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Editorial on the Research Topic

Inflammation in Cardiovascular Diseases: Role of the Endothelium and Emerging Therapeutics

Endothelial cells, lining the interior surface of all blood vessels, not only participate in the
maintenance of the delivery of blood to all vital organs but are also involved in the maintenance
of vascular homeostasis. Specifically, endothelial cells play an important role in physiological
processes such as the control of vasomotor tone, angiogenesis, leukocyte trafficking, and both
innate and adaptive immunity. A great bulk of evidence suggests that multiple diseases, such as
atherosclerosis, ischemia, hypertension or diabetes have detrimental effect on endothelium,
contributing to the development of cardiovascular diseases (CVD). One of the key common
central mechanisms that links all of these diseases is an exaggerated inflammatory response
within the endothelium. In all cases, the interaction between inflammatory cells and the
endothelium plays a role crucial to the initiation of the pathological condition. Indeed,
endothelial dysfunction often encompasses a pro-inflammatory endothelium, contributing to
reduced vasodilation, and increased vascular stiffness. Therefore, the main goal of this Research
Topic is to provide new mechanistic insights on (patho)physiological events driving inflammation
within the endothelium in conditions of multiple diseases, including atherosclerosis, ischemia,
hypertension and diabetes.

As a critical contributor to vascular health endothelial function is an important contributor to the
regulation of vascular tone, platelet aggregation and leukocyte adhesion. It is well established that
endothelial dysfunction is linked with cardiovascular disease and assessment of endothelial function,
for example through the assessment of flow mediated vasodilatation, has become an important
clinical tool in the prediction of adverse cardiovascular events (Xu et al., 2014). There are multiple
endothelium-derived vasodilators such as nitric oxide (NO•), nitroxyl (HNO), hydrogen sulfide
(H2S) and mediators of endothelium-dependent hyperpolarisation (EDH). Much attention has been
paid to the impaired activity of NO•, due to the impaired activity of the synthetic enzyme endothelial
nitric oxide synthase (eNOS) and its increased inactivation by oxidative stress, in cardiovascular
disease (Förstermann and Münzel, 2006). Here Sun et al. and Velagic et al. review the less well
documented roles of endothelium-derived H2S and HNO, respectively. It is suggested by Sun et al.
that H2S may be an important inhibitor of endothelial inflammation suggesting a potential role for
improved H2S donors as therapeutics for CVD. Unlike NO• and H2S, Velagic et al. discuss the
preservation of responses to both endogenous and exogenous HNO in the presence of diabetes-
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induced oxidative stress and postulate that HNO donors may
offer better efficacy than traditional NO-donors in the treatment
of vascular disease. Tran et al. focus on metabolic syndrome as a
precursor to diabetes and provide a thorough review of animal
models that might be best employed to better understand the
mechanisms of endothelial dysfunction, making the important
point that the role of vasoconstrictor prostanoids is worthy of
further investigation. The role of chemokine receptor 5 (CCR5) in
metabolic disease and endothelial inflammation is explored by
Zhang et al. who consider both the possibilities and difficulties of
targeting CCR5 and its ligands in cardiovascular disease. The role
of endothelial dysfunction in the genesis of age-related macular
degeneration is considered by Yeo et al. who review the
mechanisms of choroidal neovascularization and animal
models that may advance knowledge in this area. In further
consideration of vascular remodeling, Liu et al. investigate
changes in pulmonary veins in a hypoxia pulmonary artery
hypertension model in mice. In an elegant series of
experiments it is demonstrated that hypoxia leads to inhibition
of SERCA2 activity to promote calcium influx through the
TRPC6 channel resulting in cell proliferation, migration and
inhibition of apoptosis. Ding et al. review the rapidly
developing area of endothelial and smooth muscle senescence
as a contributor to vascular pathology and consider how
epigenetic mechanisms may contribute to vascular
inflammation and aging.

In the last 2–3 decades, many scientists have interrogated the
mechanisms of action of the inflammatory signaling processes
that are actively engaged to promote inflammation in the
cardiovascular system. A great bulk of evidence suggests that
multiple diseases, such as atherosclerosis, ischemia and diabetes,
have detrimental effects on the endothelium, contributing to the
development of CVD. One of the key common central
mechanisms that links all of these diseases is an exaggerated
inflammatory cytokine production and response.

The review by Ye et al. summarizes the role of interleukin-12
family members, a class of inflammatory cytokine, in their
regulation and progression of various cardiovascular diseases,
including atherosclerosis, hypertension, aortic dissection, cardiac
hypertrophy, myocardial infarction, and acute cardiac injury. The
authors highlight key knowledge gaps in the molecular and
cellular mechanisms of interleukin-12 biology, and suggest
that a better understanding of these disease processes is
critical for the identification of possible targets for prevention
which could lead to clinical treatment of a variety of
cardiovascular diseases.

Sepsis-induced cardiomyopathy is one of the major predictors
of morbidity and mortality of sepsis, present in more than 40% of
cases of sepsis and its appearance can increase the mortality rate
up to 70%. The review by Lin et al. provides a comprehensive
summary of the recent progress in the pathophysiological
characterization, diagnosis and current treatments (both
pharmacological and non-drug) of septic cardiomyopathy.
Furthermore, the authors also introduced several potential
novel treatments for septic cardiomyopathy, which includes
gene therapy, mitochondrial targeted therapy and inhibition of
inflammatory mediators. In addition, the original study reported

by Zhang et al. describes the protective actions of the novel anti-
inflammatory agent, resolvin E1, an omega-3 polyunsaturated
fatty acid-derived metabolite in an animal model of sepsis-
induced cardiomyopathy. This exciting study reveals
experimental evidence that resolvin E1 treatment inhibits
mitogen-activated protein kinase (MAPK) and Nuclear factor
kappa B (NF-κB) inflammatory signaling pathways, modulates
macrophage polarization and reduces myocardial apoptosis
leading to resolution of cardiac inflammation in sepsis-
induced cardiomyopathy. This suggests that resolvin E1 may
be a novel lipid mediator for the treatment of sepsis-induced
cardiomyopathy.

Inflammation is also widely regarded as a key culprit for the
pathogenesis of abdominal aortic aneurysm and diabetic
cardiomyopathy. The original study by Yan et al. provides
experimental evidence for bazedoxifene, a clinically approved
therapy for the prevention and treatment of postmenopausal
osteoporosis, as a potentially novel treatment for abdominal
aortic aneurysm. In their study, Yan et al. indicated that
bazedoxifene downregulated the IL-6/GP130/STAT3-dependent
inflammatory signaling pathway and attenuated the formation
of abdominal aortic aneurysm in angiotensin II-infused
ApoE−/− mice. In another original study by Zou et al., the team
investigated the potential of a natural compound derived from a
Chinese herb, sophocarpine to protect against diabetic
cardiomyopathy. Specifically, in vitro and in vivo experiments
revealed that sophocarpine treatment protected myocardial cells
from hyperglycemia-induced injury by improving mitochondrial
function, suppressing NF-κB-dependent inflammatory signaling
pathways and inhibiting cardiac apoptosis. In addition to
sophocarpine, other natural products such as flavonoids, are
also widely studied as potential treatment for cardiovascular
diseases in the context of various disease settings including
diabetes. In this regard, Choy et al. elegantly reviewed the
therapeutic potential of flavonoids by acting as natural anti-
inflammatory agents which target NF-κB inflammatory signaling
pathways. The review provides a comprehensive update of the
mechanisms underlying NF-κB-induced inflammation in various
cardiovascular pathologies and discusses how flavonoids may
inhibit the activation of NF-κB and mitigate the inflammatory
responses in these disease processes.

Myocardial ischemia/reperfusion injury (I/R) is a complex and
multifactorial pathophysiological process in which excess
oxidative stress and inflammatory response are essential to the
development of both acute and long-term consequences after the
ischemic insult. This initial insult to the myocardium is often
followed by a pro-inflammatory phase, a proliferative phase and a
subsequent remodeling phase. Thus, the development of effective
pharmacotherapies, especially by targeting the oxidative stress,
inflammatory and remodeling pathways, may improve the
clinical outcome of patients in cardiac emergency (Heusch, 2020).

Zhang et al. demonstrated that activation of aldehyde
dehydrogenase 2 (ALDH2) is cardioprotective against post-
cardiac arrest myocardial dysfunction by attenuating
mitochondrial ROS in a rat cardiac arrest model. These
observations provided novel evidence for the role of excess
aldehyde-induced ROS production in the mitochondria,
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suggesting that therapeutic targeting of ALDH2 may be an
innovative approach for treating post-cardiac arrest-induced
myocardial dysfunction. Yin et al. investigated whether
overexpression of inhibitor of differentiation 2 (Id2, a
transcriptional repressor) could preserve cardiac function and
ameliorate cardiac fibrosis and apoptosis through modulation of
TGF-β1/Smad3/hypoxia induced factor-1 alpha (HIF-1α)/
interleukin (IL)-11 pathway. These observations suggest that
Id2 could provide another novel target for cardiac fibrosis
after myocardial infarction. Liu et al. evaluated the efficacy
and safety of AFC1, a novel derivative from tanshinone IIa (a
natural compound derived from Salvia miltiorrhiza) in a mouse
model of myocardial ischemia/reperfusion (I/R) injury, likely by
reducing platelet-derived growth factor receptors (PDGFR) and
STAT signaling. This result confirmed that AFC1 exerts anti-
hypertensive and anti-fibrotic effects against myocardial I/R
injury and suggest that AFC1 may be a novel approach for
patients suffering myocardial I/R injury.

Finally, we wish to highlight that this wealth of knowledge
regarding the breadth of the impact of vascular inflammation in
this Research Topic, which has provided new mechanistic insights
on (patho)physiological events driving inflammation within the

endothelium in CVD, including atherosclerosis, ischemia,
hypertension, sepsis or diabetes. Emerging therapeutic strategies
(small molecules, peptides, medical devices, natural products) that
specifically target the inflammatory pathways or processes in the
endothelium have been highlighted. In conclusion, deep
knowledge on the endothelium in the cardiovascular system
could accelerate the development of novel pharmacotherapies
for cardiovascular disease.
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Background: Effective interventions to improve the outcome of patients subjected to 
myocardial ischemia reperfusion (MI/R) are urgent in clinical settings. Tanshinone IIA (TSA) is 
reported to attenuate myocardial injury and improve ventricular remodeling post MI/R. Here, 
we evaluated the efficacy of AFC1 compound that is similar to TSA structure  in murine MI/R 
models. We found that AFC1 had a comparable effect of improving murine cardiac function 
after MI/R while it was superior to TSA in safety profile. Administration of AFC1 reduced 
reactive oxygen species (ROS) production, inflammatory cells infiltration, and the expression 
of platelet derived growth factor receptors (PDGFR) in infarcted myocardium. Treatment 
with AFC1 also attenuated MI/R-induced cardiac remodeling and contributed to the 
recovery of cardiac function. Additionally, AFC1 reversed the elevation of PDGFR expression 
induced by PDGF-AB in both neonatal rat cardiomyocytes (NCMs) and neonatal rat cardiac  
fibroblasts (NCFs) and suppressed PDGF-AB induced NCM hypertrophy via STAT3 
pathway and NCF collagen synthesis through p38-MAPK signaling in vitro. Similarly, AFC1 
may contribute to the recovery of cardiac function in mice post MI/R via suppressing STAT 
signaling. Our results confirmed that AFC1 exerts anti-hypertrophic and anti-fibrotic effects 
against MI/R-induced cardiac remodeling, and suggest that AFC1 may have a promising 
potential in improving the outcome of patients who suffered from MI/R.

Keywords: AFC1 compound, myocardial ischemia reperfusion, platelet derived growth factor, platelet derived 
growth factor receptor, ventricular remodeling

INTRODUCTION

Ischemic heart disease (IHD) has been a leading cause to high morbidity and mortality in developed 
countries with increasing incidence in developing countries (Chan et al., 2011). Although timely 
intervention can restore coronary flow, the reperfusion process triggers myocardium injury (Yellon 
and Hausenloy 2007), known as myocardial ischemia reperfusion (MI/R) injury, and cardiac 
remodeling, and subsequent heart failure (HF), which are the predominant contributors of death 
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worldwide (Murdoch et al., 2006; Sun, 2009; Wang et al., 2015a). 
Therefore, effective prevention and treatment strategies to 
attenuate or reverse MI/R-induced remodeling is of great clinical 
value in IHD patients.

Recently, the protective role and relatively less adverse 
reaction of traditional Chinese medicine (TCM) in IHD have 
been highlighted. Danshen, the dry roots and rhizome of 
Salvia miltiorrhiza Bge., has been widely used either alone or 
in combination with other herbal ingredients for patients with 
IHD and other cardiovascular diseases in both China and other 
countries because of its efficacy in improving microcirculation 
and protecting against myocardial ischemia (Cheng, 2007). For 
example, results from meta-analysis demonstrated the potential 
benefits of compound Danshen dripping pill (CDDP) for treating 
coronary heart disease (Luo et al., 2015; Huang et al., 2016). 
However, the overall quality of the evidences in the systematic 
reviews was poor and high-quality evidence is warranted to support 
the clinical application of CDDP in treating IHD. Tanshinone 
IIA (TSA) is the most abundant and active diterpenoid quinone 
compound among lipophilic components extracted from Danshen 
(Wu et al., 2013). It is reported that TSA can attenuate myocardial 
injury and improve ventricular remodeling post MI/R via reducing 
reactive oxygen species (ROS) generation in mitochondria (Zhou 
et al., 2003; Jin and Li, 2013; Jin et al., 2013). However, in clinical 
settings, the efficacy of TSA is limited because of its lipid-soluble 
property, low bioavailability, and short half-life (Liu et al., 2013). 
Therefore, TSA modification targeting the above shortcomings is a 
promising strategy for its development in MI/R therapy.

Recently our team has investigated various compounds with 
similar core structure of TSA, including AFC1. In this study, 
we proved its potential role in cardiac protective effect against 
cardiac cell injury, hypertrophy, and fibrosis in vitro and in 
vivo. Thus, AFC1 compound may become a novel therapeutic 
pharmaceutical for patients subjected to MI/R. Accordingly it 
is important to study the effect of AFC1 in vivo to evaluate its 
efficacy and possible mechanism of actions.

Previous studies have demonstrated the importance of growth 
factors in IHD (Liu et al., 2014; Pello et al., 2015). High level 
of platelet derived growth factor (PDGF) in infarcted hearts 
contributed to myocardial inflammation and fibrosis in rats (Zhao 
et al., 2011). PDGF family is composed of four kinds of isoforms, 
-A, -B, -C, and -D, which comprised homodimers of PDGF-AA, 
-BB, -CC, and –DD and heterodimer of PDGF-AB (Price 
et  al., 2003). PDGF exerts its biological activities through two 
distinct subtypes of tyrosine kinase receptors, PDGF receptors 
(PDGFR)-α and -β expressed on cardiomyocytes (Vantler et al., 
2010). Excessive expression of PDGF could result in deposition 
of extracellular matrix and further induces cardiac remodeling 
(Vantler et al., 2010; Zhao et al., 2011). PDGF could induce 
H2O2 (kind of ROS) generation in mouse embryonic fibroblasts 
(MEFs) by binding PDGFR (Choi et al., 2005). On the other 
hand, the inhibition of PDGF/PDGFR pathway could attenuate 
the vascular remodeling via reducing the inflammatory response 
in the hypertensive rat with myocardial fibrosis (Fan et al., 2013). 
Therefore, PDGF/PDGFR may promote the development of 
cardiac remodeling after MI/R by mediating oxidative stress and 
inflammatory response.

