phosphoribosyltransferase; NAD+, Nicotinamide

adenine dinucleotide; AceCS2, acetyl-CoA synthetase 2; AMPK, 5′ adenosine monophosphate-activated protein kinase; HAT1, Histone acetyltransferase 1; RBBP7,

Retinoblastoma binding protein 7.

HISTONE POST-TRANSLATIONAL
MODIFICATIONS AND MITOCHONDRIAL
FUNCTION

Growing evidence indicates that PTMs of histones, mainly
at lysine and arginine residues, significantly affect chromatin
accessibility thus enabling cell-specific transcriptional programs
implicated in mitochondrial dysfunction and vascular disease
(Figure 3). Sirtuins are class III histone deacetylases (HDACs),
homologs of the yeast protein Silent Information Regulatory 2
(Sir2), a deacetylase involved in yeast metabolism and lifespan
(104). The sirtuin family of deacetylases include seven enzymes
differentially distributed throughout the cell: SIRT1 and SIRT2
which are mainly localized in both cytoplasmic and nuclear
compartments; SIRT3 SIRT4, and SIRT5, which are localized in
the mitochondria, and SIRT6 and SIRT7 which are located in the
cell nucleus (29, 114, 115). The deacetylation reaction catalysed
by sirtuins is NAD+-dependent, and leads to the formation ofO-
acetyl-ADP ribose (AADPR) which can be used as a donor group
in ADP-ribosylation reactions (116). In term of activity, all the
above-mentioned sirtuins display a deacetylase activity with the
exception of SIRT4 which is mostly an ADP-ribosyl transferase,
and SIRT6 which exhibits both activities (104).

Available evidence indicates that sirtuins act as pivotal
regulators of life span and life-extending effects of calorie

restriction (2). Among the different sirtuins, SIRT3 is particularly

active in the mitochondria, where it is responsible for the

deacetylation of the acetyl-CoA synthase enzyme (AceCS2)
(117, 118). Under appropriate nutritional conditions, AceCS2 is
completely inactivated upon acetylation at Lys-642, while it is

rapidly reactivated by SIRT3 deacetylation (117). Deacetylation

of AceCS2 by SIRT3 increases AceCS2 activity leading to
the formation of O-acetyl-ADP-ribose and nicotinamide (118),
important metabolites implicated in biosynthetic and regulatory

purposes (119). In line with these studies, genetic deletion
of SIRT3 in mice or gene downregulation as the result of
high fat diet feeding, are associated with early metabolic
abnormalities which are mainly the result of mitochondrial
dysfunction (120). SIRT3 also regulates mitochondrial oxidative
stress levels by deacetylation of the antioxidant enzyme MnSOD
(121). Although not localized in the mitochondria, SIRT1 is a
major regulator of mitochondrial function via deacetylation of
PGC1α and FOXOs proteins (122). SIRT1-mediated activation
of these target proteins leads to increased mitochondrial
respiration and lipid oxidation through regulation of several
genes (i.e., ERRα, IDH3, Cyt-c, COXV, MCAD, CPT-1β, and
PDK4) required in energy-depleted cell (29, 123). SIRT1 is also
critically involved in a dynamic cross-talk with AMPK, a key
molecular effector involved in cellular metabolism. Activation
of SIRT1/AMPK by physical activity or caloric restriction is
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associated with an increased usage of lipids as an energy source,
mitochondrial biogenesis as well as with an increased expression
of nicotinamide phosphoribosyl-transferase (Nampt), the rate-
limiting enzyme in NAD+ bio-synthesis. The increase in Nampt
activity leads to higher NAD+ production, which in turn
activates SIRT1 (124).

Of note, activation of AMPK by SIRT1 seems to be particularly
important for the phosphorylation of three main proteins
involved in epigenetic remodeling: the DNA methyltransferase
DNMT1, the histone acetyltransferase HAT1, and RBBP7,
which inhibits DNMT1 and is a HAT1 coactivator (125).
AMPK-mediated phosphorylation of these proteins triggered
nucleosome remodeling thus favoring the transcription of
nuclear-encoded genes involved in mitochondrial biogenesis
and function (125). These results show that SIRT1-AMPK
axis coordinates mitochondrial function with energy status
through epigenetic regulation of nuclear gene expression.
SIRT1 is also highly sensitive to the cellular redox state,
and confers cardioprotection by counteracting oxidative stress
through deacetylation of multiple cellular targets (126–128).
In the human endothelium, SIRT1 antagonizes H2O2-induced
premature senescence through its negative modulation of
p53 by deacetylation of Lys-373, Lys-382, and Lys-320 (129).
Conversely, endothelial SIRT1 overexpression reversed oxidative
stress-induced premature senescence through activation of
endothelial nitric oxide synthase (eNOS) (130). SIRT1 has
also shown to deacetylate FOXO3 thus preventing cellular
apoptosis via a mechanism involving the tumor suppressor
p53 (131, 132). On the other hand, ROS-dependent acetylation
of FOXO1 inhibits its transcriptional activity on SIRT1,
catalase (CAT), and MnSOD target genes thus creating a
detrimental vicious cycle driven by oxidative stress (133).
This molecular circuitry is reinforced by the activation of
the mitochondrial adaptor p66Shc which further amplifies
ROS levels (134). Interestingly, SIRT1 controls mitochondrial
oxidative stress by regulating the transcription of p66Shc (135–
137). SIRT1-dependent deacetylation of histone 3 reduces
chromatin accessibility on p66Shc promoter thus impeding
transcription. By contrast, SIRT1 downregulation as the results
of cardiovascular risk factors induces an open chromatin
eventually leading to p66Shc expression, mitochondrial oxidative
stress and endothelial dysfunction (138). It has also been
shown that SIRT1 overexpression increases mitochondrial
biogenesis and expression of antioxidant enzymes, namely
catalase and glutathione peroxidase (GPx), via activation of the
peroxisome proliferator-activated receptor coactivator (PPAR)
1-a activation (139).

SIRT5, a weak deacetylase with strong desuccinylase,
demalonylase, and deglutarylase activity, has been also
implicated in regulating different aspects of mitochondrial
metabolism and cardiovascular function (140). SIRT5
downregulation was recently associated with mitochondrial
dysfunction in endothelial progenitor cells of patients with
arterial hypertension (141). Other studies reported that
SIRT5 deficiency exert a protective role by suppressing
mitochondrial ATP production and promoting AMPK activation
in response to energy stress. Moreover, genetic deletion of SIRT5

protects against ischemic stroke via modulation of PI3K/Akt
pathway (142).

Recent evidence suggests that in the diseased aorta
containing atherosclerotic plaques and grafted arteriosclerosis,
REF1/H3K9me3 pathway is suppressed thus leading to an
increase in the mitochondrial translocation of the AIP1B isoform
with subsequent generation of mitochondrial ROS and EC
activation (143).

MITOCHONDRIAL ROS AND EPIGENETIC
CHANGES

Mitochondrial-generated ROS have a major impact on DNA
methylation. ROS can directly convert 5-methylcytosin (5mC)
to 5-hydroxymethylcytosine (5hmC) which blocks the activity
of DNMT1 leading to an improper methylation inheritance
during mitosis and global hypomethylation (144). Moreover
ROS can oxidize guanosine to 8-oxo-20-deoxyguanosine (8-
oxodG) thus inhibiting methylation of adjacent cytosine and
further contributing to global hypomethylation of DNA (145,
146). The formation of 8-oxodG in particular loci promotes the
transcription of pro-inflammatory genes in response to TNF-α
(147). Furthermore, 8-oxodG interacts with HIF1α thus affecting
its ability to bind VEGF promoter with subsequent impairment
of angiogenesis (148). In line with these observations, two
recent meta-analyses showed that high levels of 8-oxodG are
associated with atherosclerotic vascular disease and predict
outcome (149, 150). High ROS levels also influence both
repressive (H3K9me2/3 and H3K27me3) and active histone
marks (H3K4me2/3) (151, 152).

