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Editorial on the Research Topic

Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of

Biomolecular Simulations

The wonderful complexity of biological systems is responsible for the emergence of life from
the chemical world, but it is also the reason why it is so difficult to address living systems
in simulations. As recently demonstrated by the tremendous efforts directed to the study of
SARS-CoV-2, even a relatively simple biological unit, such as a virus, needs to be addressed from
multiple point of views—both as a whole, to study processes on the scales of microns and times of
micro-milliseconds, as well as deconstructed into its single parts at the molecular level (Agúndez
et al., 2020; Durrant et al., 2020). From the point of view of simulations, this implies following
in silico the fate of (or tens or hundreds of) billions of atoms over macroscopic time scales. This
appears impractical at a first sight especially for the computation cost, which, considering for
instance Molecular Dynamics (MD) simulations, can be roughly estimated as ∞ Nα

D × Nt =

(S/dV)α(T/dt) where ND and Nt correspond to the number of degrees of freedom and the number
of timesteps needed to represent a system of size S for a simulation time T; dV, and dt represent
the discretization levels in space1 and time, and α is the exponent for the polynomial scaling of the
computation cost with size2. Therefore, the history of molecular simulations is strongly interlaced
with that of computing hardware development, both tracing back to the more than 50 years ago.
The exponential increase of computing system performances up to now has led to the possibility of
addressing whole viruses or (portion of) cells at the atomistic level in simulations of hundreds of ns
(Tarasova and Nerukh, 2018), while simulations of single proteins can extend over the milliseconds
scale (Shaw et al., 2009).

1dV is related to the resolution at which the system is treated. For instance, for the atomistic representation one can consider
an average inter-particle distance of 1.5 Å leading to dV of the order of 10 Å3. For non MD techniques, dt can be substituted
with a parameter describing the precision of phase or conformational space sampling.
2This is usually between 1 and 2, but may depend on the used model.
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However, at the moment fully atomistic MD simulations
cannot access simultaneously macroscopic sizes and time
scales large enough for a sufficient statistical exploration.
Therefore, they are often coupled to techniques for evaluating
thermodynamic quantities (typically free energy profiles) as
in the original research paper by Bagherpoor Helabad et al.
combining Langevin Dynamics (LD) with entropy evaluation
to identify the DNA binding domains of the androgen
glucocorticoid receptor, or in that by Sun and Kekenes-Huskey,
where the Potential of Mean Force (PMF) calculation along
the open-close transition of the Ca2+ binding protein S100A1
involved in the cardiomyocyte function is operated with
Weighted Histogram Analysis Method (WHAM) combined the
Born surface area continuum solvation. With similar aims, a
number of different techniques to expand the conformational
and phase space is used, as reviewed by Bowman and
Lindert focusing on the skeletal troponin. In these studies,
stochastic dynamics (e.g., Brownian dynamics, BD) are combined
with Umbrella Sampling-like techniques or steered molecular
dynamics (SMD) and Markov chain modeling, with the result
of effectively enhancing the conformational sampling. Similarly,
the Gaussian MDmethod accelerates dynamics using an external
potential to push the system out of the local minima, as in the
simulations of Mitchell et al., on CRISPR-Cas9 in the presence
of base pair mismatches. Also frequent is the combination of
atomistic simulations and enhanced sampling techniques with
bioinformatic methods, as in the template-based peptide sorting
and docking algorithm (Peptidock) with the aim of designing
peptides to interfere with Protein-Protein Interactions (PPI) for
therapeutic scopes, as reported by Wang et al..

Besides the need of extending the simulation scales, there
are other more subtle reasons that call for the search of new
simulation strategies beyond conventional atomistic MD. One is
that the first-generation atomistic Force Fields (FF), developed
and tested during the last nearly six decades, start now to
show their deficiencies, precisely due to the achievement of
the macroscopic scales in simulations. As highlighted in the
Perspective by Melcr and Piquemal, one shortcoming is the
lack of polarizability due to the use of fixed partial charges,
which determines a suboptimal representation of hydrogen
bonds and as a consequence a poor description of secondary
and tertiary structures relative stability, especially when the long
time scales and temperature variations come into play. Thus,
a tremendous parallel effort to reparameterize atomistic FFs to
include polarizability has been ongoing, as in the AMOEBA FFs.

The failure in reproducing effects involving electronic
rearrangements was one of the main driving factors inspiring the
development of the multiscale approaches. The idea of multiscale
is to combine atomistic FFs (molecular mechanics MM) with a
higher resolution method explicitly representing electrons and
therefore employing quantummechanics (QM) in different space
regions of the same system (hybrid QM/MM simulations, also
called “parallel multiscaling”), in order to improve accuracy only
in those regions where it is necessary. These regions are easily
identifiable for instance in enzymes, where the active site is
localized, making it possible the simulation of reactions such

as the synthesis of Polycaprolactone—Polyethylene Glycol co-
polymers, realized by Figueiredo et al. by means of an interface
between the Gaussian code for QM and the Amber code for
MM. The authors, additionally, couple the QM andMMmethods
even in a “serial way,” i.e., performing FF-MD simulations of the
entire protein (noQMpart) andQM simulations of the active site
only, to compare and pass structural parameters between each
other. In fact, in hybrid QM/MM simulations, the bottleneck
of the calculation is the QM part, which also determines the
reduction of the timestep of simulation, and consequently of the
whole run length, implying an extension of the size of the system
addressable with respect to QM only methods at same accuracy,
but not of the time-scale. Therefore, a very important issue to
solve is the efficiency of the implementation, which is addressed
in the Opinion by Bolnykh et al.. Here the authors discuss
the implementation realized in the MiMiC code, by means of
a multiple program-multiple data paradigm, which combines
the flexibility of the so-called loose coupling performed through
an input/output interface between two different codes for QM
and MM calculations with the computational efficiency of a
strong coupling typically implemented in single ad-hoc codes for
QM/MM. Additionally, to improve the extension of time scales
of simulations MiMiC implements efficient multiple-time steps
algorithms. We remark that, while the hybrid schemes solve in
principle also the problem of polarization, the accurate treatment
of electrostatics remains a crucial issue even in QM/MM
approaches, addressed in MiMiC with the fully Hamiltonian
electrostatic embedding. The hybrid QM/MM approaches can
be coupled to methods for sampling enhancement as shown
in the Perspective by Casalino and Magistrato focusing on the
mechanism of Eukaryotes spliceosome, where combinations with
thermodynamic integration, free energy calculations, principal
component analysis of trajectories and electrostatic analysis
are reviewed.

In biological systems the idea of multiscaling, or
multiresolution approaches emerges naturally, because of
the intrinsically hierarchical organization of biological matter, in
which different levels of organization are easily recognizable. For
biopolymers, the first super atomic level is that of the residue.
Accordingly, the most popular super-atomistic (Coarse Grained
CG) models are those based on a residue level representation.
MARTINI and SDK FFs use, in fact, a slightly higher resolution
(several 1-to-5 beads per residue) and explicit CG models for the
solvent. This brings speed up the simulations of 200 to 400-fold
with respect to atomistic ones, due in part to a direct reduction
of ND, in part to the possibility of increasing dt, allowed by a
the elimination of higher vibrational frequencies of the system,
a secondary consequence of coarse graining. In practice the
reduction of resolution operates a coarse graining both in the
space and time domains, allowing the simulation of slow and
extended processes like the budding of membrane and formation
of lipid droplets, as described in the Opinion by Zoni et al..
MARTINI is among the more standardized CG FFs, and is
often used in multi-scale approaches combined with atomistic
simulations and e.g., homology modeling, as in the study by
Glass et al. on the structure, function, and clustering of voltage
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gated sodium channels, or embedded within a flexible docking
protocol to supplement atomistic rigid docking between proteins
and nucleic acids, as this paper by Honorato et al. reporting a
modified version of HADDOCK code.

A further considerable reduction of computational cost is
obtained with CG implicit solvent models, especially those with
simplified parameterization. Alfonso-Prieto et al. review the
atomistic-CG “hybrid” (parallel) approaches based on a Go-like
models, applied to G-Proteins Coupled Receptors, and show
that these models can be used in combination with homology
modeling and docking techniques, to dramatically improve
the predictive power of binding affinity of ligands, especially
due to the inclusion of flexibility of the whole complexes at
low computational cost. Similarly, Delfino et al. use a Cα

based minimalist model to address the large conformational
changes of calmodulin upon Ca2+ binding/release, setting
up a simulation paradigm that combines serially CG with
atomistic representation and path searching, morphing, and
minimum action path techniques, extendable to all switching
proteins. D’annessa et al. review how atomistic and CG
simplified representation such as the network models (EN)
can be combined with docking algorithms, Monte-Carlo and
MD possibly associated to enhanced sampling techniques (SD,
WHAM, PMF) and implicit solvent treatments, focusing on
applications to design peptide drugs to interfere with PPI.

A crucial point when considering CG approaches is related to
the parameterization strategies. Besides the already mentioned
simplified models (EN, Go-like, and minimalist) parameterized
based on reference structures, parameterization strategies involve
either bottom-up approaches based on higher resolution models
or higher level theories (also called “physics based” or “ab initio”)
usually involving the match of forces or energy surfaces, or top-
down strategies (also called “knowledge based” or “data driven”),
which incorporate experimental data, generally of different origin
(thermodynamic, structural, vibrational). There is an ambivalent
case: the “statistics based” parameterization, in which sets of
structural data of any origin (measured or calculated) are used
through Boltzmann Inversion (BI)-related procedures to fit the
model parameters. The latter approach in particularly preferred
when CG simulations are used to evaluate thermodynamic
properties, because BI is the expression of thermodynamic
consistency with the dataset. Oprzeska-Zingrebe and Smiatek
show with a theoretical analysis that many subtle effect may arise
at the bulk level in the evaluation of thermodynamic properties
and equilibrium constants, depending on the specific choice
of the size of the CG bead and its location, which therefore
must be chosen very carefully. This is especially true when
the coarse graining is pushed at very low resolution, e.g., a
single bead per molecule or domain, sometimes called meso-
scale (MS) level, often used to represent the crowders in the cell
cytoplasm. Ostrowska et al. nicely review the recent literature of
the crowded environment representations, which, incidentally,
are usually “parallel” or hybrid multi-scale representations, since
the system of interest, typically a protein, is represented at a
higher resolution level than the crowders. The authors highlight
the effects purely due to confinement, those due to the crowders
shape or to the detail of the surface. A similar MS model

decorated with CG beads is used by Brancolini and Tozzini
to represent bio-functionalized metal nanoparticles designed as
anti-aggregating therapeutic agents in degenerative diseases due
to amyloidogenic proteins.

Clearly, the possible combination of different resolution
and different sampling or parameterization methodologies are
limited only by the researchers’ creativity. For instance, Kandzia
et al. use a MS level network model as external biasing potential
for replica exchange atomistic MD (replicas differing by the level
of bias) to study the slow motion and mechanism of action of
the Hsp90 chaperone of yeast, giving an original example of
parallel multi-scaling. Pezeshkian et al. give a perspective on their
methodology that matches a continuum-like representation of
the membrane with the particle-like representation. Their model
represent the membrane by a dynamical triangulation including
elasticity and the effect of membrane protein or inclusions,
which can modify the elasticity and curvature, dynamically
changing the parameters it via a Metropolis algorithm. The
model parameters are calibrated using both atomistic and CG
(MARTINI), with which the model is fully compatible, thanks
to a back-mapping algorithm. The multi-scaling approach is
also perfectly suited to represent the chromatin, the system in
which the hierarchical structural organization is most evident.
In particular, compaction-decompaction transitions are events
triggered at the level of the nucleosome by chemical changes in
the histone proteins, and reflect on themacroscopic level through
a process where electrostatics plays a major role. Electrostatics
also play a role in maintaining the delicate balance, which keeps
the DNA relatively compact, yet accessible for the transcription
and duplication. Bendandi et al. review the methods used to
simulate these processes, involving all scales from atomistic
to MS, and using several methodologies from MD to MC,
implicit electrostatics, statistical, andmathematical modeling and
analyses (e.g., topological and fractal models). The multi-scale
approach is combined with the mathematical knot theory also by
Rosa et al., using an inter-disciplinary approach to analyze the
paradox of packing-entangling and accessibility of DNA.

In the course of the last decades the low-resolution models
have evolved, and it has become clear that the combination of
top down and bottom up-strategies in their parameterization
can produce model with accuracy comparable or exceeding that
of atomistic FFs, especially in the evaluation of thermodynamic
properties. In the review by Orellana, the theme of cross-
validation of in vitro and in silico is addressed, showing
that the best way to tackle the complexity of live matter
is a multi-disciplinary combination of enhanced sampling
simulation techniques and path sampling methods applied
to multi-scaling approaches mixing simplified models as EN
with atomistic representation and experimental as CryoEM.
The application focus is here on the switching proteins,
ubiquitous, and difficult to address due to large conformational
changes. However, a similar need for inclusion and cross-
validation of models by means of experimental data emerges
in the MS models for the cytoplasm, where, as shown by
this brief report of by Kompella et al., standardized data
about the composition in mass, size and diffusivity and inter-
crossing relations between the cell elements are needed to set
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up a model for eukaryotic cells accurately reproducing the
crowding effects.

Indeed, elements from system biology must be included
when the level of simulation scales toward that of the cell.
Widely used approaches in this case are those of Kinetic Master
Equations (KME) connecting a set of cell elements. KME is
used for instance in the representation of the whole complement
cascade of the immune system illustrated in the Opinion by
Zewde, where the vertices of the network are proteins, NAs and
other cell components, and the kinetic parameters are evaluated
through BD, within a “serial” coupling between particle-based
and system biology methods. Similarly, Thornburg et al. address
the processes of replication, transcription, and translation of
a minimal synthetic cell, using atomistic data and genomic
information for the parameterization. The model is able to
predictively account for details such as the ribosomes production
and activity. This should be considered a step forward in the
representation of an entirely in silico cell.

The interdisciplinary character of multiscale approaches
emerges clearly from the panoramic view on the methods
illustrated in this collection, enriched by the contributions of
the participants to the Workshop Multiscale Modeling from
Macromolecules to Cell3 (CECAM Lausanne Feb 4-6 2019)
organized by us and by which this collection was inspired.
It is apparent that we are currently witnessing the historical
moment in which the bottom-up computational approaches
rising from the atomic and molecular level, and the top-
down experimental methods, from the macroscopic level, meet
at the mesoscale, where new possibilities of discovery and
comprehension are enabled. Finally, before closing, we would
like to comment on COVID19, the severe respiratory syndrome

3Multiscale Modeling from Macromolecules to Cell, workshop website https://
www.cecam.org/workshop-details/241.

caused by the SARS-CoV-2 virus. COVID19 continues to
unexpectedly test many of the cross-disciplinary and multiscale
approaches discussed in this collection (Swiderek and Moliner,
2020) with many ongoing efforts from this community aiming
to understand viral mechanisms of action (Zhao et al., 2020)
as well as identify possible drugs and vaccines (Casalino et al.,
2020). The urgency of the COVID19 situation has led to a
unique combination of private-public worldwide coordination
of governments, industries, and academies offering computing
resources (Zimmerman et al., 2020) and sharing of methods,
models, and data4. Although this terrible disease has not been
defeated, yet, the incredibly rapid and coordinated worldwide
research effort can already been considered a successful example
to follow.
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Human G-protein coupled receptors (GPCRs) convey a wide variety of extracellular

signals inside the cell and they are one of themain targets for pharmaceutical intervention.

Rational drug design requires structural information on these receptors; however, the

number of experimental structures is scarce. This gap can be filled by computational

models, based on homology modeling and docking techniques. Nonetheless, the low

sequence identity across GPCRs and the chemical diversity of their ligands may limit the

quality of these models and hence refinement using molecular dynamics simulations is

recommended. This is the case for olfactory and bitter taste receptors, which constitute

the first and third largest GPCR groups and show sequence identities with the available

GPCR templates below 20%. We have developed a molecular dynamics approach,

based on the combination of molecular mechanics and coarse grained (MM/CG), tailored

to study ligand binding in GPCRs. This approach has been applied so far to bitter taste

receptor complexes, showing significant predictive power. The protein/ligand interactions

observed in the simulations were consistent with extensive mutagenesis and functional

data. Moreover, the simulations predicted several binding residues not previously tested,

which were subsequently verified by carrying out additional experiments. Comparison

of the simulations of two bitter taste receptors with different ligand selectivity also

provided some insights into the binding determinants of bitter taste receptors. Although

the MM/CG approach has been applied so far to a limited number of GPCR/ligand

complexes, the excellent agreement of the computational models with the mutagenesis

and functional data supports the applicability of this method to other GPCRs for which

experimental structures are missing. This is particularly important for the challenging

case of GPCRs with low sequence identity with available templates, for which molecular

docking shows limited predictive power.

Keywords: G-protein coupled receptor, molecular dynamics, multiscale simulations, molecularmechanics, coarse

grained, chemosensory receptors, bitter taste receptors, olfactory receptors
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INTRODUCTION

G-protein coupled receptors (GPCRs) are one of the largest
protein superfamilies, with more than 800 (4%) genes in humans
(Venter et al., 2001; Fredriksson et al., 2003; Lagerstrom and
Schioth, 2008; Tikhonova and Fourmy, 2010). They detect a
wide variety of extracellular signals (from photons to hormones
and neurotransmitters) and trigger a myriad of intracellular
transduction cascades (using different G-proteins and second
messengers) (Alexander et al., 2017). These pleiotropic receptors
are involved in many physiological functions, from vision
to chemical sensing and neurotransmission, and, hence,
they are attractive targets for pharmaceutical intervention.
Approximately 34% of currently FDA-approved drugs bind
to GPCRs (Hauser et al., 2018) and they are used to treat
disorders as diverse as pain, hypertension, diabetes, cancer
or neurological diseases (Hauser et al., 2017). Given the
physiological and pharmacological relevance of GPCRs,
unraveling their ligand binding determinants can be extremely
useful both for understanding receptor function and for
designing new drugs.

Based on phylogenetic and sequence conservation analyses,
GPCRs can be classified in 5 different families or classes
(Fredriksson et al., 2003; Schioth and Fredriksson, 2005):
rhodopsin (class A), secretin (class B1), adhesion (class B2),
glutamate (class C), and frizzled/taste2 (class F). Nonetheless,
taste 2 (or bitter taste) receptors have also been proposed
to form part of class A (Nordstrom et al., 2011) or even
constitute a sixth, additional family (class T) (Munk et al.,
2016a). Since the appearance of the first crystal structure of
rhodopsin in 2000, experimental structural characterization of
GPCRs is blossoming (Munk et al., 2019). As of February
2019, there are 59 unique receptor structures solved (https://
gpcrdb.org/structure/statistics), most of them corresponding to
the rhodopsin (or class A) family (Figure 1). Molecular dynamics
(MD) simulations started from these experimental structures
have provided very important insights into ligand binding and
receptor activation (Miao andMcCammon, 2016; Sengupta et al.,
2016; Latorraca et al., 2017; Marino and Filizola, 2018; Torrens-
Fontanals et al., 2018; Velgy et al., 2018).

Nonetheless, the experimental structural coverage is still
very far from the total of 800 GPCRs. In particular, there are
no experimental structures available for three receptor groups:
olfactory receptors (ORs, which constitute half of class A), taste
2 receptors (TAS2Rs, which represent the third largest GPCR
family) and adhesion (class B2) receptors. In silico modeling
can help to fill this gap of ∼87% structurally uncharacterized
GPCRs (Pándy-Szekeres et al., 2017). Indeed, the community-
wide GPCR Dock assessment (Michino et al., 2009: Kufareva
et al., 2011, 2014) has shown that homology modeling and ligand
docking are able to provide valuable information on receptor-
ligand interactions, in particular for those GPCR targets that have
templates with sequence identity higher than 35–40% (Kufareva
et al., 2011; Beuming and Sherman, 2012). Subsequent refinement
of the bioinformatics-based models through molecular dynamics
simulations (Kufareva et al., 2014; Cavasotto and Palomba, 2015;
Lupala et al., 2018) and integration of experimental (mutagenesis

FIGURE 1 | GPCR statistics. The number of members is based on reference

(Munk et al., 2016a) and the number of experimental structures was taken

from the GPCRdb database (https://gpcrdb.org/structure/statistics, accessed

on January 2019). GPCRs are grouped according to the class A-F

nomenclature (Fredriksson et al., 2003). Within class A, two groups are

differentiated: non-olfactory and olfactory receptors. The taste 2 receptors

have been proposed to belong to either class A (Nordstrom et al., 2011) or

class F (Fredriksson et al., 2003), or even constitute a novel, sixth class (Munk

et al., 2016a). Legend labels for those groups without experimental structures

are in gray.

and ligand structure-activity relationship) data (Munk et al.,
2016b) further increases the model quality to values close to
experimental accuracy. However, approximately half of GPCRs
do not have a close template (i.e., an experimental structure
of a receptor from the same family with a similar ligand). For
instance, the sequence identity of 90%GPCRs with the rhodopsin
template (representative of the largest GPCR family, class A) is
lower than 20% (Zhang et al., 2006). Therefore, in most cases the
in silicomodeling approach needs further improvement, typically
using molecular dynamics (Kufareva et al., 2014; Cavasotto and
Palomba, 2015; Lupala et al., 2018).

Chemosensory receptors (olfactory and bitter taste receptors)
are among the GPCRs without close templates. Increasing
evidence shows that these receptors are expressed not only in the
nose and the tongue, but also in other parts of the body (Foster
et al., 2014; Abaffy, 2015; Ferrer et al., 2016; Shaik et al., 2016;
Lu et al., 2017; Behrens and Meyerhof, 2019; Lee et al., 2019) and
thus they have become attractive novel targets for drug design
campaigns (Lee et al., 2019). However, chemosensory receptors
represent a major challenge for computational modeling. Their
sequence identity with the available GPCR templates is lower
than 20% (Fierro et al., 2017) and thus only low resolution
homology models can be generated (Kufareva et al., 2011;
Fierro et al., 2017). Hence, our lab has made a major effort
to attempt at improving such low resolution homology models
and at making valuable predictions of the ligand binding
determinants of these receptors. In this review, we first explain
the computational approach used in our group to study low
resolution GPCR models, based on the combination of state-
of-the-art bioinformatics techniques and multiscale molecular
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dynamics simulations, as well as its validation on a class A
GPCR (the β2-adrenergic receptor) with a solved crystallographic
structure. Then, we show that, although bioinformatics-based
models can be a good starting point to study receptor-ligand
interactions, multiscale simulations significantly improve the
quality of the models for which MM/CG simulations have been
run so far. A perspective on this multiscale approach concludes
this review.

MATERIALS AND METHODS

Bioinformatics
Given the lack of experimental structures, the initial structures
of the receptor/ligand complexes are generated using
bioinformatics approaches. Although there are several
webservers specialized in GPCR modeling (Launay et al.,
2012; Zhang et al., 2015; Busato and Giorgetti, 2016; Esguerra
et al., 2016; Pándy-Szekeres et al., 2017;Worth et al., 2017; Miszta
et al., 2018), here we used the GOMoDo webserver (Sandal et al.,
2013), which combines in a single pipeline homology modeling
and molecular docking for GPCRs.

Since the sequence identity of any given olfactory or bitter
taste receptor with the available GPCR templates is lower than
20% (Fierro et al., 2017), special care needs to be taken in the
sequence alignment step. Hence, the alignment was done using
profile Hidden Markov Models (HMMs) of the corresponding
target receptor family and the GPCR template(s), which were
generated with HHPred (Soding et al., 2005). This approach
has been shown to improve the target-template alignment for
distant homologs (Soding et al., 2005), in particular for GPCRs
(Kufareva et al., 2014). This alignment was further improved
by manual curation, taking advantage of the conserved seven
transmembrane (7TM) helix topology and the presence of
common conserved features across GPCRs (Lagerstrom and
Schioth, 2008; Venkatakrishnan et al., 2013; Pydi et al., 2014,
2016; Tehan et al., 2014; de March et al., 2015; Di Pizio et al.,
2016; Fierro et al., 2017). Moreover, since template selection is
difficult with such low sequence identity, several models based on
different templates were built usingMODELLER (Webb and Sali,
2016), and the best model was selected considering also structural
quality parameters (Melo et al., 2002; Shen and Sali, 2006).

The receptor structural model thus generated was then
submitted to molecular docking using HADDOCK (Dominguez
et al., 2003). Although other docking approaches were tested
[based on AutoDock Vina (Trott and Olson, 2010) or Glide
(Friesner et al., 2004)], no significant improvement in the quality
of the models was observed (Fierro et al., 2017). The location of
the ligand binding pocket inside the 7TM bundle is conserved
(Venkatakrishnan et al., 2013), despite the low sequence identity
among GPCRs. Moreover, the results of the GPCR Dock
competitions (Michino et al., 2009; Kufareva et al., 2011, 2014;
Cavasotto and Palomba, 2015; Munk et al., 2016b) seem to
indicate that incorporating information about putative binding
residues (from experimental data or computational predictions)
helps to improve the docking results. Therefore, an information-
driven approach was taken, in which the computationally
predicted binding residues [using fpocket (Le Guilloux et al.,

2009)] were used to guide the docking. Nonetheless, the fine
details of the ligand binding site are expected to be highly
variable across GPCRs (Venkatakrishnan et al., 2013), due
to the chemical diversity of the GPCR ligands. Hence, in
our HADDOCK-based docking approach both receptor and
ligand were considered fully flexible in order to allow mutual
readjustments. Other flexible docking approaches have also been
successfully employed by other groups to predict the binding
determinants of chemosensory receptors [see for instance (Di
Pizio and Niv, 2014; Di Pizio et al., 2017; Xue et al., 2018)].

Multiscale Molecular

Dynamics Simulations
The results of the GPCR Dock competitions [reviewed in
references (Cavasotto and Palomba, 2015) and (Ranganathan
et al., 2017)] showed that refinement of the docked complexes
using molecular dynamics simulations can significantly improve
the prediction of receptor/ligand interactions. This is particularly
important for GPCRmodels based on low sequence identity, as it
is the case for chemosensory receptors, where the low accuracy of
the side chain prediction and the limited sampling of the docking
algorithms may undermine the quality of the bioinformatics-
based models. There are several studies in the literature applying
molecular dynamics simulations to chemosensory receptors
(Gelis et al., 2012; Lai and Crasto, 2012; Charlier et al., 2013; Lai
et al., 2014; Chen et al., 2018; Jaggupilli et al., 2018; Liu et al.,
2018; Bushdid et al., 2019). Here we focus on a hybrid, multiscale
approach developed in our group (Neri et al., 2005, 2008; Leguèbe
et al., 2012; Giorgetti and Carloni, 2014; Musiani et al., 2015;
Tarenzi et al., 2017), which is tailored to study ligand binding
in GPCRs.

As shown in Figure 2, the ligand, the surrounding protein
residues (typically the extracellular half of the receptor) and
water molecules are described with molecular mechanics (MM)
using the GROMOS united-atom force field (Schuler and Van
Gunsteren, 2000; Schuler et al., 2001; Oostenbrink et al., 2004).
Instead, the rest of the protein (i.e., the intracellular half of the
receptor) is treated at the coarse grained (CG) level using a Gō
model (Go and Abe, 1981). Each amino acid is mapped into a
single coarse grained bead corresponding to the alpha carbon
atom and native contacts are mimicked by introducing two new
potential terms. The bonded interactions between consecutive
CG beads are taken into account using a quartic potential,
whereas the non-bonded interactions between non-consecutive
CG beads are described through a Morse-like potential. The MM
and CG regions are connected by an interface (I) region, which
ensures the continuity of the protein backbone by coupling the
two levels of resolution. The MM-I interaction is treated at the
atomistic level using the GROMOS force field, whereas the I-
CG interaction is described using the Gō model. Namely, bonded
interactions are calculated between the Cα atoms of the I residues
and the consecutive CG beads, whereas non-bonded interactions
are computed using both the Cα and Cβ atoms of the I residues
and the non-consecutive CG beads.

The presence of the lipid bilayer is modeled implicitly, using
three wall potentials: a “coating surface” wall that simulates the
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FIGURE 2 | Simulation setup of the Molecular Mechanics/Coarse-Grained

(MM/CG) approach. The receptor (GPCR) is divided in three regions: the

extracellular MM part (in blue), the intracellular CG part (in yellow) and the

connecting interface (I, in green). The ligand (shown in red) and the surrounding

receptor residues and water molecules (in blue and white, respectively) are

described with MM. The presence of the lipid bilayer is modeled implicitly by

incorporating three different wall potentials (upper and lower membrane planes

and coating surface) and two additional hemispheric walls are included to cap

the ends of the protein and prevent water evaporation.

effect of the lipid hydrophobic tails embracing the protein surface
and two “membrane plane” walls that mimic the presence of the
lipid head groups. In addition, two “hemispheric” wall potentials
are included to cap the extracellular and cytoplasmic ends of the
protein and to prevent water evaporation. Water molecules, Cα

atoms and aromatic residues Phe, Trp, and Tyr (the so-called
“anchor residues”) are affected by these boundary potentials,
which are added to the MM/CG potential energy function as
functions of the distance of an atom to the closest wall. Recently,
a reservoir of CG water has been introduced around the MM
water cap, permitting water molecules to freely diffuse between
the MM and CG regions, changing on the fly their resolution.
This allows to carry out simulations in a statistically well-defined
(grand canonical) ensemble in the higher-resolution MM region,
resulting in a further improved description of the binding poses
and the binding site flexibility (Tarenzi et al., 2019).

Compared to docking, these multiscale simulations allow
to (i) sample protein flexibility and protein/ligand interactions
more extensively (∼1 µs timescale) and (ii) include explicit
water molecules, which may be involved in ligand binding in

GPCRs (Pardo et al., 2007; Angel et al., 2009; Venkatakrishnan
et al., 2019). Moreover, the use of the Go model in the
intracellular half of the receptor prevents possible unfolding
problems due the initial wrong orientation of the side chains
in the low resolution homology model. For further details
on the MM/CG implementation, we refer the reader to some
recent reviews (Giorgetti and Carloni, 2014; Musiani et al., 2015;
Schneider et al., 2018).

RESULTS AND DISCUSSION

Validation of the Molecular

Mechanics/Coarse Grained (MM/CG)

Approach
The reliability of the MM/CG approach was assessed using the
β2-adrenergic receptor (β2-AR) in complex with either its inverse
agonist S-carazolol or its agonist R-isoprenaline (Leguèbe et al.,
2012; Marchiori et al., 2013). The availability of a crystal structure
of the receptor (for the first complex) (Cherezov et al., 2007),
as well all-atom (AA) molecular dynamics simulations (for both
complexes) (Vanni et al., 2011) allows to compare the results
of the MM/CG simulations with both static and dynamical
data. Three different types of tests were carried out (Leguèbe
et al., 2012; Marchiori et al., 2013), started from different
initial structures: (i) the same initial structures of the β2-AR/S-
carazolol and β2-AR/R-isoprenaline complexes as the atomistic
simulations, (ii) an alternative initial structure of the β2-AR/S-
carazolol complex built by displacing the ligand to a position
where none of the crystallographic receptor/ligand interactions
was present, and (iii) a low resolution model of the β2-AR/S-
carazolol complex built using bioinformatics. Each of the test
simulations were∼0.8 µs long.

The first test (Leguèbe et al., 2012) showed that the MM/CG
approach is able to preserve the receptor/ligand complex
structure observed in the crystal structure, as well as to
provide dynamical and hydration information similar to the AA
simulations, but at a lower computational cost. Complementarily,
the second test (Leguèbe et al., 2012) confirmed that the
agreement between the MM/CG and AA simulations observed in
the first test is not due to the use of a common initial structure
and, furthermore, demonstrated the predictive power of the
MM/CG approach even when starting from a wrong binding
pose. Nonetheless, the two previous tests can be considered as
redocking experiments: even though the system was converted
from AA into hybrid MM/CG [test (i)] or the ligand was
moved out of place [test (ii)], the binding residues were already
positioned as in the correct binding pose. Instead, the third test
(Marchiori et al., 2013) validated the reliability of the MM/CG
approach applied to low resolution models, as the ones used for
the bitter taste receptors discussed in the next section. In such
models, the orientation of the side chains is expected to be hardly
accurate, due to the low sequence identity with the template
used in the homology modeling (Chothia and Lesk, 1986; Baker
and Sali, 2001; Eramian et al., 2008; Olivella et al., 2013; Piccoli
et al., 2013; Busato and Giorgetti, 2016). Indeed, the homology
model of the β2-adrenergic receptor (built using as template the
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experimental structure of squid rhodopsin) shares only a 20%
sequence identity with the target and thus docking of the ligand
S-carazolol resulted in a wrong binding pose. However, the ∼0.8
µs MM/CG simulation is able to yield a binding pose showing
receptor/ligand interactions similar to the crystallographic ones
(Marchiori et al., 2013).

Predictive Power of the Computational

Models of Chemosensory Receptors
In order to investigate the performance of bioinformatics
and multiscale simulations in predicting receptor/ligand
interactions in chemosensory receptors, we selected those
receptor/ligand pairs for which experimental data are available
(Fierro et al., 2017). As of August 2017, these included
seven olfactory receptor/odorant complexes and fifteen bitter
taste receptor/bitter tastant complexes with available site-
directed mutagenesis data and functional assays, typically
agonist dose-response curves. The docked receptor/ligand
complexes were obtained using the bioinformatics protocol
described in the Materials and Methods section, whereas
the three MM/CG simulations analyzed (for the complexes
TAS2R38/6-n-propylthiouracil, TAS2R38/phenylthiocarbamide
and TAS2R46/strychnine) were taken from previous studies
from our group (Biarnés et al., 2010; Marchiori et al., 2013;
Sandal et al., 2015).

In order to compare the computational models with the
experimental data, we defined “computational binding” and
“computational non-binding” residues, as well as “experimental
binding” and “experimental non-binding” residues (Fierro et al.,
2017). Computational binding and non-binding residues were
determined based on the receptor/ligand distance (using a cutoff
of 5.5 Å) and the presence or absence (respectively) of an
actual chemical interaction (such as hydrogen bonds, salt bridges,
hydrophobic or aromatic interactions, etc.). Experimental
binding residues were inferred from experiments based on (i) the
effect of the mutation on the half maximal effective concentration
(EC50) value and (ii) their position in the upper extracellular
part of the receptor, where the canonical binding site of class
A GPCRs is located (Venkatakrishnan et al., 2013). Residues
whose mutation does not change EC50 and/or that are located
in the lower intracellular part of the receptor are considered as
experimental non-binding residues. Obviously, this is a simplistic
definition of binding residue, as from the experimental data
we cannot discard that these residues might also be involved
in receptor activation (see reference Fierro et al., 2017 for
further discussion).

Comparison of the computational and experimental residues
yielded four different possible test outcomes. “True positives”
(TP) were amino acids identified as binding residues by both
experiment and computation, “false positives” (FP) were amino
acids identified as non-binding residues by experiment but
as binding residues in computation, “true negatives” (TN)
were amino acids identified as non-binding residues by both
experiment and computation, and “false negatives” (FN) were
amino acids identified as binding residues by experiment but
not in computation. In order to assess the agreement of the

computational models with the experimental data, two statistical
parameters, precision (PREC) and recall (REC), were calculated:

PREC = TP/(TP+ FP)

REC = TP/(TP+ FN)

These parameters are close to 1 when the computational
predictions were consistent with the experimental data, and zero
when they were not. Precision and recall values were calculated
for the best docking poses of the twenty-two complexes
investigated and for a representative snapshot of each of the three
MM/CG simulations analyzed (Fierro et al., 2017).

We found that the predictive power of the bioinformatics
approach varied from complex to complex. Nonetheless, the
general agreement between the binding residues identified in the
docking poses and those inferred from experiments was low, with
only 36% of the predictions consistent with experiment (Fierro
et al., 2017). Residues shown experimentally to be important
for binding were not observed in the docked complexes (i.e.,
low recall) and/or residues not involved in protein/ligand
interactions according to experiments were predicted as binding
residues by computation (i.e., low precision). Most likely, this
is due, among other factors, to the low sequence identity
(<20%) between the chemosensory receptor targets and the
available GPCR templates, as well as the limited sampling of
the docking algorithms. Therefore, although the bioinformatics-
based models are a good starting point to study ligand binding
determinants in chemosensory receptors, they appear to require
further refinement (Fierro et al., 2017). This finding is consistent
with the results of the GPCRDock competitions, which indicated
that models based on sequence identity below 30% need
substantial improvement in order to reach accuracy comparable
to experimental structures (Kufareva et al., 2011, 2014).

Next, we compared the performance of molecular dynamics
for the three bitter taste receptor complexes studied so far
with (∼0.8–1 µs long) MM/CG simulations (Marchiori et al.,
2013; Sandal et al., 2015). We found that the predictive power
of the computational models improved dramatically, with 96–
100% of the predictions in agreement with experiment (Fierro
et al., 2017). Most residues shown to be involved in binding by
experiments are captured by the MM/CG simulations and the
number of wrong predictions was minimal (i.e., both recall and
precision increased to values near or equal to one, see Table 1).
Considering the nearly 20 mutants tested experimentally for
either TAS2R38 (Biarnés et al., 2010: Marchiori et al., 2013)
or TAS2R46 (Brockhoff et al., 2010; Born et al., 2013; Sandal
et al., 2015), the agreement of the computational models with
experiments seems really remarkable. Moreover, although in
our analysis we used all the available mutagenesis data to
validate a posteriori the MM/CG results, simulations were also
able to predict new binding residues. Indeed, the simulations
of the TAS2R38 and TAS2R46 complexes suggested several
binding residues not tested previously and these predictions
were subsequently verified by performing additional mutagenesis
and functional assays (Marchiori et al., 2013; Sandal et al.,
2015). Altogether, multiscale simulations seem to be a robust
approach for identifying ligand binding residues in olfactory and
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TABLE 1 | Evaluation of the performance of the bioinformatics models and the

multiscale MM/CG simulations for the three bitter taste receptors studied so far,

i.e. TAS2R38/6-n-propylthiouracil (PROP), TAS2R38/phenylthiocarbamide (PTC)

and TAS2R46/strychnine (Fierro et al., 2017).

TAS2R38/PROP TAS2R38/PTC TAS2R46/strychnine

Model MM/CG Model MM/CG Model MM/CG

PREC 0 1 0 0.75 0.60 1

REC 0 1 0 1 0.33 1

Precision (PREC) and recall (REC) values are listed.

bitter taste receptors, at least for the three bitter taste receptor
complexes studied so far (Fierro et al., 2017). This is consistent
with the conclusions of the GPCR Dock competitions, where
molecular dynamics simulations and integration of experimental
data (such as site-directed mutagenesis or ligand structure-
activity relationships) were shown to improve the computational
predictions (Kufareva et al., 2011, 2014; Cavasotto and Palomba,
2015; Ranganathan et al., 2017). Nonetheless, the application of
MM/CG simulations to other chemosensory receptor complexes
with available experimental data is still needed to firmly establish
the reliability and transferability of this method.

Insights Into Ligand Selectivity

Determinants in Bitter Taste Receptors
There are around 1,000 compounds characterized as bitter,
which vary significantly in size, polarity and chemical
structure (Meyerhof et al., 2010; Behrens and Meyerhof,
2018; Dagan-Wiener et al., 2019). To make things even more
puzzling, three receptors (TAS2R10, TAS2R14, and TAS2R46)
out of the 25 bitter taste receptors are able to recognize about
half of these bitter compounds (Behrens and Meyerhof, 2018). In
contrast to this broad agonist spectrum, there are two receptors,
TAS2R38 and TAS2R16, that are specialized in detecting a
specific chemical group (thiourea/isothiocyanate and β-D-
glucopyranoside, respectively) (Behrens and Meyerhof, 2018).
Here we discuss in detail the structural predictions described
above to investigate whether they can help understand the
molecular basis of this disparate ligand selectivity. In particular,
the MM/CG approach has been applied so far to one receptor
of each group, i.e., TAS2R46 (Sandal et al., 2015) and TAS2R38
(Biarnés et al., 2010; Marchiori et al., 2013).

The microsecond-long simulations of TAS2R46 in complex
with its agonist strychnine (Sandal et al., 2015) showed that
the ligand can explore not only one but two different binding
cavities (Figure 3). The first one coincides with the canonical
binding site of class A GPCRs (i.e., the so-called orthosteric site),
whereas the second is located further toward the extracellular
side and thus has been denoted as “vestibular.” The mutagenesis
data is compatible with this two-site architecture, as the
residues experimentally inferred to be involved in binding
(Brockhoff et al., 2010; Born et al., 2013; Sandal et al., 2015)
are distributed between the two sites (Figure 3). Moreover, the
identified vestibular binding cavity overlaps with the extracellular

allosteric binding site observed for class A GPCRs (Dror
et al., 2011, 2013; Kruse et al., 2012; Abdul-Ridha et al., 2014;
Latorraca et al., 2017; Thal et al., 2018), further supporting its
existence. This two-step binding architecture may constitute the
molecular basis of the “access control” mechanism proposed
by Meyerhof and coworkers (Brockhoff et al., 2010) and
would help TAS2R46 to discriminate the wide range of ligands
recognized by this promiscuous receptor (Sandal et al., 2015).
Moreover, a bioinformatics analysis of the binding residues
predicted for TAS2R46 across the bitter taste receptor family
showed that half of these functionally relevant positions are
conserved in two or more TAS2Rs, suggesting that the vestibular
site might also be present in other receptors of this family
(Sandal et al., 2015). However, the ∼0.8 µs simulations of
TAS2R38 in complex with either PTC or PROP showed the
ligand bound in a single site, corresponding to the orthosteric
one (Marchiori et al., 2013). This hints at the possibility
that the vestibular site is not as crucial for a group specific
receptor such as TAS2R38 or even that the two-site architecture
is not required for a more selective receptor (Suku et al.,
2017). Naturally, given the crudeness of our models, further
simulations and experimental studies on other members of the
bitter taste receptor family are needed in order to confirm
this proposal.

CONCLUSIONS

Given the scarcity of experimental structural data (Munk
et al., 2019), computational modeling of GPCRs is essential
to understand ligand binding and design new drugs targeting
this biologically and pharmacologically relevant family (Michino
et al., 2009; Kufareva et al., 2011, 2014; Cavasotto and
Palomba, 2015; Ranganathan et al., 2017; Lupala et al.,
2018). These computational approaches (Figure 4) include
homology modeling and molecular docking, often supplemented
with experimental (mutagenesis and ligand structure-activity
relationship) data. Subsequent refinement with molecular
dynamics simulations has been shown to further improve the
computational predictions (Kufareva et al., 2014; Cavasotto and
Palomba, 2015; Ranganathan et al., 2017; Lupala et al., 2018). The
accuracy of the models thus generated might reach values near
the experimental ones for those GPCRs with a close structural
template (i.e., with sequence identity larger than 35–40% and
a chemically similar ligand) (Kufareva et al., 2011; Beuming
and Sherman, 2012). However, for most GPCRs the closest
structural template has sequence identity below this threshold,
and thus computational predictions become challenging. This
the case for olfactory and bitter taste receptors, which constitute
the first and third largest GPCR groups, respectively, as
their sequence identity with the available GPCR templates is
below 20%.

In this review, we have shown that molecular dynamics
simulations, in particular the multiscale molecular mechanics /
coarse grained approach developed in our group (Neri et al.,
2005, 2008; Leguèbe et al., 2012; Giorgetti and Carloni, 2014;
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FIGURE 3 | Two binding site architecture of TAS2R46. The agonist strychnine (in licorice representation) can bind in either the orthosteric site (left panel) or the

vestibular site (right panel). Receptor residues interacting with the ligand in the orthosteric site, the vestibular site or both sites are shown with blue, yellow or green

spheres, respectively. The central panel displays the distribution of the ligand center-of-mass z coordinate for the two ∼1 µs MM/CG simulations, showing that

strychnine stabilized either in the orthosteric site or in a second (vestibular) site, located further toward the extracellular side.

FIGURE 4 | Proposed protocol to study ligand binding in low resolution GPCR models. The initial model generated with homology modeling and molecular docking

(e.g., using the GOMoDo webserver, Sandal et al., 2013) is further refined using molecular dynamics (e.g., using the molecular mechanics/coarse grained or MM/CG

approach developed in our group, Leguèbe et al., 2012). The receptor/ligand interactions predicted by the simulations have to be validated by extensive comparison

with experimental data (typically site-directed mutagenesis and dose-response functional assays).

Musiani et al., 2015; Tarenzi et al., 2017), can overcome, at least
in part, these limitations (Fierro et al., 2017) and successfully
predict residues involved in ligand binding for the three bitter
taste receptor complexes studied so far (Biarnés et al., 2010;
Marchiori et al., 2013; Sandal et al., 2015). The natural extension
of these previous works would be to other bitter taste and
olfactory receptors for which experimental data are available.
In addition, MM/CG simulations could be easily applied to
other GPCRs. Although this approach has been used so far for
a limited number of GPCR/ligand complexes (Leguèbe et al.,
2012; Marchiori et al., 2013; Sandal et al., 2015), the excellent
agreement of the computationally predicted binding poses with
the experimental mutagenesis data [for the aforementioned three
bitter taste receptor complexes (Marchiori et al., 2013; Sandal
et al., 2015)] or the crystal structure [for the β2-adrenergic

receptor (Leguèbe et al., 2012)] further supports the applicability
of theMM/CGmethod to other GPCR/ligand complexes. Indeed,
MM/CG simulations have been recently used to model the
synthetic agonist diphenyleneiodonium chloride (DPI) bound
to its target receptor GPR3 (Capaldi et al., 2018). Two of the
predicted DPI binding residues were successfully validated a
posteriori using mutagenesis and functional assays, as previously
done for TAS2R38 (Marchiori et al., 2013) and TAS2R46 (Sandal
et al., 2015).
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THE LANDSCAPE OF COARSE GRAINED NP MODELS

Metal nanoparticles (NPs) have been recently proposed for an increasing number of applications in
nano-medicine (Vlamidis and Voliani, 2018) and nanotechnology (Chen et al., 2015). For instance,
gold NPs (Alex and Tiwari, 2015) allow covalent versatile functionalization via thiol chemistry
(Hakkinen, 2012) with different biomolecules or functional groups to selectively favor interactions
with proteins or other specific components of the cell milieu. In particular, thiol-protected gold NPs
functionalized with phenyl groups, Au25L

−

18 (L=S(CH2)2Ph) were considered capable of interfering
with protein aggregation, and therefore viewed as possible therapeutic agents against degenerative
diseases due to amyloid fibrils accumulation (Brancolini et al., 2014, 2018; Marcinko et al., 2017;
Torsten et al., 2018). The optimization of the size and decoration of the NP for therapy can
benefit from computer simulations exploring aggregation in different environmental conditions
(relative concentration, temperature, ionic strength). However, such extremely large time and
size scale simulations call for the use of super-atomistic representations (low resolution or coarse
grained—CG—models) (Brancolini and Tozzini, 2019).

A number of CG models for proteins are available (Seo et al., 2012), even minimalist ones, i.e.
with single-bead per amino-acid resolution and implicit solvent (Di Fenza et al., 2009; Tozzini,
2010; Trovato and Tozzini, 2012; Trovato et al., 2013). Conversely, for the NPs, available CGmodels
are rather sparse and diverse. The presence of the gold core suggests treating it at the meso-scale
as a single spheroidal object (Vàcha et al., 2014), but the roughness of the surface (Radic et al.,
2015), and the specificity of the chemical decoration (Tavanti et al., 2015a; Cantarutti et al., 2017)
have fundamental roles in the interaction with proteins and must be treated at a higher resolution
(Brancolini et al., 2015; Tavanti et al., 2015b; Charchar et al., 2016; Cardellini et al., 2019). Particular
attention must be paid to the representation of hydrophobic character of the chemical groups and
to the presence of possible net charges, whose medium- and long-range character, respectively, is
the determinant of the macroscopic aggregation properties of the system. Implicit solvent requires
the use of accurate screened potentials to account for the ionic strength. Finally, for the NP model
to be compatible with the protein counterpart, both resolution and parameterization of the force
field (FF) should be well matched.

While these prescriptions are followed inprevious literature in given models (Radic et al., 2015;
Charchar et al., 2016), here we outline a general strategy to build models for NPs including all
of them. In our view (Brancolini et al., 2018) these should contain the following ingredients:
(1) Minimalism, i.e., including the minimum possible amount of degrees of freedom (DoF), and
implicit solvent (2) Compatibility with the protein models (3) Transferability to different sizes
and chemical decorations. Clearly, each of these characteristics involves one or more among the
following actions: (i) choice of the model structure/topology, (ii) choice of the functional forms for
the interactions, (iii) optimization of parameterization. (ii) and (iii) are complex tasks which have
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FIGURE 1 | Illustration of the phases of the model building, taking as a test case the Au25(S(CH2)2Ph)
−

18. (A) Atomistic resolution, (B) coarse graining of

functionalizing beads (C) analysis of the statistical structural data, clustering (D) evaluation of centroids of the space distribution, (E) topology and FF building (F)

transfer of topology/structure to larger models. (G) Different symmetry of ligands are highlighted in the atomistic structure: 12 inner ligands (red circle) with sulfur bond

to one core Au atom and one staple Au atom and 6 outer ligands (green circle) bound to two staple Au atoms. In principle, inner and outer beads can have different

parameters, if needed to better balance the structure and electrostatics. (H) The electrostatic potential generated by the RESP atomistic charges using a

representative configuration (UHBD isosurfaces drawn at +0.5 (red) and −0.5 (blue) kcal/e electrostatic potential). (I) The different types of CG beads reflecting the

different symmetries of ligands are colored in different shades of green and assigned different charges [B2 = −0.230e (green), B3 = −0.128e (light green), the gold

bead has charge B1 = +2.525e; the total net charge −1 is reproduced]. (J) CG electrostatic potential generated by the CG charges [UHBD isosurfaces drawn at

+0.5 (red) and −0.5 (blue) kcal/e electrostatic potential].

been addressed using a large number of different methodologies
(Bauer et al., 2017; Lin et al., 2018; Brancolini et al., submitted).
Particularly effective are usually combinations of bottom up
and top-down strategy (Leonarski et al., 2013; Mereghetti et al.,
2016) including both atomistic simulations and experimental
data (Trovato and Tozzini, 2014) from different sources (e.g.,
structural, or thermodynamic). Here we focus on a general
strategy to address (i) (Brancolini et al., 2018).

RATIONAL BUILDING OF A MINIMALIST

NP MODEL

The starting point is an atomistic structure of the functionalized
NP (Figure 1A). The minimalism requirement suggests using a
single large interacting center (“bead”) for the gold core, which
is, in fact, a common feature to most of the NPmodels (Charchar
et al., 2016; Shao and Hall, 2017). The chemical decoration is
accounted for in several models by covering the central bead with
smaller beads (Radic et al., 2015). The compatibility criterion can
be satisfied choosing in specific ways the number and location
of the decoration beads. For instance, when the functionalizing

groups resemble in size and shape the side chains of amino-acids,
this choice is rather straightforward: each of the functional group
can be represented using the same representation of the protein
amino-acids, i.e., 2–4 beads in MARTINI-like models (Seo et al.,
2012), or a single bead for the minimalist models (Figure 1B).
Remarkably, the model will include a number of DoF (Degrees
of Freedom) proportional to the number of functional groups,
i.e., will scale proportionally the surface of the NP, rather than to
the volume.

An important point is how to choose the relative location
of the decorating beads. Clearly, the thermal fluctuations of the
group that they represent will determine the space distribution of
the bead locations, which can be evaluated by means of atomistic
simulations of small NPs (Maccari et al., 2014) (Figure 1C). The
volume map build using this space distribution will form lobes,
whose centroid and dispersion can be determined by clustering
procedures (Arkhipov et al., 2006) (Figure 1D). This information
can be used to build the starting location and topology of
the model, and to parameterize the force field (FF) describing
its internal dynamics (Figure 1E). Those parameters will then
be transferred to larger NPs, once an average position of the
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functionalizing groups is determined, either from an atomistic
model or from structural data (Figure 1F).

Distributing masses and effective charges among the beads is
a non-trivial point. Considering masses, for instance, an obvious
way would be to assign to each bead the sum of masses of their
constituting elements. This, however, might not preserve the
rotational inertia of the NP: in fact, being the total mass of the
metal core concentrated in the center, it does not contribute,
resulting in too small total rotational inertia. The problem can
be solved by attributing larger masses to the peripheral beads.
The proper balance of masses can be found by imposing that the
total mass and the total rotational inertia correspond to that of
the atomistic NP (Bauer et al., 2017).

The problem of charges is analogous: in this case an
accurate charge distribution might be adjusted to reproduce the
electrostatic potential, besides the net charge. The reference
electrostatic potential can be generated from the RESP
derived atomistic charges (Heaven et al., 2008), based on
ab initio calculations (Figures 1G,H). Deriving the CG
charges based on the atomistic components (Baker et al.,
2001; Terakawa and Takada, 2014; McCullagh et al., 2016)
results in effective charges depending on the bead type
(gold or ligand) and symmetry (Figure 1I). The electrostatic
potential generated by these can be compared with its atomistic
counterpart, showing that the general shape of the iso-surfaces
is preserved (Figure 1J): although of course the atomistic detail
is lost, the CG model reproduce the global net prevalence
of negative character (in blue), which however uncovers
some positive areas (in red) for given directions, as in the
atomistic case.

SUMMARY AND PERSPECTIVES: THE

NEXT STEPS

In our opinion, the presented strategy includes all the crucial
elements of an optimal low resolution model: the choice of
the minimal possible resolution, compatibility between different

levels of resolution, a parameterization including the specific
coating present on the NP by means of superficial higher
resolution interacting sites. The effective charges could be further
optimized by directly adopting a RESP procedure for their fitting.
This task and the model validation at different concentrations
and ionic strengths vs. the aggregation tendency are currently
in due course (Brancolini et al., submitted). The following steps
will be the use of the model in combination with proteins
models at the same CG level (minimalist), to verify their effective
capability of preventing the amyloids aggregation. Furthermore,
the strategy here outlined is extensible to larger NPs and
different functionalization, which opens the possibility of in silico
optimization of the NPs size and chemistry for therapeutic use.
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We present a multi-scale simulation procedure to describe membrane-related biological

processes that span over a wide range of length scales. At macroscopic length-scale,

a membrane is described as a flexible thin film modeled by a dynamic triangulated

surface with its spatial conformations governed by an elastic energy containing only

a few model parameters. An implicit protein model allows us to include complex

effects of membrane-protein interactions in the macroscopic description. The gist of

this multi-scale approach is a scheme to calibrate the implicit protein model using finer

scale simulation techniques e.g., all atom and coarse grain molecular dynamics. We

previously used this approach and properly described the formation of membrane tubular

invaginations upon binding of B-subunit of Shiga toxin. Here, we provide a perspective of

our multi-scale approach, summarizing its main features and sketching possible routes

for future development.

Keywords: dynamic triangulated surfaces, Martini coarse-grain simulation, Shiga toxin, simulation of continuum

model, membrane remodeling, implicit protein model

INTRODUCTION

Many biological processes involve large scale changes in lateral chemical organization and
geometrical shapes of biological membranes (McMahon and Boucrot, 2015; Chavent et al., 2018).
The modeling of these processes, by computer simulation, is a challenging task since they typically
involve a wide range of length and time scales that cannot be captured in full by any single
current simulation technique (Enkavi et al., 2019; Marrink et al., 2019). At large length scales,
computational, and analytical techniques based on continuum models have played a great role in
our understanding of these processes and has revealed many important generic phenomena (Seifert
et al., 1991; Bozic et al., 1992; Ramakrishnan et al., 2013, 2015). Nevertheless, these predictions
are often obscured by the simplicity of the model and by the approximations needed to make
them mathematically tractable. In addition, such phenomenological models contain few model
parameters that are typically hard to relate to their molecular origin. At small length scales,
particle-based computer simulations techniques e.g., molecular dynamics (MD) and dissipative
particle dynamics (DPD), are robust techniques to elucidate complex membrane behaviors but
with a limited capacity to predict large length scale cooperative phenomena (Gao et al., 2007; Li
et al., 2016; Enkavi et al., 2019; Marrink et al., 2019). To overcome these limitations, we have used
a multi-scale simulation procedure that bridges the gap between the particle and continuum based
models and allows the simulation of large biological membrane patches while retaining details from
the atomistic length scale (Pezeshkian et al., 2016). Here, we summarize the main features of the
method, extend its capacity to describe a wider range of processes and sketch possible routes for
further development.
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METHODS

In our multi-scale approach, the large-scale physical properties
of a membrane are described by a coarse-grained model which
captures the elastic energy of membrane conformations and the
energetics of the lateral organization of its chemical constituents.
Such a model only contains a few model parameters which
are calibrated using atomistic and mesoscopic simulations
(Marrink et al., 2007).

Simulation of Continuum Model
A continuous membrane is discretized by a dynamical
triangulated surface (DTS) containing Nυ vertices, NT triangles,
NL links which together form an irregular planer triangulated
network (Figure 1A). The difference between dynamical
and static triangulation is that the mutual link between two
neighboring triangles can flip (Alexander moves). This allows to
sample through all possible triangulations for a given Nυ , NT ,
NL. Link flipping and positional updates of the vertices gives the
fluid character with full translational invariance in the plane of
the surface (Figure 1B). In this representation, a vertex can be
visualized as a segment of a bilayer containing hundreds of lipids,
this means that the resolution of the model is limited to the
length-scales above few nanometers. To ensure self-avoidance
of the surface each vertex is equipped with a spherical bead.
Using a set of discretized geometrical operations, each vertex
is furthermore assigned with a normal vector N̂υ , surface area
Aυ (one third of the area of its neighboring triangles), principal
curvatures (c1υ , c2υ) and principal directions (X1 (υ) , X2(υ))
(Ramakrishnan et al., 2010) (Figure 1A). This suffices to
construct an elastic energy function associated with membrane
bending that allows us to obtain the surface equilibrium
configurations using numerical update algorithms. In this work,
we have employed the Metropolis Monte Carlo algorithm
(Ramakrishnan et al., 2010; Bahrami et al., 2012; van der Wel
et al., 2016), but many other updating schemes are possible
(Noguchi and Takasu, 2001; Cooke et al., 2005; Noguchi and
Gompper, 2006; Peng et al., 2013; Mauer et al., 2018).

Elastic Energy
TheHelfrich Hamiltonian (Helfrich, 1973) is the classic approach
to describe membrane shape phenomena. The membrane elastic
energy Eb can be expressed in the terms of two surface invariants,
the mean curvature H = 0.5(c1 + c2), and Gaussian curvature,
K = c1c2. A discretized form of the Helfrich Hamiltonian can be
written as:

Eb =
κ

2

Nυ
∑

1

(

2Hυ − C0
)2
Aυ + κG

Nυ
∑

1

KυAυ (1)

The second term of this equation only depends on the
surface topology and does not change by continuous membrane
deformation (Gauss-Bonnet theorem). The mean curvature
elastic constant κ is called the bending elasticity, which carries the
dimension of energy. The constant C0 is called the spontaneous
curvature, which represents a possible asymmetry between the
two monolayers, e.g., differing solvent conditions. C0 = 0

for a symmetric membrane. Equation (1) can be expanded in
numerous ways depending on the membrane process at play.
For example, for processes where a significant part of the total
membrane surface undergoes deformations much faster than
the flip flop rate of any monolayers chemical component, a
monolayer area difference elastic term must be included (Seifert
et al., 1991; Bozic et al., 1992). The difference in the area of the
monolayers can be obtained as

1A = h

Nυ
∑

υ

2HυAυ (2)

Where h is the membrane thickness. Up to second order,
the area-difference elastic energy is expressed as Es =

kr
2h2A0

(1A− 1A0)
2, with kr denoting the area compression

modulus (Svetina and Žekš, 2014). Another relevant energy
term that can be included is the elastic energy associated with
change in the volume (V) of a closed surface (vesicle), EV =
KV
2V0

(V − V0)
2 where both the volume compression modulus KV

and the equilibrium volume V0 are set by the osmotic conditions
of the solvents in an experiment. For a triangulated surface, the
volume can be easily obtained as

V =
1

3

NT
∑

T=1

(
−→
RT .N̂T)AT (3)

Here,
−→
RT is the position of any point on the triangle T, N̂T and

AT are the normal vector and area of the oriented triangle T,
respectively. For analysis of bounded membrane patches or semi-
flatmembranes in a periodic boundary box, a contribution τAp to
the energy in Equation (1) becomes important. Ap and τ are the
projected area and frame tension of the membrane, respectively.

When we are dealing with membranes with highly curved
regions, e.g., formation of narrow necks prior to scission
during a fission process, Equation (1) requires modification.
In these regions, the curvatures of different monolayers can
be significantly different. A practical approach to include this
mismatch is to treat the bending energy associated with each
monolayer separately. Using mid-plane principal curvatures, the
mean curvature of each of the monolayers can be determined as
Safran (1994):

Hup =
H + 2Kh

1+ hH + Kh2
, Hlow =

−H + 2Kh

1− hH + Kh2
(4)

Implicit Protein Model
Membrane proteins can locally influence bilayer shape through
direct and indirect couplings. Direct impacts include local
rigidification (Zhang et al., 2015), local membrane curvature
imprint (Pezeshkian et al., 2017b; Corradi et al., 2018; Wang
et al., 2018), local change in membrane thickness (Corradi
et al., 2018) etc. Indirect effects arise from their interactions
with other proteins that have the capacity to affect the
membrane shape through cooperative phenomena. In our multi-
scale simulation approach, these couplings are identified and
quantified through atomistic and mesoscopic simulations and
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FIGURE 1 | (A) Triangulated surface representation of a vesicle. Each vertex represents a segment of a bilayer containing hundreds of lipids. On each vertex, surface

normal (N̂), principal directions X1 (υ) , X2(υ) and their associated principal curvature (c1υ , c2υ ) can be determined. (B) Top: Alexander move, mutual link between

neighboring triangles is flipped and two new triangles are generated. Bottom: vertex move, a chosen vertex (red bead) is moved in a random direction (C) Proteins are

modeled as an inclusion that can lay on a vertex and can jump to the neighboring vertex via Kawazaki moves. (D) Vertex based model of curvature map induced by

proteins with lateral symmetry higher than 2 (top) and π-symmetric proteins (middle). The inclusion associated with these proteins should have a character of a

two-dimensional vector in the plane of a vertex (bottom). The angle between the protein direction and the membrane main principal direction.

they are included in the system energy as new terms added
to Equation (1). In the modeling, a protein or nanoparticle
(an inclusion) is assigned to a vertex in the triangulation.
Each vertex can at most occupy one inclusion, which naturally
handles the in-plane excluded volume effect between inclusions.
It also introduces a natural length scale to the model since
we can associate the smallest possible area of a vertex with
the projected area of the inclusion in question. Inclusions
can move laterally through updates of the triangulation or
by jumps between the neighboring vertices via Kawazaki
moves (Figure 1C).

When an inclusion is situated in a vertex, it may change
the elastic energy contribution from the vertex. For membrane
proteins, the simplest model is to locally increase membrane
bending rigidity (Frolov and Zimmerberg, 2008; Schweitzer et al.,
2015). The most important effect of membrane proteins, that
greatly influences the large-scale membrane shape, is to induce
a local membrane curvature (Kozlov et al., 2014). This induced
curvature can be in-plane rotationally symmetric or asymmetric.
As a consequence of Eulers curvature formula, vertex-based
inclusions, except π-symmetric inclusions (symmetric upon
rotation by 180 degrees in the plane of the membrane,
Figure 1D), can only induce symmetric curvature (Peliti and
Prost, 1989). It may seem that this is a shortcoming of the
model. Nevertheless, highly asymmetric curvature imprints
decays quickly in the membrane plane (Dasgupta et al., 2017;
Corradi et al., 2018) and does not appear in a macroscopic
membranemodel. The impact of these inclusions can bemodeled
by adding a local energy contribution eυ = −κHC0Aυ to
the bending energy per vertex, where C0 is the local curvature
imprint of the protein and needs calibration from finer scale
simulations. Notice that C0 can only be identified with C0

in Equation (1) for a fully covered membrane. π-symmetric
inclusions can locally bend the membrane differently in different
directions (Frolov and Zimmerberg, 2008). Such inclusions can

thus be given an orientation in the plane in the direction
with maximal directional curvature imprint (C‖

0) while the
perpendicular direction in the plane gives the lowest directional
curvature imprint (C⊥

0 ) (Figure 1D). The membrane curvature
in these directions can easily be obtained by Eulers curvature
formulaC‖

= c1υ cos 2(θ)+c2υ sin 2(θ) andC⊥
= c1υ sin 2(θ)+

c2υ cos 2(θ) where θ is the angle between the orientation of the
inclusion and the direction of the main principal curvature of
the membrane. Such inclusion will give rise to an additional
local contribution to the total elastic energy in Equation (1),

eυ = [ κ1
2

(

C⊥
−C⊥

0

)2
+

κ2
2

(

C‖
− C

‖

0

)2
]Aυ , where κ1 and

κ2 are the directional bending rigidities imposed by the inclusion
on the membrane. To complete the modeling, we need to
include interactions between the inclusions. Here, we will only
focus on the pair interactions but nevertheless the method can
be extended to multi-body interactions. The pair-interactions
between inclusions can be divided into two types: (i) as a
function of distance between the proteins in the 3-dimensional
space, e.g., electrostatic and van der Waals forces, (ii) as a
function of a distance alongside the geodesic direction between
two inclusions in the membrane, e.g., membrane mediated
interactions (Haselwandter and Wingreen, 2014; Johannes et al.,
2018). The former type of interactions can be modeled simply
by a constant interaction energy when two inclusions are in
proximity in the 3D space. This is a practical and valid choice,
since the resolution of the model is well-below a range to capture
the protein specific interactions. The second type of interactions
is more challenging since it depends on the local curvature of the
membrane. A particular consequence of this is that interactions
between two neighboring non-isotropic inclusions can first be
calculated after parallel transport between them, where the in-
plane orientations of the inclusion is kept fixed along theirmutual
geodesic curve (Ramakrishnan et al., 2010). The interaction
between two inclusions on the neighboring vertices is only a
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function of angle between their in-plane orientations alongside
geodesic direction: 12 = 2i − 2′

j, where 2i is the orientation
of inclusion residing on vertex i, 2′

j represents the orientation of
inclusion residing on vertex j after parallel transport to vertex i.
This energy function can be written in term of Fourier series as

εij (12) = −ε0 − µ0

M
∑

k=1

ak

M
cos

[

kQij12 + 4k

]

(5)

The first term (−ε0) models the isotropic part of the interaction
between two inclusions while the second term is to model
anisotropic interactions e.g., caused by steric factors and the
distribution of the peptide groups in a protein (Domanski et al.,
2017). M is a constant integer and its value depends on the
chosen degree of coarse graining. Larger M allows to include
more structural details of the protein shape in the interactions
with other proteins. 4k are the phase shift and µ0ak/M are
amplitude of the Fourier modes and both need fitting from
finer simulation techniques. By setting

∑M
k=1 ak = M, µ0 can be

defined as the lowest energy level of the anisotropic part of the
interaction. Qij is the least common multiple of the degree of the
i,j proteins symmetry in the plane of the membrane (N). Note
that the interaction energy in Equation (5) can also be used to
model lipid domain formations in multicomponent membranes
(Ramakrishnan et al., 2010; Hansen et al., 2017).

Different approaches can be used to model proteins on
triangulated surfaces e.g., introducing a curvature field and
additional length scale to the model (Tourdot et al., 2014),
however we prefer our procedure since it allows the calibration
of all parameters solely through a bottom up approach. This
increases the predication power of the model without need to
tune the inputs parameters to reach the excepted outcome.

Calibration
To start a DTS simulation for a membrane containing different
lipids and proteins, all the mentioned model parameters need
to be calibrated using results from experiments or simulations
of finer scales. Below we discuss several of these parameters
(κ ,C‖

0 , C
⊥

0 , ε0, µ0, N, ak, 4k).
Bending rigidity κ : Bending rigidity is known for many one

component lipid bilayers from both experiment and simulations.
However, for new lipid bilayers, fluctuation spectrum analysis
is a powerful technique to extract this parameter. Both, coarse
grained and all-atom MD simulation can be used to calibrate
this parameter (Brandt et al., 2011; Watson et al., 2012;
Venable et al., 2015).

Local curvature imprint (C‖

0 , C
⊥

0 ): All-atom MD simulation
has proven successful for calibration of these model parameters
(Pezeshkian et al., 2016, 2017b; Kociurzynski et al., 2019).
From an MD simulation trajectory, membrane curvature can
be measured using different approaches. An accurate method
is to use the first moment of the lateral membrane pressure
profile, κC0 =

∫

z5(z)dz (Safran, 1994). However, this approach
has several problems. First, a converged lateral pressure profile
requires very long simulations even for pure membrane systems.
Secondly, it only provides the mean value of the induced

curvature (C‖

0 + C⊥

0 ) unless the protein orientation is restricted
(Bruhn et al., 2016; Ali Doosti et al., 2017). The second method
is a geometrical approach and consists of fitting the upper and
lower monolayer of the membrane to an analytical function and
calculating the time-average curvature map on the surface of the
bilayer. Note, since the typical radius of the curvature induced by
proteins is much larger than a feasible MD simulation box size,
the total average curvature of the fitted surface is zero. Therefore,
one should only average the curvature of the surface up to a
distance, in which the presence of the protein changes the lipid
density, from the center of the proteins (Pezeshkian et al., 2016,
2017b; Corradi et al., 2018).

Protein-protein interaction parameters (ε0, µ0, N, ak, 4k): An
efficient approach to calibrate these parameters is to use coarse
grained MD or DPD simulations. Typically, large simulation
boxes are needed because the system size should be large enough
so that the proteins do not interact (including membrane-
mediated interactions) with their periodic image. Secondly a long
simulation is required to disentangle the diffusive approach from
the systematic interaction. In addition, mesoscale simulations
allow us to derive a potential of mean force (PMF) profile
that can be used to calibrate (ε0, µ0) (de Meyer et al., 2008;
Periole et al., 2012; Domanski et al., 2017). In-plane symmetry
of the protein structure (N) can be found from the crystal
structure. ak and 4k can be calibrated from both the density
map or from free energy profile as a function of angle between
the proteins.

Example: Shiga Toxin Induced Tubular

Membrane Invaginations
The bacterial Shiga toxin is a member of the AB5 protein
family that is composed of an enzymatically active A-subunit,
and a receptor-binding B-subunit. STxB is homopentameric
and mediates intracellular toxin trafficking via binding to the
glycolipid globotriaosylceramide (Gb3) at the plasma membrane
of target cells. Shiga toxin can enter the cell by both clathrin-
dependent and independent endocytosis. The formation of
tubular membrane invaginations is the first step in the clathrin-
independent STxB uptake (Römer et al., 2007). Previously,
we have used this multi-scale simulation approach to describe
formation of membrane tubular invaginations upon STxB
binding. Here we shortly discuss the scheme and results.

• Using the STxB crystal structure, we measured the projected
area of STxB to be 38.5 nm2 (we approximated the lateral shape

as a circle). The smallest area of a vertex is equal to
√
3
2 l2 (l

is the minimum length of a link, or a vertex size). Therefore,
l ≈ 6.7 nm.

• Local curvature induced by STxB was measured using all
atom MD simulations (Pezeshkian et al., 2016). The radius of
curvature is found to be R ≈ 29.4 nm = 4.39 l.

• DPD simulation was used to find STxB-STxB interactions.
Using this method and experiments on unilamellar vesicles,
we provide evidence that thermal Casimir-like force arising
from membrane surface fluctuations are responsible for STxB
clustering (Pezeshkian et al., 2017a). The computed PMF
profile shows that the potential depth, taken to represent the
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FIGURE 2 | (A) Tubular membrane invaginations induced by Shiga toxin. The color code for the beads is the same as in Figure 1B. All atom molecular dynamic

simulations were used to obtain local curvature induced by the protein (Pezeshkian et al., 2016). Protein-protein interaction was calibrated using DPD simulations. (B)

The final structure of a budding vesicle after a DTS simulation is back-mapped to the particle based CG Martini model.

isotropic strength of the pair interaction, is around 2.5 kBT
(Figure 2A). STxB is a pentamer (2π /5-symmetric), therefore
N=5. Based on these numbers, we defined the simplest form
of the interaction energy as εij = −2.5+ (1+ cos 5[2i − 2′

j])
in units of kBT.

• Using the above input parameters, we performed a Monte
Carlo simulation of DTS in the constant frame tension
ensemble (τ = 0) and could reproduce the behavior as seen
in the experimental setups, namely formation of a tubular
membrane invagination (Römer et al., 2007). We also found
the minimum requirements for the formation of tubular
membrane invaginations, i.e., (1) capacity of the individual
proteins to induce local membrane curvature (2) their ability
to cluster, by any mean, upon binding to the membrane
(Figure 2A) (Pezeshkian et al., 2016).

BACK-MAPPING TO CG MODEL

The main assumption of this multi-scale simulation approach
is that local properties of the membrane do not strongly

get affected by large-scale membrane configurational changes.
However, local lateral organizations of complex membranes
chemical constituents can change upon large scale membrane
deformations (Baoukina et al., 2018). In order to overcome this
limitation, we have developed an algorithm that back-maps a
DTS structure to its corresponding Martini CG model (Marrink
et al., 2007; Marrink and Tieleman, 2013). This algorithm
makes it possible to use DTS to equilibrate the slow large-scale
membrane conformational change and exploit theMartini model
to equilibrate the local lipid distributions. As a first attempt to
explore this procedure, we performed a DTS simulation on a
vesicle with a smaller volume/surface ratio of a perfect sphere
(0.7) and a spontaneous curvature of 0.025 nm−1. Under this
condition, the DTS simulation predicted the formation of a
vesicular bud (Figure 2B) (Seifert et al., 1991; Markvoort et al.,
2009; Bahrami et al., 2017). We then back-mapped the DTS
structure to its corresponding Martini model and after a short
energy minimization, it was ready for an MD simulation. The
detail of this procedure is out of the scope of this article and will
be published elsewhere.
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SUMMARY AND PERSPECTIVES

We described an extended version of our multi-scale simulation
procedure that uses a bottom up scheme to calibrate DTS
model parameters (Pezeshkian et al., 2016). The approach
is well-suited for investigating membrane involved biological
processes that take place at a large-range of time and
length scales that cannot be captured by any single current
simulation techniques.

One of the clear advantages of exploiting DTS at macroscopic
length scales is the speed. DTS allows us to simulate micron
size vesicles, decorated with membrane proteins, on a single
CPU core. This length-scale is hardly reachable (using much
more computational power) by any particle-based computer
simulation techniques (Cooke et al., 2005; Ayton and Voth,
2009). Nevertheless, the approach still suffers from several
limitations that need to be resolved. For example, DTS
simulations with dynamic topology has been only developed for
several special purposes (Jeppesen and Ipsen, 1993; Shillcock
and Boal, 1996; Gompper and Kroll, 1998; Shillcock and Seifert,
1998) that limits its applications, as a generic method, to
describe processes that involve membrane topological changes,
e.g., membrane scission and poration (Boye et al., 2017). Another
limitation is the current implicit protein model that is only
applicable for membrane proteins. One possibility is to adopt
one protein to few beads strategy e.g., essential dynamics coarse-
graining (Zhang et al., 2008) to extend the range of the DTS
protein mapping. Another route to increase the molecular level

detail is through dynamic coupling of macroscale and CG
models. We shortly described a back-mapping algorithm that
converts a DTS topology to a Martini structure. This algorithm
opens up a new perspective to perform a dual resolution
Martini/DTS simulation, so that DTS performs the large-scale
moves while local moves of the chemical components is handled
by the CGMartini model.
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INTRODUCTION

The removal of non-coding introns within a precursor messenger RNA (pre-mRNA) transcript
is a key step of gene expression and regulation, occurring via two transesterification reactions
mediated by at least two Mg2+ ions (Kastner et al., 2019). Whereas in lower organisms this
process is self-regulated by group II intron ribozymes (G2IRs) performing their own excision
from a pre-mRNA strand, in eukaryotes, due to the increased complexity of the genome,
these autocatalytic RNAs have evolved into a majestic protein/RNA machinery—the spliceosome
(SPL)—composed of hundreds of proteins and five small-nuclear (sn)RNA filaments (Marcia and
Pyle, 2012; Yan et al., 2019). The SPL, acting as a protein-directed metallo-ribozyme, promotes
the conversion of pre-mRNAs into mature mRNAs. This massive architecture revolves around its
central core constituted by Spp42/Prp8 protein (S. Pombe/S. Cerevisiae or human, respectively)
and a catalytic site fully resembling that of G2IRs (Yan et al., 2019). As the most eminent genome
tailor, the SPL undergoes a relentless compositional and conformational remodeling, repetitively
assembling and transforming at every splicing cycle into eight distinct complexes (A, B, Bact, B∗, C,
C∗, P, ILS) to achieve splicing with a single nucleotide precision.

Recent developments in single-particle cryo-EM have led to elucidate a plethora of near-atomic
resolution structures of SPL complexes from human and yeast strains, thus allowing decades
of biochemical, structural and functional studies to be interpreted. In this context, multiscale
simulations can contribute to deciphering the intricacies of the splicing mechanism by assessing
the chemical details of the pre-mRNA cleavage, and the role of the extraordinarily convoluted
protein/RNA environment in creating the appropriate structural scaffold that finely modulates
introns removal (Yan et al., 2019). Nevertheless, the size and the inner complexity of the SPL
machinery require a wise use of advanced multiscale simulations to tackle the many different
peculiarities of its mechanism, as shown in the following showcased studies.

CHEMICAL MECHANISM OF PRE-mRNA SPLICING IN

PROKARYOTES

The structure of the SPL catalytic site, impressively similar to that of its evolutionary predecessor
G2IRs, is well-preserved among the distinct structures that have been solved. A series of crystal
structures from Oceanobacillus iheyensis captured group IIC intron at sequential stages of the
catalytic process, allowing a first structural breakthrough for unraveling the chemical mechanism
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of pre-mRNA splicing (Marcia and Pyle, 2012). These
crystallographic reconstructions revealed an active site
containing a four-metal-ion cluster made of two Mg2+ and
two K+ ions, the former being catalytically active, while the
latter most likely playing a structural role. Building on these
structures, classical and hybrid quantum-classical QM/MM
simulations enabled the investigation of the first and rate-
determining step of the splicing reaction as promoted by G2IRs
(Casalino et al., 2016). In particular, this work focused on the
water-mediated 5′-exon cleavage mechanism (hydrolytic path).
In fact, in G2IRs the hydrolytic catalysis can be as operative as
the branching pathway, where, instead, the reaction is started
by a conserved bulged adenosine within the branch point
sequence (BPS). By using classical and QM(Car–Parrinello)/MM
molecular dynamics (MD), with the QM part described at
Density Functional Theory (DFT)-BLYP level of theory, and the
MM part treated with the AMBER- ff12SB (ff99+bsc0+χOL3)
force field (FF) (Pérez et al., 2007; Zgarbová et al., 2011; Maier
et al., 2015), in combination with thermodynamic integration
to enable the reaction event within the limited time-scale of
the QM/MM MD simulations, this study unveiled a novel
dissociative two-Mg2+-ion mechanism in which the bulk water
acts as general base (Casalino et al., 2016).

The two-Mg2+-ion motif is a well-established catalytic
cofactor shared by many enzymes processing nucleic acids. In
these enzymes, the phosphodiester bond hydrolysis is believed
to occur according to the Steitz and Steitz’s proposal. In
its original postulation, confirmed by distinct computational
studies, the two Mg2+ ions act as Lewis acids activating the
nucleophile, stabilizing the leaving group and the transition
state (Palermo et al., 2015; Sgrignani and Magistrato, 2015).
At variance with this, in G2IRs a dissociative mechanism takes
place, with the reactive water detaching from the Mg2+ ion
and performing the attack on the scissile phosphate while
still in its non-deprotonated form. Only after the nucleophilic
substitution has started, the catalytic water eventually releases
its proton to the bulk water and terminates the reaction. In
this mechanism one Mg2+ ion activates the scissile phosphate
group by making it more electrophilic, while the second
Mg2+ stabilizes the leaving group. Hence, in this chemical
path the role of the two Mg2+ ions remarkably differs
from that of protein enzymes performing a two-metal-aided
catalysis. It is tantalizing to believe that this mechanism
may be specific for ribozymes, where the catalytic site is
exclusively formed by the RNA sugar–phosphate backbone
bearing a lower specificity/efficiency to promote the reaction
than that of enzymes. This peculiar mechanism may represent
an ancestral version of the two-Mg2+-ion catalysis later evolved
in enzymes and in protein-directed ribozymes (spliceosome)
(Casalino et al., 2016).

SPLICING MECHANISM MODULATION BY

THE PROTEIN ENVIRONMENT

In spite of the large number of cryo-EM structures of the
SPL published as of yet, no catalytically competent form

has been trapped, thus hampering a study of the chemical
mechanism of splicing in eukaryotes. Moreover, the large size
and complexity of the SPL pose serious challenges even when
attempting to unravel its functional properties. Indeed, the
deposited cryo-EM maps usually have a resolution ranging
between 3 and 4 Å in the core and even reaching lower values
in the peripheral regions of the macromolecular assembly, which
often displays structural gaps (Kastner et al., 2019; Plaschka
et al., 2019; Yan et al., 2019). For these reasons, in order
to perform all-atom simulations of the SPL it is mandatory
to find a compromise between system size and accuracy. In
the first MD simulation study published to date, based on
the first near-atomistic SPL structure solved from yeast S.
Pombe capturing the intron lariat spliceosome (ILS) complex
(Yan et al., 2015), two explicitly solvated core model-systems
containing ∼1,000,000 atoms were built and simulated via
multi-replica MD simulations for a cumulative statistics of few
microseconds (Figure 1). In these simulations the AMBER-
ff12SB FF was used for proteins (Maier et al., 2015), whereas
ff99+bsc0+χOL3 FF was adopted for RNAs (Pérez et al., 2007;
Zgarbová et al., 2011).

Correlation analyses, principal-component analysis (PCA),
and electrostatic calculations disentangled the cooperative
motions underlying the SPL functional dynamics, unraveling the
role of electrostatics in modulating these movements (Casalino
et al., 2018). The simulations provided unprecedented insights
on the SPL functional plasticity, assigning to Spp42 (Prp8
in human) a central role in finely directing the motions of
many distinct SPL components. Metaphorically, the resulting
scenario is that of Spp42 as an orchestra conductor of the gene
regulation symphony. The essential dynamics extracted from
the PCA revealed, consistently with the stage of the splicing
cycle investigated, an electrostatically-driven displacement and
unrolling of the U2/intron-lariat branch helix co-promoted
by Cwf19 (CWF19L2 in human) and Spp42, both involved
in the ILS disassembly (Casalino et al., 2018). Strikingly,
the implication of Cwf19 in the branch helix unwinding
was thereafter corroborated by recent cryo-EM studies on
the human SPL (Zhang et al., 2019). Despite the intrinsic
limitations of this study due to the large size of the system
and the well-known flaws of RNA (Šponer et al., 2018) and
Mg2+ (Casalino et al., 2017) FFs, this study has opened new
avenues for probing this incredible machinery with atomic-
level simulations.

DISCUSSION

A detailed comprehension of the molecular terms of eukaryotic
splicing has entailed implications for revolutionary gene
modulation therapies and drug discovery studies aimed at
fighting the over 200 human diseases associated with splicing
defects. Upon the deposition of the first SPL structure from
yeast in 2015, many human cryo-EM maps have been solved,
thus opening new opportunities to dissect detailed aspects of
this machinery (Kastner et al., 2019; Plaschka et al., 2019; Yan
et al., 2019). Among the unmet questions that need to be solved
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FIGURE 1 | The intron lariat spliceosome complex. Proteins are shown with electrostatic surface (blue/red colors for positive/negative charges, respectively) together

with the respective field lines. The intron lariat (yellow), U2 (orange) and U6 snRNA are represented as cartoon. Mg2+ ions are depicted as orange spheres.

The catalytic center is highlighted by light rays.

from an atomic-level perspective, the molecular recognition
mechanism by which SPL can recruit key intronic sequences
at the 3′ and 5′ splice sites, as well as that of the conserved
BPS, stands out. The subtle molecular foundations ensuring
the reliable identification of authentic consensus splice sites
(constitutive splicing), while simultaneously providing some
flexibility in the selection of non-consensus ones (alternative
splicing) remain unclear. Deregulated constitutive/alternative
splicing is well-known to lead to aberrant mRNA transcripts,
which may either induce non-sense mediated decay or result
in functionally-altered proteins, deleteriously affecting cells
functions. In this context, research efforts have been devoted
to understanding the mechanism by which mutations of the
splicing factor SF3B1 affect BPS recognition, thus leading to
aberrant splicing and to the outbreak of distinct hematological
malignancies (Cretu et al., 2018). Splicing modulators hitherto
trapped in SF3B1 have been found to target the BPS
recognition site, elucidating the structural basis of their
inhibition mechanism (Cretu et al., 2018; Zhang et al., 2018).
Large-scale genomics studies have recently indicated that splicing
abnormalities and cancer onset are strongly entwined. Thus,
while eagerly awaiting for more structures to be released in the
forthcoming years, we expect SPL to become an increasingly
important subject of drug design studies tackling distinct
types of cancer.

Although the reported results from all-atom simulations—
and all the possible future applications—appear to be very
encouraging (Casalino et al., 2018; Palermo et al., 2019), several
challenges need to be tackled, starting from the amelioration
of current RNA and protein/RNA FFs (Šponer et al., 2018).
Moreover, even though we have assisted to a fast development

of computer hardware and software allowing for brute force
unbiased MD simulations, biologically relevant time scales
remain computationally extremely demanding and out of reach
to most computational labs. In this respect, enhanced sampling
and free energy methods to study rare events taking place in
complex biological contexts call for further improvements (Miao
and McCammon, 2016; Valsson et al., 2016). The presence of
metals within the catalytic core of the SPL, which in fact makes
it a protein-directed metallo-ribozyme, poses serious difficulties
for a reliable fully classical prediction of its properties (Vidossich
and Magistrato, 2014; Brunk and Rothlisberger, 2015). For this
reason, the use of highly parallel QM/MM MD schemes capable
of better exploiting large computational infrastructure would
be ideal (Bolnykh et al., 2019; Olsen et al., 2019). A timely
fashion communication between the QM and MM would in fact
allowmore efficient QM(DFT)/MMMDcalculations, accounting
for larger QM regions and longer simulation time than the
accustomed∼100 atoms and∼100s ps time scale, respectively.

In this scenario, we expect that new methodological advances
in computer simulations, modeling and analysis techniques
will foster atomic-level studies of the SPL, contributing to
an utter comprehension of this fundamental step of gene
expression. This will also be of service for a better understanding
of the allosteric signaling between distal sites, which occurs
via the entangled protein/RNA networks characterizing the
SPL, and for the discovery of druggable allosteric sites
(Palermo et al., 2017). On a final note, we hope that any
related breakthrough might help to elucidate the role of
splicing pathways in cancer, concretely opening appealing
opportunities for creating therapeutic approaches and innovative
gene manipulations tools.
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Troponin is a key regulatory protein in muscle contraction, consisting of three subunits

troponin C (TnC), troponin I (TnI), and troponin T (TnT). Calcium association to TnC

initiates contraction by causing a series of dynamic and conformational changes that

allow the switch peptide of TnI to bind and subsequently cross bridges to form between

the thin and thick filament of the sarcomere. Owing to its pivotal role in contraction

regulation, troponin has been the focus of numerous computational studies over the

last decade. These studies elegantly supplemented a large volume of experimental work

and focused on the structure, dynamics and function of the whole troponin complex,

individual subunits, and even on segments of the thin filament. Molecular dynamics,

Brownian dynamics, and free energy simulations have been used to elucidate the

conformational dynamics and underlying free energy landscape of troponin, calcium,

and switch peptide binding, as well as the effect of disease mutations, small molecules

and post-translational modifications such as phosphorylation. Frequently, simulations

have been used to confirm or explain experimental observations. Computer-aided drug

discovery tools have been employed to identify novel potential calcium sensitizing

agents binding to the TnC-TnI interface. Finally, Markov modeling has contributed to

simulating contraction within the sarcomere on themesoscale. Here we are reviewing and

classifying the existing computational work on troponin and its subunits, outline current

gaps in simulations elucidating troponin’s role in contraction and suggest potential future

developments in the field.