Our present study demonstrated for the first time that 
treatment with AFC1 compound effectively attenuates MI/R-
induced cardiac remodeling, accompanied by decreased PDGFR 
expression, oxidative stress, and inflammatory response in 
hearts post MI/R. Moreover, AFC1 compound inhibited NCM 
hypertrophy and NCF collagen synthesis induced by PDGF-AB 
and contributed to the recovery of cardiac function post MI/R 
via regulating STAT3 pathway.

MATERIALS AND METHODS

Animals
Specific pathogen-free, male C57BL/6 mice (8–10 weeks) were 
purchased from Slac Laboratory Animal Co. Ltd (Shanghai, 
China). All experiments were conducted in accordance with 
protocols approved by the Institutional Animal Care and Use 
Committee of Tongji University.

Establishment of Myocardial Ischemia 
Reperfusion Murine Models
Echocardiography was performed before the establishment of 
MI/R models. Mice with EF above 50% were included in the in 
vivo experiment. MI/R models were established as described 
previously (Pu et al., 2013). Regional ischemia was achieved 
by ligation of LAD using a 10-0 silk suture with a section of 
silica gel tube. Successful myocardial ischemia was achieved 
when the anterior wall of the left ventricular (LV) turned pale. 
After 30 min of ischemia, the ligation was relieved and the 
successful reperfusion was confirmed by epicardial hyperemia. 
TSA (5 mg/kg) or AFC1 compound (7 or 14 mg/kg) were 
intraperitoneally administrated daily for 1 week following 
MI/R. Mice with the heart exposed through left thoracic 
incision without ligation of left anterior descending coronary 
artery (LAD) were included in the sham group. Mice with 
LAD ligation for 30 min and then reperfusion for 2 weeks were 
randomly assigned to the following groups (5 mice in each 
group): Sham, MI/R, MI/R+TSA (5 mg/kg), MI/R+AFC1-L 
(7 mg/kg), and MI/R+AFC1-H (14 mg/kg). Each experiment 
was repeated at least three times. The AFC1 compound was 
synthesized by CG LI’s lab at Western Sydney University.

Echocardiography
On day 14 post MI/R, the mice were anesthetized using 
isoflurane then M-mode echocardiography was performed in 
mice with echocardiographic imaging system (Visualsonics, 
Canada) equipped with a 15-MHz linear transducer. Parameters 
of cardiac function were measured digitally on the M-mode 
tracings. All echocardiographic procedures were performed by 
a qualified investigator who was blinded to the grouping and 
treatment. The long-axis and short-axis view in B-mode were 
obtained. The B-mode guided M-mode view at the papillary 
muscle level was obtained for the evaluation of parameters. The 
end-systolic and end-diastolic LV dimensions were captured to 
calculate the LV ejection fraction (EF) and fractional shortening 
(FS) as previously described (Lin et al., 2013).
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Histology
After the reperfusion, fresh heart biopsies were fixed in 4% 
paraformaldehyde overnight at 4°C and embedded in paraffin. 
Sections into 5-μm slices were stained with hematoxylin-eosin 
(H&E) or Masson’s trichrome for assessment of fibrosis. Tissues 
for immunofluorescence were submerged in liquid nitrogen and 
then embedded in optimal cutting temperature (OCT) solution 
(Sakura Finetek, USA) on dry ice to be frozen completely. 
Cardiomyocyte hypertrophy was examined in the peri-infarct 
zone. Myocyte cross-sectional areas were measured using Image J 
software (National Institutes of Health) in frozen sections stained 
with 5 μg/ml wheat germ agglutinin (WGA-Alexa Fluor® 488 
conjugate, Invitrogen, USA). Five parts were chosen in the WGA 
images (200X) including left top, right top, middle, left bottom, 
and right bottom, and six cells were analyzed for each part. In 
other experiments, the hearts were excised for Masson staining 
to evaluate the cardiac remodeling. For inflammatory cell 
infiltration and PDGFR protein expression, immunofluorescence 
staining with anti-CD45 (Cell Signaling Technology, USA) 
and anti-PDGFRα (Cell Signaling Technology, USA) in frozen 
sections was conducted. Then the number of CD45+ cells/
field were quantified by Image J software (National Institutes of 
Health, USA).

ROS Production
ROS production was evaluated with dihydroethidium (DHE, 
Sigma, USA) on frozen myocardial sections. Heart slices were 
incubated at 37°C for 30 min with 10 μmol/L DHE in phosphate-
buffered saline (PBS). Staining was captured by fluorescence 
microscope (Leica, Germany). Fluorescence intensity was 
quantified by using Image J software (National Institutes of 
Health, USA).

Isolation and Culture of Primary 
Cardiomyocytes and Cardiac Fibroblasts
NCM and NCF were isolated from 1-day-old pups with 
enzymatic digestion as described previously (Thomas et al., 
2002; Tzanidis et al., 2003). Purified NCMs were seeded at high 
density of 1×106 in 6-well plate and 3×105 in 12-well plate and 
maintained in serum-free DMEM (Gibco, USA) supplemented 
with 5 mg/ml insulin, 10 mg/ml apo-transferrin, and 50 mM 
KCl. Bromodeoxyuridine (0.1 mM, Sigma, USA) was applied 
for the first 3 days. NCF were seeded at a density of 3×105 
in 6-well plate and 5×104 in12-well plate and cultured in 
DMEM HG supplemented with 0.5% BSA and 1% L-ascorbic 
acid (Sigma, USA). On the fourth day, 1 h after pretreatment 
with AFC1 (0.1, 1.0, 3.0, 10.0 μM), PDGF-AB (10 ng/ml, 
PEPROTECH, USA) was added to induce hypertrophy in 
NCM and collagen synthesis in NCF. After 48 h of PDGF-AB 
stimulation, cells were harvested to determine hypertrophy 
and fibrosis, defined as a significant increase in protein content 
via 3H-Leucine or 3H-Proline incorporation. Cells were treated 
with AFC1 or DMSO for 1 h and then PDGF-AB for another 15 
min for protein sample collection and Western blot detection.

3H-Leucine and 3H-Proline Incorporation
On the fourth day, after addition of PDGF-AB, NCMs were 
labeled with 3H-Leucine (1 μCi) and NCF with 3H-Proline (5 μCi) 
(PerkinElmer, USA) for 48 h. The experiment was terminated by 
washing the cells with cold PBS for three times then precipitating 
with 10% trichloroacetic acid (TCA, Sigma, USA) for 30 min. 
Cells were then lysed in 1 M NaOH overnight in 4°C. After 
neutralization with 1 M HCl and addition of scintillation fluid 
(PerkinElmer, USA), radioactivity was captured in a liquid 
scintillation counter (HIDEX 300 SL, Finland). The results 
represent at least three separate experiments done in triplicate 
for each condition.

MTT Assay
Cell viability was determined with colorimetric method using 
the MTT assay. NCFs were seeded at a density of 1.5×103 and 
human umbilical vein endothelial cells (HUVECs, PromoCell) 
at 1×104 cells per well in 96-well plate. After treatments 
for 48 h, cells were incubated with 10 μl of 5 mg/ml MTT 
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H tetrazolium 
bromide (Sigma, USA) solution at 37°C for 4 h. The formazan 
crystals were dissolved in 100 μl of isopropanol for 20 min at 
37°C, and absorbance at 570 nm was detected on a Microplate 
Reader (SpectraMax, USA).

Quantitative RT-PCR (q-PCR)
Total RNA (1 μg) extracted from myocardium, NCM, and NCF 
were reverse transcribed with PrimeScript RT reagent Kit with 
gDNA Eraser (TaKaRa, Japan), and q-PCR was performed on the 
7900HT Fast Real Time PCR System (Applied Biosystems, UK) 
with the SYBR mastermix (Applied Biosystems, UK). All primer 
sequences were listed in Table 1.

Comparison of gene expression in different samples was 
calculated as follows. Each sample was related to an internal 
control gene (GAPDH). For example, Sample A was the control 
sample and Sample B was the treated one.

ΔΔCt = (Ct gene of interest - Ct GAPDH)sample B - (Ct gene of 
interest - Ct GAPDH)sample A.

Finally, relative quantification of gene expression (Sample 
B) = 2-ΔΔCt.

Western Blot
Protein was extracted from NCM, NCF, and homogenized 
myocardium tissue in lysis buffer. Protein lysate concentrations 
were determined via Pierce BCA Protein Assay Kit (Termo 
Scientific, USA). Equal amount of protein sample (20–30 μg/
lane) from each group was subjected to 10% SDS-PAGE and 
transferred onto nitrocellulose membranes. After blocking 
with 5% bovine serum albumin (BSA), membranes were 
incubated overnight with primary antibodies (1:1,000, Cell 
Signaling Technology, USA) against p-JAK2, p-STAT3, 
STAT3, p-p38, GAPDH, and pan-actin. On the second day, 
the membranes were incubated with fluorescent secondary 
antibody DyLight 800-Goat Anti-Rabbit IgG (H+L) (KPL, 
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USA). The membranes were scanned by ODYSSEY infrared 
imaging system (LI-COR Biosciences, USA). After incubation 
of phosphorylated proteins, we used stripping buffer 
(beyotime, China) to extract antibodies. Then we did the 
blocking and the following incubation procedures to obtain 
total protein quantification.

Statistical Analysis
Data, all presented as mean ± SEM, were analyzed using SPSS 
software, version 11.0 (SPSS Inc., Chicago, IL, USA). For in vivo 
experiments, the Mann-Whitney U test was used for comparisons 
between different groups. One-way analysis of variance with a 
Bonferroni post hoc test was used for multiple comparisons. 
P < 0.05 was considered statistically significant.

RESULTS

Safety Profile of AFC1 In Vivo
To determine the safety of AFC1 in vivo, we evaluated 
the pathology of liver, kidney, spleen, and lung from mice 
administrated with AFC1 compound for 14 days. As shown 
by Figure 1A, there are no significant morphological changes 
in these organs. Besides, AFC1 administration did not change 
the body weight of mice on day 14 (Figure 1B). Previous study 
showed the cytotoxic effect of TSA on human umbilical vein 
endothelial cells (HUVECs) in a dose-dependent manner 
(Nizamutdinova et al., 2012). Then we treated the HUVECs 
with AFC1 or TSA. MTT data showed no difference in 
HUVECs viability between AFC1 and TSA group when both 
concentrations are 0.1, 1.0, and 3.0 µM (Figure 1C). However, 
AFC1 treated cells showed higher viability than the TSA group 
at 10 µM (p < 0.05) (Figure 1C).

Administration of AFC1 Contributed to the 
Recovery of Cardiac Function After MI/R 
in Murine Models
Further cardiac function data showed that both high dose 
AFC1 (14 mg/kg) compound and TSA (5 mg/kg) significantly 
improved the EF and FS and systolic left ventricular interior 
diameters (LVIDs) in MI/R hearts (Figure 1D). However, there 
was no significance when AFC1 and TSA treated groups were 
compared. Then we assessed whether low (7 mg/kg) and high 
dose (14 mg/kg) of AFC1 have equal protective role in murine 
MI/R models. As shown by Figure 1E, only high dose of AFC1 
increased the EF as well as FS and decreased LVIDs compared to 
the MI/R group on day 14 post operation.

AFC1 Compound Attenuated Mi/R-
Induced Cardiac Remodeling
Both dosages of AFC1 reduced the heart to body weight ratio 
(HW/BW) of mice effectively in comparison to MI/R group on 
day 14 (p < 0.0001) (Figure 2A). WGA staining data revealed 
significant myocyte hypertrophy in MI/R group compared to the 
sham (p < 0.0001) and treatment with AFC1 greatly inhibited 
cardiac hypertrophy (p < 0.01 and p < 0.001) (Figures 2B, C). 
Furthermore, AFC1 treated mice showed alleviated cardiac 
fibrosis compared to the mice without treatment on day 14 
following surgery (Figures 2D, E).

Antioxidant and Anti-Inflammatory 
Effects of AFC1 Compound on Infarcted 
Myocardium Following MI/R In Vivo
It is well established that oxidative stress and inflammation 
response contribute to cardiac remodeling and dysfunction 
following MI/R. We then detected the production of ROS in  

TABLE 1 | Quantitative polymerase chain reaction primers.

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

mPDGF-A GAGGAAGCCGAGATACCCC TGCTGTGGATCTGACTTCGAG
mPDGF-B CATCCGCTCCTTTGATGATCTT GTGCTCGGGTCATGTTCAAGT
mPDGFR-α ACACGTTTGAGCTGTCAACC CCCGACCACACAAGAACAGG
mPDGFR-β TTCCAGGAGTGATACCAGCTT AGGGGGCGTGATGACTAGG
mIL-1β CGAGGCTAATAGGCTCATCT GTTTGGAAGCAGCCCTTCAT
mTNF-α AGCCGATGGGTTGTACCTTGTCTA TGAGATAGCAAATCGGCTGACGGT
mIL-6 TGATGCACTTGCAGAAAACA ACCAGAGGAAATTTTCAATAGGC
mGAPDH AACTTTGGCATTGTGGAAGG ACACATTGGGGGTAGGAACA
rPDGF-A TTCTTGATCTGGCCCCCAT TTGACGCTGCTGGTGTTACAG
rPDGF-B GCAAGACGCGTACAGAGGTG GAAGTTGGCATTGGTGCGA
rPDGF-C CAGCAAGTTGCAGCTCTCCA GACAACTCTCTCATGCCGGG
rPDGF-D ATCGGGACACTTTTGCGACT GTGCCTGTCACCCGAATGTT
rPDGFR-α GCTACACGTTTGAGCTGTCAAC ATGGTGGTCATCCACAAGC
rPDGFR-β TCTCTCATCATCCTCATCATGC CCTTCCATCGGATCTCATAGC
rANP GAGGAGAAGATGCCGGTAG CTAGAGAGGGAGCTAAGTG
rα-SKA GCATGCAGAAGGAGATCACA CATAGCACGATGGTCGATTG
rβMHC AGATCGAGGACCTGATGGTG GATGCTCTTCCCAGTTGAGC
rCol Type I CATGTTCAGCTTTGTGGACCT GCAGCTGACTTCAGGGATGT
rCol Type III GGTCACTTTCACTGGTTGACGA TTGAATATCAAACACGCAAGGC
rGAPDH ACAAGATGGTGAAGGTCGGTG AGAAGGCAGCCCTGGTAACC
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hearts of different groups. MI/R significantly increased 
the ROS level, while AFC1 treatment greatly decreased 
ROS accumulation in the infarcted area (p < 0.05) (Figures 
3A, B). Figures 3C and D showed that high dosage of AFC1 
dramatically decreased the CD45+ cell infiltrations in heart 
post MI/R (p < 0.0001). Moreover, both high and low dosages 
of AFC1 compound significantly down-regulated mRNA 
levels of inflammatory cytokines including IL-1β, IL-6, and 
TNF-α in MI/R hearts (Figure 3E). These results suggested 
that AFC1 can attenuate MI/R-induced inflammatory 
responses in the heart.