Similarly to DNA methylation, histone methylation is
dependent on SAM availability and is therefore reduced in
the presence of high ROS levels (153, 154). In support of
this hypothesis in a model of cardiac pressure overload the
SET and MYND domain containing protein 1 (SMYD1)
methyltransferase was significantly downregulated (155). On the
other hand, several studies showed that hyperglycemia-induced
oxidative stress increases the expression of the methyltransferase
SETD7 and its epigenetic marker H3K4m eventually leading to
enhanced transcription of inflammatory and oxidant genes, thus
generating a vicious cycle (Figure 3) (156).

MITOCHONDRIAL METABOLITES AS
COFACTORS FOR CHROMATIN
MODIFICATIONS

By serving as essential cofactors for most chromatin-modifying
enzymes, important intermediates of cell metabolism and
dietary intake allow the integration of metabolic information
and transcriptional control (Figure 4). Fluctuating metabolite
concentrations are therefore proposed to provide signalling cues
for continual adjustment of gene expression by modulating the
epigenome to influence chromatin dynamics. Additional
biochemical evidence suggests that energy metabolite
concentration could affect PTMs of the chromatin-modifying
machinery itself, in turn regulating enzymatic activity,
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FIGURE 4 | Intermediate mitochondrial metabolites as cofactors for chromatin modifications. acetyl-CoA generated by glycolysis and β-oxidation acts as a substrate

for histone acetyltransferases (HATs). Nicotinamide adenine dinucleotide (NAD+) is required for histone deacetylases (HDACs; histone deacetylation) as well as

ADP-ribosyltransferases (ARTs). α-Ketoglutarate and flavin adenine dinucleotide (FAD+) are cofactors for DNA (ten-eleven translocations, TETs) and histone

demethylases [Jumonji C domain containing (JmjC), LSD1]. TCA, tricarboxylic acid cycle; HATs, histone acetyltransferases; NAD+, nicotinamide adenine dinucleotide;

HDACs, histone deacetylases; ARTs, ADP-ribosyltransferases; FAD, flavin adenine dinucleotide; TETs, ten-eleven translocations.

stability, and chromatin binding capacity associated with
gene expression (54).

NAD+

NAD+ is an essential cofactor for reactions catalysed by
the highly conserved SIRT HDAC family (2). Other NAD+
consuming enzymes such as ADP-ribosyltransferases have
also been shown to covalently ADP-ribosylate core histones
(157). PAR polymerases (PARPs) utilize NAD+ to catalyse
poly(ADPribose) synthesis and are involved in the cellular
stress response (158). Poly(ADP-ribose) polymerase-1 (PARP1),
a major member of the PARP family, is a nuclear protein
involved in chromatin remodeling and promotion of DNA
repair (159). However, several studies report that in condition
of oxidative stress PARP-1 also localizes to mitochondria (160–
162). Mitochondrial PARP-1 is reported to actively participate
in maintenance of functional integrity of the organelles (163)
and to play a detrimental role when hyperactivated (160,
164). Furthermore, the potential role of PARP1 as a nuclear
epigenetic regulator for the maintenance of mitochondrial
DNA integrity has been suggested (159). Indeed, PARP-1
suppression reduces mtDNA integrity, as well as the expression
of mitochondria-encoded respiratory complex subunits COX-
1, COX-2, and ND-2 (164). Accordingly, PARP-1 localizes
at promoters of nuclear genes encoding both the mtDNA
repair proteins UNG1, MYH1, and APE1 and the mtDNA
transcription factors TFB1M and TFB2M (164). Consistent with

these findings, PARP-1 suppression impairs mitochondrial ATP
production (164).

S-Adenosylmethionine
S-Adenosylmethionine (SAM) is produced by the condensation
of methionine and ATP during the first of nine steps required for
the conversion of methionine to succinyl-CoA, a predominantly
cytoplasmic pathway that ends up in the mitochondria (29).
It contains the active methyl-donor group utilized by most
methyltransferase enzymes. It has been demonstrated that ROS
can reduce SAM availability, thus limiting the activity of
DNA and histone methyltransferases (145). This is achieved
either by inhibiting methionine adenosyl-transferase and thus
SAM synthesis or by inhibiting methionine synthase and thus
methionine regeneration (56). Interestingly, long-term exposure
to H2O2 decreased SAM levels leading to hypomethylation of
the long interspersed nuclear element-1 (LINE-1) (165). LINE-1
hypomethylation as an indicator of global methylation status was
found in blood from patients with ischaemic heart disease and
stroke, and has been related to higher risk for these diseases (166).

FAD+

Derived from the vitamin riboflavin (vitamin B2),
mitochondrial-generated FAD functions as the prosthetic
group for certain oxidation–reduction enzymes (2). For example,
LSD1 demethylase is a FAD+-dependent enzyme capable
of demethylating H3K4me1/2 and H3K9me1/2 (167). LSD1
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activity is regulated by redox state and it is stimulated when
FAD is oxidized (168). LSD1, in turn, regulates mitochondrial
respiration and energy expenditure. Specifically, LSD1 binds
directly to genes such as PGC1α, PDK4, FATP1, and adipose
triacylglycerol lipase (ATGL), and represses their transcription
associated with loss of H3K4 methylation (169).

β-Hydroxybutyrate
The ketone body β-hydroxybutyrate (βOHB) modulates several
signalling pathways with implications for metabolic disease and
diabetes (170). Prolonged fasting, calorie restriction, strenuous
exercise, or ketogenic diets are conditions associated with
increases in serum concentrations β-OHB (171). Interestingly,
βOHB is an endogenous inhibitor of many NAD+-independent
HDACs (172). HDAC inhibition by βOHB might affect the
pathogenesis of type 2 diabetes in at least two ways: through
direct regulation of HDAC-dependent glucose metabolism, or
by promoting resistance to oxidative stress (170). For examples,
βOHB-mediated inhibition of HDAC1 and HDAC2 increases
acetylation of histone H3K9 and H3K14 and establishes a
permissive chromatin configuration for the expression of Foxo3
with subsequent transcription of its downstream antioxidant
genes such as catalase and MnSOD (172). Similarly, βOHB
may have similar effects on mitochondrial function, glucose
homeostasis, and obesity through endogenous inhibition of
HDAC3. The mechanism for these metabolic benefits of class
I HDAC inhibition may be the upregulation of PGC1α in a
variety of tissues (173, 174). Transcription of FGF21 is similarly
upregulated via βOHB-mediated inhibition of HDAC3 which
results in the activation of ketogenesis in obese mice (175).
The microvascular and macrovascular complications of type 2
diabetes are thought to be due in part to increased oxidative stress
brought on through several pathways including polyols, protein
kinase C, hexosamine, and advanced glycosylation end products
(176). In this context, the emerging role of βOHB in suppressing
oxidative stress may be relevant for the management of diabetic
complications. Other studies have previously suggested a role
for both βOHB and HDAC inhibitors in the protection from
oxidative or ischemic stress (170).

α-Ketoglutarate
Connections between metabolic cofactors and enzymes
associated with the removal of epigenetic methyl modifications
are also emerging (54). The TET family of dioxygenases
mediate the oxidation of 5mC. The potential for the TET family
(TET1/2/3) to regulate diverse physiological functions including
metabolic signalling requires the TCA cycle metabolite α-KG,
and this activity is inhibited by 2-hydroxyglutarate (2HG) (2)
(Figure 4). This means that oxygen deficiency and disturbances
in mitochondrial metabolism could affect the activation of TET
enzymes and thus control DNA methylation (177). Hearts of
mice exposed to high-fat diet (HFD) showed reduced levels of
αKG and this observation was paralleled by a compromised
TET1 function. Accordingly, an exogenous source of αKG
restored the DNA demethylation cycle, glucose uptake, and
insulin response (178).

Jumonji C domain-containing histone demethylases are
α-KG-dependent (177). Although studies are yet to determine
the TET-metabolism connection, mutations in isocitrate
dehydrogenase genes are associated with reduced α-KG and
elevated 2HG levels leading to genome-wide changes in histone
and DNA methylation patterns (54).