Keywords: troponin, molecular dynamics simulation, free energy methods, brownian dynamics, cardiac thin

filament modeling

INTRODUCTION

Troponin (Tn) is a three-subunit protein complex that resides on the thin actin filament in
muscle cells. Its three subunits, troponin C (TnC), troponin I (TnI), and troponin T (TnT) have
separate roles in facilitating muscle contraction (Greaser and Gergely, 1973). TnT is anchoring
the complex to the actin filament and also interacting with the protein tropomyosin. TnI has
an inhibitory region that will interact with actin and inhibit the movement of tropomyosin
from the myosin-binding sites on the actin filament. TnC is the calcium-binding subunit, that
binds calcium in its regulatory domain which allows TnC to bind to a region of TnI known as
the switch-peptide (Parmacek and Solaro, 2004). This interaction then leads to a sliding of the
tropomyosin on the actin filament and exposes the myosin-binding sites for contraction to occur
(Gordon et al., 2001). Understanding the interactivity between subunits within the complex is
critical to understanding muscle contraction at a molecular level. An important area of study
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are the intrinsically disordered regions within the troponin
complex that play critical roles in functional regulation (Na
et al., 2016; Papadaki and Marston, 2016; Marston and Zamora,
2019). Serious health conditions, such as cardiomyopathies, have
been linked to proteins within the sarcomere, and especially
troponin (Hershberger et al., 2010; Seidman and Seidman, 2011).
In addition to the significant experimental contributions to the
study of troponin, a plethora of computational methods have
been developed and utilized to study structure, dynamics and
function of troponin. Here we will review computational studies
of cardiac and skeletal troponin, seen in Figure 1, including
molecular dynamics simulations sampling the conformational
dynamics of troponin, free energy simulations used to elucidate
the underlying free energy landscape of troponin, modeling of
small molecule interactions with TnC, as well as troponin’s role
in Markov state models of sarcomere contractility.

MOLECULAR DYNAMICS SIMULATE THE
CONFORMATIONAL DYNAMICS OF THE
TROPONIN COMPLEX AND ITS SUBUNITS

Cardiac Troponin Simulations
Dynamic motions of the cardiac troponin complex and its
individual subunits have been extensively studied with molecular
dynamics (MD) simulations and helped elucidate the functional
importance of these motions. Molecular dynamics numerically
integrates Newton’s equations of motion and allows for the
simulation of trajectories of biomolecular atoms and molecules
(Karplus and McCammon, 2002). This technique can simulate
dynamics on the order of ns-ms and systems up to millions
of atoms, only limited by available computational resources.
A wild-type cTnT subunit was simulated to investigate the
hinge dynamics and develop a model for subunit interactions
(Manning et al., 2012a). Conventional MD of the N-terminal
regulatory domain of cardiac TnC (cNTnC) and the cTnI-
switch peptide has been used to measure the distance between
key interacting residues over the course of 40 ns simulations
which revealed isoform-specific interactions (Thompson et al.,
2014). Continuing their investigation into the role of isoform-
specific interactions, the Metzger group subsequently simulated
cTnC-cTnI switch-peptide systems at various protonation states
(Palpant et al., 2012). Further study of the cTnC-cTnI in complex
showed that there are key structural differences between the helix
4 of TnI and the switch-peptide region (Vetter et al., 2018).
The intrinsically disordered region of TnI (C-terminal domain)
was simulated with cNTnC which provided evidence that the
region is flexible and has structural preferences (Metskas and
Rhoades, 2015). Simulation insights into the I and T subunits
depend largely on their relation to the effect they have on cTnC,
therefore simulations of cNTnC are critical to understanding
muscle contraction at a molecular level. Simulations of cNTnC
showed calcium-binding is driven, entropically, by desolvation of
the calcium ion rather than structural entropy change in cNTnC
(Skowronsky et al., 2013). Long timescale simulations of wild-
type, calcium-bound cNTnC, on the order of 10 µs, revealed
sampling of a semi-open configuration of cNTnC that is not

seen in the experimental structure (Lindert et al., 2012a). As a
method to enhance sampling, accelerated MD simulations were
performed on the cNTnC systems which, when projected onto
a PCA space, sampled the open configuration exclusively in the
calcium-bound state (Lindert et al., 2012b).

Developing a model of muscle contraction through
computational methods requires going from the single
subunits to a complete troponin complex and even beyond.
The Li lab conducted 12 ns simulations on a full cTn complex
(Varughese et al., 2010). This work was able to show that
calcium coordination is altered between isolated cTnC and
cTnC in complex. Longer timescale simulations of the core
troponin complex were subsequently performed by the
Gould lab who were able to simulation for hundreds of
nanoseconds (Zamora et al., 2016). This model provided insight
into interactions between the subunits and can be used for
further mutational studies in the Tn complex. Experimental
FRET has been used by the Dong lab to restrain molecular
dynamics simulations of the core of the cardiac troponin
complex (Jayasundar et al., 2014). These experimental restraints
provided a more direct method to relax the model of the
troponin complex to a native minimum. In order to study
the troponin complex in its natural environment on the thin
filament, a full thin filament model was developed by the
Schwartz group (Manning et al., 2011). This model was then
simulated using unrestrained MD (Williams et al., 2016). These
seminal simulations were able to show the influence of cTnT
mutations on cTnC and provide insight on the mechanism of
disease pathology.

Fast Skeletal Troponin Simulations
To further understand themolecular basis of skeletal contraction,
the fast-skeletal troponin complex (sTn) and fast-skeletal
troponin C (sTnC) have been simulated using molecular
dynamics. The Li group simulated a full troponin complex and
demonstrated that the inter-linker region of sTnC was flexible
in simulations, in contrast to what the static model suggested
(Varughese et al., 2010). This work also highlighted correlated
motions within the complex between the C-terminal domain of
sTnC and helices of the sTnT subunit. The Lu group simulated
both the core domain of sTn and an isolated sTnC subunit
(Genchev et al., 2013), showing that the calcium-bound N-
terminal region transitioned from the open state (which is
observed in the experimentally-derived structures), to a stable
semi-open configuration. Closing of calcium-bound sTnC from
the open state has been detected in other MD simulations as
well. The isolated N-terminal domain of sTnC was used in
conventional MD simulations for 1 µs in which semi-open and
open configurations were sampled, but not exclusively (Bowman
and Lindert, 2018). This work further supported temporary
closing of the sTnC N-terminal region, even in the calcium-
bound state. The Ghosh lab modeled the missing residues
of known sTnC crystal structures guided by thermodynamics
(Sikdar et al., 2016). This work showed destabilization of key
residues resulting from calcium binding and allowed the binding
of sTnI to both domains of sTnC.
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FIGURE 1 | Methods employed to study the underlying molecular mechanisms of muscle contraction. Molecular dynamics and umbrella sampling have been used to

study the dynamics of the hydrophobic patch region. Techniques such as BrownDye and umbrella sampling have been used to study calcium binding. Small

molecules have been studied interacting with troponin C through docking and molecular dynamics. Thin filament modeling has been key to understand the larger

context of muscle contraction.

Simulations of Disease State and Calcium
Sensitivity Modulation Mutations
Mutations within the troponin complex and other sarcomeric
proteins within cardiac muscle can lead to life-threatening
cardiomyopathies, such as hypertrophic (HCM) and dilated
(DCM) cardiomyopathy. A key use of MD is to study the
dynamics of the cTn complex and its subunits in the presence
of these mutations. HCM- and DCM-associated mutations that
exist on the regulatory domain of cTnC have been in the focus
of various conventional MD simulations. Early short simulations
were run for 5 ns on the DCM-associated mutation D75Y
in calcium-free cNTnC and showed that the D75Y mutation
would lead to a reduction in contraction through stabilization
of the closed state (Lim et al., 2008). The designed calcium
sensitizing cNTnC mutation L48Q was simulated for up to
70 ns by the Regnier group (Wang et al., 2012), revealing an
increase in the stability of the calcium binding site coordination
and a disruption of the closed state. Additionally, the calcium
desensitizing mutations L57Q and I61Q were simulated using
a similar protocol as for L48Q (Wang et al., 2013). This study,
also by the Regnier group, showed the destabilization of the
cNTnC site II calcium-binding site caused by these mutations.
Long timescale simulations of several microseconds of gain-of-
function mutation V44Q and loss-of-function mutation E40A,
were able to show distinct differences in the opening frequency
imparted by these mutations (Lindert et al., 2012a). This
modulation of opening frequency was suggested as a mechanism
for calcium sensitization. An extension of this work showed that

other gain-of-function and loss-of-functionmutations altered the
dynamic landscape of cNTnC (Kekenes-Huskey et al., 2012).
This suggested that tuning the cNTnC dynamics would lead
to tuning of the myofilament. Microsecond simulations of
DCM-associated mutations revealed that the C-terminal cTnC
mutation G159D and the N-terminal mutation D75Y both
greatly reduced time spent in the open configuration of cNTnC
(Dewan et al., 2016). The Tibbits group performed simulations
of four HCM-associated mutations, in addition to the designed
calcium-sensitizing L48Q mutation and the DCM-associated
mutation Q50R (Stevens et al., 2017). These simulations showed
that HCM-associated mutations destabilized the closed state of
cNTnC. This result was in agreement with our simulations,
showing an overall lower free energy of opening for HCM
mutations and especially for the designed calcium-sensitizing
mutation L48Q, and a slightly larger free energy of opening for
the DCM-associated mutations (Bowman and Lindert, 2018).

Mutations that impact calcium sensitivity and lead to
cardiomyopathies are also found in cTnI and cTnT and have been
studied computationally. The HCM-associated cTnI mutation
R145G showed little change in the overall dynamic behavior
of the cTn complex compared to wild-type (Lindert et al.,
2015a). This study suggested that the mutation exclusively
disrupted residue-residue contacts created by phosphorylation
as a mechanism for the HCM-associated mutation. This study
also created a model that was ideal for studying disease-
associated cTnI mutations. In addition to R145G, the cTnI
mutation R21C was simulated (Cheng et al., 2015). Similarly
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to the R145G mutation, R21C disrupted the contacts generated
by phosphorylation. The putative HCM-associated mutation
P83S, studied with the same cTn model, exhibited dynamics
similar to wild-type (Cheng et al., 2016). This finding agreed
with the studies of R145G and R21C, in that the contacts
imparted by phosphorylation were only blunted rather than
completely disrupted. The Regnier lab investigated the restrictive
cardiomyopathy (RCM) cTnI mutation R145W with a full cTn
complex as well (Dvornikov et al., 2016). This cTnI mutant, by
itself, did not alter the interactions between cTnC and cTnI.
But upon addition of the phosphomimic mutations S23D/S24D,
the R145W mutant disrupted the phosphorylation-mediated
decoupling of cTnI and cTnC, leading to conclusion that the
combination of phosphorylation and mutation lead to increased
contractility. The Schwartz group has spearheaded investigations
of the influence of cardiomyopathy-associated mutations on
cTnT through MD. In an early iteration, residues 70–170 of
murine cTnT with HCM mutations R92L and R92W were
investigated in short simulations (Ertz-Berger et al., 2005). Both
these mutations decreased helical stability of cTnT, as seen in
disruption of hydrogen bonds, suggesting a mechanism for Tn
destabilization. This work was subsequently extended employing
longer simulations, on the order of 300 ps, on the samemutations
(Manning et al., 2012a). Much like the previous work, this study
showed decreased helical stability, and additionally suggested
a mechanism of disease pathology by disrupting troponin tail
and tropomyosin binding necessary for typical contraction. A
full atomistic model of the troponin complex was developed
for studying these HCM-associated mutations (Manning et al.,
2012b). The cTnT mutations R92L, R92W, 1E160, E163K, and
E163R were found to either induce changes in the flexibility of
cTnT or change the calcium affinity for the cNTnC calcium-
binding site. A full cardiac thin filament model was generated
for further investigation of changes in dynamics and contacts
induced by these HCM-mutations (Williams et al., 2016). This
work was critical in linking the cTnT mutations to allosteric
effects on calcium binding within cTnC. Understanding this link
has potential to target cardiomyopathies through means other
than calcium-sensitivity modulating small molecules.

Simulations of Post-translational
Modifications in Troponin
Post-translational modifications, specifically PKA
phosphorylation of cTnI, are crucial to function within the
troponin complex which ultimately reduces calcium sensitivity
and promotes muscle relaxation. Phosphomimic mutations of
cTnI residues S23 and S24 to aspartic acid were found to increase
the movement of the entire Tn complex while not altering the site
II calcium-binding of cNTnC. These phosphomimics also led to
intrasubunit interactions between the cNTnC and the inhibitory
region of cTnI, a region before the switch peptide (Cheng et al.,
2014). These phosphomimic mutations were then assessed in
the presence of a known disease-associated cTnI mutation,
R145G of cTnI, to explore its impact on a phosphorylated
system. This mutation interrupted the intrasubunit interaction
observed in the wild-type phophomimic simulations which

suggested a mechanism for the Tn modulation (Lindert et al.,
2015a). In support of the validity of the phosphomimic model,
these systems were also simulated with actual phosphoserine
side chains at cTnI residues 23 and 24 and no distinguishable
differences between the simulations were observed. An addition
of the HCM-associated cTnI mutation R21C to the complex
also lowered the intrasubunit contacts observed in the wild-type
system with phophomimics added (Cheng et al., 2015). In
contrast to the previously described mutations, the HCM-
associated cTnI mutation P83S only moderately disrupted
the phosphorylation-mediated interaction between cNTnC
and cTnI. This study showed that there are other possible
mechanisms which are additive to the P83S mutation that led to
hypertrophic cardiomyopathy (Cheng et al., 2016). These studies
were further extended by the Gould group that created a full
troponin complex model and simulated on the order of 750 ns
to investigate phosphorylation regulation of calcium-binding
(Zamora et al., 2016). Utilizing phosphoserine, instead of a
phosphomimic, this work showed that the phosphorylation
moved the S69 in cTnC to an out of coordination position in site
II for calcium.

COMPUTATIONAL STUDIES OF CALCIUM
AND TNI BINDING TO TNC

Techniques such as Brownian dynamics and umbrella sampling
have been used to investigate the binding of calcium and TnI
to TnC. Brownian dynamics is a technique that simulates a
system based on an overdamped Langevin equation of motion,
as opposed to Newtonian motion in MD, to study diffusion
dynamics and obtain association rates for a given process
(Ermak and McCammon, 1978). Browndye was utilized to
estimate an on-rate for calcium for wild-type cNTnC comparable
to experimentally determined values (Lindert et al., 2012b).
Because this technique was able to recapitulate experimental
values for wild-type, it was subsequently extended to use with
disease-associated mutations of cTnC (Dewan et al., 2016).
This work demonstrated that the calcium on-rate was indeed
impacted by these mutations, in agreement with experimental
data. Milestoning, applied to cTnC calcium binding by the
Amaro group, also generated kon rates in agreement with
experiment (Votapka and Amaro, 2015). The Tibbits group
further developed an umbrella sampling scheme to investigate
calcium binding free energies in zebrafish cTnC and ssTnC at
two temperatures (Stevens et al., 2016). This method has also
been extended to use on cardiomyopathy-associated mutations,
which was able to ascribe differences to binding energies to these
mutations (Stevens et al., 2017). Steered molecular dynamics
techniques used by the Schwartz group have been used to
assess calcium binding to the cTn complex with cTnT mutations
(Williams et al., 2016). These simulations were able to calculate
the work required to pull calcium ions from cNTnC within
the context of the core of cTn. Free energy perturbations from
the Metzger group were able to show an increase in calcium
binding free energy for acidosis states of myocytes that agreed
with experimental data (Thompson et al., 2014; Vetter et al.,
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2018). Finally, a four state model was developed to explain,
through investigation of the cTnI effective concentration, why
calcium sensitivity varies from isolated TnC to the Tn complex
to a full thin filament model (Siddiqui et al., 2016). In addition
to the application of free energy methods to assess calcium
binding, TnI binding has been explored. Both MM/PBSA
(Stevens et al., 2017). and MM/GBSA (Lindert et al., 2015a).
have been used to estimate the energy of binding of the cTnI-
switch peptide to cNTnC. While these values did not exhibit
close agreement with experimental measurements, they were
still instructive in ranking scores of the approximate energy of
binding for mutations of cTnI. Additionally, steered molecular
dynamics and umbrella sampling methodologies have been
developed to sample the free energy landscape of the troponin
complex. We developed an umbrella sampling scheme for
assessing the free energy of opening of the hydrophobic patch
of the regulatory domain of sTnC, cTnC, and cardiomyopathy-
associated mutations of cNTnC and provided insight into a
potential mechanism of contraction modulation (Bowman and
Lindert, 2018).

SMALL MOLECULE INTERACTIONS WITH
CTNC

Small molecules developed for the treatment of
cardiomyopathies have been simulated bound to cNTnC
to probe binding energies for these molecules through an
MM/PBSA method. The Li group applied this approach to
studying the well-known TnC binding molecule bepridil
(Varughese et al., 2011). This work was able to show
that bepridil enhanced calcium sensitivity by altering the
calcium coordination residues in the isolated cNTnC, but
decreased cTnC and cTnI interactions in the complex.
As a result of the success of this method, it was further
used in combination with drug discovery to validate
calcium-sensitization of new compounds (Varughese and
Li, 2011).

Treatment of the pathologies associated with diseased cardiac
muscle has been of great interest. To this end, cNTnC has
been a target for small molecule drug screens and drug
development. High through-put virtual screens (HTVS) on
clusters derived from MD simulations were performed on
cNTnC. This technique was able to identify a calcium-
sensitizing compound, NSC147866, from the NCI II diversity
set (Lindert et al., 2015b). A significantly improved version of
this screening protocol, applied to structures of cNTnC from
100 ns simulations, found two additional calcium sensitizers,
NSC600285 and NSC611817, from the entire NCI database
(Aprahamian et al., 2017). Employing experimental intuition,
instead of blind screens, compounds that were similar in
structure to diphenylamine were docked into cNTnC (Cai
et al., 2016). This allowed for the identification of the calcium
sensitizer, 3-methyldiphenylamine. Small molecules bound to
cNTnC have also been studied with an umbrella sampling
scheme to show their influence on the free energy landscape
(Bowman et al., 2019). In contrast to studying the cNTnC

hydrophobic patch as a target for drugs, recent work has targeted
the interdomain linker between N-domain and C-domain of
cTnC (Szatkowski et al., 2019). Efficacy of these drugs was
measured by changing of interaction between the tropomyosin
and cTnT.

MARKOV MODELING HAS CONTRIBUTED
TO SIMULATING CONTRACTION WITHIN
THE SARCOMERE ON THE MESOSCALE

Isolated models and simulations of Tn and its subunits provide
a valuable, yet small window into muscle contraction. There
is, however, a need to correlate these energetics and kinetics
found at the protein level to the sarcomere level. Through
Markov state modeling, in which the next state depends only
on the current state of the system, these individual studies can
be linked together to create picture of muscle contraction. A
model of these processes was created based on the calcium
binding, tropomyosin movement, and then myosin binding
(Campbell et al., 2010). This model accurately predicted steady-
state force change. The Markov model from the Campbell
group was subsequently updated to include the azimuthal angle
between tropomyosin between adjacent tropomyosin chains
(Sewanan et al., 2016). Addition of this angle was unaccounted
for in previous models and allowed for incorporation of
tropomyosin mutations into the model. An updated model
was proposed that included the opening of the hydrophobic
patch and binding of the cTnI switch peptide (Dewan et al.,
2016). This model used data from Brownian dynamics and
molecular dynamics simulations. While unable to accurately
predict the impact of cardiomyopathy-associated mutations on
contraction, this model was able to show that small changes
in these states can ultimately alter the pCa curves at the
larger scale.

CURRENT GAPS AND POTENTIAL
FUTURE DEVELOPMENTS IN THE FIELD

Computational methods have already made a significant
contribution to our understanding of the dynamics and function
of troponin. However, several gaps in simulations elucidating
troponin’s role in contraction remain. The accuracy of free
energy calculations, particularly with respect to calcium binding
affinities, is currently insufficient, as a result of inaccuracies
in forcefield descriptions of calcium, non-classical electronic
effects, and a lack of robust sampling of the thermodynamic
ensemble. Future efforts will have to focus on more accurately
predicting calcium binding affinities, probably employing longer
simulations, force field optimization, polarizable force fields or
even QM/MM calculations. In the context of calcium binding,
but not limited to it, the behavior of the troponin complex is
distinctive from that of its substituents (e.g., isolated cNTnC,
isolated cTnC), challenging simulations to correctly account for
those differences. In general, design of additional computational
experiments that are verifiable in vitro/vivo will lead to more
cohesion between models and experiments. Another current
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limitation is the disparity between physiologically-relevant
millisecond-scale conformational dynamics of the contractile
system and the restriction of conventional simulations to tens
of microseconds, often accompanied by simulation of very
small sections of the contractile machinery. The Schwartz group
has paved the way for extending the size of simulations to
the thin filament and it is our prediction that the field will
follow in the years to come. An alternative route to obtaining
contractile information on the mesoscale are the Markov
models developed by Campbell and coworkers. Future work
will likely focus on obtaining additional model input from
computational simulations, such as the accurate predictions

of calcium-binding affinities discussed above, as opposed to
experimental measurements.
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Over the last decades, multiscale molecular dynamics (MD) simulations including ab initio,
atomistic as well as coarse-grained models have significantly expanded our understanding of
biologically relevant macromolecules like DNA, RNA, or proteins and their properties in solution.
Despite the broad applicability, we comment here on some general challenges for coarse-grained
approaches, the most important being a reliable thermodynamic description at large time and
length scales.

Due to a massive increase in computational power, classical atomistic MD simulations are
nowadays the method of choice for the study of complex molecular mechanisms, thereby taking
into consideration hundreds of thousands of atoms on time scales of several microseconds.
Although classical atomistic models provide a higher level of detail when compared to
coarse-grained approaches, it has to be noted that the simplification of electronic behavior in terms
of potential functions, so called force fields, introduces some conceptual artifacts into the dynamic
and structural properties of the simulated molecular species (Dommert et al., 2012). Furthermore,
polarization and charge-transfer mechanisms are usually ignored, such that more sophisticated ab
initio or empirical models have to be used for systems where these effects become of importance
(Smiatek et al., 2018; Kohagen et al., 2019; Nandy and Smiatek, 2019; Smiatek, 2019).

However, some processes take place on time and length scales, which are not accessible
for atomistic MD simulations. Common examples are the formation of lipid bilayers and
polyelectrolyte complexes, polymer and colloidal diffusion, charge transport or large scale DNA
translocation (Smiatek and Schmid, 2011;Michalowsky et al., 2017, 2018; Smiatek andHolm, 2018).
For the study of these and closely related problems, simple as well as more refined coarse-grained
models offer a wide range of applications. Here, coarse-graining means the introduction of effective
interaction sites (beads) instead of individual atoms, which reduces the degrees of freedom and
thus also the number of necessary computations. In addition, the lower level of detail supports the
straightforward use of implicit solvent approaches in combination with larger time steps (Marrink
and Tieleman, 2013; Kleinjung and Fraternali, 2014; Onufriev and Case, 2019). Depending on the
degree of coarse graining, one can differentiate between simple approaches such as reduced bead-
spring models for polymers and advanced or semi coarse-grained methodologies such as iterative
Boltzmann inversion or the MARTINI method among others (Reith et al., 2003; Clark et al., 2012;
Marrink and Tieleman, 2013; Noid, 2013; McCarty et al., 2014; Rudzinski and Noid, 2014; Dunn
and Noid, 2015; Guenza et al., 2018; Smiatek and Holm, 2018). Although advanced coarse-graining
approaches are often based on rather mild parameterization procedures, it should be noted that
the consideration of effective interaction sites crucially affects the resulting size and the geometry
of the molecular species (Vögele et al., 2015a; Michalowsky et al., 2017, 2018). With regard to
this point, also coarse-grained methodologies reveal some generic drawbacks, thereby limiting the
applicability of these approaches for the thermodynamic analysis of complex solutions.
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In terms of a specific example, many biologically relevant
solutions, such as in mammalian or bacterial cells, are dense
mixtures of various ions, co-solute and co-solvent species
including a non-negligible concentration of solute components
(Zhou et al., 2008). Among other effects, the individual
components of the solution and their thermodynamic properties
exert a tremendous influence on the structural stability of
the dissolved biological species (Canchi and García, 2013;
Smiatek, 2017; Oprzeska-Zingrebe and Smiatek, 2018a). For
instance, it was shown (Zhang and Cremer, 2010; Canchi
and García, 2013; Sukenik et al., 2013; Oprzeska-Zingrebe
et al., 2018) that ions like SCN− or molecules like urea
destabilize DNA or protein structures, whereas the presence of
SO2−

4 , trimethylamine-N-oxide (TMAO), or ectoine enhances
the stability of native macromolecular states. Additionally,
many molecular mechanisms are also dominated by intra-
and intermolecular hydrogen bonds, polarization mechanisms
as well as electrostatic and dispersion interactions. The
presence of these mainly short-ranged interactions influences the
radial distribution functions, potentials of mean force or
the corresponding chemical potentials of the species, so that in
the end, for non-negligible concentrations, there are more or
less pronounced deviations from ideal solutions (Chandler, 1987;
Smiatek, 2014, 2017; Dunn and Noid, 2015; Guenza et al., 2018;
Oprzeska-Zingrebe and Smiatek, 2018a). The question now is
whether coarse-grained models can reproduce these findings?
Of course, one may wonder if the aforementioned properties
need to be exactly reproduced, but we will illustrate by means
of the following arguments that even slight deviations may
have a decisive influence on the thermodynamic properties of
the solution.

In more detail, modified interactions like in coarse-grained
models under constant pressure p and temperature T result
in variations of free energies, as defined by G = H − TS
with the enthalpy H and the entropy S, and changes in the
chemical potential via µα = (∂G/∂Nα)p,T where Nα denotes
the number of molecules of species α. Due to changes in the
enthalpy, also the corresponding molecular arrangements are
affected, which often induces entropic variations as a second-
order effect. Furthermore, changes of chemical potentials from
reference chemical potential µ0

α with the universal gas constant
R are directly related to changes in thermodynamic activities
aα = exp((µα − µ0

α)/RT), vapor pressures, solubilities or
chemical reaction equilibria, as can be shown by relations from
equilibrium thermodynamics and Kirkwood-Buff (KB) theory
(Kirkwood and Buff, 1951; Ben-Naim, 2013) . In consequence,
it becomes obvious that even slight modifications of molecular
interactions may establish a non-negligible variation of relevant
thermodynamic properties as it will be discussed in more detail
in the following.

For illustrative purposes, we develop our arguments for
a binary solution under isobaric-isothermal conditions with
two components, including only solvent (index 1) and co-
solvent (index 3) species. It has to be noted that the
corresponding expressions change for different ensembles and
higher-component mixtures, such that we here focus on one of
the simplest examples (Smith, 2006). In KB theory, the derivative

of the chemical potential of the co-solvent µ3 is defined as

1

RT

(

∂µ3

∂ ln ρ3

)

T,p
=

(

∂ ln a3
∂ ln ρ3

)

T,p
=

1

1+ ρ3(G33 − G31)
, (1)

where ρ3 denotes the number density of co-solvent species
and G33 and G31 the corresponding KB integrals. A detailed
explanation of KB integrals, their relation to radial distribution
functions and their central meaning in KB theory can be found
in the literature (Kirkwood and Buff, 1951; Ben-Naim, 2013;
Smiatek, 2017; Oprzeska-Zingrebe and Smiatek, 2018a). For our
considerations, it is sufficient to know that the KB integrals
rely on radial distribution functions and represent excess
volumes, which can be transformed into excess particle numbers
Nxs

αβ = ρβGαβ for arbitrarily chosen components β around
species α. With regard to this definition, Equation (1) can also
be written as

(

∂ ln a3
∂ ln ρ3

)

T,p
=

1

1+
(

Nxs
33 − (ρ3/ρ1)Nxs

31

) (2)

with the excess number of solvent Nxs
31 and co-solvent molecules

Nxs
33 in combination with the corresponding number densities

ρ1 and ρ3. In terms of implicit solvent approaches with a
continuum dielectric background, it follows that Nxs

31 = 0
by definition, which implies that Equation (2) approaches the
outcomes of experiments and atomistic models only under nearly
ideal conditions with ρ3 → 0 at infinite dilution. Further
deviations can be observed for large and spherical coarse-grained
solvent beads such that the resulting excess volumes are often
not correctly reproduced (Vögele et al., 2015a), which implies
a significant influence on bulk thermodynamic properties like
solubilities or isothermal compressibilities (Pierce et al., 2008;
Smiatek et al., 2018).

Noteworthy, also the transfer free energies in ternary mixtures
between the co-solvent “3” and the solute “2” as defined by G†

=

Nxs
23−(ρ3/ρ1)Nxs

21 rely on accurate values for the number densities
and the excess numbers of molecules (Smiatek, 2017; Oprzeska-
Zingrebe and Smiatek, 2018b) Otherwise, the thermodynamic
affinity between the considered species is crucially affected. In
order to highlight some further inconsistencies, it can be shown
that also the chemical equilibrium between distinct chemical
states in coarse-grained models differs from experimental
values and atomistic approaches. In contrast to the chemical
equilibrium constant K0 in presence of a neat solute-solvent
mixture, the modified chemical equilibrium constant K∗ for
denatured or native protein or DNA states (Oprzeska-Zingrebe
and Smiatek, 2018a,b) or for associated and dissociated ion pairs
(Krishnamoorthy et al., 2018) in presence of low co-solvent
concentrations reads (Oprzeska-Zingrebe et al., 2019)

K∗
= K0 exp(1Nxs

23) (3)

with1Nxs
23 = Nxs

23(d)−Nxs
23(n) where d denotes the denatured and

n the native state (Oprzeska-Zingrebe et al., 2019).With regard to
the previous equation, a different value of1Nxs

23 as obtained from
the coarse-grained simulations when compared to the atomistic
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model or experimental values (1Nxs
23,exp) modifies the chemical

equilibrium constant K∗
6= K∗

exp and also the free energy
difference in accordance with 1G∗

= −RT lnK∗
6= 1G∗

exp.
In consequence, incorrect sizes and geometries as well as

simplified interactions or inaccurately parameterized coarse-
grained interaction sites may induce significant deviations and
spurious artifacts. A recent article revealed that specifically the
number of interaction sites is of crucial importance (Dunn and
Noid, 2015). Noteworthy, most deviations are only relevant for
small molecular species like organic solvent molecules or ions,
whereas significant improvements of coarse-grained models for
polymers were recently reported (McCarty et al., 2014; Dunn
and Noid, 2015; Vögele et al., 2015a,b; Guenza et al., 2018;
Michalowsky et al., 2018).

In terms of these challenges, why should one use coarse-
grained models at all? To answer this question, one should keep
in mind that everything should be made as simple as possible,
but not simpler. As already discussed, deviations between
atomistic and coarse-grained models are mainly relevant for
small molecular or ionic species where coarse-graining means a
significant change of size and geometry.With regard to this point,
it was recently shown that improvements in the parameterization
strategy, the functional form of the interaction potentials as well
as the consideration of polarizabilities in coarse-grained models
increase the validity of the results (Noid, 2013; Rudzinski and
Noid, 2014; Dunn and Noid, 2015; Michalowsky et al., 2017,

2018; Zeman et al., 2017; Guenza et al., 2018; Uhlig et al.,
2018). With regard to this point, variations in thermodynamic
properties become even visible for united- and all-atom models
which highlights the importance of accurately parameterized
molecular structures and interaction sites (Markthaler et al.,
2017). Nevertheless, if the key features of interest can be
reproduced through reduced models, nothing stands in the way
of using these approaches. Otherwise, one must always be aware
that uncontrollable artifacts may occur. In consequence, one may
always keep the limits of the individual models in mind, such that
the applicability of the approaches for certain research questions
should be carefully reviewed.
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Biomolecules perform their various functions in living cells, namely in an environment that

is crowded by many macromolecules. Thus, simulating the dynamics and interactions

of biomolecules should take into account not only water and ions but also other

binding partners, metabolites, lipids and macromolecules found in cells. In the last

decade, research on how to model macromolecular crowders around proteins in order

to simulate their dynamics in models of cellular environments has gained a lot of

attention. In this mini-review we focus on the models of crowding agents that have been

used in computer modeling studies of proteins and peptides, especially via molecular

dynamics simulations.

Keywords: protein dynamics, macromolecular crowding, coarse-grained models, molecular dynamics

simulations, crowder models

1. INTRODUCTION

Intracellular organelles—in addition to water molecules, ions, metabolites, and other small
solutes—typically contain between 200 and 400 g/L of macromolecules such as proteins, nucleic
acids, ribosomes, and lipids. These complex environments may impact biomolecular function in
vivo via crowding and confinement. The most obvious consequence is reduced diffusion. However,
crowder molecules may also influence macromolecular folding and stability, internal dynamics
and the sampling of functionally relevant conformations, complex formation, ligand binding and
product release, catalytic activity, and other events (Zhou et al., 2008; Rivas and Minton, 2016).

In the majority of simulation studies, the functional dynamics of a given biomolecule has
been investigated one molecule at a time and in the presence of only water and ions. However,
when biomolecules experience crowding, the available volume is decreased and interactions with
other biomolecules are unavoidable. This influences their diffusion and association pathways.
Experiments increasingly study the function and dynamics of biomolecules under crowded
conditions (e.g., Kuznetsova et al., 2014; Cheng et al., 2018; Fonin et al., 2018; Maximova et al.,
2019). Thus, it is necessary to account for crowded conditions in simulations as well. Indeed, in the
last decade, the number of studies of biomolecular interactions that consider not only water and
ions but also other binding partners, metabolites or crowders has increased.

Crowding has the most pronounced effects on proteins with intrinsically disordered fragments
or those that undergo significant conformational transitions as part of their function, for example
during ligand binding. This applies to a vast majority of proteins. Therefore, it is time to establish
standard protocols for how to include crowded environments in molecular simulations. This
mini-review offers a brief guide through viable candidates. There are many reviews about the
simulations of crowding, but we specifically focus on the crowder models used in molecular
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dynamics (MD) simulations. Other reviews cover the
overall effects of crowding (Zhou et al., 2008; Christiansen
et al., 2013), models of cellular environments at different
scales (Feig and Sugita, 2013; Im et al., 2016; Feig et al., 2017),
diffusion (Długosz and Trylska, 2011), and protein-protein
interactions (Bhattacharya et al., 2013) in crowded environments.

2. REDUCED MODELS OF CROWDERS

A simple model for mimicking the excluded volume effect
is geometric confinement where the physical volume available
to a molecule is constrained. Typically, a spherical potential
is applied, which restricts the conformational and diffusional
freedom of the molecule similar to what explicit crowders
would do. A similar approach is to penalize increased solvent-
accessible surface areas (Tanizaki et al., 2008). More sophisticated
models, which account for both the volume restraint and
the presence of mobile crowders, include randomly placing
explicit crowders around the molecule and applying appropriate
boundary conditions. The most common model is to simulate a
single molecule, in most cases a protein represented in a coarse-
grained (CG) manner, surrounded by spherical crowders. By
default, such a crowder is modeled as a single pseudo-atom with
an enlarged radius to match the volume of a crowding agent of
interest (Figure 1A). Typical crowder particle radii vary between
10 and 50 Å, with an average of 25 Å. Such sizes are appropriate
to represent folded proteins or crowding polymers like Ficoll.

2.1. Single-Particle Spherical Crowders
Spherical crowders provide the excluded volume effect without
requiring any specific interactions with the biomolecule.
Therefore, crowder-molecule and crowder-crowder interactions
are limited to van der Waals interactions via the Lennard-Jones
potential and often only the repulsive part of the potential is
considered (Minh et al., 2006; Kim et al., 2010). As the number
of atoms in such systems is restricted to a minimum, the
simulations become relatively fast, especially when an implicit
water model is used. As a fast and simple solution, spherical
crowders became popular and have been adopted in many types
of simulations. They are often used in Brownian dynamics (BD)
simulations (Cheung et al., 2005; Minh et al., 2006; Stagg et al.,
2007; Wieczorek and Zielenkiewicz, 2008; Oh et al., 2014), but
they can be also used in other methods such as MD (Kim
et al., 2014; Miller et al., 2016) and Monte Carlo simulations
(Kim et al., 2010).

Simulations with spherical crowders can be classified as a
mixed-resolution approach because typically the crowders are
represented as single particles, whereas biomolecules of interest
are represented at higher levels, with at least one bead per residue.
If the protein is represented with a CG model, some details
about its behavior may be lost, such as its internal dynamics or
specific aspects about interactions with the environment such
as explicit water, other biomoleculs, or ligands. However, many
questions can still be addressed with this simple approach such
as the impact on diffusion (Ridgway et al., 2008), the stability
of proteins (Cheung et al., 2005; Stagg et al., 2007) and protein
complex formation (Kim et al., 2010, 2014; Latshaw et al., 2014)

or inter-domain mobility (Minh et al., 2006). Some of these
examples are briefly described below.

Single-particle crowders were shown to mildly stabilize
some globular proteins, such as the native state of the WW
domain (Cheung et al., 2005). The apoflavodoxin protein also
favored more compact states at 25% vol. crowding (Stagg et al.,
2007). A study on the HIV-1 protease (Figure 1A) showed that
the frequency of opening of the protease flaps covering the active
site is suppressed at high crowder fractions but low 5% vol.
crowding was found to actually enhance the flap dynamics (Minh
et al., 2006).

A simulation of amyloid aggregation suggested that
crowding increases the rate of oligomer formation and
fibril growth (Latshaw et al., 2014). These effects were found
to depend on the size of the crowder particles, where smaller
crowders enhanced the oligomerization rate to a greater extent. A
similar enhancement was also seen in a simulation of antibody-
antigen association under crowded conditions (Wieczorek and
Zielenkiewicz, 2008).

The effect of crowding on the interactions between proteins
forming complexes was also investigated. The binding free energy
in two protein complexes (ubiquitin/UIM1 and cytochrome
c/cytochrome c peroxidase) was shown to decrease in the
presence of higher concentrations of repulsive crowders (Kim
et al., 2010). Repulsive crowders also modestly stabilized the
interactions in the pKID-KIX protein complex (Kim et al., 2014),
but including an attractive term for protein-crowder interaction
could destabilize the interaction in the protein complex.

Spherical crowders have also been used to study the impact
of crowding on the conformational dynamics of intrinsically
disordered proteins (IDP). In one study, the crowders were
reported to induce compaction of disordered peptides (Miller
et al., 2016). The compaction increased with decreasing radius of
the crowders and with increasing volume fraction, but the effects
also strongly depended on the peptide sequence.

2.2. Many-Particle Crowders
The resolution of the crowder particle can be increased by
distributing a set of small pseudo-atoms on the surface of a
sphere to form a bead shell (Elcock, 2003; Kurniawan et al., 2012).
Such a model can match the higher resolution of a biomolecule
of interest better and offer computational advantages as shorter
non-bonded cutoffs can be used. Bead-shell crowders have been
used in a BD simulation to calculate the free energy of the escape
of a protein from the GroEL cage (Elcock, 2003) and later on
in an MD simulation with explicit water molecules to observe
the conformational changes of a short peptide (Kurniawan et al.,
2012). In the latter work, crowding was found to facilitate folding
of a β-hairpin by promoting compact structures and preventing
unfolding of the intermediate conformations.Modeling crowders
as CG proteins placed around a biomolecule represented with a
CG model of similar resolution is also a computationally feasible
option (Figure 1B). Such an approach was applied e.g., in BD
simulations of ligands associating with HIV-1 protease in the
presence of glutathione S-transferase P as a crowding agent (Kang
et al., 2011).
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FIGURE 1 | The HIV-1 protease surrounded by spherical (A), CG (B), and all-atom (C) crowders. In (B,C) the subdomain of a chicken villin was used as a crowding

protein. The CG villin model (B) was built by representing each Cα atom as a 3 Å sphere.

Other variants of the spherical model, are dumbbell-shaped
objects (Christiansen et al., 2010; Chen et al., 2012), where two
spheres are linked by a harmonic bond, spherocylinders (O’Brien
et al., 2011; Kang et al., 2015), and polymer chains (Nguemaha
et al., 2018) with parameters adjusted to represent proteins, DNA
or other polymers like polyethylene glycol (PEG). A good model
of a cellular environment may require a mixture of spherical
and cylindrical crowders and it has been found that such a
mixture leads to different results than with crowders of only
one type (Kang et al., 2015). In this work, the simulation of
a DNA fragment revealed that the DNA conformation “swells”
under crowded conditions and that crowders of mixed shape
affected the conformation to a greater extent than each of the
homomorphic crowders.

In a recent study (Zegarra et al., 2019), a set of crowders
with different shapes was used to reproduce and explain an
NMR experiment and show that the unfolded apoazurin protein
becomes more extended upon addition of dextran crowders.
In this work, spheres and spherocylinders of various lengths
were used along with a CG protein model. The crowders that
best reproduced the experimental results were elongated rod-
like structures, interacting with the protein with repulsive and
attractive potential terms.

Other studies have also confirmed that spherocylindrical
crowders may induce different effects than spherical crowders.
It was noted, that in the presence of spherical crowders, the
compaction of a polymer increases with decreasing crowder radii,
but the effects of spherocylindrical crowders are highly non-
monotonical (Chen and Zhao, 2019). Spherocylinders were also
shown to increase protein oligomer formation to a noticeably
greater extent (O’Brien et al., 2011).

3. CAPTURING ATOMISTIC DETAILS

The most detailed information about the effects of a crowded
environment can be obtained when the biomolecule and
crowders are represented in atomistic detail (Figure 1C). In this
case, not only the excluded volume effects can be explored but
specific interactions between the molecule and crowders can
be considered. As the level of realism increases, the question
arises what kind of crowder molecules are best suited. The most

realistic option would be to use a full model of a cytoplasm, with
different proteins, nucleic acids, and metabolites (Yu et al., 2016).
However, such an approach is computationally demanding and
requires specific knowledge about the composition of specific
cells. Other choices for all-atom crowders are small, well-studied
proteins, like villin (Harada et al., 2013), protein G or trypsin
inhibitor (Bille et al., 2019). Another aspect for choosing a specific
crowder protein depends on what kinds of in vitro experiments a
given simulation should be compared to.

All-atom simulations focused on the stability of protein native
state in the presence of protein crowders represented in atomistic
detail have suggested that crowding can promote local unfolding
of the SOD1 protein (Bille et al., 2019) and destabilize the native
state of villin (Harada et al., 2013). Destabilization of a pyruvate
dehydrogenase subunit was also observed in a simulation of a
model cytoplasm fragment (Yu et al., 2016) and was attributed
to protein-protein interactions with crowder proteins. These
observations are in contrast to previous studies using CG
crowders, focused on the excluded volume effect, that tended to
emphasize a stabilizing effect on native protein structures. This
suggests that a full account of crowding effects cannot neglect the
specific nature of protein-crowder interactions.

The advantages of using both all-atom and CG crowders
can be combined by using a multi-scale approach. Such
schemes allow for example to simulate a central molecule of
interest in atomistic detail, while crowders are represented
with a reduced CG model that still retains protein-like
characteristics (O’Brien et al., 2011; Predeus et al., 2012;
Bille et al., 2015). Such mixed resolution approaches allow
simulations to be more efficient while still providing a detailed
picture of protein behavior under crowded conditions. However,
multi-scale approaches present challenges, e.g., with respect
to how interactions between different levels of resolutions
are treated.

One example for such a multi-scale approach, was the
sampling of Trp-cage and melittin peptides (Predeus et al., 2012)
in implicit solvent and in the presence of protein crowders
represented with the PRIMO CG model. It was found that for
both peptides, the addition of crowder molecules resulted in a
more diverse conformational ensemble, with a larger share of
non-native states.
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In a multi-scale approach, crowders can be represented
either as CG proteins or via simpler spherical molecules.
Another study (Bille et al., 2015) investigating the Trp-cage
conformational sampling compared an atomistic simulation with
a mixed-resolution approach where an all-atom peptide was
combined with spherical crowders. It was found that while
the spherical crowders had almost no effect on the peptide
conformations, rigid atomistic BPTI proteins used as crowders
promoted non-native conformations and as a result stabilized
the helical fragment. Again, this study points to the important
role of non-specific peptide-crowder interactions.

Amulti-scale approachwas also used to study the formation of
oligomers by peptides known to be amyloidogenic (O’Brien et al.,
2011). In this study, the all-atom peptide model was mixed with
crowders represented as spheres or spherocylinders. The authors
compared the effects of different sizes, shapes, and volume
fractions of the crowders. The crowders had a destabilizing effect
on dimers formed by the peptides, but, surprisingly, trimers were
stabilized.Moreover, it was reported that increasing crowder sizes
reduced the crowding effect, while spherocylindrical crowders
had a greater destabilizing effect than spherical crowders.

Apart from direct simulations, where crowders are explicitly
present in the simulations, post-processing techniques have also
been proposed. In this method, the protein in all-atom or
CG representation and the crowders are simulated separately.
The conformations obtained for the protein are then randomly
placed in the snapshots of the crowder-containing trajectory and
weighted based on the fraction of successful insertions. The post-
processing method was applied to study the effects of crowding
on protein dynamics (Qin et al., 2010), protein folding and
binding stability (Qin and Zhou, 2009), and the conformational
sampling of disordered proteins (Qin and Zhou, 2013).

The most significant challenge with running atomistic
simulations of crowded systems, including explicit water, is the
high demand for computer resources. Another issue is related
to detailed balance between protein-protein and protein-water
interactions.Modern force fields have been found to overestimate
the interactions between proteins resulting in too much
aggregation (Petrov and Zagrovic, 2014). One proposed solution
for the CHARMM force field is to strengthen water-protein
interactions by scaling the Lennard-Jones interactions (Nawrocki
et al., 2017). This has led to better agreement with NMR
experiments. However, irreversible aggregation artifacts are not
to be confused with transient cluster formation that has been
noticed in several many-protein simulations (Nawrocki et al.,
2017; von Bülow et al., 2019) and is believed to be an accurate
reflection of crowded solutions.

4. DISCUSSION

Simulations of crowded environments can be performed at
various levels of detail with respect to both the crowder and
biomolecule. CG models of a biomolecule are often combined
with a reduced crowder representation such as simple spheres.
When biomolecules are represented in atomistic resolution, the
range of models of the crowded environment becomes wider,

ranging from spherical crowders and CG proteins in multi-scale
approaches to all-atom protein crowders.

The crowders of choice for many researchers are spherical
repulsive particles. They can be used in a variety of simulation
methods and have been tested extensively. However, recent
studies have shown that such models are likely oversimplified.
The shape of the crowders and the way they interact can influence
the effects that the crowders exert on the molecules (O’Brien
et al., 2011; Kang et al., 2015; Chen and Zhao, 2019; Zegarra et al.,
2019), including how crowding affects protein diffusion (Balbo
et al., 2013).

Choosing a crowder model is a matter of finding a
compromise between the allocated computational resources
and simulation realism. Most detailed information about
the impact of the crowded environment can be obtained
if both the biomolecule and crowders are represented with
atomistic details. Such models can provide insight into
crowding effects well beyond the simple excluded volume
effect. Including all-atom crowders may be especially vital
to study peptides or IDPs since the interactions with the
crowders can contribute significantly to the stabilization of their
conformations other than those formed in bulk water or found in
crystal structures.

The impact of crowding is a sum of often counteracting
effects: the excluded volume effect and non-specific interactions
of a biomolecule with the crowders. The importance of
each component is not easy to predict as it may be case
dependent (Rivas andMinton, 2016). With each level of reducing
the representation of crowders, information about protein-
crowder interactions is gradually lost, which is the main source
of possible inaccuracies of simulations using CG crowders.

It has been shown that various sizes, concentrations, and
shapes of CG crowders may differently influence the dynamics,
interaction and diffusion of biomolecules. Therefore, the decision
about the type of crowders is important and depends on
the problem and questions that are being investigated, as
well as the experiments with which simulations are being
compared. Using atomistic representation is especially important
while investigating the internal dynamics of biomolecules
to compare with high-resolution structural experiments such
as NMR spectroscopy. On the other hand, lower-resolution
crowders may be sufficient to compare with experiments
that emphasize non-biological space-filling crowders where
the exact molecular nature is not as critical. One promising
approach to account for both interaction details and reduce
computational costs involves the use of mixtures of crowders
with diverse properties. This may include crowders of different
shapes, like spherical and spherocylindrical crowders (Kang
et al., 2015), or a mixture of protein crowders such as the
streptococcal protein G and the chicken villin head piece
(Harada et al., 2013).

Finally, another question to consider while designing
simulations of crowded environments is whether solvent needs to
be accounted for explicitly. Explicit water typically requires fully
atomistic simulations or high-level CG models although explicit
water has also been combined with bead-shell crowders (Latshaw
et al., 2014). On the other hand, if implicit solvent models
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are applied, questions about how to account for hydrodynamic
effects arise (Ando and Skolnick, 2010; Długosz et al., 2011).

According to our benchmarks, surrounding a 236 amino-acid
protein (in implicit solvent) with CG crowders has little to no
effect on the simulation time. However, adding all-atom crowders
(216 atom PEGs) to the same system slows down computations
3–5 times. For solvent treated explicitly, adding CG crowders
can make the simulation faster because the crowders possess
less atoms than water molecules that occupy similar volume. For
example, 43-atom bead-shell crowders added to a protein-explicit
solvent system (at 20% vol.) speed up the simulation by 20% as
compared to simulations without crowders.
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The Hsp90 protein complex is one of the most abundant molecular chaperone proteins

that assists in folding of a variety of client proteins. During its functional cycle it undergoes

large domain rearrangements coupled to the hydrolysis of ATP and association or

dissociation of domain interfaces. In order to better understand the domain dynamics

comparativeMolecular Dynamics (MD) simulations of a sub-structure of Hsp90, the dimer

formed by the middle (M) and C-terminal domain (C), were performed. Since this MC

dimer lacks the ATP-binding N-domain it allows studying global motions decoupled from

ATP binding and hydrolysis. Conventional (c)MD simulations starting from several different

closed and open conformations resulted in only limited sampling of global motions.

However, the application of a Hamiltonian Replica exchange (H-REMD) method based

on the addition of a biasing potential extracted from a coarse-grained elastic network

description of the system allowed much broader sampling of domain motions than the

cMD simulations. With this multiscale approach it was possible to extract the main

directions of global motions and to obtain insight into the molecular mechanism of the

global structural transitions of the MC dimer.

Keywords: Hsp90 conformational dynamics, biasing potential REMD, advanced sampling simulations, sampling

global dynamics, multi-scale dynamics sampling, Hsp90 chaperone function

INTRODUCTION

The 90 kDa heat-shock protein (Hsp90) is an essential molecular chaperon protein that plays a
vital role in the folding process of several client proteins (Hunter and Poon, 1997; Mayer and
Bukau, 1999; MacLean and Picard, 2003; Pratt and Toft, 2003; Prodromou and Pearl, 2003; Pratt
et al., 2004). It is found in bacteria as well as eukaryotes and is essential for cell viability and
plays a pivotal role in many signaling and regulation pathways (Echeverría et al., 2011). In its
active conformation it forms a homodimer and its chaperone activity depends on ATP binding
and hydrolysis. During its work cycle Hsp90 and its homologs (e.g., HtpG, Grp94, Trap1) can
adopt different global conformations covering a range of tightly bound closed structures up to
widely open conformations (Harris et al., 2004; Ali et al., 2006; Shiau et al., 2006; Dollins et al.,
2007; Lavery et al., 2014; Verba et al., 2016). For example, the crystal structure of yeast Hsp90
bound to a non-hydrolysable ATP analog (AMPPNP) indicates a closed homodimer with domain
contacts between the N-terminal (N)-domain and C-terminal (C)-domain of each monomer (the
N- and C-domains in each monomer are connected by a middle (M)-domain) (Ali et al., 2006). A
similar structure was obtained for a complex of yeast Hsp90 and a kinase client protein (Verba et al.,
2016). Furthermore, structures of a paralog, Grp94, from the mammalian endoplasmic reticulum
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(ER) (Dollins et al., 2007) and of HtpG (bacterial homolog)
(Shiau et al., 2006) are known. The Grp94 adopts a slightly more
open structure compared to yeast Hsp90 and the HtpG homolog
is dramatically more open. Studies employing small-angle X-ray
scattering (SAXS) indicate that the Hsp90 conformation depends
significantly on the bound nucleotide. Using a large number of
fluorescence donor and acceptor pairs a recent single molecule
FRET (fluorescence resonance energy transfer) study was used to
obtain ensembles of Hsp90 conformations in the apo state and in
the presence of ADP, AMPPNP (Hellenkamp et al., 2016). These
studies confirmed the known Hsp90 structure in the presence of
AMPPNP and indicated a more open structure and reorientation
of the N-domain compared to the closed conformation when
ADP is bound or for the APO state (Hellenkamp et al., 2016).
Based on restraint MD-simulations atomistic structural models
compatible with the sFRET data for the open yeast Hsp90 state
in the presence of ADP have been obtained (Hellenkamp et al.,
2016). However, the mechanism how ATP hydrolysis (or loss of
a bound nucleotide) can trigger global domain rearrangements
is still not clear. The observation that a loss of the interaction
between the N-domains results in a global opening indicates
that the closed (ATP-bound form) corresponds to a structure
under global stress (the unfavorable global deformation away
from the open form is stabilized by the N-domain binding).
Hence, a removal of the N-domain interaction should result in
an opening of the Hsp90 structure. Indeed, the crystal structure
of a truncated form of Hsp90 (without the N-domains) shows
still the same C-domain dimerization contacts compared to
the full Hsp90 structure but an increased distance between
the M-domains toward a more open global conformation
(Figure 2D). However, the degree of opening is significantly
smaller compared to the “open” ADP-bound structure based
on the sFRET data (Figure 2E). The origin of this discrepancy
could be crystal contacts that may stabilize only one type of
global conformation among other global arrangements that are
accessible in free solution.

In order to elucidate the global conformational flexibility
of the yeast Hsp90 MC dimer (Hsp90 without N-domain)
in solution we performed a series of comparative Molecular
Dynamics (MD) simulations starting from different initial
conformations. The initial structures corresponded to the known
crystal structure of the yeast Hsp90 MC dimer, the crystal
structure of the closed full Hsp90 (AMPPNP-bound), a single
molecule FRET derived start structure and an arrangement
based on a bacterial homolog (in a wide open geometry) (Ali
et al., 2006; Shiau et al., 2006; Hellenkamp et al., 2016). The
transition between open (ADP-bound) and closed (ATP-bound)
states of the full length Hsp90 occurs on the µs to ms time
scale (Hellenkamp et al., 2016). However, it is expected that in
case of the truncation of the N-domain (that is the primary
interaction partner to stabilize the closed form) global transitions
and conformational relaxations in the MC dimer occur much
faster compared to the full structure and allow to identify the
associated molecular details of the global domain motions.

In order to further enhance the sampling of global motions
we also performed Hamiltonian replica exchange (H-REMD)
simulations coupled with an elastic network model (ENM)
description of the MC dimer. A low resolution representation

of protein dynamics can be obtained using coarse-grained elastic
network models (ENM) to extract directions of global mobility
(Bahar and Rader, 2005; Bastolla, 2014). Recently, we have
developed a H-REMD approach that uses information from an
ENM analysis and combines it with atomistic MD simulations in
explicit solvent (Ostermeir and Zacharias, 2014).

The approach forms an effective multi-scale methodology in
which directions of large scale global conformational transitions
(extracted from a low resolution technique) can guide and
enhanced the high-resolution atomistic sampling of the multi-
domain structure.

Indeed, the unrestrained MD simulations starting from
different initial conformations of the Hsp90 MC dimer with
globally different initial domain arrangements sampled only
conformations relatively close to the starting structures on a
time scale of 200 ns. On the other hand, the ENM-coupled
REMD methodology sampled a much wider range of domain
arrangements including relatively close but also more open
Hsp90 MC dimer structures.

The results indicate, firstly, that the ENM-REMD method is
an efficient multi-scale enhanced sampling technique offering
improved sampling compared to regular MD simulations.
Secondly, our simulations demonstrate that in the absence
of the N-domains the Hsp90 dimer can adopt a variety
of closed and open domain arrangements that might be of
functional importance for chaperone function. One function of
the N-domain might be to limit these possible states by N-
domain dimerization that is controlled by the bound ATP or
ADP nucleotide.

MATERIALS AND METHODS

Four model structures of the MC dimer of yeast Hsp90 were
build corresponding to published structures of Hsp90 and its
homologs [pdb2cg9 (Ali et al., 2006), pdb2cge (Ali et al., 2006),
pdb2ioq (Shiau et al., 2006), and the mean open structure as
determined by Hellenkamp et al. (2016)]. Since the 2cge structure
corresponds to a Hsp90 MC domain dimer the published
structure served directly as start structure representing the 2cge-
model. For the models based on the closed 2cg9 full length
structure and the full length mean open structure the N-terminal
domain segments up to the start of the middle domain (residue
1–236) were removed forming the 2cg9- and sFRET-models,
respectively. A starting model based on the bacterial homolog
2ioq was generated by superimposing the M- and C-domains
from the yeast 2cge structure onto the corresponding conserved
elements of the 2ioq homolog using Pymol (Schrodinger, 2015),
resulting in a start structure with an overall Cα-Rmsd value of 3.4
Å relative to the corresponding elements in the 2ioq structure.
Solvation of the structures was performed in octahedral boxes
with explicit water molecules (TIP3P) (Jorgensen et al., 1983)
and neutralized with chloride and sodium ions up to an ion
concentration of 0.1M using the leap module and employing
the parm14SB force field (Maier et al., 2015) of the Amber14
package. All unrestrained simulations were performed using
the pmemd.cuda code of the Amber14 package (Case et al.,
2014). The start structures were energy minimized using steepest
descent and conjugated gradient methods (5,000 steps), and
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slowly heated up to 300K in 500 ps NVT run using Langevin
dynamics, while restraining all heavy atoms with respect to the
start structure. During another 150 ps the positional restraints
were reduced in a step-wise manner, allowing the system to relax.
The systems were further equilibrated for 200 ps at constant
pressure using a Berendsen barostat followed by a 200 ns data
gathering period. During all simulations the Particle Mesh Ewald
(PME) method was used to calculate long range electrostatic
interactions (Darden et al., 1993) with a real space cutoff radius of
9 Å. The Shake algorithm was used to constrain bonds involving
hydrogen atoms (Ryckaert et al., 1977), which allowed employing
a time step of 2 fs.

For the ENM-coupled H-REMD simulations we followed a
published protocol. The H-REMD simulations involve a biasing
potential that acts between domain centroids of the multi
domain protein. In case of the Hsp90 MC dimer 4 centroids
representing the centers (based on the protein Cα atoms) of the
four domains were used. The protein conformational fluctuations
are calculated by means of an elastic network model for the
protein Cα atoms based on Hinsen (Hinsen, 1998) and following
the protocol described in Ostermeir and Zacharias (Ostermeir
and Zacharias, 2014). The first 50 normal modes were excited
by a thermal energy of RT (R: gas constant and T, temperature
= 300K) that reflects the possible distance fluctuations between
the domains from the ENM analysis. In the ENM-coupled
REMD approach the biasing potential is generated to specifically
enhance structural changes in the REMD simulations compatible
with the fluctuation obtained from the ENM and to destabilize
the domain arrangement along the centroid distances dij (i,j are
centroid labels).

V
(

dij
)

= k
(

[

dij − dij0
]2

− 1d2ij

)2
, if

∣

∣dij − dij0
∣

∣ ≤ 1dij

V
(

dij
)

= 0, otherwise

In the H-REMD one reference replica was run under the
control of the original force field whereas the centroid-centroid
distance dependent biasing potentials were added with increasing
amplitudes in each of the 11 replicas (total replica number: 12).
A replica exchange was attempted every 2 ps. The magnitudes
and the width of the biasing potentials in the replicas were
adjusted during the simulations with a starting biasing level of
2.25 kcal/mol (corresponding to ∼4 RT) between replicas at the
beginning. Centroid-centroid distances were updated every 0.2
ns from the running average of the last 0.4 ns. The BP-amplitude
was also adjusted every 0.2 ns to optimize the acceptance rate
of replica exchanges. If the acceptance probability for exchanges
between neighbors decreased to <20% (or surpasses 60%) in any
of the replicas the BPs were lowered (or increased) by 10%. After
the first 5 ns of the H-REMD the biasing levels stabilized to
∼0.45 RT between replicas and remained constant for the rest
of the simulation within a standard deviation of ± 0.12 RT. The
REMD simulations were extended for 25 ns. More details on the
ENM coupled REMD methodology are given in reference 17.
Simulation results were analyzed by means of the cpptraj module
of Amber14 (Case et al., 2014).

RESULTS AND DISCUSSION

The Hsp90 chaperone homodimer undergoes dramatic global
conformational changes during its working cycle that are
accompanied by binding of the N-domains (if ATP is bound)
or dissociation of the N-domains (ADP-bound and apo states).
During its functional cycle the C-domains stay always in a
bound state (Figure 1). How ATP hydrolysis triggers N-domain
dissociation and the subsequent global opening is not fully
understood. If N-domain dissociation triggers global opening
removal of the N-domains should also allow large scale global
motions in the truncated Hsp90 MC dimer. Comparative MD
simulations starting from closed intermediate open and fully
open conformations were used to investigate the global mobility
of the MC dimer. As described in the Methods section the
start structures corresponded to the crystal structure of the
Hsp90 MC dimer (pdb2cge) that can be considered as semi-
open conformation (Figure 2D) compared to the structure
found in the closed state (pdb2cg9) that formed another start
conformation (Figure 2D). More open states are based on
the recent single molecule FRET analysis in the presence of
ADP (Hellenkamp et al., 2016), termed sFRET-conformation
(Figure 2E) and another open conformation based on the
bacterial homolog (pdb2ioq) (Figure 2F). For each unrestrained
MD simulation, we recorded the deviation with respect to each of
the four reference structures (Figure 3).

Starting from the closed conformation (2cg9-start) results
in almost constant root-mean square deviation (RMSD of the
backbone) during the simulation time (Figure 3). On the time
scale of the simulation no tendency for global opening is observed
(the RMSD with respect to the more open start structures
remains constant). Similarly, in case of starting from the 2cge
reference only small shifts in the RMSD is observed although
the fluctuations in the RMSD are clearly larger compared to
the simulations based on the 2cg9-start. Again little tendency
toward larger global changes (closer approach of the more open
conformations) is observed. To the contrary, the RMSD with
respect to the more closed 2cg9-model is slightly decreasing over
the simulation time. Note, that in both the 2cge as well as the
2cg9 conformations the M-domains are in close contact with the
C-domains mediated by two large loop regions that are part of
the C-domains (Figure 1) and that may transiently stabilize the
global arrangement.

For the simulations starting from the open conformations,
2ioq and sFRET(ADP), the Rmsd decreases w.r.t. the semi
open conformation of 2cge, while it increases w.r.t. the open
conformations of 2ioq and sFRET. This is caused by a motion
with the overall slight tendency of closing but not exactly
reaching the 2cge structure (Rmsd > 8–10 Å). Note, that in the
open form the contact between the loop region of the C-domain
and the M-domain is largely missing that may allow a great
global mobility.

In contrast to the unrestrained MD simulations (starting
from the 2cge-structure) the reference replica of the ENM
coupled REMD simulations showed much larger changes in
the Rmsd over time (and on shorter time scale, Figure 3)
with respect to all reference structures. Note, that the rapid
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FIGURE 1 | Comparison of crystal structures (cartoon representation) of yeast Hsp90 with bound AMPNPP (A, pdb2cg9), a Hsp90-Cdc37-Cdk4 complex bound with

ATP (B, pdb5fwl), a mitochondrial homolog with bound ADP (C, pdb2o1v), a bacterial homolog with bound ADP (D, pdb2ioq) and an “open” ADP-bound structure

based on sFRET data (E, Hellenkamp et al., 2016). In (A) the location of the N-, M-, and C-domains is indicated and color-coded for one monomer, the second

monomer is in gray. In case of (B–E) one monomer is colored from light (N) to dark (C), while the other is in gray for visibility. The colors range from blueish (closed

conformation) to reddish (open conformation).

FIGURE 2 | Simulation systems and setup for the ENM coupled REMD simulations. All simulations were performed on a truncated yeast Hsp90 consisting of a dimer

of the M- and C-domains (without N-domain). For the ENM-coupled REMD the center-of-mass of the M- and C-domains (orange spheres, C1-C4) served as the 4

centers to design a biasing potential in the replica runs (illustrated in A). The biasing potential acts along the distances between the 4 centers (six distances) indicated

as dashed lines. The magnitude of the biasing potential increases along the replicas (indicated in B) and the width is obtained from the corresponding distance

fluctuation derived from the ENM calculations of the protein. The ENM coupled REMD is schematically illustrated in (B). The differences in global opening of the start

structures used in the 2cg9 (C), the 2cge (D), the sFRET (E), and the 2ioq (F) simulations is also indicated. The domains are color coded in the cartoon representation

in (C–F) (M-domain of first monomer in blue/C-domain in orange; M-domain of second monomer in light blue/C-domain in light orange).

changes observed in the [Figure 3 (panel labelled ENM)] are
due to the exchanges between conformations in neighboring
replicas indicating that a great variety of different conformations
is sampled in this scheme. During the ENM coupled REMD

distance-dependent biasing potentials are derived from the
ENM analysis that act between the domain segments (C1,..,C5;
illustrated in Figure 2). These potentials promote motions in the
soft collective directions of the system (in the replicas) and result
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FIGURE 3 | Backbone Rmsd of the full M-C dimer with respect to the generated models (Left) and per residue Rmsf of both monomers of the M-C dimer (Right).

From top to bottom: Free MD simulations ranging from tightly closed (2cg9) over semi closed (2cge) to widely open (2ioq, sFRET) conformations and ENM-coupled

REMD simulations based on the semi closed (2cge) conformation. Right: Important regions are highlighted in dark [M-C linker (V)] and light gray [amphipatic loop (III),

M loop (IV), C helix 2 (VI)]. The structure of one M-C monomer is shown as cartoon in blue with the important regions highlighted in orange and annotated.
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in enhanced domain motion sampling (without providing any
preset reaction coordinate for the global motions of the domains
such as domain angles or dihedrals).

It is of interest to identify the origin of conformational
fluctuations. One possible source are local conformational
fluctuations within each MC monomer. One possibility to
analyze the flexibility of each monomer is to investigate
the mean fluctuations (RMSF) along each monomer
(Figure 3) and the buried surface area along the sequence
(Supplementary Figure 1). The pattern of conformational
fluctuations looks qualitatively similar in all simulations with
4 regions indicating enhanced local mobility compared to the
mean of the structures (Figure 3). In each of the simulations
the pattern is similar for both monomers (compare orange and
blue lines in Figure 3). In general, the magnitude of fluctuations
is smaller for the 2cg9- and 2cge-simulations compared to
the simulations starting from the open Hsp90 MC dimers
or the ENM coupled REMD simulations. The more flexible
regions are highlighted in light and dark gray. In the M domain
an amphiphatic (III) and a flexible loop (IV) create strong
interfaces with the opposite monomer that stabilize the closed
conformations (Figure 3). In the simulations starting from the
open conformations these loops are highly dynamic (Figure 3)
and are much less mobile in case of the simulations starting

from more closed MC dimers. It is possible that the interaction
of the loop IV region with the M-domain may initiate closing
movements in Hsp90. Other regions that show significant
differences in mobility are located more near to the N-terminus
(regions III, IV, Figure 3). Also, the M-domain indicates
more fluctuations in the 2ioq, sFRET, and the ENM-coupled
REMD simulations compared to the 2cg9 and 2cge MC dimer
simulations. The C-terminal part of the dimer appears to be
more rigid and inherits only a low mobility in all simulations and
for all starting conformations.

The magnitude of the local RMSF of residues along each
monomer cannot explain the large RMSD shifts and changes
observed especially in the ENM coupled REMD simulations. As
a next step we analyzed the global conformational fluctuations
observed in the complete MC dimer. The global opening angle
and the torsional dihedral angles described by the four domains
(illustrated in Figure 2) might be considered as most useful and
intuitive variables to illustrate and analyze the global domain
motion. With respect to these variables the 2cg9 simulation
indicates the least global mobility on the present simulation time
scale. Apparently, it is locked in a locally stable arrangement
that allows only limited local as well as global motions (on the
present 200 ns time scale). More global mobility is observed
for the 2cge case and even broader distributions are found for

FIGURE 4 | Global domain sampling recorded during MD simulations and ENM coupled REMD simulations in terms of a Hsp90 MC dimer angle and dihedral torsion

(defined using the center coordinates c1, c2, c3, c4 shown in Figure 2A; angle formed by c1, (c2, c3), c4; dihedral torsion formed by c1, c2, c3, c4). (A) Each data

point represents a sampled domain arrangement. (brown dots) Reference replica of the ENM coupled REMD (25 ns), (green dots) unrestrained MD simulation starting

from 2cge structure (200 ns), (orange dots) simulation starting from MC dimer extracted from 2cg9 structure (200 ns), (purple dots) MD simulation starting from sFRET

derived open Hsp90 conformation (200 ns), (red dots) sampling obtained from MD simulation starting from arrangement in bacterial homolog pdb2ioq (200 ns). (B–D)

characteristic structural domain changes observed during the ENM coupled REMD simulation indicated by a snapshot superimposed on the start structure. (B) Within

the M-domain a hinge like motion of the upper part vs. lower part of the M-domain is observed (indicated by a red double arrow). (C) The change of one M-domain

relative to the C-domain is associated to a movement of the connecting helix (red arrow) (D) within the C-domains the C helix 2 (VI) segments (see Figure 2) undergo

large scale motions (highlighted in green and indicated as red arrows) relative to the position in the start structure.
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the simulations starting from the sFRET and from the 2ioq
start structures (Figure 4). However, only the latter unrestrained
simulations show some overlap of sampled global variables but
there is no overlap between states sampled in the 2cge and 2cg9
simulations and those starting from the open model structures.
Apparently, there are barriers between states or a low diffusivity
on the global energy landscape that prevents the observation of
global transitions in the unrestrained MD simulations on the 200
ns time scale.

However, a much broader covered range of sampled global
opening angle and global dihedral torsion angle of the domains is
sampled in the ENM coupled REMD simulations. The sampling
overlaps very well with the states sampled in the 2cge simulation
(it also started from the 2cge MC dimer structure), and also at
least partially overlap with the sampling seen in the simulations
that started from sFRET-derived start arrangement and the 2ioq-
based simulations but covers also many more arrangements
(Figure 4). Since the ENM coupled REMD technique involves an
active driving force along the global variables (in the present case
the domain distances and in the higher replicas of the REMD) it
can more easily overcome small energy barriers and slows down
global motions much less due to low domain diffusivity. The low
diffusivity can be caused by many transiently stable interactions
of equivalent stability but that need to be continuously disrupted
and re-established during diffusive global motion. The broad
sampling observed in the reference replica of the ENM coupled
REMD indicates that large regions in the space of the two global
variables are in principle accessible (are of equivalent free energy)
that correspond to mostly open conformational states.

Interestingly, even in the REMD simulations (but similarly
also in the 2cge based unrestrained MD-simulations) no
conformations that closely approaches the 2cg9 structure were
sampled. It is possible that the transition to the closed 2cg9
form involves a significant energy barrier and simultaneous
rearrangement of interface residues between the C-domain
loop segment and the M-domain that was not sampled during
the relatively short ENM coupled REMD simulations. This
assumption is further supported by the relatively small and
very confined region in the two global variables that is sampled
when starting from the 2cg9 conformation. Such confined
sampling indicates the existence of energy barriers that prevent
dissociation processes to trigger global opening motions. Indeed,
a comparison of the 2cg9 and 2cge start structures indicates
several additional contacts in the 2cg9 case. This includes the
disruption of these contacts may cause the energy barrier. Vice
versa simulations starting from the 2cge (or other more open
forms) face a penalty to form the correct contacts between M-
domains before reaching the most closed 2cg9 state. Future
ENM coupled REMD simulations or other advanced sampling
techniques starting from the 2cg9 structure might be useful to
investigate such putative energy barriers.

The simulation results can also be used to structurally
characterize local changes that might be coupled to the
observed global domain motions (Figure 4). The sampled open
conformations of the MC dimer in the ENM-REMD indicate
large local conformational changes especially in the helix

connecting the M and C-domain (region V in Figure 2) that
partially unfolds during domain opening motions (Figure 4).
In addition, large motions of the C-helix 2 (region VI in
Figure 2) are observed in the sampled states that represent
more open domain arrangements in the REMD run (Figure 4).
It is indeed this C-helix 2 region IV that mediates contacts
between C-domains and between C-domains and theM-domains
in the closed form (see Figure 2C). The interaction is partially
broken in the 2cge form and largely lost in the open forms
(compared Figures 2C,F) as well as in the ENM-coupled H-
REMD simulations.

CONCLUSIONS

Depending on the nucleotide-bound state Hsp90 can adopt
different global domain arrangements. The stability of the
domain arrangements is controlled by the binding of nucleotides
to the N-domain. In the present simulations also different
locally stable domain arrangements of the Hsp90 MC dimer
(lacking the N-domain) were observed that do not undergo
transitions in standard MD-simulations on the time scale of
200 ns. This indicates that not only N-domain interactions
but also interactions of the other domains influence the
global Hsp90 structure. The ENM-REMD technique that
combines an atomistic description of the system with global
mobile directions observed in a coarse-grained ENM was
shown to more effectively sample the globally accessible
space for the Hsp90 MC dimer. Future applications of the
technique to the Hsp90 molecule including the N-domains
could be useful to elucidate global motions in the full
Hsp90 molecule.
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Modeling biomolecular assemblies is an important field in computational structural

biology. The inherent complexity of their energy landscape and the computational

cost associated with modeling large and complex assemblies are major drawbacks

for integrative modeling approaches. The so-called coarse-graining approaches, which

reduce the degrees of freedom of the system by grouping several atoms into

larger “pseudo-atoms,” have been shown to alleviate some of those limitations,

facilitating the identification of the global energy minima assumed to correspond to

the native state of the complex, while making the calculations more efficient. Here,

we describe and assess the implementation of the MARTINI force field for DNA

into HADDOCK, our integrative modeling platform. We combine it with our previous

implementation for protein-protein coarse-grained docking, enabling coarse-grained

modeling of protein-nucleic acid complexes. The system is modeled using MARTINI

topologies and interaction parameters during the rigid body docking and semi-flexible

refinement stages of HADDOCK, and the resulting models are then converted back to

atomistic resolution by an atom-to-bead distance restraints-guided protocol. We first

demonstrate the performance of this protocol using 44 complexes from the protein-DNA

docking benchmark, which shows an overall ∼6-fold speed increase and maintains

similar accuracy as compared to standard atomistic calculations. As a proof of concept,

we then model the interaction between the PRC1 and the nucleosome (a former CAPRI

target in round 31), using the same information available at the time the target was

offered, and compare all-atom and coarse-grained models.

Keywords: docking, biomolecular complexes, nucleic acids, coarse-graining, force field

INTRODUCTION

Protein-DNA interactions play essential roles in cellular processes such as gene expression,
regulation, transcription, DNA repair, or chromatin packaging in eukaryotes (Pandey et al.,
2019). Computational docking, commonly referred to as prediction of the three-dimensional (3D)
structure of a complex given the structures of its free constituents, has been extensively proven as an
ideal complement to experimental structural methods in order to accurately model biomolecular
complexes (Rodrigues and Bonvin, 2014). Even though computational modeling approaches have
steadily progressed in the past decade (Janin, 2010), modeling large biomolecular assemblies still
remains a challenge. In other words, application to either large individual or high number of
interactors are limited by the significant computational cost of thoroughly sampling the complex
and intricated conformational landscapes and by the increased difficulty of identifying near-native
structures from the large pool of generated models (Rout and Sali, 2019).
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Coarse-graining (CG) has been demonstrated to be a valuable
alternative to standard atomistic (AA) approaches to alleviate
some of those limitations and help the identification of the
energy global minima by smoothing out the energy landscape
(Hills et al., 2010; Roel-Touris et al., 2019). To this end, CG
approaches group several atoms (either a few atoms or entire
side chains) into larger “pseudo-atoms” or “beads,” which results
into a reduction in the number of degrees of freedom of the
system (Kmiecik et al., 2016). Historically, the development
of CG force fields has followed two directions: (1) Physics-
based, parametrized against its atomic counterpart or (2)
knowledge-based, taking advantage of the increasing growth of
statistical information derived from experimentally determined
structures (Hills et al., 2010). Protein or/and protein-nucleic acid
coarse-grained approaches have been implemented in several
docking/modeling software such as for example: CABS-dock
(Blaszczyk et al., 2016) RosettaDock (Gray et al., 2003), IMP
(Russel et al., 2012), ATTRACT (Setny et al., 2012), NPDock
(Tuszynska et al., 2015), PyRy3D (genesilico.pl/pyry3d), and
more recently in HADDOCK (Dominguez et al., 2003; Roel-
Touris et al., 2019), our integrative modeling platform.

MARTINI, a popular coarse-grained model for biomolecules,
features lipids (Marrink et al., 2007) proteins (Monticelli
et al., 2008), carbohydrates (López et al., 2009), and nucleic
acids (Uusitalo et al., 2015, 2017) among others. Its DNA
parametrization combines top-down (experimental data) and
bottom-up (atomistic simulations) methodologies and is fully
compatible with all other MARTINI models. On average, the
nucleic acids’ mapping follows a 1:6∼7 rule, which means that
each nucleotide is mapped onto six or seven CG beads. Bead types
are selected according to partition free energies from water to
chloroform or hydrated octanol. Bonded interactions have been
fitted to reproduce dihedral, angle and bond distributions from
atomistic simulations of short single stranded DNAs (ssDNAs)
(Uusitalo et al., 2015). The general design and parametrization of
MARTINI allow to easily combine several types of biomolecules
(high transferability) as well as a straightforward conversion to
atomistic resolution.

In this manuscript, we describe and benchmark the
integration of the MARTINI coarse-grained force field for DNA
into HADDOCK. It builds upon our recent implementation of
a MARTINI coarse-grained protein-protein docking protocol
(Roel-Touris et al., 2019) and is further optimized to account
for Watson-Crick interactions. Prior to the docking, the input
structures are converted into their coarse-grained counterparts
and hydrogen-bonding base pairs are automatically detected
so that a special set of parameters and restraints are used for
those during the docking. We evaluate the performance of
coarse-grained protein-nucleic acid docking using 44 unbound-
unbound complexes from the protein-DNA benchmark (van
Dijk and Bonvin, 2010). The results show a similar performance
in terms of success rate and model quality while reducing the
computational costs by ∼6-fold compared to standard atomistic
simulations. For 6 of those, we repeated the docking (both
all-atom and coarse-grained) using experimental data to drive
the docking as a demonstration that our coarse-grained protocol
is also applicable for integrative modeling purposes. Finally, we

showcase the potential of CG protein-DNA docking by revisiting
the PRC1-nucleosome core particle complex (McGinty et al.,
2014), which was offered as a CAPRI target (Target 95 in round
31; Lensink et al., 2017) for which we failed at the time to select
any near native models.

METHODS

Integration of the MARTINI DNA
Coarse-Grained Force Field Into
HADDOCK
The integration of the MARTINI coarse-grained force field
for nucleic acids into HADDOCK builds upon our recent
HADDOCK-CG implementation for protein-protein docking
(Roel-Touris et al., 2019). We converted the MARTINI
topologies and interaction parameters into a format compatible
with the computational engine of HADDOCK, CNS–
Crystallography and NMR System (Brünger et al., 1998).
As in MARTINI, we represent the backbone of the nucleotide by
three beads, one for the phosphate group, and two different beads
for the sugar. Pyrimidines and purines are mapped into three
and four beads, respectively. A detailed list of the topologies
and parameters as used in HADDOCK can be found in the
Supplementary Information (Tables SI-1, SI-2).

The latest official release of the MARTINI force field for
nucleic acids, 2.2 (Uusitalo et al., 2015), includes eight additional
beads and corresponding parameters compared to previous
versions. These beads specifically account for Watson-Crick base
pairing and mimics, to some extent, the hydrogen bonds that
are formed between complementary nucleotide base pairs. These
contribute to stabilizing the DNA double helix structure. When
converting atomic structures into coarse-grained models, we
automatically detect base pairing by calculating the Euclidean
distance between neighboring nucleic acid side-chain atoms.
We also use the distance between phosphate groups to ensure
that bases are paired with their counterpart on the opposite
strand and not with their neighbor in the sequence. We define
a base pair when two opposite bases’ heavy atoms are within
the well-accepted hydrogen bond length of 3.5 Å, as used for
example in LIGPLOT (Wallace et al., 1995), and their phosphate
groups are at least 10 Å or further away from each other. If the
input structures do not contain any phosphate, we use instead
the center of mass of the nucleotides. By doing so, we avoid
defining coupling between neighboring bases in sequence. This
information is used by the HADDOCK machinery to ensure
that specific interacting beads are used when necessary and the
default HADDOCK DNA restraints were adapted to account
for the CG beads and used to enforce correct DNA pairing
(please see Table SI-3). As recommended in MARTINI, non-
bonded interactions between CG beads are calculated using a 14
Å cutoff, whilst 8.5 Å is the default value for the united-atom
OPLS force field (Jorgensen and Tirado-Rives, 1988) used in
HADDOCK. Note that 8.5 Å is a reduced cutoff compared to the
recommended one for OPLS, which was chosen as a compromise
between accuracy and speed.
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Docking Procedure
Prior to the docking, we convert the atomic PDB coordinate files
containing DNA/protein into a coarse-grained representation
via an updated version of our in-house HADDOCK script for
pre-processing CG input structures. During the vacuum part of
the docking protocol (it0 and it1) we set the dielectric constant
(epsilon) to 78.0 to screen the high DNA charge (in the all atom
representation). Epsilon is set to 1.0 for the final refinement
stage in explicit solvent (water) (van Dijk and Bonvin, 2010).
In the CG runs, the final water refinement is replaced by the
back-mapping from coarse-grained to atomistic resolution as
described in Roel-Touris et al. (2019). Note that in our atomistic
DNA force field implementation the charge on the backbone
phosphate is reduced to 0.5 since no counter ions are included
in the docking to screen its charge, while the phosphate bead in
MARTIN is uncharged. The final resulting models are clustered
based on the fraction of common contacts (FCC) (Rodrigues
et al., 2012) using a 0.6 cutoff (i.e., two models belonging to the
same cluster share at least 60% of contacts) and a minimum of
fourmodels per cluster, which is the default clustering protocol in
HADDOCK. All docking calculations were made using the latest
2.4 version of HADDOCK (still in beta version and unpublished
but available upon request).

Protein-DNA Docking Benchmark
To systematically test the performance of our coarse-grained
implementation for protein-DNA docking, we used 44 unbound-
unbound cases from the protein-DNA benchmark (van Dijk and
Bonvin, 2008). Those are composed of 26 binary, 16 ternary, 1
quaternary (2c5r), and 1 pentameric (1ddn) complexes covering
all major types of interactions (Luscombe et al., 2000). We
removed three cases from the original dataset (PDB codes: 1diz,
1emh, and 4ktq) due to the fact that theMARTINI force field does
not explicitly account for the modified nucleic bases P2U, NRI,
and DOC. The benchmark is classified according to the amount
of conformational changes that take place upon binding as
measured by the interface positional root mean square deviation
(i-RMSD) (i.e., unbound vs. bound structures) as follows:

• Easy (0 Å < i-RMSD ≤ 2 Å),
• Intermediate (2 Å < i-RMSD ≤ 5 Å), and
• Difficult (i-RMSD ≥ 5 Å).

This selection yielded 11 easy, 21 intermediate, and 12 difficult
cases. For comparison purposes, we performed two different
docking runs, one using the default atomistic force fields
used by HADDOCK, and a second one with the parameters
adapted from the MARTINI CG force field for both protein
and DNA (Monticelli et al., 2008; Uusitalo et al., 2015). For
the all-atom representation, OPLSX non-bonded parameters are
used both for the protein (Jorgensen and Tirado-Rives, 1988)
and DNA (Nozinovic et al., 2010). We used true interface
information derived from the crystal structures translated into
ambiguous interaction restraints (AIRs) to drive the docking
calculations as previously defined in van Dijk and Bonvin
(2010). The sampling parameters were kept to their default in
HADDOCK: 1,000/200/200 models were generated for the rigid

body (it0), simulated annealing (it1) and water refinement (itw)
stages, respectively.

Unbound Docking Using Experimental
Data
We additionally modeled six complexes from the protein-
DNA benchmark for which experimental data are available.
The selected cases cover the different categories from the
benchmark; “easy” (1by4, 3cro), “intermediate” (1azp, 1jj4), and
“difficult” (1a74, 1zme). The available experimental information
was collected from literature and include conserved residues,
mutagenesis data, ethylation interference data, methylation
interference data, NMR native state amide hydrogen exchange,
and Raman spectroscopy as described in van Dijk and Bonvin
(2010). As in the previous study (van Dijk and Bonvin, 2010), the
sampling was slightly increased to 2,000/400/400 for it0/it1/itw
docking stages, respectively.

Modeling of the PRC1 Ubiquitylation
Module Bound to the Nucleosome
We modeled the interaction between the multimeric PRC1
ubiquitylation module and the nucleosome by performing both
AA and CG docking runs. As starting point for the docking, we
used the unbound crystal structure of the enzymatical complex
(PDB code: 3rpg) and the nucleosome particle (PDB code:
3lz0). We followed the same docking procedure as explained
above (see Methods: Docking Procedure) except for the sampling
parameters that were increased to 100,000, 400, and 400 for it0,
it1, and water stages, respectively, because of the scarcity of the
available information. The docking was driven by interaction
restraints obtained from the literature at the time of CAPRI
Round 31: One unambiguous distance restraint between the
SG atom of the catalytic cysteine 85 of PRC1 and the NZ
atoms of Lys119 or Lys118 on H2A, the ubiquitination target.
In addition, we included mutagenesis data on PRC1 (K62A,
R64A, K97A, and R98A) shown to be crucial for the interaction
with the nucleosome (Bentley et al., 2011; Mattiroli et al., 2014).
Ambiguous interaction restraints (AIRs) were defined for those
(active) against all solvent accessible residues (passive) on the
histones (those with either main chain or side chain relative
accessibility >25% as calculated by NACCESS Lee and Richards,
1971). The list of active and passive residues used to guide
the docking and the specific distance restraint can be found in
Supplementary Information (Table SI-3).

Metrics for the Evaluation of Model Quality
We evaluated the quality of the generated models following the
standard CAPRI criteria (Janin, 2005). This includes the fraction
of common contacts (Fnat) and the interface (i-RMSD) and
ligand (l-RMSD) positional root mean square deviations from
the reference crystal structures. Fnat is calculated from all heavy
atom–heavy atom intermolecular contacts using a 5 Å distance
cutoff. The i-RMSD is calculated on the interface backbone atoms
after superimposition on the backbone of the interface residues,
defined as those with any heavy atom within 10 Å distance of
the partner molecule. The l-RMSD is calculated on the ligand
backbone (usually the smallest molecule) after superimposition
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on the backbone atoms of the receptor (largest molecule). For
both i-RMSD and l-RMSD, we only considered either backbone
heavy atoms for atomistic models (C-alpha, C, N, O/P, C1, C9
for protein/DNA) or backbone particles (BB∗) for coarse-grained
models (in the it0 and it1 docking stages). The calculations were
performed using ProFit (McLachlan, 1982) and the quality of the
docking poses was classified as:

• High: Fnat ≥ 0.5 and (i-RMSD ≤ 1 Å or l-RMSD≤ 1 Å),
• Medium: Fnat≥ 0.3 and (1 Å< i-RMSD≤ 2 or 1 Å< l-RMSD

≤ 5 Å),
• Acceptable: Fnat ≥ 0.1 Å and (2 Å < i-RMSD ≤ 4 Å or 5 Å <

l-RMSD ≤ 10 Å), and
• Low: Fnat < 0.1 Å or (i-RMSD > 6 Å or l-RMSD > 10 Å).