AFC1 Inhibited the Expression of PDGFR 
in Murine Heart Following MI/R
Previous study revealed that PDGFs are involved in myocardial 
remodeling following infarction (Zhao et al., 2011). To verify 
whether MI/R could lead to an up-regulation of PDGF-related 
signaling, we measured the expression of PDGF-A, PDGF-B, 
and PDGFR isoforms in infarcted myocardium. As shown by 
Figure 4A, 30 min of ischemia followed by 2 weeks reperfusion 
markedly elevated mRNA levels of PDGFRα, -β, PDGF-A, and 
PDGF-B (Figures 4A, B). Next, we treated the MI/R mice with 
AFC1 and data showed high dose of AFC1 down-regulated 

FIGURE 1 | Administration of AFC1 contributed to the recovery of cardiac function after MI/R in murine models. Mice were injected with low (7 mg/kg), high-dosage 
(14 mg/kg) of AFC1 compound or TSA (5 mg/kg) intraperitoneally for 7 days after MI/R (n = 5). (A) Lung, liver, spleen, and kidney sections were harvested on day 
14 for H&E staining. Figures showed the representative data. Magnification was ×50. (B) Body weight change of mice after AFC1 administration was analyzed on 
day 14. (C) HUVECs were seeded at a concentration of 1×104/well in 96-well plate and treated with DMSO, AFC1 compound, or TSA for 24 h. Then cell viability 
was evaluated by MTT assay. (D) EF, FS, and LVIDs were measured by echocardiography on day 14 following MI/R. (E) Average values for EF, FS, and LVIDs. 
Each experiment was repeated for at least three times and results indicated mean ± SEM of one independent experiment. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001 versus sham or selected group; #p < 0.05, ##p < 0.01, ###p < 0.001 versus MI/R. *represent the significant different between MI/R group vs the sham 
group; #represent the significant different between treatment group and MI/R group.
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both PDGFRα and -β mRNA levels in MI/R hearts. Low dose 
of AFC1 also decreased the expression of PDGFRα (p < 0.05). 
However, AFC1 did not affect PDGF-A or PDGF-B expression 
in hearts subjected to MI/R. Then we determined the PDGFRα 
protein level by immunofluorescence. As shown in Figure 4C, 
PDGFRα protein expression in the heart increased after MI/R, 
while it decreased after treatment with AFC1. (Nizamutdinova 
et al., 2012).

Effect of PDGF Stimulation on PDGFR 
Expression in NCM and NCF In Vitro
To further elucidate the role of PDGF signaling on heart 
remodeling, we treated NCM and NCF with different isoforms 
of PDGF for 48 or 72 h in vitro. As shown by Figure 5A, addition 
of PDGF-AA, PDGF-AB, PDGF-BB, or PDGF-CC all increased 
the mRNA levels of PDGFRα in NCM compared to the control 
media. Besides, PDGF-AB or PDGF-BB treatment up-regulated 
the PDGFRβ mRNA expression in NCM (Figure 5B). Figure 
5C showed that NCM stimulated with PDGF-AB, PDGF-BB, 

or PDGF-CC for 48 h showed significant elevation of protein 
content in comparison to control cells. Moreover, administration 
of PDGF-AB or PDGF-BB triggered collagen synthesis in  
NCF (Figure 5D).

AFC1 Reversed the Elevation of PDGFR 
Induced by PDGF-AB in Both NCM and 
NCF In Vitro
Next, we treated NCM and NCF with PDGF-AB and AFC1 to 
determine whether AFC1 compound exerts its protective effect 
via regulating PDGF signaling in vitro. As shown by Figures 6A 
and B, addition of AFC1 greatly decreased both PDGFRα and 
PDGFRβ mRNA expression in NCM stimulated with PDGF-AB. 
Moreover, high dose of AFC1 reversed the up-regulation of 
PDGFRβ mRNA levels induced by PDGF-AB in NCF (Figure 
6C). MTT data (Figure 6D) showed that AFC1 did not affect 
the viabilities of NCF, further confirming that AFC1 inhibits 
the levels of PDGFRα and PDGFRβ stimulated by PDGF-AB in 
viable NCF cells.

FIGURE 2 | AFC1 Compound attenuated MI/R-induced cardiac remodeling. Heart sections were harvested as mentioned above (n = 5). (A) Heart to body weight 
ratio (HW/BW%) was measured on day 14. (B) Representative photomicrographs illustrating ventricular myocyte cross-sections stained WGA. (C) Cross-sectional 
area quantification was shown in statistic graph. (D) Hearts were sliced and stained with Masson’s trichrome to assess fibrosis. (E) Percent of fibrosis area in each 
group was shown in statistics. Each experiment was repeated for at least three times and results indicated mean ± SEM of one independent experiment. **p < 0.01, 
****p < 0.0001 versus sham; ##p < 0.01, ###p < 0.001, ####p < 0.0001 versus MI/R.

13

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


AFC1 Compound Attenuated MI/R-Induced RemodelingLiu et al.

7 October 2019 | Volume 10 | Article 1142Frontiers in Pharmacology | www.frontiersin.org

AFC1 Suppressed NCM Hypertrophy 
and NCF Collagen Synthesis Induced 
by PDGF-AB
To determine whether AFC1 compound can inhibit PDGF-AB 
induced NCM hypertrophy and NCF collagen synthesis, we 
examined the protein content via liquid scintillation detector 
to evaluate cardiac remodeling in vitro. Figure 7A showed that 
addition of AFC1 (1.0–10 µM) significantly decreased NCM 
hypertrophy induced by PDGF-AB in a dose-dependent manner. 
Furthermore, AFC1 (3.0 and 10 µM) reversed the elevations of 
ANP, β-MHC, and α-SKA mRNA levels stimulated by PDGF-AB 
in NCM (Figure 7B). AFC1 also inhibited the collagen synthesis 
(Figure 7C) as well as the mRNA expression of Col I and Col III 
in NCF stimulated by PDGF-AB (Figure 7D).

AFC Modulated Signaling Pathways 
Involved in Cardiac Function and MI/R
Previous reports revealed that STAT signaling pathway played a 
vital role in myocardial remodeling (Aboulhoda, 2017, Wincewicz 

and Sulkowski, 2017), and P38MAPK pathway is involved in 
cellular inflammatory response and apoptosis under the condition 
of ischemia and hypoxia (Owona et al., 2013). We cultured NCM 
and NCF with PDGF-AB with or without JAK inhibitor JI1 
(JAKs inhibitor I-Calbiochem, Darmstadt, Germany) and p38 
inhibitor 979 (Cai et al., 2018). As shown by Figures 8A and 
B, both 10 μM JI1 and 3 μM 979 inhibited NCM hypertrophy 
and NCF collagen synthesis induced by PDGF-AB. Western blots 
analysis of protein expression of p-JAK2, p-STAT3, and p-p38 
in cells revealed that PDGF-AB treatment greatly activated the 
phosphorylation of STAT3 in NCM and p-38 in NCF. Addition 
of AFC1 dramatically decreased the levels of p-STAT3 in NCM 
and p-p38 in NCF induced by PDGF-AB (Figures 8C, D). No 
significant difference was observed in the expression of p-JAK2 
in these groups.

For in vivo study, MI/R increased the ratio of p-STAT3/GAPDH 
without affecting p-STAT3/STAT3 and STAT3/GAPDH in infarcted 
myocardium. Treatment with high dose of AFC1 markedly reversed 
the elevation of both p-STAT3/GAPDH and p-STAT3/STAT3 
without affecting the ratio of STAT3/GAPDH (Figures 8E, F).

FIGURE 3 | Antioxidant and anti-inflammatory Effects of AFC1 compound on infarcted myocardium following MI/R in vivo. Heart sections were harvested and 
frozen as mentioned above (n = 5). (A) Reactive oxygen species production was assessed by dihydroethidium (DHE) conversion to red fluorescent ethidium. (B) 
Fluorescence intensity was evaluated to determine ROS level. (C) Immunofluorescence staining of CD45 in transverse section of heart (400×). (D) CD45+ cells were 
quantified in the field. (E) Hearts were homogenized and q-PCR was performed to quantify IL-1β, TNF-α, and IL-6 mRNA levels. Results indicated mean ± SEM of 
one representative experiment and the experiment was repeated three times. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 versus sham; #p < 0.05, ##p < 0.01, 
###p < 0.001, ####p < 0.0001 versus MI/R.
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FIGURE 4 | AFC1 inhibited the expression of PDGFR in heart following MI/R (n = 5). Total RNA was extracted from hearts in each group and q-PCR was performed 
to quantify PDGFRα, PDGFRβ (A), PDGF-A, and PDGF-B (B) mRNA levels. (C) Immunofluorescence staining of PDGFRα in transverse section of heart (400×). Each 
experiment was repeated for at least three times and results indicated mean ± SEM of one representative experiment. *p < 0.05, **p < 0.01, ****p < 0.0001 versus 
sham; #p < 0.05, ##p < 0.01 versus MI/R.

FIGURE 5 | Effect of PDGF stimulation on PDGFR expression in NCM and NCF in vitro. PDGFRα (A) and PDGFRβ (B) mRNA expression in NCM were assessed by 
q-PCR. NCM hypertrophy (C) was measured by 3H-leucine incorporation and NCF collagen synthesis (D) measured by 3H-proline incorporation on different PDGF 
isoform stimulation. Each experiment was repeated for four times and results indicated mean ± SEM of one representative experiment. *p < 0.05, **p < 0.01, ***p < 
0.001, ****p < 0.0001 versus control.
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FIGURE 6 | AFC1 reversed the elevation of PDGFR induced by PDGF-AB in both NCM and NCF in vitro. PDGFR expression in NCM (A, B) and NCF (C) were quantified 
by q-PCR. (D) Viability of NCF stimulated with PDGF-AB or AFC1 compound (0.1, 1.0, 3.0, 10.0 μM) was evaluated by MTT assay. This experiment was repeated four 
times and results indicated mean ± SEM of one independent experiment and representative pictures. **p < 0.01 versus control; #p < 0.05, ##p < 0.01 versus PDGF-AB.

FIGURE 7 | AFC1 suppressed PDGF-AB induced NCM hypertrophy and NCF collagen synthesis. NCM hypertrophy (A) was measured by 3H-leucine incorporation 
and NCF collagen synthesis (C) measured by 3H-proline incorporation on different concentration of AFC1 after PDGF-AB (10 ng/ml) stimulation. mRNA levels of 
ANP, β-MHC, α-SKA in NCM (B), and Col I, Col III in NCF (D) were measured by q-PCR. This experiment was repeated four times and results indicated mean ± 
SEM of one independent experiment. *p < 0.05, **p < 0.01, ****p < 0.0001 versus control; #p < 0.05, ##p < 0.01, ###p < 0.001 versus PDGF-AB.
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DISCUSSION

Early and effective intervention strategies have greatly decreased 
the mortality of IHD; however, reperfusion could cause 
myocardium damage, even exacerbate the cardiac function and 
structure (Wang et al., 2015b). Innovative pharmacotherapies 

to improve the outcomes especially left ventricular remodeling 
in patients who suffered from MI are still an urgent need 
(Della  Rocca et al., 2012; Chew et al., 2018). Recently, TCMs 
have received much attention due to their functions in reduction 
of myocardial injury (Mo et al., 2015; Yang et al., 2016). Many 
studies demonstrated the cardioprotective effect of TSA and 

FIGURE 8 | Continued
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sodium TSA sulfonate in myocardial ischemia/reperfusion injury 
animal models (Zhang et al., 2010; Zhang et al., 2013; Wei et al., 
2014; Li Q et al., 2016; Pan et al., 2017). Results from the recent 
clinical trial indicated that sodium TSA sulfonate in combination 
with current therapies may significantly reduce adverse LV 
remodeling and potentially improve clinical outcomes, providing 
important evidence on the efficacy of sodium TSA sulfonate 
treatment in patients (Mao et al., 2015a; Mao et al., 2015b). 
Another trail named “Sodium Tanshinone IIA Sulfonate in 
Left Ventricular Remodeling Secondary to Acute Myocardial 
Infarction” is going on in Guangzhou, China (ClinicalTrials.gov 
Identifier: NCT02524964)(https://www.clinicaltrials.gov).

We have been searching new TCM-based cardioprotective 
agents and identified series AFC compounds with TSA 
mimic effects. In this study, we reported for the first time the 
cardioprotective actions of AFC1 in murine MI/R models. 
Ventricular remodeling including cardiac hypertrophy and 
fibrosis is the leading cause contributing to cardiac dysfunction 

after MI/R (Konishi et al., 2013). The key findings of the present 
study are that administration of AFC1 effectively reduced the 
cardiac myocyte hypertrophy and fibrosis on day 30 post MI/R, 
accompanied by significant improvement of cardiac function, 
and also inhibited MI/R-induced cardiac remodeling in vivo. The 
effect of AFC1 may be mediated by its inhibition of production of 
ROS and inflammation mediators and regulation of key signaling 
pathways, including PDGF, STAT3, and p38 signaling pathways.

MI/R is a complex multifactorial pathophysiological 
process that oxidative stress and inflammatory response are 
key contributors to the following cardiac remodeling. The 
damage of oxygen free radical on vessel and myocardium after 
perfusion could result in myocardial injury and finally accelerate 
the development of MI/R (Duan et al., 2015). MI/R activated 
sterile inflammatory response characterized by the recruitment 
and activation of immune cells (Yan et al., 2013). Numerous 
studies have demonstrated that inhibition of neutrophil 
recruitment mediated by macrophage reduced tissue damage 

FIGURE 8 | Potential mechanism of the protective function of AFC1 treatment in vitro and in vivo n = 5. After being treated with JI1 (A) or 979 (B) and then 
stimulated with PDGF-AB, NCM hypertrophy was measured by 3H-leucine incorporation and NCF collagen synthesis measured by 3H-proline incorporation. (C, 
D) Protein levels of p-JAK2, p-STAT3 in NCM and p-p38 in NCF were determined via Western blot analysis. (E) Infarct area of heart in each group was lysed and 
p-STAT3, STAT3 protein levels were determined via Western blot. (F) p-STAT3/STAT3, p-STAT3/GAPDH, and STAT3/GAPDH were analyzed with image J software. 
Two or three samples were randomly selected from each group for Western blot experiment. Each experiment was repeated for at least three times and results 
indicated mean ± SEM of one independent experiment and the representative pictures. *p < 0.05, **p < 0.01, ****p < 0.0001 versus control or sham; #p < 0.05, 
##p < 0.01, ###p < 0.001 versus PDGF-AB or MI/R.
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and infarct size in ischemic myocardium (Romson et al., 1983; 
de Lorgeril et al., 1989; Hatori et al., 1991; Li et al., 2016; Wang 
et al., 2016). Excessive neutrophil infiltration in the infarct site 
is detrimental to cardiomyocyte survival for secreting ROS, 
which further aggravates structural damage of tissue (Hansen, 
1995). Our data showed that AFC1 compound inhibited the 
production of ROS, the infiltration of inflammatory cells, as well 
as the content of inflammatory cytokines, such as IL-1β, TNF-
α, and IL-6 in infarcted myocardium, which implied that AFC1 
compound may play an important role in improving ventricular 
remodeling  after  MI/R via suppressing oxidative stress and 
inflammatory responses.