The Jumonji C domain (JmjC) containing lysine demethylases
(KDM) are the largest group, which can be divided to six
subgroups (KDM2-7) depending on their chromatin interacting
domains and substrate specificity (179). The activation of
these enzymes is also dependent on the presence of α-KG.
Therefore, disturbances in Krebs cycle function can affect histone
methylation and gene expression (177).

Acetyl-CoA
Acetyl-CoA generated from glucose and fatty acid metabolism
feeds into the TCA cycle to contribute to cellular energy
supply. Importantly, acetyl-CoA is the essential acetyl group
donor to lysine acetylation reactions and both pharmacological
and genetic interventions that modify cellular acetyl-CoA
concentrations directly affect acetylated proteins including
histones (180). Because histone acetylation is ubiquitously
associated with open chromatin and gene expression, acetyl-CoA
links intermediary carbon metabolism with chromatin dynamics
and transcription (54).

EPIGENETIC THERAPIES

Targeting epigenetic modifications is a highly promising
approach to restore gene expression and to rescue or prevent
mitochondrial insufficiency and vascular dysfunction. There are
several examples of how specific interventions can be employed
to modify the landscape of DNA/histone modifications in
this setting.

Studies in knockout mice have shown that class I HDACs
play a key role in regulating metabolism. Chronic treatment with
butyrate, a broad HDAC inhibitor that is expected to phenocopy
HDAC3 loss-of-function, prevents metabolic alterations in diet-
induced obese as well as in aged mice, mainly by enhancing
oxidative phosphorylation and beta-oxidation in mitochondria
(181, 182). Butyrate treatment also improves mitochondrial
biogenesis via epigenetic modulation of PGC-1α as well as
induction of several microRNAs such as miR-133a-3p, miR-208b,
and miR-499-5p, implicated in the regulation of mitochondrial
potential and integrity (183). Similarly, the class I HDAC
inhibitor SAHA, but not a class II HDAC inhibitor, increases the
expression of PGC-1α thus leading to enhanced mitochondrial
biogenesis, oxygen consumption in adipose tissue and skeletal
muscle from mice with type 2 diabetes (174). These changes
were associated with a significant improvement of insulin
sensitivity, metabolic rate and oxidative metabolism (174).
Moreover, treatment with SAHA was also found to reduce
ischemia-reperfusion injury following myocardial infarction
and to prevent apoptosis in cultured myocytes subjected to
hypoxia/reoxygenation (184, 185).

Pharmacological modulation of sirtuins has also shown to
impact on mitochondrial functionality and vascular function
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(186). Although primarily known as a nuclear protein, SIRT1-
mediated deacetylation of PGC-1α has been extensively
implicated in metabolic control and mitochondrial biogenesis,
which was proposed to partially underline SIRT1 role in caloric
restriction and impacts on longevity. Moreover, recent evidence
suggests that modulation of SIRT1 activity may also affect
the turnover of defective mitochondria by mitophagy (187).
In line with these evidences, SIRT1 activation by resveratrol
improves vascular function while attenuating dyslipidaemia
and obesity-induced metabolic alterations in human subjects
(188). SIRT1-dependent improvement of flow-mediated
dilation can be partially explained by increased deacetylation of
p66Shc promoter as well as posttranslational and transcriptional
regulation of endothelial NO synthase (eNOS) (137, 189). Indeed,
SIRT1 inhibition significantly increases p66Shc transcription,
mitochondrial oxidative stress and organelle disruption.
Whereas, in both the diabetic vasculature and myocardium
activation of SIRT1 suppresses p66Shc signalling thus preventing
the accumulation of H2O2 in mitochondria and cellular
death (137, 138, 190). Pharmacological activation of SIRT3
by small molecules, namely 7-hydroxy-3-(4′-methoxyphenyl)
coumarin (C12), also represents a promising approach to
prevent mitochondrial ROS via deacetylation and activation of
MnSOD (121).

Together with SIRT1, other epigenetic modulators participate
to the transcriptional regulation of the mitochondrial adaptor
p66Shc. Modulation of CpGDNAmethylation by folates regulates
p66Shc transcription (138). Consistently, a recent work found
that homocysteine stimulates p66Shc transcription in human
endothelial cells via specific CpG dinucleotides demethylation
in the p66Shc promoter (191). Of note, p66Shc promoter
CpG methylation was significantly reduced in peripheral blood
leukocytes of patients with coronary artery disease and high
plasma homocysteine levels, thus strengthening the relevance of
p66Shc-related epigenetic changes in the context of cardiovascular
disease (191). Moreover, metformin, a widely used antidiabetic
drug, was found to modulate SIRT1-p66Shc signaling in
experimental models of diabetes (138, 192, 193).

Inhibitors of histone acetyltransferases have also shown to
revert mitochondrial oxidative stress. The dietary compound
curcumin, an inhibitor of the histone acetyltransferase
CBP/p300, has shown to rescue hyperglycemia-induced
endothelial dysfunction by regulating the expression of several
pro-oxidant and antioxidant enzymes involved in mitochondrial
oxidative stress and mitochondrial biogenesis (194). Similarly,
inhibition of another acetyltransferase, GCN5, prevents
angiotensin II–mediated downregulation of catalase thus
fostering accumulation of mitochondrial ROS (195).

CONCLUSIONS

In conclusion, evidence discussed so far strongly suggests that
specific epigenetic signals are responsible for transcriptional
changes leading tomitochondrial dysfunction and cardiovascular
disease. In turn, the availability of mitochondrial intermediate
metabolites controls the activation of chromatin modifying
enzymes. The growing understanding of chromatin
modifications and their impact on transcription, will open
perspective for the development of personalized biomarkers
and epigenetic therapies aimed at preventing mitochondrial
dysfunction and cardiovascular disease.
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Cardiac side effects are a major drawback of anticancer therapies, often requiring the

use of low and less effective doses or even discontinuation of the drug. Among all

the drugs known to cause severe cardiotoxicity are anthracyclines that, though being

the oldest chemotherapeutic drugs, are still a mainstay in the treatment of solid and

hematological tumors. The recent expansion of the field of Cardio-Oncology, a branch

of cardiology dealing with prevention or treatment of heart complications due to cancer

treatment, has greatly improved our knowledge of the molecular mechanisms behind

anthracycline-induced cardiotoxicity (AIC). Despite excessive generation of reactive

oxygen species was originally believed to be the main cause of AIC, recent evidence

points to the involvement of a plethora of different mechanisms that, interestingly, mainly

converge on deregulation of mitochondrial function. In this review, we will describe how

anthracyclines affect cardiac mitochondria and how these organelles contribute to AIC.

Furthermore, we will discuss how drugs specifically targeting mitochondrial dysfunction

and/or mitochondria-targeted drugs could be therapeutically exploited to treat AIC.