Metrics for the Evaluation of Docking
Success Rate
We analyzed the performance of the docking calculations as:
(1) The percentage of cases in which at least one model of a
given accuracy is found within the top N solutions ranked by
HADDOCK (N = 1, 5, 10, 20, 25, 50, 100, 200), and (2) the
percentage of cases in which at least one acceptable or higher
quality model was found in the top T clusters (T = 1, 2, 3, 4, 5).

RESULTS AND DISCUSSION

We have integrated the MARTINI CG force field for nucleic
acids into HADDOCK version 2.4 (see Methods), combining
it with our previous implementation of the protein MARTINI
CG force field (Monticelli et al., 2008), enabling full coarse-
grained protein-DNA docking. The AA to CG conversion scripts
have been adapted to automatically account for specific Watson-
Crick base pairing, which require special interacting parameters.
In the following sections, we discuss the performance of our
protocol for protein-DNA docking in terms of success rate and
computational efficiency using 44 unbound-unbound complexes
from the protein-DNA benchmark (van Dijk and Bonvin, 2008)
with ideal interface information (see Methods; Protein-DNA
docking benchmark). For six of them, we repeated the docking
using experimental information to guide the docking. Finally,
as a proof of concept, we revisited CAPRI Target 95 (Lensink
et al., 2017), a protein-nucleosome complex for which we failed to
identify near native solutions in our original CAPRI submissions
(although we did generate some). In this new modeling, our top
ranked predictions are in excellent agreement with the crystal
structure of the complex (not used for the docking) for both
standard atomistic docking and the hereby described coarse-
grained implementation.

Overall Performance of Coarse-Grained
Protein-DNA Docking
The docking was performed starting from the unbound
structures of each molecule and driven by AIRs as defined in
our previous study (van Dijk and Bonvin, 2010; see Methods;
Docking Procedure). In order to evaluate the performance of
our approach, we calculated the success rates of both sets of
runs (AA and CG) as the percentage of cases for which an
acceptable or better quality was obtained in the top N ranked

models (for details see Methods; Metrics for the Evaluation
of Model Quality and Metrics for the Evaluation of Docking
Success Rate).

Overall, coarse-grained docking generates and delivers
acceptable or higher quality models for 40 out of the 44 cases
after the back-mapping stage compared to 38 cases for the
atomistic docking results. No near-native models are generated
for four complexes; two of which are classified as difficult
(1dfm, 1o3t), one as intermediate (1z9c) and one as easy (1tro).
Inspection of the failed easy case reveals that it is a ternary
complex (homodimer) and since no symmetry restraints were
used in this case, its interface ambiguity was too high. In a
previous benchmarking (van Dijk, 2006), acceptable models for
this complex were obtained using a two-stage docking protocol
in which a library of bent DNA conformations were given as
input for the second docking run (a procedure not followed
here). Among the successful CG cases, medium quality models
are generated for 23 cases against 26 for the AA docking runs.
Top one single structure-based ranking (best ranked structure)
reaches 86.3% success rate for all-atom calculations vs. 81.8%
for CG docking (Figures 1A,B). The overall success rates are
similar for the top 5 and becomes higher for CG docking,
reaching 90.9% in the top 200 while AA docking remains at
86.3% (which corresponds to 40 vs. 38 successful cases for
CG and AA docking, respectively). In contrast, the quality
of the models is slightly better for AA docking as measured
by the success rates (Figures 1A,B) and rankings of medium
quality models (Figures 1C,D). Notably, CG docking manages
to generate acceptable models for two of the difficult cases that
fail at standard atomistic HADDOCK runs (1zme and 1qrv). In
1zme, we find an acceptable model at position 176 (i.e., Top 200
according to our analysis) with 0.11/7.85 Å/9.94 Å for Fnat/i-
RMSD/l-RMSD while the best AA model falls out the acceptable
CAPRI criteria (0.04/7.51 Å/10.3 Å). For 1qrv, the fourth case
with the largest conformational change, the docked models
generated by the standard AA HADDOCK protocol failed to
satisfy the quality metric thresholds (Fnat and i-RMSD or Fnat
and l-RMSD). However, several models showed a satisfactory
overlap in terms of Fnat with >20% of interface contacts. With
coarse-graining instead, the first acceptable model is found at
rank 44 with a l-RMSD of 8.8 Å and Fnat of 0.14 (i.e., Top 50
according to our analysis).

Coarse-graining approaches benefit from the reduction of
the number of degrees of freedom of the systems under
study and make the docking calculations computationally more
efficient. The median computational time to generate one
model via CG in HADDOCK is 8.6s and of 42.8s for it0
and it1 stages, respectively, vs. 16.5s and 115.0s for standard
atomistic calculations. Overall, the use of the MARTINI force
field for both proteins and nucleic acids leads to a ∼6-fold
speed increase during rigid-body docking and semi-flexible stage
(see SI-3, Table SI-5).

Unbound Docking Using Experimental
Data
We evaluated the capabilities of our HADDOCK-CG
implementation to model protein-DNA interactions when using
real experimental information. We selected six representative
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FIGURE 1 | Performance of the all-atom and coarse-grained protocols in HADDOCK on the 44 unbound protein-DNA complexes of the benchmark. (A) Overall

success rates (%) of the all-atom protocol on ranking single models as a function of the number of models considered. (B) Same as (A) but for the coarse-grained

protocol. (C,D) The quality of the docking models for all 44 cases as a function of the number of models considered. The complexes are ordered by increasing degree

of difficulty (from top to bottom) for both all-atom and CG docking runs. The color coding indicates the quality of the docked models according to CAPRI criteria.

cases (van Dijk and Bonvin, 2010) from the protein-DNA
benchmark classified as “easy” (1by4, 3cro), “intermediate”
(1azp, 1jj4), and “difficult” (1a74, 1zme) for which experimental

information was available. The latter was translated into AIRs
(see Methods; Unbound Docking Using Experimental Data) in
the form of active and passive residues and two different set of
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docking runs were performed using either the standard all-atom
or the coarse-grained protocols.

As shown inTable 1, summarizing the quality of the generated
clusters, for four out of the six cases, AA docking generates better
quality models. No good solution in any of the tested protocols
was found for 1zme, which undergoes a large conformational
change of 4.68 Å upon binding. In terms of sampling, the
standard all-atom protocol, in combination with experimental
data, generates ∼900 near-native models (i.e., acceptable or
higher quality according to CAPRI) on average per case, while
our CG approach around three times less (∼300). This is
somewhat surprising as the smoother energy landscape derived
from the reduction of degrees of freedom might help the
sampling process as previously demonstrated in our protein-
protein CG implementation (Roel-Touris et al., 2019). Despite
this difference in sampling, both approaches perform rather
similarly in terms of structure quality, indicating that our CG
protocol is also applicable for integrative modeling of complexes
in combination with real experimental data. Recent studies
have indicated that the interpretation of CG models using
experimental data, and in particular SAXS data, can benefit from
improved forward models as demonstrated by Paissoni et al.
(2019) for protein-DNA complexes.

Revisiting CAPRI Target 95: The PRC1
Ubiquitination Module Bound to the
Nucleosome
The polycomb repressive complex 1 (PRC1) represses the
expression of genes regulated by developmental processes and
is responsible for the ubiquitylation of the nucleosomal histone
(Mattiroli et al., 2014). This complex was offered as a blind
target to the CAPRI experiment (Round 31, target 95), to
which we participated but failed to correctly identify near-native
models out of our pool of generated complexes. Using the same
information derived from the literature as used in CAPRI Round
31 (see Table SI-4), we repeated the docking using ourMARTINI
implementation in HADDOCK2.4 and validated our predictions

against the crystal structure of the complex (PDB-ID: 4rp8;
McGinty et al., 2014).

When analyzing the i-RMSD of the top-ranked model
according to the HADDOCK score, the CG one is slightly closer
(3.0 Å) to the reference crystal structure than the corresponding
AA model (3.14 Å; Table 2A). Same behavior is observed when
looking at the clustering statistics, in which the average i-RMSD
for the top four models of the best cluster for CG was 3.09± 0.08
Å against 3.23 ± 0.23 Å in AA. A much large difference between
the two protocols is however clearly visible when comparing
the number of acceptable of better models generated at the
various docking stages (Table 2B) with CG docking resulting
in ∼1.5 times more acceptable models than AA docking. This

TABLE 2A | Sampling and quality assessment of the AA and CG PRC1 docking

models.

# of acceptable models Time per model [s]

it0a it1 Water it0 it1

All-atom 360/173 169 169 138 979

Coarse-grained 536/293 290 254 27 188

Number Of Acceptable Models And Time Necessary To Generate One Model For
The Rigid-Body And Semi-Flexible Stages For Both All-Atom And Coarse-Grained
Simulations.
aThe first number is the total number of acceptable models within the 10,000 generated
and the second correspond to those in the top400 selected for further semi-flexible
refinement.

TABLE 2B | Ranking, i-RMSD Comparison And Time Per Model Of All-Atom And

Coarse-Grained Simulation Of Capri Target 95.

Single structure Cluster

Rank i-RMSD [Å] Rank Top4 <i-RMSD> [Å]

All-Atom 1 3.14 2 3.23 ± 0.23

Coarse-grained 1 3.00 1 3.09 ± 0.08

TABLE 1 | Performance of the all-atom and coarse-grained protocols in HADDOCK on six representative cases of the protein-DNA benchmark using experimental data

to drive the docking.

All-Atom Coarse-Grained

Complex Cluster i-RMSD l-RMSD Fnat CAPRI Cluster i-RMSD l-RMSD Fnat CAPRI

EASY

1BY4 2nd 3.66 14.37 0.18 * 1st 3.08 9.05 0.19 *

3CRO 1st 1.52 2.34 0.39 ** 2nd 2.77 7.35 0.22 *

INTERMEDIATE

1AZP 1st 3.14 10.16 0.11 * 1st 3.53 9.29 0.10 *

1JJ4 2nd 1.98 5.71 0.25 * 1st 2.24 6.55 0.11 *

DIFFICULT

1A74 1st 1.61 4.41 0.32 ** 1st 1.83 4.54 0.24 *

1ZME 1st 8.52 29.54 0.00 – 1st 8.4 30.7 0.00 –

The RMSDs (Å) and Fnats correspond to the best model of the best cluster. The ranking of the best cluster is also reported. The CAPRI column indicates the number of models per
quality threshold (*acceptable, **medium, ***high).
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FIGURE 2 | Single structure comparison of top-ranking models predicted by

HADDOCK. Superimposition of the best models (top-ranked) predicted by

HADDOCK using atomistic (blue) or coarse-grained (orange) docking onto the

experimental crystal structure (PDB-ID 4r8p, green; McGinty et al., 2014). The

two residues PRC1-Cys85 and H2A-Lys119 which are expected to form a

covalent bond (Kerscher et al., 2006; an information used to guide the

docking) are shown as spheres. The interface RMSD of the all-atom and

coarse-grained top rankings models against the reference crystal structure are

3.23 and 3.0 Å, respectively.

improvement in the sampling is in contrast to what was observed
above for the protein-DNA benchmark. As already observed for
protein-protein docking (Roel-Touris et al., 2019), the impact of
coarse graining is more evident when little or no information
(ab-initio docking) is available to drive the docking process.
Finally, a view of the top ranked models superimposed onto
the reference crystal structure is shown in Figure 2. Both satisfy
the distance restraint imposed to model the interaction between
Cys85 of PRC1 with Lys118/119 of Histone 2A (PRC1-H2A).
The proximity of those two residues was proposed (Bentley et al.,
2011) to be necessary to restrict the ligase complex to a single
region of the nucleosome (the information we used in CAPRI),
which was confirmed by the crystal structure (PDB-ID 4r8p;
McGinty et al., 2014).

CONCLUSION

In this work, we have presented the integration of the MARTINI
coarse-grained force field for nucleic acids into our HADDOCK
integrative modeling software. It builds upon our previous
implementation for protein-protein docking, using a coarse-
grained representation during the rigid-body and semi-flexible
refinement stages, and converting back the resulting models
to atomistic resolution following an atom-to-bead distance
restrained-guided morphing procedure. We have shown that
the performance of coarse-grained docking is similar to that of
standard all-atom protocol in terms of success rate, while the

quality of the generated models remains rather similar according
to standard CAPRI criteria. We demonstrated that our coarse-
grained protocol is perfectly suited for use with experimental
or predicted data. In particular, we have revisited a challenging
target of the CAPRI experiment, taking full advantage of
the hereby described implementation and obtaining near-
native models of PRC1 Ubiquitination module bound to the
nucleosome in excellent agreement with the crystal reference.
Further, by smoothening the energy landscape it also allows
to generate more near native models in cases where limited
information is available to guide the modeling, which should also
benefit the scoring stage since it becomes easier to identify them.
It also brings a significant gain in computing performance,
with a ∼6-fold speed increase compared to standard
atomistic simulations. In conclusion, with this extension,
HADDOCK has gained the capability to model significantly
larger assemblies consisting of mixed protein and DNA
components, in a more efficient way without compromising its
overall performance.
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The cytoplasm is a densely packed environment filled with macromolecules with

hindered diffusion. Molecular simulation of the diffusion of biomolecules under such

macromolecular crowding conditions requires the definition of a simulation cell with a

cytoplasmic-like composition. This has been previously done for prokaryote cells (E.

coli) but not for eukaryote cells such as yeast as a model organism. Yeast proteomics

datasets vary widely in terms of cell growth conditions, the technique used to determine

protein composition, the reported relative abundance of proteins, and the units in

which abundances are reported. We determined that the gene ontology profiles of

the most abundant proteins across these datasets are similar, but their abundances

vary greatly. To overcome this problem, we chose five mass spectrometry proteomics

datasets that fulfilled the following criteria: high internal consistency, consistency with

published experimental data, and freedom from GFP-tagging artifacts. Using these

datasets, the contents of a simulation cell containing a single 80S ribosome were defined,

such that the macromolecular density and the mass ratio of ribosomal-to-cytoplasmic

proteins were consistent with experiment and chosen datasets. Finally, multiple tRNAs

were added, consistent with their experimentally-determined number in the yeast cell.

The resulting composition can be readily used in molecular simulations representative

of yeast cytoplasmic macromolecular crowding conditions to characterize a variety

of phenomena, such as protein diffusion, protein-protein interactions and biological

processes such as protein translation.

Keywords: macromolecular crowding, proteomics, protein translation, yeast, molecular dynamics

INTRODUCTION

The environment inside cells is densely packed, termed macromolecular crowding, the extent
of which varies throughout the different growth and differentiation stages of the cell, as well
as according to its type and volume (Nakano et al., 2014). A typical cell has a macromolecular
concentration in the range 100–450 g/L, with 5–40% of its volume being occupied by
macromolecules (Feig et al., 2017). Therefore, the space available for the free diffusion of
metabolites and other macromolecules is greatly reduced, leading to what is known as an excluded
volume effect. This reduces diffusion and favors more compact protein conformations and protein
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association. Transient aggregation of proteins is favored in
crowded systems and is correlated with slower diffusion
(Nawrocki et al., 2017). Macromolecules reduce the amount of
bulk-like water in the cell by reducing the amount of water
molecules present beyond the second solvation layer (Harada
et al., 2012). As a consequence, a 40% reduction in the dielectric
constant of yeast cells compared to that of a dilute solution
has been determined (Asami et al., 1976; Tanizaki et al., 2008),
leading to an increase in electrostatic interactions between
molecules. Hindered diffusion due to macromolecular crowding,
on the other hand, increases the probability of ligands being in
the vicinity of their receptors in what is termed caging effect,
which enhances reaction rates (Feig et al., 2017). Cells are
believed to maintain their macromolecular concentration within
a very small range in a process now termed “homeocrowding”
(Van Den Berg et al., 2017). Moreover, it has been shown that
the diffusion coefficient of molecules depends not only on the
macromolecular concentration but also on the composition of
the solution (Wang et al., 2010). Molecular crowding inside
cells affects various biochemical processes such as protein
translation. The diffusion of tRNA complexes in the cytoplasmic
environment is hindered by crowding, in turn affecting the rate
of translation (Klumpp et al., 2013).

Molecular dynamics (MD) simulations can be used to
characterize the complex nature of the effects of macromolecular
crowding, including effects on the diffusion of tRNAs and
their binding to cytoplasmic ribosomes during translation. Two
prior studies of the cytoplasm have focused on prokaryotic
systems (E. coli). In one study, 118 protein molecules were
chosen on the basis of their mole percentage in the cytosol,
with the number of ribosomes being scaled down based on
abundances reported at cell level and a total macromolecular
density of 340 g/L (Ridgway et al., 2008). Each protein molecule
was represented as a sphere, whilst tRNAs were not included
at all (Ridgway et al., 2008). In a second study, 51 different
types of macromolecules were considered, out of which 45 were
proteins and which accounted for 86% of the total cytoplasmic
protein mass reported by the proteomics dataset used with a
macromolecular concentration of 275 g/L. The simulation cell
also included three types of tRNAs (tRNA-Gln, tRNA-Phe, and
tRNA-Cys) and 10 ribosomes in their corresponding subunits.
The volume corresponding to lipids, lipopolysaccharides, mRNA,
DNA, murein, and glycogen was accounted for by increasing the
concentration of protein in the simulation cell (McGuffee and
Elcock, 2010). In a more recent cytoplasmic model, developed for
Mycoplasma genitalium, the simulation cell comprisedmore than
1,000 protein molecules, 275 tRNAs, nucleotides, metabolites,
ions, and a total of 26 million water molecules represented
atomistically with a macromolecular density of 291.5 g/L (Feig
et al., 2015). To our knowledge, an equivalent representative
definition of the eukaryotic cytoplasm has not been reported in
the literature. The key challenges in defining such a simulation
cell include identification of the required proteomics datasets and
defining appropriate criteria tominimize the size of the cell whilst
retaining the properties of the cytoplasmic environment.

In this study, we sought to address the lack of a standard
molecular simulation environment for eukaryotes by defining

the contents of a simulation cell based on the abundances
of proteins, tRNAs and ribosomes in the yeast cytoplasm.
A recent yeast proteomics dataset (Ho et al., 2018) unified
abundance data from 21 different datasets, comprising a range
of mass spectrometry (MS)-derived datasets, datasets based on
green fluorescent protein (GFP)-tagging of yeast proteins and
GFP flow cytometry and also a tandem affinity purification
(TAP-tagging)-immunoblot dataset. We employed an in-depth
proteomics survey of these datasets in order to define a molecular
simulation environment for a model eukaryote cell. However,
these datasets vary in terms of the growth conditions used
to culture the cells, the cellular growth phase, the units in
which abundances are reported, and the technique used to
measure them. It was therefore necessary to investigate how these
factors affect protein abundances reported across the range of
datasets. We characterized the internal consistency amongst the
datasets and their agreement with other published experimental
data, leading to the selection of a proteome composition for
the yeast cytoplasmic environment. Consideration of additional
experimental data on the macromolecular density and the mass
ratio of ribosomal-to-cytoplasmic proteins in the cytoplasm was
also used, allowing the definition of the contents of a molecular
simulation cell representative of the yeast cytoplasm.

METHODS

Definition of a Eukaryote Cell Simulation
Environment
Previous reports of the number of ribosomes in yeast cytoplasm
were taken from cell population scale experiments (Waldron
and Lacroute, 1975) and from cell tomography experiments at
single cell level (Yamaguchi et al., 2011), and were compared with
the numbers calculated from proteomics datasets. The volume
percentage of individual components of the yeast cell were also
obtained from cell tomography studies (Yamaguchi et al., 2011),
which are in agreement with other cell tomography experiments
(Wei et al., 2012). Furthermore, we used the recently published
unified yeast proteomics dataset that covers a total of 5,391
proteins (Ho et al., 2018).

Proteins associated with the nucleus, cell wall, ribosomes,
mitochondria, endoplasmic reticulum, and vacuoles were
removed from the dataset with the help of GO-slim annotations
(http://www.yeastgenome.org/) to assign cellular location to a
given protein. Gene ontology analysis of the function of encoded
proteins was performed using the webserver Funcassociate 3.0
(http://llama.mshri.on.ca/funcassociate/) (Berriz et al., 2009).

Statistical Analysis
The abundances reported for individual ribosomal proteins
by any dataset were treated as multiple observations of the
number of ribosomes (described in detail in the Results section).
Based on this, pairwise statistical two-tailed t-tests for unequal
variances between proteomics datasets were performed using
an in-house code in MATLAB (https://github.com/BMMG-
Curtin/FMOLB) to quantitatively understand the differences
and similarities between datasets (Figure S1). Where multiple
pairwise t-tests were conducted, the Bonferroni correction
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was applied to address type-I errors, whereby the critical
alpha value is divided by the number of pairwise tests. In
addition, p-values were adjusted using the Benjamini-Hochberg
approach to address type-I errors and the results obtained
were found to be qualitatively the same (Figure S1). The data
was assumed to be normally distributed whilst conducting
the above t-tests; therefore, a non-parametric Mann–Whitney
U-test with the Bonferroni correction was also employed
(Figure S2). The results of the U-test were also found to be
qualitatively similar to the results obtained with the t-tests.
Pairwise correlations between the functional ontological classes
of proteins across different datasets were quantified using the
Pearson’s correlation coefficient. The Jaccard index was used to
quantify the similarities between the ontological profiles obtained
for each of the datasets.

RESULTS

Analysis of Internal Consistency of Yeast
Proteomics Datasets
In order to define the protein composition of a eukaryote
molecular simulation cell, the recently published unified yeast
proteomics dataset was used (Ho et al., 2018). This covers 5,391
genes with a total protein mass per yeast cell of 2.7 × 1012 Da,
which is in good agreement with the total protein mass of a yeast
cell previously reported to be 3 × 1012 Da (Sasidharan et al.,
2012). This proteomics dataset comprises data integrated from
21 different datasets, which vary in the type of growth medium
used to culture cells, their growth phase and the technique used
to measure protein abundances.

The top 200 most abundant proteins were taken from each
of the 21 datasets based on their mass (i.e., molecular mass
multiplied by their abundance) and were found to account for
∼70% of the total cytoplasmic protein mass (Figure 1). In order
to assess the possible influence of cell culture conditions, growth
phase and the method used to measure protein abundance on
the composition of the yeast cytoplasm, the ontological classes
of these proteins were assessed. The systematic names of these
proteins were submitted to the Funcassociate 3.0 webserver,
which detects over-representation of gene ontologies in a gene
list. The number of proteins associated with each gene ontology
class was identified for every dataset. Each pair of datasets
was then compared by calculating the Pearson’s correlation
coefficient between the number of proteins associated with each
gene ontology class. The Jaccard index was used to quantify the
similarities between the sets of gene ontology classes obtained for
every dataset. Despite the above differences between the datasets,
a similar ontological landscape for the top 200 proteins in each
of the datasets was observed, except for one dataset that used
N-terminal GFP tagging, YOF (Yofe et al., 2016; Figure 2).

Although the gene ontology profiles of the top 200
cytoplasmic proteins are similar across datasets, significant
differences in protein abundances were observed. For example,
the average coefficient of variation (CV) (measured across the 21
datasets) for the cytoplasmic proteins is 78%. The differences are
more marked in the case of ribosomal proteins (CV= 106%).

In order to investigate the internal consistency of the
proteomic datasets and their agreement with other published
data, ribosomal proteins were examined separately. The protein
composition of ribosomes can be assumed to be fixed (Perry,
2007) and there are 79 ribosomal proteins per ribosome. Since
the stoichiometry for each ribosomal protein with respect to the
ribosome (Warner, 1999) is 1:1, it should be expected that the
numbers of each of these ribosomal proteins in a given dataset
will lie within a very small range. The identity of the ribosomal
proteins was taken from the crystal structure of the eukaryotic
ribosome (PDB code 4V88) (Ben-Shem et al., 2011). The CV of
these proteins was computed in every dataset and the average CV
of all MS datasets is 69%, whereas the average CV of GFP datasets
is 103%, indicating better internal consistency in MS datasets
compared to GFP datasets.

Depending on the consistency between datasets, the numbers
reported for a given ribosomal protein across different datasets
are expected to vary showing patterns in terms of experimental
conditions. In order to test this, the abundances of different
ribosomal proteins were compared across different datasets.
Given the 1:1 stoichiometry for each ribosomal protein with
respect to the ribosome (Warner, 1999), the abundance of
each ribosomal protein in each dataset provided an estimate
of the number of ribosomes per cell. The average number of
ribosomal proteins was therefore calculated to derive an average
ribosome per cell value for each dataset. The resulting values
were then compared between datasets by performing multiple
pairwise t-tests to determine any patterns arising from the
growth media, growth phase or the technique used to measure
protein abundance (Figure 3). High p-values were observed in
the pairwise tests between the datasets derived from GFP-tagging
of proteins, indicating consistency between them. On the other
hand, no clear consistency was apparent within the MS datasets,
and no patterns were observed that might be accounted for by the
growth media or growth phase used during cell culture.

It has previously been reported that there are ribosomal
proteins with extra-ribosomal functions in yeast (Lu et al., 2015).
In order to test if the differences in the abundance (Table S1)
of ribosomal proteins arise from the fact that some of them
perform additional functions and might therefore be produced
in excess of the requirements for ribosome synthesis, the mean of
means and the mean of medians (across 21 datasets) of ribosomal
proteins with extra functions (set I) and other ribosomal proteins
(set II) were computed. If excess production of some ribosomal
proteins was due to additional functions, their numbers might
be expected to be higher than those of other proteins. However,
the mean of means of set I is ∼88,400 units, whilst that of set
II is ∼86,000 units. By contrast, the mean of medians of set I is
∼61,700 and that of set II is ∼53,157 units. Whilst ribosomal
proteins with other functions seem to be abundant, it should
be noted that the standard deviations of both sets of proteins
are ∼25,000. A t-test carried out comparing the means reported
for ribosomal proteins in set I and set II has a p-value of 0.85
and a similar calculation with medians showed a p-value of 0.23.
These high p-values suggest that the differences in mean/median
abundances do not have statistical significance, suggesting that
the differences in the abundances of ribosomal proteins are not
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FIGURE 1 | Distribution of protein mass (calculated as the product of molecular weight times abundance) per cell plotted as a function of the mass rank of each

protein. Proteins in the yeast proteomics dataset were ranked according to their mass, exhibiting a clear exponential decrease as a function of their mass rank in the

cell. In the inset the cumulative percentage of mass is plotted as a function of rank. The top 200 cytoplasmic proteins contribute to ∼70% of the total cell protein mass.

due to the extra-ribosomal functions carried out by some of them.
The causal relationships of this phenomenon will need to be
further investigated.

Selection of Datasets
Whilst the gene ontology profiles of the proteomics datasets are
similar, they vary widely in the protein abundances reported. The
ratio of the median of abundances reported by GFP datasets to
the median of MS datasets was calculated for cytoplasmic and
ribosomal proteins. We determined that for 74% of cytoplasmic
proteins and 84% of ribosomal proteins the medians differ
by more than 25%. The differences in the individual protein
abundances between the GFP and MS datasets were reported
to be possibly due to changes in protein or mRNA stability
following GFP tagging (Ho et al., 2018). More specifically, in the
case of ribosomal proteins, GFP tagging can alter their packing
in the ribosome, thereby affecting their turnover dynamics and
therefore their abundances (von der Haar, 2008).

The number of ribosomes, calculated by taking the median of
all ribosomal proteins reported in the GFP datasets, revealed an
estimated 51,800 ribosomes per cell, whereas previously reported
figures are 150,000–300,000 (Waldron and Lacroute, 1975) and

169,000–265,000 (Yamaguchi et al., 2011) ribosomes per cell. As
discussed earlier, the abundances of ribosomal proteins reported
in the GFP datasets are also widely spread, with an average
CV of 103%, in contrast to the average CV of 69% in the MS
datasets. It was thus decided to omit the GFP datasets from
further consideration.

The first five (LU, PENG, KUL, LAW, and LAHT) MS
datasets report abundances in absolute numbers, whereas the
other MS datasets report normalized abundances (with respect
to the average of the five MS datasets) (Ho et al., 2018).
When the median of the first five MS datasets was compared
to the median of the other MS datasets individually for every
protein, 78% of cytoplasmic proteins and 96% of ribosomal
proteins showed more than 25% difference. These differences
may potentially be an artifact of the normalization process. The
number of ribosomes inferred from the median abundance of
ribosomal proteins of the first five MS datasets was ∼130,000,
whereas it was only 30,500 when calculated from the other
MS datasets. This latter, lower figure is significantly different to
previous reports (Waldron and Lacroute, 1975; Yamaguchi et al.,
2011), as discussed above. The five MS datasets also showed
high internal consistency in the pairwise t-tests performed on
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FIGURE 2 | Statistical analyses of proteomics datasets. (A) Pairwise correlations between the ontological profiles obtained for the individual datasets. Correlations

were measured using the Pearson correlation coefficient, whose values are color-coded (from the highest correlation in yellow to the lowest correlation in blue). (B) The

ontology profile overlap between datasets is quantified using the Jaccard index and the color-code is the same as in the previous panel. In both panels mass

spectrometry based datasets are indicated in red on the axes labeled as LU (Lu et al., 2007), PENG (Peng et al., 2012), KUL (Kulak et al., 2014), LAW (Lawless et al.,

2016), LAHT (Lahtvee et al., 2017), DGD (De Godoy et al., 2008), PIC (Picotti et al., 2013), LEE2 (Lee et al., 2011), THAK (Thakur et al., 2011), NAG (Nagaraj et al.,

2012), and WEB (Webb et al., 2013); GFP datasets are shown in green on the axes and are labeled as TKA (Tkach et al., 2012), BRE (Breker et al., 2013), DEN

(Denervaud et al., 2013), MAZ (Mazumder et al., 2013), CHO (Chong et al., 2015), YOF (Yofe et al., 2016), NEW (Newman et al., 2006), LEE (Lee et al., 2007), and

DAV (Davidson et al., 2011); and the TAP-immunoblot dataset is shown in white on the axes and is labeled as GHA (Ghaemmaghami et al., 2003). The top 200

proteins are shown to have a similar gene ontology profile across all of the datasets.

ribosomal protein abundance compared to the other MS datasets
(Figure 3). The five MS datasets were originally reported to
be highly correlated (with the Pearson correlation coefficient
varying from 0.43 to 0.81) (Ho et al., 2018), which is consistent
with our findings. Consequently, it was decided that only the first
five MS datasets would be used for the definition of the contents
of a molecular simulation cell.

Constraints for the Definition of the
Contents of a Simulation Cell
A molecular simulation cell should be designed to mimic the
environment of the yeast cytoplasm. This requires the inclusion
of three important constraints: macromolecular density, themass
ratio of ribosomal-to-cytoplasmic proteins, and the number of
ribosomes in the simulation cell.

Macromolecular density is an indirect measure of the
excluded volume and, therefore, crowding. The volume of yeast
cell has been reported to be 42 µm3 (Jorgensen et al., 2002)
and from the cell tomography determinations (Yamaguchi et al.,
2011) we estimated the cytoplasm in yeast to be 65% of the total
cell volume (27.3 µm3). The mass of all the 1,374 cytoplasmic
proteins in the dataset, excluding ribosomes, was calculated using
the mean abundances of all proteins with the above chosen
five MS datasets. There are 3 million tRNAs in a yeast cell
(Waldron and Lacroute, 1975) and, using an average mass of
25,500 Da per tRNA (calculated assuming that there are 75

nucleotides in tRNAs, each weighing an average mass of 340 Da),
the total tRNA mass was calculated. The median number of all
ribosomal proteins across the five MS datasets was determined to
be 126,213, which was used to calculate the ribosomal mass in the
yeast cell. The total masses of tRNAs, ribosomes and cytoplasmic
proteins was then used to estimate the macromolecular density
of the yeast cytoplasm as 90 g/L.

It has been reported that the fractions of ribosomal protein
(R-protein), translation protein (T-protein), fixed protein (Q),
the proportion of which is independent of growth rate, and
metabolic protein (P-protein), given by, 8R, 8T, 8Q, and 8P,
respectively, are unique for a specific growth rate (Klumpp et al.,
2013). Therefore,

8Q + 8P =
Q− Protein

A
+

P− Protein

A
= C(growth rate)

(1)
where A is the total protein mass and C is the growth rate specific
constant. The total Q- and P-protein content can be divided
into cytoplasmic and non-cytoplasmic fractions. Therefore, the
previous equation can be rewritten as

8Q + 8P =

non− cytoplasmic(Q+P)

A
+

cytoplasmic(Q+P)

A
= C(growth rate) (2)

non− cytoplasmic(Q+P)

A
:

cytoplasmic(Q+P)

A
= k(growth rate) (3)
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FIGURE 3 | Testing of statistical difference between the abundance of ribosomal proteins in each of the datasets. Mass spectrometry-based datasets are shown in

red on the axes, GFP datasets are shown in green on the axes and the TAP-immunoblot dataset is shown in white. Ribosomal protein numbers were not reported in

the YOF dataset and, therefore, it is not included. The results of t-tests with p > (0.05/190) are colored dark blue and all others are colored light blue. GFP datasets

exhibit a high level of consistency. There is also consistency among the first five MS datasets. However, there are no discernible patterns in terms of the growth media,

growth phase or protein abundance units.

The last Equation (3) states the assumption that the mass ratio
of cytoplasmic to non-cytoplasmic proteins is constant at a given
growth rate, from which it follows that cytoplasmic fraction in Q-
and P-proteins remains constant. Since the T-protein fraction is
a growth rate-dependent constant, the mass ratio of ribosomal-
to-total cytoplasmic proteins is constant at a given growth rate.
This is the second constraint for the definition of the contents
of a simulation cell. The mass ratio of ribosomal-to-cytoplasmic
proteins (rib/cyt) was determined to be 0.2229.

The crystal structure of the ribosome is composed of
75 ribosomal proteins (Ben-Shem et al., 2011) and, at such
size, it would be computationally challenging to include
multiple ribosomes in a single simulation cell. Equally, ignoring
the contribution of the ribosome to the excluded volume
and macromolecular density would affect the accuracy of a
simulation. Therefore, addition of a single ribosome to the
simulation cell was decided as the third constraint for the
definition of its contents.

Definition of the Contents of the
Simulation Cell
The choice of five MS datasets reduced the number of
cytoplasmic proteins with abundance data from 1,594 to 1,374;

however, when calculating the macromolecular density of the
cytoplasm, data from all 1,594 proteins was considered. The
total mass of cytoplasmic proteins calculated using abundances
in the unified dataset is 7.56 × 1011 Da. The median of the
number of molecules reported for a given protein by the five
chosen MS datasets was taken as the measure of its abundance
in a typical yeast cell. The total mass of a given type of
protein was calculated by multiplying its abundance (number
of proteins per cell) by its molecular mass, and the protein list
was then sorted in descending order of total mass. The top 200
proteins contribute, as mentioned earlier, about 70% of the total
cytoplasmic protein mass. The top proteins from the list were
chosen due to their significant contribution to the protein mass
in the cytoplasm and their abundances were subsequently scaled
down to their corresponding value in proportion to only one
ribosome (calculated as the abundance “n” of a protein divided
by the 126,213 ribosomes predicted in the MS datasets).

Each of the less abundant cytoplasmic proteins does not
contribute significantly to the overall protein mass. However,
their collective removal results in a significant loss in protein
mass which needs to be accounted for in order to maintain
the desired macromolecular density of the simulation cell.
Additionally, a number of proteins will contribute to the
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cytoplasm in fractional units that are lost due to rounding. The
number of protein molecules of each of the cytoplasmic proteins
was thus multiplied by a scaling factor aimed at maintaining
the overall macromolecular density of the simulation cell. The
number of protein types was chosen such that their total mass
contribution reflects the expected value of the rib/cyt ratio.
This was achieved by testing multiple scaling factors under the
above-described constraints. Use of a large scaling factor (e.g.,
3.0) meant that the rib/cyt ratio could be reached with just 20
different types of proteins, amounting to 119 protein molecules.
By contrast, the rib/cyt ratio could not be reached with very
low scaling factors (e.g., <1.8). Although the total number of
protein molecules remained in the range 120–130 with all of
the scaling factors tested, the observed protein composition was
affected significantly with the use of large scaling factors. A
range of scaling factors meet the constraints of macromolecular
density, rib/cyt ratio and the presence of one ribosome in
the simulation cell. However, in order to maintain the most
representative composition of cytoplasmic proteins, the lowest
possible scaling factor of 1.803 was chosen. This resulted in a
final list containing 128 protein molecules belonging to 70 types
of proteins (Table S2).

Based on the constraint that there should be only one
ribosome, the size of the simulation cell was calculated. A total
of 126,213 ribosomes are assumed to be present in the cytoplasm,
which has a volume of 27.3 µm3. This volume was scaled down
to one ribosome unit, which for a cubic simulation cell results
in a length of 560 Å. The number of tRNAs was scaled down
from 3 million units per cell to the volume of the simulation box,
resulting in 22 tRNA units. With one 80S ribosome, 128 protein
molecules and 22 tRNAs, the resulting simulation cell has the
required total macromolecular density of 90 g/L.

DISCUSSION

This study shows that the ontological profiles of the most
abundant proteins in yeast remains constant despite differences
in growth medium and growth phase, indicating that the
most abundant proteins constitute the fundamental biochemical
framework of the cell. The abundances reported in GFP datasets
are affected by tagging, particularly in the case of ribosomal
proteins. This has been explained previously on the basis that
ribosomal proteins form a compact structure in a single ribosome
molecule and the tag attached to them affects their packing.
Although this explains the low numbers of ribosomal proteins
reported, the cause of the high CV of ribosomal proteins in GFP
datasets (CV = 103%), indicating a selective effect of tagging,
compared with that of MS datasets (CV= 69%) remains unclear.
Moreover, the average number of ribosomes calculated using
MS datasets that report abundances in relative units is very low
(30,500 units). The causes behind this remain undetermined,
although normalization of the data is a possible factor.

Unlike prokaryotic cells, eukaryotic cells have a sophisticated
organization of cellular machinery into different organelles with
varying macromolecular environments. In order to study the
influence of this macromolecular environment, an accurate

description of its composition is needed. This was achieved
by assigning the cellular location of a protein from its
gene annotation data (GO-slim data) and determining the
volume percentage of cytoplasm in yeast from cell tomography
experiments. Themacromolecular density of yeast cytoplasmwas
found to be 90 g/L, which is three times lower than that of the
cytoplasm of E. coli. Measurements of the diffusion coefficient
of GFP in eukaryotic and prokaryotic cells indicate that the
eukaryotic cytoplasm is less crowded (Ellis, 2001), in line with our
findings. Crowding in eukaryotic cells is also non-uniform. For
example, in the nucleus we have calculated the protein density
to be 346 g/L [using the 10–11 volume percentage obtained
from cell tomography experiments (Yamaguchi et al., 2011) and
nuclear protein abundances from the dataset (Ho et al., 2018)].
These large macromolecular density differences indicate that an
accurate estimate of the macromolecular density of the organelle
of interest is necessary.

In conclusion, a simulation cell was defined such that the yeast
cellular composition of proteins, the ribosome-to-cytoplasmic
protein mass ratio and the macromolecular density are retained.
This was achieved by increasing the relative proportion of the
most abundant proteins under specific constraints. The resulting
simulation cell contains 128 protein molecules belonging to 70
protein types, 22 tRNAs and one 80s ribosome within a cubic
cell of 560 Å in length. The simulation cell contents act as a
generic representation of the cytoplasm that can be used to
study the diffusion and interactions of molecules in the yeast
cytoplasmic environment.
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Transitions between different conformational states are ubiquitous in proteins, being

involved in signaling, catalysis, and other fundamental activities in cells. However,

modeling those processes is extremely difficult, due to the need of efficiently exploring

a vast conformational space in order to seek for the actual transition path for systems

whose complexity is already high in the stable states. Here we report a strategy that

simplifies this task attacking the complexity on several sides. We first apply a minimalist

coarse-grained model to Calmodulin, based on an empirical force field with a partial

structural bias, to explore the transition paths between the apo-closed state and the

Ca-bound open state of the protein. We then select representative structures along the

trajectory based on a structural clustering algorithm and build a cleaned-up trajectory

with them. We finally compare this trajectory with that produced by the online tool

MinActionPath, by minimizing the action integral using a harmonic network model,

and with that obtained by the PROMPT morphing method, based on an optimal

mass transportation-type approach including physical constraints. The comparison is

performed both on the structural and energetic level, using the coarse-grained and the

atomistic force fields upon reconstruction. Our analysis indicates that this method returns

trajectories capable of exploring intermediate states with physical meaning, retaining a

very low computational cost, which can allow systematic and extensive exploration of

the multi-stable proteins transition pathways.

Keywords: proteins conformational transitions, classical molecular dynamics, coarse grained models, transition

path sampling, minimal action path, PROMPT

INTRODUCTION

Signaling is a core activity in cells. Most of the signaling processes are regulated by bi- (or
multi-) stable proteins, which can undergo conformational transitions in response to changes in
environmental conditions or stimuli of different origin (Grant et al., 2010). This class includes
among others, G-proteins coupled receptors (Weis and Kobilka, 2008) such as Rhodopsins (Tavanti
and Tozzini, 2014) and other transducers, e.g., Calmodulin (Wenfei et al., 2014), and a vast number
of enzymes undergoing conformational changes during their activity, such as the HIV-1 protease
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(Tozzini et al., 2007). The structural variations are usually quite
large, therefore atomistic molecular dynamics (MD) simulations
might not be the most proper method to address them, because
the slow transition kinetics requires simulations exceeding the
currently reachable time and space scales. In addition, the
atomistic representation with standard force fields (FF) is not
warranty of accuracy for the strongly distorted and out of
equilibrium transition states (Best and Hummer, 2009).

Strategies to overcome these difficulties involve different
actions. On one side, adopting simplified low-resolution
descriptions of the system such as coarse-grained (CG) models
(Tozzini, 2005) reduces the computational cost and allows
performing more efficient sampling of the conformational
space. This advantage comes at the cost of increasing the
empirical content of the FF, and consequently reducing predictive
power and transferability. A compromise between accuracy
and predictive power (Tozzini, 2010) is reached by including
some a priori knowledge of the system, in different forms,
such as, e.g., a (partial) bias (Tozzini and McCammon, 2005;
Spampinato et al., 2014) toward reference structures. This
appears a reasonable compromise especially in the case of
the search of the path between two given structure, when
the system must in any case be forced to have them as
stable states.

On the other side, one can act by simplifying the sampling
algorithm, e.g., using morphing related methods (Weiss and
Levitt, 2009; Koshevoy et al., 2014; Tamazian et al., 2015) without
relying on any specific FF. In particular PROMPT (Koshevoy
et al., 2014; Tamazian et al., 2015) employs an approach based
on the optimal mass transportation problem including physical
constraints of geometric nature (Evans and Gangbo, 1999).
Methods based on the action minimization of simplified FFs,
such as MinActionPath (Franklin et al., 2007), can be thought
as located between the two approaches. The combination of the
different sampling methods with the different representations of
the systems and its interaction has given rise in the last decades to
a huge number of approaches, which has also posed the problems
of their comparison and assessment (Seyler et al., 2015).

In this work, we first apply a minimalist CG model for
proteins to the test case of Calmodulin, chosen because of
its large conformational transition upon calcium binding. We
perform molecular dynamics simulations in different conditions
to sample the transition path.We then compare these results with
those of the simplified path sampling methods.

SYSTEM AND METHODS

The Coarse Grained Model
The coarse graining procedure we consider in this work
is schematized in Figures 1A,B, reporting the atomistic
representation of a protein chain and the minimalist CG
(MCG) representation in which only the Cα atoms are
present. The choice of Cα as the representative atom of
the amino-acid bead allows uniquely representing the
secondary structure by the internal variables α, θ (Tozzini
et al., 2006). The interactions are described by an empirical
FF, derived from an energy potential U with a form

similar to the atomistic ones, separated in bonded and
non-bonded interactions

U=
∑

bonds
ubi
(

di
)

+
∑

bond angles
uθ
i (θi)

+
∑

dihedrals
u

φ
i (φi) +

∑

i>j
unb

(

rij
)

(1)

di, θi, ϕi being the bond distances, angles, and dihedrals
describing the local geometry of connected beads and rij distances
between non-bonded ones (see Figure 1B). The functional
forms (reported in Table 1) are somewhat more complex than
those used in atomistic FFs: while ubi are holonomic restrains,

the uθ
i and u

φ
i take forms accounting for the anharmonicity

of the CG interactions; in addition, the parameters are
chosen to account for the different geometrical stiffness of
the secondary structures, assigning different values to helices
and sheets (see Table 1)1. The non-bonded interactions occur
between couples not already involved in a bond, bond angle
or dihedral interaction and are separated in local and non-
local part

∑

i>j
unb

(

rij
)

=
∑

i,j|rij<rcut

uloc
(

rij
)

+
∑

i,j|rij>rcut

unl
(

rij
)

(2)

both represented by a Morse potential, with the local term
retaining a bias toward a reference structure (see Table 1).
In this work the local/non-local separation is based on a
geometric criterion: all the non-bonded couples whose distance
is less than rcut = 8.5 Å in the reference structure are
considered local, the others are considered non-local. The
cutoff value used here was previously shown to include all
the relevant H-bonds and other possible specific interactions
such as disulfide or salt bridges (Trovato and Tozzini, 2012).
The parameters of the Morse potential, were optimized in
our previous works including a dependence on r0 (distance
in the reference structure) in order to reproduce stronger
interaction in the H-bonding range and weaker ones in the
hydrophobic range (Di Fenza et al., 2009) (see Table 1). Since
here we are not interested in the accurate simulation of the
inter-protein interactions, the non-local part is represented by
a generic amino-acid independent potential reproducing an
average level of hydrophobicity (Table 1), instead than with a
complex matrix of amino-acid dependent potentials (Trovato
et al., 2013).

Simulation Setup and Transition Path

Extraction
MD simulations were performed in canonical ensemble using the
Langevin (stochastic) thermostat. The timestep was set at 0.01
ps. Simulations had different length, between 20 and 50 ns. The
data dumping frequency was on average 0.1 ps−1. Simulations
were performed with the two different CG FFs (hereafter FFA and
FFB) generated with a bias toward closed and open states (A and

1The continuous dependence of the kθ elastic constant is a variant with respect
to previous works using step-wise dependences (e.g., Di Fenza et al., 2009), which
improves the numerical stability of the model.
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FIGURE 1 | The model system. (A) The atomistic representation of the protein chain (side chains are omitted for clarity) (B) coarse grained representation. In both

cases the internal variables are reported. (C) The apo-closed form (named A) and the calcium-bound open form (named B) of Calmodulin (pdb codes: 1WRZ, 1EXR).

B, respectively), and at different temperatures. Simulations were
performed with DL_POLY [vs. 4.08 (Bush et al., 2006; Todorov
et al., 2006; Boateng and Todorov, 2015)] and the input was
generated with proprietary software.

In order to extract a transition path from the trajectory, we
first define the parameter σ based on the root mean square
deviation (RMSDA/B) of a configuration r = {xi,yi,zi} from
the reference structures rA/B[after alignment (Humphrey et al.,
1996)2, to eliminate roto-translations]

RMSDA/B (r) =

√

1
N

∑

i

(

xi − x
A/B
i

)2

σ (r) = 1
2

(

RMSD A(r)−RMSD B(r)
RMSD A,B

)

+
1
2

(3)

σ ranges between 0 (in A) and 1 (in B), is a rough measure of the
transition advancement. Clearly, structures with the same σ (r)
can have different conformations, with different distances from
A and B, accounted for by RMSDA(r) and RMSDB(r) separately,
since the calculation of σ in practice operates a projection of
the 2-dimensional path in the RSMDA/RSMDB plane onto a
line connecting A and B. Therefore, the scatter plot RMSDB vs.
RMSDA will also be considered to have more specific information
on the transition path. σ is used to compare the properties of
structures with similar transition advancement from the three
different methods.

In order to identify a limited number of relevant points along
the trajectory, we applied the principal path (PP) clustering
algorithm (Ferrarotti et al., 2018) to the MD trajectories and
extracted reduced trajectories, which retain the salient properties
of the original ones. The PP algorithm is a regularized version
of the k-means clustering algorithm (Arthur and Vassilvitskii,
2007), based on the evaluation of a cost functional composed
of two parts: the sum of the squared distances of each point
from its respective representative structure, and the sum of the
squared distances between adjacent representative structures.
The relative weight of the two components—the regularization
parameter s—is obtained by the Bayesian evidencemaximization.
The cost functional can be interpreted as an energy, thus the

2Alignment is performed by means of the built-in extension “RMSD Trajectory
Tool” of the graphics software VMD.

Bayesian posterior probability function is set proportional to
the exponential of its negative. The result of the clustering is
a “cleaned-up trajectory” of representative structures, used to
evaluate σ and energy profiles.

Energies were evaluated both with the CG FFs and at the
atomistic level. To this aim, the atomistic structures were rebuilt
from the MCG models using Pulchra (Rotkiewicz and Skolnick,
2008) without any local optimization, then explicitly hydrated
and locally optimized using the OPLSe (Harder et al., 2016) FF
with explicit solvent and the Polak-Ribiere conjugate gradient
algorithm (Polak and Ribiere, 1969) keeping the backbone frozen
during the minimization. The calculations were performed with
Schrodinger 2018-2, MacroModel (2019).

PROMPT and MAP Path Search
The PP clustering trajectories are compared with the trajectories
obtained from other transition analysis methods. The method
MinActionPath (Franklin et al., 2007) (MAP) employs
differential equations, obtained by minimizing an action
functional including a very simplified potential term representing
the protein as a network of harmonic interactions (the elastic
network model, ENM) (Tirion, 1996). The equilibrium distances
are taken from the reference structures, making the ENM the
simplest completely biased model. The solutions to the pair of
differential equation are merged by requiring continuity between
them. The final result is a single trajectory connecting the two
states, reproducing the energy profiles of the mono-stable ENMs
near A or B, and with a continuous crossover region.

On the other hand, PROMPT (Tamazian et al., 2015) [PRotein
cOnformational Motion PredicTion3] connects states A and B
avoiding relations to any specific FF, by using only structural
information. The protein is represented at the CG level and
each protein conformation is handled as a set of internal
coordinates. The transition path is first guessed e.g., using
linear interpolation between extremal configurations rA and rB.
The “admissible motions” are defined, as those preserving all
the bond lengths bJi and other physical constraints related to

3Implemented in a publicly available toolbox for MATLAB with its source code
on GitHub (http://github.com/gtamazian/PROMPT) andMATLAB File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange/49054- prompt).
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TABLE 1 | Functional forms (first and second columns) and parameterization (third column) of the MCG FF.

FF term Functional form Parameterization

Bond ubi (di) Restrains di from the reference structure (∼3.8 Å)

Bond angle

uθ
i (θi)

1
2 k

θ
i

(

cosθ − cos θ i
0

)2
θ i0 from the reference structure

kθ
i =

ki
sin2θ i0

ki = B

(

sin
(

βθ i0

)

βθ
i
0

)2

+ k0

B = 3,000 Kcal/mole k0 = 10 Kcal/mole

β = 1.667

Dihedral

u
φ

i (φi)

A
φ

i

[

1− cos
(

φ − φ i
0

)]

φ i
0 from the reference structure

A
φ

i

[

Kcal
mole

]

=







25 if φ0 ≤ 80deg helices

5 if φ0 > 80deg strands

Local

uloc (r)

εij

[

(

e
−αij

(

r−r
ij
0

)

− 1

)2

− 1

]

rcut =8.5 Å

εij = 3.8 e−(r0ij /6.1)
8

+ 0.05

αij
= 2.2 e−(r0ij /6.1)

8

+ 0.70

Non local

unl (r)

ε

[

(

e−α(r−r0) − 1
)2

− 1

]

r0 = 9.5 Å

ε = 0.05 Kcal
mole

α = 0.70A− 1

An illustration of the statistics-based parameterization procedure is also reported in the plots. Upper plot: The dots represent the inverse bond angle fluctuations as a function of the

bond angle, evaluated using atomistic simulations of different test proteins (yellow a globular protein, blue the calmodulin itself, different symbols for different runs). This curve can be

fitted as damped sin (cyan line). Assuming statistical equilibrium one has an angle dependent effective elastic constant from the equation k′ = kBT/< θ
2 >. A further factor 1/sin2(θ0 )

accounts for the non-exactly harmonic functional form used here (i.e., harmonic cosine) leading to the final functional form for kθ reported in the table, which accounts for the secondary

structure dependence of the elastic constant (stronger for helices with θ0 ∼ 90◦, softer for strands with θ0 > 110◦). Red dots show the result from a simulation with MGC model with this

parameterization. The black line reports the previously used parameter dependence for comparison. For the dihedral term a similar secondary structure dependent parameterization is

used, expressed through a simpler step wise dependence on the dihedral value. The non-bonded interactions parameters are reported in the lower plot: dependence of the well depth

(ε) and interaction range (1/α) on the equilibrium distance (the shorter the equilibrium distance, the stronger, and shorter ranged the interaction). The plot also reports typical interactions

included in the corresponding ranges. In all cases, the 0 subscript indicates the rest value of the corresponding variable. i or i, j apices are the Cα indices (e.g., r
ij
0 is the rest value of the

distance between i and j Cαs).

bond and dihedral angles (i is the index running along the
internal coordinate, and J labels the configuration along the
path, from A to B). The path connecting A and B is therefore
found by minimizing a kinetic only action integral within the
space of admissible motions factorized by rigid roto-translations.
The infinite-dimensional variational problem is addressed by
discretizing the path between A and B and solved by means of the
gradient descent method. The admissible motions are searched
by changing the internal free variables of the systems, i.e. {θ Ji ,φ

J
i }

in MCG model; θ Ji is treated by interpolation when possible. The
detailed description and formal comparison of the three method
is reported elsewhere (Delfino et al., in preparation). Energies
alongMAP and PROMPT trajectories were compared using both
atomistic (upon rebuilding and side chain optimization as already
explained) and MCG FFs.

RESULTS

Molecular Dynamics of the Open-Closed

Transition of Calmodulin
Calmodulin (Cam) displays two very different conformations
(Wenfei et al., 2014), depending on the environmental calcium
concentration. The two extremal structures of Cam, i.e., closed
(A) and open (B) (see Figure 1C), correspond to the apo and
Ca2+-bound state, respectively. Because these are, de facto,
distinct proteins, having different ligands, it is conceptually
correct to use two distinct FFs and to perform LD simulation
started from A using FFB to reproduce the A→B transition
occurring upon Ca2+ binding, and, vice-versa, using FFA for
the B→A inverse transition occurring upon Ca2+ release.
A few data are available for the difference in Gibbs free
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energy between the folded and denatured proteins ranging
between 1GA∼1.5–3.5 (Masino et al., 2000; Rabl et al., 2002)
kcal/mole for the A state and 1GB∼4.5–6.5 kcal/mole for
the B state (Masino et al., 2000). Energy alignment is not
straightforward, however, one might assume the denatured state
as reference, and infer that B state is more stable than A of
about 2–4 kcal/mole.

The A–B transition was simulated with LD, in both senses,
at 300K (RT) and at 130K (complete simulation data in the
Supplementary Material). Figures 2A,B reports the energies
along the LD simulations. In both cases the transitions are
clearly visible in the evolution of σ, passing from 0 to 1
(A→B, green) or from 1 to 0 (B→A, red), though they occur
at different times, depending on the simulation parameters
and on the FF. In particular, the closed to open transition
(green) occurs earlier and more directly, while the inverse
open to close transition appears to explore an intermediate
conformation with σ∼0.4–0.5 for tens of ns before reaching
the final state. This is better seen in the RMSD scatter plots
reported in panels c and d: the intermediate state, located
in the upper right off diagonal part of the plot, persists also
after the clustering procedure (joined dots in Figures 2C,D)
and is present at high and low temperature, although in the
low one it is pushed toward the diagonal. It corresponds to
a compact globular conformation, favored over the completely
open one by hydrophobicity, but in which the specific contacts
of the closed conformation are not formed (see the inset in
Figures 2C,D, red structures). In this work Cam is used only
as an example, therefore exploring in detail its transition is
out of our scopes. However, we remark that the presence
of such mis-folded transition intermediates was previously
documented (Wenfei et al., 2014). The intermediate is not visible
in the A→B simulations (green), in which the system passes
rapidly to B, not even in the PROMPT and MAP trajectories,
lying near the diagonal line joining A and B in the RMSD
plot. These, additionally, display distorted conformations in
the intermediate σ regions. An inspection to the structures
with σ∼0.5 (reported in purple and cyan in Figure 2C) shows
distortions in the central helix and too contracted terminal
regions in the PROMPT structure, and broken chain in the
MAP structure.

Data Clustering and Comparison With

PROMPT and MAP
While MAP and PROMT return transition paths made of a
few points, the MD simulations explore a large portion of the
conformational space returning thousands of conformations.
Therefore, in order to compare the methods, we first performed
a post-processing and clean-up of the MD trajectories to select a
limited number of representative states along it. This can be done
in several ways. Figure 3A reports a simple averaging procedure:
the structures are first ordered according to their σ value (red
and green dotted/dashed lines), so that A→B transition is read
from left to right and B→A from right to left. Once again, the
formation of an intermediate cluster at σ = 0.4–0.5 is clearly
visible in the B→A simulations, beside the large cluster of A

type structures and of B type structures in the A→B simulations,
respectively. The structures are then grouped according to their σ

value in a given number of regular σ intervals; the average energy
evaluated in each interval is reported in the plot, for the A→B
(green) and B→A (red) simulations at 300 and 130K (dots with
error bars). Interesting enough, transitions occur in all cases with
a gain of ∼20 Kcal/mole (as measured from the starting state,
i.e., in each case the opposite of the stable one), irrespective of
the temperature and of the FF. As said, comparing the energies
resulting from two different FFs is not straightforward. In this
case, an inspection of Figures 2C,D shows that the simulation
trajectories with FFA and FFB get particularly near in a region
of the RMSDA-RMSDB plane corresponding to σ∼0.4, indicating
that in that area structures belonging to different trajectories are
similar. Aligning the energy values for that value of σ in the
plot of Figure 3A generates a small shift leading to B structure
more stable than A one of about 3–4 kcal, roughly corresponding
to the experimental evaluation. The resulting “activated state
structure” corresponds to the intermediate found in the B→A
simulations, which turns out to be located ∼10 Kcal/mole above
the A/B states. This “barrier” value seems rather independent on
the simulation temperature, whose effect appears to be a rigid
shift of the average energies.

While the described procedure gives reasonable values of the
energies, representative structures along the trajectories are more
properly selected via the PP algorithm. This returns a user-
defined (20 in this case) number of elements, which are not
elements belonging to the trajectories they represent, but rather
elements optimizing the structure variance within the trajectory.
As a consequence, the energy profiles obtained evaluating the
FFA and FFB energies onto them (Figure 3B, solid lines and
squared symbols) are rather regular and lie lower in energy with
respect to parent trajectories, shown by lines connecting circle
symbols (obtained selecting the nearest elements to the optimal
ones, filled and empty dots connected by dotted and dashed
lines). Remarkably, even after post processing, the main features
of the simulation remain: the cluster located at σ∼0.4–0.5 is
well-represented in FFA simulations, and is located about 10
Kcal/mole above with respect to A and B states.

The optimal element trajectories extracted from the low
temperature runs are also reported in Figure 3C to be compared
with the energies evaluated from the MAP and PROMPT
trajectories using the MCG FFs. Even after a local optimization,
the energies fromMAP and PROMPT rapidly increase producing
a very large energy barrier at intermediate σ values. An inspection
of the structures (reported as insets in the plot) reveals that these
arise from severe distortion of the backbone (especially for MAP)
and/or steric clashes (both). In particular, the high energy of the
intermediate from PROMPT seems to be due to steric clashes
in one of the two ends of the protein (highlighted with a yellow
circle in Figure 3C.

Clearly, higher energies on the MAP/PROMPT paths
evaluated with MCG FFs are expected, since the low energy
path extracted with PP from simulations minimize the MCG
Hamiltonian. Therefore, in order to clarify if this energy
difference reflects a real larger stability of MCG derived
conformations, we rebuilt the atomistic structure of the paths
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FIGURE 2 | Simulations results from Langevin dynamics at 300K, γ = 8 ps−1 (A) and 130K, γ = 2 ps−1 (B). Temperature (upper plots), total and potential energies

(central plot) and σ are reported along the simulations from A to B (using FFB and starting from configuration A, green lines), and from B to A (using FFA and starting

from configuration B, red lines). For the 300K simulation also the running averages are reported for the potential energy as yellow and blue lines, respectively. (C,D)

Scatter plot of the LD simulations (same color coding as previous) compared with MAP and PROMPT paths evaluation (color coding as in the legend of C). The

connected dots are the representative elements of the PP clustering procedure. Sample configurations are reported in colors corresponding to the lines and their

approximate location in the plots are indicated by arrows.

evaluated with all methods and compared their energies
evaluated with the atomistic FFs (Figure 3D), after optimization
of the side chain conformation keeping fixed the backbone
structure. All methods give comparable energies for structures
near A and B states, where in some cases PROMPT and
MAP seems to work better than MCG models. However, the
atomistic analysis confirms the strong instability of MAP derived
structures, displaying unphysical backbone conformation, as
shown by the reported Ramachandran plot (upper right inset
of Figure 3D). The instabilities of the PROMPT profile are
confirmed in the central σ∼0.2–0.8 region, although the
Ramachandran plot (central inset) is regular even in there. In
fact, in agreement with what found in the MCG model, the
instability is not due to a wrong backbone conformation, but to
steric clashes in the highlighted area (yellow circle), displaying
two sheets whose relative conformation is too close and not
correctly aligned. The complete set of structures and energy data
is reported as Supplementary Material.

SUMMARY AND CONCLUSIONS

In this work we set up a simulation paradigm for finding the
transition path of proteins undergoing large conformational
transitions, which is a long-standing problem of biophysics.
Proteins are modeled by a Cα based coarse-grained
representation, while the transition path is explored via classical
molecular dynamics simulations with FFs partially biased
toward the reference structures. The selection of a representative
trajectory among the huge number of configurations explored
during molecular dynamics simulations is accomplished
by means of the principal path clustering algorithm, which
managed to single out trajectories close to those of minimum
free energy, yet capable of exploring intermediate states,
with a very low computational cost. The comparison with
minimal action path and PROMPT can be summarized
as follows: MAP returns structures which are reasonable
in the near vicinity of the references states, but is unable
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FIGURE 3 | Simulation data analysis and comparison with PROMPT and MAP (A) Potential energy vs. σ along the simulations at 300K (dotted lines) and at 130K

(dashed lines), with the FFA (red) and FFB (green) force fields (scales for FFA and FFB are shifted of 3 Kcal/mole to align the activated state as explained in the text.

Both scales are reported on the left and right axis, in colors corresponding to the FF they refer to). Colored dot with error bars are averages over subsets of structures

classified by σ intervals (errorbars correspond to standard deviations of data from average values). Representative closed (σ = 0) and open (σ = 1) structures are

reported under the plot. (B) Potential energies vs. σ evaluated over the representative structures of the clusters outputted by PP procedure. Squares connected by

solid lines: representatives optimized by the PP procedure (filled = from the 300K simulation, empty = from the 130K simulations, red with FFA, green with FFB).

Circles connected by dashed/dotted lines: same as previous, but evaluated over a trajectory of structures extracted from the simulations, the nearest to the optimal

ones. (Same color and empty/filled code as for squares; shift of scales as in A). (C) Comparison of the 130K “optimal” energies with energies of trajectories from MAP

(cyan) and PROMPT (magenta) evaluated with FFA (dotted) and FFB (dashed). Representative structures of the activated states are reported in corresponding colors.

Same scale shift as in (A); the vertical scales are broken to zoom over the low energies. (D) Potential energy evaluated with the atomistic FF over the same trajectories

as in (C) (same color coding). Representative structures are reported in corresponding colors; the Ramachandran plot of the activated states of PROMPT and MAP

are reported (yellow squared dots superimposed to the standard map in colors). Both in (C,D) the area with distorted sheets in the activated state of PROMPT is

highlighted with a yellow circle.

to provide meaningful ones, even after local optimization,
in the intermediate regions. This was somehow expected:
in fact stronger post-processing methods, involving e.g.,
the generation of swarms of unbiased trajectories from the
transition states were proposed to solve this problem (Pan
et al., 2008). PROMPT returns in addition good backbone
local conformations along the whole path, but does not
guarantee that amino-acids separated along the chain do not
get too near and cause steric clashes, which happens in fact,
in the intermediate regions. The MCG simulations, guarantee
physically sound structures along the whole path, and can
explore also intermediates far from the reference structures, but

needs appropriate post-processing and clustering techniques
to extract a reaction path. We envision that a synergistic use
of these methods might combine accuracy and efficiency in
the path search. This possibility, and the application to a
number of diverse proteins, are explored in a forthcoming
paper (Delfino et al., in preparation).
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Biodegradable polymers, obtained via chemical synthesis, are currently employed in a

wide range of biomedical applications. However, enzymatic polymerization is an attractive

alternative because it is more sustainable and safer. Many lipases can be employed in

ring-opening polymerization (ROP) of biodegradable polymers. Nevertheless, the harsh

conditions required in industrial context are not always compatible with their enzymatic

activity. In this work, we have studied a thermophilic carboxylesterase and the commonly

used Lipase B from Candida antarctica (CaLB) for tailored synthesis of amphiphilic

polyesters for biomedical applications. We have conducted Molecular Dynamics

(MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) MD simulations of the

synthesis of Polycaprolactone—Polyethylene Glycol (PCL—PEG) model co-polymers.

Our insights about the reaction mechanisms are important for the design of customized

enzymes capable to synthesize different polyesters for biomedical applications.

Keywords: MD calculations, QM/MM MD simulations, PCL-PEG co-polymers, biodegradable polymers, ROP

INTRODUCTION

Aliphatic polyesters have attracted great attention in the medical field due to their biodegradability,
biocompatibility, and drug permeability, allowing the use of these polymers in biomedical
applications (Cameron and Shaver, 2011). However, the hydrophobicity of some of these polymers,
such as Polycaprolactone (PCL), still hampers some of their applications (for example, their use
as drug delivery vesicles). PCL nanoparticles can be easily absorbed by proteins or be identified
and captured by reticuloendothelial cells (Huang et al., 2015). A good way to protect them to
be absorbed by proteins, can be achieved by modifying the surface hydrophilicity (Huang et al.,
2015). Polyethylene Glycol (PEG), one of the most interesting initiators for synthesis of polyesters,
can be used as the hydrophilic part of the linear amphiphilic block co-polymers (Piao et al.,
2003; Fairley et al., 2008; Yang et al., 2014). PEG is a non-ionic and water-soluble polymer with
biological compatibility, non-toxicity, non-antigenicity, and non-immunogenicity (Panova and
Kaplan, 2003). The above mentioned properties, make this hydrophilic polymer widely applied
in the pharmaceutical industry and in biomedical applications (Hutanu et al., 2014; Grossen et al.,
2017). Recently, it was also employed in the development of polymer-based drug delivery systems.
These systems consist in polymers covalently attached to systemic drugs, increasing their molecular
weight and thus their circulation time (Hutanu et al., 2014).
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Pharmaceutical moieties produced by chemical synthesis,
usually contain traces of metals catalysts, which can be
a problematic for biomedical application because of their
toxicity. Thus, enzymatic synthesis of polymers is considered
advantageous and has been extensively studied (Albertsson and
Srivastava, 2008; Kobayashi, 2009, 2010; Kobayashi and Makino,
2009; Zhang et al., 2014). Enzymes present many advantages,
e.g., they usually operate under mild reaction conditions,
they can be highly selective and are biodegradable. The
enzymatic synthesis of Polycaprolactone–Polyethylene Glycol
(PCL–PEG) triblock co-polymers was reported for the first
time in 2003, using Novozyme 435 (immobilized lipase B
from Candida antartica—CaLB) with fair to good yields (70◦C,
63–70% yield), but still with relatively low molecular weights
(12.500–17.600 g/mol) (He et al., 2003). A few years later,
Huang and his colleagues, used again Novozyme 435 and
PEG as the hydrophilic initiator to induce ring-opening of
polymerization (ROP) of ε-caprolactone (ε-Cl). They were
able to produce amphiphilic co-polymers with slightly higher
molecular weights (Mn = 11.900–19.000 g/mol at 70◦C, 1.28–
1.59 polydispersity index). However, these Mn values are still
low, so approaches with other enzymes or modified enzymes
are still required (Huang et al., 2015). Here, in the quest to
better understand these processes at atomic level and also to
search for alternative enzymes (such as extremophile enzymes,
that can withstand harsh industrial conditions), we have studied
reaction mechanisms where PEG is the initiator in the ROP
deacylation step of PCL-PEG co-polymers. We modeled the
PEG initiator at two different chain sizes. The simpler model
consists in a molecule of ethylene glycol and the larger in a
polymer with three molecules of ethylene glycol. The initial
structure for the Quantum Mechanics/Molecular Mechanics
Molecular Dynamics (QM/MMMD) calculations was the second
tetrahedral intermediate structure and the simulations were
performed with two enzymes: the commonly used CaLB and
the thermophilic esterase from the archaeon Archeoglobus
fulgidus (AfEST).

COMPUTATIONAL METHODS

Systems Initial Setup
The initial structures were modeled from the crystal structures
of CaLB (0.91 Å resolution) and AfEST (2.2 Å resolution),
pdb codes 5A71 (Stauch et al., 2015), and 1JJI (De Simone
et al., 2001), respectively and MolProbity (Chen et al., 2010)
was used to assign the protonation states. The enzyme-
activated monomer structures (EAM with one molecule of
ethylene glycol—MEG and EAM with a oligomer with three
molecules of ethylene glycol—PEG), the second tetrahedral
intermediate structures (INT-2) and the product complexes
(PC, Co-P model compound, and Co-3P model compound)
were geometry optimized in Gaussian09 (Frisch et al., 2009)
using B3LYP 6-31G(d) (Ashvar et al., 1996) basis set and
with the Polarizable Continuum Model (PCM) (Tomasi et al.,
2005) solvent description. The Restrained Electrostatic Potential
(RESP) (Bayly et al., 1993) method from HF/6-31G(d) single
point energy calculations was used to assign the atomic partial

charges. The structures were placed within a pre-equilibrated
octahedral box of toluene (10.0 Å between the surface of
the protein and the box) and the entire systems neutralized
with counter ions. The systems were subjected to two initial
energy minimizations and 500 ps of equilibration in a NVT
ensemble using Langevin dynamics with small restraints on
the protein (10.0 kcal/mol) to heat the system from 0 to
300K. Production simulations were carried out at 300K in
the NPT ensemble using also Langevin dynamics with a
collision frequency of 1 ps−1. Constant pressure periodic
boundary conditions were imposed with an average pressure
of 1 atm. Isotropic position scaling was used to maintain
pressure with a relaxation time of 2 ps. The time step
was set to 2 fs. SHAKE constraints were applied to all
bonds involving hydrogen atoms (Ryckaert et al., 1977). All
the simulations were performed with the Amber molecular
dynamics program (AMBER18) (Salomon-Ferrer et al., 2013)
using parm99SB (Hornak et al., 2006) and GAFF (Wang et al.,
2004) force fields. All reactants, products and intermediate
structures were submitted to triplicated simulations of 20 ns
each, with different initial velocities. The reference structures
represented in the figures, were the lowest root-mean-square
deviation (RMSD) structures to the average of the simulations
(Dourado et al., 2018).

Quantum Mechanical/Molecular

Mechanical Molecular Dynamics (QM/MM

MD) Calculations
The QM/MM MD calculations (Carvalho et al., 2014) were
performed using the internal semi-empirical hybrid QM/MM
functionality implemented in AMBER18 with periodic boundary
conditions. The QM region was described by the PM6 semi-
empirical method (Stewart, 2007; Jindal and Warshel, 2016)
and the MM region by the Amber parm99SB force field
(Hornak et al., 2006). The PM6 Potentials of Mean Force
(PMFs) were later corrected with geometry optimizations of
the high-level layer (QM) models with the exchange correlation
functional basis set for B3LYP/6-31G(d) (Ashvar et al., 1996) and
wB97XD/6-31G(d) (Chai and Head-Gordon, 2008), according to
Carvalho et al. (2017) and Bowman et al. (2008). Electrostatic
embedding (Bakowies and Thiel, 1996) was also employed and
the boundary was treated with the link atom approach. Long-
range electrostatic interactions were described by an adapted
implementation of the Particle Mesh Ewald (PME) method for
QM/MM (Nam et al., 2005).

The QM region in the reactant complex for CaLB included:
the MEG molecule (during the study of Co-P production) and
the PEG molecule (during the study of Co-3P production), the
S105 residue, the side chain of H224, D187, the amide groups
of Q106 and T40, as well as, the side-chain of T40. For AfEST
besides the MEG/PEG molecules and the S160 residue, the QM
region also included the side chains of H285, D255, the amide
groups of G88, G89, and A161. The initial structure was the
INT-2, which was obtained using a procedure similar to Escorcia
et al. (2017). The reaction coordinate for both enzymes was the
distance between the proton of the histidine and the oxygen
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of the leaving alcohol. The coordinates were scanned in 0.1 Å
increments using the umbrella sampling method, except near the
transition states were 0.01 Å intervals were applied. The PMFs
were computed resorting to the Weighted Histogram Analysis
Method (WHAM) (Grossfiled, 2018). The total number of atoms
in the high-level layer (QM region) in our initial structure (INT-
2) was: 77 for CaLB during Co-P synthesis and 91 during Co-3P
synthesis; 67 for AfEST during Co-P synthesis and 81 during
Co-3P synthesis.

RESULTS

The catalytic cycle of CaLB and AfEST toward the synthesis of
PCL through ROP of ε-Cl was previously studied (Ma et al.,
2009; Elsässer et al., 2013; Ren et al., 2016; Zhao, 2018; Almeida
et al., 2019; Pellis et al., 2019) (unpublished data). Both enzymes
are able to produce PCL polymers, as already described, and
the ability to produce co-polymers of PCL-PEG was outlined in
some experimental works (He et al., 2003; Huang et al., 2015),

FIGURE 1 | Catalytic mechanism from the formation of the Co-P and Co-3P products. Above, acylation step (ring-opening of ε-Cl); Below, deacylation step.

FIGURE 2 | Representation of the EAM with MEG, INT-2, and RC with Co-P complexes of CaLB (A–C) and AfEST (D–F), respectively.
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as well as, further explored here, via in silico methods. These
enzymes have the same catalytic triad, composed by Ser-His-
Asp residues (S105-H224-D187 for CaLB and S160-H285-D255
for AfEST) and a hydrogen bond donor region called oxyanion
hole, which stabilizes the negative charge developed during
the cycle, in the tetrahedral intermediate structure. In these
enzymes the histidine residues act as an acid/base (transferring
protons between the catalytic serine and the substrate) and are
stabilized by the aspartate residue (Brady et al., 1990; Bezborodov
and Zagustina, 2014; Douka et al., 2018). The stabilization of
the protonated histidine by the aspartate is well-documented
(Kobayashi, 2010; Douka et al., 2018). The oxyanion hole region
for AfEST contains the backbone amides of G88, G89, and A161
as hydrogen bond donors (De Simone et al., 2001), whereas
in CaLB the hydrogen bond donors are the backbone amides
of T40 and Q106 and the side-chain hydroxyl group of T40
(Raza et al., 2001).

The catalytic cycle for the synthesis of PCL co-polymers
by CaLB and AfEST include the acylation and deacylation
steps. The first one (Figure 1), is the nucleophilic attack by the
catalytic serine residue to a molecule of ε-Cl. This attack leads
to the formation of the first tetrahedral intermediate (INT-1)
structure followed by ring-opening of the INT-1 resulting in
the EAM structure. The deacylation steps comprise (Figure 1) a
nucleophilic attack to the EAM structure by the terminal alcohol

function of the initiator (MEG when the expected product is
Co-P and PEG when the expected product is Co-3P). The
result of this attack is the formation of the second tetrahedral
intermediate (INT-2) structure that, after product release (Co-
P or Co-3P), yields the product complex (PC), and the free
enzyme is re-generated.

The active site of AfEST is located at the interface of the
α/β hydrolase fold with the cap domain, shielding the active
site. There is one entrance channel to the active site and two
pockets (a large and a medium one, with the latter more buried
within the protein) (De Simone et al., 2001). In CaLB there is
no cap, just two helices (α10 and α5) that line the active site.
The α5 helix was proposed to act as a putative lid (Skjøt et al.,
2009; Stauch et al., 2015). The CaLB enzyme pockets have been
extensively described in the literature, one binds the acyl moiety
(residues A141, L144, V149, D134, T138, and Q157) of the ester
and the other one binds the alcohol function (residues W104,
L278, A281, A282, and I285) (Wu et al., 2013). The two enzymes
have different orientations of the pockets when we compare
them (De Simone et al., 2001; Stauch et al., 2015). In AfEST
the large pocket has a more hydrophobic nature. Also, since
there is just one entrance channel and due to the sequential
nature of the events where the EAM structure is first formed
and then reacts with the initiator, the alcohol function must be
located in the larger pocket. We and others have studied the

FIGURE 3 | Representation of the EAM with PEG, INT-2, and RC with Co-3P complexes of CaLB (A–C) and AfEST (D–F), respectively.
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enzyme acylation step in CaLB. The well described rate-limiting
step for these enzymatic ROP reactions is usually the formation
of the EAM structure (Kobayashi, 2010; Huang et al., 2015),
excepting with bulky or crowded initiators (Panova and Kaplan,
2003). The acylation step in CaLB, requires around 10.0 kcal/mol
(Elsässer et al., 2013) but for AfEST, this barrier is significantly
higher (Ma et al., 2009; Li and Li, 2011). As discussed above, the
different orientation of the pockets leads to different orientations
of the EAM structure and hence a different relative position
of the attacking alcohol moiety. In the initial EAM structures,
the incoming alcohol oxygen atom of the initiator (MEG or
PEG molecules) is in a distance range of 3.28–3.53 Å to the
EAM carbon atom (Figures 2, 3). The reaction proceeds through
a transition state (where called TS3,because of the preceding
acylation steps), with concerted proton transfer from the alcohol
moiety to the histidine residue and bond forming between the
oxygen and the carbon atoms of the EAM structure. In the INT-2

structure, the histidine is well positioned toward the scissile
oxygen bond for product formation (the PMFs are represented
in Figure 4). In all considered cases, the TS3 barriers are quite
low (3.0 ± 0.1 kcal/mol and 3.3 ± 0.3 kcal/mol for CaLB with
MEG and PEG molecules as the initiator, respectively, and 1.5
± 0.1 kcal/mol and 0.8 ± 0.1 kcal/mol for AfEST with MEG

and PEG molecules as the initiator, respectively—at the B3LYP
level of theory correction), which leads to formation of INT-2
always being exothermic, but significantly higher for AfEST (–
3.6 and −5.0 kcal/mol for CaLB; −18.4 and −15.6 kcal/mol for
AfEST - B3LYP). The fourth transition state (TS4) free energy
barriers are, generally, significantly higher than TS3 for both
initiators. With MEG molecule as the initiator, the 1G‡ are 3.0
± 0.1 kcal/mol and 11.0 ± 0.2 kcal/mol in CaLB and AfEST,
respectively (B3LYP). On the other hand, when PEG molecule
is the initiator, the TS4 1G‡ barriers are 8.6 ± 0.1 kcal/mol in
CaLB and 9.4± 0.2 kcal/mol in AfEST (B3LYP).

FIGURE 4 | Calculated PMFs for the formation of co-polymers Co-P (A,C) and Co-3P (B,D) in the deacylation step by CaLB (A,B) and AfEST (C,D). Each line

denotes the free energies calculated with PM6/MM and corrected with DFT methods (B3LYP with empirical dispersion and wB97XD).
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DISCUSSION

We have studied the nucleophilic attack of PEG molecules
with different sizes to the EAM of CaLB and AfEST enzymes.
We found that despite the obvious differences in pockets
size, orientation, and lining residues, both enzymes achieve
these chemical steps with similar overall energies (with the
exception of MEG in CaLB that was a lower overall barrier)
and that are lower than the barriers in the acylation steps
(TS2—Figure 1). In AfEST, the formation of INT-2 is always
more exothermic than CaLB, independently of the substrate.
The difference in energies of the MEG CaLB reaction in
relation to the other reactions seems to be due to the
fact that only in this case there is a hydrogen bond
between ethylene glycol and the histidine in the reactant
complex (EAM).

Detailed characterization of the intermediate structures,
will allow to identify key residues in the catalytic cycle,
opening the door for protein engineering approaches. Enhanced
enzyme variants are a good option for industrial esterification

reactions (e.g., polyester synthesis) and to improve the biological
compatibility of the polymers.
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INTRODUCTION

Systems biology implements a variety of statistical, computational and mathematical techniques to
understand how networks of biological systems work together to achieve a function (Westerhoff
and Palsson, 2004; Wolkenhauer, 2014). Systems biology is a multi-scale field, as it has no
fixed scale in the context of a biological response or cascade, where an ensemble of proteins,
cofactors and small molecules concertedly act to achieve function. This is the case of fundamental
pathophysiological networks, such as epidemiological responses with host and pathogens (Hillmer,
2015). Understanding the network of interactions that mediate these systems is of the utmost
importance for deciphering the mechanisms associated with multifactorial diseases, as well as to
address fundamental biological questions. This knowledge can be used for translational research
and application in biomedicine (McGillivray et al., 2018). The multi-scale nature of systems biology
calls for amultifaced description to bridge the system scale at the cellular level to themolecular scale
of individual macromolecules.

Among the important biological cascades responsible for severe diseases, we focus here on the
complement system, which is an effector arm of the immune system that eliminates pathogens,
helps in maintaining host homeostasis, and forms a bridge between innate and adaptive immunity
(Bennett et al., 2017; Reis et al., 2019). Complement is composed of three pathways known as
alternative, classical and lectin that work in concert to achieve its function (Schatz-Jakobsen
et al., 2016a). The complex network of proteins and other macromolecular entities composing
the complement system represents an ideal case to build a systems biology workflow predicting
the system’s response in immunity against invading pathogens, and how under complement
deficiencies this same system mediates different pathologies. Here, we report on the development
of systems biology predictive models, which describe the intricate biochemical networks and the
crosstalk among other elements of the immune system. We also show how the integration of
multiscale modeling techniques can help for improving the predictive model, while also providing
mechanistic information at the molecular level.

Complement dysfunction is associated with several diseases. Among others, the complement
components have been associated with neurodegenerative disorders including Alzheimer and
Parkinson diseases; as well as multiple sclerosis (Mastellos et al., 2019). Moreover, mutations of
complement proteins have been linked to the etiology of renal diseases (De Vriese et al., 2015;
Ricklin et al., 2016), while individuals with complement deficiencies develop severe infections,
such as meningitis, bacteremia and pneumonia caused by microorganisms, such as Streptococcus
pneumoniae,Neisseria meningitidis, and Staphylococcus aureus (Skattum et al., 2011). Clearly, while
a proper activation of the complement system is associated with a wide spectrum of beneficial
effects, dysfunctional states are associated with severe consequences. Considering that the function
of the complement system is regulated by a network of multiple components, whose concerted
activity underlies a variety of diseases, accurate models of the interaction network would greatly
help therapeutic strategies (Ricklin et al., 2018).
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MATHEMATICAL MODELS OF THE

COMPLEMENT SYSTEM

The complexity of the complement system arises from the
mechanistic function of numerous proteins and related
biochemical reactions within the complement pathways
(Figure 1). For instance, complement is composed of more
than 60 proteins that circulate in plasma and bound to cellular
membranes of host cells that work to mediate different phases
(fluid and solid) of immunity (Liszewski et al., 2017). This
multi-phasic interaction between complement proteins forms
the basis of the intricate biochemical networks and numerous
crosstalk with different compartments of the immune system,
such as pentraxins (C-reactive protein, serum-amyloid P, and
long pentraxin 3) and the coagulation cascade (Amara et al.,
2008; Ma and Garred, 2018).

In this complex scenario, mathematical models using ordinary
differential equation (ODE) emerged as a powerful tool to
elucidate the dynamics of the complement system. Indeed,
ODEs can be used to generate predictive models of complex
biological processes involving metabolic pathways, protein-
proteins interactions, and tumor growth (Ilea et al., 2012;
Dubitzky et al., 2013; Rohrs et al., 2018). In defining a
biological network in a quantitative manner, ODE models can
enable to predict concentrations, kinetics and behavior of the
network components, building hypotheses on disease causation,
progression and interference, which can be tested experimentally
(Enderling and Chaplain, 2014). In line with this, models of
the complement system based on ODEs have been designed
to mechanistically deconstruct segments of the complement
system under homeostasis and infection (Hirayama et al., 1996;
Korotaevskiy et al., 2009; Liu et al., 2011; Zewde et al., 2016; Sagar
et al., 2017; Lang et al., 2019).

To further these efforts, we recently generated an expanded
ODEmodel that predicts the complement biomarker levels under
the states of homeostasis, disease, and drug intervention (Zewde
and Morikis, 2018). By using the reaction network in Figure 1,
we generated a system of ODEs to describe the bi-phasic
nature of the complement system: (i) initiation (fluid phase);
(ii) amplification and termination (pathogen surface); and (iii)
regulation (host cell and fluid phase). The ODE representation is
shown below:

dCi

dt
=

xi
∑

y=1

σijfj

where variable Ci represents the concentration of an individual
complement protein/complex, xi denotes the number of
biochemical reactions associated with complement Ci for the yth

reaction. Moreover, σij, denotes stoichiometric coefficients and
fj is a function that describes how the concentration Ci changes
with the biochemical reactions of the reactants/products and
parameters, within the given timeframe.

Building on this basic concept, we have designed a model
of the complement system that incorporates pathological
conditions by reducing the regulatory kinetic rates constants
and lowering blood plasma concentrations (Zewde and Morikis,

2018). By applying this model, it is possible to perform in
silico mutation by perturbing a complement protein and its
binding partner and examine how it translates into the global
dynamics of the complement pathway activation and regulation.
As a consequence, this enables to generate patient specific
models provided clinical data, predicting the effect of a specific
mutation within the entire system. For instance, disorders,
such as C3 glomerulonephritis and dense-deposit disease
are associated with a mutation that affects the complement
regulatory protein factor H (FH) (Nester and Smith, 2016). This
mutation results in low plasma levels of FH and subsequently
leads to host cell damage due to under-regulation of the
alternative pathway. By measuring patient’s FH level, this value
can be used to reparametrize the starting concentration of
FH in the ODEs model and, subsequently, examine how the
mutation affects activation and regulation of the alternative
pathway (Zewde and Morikis, 2018). The ODE mathematical
models can also be used to identify novel therapeutic targets,
which can be object of experimental validations to assess
their capability to interfere with the complement system. In
this respect, one strategy, called “global sensitivity,” enables
to identify which set of kinetic parameters is important
in the network of the complement system. In parallel, the
“local sensitivity” analysis can help in pinpointing critical
complement components that mediate the output of activation
or regulation (examples in Liu et al., 2011; Zewde et al., 2016;
Sagar et al., 2017). ODE models are also useful if kinetic data
is available for known inhibitors. Indeed, ODEs can be used
to perform comparison studies on how different therapeutic
targets perform under disease-based perturbations. In our
previous work (Zewde and Morikis, 2018), we incorporated
two complement inhibitors known as compstatin, C3 inhibitor
(Figure 1, magenta circle), and eculizumab, C5 inhibitor
(Figure 1, light blue circle), and examined how they regulated
a disease state mediated by FH. Our model showed both
inhibitors performed differently in regulating an over-active
complement system (disease state). Compstatin was shown
to potently regulate early-stage complement biomarkers,
whereas eculizumab over-regulates late-stage biomarkers.
From these results, our model indicated the need for patient-
tailored therapies depending on how disease associated
mutations manifest in the complement cascade. Altogether,
ODE models can be utilized to mechanistically translate
convoluted biological reaction-networks, reparametrized for
patient specific modeling, and identify novel therapeutic targets
under pathological conditions.

MULTISCALE SOLUTIONS TO THE

CHALLENGES OF ODE MODELS

Building on ODE models that predict how the molecular
interactions mediate immunity and disease, our group has
expanded the ODEs approach to model the pathways of
the complement system as a whole. In this respect, one of
the main challenges is represented by the lack of kinetic
parameters, thereby significantly hindering our modeling
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FIGURE 1 | Reduced biochemical network of the complement system (alternative and classical). The representative surface of host or pathogen is shown in magenta.