Previously, evidences indicated the crucial role of PDGF on 
stimulating fibrosis in many pathological conditions (Choi et al., 
2005; Fan et al., 2013). Hypoxia could cause murine pulmonary 
vascular medial hypertrophy via increasing PDGF concentration 
(Zhang et al., 2012). PDGF-AB released by myofibroblast could 
cause myocyte structural and electromechanical remodeling 
in ovine persistent atrial fibrillation (PAF) through reducing 
calcium transients (Musa et al., 2013). The expression of PDGF 
is closely related to inflammation and fibrosis in infarcted 
myocardium (Zhao et al., 2011). In addition, PDGF can induce 
ROS production in MEFs (Choi et al., 2005). Therefore, PDGF 
may induce cardiac remodeling following MI/R via promoting 
oxidative stress and inflammatory response. The present 
result showed much higher expressions of PDGF-A, PDGF-B, 
PDGFRα, and PDGFRβ in murine MI/R myocardium in MI/R 
heart than that in the sham group. Previous report from the 
MI rat models (Liu et al., 2014) revealed similar findings. Our 
results further indicated that AFC1 compound can effectively 
decrease the levels of PDGFR without affecting the expression 
of PDGF-A and PDGF-B in the heart post MI/R. Besides, AFC1 
treatment greatly reduced PDGF-AB-stimulated PDGFR mRNA 
expression in NCM and NCF, as well as inhibited PDGF-AB-
stimulated NCM hypertrophy and NCF collagen synthesis in 
vitro. These data suggested that cardio-protective function of 
AFC1 may attribute to the inhibition of PDGFR signaling in vivo 
and in vitro.

It is proved that Janus kinase/signal transduction and 
activators of transcription (JAK/STAT) pathway can be activated 
by ischemic stress stimuli and cardiac hypertrophy agonist 
PDGF (Goodman et al., 2011; Wu et al., 2012). Tyrosine kinase 
could phosphorylate receptor tyrosine residues expressed on 
cardiomyocytes and activate the STAT phosphorylation. The 
activated STAT then transferred to nucleus and bonded to the 
target gene to regulate the expression of transcription factors or 
genes associated with hypertrophy and fibrosis, such as p21waf1 
and c-fibrinogen (Wagner and Siddiqui, 2012). Inhibition of 
JAK/STAT pathway could reduce the myocardial infarct size 
and cardiomyocyte apoptosis induced by MI/R in rat models 
(Mascareno et al., 2001). Besides, PDGF-AB stimulated 
proliferation of human airway smooth muscle cells, which 
contribute to airway remodeling through the JAK/STAT pathway 
(Simon et al., 2002). Studies revealed that the PDGF/PDGFR 
pathway is involved in the regulation of cardiac function and the 
development of ventricular remodeling in MI/R via JAK/STAT 
downstream pathway (Wang et al., 2000; Booz et al., 2002). On 

the other hand, as an important intracellular signaling enzyme, 
P38MAPK is activated by myocardial ischemia and hypoxia 
to induce cellular apoptosis, and results in impaired cardiac 
function and amplifies the inflammatory cascade in the heart 
following MI/R. Our in vitro data showed that stimulation of 
PDGF-AB increased STAT3 phosphorylation in NCM and p38 
phosphorylation in NCF, and addition of AFC1 compound 
significantly decreased both proteins’ phosphorylation, as well 
as suppressed NCM hypertrophy and NCF collagen synthesis. 
Moreover, in murine MI/R models, the expression of p-STAT3 
up-regulated in murine infarcted myocardium and this 
elevation can be dramatically decreased by AFC1 treatment, 
indicating the possible downstream pathway in which AFC1 
exerts its role in cardiac myocyte. We therefore proposed 
that AFC1 compound may attenuate MI/R-induced cardiac 
remodeling via regulating PDGFR signaling and inhibiting the 
phosphorylation of STAT3. It is also possible that AFC1 may 
act on other singling pathways, but further study is needed to 
elucidate this.

Importantly, AFC1 showed neither detrimental impact on 
morphological and histological changes of murine lung, liver, 
kidney, and spleen, nor the cytotoxicity in HUVEC viability. It 
showed less cytotoxicity than TSA in high doses, indicating it 
may have a better safety profile than TSA. Since TSA has been 
widely used clinically with excellent safety profile, AFC1 may 
also be a potential clinical agent for treating MI/R. But further 
study is needed on its pharmacokinetic profile and more detailed 
evaluation of its toxicity in vivo. In addition, further investigations 
are needed to explore the role of AFC1 in other cardiovascular 
diseases and further in clinical trials.

CONCLUSIONS

AFC1 compound had comparable effect with TSA in improving 
cardiac function after MI/R. Administration of AFC1 suppressed 
STAT signaling and attenuated MI/R-induced cardiac remodeling 
in murine MI/R models. AFC1 suppressed PDGF-AB induced 
NCM hypertrophy via STAT3 pathway and NCF collagen 
synthesis through p38 signaling. Therefore, AFC1 may be a novel 
therapeutic option with anti-hypertrophic and anti-fibrotic 
effect against MI/R-induced cardiac remodeling in patients who 
suffered from MI/R.
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Cardiovascular diseases (CVDs) such as angina, hypertension, myocardial ischemia, 
and heart failure are the leading causes of morbidity and mortality worldwide. One of 
the major transcription factors widely associated with CVDs is nuclear factor-kappa B 
(NFκB). NFκB activation initiates the canonical and non-conical pathways that promotes 
activation of transcription factors leading to inflammation, such as leukocyte adhesion 
molecules, cytokines, and chemokines. Flavonoids are bioactive polyphenolic compounds 
found abundantly in various fruits, vegetables, beverages (tea, coffee), nuts, and cereal 
products with cardiovascular protective properties. Flavonoids can be classified into six 
subgroups based on their chemical structures: flavanones, flavones, flavonols, flavan-3-
ols, isoflavones, and anthocyanidins. As NFκB inhibitors, these flavonoids may modulate 
the expression of pro-inflammatory genes leading to the attenuation of the inflammatory 
responses underlying various cardiovascular pathology. This review presents an update on 
the anti-inflammatory actions of flavonoids via inhibition of NFκB mechanism supporting 
the therapeutic potential of these natural compounds in various CVDs.

Keywords: flavonoids, nuclear factor-kappa B signalling, anti-inflammatory, cardiovascular diseases, 
natural compounds

INTRODUCTION
Cardiovascular diseases (CVDs) represent the major burden of mortality and morbidity in the developed 
countries (Benjamin et al., 2017). The most common pathogeneses of CVDs are inflammatory 
processes (Ruparelia et al., 2017). Various transcription factors are related to inflammatory responses 
in CVDs such as T-bet (Haybar et al., 2019), signal transducer and activator of transcription 3 (STAT3) 
(Kurdi et al., 2018), interferon regulatory factors (IRFs), activator protein 1 (AP-1) (Smale and Natoli, 
2014), and transcription factor Bcl11b (Daher et al., 2019). However, the key player in the regulation of 
inflammation is the transcription factor nuclear factor kappa B (NFκB) (Van Der Heiden et al., 2010). 
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The inhibition of NFκB pathway has been demonstrated to 
show beneficial effect in various CVDs including hypertension 
(Koeners et al., 2016), myocardial infraction (Zhao et al., 2017), 
and arteriosclerosis (Wang et al., 2016). These findings support that 
targeted inhibition of NFκB appears to be a promising strategy in 
reducing cardiovascular complications.

Flavonoids are plant polyphenolic compound derivatives from 
natural origin found in fruits, grains, vegetables, roots, bark, 
flowers, stems, tea, and wine (Zeinali et al., 2017). Non-plant natural 
products such as mushrooms and honey, plant extracts, plant 
juices, plant powders, and essential oils have shown to possess anti-
inflammatory activities and many of these plant natural products 
have polyphenols as their major compound (Khalil and Sulaiman, 
2010; Azab et al., 2016). However, the protective effects of flavonoid 
in CVDs via inhibition of NFκB are yet to be reviewed. Therefore, 
in this mini-review, we focused on the anti-inflammatory actions of 
flavonoids via inhibition of NFκB mechanism in CVDs.

FLAvONOIDS AND ITS SUBCLASS
Flavonoids are categorized into six subclasses depending on its 
chemical structures: flavones, flavonols, flavanones, isoflavones, 
flavan-3-ols, and anthocyanidins (Panche et al., 2016).

Flavones are found abundant in flowers, fruits, and leaves 
such as red peppers, celery, parsley, chamomile, mint, and 
ginkgo biloba (Manach et al., 2004). The most studied flavones 
are luteolin, apigenin, and tangeritin (Manach et al., 2004).

Flavonols such as kaempferol, myricetin, quercetin, rutin, 
fisetin, silymarin, and isorhamnetin are ubiquitous in foods such 
as saffron, onions, kale, lettuce, tomatoes, apples, grapes, berries, 
red wine, and tea (Pollastri and Tattini, 2011).

Flavanones widely present in all citrus fruits, which gives 
the bitter taste of the juice and its peel. Oranges, lemons, and 
grapes are rich sources of flavanones and major compounds are 
hesperitin, naringenin, and eriodictyol (Barreca et al., 2017).

Isoflavones are unique in that they resemble estrogen in 
structure and, therefore, are classified as phytoestrogens. There 
are found abundantly in soy products such as tofu, roasted soy 
nuts, and miso (Marzocchella et al., 2011).

Flavan-3-ols, also called as dihydroflavonols, include catechin, 
epicatechin, gallocatechin, epigallocatechin, epicatechingallate, 
epigallocatechingallate, and procyanidin (Alkhalidy et al., 
2018). The most commonly associated food with the flavan-3-ol 
compounds is black and green tea and fruits such as bananas, 
apples, blueberries, peaches, and pears (Osakabe, 2013).

Anthocyanins are rich in outer cell layers of fruits such as 
merlot grapes, raspberries, cranberries, red grapes, strawberries, 
blueberries, bilberries, and blackberries. The most commonly 
studied anthocyanins are cyanidin, delphinidin, malvidin, 
pelargonidin, and peonidin (Khoo et al., 2017).

NFкB INDUCeD INFLAMMATION AND CvDS
There are a few cellular redox pathways involved in the 
development of the chronic inflammatory CVD, which includes 

NFκB. NFκB is a transcription factor that activates inhibitor of 
kappa B (IκB) kinase in the cytosol upon being stimulated by 
inflammatory stimuli (Brasier, 2010). Subsequent signaling 
pathways via canonical or non-canonical lead to migration of 
NFκB toward the nucleus and hence initiates the targeting gene 
such as pro-inflammatory cells, monocytes, macrophages, and T 
and B cells (Figure 1).

The canonical NFκB pathway responds rapidly to stimuli and 
activates NFκB, which increases pro-inflammatory cytokines 
such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha 
(TNF-α), which results in cell apoptosis. TNF-α receptor signaling 
plays an important role in the canonical pathway of NFκB in 
cell death via Jun N-terminal kinases (JNK), p38, and caspase 8 
cascades (Ghosh et al., 2009). Furthermore, NFκB also activates 
angiotensin II, endothelin-1, and phenylephrine as hypertrophic 
agonist via IκB degradation and p65 nuclear translocation.

A central signaling component of the non-canonical 
NFκB pathway is NFκB-inducing kinase, which induces p100 
phosphorylation through kinase IKKα in a slow manner (Sun, 
2017). Ligands of a subset of tumor necrosis factor receptor 
(TNFR) superfamily members are typical inducers of the non-
canonical NFκB pathway (Shih et al., 2011).

ANTI-INFLAMMATORY eFFeCTS OF 
FLAvONOIDS IN CvDS VIA MODULATION 
OF NFкB SIGNALING

Quercetin
Quercetin or 3, 3′, 4′, 5, 7-pentahydroxyflvanone that falls into 
the category of flavonol is widely found in plants such as Ginkgo 
biloba, Hypericum perforatum, and Sambucus canadensis as well 
as vegetables such as apples, berries, grapes, onions, shallots, and 
tomatoes (Li et al., 2016).

In a clinical study involving patients with chronic systemic 
inflammation (CSI) in stable coronary artery disease (CAD), 
quercetin showed anti-inflammatory effects with reduction in 
indicators of CSI (Chekalina et al., 2018). Quercetin decreased 
IL-1β and TNF-α levels in blood serum, in addition to decreasing 
the transcriptional activity of NFкB in blood mononuclear 
cells (Chekalina et al., 2018). In leptin-induced inflammation 
model using human umbilical vein endothelial cells (HUVECs), 
quercetin significantly suppressed the upregulation of Ob-Ra 
(leptin receptor) expression, ERK1/2 phosphorylation, NFкB, 
and TNF-α (Indra et al., 2013). Furthermore, in a neonatal rat 
cardiac fibroblast, quercetin inhibited TNF-α, IL-1β, and IL-6 
secretion by inhibiting the activation of NFкB and Akt induced 
by lipopolysaccharide (LPS) (Tang et al., 2014).

Luteolin
Luteolin or 3’, 4’, 5, 7-tetrahydroxyflavone is one of the most 
prevalent flavones widely found in fruits and vegetables such as 
carrots, cabbages, parsley, broccoli, celery, and apple skins (Weng 
and Yen, 2012).

In an in-vivo sodium fluoride-induced hypertensive 
model, administration of luteolin increased nitric oxide (NO) 
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bioavailability, reversed prolongation of QT and QTc intervals, 
and reduced the expressions of kidney injury marker 1 (Kim-
1), NFκB, and cardiac troponin I (CTnI), which eventually 
normalized the blood pressure (Oyagbemi et al., 2018a). 
Previous study in neonatal rat cardiac myocytes exposed to 
LPS showed luteolin reduced the TNF-α levels in the medium, 
downregulated the TNF-α mRNA in myocytes, inhibited 
degradation of IκB-β and nuclear translocation of NFκB, as 
well as reduced NFκB DNA binding, proposing the therapeutic 
potential of luteolin the management of inflammation-related 
myocardial diseases (Lv et al., 2011).

Fisetin
Fisetin or 3, 3c,4c,7-tetrahydroxyflavone is a bioactive molecule 
found in fruits such as strawberry, apple, persimmon, and grape 
and vegetables such as onion and cucumber (Arai et al., 2000).

Garg et al. (2019) reported the protective effect of fisetin 
against isoproterol-induced myocardial injury by suppressing 
myocardial injury markers, creatine kinase-muscle/brain (CK-
MB), lactate dehydrogenase (LDH), and inflammatory markers 
(TNF-α and IL-6) in the blood serum as well as normalization 
of histological and ultrastructure of the heart. In addition, fisetin 
regulated the balance between pro- or anti-oxidants and pro- or 
anti-apoptotics proteins in the myocardial tissue (Garg et al., 
2019). These protective effects of fisetin are attributed to the 
downregulation of receptor for advanced glycation end products 
(RAGE) and NFκB (Garg et al., 2019).

Fisetin attenuated the development of diabetic cardiomyopathy 
by attenuating the expression of myocardial NFκB and the pro-
inflammatory cytokines IL-1β, IL-6, and TNF-α in the heart 
of diabetic rats. These result in reduction of cardiac function 
markers such as CK-MB, LDH, and cTn as well as normalization 
heart morphology (Althunibat et al., 2019).

FIGURe 1 | Mechanism of NFκB action. In inactivated state, NF-κβ, which consists of Rel and p50 proteins, is located in the cytosol complexed with the 
inhibitory protein Iκβα. IκB kinase (IKK) is activated by extracellular signals via membrane receptors. Subsequently, IKK phosphorylates the Iκβα protein resulting in 
ubiquitination of Iκβα and eventually by the proteasome for Iκβα degradation (canonical pathway). In non-canonical pathway, RelB favors the activation of NF-κβ via 
RelB. Activated NF-κβ is further translocated into the nucleus for DNA bindings, called response elements (RE). The DNA/NF-κβ complex attracts coactivators and 
RNA polymerase, which transcribe the DNA into mRNA resulting in a cell transformation.
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Apigenin
Apigenin, a flavone, is found widely available in fruits and vegetables, 
such as grapefruits, oranges, celeries, and onions (Ren et al., 2018).