Keywords: mitochondria, anthracycline, reactive oxygen species, mitochondria-targeted drug, cardiotoxicity after

chemotherapy

INTRODUCTION

Advances in cancer therapy resulted in marked improvements in patient survival, with
anthracyclines (ANTs) probably being the most potent antineoplastic therapeutics available for the
clinical practice, and still representing one of the pillars in the treatment of different tumors. In 2018
more than 3 million people were diagnosed with cancer in Europe only, and it has been estimated
that currently 14.5 million people are living with a history of cancer in USA, with this number
rising up to 19 million over the next 10 years (1, 2). Notably, 50% of people diagnosed with cancer
today will survive at least 10 years after diagnosis, and this proportion is even higher for childhood
cancer survivors. However, this improvement in survival of cancer patients has led to a greater
recognition of the long-term adverse effects of antineoplastic therapies like ANTs, mostly involving
the cardiovascular system. In a cohort of almost 2,000 cancer survivors monitored over 7 years, 33%
of deaths were related to cardiovascular conditions while cancer-related mortality accounted for
51% of deceases. Given the concrete possibility of incurring in ANT-induced cardiotoxicity (AIC),
and that the number of cancer survivors is constantly increasing, in the upcoming years there will
probably be a Cardio-Oncology “epidemic.” For this reason, cardiologists, oncologists, and basic
scientists are combining their efforts in order to better characterize the molecular mechanisms
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behind this pathology (3). In this regard, in recent years the role
of mitochondria has strongly emerged, since several compounds
exert their cardiotoxic effects targeting these organelles (4, 5).
This is due to the fact that mitochondria are particularly
important for the heart because of its high demand in
energy. Since mitochondria are the organelles dedicated to ATP
production, dysfunctional mitochondria are repeatedly replaced
by newly synthesized ones with the purpose of sustaining
the constant need for ATP, underlying the importance of
mitochondria dynamics and mitophagy. Drugs that impair the
proper activity ofmitochondria likely cause a substantial decrease
in ATP levels that, eventually, leads to myocardial dysfunction
(6). For this reason, drugs preservingmitochondrial function and
metabolism are receiving increasing attention in order to treat
or prevent cardiotoxicity induced by several drugs, including
ANTs. In this review, we will describe the crucial role in AIC
of mitochondria, organelles of fundamental importance for the
heart, and we will discuss about specific treatments targeting their
function and metabolism.

AIC: FROM DEFINITION TO CURRENT

TREATMENT

ANTs, such as doxorubicin (DOX), daunorubicin and epirubicin,
are antibiotic agents highly effective as anticancer therapeutics,
and for this reason they have been registered by theWorld Health
Organization as essential medicines (7). However, it was noticed
early on that their use is associated to the development of heart
failure (HF) (8, 9). Already in the seventies, Von Hoff et al.
analyzed retrospectively more than 4,000 DOX-treated subjects
and found that the overall incidence of congestive HF caused
by the treatment was 2.2%. Notably, the number of patients
affected by AIC in this study is probably underestimated since
it was based only on clinician-identified signs and symptoms of
congestive HF. Moreover, it was already clear that the probability
of incurring in AIC is strictly dependent on the total dose
administered and that the use of smaller, divided doses of DOX
decreases the likelihood of developing cardiotoxicity, while there
is a sharp increase in the prevalence of HF occurring at increasing
doses of the drug (10). Importantly, anthracyclines are rarely
administered as single agents and are more often combined
with radiotherapy or modern targeted therapies, like monoclonal
antibodies, which importantly exacerbate toxicity (11).

AIC can manifest acutely, early after infusion, strongly
compromising cancer treatment since it may require dose
modification or even cessation of anticancer therapies (12).
Almost 30% of patients are affected by this type of cardiotoxicity,
that is characterized by electrocardiogram abnormalities,
including atypical ST changes, reduced QRS voltage, tachycardia,
and supraventricular premature beats. Yet, acute AIC is a rare
complication and the most prevailing and significant form of
AIC is the chronic one. It is characterized by left ventricular
systolic dysfunction, with a reduction in left ventricular
ejection fraction (LVEF), which can be very insidious since it
is asymptomatic in the early stages. It can eventually progress
to dilated cardiomyopathy and congestive heart failure (CHF),
which is nowadays one of the main co-morbidity in childhood

cancer survivors (11, 13, 14). These patients have a 12-fold
increased chance of developing congestive heart failure (CHF)
up to 30 years after treatment, with an occurrence of AIC up
to 30% (15–17). Of notice, some cancer patients already have
pre-existing cardiovascular diseases or at least cardiovascular
risk factors that strongly increase the likelihood of developing
cardiac issues, and specifically AIC, in these individuals.

The assessment of AIC primarily relies on evaluation of
clinical symptoms and/or detection of systolic function (LVEF)
by echocardiography, acquisition scans, and magnetic resonance
imaging (18). In particular, cardiotoxicity is currently diagnosed
when a decline of 5–55% in LVEF with HF symptoms, or
an asymptomatic decline of 10 to below 55%, is observed.
Nevertheless, recent studies highlight the limitations of these
ejection fraction-based screenings, proposing new diagnostic
strategies. In particular, strain rate imaging and troponin (Tn)
leakage in the peripheral blood could be used to identify
patients with early clinical signs of cardiotoxicity (19–21). From
a therapeutic point of view, unfortunately there is no specific
treatment targeting AIC. Efforts are being made to develop
strategies to prevent AIC that, depending on their mechanism
of action, are classified as primary, when focused on preventing
the disease concomitantly with ANT treatment, and secondary,
when prompted to prevent symptomatic progression (22). For
now though all the secondary preventive strategies have limited
follow up, also because of the difficulties related to monitoring
cardiotoxicity in both adults and children (22). Some clinical
trials have shown modest success with the usage of the standard
pharmacological regimen for HF. Notably, it has been reported
that the non-selective β adrenergic receptor (βAR) blocker,
carvedilol, can prevent DOX-induced left ventricular dysfunction
through its antioxidant properties, and can ameliorate cardiac
function and survival in cancer patients under ANT therapy (23–
25). More recently, it was demonstrated that early treatments
with the angiotensin converting enzyme I (ACE-I) enalapril,
either alone or in combination with carvedilol, are able to
fully or partially recover LVEF in 82% of patients manifesting
signs of cardiotoxicity within the first year after the end of
ANT treatment (13). Unfortunately, these regimens are far
from optimal for AIC treatment, and this is probably due to
the fact that the mechanisms involved in this specific type of
cardiomyopathy are different to those underlying other types
of cardiac disease, like ischemic, post-infectious, and idiopathic
dilated cardiomyopathies (22). This underlies the need for more
specific therapeutics, and so, of a better understanding of the
molecular mechanisms behind this condition.

MITOCHONDRIA: KEY PLAYERS IN AIC

If the molecular processes behind the anticancer effects of ANTs
are well-known and studied, the mechanisms underlying their
cardiotoxic effects are still poorly understood and controversial.
It is well-established that ANTs exert their anticancer action
by directly targeting and inhibiting topoisomerase 2 (Top2)
in cancer cells, more specifically the 2α isoform, halting
DNA transcription, and replication (26). However, the same
mechanism can hardly explain the toxic effect of ANTs
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on the heart, since cardiomyocytes are for definition non-
dividing cells, thus leaving an open question for cardio-
oncology researchers (27, 28). Recent evidence suggests that
DOX cardiotoxicity is causally linked to inhibition of a Top2
isoform which is preferentially expressed by differentiated cells,
like cardiomyocytes, namely Top2β, the only Top2 expressed in
mitochondria (27, 29). Moreover, a number of other mechanisms
of AIC, which are not necessarily linked to Top2β inhibition,
have started to emerge. Interestingly, both pathways have
been reported to impact on the activity of mitochondria. In
the next paragraphs, we will describe Top2β-dependent (or
direct) and Top2β-independent (indirect) mechanisms of DOX
cardiotoxicity and how these signaling pathways converge on
the dysregulation of mitochondrial activity and metabolism
in cardiomyocytes.