Complement activation start in the fluid phase, whereas the crosstalk between the alternative and classical pathways is shown in green. The cascade of reactions will

propagate to the surface and terminate by the formation of the membrane attack complex (MAC). This figure is adapted from Zewde and Morikis (2018). Structural

representation of C3 (blue) with compstatin (cyan) shown in magenta circle (Janssen et al., 2005, 2007). Black circle denotes the surface representation of C5b in

firebrick coloring and C6 in yellow (Hadders et al., 2012). Surface representation of C5 (red) and eculizumab (H- and L-chain in green) shown in light blue circle

(Schatz-Jakobsen et al., 2016b).

efforts. For instance, we are currently building a comprehensive
complement model that includes all three pathways (Figure 1),
immunoglobulins (IgG and IgM) and pentraxins. This system,
which comprises 670 differential equations with 328 kinetic
parameters, is used to examine the interplay between
complement activation and an immune evasive bacteria
Neisseria meningitidis. However, 140 of our kinetic parameters

are unknown and estimation of these parameters is challenging,
due the limited availability of experimental data.

To overcome these challenges, multi-scale approaches can
aid in alleviating some of these burdens by performing
simulations to predict association rate constants. For example,
Brownian dynamics (BD), milestoning and molecular dynamics
(MD) can be used to predict the kinetic and conformational
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requirements of binding (Ermak and McCammon, 1978; Huber
and McCammon, 2010; Votapka and Amaro, 2015). MD enables
to follow themotions of macromolecules over time by integrating
Newton equation of motion. As opposite, BD simulates a system
based on an overdamped Langevin equation of motion, enabling
the study of diffusion dynamics and obtaining association rates
for a given process (Ermak andMcCammon, 1978). Novel hybrid
schemes, such as SEEKR combines multiscale approaches of MD,
BD, andmilestoning to estimate kinetic parameters of association
and dissociation rate constants (Votapka et al., 2017).

We have already initiated this bridge between systems biology
and multi-scale approaches by performing molecular dynamics
and electrostatics studies on the complement complex C5bC6
(Figure 1, black circle) (Zewde et al., 2018). Our analysis
identified three binding sites and critical salt bridges formed
between C5b and C6. Building on this first study, Brownian
dynamics simulations will aid into the prediction of kinetic
parameters associated with C5bC6 complex formation, which
will subsequently be inserted into our ODE model. As a further
useful approach, in the cases where complete structural data
are absent, homology models using computational tools, such
as MODELLER (Webb and Sali, 2016) or SWISS-MODEL
(Waterhouse et al., 2018) can be used as a supplement. This
step can be followed by the utilization of protein docking tools
like HADDOCK (Dominguez et al., 2003) or ClusPro (Kozakov
et al., 2017) to generate potential complement complexes.
Finally, top ranked structures can then be a subject of the
multi-scale approaches mentioned above to estimate unknown
kinetic parameters.

SUMMARY AND PERSPECTIVES

Here, we described the current efforts to model the complexity of
systems biology, by building predictive models based on ODEs.
The multi-scale nature of this field, as characterized by a network
of proteins, cofactors and small molecules concertedly acting to
achieve function, calls for a multiscale description bridging the
macromolecular level to the systems level. Here, we described

our investigations aimed at modeling the complex biological
response of the complement system, which plays a prominent
role in host defense, homeostasis, and disease. We showed
how ODEs models can provide description of the network of
interactions at the system level, while multiscale simulations
methods can complement this approach providing a description
at the macromolecular level.

ODE models of the complement system have elucidated
key mechanisms of immune system function and regulation.
These mathematical models show promise for the investigation
of patient specific diseases and for the identification of
therapeutic interventions under pathological conditions.
Despite these advantages, modeling efforts are continuously
challenged by the lack of kinetic parameters needed
to generate and simulate ODEs models. A multi-scale
approach—harnessing methods, such as Brownian and
molecular dynamics—is promising to address some of these
challenges by predicting unknown kinetic parameters to be
utilized in quantitative models of the complement system.
In addition to multi-scale estimations, high performance
computing has made it possible to simulate large biological
structures (Casalino et al., 2018; Palermo et al., 2018). This
opens scientific avenues in the frontier of modeling entire
biochemical networks, including the complement system, such
merging the molecular level perspective to the system (i.e.,
cellular) scale.
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Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes

and play a key role in cellular signaling, protein trafficking, immunology, and oncology.

However, it is challenging to predict peptide-protein binding with conventional

computational modeling approaches, due to slow dynamics and high peptide flexibility.

Here, we present a prototype of the approach which combines global peptide docking

usingClusPro PeptiDock and all-atom enhanced simulations using Gaussian accelerated

molecular dynamics (GaMD). For three distinct model peptides, the lowest backbone

root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray

structures obtained from PeptiDock were 3.3–4.8 Å, being medium quality predictions

according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria.GaMD

simulations refined the peptide-protein complex structures with significantly reduced

peptide backbone RMSDs of 0.6–2.7 Å, yielding two high quality (sub-angstrom) and

one medium quality models. Furthermore, the GaMD simulations identified important

low-energy conformational states and revealed the mechanism of peptide binding to

the target proteins. Therefore, PeptiDock+GaMD is a promising approach for exploring

peptide-protein interactions.

Keywords: peptide-protein binding, peptide docking, PeptiDock, gaussian accelerated molecular dynamics

(GaMD), peptide flexibility

INTRODUCTION

Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes. Peptide
binding plays a key role in cellular signaling, protein trafficking, immune response, and oncology
(Petsalaki and Russell, 2008; Das et al., 2013). In addition, peptides have served as promising
drug candidates with high specificity and relatively low toxicity (Ahrens et al., 2012; Fosgerau and
Hoffmann, 2015; Kahler et al., 2018; Lee et al., 2019). The number of peptide-based drugs being
marketed is increasing in recent years (Ahrens et al., 2012; Fosgerau and Hoffmann, 2015; Kahler
et al., 2018; Lee et al., 2019). Therefore, understanding themolecular mechanism of peptide-protein
interactions is important in both basic biology and applied medical research.
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Rational design of peptide-derived drugs usually requires
structural characterization of the peptide-protein complexes. X-
ray crystallography and nuclear magnetic resonance (NMR) have
been utilized to determine high-resolution structures of peptide-
protein complexes. These structures are often deposited into the
Protein Data Bank (PDB) and also collected in specific databases
focused on peptide-protein complex structures, including the
PeptiDB (London et al., 2010), PepX (Vanhee et al., 2010), and
PepBind (Das et al., 2013). Particularly, PeptiDB is a set of
103 non-redundant protein-peptide structures extracted from the
PDB. The peptides are mostly 5–15 residues long (London et al.,
2010). PepX contains 1,431 non-redundant X-ray structures
clustered based on the binding interfaces and backbone
variations. There are 505 unique peptide-protein interfaces,
including those for the major histocompatibility complex (MHC)
(14%), thrombins (12%), α-ligand binding domains (8%), protein
kinase A (5%), proteases and SH3 domains (Vanhee et al., 2010).
The PepBind contains a comprehensive dataset of 3,100 available
peptide-protein structures from the PDB, irrespective of the
structure determination methods and similarity in their protein
backbone. More than 40% of the structures in PepBind are
involved in cell regulatory pathways, nearly 20% in the immune
system and∼30%with protease or other hydrolase activities (Das
et al., 2013). These databases have greatly facilitated structure-
based modeling and drug design of peptide-protein interactions.
However, the number of currently resolved structures is
only a small fraction of the peptide-protein complexes, as
limited by the difficulties and high cost of X-ray and
NMR experiments.

Computational methods have been developed for predicting
the peptide-protein complex structures. In this regard, modeling
of peptide binding to proteins has been shown to be distinct
from that of extensively studied protein-ligand binding and
protein-protein interactions. Notably, small-molecule ligands
are able to bind deeply buried sites in proteins, but peptides
normally bind to the protein surface, especially in the largest
pockets. On the other hand, protein partners usually have well-
defined 3D structures before forming protein-protein complexes,
despite possible conformational changes during association. In
contrast, most peptides do not have stable structures before
forming complexes with proteins (Petsalaki and Russell, 2008).
The biggest and immediate challenge for modeling of peptide-
protein binding is that peptide structures are not known a priori.
Furthermore, peptide-mediated interactions are often transient.
The affinity of peptide-protein interactions is typically weaker
than that of protein-protein interactions, because of the smaller
interface between peptides and their protein partners. Therefore,
new and robust computational approaches are developed to
address the above challenges in the modeling of peptide-
protein binding.

Molecular docking has proven useful in predictions of
peptide-protein complex conformations (Ciemny et al., 2018).
The commonly used approaches include template-based docking
such as GalaxyPepDock (Lee et al., 2015), local docking
of peptides to pre-defined binding sites such as Rosetta
FlexPepDock (Raveh et al., 2011), HADDOCK (Trellet et al.,
2013), andMDockPep (Xu et al., 2018), and global docking of free

peptide binding to proteins such as CABS-dock (Kurcinski et al.,
2015), PIPER-FlexPepDock (Alam et al., 2017), and PeptiDock
(Porter et al., 2017). The template-based docking is highly
efficient, but often limited to the availability of templates (Lee
et al., 2015). Local docking is able to generate good quality models
that meet the Critical Assessment of PRediction of Interactions
(CAPRI) criteria (Janin et al., 2003). However, it requires a priori
knowledge of the peptide binding site on the protein surface. In
comparison, global peptide docking provides sampling of peptide
binding over the entire protein surface without the need for pre-
defined binding sites, but it is challenging to account for the
system flexibility. In this regard, ClusPro PeptiDock has been
developed for docking of motifs (short sequences) of peptides,
which are found to sample only a small ensemble of different
conformations (Alam et al., 2017). Structural ensemble of a
peptide motif is built by retrieving motif structures from PDB
that are very similar to the peptide’s bound conformation. A
Fast-Fourier Transform (FFT) based docking is then used to
quickly perform global rigid body docking of these fragments
to the protein. PeptiDock is thus able to alleviate the peptide
flexibility problem through ensemble docking of the peptide
motifs. Nevertheless, it remains challenging to account for the
high flexibility of the peptides. Overall, peptide docking often
generates poor predictions that require further refinement to
obtain CAPRI-quality models.

Molecular dynamics (MD) is a powerful technique that
enables all-atom simulations of biomolecules. MD simulations
are able to fully account for the flexibility of peptides and
proteins during their binding (Knapp et al., 2015; Wan et al.,
2015; Salmaso et al., 2017; Yadahalli et al., 2017; Kahler et al.,
2018). MD has been used to refine binding poses of peptides
in proteins in the pepATTRACT (De Vries et al., 2017) and
AnchorDock (Ben-Shimon and Niv, 2015) docking protocols.
However, it is challenging to sufficiently sample peptide-protein
interactions through conventional MD (cMD) simulations,
due to the slow dynamics and limited simulation timescales.
Computational approaches that combine many cMD simulations
provide improved sampling of peptide-protein interactions,
including supervised MD (Salmaso et al., 2017) and weighted
ensemble (Zwier et al., 2016). Notably, weighted ensemble of a
total amount of ∼120 µs MD simulations has been obtained to
investigate binding of an intrinsically disordered p53 peptide to
the MDM2 Protein (Zwier et al., 2016). The simulation predicted
binding rate constant agrees very-well with the experiments.
However, expensive computational resources would be needed
for applications of cMD simulations in large-scale predictions of
peptide-protein complex structures.

On the other hand, enhanced sampling MD methods have
been developed to improve biomolecular simulations (Christen
and Van Gunsteren, 2008; Gao et al., 2008; Liwo et al.,
2008; Dellago and Bolhuis, 2009; Abrams and Bussi, 2014;
Spiwok et al., 2015; Miao and Mccammon, 2016). Multi-
ensemble Markov models (Paul et al., 2017), which combine
cMD with Hamiltonian replica exchange enhanced sampling
simulations, have been used to characterize peptide-protein
binding and calculate kinetic rates of a nano-molar peptide
inhibitor PMI to the MDM2 oncoprotein fragment (Paul et al.,
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2017). While cMD is able to simulate fast events such as
peptide binding, enhanced sampling simulations can capture
rare events such as peptide unbinding. The steered MD
(Cuendet et al., 2011), temperature-accelerated MD (Lamothe
and Malliavin, 2018) and MELD (Modeling by Employing
Limited Data) using temperature and Hamiltonian replica
exchange MD (Morrone et al., 2017) have also been applied to
study peptide-protein binding. In comparison, more enhanced
sampling methods have been applied in studies of protein-
ligand binding and protein-protein interactions, including the
umbrella sampling (Torrie and Valleau, 1977; Kastner, 2011;
Rose et al., 2014), metadynamics (Laio and Parrinello, 2002;
Alessandro and Francesco, 2008; Saleh et al., 2017a,b,c),
adaptive biasing force (Darve and Pohorille, 2001; Darve et al.,
2008), steered MD (Cuendet and Michielin, 2008; Gonzalez
et al., 2011), replica exchange MD (Sugita and Okamoto,
1999; Okamoto, 2004), accelerated MD (aMD) (Hamelberg
et al., 2004; Miao et al., 2015), and Gaussian accelerated MD
(GaMD) (Miao et al., 2015; Miao and Mccammon, 2017, 2018;
Pang et al., 2017). Overall, enhanced sampling simulations of
peptide binding to proteins have been under explored. Peptide-
protein binding shows distinct characteristics as described
above and requires the development of improved enhanced
sampling approaches.

Here, we present a prototype of a novel computational
approach that combines global peptide docking using PeptiDock
and all-atom enhanced sampling simulations using GaMD to
model peptide-protein binding. Three model peptides have been
selected from the PeptiDB database of non-redundant peptide-
protein complex structures (London et al., 2010). They include
peptide motifs “PAMPAR” (Peptide 1), “TIYAQV” (Peptide 2)
and “RRRHPS” (Peptide 3), which bind to the SH3 domain, X-
linked lymphoproliferative syndrome (XLP) protein SAP and
human PIM1 kinase, respectively. Starting with the lowest RMSD
conformation selected from top 10 models of PeptiDock, GaMD
significantly refines the peptide-protein complex structures.
Furthermore, the simulations provided important insights into
the mechanism of peptide binding to target proteins at an
atomistic level. Thus, PeptiDock+GaMD is a promising approach
for exploring peptide-protein interactions.

METHODS

A Computational Approach Combining
PeptiDock and GaMD
A new computational approach was designed to predict peptide-
protein complex structures by combining peptide docking with
PeptiDock and all-atom enhanced sampling simulation with
GaMD (Figure S1). Initial peptide-protein complex structures
were obtained using the ClusPro PeptiDock server. The first
step in the PeptiDock protocol is fragment search: the PDB
database is searched for fragments containing the target peptide
motif. The templates are clustered and an FFT-based rigid
docking is applied to the cluster centroids. Top-scoring poses
are clustered again and the centroids of the largest clusters
are chosen as the final results (Porter et al., 2017). For the

purpose of this study—to show the viability of the protocol—
only one pose within top 10 models of PeptiDock, known
to be near native, was selected for further refinement using
GaMD simulations.

System Setup
Three model peptides were selected from the PeptiDB database
of non-redundant peptide-protein complex structures (London
et al., 2010). They included peptide motifs “PAMPAR” (Peptide
1), “TIYAQV” (Peptide 2) and “RRRHPS” (Peptide 3), which
bind to the SH3 domain, XLP protein and human PIM1 kinase,
respectively. The free X-ray structures of target proteins is 1OOT,
1D1Z and 2J2I, respectively. The corresponding bound structures
are 1SSH, 1D4T (Poy et al., 1999) and 2C3I (Pogacic et al., 2007),
respectively. The free X-ray structures of the target proteins
were used in the peptide docking and GaMD simulation. Both
capped/neutral and uncapped/zwitterion terminus models were
investigated in the GaMD simulations. In the neutral terminus
model, the N- and C-termini were capped with ACE and
NHE, respectively.

Peptide Docking
The standard ClusPro PeptiDock protocol was used for all three
systems. In the first step, receptor structures were specified:
1OOT chain A (Peptide 1), 1D1Z chain A (Peptide 2) and
residues 125-305 of 2J2I chain B (Peptide 3). The next step
was specifying motifs—the templates for searching fragments in
PDB database. The motif was specified as subsequence of the
peptide with one or more wildcard symbols. Wildcards could
be of two forms: “X,” denoting any amino acid substitution,
and “[...],” denoting substitution by any amino acid from the
list. e.g., “[FT]” means that either Phe or Tyr can take this
place. It is recommended to adjust the motif to yield between
100 and 1,000 hits, while preserving the essential features for
binding. For the studied systems, the following motifs were used
for fragment search: “PXMPXR” for Peptide 1 [107 hits, see
Ref. Hou et al., 2012], “TI[YF]XX[VI]” for Peptide 2 [686 hits,
see Ref. Poy et al., 1999] and “RXRHXS” for Peptide 3 [198
hits, see Ref. Bullock et al., 2005]. Since PDB contains bound
structures of the studied systems, a number of PDB entries were
explicitly excluded from template search, as listed in Table S4.
The next steps were performed automatically by the server
(Porter et al., 2017), being the same for all systems. The extracted
fragments were changed to the target peptide sequence using
backbone-dependent rotamer library (Dunbrack and Karplus,
1993). The extracted fragments (hits) were clustered using the
greedy algorithm according to their pairwise root-mean-square
deviation (RMSD), with 0.5 Å cluster radius. The centroids of
top 25 clusters were docked to the receptor using rigid-body
FFT docking (Kozakov et al., 2006), exhaustively sampling all
possible mutual orientations of the receptor and ligand, and
ranking them using a special scoring function with a mixture of
physics-based and knowledge-based terms (Kozakov et al., 2006;
Chuang et al., 2008). The top-scoring poses of each fragment
were pooled together and clustered based on their pairwise
RMSDs, with 3.5 Å cluster radius. The clusters were ranked
according to their sizes (Kozakov et al., 2005). The centroids of
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ten largest clusters were subjected to energy minimization with
a CHARMM19-based force field using the ABNR algorithm. To
demonstrate the protocol, only the lowest RMSD conformation
obtained from top 10 PeptiDock models of each peptide was
selected for refinement using GaMD simulations. The ranks of
docking poses with the lowest peptide backbone RMSDs used
were 9, 5, and 10 for Peptides 1, 2 and 3, respectively. It
is important to note that each of the top-10 docking models
will be refined and scored in a full version of the protocol in
further studies.

GaMD Enhanced Sampling Simulations
GaMD was applied to refine the peptide-protein complex
structures. Complexes were solvated in explicit water using
tleap from the AMBER 18 package (Case et al., 2018). The
Na+ and Cl− ions were added to neutralize the system
charge. The AMBER ff14SB force field parameters (Maier et al.,
2015) and TIP3P model (Jorgensen et al., 1983) were used
for the proteins/peptides and water molecules, respectively.
Each system was minimized using steepest descent for 50,000
steps and conjugate gradient for another 50,000 steps. After
minimization, the system was heated from 0 to 310K in 1 ns
simulation by applying 1 kcal/(mol•Å2) harmonic position
restraints to the protein and peptide heavy atoms with a
constant number, volume and temperature (NVT) ensemble.
Each system was further equilibrated using a constant number,
pressure and temperature (NPT) ensemble at 1 atm and 310K
for 1 ns with same restraints as in the NVT run. Another
2 ns cMD simulations were performed to collect potential
energy statistics (including the maximum, minimum, average,
and standard deviation). Then 18 ns GaMD equilibration
after applying the boost potential was performed. Finally,
four independent 300 ns GaMD production simulations with
randomized initial atomic velocities were performed on each
peptide system. Simulation frames were saved every 0.2 ps for
analysis. Snapshots of all four GaMD production simulations
(1,200 ns in total) were combined for clustering to identify
peptide binding conformations, for which the hierarchical
agglomerative algorithm in CPPTRAJ (Roe and Cheatham,
2013) was applied. The cutoff was set to 3.5 Å for the
peptide backbone RMSD to form a cluster. The PyReweighting
toolkit (Miao et al., 2014) was applied to reweight four GaMD
simulations combined and recover the original free energy
or potential of mean force (PMF) profiles of each peptide-
protein system. The RMSDs of the peptide and protein backbone
were used as reaction coordinates. Detailed descriptions of
GaMD theory and energetic reweighting were shown in
Supplementary Material.

RESULTS

Prediction of Peptide Binding
Conformations Through Docking and
GaMD Simulations
There were no significant conformational changes in the
protein during binding of Peptides 1 and 3 (Figures 1A,C). In

comparison, binding of Peptide 2 induced a large structural
rearrangement of the loop involving residues 67–74 in the
protein (Figure 1B). In addition, Peptide 3 is highly charged
as its first three N-terminal residues in the sequence are
all arginine. These features of Peptides 2 and 3 raised the
difficulty in accurate prediction of their peptide-protein complex
structures. Peptide docking with PeptiDock showed different
levels of accuracy: RMSDs of the peptide backbone compared
with the bound X-ray structures were 3.3, 3.5, and 4.8 Å for
the three peptides, respectively (Figures 1A–C and Table 1).
The first two were of acceptable quality predictions according
to the CAPRI peptide docking criteria (Janin et al., 2003),
and the third one was slightly above acceptability cutoff. It
should be noted that our flexible protein-peptide docking
protocol PIPER-FlexPepDock (Alam et al., 2017) mentioned
above is successful in obtaining high-quality model only in
the case of Peptide 1, whereas the other two cases are
challenging due to either significant receptor flexibility (Peptide
2) or remoteness of rigid-body docking poses to the native
conformation (Peptide 3).

Next, GaMD simulations were performed to refine the
docking models. Analysis of simulation trajectories showed
that the GaMD simulations were able to effectively refine the
peptide binding pose. For Peptides 1 and 2, RMSDs of the
peptide backbone relative to the X-ray structures decreased
to <1 Å during the GaMD simulations (Figures 2A,B).
Peptide 1 bound tightly to the protein target site throughout
the four GaMD simulations. Peptide 2 reached the native
conformation within ∼10, ∼90, ∼120, and ∼170 ns in the
four GaMD simulations and stayed tightly bound during
the remainder of the simulations. In comparison, Peptide 3
exhibited higher fluctuations and sampled the near-native
conformation transiently during the GaMD simulations
(Figure 2C). Nevertheless, the minimum RMSDs of peptide
backbone compared with X-ray structures were identified to
be 0.20, 0.22, and 0.73 Å for the three peptides, respectively
(Figures 2A–C).

Furthermore, GaMD simulation snapshots of the peptide
conformations were clustered using the backbone RMSDs
relative to the X-ray structures. This procedure was similar
to analysis of the peptide docking poses. The 10 top-ranked
clusters of peptide conformations with the lowest free energies
were obtained. The 1st top-ranked cluster exhibited peptide
backbone RMSDs of 0.94 and 0.61 Å for Peptides 1 and 2,
respectively (Figures 1D–E and Table 1). For Peptide 3, the
3rd top-ranked cluster showed the smallest peptide backbone
RMSD of 2.72 Å (Figure 1F and Table 1). According to the
CAPRI criteria (Janin et al., 2003), structural predictions for
Peptides 1 and 2 were of sub-angstrom high quality and
medium quality for Peptide 3. Therefore, GaMD simulations
significantly refined docking conformations of the three peptide-
protein complex structures. The simulation predicted bound
conformations of the peptides were in excellent agreement with
experimental X-ray structures with 0.6–2.7 Å in the peptide
backbone RMSDs. In comparison, docking poses of the three
peptides obtained from PeptiDock showed RMSDs of 3.3–4.8 Å
(Table 1).
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FIGURE 1 | Docking poses (red) of three peptide motifs obtained using PeptiDock are compared with X-ray structures (green): (A) Peptide 1 “PAMPAR”, (B) Peptide 2

“TIYAQV,” and (C) Peptide 3 “RRRHPS”; Binding poses (red) of three model peptides obtained using the “PeptiDock+GaMD” are compared with X-ray structures

(green): (D) Peptide 1, (E) Peptide 2, and (F) Peptide 3.

TABLE 1 | Comparison of 10 top-ranked clusters of three model peptides using the PeptiDock+GaMD approach.

System Quantity Cluster ID

1 2 3 4 5 6 7 8 9 10

Peptide 1a Peptide backbone RMSD (Å) 0.94 2.79 3.10 2.78 3.62 4.04 6.27 4.68 7.48 –

PMF (kcal/mol) 0.00 3.45 3.36 3.69 3.81 4.51 3.54 5.37 5.63 –

Peptide 2 Peptide backbone RMSD (Å) 0.61 3.22 4.58 5.85 4.15 5.86 5.75 6.29 6.48 5.16

PMF (kcal/mol) 0.00 1.38 1.47 0.91 1.67 2.03 3.00 3.07 3.23 2.85

Peptide 3 Peptide backbone RMSD (Å) 4.51 7.11 2.72 9.29 7.48 11.94 9.84 4.23 8.21 8.02

PMF (kcal/mol) 0.00 0.27 0.65 0.74 1.91 2.21 0.99 2.14 1.46 1.60

aOnly nine clusters were obtained for Peptide 1 from the GaMD trajectories and thus there were no RMSD or PMF values (–) for cluster 10.

Peptide Binding Mechanism Revealed
From GaMD
Free energy profiles were calculated from the GaMD simulations
using the protein and peptide backbone RMSDs relative to the
bound X-ray structures as reaction coordinates. For Peptide 1,
only one low-energy minimum was identified near the native
bound state (Figure 2D). This was consistent with the clustering
result that the peptide backbone RMSD of the 1st top-ranked
cluster was only 0.9 Å.

For peptide 2, two low-energy minima were identified,
corresponding to peptide backbone RMSDs of 0.5 and 4.2
Å, respectively (Figure 2E). As described above, the binding
of Peptide 2 induced a significant conformational change in
the protein loop of residues 67–74 (Figure 1B). Thus, the
loop backbone RMSD and peptide backbone RMSD relative
to the bound X-ray structure were also used as reaction
coordinates to compute another two-dimensional free energy
profile (Figure 3A). The protein loop was highly flexible,
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FIGURE 2 | Time courses of peptide backbone RMSD obtained from four 300 ns GaMD simulations on (A) Peptide 1, (B) Peptide 2, and (C) Peptide 3. 2D potential

of mean force (PMF) regarding the peptide backbone RMSD and protein backbone RMSD for (D) Peptide 1, (E) Peptide 2, and (F) Peptide 3. The black stars indicate

the initial binding poses obtained using PeptiDock.

sampling a large conformational space. The loop backbone
RMSD ranged from ∼0.2–∼8.0 Å. This loop sampled two low-
energy conformations, including the “Open” (bound) (RMSD
< 1 Å) and “Closed” (free) states (RMSD ∼3–6 Å) (Figure 3).
Compared to the “Open” state, the “Closed” loop moved closer
to the core domain of protein (Figure 3B). GaMD simulations
successfully captured the conformational change of this loop.
The peptide and protein loop accommodated each other to form
the final bound conformation (Figure 3), suggesting an “induced
fit” mechanism.

For Peptide 3, GaMD sampled a broad low-energy well,
centered at the ∼4.3 and ∼1.0 Å RMSDs for the peptide
and protein backbone relative to the bound X-ray structure
(Figure 2F). Overall, this peptide-protein complex underwent
high fluctuations, visiting a large conformational space.
Nevertheless, GaMD simulations sampled the native binding
pose of Peptide 3, for which the peptide backbone RMSD
decreased to ∼1 Å at ∼60 ns and 160 ns during one of the
GaMD production runs (Sim1) (Figure 2C). In contrast to
binding of Peptide 2 that involved induced fit of the protein
receptor, binding of Peptides 1 and 3 did not induce significant
conformational change of the receptors.

Effects of the Terminal Residue Charges on
Peptide Binding
In addition to the neutral terminus model as described
above, we simulated another model of the three peptides
with zwitterion terminal residues that were charged. Compared

with the neutral terminus models, larger fluctuations were
observed in the zwitterion terminus models of the three peptides
(Figures S2–S4). For Peptides 2 and 3, their backbone RMSDs
could reach large values of ∼40 and ∼20 Å, respectively.
These results suggested that the peptides could dissociate from
the initial near-native bound pose obtained from docking.
Furthermore, 10 top-ranked clusters of peptide conformations
with the lowest free energies were also calculated through
structural clustering and energetic reweighting (see Methods
for details). For Peptide 1, the 1st top-ranked cluster exhibited
the smallest backbone RMSD of 1.22 Å relative to the X-
ray structure (Figure S5A and Table S1). The 2nd top-ranked
clusters exhibited the smallest backbone RMSDs of 0.62 and
3.88 Å for Peptides 2 and 3, respectively (Figures S5B,C and
Tables S2–S3). In summary, peptides with zwitterion terminal
residues underwent higher fluctuations and the simulation
predicted bound conformations deviated more from the native
X-ray structures compared with the neutral terminal models.

Improved Sampling Efficiency of GaMD
Compared With Conventional MD
In addition to GaMD simulations, another set of cMD
simulations of the same lengths were performed for comparison
in their sampling efficiency to refine peptide binding
conformations. The peptides were simulated with neutral
terminal residues. Compared with GaMD, cMD needed typically
longer simulation time to refine the binding mode of Peptide 1
(Figure S6A). The cMD mostly failed to refine binding poses of
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FIGURE 3 | (A) 2D PMF calculated for binding of Peptide 2 regarding RMSDs of the peptide backbone and protein loop (residues 67–74) relative to the X-ray structure

(PDB: 1D4T). (B) Representative conformation of “Closed” state (blue) in compared with initial conformation from “PeptiDock” (red) and X-ray structure (green).

Peptides 2 and 3, for which RMSD decrease was not observed in
3 out of 4 cMD simulations of Peptide 2 (Figure S6B) and all 4
cMD simulations of Peptide 3 (Figure S6C). The 1st top-ranked
cluster exhibited peptide backbone RMSD of 0.96 Å for Peptide
1 (Table S1). For Peptide 2, the 2nd top-ranked cluster showed
the smallest peptide backbone RMSD of 2.79 Å, suggesting a
medium-quality model similar to the docking pose was obtained
(Table S2). For Peptide 3, the 6th top-ranked cluster showed
the smallest peptide backbone RMSD of 4.68 Å, being closely
similar to the PeptiDock result (Table S3). Therefore, cMD was
significantly less efficient in refining docking poses of peptides
compared with GaMD.

DISCUSSION

We have demonstrated that GaMD can successfully refine
PeptiDock docking poses, and thus established the possibility
of PeptiDok+GaMD combination to predict peptide-protein
complex structures and explore the peptide binding mechanism.
Three peptides with different difficulty levels were selected as
model systems. Peptide 1 was the easiest one as the peptide is
rigid and there was no conformational change in the protein
during peptide binding. Both Peptides 2 and 3 were challenging
for predicting bound conformations accurately. The binding
of Peptide 2 involved a significant structural rearrangement of
the residue 67–74 loop in the protein. Peptide 3 with dense
residue charges proved difficult for both docking and GaMD
simulations. Nevertheless, the GaMD refinement achieved high
quality models for both Peptides 1 and 2, and medium quality
prediction for Peptide 3. This approach showed promise to be
widely applicable for other peptide-protein binding systems.

It is difficult for the current docking programs to account
for large conformational changes of proteins during peptide
binding (Ciemny et al., 2018). Even in the flexible docking

calculation, only movements of protein side chains are often
taken into account. This raised a challenge in the modeling of
Peptide 2. On the other hand, cMD simulations could account
for flexibility of the peptide and protein and had been applied
to refine docking poses of peptides in proteins (Ben-Shimon and
Niv, 2015; De Vries et al., 2017). However, cMD could suffer
from insufficient sampling and limited simulation timescales.
Indeed, cMD is significantly less efficient in refining docking
poses of the peptides compared with GaMD, especially for
Peptides 2 and 3. Thus, the GaMD enhanced sampling method
has been used in this study. Remarkably, GaMD effectively
captured the loop movement of Peptide 2 (Figure 3) and greatly
refined the peptide docking poses (Figure 1E). In addition, high-
performance GaMD simulations were performed using AMBER
18 on the GPUs. With NVIDIA Pascal P100 GPU cards, each of
the 300 ns GaMD simulations took about 38.1, 43.5, and 53.2 h
for Peptides 1, 2 and 3, respectively.

In summary, PeptiDock+GaMD has been demonstrated on
predicting the peptide-protein complex structures and revealing
important insights into the mechanism of peptide binding to
proteins, using three distinct peptides as model systems. In the
future, all top-10 models of the ClusPro PeptiDock will be refined
with GaMD and a larger number of protein-peptide systems will
be evaluated systematically. Furthermore, the effects of different
force fields (e.g., CHARMM36m) and solventmodels (e.g., TIP4P,
implicit solvent, etc.) (Kuzmanic et al., 2019) are to be further
investigated. Since excellent performance was obtained using the
CHARMM19-based force field in the previous study of protein-
peptide docking with ClusPro PeptiDock (Porter et al., 2017), we
continued to use it as implemented in the ClusPro PeptiDock
server for docking calculations in the present study. For
refinement of the docking poses with GaMD, because AMBER18
was applied for running the simulations, the widely used AMBER
ff14SB force field was selected instead. Nevertheless, it might be
better to use newer and the same force field for different stages
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of the modeling protocol, which will be tested in future studies.
Development of novel protocols to increase the accuracy of
peptide-protein structural prediction will facilitate peptide drug
design. Advances in the computational methods and computing
power are expected to help us to address these challenges.
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Large-scale conformational changes are essential to link protein structures with their

function at the cell and organism scale, but have been elusive both experimentally and

computationally. Over the past few years developments in cryo-electron microscopy

and crystallography techniques have started to reveal multiple snapshots of increasingly

large and flexible systems, deemed impossible only short time ago. As structural

information accumulates, theoretical methods become central to understand how

different conformers interconvert to mediate biological function. Here we briefly survey

current in silico methods to tackle large conformational changes, reviewing recent

examples of cross-validation of experiments and computational predictions, which show

how the integration of different scale simulations with biological information is already

starting to break the barriers between the in silico, in vitro, and in vivo worlds, shedding

new light onto complex biological problems inaccessible so far.

Keywords: conformational change, proteins, molecular dynamics simulation, coarse-grained (CG) methods,

structural ensemble

CONFORMATIONAL CHANGES: LINKING SHAPE AND FUNCTION

Protein structure and dynamics are essential to understand living organisms at the molecular
level. Already 60 years ago Feynman envisioned that life is, roughly speaking, not only about
atomic organization, but also about the “jiggling and wiggling of atoms” (Feynman et al., 1963).
The central paradigm of structural biology stated that the 3D-fold of a protein is encoded in the
sequence (Dill and Chan, 1997; Wright and Dyson, 2015); the explosion of structural data in the
past decades has dramatically expanded this classical view, confirming Feynman’s prediction. Far
from being static structures, it is now clear that proteins rather behave as living entities (Henzler-
Wildman and Kern, 2007), ever-changing on temporal and spatial scales spanning several orders
of magnitude: from local loop fluctuations in enzyme active sites (Aglietti et al., 2013; Pal et al.,
2016) to concerted beta-sheets motions (Fenwick et al., 2014) or large-scale allosteric motions in
transmembrane receptors (Bugge et al., 2016). Importantly, growing evidence indicates that these
large conformational changes are intrinsically encoded in the overall 3D-shape (Bahar et al., 2010),
and that external stimuli –binding, post-translational modifications, electrochemical gradients,
etc.—just drive these “natural” motions further to trigger output responses. Signal transduction,
membrane transport or synaptic communication, almost every cell process relies on switches that
cycle between distinct states to allow for bioregulation (Figure 1A). The way that proteins change
to sense and respond to such stimuli is therefore central to connect the micro-, meso-, and macro-
scales in biology. However, their elucidation from atomic “jiggling and wiggling” is far from trivial.
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During the past decade, structural determination techniques
have made incredible progresses in resolving structures of
increasing complexity and flexibility. Currently, high-throughput
time-resolved X-ray crystallography (Levantino et al., 2015;
Neutze et al., 2015; Ourmazd, 2019), cryo-Electron Microscopy
(cryo-EM; Nogales and Scheres, 2015; Murata and Wolf,
2018; Shoemaker and Ando, 2018), and Nuclear Magnetic
Resonance (NMR; Baker and Baldus, 2014; Jiang and Kalodimos,
2017; Opella and Marassi, 2017), together with complimentary
techniques like Small Angle X-ray Scattering (SAXS; Vestergaard,
2016), Förster Resonance Energy Transfer (FRET; Okamoto
and Sako, 2017), double electron-electron resonance (DEER;
Jeschke, 2012), mass spectrometry (Kahsai et al., 2014) or
fluorescence microscopy (Lewis and Lu, 2019) are allowing
to resolve and gain dynamic information from extremely
challenging systems. Despite such advances, the experimental
study of protein transitions is still demanding. A complete
understanding of equilibrium dynamics requires sampling both
the structure space available and the underlying free-energy
landscape (FEL; Frauenfelder et al., 1991; Zhuravlev and Papoian,
2010a; Nussinov and Wolynes, 2014; Röder et al., 2019) along
its relevant dimensions (Figures 1B,C). Ideally, a completely
rational and quantitative FEL characterization should stem from
first principles, for example, using methods like Molecular
Dynamics (MD; Karplus and McCammon, 2002; Orozco, 2014),
in which Newton’s equations are integrated over time for an
atomistic model of the system based on physical potentials.
In practice, atomistic-level sampling of the functional FEL of
biomolecules poses by itself a huge conceptual and technical
problem in silico. Collective rearrangements and allosteric events
in proteins can involve scales around ms-µs and up to 102Å.
Note that this is far beyond what classical MD can address in
terms of time and size: roughly two orders of magnitude larger
than average simulated interatomic distances (∼1–10Å), and up
to 9–12 orders of magnitude larger than the smallest simulated
timestep (fs oscillations) (Sweet et al., 2013). Importantly,
functional transitions often occur in this blurred frontier between
theory and experimentation.

Scalable codes, graphic processing units (GPUs),
parallelization and optimized simulation algorithms (Pierce
et al., 2012; Sweet et al., 2013; Kutzner et al., 2015; Páll et al.,
2015; Pouya et al., 2017) are however making increasingly
feasible to simulate systems with millions of atoms for few µs,
or even whole bacterial cytoplasms in the submicrosecond range
(Yu et al., 2016). Still, for most proteins, these timescales cover
a small part of the structural landscape, and longer simulations
are only accessible with special-purpose supercomputers like
Anton (Shaw et al., 2009; Dror et al., 2012). Apart from
these technical aspects, there is a fundamental “sampling
problem,” not efficiently addressed by long simulations:
transition paths in a multidimensional landscape are intrinsically
stochastic—there are multiple possible transition routes, subject
to random fluctuations that unpredictably push over energy
barriers. Multiple evidences indicate that the way in which
the configuration space is sampled is thus more critical than
simulation length. For example, while in µs-long MD, full
transitions are still rarely observed, in certain conditions e.g.,

upon relaxation after removing ligands (Nury et al., 2010;
Calimet et al., 2013; Degiacomi, 2019) or introducing mutations
(Smolin and Robia, 2015; Orellana et al., 2019b) they can occur
in significantly shorter times. Similarly, coarse-grained (CG)
methods like Elastic Network Models (ENMs; Mahajan and
Sanejouand, 2015), are also capable to predict with striking
accuracy, just from the overall shape of a protein, not only
the conformational changes observed experimentally but also
entire sequences of on-pathway intermediates (Orellana et al.,
2016). This suggests that large-scale motions like those defining
protein functional FELs may be better understood as collective,
supra-atomistic and higher-scale phenomena. Whatever the
theoretical framework chosen to explore this issue, the validation
of in-silico predicted mechanisms is becoming a central question,
as quantitative analysis become essential to rationalize the
growing dynamical information from techniques like cryo-EM
(Frank, 2018; Bonomi and Vendruscolo, 2019).

Let’s now imagine the reader wants to know how a series of
conformations for a given protein are related, to get insight into
some biological mechanism. It is appropriate then to ask: Can
in silico methods really predict conformational transitions? Have
such in-silico transitions been validated and how? This review
is intended to provide the non-specialist with some answers to
these questions, first raised by Weiss and Levitt (2009). On the
first part (Table 1), we will briefly review theoretical methods to
predict transition pathways, focusing on the two most common
approaches to explore the FEL between two states: either increase
atomistic MD sampling (Maximova et al., 2016) or coarse-
grain the model of the system (Zheng and Wen, 2017). On the
second part (Table 2), we will discuss recent examples from our
group and others attempting cross-validation between theory
and experiments in this context. This review does not aim to
provide an in-depth description of specific methods which can
be found elsewhere (Bernardi et al., 2015; Maximova et al., 2016;
Mori et al., 2016; Zheng andWen, 2017; Harpole and Delemotte,
2018). We rather intend to provide general readers, and specially
experimentalists, with a broad overview of the most accessible
approaches to explore a transition for a typical protein, along with
possible validation strategies. Our goal is to help the reader grasp
the current potential of in silico methods to explain biological
phenomena frommicroscopic scales, and the exciting boundaries
we are reaching.

FROM STATIC SNAPSHOTS TO
MULTI-STATE STRUCTURAL ENSEMBLES

Since the first structure was determined by X-ray crystallography
in the late 50s (Kendrew et al., 1958), the number of protein
structures deposited every year in the Protein Data Bank
(Berman et al., 2000) has been growing exponentially, from
a few dozens in the 90s up to over 10,000 structures/year
in the past 2 years. As of 2019, we know around 140
thousand native-like protein structures, with resolutions as low
as 0.5Å. For a majority of them however, the conformers
solved represent the equilibrium end-structures along their
functional cycles, typically composed of at least two different
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FIGURE 1 | Large-scale conformational changes and different scale sampling methods. (A) Three examples of transitions of different scales linked to biological

function: left, large-scale domain rearrangement in EGFR upon ligand binding; center, rearrangement of tandem repeats in sugar porters; right, cooperative pentamer

motions in pentameric ligand-gated ion channels. The majority of conformations trapped by structural techniques correspond to the extreme, lowest-energy states of

(Continued)
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FIGURE 1 | biological cycles. (B) Experimental conformational landscapes for the hinge-bending transition of the Ribose Binding Protein (RBP) as computed from

Principal Component Analysis: the open to closed RBP conformational change upon ribose binding (Left); RBP conformational landscape and eBDIMS

coarse-grained (CG) transitions (Center) as projected onto the PCs derived from the 9 solved structures (Right). Note how eBDIMS paths approach the sequence of

experimental intermediates. (C) Comparison of sampling strategies: NMs and path-finding CG-methods (Left); atomistic MD unbiased (500 ns from each unbound

state) (Center) and 1 µs-biasing to the closed state (Right). Note how the first NM derived from both RBP end-states (Left) points to the experimental intermediates;

note also how eBDIMS paths (gray) roughly follow the MD/X-ray sampled area. Adapted by the author with CC BY license from Orellana et al. (2016).

TABLE 1 | Summary of common in silico methods to explore protein conformational changes (*CV-based, **only for setup/short run).

Goal Methodology Approach Variants Examples Web server

Transition

Ensembles

Molecular

Dynamics

Conventional MD

Long timescale MD

–

Special computer

architectures

Specialized algorithms

System coarse-graining

–

Anton

GPUs

Long-timestep

MARTINI simulations

http://www.charmm-gui.org/?doc=

input **

http://mmb.irbbarcelona.org/MDWeb/ **

–

–

–

http://molsim.sci.univr.it/mangesh/

index.php **

http://cgmartini.nl/index.php/322-

charmm **

Enhanced sampling Multi-replicate methods Replica-exchange

Weighted ensemble

–

–

Directed sampling Essential dynamics

Dynamic importance sampling*

Adaptive sampling (MSM

and others)*

–

–

–

FEL modification Accelerated MD (aMD)

Umbrella sampling (US)*

Metadynamics*, MSM-MTD

–

–

—

Path-

generation

Geometric

morphing

Stereochemical

restraints

Linear interpolation

Rigid-body interpolation

Geometric targeting

Robot motion planning

MolMovDB

FATCAT

FRODA

Probabilistic roadmap

algorithms, etc.

http://www2.molmovdb.org/

http://fatcat.godziklab.org/

M1-path finding Step-wise generation of

transition path

Perturbation methods

Chain-of-states

Steered MD*, Targeted MD*

String method*, Nudged

elastic band*

–

–

CG-path finding Simplified protein

representation

Iterative NMA

Simulations (MC, BD)

iMODS

NMSIMs

CABS-flex

dMD

eBDIMS

http://www.charmm-gui.org

http://molsim.sci.univ.it/mangesh

http://biocomp.chem.uw.edu.pl/

CABSflex2/index

http://mmb.irbbarcelona.org/GOdMD/

https://ebdims.biophysics.se/

Hybrid methods Pulling and minimization Climber –

meta-stable states (Figure 1A): active/inactive, bound/unbound,
open/closed, etc. For such average proteins (Figure 1B), the
native apo state frequently populates the deepest basin and
spontaneously samples another of comparable or reduced
depth, favored by stimuli like binding, post-translational
modifications, etc. that shift the population (Nussinov and
Wolynes, 2014). Structural determination techniques usually
trap conformations near one of such low-energy basins, while
the short-lived intermediates connecting them—which can be
key to grasp mechanisms (see e.g., Machtens et al., 2015;
Orellana et al., 2019b)—are often elusive both experimental
and computationally.

To explore the conformational space, structures are typically
solved in multiple conditions e.g., introducing mutations,
modulating pH, ions, or complexing with molecules—from
ligands to antibodies, affibodies, or small drugs. This contributes
to enormous redundancy in the PDB, but at the same time, it is a
powerful approach to catch intermediates along transitions. For
a growing number of intensely studied proteins the multitude of
conditions that has been used to determine their 3D-structures
has gradually covered the entire conformational landscape.
Especially cryo-EM is allowing to routinely obtain protein
snapshots in multiple states with each data deposition [see e.g.,
the Glycine Receptor (GlyR; Du et al., 2015) in Figure 1A]
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TABLE 2 | Examples of cross-validation of in silico-predicted properties with experiments to specifically probe conformational changes.

System Simulation

technique

MD observation and hypotheses Observables Experimental validation References

Heterotrimeric

Gα-GDP

µs-Long MD

Mutant simulations

Spontaneous opening/closing of

Gα-GDP in absence of GPCR

Domain separation disrupts the

GDP-site facilitating nucleotide release

Interdomain distances

Nucleotide-exchange rates

DEER spectroscopy confirms multiple peaks for inter

domain distance distributions with spin labels

Fluorescence GTP-binding kinetics of a G-protein

tether construct that restricts domain separation slows

down nucleotide exchange

Dror et al., 2015

EAAT Essential dynamics

MD

Substrate transport intermediate forms

the anion-selective conduction pathway

Anion currents Trp-scanning mutagenesis and fluorescence

quenching of predicted pore-forming residues confirms

their interactions with anions

Single channel conductance and anion selectivity of

mutations of pore-lining residues

Machtens et al.,

2015

Importin sub-µs MD Spontaneous transition toward

extended conformations in water, and

compaction in apolar environment

Intramolecular distances FRET of a dual-fluorophore labeled importin confirms

contraction in hydrophobic environment

Halder et al., 2015

SemiSWEET µs-Long MD Spontaneous transition from

outward-open to inward-open state,

through an occluded intermediate

3D-structure of previously

unobserved inward-open state

Transport activity

Crystallographic validation with structure of a mutant in

the inward-open state

Alanine mutagenesis of key residues in the extra- and

intra-cellular gates and the sugar binding pocket

Latorraca et al.,

2017

Arrestin µs-Long MD Motions at the two GPCR-binding

interfaces (gate-loop and C-loop) are

allosterically coupled via interdomain

twisting

Separation between labels at the

binding interfaces

Mutagenesis

Fluorescence spectroscopy

Latorraca et al.,

2018

GLIC µs-Long MD

Mutant simulations

Potentiation in Propofol-sensitive

mutations is caused by conformational

changes expanding transmembrane

binding sites

Ion currents Electrophysiology with voltage-clamp

Mutagenesis

Heusser et al.,

2018

Enzymatic

micromotors

Accelerated MD Flexibility near the active site mediates

catalysis and coupled motion

Enzymatic activity

Motor activity

Increased enzyme rigidity upon inhibitor binding

reduces catalytic rates and motor speed

Arqué et al., 2019

PTEN Multirun ns-MD Conformational change upon

phosphorylation that facilitates binding

to Ki-67

Protein-protein interaction Mutation of the predicted interacting sequences

abrogates binding and biological effects

Ma et al., 2019

EGFR µs-Long MD Local intrinsic disorder of the EGFR

kinase

Higher dimerization and

phosphorylation activity of

L834R mutant

Local disorder

Dimerization

H/D exchange measurements

Light scattering + BN-PAGE

Shan et al., 2012

(Continued)
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and, although limited to a few protein families, this is revealing
the first glimpses into structural ensembles that cover nearly-
complete conformational landscapes (Frank, 2018; Bonomi and
Vendruscolo, 2019; Hofmann et al., 2019).

Obtaining multiple snapshots of a protein is however just the
first step to characterize its transitions. The second consists on
understanding their relationships, which also implies identifying
the relevant collective variables (CVs; Kitao and Go, 1999;
Zhuravlev and Papoian, 2010b; Noé and Clementi, 2017) for
each system. This task is comparable to taking multiple pictures
of a moving animal in diverse situations, and then trying to
reconstruct its biomechanics; one needs first to find a way to
measure, classify and organize the images, so that an ordered
sequence can be reconstructed. How are we going to efficiently
describe the system? What are we going to measure to detect
changes from one functional state to another? Fortunately, large-
scale transitions can be often described by a remarkably low
number of CVs (Henzler-Wildman and Kern, 2007). This is
not surprising since, for most proteins, functional movements
are collective: each level of protein motion translates into the
next, creating wider and slower movements. For example, local
atomic vibrations are transmitted via hydrogen bond networks
that make up secondary structures, creating higher amplitude
motions; as shown in Fenwick et al. (2011, 2014) the coupled
movements of interacting atoms in beta-sheet motifs create
collective bending and twisting motions, which propagate to
higher collective movements linked to allosteric regulation.
Another recurring motif in large-scale protein transitions are
open-to-closed motions upon binding (Flores et al., 2006;
Amemiya et al., 2011), which in their simplest version consist in
rigid-body displacements around a cracking hinge (Figure 1A,
left). The hinge region, often located near a binding pocket,
is typically an interdomain linker; in more complex transitions
wider intra/inter-molecular surfaces can reshape as hinges
e.g., in the “rocker-switch” motions between tandem repeats
of solute transporters (Drew and Boudker, 2016; Figure 1A,
center). Linker or interface reshaping propagate across structures
triggering large-scale rearrangements. Usually, such rigid-body
transitions are tracked with ad-hoc defined angles, distances,
etc. However, while for simple hinge-bending transitions, an
angle defined by moving rigid bodies can render a fair
description of the process, the situation changes when systems
undergo complex concerted changes: to accurately describe e.g.,
gating for ion channels like GlyR (Figure 1A, right) typically
demands multiple variables describing extra- and intra-cellular
motion features, much harder to define. In such cases, if the
protein in question has solved structures in different basins,
Principal Component Analysis (PCA; Jolliffe, 2002; Abdi and
Williams, 2010), can provide a “natural” representation of the
conformational landscape (Sankar et al., 2015) in the form of
experimentally-encoded CVs. Compared to other approaches for
semi-automated conformer annotation (e.g., based on machine
learning; Ung et al., 2018), PCA does not need a priori
system-tailored structural descriptors, requiring minimal user
intervention PCA. PC-projections approach was recently applied
in spliceosome cryo-EM to perform conformer classification,
understand its dynamics and obtain a fist assessment of the
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FEL straight from experimental data (Haselbach et al., 2017,
2018). Moreover, PCs from multi-state ensembles behave as
intrinsic complex coordinates that “contain” the heuristic CVs
typically defined for each system. As we will discuss later,
when such ensemble-analysis are combined with path-sampling,
they can illuminate relationships between multiple basins and
accurately assign intermediate states, allowing reconstruction
of the landscape and its transitions into its experimentally-
defined CVs (Figure 2). For example, the Ca2+ pump SERCA,
with over 70 structures and at least four different states
along its complex pumping cycle, constitutes an exceptional
example of a multi-basin ensemble where such analysis is critical
to unambiguously assign and order experimental on-pathway
intermediates (see Orellana et al., 2016). Importantly, PCA of
such “structurally-rich” or multi-state ensembles provides a much
needed and stringent test for any modeling technique to explore
protein FELs. In the next two sections, we will review the
two most popular and accessible approaches to perform such
in silico exploration to “connect” experimental basins and “fill
in” the conformational landscape: first, sampling with classical
MD and its many derivatives, and second, path-finding with
computationally simpler methods.

EXPLORING THE LANDSCAPE: SAMPLING
LONG VS. TRICKED

MD simulations, based on the rigorous formalism of molecular
physics, constitute possibly the most accurate and accessible
approach to model protein motions with atomic detail. Although
still an idealized description of reality—proteins diffusing in a
crowded and complex cellular soup—MD is based on a careful
parameterization of covalent and non-covalent forces on the
atomic scale (Beauchamp et al., 2012; Lindorff-Larsen et al., 2012;
Monticelli and Tieleman, 2013). Since the first eye blink 9.2 ps
simulation of the small BPTI (McCammon et al., 1977), MD
has evolved dramatically over the past 40 years up to become
almost a “computational microscope” (Dror et al., 2012): it is
expected that for relatively small systems like GPCRs, MD will
reach the second scale within 5 years (Martínez-Rosell et al.,
2017). Nevertheless, for average protein machines, transitions are
difficult to sample due to inherent stochasticity and high-energy
barriers, involving challenging time and length scales. Although
specialized computers like Anton allow simulations of ever-larger
systems, longer than ever, and have indeed brought novel insights
for key drug targets like GPCRs (Dror et al., 2015), Voltage-gated
channels (Jensen et al., 2012) or Kinases (Shan et al., 2012, 2014),
conformational changes are still hard to catch. As a rule of thumb,
“everyday” simulations invariably require algorithmic “tricks”
to explore transitions with reasonable efficiency. More than
computational power or simulation length, efficient sampling
remains a bottleneck.

The next brief enumeration of MD-strategies to overcome
this problem and explore large transitions should provide the
reader with a clear picture of its complexity and its many
potential pitfalls. Without aiming to be exhaustive (for detailed
reviews see e.g., Bernardi et al., 2015; Maximova et al., 2016;

Mori et al., 2016; Harpole and Delemotte, 2018), the most
common “tricks” (Pietrucci, 2017) to explore transitions are
broadly: first, to speed up or optimize exploration of the FEL,
without modifying it; second, to actually change the FEL to
easily move and jump across its “hills and valleys” (Table 1). In
both cases, the search can be biased or directly pushed along
some a priori “direction,” i.e., a CV. Among the first group are
many multi-replicate methods, well-suited for highly scalable
software implementations thanks to their intrinsically parallel
algorithms. Replica exchange MD (REMD) often called “parallel
tempering” [first applied to MD in Sugita and Okamoto (1999),
reviewed in Ostermeir and Zacharias (2013)], exchanges multiple
trajectories run in parallel (typically at different temperatures)
to escape local minima. Weighted ensemble methods (WEM)
originally developed for simpler Brownian Dynamics (BD;
Huber and Kim, 1996; see also Zuckerman and Chong, 2017),
use quasi-independent trajectories in which individual runs
spawn daughter trajectories upon reaching new “bins” of the
configuration space. Mention apart deserves adaptive-MD, a
general term which includes a wide array of multi-run schemes
aimed to speed up rare events without explicit biasing (Bowman
et al., 2010; Pronk et al., 2011; Doerr et al., 2016). The main
idea behind adaptive-MD is that simulations are guided toward
underexplored FEL regions via iterative on-the-fly analysis;
similarly,WEMpartition of the FEL into bins also needs previous
CV-reduction. Therefore, to identify meaningful CVs to check
how simulations proceed becomes central, with risks to generate
overly smooth landscapes or distort transition mechanisms (see
Hruska et al., 2018; Zimmerman et al., 2018). One analysis
approach used to guide sampling in adaptive-MD, are Markov
State Models (MSMs; Pande et al., 2010), a statistical method
to describe dynamics as memory-less transitions between states.
MSMs can infer long-timescale dynamics from sets of shorter
simulations, providing yet another shortcut to the sampling
conundrum (Chodera and Noé, 2014). In contrast to these
costly multi-replicate schemes, biasing methods directly guide
single simulations through relevant CVs. For example, Essential
Dynamics (Amadei et al., 1993; Daidone and Amadei, 2012)
extracts with PCA the “essential” CVs (Essential Modes), which
are used to bias the sampling toward collective motions. In
Dynamic importance sampling (DIMS; Zuckerman and Woolf,
2000; Perilla et al., 2011) a progress variable or CV is used
to select the most productive movement toward the target in
a MC-scheme, while in Temperature-Accelerated MD (TAMD;
Maragliano and Vanden-Eijnden, 2006) temperature is increased
specifically along selected CVs.

A completely different approach is taken in FEL-modifying
approaches like Umbrella sampling (US; Torrie and Valleau,
1977), which introduces harmonic biasing potentials along CVs
in overlapping “umbrella” windows. Accelerated MD methods
(aMD; Hamelberg et al., 2004; Pierce et al., 2012) change the
relative height of the basins by adding “boost” potentials when the
system’s energy falls, locally flattening the FEL. In metadynamics
(MTD), free energy wells are filled with “computational sand” to
prevent returning back to previously explored CV-regions (Laio
and Parrinello, 2002; Laio and Gervasio, 2008). The accelerated
weight histogram (AWH; Lindahl et al., 2014, 2018) adaptively
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FIGURE 2 | Integrative multi-scale structural biology. Experimental techniques are solving an increasing number of structures trapped in different energy basins, which

through ensemble-analysis like PCA can yield intrinsic CVs for landscape exploration (Top Center). Transition pathways computed e.g., from CG-models (Right)

connect experimental states allowing for intermediate assignment, provide insights into collective motions and can facilitate identification of key regions for mutational

analysis. Long or enhanced MD simulations sample the configuration space with atomistic detail and allow reconstructing the complete FEL. Integration of

microscopic data on conformational changes generates higher-scale predictions on protein shape, activity and interactions (Bottom) that can be tested through

structural and molecular biology (microscopy techniques, SAXS, functional assays, etc. See examples in Table 2).

bias simulations to fit a target distribution, filling up energy
minima in a similar spirit as MTD (see Figure 1C), while
in conformational flooding (Grubmüller, 1995), a destabilizing
potential is added to the starting state, lowering the transition
barrier. From all above methods, MTD has been maybe the

most widely applied to study large transitions in a number of
pioneering works, from the opening/closing of kinases (Berteotti
et al., 2009) or actinmonomers (Pfaendtner et al., 2009) to flexible
binding and dissociation events (Limongelli et al., 2010, 2012;
Formoso et al., 2015).
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Moreover, all these different approaches can be combined
in virtually infinite ways, giving rise to hybrid methods like
Bias-Exchange MTD (Piana and Laio, 2007), MSM-driven MTD
(Sultan and Pande, 2017), and many others. The main shared
concern for the above listed methodologies is that trajectories
may not accurately reproduce the biologically relevant motions
(i.e., trapped experimentally), since they either modify the way
sampling is done by decreasing its randomness, or directly
change the underlying landscape, which can require re-scaling
to remove biasing. Particularly, the bias-introducing methods
require extra caution to not produce unrealistic high-energy
intermediates (Ma and Karplus, 2002; Ovchinnikov and Karplus,
2012). A tightly connected issue stems from the choice of CVs,
which is critical (Pan et al., 2014) but nevertheless, is frequently
defined ad-hoc for each system. Typically, CVs are defined
in terms of e.g., radius of gyration, distances, angles, rMSDs
changing across sets of trial trajectories, which are expected to
correlate or “describe” the transition. MSMs (Sultan and Pande,
2017), or machine-learning (Chen et al., 2018) can also be
applied to solve this “dimensionality reduction” problem and
identify relevant CVs. Another alternative is to define CVs from
experimental data e.g., NMR chemical shifts (Granata et al., 2013)
or SAXS intensities (Kimanius et al., 2015). In summary, CV
definition is a non-trivial problem. For all these reasons, unbiased
long simulations, which neither perturb the FEL nor require
previous CV knowledge, are often preferred alternatives in many
studies aiming for experimental validation, as we will review in
the last section.

PATH-FINDING METHODS: THROWING
ROPES OVER MOUNTAINS

Apart from the host of methods to enhance MD conformational
sampling, there is another fundamental strategy to explore
protein transitions: to simplify either the simulation algorithm
or the system, in order to obtain just a feasible pathway between
states. Finding transition paths has been compared to “throwing
ropes over mountain passes in the dark” (Bolhuis et al., 2002;
Dellago and Bolhuis, 2007), since indeed, such methods produce
one-dimensional trajectories, like ropes in the conformation
space (Figure 1C). Instead of sampling transition ensembles
covering broad areas of the FEL, the goal of path-sampling
methods is to generate sequences of structures connecting
end-states. Such rope-like transitions, apart of providing first
mechanistic insights, can serve as seeds for further MD (e.g., with
US,MTD or “swarms-of-trajectories” Pan et al., 2008;Maragliano
et al., 2014) to reconstruct the FEL.

Very broadly, path-generating methods (Weiss and Koehl,
2014;Table 1) can be also classified into two groups: (i) geometric
morphing algorithms, which generate stereochemically correct
morphs between structures, without any potential function, and
(ii) those methods based on some potential energy, that actually
attempt to approach minimum energy paths (MEPs) connecting
basins. Among the latter, there are path-finding schemes based
on MD inspired by the same ideas of enhanced sampling,
along with a series of CG-methods, which take a entirely

different approach, simplifying description of structures and
their interactions.

The first online tool to compute transition pathways
appeared within the MolMov Database (MolMovDB; Gerstein
and Krebs, 1998; Krebs and Gerstein, 2000), and applied the
simplest possible morphing: a linear interpolation in Cartesian
coordinates, followed by energy minimization. As could be
expected, MolMovDB paths project as perfectly straight lines
in the experimental PC-landscape, and thus do not correspond
at all to realistic transitions (Figure 1C, left). FATCAT also
uses a interpolation of rigid-body motions (Ye and Godzik,
2004). More sophisticated are methods like FRODA (Wells et al.,
2005) or geometric targeting (Farrell et al., 2010), which move
atoms toward the target by enforcing geometric constraints to
keep stereochemistry, while robot motion-planning algorithms
(Cortés et al., 2005; Haspel et al., 2010; Al-Bluwi et al.,
2012) exploit analogies between molecular bonds and robot
links to perform fast molecular kinematics. Note that none of
these geometric path-finding methods, which usually generate
atomistic paths thanks to high computational efficiency, aims
to provide a physical approximation to the FEL. This is not
the case for MD-derived perturbation methods (Huang et al.,
2009) like targeted (Schlitter et al., 1994), steered (Izrailev
et al., 1997), or adiabatic MD (Marchi and Ballone, 1999;
Paci and Karplus, 1999), where an MD simulation is directly
pushed to the target by time-dependent potentials along a
CV. In the so-called “chain-of-states” methods (Tao et al.,
2012) like the nudged elastic band (Maragakis et al., 2002)
or the string methods (Ren and Vanden-Eijnden, 2005; Ren
et al., 2005; Ovchinnikov et al., 2011), serial images of the
system are minimized to find MEPs; in the “path-method,”
a guess path coordinate and two CVs that are functions of
it are introduced to locally explore and optimize pathways
(Branduardi et al., 2007; Bonomi et al., 2008). Although all these
enhanced MD-derived path- sampling methods can be faster
than conventional MD, finding proper CVs, biasing definitions
or initial paths is again critical, and thus their implementation is
not straightforward.

In contrast with the MD-inspired methods, CG-approaches,
more than as alternative methods, should be rather considered
a different way of looking at the sampling problem, literally,
from a more collective scale. Coarse-graining simplifies the
description of a system to capture its behavior with a minimum
of parameters (Tozzini, 2010; Orozco et al., 2011; Saunders
and Voth, 2013). By simplifying both potentials and structure
description (Kmiecik et al., 2016), CG-methods accelerate
computation increasing orders ofmagnitude the accessible scales;
metaphorically speaking, they would be analogs to approaches
like cryo-EM or SAXS, in which detail can be sacrificed to
gain information from very large or flexible systems. Although
hampered by loss-of-resolution regarding time and chemical
properties, CG-methods can thus provide deep insights into
complex systems behavior, as they distill multidimensional
information to its very essential features. Although there are CG-
force fields like the popularMARTINI implemented into realMD
schemes (Marrink and Tieleman, 2013; Ingólfsson et al., 2014),
in general CG-models are used in the context of much simpler
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algorithms, typically produce one-dimensional pathways, and are
often available as webservers (Table 1).

To generate quick and efficient transitions, CG path-finding
methods (Zheng and Wen, 2017) use a host of conceptually
diverse protein representations: from a few heavy atoms (e.g.,
CABS model; Jamroz et al., 2013; Kmiecik et al., 2016) to
residue beads (typical of ENMs) or rigid domains; and the
same holds true for algorithmic approaches, that span from
matrix diagonalization to MC or BD simulations. The only
thing they have in common is skipping MD computational
limitations, at the cost of losing information about time and
energy. Among CG-methods, ENMs (Chennubhotla et al., 2005;
Bahar et al., 2010) stand out due to conceptual simplicity and
power to predict large changes through Normal Mode Analysis
(NMA; Case, 1994). NMA is a molecular mechanics technique
based on harmonic potentials, which was first used to predict
infrared spectra and soon became also applied to analytically
compute near-equilibrium protein atomic oscillations (Brooks,
1983; Levitt et al., 1985): solving a simple eigenvalue problem,
a vector describing the directions of movement for every atom
could be obtained. Inspired by “beads-and-springs” polymer
models (Flory et al., 1976; Go and Scheraga, 1976), further
coarse-graining of the protein description up to the C-alpha
backbone lead to theminimalist ENM-NMA (Tirion, 1996; Bahar
et al., 1997; Atilgan et al., 2001). Typically, ENMs reduce protein
architecture to a network of Cα-carbons connected by springs,
which model covalent and non-covalent interactions. In spite
of this simplicity, it soon became evident that ENMs can not
only predict residue fluctuations, but are also capable of guessing
with striking precision the directions of large-scale transitions
between e.g., X-ray open and closed pairs (Tama and Sanejouand,
2001). Later work has shown that ENMs reproduce as well
the flexibility from experimental X-ray and NMR ensembles,
or long MD simulations (Rueda et al., 2007; Orellana et al.,
2010; Mahajan and Sanejouand, 2015; Sankar et al., 2018)
and importantly, track the pathways for conformational change
(Orellana et al., 2016; see NM projections, Figure 1C, left).
Therefore, ENMs have been at the core of CG-strategies to
find transition paths; however, being limited to an equilibrium
basin, pathway generation requires iterative deformation along
selected NMs, or implementation into some simulation scheme.
Iterative ENMs range from simple interpolations like NOMAD-
Ref and others (Kim et al., 2002; Lindahl et al., 2006; Seo
and Kim, 2012) to more complex two-state approaches like
iENM or ANMPathway (Yang et al., 2009; Tekpinar and Zheng,
2010; Das et al., 2014) or MinActPath (Franklin et al., 2007;
Chandrasekaran et al., 2016), which assumes harmonic potential
at the end-states and solves the action minimization problem to
find the crossing points. A common issue for such CG-methods
is that they typically produce stereochemical distortions, which
can be reduced using internal coordinates like in iMODS (López-
Blanco et al., 2014), structure corrections in NMSIMs (Ahmed
et al., 2011; Krüger et al., 2012), or conjugate peak refinement
like in the plastic network model (PNM; Maragakis and Karplus,
2005). In general, these approaches share the ENM power to
capture allosteric transitions, but also display a shared weakness:
a trend to reproduce similar one-dimensional paths rather than

random pathway ensembles (Figure 1C, center). One solution to
this problem is using NMs to bias simple e.g., Discrete Dynamics
(dMD) simulations (Sfriso et al., 2012, 2013) in order to obtain a
wider ensemble, although still, mode selection, as CV selection in
enhanced MD schemes, poses a problem. Recently, we proposed
an ENM-driven simulation approach, eBDIMS (Orellana et al.,
2016, 2019a), also performing in parallel a thorough validation of
path-finding algorithms againstmulti-state ensemble PCA. Based
on a refined ENM force-field (Orellana et al., 2010), eBDIMS
generates paths driven by interresidue distances, using a DIMS-
Langevin scheme with a friction term mimicking solvent. This
avoids unrealistic deformations, at the same time that ENM-
modes are spontaneously sampled, generating random and non-
linear trajectories.

Mention apart deserve hybrid methods like Climber (Weiss
and Levitt, 2009), which iteratively pulls the interresidue
distances adding harmonic restraints to an internal energy
function, based on the atomistic ENCAD atomistic force-field
(Levitt et al., 1995). In our comparative studies we found
that eBDIMS and Climber, starting from entirely different
approaches (CG- vs. atomistic, Langevin integration vs. iterative
pulling/minimization), generate surprisingly convergent, non-
linear, and asymmetric paths in PC-space. Remarkably, these
paths closely overlap with solved experimental intermediates,
which delimit the areas typically sampled by MD (see Figure 1C,
center and right). Overall, our findings strongly suggested that
these non-linear path-finding methods converge to actual MEPs,
which are populated by trapped experimental intermediates. This
raises a important question: how is it possible that such simple
C-alpha based harmonic models like eBDIMS, can predict the
directions of non-equilibrium conformational changes, while
MD often requires powerful computing or enhanced sampling?
On one hand, it has been suggested that dynamical systems
theory assures the conservation of quasi-periodic motions upon
small perturbations (Bastolla, 2014), and thus, ENMs are valid
beyond the equilibrium, and in a wider set of conditions
than was previously thought. On the other hand, the evident
power of CG-methods to predict large-scale transitions and
intermediates trapped by cryo-EM and crystallography, not only
demonstrates such validity, but more importantly, it confirms
that the collective shape-encoded dynamics of proteins, is maybe
an essential determinant driving their underlying biologically
functional transitions. Therefore, CG-methods are not just a
quicker alternative to MD, but can provide an essential tool to
dissect multi-scale problems like protein large transitions (Voth,
2009), specially in schemes where they are integrated with MD
and experiments [see e.g., our recent experience (Orellana et al.,
2019b) briefly discussed below].

CROSS-VALIDATION OF SIMULATIONS
AND EXPERIMENTS: TOWARD
INTEGRATIVE BIOLOGY

Although the “raison d’être” of most theoretical methods to
model protein transitions is to gain insight into molecular
mechanisms and connect them to biology, attempts to validate
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them are still rare, and thus, any in silico predictions usually
remain in the computational realm as mere hypotheses and are
looked at with suspicion by experimentalists (see Lowe, 2015
critique on Kohlhoff et al., 2014). Traditionally, MD provided
dynamic information on microscopic scales often inaccessible by
experimental probes (e.g., atomic details on hydrogen bonding,
loop fluctuations, etc.), and thus were un-testable. As larger
scale events like conformational changes are simulated, MD can
generate semi-quantitative estimates of observables that can be
more easilymeasured experimentally. Therefore, currentMD can
significantly contribute to the understanding and interpretation
of experimental data; and alternatively, it can also be driven
by experiments (Hollingsworth and Dror, 2018). However, in
comparison with the large efforts concentrated on pushing
the simulation length and sampling, little has been done to
systematize and validate in parallel the information obtained,
especially when approaching the scales in which transitions
happen and propagate over.

Simulating the physical world always involves a degree of
approximation and uncertainty (Berendsen, 2007); but the same
is true for biological experiments. This constitutes maybe the
core reason separating the in silico world from actual biology:
the extraordinary difficulty posed by integration of atomic-level
data on motion with higher-scale experiments, which typically
average out dynamic properties over time and space. Recently,
a thorough critical analysis of factors influencing the agreement
of simulations and experimental data was presented by van
Gunsteren et al. (2018). We will not discuss here related issues
associated to force-field parameterization (Lindorff-Larsen et al.,
2012), convergence of the simulations (Knapp et al., 2011;
Sawle and Ghosh, 2016), prediction of microscopic observables
(Childers and Daggett, 2018), or the multiple caveats of modeling
more realistic e.g., crowded complex environments (Chavent
et al., 2016), electrochemical gradients (Delemotte et al., 2008;
Khalili-Araghi et al., 2013), etc. We aim rather to revisit some
experimental approaches that have recently provided hands-on
direct or indirect validation of in silico predicted large-scale
transitions (Table 2).

While there has been extensive work on force-field
parameterization e.g., benchmarking predictions about
microscopic properties, studies benchmarking the performance
of atomistic simulation methods to sample conformational
transitions are limited and often reduced to small proteins
(Pan et al., 2016). A related issue with MD- benchmarking is
also the abovementioned difficulty to identify relevant CVs for
complex systems, especially when only one of the conformational
states is known. Note that, in contrast to MD, benchmarking
against large-scale changes not only has routinely been done
for CG-methods, but also constituted the main basis for their
parameterization and in consequence, are extremely effective at
predicting transitions along with their CVs. Independent of the
strengths and weaknesses of each method, however, the main
issues to validate transition pathways are essentially two: on
one hand, the scarcity of experimental data about on-pathway
intermediates; on the other, the uncertainty determining
the relevant CVs to monitor changes and their associated
observables. Although a transition pathway should be ideally

supported by direct structural data (either crystallography,
cryo-EM, NMR, or SAXS), this is often difficult and the only
feasible option is to attempt indirect “soft” validation, either
from distance parameters e.g., via single-molecule FRET, FACS,
or from functional assays, which can test predictions about
protein activity, as we briefly review next.

DIRECT PATH-VALIDATION: PROTEIN
DATA BANK ENSEMBLES AND
LANDSCAPES

Classically, in silico pathways like those generated by path-
sampling were evaluated on the sole basis of stereochemical
quality, or by tracking progression along ad-hoc system-
defined coordinates (Das et al., 2014; Seyler and Beckstein,
2014). As mentioned above, the selection of heuristic CVs for
dimensionality reduction is problematic (Seyler et al., 2015), and
in practice, structural quality or progression along user-defined
CVs does not assure that a pathway samples the biologically
relevant routes. Weiss and Levitt clearly stated this question
a decade ago: “Can morphing methods predict intermediate
structures?” (Weiss and Levitt, 2009), proposing for the first time
to benchmark against proteins with at least three distinct states
solved, and asses how close sampled pathways spontaneously
approach known intermediates in terms of rMSD. Although
this procedure definitely poses a more accurate test for in silico
pathways, it cannot assess the feasibility of the movements or
to what extent they correspond to biological motions. Based
on these ideas, we proposed to go beyond two- or three-
state benchmarking by introducing ensemble-level analyses that
consider all structural information available in the PDB for
a given protein, extracting at the same time their intrinsic
CVs using PCA (Orellana et al., 2016). This kind of validation
provides an extremely stringent test to evaluate sampling both by
MD and path-finding algorithms and, thanks to the increasing
amount of multi-state structural data available, we foresee that it
could become widely applicable in the near future with cryo-EM.
As a case apart of “hard” pathway validation, it is necessary to
mention the study on a SWEET transporter by Latorraca et al.
(2017), in which the spontaneous transition toward the inward-
open state was first observed in silico with Anton simulations,
and subsequently validated by determining an X-ray structure
trapped in the same conformation. Although such an approach
is not feasible to routinely validate pathways, it has provided
maybe the strongest evidence to date in favor of the power of
MD simulations to accurately sample the conformational space
of proteins.

SOFT VALIDATION: FROM FRET AND
ANTIBODY BINDING TO FUNCTIONAL
ASSAYS AND ANIMAL MODELS

MD simulations have been traditionally validated and compared
with microscopic information on relatively local protein
flexibility like NMR couplings, B-Factors, etc. During the last
years however, simulations have started to generate predictions
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of a scale that is suitable for experimental validation through
non-structural techniques, finally crossing the boundaries with
molecular biology. A quick glimpse into recent examples of
cross-validation of conformational changes between simulation
and experiments (Table 2) clearly shows how finally, we are
starting to break the barriers separating both, providing new
insights into biomedically relevant systems, including key drug
targets. Functional conformational changes usually involve either
large rigid-body motions of structural elements or more local
unfolding, loop fluctuation transitions. While the first can expose
or bury molecular surfaces for dimerization, interaction with
other proteins or ligands etc., the second may have more
subtle effects on structure-function relationship e.g., at enzyme
active sites. Observing such changes in silico, has given rise to
quantitative or qualitative predictions that mainly fall into two
categories: concerning interactions with other proteins or small
molecules (dimerization, binding), and/or regarding activity—
catalysis, phosphorylation, ion transport, etc.

Maybe one of the first examples attempting soft validation
of in silico transitions aroused from short simulations of
open/closed changes in Hsp70, confirmed by Trp-fluorescence
changes upon ATP binding (Woo et al., 2009). A more complex
validation strategy was taken by Laine et al. (2010), designing and
testing a series of inhibitors against the different conformations
of an allosteric site throughout an in silico transition path. In
a groundbreaking study of the EGF-Receptor (EGFR kinase
domain; Shan et al., 2012), Anton simulations revealed a third
intermediate state characterized by local αC-helix disorder;
further simulations of mutations indicated that they suppress
this disorder to enhance dimerization and activation. In this
case, proving intrinsic disorder and mutation effects required
Hydrogen/Deuterium (H/D) exchange mass spectrometry
(Wales and Engen, 2006), while enhanced dimerization was
shown by Blue Native Gel electrophoresis (Wittig et al., 2006).
Later work by the Shaw group, cross-validating NMR data and
simulations (Arkhipov et al., 2013; Endres et al., 2013), provided
new insights into EGFR transmembrane dimerization. Shorter
µs-simulations by Kaszuba et al. (2015) also led to predictions
about the impact of glycans on EGFR conformation, which were
tested by monitoring the accessibility of glycosylation-sensitive
surface-epitopes. Recently, we combined first a mutational
screening partly based on ENMs, followed by MD simulations
of “dynamically” hot EGFR ectodomain mutations (Orellana
et al., 2014, 2019b) in a multiscale CG-MD scheme similar to
that proposed by Saunders and Voth (2013). This approach
highlighted how, as happens often experimentally, mutagenesis
can help to trap intermediate states. In this case, the MD-trapped
transition state, happened to be the target for a therapeutically
relevant antibody, mAb806, which had been long hypothesized
to bind a third ectodomain conformer distinct from the known
crystal structures and enriched in tumor cells. This provided
a rare opportunity to directly extrapolate an MD prediction
to animal models by testing mAb806 therapeutic impact,
with surprising success (Binder et al., 2018; Orellana, 2019);
moreover, the integration of functional experiments, SAXS and
MD revealed unsuspected functional and allosteric convergence
of ectodomain deletions and missense mutations. A similar

example, in which a protein is known to perform a certain
biological activity but the corresponding conformation remains
elusive, is illustrated by the work by Machtens et al. (2015),
which extended previous MTD findings by Grazioso et al. (2012).
In this case, excitatory aminoacid transporters (EAATs) were
known to transport anions but the specific conduction path was
not obvious in end-state X-ray structures. ED simulations of
a prokaryotic glutamate transporter homolog, Gltph, revealed
a potential channel in an intermediate state (independently
trapped with crystallography), and the predicted pore-lining
residues were confirmed with Trp-scanning mutagenesis,
fluorescence quenching, and electrophysiology. Another indirect
approach to validate MD-predicted changes consists on assessing
intra or intermolecular distances with FRET, used e.g., to
confirm the compaction of importin in apolar solvents (Halder
et al., 2015) or DEER, an approach that allowed to prove the
opening/closing dynamics in heterotrimeric G-proteins (Dror
et al., 2015) and its modulation by nucleotide binding.

Although not the subject of this review, it is worth to
mention the advances on simulations of spontaneous ligand
binding events and protein-protein interactions, which constitute
a special case regarding experimental validation and can
occasionally provide indirect validation for conformational
changes related to binding. For example, either long simulations
or enhanced sampling techniques like aMD or MTD have
captured spontaneous binding of small molecules to protein
kinases or GPCRs (Dror et al., 2011, 2013; Shan et al., 2011, 2012;
Kappel et al., 2015), dimerization in membranes (Lelimousin
et al., 2016), or protein-protein interactions (Ma et al., 2019),
approaching or reproducing crystallographic binding poses or
NMR ensembles. In these cases, the PDB coordinates of known
complexes, together with free energies of binding, drug efficacies,
etc. (Shukla et al., 2015) can provide a hard-validation for MD.

CONCLUDING REMARKS

We have provided a brief overview of the multiple approaches
that are used to explore the conformational landscapes of
proteins and their transitions in silico, and reviewed different
methods used for their validation. On one hand, it becomes
clear that the accumulated structural information and flexibility-
capturing techniques like cryo-EM are revealing first glimpses
on functional landscapes. On the other hand, computational
methods have reached maturity and are entering a stage in
which they can start to contribute to real biology, modeling
longer and larger scales. We have revisited the many approaches
available to explore the FEL of proteins, optimizing hardware,
software and algorithms pursuing the dream of the seconds-long
sampling. From a completely different standpoint, simulations
in crowded cell-like soups of multiple copies of the same
protein, although still in the ns-scale, are already a reality
that holds promise to reveal dynamical complexity in local
microenvironments, providing yet another approach to the
sampling problem (Yu et al., 2016; Feig et al., 2018). We have also
briefly mentioned machine learning algorithms, paradigmatic of
a series of novel fast-developing non-physically based strategies
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which are gaining ground to study transitions, either alone or
in combination with MD or CG-methods: from co-evolution
analysis (Morcos et al., 2013; Sutto et al., 2015; Sfriso et al.,
2016) to cross-correlation, network and community approaches
(Potestio et al., 2009; Morra et al., 2012; Rivalta et al., 2012;
Papaleo, 2015; Negre et al., 2018), neural networks and deep
learning (Ung et al., 2018; Degiacomi, 2019), or integrative
sequence and structural analysis (Flock et al., 2015). These
approaches, not primarily intended to generate conformational
pathways or obtain a physical FEL, have shown their power
to reveal new alternative conformations and dissect allosteric
mechanisms, and thus are also greatly contributing to the
exploration of protein flexibility space. We have reviewed some
of the many flavors of CG- models and algorithms, and how they
can provide low-resolution but stunningly accurate pathways.
Finally, we have discussed recent examples where simulations
have trapped intermediate states before confirmation by X-ray
crystallography (Latorraca et al., 2017), or by in vivo tumor
models (Orellana et al., 2019b). Altogether, the explosion of
structural data, along with the ever expanding toolkit of in
silico methods, computer capabilities and growing integration
between simulations and experiments—driving or being driven

by them—are beginning to fulfill the dream of connecting the
micro-, meso-, and macro- scales in the study of life phenomena.
It also becomes evident that this enterprise requires careful
integration of a multitude of techniques and approaches, to
connect the atomistic level with the emerging collective behaviors
that rule conformational changes. The times ahead are exciting,
as we are approaching a critical mass of information on protein
structures, and experimental techniques allow exploring their
dynamics with ever-increasing detail. The challenge will be to
merge the ever-growing data into a coherent picture, which has
certainly the potential to revolutionize biology, medicine and
drug discovery.
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INTRODUCTION

Fat storage is an essential mechanism whereby cells store energy that can be later used to perform
basal functions when food intake is reduced or insufficient. In cells, fat is deposited in organelles
called lipid droplets (LDs). LDs are not mere inert storage pools, but they are active sites of lipid
metabolism and remodeling. Furthermore, they are involved in numerous diseases, such as obesity,
diabetes, cancer, and viral infection (Welte and Gould, 2017).

Despite this central role in important physiological and pathological processes, the general
biology of LDs is poorly understood. This is due to the unique structure of LDs, featuring a core of
neutral lipids (NLs), surrounded by a monolayer of phospholipids (PLs). As a consequence of this
peculiar composition and organization, the mechanism of LD formation remains largely unclear.

The general consensus is that NLs are produced and stored between the two leaflets of
the endoplasmic reticulum (ER) bilayer (Figure 1A); as the concentration of NLs exceeds a
certain threshold, they aggregate in lenses (Figure 1B), that grow into nascent LDs (Figure 1C).
Subsequently LDs bud from the ER bilayer toward the cytosol (Figure 1D) and, depending on
the organism, they can either stay connected to the ER (Figure 1E) or detach in the cytosol
(Figures 1E,F) (Wilfling et al., 2014b).

LD BUDDING: EVIDENCES AND CHALLENGES

The budding step (Figures 1D,E) is crucial for proper LD maturation, and it has important
physiological consequences. For example, a budded LD has a higher cytosolic surface that can thus
be more efficiently exposed to enzymes, such as lipases, the proteins involved in the catabolism of
NLs. Also, enrichment of NLs in the ER is toxic for the cell and formation and budding of LDs
might provide an effective mechanism to remove NLs from the ER bilayer (Wilfling et al., 2014b).
However, the main forces and molecular actors responsible for the regulation of LD budding are
still unknown. Of note, the classical machineries for vesicle budding, such as COPI and COPII, have
been ruled out, since, even if COPI can bind to LDs and detach nanodroplets in vivo (Thiam et al.,
2013), its activity affects protein targeting rather than LD budding (Wilfling et al., 2014a).

On the other hand, regulation of both ER and LD surface tension has been shown to play
a crucial role in modulating LD budding (Ben M’barek et al., 2017; Chorlay and Thiam, 2018;
Chorlay et al., 2019). To this end, two main mechanisms have been demonstrated to modulate
LD budding in vivo and in vitro by acting on surface tension: (i) protein binding to LDs
(Chorlay et al., 2019) and (ii) PL composition (Ben M’barek et al., 2017; Choudhary et al., 2018)
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FIGURE 1 | Molecular models of the main steps of lipid droplet biogenesis. Neutral lipids are produced and stored between the two leaflets of the endoplasmic

reticulum bilayer (A) and they aggregate in lenses (B) that grow into nascent lipid droplets (C). Subsequently, lipid droplets bud from the bilayer (D) and they can either

stay connected to the endoplasmic reticulum (E) or detach in the cytosol (E,F). Images are snapshots from molecular dynamics simulations. NL: orange; PL polar

heads: gray; PL acyl chains: yellow.

and abundance (Chorlay et al., 2019). For example, asymmetry
in the PL coverage of the NL core has been shown to favor
emergence of LDs, promoting budding toward the side with the
higher number of PLs (Chorlay et al., 2019). However, potential
mechanisms leading to PL asymmetry between the two ER
leaflets, and specifically at sites where nascent LDs are present,
are currently not well-understood. Alternatively, asymmetry can
also be promoted by protein binding, whereby proteins inserting
in the PL monolayer, increase NL coverage and favor budding
toward the side where binding occurs (Chorlay et al., 2019). At
the same time, PL composition of the ER bilayer can modulate
the emergence of LDs from the ER via two distinct mechanisms:
PL shape and PL-induced membrane tension. In fact, PLs with
intrinsic positive curvature have been shown to favor budded
states (Choudhary et al., 2018), as do PLs that are able to reduce
ER tension (Ben M’barek et al., 2017).

In parallel, several proteins localized at LDs have also been
shown to regulate LD budding. Two such proteins are seipin and
Pex30. Pex30 is a membrane shaping protein that can tubulate
the ER (Joshi et al., 2016) and that is present only transiently
at LDs (Wang et al., 2018). Simultaneous deletion of Pex30 and
seipin leads to an impairment in LD budding (Wang et al., 2018).
Seipin is a transmembrane ER protein that forms ring-shaped
homo-oligomers (Sui et al., 2018; Yan et al., 2018) that can been
found stably at ER-LD contact sites (Salo et al., 2016). Cryo-
EM structures (Sui et al., 2018; Yan et al., 2018) suggest that
the luminal portion of seipin, by covering most of the inner LD
monolayer, hinders binding of peripheral proteins toward that
side. Therefore, the outer monolayer can be covered by a larger
number of proteins, including possibly seipin cytosolic loops, and
budding would be favored toward the cytosolic side (Chorlay
et al., 2019). Furthermore, electronmicroscopy images reveal that
LD-ER contact sites have a well-defined neck-like topology, and
the size of the observed membrane neck is compatible with one
ring-shaped seipin oligomer (Salo et al., 2019), suggesting that
seipin is crucial to maintain this structure. At the same time, the
tertiary structure of the ER domain of the protein is very similar
to that of some lipid binding proteins, and it has been shown that
the luminal portion can bind phosphatidic acid (PA), suggesting
that it could sequester it from the bilayer and possibly present it to
metabolic enzymes to form either PLs or diacylglycerols (DAGs)
(Yan et al., 2018).