In LPS-treated macrophages, apigenin has been shown 
to reduce toll-like receptor 4 (TLR-4), MyD88, and p-IκB-α 
expression levels via nuclear NFκB p65 signaling pathway (Ren 
et al., 2018). Similarly, in LPS-challenged apoE-/- mice, treatment 
with apigenin increased expression of ATP binding cassette A1 
(ABCA1), which alleviated extra lipid accumulation, reduced 
miR-33, TLR-4, and NFκB p65 levels, lessened the macrophages 
and smooth muscle cell contents in the atherosclerotic region, 
and improved plasma lipid profile (Ren et al., 2018). These results 
suggested that apigenin attenuates atherogenesis by inhibition 
of nuclear NFκB p65 that up-regulates ABCA1-mediated 
cholesterol efflux (Ren et al., 2018).

Apigenin was also shown to improve cardiac dysfunction 
and fibrosis in diabetic cardiomyopathy. Apigenin blunted the 
activity of NFκB and downregulated the activity of caspase3 
accompanying with decreasing oxidative stress marker, 
glutathione peroxidase (GSH-Px), malondialdehyde (MAD), 
and superoxide dismutase (SOD) (Huangjun et al., 2016).

Isoliquiritigenin
Isoliquiritigenin is extracted from root of licorice and has 
been used traditionally for the treatment of inflammatory 
or pulmonary diseases (Peng et al., 2015). In HUVECS 
exposed to TNF-α, isoliquiritigenin blocked the involvement 
of NFкB at the transcriptional levels, and thus attenuated 
the downstream expression of VCAM-1, E-selectin, THP-1 
monocyte adhesion, IкB-α, and PECAM-1, suggesting 
the protective effects of isoliquiritigenin through NFкB-
dependent mechanisms (Kwon et al., 2007). In angiotensin 
II induced hypertension model, isoliquiritigenin attenuated 
inflammation cytokines including IL-1β and TNF-α, excessive 
deposition of extracellular matrix, and oxidative stress-
induced apoptosis via nuclear factor E2-related factor 2 (Nrf2) 
and NFκB pathways (Xiong et al., 2018).

Rutin
Rutin is a flavonol that presents in buckwheat and citrus fruits. 
In a sodium fluoride-induced hypertensive rats, administration 
of rutin reduced blood pressure elevation by enhancing NO 
bioavailability via down-regulation of NFκB expression and 
up-regulation of Nrf2 (Oyagbemi et al., 2018b).

In carfilzomib-induced cardiotoxicity in rat, rutin protected 
against myocardial hypertrophy by upregulating IκB-α and 
downregulating NFκB expression, resulting in attenuation of 
β-myosin heavy chain, reduction in B-type natriuretic peptide 
mRNA expressions, and normalization of cardiac muscle fiber 
morphology (Imam et al., 2017).

In addition, rutin increased activities of Nrf, decreased 
activation of NFκB in human embryonic kidney reporter cell 
line, and preserved relaxation of fetal placental arteries derived 
from human chorionic plate (Sthijns et al., 2017).

In high mobility group box 1 (HMGBI)-induced 
inflammatory response in HUVECs, rutin attenuated NFκB and 
ERK1/2, which, in turn, reduced IL-6 and TNF-α levels (Yoo 
et al., 2014). Up-regulation of VCAM-1, intercellular adhesion 
molecule-1 (ICAM-1), and E-selectin induced by HMGB1 were 
similarly inhibited by rutin, suggesting that the protective effect 
of rutin on vascular inflammation is by inhibiting the HMGB1 
and NFκB pathways.

In LPS-induced inflammation in HUVECs, rutin reversed 
barrier disruption, expression of cell adhesion molecules, and 
adhesion and migration of monocytes in endothelial cells. The 
barrier protective effects of rutin were linked to a down-regulation 
of TNF-α, deactivation of NFκB, and reduced phosphorylation of 
IκB-α (Lee et al., 2012).

Chrysin
Chrysin (5,7-dihydroxyflavone) is a flavone, which is found in the 
blue passion flower, honey, and propolis (Mantawy et al., 2017). 
Chrysin prevented doxorubicin (DOX)-induced cardiomyopathy 
including disturbance of cardiac conduction, increased serum 
cardiac markers and histopathological alteration in heart of 
rat via downregulation of NFκB, mitogen-activated protein 
kinase (MAPK), suppression of AKT pathway and its upstream 
activator, vascular endothelial growth factor (VEGF) (Mantawy 
et al., 2017).

In a rat model of monocrotaline-induced pulmonary arterial 
hypertension (PAH), chrysin reduced right ventricular systolic 
pressure and mean pulmonary artery pressure. In addition to 
suppression of right ventricular remodeling, chrysin abolished 
increased expression of collagen I, collagen III, and NFκB (Li 
et al., 2015).

In isoprenaline-induced myocardial injury in rats, chrysin 
relieved hemodynamic and ventricular dysfunction as well as 
reduced ultrastructural myocardial damage via inhibition of 
NFκB, IκKβ expression, and TNF-α level as well as increased 
peroxisome proliferator-activated receptor-gamma (PPAR-γ) 
expression (Rani et al., 2016).

In a rat model of myocardial infarction, fibrosis in the interstitial 
and perivascular regions and expression of collagen was reduced 
following chrysin treatment (Yang et al., 2018). This effect is 
associated with increased PPAR-γ expression and decreased 
NFκB expression via inhibition of IκKβ phosphorylation, leading 
to reduction of matrix metalloproteinase-2 (MMP-2), MMP-9 
levels, and suppression of activator protein 1 (AP-1) level.

Genistein
Genistein under the subgroup of an isoflavone 
[ 4 ′ , 5 , 7 - t r i hy d r o x y i s o f l a v o n e , 5 , 7 - d i hy d r o x y - 3 - ( 4 -
hydroxyphenyl)-4-H-1-benzopyran-4-one] is primarily found 
in soy-based foods, legumes, and red clover. In homocysteine-
induced endothelial cell inflammatory injury, genistein prevented 
endothelial damage via blockade of activation of NFκB, 
expression of inflammatory cytokine and adhesion molecule, 
IL-6, and ICAM-1 (Han et al., 2015).
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Xu et al. (2019) explored the effect of genistein on angiotensin 
II-induced vascular smooth muscle cell inflammation. 
Angiotensin II-induced expression of NFκB, C-reactive protein 
(CRP), MMP-9, phosphorylation of ERK1/2 and p-38, which 
lead to atherosclerotic inflammatory damage, were reversed 
following genistein treatment. Furthermore, genistein enhanced 
expression of PPAR-γ, suggesting cardiovascular protective effect 
by the isoflavone is through regulation of p38/ERK1/2-PPARγ-
NFκB signaling pathway (Xu et al., 2019).

Silymarin
Silymarin is a flavonolignan extracted from the milk thistle. 
Silymarin augmented relaxation of pulmonary arteries isolated 
from a lung ischemia-reperfusion (I/R) injury model (Jin 
et al., 2016). Vascular protective effect of silymarin is due to 
inhibition of NFκB, thus suppressing the serum concentration 
of inflammatory cytokines and reducing protein expression of 
hypoxia inducible factor-1α (HIF-1α) and iNOS.

Silibinin, a major active constituent of silymarin, was able 
to reduce the abnormal size of cardiac myocytes and prevent 
hypertrophy by alleviating the production of epidermal growth 

factor receptor (EGFR) (Ai et al., 2010). Silibilin exerted its 
anti-inflammatory effect by suppressing the activation of NFκB 
stimulated by angiotensin II in cardiac myocytes or in the aortic 
banding male mice. Furthermore, silibilin interfered with the 
phosphorylation and degradation of IκB-α and activation of 
IκKβ in vivo.

Kaempferol
Kaempferol (3,4′,5,7-tetrahydroxyflavone) is a flavonol that is 
present widely in fruits, vegetables, and herbs, including grapes, 
tomatoes, and tea. In cardiac fibroblasts stimulated with LPS, 
kaempferol decreased release of pro-inflammatory cytokines 
by inhibiting AKT phosphorylation and NFκB activation (Tang 
et al., 2015). In isoprenaline-induced cardiac damage, kaempferol 
improved the hemodynamic and left ventricular functions in 
male rats, which abated the increased serum concentration of 
CK-MB and LDH, preserved the morphology of myocardium, 
and reduced the levels of pro-inflammatory cytokines (Suchal 
et al., 2016a). Similarly, kaempferol prevented cardiac damage 
by inhibiting the protein expression of NFκB, p38, and JNK 
(Suchal et al., 2016b) suggesting that cardioprotective and 

TABLe 1 | Effect of flavonoids in CVDs.

No Flavonoids Models Mechanisms Reference

1 Quercetin Clinical study: CAD patients ↓ NFкB, IL-1β, TNF-α, IkBα (Chekalina et al., 2018)
In vitro: leptin-induced inflammation and endothelial 
dysfunction in HUVECs

↓ ERK1/2 phosphorylation, NFкB, TNF-α (Indra et al., 2013)

In vitro: neonatal rat cardiac fibroblast inflammatory ↓ NFкB, TNF-α, IL-1β, IL-6, AKT (Tang et al., 2014)
2 Luteolin In vivo: NaF-induced hypertension ↑NO ↓ Nrf2, Kim-1, NFκB, CTnI (Oyagbemi et al., 2018a)

In vitro: Neonatal rat cardiac myocytes inflammatory ↓ NFκB, TNF-α, ↑ IκB-β (Lv et al., 2011)
3 Fisetin In vivo: Isoprenaline-induced cardiac ischemic injury ↓NFκB, RAGE, TNF-α, IL-6, CK-MB, LDH (Garg et al., 2019)

In vivo: Hyperglycemia-induced cardiac injury ↓NFκB, IL-1β, IL-6, TNF-α (Althunibat et al., 2019)
4 Apigenin In vitro: LPS-treated macrophages In vivo: LPS-

challenged apoE-/- mice
↓ NFκB p65, TLR-4, MyD88, p-IκB-α ↑ ABCA1 (Ren et al., 2018)

In vivo: diabetic cardiomyopathy ↓ NFκB, caspase3, GSH-Px, MDA, SOD (Huangjun et al., 2016)
5 Isoliquiriti-genin In vitro: TNF-α induced inflammation in HUVECs ↓ NFкB, VCAM-1, E-selectin, THP-1 monocyte 

adhesion, IкB-α, PECAM-1
(Kwon et al., 2007)

In vivo: Angiotensin II-induced hypertension ↓ NFкB, IL-1β and TNF-α Nrf2, (Xiong et al., 2018)
6 Rutin In vivo: Sodium fluoride induced hypertension in rat ↓ NFκB ↑ Nrf2 (Oyagbemi et al., 2018b)

In vivo: carfilzomib-induced cardiotoxicity in rat ↓ NFκB ↑ IκB-α (Imam et al., 2017)
In vitro: hydrogen peroxide induced oxidative stress in 
HUVECS

↓ NFκB ↑ Nrf2 (Sthijns et al., 2017)

In vitro: HMGBI-induced inflammatory in HUVECS ↓ NFκB, ERK1/2, TNFα, IL-6, ICAM-1, VCAM-1, 
E-selectin

(Yoo et al., 2014)

In vitro: LPS induced inflammation in HUVECS ↓ NFκB, IκB-α, TNF-α, ICAM-1, VCAM-1, E-selectin (Lee et al., 2012)
7 Chrysin In vivo: DOX-induced cardiotoxicity in rat ↓ p38, JNK, NFκB ↑ VEGF, AKT (Mantawy et al., 2017)

In vivo: monocrotaline-induced pulmonary arterial 
hypertension in rat

↓ NFκB (Li et al., 2015)

In vivo: ISO-induced myocardial injury in rat ↑ PPAR-γ ↓ NFκBp65, IκK-β, TNF-α (Rani et al., 2016)
In vivo: MI in rat ↑ PPAR-γ ↓ NFκB, IκK-β, MMP-2, MMP-9, AP-1 (Yang et al., 2018)

8 Genistein In vitro: Homocysteine-induced endothelial cell 
inflammation in HUVECS

↓ NFκBp65, IL-6, ICAM-1 (Han et al., 2015)

In vitro: angiotensin II-induced VSMCs inflammation ↑ PPAR-γ ↓ ERK1/2, p38, NFκB, CRP, MMP-9 (Xu et al., 2019)
9 Silymarin In vivo: I/R injury in rat ↓ NFκB, HIF-1α, iNOS, TNFα, IL-1β, IL-6 (Jin et al., 2016)

In vivo: Cardiac hypertrophy model in mouse ↓ NFκB, EGFR, IκB-α, IκKβ (Ai et al., 2010)
10 Kaempferol In vitro: LPS+ATP stimulated cardiac fibroblasts 

inflammation
↓ AKT, NFκBp65, TNF-α, IL-1β, IL-6, IL-18 (Tang et al., 2015)

In vivo: I/R cardiac injury in rat ↓ p38, JNK, NFκBp65, TNF-α, IL-6 (Suchal et al., 2016a; 
Suchal et al., 2016b)
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anti-inflammatory action of kaempferol was associated with 
NFκB signaling pathway.

Table 1 summarizes the effects and mechanisms of action of 
flavonoids in CVD.

CONCLUSION
The actions of flavonoids in mitigating inflammation by 
modulation of NFкB offer potential agents for the treatment 
of CVDs. However, several of these actions reported in vitro 
may yet to be fully recognized due to their low bioavailabilities 
following oral administration (Hollman and Katan, 1998; 
Thilakarathna and Rupasinghe, 2013). Flavonoids have shown 
promising results in reducing atherosclerosis in several animal 
experimental models; however, conflicting results were reported 
in human clinical trials (Arts and Hollman, 2005; Zordoky et al., 
2015). The low bioavailability and clinical efficacy of flavonoids 
are attributed to their poor absorption, metabolism by the 
metabolizing enzymes in the intestine and liver, and structural 

modifications by the colonic bacteria remain as the major 
problems. Continuous investigation is required to enhance 
the bioavailability and efficacy of the flavonoids to tap the full 
potential of these natural agents.
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Diabetic cardiomyopathy (DCM) is a leading cause of mortality in patients with diabetes. 
DCM is a leading cause of mortality in patients with diabetes. We used both in vitro 
and in vivo experiments to investigate the hypothesis that sophocarpine (SPC), a natural 
quinolizidine alkaloid derived from a Chinese herb, could protect against DCM. We used 
hyperglycemic myocardial cells and a streptozotocin (STZ)-induced type 1 diabetes 
mellitus mouse model. SPC protected myocardial cells from hyperglycemia-induced 
injury by improving mitochondrial function, suppressing inflammation, and inhibiting 
cardiac apoptosis. The SPC treatment significantly inhibited the activation of nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in high-glucose-
stimulated inflammatory responses. Moreover, SPC significantly slowed the development 
and progression of DCM in STZ-induced diabetic mice. These results show that SPC 
suppresses NF-κB-mediated inflammation both in vitro and in vivo and may be used to 
treat DCM.