“Direct” Mechanisms of AIC Involving

Mitochondria
As mentioned above, the cellular targets of DOX are
topoisomerases, more specifically of the Top2 class (30).
DOX can bind both DNA and Top2 in order to form the ternary
Top2-DOX-DNA cleavage complex which triggers cell death. As
mentioned before, besides inhibiting Top2α in proliferating cells,
ANTs can target Top2β, which is also the only known type 2
topoisomerase present in cardiac mitochondria [Figure 1; (27)].
In their study, Zhang et al. demonstrated that DOX treatment
induces significant changes in the expression of genes controlling
both mitochondrial structure and metabolism (oxidative
phosphorylation pathways) in cardiomyocytes expressing Top2β
(Top2β+/+), but not in Top2β knockout mice (Top2β1/1)
(29). More specifically, among the genes downregulated after
DOX treatment in Top2β+/+, and not significantly affected in
Top2β1/1 cardiomyocytes, are Ndufa3 (encoding the NADH
dehydrogenase 1-α subcomplex 3), Sdha (encoding succinate
dehydrogenase complex II, subunit A), and Atp5a1 (encoding
the ATP synthase subunit α). In agreement, mitochondria fail to
maintain their membrane potential in DOX-treated Top2β+/+

but not in Top2β1/1 cardiomyocytes (29). In addition to
modulation of genes involved in mitochondrial function and
metabolism, DOX was also shown to decrease the transcription
of Ppargc1a and Ppargc1b. These two genes encode for PGC-1α
and PGC-1β, respectively, that by interacting with crucial
transcription factors, namely NRF-1, NRF-2, and ERRα, push
the expression of genes implicated in mitochondrial biogenesis
(29). In keeping with their preserved mitochondrial function,
cardiomyocyte-specific Top2β knockout mice are protected from
DOX-induced progressive HF. Indeed, after 5 weeks of DOX
treatment, Top2β+/+ mice show a decrease in ejection fraction
up to 50%, whereas this parameter is not altered in Top2β1/1

mice. Zhang et al. also demonstrated that reactive oxygen species
(ROS) production is reduced by 70% in the hearts of Top2β1/1

as compared to Top2β+/+ mice (29). Of note, the finding
that Top2β silencing only partially reduces ROS production in
cardiomyocytes treated with ANTs suggests that ROS may be
generated in response to DOX by additional Top2β-independent
mechanisms that will be discussed in the next paragraph.

FIGURE 1 | Effects of DOX and of mitochondria-targeted drugs on

mitochondrial function and metabolism. DOX preferentially accumulates within

mitochondria thanks to its ability to specifically bind to the phospholipid

cardiolipin, causing membrane perturbation and ETC disruption that can be

limited by Elamipretide, a tetrapeptide that improves the efficiency of electron

transport and restores cellular bioenergetics. ETC dysfunction mainly induces

ROS production that can be though limited by the usage of the

mitochondria-targeted antioxidant, Mito-Tempo, a specific scavenger of

mitochondrial superoxide. Moreover, DOX can directly interact with iron to form

reactive ANT-iron complexes resulting in an iron cycling between Fe3+ and

Fe2+ which is associated with ROS production and altered iron homeostasis.

Dexrazoxane, as an iron-chelator, can inhibit the production of ROS ensuing

from the interaction between ANT and non-heme iron, ultimately alleviating

DOX-induced mitochondrial oxidative stress. Moreover, Dexrazoxane can

prevent DOX from binding to the Top 2β-DNA complex. For AIC treatment,

FAO inhibitors can also be used for their ability to enhance glucose oxidation

and prevent a decrease in intracellular ATP levels, thereby ensuring the proper

maintenance of cellular homeostasis.

“Indirect” Mechanisms of AIC Involving

Mitochondria
Since the initial discovery of ANT cardiotoxicity, the generation
of excessive ROS has represented the most widely accepted
mechanistic explanation. Even if in cardiomyocytes ROS
can be produced, at least in part, as a consequence of
ANT-mediated Top2β inhibition (see previous paragraph
for further detail), several “indirect” or Top2β-independent
mechanisms significantly contribute to ROS production and
mitochondrial dysfunction. In the next paragraph, we will
describe mechanisms of AIC which are unrelated to Top2β
inhibition and that culminate in alterations of mitochondrial
function and metabolism.

Mitochondrial ROS Production and Metabolism

Dysregulation
Recent evidence suggests that ANTs, in particular
DOX, preferentially accumulate in the mitochondria of
cardiomyocytes, strongly impacting on both the structure and
the activity of these organelles. Indeed, DOX can directly bind
to the abundant phospholipid cardiolipin, located in the inner
mitochondrial membrane (31, 32). This interaction hampers
the electron transport chain (ETC), since it inhibits complex I
and II, leading to ROS production (Figure 1). More specifically,
a quinone moiety in the C ring of DOX can accept electrons
for NADH or NADPH and is thus reduced by the respiratory
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chain complex I, generating a reactive semiquinone free radical
(33, 34). On one hand, this mechanism decreases the electron
flow through the ETC, removing electrons normally used for
ATP production; on the other hand, the reduced semiquinone
can transfer the electron to O2, generating the superoxide
anion O−

2 . DOX can be generated back by this process, in a
reaction known as the “redox cycling,” and can be reduced
again if NADH is present, producing O−

2 continuously. O−
2 can

be transformed into the low-toxic hydrogen peroxide (H2O2)
by superoxide dismutase (SOD) or into other ROS (35, 36).
ANT-mediated production of these reactive species in turn can
activate different pathways leading to cardiomyocytes death,
including apoptosis and necrosis. Intriguingly, DOX-induced
cardiomyopathy has been recently linked to another form of
regulated cell death, the less characterized iron-dependent cell
death, also named ferroptosis, which is driven by iron-dependent
lipid peroxidation. Indeed, ANTs produce ROS also because
they can chelate free iron, leading to the formation of reactive
iron-DOX complexes that can interact with O2 [Figure 1; (37)].
Moreover, it has been shown that DOX can upregulate heme
oxygenase 1, the enzyme responsible for heme degradation, and
releases free iron in cardiomyocytes, leading to oxidation of
lipids of the mitochondrial membrane and to a further release
of free iron in cardiomyocytes, thus feeding this vicious cycle of
ROS production (37). In addition, Ichikawa et al. showed that
DOX specifically triggers iron accumulation in the mitochondria
of isolated cardiomyocytes, without altering total cellular iron
levels. Intriguingly, this preferential accumulation is also found
in the hearts of DOX-treated patients. Mechanistically, the
increase in mitochondrial iron levels upon ANT administration
is mediated by the downregulation of the ATP-binding cassette
subfamily B member 8 (ABCB8), a transporter protein mediating
mitochondrial iron export. ABCB8 overexpression protects
mice from DOX-induced oxidative stress and cardiomyopathy
and preserves mitochondrial structure and cardiomyocyte
viability. Conversely, in the absence of ABCB8, DOX-induced
ROS production and mitochondrial damage are increased
compared to controls, underlying the cardio-protective role of
this transporter (37, 38). Notably, other aspects of mitochondrial
metabolism and energy production can be disrupted by ANTs.
It has been demonstrated that β-oxidation, the main process
used by the healthy heart to generate energy, is inhibited upon
DOX treatment through the down-modulation of carnitine
palmitoyltransferase 1 (CPT-1), while glycolysis is increased by
50% within few hours as a compensatory response. However,
this metabolic adaptation is reversed with time, with a strong
decrease in glucose oxidation that has been demonstrated
both in vitro and in vivo. This may be due to the reduction of
glucose supply after the induction phase or because of the poor
availability of one of the key enzymes of the process, namely
phosphofructokinase (PFK) (39).

Calcium Homeostasis Dysregulation
The metabolic changes induced by DOX, and the consequent
reduction in ATP levels, are known to negatively impact
myocardial contractility, which may be exacerbated by an
impairment of myocardial Ca2+ signaling. It is known that

DOX affects Ca2+ homeostasis and signaling via several
mechanisms, also involving ROS. On one hand, the lipid
peroxidation elicited by DOX-mediated ROS production can
alter the activity of membrane-residing proteins, such as
mitochondrial calcium channels (40, 41). In addition, ANTs
can impair the expression and activity of key players of
myocardial contraction, namely the cardiac ryanodine receptor
(RyR2) and the sarco-/endoplasmic reticulum Ca2+ ATPase
(SERCA2) (42). In physiological conditions, the action potential
mediating contraction is detected by L-type Ca2+ channels
that activate RyR2, which are responsible for Ca2+ release
from the sarcoplasmic reticulum (SR). This latter increase in
cytoplasmic Ca2+ level triggers muscle contraction. Ca2+ levels
are eventually restored to basal via the activation of SERCA2,
mediating the reuptake of Ca2+ into the SR (42). DOX and its
main metabolite, doxorubicinol (doxOL), are known to activate
and increase the open probability of RyR2, though this effect is
acute and detectable only right after administration of the drug
and at low concentrations (42). Instead, doxOL was found to
oxidize RyR2 thiols and this irreversible modification causes a
significant inhibition of the channel. Interestingly, it has been
shown that SERCA2 can be inhibited via the same oxidation
process, which leads to a dramatic increase in cytoplasmic
Ca2+ levels (42). In addition, this process is exacerbated by
the fact that ANTs can negatively affect the transcription of
the channel (42). More importantly, DOX is able to activate
Calcium/Calmodulin-dependent protein kinase-II (CaMKII),
which alters mitochondrial Ca2+ homeostasis and promotes
apoptosis. CaMKII increases Ca2+ influx in mitochondria
through mitochondrial calcium Ca2+ uniporter (MCU) via
activation of the nuclear factor-kappa B (NF-kB) and p53. This,
in turn, leads to the opening of the permeability transition pore
(MTP) at lower levels of Ca2+ compared to normal conditions,
resulting in dissipation of the mitochondrial membrane potential
and in increased permeability to apoptotic factors (43, 44).
Moreover, ANT-mediated ATP depletion (as described in the
previous paragraph) also reduces the mitochondrial membrane
potential and causes MTP opening, further dysregulating Ca2+

homeostasis (45).