Another family of proteins that is necessary for LD budding is
the FIT family (Choudhary et al., 2015). FITs are phosphatases
that convert PA into DAG (Hayes et al., 2017; Becuwe et al.,
2018), a lipid that not only presents a very low energy barrier
for bilayer flip-flop, but that can be also partially stored in the
middle of the bilayer, like NLs (Campomanes et al., 2019). Since
FITs act only on lipids in the luminal leaflet of the ER, production
of DAGs could occur asymmetrically and consequently promote
LD asymmetry and budding. At the same time, the high intrinsic
curvature of DAG lipids, together with the presence of several
transmembrane helices in FIT proteins (Gross et al., 2010), might
lead to deformation in the ER cytosolic monolayer generating
positive curvature (Thiam and Forêt, 2016). The relevance
of deformations in the ER bilayer for LD budding has been
proposed also for other proteins that target LDs through a
hairpin domain and that, consequently, can impose high positive
curvature to the bilayer. An example of this class of proteins is
caveolins, also found at LDs (Ostermeyer et al., 2001) and known
to deform the membrane at sites of vesicle formation (Parton and
Collins, 2016).

HOW CAN MOLECULAR DYNAMICS HELP

UNDERSTANDING THIS PROCESS?

From the evidence in the literature, it appears that a combination
of protein activity together with changes in membrane properties
(such as surface tension, lipid composition, and surface coverage)
is key in controlling LD budding. However, several aspects
of this process are difficult to address with state-of-the-art
experimental methods. Most notably, a detailed characterization
of the molecular structures along the budding pathway remains
unaddressed and difficult to achieve using current structural
biology methods, due to the liquid nature of lipid aggregates,
the small size of early-stage nascent LDs (well below optical
resolution), and the transient nature of budding intermediates.

Molecular dynamics (MD) simulations are optimally suited
to investigate the structural and dynamic properties of liquids,
and they are particularly promising for the study of molecular
mechanisms underlying LD budding (Soares et al., 2017).
Notably, MD simulations have already been successfully applied
to interpret and corroborate several experimental findings. For
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instance, MD simulations clarified how changes in bilayer surface
tension alter the concentration of NLs stored in a LD lens
(Ben M’barek et al., 2017). Also, MD simulations showed that
asymmetry in monolayer coverage (hence asymmetry in surface
tension) is able to control budding directionality independently
of the lipid spontaneous curvature (Chorlay et al., 2019).

However, several questions remain on the mechanism and
the energetics of budding, as well as on the role of different
proteins in the process; we foresee that MD simulations will
be instrumental in addressing such questions. First of all, MD
simulations can be used to explore the structural role of PLs
and how the distribution of different lipids influences budding.
In particular it will be interesting to understand the role of
PLs, such as phosphatidic acid, lysolipids, and DAG, during
all the stages of LD growth and budding, since they seem to
largely influence budding and protein recruitment (Ben M’barek
et al., 2017; Choudhary et al., 2018). Second, MD simulations
may help elucidating the energetic requirements associated with
various steps of the budding process (depicted in Figure 1).
Theoretical studies of LD budding suggest that, in order to
achieve LD fission, the NL phase should completely dewed from
either the inner or the outer leaflet of the ER, a mechanism that
requires external energy, possibly controlled by surface tension
(Thiam and Forêt, 2016). We envisage that MD simulations
may allow detailed predictions on the energetics of LD budding
under different and controlled conditions, therefore clarifying
which of the proposed budding stages are spontaneous and
which ones require external energy. Third, for those steps
requiring external energy input, MD simulations will enable
predictions of the molecular mechanisms by which proteins
regulate LD budding. For example, how Pex30 and seipin
promote concertedly budding is not understood. While it has
been shown that seipin imposes a distinct topology to LD-ER
contact sites (Salo et al., 2019) it remains unclear if, in order to
achieve a fully budded state with a well-defined neck (Figure 1E),
the LD lens needs to reach a certain size or if this topology is
already stable in the early stages of LD formation (Deslandes
et al., 2017).

More generally, open questions remain on the relevance
of protein-induced membrane deformations in LD budding
as well as on the influence of LD-binding proteins, and
MD simulations can greatly contribute to address such
questions, particularly as high-resolution structures of the
proteins involved become available. Overall, MD simulations
can help unveiling which morphologies are more energetically
favorable for lipid aggregates with different compositions (e.g.,
different concentrations of NLs), and which transformations are
more likely.

Finally, even though the mechanism of LD formation and
budding showed in Figure 1 is generally accepted, whether
the final step of the process actually happens in vivo remains

controversial. Of particular concern, no fission machinery
leading to LD detachment from the ER has been identified so far,
and it is unclear whether LD detachment could be promoted by
membrane physical properties alone. MD simulations should be
able to provide an estimate of the energetic cost of breaking the
LD-ER neck and to clarify whether the process is driven only by
surface tension or if protein activity is necessary to detach LDs
from the ER.

CONCLUSIONS

In this Opinion, we illustrate the main unanswered questions
regarding LD budding that can be investigated using MD
simulations. One of the challenges of simulating such systems
is their computational cost, since LDs have diameters of
hundreds of nanometers and their growth takes place on
time scales of seconds (Salo et al., 2019). The employment
of chemical-specific coarse-grained models, such as MARTINI
(Marrink et al., 2007; Monticelli et al., 2008) and SDK (Shinoda
et al., 2007), has recently allowed simulating some aspects
of LD budding using realistic sizes and timescales. However,
simulations representing the complexity of LD formation (that
involves multiple lipid species and proteins throughout the
process) might be beyond the current capabilities and accuracy
of available CG models. Equilibrium CG simulations might
not be sufficient to explore the key aspects of LD budding,
and enhanced-sampling strategies might be required. Thus,
even though pioneering simulations have started highlighting
important aspects of LD biology (Khandelia et al., 2010; Bacle
et al., 2017; Ben M’barek et al., 2017; Vanni, 2017; Pezeshkian
et al., 2018; Chorlay et al., 2019; Zoni et al., 2019), we foresee
that further developments in molecular modeling techniques will
be required to advance our understanding of the mechanisms of
LD biogenesis.
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1. INTRODUCTION

From viruses to eukaryotes, genomic DNA filaments are confined in spaces of linear dimension
much smaller than their contour lengths. In bacteriophages, the µm-long genome is stored in 50
nm-wide viral capsids and the corresponding packing density is so high that viral DNA filaments
that have little chance to be entangled in solution (knotting probability <3%) become almost
certainly knotted (>95% probability) once confined inside the capsid (Rybenkov et al., 1993;
Arsuaga et al., 2002; Marenduzzo et al., 2009, 2010). In humans, instead, the various cm-long
chromosomes that make up the genome are kept inside 10 µm-wide nuclei (Alberts et al., 2014).
Despite the major change of scale with respect to viruses, the volume fraction occupied by this
eukaryotic genome is still large, about 10% (Rosa and Everaers, 2008).

These considerations pose several conundrums: How can chromosomal DNA be at the same
time packed and yet accessible to the regulatory and transcriptional machineries?What is its typical
degree of genomic entanglement and how much does it interfere with DNA transactions? To
what extent are these aspects shaped by general passive physical mechanisms vs. active ones, e.g.,
involving topoisomerase enzymes?

2. INTRA- AND INTER-CHROMOSOME ARCHITECTURE

2.1. Phenomenology
Addressing these questions has proved challenging because of the wide range of length and
time scales involved in genome architecture. Classical experimental tools provide details of
chromosome architecture at two opposite scales (Marti-Renom and Mirny, 2011). At the smallest
one (10 − 100 nm) X-ray crystallography revealed that DNA achieves local packing by wrapping
around histones, while at the largest one (1 − 10 µm) fluorescence in situ hybridization
(FISH) showed that each chromosome occupies a compact region of the nucleus, termed
territory (Cremer and Cremer, 2001, 2010).

More recently, experimental breakthroughs such as super-resolution imaging, electron
microscopy tomography plus selective labeling, and chromosome conformational capture (Hi-C)
techniques have significantly extended our multiscale knowledge of genome architecture (Dekker
et al., 2002; Lieberman-Aiden et al., 2009; Boettiger et al., 2016; Ou et al., 2017; Bintu et al., 2018;
Nir et al., 2018).

These and other advancements helped establish various results that foster the present discussion
of genomic entanglement.
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Regarding inter-chromosome organization we recall that:

(i) the positioning of chromosome territories correlates
significantly with sequence-dependent properties
of the underlying DNA [most notably, gene
density (Bolzer et al., 2005)];

(ii) the intermingling of different chromosomes is minimal and
mostly restricted to the boundaries of the territories (Cremer
and Cremer, 2001; Branco and Pombo, 2006).

For intra-chromosome aspects we instead know that:

(iii) on the scale of a few kilo-basepairs up to about 1
mega-basepair, chromosomes are organized into self-
interacting regions, called topologically-associating
domains or TADs (Dixon et al., 2012; Nora et al., 2012).
On the tens of mega-basepairs scale, chromatin is
organized into compartments of varying compactness
depending on their functional and epigenomic
state (Lieberman-Aiden et al., 2009; Wang et al., 2016);

(iv) despite this variability, when averaged over chromosomes
and experimental realizations, the mean contact probability
of two chromosomal loci at genomic distance ℓ scales
approximately as 〈pc(ℓ)〉∼ ℓ−1 (Lieberman-Aiden
et al., 2009), and the mean square separation scales as
〈R2(ℓ)〉∼ ℓ2/3 (Sachs et al., 1995; Münkel et al., 1999).

2.2. Relating Genomic Architecture and
Relaxation Dynamics With Polymer Physics
The interpretation of these experimental results has been
aided by an intense theoretical and computational activity that
demonstrated how salient genomic architecture properties can be
reproduced by a broad range of polymer models, and hence are
likely governed by general physical mechanisms (Mirny, 2011;
Rosa and Zimmer, 2014; Bianco et al., 2017; Haddad et al.,
2017; Jost et al., 2017; Tiana and Giorgetti, 2018). This applies
in particular to the aforementioned properties (i–iv) which can
be rationalized as manifestations of the topological constraints
that rule the behavior of semi-dilute or dense polymer systems,
particularly their relaxation time scales (Doi and Edwards, 1986).

In fact, a solution of initially disentangled chains of contour
length Lc can reach the fully-mixed, homogeneous equilibrium
state only via reptation, a slow and stochastic slithering-like
motion with characteristic time scale equal to τrept ≃ τe(Lc/Le)3,
where τe is a microscopic collision time and Le is the typical
contour length between entanglement points (De Gennes, 1971;
Doi and Edwards, 1986).

Thus, based on this fundamental polymer physics result, it
was estimated that the characteristic relaxation, or equilibration,
time of mammalian chromosomes exceeds 100 years (Rosa and
Everaers, 2008). The orders-of-magnitude difference between this
time scale and the typical duration of the cell cycle (≈ 1 day) has
several implications for genome organization, as it was realized
even before Hi-C probing methods became available (Rosa and
Everaers, 2008). It is clear, in fact, that mammalian chromosomes
are never fully relaxed as they undergo the cyclic structural
rearrangements from the separate compact rod-like mitotic

architecture to the decondensed interphase one (Grosberg et al.,
1993; Rosa and Everaers, 2008).

2.3. Implications for (Minimal) Intra- and
Inter-chromosome Entanglement
From this standpoint, the emergence of chromosome territories
is quantitatively explained as due to the kinetically trapped
decondensation of the compact mitotic chromatin (Rosa
and Everaers, 2008): interphase chromosomes retain the
memory and limited mutual overlap of the earlier mitotic
state, consistent with experimental results (Cremer and
Cremer, 2001, 2010; Branco and Pombo, 2006). In addition,
the ordered linear organization of the mitotic rods should
also inform the intra-chromosomal architecture, making it
more local than equilibrated polymers. This is consistent
with the experimental fact that the effective scaling behavior
of the contact probability with the genomic separation ℓ

in interphase chromosomes has a more local character
(∼ ℓ−1) than the one expected (∼ ℓ−3/2) for equilibrated
polymers (Lieberman-Aiden et al., 2009). Intuitively,
the same memory mechanism ought to facilitate the
subsequent separation of interphase chromosomes and their
recondensation upon re-entering the mitotic phase in the cell
cycle (Rosa and Everaers, 2008).

For the present discussion, we stress that these out-of-
equilibrium effects should impact not only the architecture
but also the physical entanglement of eukaryotic genomes. In
fact, mammalian chromosomes should be more unlinked (for
the limited inter-chromosomal intermingling) and unknotted
(for the enhanced intra-chromosomal local contacts) than
at equilibrium. These heuristic conclusions are supported
by various studies showing that the aforementioned scaling
relationships obtained by FISH and Hi-C experiments
can be ascribed to the topological constraints at play in
solutions of unknotted and unlinked polymers (Khokhlov and
Nechaev, 1985; Vettorel et al., 2009; Halverson et al., 2014;
Rosa and Everaers, 2014).

2.4. Implications for Genomic Structural
Modeling and Its Improvement
These considerations appear particularly relevant
for the structural modeling of eukaryotic genomes
based on phenomenological data, such as spatial
proximity constraints, which are typically too sparse to
pin down even coarse-grained models of interphase
chromosomes (Lieberman-Aiden et al., 2009).

A key question is whether such structural models should
additionally be informed by the notion that interphase
chromosomes must originate and eventually return to the
separate and condensed mitotic state.

Evidence presented in our earlier work help shed some
light on the matter. With our co-workers, we considered a
model system of six copies of human chromosome 19 in
a cubic simulation box with periodic boundary conditions
to explore the connection between coregulation and
colocalization of genes (Di Stefano et al., 2013). Each copy
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FIGURE 1 | (A) Model conformations of human chromosome 19 (six copies, arranged in a periodic simulation box), described as self-avoiding chains of beads were

reshaped by steered molecular dynamics (MD) simulations to promote the colocalization of pairs of loci that are significantly coregulated. Most (>80%) of the

coregulated pairs were successfully brought into spatial proximity in simulations that started from relaxed solenoidal mitotic-like arrangements, while virtually no

successful colocalization was observed for trajectories started from equilibrated, fully mixed, chromosomal arrangements. Adapted with permission from Di Stefano

et al. (2013). (B) Model conformations of the entire-human genome, obtained by steered-MD colocalization of loci based on Hi-C data in Dixon et al. (2012) and Rao

et al. (2014) could be successfully condensed with minimal hindrance from intra- or inter-chromosomal constraints, consistently with the expected reconfiguration

compliance necessary for the interphase→mitotic transition. The smaller side pictures are cut-through views. Adapted with permission from Di Stefano et al. (2016).

was initially prepared as a mitotic-like conformation (Rosa
and Everaers, 2008), consisting of a polymer filament
forming a solenoidal pattern with rosette-like cross-section
featuring chromatin loops of about 50 kilo-basepairs, see
Figure 1A. We then used a molecular-dynamics steering
protocol to bring in proximity pairs of intra-chromosomal
loci that were known to be significantly co-regulated.
Importantly, topological constraints were accounted

for by avoiding unphysical chain crossings during the
steering process.

Remarkably, and consistently with the gene kissing
hypothesis (Cavalli, 2007), we found that most (> 80%) pairs of
significantly coregulated genes could indeed be colocalized in
space within the contact range of 120nm and further showed that
this colocalization compliance followed from the presence of
gene cliques in the coregulatory network (Di Stefano et al., 2013).
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Conversely, the same protocol applied to the same set of
chains but initially prepared as generic self-avoiding random
walks failed to give colocalization (Di Stefano et al., 2013).
Physically, this happens because the intra- and inter-chain
entanglements present in this system, which mimicks an artificial
set of equilibrated chromosomes, were too numerous and
conflicting to be successfully negotiated on a viable simulation
time scale (see Figure 1A).

Further elements come from the genome-wide structural
modeling of human chromosomes of Di Stefano et al. (2016). In
this study too, the model chromosomes were initially prepared in
mitotic-like states and were then steered to bring in proximity
those pairs of loci that corresponded to significantly enhanced
entries of two independent Hi-C datasets (Dixon et al., 2012; Rao
et al., 2014). The architecture of the final conformations were, as
expected, significantly changed by the steering protocol. Yet, as
illustrated in Figure 1B, we verified that eachmodel chromosome
could be brought to a condensed compact shape as needed for the
interphase-mitotic transition without significant hindrance from
intra- or inter-chromosomal topological constraints (Di Stefano
et al., 2016).

We note that the limitedly-entangled architecture of models of
long eukaryotic chromosomes has emerged lately (Di Pierro et al.,
2016) as the consequence of microphase separation of regions
of different chromatin types (Jost et al., 2014) in a block co-
polymer model with pair interactions tuned to reproduce the
contact propensities of point (iv). The point is reinforced by
studies on the yeast genome showing that knots and links have
a generally low incidence especially in comparison to equivalent
systems of equilibrated chains (Duan et al., 2010; Segal et al.,
2014; Pouokam et al., 2019). Finally, besides the indication from
structural models, other mechanisms such as loop extrusion have
been advocated to be instrumental for maintaining a low degree
of chromosomal entanglement (Racko et al., 2018; Orlandini
et al., 2019).

To some inevitable extent though, physical entanglements are
still expected to arise in eukaryotic chromosomes.

The recent work of Roca’s lab showed that knots do
occur in eukaryotic minichromosomes in vivo, for instance
during transcription, due to transient accumulation of
entanglement (Valdés et al., 2017, 2019). On broader scales,
various knots (Siebert et al., 2017), and even links (Niewieczerzal
et al., 2019), were found in model mouse chromosomes obtained
from single cell Hi-C (Stevens et al., 2017). The genuineness

of the entangled states was suggested by the systematic
recurrence of certain knot types in independent instances of
the reconstructed chromosomal structures (Siebert et al., 2017).
These were obtained by imposing phenomenological constraints
on an initially disconnected set of effective monomers, so
we expect that a more defined knot spectrum could be
obtained by using disentangled self-avoiding chains as the
reference model.

3. CONCLUSIONS

To conclude, we have discussed experimental evidence and
general physical mechanisms based on polymer theory that
consistently point to an unusually low degree of entanglement
expected in long eukaryotic chromosomes. Such property, which
is arguably essential for the capability of chromosomes to
reconfigure as needed at various stages of the cell cycle, appears
important for genomic modeling too.

We argued that the structural modeling of long chromosomes
can benefit, both for realism and computational efficiency,
by starting off with disentangled self-avoiding chains, e.g.,
mitotic-like ones, because their plasticity makes it possible to
accommodate a large number of phenomenological constraints
in a physically-viable manner, i.e., without deformations
involving intra- or inter-chain crossings.

The latter are, of course, possible in in vivo systems thanks
to the action of topoisomerase enzymes. An important open
question regards the extent to which these active mechanisms are
involved in the shaping the overall intra- and inter-chromosome
architecture. This point, we believe, can be significantly advanced
in future studies with a tight synergy of experiments and models
(Goloborodko et al., 2016; Jost et al., 2017; Valdés et al., 2019).
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JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493

genes. For this slow growing minimal cell with a 105 min doubling time, we recently

established the essential metabolism including the transport of required nutrients from the

environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding

genes, 143 are assigned to metabolism and 212 are assigned to genetic information

processing. Using genome-wide proteomics and experimentally measured kinetic

parameters from the literature we present here kinetic models for the genetic information

processes of DNA replication, replication initiation, transcription, and translation which are

solved stochastically and averaged over 1,000 replicates/cells. The model predicts the

time required for replication initiation and DNA replication to be 8 and 50 min on average

respectively and the number of proteins and ribosomal components to be approximately

doubled in a cell cycle. The model of genetic information processing when combined

with the essential metabolic and cell growth networks will provide a powerful platform for

studying the fundamental principles of life.

Keywords: minimal cells, stochastic simulations, kinetic parameters, DNA replication, transcription, translation,

mRNA production, protein production

1. INTRODUCTION

JCVI-syn3A, a bacterial cell with a synthetic minimal genome of size 543 kbp and 493 genes, is
an organism designed to have the fewest genes necessary for life and is therefore an ideal model
organism for studying fundamental principles of life (Lachance et al., 2019). In Breuer et al. (2019),
we published the flux balance analysis of the essential metabolism of JCVI-syn3A along with the
gene map and the genome-wide data from essentiality and proteomics experiments. Although
metabolism, including transport of nutrients into the cell, has been established, the reactions and
kinetic models for genetic information processes in JCVI-syn3A are missing. The accompanying
gene map in Figure 1A assigned all 452 protein coding genes to one of the four major functional
classes: metabolism with transporters (143), genetic information processes (212), cellular processes
such as cell division (6), and unclear functions (91). Accompanying the gene map is a map of the
proteomics data detected for the 428 proteins in Figure 1B. The model presented here uses the
proteomics data to guide the modeling of protein production.
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FIGURE 1 | JCVI-syn3A protein coding genes (A) and proteomics (B)

distributed to four functional classes: metabolism (brown), genetic information

processing (blue), cellular processes such as cell division (green), and unclear

function(gray). Shading within the four functional classes indicate subsystems

within the class, such as nucleotide metabolism in metabolism or transcription

in genetic information processing. NCBI GenBank CP016816.2: https://www.

ncbi.nlm.nih.gov/nuccore/CP016816.2 (Breuer et al., 2019).

In our previous work on ribosome biogenesis in Escherichia
coli (Earnest et al., 2015, 2016), ribosome assembly was included
along with DNA replication and transcription/translation of just
the ribosomal proteins (rproteins). In this simplified model we
focus on developing kinetic parameters that replicate the DNA,
generate proteins comparable to the proteomics abundances,
and produce sufficient numbers of rprotein and ribosomal RNA
(rRNA) to generate approximately 500–700 ribosomes estimated
from the biomass equation in Breuer et al. (2019). Here we
introduce the construction and results of our simplified genetic
information processing model for a cell 400 nm in diameter.
The kinetics for initiation of DNA replication is based on a
mechanism derived from the JCVI-syn3A genomic sequence,
crystal structures of the initiator protein DnaA complexed with
DNA and kinetics parameters from single molecule fluorescence
resonance energy transfer (smFRET) experiments. Parameters
for simplified kinetics describing DNA replication, transcription,
mRNA degradation, translation, and protein degradation are
derived from the literature and our previous studies on JCVI-
syn3A (Breuer et al., 2019) and E. coli (Earnest et al., 2015, 2016).
Within the cell cycle of 105 min, these processes duplicate the
genome, generate, and translate sufficient amounts of mRNA to
approximately reproduce the proteomics data, and the estimated
number of ribosomes. All 452 protein coding genes and 35
genes for rRNAs and tRNAs in the genome of JCVI-syn3A are
expressed. Three pseudo genes and three genes for small RNA
are not expressed in this model.

2. METHODS

Each of the genetic information processing subsystems involve
species that are low in population in the cell, for example one
or two copies of a gene and 0–10 copies of a protein-coding
mRNA. To capture the stochastic nature of genetic information
processes, the kinetics were modeled with chemical master
equation (CME) simulations and solved using the Gillespie
algorithm as implemented in the software Lattice Microbes

(Roberts et al., 2013; Hallock et al., 2014; Earnest et al., 2015,
2018) with the pyLM interface in a Python 3 Jupyter notebook.
Due to the small size of JCVI-syn3A, 400 nm in diameter, we
neglect the spatial location of species inside the cell in this
simplified model which allows us to stochastically model the
kinetics as well-stirred using CME simulations. The results of
stochastic simulations were averaged over 1,000 replicates/cells.
Each replicate requires a run time of one second. The Jupyter
notebooks are available and are posted at GitHub (https://github.
com/zanert2/Thornburg_FrontMolBiosci_2019).

2.1. Polymerization Model and Rate Forms
In our genetic information processing model, DNA replication,
transcription, and translation are all reactions that involve an
enzyme (DNAP, RNAP, or ribosome) catalyzing polymerization
reactions based on a preexisting template polymer (the entire
ssDNA, each unique gene on the ssDNA, or its corresponding
mRNA). In the case of replication, the single template is the entire
genomic sequence of 543 kpb. In the case of transcription, the
templates are the individual 493 genes, each with a unique length
and sequence. In the case of translation, the templates are the
number of individual messengers for each of the proteins.We use
a rate form based on Equation (33) from Hofmeyr et al. (2013)
that was derived assuming polymerization from a single unique
template where the enzyme is in excess and the concentration
of free enzyme is constant. DNA replication, transcription, and
translation all involve a situation in which the enzyme is in excess
of unique templates. For DNA replication, there is a single start
site, oriC, and 35 DNAP molecules in the proteomics data. In
the case of transcription, there are 187 RNAP and if we consider
any one gene as the template for the rate form, there are at
most two copies of the gene at any point in the cell cycle. In
translation, there are over 500 ribosomes available to translate
the individual mRNAs which typically number <10. In each
case, we assume a constant steady-state concentration of free
enzymes in determining the kinetic rates, although the template
concentrations will change over time. The general polymerization
rate form can be written as

vpoly =
kcat[T]

(

1+ K0
[E]

)

KD1KD2
[M]1[M]2

+
∑

i
niKDi
[M]i

+ ntot

(1)

which we modify for transcription and translation in the
following sections to address that there is competition among
unique templates of different lengths ntot in each process. For
our experimental situation, the polymerization rate is dominated
by kcat , ntot , and template concentrations. The variation in
rates based on these assumptions is discussed further below in
Equation (2). The general rate form considers a mechanism
starting with enzyme E (DNAP, RNAP, or ribosome) binding
to a polymer template T with binding constant K0. Once the
enzyme and template have bound, the first two monomers
(dNTP, NTP, or the charged aa-tRNA) M1 and M2 bind to the
template/enzyme complex with association constants KD1 and
KD2. The monomer concentrations are determined by the pool
sizes provided in Zhang and Ignatova (2009) and Breuer et al.
(2019). A value of KD has been measured for a single elongation
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FIGURE 2 | DNA sequence near oriC of JCVI-syn3A defined by the 3 high (red) and low (yellow) affinity DnaA(IV) binding sites: The AT-rich region (bold and underlined)

binds DnaA(III). The AT-rich region ends at the Shine-Dalgarno sequence (italicized and underlined) preceding the dnaN gene (green dashes). A putative promoter for

the DnaA gene preceding its Shine Dalgarno sequence is shown in blue.

step of mRNA by RNAP, but not for DNAP or ribosomes (Larson
et al., 2012). Values for KD were fitted to maximize the rate
of each process assuming their respective pool sizes and other
experimentally measured kinetic parameters. Our fitted value
for RNAP agrees well with the experimentally determined value.
Monomers of type i are then added to the growing polymer by
the binding with their respective association constant KDi and we
assume that they are the same for any one process. The growing
polymer is elongated at a rate kcat . The resulting polymer (DNA,
rRNA, mRNA, tRNA, or protein) of length ntot will consist of
ni of each respective monomer type Mi following the first two
positions in the polymer.

In general, both the enzyme and template concentrations are
functions of time. In evaluating the rate constant, the enzyme
concentrations were held constant to the values derived from
the proteomics data making the polymerization rate obey first
order kinetics

ν = k(ntot , kcat)[T] (2)

where the rate constant is defined as

k(ntot , kcat) = C ×
kcat

(

1+ K0
[E]

)

KD1KD2
[M]1[M]2

+
∑

i
niKDi
[M]i

+ ntot

(3)

in which C represents any modifications to the rates of
transcription or translation. For the kinetic parameters, pool
sizes, and low enzyme concentrations assumed in the kinetic
model, the denominator is dominated by the third term, the
length of the new polymer ntot . In analyzing the sensitivity
of DNA replication, transcription, and translation to the
concentration of each respective enzyme, we found that the

rate constants k from Equation (3) deviated no more than
10−4% as the concentration of enzyme is doubled over the
cell cycle. Our above approximations hold assuming the cell
is in the exponential growth phase where nutrient and pool
sizes are in a steady state. The approximations no longer hold
in cases such as the transition from exponential to stationary
growth. As nutrients in the environment become depleted, the
rate of elongation steps in DNA replication, transcription, and
translation will be slowed down due to a lack of monomersMi.

2.2. Replication Initiation
Previous treatments of replication initiation have proposed a
mechanism based on E. coli and B. subtillis that began with the
initiator protein DnaA binding to four 9-bp signatures of the
DNA near oriC, followed by accumulation of DnaA monomers
around that location until a buildup of 20–30 monomers was
reached (Atlas et al., 2008; Karr et al., 2012). Our model of
DNA replication initiation is based on the genomic sequence of
JCVI-syn3A in Figure 2 and a mechanism derived from crystal
structures of the multi-domain DnaA binding to ds- and ssDNA
shown in Figure 3. In the genomic sequence structure, a strong
DnaA binding signature (TTATCCACA) is located near the
origin matching the whole 9-bp sequence with two neighboring
signatures matching 7 out of 9 bp (Schaper and Messer, 1995;
Weigel et al., 1997; Speck et al., 1999). These signatures lie next
to an AT-rich region 93 bp in length.

DnaA domain IV [DnaA(IV)] binds most strongly to
the sequence TTATCCACA. DnaA(IV) binds to the dsDNA
signatures (Erzberger et al., 2006; Duderstadt et al., 2011). DnaA
domain III [DnaA(III)] binds to AT-rich ssDNA in 3 nucleotide
increments forming a helical, filament-like structure (Erzberger
et al., 2006; Duderstadt et al., 2011). Our mechanism assumes
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that the binding of DnaA(IV) to the three neighboring dsDNA
signatures near oriC opens up a small pocket of ssDNA in the
neighboring AT-rich region. This mechanism is illustrated in
Figure 4A. Once the dsDNA sites are occupied, DnaA(III) can
start binding to the neighboring AT-rich region on the ssDNA.
The DNA continues to be unwound until the AT-rich region is
wrapped by the DnaA filament. Since DnaA(III) binds to ssDNA
in 3 nt increments (Duderstadt et al., 2011; Cheng et al., 2014)
the 93 bp AT-rich region shown in Figure 2, produces a filament
with 30 DnaA. After formation of the filament, replication can
be initiated.

FIGURE 3 | Crystal structures of DnaA binding to E. coli DNA suggest a

mechanism for initiation of replication: (A) PDB 1J1V; DnaA(IV) binds to a 9-bp

signature on dsDNA. (B) PDB 3R8F; Four DnaA(III) bind to 3-nucleotide

increments on ssDNA.

To capture the proposed mechanism, we begin with a reaction
binding a DnaA to the high affinity binding signature near OriC
on dsDNA, creating a bound site and the two low affinity free sites
on either side of the high affinity site. The low affinity sites on
dsDNA then react with one DnaA each, creating a bound site for
each. The dsDNA binding rates use second order rate forms using
the rate constants shown inTable 1. There is also a reaction in the
model for DnaA binding to other high affinity sites around the
chromosome. This is included since the filament length strongly
depends on the number of free DnaA available. The kinetic model
for the formation of the DnaA filament is based on an smFRET
study on ssDNA (Cheng et al., 2014). The smFRET study in
Figure 4B reports values for kon for addition of a DnaA molecule
to the growing DnaA filament bound to ssDNA and koff for
removal of a DnaA molecule from the filament as shown in
Figure 4C. These kinetic parameters are presented in Table 1 and
were used for each independent binding and unbinding until a
filament consisting of 30 DnaA has formed. Once the filament
is formed and replication begins, the filament is assumed to be
removed at the rate of the polymerization in DNA replication
which models removal of DnaA by DNA helicase. The model is
constructed so that only one replication initiation event occurs in
a cell cycle.

2.3. Replication
The replisome, a complex containing proteins necessary for
DNA replication including DNA helicase, DNAP, DNA primase,
gyrase/topoisomerase, and the beta clamp, binds at oriC once

FIGURE 4 | Replication initiation mechanism. (A) DnaA(IV) binds to three signatures on dsDNA next to the AT-rich region near oriC. DnaA(III) subsequently binds in

3-nucleotide increments. DnaA(III) continues to bind to ssDNA until the AT-rich region is opened, allowing the replisome machinery to be loaded. (B) The kinetic

parameters for the binding of DnaA(III) to ssDNA were obtained from a smFRET study (Cheng et al., 2014) where the FRET signal depended on the number of DnaA

bound. Fewer DnaA corresponded to compact ssDNA, resulting in a high FRET signal. Increasing the number of DnaA bound to ssDNA extends the filament, lowering

the FRET signal. (C) Schematic of the binding kinetics of DnaA(III) to ssDNA forming a DnaA filament of length n. The kon and koff values correspond to the kinetics

measured by smFRET.
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the replication initiation event has occurred and then proceeds
in both directions around the chromosome, creating the
two replication forks as shown in Figure 5. Using smFRET
experiments, the replisome has been observed to assemble
in just a few seconds (Downey and McHenry, 2010; Cho
et al., 2014). We do not model the assembly of the replisome
and assume its assembly occurs during or before replication
initiation. As the replisome proceeds along the chromosome,
the original chromosome shown in green is unzipped and the
two new chromosomes shown in red and blue are polymerized
on the original ssDNA template. Both strands of ssDNA at
the replication fork are treated the same with continuous
polymerization, and okazaki fragments are not modeled. The
model assumes that once the replisomes reach the terminus,
they fall off quickly and the two new chromosomes are
instantaneously separated. The number of dATP, dTTP, dCTP,
and dGTP monomers ni appearing in the rate form (Equation
1) are calculated from the A, T, C, and G content of the genome:
203606 A, 207816 T, 67238 C, and 64720 G. Since there are no
metabolic reactions to produce deoxynucleotides or ATP for the
reactions to occur, constant pools for each are assumed using the
pool sizes from Breuer et al. (2019) presented in Table 2.

Kinetic parameters for replication are given in Table 3. The
elongation rate constant kcat (Xie et al., 2008) and the association
constant for DNAP to DNAK0 (Zhang et al., 2016) were obtained
from the literature for E. coli. In order to make a second copy of

TABLE 1 | Kinetic parameters used in the model of replication initiation.

Parameter Value Units References

High affinity binding rate 7,800 mM−1 s−1 Schaper and Messer, 1995;

Weigel et al., 1997

Low affinity binding rate 35 mM−1 s−1 Schaper and Messer, 1995;

Weigel et al., 1997

kon 100 mM−1 s−1 Cheng et al., 2014

koff 0.55 s−1 Cheng et al., 2014

the genome within the 105 min doubling time, the choice of KD

was made in order to minimize the time to duplicate the DNA.
Assuming the constant pool sizes and DNAP concentrations,
the value of KD corresponds to the value where the length of
the genome is the dominant term in the denominator of k
in Equation (3).

2.4. Transcription
Tomodify the general rate form for transcription, we incorporate
two factors: the probability of an active RNAP selecting any gene
Pgene selection and the strength of the gene’s promoter Spromoter .
The fraction of active RNAP as estimated by Bremer and Dennis
(2008) for a cell with a ∼100 min doubling time implies that
around 29 of the 187 RNAP are actively transcribing at any
time. Of the actively transcribing RNAPs, Bremer and Dennis
(2008) estimate that approximately 24% are involved in making
stable RNA like rRNA. Since each rRNA operon only contains the
16S, 23S, and 5S rRNAs and no tRNAs, transcription of the two
drRNA genes will require four RNAP. Therefore, the probability
of any other gene being selected is Pgene selection = 25/487 = 0.05.
We estimate that each rRNA operon is always being actively

TABLE 2 | Pool sizes from Breuer et al. (2019) and estimated from Zhang and

Ignatova (2009) and Mackie (2013)*.

Species Pool size (mM)

dATP 0.018

dTTP 0.022

dCTP 0.012

dGTP 0.007

ATP 1.04

UTP 0.68

CTP 0.34

GTP 0.68

tRNA* 0.0020

aa-tRNA* 0.0076

FIGURE 5 | Mechanism of DNA replication: Once the replisome machinery is loaded onto the chromosome shown in green, the machinery begins to polymerize

around the DNA, elongating new DNA onto both halves of the original chromosome shown in red and blue. Once the replisome reaches the terminus, we assume that

the replisomes fall off quickly.
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transcribed by two RNAP, and therefore has a probability of gene
selection of 1. The expression from Hofmeyr et al. (2013) did
not include competition for multiple templates which is now
captured with the probability of gene selection. This gives us a
transcription rate

νtranscription = Pgene selection × νpoly (4)

which we use for transcription of rRNA, tRNA, and ribosomal
protein-coding genes.

The the rate of transcribing a gene also depends on the
strength of its promoter sequence (Jones et al., 2014), however
the precise promoter sequences and their strengths have not
been measured for JCVI-syn3A. In a preliminary analysis of the
sequences preceding each protein-coding gene, we found that, in
general, a protein is more likely to have a higher proteomics value
if the start codon is preceded by both a Shine Dalgarno sequence
a promoter sequence TANAAT as characterized in Mycoplasma
pneumoniae (Lloréns-Rico et al., 2015). Using this information,
to incorporate a proxy for promoter strength, Spromoter , into the
kinetics, the transcription rate for each non-ribosomal protein
coding gene is multiplied by the ratio of gene’s proteomics count
to the average proteomics count of 180

νmRNA transcription = Spromoter × Pgene selection × νpoly (5)

Since some ribosomal proteins were not reported in the
proteomics data, this factor is not used in the transcription rates
of ribosomal protein coding genes.

The model expresses the genes for all 452 protein coding
genes and the genes for rRNA and tRNA. For each protein or
RNA, the gene identifier from the NCBI entry (NCBI GenBank
CP016816.2: https://www.ncbi.nlm.nih.gov/nuccore/CP016816.
2; Breuer et al., 2019) is read and the corresponding sequence
is used to determine the nucleotide stoichiometries for the
formation and degradation reactions. RNA formation reactions

TABLE 3 | Parameters used in kinetics for replication, transcription, translation,

mRNA degradation, and protein degradation.

Subsystem Parameter Value Units References

Replication kcat 600 bp/s Breier et al., 2005; Xie et al., 2008

K0 0.26 µM Zhang et al., 2016

KD 1.0 µM Fitted

Transcription kcat (mRNA

and tRNA)

25 nt/s Chen et al., 2015

kcat (rRNA) 180 nt/s Ryals et al., 1982

K0 100 nM Bremer and Dennis, 2008

KD 0.1 mM Fitted; Larson et al., 2012

Translation kcat 5 aa/s Cox, 2004

K0 100 nM Bremer and Dennis, 2008

KD 0.01 mM Fitted

mRNA

Degradation

t1/2 4 min Bernstein et al., 2004; Briani et al.,

2008

Protein

degradation

t1/2 25 hr Maier et al., 2011

use our modified polymerized, template-driven rate forms in
Equations (4) and (5) and the degradation reactions of mRNA
follow first order kinetics. The nucleotide stoichiometries are
used to determine the monomer counts ni and total polymer
length ntot in the rate form. Constant pools of nucleotides are
assumed using the pool sizes from Breuer et al. (2019) presented
in Table 2. For the transcription reactions, the enzyme is RNAP
and the template is the total concentration of the gene in the
cell as a function of time and includes the replication of DNA.
This model, however, does not take into account the location of a
gene on the genome during DNA elongation. The elongation rate
constant kcat and the association constants K0 and KD are listed
in Table 3. Literature values of mRNA and tRNA elongation rates
of 25 nt/s are used for kcat (Chen et al., 2015). A messenger half-
life of 4 min is used for all mRNA degradation. The half-life of
1 min in Breuer et al. (2019) did not result in mRNA abundances
that produced proteins quickly enough to double the number
of proteins in the cell cycle. The 4 min half life gives a total
mRNA abundance in better agreement with the data published
in Lynch and Marinov (2015). The experimentally observed
rRNA operon elongation rate kcat of 90 nt/s (Ryals et al., 1982)
was multiplied by two for both operons to model the effect of two
RNAP simultaneously transcribing each operon. The association
constant for association of RNAP to DNA K0 was calculated
according to Hofmeyr et al. (2013) using the concentrations of
the free and actively transcribing RNAP (Bremer and Dennis,
2008) and concentration of the gene. The association constant for
nucleotides binding to the RNAP/gene complex KD was fitted so
that the rate of transcription wasmaximized bymaking transcript
length the dominant term in the denominator of k in Equation
(3). Our fitted value agrees with a measured experimental value
of 0.14 mM (Larson et al., 2012). With no transcriptomic data
available, each mRNA begins with a count of 1 and each tRNA
is divided evenly at 190 each to have a total tRNA abundance
of 3,750, a value scaled from E. coli based on differences in cell
volume (Mackie, 2013).

2.5. Translation
Since the number of total mRNA is approximately on the same
order of the number of ribosomes, the probability of any mRNA
being translated is near unity. The only other modification of the
translation rate expression is to allow more than one ribosome
(polysomes) Nribo to bind to a long transcript in Equation (6).

TABLE 4 | ATP hydrolysis costs of reactions in genetic information processing

subsystems (Russell and Cook, 1995; Lynch and Marinov, 2015).

Reaction ATP cost Units

Replication 1 ATP per bp

Transcription 1 ATP per nt

Translation 2 ATP per aa

mRNA degradation 1 ATP per nt

Protein degradation 1 ATP per aa

The cost of translation does not include charging of the tRNAs as those reactions are

incorporated in the essential metabolism (Breuer et al., 2019).
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This factor is an integer calculated as the length of the transcript
over an estimated ribosome spacing of 300 nt in E. coli (Brandt
et al., 2009). If the value is calculated as <1, the value of Nribo is
set to 1. The ribosome spacing was estimated using an observed
approximate average of 4 ribosomes per polysome for an average
transcript length of 1,200 nt.

νtranslation = Nribo × νpoly (6)

The model includes the translation and degradation of each
protein made from each mRNA. The gene identifier from the
NCBI entry also includes the amino acid sequence for protein
coding genes which is used to determine the corresponding
stoichiometries of tRNA charged with their corresponding amino
acids (aa-tRNA) required to build the protein and the amino
acid stoichiometries when the protein is degraded. For the
translation reactions, the template in the polymerization rate
form (Equation 1) is the associated mRNA. The model uses
whole, intact ribosomes as the enzyme and does not model

association of messengers to the 30S small subunit followed by
association of the 50S large subunit. The elongation rate constant
kcat and the association constants K0 and KD are listed in Table 3.
For E. coli, experimentally measured elongation rates range from
10 to 20 aa/sec (Bremer and Dennis, 2008), however slower rates
have been reported in other bacteria such as Mycobacterium
bovis with an elongation rate of 2 aa/sec (Cox, 2004). A value
within the estimated range of 2–10 aa/sec of 5 aa/sec was chosen
so that the number of proteins was approximately doubled in
a cell cycle. The association constant of the ribosome to the
mRNA K0 was estimated using the average fraction of actively
translating ribosomes (Bremer and Dennis, 2008) and an average
concentration of an mRNA to be one in the cell. The association
constant for aa-tRNA binding to the ribosome/mRNA complex
KD was fitted to maximize the rate of translation assuming
constant aa-tRNA pool sizes and ribosome concentration. The
value of KD was computed using the length of the shortest
protein, ribosomal protein L34 (40 aa), in the equation for the
rate constant k (Equation 3). A half-life of 25 h was used for

FIGURE 6 | (A) DnaA filament formation for four different replicates shown in different colors. The stochastic effects of the filamentation kinetics result in a wide range

of times to form the filament from <5 to 50 min. (B) Probability distribution of replication initiation times when the thirtieth DnaA in the ssDNA filament binds. We

predict the most probable time to form the filament to be approximately 5 min and the average time to be approximately 8 min shown with a dotted line. (C) Average

of genome duplication over 1,000 replicates shows that on average the genome will be duplicated in 65 min of the 105 min cell cycle, leaving approximately 40 min for

continued cell division. (D) The average abundance of DnaA not bound to DNA gets depleted by filament formation and replenished by translation and removal of the

filament by DNA helicase.
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protein degradation reactions (Maier et al., 2011) Degradation
of the proteins in extremely slow, so the main source of dilution
would be by cell division after 105 min.

2.6. ATP Energy Costs
Replication, transcription, translation, mRNA degradation, and
protein degradation have associated ATP hydrolysis costs.
Although the mechanism for ATP hydrolysis is not explicitly
modeled, the costs are incorporated as additional time dependent

reactions for each subsystem. For example, in DNA replication
the DNA helicase is not explicitly modeled, but we assume
that 1 ATP hydrolysis event per bp is required to unwind
the dsDNA. The ATP cost of each reaction in each subsystem
is determined by the length of the DNA/RNA/protein being
formed or mRNA/protein being degraded (Russell and Cook,
1995; Lynch and Marinov, 2015). In transcription, we assume
that the RNAP uses 1 ATP hydrolysis event per bp to unwind
the dsDNA. The mRNA degradation reactions also assume that

FIGURE 7 | Abundances of mRNA and tRNA transcribed in a 105 min cell cycle. (A) A single replicate from the stochastic simulation of the mRNA abundance for

glucose-6-phosphate isomerase shows fluctuations in the average integer abundance of messengers. Fluctuations arise from competing rates of formation,

degradation, and replication. The average mRNA abundances of mRNA coding for (B) metabolic proteins, (C) genetic information processing, DnaA (orange), and cell

division proteins, (D) ribosomal proteins, and (E) proteins of unclear function all have average abundances between zero and seven. (F) The total number of all

messengers during a cell cycle averaged over 1,000 replicates shows that typically there are 300–450 messengers present in the cell at any time.
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FIGURE 8 | Generated abundances of rRNA and tRNA for a cell cycle averaged over 1000 replicates. (A) 16S, 23S, and 5S rRNA are each generated to the same

average abundance of 800 over a cell cycle. (B) The average abundance of each tRNA generated in a cell cycle results in a total abundance of approximately 4000

tRNAs. The tRNAs in black are methionine and leucine, in blue are threonine, tryptophan, lysine, arginine, and serine, and remaining tRNAs are shown in pink.

1 ATP hydrolysis event is required per nucleotide removed
from the messenger. The transcription reactions assume 2 ATP
hydrolysis events per amino acid addition. These reactions use 2
instead of 4 ATP hydrolysis events since the amino acid charging
of the tRNA are already included in the essential metabolic
network (Breuer et al., 2019). The costs used are also shown
in Table 4.

3. RESULTS

3.1. Replication Initiation and Replication
We found that DnaA(IV) requires <1 min to bind to all three
dsDNA signatures. The stochastic trajectories of DnaA filament
formation from four representative cells are shown in Figure 6A.
The distribution of times to form the DnaA filament in Figure 6B
is peaked at 5 min, but on average it takes 8 min for the DnaA
filament to form on ssDNA as shown with a dotted line. Once the
filament is 30 DnaA in length, replication begins and the DnaA
filament is removed by the polymerization of DNA, resulting
in the fast drop from 30 to 0 DnaA in the filament as seen in
the trajectories in Figure 6A. It then takes another 50 min on
average for replication to reach completion in Figure 6C. We
predict replication initiation and replication are completed by 65
min, leaving another 40 min for the cell to divide in the 105 min
cell cycle.

To illustrate the time-dependent variation in protein
formation, the average abundance of free DnaA is shown in
Figure 6D. Within the first minute we see a fast drop due to
DnaA(IV) binding to high affinity dsDNA binding sites around
the genome. The filament formation slowly removes DnaA from
the free DnaA abundance until around 8 min when replication
most frequently begins. DnaA in then replenished over several
minutes due to removal of the filament by DNA helicase and
translation of new DnaA.

3.2. Transcription
The mRNA production in a single cell exhibits fluctuations
due to competing rates of formation and degradation. A

representative of the mRNA production for glucose-6-phosphate
isomerase over the 105 min simulation is shown in Figure 7A.
The abundance of the messenger fluctuates from zero to two
before DNA replication occurs and then one to five once the
gene has been duplicated. The time dependence of all mRNA
over a cell cycle averaged over 1,000 replicates are shown in
Figures 7B–E. The mRNA are divided by mRNA for metabolic
proteins (Figure 7B), genetic information processing and cell
division proteins (Figure 7C), ribosomal proteins (Figure 7D),
and proteins of unclear function (Figure 7E). The resulting
kinetics show each mRNA growing or depleting in population
from the initial one copy until the effects of replication are fully
manifested around 60 min. In the early phase, the increase or
decrease ofmRNA reflects the competition betweenmRNAdecay
and the length of the transcript and the strength of the gene’s
promoter. As the genome is duplicated, this equilibrium for each
mRNA shifts once a second copy of the gene is present. As
the position of the gene in the genome is not considered, the
variations are proportional to change in the DNA copy number
of the cell cycle and not the nearness to oriC. The total number
of mRNAs in Figure 7F varies from its initial value of 452 (one
for each of the protein-coding genes) to an equilibrium value of
approximately 425.

More than 500 of each rRNA were produced in a cell cycle
shown in Figure 8A, reaching the number required to produce
500–700 ribosomes in the cell cycle estimated by Breuer et al.
(2019). The number of each tRNA produced in Figure 8B

reveals three groupings of tRNA production. The three groupings
depend on the number of genes for each tRNA present in
the genome. The groups consisting of more than one gene
include 3 each of methionine and leucine tRNA genes making
up the tRNA grouped between 500 and 600 tRNA and 2 each
of threonine, tryptophan, lysine, arginine, and serine tRNA
genes making up the tRNA grouped between 300 and 400
tRNA. Overall the model produces approximately 4,000 total
tRNAs over a cell cycle, in close agreement with the initial
estimate of 3,750 obtained from scaling the abundances in E. coli
(Mackie, 2013).
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FIGURE 9 | (A) The distribution of proteins generated after 105 min averaged over 1,000 replicates approximately reproduces the experimental proteomics

distribution for JCVI-syn3A. (B) Average protein counts scaled to the proteomics numbers for proteins with a proteomics counts >10. Metabolic proteins (green),

non-ribosomal genetic information processing and cell division proteins (blue), and proteins of unclear function (gray). (C) A histogram of the scaled protein

abundances at 105 min shows that the model doubles the abundances of most proteins with only a few outliers including mostly proteins of unclear function and

thioredoxin, acyl carrier protein, transcription antitermination factor NusB, aspartyl/glutamyl-tRNA amidotransferase, and transporter ptsH. (D) A histogram of the

number of ribosomal proteins generated shows that the model produces approximately 500 of most ribosomal proteins, enough to form the predicted 500 ribosomes.

Some ribosomal proteins were produced in large excess including L34 above 4000, S21 near 3000, and L32, L35, S14, and L28 around 2000 each.

3.3. Translation
Since the protein degradation rate of 25 h is much slower than
the mRNA degradation rate of 4 min, proteins will accumulate
and only decay significantly by dilution through cell division.
The goal of the model was to approximately reproduce the
experimental proteomics distribution, double the abundance
of each non-ribosomal protein, and produce 500–700 of each
ribosomal protein. We compare our distribution of generated
proteins over a cell cycle to the experimental proteomics in
Figure 9A. We approximately reproduce most of the distribution
with the greatest deviation being for proteins with fewer than
10 counts in the proteomics data. In the rest of our analysis of
non-ribosomal proteins, we focus on proteins with experimental
proteomics abundances >10. For further comparison, the
number of each non-ribosomal protein generated over a cell
cycle is compared to its proteomics value used to initialize the
simulations (Figure 9B). From the histogram in Figure 9C we
see that most non-ribosomal proteins double in number over

a cell cycle with a few outliers, of which most are proteins of
unclear function. The remaining outliers include thioredoxin,
acyl carrier protein, transcription antitermination factor NusB,
aspartyl/glutamyl-tRNA amidotransferase, and ptsH, all of
which are short proteins around 100 amino acids in length
or shorter. The histogram of ribosomal proteins abundances
generated by the model in Figure 9D reveals that the model
produces 500 copies for the majority of the ribosomal proteins,
while the shortest are being overproduced. Ribosomal proteins
overproduced include L34 above 4,000, S21 near 3,000, and L32,
L35, S14, and L28 above 2,000 each. Ribosomal proteins not
generated to an abundance of at least 500 include L1, L3, S3, S5,
S2, and L2.

3.4. ATP Energy Costs
The model was constructed to estimate the ATP hydrolysis
requirements for the genetic information processes in the
minimal cell using per bp, nt, or aa usage of ATP in DNA
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TABLE 5 | ATP hydrolysis costs of the deterministic model for genetic information

processes.

Subsystem ATP used in 105 min

(millions)

ATP cost for a 400 nm

cell (mM)

Total 77 3,800

Replication 0.54 28

Transcription 10 500

Translation 59 2,900

mRNA degradation 5.9 290

Protein degradation 1.9 93

The ATP cost for transcription reported here only includes the hydrolysis costs of the

RNAP, it does not include ATP built into RNA sequences.

elongation, transcription, translation, mRNA degradation, and
protein degradation. The estimates of the ATP hydrolysis
cost over a 105 min simulation are presented in Table 5 as
both the total number of ATP used and the corresponding
concentration of ATP required for a 400 nm cell. The model
predicts that the total ATP hydrolysis cost over a cell cycle
to be approximately 3,800 mM for JCVI-syn3A. This estimate
does not suggest that 3,800 mM of ATP needs to be present
in the cell, but provides an estimate for how quickly the
metabolism will need to convert ADP into ATP. The most
significant of the ATP hydrolysis costs in the genetic information
processes comes from translation requiring 2,900 mM and the
smallest of the costs is for DNA replication at 28 mM. The
cost for translation will be higher once the genetic information
processes are paired with the metabolism, as this cost did
not account for the two ATP hydrolysis events to charge
each tRNA which are included in the essential metabolism
(Breuer et al., 2019). The cost for transcription of 500 mM
does not include the ATP built into RNA sequences, it
only includes the ATP hydrolysis costs of the RNAP. The
predicts ATP requirements for mRNA degradation and protein
degradation are predicted to be 290 and 90 mM, respectively.
The cost for protein degradation is smaller due to the long
protein have-life of 25 h relative to the 4 min half-life
of messengers.

4. DISCUSSION

Our detailed model for the initiation of DNA replication
builds upon observations from crystal structures of the initiator
protein DnaA bound to signatures on ds-and ssDNA found
near the oriC and smFRET measurements of the DnaA
filament formation on ssDNA. The time taken for DNA
replication initiation is predicted to vary from <5 min up
to 50 min. We predict a total time of 65 min on average
for the formation of the second copy of the genome, which
means at least one copy of the DNA can be generated in a
cell cycle.

The average number of any mRNA is within the expected
range from zero to ten as reported in E. coli (Milo and Phillips,
2015) and can be used as predictions for mRNA counts in
JCVI-syn3A until transcriptomic data or smFISH experiments

are available for validation. We predict that approximately 450
messengers will be present in the cell on average, agreeing with
the extrapolated number for a 400 nm diameter cell from Lynch
and Marinov (2015). In our previous treatments of replication
and transcription of a given gene in E. coli (Peterson et al., 2015;
Cole and Luthey-Schulten, 2017) we showed how the variation in
DNA copy number and position of the gene in circular DNA can
broaden the mRNA distribution. We are likely underestimating
the distributions for genes close to oriC and overestimating the
distributions for genes near the terminus. In the case of rRNA, a
higher transcription rate generated a sufficient number of rRNA
to form 500–700 ribosomes in a cell cycle. A higher transcription
rate was justified from the greater promoter strength of the rRNA
operon observed in E. coli and other bacteria (Maeda et al.,
2015) as well as the presence of multiple RNAPs estimated to be
reading the operon (Bremer and Dennis, 2008). While the model
produces over 500 rRNAs, there is variation in the number of
ribosomal proteins. For the majority of the ribosomal proteins,
approximately 500 of each were generated. However, the long
ribosomal proteins were not generated quickly enough and the
shorter ribosomal proteins occurred in much higher numbers.
This is likely due to no promoter strength being assigned to
the transcription of genes coding for ribosomal proteins. In the
case of non-ribosomal proteins where we assigned promoter
strengths based on proteomics counts, our model, to the most
part, approximately doubles the number of proteins over a cell
cycle. Identification of the promoter sequences and operonal
structures for genes in JCVI-syn3A would help assign variation
in promoter strengths and transcription rates on the basis of
genomic information rather than proteomics values.

The simplified kinetic models for the genetic information
processing reactions in the minimal cell JCVI-syn3A neglected
the explicit assembly of the protein complexes that replicate
DNA (replisome), transcribe the genes, and translate the mRNA
and instead focused on the “polymerization” reactions that
replicated the DNA, transcribed the genes into mRNAs, and
translated them into proteins and how they are coupled.
In some cases, this neglect can be justified by assumed
timescale separation of the processes, but in general more
experimental measurements of the assembly reactions would
help to establish to what degree the association of the
complexes are captured in the kinetic parameters given in
the literature for the fundamental processes of replication,
transcription, and translation. As the next step, the results
from the genetic information processes will first be connected
to uptake reactions that transport nucleobases, nucleosides,
and amino acids into the minimal cell. Coupling genetic
information processes with the essential metabolism and cell
growth should result in a complete whole cell kinetic model
of JCVI-syn3A.
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In this perspective, we discuss where and how accounting for electronic many-body

polarization affects the accuracy of classical molecular dynamics simulations of

biomolecules. While the effects of electronic polarization are highly pronounced for

molecules with an opposite total charge, they are also non-negligible for interactions

with overall neutral molecules. For instance, neglecting these effects in important

biomolecules like amino acids and phospholipids affects the structure of proteins

and membranes having a large impact on interpreting experimental data as well as

building coarse grained models. With the combined advances in theory, algorithms

and computational power it is currently realistic to perform simulations with explicit

polarizable dipoles on systems with relevant sizes and complexity. Alternatively, the

effects of electronic polarization can also be included at zero additional computational

cost compared to standard fixed-charge force fields using the electronic continuum

correction, as was recently demonstrated for several classes of biomolecules.

Keywords: molecular dynamics simulations, electronic polarization, electronic continuum correction,

biomolecules, phospholipids, amino acids, nucleic acids, ions

In molecular dynamics simulations, the interactions between molecules are described with
approximate potentials known as force fields that mimic the true Born-Oppenheimer energy
hypersurface. Among these methods, pairwise additive potentials are very popular for modeling
biomolecules such as proteins, lipids or nucleic acids (Ponder and Case, 2003; Lopes et al., 2015).
The current standard force fields (Huang and MacKerell, 2013; Maier et al., 2015; Robertson et al.,
2015), however, neglect important physical many-body effects such as the electronic polarization,
charge transfer, or many-body dispersion (cited in decaying magnitude order) (Kleshchonok and
Tkatchenko, 2018). Although such models have provided valuable insight into many phenomena
from various fields including biology, chemistry, biophysics, or material sciences, there are several
important cases in which accounting for polarizability is crucial.

PITFALLS OF NON-POLARIZABLE FORCE FIELDS

The limited predictive accuracy of non-polarizable force fields led the molecular modeling
community to develop new generation “polarizable” force fields (Gresh et al., 2007; Jorgensen,
2007; Stone, 2013; Shi et al., 2015; Piquemal and Jordan, 2017; Kleshchonok and Tkatchenko, 2018;
Martinek et al., 2018; Melcr et al., 2018, 2019; Antila et al., 2019; Jing et al., 2019) able to include the
missing physics with a special focus on the polarizability effects. Although such techniques are now
widely used in fields studying highly charged ionic liquids (Bedrov et al., 2019), their application
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cannot be limited only to such extreme cases. For instance,
neglecting the effects of the electronic polarizability in important
biomolecules like amino acids, nucleic acids, and phospholipids
affects the structure of proteins (Jiao et al., 2008; Shi et al.,
2009; Duboué-Dijon et al., 2018a), DNA (Babin et al., 2006),
and membranes (Harder et al., 2009; Catte et al., 2016; Melcr
et al., 2018) having a large impact on interpreting experimental
data (Hauser et al., 1977; Eisenberg et al., 1979; Kurland et al.,
1979; Feigenson, 1986; Mattai et al., 1989; Roux and Bloom,
1990, 1991; Böckmann and Grubmüller, 2004; Lund et al., 2008;
Vacha et al., 2009; Berkowitz et al., 2012; Melcrová et al., 2016;
Javanainen et al., 2017; Magarkar et al., 2017) as well as building
coarse grained models. Importantly, these results show that the
electronic polarization yields non-negligible effects also at overall
neutral molecules (Gresh et al., 2007; Melcr et al., 2018).

Secondary structure of proteins is to a large extent determined
by an intricate network of hydrogen bonds. The description
of hydrogen bonds in standard force fields, however, does
not contain important contributions, e.g., from polarization
and partially covalent character (Babin et al., 2006). It was
demonstrated in many cases including structure of water (Dang,
1998), binding of ligands to proteins (Friesner, 2005; Jiao
et al., 2008), and protein folding and unfolding (Morozov
et al., 2006; Freddolino et al., 2010; Piana et al., 2011, 2014;
Huang and MacKerell, 2014; Lemkul et al., 2016; Célerse et al.,
2019) that polarizability contributes significantly to the accuracy
of simulations of structures with hydrogen bonds. Also, salt
bridging between amino acids is likely overestimated in strength
when the effects of polarization are not included (Friesner, 2005;
Vazdar et al., 2013; Debiec et al., 2014; Ahmed et al., 2018; Célerse
et al., 2019; Mason et al., 2019). For instance, the interaction
of acidic side chains of glutamate and aspartate with cations is
overestimated in strength in classical non-polarizable force fields
(Patel et al., 2009; Duboué-Dijon et al., 2018a), while treatment of
polarizability in solvent relaxation affects salt bridge dissociation
(Célerse et al., 2019). Taken together, the secondary and tertiary
structural arrangements in the simulations of proteins are likely
biased to certain preferred configurations due to the lack of
polarizability depending on the chosen parametrization strategy
(Freddolino et al., 2009, 2010; Piana et al., 2011, 2014).

Membrane proteins form a large part of cellular proteome and
are in direct contact with amphiphilic cellular membranes, which
influence their structure and activity (Lee, 2004). Membranes
themselves are crucial cell organelles which define the inner
resp. outer cellular environment. They are predominantly
composed of amphiphilic phospholipids, which self-assemble
into stable bilayer structures (Harayama and Riezman, 2018).
The force fields for phospholipids have been tuned to the
level that the simulations of commonly used simplified
model lipid membranes can reproduce a large variety of
experimentally measured properties, phenomena and structural
features including lipid self-diffusion, x-ray scattering patterns,
bilayer thickness, area per phospholipid, and acyl chain order
parameters (Pluhackova et al., 2016).

This could make an impression that the currently available
non-polarizable lipid force fields provide comparable accuracy
to the models with explicit polarization at a fraction of

the computational cost. While the non-polarizable models
yield accurate results in many cases (Lucas et al., 2012;
Chowdhary et al., 2013a), simulation studies have revealed
that such models gradually lose their predictive accuracy with
increasing complexity beyond model systems used during
their parametrization, e.g., when membranes are put into
contact with buffers of physiological ionic strengths (Catte
et al., 2016). For instance, improvements in the electrostatics
of phospholipid membranes have a great impact on the
membrane dipole potential, permeation of water through
membranes, and viscosity of organic liquids (Harder et al.,
2009; Venable et al., 2019). Moreover, the interactions between
phospholipids and cations, especially divalent cations like
calcium, are overestimated in the classical non-polarizable
models (Catte et al., 2016; Melcr et al., 2018; Antila et al.,
2019).

In general, the structure of divalent cations complexes that
are widespread in biosystems is traditionally problematic in
non-polarizable simulations (Kohagen et al., 2015). In contrast,
simulations with explicit or implicit treatment of polarization
yield comparable accuracy to DFT-based ab-initio calculations
and neutron scattering experiments, as was demonstrated for
biologically relevant divalent cations Ca2+ and Mg2+ (Piquemal
et al., 2006b; Wu et al., 2010; Martinek et al., 2018). While
accounting for the electronic polarization overall improves the
predictive accuracy of simulations in general, it is not sufficient
in some cases like zinc chloride ion pairing, where more complex
physics beyond “mere” electronic polarization is at play (Gresh
et al., 2005, 2007; Piquemal et al., 2007; Duboué-Dijon et al.,
2018b).

IMPLICIT TREATMENT OF ELECTRONIC

POLARIZATION VIA ELECTRONIC

CONTINUUM CORRECTION

The necessity of polarizability and screening in modeling
lipid bilayers has been an issue from the very beginning
of computational modeling of model membranes. The first
pioneering works on phospholipid bilayers document the need of
including polarizability and extra screening in the development
of the first models, which was achieved at that time through
an empirical scaling factor for the partial atomic charges of the
phospholipids (Egberts et al., 1994). A similar strategy supported
by continuum theory was used in the recent developments
of phospholipid force fields, which implicitly account for the
electronic polarization using Electronic continuum correction
(ECC) (Leontyev and Stuchebrukhov, 2009, 2010a; Mason et al.,
2012; Pegado et al., 2012; Pluhařová et al., 2013; Martinek et al.,
2018). Despite the approximate treatment of the polarizability
using ECC, such lipid force fields provide accurate interactions
between phospholipid bilayers and cations in agreement with
experiments (Melcr et al., 2018). In particular, in the case of
the neutral phosphatidylcholine (PC), ECC improved the cation
binding affinity for monovalent, and divalent cations reaching
agreement with experiments (Melcr et al., 2018), while for
negatively charged phosphatidylserine (PS) it has also improved
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the overall structure of the phospholipid and the interactions
with other lipids (Antila et al., 2019; Melcr et al., 2019).

Electronic continuum correction is a very efficient alternative
to otherwise computationally demanding explicit modeling of
electronic polarization (Bedrov et al., 2019). The accuracy of the
ECC method was shown to yield promising results on several
polar organic solvents (Leontyev and Stuchebrukhov, 2010b,
2012; Lee and Park, 2011; Vazdar et al., 2013), while it proved
to be necessary yet sufficient for an accurate description of the
structure of several monovalent and divalent ions in aqueous
solutions (Mason et al., 2012; Pegado et al., 2012; Pluhařová et al.,
2013). To date, the array of force fields utilizing ECC has grown
from a wide range of biologically relevant ions (Kohagen et al.,
2014, 2015; Martinek et al., 2018), to protein moieties (Vazdar
et al., 2013; Duboué-Dijon et al., 2018a; Mason et al., 2019),
and whole phospholipid molecules (Melcr et al., 2018) making
realistic simulations of e.g., membrane proteins at physiological
ionic conditions possible.

In ECC all particles are assumed to have equal polarizabilities
and the electric field and electron density within each particle
is homogenous (Leontyev and Stuchebrukhov, 2009). Such
approximations simplify the calculations of the polarization
to such an extent that it can be simply included in the
interactions as a pre-determined charge-scaling factor (Leontyev
and Stuchebrukhov, 2009), which is derived from the high-
frequency dielectric constant of electrons, εel, as 1/

√
εel ≈ 0.75

for aqueous solutions. Importantly, εel is close to 2 for a wide
variety of biologically relevant environments meaning that even
interfaces like biological membranes do not give rise to large
gradients. Despite the coarseness of the approximations, the
effects of electronic polarization are described sufficiently well
for a variety of biologically relevant molecules in a condensed
phase (Duboué-Dijon et al., 2018a,b; Martinek et al., 2018;
Melcr et al., 2018). Moreover, ECC accounts for the effects of
electronic polarization at zero additional computational cost
compared to standard fixed-charge force fields. Although, a
new generation of simulation codes performing large scale
simulations with explicit polarization models starts to emerge
(Lagardère et al., 2018), ECC yields the benefit of employing
the widely adopted and already highly optimized codes for
classical MD.

The common implementation of ECC via charge rescaling
profoundly resembles an empirical scaling factor, which,
obviously, reduces the interaction of charged molecules. From
both the derived ECC theory (Leontyev and Stuchebrukhov,
2010a) and its applications, which compare ECC to also other
methods (Pegado et al., 2012; Martinek et al., 2018), it is however
clear that the improvements pertinent to ECC can be attributed
to the electronic polarization. For instance, interactions of
sulfate anions were directly compared between simulations with
ECC, solvent shell model (Rick and Stuart, 2003) and ab-initio
calculations (Pegado et al., 2012). This comparison has revealed
that ECC performed comparably well to the other methods
at a fraction of the computational cost. Moreover, ECC was
concluded as preferable over the explicit solvent shell model for

sulfate anions as it was closer to the structures from ab-initio
calculations (Pegado et al., 2012).

CAPTURING EFFECTS BEYOND

ELECTRONIC POLARIZATION

The accuracy of the implicit methods including ECC is limited
and gradually becomes inadequate in cases, which do not adhere
to the assumed approximations. For instance, the complex
electronic structure of Zn2+ makes it difficult to capture
the ion pairing of zinc chloride with ECC unless specific
ad hoc interaction terms between the ions are introduced
(Duboué-Dijon et al., 2018b). Hence, resorting to more accurate
modeling strategies including explicit polarizable dipoles—or
even effects beyond electronic polarization—becomes necessary
in such cases.

The AMOEBA force field with explicit polarizable dipoles
correctly reproduces water structure around Zn2+ in bulk
solution and its free energy of hydration, however, it still does
not capture the fine details of zinc chloride ion pairing. The
reason for that is that Zn2+ exhibits considerably large charge
transfer effects prefiguring what is happening with transition
metals where back-donation effects become important (Gresh
et al., 2005, 2007; Piquemal et al., 2007). Simulations then need
to utilize more complex polarizable force fields able to separately
evaluate the different physical contributions. Indeed, short-range
electrostatics in such systems is anything but classical as it is
strongly affected by quantum penetration effects in the overlap
region (Piquemal et al., 2003, 2006a; Gresh et al., 2005, 2007;
Wang et al., 2015). On the contrary, many-body polarization
interactions which are usually cooperative (i.e., the total energy
being larger that the purely additive contributions) do not behave
in such a way (Gresh et al., 2007, 2016; Zhang et al., 2012;
Jing et al., 2018). Divalent metal cations in particular locally
reverse the physical trends and exhibit net anticooperativity as
the total energy becomes smaller than the sum of individual
contributions. For example SIBFA (Sum of Interactions Between
Fragments Ab initio computed) incorporates a many-body
explicit charge transfer (Gresh et al., 2005, 2007; Piquemal et al.,
2007) and a penetration correction for electrostatics (Piquemal
et al., 2003; Narth et al., 2016), and is able to deal with such
difficult systems.

Such effects also exist with variablemagnitude in biomolecular
simulations, and resorting to more accurate methods employing
physics even beyond explicit polarization will be likely required
for predictive accuracy in many cases, e.g., metalloproteins,
which shall be interesting playgrounds for such modeling (Gresh
et al., 2007, 2016; Zhang et al., 2012; Jing et al., 2018).
Improvements in capturing correct physics is a general trend
in current developments, and besides SIBFA, the AMOEBA
force field is gradually evolving into the AMOEBA+ potential,
which additionally includes such physical effects (Liu et al.,
2019). Moreover, several other general polarizable potentials are
emerging (Huang et al., 2017; Das et al., 2019; Rackers and
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Ponder, 2019) indicating the start of next-generation polarizable
force fields development (Piquemal et al., 2006a; Duke et al., 2014;
Piquemal and Cisneros, 2016).

ARE POLARIZABLE SIMULATIONS

COMPUTATIONALLY TRACTABLE?

This being said the question remains: is there any practically
achievable perspective application of such advanced models
to meaningfully large simulations of biologically relevant
systems?—Certainly yes. If the use of polarizable models has
been doomed by their computational cost for years, things have
dramatically improved. In terms of computational requirements,
the approaches utilizing Drude particles (Lopes et al., 2013)
traditionally appeared more feasible compared to explicit point
dipole approaches (Lipparini et al., 2014; Lagardère et al., 2015),
as their computational cost in standard high-performance codes
was higher by a factor 2–4 depending on implementation and
reference settings compared to non-polarizable force fields (Jiang
et al., 2011), while the explicit point dipoles models were
roughly twice slower. However, such models cannot utilize long
time-steps because of their use of extended Lagrangian, which
practically imposes a speed limit (Wang and Skeel, 2005; Albaugh
and Head-Gordon, 2017). In contrast, utilizing advanced
algorithms for solving polarization and dynamical integration is
possible within explicit point dipole approaches leading to strong
speed increases to the performance level of Drude approach
(even for higher-level multipolar electrostatics approaches such
as AMOEBA) when compared to usual non-polarizable models
simulation (Lagardère et al., 2019). However, the numerous
available point dipole force fields (AMOEBA, SIBFA etc. . . ) had
in practice another handicap besides their computational cost:
they were not available in high performance/production codes
such as GROMACS or NAMD (Phillips et al., 2002; Van Der
Spoel et al., 2005).

This situation has gradually changed in recent years. First,
in link with the improved multi-timestep integration, the key
mathematical problem of solving the point dipole equations
using iterative methods was alleviated using new non-iterative
approaches such as the Truncated Conjugate Gradient (TCG-
1) (Aviat et al., 2017a,b) that allows for a fix cost evaluation
of polarization. When coupled to an analytical evaluation
of gradient such an approach fully preserves energy and,
hence, allows for long time step simulations. Second, the
availability of massively parallel MPI codes able to efficiently
use supercomputers using 3D domain decomposition techniques
such as Tinker-HP (Lagardère et al., 2018; Jolly et al., 2019)
[the high performance engine of the Tinker molecular package
Rackers et al., 2018] shed first rays of light at the end of the
tunnel leading toward simulations of biologically relevant large
systems on long enough timescales with explicit polarization.
Moreover, GPU accelerated implementations of AMOEBA in
OpenMM (Huang et al., 2018) and Tinker-OpenMM (Harger
et al., 2017) are available whereas the support of hybrid
(multi)CPUs-GPUs is coming in Tinker-HP (O. Adjoua et al.,
personal communication).

Overall, methodology has made a key progress and will
continue in this direction for all types of polarizable force fields
as the accessible computer power quickly increases reducing
therefore the computational gap with additive potentials.
Whereas specialized highly accurate water potentials based on
many-body expansions emerge such as MBPOL (Riera et al.,
2019) and allow for a better understanding of fine physical effects
in clusters and bulk water, the availability of general polarizable
force fields such as AMOEBA offering water (Ren and Ponder,
2003), ions, organochlorine compounds (Mu et al., 2014),
proteins and nucleic acids (Shi et al., 2013; Zhang et al., 2018)
now enables performing enough sampling to achieve highly
accurate and biologically meaningful simulations. The Drude
approaches parametrization is expanding as well (Lamoureux
et al., 2003; Chowdhary et al., 2013a,b; Lopes et al., 2013).
Moreover, accelerated sampling methods start to be applied also
to polarizable approaches (Célerse et al., 2019) offering improved
simulation capabilities and access to accurate and fast evaluation
of free energies of binding thanks to GPUs (Harger et al., 2017).
Such capabilities allow to tackle hard systems as in the case of
the Phosphate binding mode of the Phosphate-binding protein
where it was possible to highlight the critical effect of the buffer
solution ending a long standing controversy thanks to free energy
computations (Qi et al., 2018).

SUMMARY: BIOMOLECULAR

SIMULATIONS OF THE FUTURE ARE

POLARIZABLE

In summary, we have presented several important classes and
case studies of biomolecules, where including polarizability
is an important factor for the simulation accuracy. Cytosolic
environment in cells is mostly composed of water solutions
of ions, for which polarizability is necessary for the accurate
description of the solvated structure of ions, their pairing and
interaction with other biomolecules (Piquemal et al., 2006b; Wu
et al., 2010; Mason et al., 2012; Pegado et al., 2012; Pluhařová
et al., 2013; Duboué-Dijon et al., 2018a,b; Martinek et al., 2018;
Melcr et al., 2018). Polarizability is an important factor for
accurate interactions between amino acids, namely salt bridges
between them, which are overestimated in strength in current
non-polarizable force fields (Friesner, 2005; Vazdar et al., 2013;
Ahmed et al., 2018; Célerse et al., 2019; Mason et al., 2019).
Moreover, polarizable force fields yield a better description of
the hydrophobic effect and hydrogen bond networks in proteins,
which to a large extent determine the dynamic structure and
conformational changes of proteins (Dill et al., 1995; García-
Moreno et al., 1997; Fitch et al., 2002; Morozov et al., 2006;
Freddolino et al., 2010; Piana et al., 2011, 2014; Huang and
MacKerell, 2014; Lemkul et al., 2016; Célerse et al., 2019; Venable
et al., 2019). Polarizability is necessary for accurate structure and
interactions of both neutral and charged phospholipids, which
constitute a dominant part of cellular membranes (Harder et al.,
2009; Catte et al., 2016; Melcr et al., 2018).

The representation of electronic polarization in classical MD
simulations can vary largely with Drude and induced point
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dipoles approaches on one side and continuum approximations
on the other (Cieplak et al., 2009; Lopes et al., 2009; Leontyev
and Stuchebrukhov, 2011; Schröder, 2012; Baker, 2015; Shi
et al., 2015; Lemkul et al., 2016; Bedrov et al., 2019; Jing
et al., 2019). With the advances in both computational power
together with theory and algorithms it is practically achievable
to perform simulations with explicit polarizable dipoles on
systems with relevant sizes and complexity (Qi et al., 2018;
Bedrov et al., 2019; Lagardère et al., 2019; Loco et al., 2019).
In particular, it is currently realistic to perform simulations
with explicit polarization at time scales, which are competitive
to the standard fixed-charge simulations (Lemkul et al., 2016;
Lagardère et al., 2018; Célerse et al., 2019). Moreover, advanced
polarizable potentials (e.g., SIBFA, AMOEBA+) including effects
even beyond electronic polarization are being actively developed
to tackle systems with complex structure like metalloproteins,
kinases or ribozymes (Gresh et al., 2007, 2016; Zhang et al.,
2012; Jing et al., 2018, 2019; Das et al., 2019; Liu et al.,
2019; Rackers and Ponder, 2019). Also, approximate implicit
solutions like ECC, which circumvent the computational costs of
explicit polarization, gradually gain on popularity and provide a
promising solution for a variety of applications in biomolecular
simulations (Duboué-Dijon et al., 2018a,b; Martinek et al.,
2018; Melcr et al., 2018, 2019; Mason et al., 2019). Finally,
as fully variational polarizable embeddings are now possible
in hybrid QM/MM molecular simulations (Loco et al., 2016,
2017, 2019), one can expect that hybrid explicit polarization/ECC
simulations will be possible in the near future offering a multi-
level global treatment of polarization across very large complex
molecular systems.

Biomolecules in the real world cannot turn off their
polarizability. Hence, molecular dynamics simulations, which
aim to give a realistic, robust, and predictive results, cannot
afford to neglect this important contribution to the electrostatic

interaction. Currently, polarizable force fields for a large
variety of biomolecules and simulation codes implementing
polarizability exist and are readily available to solve various
biophysical problems (Wu et al., 2010; Chowdhary et al., 2013a;
Lemkul et al., 2016; Duboué-Dijon et al., 2018a,b; Lagardère et al.,
2018; Martinek et al., 2018; Melcr et al., 2018; Zhang et al., 2018;
Bedrov et al., 2019; Célerse et al., 2019; Jing et al., 2019; Liu et al.,
2019). We expect that the popularity of such approaches will
grow and will become a common tool in biomolecular research
in the near future.
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and Křížek, T., et al. (2018a). Binding of divalent cations to insulin: capillary
electrophoresis and molecular simulations. J. Phys. Chem. B 122, 5640–5648.
doi: 10.1021/acs.jpcb.7b12097

Duboué-Dijon, E., Mason, P. E., Fischer, H. E., and Jungwirth, P. (2018b).
Hydration and ion pairing in aqueous Mg2 and Zn2 solutions: force-
field description aided by neutron scattering experiments and ab initio
molecular dynamics simulations. J. Phys. Chem. B 122, 3296–3306.
doi: 10.1021/acs.jpcb.7b09612

Duke, R. E., Starovoytov, O. N., Piquemal, J.-P., and Cisneros, G. A. (2014).
GEM∗: a molecular electronic density-based force field for molecular dynamics
simulations. J. Chem. Theory Comput. 10, 1361–1365. doi: 10.1021/ct500050p

Egberts, E., Marrink, S. J., and Berendsen, H. J. C. (1994). Molecular dynamics
simulation of a phospholipid membrane. Eur. Biophys. J. 22, 423–436.
doi: 10.1007/BF00180163

Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S. (1979). Adsorption of
monovalent cations to bilayer membranes containing negative phospholipids.
Biochemistry 18, 5213–5223. doi: 10.1021/bi00590a028

Feigenson, G. W. (1986). On the nature of calcium ion binding
between phosphatidylserine lamellae. Biochemistry 25, 5819–5825.
doi: 10.1021/bi00367a071

Fitch, C. A., Karp, D. A., Lee, K. K., Stites, W. E., Lattman, E. E., and Bertrand
García-Moreno, E. (2002). Experimental pKa values of buried residues: analysis
with continuum methods and role of water penetration. Biophys. J. 82,
3289–3304. doi: 10.1016/S0006-3495(02)75670-1

Freddolino, P. L., Harrison, C. B., Liu, Y., and Schulten, K. (2010). Challenges in
protein folding simulations: timescale, representation, and analysis. Nat. Phys.
6, 751–758. doi: 10.1038/nphys1713

Freddolino, P. L., Park, S., Roux, B., and Schulten, K. (2009). Force
field bias in protein folding simulations. Biophys. J. 96, 3772–3780.
doi: 10.1016/j.bpj.2009.02.033

Friesner, R. A. (2005). “Modeling polarization in proteins and protein–ligand
complexes: methods and preliminary results,” inAdvances in Protein Chemistry.

eds R. L. Baldwin and D. Baker (Amsterdam: Academic Press), 79–104.
doi: 10.1016/S0065-3233(05)72003-9

García-Moreno, B., Dwyer, J. J., Gittis, A. G., Lattman, E. E., Spencer, D.
S., and Stites, W. E. (1997). Experimental measurement of the effective
dielectric in the hydrophobic core of a protein. Biophys. Chem. 64, 211–224.
doi: 10.1016/S0301-4622(96)02238-7

Gresh, N., Cisneros, G. A., Darden, T. A., and Piquemal, J.-P. (2007).
Anisotropic, polarizable molecular mechanics studies of inter- and
intramolecular interactions and ligand-macromolecule complexes. A
Bottom-Up Strategy. J. Chem. Theory Comput. 3, 1960–1986. doi: 10.1021/ct
700134r

Gresh, N., Perahia, D., de Courcy, B., Foret, J., Roux, C., El-Khoury, L., et al.
(2016). Complexes of a Zn-metalloenzyme binding site with hydroxamate-
containing ligands. A case for detailed benchmarkings of polarizable molecular
mechanics/dynamics potentials when the experimental binding structure is
unknown. J. Comput. Chem. 37, 2770–2782. doi: 10.1002/jcc.24503

Gresh, N., Piquemal, J.-P., and Krauss, M. (2005). Representation of Zn(II)
complexes in polarizable molecular mechanics. Further refinements of the
electrostatic and short-range contributions. Comparisons with parallel ab initio
computations. J. Comput. Chem. 26, 1113–1130. doi: 10.1002/jcc.20244

Harayama, T., and Riezman, H. (2018). Understanding the diversity of
membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296.
doi: 10.1038/nrm.2017.138

Harder, E., Mackerell, A. D. Jr., and Roux, B. (2009). Many-body polarization
effects and the membrane dipole potential. J. Am. Chem. Soc. 131, 2760–2761.
doi: 10.1021/ja806825g

Harger, M., Li, D., Wang, Z., Dalby, K., Lagardère, L., Piquemal, J.-P., et al.
(2017). Tinker-OpenMM: absolute and relative alchemical free energies using
AMOEBA on GPUs. J. Comput. Chem. 38, 2047–2055. doi: 10.1002/jcc.24853

Hauser, H., Hinckley, C. C., Krebs, J., Levine, B. A., Phillips, M. C., andWilliams, R.
J. (1977). The interaction of ions with phosphatidylcholine. Biochim. Biophys.

Acta 468, 364–377. doi: 10.1016/0005-2736(77)90288-7
Huang, J., Lemkul, J. A., Eastman, P. K., andMacKerell, A. D. Jr. (2018). Molecular

dynamics simulations using the drude polarizable force field on GPUs with
OpenMM: Implementation, validation, and benchmarks. J. Comput. Chem. 39,
1682–1689. doi: 10.1002/jcc.25339

Huang, J., and MacKerell, A. D. Jr. (2013). CHARMM36 all-atom additive protein
force field: validation based on comparison to NMR data. J. Comput. Chem. 34,
2135–2145. doi: 10.1002/jcc.23354

Huang, J., and MacKerell, A. D. Jr. (2014). Induction of peptide bond dipoles
drives cooperative helix formation in the (AAQAA)3 peptide. Biophys. J. 107,
991–997. doi: 10.1016/j.bpj.2014.06.038

Huang, J., Simmonett, A. C., Pickard, F. C. IV., MacKerell, A. D. Jr., and
Brooks, B. R. (2017). Mapping the drude polarizable force field onto a
multipole and induced dipole model. J. Chem. Phys. 147:161702. doi: 10.1063/
1.4984113

Javanainen, M., Melcrová, A. A., Magarkar, A., Jurkiewicz, P., Hof, M., Jungwirth,
P., et al. (2017). Two cations, two mechanisms: interactions of sodium and
calcium with zwitterionic lipid membranes. Chem. Commun. 53, 5380–5383.
doi: 10.1039/C7CC02208E

Jiang, W., Hardy, D. J., Phillips, J. C., Mackerell, A. D. Jr., Schulten, K., and Roux,
B. (2011). High-performance scalable molecular dynamics simulations of a
polarizable force field based on classical Drude oscillators in NAMD. J. Phys.
Chem. Lett. 2, 87–92. doi: 10.1021/jz101461d

Jiao, D., Golubkov, P. A., Darden, T. A., and Ren, P. (2008). Calculation
of protein–ligand binding free energy by using a polarizable potential.
Proc. Natl. Acad. Sci. U.S.A. 105, 6290–6295. doi: 10.1073/pnas.0711
686105

Jing, Z., Liu, C., Cheng, S. Y., Qi, R., Walker, B. D., Piquemal, J.-
P., et al. (2019). Polarizable force fields for biomolecular simulations:
recent advances and applications. Annu. Rev. Biophys. 48, 371–394.
doi: 10.1146/annurev-biophys-070317-033349

Jing, Z., Liu, C., Qi, R., and Ren, P. (2018). Many-body effect determines the
selectivity for Ca and Mg in proteins. Proc. Natl. Acad. Sci. U.S.A. 115,
E7495–E7501. doi: 10.1073/pnas.1805049115

Jolly, L. H., Duran, A., Lagardère, L., Ponder, J. W., Ren, P. Y., and Piquemal, J.-P.
(2019). Raising the performance of the Tinker-HPmolecular modeling package
[article v1.0]. LiveCoMS 1:10409. doi: 10.33011/livecoms.1.2.10409

Jorgensen, W. L. (2007). Special issue on polarization. J. Chem. Theory Comput.