Keywords: sophocarpine, NF-κB, inflammation, diabetes, cardiomyopathy—diagnostics

INTRODUCTION

Cardiovascular disease is a major cause of morbidity and mortality worldwide, especially for 
patients with diabetes (Tall and Levine, 2017; He et al., 2019; Tall and Jelic, 2019). Previous studies 
have reported that more than half of these patients die from diabetic cardiomyopathy (DCM), 
which is characterized by changes in myocardial structure and function such as ventricular 
hypertrophy, cardiac fibrosis, and heart failure (Ye et al., 2018; Kang et al., 2019; Knapp et al., 2019; 
Zheng et al., 2019). Due to the increased prevalence of DCM-related mortality, an understanding 
of the mechanism of DCM pathogenesis and effective therapies are needed urgently (Sun et al., 
2019; Zheng et al., 2019; Wu et al., 2019b). The pathophysiology of DCM is complex; however, 
inflammatory upstream events that are mainly induced by hyperglycemia are important. The 
downstream events that eventually lead to heart failure include elevated oxidative stress, cardiac 
inflammation, cardiomyocyte apoptosis, interstitial fibrosis, and myocardial remodeling (Ye 
et al., 2018; Zhang et al., 2018a; Bombicz et al., 2019; Wu et al., 2019b). Therefore, suppressing 
inflammation is a promising strategy for treating DCM (Ye et al., 2018; Zheng et al., 2018; Bombicz 
et al., 2019; Wu et al., 2019b).
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Sophocarpine (SPC) is a natural quinolizidine alkaloid 
derived from Sophora flavescens, a traditional Chinese herb that 
has been used to treat illnesses for nearly 2,000 years (Zhou 
et al., 2018; Wu et al., 2019a). SPC attenuates wear particle-
induced implant loosening (Zhou et al., 2018), and both in vitro 
and in vivo studies suggest that it has strong anti-inflammatory 
and pharmacological effects on a variety of human diseases 
including viral infections, allergies, and cancer (Huang et 
al., 2016; Zhang et al., 2016; Sang et al., 2017; Zhu and Zhu, 
2017; Liu et al., 2017b; Jiang et al., 2018; Li et al., 2018; Zhou 
et al., 2018; Zhang et al., 2018b; Wu et al., 2019a). Moreover, 
several previous studies reported that SPC can protect against 
cardiovascular diseases (Li et al., 2011; Zhang et al., 2012; Li 
et al., 2014). (Li et al., 2014) reported that oral SPC protected 
rat hearts against pressure-overload-induced cardiac fibrosis (Li 
et al., 2014). Zhang et al. reported that SPC attenuates the Na+-
dependent Ca2+ overload induced by Anemonia sulcata toxin-
increased late sodium current in rabbit ventricular myocytes 
(Zhang et al., 2012). In another study, administering SPC to rats 
preserved myocardial function following ischemia-reperfusion 
by inactivating nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) (Li et al., 2011). However, it is unclear 
whether SPC has cardioprotective effects against DCM.

Because of its effect on inflammatory responses and 
cardioprotective properties, here we conducted both in vitro 
and in vivo experiments to explore: (1) the effect of SPC on high 
glucose (HG)-induced mitochondrial dysfunction, inflammation, 
apoptosis of myocardial cells; (2) the effect of SPC on collagen 
deposition, fibrosis, left ventricular remodeling and cardiac 
dysfunction in DCM mice; and (3) the underlying mechanism.

RESULTS

SPC Protects Against HG-Induced 
Inflammatory Responses in  
Myocardial Cells
To investigate the cytotoxicity of SPC, H9c2 cells were treated 
with several doses (0–10 mM) (Zhou et al., 2018) of SPC 
for 48 and 96 h. As is shown in Supplementary Figures 1, 
no toxic effects of SPC were found on H9c2 cells, up to the 
maximal concentration of 10 mM. To assess the effect of 
SPC on HG-induced inflammatory responses, biomarkers 
of hypertrophy, cell fibrosis, and apoptosis were assessed by 
western blot assay after treatment. As in shown in Figure 1, 
HG stimulation for 12 h remarkably increased the expression of 
pro-fibrotic biomarkers including collagen 1 (COL-1), matrix 
metalloproteinase 9 (MMP-9), and transforming growth 
factor-β (TGF-β); hypertrophy biomarker myosin heavy chain 
(MyHC); and cell apoptotic biomarker Bax, which was then 
significantly inhibited by SPC in a dose dependent manner 
(Figure 1B). The results of qPCR further confirmed the findings 
of western blot analysis (Figures 1C–F). By conducting TUNEL 
(terminal deoxynucleotidyl transferase-mediated dUTP nick 
end labeling) staining, we found that the increased apoptosis of 
H9c2 cells was effectively attenuated by 1 mM SPC (Figure 1G), 

which was also confirmed by flow cytometry apoptosis assay 
(Figure 1H).

To confirm our findings about the effects of SPC on 
myocardial cells, we also applied additional experiments using 
neonatal mouse cardiomyocytes (NMCMs). As is shown in 
Supplementary Figure 2, SPC also attenuated HG-stimulated 
inflammatory responses and apoptosis in NMCMs, which was 
consistent with what we found in H9c2 cells.

SPC Attenuated HG-Stimulated 
Mitochondrial Dysfunction in H9c2 Cells
To uncover the possible underlying mechanism of the anti-
apoptotic effect of SPC on H9c2 cells, the mitochondrial-
mediated apoptotic pathway, which plays a vital role in 
HG-stimulated H9c2 cell apoptosis (Guo et al., 2018), 
was analyzed. As is shown in Figure 2, HG induction for 
12  h significantly increased reactive oxygen species (ROS) 
production, which was effectively inhibited by 1 mM SPC 
treatment (Figures 2A, B). Similarly, the cytochrome c release 
and caspase-3/9 activation induced by HG were also inhibited 
by SPC. Moreover, we determined the effect of SPC on Bcl-2 
family proteins expression. HG stimulation up-regulated 
the expression of pro-apoptotic Bax and down-regulated the 
expression of anti-apoptotic Bcl-2, whereas these changes were 
attenuated by application with expression (Figures 2C, D).

SPC Suppressed the Activation of the 
NF-κB Signaling in HG-Stimulated 
Inflammatory Responses
To further confirm the protective effects of SPC on HG-induced 
H9c2 cells were related with anti-inflammatory, the transcription 
factor NF-κB signaling pathway is investigated. First, we 
determined the effect of SPC on IκBα degradation in H9c2 cells 
incubated with HG. The results showed that incubation with HG 
(33 mM) for 12 h remarkably induced IκBα degradation, and this 
alteration was significantly reversed by SPC treatment (1 mM). 
Then, we analyzed the expression of p65 protein in both the 
nucleus and cytoplasm. HG stimulation markedly increased the 
nuclear translocation of NF-κB/p65, which was abolished by SPC 
treatment (Figures 3A, B).

To explore the possible mechanism underlying the regulation 
of SPC on Bcl-2 and Bax expression, small interfering RNAs 
(siRNAs) targeting p65 were used. As is shown in Figures 3C, 
D, the WB analysis showed successful knockdown of p65 using 
siRNAs. Based on the results of WB analysis, p65 siRNA#2 was 
chosen for subsequent experiments. As is shown in Figures 
3E–K, p65 knockdown using siRNA partially mimicked the anti-
inflammatory (Figure 3G) and anti-apoptotic effects (Figures 
3E, F, H, I) and anti-oxidative stress (Figure 3J) of SPC, as 
SPC treatment (1 mM) together with p65 knockdown further 
augmented these effects. Thus, SPC treatment regulated the 
expression of Bcl-2 and Bax and protected against HG-induced 
cardiomyocyte apoptosis partially through the inhibition of 
NF-κB p65.
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FIGURE 1 | SPC protects against HG-induced inflammatory responses in H9c2 cells. (A) The chemical structure of SPC. (B) Western blot analysis showed that 
HG stimulation for 12 h remarkebly increased the expression of COL-1, MMP-9, TGF-β, MyHC, and Bax, which was then significantly inhibited by SPC in a dose 
dependent manner. (C–F) The results of qPCR further confirmed the findings of western blot analysis. (G) TUNEL staining showed that the increased apoptosis 
of H9c2 cells was effectively attenuated by SPC. Figures are magnified as 100×. (H) Flow cytometry assay confirmed the results of TUNEL staining. CTL, control 
group; SPC, Sophocarpine; HG, high glucose. *P < 0.05 when compared with the results of control group; **P < 0.01 when compared with the results of control 
group; #P < 0.05 when compared with the results of HG group; ##P < 0.01 when compared with the results of HG group.
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SPC Treatment Attenuated Diabetes-
Induced Cardiac Dysfunction
Using a type 1 diabetic mouse model, we assessed the in vivo 
effect of SPC on DCM. As is shown in Figures 4A–E, the results 
of echocardiography demonstrated that mice in the DM group 
exhibited significant cardiac dysfunction compared to mice in the 
control group, with significantly decreased E/A velocity ratio, left 
ventricular ejection fraction (LVEF), fractional shortening (FS), 
and increased value of left ventricular end-diastolic diameter 
(LVEDD) and left ventricular end-systolic diameter (LVESD). After 
SPC treatment, all these parameters improved when compared to 
DM group. Moreover, the increased blood glucose level (Figure 
4F) and serum inflammatory factor [tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β), IL-6] levels (Figures 4G–I) 
induced by DM were also effectively inhibited after SPC treatment. 
Taken together, these evidences suggested that SPC administration 
attenuated the diabetes-induced cardiac dysfunction.

SPC Relieved Diabetes-Induced Cardiac 
Remodeling
We then applied histological analysis to find out the in vivo role of 
SPC on fibrosis and histopathology of diabetic hearts. As shown in 
Figures 4J–K, hematoxylin and eosin (H&E) staining and Masson 
trichrome staining showed obvious structural abnormalities and 
collagen accumulation in the myocardial tissues from DM group, 
while SPC treatment remarkably reduced the collagen deposition 

and fibrosis. Consistent with the evidence from H&E staining and 
Masson trichrome staining, the results of α-SMA IHC staining 
showed a significant increase of α-SMA protein expression in the 
DM group, which again indicated obvious fibrosis of myocardial 
tissues. As expected, the protein expression level of α-SMA was 
decreased after SPC treatment (Figure 4L). In addition, the 
expression of pro-fibrotic biomarker TGF-β was also decreased 
after the treatment of SPC (Figure 4M and Figures 5B, C). As is 
shown in Figure 5D, heart tissue samples from mice in diabetes 
mellitus group have significantly higher Collagen I and Collagen 
III protein expression than samples from the control group, which 
was remarkably inhibited by SPC treatment. Taken together, these 
results indicated that SPC treatment reduces collagen deposition 
and fibrosis, eventually contributing to relieve diabetes-induced 
cardiac remodeling.

SPC Mitigated Diabetes-Induced Cardiac 
Inflammation and Myocardium Apoptosis
We next examined the role of SPC in alleviating inflammation 
and myocardium apoptosis in diabetic hearts. Consistent with the 
histomorphometric observation, the results of IHC staining and 
western blot analysis revealed a marked elevation in the protein 
expression of pro-inflammatory biomarker TNF-α in diabetic 
myocardial tissues compared with the control group. After SPC 
treatment, the protein expression of TNF-α was significantly 
reduced (Figure 4I and Figures 5B, C). We finally applied 

FIGURE 2 | SPC attenuated HG-stimulated mitochondrial dysfunction in H9c2 cells. (A and B) Effects of SPC (1 mM) treatment on ROS production using flow 
cytometry assay. (C) Western blot analysis showed that HG induction for 12 h significantly increased cytochrome c release and caspase-3/9 activation, which was 
effectively inhibited by SPC. Moreover, HG stimulation upregulated the expression of pro-apoptotic Bax and downregulated the expression of anti-apoptotic Bcl-2, 
whereas these changes were attenuated by application with expression. (D) Quantification of the western blot analysis. CTL, control group; SPC, Sophocarpine; 
HG, high glucose, ROS, reactive oxygen species. *P < 0.05 when compared with the results of control group; **P < 0.01 when compared with the results of control 
group; #P < 0.05 when compared with the results of HG group; ##P < 0.01 when compared with the results of HG group.
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TUNEL staining to investigate the anti-apoptotic effect of SPC in 
diabetic myocardial tissues. We observed significantly increased 
cell apoptosis (TUNEL-positive cells) in diabetic heart samples, 
which was remarkably mitigated by SPC treatment (Figure 5A).

DISCUSSION

The results of this study demonstrated that SPC protected 
H9c2s cell from hyperglycemia-induced injury. SPC treatment 
also slowed the development and progression of DCM in 

streptozotocin (STZ)-induced diabetic mice. SPC was able to 
protect against DCM by improving mitochondrial function, 
suppressing inflammation, and inhibiting cardiac apoptosis. 
Moreover, SPC treatment inhibited the activation of NF-κB 
signaling in high-glucose-stimulated inflammatory responses, 
which suggests that SPC suppressed the inflammatory response 
and prevented cardiac dysfunction in diabetic mice by inhibiting 
the NF-κB signaling pathway (Figure 5E).

Several physiological factors are reportedly associated with the 
development of DCM, including cardiac inflammation, oxidative 
stress, and cardiac cell apoptosis. Among these, chronic and 

FIGURE 3 | SPC suppressed the activation of the NF-κB signaling in HG-stimulated inflammatory responses in H9c2 cells. (A) The results of western blot analysis 
showed that incubation with HG for 12 h remarkblely induced IκBα degradation, and this alteration was significantly reversed by SPC treatment. HG stimulation 
markedly increased the nuclear translocation of NF-κB/p65, which was abolished by SPC treatment (1 mM). (B) Quantification of the western blot analysis.  
*P < 0.05 when compared with the results of control group; **P < 0.01 when compared with the results of control group; #P < 0.05 when compared with the results 
of HG group; ##P < 0.01 when compared with the results of HG group. (C and D) The WB analysis showed successful knockdown of p65 using siRNAs. (E–G) WB 
analysis showed p65 knockdown using siRNA partially mimicked the anti-apoptotic and anti-inflammatory effects of SPC treatment. (H and I) The results of flow 
cytometry apoptosis assay. (J and K) The results of flow cytometry ROS production assay. *P < 0.05 when compared with the results of the HG group; **P < 0.01 
when compared with the results of the HG group; #P < 0.05 when compared with the results of the HG + siRNA-P65 group; ##P < 0.01 when compared with the 
results of the HG+siRNA-P65 group. CTL, control group; SPC, Sophocarpine; HG, high glucose; ROS, reactive oxygen species.
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FIGURE 4 | SPC treatment attenuated diabetes-induced cardiac dysfunction and cardiac remodeling. (A–E) The results of echocardiography demonstrated 
that mice in the DM group exhibited significant cardiac dysfunction compared to mice in the control group, with significantly decreased E/A velocity ratio, 
LVEF, FS, and increased value of LVEDD and LVEDD. After SPC treatment, all these parameters improved notably when compared to DM group. (F) The 
increased blood glucose level induced by DM was effectively inhibited after SPC treatment. (G–I) Serum inflammatory factor (TNF-α, IL-1β, IL-6) levels were 
also effectively inhibited after SPC treatment. (J and K) H&E staining and Masson trichrome staining (longitudinal view on the left and transverse view on the 
right) showed obvious structural abnormalities and collagen accumulation in the myocardial tissues from DM group, while SPC treatment remarkably reduced 
the collagen deposition and fibrosis. (L) The results of α-SMA IHC staining showed a significant increase of α-SMA protein expression in the DM group, and 
the protein expression level of α-SMA was decreased after SPC treatment. (M) The expression of TGF-β and TNF-α was also decreased after the treatment of 
SPC. E/A velocity ratio: the ratio of early to late mitral valve flow velocity E/A velocity ratio; LVEF, left ventricular ejection fraction; FS, percentage of fractional 
shortening; LVESD, left ventricular end-systolic diameter; LVEDD, left ventricular end-diastolic diameter; IHC staining, immunohistochemical staining;  
CTL, control group; SPC, Sophocarpine; DM, diabetes mellitus group. *P < 0.05 when compared with the results of control group; #P < 0.05 when compared 
with the results of DM group.