Autophagy and Mitochondrial Dynamism Impairment
Among all mammalian cells, cardiomyocytes emerge for
having the highest mitochondrial density and also the greatest
respiratory capacity. This might be the reason why preserving the
homeostasis of these organelles is a physiological imperative for
the heart. In agreement, mitochondria damaged by DOX have to
be promptly removed to maintain a healthy heart. Unfortunately,
ANTs are known to disrupt the major degradative/recycling
process of mitochondria, namely autophagy (46, 47). Several
studies found that acute administration of high-dose ANTs
can induce the accumulation of both LC3 and p62, the major
autophagy markers, with a reduction in ATP levels in mouse
hearts, and a significant suppression of oxygen consumption rate
(OCR) in their mitochondria (46). Further analysis from Li et al.
demonstrated that DOX blocks cardiomyocytes autophagic flux
mediating a strong accumulation of undegraded autolysosomes.
This is due to defects in lysosomal acidification caused by
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DOX-mediated suppression of the activity of V-ATPase, the
proton pump that generates and maintains pH gradients in this
organelle (48). Furthermore, ANTs inhibit the phosphorylation
of one of the positive regulators of autophagy initiation, AMPK,
suggesting that ANTs dampen autophagy not only by impairing
the autophagic flux but also by inhibiting its initiation. Starvation
prior to ANT treatment restores AMPK signaling and autophagy,
ultimately protecting the heart against cardiac dysfunction
(49). Another mechanism by which DOX impairs autophagy
involves the PI3Kγ pathway. Li et al. recently showed that DOX
activates a PI3Kγ/Akt/mTOR cascade which ultimately converges
on autophagy inhibition, while genetic or pharmacological
inhibition of PI3Kγ restores the autophagic flux and protects
mice against AIC (50).

Along with impaired autophagy, AIC is characterized by
defective mitochondrial dynamics, which refers to organelle
fusion, fission, and mitophagy, a specific autophagic mechanism
targeting mitochondria. The mitochondrial fusion proteins,
mitofusin1 and 2 (Mfn1 and Mfn2), and optic atrophy 1
(Opa1), as well as the mitochondrial fission protein, dynamin
related protein (Drp)1, are highly expressed in the mammalian
heart, wherein their genetic ablation causes dramatic cardiac
dysfunction. Mfn2 levels are decreased in cardiomyocytes
after treatment with DOX and this event is associated with
increased mitochondrial fission, leading to mitochondrial
fragmentation, mitophagy, decreased antioxidative capacity,
and ultimately cell death. Accordingly, increased expression of
Mfn2 in cardiomyocytes, or the use of the mitochondria-targeted
antioxidant Mito-Tempo, a specific scavenger of mitochondrial
superoxide, attenuate DOX-induced mitochondrial fission
and prevent cardiomyocyte mitochondrial ROS production
and apoptosis (51). Mito-Tempo though is not the only
known compound to counteract AIC. Several others are now
being investigated and will be extensively described in the
following paragraphs.

TARGETING MITOCHONDRIA AND THEIR

METABOLISM FOR THE TREATMENT OF

AIC

In-depth study of the intertwined molecular mechanisms
underlying ANT-induced mitochondrial toxicity has recently
paved the way to the development of approaches potentially
useful to treat AIC. However, targeting AIC in the clinical
setting is still challenging, since a major requirement for these
medications is that they do not interfere with the antitumor
activity of ANTs. Below we will describe the most promising
therapeutics for AIC, with a major focus on those targeting either
ROS and their production, or mitochondrial metabolism.

Dexrazoxane
Dexrazoxane is not only one of the most studied cardio-
protective adjuvant for DOX chemotherapy, but it is also the
only Food and Drug Administration (FDA)- and European
Medicines Agency (EMA)-approved drug for AIC prevention
(12, 52). Thanks to its ability to act as an iron-chelator,

dexrazoxane inhibits the production of ROS ensuing from
the interaction between ANTs and non-heme iron, ultimately
alleviating DOX-induced mitochondrial oxidative stress
[Figure 1; (53, 54)]. However, the concept that dexrazoxane
promotes cardioprotection only by virtue of its antioxidant
properties is debated, especially in view of the finding that
other antioxidant drugs, such as vitamin A, vitamin E, and
N-acetylcysteine, failed to provide benefits in the treatment of
AIC (55–57). An additional mechanism that may account for the
cardioprotective action of dexrazoxane is its ability to prevent
DOX from binding to the Top2β-DNA complex. X-ray crystal
structure analyses revealed that dexrazoxane can bind to the two
ATP binding sites at the N terminus of Top2 and bridges two
Top2 monomers in the closed-clamp configuration [Figure 1;
(58)]. Moreover, it has also been demonstrated that dexrazoxane
forms a tight complex with the ATPase domain of human
Top2α and Top2β, suggesting that this compound prevents ANT
from binding to Top2 (59). In addition, dexrazoxane has been
shown to interact with Poly(ADP-ribose) (PAR) monomers,
acting as a PAR Poly(ADP-ribose) polymerase (PARP) inhibitor
(60). In agreement, inhibition of this enzyme improves cardiac
function and decreases mortality without altering the anticancer
activity of DOX in several animal models of DOX-induced
cardiomyopathy (61). Consistent with its mechanisms of action,
dexrazoxane is exploited to prevent rather than treat AIC
and its use appears to be most appropriate in patients with
stage A of HF, i.e., at high risk of developing the pathology.
However, Ganatra et al. demonstrated that dexrazoxane exerts
its cardioprotective function also in stage B HF (62). In a
small cohort of patients showing pre-existing asymptomatic,
systolic left ventricular (LV) dysfunction, the administration of
dexrazoxane 30min before each ANT dose was enough to allow
patients to complete their planned chemotherapy, with aminimal
decrease in LVEF and no elevation in HF biomarkers. On the
contrary, the three patients that did not receive dexrazoxane
had a marked reduction in heart function and developed
HF. Of note, two of them died from cardiogenic shock and
multi-organ failure (62).

Concerning the clinical efficacy of dexrazoxane, it has been
shown in multiple trials that it can reduce the incidence of
CHF and LVEF decline in patients treated with ANTs (63–65).
These findings were also corroborated by a more recent study
in which Marty et al. found that, based on both LVEF and
CHF results, 164 relapsed breast cancer patients treated with
dexrazoxane have significantly lower overall cardiac events
in comparison with the control group treated with DOX or
epirubicin only (66). Similarly, dexrazoxane has been shown
to abrogate DOX-mediated mitochondrial dysfunction in
childhood cancer survivors. Lipshultz et al. found that, in
peripheral blood mononuclear cells (PBMCs), DOX-damaged
mitochondria expand their mtDNA, which encodes for 13
polypeptides involved in oxidative phosphorylation, as an
attempt to compensate for the injury and improve mitochondrial
metabolism (67). Treatment with dexrazoxane, together with
DOX, reduces the number of mtDNA copies per cell compared
to the group treated with DOX only, suggesting preserved
mitochondrial function in patients receiving the combination
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therapy (67). Intriguingly, besides proving the efficacy of
dexrazoxane in counteracting AIC-related mitochondrial
dysfunction, this study also suggests that mitochondrial injury,
and the ensuing increase of mtDNA in peripheral blood, might
represent a biomarker for early detection of cardiotoxicity, which
still represents an unmet clinical need.