3:1877. doi: 10.1021/ct700252g
Kleshchonok, A., and Tkatchenko, A. (2018). Tailoring van der Waals

dispersion interactions with external electric charges. Nat. Commun. 9:3017.
doi: 10.1038/s41467-018-05407-x

Kohagen, M., Mason, P. E., and Jungwirth, P. (2014). Accurate description of
calcium solvation in concentrated aqueous solutions. J. Phys. Chem. B 118,
1–27. doi: 10.1021/jp5005693

Kohagen, M., Pluharová, E., Mason, P. E., and Jungwirth, P. (2015). Exploring
ion-ion interactions in aqueous solutions by a combination of molecular
dynamics and neutron scattering. J. Phys. Chem. Lett. 6, 1563–1567.
doi: 10.1021/acs.jpclett.5b00060

Kurland, R., Newton, C., Nir, S., and Papahadjopoulos, D. (1979).
Specificity of Na+ binding to phosphatidylserine vesicles from a 23Na
NMR relaxation rate study. Biochim. Biophys. Acta 551, 137–147.
doi: 10.1016/0005-2736(79)90360-2

Frontiers in Molecular Biosciences | www.frontiersin.org 6 December 2019 | Volume 6 | Article 143153

https://doi.org/10.1016/j.bpj.2012.11.210
https://doi.org/10.1088/0953-8984/21/33/333102
https://doi.org/10.1021/jp9731258
https://doi.org/10.1021/acs.jctc.9b00478
https://doi.org/10.1021/jp500958r
https://doi.org/10.1002/pro.5560040401
https://doi.org/10.1021/acs.jpcb.7b12097
https://doi.org/10.1021/acs.jpcb.7b09612
https://doi.org/10.1021/ct500050p
https://doi.org/10.1007/BF00180163
https://doi.org/10.1021/bi00590a028
https://doi.org/10.1021/bi00367a071
https://doi.org/10.1016/S0006-3495(02)75670-1
https://doi.org/10.1038/nphys1713
https://doi.org/10.1016/j.bpj.2009.02.033
https://doi.org/10.1016/S0065-3233(05)72003-9
https://doi.org/10.1016/S0301-4622(96)02238-7
https://doi.org/10.1021/ct700134r
https://doi.org/10.1002/jcc.24503
https://doi.org/10.1002/jcc.20244
https://doi.org/10.1038/nrm.2017.138
https://doi.org/10.1021/ja806825g
https://doi.org/10.1002/jcc.24853
https://doi.org/10.1016/0005-2736(77)90288-7
https://doi.org/10.1002/jcc.25339
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1016/j.bpj.2014.06.038
https://doi.org/10.1063/1.4984113
https://doi.org/10.1039/C7CC02208E
https://doi.org/10.1021/jz101461d
https://doi.org/10.1073/pnas.0711686105
https://doi.org/10.1146/annurev-biophys-070317-033349
https://doi.org/10.1073/pnas.1805049115
https://doi.org/10.33011/livecoms.1.2.10409
https://doi.org/10.1021/ct700252g
https://doi.org/10.1038/s41467-018-05407-x
https://doi.org/10.1021/jp5005693
https://doi.org/10.1021/acs.jpclett.5b00060
https://doi.org/10.1016/0005-2736(79)90360-2
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Melcr and Piquemal Polarization for Accurate Biomolecular Simulations

Lagardère, L., Aviat, F., and Piquemal, J.-P. (2019). Pushing the limits of multiple-
time-step strategies for polarizable point dipole molecular dynamics. J. Phys.
Chem. Lett. 10, 2593–2599. doi: 10.1021/acs.jpclett.9b00901

Lagardère, L., Jolly, L.-H., Lipparini, F., Aviat, F., Stamm, B., Jing, Z. F., et al. (2018).
Tinker-HP: a massively parallel molecular dynamics package for multiscale
simulations of large complex systems with advanced point dipole polarizable
force fields. Chem. Sci. 9, 956–972. doi: 10.1039/C7SC04531J

Lagardère, L., Lipparini, F., Polack, É., Stamm, B., Cancès, É., Schnieders, M.,
et al. (2015). Scalable evaluation of polarization energy and associated forces
in polarizable molecular dynamics: II. Toward massively parallel computations
using smooth particle mesh Ewald. J. Chem. Theory Comput. 11, 2589–2599.
doi: 10.1021/acs.jctc.5b00171

Lamoureux, G., MacKerell, A. D. Jr., and Roux, B. (2003). A simple polarizable
model of water based on classical Drude oscillators. J. Chem. Phys. 119,
5185–5197. doi: 10.1063/1.1598191

Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins.
Biochim. Biophys. Acta 1666, 62–87. doi: 10.1016/j.bbamem.2004.05.012

Lee, S., and Park, S. S. (2011). Dielectric properties of organic solvents from
non-polarizable molecular dynamics simulation with electronic continuum
model and density functional theory. J. Phys. Chem. B 115, 12571–12576.
doi: 10.1021/jp207658m

Lemkul, J. A., Huang, J., Roux, B., and Mackerell, A. D. (2016). An empirical
polarizable force field based on the classical drude oscillator model:
development history and recent applications. Chem. Rev. 116, 4983–5013.
doi: 10.1021/acs.chemrev.5b00505

Leontyev, I., and Stuchebrukhov, A. (2011). Accounting for electronic
polarization in non-polarizable force fields. Phys. Chem. Chem. Phys. 13:2613.
doi: 10.1039/c0cp01971b

Leontyev, I. V., and Stuchebrukhov, A. A. (2009). Electronic continuum
model for molecular dynamics simulations. J. Chem. Phys. 130:085102.
doi: 10.1063/1.3060164

Leontyev, I. V., and Stuchebrukhov, A. A. (2010a). Electronic continuum model
for molecular dynamics simulations of biological molecules. J. Chem. Theory

Comput. 6, 1498–1508. doi: 10.1021/ct9005807
Leontyev, I. V., and Stuchebrukhov, A. A. (2010b). Electronic polarizability and

the effective pair potentials of water. J. Chem. Theory Comput. 6, 3153–3161.
doi: 10.1021/ct1002048

Leontyev, I. V., and Stuchebrukhov, A. A. (2012). Polarizable mean-field model of
water for biological simulations with amber and charmm force fields. J. Chem.

Theory Comput. 8, 3207–3216. doi: 10.1021/ct300011h
Lipparini, F., Lagardère, L., Stamm, B., Cancès, E., Schnieders, M., Ren, P.,

et al. (2014). Scalable Evaluation of Polarization Energy and Associated
Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct
Space Computations. J. Chem. Theory Comput. 10, 1638–1651. doi: 10.1021/
ct401096t

Liu, C., Piquemal, J.-P., and Ren, P. (2019). AMOEBA+ classical potential for
modeling molecular interactions. J. Chem. Theory Comput. 15, 4122–4139.
doi: 10.1021/acs.jctc.9b00261

Loco, D., Lagardère, L., Caprasecca, S., Lipparini, F., Mennucci, B., and
Piquemal, J.-P. (2017). Hybrid QM/MM molecular dynamics with
AMOEBA polarizable embedding. J. Chem. Theory Comput. 13, 4025–4033.
doi: 10.1021/acs.jctc.7b00572

Loco, D., Lagardère, L., Cisneros, G. A., Scalmani, G., Frisch, M., Lipparini, F.,
et al. (2019). Towards large scale hybrid QM/MMdynamics of complex systems
with advanced point dipole polarizable embeddings. Chem. Sci. 10, 7200–7211.
doi: 10.1039/C9SC01745C

Loco, D., Polack, É., Caprasecca, S., Lagardère, L., Lipparini, F., Piquemal, J.-P.,
et al. (2016). A QM/MM approach using the AMOEBA polarizable embedding:
from ground state energies to electronic excitations. J. Chem. Theory Comput.

12, 3654–3661. doi: 10.1021/acs.jctc.6b00385
Lopes, P. E. M., Guvench, O., and MacKerell, A. D. Jr. (2015). Current status of

protein force fields for molecular dynamics simulations. Methods Mol. Biol.

1215, 47–71. doi: 10.1007/978-1-4939-1465-4_3
Lopes, P. E. M., Huang, J., Shim, J., Luo, Y., Li, H., Roux, B., et al. (2013).

Polarizable force field for peptides and proteins based on the classical
drude oscillator. J. Chem. Theory Comput. 9, 5430–5449. doi: 10.1021/ct40
0781b

Lopes, P. E. M., Roux, B., and Mackerell, A. D. Jr. (2009). Molecular modeling and
dynamics studies with explicit inclusion of electronic polarizability. Theory and
applications. Theor. Chem. Acc. 124, 11–28. doi: 10.1007/s00214-009-0617-x

Lucas, T. R., Bauer, B. A., and Patel, S. (2012). Charge equilibration
force fields for molecular dynamics simulations of lipids, bilayers, and
integral membrane protein systems. BBA - Biomembranes 1818, 318–329.
doi: 10.1016/j.bbamem.2011.09.016

Lund, M., Vacha, R., and Jungwirth, P. (2008). Specific ion binding to
macromolecules: effects of hydrophobicity and ion pairing. Langmuir 24,
3387–3391. doi: 10.1021/la7034104

Magarkar, A., Jurkiewicz, P., Allolio, C., Hof, M., and Jungwirth, P. (2017).
Increased binding of calcium ions at positively curved phospholipid
membranes. J. Phys. Chem. Lett. 8, 518–523. doi: 10.1021/acs.jpclett.6b02818

Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., and
Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and
backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713.
doi: 10.1021/acs.jctc.5b00255

Martinek, T., Duboué-Dijon, E., Timr, Š., Mason, P. E., Baxová, K., Fischer, H. E.,
et al. (2018). Calcium ions in aqueous solutions: Accurate force field description
aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys.

148:222813. doi: 10.1063/1.5006779
Mason, P. E., Jungwirth, P., and Duboué-Dijon, E. (2019). Quantifying the strength

of a salt bridge by neutron scattering and molecular dynamics. J. Phys. Chem.

Lett. 10, 3254–3259. doi: 10.1021/acs.jpclett.9b01309
Mason, P. E., Wernersson, E., and Jungwirth, P. (2012). Accurate description of

aqueous carbonate ions: an effective polarization model verified by neutron
scattering. J. Phys. Chem. B 116, 8145–8153. doi: 10.1021/jp3008267

Mattai, J., Hauser, H., Demel, R. A., and Shipley, G. G. (1989). Interactions of metal
ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain
unsaturation. Biochemistry 28, 2322–2330. doi: 10.1021/bi00431a051

Melcr, J., Ferreira, T., Jungwirth, P., and Ollila, O. H. S. (2019). Improved Cation

Binding to Lipid Bilayer With Negatively Charged POPS by Effective Inclusion of

Electronic Polarization. Preprint manuscript at Zenodo.org.
Melcr, J., Martinez-Seara, H., Nencini, R., Kolafa, J., Jungwirth, P., and Ollila, O.

H. S. (2018). Accurate binding of sodium and calcium to a POPC bilayer by
effective inclusion of electronic polarization. J. Phys. Chem. B 122, 4546–4557.
doi: 10.1021/acs.jpcb.7b12510

Melcrová, A., Pokorná, S., Pullanchery, S., Kohagen, M., Jurkiewicz, P., Hof,
M., et al. (2016). The complex nature of calcium cation interactions with
phospholipid bilayers. Sci. Rep. 6:38035. doi: 10.1038/srep38035

Morozov, A. V., Tsemekhman, K., and Baker, D. (2006). Electron density
redistribution accounts for half the cooperativity of alpha helix formation. J.
Phys. Chem. B 110, 4503–4505. doi: 10.1021/jp057161f

Mu, X., Wang, Q., Wang, L.-P., Fried, S. D., Piquemal, J.-P., Dalby, K. N.,
et al. (2014). Modeling organochlorine compounds and the σ-hole effect
using a polarizable multipole force field. J. Phys. Chem. B 118, 6456–6465.
doi: 10.1021/jp411671a

Narth, C., Lagardère, L., Polack, É., Gresh, N., Wang, Q., Bell, D. R.,
et al. (2016). Scalable improvement of SPME multipolar electrostatics in
anisotropic polarizable molecular mechanics using a general short-range
penetration correction up to quadrupoles. J. Comput. Chem. 37, 494–506.
doi: 10.1002/jcc.24257

Patel, S., Davis, J. E., and Bauer, B. A. (2009). Exploring ion permeation
energetics in gramicidin A using polarizable charge equilibration
force fields. J. Am. Chem. Soc. 131, 13890–13891. doi: 10.1021/ja90
2903m

Pegado, L., Marsalek, O., Jungwirth, P., and Wernersson, E. (2012). Solvation
and ion-pairing properties of the aqueous sulfate anion: explicit versus
effective electronic polarization. Phys. Chem. Chem. Phys. 14, 10248–10257.
doi: 10.1039/c2cp40711f

Phillips, J. C., Zheng, G., Kumar, S., and Kale, L. V. (2002). NAMD: biomolecular
simulation on thousands of processors. In: ACM/IEEE SC 2002 Conference

(SC’02) (Baltimore, MD). doi: 10.1109/SC.2002.10019
Piana, S., Klepeis, J. L., and Shaw, D. E. (2014). Assessing the accuracy of

physical models used in protein-folding simulations: quantitative evidence
from longmolecular dynamics simulations.Curr. Opin. Struct. Biol. 24, 98–105.
doi: 10.1016/j.sbi.2013.12.006

Frontiers in Molecular Biosciences | www.frontiersin.org 7 December 2019 | Volume 6 | Article 143154

https://doi.org/10.1021/acs.jpclett.9b00901
https://doi.org/10.1039/C7SC04531J
https://doi.org/10.1021/acs.jctc.5b00171
https://doi.org/10.1063/1.1598191
https://doi.org/10.1016/j.bbamem.2004.05.012
https://doi.org/10.1021/jp207658m
https://doi.org/10.1021/acs.chemrev.5b00505
https://doi.org/10.1039/c0cp01971b
https://doi.org/10.1063/1.3060164
https://doi.org/10.1021/ct9005807
https://doi.org/10.1021/ct1002048
https://doi.org/10.1021/ct300011h
https://doi.org/10.1021/ct401096t
https://doi.org/10.1021/acs.jctc.9b00261
https://doi.org/10.1021/acs.jctc.7b00572
https://doi.org/10.1039/C9SC01745C
https://doi.org/10.1021/acs.jctc.6b00385
https://doi.org/10.1007/978-1-4939-1465-4_3
https://doi.org/10.1021/ct400781b
https://doi.org/10.1007/s00214-009-0617-x
https://doi.org/10.1016/j.bbamem.2011.09.016
https://doi.org/10.1021/la7034104
https://doi.org/10.1021/acs.jpclett.6b02818
https://doi.org/10.1021/acs.jctc.5b00255
https://doi.org/10.1063/1.5006779
https://doi.org/10.1021/acs.jpclett.9b01309
https://doi.org/10.1021/jp3008267
https://doi.org/10.1021/bi00431a051
https://doi.org/10.1021/acs.jpcb.7b12510
https://doi.org/10.1038/srep38035
https://doi.org/10.1021/jp057161f
https://doi.org/10.1021/jp411671a
https://doi.org/10.1002/jcc.24257
https://doi.org/10.1021/ja902903m
https://doi.org/10.1039/c2cp40711f
https://doi.org/10.1109/SC.2002.10019
https://doi.org/10.1016/j.sbi.2013.12.006
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Melcr and Piquemal Polarization for Accurate Biomolecular Simulations

Piana, S., Lindorff-Larsen, K., and Shaw, D. E. (2011). How robust are protein
folding simulations with respect to force field parameterization? Biophys. J. 100,
L47–L49. doi: 10.1016/j.bpj.2011.03.051

Piquemal, J.-P., Chevreau, H., and Gresh, N. (2007). Toward a separate
reproduction of the contributions to the hartree-fock and DFT intermolecular
interaction energies by polarizable molecular mechanics with the SIBFA
potential. J. Chem. Theory Comput. 3, 824–837. doi: 10.1021/ct7000182

Piquemal, J.-P., and Cisneros, G. (2016). “Status of the gaussian electrostaticmodel,
a density-based polarizable force field,” in Many-Body Effects and Electrostatics

in Biomolecules, eds Q. Cui, P. Ren, and M. Meuwly (Pan Stanford Publishing),
269–299. doi: 10.1201/b21343-11

Piquemal, J.-P., Cisneros, G. A., Reinhardt, P., Gresh, N., and Darden, T.
A. (2006a). Towards a force field based on density fitting. J. Chem. Phys.

124:104101. doi: 10.1063/1.2173256
Piquemal, J.-P., Gresh, N., and Giessner-Prettre, C. (2003). Improved formulas

for the calculation of the electrostatic contribution to the intermolecular
interaction energy from multipolar expansion of the electronic distribution. J.
Phys. Chem. A 107, 10353–10359. doi: 10.1021/jp035748t

Piquemal, J.-P., and Jordan, K. D. (2017). Preface: special topic: from quantum
mechanics to force fields. J. Chem. Phys. 147:161401. doi: 10.1063/1.5008887

Piquemal, J.-P., Perera, L., Cisneros, G. A., Ren, P., Pedersen, L. G., and Darden, T.
A. (2006b). Towards accurate solvation dynamics of divalent cations in water
using the polarizable amoeba force field: From energetics to structure. J. Chem.

Phys. 125:054511. doi: 10.1063/1.2234774
Pluhackova, K., Kirsch, S. A., Han, J., Sun, L., Jiang, Z., Unruh, T., et al. (2016).

A critical comparison of biomembrane force fields: structure and dynamics of
model DMPC, POPC, and POPE bilayers. J. Phys. Chem. B 120, 3888–3903.
doi: 10.1021/acs.jpcb.6b01870

Pluhařová, E., Mason, P. E., and Jungwirth, P. (2013). Ion pairing in aqueous
lithium salt solutions with monovalent and divalent counter-anions. J. Phys.
Chem. A 117, 11766–11773. doi: 10.1021/jp402532e

Ponder, J. W., and Case, D. A. (2003). Force fields for protein simulations. Adv.
Protein Chem. 66, 27–85. doi: 10.1016/S0065-3233(03)66002-X

Qi, R., Jing, Z., Liu, C., Piquemal, J.-P., Dalby, K. N., and Ren, P. (2018). Elucidating
the phosphate binding mode of phosphate-binding protein: the critical effect
of buffer solution. J. Phys. Chem. B 122, 6371–6376. doi: 10.1021/acs.jpcb.
8b03194

Rackers, J. A., and Ponder, J. W. (2019). Classical Pauli repulsion: An
anisotropic, atomic multipole model. J. Chem. Phys. 150:084104. doi: 10.1063/
1.5081060

Rackers, J. A., Wang, Z., Lu, C., Laury, M. L., Lagardère, L., Schnieders, M. J., et al.
(2018). Tinker 8: software tools for molecular design. J. Chem. Theory Comput.

14, 5273–5289. doi: 10.1021/acs.jctc.8b00529
Ren, P., and Ponder, J. W. (2003). Polarizable atomic multipole water model

for molecular mechanics simulation. J. Phys. Chem. B 107, 5933–5947.
doi: 10.1021/jp027815+

Rick, S. W., and Stuart, S. J. (2003). “Potentials and algorithms for incorporating
polarizability in computer simulations,” in Reviews in Computational

Chemistry, eds K. B. Lipkowitz and D. B. Boyd (Hoboken, NJ: John Wiley &
Sons) 89–146.

Riera, M., Lambros, E., Nguyen, T. T., Götz, A. W., and Paesani, F. (2019). Low-
order many-body interactions determine the local structure of liquid water.
Chem. Sci. 116:7463. doi: 10.1039/C9SC03291F

Robertson, M. J., Tirado-Rives, J., and Jorgensen, W. L. (2015). Improved peptide
and protein torsional energetics with the OPLSAA force field. J. Chem. Theory

Comput. 11, 3499–3509. doi: 10.1021/acs.jctc.5b00356
Roux, M., and Bloom, M. (1990). Calcium, magnesium, lithium, sodium, and

potassium distributions in the headgroup region of binary membranes of
phosphatidylcholine and phosphatidylserine as seen by deuterium NMR.
Biochemistry 29, 7077–7089. doi: 10.1021/bi00482a019

Roux, M., and Bloom, M. (1991). Calcium binding by phosphatidylserine
headgroups. Deuterium NMR study. Biophys. J. 60, 38–44.
doi: 10.1016/S0006-3495(91)82028-8

Schröder, C. (2012). Comparing reduced partial charge models with polarizable
simulations of ionic liquids. Phys. Chem. Chem. Phys. 14, 3089–3102.
doi: 10.1039/c2cp23329k

Shi, Y., Jiao, D., Schnieders, M. J., and Ren, P. (2009). Trypsin-ligand binding free
energy calculation with AMOEBA. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009,
2328–2331. doi: 10.1109/IEMBS.2009.5335108

Shi, Y., Ren, P., Schnieders, M., and Piquemal, J.-P. (2015). “Polarizable force
fields for biomolecular modeling: parrill/reviews in computational chemistry
volume 28,” in Reviews in Computational Chemistry Volume 28 Reviews in

Computational Chemistry, eds A. L. Parrill and K. B. Lipkowitz (Hoboken, NJ:
John Wiley and Sons, Inc.), 51–86. doi: 10.1002/9781118889886.ch2

Shi, Y., Xia, Z., Zhang, J., Best, R., Wu, C., Ponder, J. W., et al. (2013). The
Polarizable atomic multipole-based AMOEBA force field for proteins. J. Chem.

Theory Comput. 9, 4046–4063. doi: 10.1021/ct4003702
Stone, A. (2013). The Theory of Intermolecular Forces. Oxford.

doi: 10.1093/acprof:oso/9780199672394.001.0001
Vacha, R., Siu, S. W. I., Petrov, M., Böckmann, R. A., Barucha-Kraszewska,

J. J., Jurkiewicz, P., et al. (2009). Effects of alkali cations and halide
anions on the DOPC lipid membrane. J. Phys. Chem. A 113, 7235–7243.
doi: 10.1021/jp809974e

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen,
H. J. C. (2005). GROMACS: fast, flexible, and free. J. Comput. Chem. 26,
1701–1718. doi: 10.1002/jcc.20291

Vazdar, M., Jungwirth, P., and Mason, P. E. (2013). Aqueous guanidinium–
carbonate interactions by molecular dynamics and neutron scattering:
relevance to ion–protein interactions. J. Phys. Chem. B 117, 1844–1848.
doi: 10.1021/jp310719g

Venable, R. M., Krämer, A., and Pastor, R. W. (2019). Molecular dynamics
simulations of membrane permeability. Chem. Rev. 119, 5954–5997.
doi: 10.1021/acs.chemrev.8b00486

Wang, Q., Rackers, J. A., He, C., Qi, R., Narth, C., Lagardère, L., et al.
(2015). General model for treating short-range electrostatic penetration in a
molecular mechanics force field. J. Chem. Theory Comput. 11, 2609–2618.
doi: 10.1021/acs.jctc.5b00267

Wang, W., and Skeel, R. D. (2005). Fast evaluation of polarizable forces. J. Chem.

Phys. 123:164107. doi: 10.1063/1.2056544
Wu, J. C., Piquemal, J.-P., Chaudret, R., Reinhardt, P., and Ren, P.

(2010). Polarizable molecular dynamics simulation of Zn(II) in water
using the AMOEBA force field. J. Chem. Theory Comput. 6, 2059–2070.
doi: 10.1021/ct100091j

Zhang, C., Lu, C., Jing, Z., Wu, C., Piquemal, J.-P., Ponder, J. W., et al. (2018).
AMOEBA polarizable atomic multipole force field for nucleic acids. J. Chem.

Theory Comput. 14, 2084–2108. doi: 10.1021/acs.jctc.7b01169
Zhang, J., Yang, W., Piquemal, J.-P., and Ren, P. (2012). Modeling structural

coordination and ligand binding in zinc proteins with a polarizable potential. J.
Chem. Theory Comput. 8, 1314–1324. doi: 10.1021/ct200812y

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Melcr and Piquemal. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 8 December 2019 | Volume 6 | Article 143155

https://doi.org/10.1016/j.bpj.2011.03.051
https://doi.org/10.1021/ct7000182
https://doi.org/10.1201/b21343-11
https://doi.org/10.1063/1.2173256
https://doi.org/10.1021/jp035748t
https://doi.org/10.1063/1.5008887
https://doi.org/10.1063/1.2234774
https://doi.org/10.1021/acs.jpcb.6b01870
https://doi.org/10.1021/jp402532e
https://doi.org/10.1016/S0065-3233(03)66002-X
https://doi.org/10.1021/acs.jpcb.8b03194
https://doi.org/10.1063/1.5081060
https://doi.org/10.1021/acs.jctc.8b00529
https://doi.org/10.1021/jp027815$+$
https://doi.org/10.1039/C9SC03291F
https://doi.org/10.1021/acs.jctc.5b00356
https://doi.org/10.1021/bi00482a019
https://doi.org/10.1016/S0006-3495(91)82028-8
https://doi.org/10.1039/c2cp23329k
https://doi.org/10.1109/IEMBS.2009.5335108
https://doi.org/10.1002/9781118889886.ch2
https://doi.org/10.1021/ct4003702
https://doi.org/10.1093/acprof:oso/9780199672394.001.0001
https://doi.org/10.1021/jp809974e
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1021/jp310719g
https://doi.org/10.1021/acs.chemrev.8b00486
https://doi.org/10.1021/acs.jctc.5b00267
https://doi.org/10.1063/1.2056544
https://doi.org/10.1021/ct100091j
https://doi.org/10.1021/acs.jctc.7b01169
https://doi.org/10.1021/ct200812y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


ORIGINAL RESEARCH
published: 31 January 2020

doi: 10.3389/fmolb.2020.00004

Frontiers in Molecular Biosciences | www.frontiersin.org 1 January 2020 | Volume 7 | Article 4

Edited by:

Giulia Palermo,

University of California, Riverside,

United States

Reviewed by:

Francesco Delfino,

INSERM U1054 Centre de Biochimie

Structurale de Montpellier, France

Stephen Daniel Levene,

The University of Texas at Dallas,

United States

*Correspondence:

Mahdi Bagherpoor Helabad

mbagerpoor@zedat.fu-berlin.de

Petra Imhof

petra.imhof@fu-berlin.de

†Present address:

Petra Imhof,

Department of Chemistry, Bioscience,

and Environmental Engineering,

University of Stavanger,

Stavanger, Norway

Specialty section:

This article was submitted to

Biological Modeling and Simulation,

a section of the journal

Frontiers in Molecular Biosciences

Received: 02 October 2019

Accepted: 10 January 2020

Published: 31 January 2020

Citation:

Bagherpoor Helabad M, Volkenandt S

and Imhof P (2020) Molecular

Dynamics Simulations of a Chimeric

Androgen Receptor Protein (SPARKI)

Confirm the Importance of the

Dimerization Domain on DNA Binding

Specificity. Front. Mol. Biosci. 7:4.

doi: 10.3389/fmolb.2020.00004

Molecular Dynamics Simulations of a
Chimeric Androgen Receptor Protein
(SPARKI) Confirm the Importance of
the Dimerization Domain on DNA
Binding Specificity

Mahdi Bagherpoor Helabad*, Senta Volkenandt and Petra Imhof*†

Department of Physics, Freie Universität Berlin, Berlin, Germany

The DNA binding domains of Androgen/Glucocorticoid receptors (AR/GR), members

of class I steroid receptors, bind as a homo-dimer to a cis-regulatory element. These

response elements are arranged as inverted repeat (IR) of hexamer “AGAACA”, separated

with a 3 base pairs spacer. DNA binding domains of the Androgen receptor, AR-DBDs,

in addition, selectively recognize a direct-like repeat (DR) arrangement of this hexamer.

A chimeric AR protein, termed SPARKI, in which the second zinc-binding motif of AR

is swapped with that of GR, however, fails to recognize DR-like elements. By molecular

dynamic simulations, we identify how the DNA binding domains of the wild type AR/GR,

and also the chimeric SPARKI model, distinctly interact with both IR and DR response

elements. AR binds more strongly to DR than GR binds to IR elements. A SPARKI model

built from the structure of the AR (SPARKI-AR) shows significantly fewer hydrogen bond

interactions in complex with a DR sequence than with an IR sequence. Moreover, a

SPARKI model based on the structure of the GR (SPARKI-GR) shows a considerable

distortion in its dimerization domain when complexed to a DR-DNA whereas it remains

in a stable conformation in a complex with an IR-DNA. The diminished interaction of

SPARKI-AR with and the instability of SPARKI-GR on DR response elements agree with

SPARKI’s lack of affinity for these sequences. The more GR-like binding specificity of the

chimeric SPARKI protein is further emphasized by both SPARKI models binding even

more strongly to IR elements than observed for the DNA binding domain of the GR.

Keywords: androgen receptor, glucocorticoid receptor, response element, protein-DNA interaction, chimeric

SPARKI protein

1. INTRODUCTION

Steroid receptors (SRs), a subfamily of nuclear receptors, are ligand-activated transcription factors
that bind to a specific DNA target sequence in order to enhance or repress gene transcription
(Evans, 1988; Corson, 2005; Bunce and Campbell, 2010).

Members of SRs, i.e., Androgen receptor (AR), Glucocorticoid receptor (GR),Mineralocorticoid
receptor (MR), and Progesterone receptor (PR), bind as a homo-dimer to consensus 15 base pair
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(bp) palindromic DNA sequences, termed classical response
elements (CREs) (Ham et al., 1988). The DNA of CREs is
organized as an inverted repeat (IR) of hexamer “AGAACA”,
separated with a 3 bp DNA sequence, called spacer (Beato
et al., 1995) (Figures 1B,D). Among the CREs, the first hexamer
(HS1) elements are almost invariant and therefore suggested
as high affinity DNA sequences for receptor binding (La Baer
and Yamamoto, 1994). The DNA binding domain (DBD) of the
proteins, which includes about 70 amino acid residues, contains
two vital subdomains, each identified with a zinc ion that is
coordinated by four Cysteine residues. The first subdomain
includes an α-helix, termed H1, which is responsible for protein-
DNA major groove interactions. The second subdomain holds
a loop domain, termed Dim, which is responsible for protein-
protein dimerization (Luisi et al., 1991; Kumar and Thompson,
1999) (see Figures 1A,D). A flexible loop, named lever arm
connects these subdomains to each other (Figure 1D).

Steroid receptors show high structural conservation and share
almost identical DNA response elements, allowing these response
elements to be functionally substituted (Arora et al., 2013). For
instance, a response element that corresponds to the androgen
receptor might function for glucocorticoid receptor activation

FIGURE 1 | (A) Schematic overview of the DNA binding domain (DBD) sequences in the androgen receptor (AR) and glucocorticoid receptor (GR) protein with

corresponding residue numbers above and below, respectively. The amino acids colored in dark red are those elements of the GR-DBD that differ from the AR-DBD

sequence. The other amino acids are the same in the AR- and GR-DBD. The amino acids shown with green shadow are those elements in AR that are replaced with

residues from GR in order to make Sparki (Schauwaers et al., 2007). (B) DNA sequences for direct (DR) and inverted repeats (IR). The non-capital letters are the

spacer base-pairs, colored in orange. (C) Schematic 3D structure of one monomer of Sparki-DBD, regions colored in green and blue are those subdomains that are

GR- and AR-like, respectively. (D) The 3D structure of the GR- DBD/DNA complex (pdb ID: 1R4R). A similar structure exists for the AR-DBD/DNA complex (pdb ID:

1R4I). The lever arm and dimerization domain (Dim) are shown in yellow and red, respectively. The spacer region of the DNA is colored with orange.

and vice versa. Recent studies have shown that AR and GR
share about one third of their response binding sites (Zhang
et al., 2018). Still, androgen response elements (AREs) are merely
recognized by AR and not by GR (Schoenmakers et al., 1999;
Claessens et al., 2001; Moehren et al., 2008). The AREs are
arranged as direct-like repeat (DR) “TGTTCT” of hexamer
“AGAACA” (see Figure 1B) and also separated with a 3 bp spacer
(Haelens et al., 2003). In 2004, Shaffer et al. crystallized the only
structure of AR(DBD) in complex with a DR response element
in which an unexpected head-to-head conformation was revealed
(Shaffer et al., 2004). This structure of AR-DR indicates additional
hydrogen-bond interactions of residue S580, which is not present
in GR, in each monomer with its counterpart in the other
monomer. These interactions have been discussed as a potential
stabilization of the unexpected head-to-head arrangement in the
AR-DR complex (Verrijdt et al., 2003; Shaffer et al., 2004).

Studies have shown that AR activity varies depending on
the bound response elements, i.e., DR or IR (Geserick et al.,
2003; Verrijdt et al., 2006). For instance, R581D mutation in
the dimerization domain of AR-DBD enhances AR’s activity on
CREs but has less effect on AREs. On the other hand, the A579T
mutation shows reduced activity on AREs but not on CREs
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(Geserick et al., 2003). In contrast, mutations at points that differ
between the AR and GR Dim, i.e., S580G and T585I, in the AR,
and G478S and I483T, in the GR, do not show much effect on
DNA binding affinity and activity of these receptors (Verrijdt
et al., 2006). These mutation data indicate that less of the AR-
DR binding specificity can be attributed to the Dim interface
than suggested by the crystal structure. Also, it is shown that
the changes in AR activity due to the loss of Dim interactions
strongly depend on the engaged DNA response element (van
Royen et al., 2012). Since the Dim region is too far (about 18
Å) from the DNA surface to build direct interaction, other parts
of DBDs likely play a role in DNA binding specificity (Meijsing
et al., 2009). In a recent study, Watson et al. showed that the lever
arm conformation strictly depends on the spacer sequence. The
lever arm has therefore been suggested as an allosteric modulator
that not only connects the H1 to the Dim (see Figure 1), but
also associates the DNA response sequence to its respective dimer
partner (Watson et al., 2013). The activities of AR and GR are
shown to also depend on this region (Meijsing et al., 2009; Helsen
et al., 2012; Dalal et al., 2014). A recent study on the DNA-
binding preferences of AR and GR has revealed that AR binding
to DNA is more enthalpically energized, while GR binding is
more entropy driven (Zhang et al., 2018).

In 2007, an in vivo study done by Schauwaers et al. generated
a chimeric receptor, termed SPARKI (SPecificity-affecting AR
KnockIn), in which 12 amino acids of AR in its second zinc-
binding domain were replaced by those of GR (Figures 1A,C)
(Schauwaers et al., 2007). In vitro studies have shown that
swapping this second zinc-binding motif between the AR and
GR leads to the loss of affinity of this chimeric receptor with
a DR-like motif (Schoenmakers et al., 1999; Moehren et al.,
2008). Consistently, the in vivo experiment exhibited a reduced
affinity of the SPARKI receptor for DR-like elements whereas
for IR-like elements it showed similar or even better binding
affinity than AR (Schauwaers et al., 2007). The lack of the
SPARKI system’s ability to bind to DR-like response elements
was also confirmed by a later in vivo study, done by Sahu et al.
(2014). Interestingly, this study shows that for DR-like elements,
which were selectively enriched by wild-type AR, there is a well-
conserved 5′-hexamer (HS1, Figure 1B) but not a stringent 3′-
hexamer (HS2) sequence conservation. In contrast, binding of
both wild-type AR and SPARKI to IR-like elements requires a
specific HS2 sequence (Sahu et al., 2014). Moreover, in vitro
assays show the high-affinity of AR and GR receptors to HS1,
due to its highly conserved sequences (Verrijdt et al., 2000). It
is speculated that due to the high-affinity of the two subunits in
the AR dimer, this receptor could bind to a more diverse HS2
than the GR could. For instance, it is shown that the thymine
(T) next to guanine (G) in HS2 of the IR elements is a highly
conserved base in the response elements of SRs. This specific T
is not required for AR, allowing this receptor to bind to DR-like
elements which have an adenine (A) in that position (John et al.,
2011; Sahu et al., 2011, 2014; Yin et al., 2012; Ballaré et al., 2013;
Grøntved et al., 2013). However, it is not yet clear how the high
affinity of AR-DBD to DR-like response elements, which leads
to strong interactions in the protein’s dimerization interface,
is influenced by (more diverse) HS2 elements. Moreover, the

distinct binding of AR(DBD)-DR (or IR) and GR(DBD)-IR is
still not well-understood. The SPARKI is an outstanding model
that could explain the distinct regulation of AR-specific responses
with respect to those which can be regulated by GR as well.

In this study, by employing all-atom molecular dynamics
simulations, we investigate the factors that lead to a different
binding of AR and GR receptors to DNA response elements. In
this regard, we simulated six protein-DNA complexes consisting
of the DNA binding domains of wild type AR and GR, bound
to a DNA sequence with IR and DR, respectively, and SPARKI
models (with both IR and DR elements) made by AR and GR
mutation. Our MD simulations allowed us to determine the
significant dynamics of these receptor’s DBD-DNA interface.
These results suggest a loss of affinity of the chimeric proteins, i.e.,
SPARKI, to DR sequences and a strong affinity for IR sequences.
Furthermore, our data reveal that the “weaker” dimerization
interface interactions in the IR complexes, compared to the
AR-DR complex, allows those dimeric proteins to be properly
accommodated on IR sequences.

2. MATERIALS AND METHODS

2.1. Structural Models
The atomic models of the DNA binding domains (DBD) of
AR- and GR complexed to their respective response element
were prepared using the crystallographic structures 1R4I and
1R4R, respectively. In order to achieve consistency with the
AR(DBD)-DNA complex, the guanine in the spacer region of
the GR(DBD)-DNA complex, was mutated in silico to cytosine.
The response elements in the two complexes are thus 5′-
CC AGAACAtcaTGTTCT GA-3′ (DR, for AR) and 5′-CC
AGAACAtcaAGAACA GA-3′ (IR, for GR), respectively. The
residues listed in bold are the core response elements including
the two half sites, HS1 and HS2, respectively, the spacer is given
in small letters. We have constructed two atomic models of
the SPARKI receptor, one based on the structure of the AR-
DNA complex (1R4I) and one on the structure of the GR-
DNA complex (1R4R). In the AR-based model, termed SpAR,
residues in the second zinc-binding motif of AR that differ from
GR (highlighted in green in Figure 1A), were replaced with the
corresponding residues of the GR protein, as in the experimental
mutation (Schauwaers et al., 2007). These residues are located at
the dimerization interface (see Figures 1A,C). The secondmodel,
termed SpGR, is based on the GR protein in which the residues
of the first zinc-binding motif of GR that differ from AR, which
are part of the DNA-binding interface, were mutated to those of
AR. The resulting sequence of the proteins in both Sparki models,
SpAR and SpGR is thus identical, however, their initial structures
differ, since these are based on two different crystal structures.

Both SPARKI models were furthermore modeled in complex
with both DNA sequences, DR and IR, respectively. Therefore,
a total of six models, i.e., AR-DR, GR-IR, SpAR-DR, SpAR-IR,
SpGR-DR, and SpGR-IR have been simulated.

2.2. Molecular Dynamics Simulations
The systems were solvated with ∼23,000 water molecules in a
cubic box of ∼90 × 90 × 90 Å3 and a number of sodium
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ions were added to neutralize the systems. The CHARMM-
27 force field (Brooks et al., 1983; MacKerell et al., 1998) and
the TIP3 water model were used in the simulations (Mahoney
and Jorgensen, 2000). Long-range electrostatic interactions were
treated by the particle mesh Ewald method via a switch function
with a cutoff of 14–12 Å and employing periodic boundary
conditions (Darden et al., 1993). The systems were energy
minimized for 5,000 steps (conjugate gradient with an energy
tolerance of 10−4 kcal/mol), followed by a molecular dynamics
(MD) simulation of 30 ps (time step of 1 fs) to heat the system
by velocity scaling (with harmonic constraint on all heavy atoms,
by force constant 10 kcal·mol−1

·Å−2). Then, 100 ps of MD
relaxation (in NPT ensemble) at target temperature (300 K)
and time step 1 fs were computed. Langevin dynamics with a
damping factor of 1 ps−1 have been used for temperature control
(Allen and Tildesley, 2017). The Nosé–Hoover Langevin pressure
control, with piston period of 200 fs and a damping time of 100
fs, have been used in order to maintain the pressure at 1 bar
(Martyna et al., 1994). After the equilibration phase, three 100 ns
MD replicas (with different initial velocities) for each systemwere
carried out (time step of 2 fs). From those, one run per system
was chosen for longer simulation, based on the calculated root
mean-squared deviation (RMSD) (see Figure S1). These longer
MD simulations were carried out for 900 ns for the SPARKI
systems and for 500 ns for AR-DR and GR-IR, respectively, and
saved at 2 ps intervals. In all simulations, the terminal DNA base
pairs were restrained (centered around 3 Å between the centers
of mass of the respective bases) by a harmonic potential with a
force constant of 20 kcal/mol in order to decrease the edge effects.
The MD simulations were run using version 2.10 of NAMD
(Phillips et al., 2005).

2.3. Hydrogen Bond Analysis
Hydrogen bonds were analyzed based on geometric criteria, i.e.,
a maximal distance of 3.2 Å between donor and acceptor atom
and an angle formed by donor, hydrogen atom, and acceptor,
that deviates maximally by 42◦ from linear. This criterion
was evaluated for each frame of the simulation trajectory, i.e.,
each 2ps of the simulations time. A hydrogen-bond probability
is then obtained as the hydrogen bond occupancy Hocc =
nHbond
N , i.e., the number of frames in which a hydrogen bond

is formed, nHbond, divided by the number of frames analyzed,
N. Water-mediated hydrogen-bonds between protein and DNA
were identified as two hydrogen bonds formed simultaneously
by a water molecule, one with the protein and another one with
the DNA. The hydrogen bond analysis has been carried out using
VMD (Humphrey et al., 1996) and in-house scripts.

2.4. Conformational Analysis
The median structure of each trajectory was determined as
the snapshot that has minimum root mean-squared deviation
(RMSD) from the averaged structure of the trajectory. The local
DNA conformation was analyzed using Curves+, a program for
analyzing the coarse-grained geometry of DNA (Lavery et al.,
2009). The errors estimated for the DNA parameters are standard
errors, which are calculated by a block averaging approach
(Grossfield and Zuckerman, 2009).

2.5. Linear Correlation Score Function
Correlations between all pairs of fluctuating atom positions
were calculated as Pearson correlation. The Pearson
correlation, is defined by the normalized covariance matrix
(Ichiye and Karplus, 1991):

rki =
cov(xk, xi)

σxkσxi
(1)

where xk and xi are the fluctuations of random variable k
and i, respectively.

The correlation score function is a measure of the intensity of
correlation for each variable k (here, the position of the Cα atoms
of the protein residues), defined as (Ricci et al., 2016):

CSk =
1

N − 1

N−1
∑

i

rki (2)

Here, the correlation score function is normalized. In order to
remove the trivial and non-important correlations only pairs with
a of rki ≥ 0.4 were considered.

2.6. Entropy Estimation
The configurational entropy of the protein is estimated
based on the mass weighted covariance matrix of atomic
fluctuations via two well-established methods, one
proposed by Schlitter (Schlitter, 1993) and another one by
Andricioaei and Karplus (2001).

For computation of the protein entropy we used the
fluctuations of the backbone Cα atoms. The last 300 ns of
the simulations are considered for the analysis. The error bars
are standard deviation of three different simulation trajectories
samples due to different chosen time strides. All the calculations
are done via Grcarma software, a Task-Oriented Interface for the
Analysis of MD trajectories (Koukos and Glykos, 2013).

3. RESULTS

The results are organized to first present a comparison of
the overall structure of the complexes. This is followed by an
analysis of the proteins, first, in terms of flexibility and an
estimate of their entropies in the different complexes. Then, the
protein-protein interactions between the two subdomains are
investigated. Subsequently, the conformation of the two DNA
sequences in the different complexes is analyzed. Finally, the
hydrogen-bond interactions between the proteins and the DNA
are reported.

3.1. Median Structure
In order to estimate the overall structural change of each complex
during the simulation, the median structures representing the
first 100 ns and last 100 ns (of the total of 500 ns simulation
time for AR-DR and GR-IR, respectively, and 900 ns for SPARKI
models), respectively, were aligned with respect to each other and
compared. As can be seen in Figure 2, the lever arm is the most
variable domain whereas the initial and final conformations of
the remainder of the systems are similar. Remarkable exceptions
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FIGURE 2 | The 3D median structures of the complexes. In each system, the median structure of the last 100 ns of simulation (colored) is aligned to the median

structure of the first 100 ns simulation (gray).

are the monomer A, located at the first half-site, and the Dim
interface of the SpGR-DR model, which exhibit a considerable
distortion. In this model, a conformational change takes place not
only in the lever arm but also in both zinc-binding subdomains
where the zinc ions, together with their coordinating ligands,
change positions. Moreover, the Dim regions of the AR-DR
system are slightly closer to each other than in the other models.
The distances between different domains/subdomains of protein-
DNA complexes are listed in Table S1. As shown in this table,
the distance between monomer A and monomer B in AR-DR
(24.37 ± 0.31 Å) is shorter than that of GR-IR (25.08 ± 0.20 Å).
The SpGR-DR system also exhibits a larger distance between the
receptor’s dimer interfaces as well as between the respective zinc
ions of the two subunits, than the other systems. The simulations
of the SpAR-DR model, which represent the same system but
were started from a different initial structure, in contrast, do
not exhibit a distortion of the Dim interface, Accordingly, the
distance between the two monomeric subunits in this model are
shorter than in the SpGR-DR model.

3.2. Root Mean Square Fluctuations
(RMSF)
Figure 3 shows the per-residue root mean square fluctuations
(RMSF) of the protein monomers for all the systems. As can be
seen in this figure, the lever arm corresponding to residues 571–
576 (AR, SpAR)/469–474 (GR, SpGR) is the most fluctuating
region in all models. Comparison of fluctuations between
monomer A and monomer B shows almost similar fluctuations
of the protein residues in all systems, except for SpGR-DR. The
IR complexes, though, exhibit higher flexibility than the DR
complexes in the lever arm region, i.e., residues 469–474 or 571–
576 in GR or AR numbering, respectively. SpGR-DR exhibits
particularly high fluctuations of the protein residues, especially in
monomer A; higher than the fluctuations of monomer A in any
of the other systems. Monomer B of SpGR-DR, however, shows
larger fluctuations than the other systems only for the residues
situated in the dimer interface, i.e., 576–581 (AR, SpAR)/474–479
(GR, SpGR). Of note, in the SpGR models, residues in the dimer
interface are directly modeled, that is without in silico mutation,
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FIGURE 3 | Per-residue root mean square fluctuations of Cα atoms of the protein (monomer A&B) for all systems.

FIGURE 4 | Entropy estimates for the proteins of all complexes. The first and

second columns, shown with black A and white S are the entropy values

estimated with the Andricioaei and Schlitter models, respectively.

from the crystal structure of the wild-type GR protein and may
therefore represent a GR-like conformation.

3.3. Entropy Estimation
As can be seen from Figure 4, the estimated entropy of SpGR-
DR and SpGR-IR are higher than those computed for SpAR-
DR and SpAR-IR, respectively. This is the case for both entropy
estimation methods. Both AR-DR and GR-IR exhibit rather
similar values in entropy, although the two proteins are in
complex with different DNA sequences. Comparison of only DR
or IR complexes, respectively, shows higher entropy values for
the Sparki models than for the respective wild-type complexes.
Among the chimeric Sparki models, SpAR does not exhibit a
significant difference in entropy when complexed to DR or IR
sequence, whereas SpGR shows a significantly higher entropy in
the DR complex compared to the IR complex.

TABLE 1 | Protein-protein hydrogen-bond interactions.

AR-DR SpAR-DR SpAR-IR

AB BA AB BA AB BA

L577-N593 62% 44% 72% 70% 51% 55%

A579-I585 89% 93% 95% 91% 95% 88%

C578-R590 – 47% 60% – 71% 52%

R581-D583 100%∗ 100%∗ – – – –

S580-S580 80% 80% – – – –

S580-D583 – 48% – – – –

GR-IR SpGR-DR SpGR-IR

AB BA AB BA AB BA

L475-N491 59% 74% – 90% 71% 51%

A477-I483 91% 85% 81% – 92% 66%

C476-R488 – 66% – – – –

R479-D481 – 59%∗ – – – –

The star indicates that more than one hydrogen bond is formed simultaneously. AB and BA
refer to the monomer A as donor and monomer B as acceptor and vice versa. Here, the
hydrogen-bond interaction occupancies below 40% are considered as weak interactions
and are therefore not listed.

3.4. Protein–Protein Hydrogen Bond
Interactions
The hydrogen bond interactions between the protein subunits
are listed in Table 1. Our results indicate that the dimer
interface of the AR-DR system forms more strong hydrogen-
bond interactions than those seen in the SPARKI systems
and in the GR-IR. In particular, the inter-subunit hydrogen
bond S580A-S580B, which has been discussed to be crucial
for tight dimerization of the AR-DR complex (Shaffer et al.,
2004), is not present in the other systems. Furthermore,
a strong interaction of R581-D583 can also be seen in
AR-DR, but not in the other systems. Two interactions, L577-
N593(AR, SpAR)/L475-N491(GR, SpGR) and A579-I585(AR,
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FIGURE 5 | Correlation score per residue, computed for intra-domain correlations with rki ≥ 0.4.

SpAR)/A477-I483(GR, SpGR), exist in all the systems, in both
directions, that is from monomer A to monomer B (AB) and
vice versa (BA). However, in the SpGR-DR, only a one-sided of
these interactions is formed, indicating a weaker dimer interface
interaction of the SpGR-DR than in the other systems. Moreover,
the dimer interfaces of the SpAR complexes exhibit stronger
hydrogen-bond interactions than the SpGR models. An extra
interaction of C578-R590 can be seen in SpARs that is not present
in SpGRs. This extra interaction is also observed in the AR-
DR complex, based upon which the SpAR-DR model has been
built. The dimerization interactions of the GR-IR model also
exhibit two moderate and one-way (BA-side) hydrogen-bond
interactions C476-R488 and R479-D481 that are not present in
SpGR models.

3.5. Linear Correlation Score
In order to capture how the protein residues in each monomer
are influenced by other residues of that monomer, the linear
correlation score has been calculated for all the systems (linear
correlation scores calculated for the first 100 ns and middle
100 ns of trajectories of the SPARKI systems are shown as
Supplementary Material, see Figure S13). As can be seen in
Figure 5, almost all the residues show a similar magnitude of
correlation score in all the systems, except for SpGR-DR. This
model exhibits considerably higher correlation score values,
in both protein monomers, than any of the other models.
This indicates that the fluctuating motion of each residue is
highly dependent on the rest of the residues in that protein.
Any local conformational change, as observed for the lever
arm and the Dim of SpGR-DR, as visualized by the median
structures (see above), does not only affect the neighboring
residues but also distal domains of the protein and thus has a
more global effect. Moreover, for SpGR-DR the correlation score
increases during the simulation, corresponding to an increase
in conformational change of the monomers in this model (see
Supplementary Figure S13).

3.6. DNA Conformation
To study the impact of the DBD of the receptors on their
respective DNA structure, the local geometrical parameters of
DNA, i.e., inter- and intra-bp parameters (Figures S5–S10),
major- and minor-groove widths (Figure 6), and helical axis
bending (Figure S4) were calculated for the last 100 ns of the
AR-DR and GR-IR trajectories. For the SPARKI systems, the
changes of these parameters in the course of the simulations
were also considered (Figures S2, S3) and are discussed in the
Supplementary Material.

The DNA grooves of the IR complexes differ from those of
DRs. Interestingly, these differences can not only be observed in
the second hexamer, which is expected due to the different DNA
sequence, but also in the spacer and in the first hexamer in the
IR complexes (see Figure 6). For instance, the major groove at
position C8, in the spacer region, is narrower in the IRs than in
DRs. Also, a narrower major groove at positions C5-A6 (in HS1)
can be observed in Sp(AR/GR)-IR compared to SpAR-DR or AR-
DR. The DNA of both SPARKI-IR systems exhibits very similar
conformations. This can be seen in almost all DNA parameters
(see Figures S5–S10).

The DNA parameters in both SPARKI-IR complexes show
some differences from the GR-IR parameters. The minor groove
of Sp(AR/GR)-IR at positions between A4-T7 (in HS1) is
narrower than that in the GR-IR (see Figure 6). Also, the DNA
of the GR-IR complex shows higher bending than the DNA of
the Sp(AR/GR)-IR complexes (Figures S4B,D). Since the DNA
sequence is the same in all IR complexes, the observed differences
in the DNA conformation can be attributed to the interaction
with the different proteins.

In contrast to the two SPARKI-IR complexes, all DNA
parameters of the SpAR-DR complex and the SpGR-DR complex
represent conformations that are considerably different fromAR-
DR (see Figure 6 and Figures S4–S10). SpAR-DR and SpGR-
DR, moreover, show differences between some of their DNA
parameters. For instance, in SpGR-DR the HS2 has a wider
major and narrower minor groove and HS1 has a considerably
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FIGURE 6 | The DNA (A) major groove and (B) minor groove widths for all systems.

wider minor groove than in SpAR-DR. Furthermore, the DNA
helical axis bending is higher in SpGR-DR than in SpAR-DR
(Figure S4). In the two SPARKI-DR models not only the DNA
sequence is the same, but also the residues of the protein.
The different DNA conformations may also be attributed to
different interactions with the (same) proteins, representing
different (metastable) binding modes due to different initial
starting conformations.

In the SPARKI-IR systems, the first hexamer exhibits a
narrower major groove than the second hexamer whereas the
opposite is observed for the SpAR-DR and AR-DR systems (see
Figure 6). Interestingly, the position T12, in the second hexamer,
seems to have an important role in the IR complexes. For
most IR complexes the dinucleotide G11T12 shows an extreme
value which is not the case in the DNA parameters of the
DRs with G11A12 at this position (see Figures S5, S6, S9). Also
the intra base pair parameters exhibit at position G11 more
extreme values in the IR complexes than in those with DR
(Figures S7, S8, S10), which may be an effect of the neighboring
residue being thymines at positions T10 and T12 in IRs, instead of
adenine residues in DRs.

3.7. Protein-DNA Hydrogen-Bond
Interactions
In order to analyze the interaction strengths, probabilities of
direct and indirect (mediated by water molecules) hydrogen
bonds between protein and DNA have been calculated.
Figures 7–9 show the hydrogen bond interactions of all studied
systems, calculated from the last 100 ns of the simulations.
For the SPARKI systems, the hydrogen bond interactions of
the middle 100 ns (W2 interval) were also calculated (see
Figures S11, S12). According to these figures, differences in
protein-DNA interactions between W2 and W3 intervals in
SpARs can be seen only in the first hexamer, HS1 (Figure S11),
whereas for SpGRs such differences exist in both DNA hexamers
(Figure S12).

For each DNA hexamer, i.e., HS1 and HS2, there are four
sites whose hydrogen bond interactions with the protein are
conserved among all the systems. These are s1A1, s1G2, s2G5,

and s2T6 in HS1 and s1A10, s1G11, s2T15, and s2G14 in HS2.
The guanine residues at positions s1G11 and s2G5 are the
predominant residues that form strong, i.e., highly probable,
hydrogen-bond interactions with the protein in all systems.
In particular, the residue R568 in the helix H1 of the AR-
DBD, and residues R466 in helix H1 of the GR-DBD form
base-specific hydrogen bonds with guanine residues s1G11 and
s2G5, respectively. Our results indicate that the AR-DR complex
involves more hydrogen-bonded protein-DNA interactions than
the GR-IR complex. Moreover, hydrogen bonds of residues s1G2
and s2G14 with K563 and K567, respectively, and also those of
residues s2A7 and s2T6 (in the spacer) with Y576 are stronger in
the AR-DR complex than the corresponding hydrogen bonds in
the GR-IR complex (see Figure 7).

Comparison of the hydrogen-bond patterns between the
SpAR systems shows that the SpAR-IR complex has more strong
and moderate hydrogen-bond interactions than the SpAR-DR
complex. In particular, residues s1T10 and s2G5 are more
strongly hydrogen-bonded in the SpAR-IR model than in the
SpAR-DR complex (see Figure 8). The two SpGR systems show
rather similar protein-DNA hydrogen-bond interactions (see
Figure 9). However, comparing the hydrogen-bond interactions
between the SpAR-IR and SpGR-IR shows that the SpAR-
IR includes more and stronger hydrogen interactions than
the SpGR-IR. In particular, for the SpAR-IR model more
hydrogen bonds than in the SpGR-IR complex can be observed
for each specific guanine residue, i.e., s1G11 and s2G5. One
further residue, i.e., s1T10, forms stronger hydrogen-bonded
interactions with the protein in the SpAR-IR than in SpGR-IR
complex. There is also a strong interaction in residue s2A7 of
SpGR-IR which is not present in SpAR-IR. These differences in
the protein-DNA interaction between the SpAR-IR and SpGR-
IR complexes, that is two models of the same system, may
represent two slightly different binding modes, as a consequence
of different initial conformations used in the simulations.

On the other hand, our results show that both the Sp(AR/GR)-
IR complexes exhibit stronger hydrogen-bond interactions than
the GR-IR complex (compare residues s1G2 and s1G3, between
Sp(AR/GR)-IR and GR-IR, residue s1T10 between SpAR-IR and
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FIGURE 7 | Diagram of protein-DNA hydrogen-bond interactions for (left) AR-DR and (right) GR-IR. The nucleotides of the 15 bps core DNA sequence are

numbered from HS1 (numbers: 1–6) to HS2 (numbers: 10–15). The spacer region is highlighted with non-colored boxes around the numbers of the bases (numbers:

7–9). The hydrogen bonds are categorized based on their occupancy, 50–75% (gray), and 75–100% (black). The water mediated hydrogen bonds are shown with a

blue letter “W.” The residues shown with star sign form base-specific hydrogen-bond interactions while the other residues interact with the backbone of the DNA.

GR-IR, and residue s2T6 and s2A7 between SpGR-IR and GR-
IR). Furthermore, the AR-DR complex exhibits slightly stronger
hydrogen-bond interactions than observed in the SpGR-DR but
considerably stronger than observed in SpAR-DR. Interestingly,
those interactions, present in AR-DR but not in SpAR-DR,
are mostly formed with the HS1 and the spacer. Moreover,
there are more water-mediated interactions in SpAR-IR than in
SpGR-IR. Finally, the number of water-mediated hydrogen bond
interactions in AR-DR is higher than in GR-IR.

4. DISCUSSION

All the protein-DNA complexes modeled in this work, represent
states in which the DNA is bound by the respective DBD. The
interaction strengths within the complexes, as manifested by
hydrogen bond interactions between protein and DNA, as well
as between the protein subunits, and conformational flexibility,
however, varies between the different systems.

Of all the protein-DNA systems, the AR-DR complex exhibits
the strongest interactions between protein and the DNA via
direct and water-mediated hydrogen bonds.

4.1. Protein–Protein Interactions
The complex which exhibits the strongest hydrogen bonds
between the two protein monomers is AR-DR. In particular,
the strong hydrogen-bonded interaction S580-S580, as suggested
by the crystal structure (Shaffer et al., 2004), contributes to the
stabilization of the dimerization interface. This interaction can
also be regarded as facilitating the interaction of the neighboring
R581 with D583. This is furthermore in agreement with the
experimental suggestion that the strong dimer interface of AR-
DR allows the AR-DBDs to bind to DNA in a head-to-head
conformation (Shaffer et al., 2004; van Royen et al., 2012).

The mutations in the SPARKI systems, which transform an
AR into the chimeric protein, are mainly located in one loop
that constitutes the dimerization interface. The protein-protein
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FIGURE 8 | Diagram of protein-DNA hydrogen-bond interactions for (left) SpAR-DR and (right) SpAR-IR. The nucleotides of the 15 bps core DNA sequence are

numbered from HS1 (numbers: 1–6) to HS2 (numbers: 10–15). The spacer region is highlighted with non-colored boxes around the numbers of the bases (numbers:

7–9). The hydrogen bonds are categorized based on their occupancy, 50–75% (gray), and 75–100% (black). The water mediated hydrogen bonds are shown with a

blue letter “W.” The residues shown with star sign form base-specific hydrogen-bond interactions while the other residues interact with the backbone of the DNA.

interactions in all the SPARKI systems are weaker than in the
AR-DR and comparable to (or even weaker than) those in the
GR-IR system. This suggests that the dimerization interface of
SPARKI is indeed GR-like, as would be expected based on its
constituting sequence.

A significant conformational distortion can be seen in
monomer A and the dimer interface of SpGR-DR, that is not
observed in the SpGR-IR. In addition, the dimer interface of
SpGR-DR has two hydrogen bonds fewer than the SpGR-IR. The
SpGR-DR model, moreover, exhibits the largest Zn-Zn distances
and the largest distance between the loops of the dimerization
interface of all the models investigated in this work. These
findings suggest that in the SpGR model, accommodation of the
DR sequence, and interactions with the protein comparable to a
IR sequence, can be achieved only at the expense of a distortion
of the dimerization interface.

The deformation of monomer A and the dimerization
interface observed in the SpGR-DR model is not observed in the

SpAR-DRmodel, that is the complex that has beenmodeled from
the crystal structure of the AR-DR. We attribute this difference
to the different starting points for the simulations, AR-DR and
GR-IR, respectively. In the SpAR models, the residues which
have been in silico mutated (second zinc-binding motif) are
located at the dimerization interface, whereas in the SpGRmodels
these residues (first zinc-binding motif) are part of the DNA-
binding interface. Furthermore, in the SpGR-DRmodel the DNA
sequence has been changed from IR to DR in silico.

In the SpAR-DR model, the monomers of SpAR are
tightly bound in the AR-like starting conformation. The
modified dimerization interface leads to a weaker protein-protein
interaction as manifested by the longer distance and fewer
hydrogen bonds between the two subunits. The protein, on
the other hand, does not “reach” the DNA as good as in the
other models as can be seen by SpAR-DR showing the longest,
though not bymuch, protein-DNAdistances of all the complexes.
Moreover, the number of hydrogen bonds between protein and
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FIGURE 9 | Diagram of protein-DNA hydrogen-bond interactions for (left) SpGR-DR and (right) SpGR-IR. The nucleotides of the 15 bps core DNA sequence are

numbered from HS1 (numbers: 1–6) to HS2 (numbers: 10–15). The spacer region is highlighted with non-colored boxes around the numbers of the bases (numbers:

7–9). The hydrogen bonds are categorized based on their occupancy, 50–75% (gray), and 75–100% (black). The water mediated hydrogen bonds are shown with a

blue letter “W.” The residues shown with star sign form base-specific hydrogen-bond interactions while the other residues interact with the backbone of the DNA.

DNA is smaller than in the wild-type AR-DR, in particular in
HS1, pointing toward a loser complex in the chimericmodel. This
is in agreement, albeit does not fully explain the experimentally
observed low affinity of SPARKI for DR elements (Schauwaers
et al., 2007; Moehren et al., 2008; Sahu et al., 2014).

In the SpGR-DR model the dimerization interface is GR-
like, that is weak to start with. In addition the protein is not
properly oriented on the DR sequence. In the course of the
simulation, the protein undergoes conformational changes in
the dimerization interface, considerably weakening the protein-
protein interactions. The distortion, weakened interactions in the
dimerization interface, result in a reoriented monomer A and a
deformed monomer B. That means that monomer B in SpGR
does not manage to fully adjust onto the direct repeat on HS2
to form strong contacts. The observed conformational change
in the Dim regions and the monomer A may be regarded as
an attempt by the system to make favorable contacts in other
parts of the complex. Indeed in the SpGR-DR model, more

contacts, that is hydrogen-bonds between protein and DNA, are
observed than in the SpAR-DR model. However, these contacts
are with the HS1. Strong interactions with only one hexamer
and a distorted protein-protein interface suggest a low affinity,
or a rather unstable Sp(GR)-DR complex. The SpGR model
is, by construction, a GR-like SPARKI. Also GR lacks affinity
for DR sequences, possibly because no stable complexes can be
formed between GR and DR. A deformed conformation in the
dimerization interface of SpGR-DR may thus point toward a loss
of stability in that wild-type GR-DR complex.

Analysis of the DNA parameters around T12 exhibits extreme
values in the neighboring G11 (intra bp) as well as extreme inter
base pair parameters in the GT step that are not present in the GA
step of the direct repeat. The affected G11 has strong interactions
with the protein and is therefore an important residue for
binding. This interplay may explain why T12 is essential for
specific DNA recognition by GR (Sahu et al., 2014) as has been
shown by in vivo experiments.
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The sequence and conformation in the HS2, moreover, affect
the spacer region. In this region, a narrower major groove has
been observed for the IR sequence than for the DR sequence.
Such a DNA conformation, though not quite a kink in the DNA
spacer, requires the protein to “follow” the DNA conformation so
as to form favorable contacts. This is achieved by a lever arm that
is more flexible in the IR-bound systems, i.e., GR and SPARKI
(see Figure 3), and the two protein subunits being slightly further
apart, as manifested by longer monomer-monomer distances in
GR-IR compared to AR-DR, while the distances of the protein
subunits to their respective half site on the DNA are similar.
Among the complexes with an IR sequence, both SPARKI
models, SpAR-IR and SpGR-IR, reveal stronger protein-DNA
interactions, especially with the HS1, than the other wild-type
complex, GR-IR, in agreement with experiments that show
similar or higher affinity of SPARKI systems for the IR elements
or classical response element, i.e., CREs (Schauwaers et al., 2007).

The higher affinity of the SpAR/GR complexes to the IR
sequence, compared to that of GR-IR, can thus be explained by
the chimeric systems having both properties, the AR-like ability
to strongly interact with the DNA and the GR-like “softness”,
that is weaker interactions, of the dimerization interface, that
allows the protein to flexibly accommodate to the binding on
the DNA. Qualitatively, the higher flexibility in the dimerization
interface and lever arm region of the SPARKI-IR systems can
be understood as entropically favorable. Indeed, the SPARKI
models show a higher entropy than the wild-type complexes.
Additionally, the stronger protein-DNA interactions can be
understood as an increased enthalpic contribution. An increased
binding affinity of SPARKI compared to GR can thus be
attributed to favorable enthalpic and entropic contributions.

The AR-DR complex, in contrast, is more enthalpically
stabilized by the contribution of both, protein-protein and
protein-DNA hydrogen-bond interactions. In the DR-DNA the
minor groove is ∼ 1Å narrower at the GA step than at the
corresponding GT step in an inverted repeat DNA. This narrower
minor groove is associated with the phosphate groups of the
DNA backbone being closer to each other, and thus providing
a higher negative charge density. Electrostatic interactions of the
positively charged Arg (and Lys at other positions) residues with
the DNA is therefore strengthened, as manifested by the larger
number of strong hydrogen bonds in the AR-DR system.

The protein-DNA complexes studied in this work are
characteristic for a competition between the protein-protein
interactions and protein-DNA interactions, that is, a stable
dimerization interface vs. specific contacts to the DNA. A
balance to the former or the latter thus decides about
specificity, or at least preference, for direct or inverted repeat
DNA, respectively.

5. CONCLUSION

Our simulations of the chimeric SPARKI protein, complexed
to inverted and direct repeat sequences, reveal a higher affinity
of this model protein for IR than for DR sequences. In fact,
binding to a DR results in a loose complex, eventually even

with a distorted protein conformation, a possible explanation for
the experimentally observed weak affinity for such a sequence
(Schauwaers et al., 2007; Moehren et al., 2008; Sahu et al., 2014).

Since AR, GR, and the SPARKI models can in principle
all form the same contacts with specific residues of the
DNA, IR or DR, the ability to accommodate the protein on
the DNA is important for specificity. The required flexibility
is observed in those systems with a “weaker” dimerization
interface, that is GR and the GR-like SPARKI, which can thus
be considered to have more entropy driven specificity. The
interactions in the dimerization interface and protein-DNA
interactions are balanced to allow proper accommodation of
the protein on the DNA and formation of specific contacts,
tuning the enthalpic contribution to specific complex formation.
In this competition, the stability of the dimerization interface
is important and to a large extend determines the preferred
response element.

The starting point, that is the crystal structure used for model
building, has, even after rather long simulation time, still an effect
on the protein conformation in the complex. SPARKI models
initiated from the structure of the GR-IR complex are not capable
of forming strong interactions in the dimerization domain.
In contrast, SPARKI models started from an AR-DR complex
structure maintain a rather stable dimerization interface, despite
the mutation of some residues in this domain to those of GR.
Still, this interface is weaker than in the wild-type AR-DR
complex,. Moreover, the chimeric SPARKI protein shows fewer
interactions with DR than observed in AR-DR, rendering its
specificity GR-like.

All together, this study reveals the importance of the
dimerization domain on distinct specificity of AR and GR, bound
to DR and IR response elements, respectively.
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Understanding the mechanisms that trigger chromatin compaction, its patterns, and the

factors they depend on, is a fundamental and still open question in Biology. Chromatin

compacts and reinforces DNA and is a stable but dynamic structure, to make DNA

accessible to proteins. In recent years, computational advances have provided larger

amounts of data and have made large-scale simulations more viable. Experimental

techniques for the extraction and reconstitution of chromatin fibers have improved,

reinvigorating theoretical and experimental interest in the topic and stimulating debate

on points previously considered as certainties regarding chromatin. A great assortment

of approaches has emerged, from all-atom single-nucleosome or oligonucleosome

simulations to various degrees of coarse graining, to polymer models, to fractal-like

structures and purely topological models. Different fiber-start patterns have been

studied in theory and experiment, as well as different linker DNA lengths. DNA is a

highly charged macromolecule, making ionic and electrostatic interactions extremely

important for chromatin topology and dynamics. Indeed, the repercussions of varying

ionic concentration have been extensively examined at the computational level, using

all-atom, coarse-grained, and continuum techniques. The presence of high-curvature

AT-rich segments in DNA can cause conformational variations, attesting to the fact that

the role of DNA is both structural and electrostatic. There have been some tentative

attempts to describe the force fields governing chromatin conformational changes and

the energy landscapes of these transitions, but the intricacy of the system has hampered

reaching a consensus. The study of chromatin conformations is an intrinsically multiscale

topic, influenced by a wide range of biological and physical interactions, spanning

from the atomic to the chromosome level. Therefore, powerful modeling techniques

and carefully planned experiments are required for an overview of the most relevant

phenomena and interactions. The topic provides fertile ground for interdisciplinary studies

featuring a synergy between theoretical and experimental scientists from different fields

and the cross-validation of respective results, with a multi-scale perspective. Here, we

summarize some of the most representative approaches, and focus on the importance

of electrostatics and solvation, often overlooked aspects of chromatin modeling.

Keywords: chromatin, nucleosome, coarse-grain modeling, electrostatics, solvation
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1. INTRODUCTION

If one were to stretch the DNA found inside a cell nucleus, they
would end up with an ∼2-m long fiber. In order to fit inside the
cellular nucleus, which measures∼6 µm in diameter, DNA needs
to compact itself in a manner that permits efficient accessibility
to DNA-binding proteins, while at the same time reinforcing
and compacting the fiber. Compaction is achieved through the
wrapping of DNA around certain proteins, the histones, forming
the building blocks of the chromatin fiber, the nucleosomes.
Nucleosomes are composed of a protein core, the histone
octamer (consisting of H2A, H2B, H3, and H4 histone dimers),
and 147 base pairs (bp) of DNA wrapped around the core in 1.64
turns. Each histone of the octameric core has a highly disordered
N-terminal portion, the histone tail, whereas the rest of the
residues form alpha helices (Kalashnikova et al., 2013). Twomore
tails extend from the C-terminals of H2A histones, amounting
to a total of ten unstructured dynamic domains (McGinty and
Tan, 2014). Nucleosomes are connected to each other by varying
lengths of linker DNA strands, but it has been calculated that
the spooling of DNA around nucleosomes alone makes DNA
shorter by seven times (Iashina et al., 2017). Chromatin is a
molecule that demands multiscale analysis since changes as small
as the absence of one DNA bp in nucleosomal or linker DNA can
cause non-local changes in the topology of the fiber. Given the
fundamental importance of chromatin organization regarding
gene expression, the question of discovering the manner in
which the genome folds and compacts itself is one of the most
fundamental in Biology.

The simultaneous advances in computational and
experimental resources not only led to significant milestones, but
have also opened new possibilities in chromatin studies. Because
of the intrinsic multiscale nature of chromatin, there is a plethora
of computational and experimental approaches, which focus on
structures as small as the single nucleosome and its dynamics,
up to the entire genome of an organism. These models try to
describe and predict experimental observables, such as different
fiber-start patterns, as well as the effect of different linker DNA
lengths on fiber topology. For chromatin modeling, especially
at small and intermediate scales, approaches that rely on basic
physical interactions for the description of electrostatics and
solvation are of uttermost importance. The other indisputably
essential ingredient is the mechanical connection; for example,
the presence of high-curvature AT-rich segments (A-tracts) in
linker DNA is known to influence nucleosome interaction and
alter chromatin folding (Buckwalter et al., 2017).

Overall, the study of chromatin is an intrinsically multiscale
endeavor, since the effects of interactions spanning from
atomic to chromosome-level are both physically and biologically
important. Chromatin polymorphism is mostly driven by the
delicate equilibrium of electrostatic interactions, solvation effects
and mechanical constraints, such as steric exclusion and linker
DNA length.

In this review, we provide a succinct synopsis of some among
the existing modeling approaches for chromatin, focusing on
the physics-based ones, and on those that allow integration
with experimental biophysical and/or biological knowledge.

This description will be paralleled with that of experimental
techniques providing instrumental information for the validation
and improvement of these models, paying particular attention
on methods that only minimally perturb the observed system.
We initially present a variety of chromatin models, starting
from works studying single nucleosomes and oligonucleosome
fibers, moving on to discuss coarse-grained models and
finally fractal models. In the third section of this paper, we
examine the fundamental importance of electrostatic interactions
in chromatin, and their impact on fiber compaction and
polymorphism. This brings us to an exploration of the, often
underrated, role of solvation in chromatin compaction, in the
fourth section of this review. Finally, we conclude our analysis
with a discussion on experimental techniques that have been used
in chromatin studies.

2. MULTISCALE MODELS

Chromatin models can be divided into two general categories,
depending on the underlying initial assumptions and on the
chosen building blocks: bottom-up and top-down models (Dans
et al., 2016). The preferred approach depends on the level of
detail of interest, the level of theory that one wants to adopt
for the model and, inescapably, the computational capabilities
at hand. Bottom-up models take the nucleosome and linker
DNA crystal structures as a starting point (Figure 1A). The
electrostatics and dynamics of these structures may be studied
at the full atom level, and the derived results can be used to
feed a coarse-grained model, which allows to draw conclusions
for larger systems, such as oligonucleosomes or, sometimes, even
larger structures (Figure 1B) (Savelyev et al., 2011; Fan et al.,
2013; Collepardo-Guevara and Schlick, 2014; Izadi et al., 2016;
Ghosh and Jost, 2018). The parameters used in these coarse-
grained models depend on the properties of interest and on
those observed by the accompanying experiments. In order to
parameterize these types of models, data is often used from all-
atom structures and simulations, making their results dependent
on the resolution of the structures and the performance of the
force fields used.

In top-downmodels, the behavior of the fiber is deduced from
experimental observations and sequencing of large regions of
chromatin, or even of the entire genome, from which a scheme
of interactions is derived. Given the limitations in resolution
and accuracy of experiments, top-down models cannot possess
the same level of detail as bottom-up models. However, they
provide a way to study global chromatin properties. Thesemodels
may incorporate a multitude of, often ad-hoc, coarse grained
descriptions to look into very specific chromatin features related
to smaller scale structures, such as the kbp scale. Finally, in this
category of models the use of notions from polymer physics is
very common, representing chromatin as a polymer chain and its
stages of compaction as phase transitions, imposing constraints
in the forms of potentials. (Giorgetti et al., 2014; Bianco et al.,
2017)

Alternatively (Imakaev et al., 2015), chromatin models have
been divided in categories based on whether they are built to
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FIGURE 1 | Treating different orders of magnitude in chromatin requires different levels of detail in the representation of nucleosomes: (A) for 1-4 nucleosomes, crystal

structures can be used (structure used by Shaytan et al., 2016, visualized with VMD); (B) for longer structures, a coarse graining model is required [such as Schlick’s

group model from Collepardo-Guevara and Schlick (2014), used with Permission], (C) which can be used to study the topology of oligonucleosome fibers. (D) In

larger scales, where even the entire genome can be studied, fractal models are used (Mirny, 2011).

match pre-existing data or emerge as representations of physical
properties: data-driven models and ab initio models. Regarding
data-driven models, some examples are given by approaches
that try to generate chromosome structures based on Hi-C
maps (Fudenberg et al., 2016), translating contact probability to
distance. In these cases, however, one needs to bear in mind
that Hi-C maps, and sequencing techniques in general, often
give an average picture of the genome. Ab initio models, on
the other hand, take properties that have been observed or
even hypothesized about chromatin as a starting point, and
aim to reproduce them through the application of constraints
and potentials (Tompitak, 2017; Lequieu et al., 2019). The
mathematical nature of these models can sometimes lead to a
simplification of biological factors at play.

Here, bearing in mind these general classifications, which
are consistent with model classifications in many fields, we
propose an exploration of various models based on the final
order of magnitude that they are able to study, ranging from
mononucleosome studies up to works examining the entire
genome. Examining different orders of magnitude of chromatin,
we present approaches that make use of different assumptions
and are based on different types of data, illustrating the
multifaceted nature of the topic. An overview of different

modeling paradigms based on the order of magnitude at interest
is shown in Figure 1.

2.1. From the Single Nucleosome to
Oligonucleosome Fibers
Nucleosomes have the ability to dissociate entirely in histones
and DNA, upon unwrapping, and then reassemble (Kulaeva
et al., 2012). The curvature of the DNA can either favor or
disfavor histone-DNA contacts, and therefore the formation
of nucleosomes (Szerlong and Hansen, 2011). Based on this
premise, starting our analysis from the building blocks of
chromatin, we encounter Partially Assembled Nucleosome States
(PANS), which are interesting as they reveal the electrostatic and
mechanical changes that occur when a nucleosome is forming
or dissolving. Rychkov et al. (2017) analyzed three types of
PANS (hexasomes, tetrasomes, and disomes) through Molecular
Dynamics (MD) simulations, visualizing the structures with
Atomic Force Microscopy (AFM) experiments. The nucleosome
formation procedure was observed to occur as such: the two
H3 and H4 dimers bind to the DNA first, forming a tetrasome,
followed by the sequential addition of H2A and H2B dimers.
The results were compared to Small Angle X-ray Scattering
(SAXS), Forster Resonance Energy Transfer (FRET), and AFM

Frontiers in Molecular Biosciences | www.frontiersin.org 3 February 2020 | Volume 7 | Article 15172

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Bendandi et al. Chromatin Compaction Multiscale Modeling

data. Nucleosome disassembly follows the reverse order, and
both assembly and disassembly were seen to be associated with
DNA supercoiling, as a way to regulate torsional stresses on the
fiber (Bancaud et al., 2007).

Linker DNA length is extremely important for chromatin
compaction, not only for mechanical but also for electrostatic
reasons. Determining how linker DNA influences chromatin
topology, and how its length and sequence can affect compaction
has been the subject of many studies and speculations. In the
work of Buckwalter et al. (2017), for instance, the presence of
so-called A-tracts, DNA segments where multiple A-T pairs are
present in a row, and their influence on DNA rigidity, and
therefore on chromatin fiber flexibility, are examined. It has
been observed by comparison of MC simulations and Electron
Microscopy (EM) experiments on reconstituted oligonucleosome
arrays that the presence of A-tracts causes DNA bending angles
of up to 90◦, and that these particular segments are often
found in linker DNA (Cui and Zhurkin, 2009). The direction
of bending of the linker DNA is also relevant for compaction:
for example, when DNA bends inwards at the exit sites from
the NCP the resulting structures are more compact compared
to the opposite case, and give rise to zig-zag configurations and
closer overall nucleosome proximity. It is evident that linker
DNA length is of great importance when it comes to chromatin
topology; however, its role is not immediate; the really important
parameters for packing are the DNA bending angles, which
are influenced by linker DNA length through topological and
persistence length constraints.

The presence of the linker histone H1 (or H5 in avian
chromatin) is also a key for compaction. This histone is not
always present in nucleosomes, and its position can vary on
or off the nucleosome dyad axis, the axis of symmetry of
the nucloeosome (Pachov et al., 2011). The H1/H5 changes
the orientation and flexibility of linker DNA, forming contacts
with both entering and exiting strands. When two or more
nucleosomes in sequence are bound to H1 histones, rigid
structures termed DNA stems are formed, which present
straighter linker DNA and reduced separation angle between the
entering and exiting DNA; the latter effect is more pronounced in
chromatin configurations with long linkers (Collepardo-Guevara
and Schlick, 2014). The increased rigidity of DNA because of
the formation of DNA stems is mitigated by the dynamic nature
of H1/H5 binding and unbinding on nucleosomes (Collepardo-
Guevara and Schlick, 2012).

Most all-atom and coarse grained models dealing with
chromatin simulations require the use of empirical force fields
at some point, impacting on the simulation results. Even though
an extensive critical comparison of force fields and force field
modifications for nucleic acids is beyond the scope of this review,
we suggest the works by Galindo-Murillo et al. (2016) and Dans
et al. (2017).

2.2. Coarse-Grained Oligonucleosome
Models
According to the number of nucleosomes in the start of a fiber,
different behaviors have been observed. Among some general

categories, the most prominent of which are the zigzag and
solenoid fiber models (Buckwalter et al., 2017). Zigzag models
for chromatin propose what is commonly called a two-start fiber
model (two nucleosomes at the start of the fiber), in which linker
DNA crosses the main fiber axis. In two-start zigzag models,
nucleosomes are stacked in the periphery of the fiber and linker
DNA occupies the central space of the structure. Solenoid models
on the other hand propose compaction through coiling of the
linker DNA along the superhelical path. In these models, fibers
are one-start, and nucleosomes create frontal contacts, with 6 to
8 nucleosomes per turn of the fiber. It is thought that bothmodels
coexist in fibers, along with straight linker DNA and bent linker
DNA. (Grigoryev et al., 2009; Schlick and Perišić, 2009) Contrary
to the zigzag fiber, where the dominant interactions are n± 2, in
solenoid models they were found to be n± 5 or n± 6 (Robinson
et al., 2006; Grigoryev et al., 2009) where n represents the position
of the reference nucleosome.

Besides the number of nucleosomes at the start of the fiber,
and taking into consideration the fact that linker DNA length
is not always the same across the fiber, different nucleosome
repeat lengths (NRL) produce different fiber configurations,
and alter the propensity of a fiber to unfold. In Collepardo-
Guevara and Schlick (2014), MC simulations were performed on
coarse-grained oligonucleosome fibers (Figure 1C) to study these
variations, and observed a variety of structures, reaching the—
perhaps not surprising—conclusion that structures with highly
varying NRL were more compact than uniform structures, a
direct consequence of fewer topological constraints. In relation
to gene expression, the study also found that transcriptionally
active cells presented shorter NRLs, while in inactive cells the
opposite was observed (Gilbert et al., 2004). In the coarse-grained
model, shorter NRL fibers arranged in ladder-like forms, while
medium fibers arranged in zig-zags and longer NRLs resulted in
heteromorphic structures (Grigoryev et al., 2009).

Nucleosomes bearing histone modifications, or even less
histones than the canonic octamer (Winogradoff et al., 2015)
have also been studied as a factor influencing chromatin
compaction. In this study by Diesinger and Heermann (2009), a
genome folding model was constructed using Monte Carlo (MC)
simulations and introducing histone and nucleosome depletion.
In a subsequent paper, the role of epigenetic modifications
regarding nucleosome depletion was investigated, and MC data
was compared to 5C and fluorescence in situ hybridization
(FISH) (Diesinger et al., 2010). Even though full atom models
are very instructive in the mononucleosome scale, in certain
mesoscale chromatin models (Kulaeva et al., 2012), DNA base
pairs are represented as rigid bodies, with parameters that
account for orientation and displacement. Oftentimes, in more
coarse-grained models, nucleosomes are treated as rigid bodies
with concentrated charge and the dynamics of the histone tails
are modeled as Gaussian distributions or as series of beads.
Works like Giorgetti et al. (2014); Kepper et al. (2008) model
chromatin as an inextensible chain of beads, whose distance
depends on the spatial scale of the desired simulations.

Works like Koslover et al. (2010); Koslover and Spakowitz
(2009) aim to optimize chromatin morphology through studying
its dependence on linker DNA elasticity and length, introducing
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the role of inter-nucleosome core particle (NCP) interaction
potentials in the packing of the fiber. Such works often use MC
or Brownian dynamics simulations (Wedemann and Langowski,
2002; Langowski, 2006) and model electrostatic interactions
based on potentials at various levels of sophistication. In
Koslover et al. (2010), the chromatin fiber is constructed as
a helical array by cyclically repeating a fundamental structure,
defined as two nucleosomes and the linker DNA between
them, in which nucleosomes are treated as rigid bodies and
linker DNA as a series of beads. As we mentioned previously,
histone modifications are also relevant factors for chromatin
compaction, and are sometimes used as model parameters.
An example of histone modifications as model parameters is
MacPherson et al. (2018), a polymer MC coarse-grained model
using methylation as a parameter to study chromatin dynamics
and conformation statistics.

In the work of Schiessel et al. (2001), so-called two-angle
models were developed, using linker DNA entry and exit
angles and NCP twist angles, generating ensembles of minimum
energy conformations throughMC and analysing their dynamics
through Brownian dynamics. NCP geometry becomes itself a
parameter in several works (Kepper et al., 2008; Stehr et al., 2008;
Kulaeva et al., 2012), in which internucleosomal interactions are
specifically studied as triggers for compaction. When it comes to
the representation of the NCP as a rigid body, shapes, such as
an oblate ellipsoid or an oblate spherocylinder are more accurate
than simple spheres. In Kepper et al. (2008), a coarse-grained
computer model was applied to a sample pool of 101 nucleosome
arrays, using different chromatin models with and without the
presence of linker DNA. It was shown that nucleosome spacing
is relevant to chromatin stability, with the highest destabilization
occurring at a 2 bp shift, by analysing energy landscapes. Energy
variations were compared to values from chromatin stretching
experiments (Cui and Bustamante, 2000). After surpassing the
2 bp energy barrier, nucleosome repositioning toward a new
conformation, rather than returning to the original one, becomes
more energetically favorable. Nucleosome orientation was also
shown to be of importance, since, for example, it was observed
that in cases where a nucleosome was oriented transversally it
occupied more volume and caused its neighbors to be pushed
further apart, hindering close packing.

2.3. Topological and Fractal Models
During the past decade, great progress has been made in
the study of chromatin organization due to the advent of
Chromosome Capture technologies (3C). The field was
particularly revolutionized by Hi-C, which provides the
interaction frequencies between loci of an entire genome. 3D
reconstructions of genomic regions and even entire genomes
are possible, using Hi-C data, through structural inference
and statistical methods (Lesne et al., 2014; Varoquaux et al.,
2014). There are two main categories of techniques to generate
3D structures from Hi-C contacts: ensemble approaches and
consensus approaches. In the latter case, the Hi-C data are
considered as a single ensemble, while in the former models
different categories of structures are created from the data. It has

been suggested recently that it might be possible to reconstruct
the diploid 3D chromatin structures (Cauer et al., 2019).

It can be of interest to combine results from high throughput
techniques, such as Hi-C, with computer simulations. In Ohno
et al. (2019) parallels were drawn between protein structure and
chromatin. Through a combination of Hi-C data at nucleosomal
resolution obtained at several cell phases and coarse grained
simulations, Ohno et al. observe two general secondary structure
types in chromatin, which they call α-tetrahedron and β-
rhombus, as an analogy to the α-helix and β-sheet structures
in proteins, supporting the claim that fibers can alternate
between these structures when nucleosome positioning changes.
Information on nucleosome orientation was gleaned through
analysis of the spatial proximity between DNA entry and exit
points in individual nucleosomes across the genome and their
3D positioning. Solvation effects were not directly taken into
account, as nucleosomes were modeled as space-filling objects,
and linker DNA was also implicitly treated.

In the study of compaction and larger scale interactions
within the chromatin fiber, for example for characterizing
the Topologically Associating Domains (TADs), loop extrusion
models are very significant. TADs are regions of the genome
with enhanced contact frequency, identifiable on Hi-C maps as
squares. During loop extrusion, Loop Extrusion Factors (LEFs),
such as cohesin, interact with chromatin, inducing the formation
of loops until they encounter a Border Element (BE), such
as CTCF. It has been observed by Goloborodko et al. (2016)
that macroscopic loop characteristics depend on the abundance
of LEFs. Loop extrusion models provide explanations for
experimental observations, such as the preferential orientation
of CTCF, the enrichment of TAD boundaries in proteins with
architectural functions, and TAD merging in LEF deletion
experiments, and could provide insight on chromosome-level
phenomena (Fudenberg et al., 2016). Polymer simulations are
frequently used by loop extrusion models to make predictions
and to validate analytical models. Loop formation has also
been studied with mesoscopic models, where it was observed
to depend on linker histone presence, ion concentration, and
linker DNA length (Bascom et al., 2016). In addition to the
“one-sided” loop extrusion mechanism described above, recent
research indicates that “two-sided” loop extrusion might prove
to be more robust in explaining experimental data (Banigan et al.,
2019).

In the last decade, there has been growing interest on
fractal models describing chromatin, and part of the chromatin
modeling community, particularly emerging from polymer
physics, has been focusing on the possibility that chromatin
organizes itself as a fractal, especially since a similar state has been
proposed in the seminal paper of theHi-Cmethod by Lieberman-
Aiden et al. (2009). In this work, a distinct case of the previously
theorized globular equilibrium model was proposed for the Mbp
scale: the fractal globule—otherwise called crumpled globule
(Grosberg et al., 1988), a polymer conformation that enables
maximally dense packing while preserving the ability to easily
fold and unfold any genomic locus (Lieberman-Aiden et al., 2009;
Mirny, 2011; Tamm et al., 2015) (Figure 1D). In such models,
as in polymer models for chromatin in general, chromatin is
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considered as a flexible polymer fiber, and the notion of the
single nucleosome is lost. Because of their large scope, these kinds
of models can be relevant for large scale systems or even the
entire genome.

