About this Research Topic
In any composite, two factors are of importance - the interface/interaction between the phases and the relative organization of the phases. A strong interaction that allows binding between phases while maintaining the properties of each of the components is required. The relative organization of the phases can be a random and uniform dispersion. For example, one phase can be aligned to be stronger in the load bearing direction or it can follow other patterns such as body centre cubic (BCC), hexagonal, etc. While random, uniform dispersions are easier to generate by mixing and simultaneously depositing the multiple phases, organized phases can sometimes better represent the architectural features of the tissues to be mimicked.
This Research Topic aims at compiling the latest research on the various classes of composite materials that have been used so far in tissue engineering, along with the methods and the engineering challenges to get the right interfacing and relative organization between the component phases, as well as the outcomes of these controlled cell-biomaterial composite interactions. Original research articles and review manuscripts will be considered. Topics of interest will thus revolve around the design, fabrication and application of composite materials (both organic and inorganic) for tissue regeneration including, but not limited to:
-Organic and/or inorganic composite materials for tissue regeneration, preferably material combinations that have not been widely studied previously.
-Self-assembled (multi-material) systems for tissue regeneration.
-Composite materials that mimic the ECM.
-Composite materials as stimulus responsive tissue engineering scaffolds.
-Spatially controlled presentation of bioactive molecules.
-Multi-material scaffold fabrication techniques utilizing multi-scale/hierarchical organization strategies.
Keywords: Composite, Multi-materials, assembly, tissue engineering, regeneration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.