Despite evident clinical benefits, in 2011 EMA contraindicated
the usage of dexrazoxane in children since its efficacy in this sub-
population was not assessed. In addition, it was proposed that
dexrazoxane could not only attenuate the anticancer effects of
ANTs and increase the risk of secondary malignancies, but could
also causemyelotoxicity (64–66). Nevertheless, this view has been
recently refuted by a number of studies (68). A phase-III clinical
trial, involving more than 500 children and adolescents affected
by T-cell acute lymphoblastic leukemia (ALL) or lymphoblastic
non-Hodgkin lymphoma, was conducted to investigate not only
the cardio-protective effects of dexrazoxane but also its safety
as well as its potential impact on the antineoplastic efficacy of
ANTs (69). In addition, Lipshultz et al. found that dexrazoxane
attenuates DOX-induced cardiac injury in children with acute
lymphoblastic leukemia, without compromising its antileukemic
efficacy (70). It was also reported that dexrazoxane alone does not
increase the risk of second primary malignancies (SPMs), which
are instead related to the usage of three Top2 inhibitors used
in combination (doxorubicin, etoposide, and dexrazoxane) and
mostly etoposide (71). For these reasons, EMA has approved the
administration of dexrazoxane to children supposed to be given
more than 300 mg/m2 of ANTs (12, 52, 68).

Mito-Tempo
The novel drug named mitochondrial-targeted Tempo l (Mito-
Tempo) is a well-known superoxide dismutase (SOD) mimetic.
Mitochondria are the only organelles having a unique type of
superoxide dismutase, the manganese-containing SOD2, which
is crucial for protecting against excessive production of O2

−,
a key feature of AIC (Figure 1). Mice that do not express this
protein develop a severe cardiomyopathy already at 10 days after
birth, while mice missing one allele of SOD2 (SOD2+/− mice)
develop hypertension with time and if challenged with an high-
salt diet, suggesting a role for this enzyme in cardiac protection
(72). Mito-Tempo consists of the tempol moiety bound to a
triphenylphosphonium cation that allows the molecule to enter
mitochondria, and this is the reason why this molecule may
be highly effective in organs, such as the heart, which are
rich in these organelles. Mimicking the activity of SOD, Mito-
Tempo acts as an antioxidant drug in rats, and in mice it
has also been shown to alleviate oxidative stress and cardiac
toxicity induced by DOX (73, 74). Indeed, already in the 90’s,
it was demonstrated that Mito-Tempo significantly reduces
the contractile impairment as well as the lipid peroxidation
observed in rat heart treated acutely with DOX (75). In all
these in vivo studies, Mito-Tempo was used in combination with
ANTs in patients with no pre-existing heart disease, suggesting
that it might be exploited to prevent AIC likely in patients
in stage A HF. In addition, in a guinea pig model of non-
ischemic HF, Mito-Tempo reversed the pathological phenotype,
suggesting that this compound can also have a therapeutic

effect in patients in later stages of ANT-induced HF (76).
More recently, Mito-Tempo was used in combination with
dexrazoxane and this combinatorial treatment ameliorates DOX-
induced cardiomyopathy without altering the antitumor activity
of DOX (77).

Elamipretide
Elamipretide is one of the first drugs developed to target
selectively the mitochondrial ETC in order to improve the
efficiency of electron transport and restore cellular bioenergetics
[Figure 1; (78)]. More than one mechanism of action has been
proposed for this tetrapeptide. It penetrates cell membranes,
localizing to the inner mitochondrial membrane where it
can interact with the phospholipid cardiolipin. Cardiolipin
has a crucial role in maintaining the functional positioning
of the ETC complexes and supercomplexes within the inner
mitochondrial membrane, allowing for efficient electron
transfer down the redox chain, minimizing reactive oxygen
species production. This binding between cardiolipin and the
tetrapeptide prevents peroxidation of the phospholipid, thereby
maintaining membrane fluidity and supercomplex formation
and enhancing electron transport chain function, ultimately
increasing ATP synthesis and reducing mitochondrial ROS (79–
82). Several studies conducted in rats showed that elamipretide
can significantly improve myocardial mitochondrial ATP
content, reduce myocardial infarct size and improve cardiac
function (83–85). Moreover, treatment with elamipretide
improves left ventricular function in animals with HF (84). Saba
et al. also demonstrated a significant improvement in ejection
fraction in dogs with HF treated with elamipretide for 3 months
(86). In addition, this compound can ameliorate left ventricular
relaxation via restoration of cardiac myosin binding protein-C
(84, 86, 87). A clinical trial of elamipretide in patients with
heart failure with reduced ejection fraction (HFrEF) has also
been conducted to evaluate safety, efficacy, and tolerability of
the compound. Daubert et al. reported that no subjects suffered
any serious adverse events, and only one stopped the treatment
after a single administration. Moreover, all patients had stable
hemodynamic parameters of blood pressure and heart function,
suggesting that elamipretide is well-tolerated also together
with current standard HF medications. Most notably, patients
treated with elamipretide showed a significant reduction in left
ventricular volumes in comparison with placebo, despite the
small sample size of the trial (88). Of course, larger studies are
required to determine its safety as well as its efficacy in patients
with HF, but up to now elamipretide seems to be an optimal
therapeutic option for targeting mitochondrial dysfunction in
the future. On note, elamipretide has not yet been tested in
a specific model of AIC but all these studies suggest that this
molecule can both ameliorate and prevent different aspects of
mitochondrial dysfunction, leading to envisage its use in patients
at different stages of the disease. Unfortunately, there is still no
evidence that this drug does not alter the antineoplastic activity
of ANTs, which might be a possibility because of its known
ability to inhibit apoptosis (84). Further studies are needed to
prove the possibility of using this molecule in Cardio-Oncology.
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Autophagy-Targeting Drugs
Until now, no compounds targeting autophagy have been used
in clinical trials to prevent AIC or any cardiac disease. Targeting
autophagy in AIC, as well as in any disease context, is still
controversial, since this process is critical to the maintenance
of cellular homeostasis and it has to be finely tuned, with any
perturbation being either beneficial or detrimental (47, 89).
Some attempts to modulate this process have been reported
in animal models and have shown promising starting results,
suggesting that inhibiting this process can be protective and
that can be used in the future in patients in stage A of AIC.
Sciarretta et al. also demonstrated that the autophagy activator
trehalose can protect frommyocardial infarction-induced cardiac
remodeling, suggesting the possible use of this molecule as a
therapeutic agent for HF (90). Sishi et al. showed that rapamycin,
a known potent activator of autophagy, is able to improve the
negative effects mediated by DOX treatment when administered
in combination with the anticancer therapy, leading to a
decrease in ROS production, and enhanced mitochondrial
function (91). Pharmacological inhibition of PI3Kγ phenocopies
mTOR blockade and restores the autophagic flux, ultimately
preventing AIC (50). However, boosting the autophagic process
can negatively impact on the efficacy of cancer treatments
since it may make the tumor resistant to chemotherapy. In
agreement, autophagy inhibitors, instead of activators, have
been tested in oncology so far. Several trials have been carried
out inhibiting autophagy with hydroxychloroquine (HCQ), the
only clinically-approved autophagy inhibitor (92), raising some
concerns about the possible future usage of autophagy-activators
for curing AIC.