Distinct chromosomal regions can be modeled as equilibrium
globules, structures used to describe polymers in poor solvent
conditions (Lieberman-Aiden et al., 2009). The chromatin fiber
could assume a Peano curve conformation, which represents
a continuous fractal trajectory that densely fills space without
crossing itself. In fractal globules, compaction is achieved
through the collapse of the globule and it has been shown that
the fractal globule has the ability to organize territorially, alluding
to chromosome territories, (Tamm et al., 2015) distinct regions
in the nucleus occupied by certain chromosomes, in contrast
with the previously proposed equilibrium globule, which does
not present such organization. In the fractal globule, the number
of interactions as a function of volume shows a linear correlation,
which leads to the interdigitation of different regions in the
globule with each other, allowing for extensive genomic cross
talk (Mirny, 2011) (Figure 1D). This is particularly interesting
for two main reasons: cross talk has been observed in simulations
between the regions, and fractal globules unfold in an optimal
way, which is relevant in the study of transcription.

However, it needs to be noted that the fractal globule is
a metastable state, unlike the equilibrium globule, and that
its lifetime depends on topological constraints, which, in real
cells, can be affected by enzymes and DNA-binding proteins.
Fractal globules have been observed experimentally in Hi-C
experiments (Lieberman-Aiden et al., 2009; Rao et al., 2014;
Ghosh and Jost, 2018) and Small Angle Neutron Scattering
(SANS) experiments (Ilatovskiy et al., 2012; Iashina et al., 2017).
The relationship between the physical environment of a fractal
chromatin fiber and transcription has been studied in several
works, such as Almassalha et al. (2017), in which the analytical
correspondence between changes in the fractal dimension of the
chromatin fiber and increment of chromatin accessibility and
compaction heterogeneity was studied. Furthermore, the authors
speculated that differences in the transcription of a certain gene
might be influenced by folding of neighboring genomic regions.
The findings were supported by microscopy measurements on
cancer cells.

Fractal globule models have been criticized based on the
argument that self-similarity cannot be assessed in only a couple
of orders of magnitude. However, researches in the field, such
as Bancaud et al. (2012) claim that, even though mathematical
fractals are self-similar ad infinitum, physical fractals are only
self-similar within certain orders of magnitude, typically 2 or
3, while chromatin architecture spans 4 or more orders of
magnitude, and a common fractal architecture would connect all
of them under a single topological theme, without the need for
separate structures in each order of magnitude.

To conclude this section, we present a summary table
(Table 1) of the models mentioned, categorized by the final
order of magnitude that they treat (e.g., single nucleosomes,
oligonucleosome arrays, entire genome).We include information
on the computational methods used, and when available, the type
of experimental data used for result validation.

3. ELECTROSTATIC INTERACTION IN
CHROMATIN: AN INTRINSICALLY
MULTISCALE PHENOMENON

At large scales in the chromatin fiber, structures are
approximately electrostatically neutral, allowing for an average
treatment of electrostatics and solvation in polymer models for
chromatin. However, at the NCP and oligonucleosome scale,
electrostatics and solvation become extremely important, due to
the high charge of the DNA. The charges present on the DNA
backbone are partly neutralized by the winding of DNA around
the histone core, especially through the effect of the histone
tails, and partly through counter-ions present in the nuclear
environment. The modeling of internucleosomal interactions
using reductionist analytical potentials, which omit the explicit
role of histone tails, can cause secondary, but still relevant,
electrostatic effects to be overlooked.

Considering the biological importance of different ionic types,
Mg2+ is particularly significant, as it has been found to promote
nucleosome condensation and aggregation and could promote
linker DNA bending, because in its presence interactions of
first and third neighboring nucleosomes are boosted (Grigoryev
et al., 2009). Tetravalent cations on the other hand require
lower concentrations to induce compaction (Zinchenko et al.,
2017). In Fan et al. (2013), systems of 1–10 nucleosome core
particles (NCPs) were studied using a coarse-grained model
in order to study the effects of monovalent, divalent, and
trivalent cations on these structures, reproducing experimental
data. It was observed that an increase in K+ ions amplified the
repulsive internucleosomal electrostatic interaction; increasing
Mg2+ concentration caused partial aggregation, and an increase
in COHex3+ ions triggered a strong mutual internucleosomal
attraction in 10 NCP systems, therefore showing that the
aggregation of NCPs is different under the effect of different types
and concentrations of counterions.

Multivalent ions and the effect of their distribution around
NCPs on chromatin conformation were also studied in Gan and
Schlick (2010), using a mean-field Poisson Boltzmann Equation
(PBE) approach, with an emphasis on shielding charges, which
aggregate particularly around DNA and the exposed parts of
the histone tails. The fact that a surface needs to be exposed
to solvent in order for ions to bind on it makes ion-caused
electrostatic screening (a change in the effective electric charge)
and ion-chromatin interactions in general directly dependent on
compaction. Calculations showed that the enhanced screening
due to divalent ions might not only be because of their higher
charge, but also because they form a denser layer of counterions
around the NCP and fluctuations in this layer are correlated to
different fiber conformations. This makes even more evident the
fact that the topology of compaction is a key determinant for
chromatin-ion interaction. It was observed in these simulations
that the shielding charge arising from both monovalent and
divalent ions was linearly correlated with the ionic strength of
the solution.

In the study of structures as large and complex as
chromatin, it has been proposed in Izadi et al. (2016) that
implicit solvent Generalized Born (GB) simulations would
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TABLE 1 | Computational and experimental works mentioned in this review (partial account), listed under the scale of interest.

Scale Publication Subject Computational techniques Experimental data

NCP Fan et al. (2013) Ionic dependence of aggregation Langevin MD FCS

Materese et al. (2009) Ion condensation, NCP solvation MD, PBE PDB structure

Buckwalter et al. (2017) Sequence dependence of DNA curvature MC EM

Rohs et al. (2009) Sequence dependence of DNA

electrostatics

PBE PDB structures

Shaytan et al. (2016) Histone tail interaction MD

Rychkov et al. (2017) NCP Assembly MD SANS, FRET, AFM

Davey et al. (2002) NCP Solvation NMR

Luger et al. (1997) Nucleosome structure X-ray crystallography

Bertin et al. (2004) Histone tail interaction SAXS

Nucleosome arrays Diesinger and Heermann (2009),

Diesinger et al. (2010)

Histone and nucleosome depletion MC FISH

Collepardo-Guevara and Schlick (2014) NRL-produced patterns MC

Kepper et al. (2008) NRL-produced patterns MC Stretching experiments

Norouzi and Zhurkin (2018) Nucleosome array unwrapping MC FCS

Stehr et al. (2008) Inter-NCP interactions MC Data from various

techniques

Gan and Schlick (2010) Ionic dependence of aggregation PBE, DiSCO Data on DNA bending

Grigoryev et al. (2009) Linker histones, ionic dependence MC EM

Izadi et al. (2016) Electrostatics, histone tails, linker DNA PBE Cryo-EM

Koslover et al. (2010) Linker DNA Energy optimization EM, FCS

Bascom et al. (2016) Loop formation MC 3C

Entire genome Ohno et al. (2019) 3D genome architecture Hi-CO method Hi-C

Cauer et al. (2019) Hi-C 3D reconstruction Mathematical modeling Hi-C

Lieberman-Aiden et al. (2009) Fractal globule Polymer simulations Hi-C

Iashina et al. (2017) Fractal globule Mathematical analysis SANS

Ghosh and Jost (2018) Chromosome modeling Coarse-grained Polymer model Hi-C

Fudenberg et al. (2016) TADs Polymer model Hi-C

Giorgetti et al. (2014) TADs Polymer model 3C, FISH

Bianco et al. (2017) TADs Polymer model 5C

Ricci et al. (2015) Nucleosome aggregation STORM

Le Gratiet et al. (2018) Chromatin organization in the nucleus CIDS, Fluorescence

Computational techniques and experimental data used are listed, when applicable.

be preferable to traditional fully explicit MD, in order to
circumvent computational limitations. However, standard GB
scales poorly with the number of solute atoms and, in this
work, a multiscale atomistic GB model that incorporates
improvements in the electrostatic calculations is presented,
the accuracy of which was evaluated through point-by-point
comparison with PBE calculations. Taking advantage of the
natural hierarchical organization and charge distribution of
chromatin, Izadi et al. used approximate point charges to
calculate electrostatic interactions between distant points in a
40-nucleosome structure, containing∼1 million atoms, focusing
particularly on the behavior of the histone tails. They were able
to reproduce experimental findings of the interaction of the H3
histone tail and the linker DNA. The GB approach proved the
existence of viable alternatives that drastically reduce the cost of
conformational sampling in very large structures.

One could not conclude a discourse on chromatin
electrostatics without mentioning the effect of the histone

tails, which have been found to promote stability of the linker
histone on the NCP. In some models, histone tails are modeled
as a series of beads with one positive charge per bead (Gan
and Schlick, 2010; Fan et al., 2013; Korolev et al., 2014). It
was seen by Shaytan et al. (2016) that certain histone tail
configurations promote DNA bulging at entry and exit sites,
possibly contributing to the formation of twist defects in the
nucleosomal DNA. Twist defects are DNA deformations that
allow for one more or less DNA bp in positions where DNA
interacts closely with histones (Brandani et al., 2018). They
are important, among other reasons, because their presence
causes the formation of nucleosomes with 146 bp instead of
the usual 147 (Pasi and Lavery, 2016), due to overwinding
and stretching of the DNA (Davey et al., 2002). They also
speculated that the presence of arginines and lysines might
impose constraints on histone tail motion because of attractive
electrostatic interactions. Contacts between DNA and histones
were seen to be dominated by the histone tails, making up 60% of
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protein-DNA interactions in the nucleosome, rapidly wrapping
around the DNA (in Shaytan et al., 2016, it was observed that
they do so in the first 20 ns of the simulation).

In another study, the N-terminal of the H4 histone tail
was observed to interact with the “acidic patch” present on
the surface of adjacent nucleosomes, a small groove formed by
eight residues, six belonging to H2A and the remaining to H2B,
which constitutes a region of highly negative charge density on
the nucleosome surface, serving as a hot-spot for DNA-binding
proteins and histone tails (Kalashnikova et al., 2013; McGinty
and Tan, 2014; Zhou et al., 2018). Throughout 1 µs-long MD
simulations in Shaytan et al. (2016), the NCP is seen to be
very stable in dynamics, in contrast to histone tails and linker
DNA: large scale unwrapping or opening of NCP DNA were
not observed, even when simulations were performed in 1M
salt concentration, under which conditions they are known to
occur (Wilhelm et al., 1978). This indicates that such phenomena
might take place on longer time scales. Of particular interest are
the histone H3 tails, which have been suggested by experiments
(Kato et al., 2009) to form stable folded structures, and even to
potentially compete with other DNA-binding proteins, affecting
accessibility of epigenetically modified sites in the minor grooves.

It has already been mentioned that the presence of A-tracts
can change the curvature of DNA, causing the minor grooves
to be narrower than those in segments with lower curvature,
and locally enhancing negative electrostatic potentials. In Rohs
et al. (2009), PBE calculations were performed on DNA, showing
that the electrostatic potential caused by the DNA backbone had
intensity peaks inside the major and minor grooves. The position
of these peaks correlates with the positions of arginine residues
on the histone core. Previously observed binding preference
for arginines over lysines in minor grooves, and especially
in narrower ones, was partly explained via a combination of
electrostatic and desolvation effects. For the study of minor
groove geometry, all the crystal structures of protein-DNA
complexes containing at least one base atom–aminoacid contact
were analyzed. Analysis of nucleosomal DNA was based on the
nucleosome structures available on the Protein Data Bank (PDB)
at the time.

4. THE ROLE OF SOLVATION IN
CHROMATIN COMPACTION

The role of the solvent in biomolecular interactions is known
to be crucial. In part, this is because of solvent-mediated
electrostatic effects—the screening of the water molecules and
that of the ions in solution. In addition, there is the so-called
cavity formation phenomenon, which penalizes the occurrence
of solvent-excluded regions. Chromatin spatial arrangement,
due to NCP charge, size and porosity, is expected to be
particularly affected by these phenomena, which must be
accurately considered. It has already been described that the
formation of the fundamental unit of chromatin, the nucleosome,
is carried out by the complexation of the negatively-chargedDNA
polymer with the positively-charged histone protein octamer. If
investigated at the molecular level, this process is governed by

a number of interactions, such as hydrogen-bonds, salt-bridges,
and water-mediated interactions occurring along the positively-
charged arginine anchors that intercalate deep inside the minor
grooves of DNA facing the histone core (McGinty and Tan,
2014; Gebala et al., 2019). When it comes to histone core-DNA
electrostatic interactions, it is known that every nucleosome
presents 14 non-covalent histone-DNA contacts, at the sites of
arginine residues (Szerlong and Hansen, 2011).

Solvent exposure affects electrostatic interactions at the
nucleosome level: compared to H3 and H4 histones, the two
H2 variants are more solvent exposed, making them more
accessible to chromatin-binding proteins as well (Izadi et al.,
2016). Specific ion binding sites and their location on the
nucleosome are also of particular interest, and they can be studied
using electron density maps in combination with chemical
information (Davey et al., 2002). It has been observed that
sodium preferentially condenses around regions rich in solvent
accessible acidic residues, especially in areas with two or more
acidic residues in close proximity (Materese et al., 2009). It
is also speculated that, in chromatin fibers exhibiting high
compaction, internucleosomal electrostatic repulsion could be
reduced in intensity because of an increased neutralization of
the DNA backbone charge by the neighboring histone cores and
counterion screening.

The idea that the nucleosome is an impermeable object has
been proven erroneous (Materese et al., 2009); in this work,
it was seen that mobile ions are able to reach the NCP inner
core because of high levels of local solvation (more than 1,000
water molecules). This led to the conclusion that the local value
of dielectric constant in the region facing the histone core is
larger than expected. The authors also looked into the mobility
of water molecules on the first hydration layer of the nucleosome
and, as expected, found them to be less mobile than bulk
water molecules. Through detailed visualization of structured
water at the protein-DNA interface, they also found that water
molecules not only contribute significantly to the stability of
DNA binding but also adapt histone surfaces to conformational
variations of DNA, facilitating nucleosome dynamics. All-atom
electrostatics calculations were conducted and compared to
PBE calculations, observing a slight inconsistency between the
two. PBE predicts that the most significant contribution to
DNA charge neutralization comes from the enhancement of the
electric field and that it is a result of the tight wrapping of the
DNA around the histone core. These results indicate that close
condensation of ions around the nucleosome can significantly
reduce the short range effect of the nucleosomal charge, having as
a natural consequence the facilitation of chromatin close packing.

In another work concerning NCP solvation (Davey et al.,
2002), the solvent-accessible surface area (SASA) of nucleosome
crystals with 147 and 146 bp was investigated. NCPs with 147 bp
were found to possess a SASA of ∼74 Å2, which is distributed
mostly in the cavities within the histone octamer and in the
space between it and the DNA. The primary hydration layer
of the NCP was found to contain slightly more than 2,000
water molecules, the positions of which were found to largely
correspond to the positions of A-tracts, especially in the vicinity
of the minor groove. Water was shown to be important in
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the two main mechanisms of protein-DNA recognition: direct
readout (nucleotide chemically specific bonds) and indirect
readout (sequence-dependent conformational features of DNA
recognized by sterically complementary protein contacts).
Structures termed “spines of hydration” were also observed,
in which water molecules bind regularly to adenine N3 and
thymine O2 atoms (Kopka et al., 1983). Structural analyses have
shown that the phosphate groups are the most strongly solvated
components of the DNA (Egli et al., 1998; Schneider et al., 1998).

In order to illustrate the porosity of the nucleosome,
particularly described in Materese et al. (2009), we have
conducted a study on the nucleosome crystal structure [PDB
code 1kx5 (Davey et al., 2002), Figure 2A] using NanoShaper
interfaced with VMD (Decherchi and Rocchia, 2013; Decherchi
et al., 2018), providing the values of the Surface to Volume
Ratio (SVR), the number of cavities and pockets. We measure
an SVR of 0.387 Å−1, which reflects a quite high porosity
(Shirota et al., 2008), and a number of cavities and pockets. In
Figure 2C, we visualize the channel traversing the nucleosome
core, which significantly impacts on NCP accessibility to water
and ions. Our results are consistent with previous qualitative
analyses mentioned in this section, and indeed indicate that
the nucleosome is highly solvated and porous. We have also
constructed an electrostatic map of the nucleosome, using data
from the DelPhi Poisson-Boltzmann solver Rocchia et al. (2001)
on the potential and constructing the SASA of the nucleosome
with NanoShaper (videos of the full 3D structure found in
Supplementary Material), as seen in Figure 2B, where it is
possible to clearly see, among other features, the position of
the acidic patch (residues E56, E61, E64, D90, E91, E92 of
H2A and E102, E110 on histone H2B (Kalashnikova et al.,
2013), and the highly charged histone tails, both key elements
in chromatin compaction and chromatin interaction with DNA-
binding proteins. This analysis showed a minor acidic region, on
the surface of histone H4.

5. EXPERIMENTAL STUDIES OF
CHROMATIN: FROM THE NUCLEOSOME
TO THE NUCLEUS

Throughout this review, we have highlighted the main
manifestations of the multiscale nature of chromatin, and we
have explored the multitude of factors affecting its compaction.
The interplay between simulations and experiments is crucial
to reach a deep understanding of this complex system, and has
given rise to breakthroughs that would have been impossible
without the combination of the two approaches. Experimental
investigations of chromatin can be carried out at different
scales, similarly to computational approaches. Having already
mentioned some experimental results validating computational
models, we have specifically looked into some of the experimental
techniques used in both small and large scales, from the NCP up
to entire nucleus.

Starting from the nucleosome, experiments have been carried
out to determine its crystal structure, with continuing endeavors
starting from Luger et al. (1997), in which a 2.8 Å resolution

structure of the NCP was obtained via X-ray crystallography,
using reconstituted nucleosomes. In Luger’s work, many of the
structural elements of the nucleosome were uncovered, such as
the number of base pairs wrapped around the octamer, which
were unknown despite the fact that the octamer histone structure
had already been observed. The histone tails and their structural
role have also been studied to great extent in Widom (1997).
Since then, further structures with 147 bp (Davey et al., 2002)
and 146 bp (Tachiwana et al., 2010) have been observed. The
study of sub-structures, such as the histone tails and of site-
specific interactions (van Emmerik and van Ingen, 2019) in more
detail, required the use of NMR (Davey et al., 2002). In latest
years, there has been growing interest for the study of NCPs
using Cryo-EM (Figure 3A). The sample preparation protocols
involved in this technique make it an interesting alternative to
X-ray crystallography for structural studies. Cryo-EM provided
information on custom-made NCPs in studies relevant to DNA
binding protein-NCP interactions (Takizawa et al., 2018) and
also on interactions of the NCP with components of the nuclear
environment, such as the nuclear pore complex (Kobayashi et al.,
2019). The orientation of NCPs has also been observed by Cryo-
EM in a recent study, where it is stated that in the most common
arrangement of a pair of NCPs they are placed in parallel, facing
histone octamers (Bilokapic et al., 2018).

X-ray crystallography provides structures with atomic
resolution, which are key for atomic-level studies. However,
this approach has some limitations; it fails to provide good
information on the more mobile domains of the NCP, and it
cannot be used for large oligonucleosomes (the largest structures
that have been crystallized to date are tetranucleosomes (Schalch
et al., 2005; Ekundayo et al., 2017). In order to circumvent
these constraints, one can turn to scattering techniques. SAXS
studies have looked into the issue of whether the histone tails
protrude into the solvent surrounding the NCP or associate
with DNA at physiological salt conditions. The histone tails
are notoriously hard to resolve in crystallography because of
their size and intrinsically mobile nature (Kato et al., 2009;
Zhou et al., 2012; Gao et al., 2013). Using SAXS however, it
is possible to indirectly observe whether the histone tails are
solvated or adherent to the DNA, by measuring changes in
the overall structure size. Bertin et al. (2004) have applied
SAXS to study histone tails as well, focusing on the structural
details of internucleosomal interactions and the effects that
histone tails have on them. Often SAXS has been used in
conjunction to other techniques to correlate structural to
dynamical data. In Mauney et al. (2018) SAXS, FRET, and MD
were used to dissect the sequence-dependent DNA unwrapping
mechanism. Fluorescence Correlation Spectroscopy (FCS)
has been used in a work by Fan et al. (2013) to estimate
NCP stacking energy. In this combined experimental and
theoretical work, model parameters were tuned based on
comparison with single molecule FCS and SAXS data, which
also showed that histone tails facilitate NCP stacking by acting
as bridges between NCP surfaces. FCS data was also used
by Norouzi and Zhurkin (2018) to tune the parameters of
an MC model of nucleosome arrays under the influence of
external forces.
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FIGURE 2 | (A) Top and side view of the 1kx5 crystal structure. (B) Top and side view of the SES of 1kx5, constructed with NanoShaper (Decherchi and Rocchia,

2013) and visualized via VMD. The channel traversing the histone core is represented in blue together with an adjacent open cavity and is indicated by an arrow. On

the side view, the entrance and exit of the channel can be seen, indicated by arrows. (C) Electrostatic map of the SES of 1kx5. Areas of negative surface potential are

indicated in red and areas of positive surface potential in blue. The acidic patch is indicated by an arrow on the histone core. Another minor acidic region, composed

by fewer residues on the surface of histone H4, is also highlighted. Most of the exposed regions of the histone core are electrically neutral, with the acidic patch

representing the main exception. Remaining positive charges of the histone core are buried, due to the binding of encircling DNA. We also note positive charges on

the histone tails, and strong negative charges on the DNA backbone.

Moving on from NCPs to larger structures, nucleosome
arrays are the next step; besides SAXS (Howell, 2016), AFM has
also been used to study arrays of varying lengths (Figure 3B).
The advantage of using this technique for chromatin is 2-fold:
there is the possibility of taking many measurements, making
it good for statistical purposes; and it allows for the study
of electrostatic and related interactions, such as differences in
ionic concentration. The importance of ionic interactions with
chromatin has naturally gained the attention of the experimental
community. Studies, such as Gan and Schlick (2010) have shown
that Mn2+ ions bind to the major DNA groove near CG
pairs. In Krzemien et al. (2017) AFM was used to measure the
changes in chromatin topological conformations depending on
salt levels in the environment (Figure 3C). Studying NCP arrays
in varying salt concentration revealed that array compaction has
a non-monotonic salt dependence. Increasing salt concentration
induces partial screening of the charges of the DNA backbone,
therefore reducing the electrostatic interactions between DNA
and histones, directly impacting on compaction. The stability of
mononucleosomes has also been investigated in correlation with
salt concentration (Hazan et al., 2015): in low to intermediate
salt regimes they observed some partially disassembled states

(as also studied computationally in Rychkov et al. (2017) where
H2A/H2B histone dimers partially dissociate from the NCP.
Regarding themechanical properties of chromatin, DNA stiffness
was observed to be salt-dependent as well, in accordance with
other experimental and computational studies (Rohs et al., 2009;
Pasi et al., 2015, 2017; Pasi and Lavery, 2016); the persistence
length was seen to increase at higher ionic concentrations.

Optical microscopy, a field traditionally tied to biological
applications, is a natural candidate for chromatin studies, due
to the advances in resolution obtained by super-resolution
techniques, and to the fact that label-free optical microscopy
methods have been on the rise for the past decade. Experiments
using the single molecule super-resolution microscopy technique
STORM (Ricci et al., 2015) have observed units of chromatin
organization termed by the authors clutches, heterogeneous
groups of various sizes. The size of the clutches has been
speculated by Ricci et al. to be related to the pluripotency
capacity of each cell, and the median number and nucleosome
density in the nucleus was found to be cell-specific. From longer
nucleosome arrays to chromatin fiber, other super-resolution
techniques, such as Photoactivated Localization Microscopy
(PALM) have been used to extrapolate chromatin topology in
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FIGURE 3 | As with modeling approaches, in experiments different techniques are required to study different orders of magnitude in chromatin: (A) NCP imaged with

Cryo-Em (adapted from Kobayashi et al., 2019), (B) NCPs with histone tails AFM image (Filenko et al., 2012), (C) Nucleosome array, AFM image (adapted from

Krzemien et al., 2017), (D) Isolated Hek nucleus imaged with CIDS (a), labeled with Hoechst for chromatin-DNA organization imaging. The fluorescence labeling (b) is

used as a fingerprint of chromatin to demonstrate the correlation with the label-free approach using circular polarization excitation (Le Gratiet et al., 2018).

the nucleus from nucleosome dynamics. Label-free techniques
are also used to study chromatin at the nuclear level, such as
Circular Intensity Differential Scanning (CIDS) in Le Gratiet
et al. (2018). In this work, it is shown that the main
advantage of this polarimetric method compared to standard
fluorescence microscopy is the capability to obtain specific
contrast mechanisms due to the chiral organization of the DNA
in a label-free approach without a priori knowledge of the sample.
Indeed, it is shown that the stronger signal region corresponds
to more compacted DNA region, i.e., heterochromatin, while the
weaker signal, such as for the nucleoli, corresponds to a lower
compaction, i.e., euchromatin region (Figure 3D).

Experimental validation has been attempted also for some
among the most exotic theoretical models proposed for
chromatin, namely those hypothesizing fractal globules. Fractal
globules have been observed experimentally in Hi-C experiments
(Lieberman-Aiden et al., 2009) and Small-Angle Neutron
Scattering (SANS) experiments (Ilatovskiy et al., 2012; Iashina
et al., 2017). The important question tackled by works on
this topic is the way in which fractal states with stable long-
lived properties are formed. SANS has been considered a good
technique for experiments looking for fractal structures in the
nucleus because of its extended spatial range, from ∼15 nm to
10 µm. The use of Cryo-Electron Tomography (Cryo-ET) has
provided insight on the structure of mitotic chromosomes in
fission yeast (Cai et al., 2018). SAXS and Cryo-EM have also been
used in structural analysis of the fiber up to the chromosome level
(Figure 3A) (Joti et al., 2012; Nishino et al., 2012;Maeshima et al.,
2014, 2016).

6. CONCLUSIONS

Chromatin is an extremely complex system, the behavior of
which is tuned both by mechanical and electrostatic factors,
and by biological interactions. Simulations provide extremely
useful insights, depending on the level of approximation used
to represent the system, on the different mechanisms and
factors influencing compaction. In this review we mention
several computational works that used as inputs parameter
sets acquired through experiments or evaluated their results
by comparing them with preexisting experimental data. It
is clear that combining simulations results with various
experimental techniques, appropriate to the resolution of
interest, can help shed light on the main determinants of
chromatin compaction.

Electrostatics in chromatin encompasses an intricate
combination of different mechanisms and the importance
of its role in compaction and chromatin remodeling is
paramount. The high negative charge of DNA is partially
neutralized by the direct interaction of the latter with
histones (including the effects of histone tails and the linker
histone), but electrostatic stabilization of the chromatin fiber
is achieved through a combination of this effect with long-
range electrostatics and solvent screening. Simulations in
which ionic interactions with chromatin at the NCP level
are treated more accurately would be a great improvement
to existing approaches. In addition, a more accurate
representation of the nucleosome core is crucial when
performing these analyses, since solvation has proved to be
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a very important factor in nucleosome behavior, whereas
neglecting these effects would hamper a correct understanding
of chromatin compaction.

In summary, we have presented an overview of some,
mostly theoretical and computational, approaches to
the description of chromatin, from the nucleosomal to
the cellular level, particularly focusing on the role of
electrostatics and solvation as the driving mechanisms
of chromatin conformational changes and equilibria.
To complement this overview, we also presented
some representative experimental approaches to study
chromatin structure and dynamics, at both small and
large scales.
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CRISPR-Cas9 is the forefront technology for editing the genome. In this system,
the Cas9 protein is programmed with guide RNAs to process DNA sequences that
match the guide RNA forming an RNA:DNA hybrid structure. However, the binding of
DNA sequences that do not fully match the guide RNA can limit the applicability of
CRISPR-Cas9 for genome editing, resulting in the so-called off-target effects. Here,
molecular dynamics is used to probe the effect of DNA base pair mismatches within the
RNA:DNA hybrid in CRISPR-Cas9. Molecular simulations revealed that the presence
of mismatched pairs in the DNA at distal sites with respect to the Protospacer
Adjacent Motif (PAM) recognition sequence induces an extended opening of the
RNA:DNA hybrid, leading to novel interactions established by the unwound nucleic
acids and the protein counterpart. On the contrary, mismatched pairs upstream of the
RNA:DNA hybrid are rapidly incorporated within the heteroduplex, with minor effect
on the protein-nucleic acid interactions. As a result, mismatched pairs at PAM distal
ends interfere with the activation of the catalytic HNH domain, while mismatches fully
embedded in the RNA:DNA do not affect the HNH dynamics and enable its activation
to cleave the DNA. These findings provide a mechanistic understanding to the intriguing
experimental evidence that PAM distal mismatches hamper a proper function of HNH,
explaining also why mismatches within the heteroduplex are much more tolerated. This
constitutes a step forward in understanding off-target effects in CRISPR-Cas9, which
encourages novel structure-based engineering efforts aimed at preventing the onset of
off-target effects.

Keywords: CRISPR-Cas9, off-target effects, protein-nucleic acid interactions, molecular dynamics, RNA:DNA
hybrid

INTRODUCTION

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 is the core of a
transformative genome editing technology that is innovating life science with cutting-edge
impact in basic and applied biosciences (Doudna and Charpentier, 2014; Hsu et al., 2014). This
technology is based on a protein/nucleic acid complex, composed of the endonuclease Cas9, which
associates with guide RNAs to recognize and cleave complementary DNA sequences (Figure 1;
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GRAPHICAL ABSTRACT | Molecular basis of off-target effects in
CRISPR-Cas9.

Jinek et al., 2012). The Cas9 protein performs a site-specific
recognition of the DNA, by binding a short sequence of 2–5
nucleotides, known as a Protospacer-Adjacent Motif (PAM),
located within the DNA (Sternberg et al., 2014). Upon
PAM binding, the DNA base pairs guide the RNA with
one strand (i.e., the so-called target strand, TS) to form an
20 base-paired RNA:DNA hybrid structure, while the other
DNA non-target strand (NTS) is displaced and subsequently
accommodated in the protein.

The formation of a well-matched RNA:DNA hybrid is a
fundamental step of the CRISPR-Cas9 function (Sternberg et al.,
2015). Indeed, upon formation of the RNA:DNA hybrid, the
catalytic HNH domain can change conformation from an
inactive state (in which the catalysis is hampered, Figure 1A;
Anders et al., 2014; Nishimasu et al., 2014) to a catalytically
active conformation, which approaches the cleavage site on the
TS (Figure 1B; Jiang et al., 2016). In spite of this fundamental
requirement, the presence of DNA mismatches at specific
positions of the RNA:DNA hybrid still enables the partial
activation of the HNH domain (Fu et al., 2013; Hsu et al., 2013).
This leads to the off-target cleavages, which limit the applicability
of CRISPR-Cas9, resulting in mutations at sites in the genome
other than the desired target site. Several biophysical studies
have investigated the effect of base pair mismatches within the
RNA:DNA hybrid on the conformational dynamics of CRISPR-
Cas9 (Singh et al., 2016; Chen et al., 2017; Dagdas et al., 2017;
Yang et al., 2018). Single molecule and kinetics studies have
revealed that the presence of 4 base pair mismatches at PAM
distal ends can trap the catalytic HNH domain in an inactive
conformation also referred to as “conformational checkpoint”
(Figure 1, shown as a cartoon in panel A and as a 3D structure
in panel B) (Dagdas et al., 2017). As a consequence, the cleavage
of the TS gets hampered owing to lack of conformational
changes that bring HNH in immediate vicinity to the cleavage
site. Inversely, up to 3 base pair mismatches at PAM distal
ends still allow the repositioning of HNH, thereby resulting
in off-target cleavages. These studies indicate the occurrence
of off-target cleavage is linked to the conformational states of
HNH. In a recent computational study, we employed molecular
dynamics (MD) simulations to investigate the factors affecting
the HNH conformational dynamics prior to activation (Ricci
et al., 2019). Our study employed the Gaussian accelerated

MD (GaMD) method (Miao et al., 2015), to broadly explore
the conformational space of CRISPR-Cas9 in complex with an
on-target DNA and in the presence of base pair mismatches.
These simulations have revealed that the presence of 4 base
pair mismatches at PAM distal sites (i.e., at positions 17–20
of the RNA:DNA hybrid) induced an extended opening of the
RNA:DNA hybrid, with formation of conserved interactions
between the TS and the HNH domain. This effectively decreased
the conformational mobility of the HNH domain. Contrariwise,
up to 3 base pair mismatches (at positions 18–20) display a lower
conformational effect on the RNA:DNA hybrid, and do not affect
the conformational dynamics of HNH. These simulations thereby
provided a theoretical rationale for the experimental evidence
describing the molecular interactions that “lock” HNH in the
presence of 4 base pair mismatches at PAM distal ends (Chen
et al., 2017; Dagdas et al., 2017; Yang et al., 2018).

However, mechanistic investigations of how DNA mismatches
located upstream of the RNA:DNA heteroduplex affect the
conformational dynamics of the hybrid structure and the HNH
“conformational checkpoint” are absent. Knowledge of the
conformational changes arising from base pair mismatches in
the middle of the RNA:DNA hybrid are important to gain a
deeper understanding of the molecular determinants of off-target
binding, which consequently may offer insights for improving the
specificity of CRISPR-Cas9. Moreover, understanding how base
pair mismatches affect the RNA:DNA structure is important to
characterize the dynamics of the heteroduplex itself. This is a
key point considering the importance of RNA:DNA hybrids in a
variety of biological processes, such as transcription, formation
of Okazaki’s fragments and R-loop structures, as well as in
eukaryotic chromosomes (Cheatham and Kollman, 1997; Rich,
2006; Shaw and Arya, 2008; Nadel et al., 2015; Palermo, 2019a;
Terrazas et al., 2019).

In this research report, we extend our recent investigations to
4 additional model systems, which include base pair mismatches
upstream of the RNA:DNA hybrid (Figure 1). Analysis of the
results has been performed in comparison with our recently
published data, Ricci et al. (2019) thereby evaluating similarities
and differences with base pair mismatches at PAM distal ends
and with an on-target DNA. We show that while base pair
mismatches at PAM distal sites induce an opening of the
RNA:DNA hybrid, at upstream positions they are incorporated
within the heteroduplex, with minor effect on the protein-nucleic
acid interactions. Additionally, mismatches at PAM distal sites
limit the mobility of HNH in the “conformational checkpoint”
state and consequently affect its activation toward DNA cleavage.
Conversely, mismatched pairs within the heteroduplex do
not affect the dynamics of HNH, which can freely change
conformation as needed to perform DNA cleavages.

RESULTS AND DISCUSSION

To understand the effect of DNA mismatch pairs within
the RNA:DNA hybrid on the conformational dynamics of
CRISPR-Cas9 and on the HNH domain, we carried out molecular
simulations. These investigations have been carried out in
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FIGURE 1 | (A,B) Cartoon of the endonuclease Cas9 (gray) in complex with the nucleic acids. The DNA target strand (TS, cyan) base pairs the guide RNA
(magenta), forming an RNA:DNA hybrid, while the DNA non-target strand (NTS, blue), which also includes the PAM recognition region (red), is displaced. Two
conformational states of the catalytic HNH domain (green) are shown. In (A), HNH assumes an inactive “conformational checkpoint” state, which requires a
conformational transition (indicated using green arrows) to reach the activated state (B), where it approaches the cleavage site on the TS (indicated using a star). On
the bottom panel, a close-up view of the RNA:DNA hybrid highlights the regions at PAM distal ends and within the heteroduplex. In this work, base pair mismatches
“mm” have been introduced at positions 17–20, 16–17, 14–15, 12–13, and 10–11 (shown in black). (C) X-ray structure of CRISPR-Cas9 identifying the
“conformational checkpoint” state (Fu et al., 2013). The protein is shown in molecular surface, with the HNH domain in green. The nucleic acids are shown as
ribbons, color-coded as in the cartoon in panel (A).

analogy to our recent study, which has investigated the effect
of mismatch pairs at PAM distal ends (Ricci et al., 2019).
In detail, molecular simulations have been performed on the
X-ray structure of CRISPR-Cas9 capturing a “conformational
checkpoint” state of the HNH domain (i.e., 4UN3.pdb) (Anders
et al., 2014), thereby enabling us to understand if and how
base pair mismatches could affect the dynamics of HNH prior
its activation. A GaMD method has been employed (Miao
et al., 2015), adding a boost potential to the simulation that
accelerates transitions between low-energy states (see section
“Materials and Methods”). The method has been shown to
enhance a broad sampling of the conformational space in
large biomolecular systems (Miao and McCammon, 2016, 2018;
Wang and Chan, 2017; Liao and Wang, 2018; Sibener et al.,
2018), including CRISPR-Cas9 as apo form and in complex
with nucleic acids (Palermo et al., 2017; Palermo, 2019b), or
bound to off-target DNAs (Ricci et al., 2019). Recently, GaMD
has shown to sample long time scale motions in agreement
with NMR relaxation experiments, showing that the method
can efficiently capture the dynamics of large protein/nucleic
acid complexes (East et al., 2020). A set of model systems

have been built; introducing couples of base pair mismatches
“mm” within the hybrid complex at positions 10 to 17 (i.e.,
mm@10–11, @12–13, @14–15, and @16–17, Figure 1A, bottom
panel). The dynamics of these systems have been compared
with the simulations of CRISPR-Cas9 binding to an on-target
DNA and including 1 to 4 mismatches at PAM distal sites
(i.e., mm@17–20, @18–20, @19–20, and @20), which we have
recently published (Ricci et al., 2019). For each system, ∼1 µs
of conformational sampling has been performed (see section
“Materials and Methods”), as in our previous study and by
employing the same simulations conditions, thereby enabling
proper comparison.

Dynamics of the RNA:DNA Hybrid in the
Presence of DNA Mismatches
Molecular dynamics simulations of CRISPR-Cas9 bound to a
fully matched RNA:DNA hybrid (i.e., on-target system) have
revealed a stable Watson-Crick base pairing (Figure 2A, left
panel), both at PAM distal ends and within the heteroduplex.
Notably, transient openings at the end of a DNA duplex, or base

Frontiers in Molecular Biosciences | www.frontiersin.org 3 March 2020 | Volume 7 | Article 39186

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00039 March 14, 2020 Time: 17:26 # 4

Mitchell et al. Off-Target Effects in CRISPR-Cas9

FIGURE 2 | (A) Conformations adopted by the RNA:DNA hybrid, in the presence of an on-target DNA (left), including base pair mismatches “mm” at PAM distal
ends (center) and within the heteroduplex (right). (B) Minor groove width measured at different levels of the RNA:DNA hybrid (i.e., from base pair bp20 to bp9) in the
systems including “mm” at PAM distal ends (top panel) and within the heteroduplex (bottom panel). Data are compared with the on-target system. (C) Each graph
reports the probability distribution (as violin plot) of the Propeller Twist angle for each base pair (bp) from PAM distal ends (bp19 to bp17) up to the middle of the
RNA:DNA hybrid (bp16 to bp13), computed along the dynamics of each simulated system (reported on the x-axis). Regions of major and minor distortions are
highlighted using boxes.

flipping are not unusual over long timescales in MD simulations,
as shown by several research groups (Pérez et al., 2007, 2008;
Mura and McCammon, 2008; Ricci et al., 2010; Ma et al.,
2016). However, in the simulations of the on-target CRISPR-
Cas9 system, the RNA:DNA hybrid maintains the Watson-Crick
base pairing, stabilized by the protein framework, as observed
in several conventional and GaMD simulations of this system
(Palermo et al., 2016, 2017). Contrariwise, in the presence of base
pair mismatches at PAM distal ends (i.e., at positions 16 to 20),
we previously observed the opening of the RNA:DNA hybrid
(central panel) (Ricci et al., 2019). Here, when we introduce DNA
mismatches at the upstream positions (i.e., @10–11, @12–13,
and @14–15), we detect that the RNA:DNA hybrid preserves
its overall shape (right panel), similarly to what observed in
the on-target system. In order to estimate the conformational
changes of the RNA:DNA hybrid, we analyzed in all simulated
systems, the minor groove width from PAM distal ends up to
the middle of the RNA:DNA hybrid (Figure 2B). As a result,

we observe that the presence of base pair mismatches at PAM
distal ends (i.e., mm@17 to 20) induced an increase of the minor
groove width at positions 18–20, which corresponds to the hybrid
opening. Notably, the hybrid opening is also observed when
including mismatches at positions 16 and 17. This indicates that,
perturbations at position 17 (as in the mm@17–20 and mm@16–
17 systems) lead to major distortions in the heteroduplex.
Conversely, when introducing mismatches at positions 10–11,
12–13, and 14–15, the minor grove width of the RNA:DNA
hybrid preserves the conformation of the on-target system.

To understand the effects of the base pair mismatches on
the Watson-Crick base pairing, we have used a key geometrical
descriptor of the base pair complementarity. We have selected
the Propeller Twist parameter (Figure 2C), which describe the
rotation of couples of base pairs with respect to each other. Based
on our previous study, this parameter enables us to properly
characterize alterations in the base pairing along the RNA:DNA
hybrid (Ricci et al., 2019). Figure 2C reports the distribution of
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the Propeller Twist angle along the dynamics for each base pair
from PAM distal ends up to the middle of the RNA:DNA hybrid
(i.e., from base pair bp20 to bp9). This analysis shows that the
presence of base pair mismatches at positions 16 to 20 induces
the remarkable loss of base pairing at PAM distal ends, as shown
in the mm@20, mm@19–20, mm@18–20, mm@17–20, and in
the mm@16–17 systems (“major distortion” in Figure 2C). On
the contrary, the geometrical requirements for the base pairing
reveal “minor distortion” for mismatches within the RNA:DNA
hybrid (i.e., mm@10–11, mm@12–13, and mm@14–15). Notably,
this local distortion is due to the loss of base pair interactions
(mainly H-bonds), which is typical between DNA mismatched
pairs. However, the analysis of the minor grove width (Figure 2B)
shows that the hybrid preserves its overall shape when base
pair mismatches are introduced in the middle of the structure.
Hence, a combined analysis of the minor grove width and the
base pair complementarity reveal that the presence of base pair
mismatches within the hybrid does not influence the overall
shape of the RNA:DNA hybrid, and that base pair mismatches
result embedded within the heteroduplex structure.

Mobility of the HNH Domain in the
Presence of DNA Mismatches
Our previous study has revealed that in the presence of 4 base
pair mismatches at PAM distal ends, the DNA TS establishes
conserved interactions with the HNH domain (Ricci et al.,

2019). These interactions restrict the mobility of HNH and
affect its conformational activation toward DNA cleavage, while
also contributing to the widening of the RNA:DNA hybrid.
Here, in order to assess the conformational mobility of HNH
in the presence of base pair mismatches within the RNA:DNA
hybrid, we performed Principal Component Analysis (PCA).
This analysis enabled to capture the essential degrees of freedom
of the HNH domain (see section “Materials and Methods”). PCA
has been carried out in comparison with the on-target system
and with the system including 4 base pair mismatches at PAM
distal ends (i.e., mm@17–20). Figure 3A reports the dynamics of
the HNH domain along its first mode of motion (i.e., Principal
Component 1, PC1), shown using arrows to indicate the direction
and relative amplitude of the motions. The top panel shows a
comparison between the system binding an on-target DNA and in
the presence of 4 base pair mismatches at positions 17–20. In the
mm@17–20 system, we observe that the unwound TS approaches
the arrows corresponding to the HNH principal motion. A close-
up view displays the interactions established by the DNA and
the residues of the HNH domain. Notably, these interactions are
stable along the dynamics, as discussed in our previous paper.
The bottom panel reports the PCA analysis for the simulated
systems including base pair mismatches within the RNA:DNA
hybrid. We observe that for base pair mismatches at positions
16–17, the TS displays a similar unwinding of the mm@17–20
system, with conserved interactions established with the HNH
domain (close-up view). Indeed, the interaction between the

FIGURE 3 | (A) “Essential dynamics,” (Amadei et al., 1993) derived from the first principal component (PC1), of the HNH domains in CRISPR-Cas9, binding an
on-target DNA and base pair mismatches “mm” at positions 17–20 (top panel), 16–17, 14–15, 12–13, and 10–11 (bottom panel). PC1 is plotted on the
three-dimensional structure of HNH (green) using arrows of sizes proportional to the amplitude of motions. The RNA:DNA hybrid is also shown. For the mm@17–20
and mm@16–17 systems, a close-up view shows the interaction between the unwound non-target strand and the HNH domain. (B) Projections of the first and
second principal motions (PC1 vs. PC2) for the HNH domain in the simulated systems (listed in the legend).
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FIGURE 4 | (A) Cross-Correlation (CCij ) matrices computed between the HNH α-helices that locate in proximity of the hybrid (x-axis), and the DNA TS from position
b20 to position b9 (y-axis). The CCij coefficients are computed between the protein Cα and the DNA phosphate atoms. Data are reported for CRISPR-Cas9 binding
an on-target DNA and including base pair mismatches “mm” at positions 17–20 (top panel), as well as with “mm” at positions 16–17, 14–15, 12–13, and 10–11
(bottom panel). Positive correlations (CCij ≥ 0) are shown in magenta, whereas anti-correlated motions display negative correlations (CCij ≤ 0) are shown in green
(legend on the bottom right). Two boxes indicate highly coupled motions in the mm@17–20 and mm@16–17 systems. (B) Cartoon of the system, displaying the
regions used to compute the CCij matrix. The HNH domain is shown as cartoon (green), with the α-helices HxA (residues 890–900, red), HxB (residues 901–910,
yellow) and HxC (residues 911–920, orange) in different colors. The RNA (violet) and the DNA TS (cyan) are shown as ribbons.

nucleobases at position 17 and R904 is conserved in the two
systems. This indicates that local distortions due to mismatched
nucleobases at position 17, which is in close proximity to the
HNH (α-helices, can critically affect the dynamics of HNH. We
note that the interaction established at position 17 involves the
DNA backbone (rather than the nucleobases), which suggests that
this interaction is not specific, but rather could be established
also in the presence of different mismatched nucleobases. This
hypothesis, however, warrants further investigations, which are
currently ongoing in our lab as a follow-up of this study.
On the contrary, base pair mismatches @10–11, @12–13, and
@14–15 do not result in the approach of the TS to the HNH
domain, resembling what observed the dynamics of the on-target
system (top panel).

In order to characterize the conformational space sampled by
the HNH domain, we plotted the first versus the second principal
components (PC1 vs. PC2, Figure 3B). This analysis revealed
that in the mm@17–20 system, HNH explores a narrower
conformational space with respect to the remaining systems,
indicating a diminished mobility. A narrow conformational space
is also observed for the mm@16–17 system. As discussed above,
in these two systems, the TS tightly interacts with the HNH
domain, thereby limiting its conformational dynamics. In the

systems including base pair mismatches within the RNA:DNA
hybrid, the HNH domain assumes a wider conformational space,
similar to what observed in the on-target system. This indicates
that the dynamics of HNH is not significantly affected by base
pair mismatches in the middle of the RNA:DNA hybrid.

To further characterize the mobility of the systems and to
understand the relation between the dynamics of the nucleic acids
and the HNH domain, we performed cross-correlation (CCij)
analysis. This analysis enabled us capturing coupled motions
between the protein Cα atoms and the TS phosphate atoms
(details in the see section “Materials and Methods”). Figure 4A
reports the CCij matrices computed between the residues of
the HNH α-helices that locate in proximity of the hybrid,
and the TS bases from position b20 (PAM distal ends) to
position b9 (within the hybrid). Positive correlations (CCij = 0,
magenta) indicate highly coupled motions in the same direction,
whereas anti-correlated motions display negative correlations
(CCij = 0, green). A cartoon of the system, highlighting the
regions used to compute the cross-correlations is shown in
Figure 4B. For the sake of the clarity, the HNH α-helices
in proximity of the hybrid are indicated in red (residues
890–900, Helix–A), yellow (901–910, Helix–B) and orange
(911–920, Helix–C).
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As a result of this analysis, in the presence of mismatches
at PAM distal ends (i.e., in the mm@17–20 system) and at
positions 16–17 (mm@16–17 system), Helix–A and Helix–B
are highly correlated with the TS bases from position 18 to
14 (as highlighted using a box in Figure 4A). This indicates
that the dynamics of the HNH and of the TS are mutually
affected by each other, when in the presence of mismatched
pairs at PAM distal ends. Moreover, we note that in the
presence of mismatches at PAM distal ends, the DNA TS
mainly interacts with Helix–B (Figure 3A, and also shown by
Ricci and coauthors) (Ricci et al., 2019), thereby affecting its
conformational dynamics. Inversely, in the systems displaying
base pair mismatches at upstream positions (mm@14 to 10), as
well as in the on-target system, a weakening of the correlated
motions can be seen. In these systems, there are no interactions
being established between the TS and the HNH domain, signified
by the diminished correlations between them. Overall, the
cross-correlation analyses confirm that the presence of base
pair mismatches at PAM distal ends affects the dynamics of
HNH, while mismatches at upstream positions do not exert a
relevant effect.

CONCLUSION

Here, molecular simulations have been used to characterize
the conformational dynamics of CRISPR-Cas9 in the presence
of base pair mismatches within the RNA:DNA hybrid. The
simulations have shown that the presence of base pair mismatches
at PAM distal ends of the RNA:DNA hybrid (i.e., positions
20 to 17) induce an opening of the heteroduplex (Ricci et al.,
2019). As a result, newly formed interactions between the
DNA TS and the catalytic HNH domain have been shown to
“trap” HNH in an inactive “conformational checkpoint” state,
hampering its activation for cleavage. On the contrary, base pair
mismatches at upstream positions (i.e., within the RNA:DNA
hybrid, at positions 14 to 10) are incorporated within the
heteroduplex, with minor effect on the protein-nucleic acid
interactions. Indeed, the presence of DNA mismatches within
the hybrid does not affect the mobility of HNH, which is
similar to that of the on-target system (Figure 3). This suggests
that mismatched base pairs within the RNA:DNA hybrid do
not interfere with the process of HNH activation (Figure 1A),
where HNH changes in configuration from its “conformational
checkpoint” state to an activated form are prone to cleave
the DNA TS (Figures 1A,B). Notably, these results agree with
existing experimental studies and offer a rationale to the observed
outcomes. Indeed, the presence of DNA mismatches at PAM
distal ends has been experimentally shown to trap HNH in
a “conformational checkpoint” state, likely due to interactions
established with the DNA TS, as previously suggested (Singh
et al., 2016; Chen et al., 2017; Dagdas et al., 2017; Yang et al.,
2018). However, mismatches in the middle of the hybrid are
much more tolerated than at PAM distal ends, and lead to DNA
cleavages. In light of this fact, our results indicate that mismatches
at upstream positions (i.e., positions 14 to 10) still allow to
preserve the overall structure of the RNA:DNA, without affecting
the conformational dynamics of the catalytic HNH domain.

As such, HNH can freely change conformation as needed to
perform DNA cleavages (Figures 1A,B). Overall, this research
report constitutes a step forward in understanding the effect of
DNA mismatches within the RNA:DNA hybrid in CRISPR-Cas9,
offering insightful information on off-target effects. This work
also forms the basis for further investigation, to characterize the
effect of DNA mismatches along the entire RNA:DNA hybrid
and therefore to report an atomic-level understanding also for
DNA mismatches at PAM-proximal sites (i.e., positions 1 to
9). These studies are currently ongoing in our laboratory, as
inspired from the current work, taking also into account different
conformations of the HNH (Figure 1A) domain and diverse
mismatched nucleobases. Finally, we note that understanding
how mismatched pairs affect the heteroduplex structure is per
se important to understand the function of RNA:DNAs, which
are critical in a variety of biological processes (Cheatham and
Kollman, 1997; Rich, 2006; Shaw and Arya, 2008; Nadel et al.,
2015; Palermo, 2019a; Terrazas et al., 2019).

In summary, this study provides an atomic-level
understanding of the dynamic effects of the binding of DNA base
pair mismatches within the RNA:DNA hybrid in CRISPR-Cas9.
As a take-home message, the presence of mismatched pairs at
distinctive locations of the RNA:DNA hybrid produces different
conformational effects, which affect the protein counterpart.
Specifically, mismatched pairs at PAM distal ends interfere with
the activation of the catalytic HNH domain, while mismatches
fully embedded in the RNA:DNA do not affect the HNH
dynamics and enable its activation to cleave the DNA. This
provides a reasonable explanation on why off-target sequences
holding mismatches at PAM distal ends are less likely to produce
DNA cleavages in CRISPR-Cas9, than mismatched pairs within
the heteroduplex, as experimentally observed (Singh et al.,
2016; Chen et al., 2017; Dagdas et al., 2017; Yang et al., 2018).
These findings contribute in understanding the mechanistic
basis of off-target effects in CRISPR-Cas9 and encourage novel
experimental studies aimed at designing more specific variants
of the system that prevent the onset of off-target effects.

MATERIALS AND METHODS

Structural models have been based on the X-ray structure of the
Streptococcus pyogenes CRISPR-Cas9 complex (4UN3.pd, 2.58 Å
resolution) (Anders et al., 2014) which captures the inactivated
state of the HNH domain (i.e., “conformational checkpoint”)
(Dagdas et al., 2017). MD simulations have been performed
applying a well-established protocol for protein/nucleic acid
complexes, which employs the Amber ff12SB force field,
including the ff99bsc0 (Perez et al., 2007) corrections for DNA
and the ff99bsc0+(χOL3 (Banas et al., 2010; Zgarbova et al., 2011)
corrections for RNA. To broadly explore the conformational
space of CRISPR-Cas9, we employed a recent accelerated MD
(aMD) simulations method (Miao et al., 2015). Specifically,
we applied a Gaussian aMD (GaMD) method, which adds a
harmonic boost potential to smoothen the potential energy
surface, thereby decreasing energy barriers and accelerating
transitions between the low-energy states (a complete description
of the method is reported as a Supplementary Material).
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The method has extended the use of aMD to large biomolecular
systems, with applications of this method to G-protein coupled
receptors (Miao and McCammon, 2016, 2018), the Mu opioid
receptor (Wang and Chan, 2017; Liao and Wang, 2018), T-cell
receptors (Sibener et al., 2018), and CRISPR-Cas9 (Palermo et al.,
2017; Palermo, 2019b; Ricci et al., 2019).
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Voltage-gated sodium (Nav) channels form the basis for the initiation of the action
potential in excitable cells by allowing sodium ions to pass through the cell membrane.
The Nav channel α subunit is known to function both with and without associated β

subunits. There is increasing evidence that these β subunits have multiple roles that
include not only influencing the voltage-dependent gating but also the ability to alter the
spatial distribution of the pore-forming α subunit. Recent structural data has shown
possible ways in which β1 subunits may interact with the α subunit. However, the
position of the β1 subunit would not be compatible with a previous trimer structure
of the β3 subunit. Furthermore, little is currently known about the dynamic behavior of
the β subunits both as individual monomers and as higher order oligomers. Here, we
use multiscale molecular dynamics simulations to assess the dynamics of the β3, and
the closely related, β1 subunit. These findings reveal the spatio-temporal dynamics of
β subunits and should provide a useful framework for interpreting future low-resolution
experiments such as atomic force microscopy.

Keywords: molecular dynamics, coarse-grain, epilepsy, lipid bilayer, multiscale

INTRODUCTION

Voltage-gated sodium (Nav) channels are the initiators of action potentials in electrically excitable
cells and are also implicated in many disease and pathological states including cardiac arrhythmia
(Watanabe et al., 2008), epilepsy (Audenaert et al., 2003; van Gassen et al., 2009), neuropsychiatric
disorders (Gargus, 2006), and chronic pain (Shah et al., 2000, 2001; Takahashi et al., 2003; Bouza and
Isom, 2018). Nav channels are comprised of an α subunit that forms the central pore-conducting
region and β subunits that perform various roles such as modulating the voltage sensitivity and
regulating the trafficking of the channel. In humans, there are ten α and four β subunits (the
β1 subunit gives rise to two isoforms, β1 and β1B) that are expressed in different tissue-specific
combinations, thus giving precise regio-selective control of the Nav channel behavior. Additionally,
β subunits also function independently as cell-adhesion molecules (CAMs) (Isom et al., 1995;
Rougon and Hobert, 2003; Yu et al., 2003) and may play a role in Nav channel clustering at the
nodes of Ranvier (Ratcliffe et al., 2001) to promote the propagation of the action potential.

As perhaps might be expected given its central role in sodium ion conduction, most attention
has been paid to the α subunit. However, in vivo, the effects of the β subunits are increasingly
recognized and may well offer alternative therapeutic routes in the long run (Hull and Isom, 2018).
For example, the β1 subunit has been shown to stabilize the Nav 1.7 channel against mechanical
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stress (Körner et al., 2018) and has diverse roles with respect to its
interactions with Nav channels (Edokobi and Isom, 2018). People
with mutations in the β3 subunit (SCN3B gene) show cardiac
conduction problems (Brackenbury and Isom, 2011) and in mice
deletion of SCN3B leads to cardiac arrhythmias (Hakim et al.,
2008, 2010). The SCN3B gene has also been linked to Brugada
syndrome (Okata et al., 2016).

Although the β1 – 4 isoforms all share a similar scaffold
of an extracellular immunoglobulin (Ig) – like fold with a
single transmembrane (TM) helix and unstructured intracellular
domain, their binding to the α subunit differs. Both β2 and
β4 bind covalently (Yu et al., 2003; Chen et al., 2012), via
a disulfide bond, whilst β1 and β3 bind non-covalently. It
has previously been shown that β3 subunits can trimerize
via their Ig domains and can also induce higher order
oligomerization of Nav channel α subunits (Namadurai et al.,
2014). Increasingly, there is evidence to suggest that sodium
channels may in fact operate in higher order complexes
(Clatot et al., 2017) and can also form complexes with many
other proteins involved in a variety of signaling pathways
(Kanellopoulos et al., 2018).

The α subunit itself is constructed from four homologous
domains (DI – DIV), each containing six TM helices that make
up the voltage sensor domain (VSD, helices 1 – 4) and pore-
forming domain (helices 5 and 6). The exact location of where
β subunits bind to the α subunit is uncertain, additionally the
exact ratio of α:β subunit is also not very well characterized and
may vary depending on tissue type and the cellular environment
(Patino et al., 2011). Evidence from experimental fluorescence
studies suggests that both the β3 and β1 subunits can bind
to the α subunit and may alter the rate of fast inactivation
through interaction with the VSDs of DIII and DIV, respectively
(Zhu et al., 2017). Interestingly, recently released structures
of Nav channels with β subunits bound all contain β subunit
density in this region. The first of the eukaryotic structures
with a β subunit bound was that of Nav 1.4 from Electric
Eel by Yan et al. (2017), solved at a resolution of 4 Å. Here
the fully resolved β1 subunit interacts via its transmembrane
domain (TMD), and Ig domain with the VSD of DIII and
extracellular loops of the α subunit, respectively. Shortly after,
the nearly identical human structure of Nav 1.4 was solved
by Pan et al. (2018) with β1 again bound to the VSD of
DIII at an improved resolution of 3.2 Å. In another cryo-EM
structure, this time with the human Nav 1.7 α subunit, not
only could the position of β1 be resolved, but also the position
of β2 and various toxin molecules (Shen et al., 2019). These
structures offer an insight into not only the various states the
α subunit occupies in its activation profile but also where β

subunits may bind. In these structures the β1 subunit is bound
to VSD of DIII, usually on the periphery of the α subunit.
At this stage, it remains unclear as to whether the site of
binding is consistent between α subunits or indeed whether the
binding interactions for β1 will be the same for β3 (Zhu et al.,
2017). Interestingly, it was recently reported that the human β1
subunit can also interact with the bacterial NaChBac channel
(Molinarolo et al., 2018) although the mode of interaction
was not discussed.

Despite the plethora of recent structural information, several
aspects regarding the role of the β subunits remain unclear.
What is the dynamic behavior of β subunit monomers? Do they
oligomerize, and if so, how? How does the trimeric Ig domain
structure of β3 relate to the position and orientation of the β

subunits observed when in complex with the α subunits? To try
and address these questions, we have used multiscale molecular
dynamics simulations. We show that although β1 and β3 exhibit
a relatively high sequence identity (51%), the behavior of the
monomers is quite different, with β3 being more dynamic than
β1. We attribute this to distinct residue – lipid contacts in the
Ig domains of both subunits. We also demonstrate that the
lipid composition is likely to have a key role in controlling the
dynamical behavior.

MATERIALS AND METHODS

Homology Models
β3 Monomer
The recent cryo-EM structure of the β1 subunit in the human
Nav 1.4-β1 complex (Pan et al., 2018) (PDB: 6AGF) was used to
construct a model of the human β3 subunit. Sequence alignment
was performed using the MUSCLE web server (Edgar, 2004)
with the full length human β3 and the β1 cryo-EM structure
sequence with a sequence identity = 51% (see Supplementary
Figure S1 for sequence alignment and domain annotation).
A total of 200 models were created with each model scored using
Discrete Optimized Protein Energy (DOPE) in the Modeller
software package (Webb and Sali, 2014). The 10 best models
were ranked using Qualitative Model Energy Analysis (QMEAN)
(Benkert et al., 2008) and the final model chosen with the
highest QMEAN score.

β1 Monomer
The model used for β1 simulations was constructed directly from
the Nav 1.4-β1 structure (Pan et al., 2018), since all residues had
been resolved. All mutations in the Ig domain and linker (see
Table 1) were performed in PyMol (DeLano, 2004).

β3 Trimer
The crystal structure of the trimeric β3 subunit (Namadurai
et al., 2014) (PDB: 4L1D), containing just the extracellular region,
was used as a template to construct a model of the trimeric
extracellular region of β3. A total of 200 models were created with
each model scored using DOPE in the Modeler software package
(Webb and Sali, 2014). The 10 best models were ranked using
QMEAN (Benkert et al., 2008) and the final model chosen with
the highest QMEAN score.

Full Length β3 Trimer
Over the course of the simulations of the β3 monomer model
(see section “β3 Monomer”) a large variety of conformations
were visited. To construct the β3 trimer model a frame from
the first run was taken at a pitch angle of 44.7◦ with the long
axis of the Ig domain approximately perpendicular to the plane
of the membrane. This was overlaid with each chain of the β3
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TABLE 1 | Summary of simulations.

Simulation No. proteins Bilayer composition No. Lipids Box size (x and y) Duration

Atomistic

β1 monomer 1 POPC 225 9 nm 25 × 400 ns

β1 monomer (Ig mutant) 1 POPC 225 9 nm 3 × 400 ns

β1 monomer (Ig + linker mutant) 1 POPC 225 9 nm 3 × 400 ns

β1 monomer (linker mutant) 1 POPC 225 9 nm 3 × 400 ns

β3 monomer 1 POPC 225 9 nm 25 × 400 ns

β3 trimer 3 POPC 506 13 nm 3 × 400 ns

Coarse-grained

β3 36 PM 10,080 52 nm 3 × 10 µs

crystal structure containing just the extracellular domain (ECD)
(see section “β3 Trimer”). After the model was constructed it
was checked for no steric clashes, of which there were none. All
overlays were performed in PyMol (DeLano, 2004).

Molecular Dynamics (MD) Simulations
All atomistic simulations were performed using GROMACS 2018
(Abraham et al., 2015) with the AMBER ff99SB-ILDN force
field (Lindorff-Larsen et al., 2010). Protein models constructed
with a membrane were prepared using the InflateGRO (Kandt
et al., 2007) methodology and in-house scripts used for final
adjustments. Equilibration steps of each system consisted of
solvation using the TIP3P water model and neutralization using
150 mM NaCl, energy minimization using the steepest decent
algorithm and a short (1 ns) and long (5 ns) equilibration
whilst position restraining the Cα atoms with a force constant
of 1000 kJ mol−1. All simulations were carried out in the
NPT ensemble. The temperature and pressure were set to
300 K and 1 bar using the Nosé-Hoover thermostat (Nose,
1984; Hoover, 1985) and Parrinello-Rahman barostat (Parinello
and Rahman, 1981) with coupling constants of 0.8 and
5.0 ps, respectively.

All coarse-grained (CG) simulations were performed using
GROMACS (Abraham et al., 2015) 2019 with the MARTINI
(v2) force field (de Jong et al., 2013). Each CG protein was
embedded in a membrane using the INSANE (Wassenaar et al.,
2015) methodology. For each system, energy minimization was
performed with the steepest decent algorithm. Equilibration steps
consisted of solvation using the non-polarizable MARTINI water
model and neutralization using 150 mM NaCl, followed by a
short (20 ns) and long (100 ns) equilibration whilst position
restraining backbone atoms with a force constant of 1000 kJ
mol−1. All simulations were carried out in the NPT ensemble
at a temperature of 323 K and pressure of 1 bar. The V-rescale
(Bussi et al., 2007) temperature and Berendsen pressure coupling
(Berendsen et al., 1984) were used for short equilibrations with
coupling constants of 1.0 and 8.0 ps, respectively. The V-rescale
temperature coupling and Parrinello-Rahman pressure coupling
were used for long equilibrations with coupling constants set
to 4.0 ps and 8.0 ps, respectively. The 6 × 6 β3 grid was
constructed by tiling a unit cell of one membrane embedded
protein after the previously mentioned equilibration steps in the
x and y direction.

All simulations performed are summarized in Table 1.
All atomistic simulations were performed in a 1-palmitoyl-2-
oleoyl-glycero-3-phosphocholine (POPC) bilayer whilst all CG
simulations were performed in a generalized mammalian plasma
membrane (PM) composition from Koldsø et al. (2014), where
the composition of the membrane is as follows:

Upper leaflet: POPC(40):POPE(10):Sph(15):GM3(10):
CHOL(25)
Lower leaflet: POPC(10):POPE(40):POPS(15):PIP2(10):
CHOL(25)

Where POPE, 1-palmitoyl-2-oleoyl-glycero-3-phosphatidy
lethanolamine; Sph, sphingomyelin; GM3, monosialodihexosylg
anglioside; CHOL, cholesterol; POPS, 1-palmitoyl-2-oleoyl-
glycero-3-phosphatidylserine; PIP2, 1-palmitoyl-2-oleoyl-gly
cero-3-phosphatidylinositol-4,5-bisphosphate.

Ig Orientation Analysis
Assessment of the Ig domain’s favored orientation was achieved
by calculating the principal axes (PAs) at each frame and
measuring the Tait-Bryan angles using the standard basis
ex, ey, ez as a reference [where ex = (1, 0, 0), ey = (0, 1, 0),
and ez = (0, 0, 1)]. In order to calculate the PAs the center of
mass was taken as the center of mass of secondary structures
contained within the Ig domain (i.e., the β-sheets and 3–10
helices). This was chosen to minimize any noise associated with
flexible loop movement over the course of the simulation. The
PAs p1, p2, and p3 were obtained via the diagonalization of the
moment of inertia tensor, I.

I =
N∑
i=1

mi

[
(ri · ri)

3∑
α=1

eα ⊗ eα − ri ⊗ ri

]
(1)

3 = UTIU (2)

Where U = (p1, p2, p3) and3 is a diagonal matrix of eigenvalues
that correspond to the principal moments of inertia. At every
frame, the first, second, and third principal axes were used to
define a rotation matrix (based on the direction cosine matrix
between each principal axis and the reference basis) and from
this the Tait-Bryan angles computed. Using an intrinsic rotation
formalism of ZYX the yaw, pitch, and roll angles were defined. In
this study we focus on the pitch angle in relation to the Ig domain.
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All angle analysis was produced from in-house python scripts are
available at https://github.com/bigginlab/protein_orientation.

RESULTS

Dynamics of β1 and β3 Interactions With
the Membrane
The recent structures of the Nav α/β subunit complexes
revealed the β1 Ig domain to adopt a conformation such
that the long axis of the strands sits roughly parallel to the
membrane surface (see Figure 1A). We noted at this point
that if full-length β3 subunits adopted the same trimeric
structure as observed for the Ig domain (from β3) only
(Figure 1B; Namadurai et al., 2014), their interaction with
the membrane would most likely require some substantial
conformational rearrangement (Figure 1C). Thus, we
investigated the dynamic behavior of full-length monomeric β1
and β3 in a POPC bilayer system using 25 replicas of 400 ns
unbiased MD simulations.

We examined the behavior of the Ig domain, in terms
of the “pitch” with respect to the Ig domain in the first
frame of each simulation (see section “Ig Orientation Analysis”
and Figures 2A–F). Perhaps surprisingly, the behavior of
the Ig domains in terms of the pitch is very different for
β1 compared to β3 despite a high sequence identity (see
section “β3 Monomer”). A pitch angle of 0◦corresponds to
an orientation parallel to the membrane plane and typically
bound to the membrane surface. For β1 simulations, the
pitch remains tightly clustered around 0◦, with only a few
runs exhibiting significant sojourns into higher pitch angles.
In contrast, for β3 there is a wide variety of pitch states
visited when analyzing all the repeats with a favored pitch
angle centered around 30◦. Individual runs (Figure 2F)
also appear to show more dynamic movement of the Ig
domain within runs.

Our β3 model was constructed from the recent β1 cryo-EM
structure (see section “β3 Monomer”) which, when bound to
the α subunit, positions the TM helix approximately parallel
to the bilayer normal. However, during simulations, both β1
and β3 TM helices adopt a significant tilt angle (Figures 3A,B),
leading to a classic bell-shaped curve with a peak around
40◦ for β1 and 38◦ for β3. These are quite large tilt angles
compared to many TM proteins (Bowie, 1997). Common to
both β1 and β3 is a conserved glutamic acid residue (E177
and E176 in β1 and β3, respectively) that is located, somewhat
surprisingly, within the lower part of the TM helix. Visual
inspection of the trajectories suggested that it may play a
role in maintaining the tilt angles. Analysis of the bilayer
around this residue (Figures 3C–E) reveals that as the TM
helix tilts there is a distortion of the membrane around
E177/E176 in the lower leaflet where the carboxylic acid group
of the side chain can interact with the positively charged
NH3

+ group of POPC.
Further analysis of the contacts made between β subunits

and the membrane (Figure 4) suggested that for β1 (Figure 4A
and Supplementary Figure S2), the longest-lived interactions
between the ECD and the membrane are, as perhaps might
be expected, localized to polar residues and in particular,
arginine and lysine residues. During analysis, a residue was
considered to be in contact with the membrane surface if
the center of mass of its side chain was within 5 Å of
a phosphorus atom in the lipid headgroup. Protein – lipid
contacts for each residue were calculated across all repeats
and used to define the protein – lipid interaction density. The
contacts seem to favor one “face” of the Ig domain, partially
exposing the hydrophobic V27, V29, and P30 residues that are
responsible stabilizing the observed Ig domain trimerization
away from the Ig body in β3. For the β1 TM region, the
longest-lived interactions are localized toward the end of the
helix and again feature lysine residues K183 and K184 as well
as Y164 and Y182.

FIGURE 1 | Orientations of the β1/3 subunit on the membrane. (A) The Nav β1 subunit complex, highlighting the orientation, and interaction of the β1 subunit with
respect to the membrane [PDB: 6AGF (Pan et al., 2018)]. (B) Structure of the trimeric Ig domain from β3 [PDB: 4L1D (Namadurai et al., 2014)]. (C) Overlay of the
trimeric β3 Ig domain on the Ig domain of the β1 subunit, demonstrating the anticipated position of the β1 TMD and suggesting that these conformations are not
compatible. The approximate location of the membrane is indicated by a gray box and dotted lines.
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FIGURE 2 | Pitch angles of the β1/3 Ig domain. (A) The starting conformation of both β1 and β3 subunits. (B) Schematic illustrating the pitch angle, θp (see section
“Ig Orientation Analysis” for precise definition). (C) Histogram of the pitch angles visited of over 400 ns × 25 runs of the β1 – subunit. (D) Histogram of the pitch
angles visited of over 400 ns × 25 runs of the β3 – subunit. (E) Heatplot of pitch angles over 400 ns in the β1 subunit. (F) Heatplot of pitch angles over 400 ns in the
β3 subunit.

In contrast, the Ig domain of β3 exhibits fewer regions of
high contact, as expected from the analysis shown in Figure 2
where this domain exhibits orientations that place it away from
the membrane surface. The contacts made (Figure 4B and
Supplementary Figure S2), when in close proximity to the
membrane, are again dominated by lysine and arginine residues
(K50, K98, and R144). The longest-lived interactions from the
TMD region are located at the intracellular end where a cluster of
positively charged residues (R182, K183, and K186) interact with
the phosphate headgroups. Interestingly these residues exhibit

strong local bending, possibly due to the preference for these
residues to interact with the bilayer.

At this point the extent of non-conserved residues was
analyzed in both the β1 and β3 sequences, with a particular
focus on charged residue differences in the Ig and linker domains
between both subunits (Figure 4C). There are a total of 25
residue differences that are summarized in Table 2. In order to
investigate the likely contribution that charged residues make to
the observed differences between Ig domain orientation a series
of systems were constructed (see Table 1 for simulation details).

Frontiers in Molecular Biosciences | www.frontiersin.org 5 March 2020 | Volume 7 | Article 40197

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00040 March 16, 2020 Time: 15:30 # 6

Glass et al. Sodium Channel β3 Subunit Dynamics

Firstly, the residues present in the β1 subunit Ig domain were
mutated to the corresponding residue in β3 if they differed in
charge, referred to as β1 Igmut hereafter. A second system was also
prepared with two mutations in the linker (K149E and K152E), in
addition to ones applied in the Ig domain (β1 Igmut + linkermut).
Finally, a system with only the linker mutated (β1 linkermut)
was prepared to assess what impact the linker has on β1 Ig
domain dynamics.

The effects of mutations in the domains of each β1 system
(β1 Igmut , β1 Igmut + linkermut , and β1 linkermut) reveal distinct
dynamics (Figure 5) and hint at the regions responsible for
differences observed in pitch angles between WT β1 and β3. The
charge swaps within the Ig domain of β1 Igmut cause a slight
increase in pitch angle to approximately 10◦ with respect to WT
β1 (Figure 5A). In β1 Igmut + linkermut the addition of K149E
and K152E mutants in the linker drastically increase the sampled
angles to values around 45◦. Also present is another population
close to WT β1 and β1 Igmut values, indicative of the Ig domain
almost parallel to the membrane plane (Figure 5B). When
applying only K149E and K152E in beta1 linkermut , the pitch
angles populate values close to 40◦ with a smaller population
at 10◦ reflecting an Ig domain pitch angle somewhere between
membrane-bound and perpendicular to the membrane plane
(Figure 5C). In addition to changes in Ig domain pitch with
the K149E and K152E mutants there is also a tendency for the
linker to become more linear as well as distinct changes in the
Ramachandran plots at D148, located at the “hinge” before the
start of the Ig domain (Supplementary Figure S3).

Full-Length β3 Trimeric Model Dynamics
Recently there have been several high-quality cryo-EM structures
of full length β subunits bound to the α subunit of Nav
channels (Yan et al., 2017; Zhu et al., 2017; Pan et al., 2018;
Shen et al., 2019). However, the trimeric crystal structure of β3
(Namadurai et al., 2014) lacks the TMD and its role, if any,
to observed β subunit clustering remains elusive. To investigate
the role of the TMD in β3 – β3 interactions and vice-versa,
a trimeric model was constructed using the ECD β3 trimer
and the TMD of the β3 monomer (see section “Full length
β3 Trimer”). A total of three repeats of 400 ns atomistic MD
were performed. As expected the extracellular trimeric structure
remained intact and conformationally stable throughout the
simulations (Figures 6A,B) and remained in an “upright”
position on top of the membrane surface. The TM helices on the
other hand were much more mobile (and indeed dominate the
overall Cα root mean squared deviation (RMSD) (Figure 6B).
Visual inspection of the trajectories revealed that the TM helices
exhibit considerable lateral movement with respect to each other
and appear to adopt significant tilt compared to the starting
conformations. Analysis of the helical tilt angles (Figure 6C)
confirms the adoption of significant tilt but also reveals that the
helices can adopt a range of different tilt angles with a significant
proportion centered around ∼ 12◦ and another around ∼ 26◦.
Even though there are strong preferences for these particular tilt
angles, each helix is still able to visit the whole range of tilt angles
from 0 to just over 40◦. Note that for monomeric β3 (Figure 3A)
the distribution was a classic bell-shaped curved centered around

FIGURE 3 | Tilting and position of E177(β1)/176(β3) in the β subunit
transmembrane domain. (A) Histogram of TMD tilt angles over 25 × 400 ns
simulations of the β1 (red) and β3 (blue) subunits. (B) Schematic of the angle
used to measure the tilt angle in the TMD, phosphorus atoms of the POPC
bilayer are shown as orange spheres. (C) Histogram of minimum distances
between E177 (β1)/E176 (β3) (center of mass of sidechain oxygens) and the
nitrogen atom of the surrounding POPC headgroups over 25 × 400 ns. The
shoulder at a distance of 7 Å reflects the initial starting coordinates.
(D) Position in the membrane of the conserved glutamic acid residue
(highlighted inside a red box) in the β3 subunit after 400 ns. (E) Closer look at
E176 (β3) in (D) with two nearby POPC residues interacting with the terminal
oxygen atoms of the residue.

38◦ suggesting that in the trimer, the tilt angle is, as might be
expected, restricted by the tethering to the ECD.

We next analyzed the interaction of the protein with the lipid
membrane. The interactions in the TM region (Figure 6D and
Supplementary Figure S4) are very similar to those observed
for the β3 monomers. There was also a significant amount
of interaction between the bottom face of the ECD and the
membrane (Figure 6E and Supplementary Figure S4), mediated
in the main by positively charged residues, but not exclusively
so by any means.

Clustering of β3 Subunits in a Realistic
Membrane Model
Given the recent observation from atomic force microscopy
(AFM) that β3 monomers could aggregate and form higher-order
oligomers including dimers and trimers (Namadurai et al., 2014),
we set up CG MD simulations to investigate how such oligomers
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FIGURE 4 | Regions of high interaction on the β subunit with a POPC membrane and non-conserved residues between subunits. (A) Regions of frequent interaction
on the β1 subunit. (B) Regions of high interaction on the β3 subunit. The ECD of β1 exhibits more frequent regions of contact when compared to β3.
(C) Non-conserved residues (shown as gray spheres) in the β1 subunit Ig and linker domains (some labels omitted in right hand image for clarity).

might come together [see section “Molecular Dynamics (MD)
Simulations”]. We set up a large membrane with a composition
that replicated an endothelial cell (Figure 7A) and inserted
36 copies of the β3 subunit model and ran three independent
simulations for 10 µs each. β3 subunits were indeed observed to
form high-order oligomers (Figure 7B). The size of the clusters
was analyzed over the course of each run and it was found that
the cluster size tended to be present as a monomer or dimer with
a significant population of higher order clusters (Figure 7C).

Long, fibril-like structures were formed in all repeats,
with the Ig domains often making tip-tip interactions in a
manner reminiscent of the interactions between the DIP and
Dpr neuronal recognition proteins (Cosmanescu et al., 2018).
Protein – protein contacts were measured over the three repeats.
There are typically high regions of interaction on the last ∼10

residues in the TMD region of the β3 subunit as well as contacts
present in the Ig domain. High regions of contact include
residues 128 – 135 that correspond to the FEAHRPFV loop,
at the “tip” of the Ig domain, located between the F and G β

strands (see Supplementary Figure S1 for strand labeling) of the
Ig domain (Figure 7A and Supplementary Figure S5). There
are also regions of interaction in the loop region of residues
79 – 82 (NGHQ) and 89 – 92 (QGRL) between β strands
C" and D that form one face of the Ig domain (Figure 7A).
At the C-terminus of the TMD, residues M177, C180, Y181,
K183, and V184 show regions of increased interaction between
subunits. Further investigation of the Ig domains orientation on
the membrane surface revealed a variety of conformations that
reflect the dynamics seen in atomistic simulations. A number of
protein copies were present with the long axis of the Ig domain
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TABLE 2 | Charged residue differences between the β1 and β3 subunit
Ig domains.

Residue in β1 Equivalent residue in β3 Mutation performed

Ig domain

D25 P30 D25P

L39 R44 L39R

K44 M49 K44M

S47 E52 S47E

N50 E55 N50E

E52 T57 E52T

K62 E67 K62E

E65 K70 E65K

K69 I74 K69I

R72 – R72A

E76 R78 E76R

E82 V84 E82V

E84 S86 E84S

R85 P87 R85P

E87 Q89 E87Q

R96 – R96A

H115 D114 H115D

D118 L117 D118L

E120 T119 E120T

L126 E125 L126E

F128 E127 F128E

E133 R132 E133R

S137 K136 S137K

K141 L140 K141L

E145 R144 E145R

Linker

K149 E148 K149E

R152 E151 K152E

parallel to the membrane whilst another population showed the
Ig domain pointing up and away from the membrane, similar to
the orientation seen in the trimeric crystal structure (Figure 7D).

We also investigated protein – lipid contact sites. Interactions
were counted using the headgroup bead of each lipid type
and a cut-off value of 6.5 Å. It can be seen (Figures 8A,B)
that there is a slight preference for one side (which we label
Face 1) of the Ig domain to interact with the lipid membrane,
most notably for GM3. The other side (Face 2) of the Ig
domain retains interactions with GM3 but to a lesser extent
than Face 1 (Supplementary Figure S6). The radial distribution
function reflects the high levels of interaction with GM3 as
well as with PIP2 and cholesterol where the latter two interact
with the TMD.

DISCUSSION

β Subunit Monomers Exhibit Distinct
Differences
Although similar in sequence and underlying fold, the behaviors
of the β1 and β3 subunits in the membrane exhibit some striking

differences. Our simulations suggest that the ECD of the β3
subunit is much more dynamic than β1. In contrast to the
β1 subunit structure from Pan et al. (Pan et al., 2018), the
Ig domain of the β3 subunit samples several pitch states (see
Figure 2), with only a few corresponding to the β1-like cryo-
EM structure. Conversely, the β1 subunit simulations provide
evidence for a more restricted Ig motion, with the long axis
of the Ig domain parallel to the membrane plane in 60% of
the simulations performed. This increased membrane interaction
may go some way to explain why β1 has a decreased propensity
to form higher order oligomers, since the Ig domain is restricted
to lie close to the membrane surface. The interaction in the
β1 cryo-EM structure (Pan et al., 2018) between the ECD and
the top of the VSD of DIII involves the conserved C21 – C43
disulfide bond. This orientation of the ECD in this cryo-EM
structure is quite similar to the orientation we observe for β1
monomers in the membrane and thus we hypothesize that a
monomer moving from the membrane to interact with an α

subunit would only require a small change in conformation.
Clearly, electrostatic interaction between the Ig domain and
membrane surface will contribute to the preferred Ig orientation
that both β1 and β3 adopt. Charge swap mutations in the β1
subunit for those present in β3 supports this (see Table 2 and
Figure 5). Mutations performed within the Ig domain have a
small effect on Ig domain pitch, however, the addition of two
mutations (K149E and K152E) in the linker cause β3 Ig domain
dynamics to be partially recovered in β1. The linker’s contribution
to Ig dynamics is somewhat reduced when only K149E and
K152E mutations are present in β1 and suggests that, although
important, the difference in dynamics between both β1 and β3
may be a compound effect within both the Ig and linker domains
of both subunits.

The Transmembrane Helix Undergoes a
Large Tilt
In both the β1 and β3 models there is a slight shortening of the
TMD as well as the large helical tilt in the membrane. In the cryo-
EM structure (Pan et al., 2018), this region of the β1 subunit
has the lowest resolution of around 4.2 Å and we hypothesize
that the TMD region of the β subunit may indeed be flexible
until any hydrophobic mismatch with the bilayer is optimized
either by TM helix tilting or bending. The tilting in both β1 and
β3 is facilitated in part by the presence of a glutamic acid (see
Figure 3). This glutamate is highly conserved and is found in
both β1 and β3 sequences. Given its unusual position, it has been
argued that it is likely to have functional significance and indeed
has been investigated within β1 (McCormick et al., 1999) and β3
(Namadurai et al., 2014; Salvage et al., 2019). It also seems that for
a full-length model based upon the trimeric β3 crystal structure
of the ECD to be adopted in the context of a lipid bilayer system,
the TMD helices of our model must change their tilt with respect
to the membrane normal.

Behavior of the Trimer
A major difference between monomeric and trimeric β3 lipid
interactions is in the Ig domain. As part of a trimer, the Ig
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FIGURE 5 | Ig domain dynamics in the mutated β1 subunit. Pitch angle analysis of the (A) β1 Igmut, (B) β1 Igmut + linkermut, and (C) β1 linkermut. Snapshots of
conformations for each system are shown with mutated domains indicated in red.
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FIGURE 6 | Trimeric model of full-length β3. (A) Shows the initial configuration with TM helices that almost parallel to the membrane normal. During the simulation,
the TM helices adopt tilted orientations and the ECD domain continues to sit in a similar position to the initial configuration. (B) Average Cα RMSDs (from three runs)
for the whole trimer (blue), the TM domains (orange, residues F153 to E189 of each subunit), the ECD only (green). Pale background reflects one standard deviation.
(C) Distribution of tilt angles for the three helices in the trimer. (D) Probability density colored from white to red to black mapped onto the structure to show the
lipid-protein interactions. (E) shows the key residues of the ECD that form interactions with the membrane. In both (D,E) different protein monomers are indicated in
superscript.
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FIGURE 7 | β3 clustering in a general mammalian membrane. (A) Regions of high protein - protein contact visualized on the β3 subunit surface colored as a
probability undergoing an interaction with another protein. Spheres indicate residues with total interactions above 2.5% of the total time. (B) Typical clustering of β3
subunits (green) in a mixed lipid membrane (viewed from the extracellular side). Lipids visible in the upper leaflet include POPC (gray), POPE (green), Sph (pink), GM3
(purple), and Chol (orange). (C) Evolution of β3 clusters over a 10 µs simulation. Lighter colors indicate higher order clusters. (D) Distinct conformations of the β3
subunit involved in clusters. From left to right: down, intermediate, and up states.

domain is no longer able to sample large pitch states due to the
favorable hydrophobic interactions in the N-terminus of each
chain. As such, the lipid interaction between the Ig trimer is
markedly reduced when compared to the monomer with only

a few charged residues (R65, E67, and K70) interacting with
the membrane surface. Interestingly if the β3 subunit were to
interact with the VSDs of the pore-forming α subunit in a similar
fashion to β1 there would need to be substantial rearrangement
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FIGURE 8 | CG β3 interactions in a mixed lipid membrane. (A) Protein – lipid interactions visualized on face 1 of the β3 model. The first side chain particle of residues
that account for over 2.5% of the total interaction time are shown as spheres. (B) Radial distribution function of the distribution of lipids surrounding β3 subunits in
the PM.

of the Ig domains. This leads to the question of what, if any,
the role of the TMD helices could play in α - β and/or β -
β interactions? Lipid contact analysis in the TMD reveals that
there is little difference between the trimeric and monomeric
models. Close to the Ig domain, the restriction imposed via
the stable Ig trimer reduces translational motion, whereas at
the intracellular end the translational motion is much more
dynamic with no clear preference for residue – residue interaction
between chains. These results suggest that the TMD of the β3
subunit does not have an overall stabilizing effect on the β3
trimer and in fact may only be required for correct positioning
within the membrane. This is in agreement with previous
super-resolution microscopy data, where the density function
estimated from the C-terminal mEos2-tagged β3 was consistent
with a relatively unconstrained transmembrane helix/C terminus.
This suggests that any trimerization events are likely to be
controlled via the Ig domain. Additionally, when the helices
of each β3 chain are in close proximity, the conserved E176
residue appears to be orientated away from the trimer center
and preferentially interacts with the POPC membrane (data
not shown). These observations are also supported by recent
experimental work examining the role of E176 in β3 subunits,
and that also concluded that oligomerization was dependent on
the extracellular domain but not E176 (Salvage et al., 2019).