35

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Sophocarpine Inhibits Diabetic CardiomyopathyZou et al.

7 October 2019 | Volume 10 | Article 1219Frontiers in Pharmacology | www.frontiersin.org

FIGURE 5 | SPC mitigated diabetes-induced cardiac inflammation and myocardium apoptosis. (A) TUNEL staining showed significantly increased cell apoptosis (TUNEL-
positive cells) in diabetic hearts, which was remarkably mitigated by SPC treatment. Figures are magnified as 100×. (B) The results of western blot analysis revealed a 
marked elevation in the protein expression of TNF-α in diabetic myocardial tissues compared with the control group. After SPC treatment, the protein expression of TNF-α 
was significantly reduced. (C) Quantification of the western blot analysis. (D) Heart tissue samples from mice in diabetes mellitus group have significantly higher Collagen 
I and Collagen III protein expression than samples from the control group, which was remarkably inhibited by SPC treatment. (E) A diagram recapitulating the main 
findings of this study. CTL, control group; SPC, Sophocarpine; DM, diabetes mellitus group. *P < 0.05 when compared with the results of control group; **P < 0.01 when 
compared with the results of control group; #P < 0.05 when compared with the results of DM group.
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sustained inflammation is the major reason that hyperglycemia 
leads to changes in the structure and function of cardiac muscle 
(Lee et al., 2018; Yan et al., 2018; Ye et al., 2018; Ying et al., 2018; 
Althunibat et al., 2019). Hyperglycemia increases the expression 
of pro-inflammatory cytokines such as IL-6, IL-1β, TNF-α, and 
TGF-β. Indeed, anti-inflammatory therapeutic strategies have 
generally been beneficial in treating DCM (Ye et al., 2018; Zheng 
et al., 2018; Zhang et al., 2018a; Knapp et al., 2019). Zhang et al. 
reported that H3 relaxin protects against DCM by suppressing 
inflammation (Zhang et al., 2017). Feng et al. studied DCM in 
endothelial-specific microRNA (miR)-146a-overexpressing 
transgenic mice and found that miR-146a inhibits DCM by 
suppressing inflammatory changes (Feng et al., 2017). Similarly, 
deletion of the kinin receptor B1 gene reportedly slowed the 
development of DCM by suppressing cardiac inflammation 
(Westermann et al., 2009). Treatment with drugs that are based 
on natural products has some advantages over using artificial 
chemical compounds and genetic approaches. The clinical 
potential of drugs such as SPC may be enhanced if the cost is 
low, side effects are few, and availability is high.

The NF-κB signaling pathway plays a critical role in the 
pathology of DCM (Bombicz et al., 2019; Kang et al., 2019; 
Knapp et al., 2019). Hyperglycemia triggers IκBα degradation, 
allowing cytoplasmic NF-κB/p65 to be translocated into the 
nucleus. This promotes physiological processes associated 
with DCM including cell hypertrophy, apoptosis, and fibrosis. 
Recent studies have shown that inactivating the NF-κB pathway 
is an effective treatment for DCM (Li et  al., 2011; Guo et al., 
2018; Tang et al., 2018). In our study, hyperglycemia increased 
NF-κB activity and promoted cardiac apoptosis and fibrosis. 
These results are consistent with those from previous studies 
using H9c2 myocardial cells and STZ-induced diabetes mellitus 
models (Liu et al., 2017a; You et al., 2018). We also showed 
that SPC inhibited IκBα degradation and p65 translocation. In 
addition, our in vivo experiments demonstrated that myocardial 
apoptosis and fibrosis were significantly attenuated. Together, 
these data suggest that SPC protects against DCM at least partly 
by suppressing NF-κB-mediated inflammation.

Interestingly, other studies have shown that SPC has anti-
inflammatory activity in various cell types and disease models. 
SPC decreased the expression of pro-inflammatory cytokines 
in both in vitro and in vivo experiments on chondrocytes, 
providing effective protection against osteoarthritis (Wu et al., 
2019a). In mice hepatocytes, SPC inhibited lipopolysaccharide-
induced septic liver injury by downregulating the NF-κB 
signaling pathway and suppressing inflammation (Jiang et al., 
2018). SPC also inhibited the production of TNF-α and IL-6 in 
murine primary macrophages and prevented cachexia-related 
symptoms induced by colon 26 adenocarcinoma in mice (Zhang 
et al., 2008). In addition, SPC can stabilize prostheses by binding 
to IκB kinases, suppressing NF-κB/p65 activation and thus 
inhibiting osteoclast formation and implant loosening (Zhou 
et al., 2018). Our study is consistent with previous research 
and describes a novel method for treating DCM by using SPC. 
Our results may provide important information to support the 
clinical application of SPC.

This study had some limitations. First, the pathological 
processes associated with DCM are complex, and although we 
investigated the effects of SPC on inflammation, apoptosis, and 
myocardial fibrosis, we did not investigate other processes such 
as autophagy. Second, we did not demonstrate that SPC inhibits 
NF-κB signaling in vivo. Third, we did not apply extra osmotic 
cells group in which mannitol was added to keep the same 
osmolarity as that under conditions of HG. Thus, further studies 
will be needed to confirm the results of this study.

CONCLUSIONS

Our study suggests that SPC has therapeutic potential and 
protects H9c2 cells from hyperglycemia-induced injury in vitro. 
Our mouse model experiments also show that SPC can be used 
to treat DCM in vivo. SPC may be effective against DCM because 
it can suppress inflammation and inhibit the NF-κB signaling 
pathway. These findings suggest that SPC may be effective in 
preventing DCM.

MATERIALS AND METHODS

Reagents
SPC was purchased from Selleck Chemicals [Houston, USA; 
purity (%) = 99.80%]. It was dissolved in dimethyl sulfoxide 
(DMSO) and stored in the dark. The chemical structure of SPC is 
shown in Figure 1A.

Cell Culture
The embryonic rat heart-derived cell line, H9c2, was obtained 
from ATCC (American Type Culture Collection, Manassas, 
VA, USA) and cultured in DMEM medium supplemented with 
10% Fetal bovine serum (FBS), 100 mg/ml streptomycin, and 
100 U/ml penicillin (Gibco, Waltham, MA, USA). Cells in the 
SPC treated group were pre-treated with SPC for 1 h and then 
exposed to high D-glucose concentration (33 mM, HG) or 
normal D-glucose (5.5 mM) DMEM medium, while cells in the 
control (CTL) group received same volume DMSO. The final 
concentration of DMSO in the medium of each group was less 
than 0.1% (v:v).

Quantitative Real-Time PCR
Total RNA of H9c2 cells was extracted using TRIZOL (Invitrogen, 
Carlsbad, CA), following the procedure of standard protocol. 
Reverse transcription was performed using a Double-Strand cDNA 
Synthesis Kit (Takara, Dalian, China). qPCR was performed using 
a SYBR Green Master Mix kit (Takara). Primers were synthesized 
and obtained from Sangon Biotech (Shanghai, China). The details 
of primers used in this study were listed in Table S1.

Cell Viability
H9c2 cells were seeded into 96-well plates at a density of 2×104 cells/
well for 24 h. After that, cells were treated with/without various 
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doses of SPC (0.01–10 mM) for 48 or 96 h. After treatment, CCK-8 
assay (Dojindo, Kumamoto, Japan) was carried out by adding 15 
μl of CCK-8 buffer into each well. The plates were incubated 37°C 
for additional 4 h. The absorbance was detected at 450 nm on a 
microplate reader (Bio-Tek Instr., Winooski, VT, USA).

Flow Cytometry Assay
Flow cytometry assay was performed to determine the apoptosis 
of H9c2 cells using an FITC Annexin V Apoptosis Detection 
Kit (BD Biosciences, USA). According to the manufacturer’s 
protocol, H9c2 cells were harvested and washed three times with 
phosphate buffer saline (PBS). After being incubated with FITC 
Annexin-V and propidium iodide (PI), cells were analyzed with 
a flow cytometry system (Becton Dickinson). In addition, ROS 
production was also measured by flow cytometry system (Becton 
Dickinson) using a DCFH-DA ROS assay kit (Sbjbio® life science, 
Nanjing, China), according to the manufacturer’s instructions.

Western Blot Assay
Cells or tissue samples were lysed with protein extraction 
reagent RIPA (Beyotime, Haimen, China), and protein amounts 
were assessed using a BCA-kit (Thermo fisher Scientific, MA, 
USA). In addition, a nuclear and cytoplasmic protein extraction 
kit (P00028; Beyotime) was applied to obtain nuclear and 
cytoplasmic protein samples. According to the manufacturer’s 
instructions, protein samples were then separated by SDS-PAGE 
gel and then transferred to polyvinylidene fluoride (PVDF) 
membranes (Millipore, MA, USA). After being blocked with 
5% milk in TBST for 1.5 h at room temperature, the membranes 
were incubated overnight at 4°C with the following antibodies: 
COL-1 [1:1000, Cell Signaling Technology (CST), Danvers, 
MA, USA], MMP-9 (1:1000, Abcam, Shanghai, China), TGF-β 
(1:1000, CST), MyHC (1:1000, Abcam), B-cell lymphoma-2 
(Bcl-2, 1:1000, Abcam), BCL2-associated X (Bax, 1:1000, CST), 
NF-κB/p65 (1:1000, CST), IkBα (1:1000, Abcam), cytochrome 
c (Cyto-C, 1:1000, Abcam), cleaved-caspase-3 (Cle-cas3), 
cleaved-caspase-9 (Cle-cas9), tumor necrosis factor-α (TNF-α, 
1:1000, Abcam), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH, 1:1000, Abcam), and histone H3 (1:1000, CST) 
antibodies. Specific bands were detected by using an enhanced 
chemiluminescence kit (Bio-Rad, CA, USA) and were quantified 
by densitometry (Quantity One software, Bio-Rad).

siRNA Construction and Infection
To explore the mechanism by which SPC inhibits NF-κB signaling 
pathway, two siRNAs against p65 and negative control (NC) 
were obtained from GenePharma (Shanghai, China). H9c2 cells 
were incubated with p65 siRNAs or the negative control siRNAs 
using standard methods. WB analysis was used to confirm the 
successful knockdown of p65.

Isolation and Culture of NMCMs
NMCMs were prepared from newborn C57BL/6J mice (1–2 
days old), as previously described (Brand et al., 2010; Xu et al., 
2019). In brief, hearts of mice were cut into small pieces and 

digested with DMEM (Gibco) containing 0.03% trypsin and 
0.03% collagenase II (Sigma). NMCMs were then isolated and 
cultured in DMEM with 20% FBS (Gibco) and 1% penicillin/
streptomycin. After purification by 1.5 h differential preplating 
to allow cardiac fibroblast adherence, NMCMs were seeded onto 
dishes for 48 h and maintained in DMEM with 10% FBS and 
BrdU (0.1 mM, Sigma). After that, NMCMs were treated with 
HG and SPC, following the methods introduced above.

Animal Experiments
The study protocols for all animal studies were approved by the 
Institutional Animal Care and Use Committee of the second 
affiliated hospital of Nanchang University and complied with 
the NIH guidelines for the care and use of laboratory animals. 
Male C57BL/6 mice (6–8 weeks old, weighing 18–22 g) used in 
this study were purchased from Animal Center of Nanchang 
University. In total, 40 mice were randomly divided into  
four groups (n = 10 each group): control group (CTL), SPC 
treatment group (SPC), diabetes mellitus group (DM), and 
DM plus SPC group (DM+SPC). Firstly, the DM mice were 
induced by daily intraperitoneal (i.p.) injection of 50 mg/
kg STZ (dissolved in 100 mM citrate buffer, pH 4.5) for 5 
consecutive days (Liu et al., 2017a; Tang et al., 2018), while 
mice in the CTL group and SPC group received same volume 
of sodium citrate buffer. One week later, mice with fasting 
blood glucose levels ≥250 mg/dl were defined as successful 
establishment of diabetes mellitus. Then, mice in the SPC 
and DM+SPC group received daily i.p. injection of SPC (20 
mg/kg) (Li et al., 2011; Zhou et  al., 2018), while mice in the 
CTL group and DM group received same volume of PBS. 
Sixteen weeks after the administration, blood glucose level 
was measured by tail vein blood using an automated analyzer 
(Beckman, CA, USA). After that, mice were euthanized under 
anesthesia, and heart tissues were collected and kept in liquid 
nitrogen or 4% paraformaldehyde for further analysis. Blood 
samples were collected from mice eye socket vEin. Serum 
was obtained by centrifugalization and kept at −80°C. Then, 
serum inflammatory factor (TNF-α, IL-1β, IL-6) levels were 
determined using enzyme-linked immunosorbent assay 
(ELISA) kits (BD Biosciences, CA, USA), according to the 
manufacturer’s protocol.

Cardiac Function Assessment
Cardiac function was determined by M-mode echocardiography 
in anaesthetized mice 1 day before termination. An 
echocardiography system together with a 15-MHz linear 
transducer (VisualSonics Vevo 2100, Toronto, Canada) was 
applied. LVEF, percentage of FS [FS (%)], LVESD, LVEDD, and 
the ratio of early to late mitral valve flow velocity E/A velocity 
ratio (E/A velocity ratio) were measured using the machine by 
the same personnel.

TUNEL Assay
The TUNEL apoptosis detection kit (R&D Systems, MN, 
USA) assay was also applied to detect cell apoptosis. H9c2 
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cells were washed three times with PBS and fixed with 4% 
paraformaldehyde, permeabilized with 0.1% TritonX-100, and 
then stained with TUNEL reagent. Following washing with PBS, 
cells were counterstained with DAPI (Sigma-Aldrich, USA) at 
room temperature for 5 min. For tissues, the sections of mice 
heart samples were treated for 60 min with TUNEL reagent (In 
Situ Cell Death Detection Kit; Roche Diagnostics) and DAPI for 
5 min according to the manufacturer’s instructions. In addition, 
staining using a monoclonal antibody against Troponin I (cTnI, 
Santa Cruz) was also performed to identify the myocardium. 
Images were finally captured under a fluorescence microscope and 
quantified by Image J software. All morphometric measurements 
were conducted on five randomly selected fields for each sample.

Histological Analysis
After being fixed in 4% paraformaldehyde for 48 h, mice heart 
samples were paraffin-embedded and sectioned at 5 µm thick 
for H&E, Masson trichrome staining, TUNEL staining, and 
immunohistochemical (IHC) staining as standard protocols. For 
IHC staining of α-SMA, TNF-α, and TGF-β, serial tissue sections 
were deparaffinized, rehydrated, and treated with 0.3% H2O2 
for 30 min. After being blocked with 3% bovine serum albumin 
(BSA) in PBS for 30 min, the slides were then incubated with 
primary antibody at 4°C overnight (α-SMA, 1:200, CST; TNF-α, 
1:100, Abcam; TGF-β, 1:250, Abcam). After that, a peroxidase-
conjugated secondary antibody (Beyotime, China, 1:100) was 
applied for 1 h at room temperature. Finally, diaminobenzidine 
(DAB; Sigma-Aldrich, USA) was used to visualize the peroxidase 
binding sites and hematoxylin was used to visualize nuclears. 
Image-Pro Plus 6.0 (IPP 6.0) software was used to analyze the 
density of positive staining.