Inhibitors of Mitochondrial Fatty Acid Beta

Oxidation
Members of this category are Trimetazidine, Ranolazine, and
Perhexiline and their use results in the reduction of myocardial
fatty acid (FA) uptake and oxidation (Figure 1). In pathological
conditions, such as HF, cardiac fatty acid and glucose metabolism
are altered and contribute to impaired heart efficiency and
function. More specifically, there is an increase in the amount
of fatty acids that are oxidized by cardiac mitochondria (93–95).
Since FA oxidation (FAO) consumes more energy in comparison
with glucose oxidation, requiring 10% more oxygen for a given
amount of ATP that is produced, an increase in the amount
of FA oxidized by the mitochondria can potentially reduce
cardiac efficiency and impair heart function (96). Therefore,
FAO inhibitors might represent promising drugs for treating
AIC in patients at more advanced stages of the disease,
such as B and C, since they lead to an enhanced glucose
oxidation and prevent a decrease in intracellular ATP levels,
thereby ensuring the proper functioning of ionic pumps and
maintenance of cellular homeostasis (97–99). Nevertheless, early
and sustained inhibition of CPT-1, the crucial and limiting
enzyme of FAO, was shown to prevent LV dysfunction and
remodeling, as well as efficiently slowing down the development
and progression of the disease, in a dog model of HF, suggesting
the possible usage of FAO inhibitors also in stage A HF (100).

Of note, these compounds could also provide the opportunity
to target cancerous cells as well, since they depend on FAO
for several aspects such as proliferation, survival and drug
resistance (101).

Trimetazidine is an antiischemic agent able to specifically
inhibit the long-chain mitochondrial 3-ketoacyl coenzyme A
thiolase enzyme that can help cardiomyocytes to maintain
proper energy metabolism. No clinical trial has been conducted
using this drug for the treatment of AIC, or more generally
HF, but its safety and tolerability have been proven through
its use in acute coronary syndrome (102). Several studies
demonstrated that trimetazidine is effective in improving LVEF,
decreasing the rate of hospitalization and reducing brain
natriuretic peptide (BNP) levels in subjects with HF (103–106).
Moreover, it can also improve cardiac function and reduce
HF symptoms when administered together with metoprolol,
a βAR blocker.

Ranolazine, if used at high concentrations, is a partial
inhibitor of fatty acid beta-oxidation (107). Its main
mechanism of action is indeed related to its capability to
inhibit late inward sodium channels. In failing myocytes,
these channels are hyperactivated, leading to calcium
overload and in turn contractile dysfunction and increased
oxygen consumption (108). Ranolazine is approved for
the treatment of chronic angina, but there is evidence
suggesting its clinical effect also for HF treatment (109).
Up to now, it has been demonstrated that ranolazine mediates
diastolic benefits, by restoring myocyte relaxation, reducing
resting tension as well as left ventricular end diastolic
pressure in animal studies conducted in dogs (110, 111).
Further improvements have also been reported when this
drug is used in combination with βAR blockers (112).
Concerning clinical trials, a small sample size study has
been conducted in HF patients with preserved ejection
fraction, revealing that ranolazine can provide improvement in
hemodynamics, but no evidence was provided of improvement in
relaxation parameters (113).

Perhexiline is another drug acting on metabolism that was
originally thought as an antianginal medication and its usage
was declined for several side effects, including hepatotoxicity
and neurotoxicity (114). More recently, its toxicity has been
found to be preventable with individualized dosing, but its
clinical use remains difficult. Its activity as a fatty acid
beta-oxidation inhibitor was demonstrated on rat hearts that
showed a reduction of fatty acid utilization of 35%, with a
concurrent increase in cardiac output of 80 mL/min/g. More
specifically, it was demonstrated that perhexiline can inhibit
CPT-1, known to control access of long chain fatty acids to
the mitochondrial site of beta-oxidation (115). Concerning its
clinical use for HF treatment, a small sample size clinical
trial has been performed, particularly focused on studying
its effect on oxygen consumption. A clear improvement in
peak oxygen consumption was found following perhexiline
treatment compared to no change in patients treated with a
placebo, and improved ejection fraction was also observed,
suggesting its possible and effective future employment also for
AIC (116).
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BEYOND CARDIOMYOCYTES

An important aspect to consider from a therapeutic perspective
is that, although the majority of the studies in the field of Cardio-
Oncology have focused their attention on the effects of ANTs
on cardiomyocytes, these are not the unique cellular population
found in the heart. The emerging view is that anticancer
compounds also target cardiac fibroblasts and endothelial cells.
It has been shown that, both in vitro and in vivo, DOX affects
the differentiation of fibroblasts into myofibroblasts which in
turn produce a huge amount of extracellular matrix components,
leading to cardiac fibrosis. This process is driven by DOX-
dependent ROS that activate TGF-β, the main responsible
for fibroblast differentiation (117, 118). Moreover, DOX also
modulates the activity of ATM, a kinase which is activated
in response to DNA damage induced by oxidative stress.
Interestingly, this activation occurs only in cardiac fibroblasts
and not in cardiomyocytes, suggesting that this may be a
cell-type specific mechanism contributing to AIC (119). How
ANTs affect mitochondria in fibroblasts is still unexplored
and requires additional work. Instead, more information is
available on the role of these organelles in cardiac endothelial
cells. Apart from increasing cell permeability and leading to
edema formation, DOX can also reduce ATP levels and, in
turn, mitochondrial function in these cells (120). Moreover, by
means of its interaction with the nitric oxide (NO) synthase,
DOX can also interfere with NO production that is essential
for endothelial homeostasis (121). However, further studies are
needed to further explore the role of these other cardiac cell
populations in AIC, hopefully paving the way to the development
of new therapeutic options.

FUTURE PERSPECTIVES

Besides the urgent need for new effective therapeutic approaches,
another still unresolved issue in the field of Cardio-Oncology
is how to predict who is likely to develop cardiotoxicity.
Anthracycline dose, patient’s age and pre-existent cardiovascular
disease only partially explain the interindividual susceptibility
to AIC and the prevailing hypothesis is that the sensitivity to
anthracyclines has a genetic basis (122). Unveiling the genetic
variants that contribute to AIC is of upmost importance since
it may give the clinicians the opportunity to identify patients at
risk prior the treatment, and potentially modify the therapeutic
regimens by using alternative drugs or cardioprotective agents.
Early candidate gene association studies (CGAS) and genome-
wide association studies (GWAS) have started to reveal the

first genes, that are primarily related to drug metabolism and
transport, iron metabolism, DNA repair, oxidative stress, and
calcium homeostasis, with no genes being directly linked to
mitochondrial function regulation (123, 124). However, given the
small sample sizes of these studies, additional work is warranted
to conclusively validate these variants and to discover new genes
implicated in AIC susceptibility. In this scenario, human-induced
pluripotent stem cells (hiPSCs) represent an emerging powerful
tool since they can be obtained non-invasively from blood
samples, can be renewed in vitro and are genetically identical
to the patients from whom they are derived making them
the ideal experimental model for pharmacogenomics research.
By exploiting hiPSCs, Knowles et al. recently discovered a
number of new genetic variants which also include some genes
involved in mitochondrial function regulation (125). In addition,
being able to faithfully recapitulate in vitro the inter-individual
susceptibility to AIC (126), hiPSCs offer the unique opportunity
to verify in vitro, before the drug is administered to the patient,
that the treatment does not cause toxicity, paving the way
toward a personalized medicine approach in the field of Cardio-
Oncology (123).

CONCLUSIONS

It is now well accepted that mitochondrial dysfunction underlies
a broad spectrum of pathologies, ranging from cancer to
neurodegenerative and cardiovascular disease. It is not surprising
that mitochondria play a key role also in the pathogenesis of
AIC, considering the ability of ANTs to bind a phospholipid
of the inner mitochondrial membrane, cardiolipin, and thus to
accumulate within mitochondria. A number of drugs specifically
targeting mitochondrial pathways which are deregulated in
pathology as well as a new class of mitochondria-targeted
compounds have been developed. While most of them have
already been tested in preclinical models of HF, little is still known
about their therapeutic potential in the treatment of AIC. Further
studies in the appropriate preclinical murine and human models
of AIC are awaited to fill this gap.
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