β3 Subunit Clustering
It has been previously reported (Namadurai et al., 2014) via
the use of AFM and Fluorescence Photoactivated Localization
Microscopy (FPALM) that the β3 subunits can form higher order
oligomers. In particular, the AFM suggested the presence of
dimers and trimers, whilst the FPALM experiments suggested the
presence of a trimer in live cells. In our large CG simulations,
where we try to capture the complexity of a mammalian cell

membrane, we do indeed observe the formation of oligomers.
The interactions between individual β3 subunits tends to show
an “end on” interaction, whereby the tip of one Ig domain
interacts with the base of another to produce long, fibril-
like oligomers with a small contribution from the C-terminal
end of the TMD. This leads to a slightly different picture of
how the β3 subunits may interact compared to that arrived
at by Namadurai et al. (2014) who interpreted the formation
of the trimers in the context of a crystal structure of the
β3 Ig domain (and forms distinct trimers). The formation
of similar, but full-length, trimers would mean that the Ig
domains must frequently “lift off” the surface of the membrane
(see Figure 5A) and the oligomerize predominantly through
the exposed flat face of the Ig domain. Although we observe
movements of the Ig domain in the atomistic simulations (see
Figure 2D) that would be compatible with the formation of such
a trimer, we observe such movements in the CG simulations
only infrequently. Furthermore, such orientations (Figure 6) are
too short-lived relative to the time required for oligomerization
via the exposed faces of the β-sheets. A key difference to note
here is that the atomistic simulations were performed in a
POPC bilayer, whereas the CG simulations were performed in
a bilayer of a more complex composition. Ideally the use of
a mixed lipid membrane at an atomistic level would reveal
finer protein – lipid interaction details. However, to study
large scale clustering would require computational resource
beyond our current capability. Visual inspection of the CG
simulations suggests that the interaction of the Ig domain with
the headgroup of the GM3 headgroup appears to keep the Ig
domain close to the surface of the membrane. On the face of it,
this may appear at odds with the interpretation by Namadurai
et al. (2014). However, there is no direct atomically detailed
evidence of how the full-length β3 subunit may come together,
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and the work here, presents an alternative possibility. Regardless,
the results here suggest that spontaneous oligomerization of
a full-length trimer, where the Ig domains adopt the crystal
structure conformation, would likely be a very slow process
if it does occur.

CONCLUSION

In this work, we have explored the dynamics of the β1 and
β3 subunit monomers with a lipid bilayer. The dynamics
exhibited a remarkable and unexpected difference in behavior
of the ECD, which we attribute to distinct binding patterns
within the Ig domain. It will be interesting to investigate
the influence of the non-conserved charged residues between
both subunits in future experiments. A full-length model of
a β3 subunit based on a trimeric structure of the Ig domain
only, suggests that the TM helices do not interact particularly
strongly. Finally, the CG simulations suggest that higher order
oligomerization of monomers may be mediated by “end-on-end”
interactions. These results should provide a useful framework
on which to interpret low-resolution methods such as AFM that
are examining the nature of oligomerization in ion channels.
The existing agreement between experiment and simulation
is encouraging.
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1. INTRODUCTION

Hybrid quantum mechanics/molecular mechanics (QM/MM) approaches are commonly used
methods for investigating a plethora of chemical, biochemical, and biophysical processes that
require explicit treatment of the electronic degrees of freedom when the system is too big to be
entirely treated by QMmethods alone (Warshel and Levitt, 1976; Senn and Thiel, 2009; Adhireksan
et al., 2014; Campomanes et al., 2014, 2015; Brunk and Rothlisberger, 2015; Genna et al., 2016; Li
et al., 2017; Cupellini et al., 2018; Loco et al., 2018; Morzan et al., 2018). It is often the method of
choice for computational investigations of systems with more than a few thousand atoms (which
is commonly the case for biological systems). In QM/MM, the system is split into two parts: a
smaller part that is treated at the QM level of theory, whereas the remainder is described at the
MM level, which is a computationally more expedient description. In this way, local electronic
effects can be captured with the accuracy of a first-principles method, while at the same time
explicitly including the effects of the environment at a reasonable computational cost. Current
QM/MM implementations have roughly followed either of two strategies: (1) tight integration
of QM and MM modules in a single software package or (2) loose coupling of separate QM
and MM codes. Strategy (1) generally profits from computational efficiency due to the ability to
pass data between the submodules directly (via function calls) but suffers from limited flexibility,
since the available choice of methods is often restricted and extensions to different programs may
require formidable programming efforts. In contrast, strategy (2), which is typically implemented
resorting to data exchange between QM and MM codes via file input and output, enables high
flexibility but penalizes efficiency because of increased communication overhead. However, with
the field rapidly growing, new simulation paradigms and approaches might quickly emerge, clearly
favoring strategy (2) over (1). In the following, we show that flexibility does not necessarily
come at the expense of a high computation (or communication) overhead by presenting the
recently developed MiMiC framework (Bolnykh et al., 2019; Olsen et al., 2019) that combines
the capability of performing fast and efficient multiscale molecular dynamics (MD) simulations
with facile support for flexible extensions. These objectives are achieved by applying (2) with
an efficient method to exchange data among the coupled software packages. In practice, MiMiC
implements a multiple program-multiple data (MPMD) paradigm through a message passing
interface (MPI)-based communication library, which allows the entities collaborating within
MiMiC to exchange data efficiently. Overall, MiMiC represents a highly modular and general
multiscale simulation framework that enables the combination ofmultiple resolutions andmethods
for different parts of a system, while retaining high computational efficiency. Moreover, MiMiC was
designed to have a flexible architecture enabling multiple resolutions, implementation of different
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types of coupling (e.g., QM/QM, QM/QM/MM, etc.), and to
straightforwardly incorporate emerging—and future—methods
and software packages in the field of computational chemistry.
This flexibility is of utmost importance in the light of the rapid
development of computational methods enabling researchers to
tackle complex scientific problems with more and more degrees
of freedom that require the incorporation of multiple space and
time resolution scales on the one hand, and the rapid advent of
new computational approaches on the other hand.

2. MIMIC ARCHITECTURE

2.1. Model
MiMiC implements a generalized version of the fully
Hamiltonian electrostatic embedding scheme introduced
in Laio et al. (2002). The key quantity is the electrostatic
QM/MM coupling energy term:

EQM/MM
=

NMM
∑

i

qMM
i

∫

dr ρQM(r)
r4c,i − |Ri − r|4

r5c,i − |Ri − r|5
(1)

where NMM is the total number of MM atoms, qMM
i and rc,i

are the partial charge and the covalent radius of the i-th MM
atom, respectively, while Ri is its coordinate and ρQM(r) is
the electron density in point r. This form of the electrostatic
QM/MM coupling term modifies the Coulomb interaction at
short range, thus avoiding electron spill-out (Laio et al., 2002).
It is worth remarking that the QM/MM term is responsible for
the polarization of the electronic density due to MM atoms and,
thus, models the effects of the environment on the properties of
the chemically active subdomain.

The straightforward implementation of such a term is
rather costly to compute, in particular for systems with large
MM regions. Therefore, a hierarchical electrostatic embedding
approach (Laio et al., 2002) is used in order to mitigate the
high computational cost of a direct evaluation. Within this
hierarchical scheme the QM/MM electrostatic interactions are
divided into two groups depending on the distance (commonly
referred to as the cutoff distance) of MM atoms from the QM
subsystem. In the vicinity of the QM part the interaction is
computed using Equation (1), whereas more distant atoms are
coupled via a multipole expansion of the electrostatic potential
of the QM charge distribution. We have extended the original
scheme with an open-ended multipole expansion allowing the
user to choose the order at which the expansion is truncated. This
allows (i) higher accuracy in the calculation of the electrostatic
QM/MM interactions, at a negligibly higher computational cost
and (ii) reduction of the cutoff distance, thus further lowering the
computational cost (Olsen et al., 2019).

An official release of MiMiC will be published under the
open-source GPLv3+ license in 2020.

2.2. Implementation
MiMiC is a loosely-coupled MPMD multiscale simulation
framework. Within this approach, both QM and MM codes
run simultaneously with computational resources being allocated

separately to either entity. Moreover, while enabling efficient
communication, such an approach avoids tight integration
of MiMiC into either code, which would incur a high
implementation and maintenance effort. This enables the
construction of a highly modular and efficient multiscale
simulation framework capable of coupling virtually any set of
simulation codes with the potential for extending it further to
enable the support of alternative levels of theory such as a
different QMmethod, coarse-grained approaches, or approaches
based on artificial intelligence (Behler and Parrinello, 2007;
Christensen et al., 2019; Singraber et al., 2019). In the present
implementation, CPMD 4.3 (Hutter et al., 2018) computes
the QM contributions, while GROMACS 2019 (Spoel et al.,
2005; Abraham et al., 2015, 2019) computes the classical
interactions within the MM subsystem as well as all bonded
and Lennard-Jones interactions crossing the QM/MM interface.
The electrostatic QM/MM interactions are computed by MiMiC.
Finally, CPMD integrates the equations of motion.

The structure of a QM/MM implementation using the MiMiC
framework is shown in Figure 1A. The use of a plane wave-
based code to handle the QM subsystem ensures highly efficient
scaling performance, while GROMACS guarantees expedient
MM computations.

The workflow of a QM/MM MD simulation using MiMiC
follows closely the workflow of a typical MD simulation in
CPMD. At the beginning of each time step, MiMiC collects
atomic coordinates from CPMD and dispatches them to
GROMACS, which then computes MM forces and energies.
While this is done, CPMD computes QM contributions and
MiMiC computes the electrostatic QM/MM interaction terms.
MiMiC adds up all force contributions and provides them to
CPMD, which uses them to propagate atomic positions according
to the selected ensemble and imposing the necessary constraints.

The calculation of the QM/MM interactions of Equation (1)
can be parallelized by distributing MM atoms and points of
the mesh discretizing the QM domain of integration. Extreme
scalability is achieved parallelizing over both degrees of freedom
through a multi-layered hybrid distributed- and shared-memory
parallelization strategy. At the top layer, all MPI tasks are divided
into groups, each receiving a subset of MM atoms. Then, at
a lower level, the mesh discretizing the QM subspace is split
into a set of 2D slabs along the X dimension. Each of the MPI
tasks belonging to each group receives a subset of these slabs to
compute the corresponding part of the integral in Equation (1)
(and other analogous terms). Finally, at the lowest level, the
shared-memory simultaneous multi-threading (SMT) approach
(based on OpenMP) is employed in order to further extend the
scalability limit. At this level, each of the slabs is divided into
a set of 1D "pencils," which are then attributed to the threads
associated with a particular MPI task.

Using this multi-layered parallelization scheme, we have
demonstrated efficient scalability using over ten thousand cores
in a single QM/MMMD simulation while maintaining an overall
parallel efficiency above 75% for a system containing a large
Cl−/H+ antiporter protein embedded in a lipid membrane
bilayer (Figure 1B) solvated in water. In this system, 19 atoms
out of a total of 150,925 atoms were treated at the QM
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FIGURE 1 | (A) Schematic representation of a MiMiC-based QM/MM framework. Patches both for QM and MM codes are required in order to enable the QM/MM

workflow. MiMiC then handles all data interactions (depicted as arrows) and routes the relevant information via the communication library (Commlib). (B) The test

system used for our benchmark consisting of a membrane protein embedded in a lipid bilayer. (C) Measured wall-time per time step of a BO MD in a MiMiC QM/MM

with B3LYP simulation for the system shown in (B). (D) Strong scaling benchmark of a MiMiC QM/MM MD simulation for the system shown in (B).

level. The size of the whole system was 126.9 x 126.8 x

99.3 Å
3
, and the size of the cubic QM box was 17.7 x

17.7 x 17.7 Å
3
. We used a plane wave cutoff of 90 Ry,

which corresponds to a real-space mesh with 240 points along
each dimension. Benchmarks were performed using Troullier–
Martins pseudopotentials (Troullier and Martins, 1991). The
average wall time of a single MD time step is around 13 s
(Bolnykh et al., 2019) when computationally demanding hybrid
exchange–correlation functionals, such as B3LYP (Becke, 1988,
1993; Lee et al., 1988), are employed. This enables nanosecond-
scale QM/MM MD simulations to be performed, which in
turn allows one to obtain converged free energy calculations
of biological systems if enough computational resources are
available. Some representative scaling benchmark results are
shown in Figures 1C,D. We expect similar extreme scalability for
systems characterized by QM domains of similar size.

3. CONCLUSION

We have given a short introduction to the recently developed
MiMiC framework as a highly flexible and extremely powerful
multiscale modeling software solution capable of delivering
unprecedented levels of scaling performance. The efficiency
of the framework is ensured by using a well-established and
extensively validated electrostatic embedding scheme while
flexibility and modularity is achieved via an efficient loosely
coupled MPMD architecture. Finally, extreme scalability is
attained through a multi-layered parallelization strategy.
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Peptides and peptidomimetics are strongly re-emerging as amenable candidates in the
development of therapeutic strategies against a plethora of pathologies. In particular,
these molecules are extremely suitable to treat diseases in which a major role is
played by protein–protein interactions (PPIs). Unlike small organic compounds, peptides
display both a high degree of specificity avoiding secondary off-targets effects and a
relatively low degree of toxicity. Further advantages are provided by the possibility to
easily conjugate peptides to functionalized nanoparticles, so improving their delivery
and cellular uptake. In many cases, such molecules need to assume a specific three-
dimensional conformation that resembles the bioactive one of the endogenous ligand.
To this end, chemical modifications are introduced in the polypeptide chain to constrain
it in a well-defined conformation, and to improve the drug-like properties. In this
context, a successful strategy for peptide/peptidomimetics design and optimization is
to combine different computational approaches ranging from structural bioinformatics
to atomistic simulations. Here, we review the computational tools for peptide design,
highlighting their main features and differences, and discuss selected protocols, among
the large number of methods available, used to assess and improve the stability of
the functional folding of the peptides. Finally, we introduce the simulation techniques
employed to predict the binding affinity of the designed peptides for their targets.

Keywords: peptides design, peptidomimetics, binding free-energy, protein–protein interaction, bioinformatics
tools

INTRODUCTION

Year by year the use of theoretical approaches to study structural and dynamical features of
macromolecules (Di Marino et al., 2014, 2015a; Orozco, 2014; D’Annessa et al., 2018, 2019a) is
constantly growing, thanks to the continuous improvement of methodologies and algorithms, as
well as of the high performance computing facilities. Theoretical methodologies are achieving
an increasing importance in many fields of science and have now gained a primary role in drug
design. Indeed, hundreds of examples exist in which the use of computational techniques was
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crucial to discover new molecules active against different diseases
(Sliwoski et al., 2014; D’Annessa et al., 2019b). In the modern
era, computer-aided drug design is successfully exploited not
only to develop small molecules but also to guide the more
challenging design of larger size compounds like peptides or
peptide-like molecules (i.e., peptoids or peptidomimetics), which
can retain the physicochemical features of bioactive proteins
or polypeptide chains. One such feature is the conformational
plasticity of peptides that allows them to interact with larger
and more shallow surfaces compared to the typically cryptic
binding pockets targeted by small molecules (Di Marino et al.,
2015b; Vercelli et al., 2015; Di Leva et al., 2018). Therefore,
peptides and peptidomimetics represent ideal candidates for
targeting protein–protein interactions (PPIs). Indeed, PPIs have
emerged as relevant drug targets since they are responsible for
numerous cellular processes (Wanner et al., 2011; Otvos and
Wade, 2014; Sun, 2016). Nonetheless, most PPIs were until
recently considered “undruggable” by small compounds due to
the involvement of large binding surfaces where the recognition
is ruled by both the physicochemical properties and the shape of
the interacting proteins (Bakail and Ochsenbein, 2016). Similar
to protein-(small)ligand interactions PPIs are stabilized by non-
covalent interactions, but with hydrophobic contacts, usually
responsible for recognition and packaging, playing a primary
role in stabilizing the complex (Tan et al., 2016). Moreover,
upon the formation of macromolecular complexes new pockets
can be formed at the interface between two or more proteins,
and in some cases their targeting, aimed at stabilizing, instead
of disrupting, the complex, can represent a clever therapeutic
strategy to treat different diseases. Also in this case, however,
small compounds are often not suitable for this purpose, while
peptide-like molecules are particularly favored (Henninot et al.,
2018; Lee et al., 2019). Furthermore, isolated peptides can
compensate for the absence of the whole protein, as in the
case of hormones, or can counteract the immune system in
autoimmune diseases (Lau and Dunn, 2018). Moreover, peptides
have peculiar characteristics that represent advantages in the
field of drug development with respect to small molecules. For
instance, they show a very low or null toxicity compared to
synthetic compounds, being typically degraded in non-toxic
metabolites, and are highly selective against a specific target, thus
making their use particularly favored (Smith et al., 2019). Finally,
many peptides can be easily conjugated either to nanoparticles
for targeted delivery (Valcourt et al., 2018; Kalmouni et al., 2019)
or to organic molecules working as biomarkers for diagnostic
purposes (Wang and Hu, 2019).

In this perspective, much effort was dedicated in the last
decades to develop theoretical approaches for the design of
therapeutic peptides/peptidomimetics, leading to a new branch of
drug development, known as computational peptidology (Zhou
et al., 2013). These strategies gave birth to a leading industry
producing nearly 20 new peptide-based clinical trials annually.
At the time this review was written, more than 400 peptide
drugs were under clinical development and over 60 already
approved for clinical use in the United States, Europe and
Japan (Lee et al., 2019). Several designed peptides have shown
great potential for the treatment of different types of cancers

(Marqus et al., 2017; Zanella et al., 2019). Although these peptides
have an extraordinary effectiveness in cancer cell cultures, they
still do not provide encouraging results in vivo (Marqus et al.,
2017). This because peptides may suffer from poor metabolic
stability and membrane permeability, rapid proteolysis and
unstable secondary structure (Zhang et al., 2018). With the aim to
overcome such limitations, many strategies have been developed
that rely on the application of chemical modifications such
as cyclization, N-methylation, stapling or the introduction of
amide bond bioisosters and non-natural amino acids. In addition,
peptidomimetics can represent a valid alternative to target
PPIs. Peptidomimetics are indeed organic molecules featuring
physicochemical and structural properties resembling those of
classical oligopeptides (Vagner et al., 2008; Zhang et al., 2018) but
generally endowed with improved pharmacokinetic profiles.

The possibility to rationally design peptide-based molecules
exploiting the structural characteristics of PPIs represents an
enormous advantage to achieve the desired effect on the
pathological process. The growing number of 3D structures
available from X-ray diffraction and NMR has augmented our
knowledge on protein–protein recognition and binding process,
providing unprecedented insight into the proteins’ structures in
the apo form states and in protein–protein and protein–peptide
complexes. This information is instrumental in the peptide
design process. In this perspective, combining bioinformatics
approaches with molecular simulations is a valuable strategy to
obtain good drug-candidate peptides. Moreover, the increased
accuracy in the calculation of binding free energy allows
further characterizing the energetics of the molecular binding
interaction, increasing the success rate of the design process
(Torrie and Valleau, 1977; Di Marino et al., 2014, 2015b; Kilburg
and Gallicchio, 2016). However, the field of peptides design and
PPIs prediction/refinement is really extensive and the number of
approaches developed for these purposes is constantly growing.
Here we provide a concise report of selected computational
protocols for peptides/peptidomimetic design, paying particular
attention to the most widely employed bioinformatics tools
and facilities and docking algorithms available to this end.
We also introduce the simulations techniques used to validate
protein–peptide complexes obtained by docking procedures
and to predict the binding affinity of the designed peptides
for their targets.

PEPTIDE DESIGN AND DOCKING

Since PPIs emerged as druggable targets much effort was
dedicated to develop algorithms and tools for peptides/
peptidomimetics design. However, this is far from being a
fully addressed issue and still poses many hurdles. Indeed,
notwithstanding the increasing structural information available,
the investigation of protein–peptide recognition is not an easy
task to handle and shows several layers of complexity. For a full
description of the process: (1) the three-dimensional structure
of the investigated protein–protein complex should be available,
in order to detect the protein region to use as a template
for the design of peptides; (2) in the case the complex is not
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FIGURE 1 | Graphical scheme summarizing different methodologies for peptide design. The core ideas of the main bioinformatics tools available are divided in three
major categories: Ligand-based, Target-based and De novo. The references to the tools are reported at the bottom of the picture.

available, the protein surface that has to be recognized by the
PPI disruptor should be detected, or at least predicted, with high
accuracy; (3) the structure of the target protein in its apo and
holo states should be known, since the binding surface might
change undergoing structural rearrangement upon protein or
ligand binding; (4) since peptides are highly flexible entities,
their conformational flexibility, stability in solution and the
ability to achieve and maintain a well-defined active structure
should be considered; and (5) finally, a putative structure of the
designed peptide in complex with the target protein should be
generated, typically by docking, in order to provide a possible
mechanism of binding. However, achieving an accurate docking
of conformationally flexible peptides to a target protein is a
challenging task as discussed in the following sections.

To date numerous bioinformatics tools for peptides design
are available. These can be basically classified as ligand-based
and target-based (Figure 1), even if in most of the cases the
two approaches are combined. Ligand-based approaches can
be further distinguished into sequence-based, conformation-
based and property-based, with this last possibility still being
the least explored.

Sequence-based approaches rely on the identification of
conserved functional motifs, usually detected through multi-
sequences alignment. These sequences are then modified to
obtain a ranking of different candidates potentially able to

interact with a specific target protein usually blocking an
interaction with another protein partner. This is the case of the
PeptideMine webserver (Shameer et al., 2010).

Substantially different are the conformation-based approaches
that are aimed at building peptides structures and conformational
ensembles further refined by investigation of structure-activity
relationships. Example is PEP-FOLD that exploits a Hidden
Markov Model to derive a structural alphabet to design stretches
of “letters” that are assembled into 3D structures then refined by
Monte-Carlo calculations (Thévenet et al., 2012).

Target-based strategies include knowledge-based and de novo
design approaches. Knowledge-based methods use information
from protein complexes, peptides and protein fragments (Vanhee
et al., 2011). For instance, PiPred analyses protein complexes
to find anchor residues and use them to find the best peptides
matching the target surface from databases of fragments (Oliva
and Fernandez-Fuentes, 2015). PepComposer explores a pool of
protein surfaces and delivers a set of backbone scaffolds that is
able to target them. A following Monte Carlo simulation refines
the conformation of the newly designed peptides shown in the
final peptide-protein complex (Obarska-Kosinska et al., 2016).
Similarly, PepCrawler and its cognate PinaColada analyze protein
complexes and derive candidate peptides that are subsequently
randomly mutated in order to increase their affinity for the target.
As final result, the newly designed peptides are ranked according
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to the predicted binding affinity (Donsky and Wolfson, 2011;
Zaidman and Wolfson, 2016).

De novo approaches endeavor to obtain peptides without any
a priori structural knowledge. The pepsec tool, included in the
Rosetta suite (Raman et al., 2009), provides peptide sequences
and structures that are simultaneously optimized. The process is
similar to the “anchor and grow” docking algorithms in as much
an anchor residue of the peptide is positioned on the protein
surface and the chain is assembled starting from that point
(King and Bradley, 2010). A significant advance was achieved
with the implementation in Rosetta of a rotamers library that
allows generating peptoid foldamers for the design of compounds
with defined 3D structures thanks to the introduction of non-
natural amino acids (Renfrew et al., 2014). Another example of
de novo approaches is the VitAl algorithm, which identifies the
binding site via a Coarse Grained Gaussian Network model and
generates the peptides by sequentially docking pairs of residues
and determining the binding energies (Besray Unal et al., 2010).

The described methodologies, especially ligand-based
strategies, can be supported by stand-alone protein–peptide
docking programs, in order to identify or refine the binding
poses of the designed peptides. Notably, these software can be
also used to predict the interaction mode of known biologically
active peptides with their target, thus guiding the design of novel
PPI inhibitors. Nonetheless, protein–peptide docking programs
can suffer from some inaccuracies, especially in the solvation
and in the conformational sampling of the ligand backbone
(Zhou et al., 2013). In the last decade, however, significant
progress has been made to address these issues, achieving a
satisfactory quality of predictions both by knowledge-based
approaches among which HADDOCK and GalaxyPepDock
represent some of the most accurate software (Trellet et al., 2013;
Lee et al., 2015; Van Zundert et al., 2016), and ab initio programs,
including the newest version of the Glide SP algorithm (Glide
SP-peptide) and HPEPDOCK, which exploits a hierarchical
algorithm to manage peptide flexibility through an ensemble of
conformations generated (Antes, 2010; Tubert-Brohman et al.,
2013; Li et al., 2014; Ben-Shimon and Niv, 2015; Kurcinski
et al., 2015; Schindler et al., 2015; Alam et al., 2017; Zhou et al.,
2018). In HADDOCK, experimental information on the targeted
PPIs is exploited to drive the docking through the inclusion of
interaction restraints during the calculations. The HADDOCK
procedure for flexible protein–peptide docking is a multi-step
process that combines different solvent models, conformational
search and selection, and induced fit algorithms in a highly
efficient protocol. The GalaxyPepDock protocol consists of
a combination of similarity-based docking and energy-based
optimization methods. Given a target protein and a peptide,
the server performs a scan of experimentally determined PPIs
structures database, in order to identify a proper PPI template.
Subsequently, GalaxyPepDock builds a number of protein–
peptide complexes that are further refined by energy-based
methods to find the best structure interface. Conversely, Glide
SP-peptide, pepATTRACT or Rosetta FLexPepDock perform
without any a priori experimental information. In particular,
Glide SP-peptide relies on a grid-based docking protocol, which
takes advantage of advanced sampling algorithms during the

search phase. The obtained poses can be further refined by
post-processing calculations with physics-based implicit solvent
MM-GBSA methods, rescored and ranked by a custom scoring
function. PepATTRACT combines a coarse-grained ab initio
docking followed by an atomistic refinement protocol. In
particular, a fully blind procedure is followed, where the server
examines the whole protein surface to find a putative binding site
and simultaneously predicts the bound peptide conformation.
Finally, FlexPepDock, which is implemented in the Rosetta suite,
is able to provide high-resolution protein–peptide complexes
starting from a generation of coarse-grained models. These
starting coarse-grained models are refined by performing
Monte-Carlo Minimization restricting the peptide’s degrees of
freedom and allowing the flexibility of the receptor’s binding
site side chains.

CONFORMATIONAL PEPTIDE
PREDICTION

As reported above, bioinformatics tools show a good degree
of accuracy in predicting peptides conformational plasticity,
mainly through internal search algorithms that iteratively build
different peptide backbone conformations, each one assigned
with a specific binding score. However, severe approximations
still reside in the docking sampling. For instance, many
docking software treat the peptide backbone as rigid during
the calculations making the a priori knowledge of its bioactive
conformation necessary. In simplest cases, when the ligand
assumes a unique, or at least a prevalent conformation in water,
this can be straightforwardly computed based on experimental
techniques such as proton NMR experiments. This strategy can
be, for instance, applied to small cyclic peptides featuring a
restricted backbone conformational space. However, in many
cases peptides can assume several energetically equivalent states
characterized by a rugged conformational free energy landscape.
In such cases, it is advisable to support the peptide design with a
reliable energy estimation of the different conformations assumed
by the new peptide. To this end, atomistic simulations represent
a valid tool. In particular, a number of efficient conformational
searching methods have been developed or specifically adapted
for this purpose. These include simulated annealing (Kirkpatrick
et al., 1983; Wilson and Cui, 1990), distance geometry (Donné-
Op Den Kelder, 1989), random search Monte Carlo (MC) (Chang
et al., 1989; Weinberg and Wolfe, 1994), eigenvector-following
(Cerjan and Miller, 1981; Simons et al., 1983), basin-hopping
global optimization (Wales and Doye, 1997), discrete path
sampling (Wales, 2002, 2004) and molecular dynamics (MD)
based algorithms. Extensive reviews are available in literature
on the application of simulated annealing (Bernardi et al., 2015)
and distance geometry (Mucherino et al., 2013) to study peptides
conformational sampling. For this reason, here we will mainly
focus on the other approaches.

Among stochastic or random search approaches is the Monte
Carlo Multiple Minimum (MCMM) method, commonly known
as torsional sampling (Saunders et al., 1990), in which the peptide
torsional bonds are randomly rotated through iterative Monte
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Carlo simulations, each followed by energy minimization, in
order to identify local minima in the conformational potential
energy surface (PES).

An interesting example of eigenvector-following method is
the low mode conformational search (LMCS) (Kolossváry and
Guida, 1996), in which local minima in the PES are found
through movements along the “low energy eigenvectors” that
are identified through a preliminary normal mode analysis, and
following energy minimization. The process is then iteratively
repeated to find additional minima, eventually leading to the
identification of a minimum energy path. In order to improve the
performance of LMCS in global searches, a mixed MCMM/LMCS
strategy has been also developed (Kolossvàry and Guida, 1999)
and successfully applied to the conformational sampling of
macrocyclic compounds (Parish et al., 2002).

In basin-hopping global optimization (BHGO), the potential
energy landscape is transformed into a series of “basins of
attraction” which are explored through a hybrid random search-
geometry optimization protocol (Li and Scheraga, 1987; Wales
and Doye, 1997). In detail, random structural perturbations
such as backbone Cartesian moves or rotations of amino acid
side chains are initially applied to the biomolecule. After each
perturbation, a geometry optimization cycle is performed to find
the nearest local minimum, usually through the quasi-Newton
L-BFGS (Limited-memory BFGS) minimization algorithm (Liu
and Nocedal, 1989). The transition is finally either accepted or
rejected based on a Metropolis criterion. The method allows
crossing high barriers that separate the different energy basins,
thus leading to the identification of the global minimum.
Also, the thermodynamic properties of the system can be
computed using the data set of local minima found during the
search. Many variants of the technique have been developed
to specifically address problems of biological interest including
peptides’ conformational sampling. For instance, the efficiency
of basin hopping can be improved by including experimental
restraints (Carr et al., 2015) or by combining the method with
other approaches, such as parallel-tempering (Strodel et al.,
2010; Joseph and Wales, 2018). Connected to BHGO, is the
discrete path sampling approach. Here, a discrete path is
defined as a connected sequence of minima and the intervening
transition state(s) between them, which are appropriate for
describing dynamical properties but can also be subjected to
kinetic analysis (Wales, 2005). Discrete path sampling has been
successfully used to explore the conformational energy landscape
of both linear and cyclic peptides (Evans and Wales, 2004;
Oakley and Johnston, 2013).

Molecular dynamics (MD) based techniques are largely
explored for peptides conformational sampling both as stand
alone tools or in tandem with experiments. It has been
indeed demonstrated that the inclusion of NMR data such
as chemical shifts, interatomic distances or residual dipolar
couplings (RDCs), as structural restraints in MD simulations
can significantly improve the speed and efficiency of sampling
algorithms. Ensemble or time-averaged MD represents a first
example (Bonvin et al., 1994) followed by more recent advanced
methodologies that integrate MD with experimental data. For
instance, it was shown that, if geometrical restraints are applied

to the system and averaged over simulation replicas, ensembles of
conformations compatible with the maximum entropy principle
are generated (Cavalli et al., 2013). This approach is known as
replica-averaged restrained molecular dynamics and can offer
a valid representation of the unknown Boltzmann distribution
of a peptide conformational landscape (De Simone et al.,
2011). Also, MD simulations can be coupled to Markov State
Models (MSM) to predict the folding pathways and kinetics
of polypeptides (Chodera and Noé, 2014; Husic and Pande,
2018). An efficient alternative strategy is to employ enhanced
sampling methodologies, which allow investigating events that
extend beyond the timescale limit of standard simulations.
Important examples are umbrella sampling (US) (Torrie and
Valleau, 1977) and metadynamics (MetaD) (Laio and Parrinello,
2002), which rely on the application of a bias on a set of
user-defined reaction coordinates, specifically designed for the
system under investigation, commonly referred to as collective
variables (CVs). These methodologies can provide an accurate
description of the free energy landscape underlying the process
of interest. Particularly, MetaD (Laio and Parrinello, 2002) in
its well-tempered variant (Barducci et al., 2008) was largely
applied to conformational studies of both linear and cyclic
peptides. For instance, Musco and coworkers employed MetaD
to predict the bioactive conformation and the pharmacological
behavior of cyclic penta- and hexa- peptides designed as RGD-
integrin receptors modulators (Spitaleri et al., 2011; Simon et al.,
2018). Remarkably, metadynamics can be combined with replica-
exchange (RE) methods like parallel-tempering (PT) (Bussi
et al., 2006) and bias-exchange (BE) (Piana and Laio, 2007)
algorithms in which n exchangeable replicas of the systems
are simulated at different temperatures and biasing different
set of CVs, respectively. For instance, PT-MetaD was recently
applied to predict the turn-helix conformation of a linear peptide
reported as a selective ligand of the αvβ6 RGD-integrin, leading
to new selective cyclopeptidic ligands with potential clinical
applications (Figure 2A; Di Leva et al., 2018). Furthermore,
the metadynamics performance can be improved through the
inclusion of experimental data either in the user-defined CVs
in a BE scheme (Granata et al., 2013) or as replica-averaged
structural restraints. The latter approach is known as replica-
averaged metadynamics (Camilloni et al., 2013) and is typically
performed in the well-tempered ensemble (WTE) where the
energy is used as CV (Camilloni et al., 2013). In alternative to
CV-based techniques, other enhanced sampling methodologies
such as accelerated MD (Hamelberg et al., 2004), replica exchange
with solute-tempering (REST) (Liu et al., 2005) and reservoir-
REMD (R-REMD) (Okur et al., 2007; Roitberg et al., 2007), have
been successfully used for peptides’ conformational sampling.
In accelerated MD the sampling is improved through the
addition of a boost potential to the potential energy of the
system (Hamelberg et al., 2004). This technique demonstrated
to provide conformational ensembles for peptidic macrocycles
well reproducing the available experimental structures (Kamenik
et al., 2018). In replica exchange with solute-tempering, the
contribution of solute–solvent and solvent–solvent energies are
scaled in order to strengthen solvent interactions at elevated
temperatures. As a result, only the solute is simulated at different
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FIGURE 2 | Computational strategies to transform peptides in peptidomimetics. (A) A metadynamics-driven design approach was successfully used to convert a
helical peptide able to interact with selective the αvβ6 integrin into a cyclic pentapeptide. (B) A hydrocarbon stapling strategy guided by molecular dynamics (MD)
simulations was enabled to successfully convert an eIF4G-derived peptide of two helix turns in a stapled peptide able to inhibit the activity of the eIF4E (PDB IDs:
4AZA and 4BEA).

temperatures as in traditional REMD, while the solvent is kept
at original temperature in all replicas. The exchange probabilities
exclusively depend on the contribution from solute atoms that
generally show broader energy distributions compared to the
solvent. Accordingly, a lower number of replicas is needed
to cover the desired temperature range compared to standard
REMD, thus saving computational time and resources (Liu et al.,
2005). Finally, R-REMD is based on a classical PT scheme
in which, the highest temperature replica is replaced by a
structure reservoir that is pre-generated through standard MD
simulations performed at the same temperature (Okur et al.,
2007; Roitberg et al., 2007).

ESTIMATION OF THE PEPTIDES/
PEPTIDOMIMETICS BINDING
FREE-ENERGY

An accurate estimation of the protein–peptide binding affinity
is important to guide key steps in the drug discovery pipeline
such as the hit-to-lead and lead optimization processes. This
is however, a challenging task to achieve with standard
computational methodologies. For instance, docking algorithms
can provide rapid qualitative information about the peptide
binding modes but generally fail in accurately estimating
receptor affinities due to the intrinsic approximations of the
method. On the other hand, standard MD would require tens
of microseconds of simulations to collect enough statistics

to describe the full ligand binding process (Dror et al.,
2011; Shan et al., 2011), which are rarely accessible with the
current protocols and resources (Salmaso and Moro, 2018).
The timescale limitation of classical MD can be overcome by
means of free-energy methods, which can be grouped in three
main categories: endpoint, alchemical perturbation and physical
pathway methods.

Endpoint methods, which include linear interaction energy
(LIE) (Aqvist et al., 2002), molecular mechanics Poisson–
Boltzmann surface area (MM-PBSA) (Srinivasan et al., 1998),
and generalized Born surface area (MM-GBSA) (Kuhn and
Kollman, 2000), compute the binding free energy by taking
the difference between the absolute free energy of the ligand
in unbound and bound states, which are sampled separately.
These methods, particularly MM-PBSA and MM-GBSA, offer
a good balance between computational efficiency and accuracy,
and can be successfully used to predict the binding affinities and
identify or rescore the correct binding poses for protein–peptide
systems (Weng et al., 2019). Interestingly, a dampened MM-
PBSA scoring function was recently introduced in HADDOCK to
further improve the predictiveness of the docking protocol and
to estimate the protein–peptide binding affinity (Spiliotopoulos
et al., 2016). Nevertheless, a large-scale application of endpoint
approaches use is partly limited by some approximations to both
the sampling and energy calculation which are mainly due to the
use of implicit solvent models (Wang et al., 2019).

Alchemical methods are typically more rigorous and accurate,
although suffering from the higher demanding computational
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cost. They include thermodynamic integration (TI) (Kirkwood,
1935), free-energy perturbation (FEP) (Kirkwood, 1935) and
Bennett Acceptance Ratio (BAR) (Bennett, 1976; Shirts and
Chodera, 2008). In these calculations, ligand and protein are
gradually decoupled and the binding free energy computed from
a thermodynamic path connecting the bound and unbound
states. At each step of the alchemical path, the sampling
can be alternatively performed using either MC or MD
simulations, with the latter approach being the most widely
utilized. Frequently, a translational restrained potential is applied
along the path to control the turning off of the molecular
interactions between the ligand and the protein binding site.
This allows reducing the configurational space to sample between
the end-points, thus enhancing the efficiency of the free
energy calculation. Alchemical transformations which employ
translational restraints are generally referred as to the “double
decoupling method” (DDM), while those calculations in which
no translational restraint is present are classified as “double
annihilation method” (DAM) (Deng and Roux, 2009).

In physical pathway methods, which include steered molecular
dynamics (SMD) (Izrailev et al., 1997) and US (Torrie and
Valleau, 1977), the ligand and the receptor are physically
separated along the binding pathway and finally the potential
of mean force (PMF), and in turn the binding free energy,
is computed. In SMD, an external force with tuneable spring
constant and velocity is applied to pull the ligand out from the
binding site. The PMF is then obtained from the average of
the irreversible work minus the dissipative work of the process
according to the Jarzynski non-equilibrium work theorem
(Jarzynski, 1997a,b). Several independent SMD trajectories need
to be carried out to provide a statistically significant calculation
of the irreversible work, and, accordingly, an accurate estimation
of the PMF. Also, the optimization of the pulling force can
reduce the dissipative part of the work, which eventually leads
to an increased calculations convergence. In US, an external
harmonic bias potential is applied on a user-defined CV to
physically drive the ligand from the bound state to the unbound
state. The pathway is usually divided in n steps, commonly
known as windows, in which standard MD calculations are
performed in presence of the harmonic potential. The change in
free energy between adjacent windows can be computed from the
collected MD trajectories using different methods, with the most
commonly used being the Weighted Histogram Analysis Method
(WHAM) (Souaille and Roux, 2001).

Numerous successful applications of both alchemical
and pathway methods are reported in literature. However,
also these methodologies can suffer from some limitations
such as: (1) a limited use to small-size ligands, for which
relatively few conformations must be sampled and (2) the
need of a priori knowledge of the ligand binding mode,
for alchemical transformation methods; (3) an incomplete
sampling of the ligand solvated state (Limongelli et al., 2012);
(4) an insufficient sampling of the ligand bound state(s) in
case of receptor’s large conformational changes; and (5) the
presence of additional degrees of freedom important for the
ligand binding/unbinding process which are neglected during
the calculation (Limongelli et al., 2012; Limongelli, 2020).

In addition, the binding free energy calculation typically
converges slowly and might change in dependence of the
ligand size and charge, thus hampering the application of
such methods in studying peptide/peptidomimetics-protein
interaction (Gumbart et al., 2013).

In the attempt to address these problems, many variants of
these methodologies were developed over the last decades. In
the field of alchemical transformations, for instance, REMD-
based approaches were introduced to increase the accuracy
and the convergence rate of calculations. Among these is
a mixed FEP/REMD strategy that relies on accelerated MD
simulations performed in a Hamiltonian replica exchange
MD (H-REMD), in which n replicas of the system with a
modified Hamiltonian are run in parallel and are exchanged
according to specific acceptance criteria (Sugita et al., 2000).
The FEP/REMD approach allows the ligand to escape from
kinetically trapped conformations, which usually affect the
efficiency of standard FEP/MD calculations (Jiang and Roux,
2010). A more recent example is Modeling Employing Limited
Data (MELD)-accelerated MD in which experimentally derived
constraints are applied in a temperature and H-REMD
simulations framework (Morrone et al., 2017). Alternatively,
a single decoupling method was proposed, in which a single
alchemical calculation is performed in a H-REMD scheme using,
however, an implicit solvent model (Kilburg and Gallicchio,
2018). In its original formalism, SDM (Single-Decoupling
Binding Free Energy Method) relied on US simulations
performed in Hamiltonian replica exchange and combined
with the WHAM method for the calculation of the binding
free energy. This approach is known as Binding Energy
Distribution Analysis Method (BEDAM) and computes the
binding constant through a Boltzmann-weighted integral of the
probability distribution of the binding energy obtained in the
canonical ensemble in which the ligand, while positioned in
the binding site, is embedded in the solvent continuum and
does not interact with receptor atoms (Gallicchio et al., 2010;
Di Marino et al., 2015c).

As mentioned above, physical pathway methods are typically
affected by an insufficient sampling of the ligand solvated state.
A possible solution to this critical point was provided by the
works of Roux and Henchman who introduced a cylindrical
restrained potential in US simulations to reduce the sampling
space in the unbound state (Woo and Roux, 2005; Doudou et al.,
2009). Following this example, geometrically restricted potentials
were introduced in other enhanced sampling methodologies such
as MetaD. A recent example is Funnel-Metadynamics (FM) in
which a funnel-shaped restrained potential is applied to the
system along the simulation to reduce the phase space exploration
by the ligand in the unbound state. This enhances the sampling
of both the target binding site and the ligand solvated state,
leading to a thorough characterization of the binding free-energy
surface and an accurate calculation of the absolute protein-
ligand binding free energy (Limongelli et al., 2013). So far, the
method has been employed to study both ligand/protein and
ligand/DNA systems (Troussicot et al., 2015; Moraca et al., 2017;
Yuan et al., 2018; D’Annessa et al., 2019b), being suitable also in
the investigation of peptide-protein binding processes.
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CONCLUDING REMARKS

Designing peptides able to interact with specific target proteins
is only the first step toward the development of compounds
that can be considered as drug candidates. Despite their great
potential, as largely discussed above, some limitations to the
use of peptides in clinical routines still exist, mainly due to
their low stability in solution, poor permeability through cellular
membranes and physiological barriers, such as the blood–
brain barrier (BBB).

The introduction of modifications in the chemical structure
that could stabilize a peptide in its bioactive conformation,
increasing efficiency, represents the smartest strategy. This
can be achieved by introducing non-natural side chains, D-
amino acids, non-alpha-amino-acids, peptide bond isosteres,
staples and cyclization that change peptides into peptoids or
peptidomimetics (Figure 2; Vagner et al., 2008; Zhang et al.,
2018). Typically, these modifications are designed by either
adding chemical functional groups to a well-characterized active
peptide or using small molecules as building blocks that
mimic the amino acids backbone with the aim of reproducing
the geometry of secondary structure elements (SSE) (i.e.,
α-helix and β-strand) of bioactive peptides (Vagner et al.,
2008; Zhang et al., 2018). Indeed, SSEs play a key role in
PPIs, and among them α-helices are the most commonly
found at PPI interfaces. Peptidomimetics guarantee enhanced
protection against peptidases, improved systemic delivery and
cell penetration, high target specificity and poor immune
response and they are already in use against different pathologies,
such as cancer and diabetes (Vagner et al., 2008; Zhang
et al., 2018). In this context, computational approaches such as
MetaD (Figure 2A) and classical MD simulations (Figure 2B)
demonstrated to be valid tools to drive the conversion of
peptides in more active peptoids/peptidomimetics, targeting
αvβ6 RGD-integrin in one case (Di Leva et al., 2018) and the
eukaryotic translation initiation factor 4E (eIF4E) in the other
(Lama et al., 2013, 2019).

As highlighted in this review, peptides and peptidomimetics
can play a central role in pharmacological applications, also
having a potential strong economic impact on the pharmaceutical
industries. Indeed, the use of peptides/peptidomimetics for the
treatment of very different pathologies, including some types
of cancer, Alzheimer’s disease, metabolic diseases and microbial
infections, is now becoming a standard approach (Qvit et al.,
2017; Mabonga and Kappo, 2019).

Furthermore, the implementation of “hybrid” approaches that
combine theoretical and experimental techniques can sensibly
assist drug design, allowing, for instance, to overcome some
issues related to the development of peptides, mainly due to their
nature and size.

We strongly believe that the improvement of computational
peptidology techniques aimed at modifying and increasing the
potential of these molecules to obtain multifunctional peptides,
cell penetrating peptides and peptide drug conjugates, will
help strengthen the efficacy and the applicability of peptides
as therapeutics.

In conclusion, peptide design is an appealing but complex
process that raises many challenges and for a successful outcome
a deep knowledge of the available approaches and how to
combine them to overcome some major drawbacks are necessary.
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The S100A1 protein regulates cardiomyocyte function through its binding of calcium

(Ca2+) and target proteins, including titin, SERCA, and RyR. S100A1 presents two Ca2+

binding domains, a high-affinity canonical EF-hand (cEF) and a low-affinity pseudo EF-

hand (pEF), that control S100A1 activation. For wild-type S100A1, both EF hands must

be bound by Ca2+ to form the open state necessary for target peptide binding, which

requires unphysiological high sub-millimolar Ca2+ levels. However, there is evidence

that post-translational modifications at Cys85 may facilitate the formation of the open

state at sub-saturating Ca2+ concentrations. Hence, post-translational modifications

of S100A1 could potentially increase the Ca2+-sensitivity of binding protein targets,

and thereby modulate corresponding signaling pathways. In this study, we examine

the mechanism of S100A1 open-closed gating via molecular dynamics simulations to

determine the extent to which Cys85 functionalization, namely via redox reactions,

controls the relative population of open states at sub-saturating Ca2+ and capacity

to bind peptides. We further characterize the protein’s ability to bind a representative

peptide target, TRKT12 and relate this propensity to published competition assay data.

Our simulation results indicate that functionalization of Cys85 may stabilize the S100A1

open state at physiological, micromolar Ca2+ levels. Our conclusions support growing

evidence that S100A1 serves as a signaling hub linking Ca2+ and redox signaling

pathways.

Keywords: S100A1 protein, calcium affinity, post-translational modification (PTM), passive tension, molecular

dynamics

1. INTRODUCTION

S100A1 is a Ca2+ binding protein that is implicated in cardiac and neurological functions
(Wright et al., 2009b). S100A1 regulates several targets including ryanodine receptor (RyR),
sarcoplasmic/endoplasmic reticulum calciumATPase (SERCA), phosphoglucomutase, tubulin, and
tumor protein p53 (Landar et al., 1996; Santamaria-Kisiel et al., 2006; Wright et al., 2008; Duarte-
Costa et al., 2014) in a Ca2+-dependent manner. S100A1 expressed in cardiac tissue is believed to
manage contractile behavior either through modulating cytosolic Ca2+ (Kraus et al., 2009), which
triggers the initiation of contraction, or through modulating properties of the contractile fibers of
the myofilament. For the latter, there is evidence that Ca2+-loaded S100A1 disrupts interactions
between actins of the thin filament and titin (Gutierrez-Cruz et al., 2001; Granzier et al., 2010;
Yamasaki et al., 2011). Specifically, there are several reports that the PEVK-rich regions of titin
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bind actin and thereby behave as a viscous brake during extension
and contraction. Curiously, in vitro assays indicate S100A1
binds targets at Ca2+ levels considerably above physiological
Ca2+ concentrations, which casts doubts on the ability of wild-
type (WT) S100A1 to contribute to titin’s management of
contractile properties.

S100A1 belongs to the EF-hand calcium binding protein
family in which the Ca2+ ions are bound to the helix-loop-helix
motif (EF-hand). Two EF-hands exist in the S100A1 monomer,
the canonical hand (cEF) and the pseudo hand (pEF). The cEF
hand has a higher Ca2+ affinity than the pEF hand, with the
dissociation constant for the former is ∼27–50 µM and latter is
∼250–16,700 µM, respectively (Goch et al., 2005; Wright et al.,
2005). Within cells, the dissociation constant for the pEF hand
is magnitudes larger than cellular Ca2+ concentration, implying
that this pEF hand does not significantly bind Ca2+. However,
it has been shown that binding Ca2+ at both the pEF and cEF
hands is the prerequisite to S100A1’s interactions with Ca2+-
dependent targets (Nowakowski et al., 2013). Thus, it is of great
importance to understand how S100A1 is activated under non-
(half)-saturating cellular Ca2+ conditions.

S100A1 is generally found as a homo-dimer when
subject to conditions amenable to structure determination
via x-ray crystallography (Melville et al., 2017) or nuclear
magnetic resonance (NMR) spectroscopy (Wright et al., 2005;
Nowakowski et al., 2011, 2013); its dimerization happens at
picomolar monomer concentrations (Kraus et al., 2009). Similar
to most members of the S100 class of Ca2+ binding proteins,
S100A1 activation proceeds through binding of two Ca2+, one
each at the low-affinity pEF and high affinity cEF hands. In its
fully-saturated, Ca2+-bound (holo) state, S100A1 presents a
hydrophobic patch between helices three and four (H3 and H4)
that enable binding to regulatory domains of protein targets
(Wright et al., 2005; Nowakowski et al., 2011), which may be

FIGURE 1 | Schematic of S100A1 interacting with Ca2+-dependent targets. Upon Ca2+ binding, the hydrophobic patch between H3 and H4 is exposed to target

peptide. The Cys85 at H4 is shown in sticks, Ca2+ ions are shown as yellow spheres and target peptide is colored gray.

accompanied by significant increases in solvent accessible surface
area relative to the apo state (Chaturvedi et al., 2020). In the
absence of Ca2+(apo state), the hydrophobic patch is concealed
by closing the H3/H4 hinge region (Figure 1) (Nowakowski
et al., 2011). Our recent studies suggested that the half-saturated
state of the S100A1 (Scott and Kekenes-Huskey, 2016), which we
characterize as the conformation with a single Ca2+ bound at
the cEF hand, is insufficient to maintain an exposed regulatory
binding region. Since the pEF Ca2+ affinity is reported to be
in the sub-millimolar range (Goch et al., 2005), these findings
suggested that S100A1 may be incapable of recognizing Ca2+-
dependent targets (Scott and Kekenes-Huskey, 2016). Hence,
native S100A1 is unlikely to dynamically regulate protein targets,
such as passive tension, within physiological Ca2+ ranges.

Interestingly, functionalization of Cys85 at the C-terminus of
H4 has been shown to yield 10- and 10,000-fold increases in Ca2+

affinity at the cEF and pEF hand, respectively (Goch et al., 2005).
The increasing Ca2+ affinity was reported to be caused by the
favorable cooperativity between the binding events in the two
EF-hands (Goch et al., 2005). The enhanced Ca2+ affinity could
therefore confer the ability to activate S100A1 at micromolar
Ca2+. Indeed, an assay by Goch et al. (2005) indicated that
the modified S100A1 protein presented its peptide-binding
hydrophobic patch at physiological Ca2+ levels in contrast to the
native protein.

Since S100A1 Cys85 is a known target for in vivo nitrosylation
(Živković et al., 2012) and glutathionylation (Goch et al.,
2005), we explored via molecular dynamics simulation whether
mutation of the cysteine to bulkier side groups could promote
S100A1 domain opening in its half-saturated state. Additionally,
although atomistic-resolution structures of S100A1 complexed
with RyR regulatory peptide and a 12-residue peptide “TRTK12”
have been determined (Wright et al., 2008), neither the motif
nor the molecular structure of an S100A1/PEVK complex have

Frontiers in Molecular Biosciences | www.frontiersin.org 2 June 2020 | Volume 7 | Article 77223

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Sun and Kekenes-Huskey S100A1 Activation With Non-saturating Calcium

been established. Under the assumption that S100A1 binds
PEVK in a conformation similar to other established Ca2+-
dependent targets, namely TRTK12, and those exhibited among
other S100 family proteins, we investigate conditions necessary
for the regulatory protein’s activation under physiological Ca2+

concentrations. We specifically examined S100A1’s capacity to
bind regulatory peptides in WT and C85 mutants. Furthermore,
we demonstrate how changes in the Ca2+-sensitivity of S100A1
activation could control competition between PEVK/S100A1 and
PEVK/actin binding using a multi-state macroscopic model.

2. MATERIALS AND METHODS

2.1. Molecular Dynamics Simulation
The starting structures are based on the NMR apo and holo
structures of S100A1 [PDBs 2L0P (Nowakowski et al., 2011) and
2LP3 (Nowakowski et al., 2013), respectively]. The mutations of
C85 to E85 and R85 were performed by Charmm-Gui utility
(Jo et al., 2008). For the half-saturated state, the Ca2+ at pEF
site was deleted. The system was solvated in TIP3P (Jorgensen
et al., 1983) water box with 20 Å margin. 0.15 M KCl ions were
added into the system to maintain a physiological ionic strength.
The system was parameterized by the AMBER ff12SB force field
(Case et al., 2012) with Ca2+ parameters adapted from the Li-
Merz work (Li et al., 2003). Each system was first subjected
to an energy minimization process followed by the heating
stage. During the heating stage, the weak-coupling algorithm
was used. After reaching equilibrium state with temperature
being 300 K, a 100 ns production MD was performed by using
the PMEMD.CUDA module of the AMBER 14 package (Case
et al., 2014). Clustering analysis were performed on this 100 ns
production trajectory via CPPTRAJ (Roe and Cheatham, 2013)
using a hierarchical agglomerative (bottom-up) approach. The
representative structures of the 3 least populated clusters were
used as starting structures for next cycle of production runs (each
run was about 400 to 700 ns long).

The accumulative sampling time for each case is around 2
µs for the apo/half-saturated state and about 0.6 µs for the
fully-saturated state. The time step was 2 fs and cutoff for non-
bonded interaction was set to 10 Å. During the whole MD, the
SHAKE algorithm (Ryckaert et al., 1977) was used to restraint
the length of bonds involving hydrogen atom. All simulations
are summarized in Table S1. The CPPTRAJ (Roe and Cheatham,
2013) program from Amber was used to calculate the root mean
squared fluctuations (RMSF), α-helical probability, contact map
and H3/H4 inter-helix angle values. The RMSF were calculated
on backbone atoms (Cα, C, N, and O atoms). The α-helical
probability for residues in the H4 C-terminus (residues 85-93)
were calculated using the Define Secondary Structure of Proteins
(DSSP) algorithm (Kabsch and Sander, 1983). Contact map data
was calculated with distance cutoff as 7 Å and only residue pairs
which are at least 6 residues apart (i and i + 6) in sequence
were considered.

2.2. Potential of Mean Force of TRTK12
Peptide Unbinding From S100A1
TRTK12 is a 12 residue peptide that was reported to bind
to S100A1 in a Ca2+-dependent manner (Ivanenkov et al.,

1995). To simulate the dissociation PMFs of TRTK12 peptide
from S100A1, we constructed the TRTK12-S100A1 complex
structures using our simulated half- and fully-saturated S100A1
structures. Specifically, the MD-sampled most probable S100A1
structures (see section S1.1 in Supplementary Material for
details of determining these structures) were superimposed with
NMR structure of TRTK12-S100A1 complex (PDB 2KBM). We
minimized the energy after superpositioning the experimentally-
determined TRTK peptide structure into the hydrophobic pocket
of MD-simulated S100A1 to eliminate potentially overlapping
atoms. After the minimization, we equilibrated the system and
further run a 60 ns long MD simulation of the TRTK12-S100A1
complex in the WT fully-saturated state to assess the binding of
the TRTK12 peptide at the hydrophobic cleft (Figure S3). The
reaction coordinate (RC) was defined as the distance between the
center of mass (COM) of peptide Cα atoms to the COM of Cα

atoms in the H3 C-terminus (residues K30-T39) and the H4 N-
terminus (residues E73-A84). We note that we used NAMD in
order to make use of its support for collective reaction coordinate
variables (the protein COMs). This required parameterizing the
system using the CHARMM36 force field (MacKerell et al., 1998,
2004). As such, all structures subjected to PMF calculations
were compared using the CHARMM36 force field, whereas all
other simulations used the AMBER ff14SB parameterization to
ensure consistent comparisons. After obtaining the TRTK12-
S100A1 complex structures, the system was then solvated in
a TIP3P water box with 14 Å margin. 0.15 M KCl ions were
added into the system. The CHARMM36 (MacKerell et al., 1998,
2004) force field was used. The sampling is preformed with
RC ranging from 9.5 to 33.5 Å resulting total 49 simulation
windows with window width as 0.5 Å. For each window,
after minimization and equilibrium, 8 ns production MD was
performed in the NPT ensemble at 300 K temperature. An
harmonic potential was applied at the center of each windowwith
a force constant as 18 kcal/mol/Å2 during the simulations. Two
loose angle constraints were introduced to prevent the peptide
from sliding along the S100A1 surface. All PMF calculations
were performed via NAMD2.11 (Phillips et al., 2005). The PMFs
along reaction coordinate were constructed using the WHAM
program (Grossfield). The PMF error was estimated using the
Monte Carlo Bootstrap Error Analysis function in the WHAM
program (with 30 MC trials). We also performed the PMF error
analysis based on block averaging. Specifically, the variance of
the RC in each simulation window from umbrella sampling was
estimated via block averaging analysis with block size as 200
(Figures S11A,B). The RC variance was then used to calculate
PMF error (Figure S11C) based on Equation (1) in Zhu and
Hummer (2012). Since the magnitudes of PMF errors from MC
trails and block averaging are comparable, we show in the main
text the PMF with the MC error analysis.

2.3. Molecular Mechanics-Generalized
Born and Surface Area Continuum
Solvation (MM-GBSA) Calculation
The per residue energy contribution to the interaction energy
between monomers of S100A1 was calculated via MMGBSA.
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1G = 〈Gdimer〉 − 〈Gmonomer〉 (1)

where 〈Gdime〉 and 〈Gmonomer〉 are ensemble-averaged MMGBSA
calculated free energies of S100A1 dimer and monomer,
respectively. The calculations were performed on a subset of
MD trajectory extracted at a 2 ns frequency. The generated sub-
trajectories were used as input of MMPBSA.py in Amber16 to
calculate the free energies of each part. The salt concentration
was set as 0.15 M with the generalized Born model option
setting as igb = 5. No quasi-harmonic entropy approximation
wasmade during the calculation. The total1Gwas decomposited
to achieve per residue contribution by setting dcomp = 2 during
the calculation. We excluded the internal energies (bonded
terms) from the final results as these energies are nearly
identical in the dimer and monomer. Thus, our final per residue
energy contribution contains three energy terms: electrostatic
interactions (EEEL), van der Waals interactions (EvdW), and
solvation energy (Esolv).

3. RESULTS AND DISCUSSION

3.1. S100A1 Structure and Dynamics
The relative weak Ca2+ affinity in the S100A1 pEF hand
(Kd ∼250–16,700 µM; Goch et al., 2005; Wright et al., 2005)
suggests that only the protein’s cEF site is likely occupied by Ca2+

at physiological intracellular Ca2+ levels (∼0.1 µM; Clapham,
2007). Previous computational studies of S100A1 have utilized
the WT structure with cysteine at the 85th position (C85) (Scott
and Kekenes-Huskey, 2016). That study suggested that half-
saturated S100A1 tends to assume a semi-closed state that would
preclude target binding. Since post-translational modification
(PTM)s at the S100A1 site C85 on helix 4 (H4) have been shown
to increase its Ca2+ affinity at both cEF and pEF hands, with the
latter exhibiting a four orders of magnitude increase (Goch et al.,
2005), we sought to determine potential mechanisms for those
PTM-induced changes.

In this study, we introduced glutamic acid (E) or arginine
(R) at site C85 to approximate the effects of post-translational
modifications including glutathionylation that modulate Ca2+

affinity (Goch et al., 2005). We performed extensive all-atomistic
molecular dynamics (MD) simulations on the WT and C85E/R
S100A1 variants in the apo, half-saturated (only cEF hand
has Ca2+ bound) and fully-saturated (both cEF and pEF have
Ca2+ bound) state. In present work, we use the terms “fully-
saturated” and “holo” interchangeably. We also performed
two extra simulations of S100A1 in the apo state with W90
mutated to alanine (W90A) and in the fully-saturated state
with target peptide bound to probe the interaction between
H4 and the remaining helices. All simulations as well as the
starting structures and the accumulated simulation lengths are
summarized in Table S1.

To determine whether using glutamic acid (E) or arginine
(R) sufficiently mimicked known PTMs at C85 of S100A1,
we compared the MD-sampled C85E/R apo/holo structures
with those PTM S100A1 structures deposited in the Protein
Data Bank. Namely, structures have been reported for the
WT (PDB 2L0P-apo, 2LP3-holo) and variants with PTMs at

Cys85 that increase Ca2+ affinity. The variants include C85-
mercaptoethanol (PDB 2JPT; Zhukov et al., 2008), C85-S-
nitrosylation (PDB 2LLT; Živković et al., 2012), and C85M (PDB
2LLS) in the apo state and C85-cysteine (PDB 2LP2; Nowakowski
et al., 2013) in the holo state. As shown in Figure 2A, in the apo
state, the MD-sampled C85E/R structures both have moderate
structural deviations from β-mercaptoethanol modified S100A1,
as the RMSDs are around 4.0 Å. Interestingly, most of the
structural difference in the C85E/R stem from the displacement
of H3 helix away from H4 helix relative to the PTM structure.
This suggests that C85E/R variants tend to sample a slightly
more open conformation. Additionally, the C85E/R variants
present similar inter-subunit contacts as PTM S100A1, as the
H1/H4 helices are highly overlapped with the PTM S100A1.
Next we compared the MD-sampled C85E/R variants against
homocystine-modified S100A1 in the holo state (Figure 2B).
Similar to the apo state comparison, although the C85E/R have
moderate structural deviations (RMSD values are 4.1 and 4.8
Å, respectively), the differences are primarily due to the H2-H3
linker and H3 helix. Specifically, in the C85E/R variants, the H2-
H3 linkers are less folded and are slightly more displaced from
the H4 helix. Although the two C85 variants have structural
differences, the Ca2+ coordination patterns at the EF hands were
identical to that of the homocystine-modified S100A1 structure
(Figure S1). As both the C85E/R variants and the PTMs have
similar inter-subunit contacts in the apo and holo state, the
overall structural stability of S100A1 in the C85E/R and PTMs are
comparable. These data therefore suggest that the site directed
variants we considered are reasonable approximations of the
chemically modified proteins reported in the Protein Data Bank.
We reported RMSF values before and after Ca2+-binding in
section S3.1 (Supplementary Material), which are consistent
with previous studies.

3.2. Hydrophobic Pocket Opening
Indicated by H3/H4 Inter-helix Angle
The fundamental physiological role of S100A1 is to bind
downstream targets after chelating Ca2+ ions. Ca2+-saturated
S100A1 presents a hydrophobic patch between H3 and H4
that engages in target binding, similar to other Ca2+-binding
proteins like calmodulin and troponin C. We investigated the
ability of C85 variants to maintain an open conformation of
the hydrophobic patch that binds regulatory targets. In Scott
and Kekenes-Huskey (2016) we utilized principal components
analysis (PCA) to characterize the predominant conformational
motions that distinguish the S100A1 apo from holo states. The
largest mode was referred to as Principal Component 1 in that
study and correlated with the opening and closing of the peptide-
binding pocket formed between H3 and H4. We therefore report
here the angle between H3 and H4 as an indicator of pocket
opening in Figure 3 for the WT and C85 mutants.

The average angle values are shown in Figure 3B. For the
WT structures, the apo state is generally closed and half-/fully-
saturated states stay open, as the average angle values are close
to values measured from the apo (2.73 × 101◦) and holo (5.43
× 101◦) NMR structures, respectively. We also note that peptide
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FIGURE 2 | (A) Superposition of MD-sampled most probable C85E/R apo state structures onto β-mercaptoethanol modified C85 apo S100A1 structure (PDB 2JPT).

(B) Superposition of MD-sampled holo state structure onto homocysteine modified C85 holo S100A1 structure (PDB 2LP2). The RMSD values were calculated based

on Cα atoms. The chemical structures of new residues at C85 were also shown.

binding at fully-saturated state has a negligible effect on pocket
opening, as indicated by the comparable angle values in the WT
peptide-bound case and in the WT holo case. C85R is slightly
more open than WT in the apo state, as both chains have ∼ 7◦
larger angles than WT, while C85E has comparable angle values
as WT. C85R when half-saturated is asymmetric with one chain
more open and the other is more closed. C85E has comparable
angle values as WT in the half-saturated state. All cases maintain
the open pocket in the fully saturated state. As shown in
Figure 3C, we selected the most-probable simulated structures
of C85 variants (see section S1.1 in Supplementary Material for
details of determining these structures) and compared them with
theNMR structure of S100A1 (PDB 2KBM) in which a 12-residue
TRTK12 peptide was bound at the hydrophobic patch. In both
the half- and fully-saturated states, the two C85 variants are able
to accommodate the TRTK12 peptide as they have no structural
clashes with the TKTR12 peptide. In other words, the variants
can bind targets, despite only having one bound Ca2+. While the
two C85 variants have comparable degrees of openness with that
of the WT structure, the C85R in the half-saturated state has a
more opened hydrophobic patch relative to WT. We attribute
this in part to the onset of H3/H4 closing reported for the WT
half-saturated case in Scott and Kekenes-Huskey (2016). Overall,
our simulations indicate that the two C85 variants were as good

as, if not better, than WT at assuming a peptide-compatible
configuration, which thereby could facilitate peptide binding.
We quantify this facilitation in section 3.4 via potential of mean
force calculations.

3.3. H4 Terminal Helicity
The C-terminal region of H4 (residues C85 to S93) plays a
vital role in the Ca2+-dependent activation of S100A1 targets
(Landar, 1998), as experiments show that either the deletion of
this terminal region or mutations of three aromatic amino acids
in this region to alanine diminish Ca2+-dependent activation of
S100A1 targets. Further, the highly divergent C-terminal region
of H4 among S100 family proteins has been suggested to account
for the selectivity of targets binding (Santamaria-Kisiel et al.,
2006). For example, the three-fold TRTK12 affinity difference
between S100A1 and S100B was attributed in part to different
residues in the H4 C-terminus with regard to S100A1 (Wright
et al., 2009a). Specifically, TRTK12 in S100A1 assumes a different
orientation than that of S100B due to the different residues in
the H4 C terminus, resulting in less optimized hydrophobic
interactions between S100A1 and TRTK12 peptide.

Experimental data indicate that in the apo state, residues
from N87 to W90 in H4 are in the equilibrium between
helix and random coil configurations (Nowakowski et al., 2011,
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FIGURE 3 | (A) H3/H4 inter-helix angle of S100A1 in closed state (PDB 2L0P) and open state (PDB 2LP3). The angle is defined between Cα atoms of C85/A53 and

the COM of residues L61 to D62 and Q72 to E73 (shown as a black dotted sphere). (B) Average H3/H4 angle derived from MD simulations. Chain A and chain B are

represented by deep and light shaded bars, respectively. The error bars are standard deviations. (C) Superimpose of MD-sampled half-saturated and fully-saturated

S100A1 mutants with the NMR structure of TRTK12 bound S100A1 (PDB 2KBM). Ca2+ ions are represented as yellow spheres.

2013). Upon Ca2+-binding H4 adopts a complete helix. This
H4 helix extension in the holo state is thought to predispose
the hydrophobic residues (i.e., C85 and F88) to interact with
hydrophobic residues of the target peptide (Wright et al., 2009a),
however, to our knowledge, its impact on Ca2+ binding has not
been investigated. Since H4 in S100A1 undergoes appreciable
rearrangements upon Ca2+ binding, we speculated that such
interactions might counter the free energy gain upon binding
Ca2+, which would reduce its apparent affinity relative to a
system lacking H4 self-interactions. To investigate if our C85
mutations similarly affect the α-helicity in the H4 C-terminus,
we measured the α-helix probability of residues C85 to S93 in H4
(Figure 4). In the apo state,WT S100A1 residues from F88 toN92
have considerably smaller α-helix probability than that of the
holo state. The reduced H4 helical content in the apo state may be
caused by two contacts that hinder α-helix formation: (1) contact
between theH4C-terminus with pEF loop from the other subunit
(Figure S8) and (2) contact between the H4 C-terminus with H2-
H3 linker (Figure S5). These two contacts are attenuated in the
holo state. We therefore mutated W90 to A90 in the apo state
to disrupt the first contact and thereby permit the C-terminus of
H4 to adopt a folded α-helix. However, results show that W90A
has comparable α-helix probabilities to the WT, implying that
the first contact does not affect the helix formation in the H4
C-terminus. Thus it is likely that the contacts between H4 and
H2-H3 linker in the apo state hinder the helix formation in the
H4 C-terminus. Indeed, we show in Figure S6 that in WT apo

S100A1, F44 from the H2-H3 linker region maintains contacts
with L81 and F88 from the H4 C-terminal region, as F44 was
sandwiched by the two hydrophobic residues.

We had expected that our C85 variants would disrupt
native H4 interactions and facilitate α-helix formation. For
instance, in the β-mercaptoethanol-modified C85 apo-S100A1,
NOE data show that residues from C85 to F89 folded into
α-helix, possibly due to the hydrophobic interactions between
the newly introduced β-mercaptoethanol and aromatic residues
F88/F89. However, we found that both C85E and C85R variants
have reduced α-helix probability in the apo state with C85E
presenting a larger degree of reduction. We speculated that
charged side chains of C85E/R prevent the favorable hydrophobic
interactions within the C-terminus that is needed for α-helix
formation. We anticipated that the large desolvation energy
penalties of these solvent-exposed charged residues [as indicated
by solvent-accessible surface area (SASA) in Figure S4] hinder
the formation of α-helix.

In the half-saturated WT and C85E configurations, the H4
C-terminus is unfolded to similar degrees relative to the holo
state, although the latter variant features one partially-folded
helix. This unfolding we believe stems from significant contacts
between H4 and the H2-H3 linker in the half-saturated state
(Figure S5). Meanwhile, H4 for the C85R half-saturated state
exhibits folded content comparable to the holo state, which
we attribute to reduced H4 and H2-H3 linker interactions. In
the fully-saturated state, all cases maintain high helical content
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FIGURE 4 | (A–C) α-helix probability of H4 residues C85 to S93. Chain A and chain B are represented by dark and light shaded bars, respectively. (D) Difference of

per residue energy contribution to the MMGBSA-calculated interaction energy between the two monomers of S100A1. The error bars represent standard deviations.

in the H4 C-terminal region. Further, binding of the target
peptide has a negligible effect on helical content; this suggests
that the free energy gain of helix formation likely occurs during
ion binding and not thereafter. Lastly, it is interesting to
note (see Figure 4D) that the apo state C85R mutant presents
energetically-unfavorable interactions between its monomers
that disrupt H4/linker interactions and could thereby facilitate
H4 formation.

3.4. Thermodynamics of TRTK12 Peptide
Binding to S100A1
To determine if the C85 variants thermodynamically facilitate
target binding to S001A1 at physiological Ca2+ concentrations,
under which only the cEF has Ca2+ bound, we performed
potential of mean force (PMF) calculations to characterize the
free energy profile of TRTK12 peptide dissociation from half-
saturated S100A1. Specifically, starting from the MD-simulated
most probable half-saturated structures that are compatible for
target-peptide binding, a TRTK12 peptide was placed at the
hydrophobic patch. After energy minimization, the TRTK12
peptide was pulled away along the reaction coordinate (RC)
defined as the distance between the COM of peptide Cα atoms
to the COM of Cα atoms in the H3 C-terminus (residues K30-
T39) and H4 N-terminus (residues E73-A84). The PMFs along
the dissociation process are shown in Figure 5. To validate the
accuracy of PMF calculations, we first compared the PMF of
TRTK12 peptide dissociation from WT fully-saturated S100A1
(dashed line in Figure 5A). The experimental and calculated
binding free energies were 1Gexpt. ≈ −6.5 (Wright et al.,
2009a) and 1Gcalc. = −9.5 kcal/mol, respectively, which are in
reasonable qualitative agreement.

For all half-saturated C85 variants, we found that TRTK12
peptide exhibits a minimum in the free energy profile at RC≈14
Å, similar to the WT. However, the binding free energies are
considerably more favorable. In the half-saturated state, the
two C85 variants have binding free energy values of −12.3
and −13.5 vs. that of −7.6 kcal/mol for the WT type. This
thermodynamic advantage in the C85 variants is likely due
to the stronger hydrophobic interactions between S100A1 and
TRTK12 than that of the WT. This is evidenced by the hydrogen
bonding and contact map analyses in Figure S12. In the bound
state, the numbers of hydrogen bonds between TRTK12 peptide
and S100A1 are comparable for the WT and C85 variants.
However, the contacts between TRTK12 and the H2-H3 linker
in C85 variants outnumbered those of WT. These data suggest
that introducing glutamic acid or arginine at C85 increases
peptide binding affinity. We additionally investigated the gating
kinetics of the H3/H4 patch and found no significant difference
between WT and the C85 variants (see section S3.2 in the
Supplementary Materials).

3.5. Relating S100A1’s C85 Modifications
to Physiological Function: Combining
S100A1-Mediated Actin Passive Model
With PMF Calculations
To exemplify the potential impact of improved peptide binding
on S100A1’s physiological function, we relate these functions
to its capacity to bind the PEVK repeats in titin in the N2B
isoform (Granzier et al., 2010) as a model system for S100A1
target regulation. The elastic PEVK domain of titin contains
70% of proline, glutamate, valine, and lysine residues and exists
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FIGURE 5 | PMF of TRTK12 dissociation from half-saturated S100A1. The

PMF of fully-saturated WT case was also calculated to compare with

experimentally measured TRTK12 binding free energy adapted from Wright

et al. (2009a). The reaction coordinate was defined as the distance between

the center of mass (COM) of peptide Cα atoms to the COM of Cα atoms in H3

C-terminus (residues K30-T39) and H4 N-terminus (residues E73-A84). The

error bars were obtained via the Monte Carlo Bootstrap Error Analysis function

in the WHAM program (with 30 MC trials).

in three conformational states: polyproline II (PPII) helix, b-
turn, and random coil (Labeit and Kolmerer, 1995; Ma and
Wang, 2003). The PEVK domain consists of a repeating motif
of 28 residues on average with no long-range cooperativeness
between motifs (Gutierrez-Cruz et al., 2001). The extension of
PEVK is believed to contribute to titin’s elasticity. A competition
assay demonstrated that isolated PEVK fragments washed into
skinned myocyte preparations reduced passive tension over
physiological sarcomere lengths (Yamasaki et al., 2011). Further,
S100A1 was shown to reduce F-actin-bound I27-PEVK-I84 in
a dose-dependent manner, with higher rates of reduction under
conditions of elevated (0.1 mM) Ca2+ (Yamasaki et al., 2011).

To relate changes in peptide binding due to mutations to
the potential regulation of target, we proposed a competitive
S100A1/actin-binding scheme in Figure 6A. This includes an
equilibrium between actin interacting with titin’s PEVK segment,
while S100A1 also can interact with titin’s PEVK segment. The
former actin-titin interaction is proposed to delay the filament
sliding, while the presence of S100A1 will disrupt the actin-
titin interaction and modulate muscle contraction. This model
is mechanistically consistent with trends reported for S100A1-
dependent reductions of actin/PEVK (AP) binding at elevated
Ca2+ (Yamasaki et al., 2011). Namely, AP binding was shown to
reduce as S100A1 increased, with greater efficacy demonstrated at
0.1 mM Ca2+. The governing equations are listed in section S1.3

in Supplementary Material.
We first fitted the model to experimental data from Yamasaki

et al. (2011) to obtain the dissociation constants of S100A1 to
actin/PEVK (AP) complex with and without Ca2+. As shown
in Figure 6A, in the absence and presence of 0.1 mM Ca2+,
the fitted dissociation constants of apo-S100A1, half-saturated

S100A1 and fully-saturated S100A1 to AP are Kd1 = 0.52,
Kd2 = 0.13 and Kd2′ = 0.03 µM, respectively. Surprisingly,
the corresponding binding free energies of Kd2 and Kd2′ are
−9.40 and −10.27 kcal/mol, respectively. These two values
are close to calculated binding free energy −9.50 kcal/mol of
TRTK12 peptide to WT fully-saturated S100A1 (Figure 5). This
agreement indicates that it is reasonable to use the TRTK12
peptide as a mimic of the PEKV fragment to study the binding
affinity of PEVK to WT/mutant S100A1 systems. We anticipate
that the similar binding arises from PEVK generally showing
highly amphoteric charge distributions and modestly positive net
charges (Forbes et al., 2005), similar to TRTK12 (Wafer et al.,
2013).

In general, we have found that end-point methods for
computing free energy differences as well as more rigorous
approaches including potentials of mean force seem to fare
well in rank ordering cases by energy. However, for a variety
of reasons not limited to force field inaccuracies, difficulties in
estimating entropic contributions, and finite sampling of protein
configurations during limited molecular dynamics simulation
times, we find that the simulation approaches for the systems
we have considered are unable to accurately predict the absolute
energy differences between cases that have been experimentally
characterized. Hence to map our PMF results (calculated KDs)
to the experimentally-measured KDs, we introduce a scaling
parameter λ. The value of λ was calculated based on the
alignment between experimental and calculated dissociation
constants (via PMF) for TRTK12 peptide binding to WT fully-
saturated S100A1:

KD,expt. = λKD,calc. (2)

λ = e(1Gexpt.−1Gcalc.)/RT = 157.436 (3)

where we used 1Gexpt. = −6.5 and 1Gcalc. = −9.5
kcal/mol, respectively. We then use the average of C85E and
C85R as the binding free energy of PEVK to S100A1 after
C85-glutathionylation (1Gglu. = −12.9 kcal/mol). Compared
to the WT, the dissociation constant of S100A1 with C85-
glutathionylation would thus be reduced as:

Kd,glu. = λKde
(1Gglu.−1GWT )/RT = 0.021Kd (4)

where 1GWT = −7.6 kcal/mol and λ is defined in Equation
(2) and Kd refers to Kd2 and Kd2′ in Figure 6B. When used
in Figure 6A, the C85-glutathionylated S100A protein more
rapidly reduces the PEVK-actin interaction at various increasing,
physiological Ca2+ concentrations, as shown in Figure 6C.

4. CONCLUSIONS

Previous studies established that post-translational modifications
of C85 at H4 of S100A1 increase S100A1’s Ca2+ sensitivity
of activation (Zhukov et al., 2008; Živković et al., 2012;
Nowakowski et al., 2013). By using computational methods
in this study, including molecular dynamics simulations and
thermodynamic models of binding, we determined potential
mechanisms governing how C85 modified S100A1 can bind
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FIGURE 6 | (A) Two possible interaction models between S100A1 and actin-PEVK (AP) complex. In first model, half-saturated S100A1 does not bind to AP while in

second model all apo S100A1, half-saturated S100A1 (Ca.S100A1) and fully-saturated S100A1 (2Ca.S100A1) bind to AP. (B) Fitting to experimental data from

Yamasaki et al. (2011). (C) Comparison of predicted actin-PEVK binding as a function of wild-type (black) and glutathionylated (red) S100A1 at pCa = 7 (solid) and

pCa = 4,5 (dashed). Assumed C85 glutathionylation leads to ∼48 fold enhancement for S100A1’s affinity to AP complex based on the PMF calculations.

Ca2+-dependent targets at sub-saturating Ca2+. Specifically, we
used two variants (C85E/R) that have bulky side chains as
steric surrogates of post-translational modifications at the C85
position in S100A1. Our data show that C85E/R variants have
similar structural effects as post-translational modifications on
displacing the C-terminus of H3 from H4 in the apo state
of S100A1. We further focused on structures bound with one
equivalent of Ca2+(half-saturated) in its pEF domain, which
are likely to predominate (Scott and Kekenes-Huskey, 2016)
at physiological Ca2+ concentrations (100 to 1000 nM) found
within cells (Berridge et al., 2000). We found for the C85E/R
variants relative to the WT that (1) the mutations disrupt
the half-saturated structures by increasing the solvent exposure
of its target binding domain (the hydrophobic patch) found
between H3 and H4, (2) yield stronger TRTK12 binding in the
half-saturated variants vs. WT and (3) for the half-saturated
configuration, the H4 C-terminus in the two variants have greater
alpha helical character than theWT and are consistent with levels

exhibited in the target-bound configuration. Ultimately, these
findings are suggestive of cysteine-targeted post-translational
modifications priming S100A1 for target regulation within
physiological ranges of Ca2+. Importantly, the computational
studies further support the notion that S100A1 toggles its Ca2+-
dependent regulation of downfield targets in response to Cys
modification, as is common in redox pathways such as those
using glutathionylation (Zhukova et al., 2004).

A variety of studies implicate S100Al in regulating proteins
that mediate Ca2+ signaling or alter their mechanical properties
in response to Ca2+. S100A1’s regulatory roles are most
apparent in the heart in which the protein is predominantly
expressed (Kato and Kimura, 1985). In cardiac tissue, S100A1
has inotropic effects on Ca2+ handling, that is, it helps increase
the generation of contractile force (Kraus et al., 2009). This
is accomplished through priming sarcoplasmic reticulum (SR)
Ca2+ concentration and release (Kettlewell et al., 2005), through
interactions with targets including SERCA, RyR, the L-type Ca2+
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channel, and the sodium calcium exchanger (Rohde et al., 2010;
Völkers et al., 2010; Duarte-Costa et al., 2014). While S100A1
appears to dualy regulate RyR at both diastolic (∼100 nM;
Berridge et al., 2000) and systolic (>1 µM; Berridge et al.,
2000; Yamaguchi et al., 2011), the WT S100A1 likely acts on
its Ca2+-dependent targets only at saturating Ca2+ conditions
(Nowakowski et al., 2013), under which both EF hands of the
protein are bound with Ca2+. While it has been speculated
that S100A1 could modulate target proteins at systolic Ca2+

levels such as in the case of S100A1/titin interactions facilitating
myocyte contraction (Granzier et al., 2010; Yamasaki et al., 2011)
we would expect that the low binding affinity of its pseudo EF
hand (KD ∼250–16,700 µM) and reduced ability to maintain an
open, target-peptide compatible binding site (Scott and Kekenes-
Huskey, 2016) would not be sufficient for significant regulation
of the intended targets. This raises the question of how S100A1
modulates its targets in vivowhere cytosolic Ca2+ concentrations
are generally far below the protein’s KDs of Ca2+.

Post-translational modifications of S100A1 likely explain
this enigma. Intriguingly, Cys85 is a redox sensitive residue
presenting a variety of oxidizing functional groups (Nowakowski
et al., 2013). Previous studies have indicated that S100A1 species
with mercaptoethanol and glutathione generally increased the
apparent Ca2+ affinity relative to the WT by up to four orders
of magnitude (Goch et al., 2005). The most apparent rationale
for the enhanced Ca2+ affinity from our simulations was that
the mutations we considered disrupt the apo state H3/H4
folding, namely by compromising H4 interactions within a given
monomer and its opposing monomer of the dimeric state. Since
those interactions are dramatically reduced in the Ca2+ bound
state relative to the apo, we speculate that their weakening in
the apo state reduces the thermodynamic penalty they could
impose upon Ca2+ binding observed for the WT. Nonetheless,
the half-saturated S100A1 state appeared to demonstrate
thermodynamically favorable, albeit weaker, TRKT12 peptide
binding, which suggests that the protein may have a modest
ability to bind targets in its wild-type form.We propose therefore
that post-translational modification of the H3/H4 interface may
constitute a general mechanism for controlling Ca2+-dependent
activation of protein/protein interactions in S100 families, given
the prevalence of H3/H4 binding patches featured in protein-
protein interactions (Zimmer et al., 2003).

If S100A1 demonstrates increased activity following post-
translational modifications, when would such modifications
be expected in vivo? It is reasonable to assume that S100A1
oxidation would be most significant during conditions of
enhanced reactive oxygen species (ROS) signaling. ROS are
particularly prevalent during metabolic stress, ischemic-
reperfusion, and physiological reactive oxygen species-based
signaling (Jeong et al., 2012). In fact, glutathionylation of
protein targets including S100A1 is a vital component of
cardiovascular ROS signaling (Pastore and Piemonte, 2013)
Physiological conditions including exercise for instance
demonstrate significant cardiac RyR gluthionylation that
enhance its activity to compensate for increased demand
(Sánchez et al., 2008). Analogous modifications of the SERCA

Ca2+ pump promote enhanced Ca2+ uptake and smooth muscle
relaxation (Pastore and Piemonte, 2013). It is intriguing that
reducing agents mitigate these effects (Volkers, unpublished
from Völkers et al., 2010), which is expected if glutathionylations
are prevalent. Since both RyR and SERCA are S100A1-dependent
targets and S100A1 itself is subject to glutathionylation, this
suggests redox regulation of inotropy may be controlled both
directly and indirectly by glutathione modifications. Hence, in
physiological systems, ROS signaling, especially as mediated
by glutathionylation, might prime inotropic effects relative to
basal or reduced conditions (Nikolaienko et al., 2018), through
augmenting S100A1 stimulation of its targets.

4.1. Limitations
Our study includes several limitations of note. One, in this
study we have used glutamic acid or arginine substitutions to
probe how introducing larger, polar amino acids into the redox
sensitive C85 site impact S100A1 function and peptide binding.
Our choice for these variants was based on observations in several
S100A1 structures with either redox modifications or amino acid
substitution (C85M) that have been deposited in the Protein
Data Bank. These structures exhibited more open-like character
than the WT, which suggests that the opening behavior may be
more sensitive to the size of the introduced side group than
its specific chemical properties. Nonetheless, simulations that
include the specific functional group in question, such as the
glutathione group investigated in Goch et al. (2005), are likely
to provide more fine detail into the mechanism of its effect on
S100A1. We found that substitution of glutamic acid or arginine
at the C85 position as a steric surrogate of post-translational
modifications yielded half-saturated S100A1 structures that more
closely overlapped with the peptide-bound (TKT12) protein.

Second, we also note that to map the PMF-predicted
relative energy differences between S100A1 states to their
experimentally-measured absolute differences we introduced
a scaling parameter λ. In our experience, we have found
computational free energy methods perform reasonably well
at rank-ordering system configurations according to their
experimentally-reported values, but absolute differences in
energy have been less successful. We anticipate the further
improvements in force field parameterizations and sampling
techniques could potentially better align the relative energy
predictions with absolute differences and thus obviate the scaling
term we used here. Additionally, although the S100A1 open state
appears to be necessary to bind target peptides as part of its
regulatory function, it may be of interest to examine whether the
half-saturated variants we considered significantly sample states
resembling the apo (closed) configuration, as we demonstrated
for the WT in Scott and Kekenes-Huskey (2016). This could
be accomplished using the biased sampling technique described
in that study as well as other enhanced sampling techniques
including accelerated-MD (Hamelberg et al., 2004).

Lastly, in order to quantitatively link the effects of potential
post-translation modifications of S100A1 to a physiological
process, we examined its putative binding to titin PEVK
fragments discussed in Yamasaki et al. (2011). In that study, a
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competition assay was used as a proxy for measuring the protein’s
impact on passive tension in muscle fibrils (Yamasaki et al.,
2011). Passive tension is described as the force when muscle
cells are stretched beyond their resting length, independent
of Ca2+. Actin/titin interactions have been suggested as an
important mechanism for controlling myofilament passive
tension (Granato et al., 2010). Competitive binding assays
conducted by Yamasaki et al. (2011) demonstrated that S100A1
interferes with actin/titin interactions by competitively binding
the titin PEVK domain. However, it is important to note
that myriad factors contribute to passive tension, including
tubulin and collagen, nebulin/PEVK interactions (Gutierrez-
Cruz et al., 2001) or even be recapitulated without changes in
titin stiffness by modulating bound myosin/actin populations
(Campbell, 2009). Further since titin/actin-dependent effects are
more evident for the N2B isoform, while the N2BA tends to
predominate in humans (Granzier et al., 2010), the significance
of S100A1 in modulating titin varies across species.
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