Statistical Analysis
All data from at least three independent experiments were expressed 
as mean ± SDs. All statistical analyses were performed with SPSS 
14.0 software (SPSS, Chicago, IL, USA). Statistical comparisons 
among different groups were evaluated using one-way ANOVA 

followed by multiple comparisons test with Bonferroni correction. 
P value <0.05 was considered statistically significant.
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Over-Expression of Inhibitor of 
Differentiation 2 Attenuates Post-
Infarct Cardiac Fibrosis Through 
Inhibition of TGF-β1/Smad3/HIF-1α/
IL-11 Signaling Pathway
Lin Yin 1,2,3†, Ming-xin Liu 1,2,3†, Wei Li 1,2,3, Feng-yuan Wang 1,2,3, Yan-hong Tang 1,2,3  
and Cong-xin Huang 1,2,3*

1 Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China, 2 Cardiovascular Research Institute, Wuhan 
University, Wuhan, China, 3 Hubei Key Laboratory of Cardiology, Wuhan, China

Background: Cardiac fibrosis after myocardial infarction mainly causes cardiac diastolic 
and systolic dysfunction, which results in fatal arrhythmias or even sudden death. Id2, a 
transcriptional repressor, has been shown to play an important role in the development 
of fibrosis in various organs, but its effects on cardiac fibrosis remain unclear. This study 
aimed to explore the effects of Id2 on cardiac fibrosis after myocardial infarction and its 
possible mechanisms. 

Methods: This study was performed in four experimental groups: control group, treatment 
group (including TGF-β1, hypoxia or MI), treatment+GFP group and treatment+Id2 group. 
In vitro anoxic and fibrotic models were established by subjecting CFs or NRVMs to a 
three-gas incubator or TGF-β1, respectively. An animal myocardial infarction model was 
established by ligating of the left anterior descending coronary artery followed by directly 
injecting of Id2 adenovirus into the myocardial infarct’s marginal zone. 

Results: The results showed that Id2 significantly improved cardiac EF and attenuated 
cardiac hypertrophy. The mRNA and protein levels of α-SMA, Collagen I, Collagen III, 
MMP2 and TIMP1 were higher in treatment+Id2 group than those in treatment group as 
well as in treatment+GFP group both in vivo and in vitro. Immunofluorescence revealed 
that both α-SMA and vimentin were co-expressed in the treatment group and GFP group, 
but the co-expression were not detected in the control group and Id2 group. Additionally, 
our findings illustrated that Id2 had protective effects demonstrated by its ability to inhibit 
the TGF-β1/Smad3/HIF-1α/IL-11 signaling pathways. Besides, over-expression of Id2 
reduced cardiomyocytes apoptosis. 

Conclusion: In conclusion, this study demonstrated that over-expression of Id2 
preserved cardiac function and ameliorated adverse cardiac remodeling, which might be 
a promising treatment target for cardiac fibrosis and apoptosis.

Keywords: inhibitor of differentiation 2, myocardial infarction, cardiac fibrosis, cell apoptosis, hypoxia induced 
factor-1 alpha (HIF-1α), interleukin (IL)-11
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InTRODUCTIOn
Fibrosis is defined as the accumulation of fibrillar extracellular 
matrix (ECM) components in a tissue or an organ. The 
development of cardiac fibrosis after myocardial infarction 
(MI) is a continuous process (Chen et al., 2018). In the initial 
inflammatory phase, leukocytes are recruited, followed by the 
release of chemokines and growth factors, such as interleukin 
(IL)-11 and transforming growth factor-β1(TGF-β1). 
Myofibroblasts release matrix metalloproteinases (MMPs) 
which destroy basement membranes. The initial phase is 
followed by the proliferative phase. In this phase, myofibroblasts 
generate excessive ECM and endothelial cells form new 
blood vessels. In the subsequent remodeling phase, activated 
myofibroblasts (derived from local fibroblasts) stimulate wound 
contraction. This process confers protection by maintaining the 
left ventricular structure after infarction. On the other hand, 
myofibroblasts activation and excessive ECM accumulation 
ultimately lead to permanent cardiac fibrosis, which is often 
accompanied with cardiac systolic insufficiency, arrhythmia 
and adverse cardiovascular events (Jun and Lau, 2018). The two 
main approaches used to inhibit cardiac fibrosis after MI are as 
follows: preventing the cause such as alleviating endogenous 
EMT; slowing the rate of progression i.e., the rate at which 
cardiac fibroblasts are transformed into myofibroblasts cells and 
the rate at which ECM is stacked.

Inhibitor of differentiation (Id), known as DNA binding 
inhibitor, is a regulatory protein which functions as a negative 
transcription factor. This protein has four subtypes: Id1, Id2, 
Id3 and Id4 (Jen et al., 1996). Several studies have shown that 
Id2 plays an important role in cardiac development and fibrosis 
of various organs. For instance, the Id family is involved in the 
formation of cardiac mesoderm (Fraidenraich et al., 2004). 
Id2 knock-out during the embryonic E9.5–E14.5 stage results 
in severe cardiac developmental defects, including systemic 
and pulmonary circulation abnormalities, ventricular septal 
defect and myocardial hypoplasia (Jongbloed et al., 2011; 
Cunningham et al., 2017). Secondly, Id2 participates in the 
formation of fibrosis. Myofibroblasts are the major sources of 
ECM proteins (Afratis et al., 2018). Those cells directly secrete 
collagen, MMPs and tissue inhibitors of MMPs (TIMPs) to 
regulate the dynamics of ECM balance (Shih et al., 2018). In 
the presence of stimulating factors (such as MI), this balance 
is broken, triggering myocardial fibrosis. Id2 also stimulates 
the production of MMPs in many cancers and liver fibrosis 
(Tajima et al., 2007; Hossain et al., 2012; Kamata et al., 2016). 
Moreover, TGF-β1 plays an important role in the development 
of cardiac fibrosis (Blyszczuk et al., 2017). It was previously 
reported that Id2 was a downstream regulator of TGF-β1, and 
overexpression of Id2 could reduce the effect of TGF-β1, to 
some extent (Cao et al., 2009).

Based on the above discussion, we hypothesize that Id2 
may participate in the development of fibrosis after myocardial 
infarction. Our study aims to discover the role of Id2 in cardiac 
fibrosis and reveal it possible mechanisms.

MATERIALS AnD METHODS

Animals
Newborn male Sprague–Dawley(SD) rats (n = 40; age, 1–3 
days; weight, 40–80 g) were purchased from Disease Control 
and Prevention of Hubei Provincial Center(Hubei, China) 
(Animal license number: SCXK (E) 2015-0018). Adult healthy 
male SD rats (n = 70; weight, 180–200 g) was acquired from 
the Experimental Animal Center of Wuhan University People’s 
Hospital (Hubei, China). The SD rats were kept in four per cage 
with standard laboratory chow and given sterilized water. The 
room environment was controlled under a constant temperature 
(22 ± 2°C), constant humidity (55 ± 5%), and a 12:12 h light/
dark cycle. The present study was approved by the Experimental 
Animal Committee of Wuhan University (Hubei, China; no. 
WDRM20180912). All experimental procedures were approved 
by the Ethics Committee of Animal Research, Wuhan University 
Health Science Center, and the investigation conformed to the 
Guide for the Care and Use of Laboratory Animals published 
by the US National Institutes of Health (NIH Publication, 8th 
Edition, 2011).

Adenovirus Construction and Purification
The adenoviral vector expressing GV315Ad-MSC-GFP-Id2 was 
constructed by inserting the human Id2 gene (positive clone 
sequence: ATGAAAGCCTTCAGTCCCGTGAGGTCCGTTA 
GGAAAAACAGC CTGTCGGACCACAGCCTGGGCATC TC 
CCGGAGCAAAACCCCT GTGGACGACCCGATGAGC CTG 
CTATACAACATGAACGACTGC TACTCCAAGCTC AAGGA 
GCTGGTGCCCAGCATCCCCCAGAAC AAGAA GGTGAGC 
A A G A T G G A A A T C C T G C A G C A C G T C A T C G A C 
TACATCTTGGACCTGCAGATCGCCCTGGACTCGCATC 
CCACT ATTGTCAGCCTGCATCACCAGAGACCCGGGCAG 
AACCAGGCG TCCAGGACGCCGCTGACCACCCTCAA CA 
CGGATATCAGCATC CTGTCCTTGCAGGCTTCTG AATTCC 
CTTCTGAGTTAATGTCA AATGACAGCAAAG CACTGTGT 
GGCTGA) into GV315Ad-MSC-GFP vector (Shanghai Genechem 
Co., Ltd., Shanghai, China) using AgeI/NheI (cat. no. CON267) 
restriction sites, all of which obtained from Shanghai Genechem 
Co., Ltd. Ad-GFP and Ad-GFP-Id2 were measured as 1010 PFU/
ml and 8 × 1010 PFU/ml respectively, which were  preserved 
at -80°C.

Cell Culture
Primary rat CFs (cardiac fibroblasts) and primary neonatal 
rat cardiomyocytes (NRVMs) were isolated from ten 1–3-day-
old SD pups as described previously with some modifications 
(Golden et al., 2012). Briefly, ventricles from rats were minced 
and digested with 0.125% trypsin (cat. no. C0201, Beyotime 
Institute of Biotechnology, Shanghai, China) at 37°C for 10 min 
and then mixed with liquor containing 0.125% trypsin and 0.08% 
collagenase II (cat. no. C6885; Sigma; Merck KGaA) 6–8 times at 
37°C for 5 min each time. The digested tissue pieces were then 
centrifuged at 1,000 r/min. The CFs were isolated from NRVMs 
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after culturing for 1.5 h. This was followed by gently sucking out 
the NRVMs from the culture dish and were seeded in 6-well 
plates. The cell concentration was adjusted to 5 × 105/ml. During 
the first 48 h after seeding, 0.1 mmol/l bromodeoxyuridine 
(cat. no. B-5002, Sigma; Merck KGaA) was added to inhibit the 
mitosis of fibroblasts. CFs were cultured for 48 h and then were 
passaged to 3–6 generations for further experiments.

Cell Proliferation Assay and Flow 
Cytometric Analysis
Cell proliferation was assessed with Cell Counting Kit-8 
(CCK-8) (Labgic Technology Co., Ltd., Beijing, China) reagent 
following the manufacturer’s instructions. CFs were passaged in 
96-well plates at the density of 8 × 103 cells/well. After culturing 
for 24 h, cells were treated with serum-free medium for another 
24 h and then were placed on three-gas incubators environment 
(96% nitrogen, 5% carbon dioxide and 1% oxygen). After 
treatment with hypoxia for 12 h, 20 ul of CCK-8 reagent was 
added into each well and CFs were incubated at 37°C for another 
2 h. The optical density was measured at a wavelength of 450 
nm. Serum-free mediums in normal incubators served as the 
negative control.

The apoptosis of NRVMs after exposed to hypoxia was assessed 
by staining cells with Annexin V-fluorescein isothiocyanate 
(APC) Apoptosis Detection Kit (BD Biosciences). The cells 
were collected and then washed with cold PBS twice. Thereafter, 
they were resuspended in 100 ul of Annexin V binding buffer 
and incubated with 5 ul of APC-conjugated Annexin V and 
5 ul of propidium iodide for 15 min in the dark. Annexin V 
binding buffer (200 ul) was then added to each tube. Finally, the 
cells were examined using a BD FACS-Canto II flow cytometer 
(BD Biosciences, CA). All experiments were repeated three 
times, independently.

Experimental Groups and Treatment
CFs were transfected with Ad-GFP or Ad-GFP-Id2 for 48 h, 
then anoxic and fibrotic models were established using a three-
gas incubator for 12 h or Recombinant Human TGF-β1(Rocky 
Hill, NJ 08553, USA) for 24 h, respectively. The hypoxia model 
was divided into 4 groups: control group (control), hypoxia 
group (hypoxia), hypoxia+Ad-GFP group (hypoxia+GFP), 
hypoxia+Ad-GFP-Id2 group (hypoxia+Id2). Fibrosis model: 
control group (control), TGF-β1 group (10 ng/ml, 24 h) (TGF-
β1), TGF-β1+Ad-GFP group (TGF-β1+GFP), TGF-β1+Ad-
GFP-Id2 group (TGF-β1+Id2). Similarly, after adenovirus 
transfection for 48 h, NRVMs were cultured and treated with 
three-gas incubators environment (96% nitrogen, 5% carbon 
dioxide and 1% oxygen) for 6 h. This model was also divided 
into four groups: control groups (C), hypoxia groups (H), 
hypoxia+GFP groups (H+G) and hypoxia+Ad-GFP-Id2 (H+I).

In Vivo Gene Transfer and Rat MI Model
Male SD rats weighing 180–200 g were randomly divided into 
six groups: sham operation group (sham, n = 15), MI group (MI, 
n  = 18), MI+Ad-GFP group (GFP, n = 15), MI+Ad-GFP-Id2 

group (Id2, n = 15), Ad-GFP-Id2 group (n = 12), Ad-GFP group 
(n = 3). The detailed protocol was described previously (Liu et al., 
2018). Briefly, rats were anesthetized with sodium pentobarbital 
1% (50 mg/kg) by intraperitoneal injection and then intubated 
and mechanically ventilated during surgery. A left thoracotomy 
was performed through the fourth intercostal space, and the 
pericardium was opened. The left anterior descending coronary 
artery about 3–4 mm from the aortic root between the left atrial 
appendage and pulmonary artery was permanently ligated 
with a 6-0 noninvasive suture. Evidences of MI was that S-T 
segment elevation and the appearance of Q wave was visible 
on an electrocardiogram or distal cardiomyocytes of the LAD 
coronary artery ligation became pale. Rats in Ad-GFP-Id2+MI 
and Ad-GFP+MI groups received intramyocardial injections of 
2 × 109 pfu of Ad-GFP-Id2 or Ad-GFP into the left ventricular 
wall via a 50-gauge needle. A total volume of 100 ul was injected 
into five separate areas in the viable myocardium bordering the 
infarct zone. The sham groups or the MI groups were injected 
with 100 ul PBS. Rats in the sham group underwent similar 
surgical procedures as those in treatment groups only differing 
in having unknotted sutures placed under the left anterior 
descending coronary artery.

Heart Weight Index and Hemodynamics 
Monitoring
Two weeks after AMI, the body weights (BW) of the rats were 
recorded. Rats were anesthetized with sodium pentobarbital 
1% (50 mg/kg) by intraperitoneal injection and hemodynamic 
parameters were recorded. Briefly, the right common carotid 
artery was dissected and separated from the connective tissues. 
A catheter was inserted into the carotid, then blood pressure 
and heart rate were recorded by using LabChart 7. After 
hemodynamics monitoring, the hearts were removed quickly 
by thoracotomy, washed with saline, and then lung weight 
(LW) and heart weight (HW) were measured. Cardiac index = 
HW/BM (mg/g), Cardiopulmonary index = HW/LM (mg/mg) 
were calculated.

Western Blot Analysis and Quantitative 
Real-Time PCR
Western blot was performed as previously described (Shih 
et al., 2018). Myocardial tissues obtained after AMI for 2 weeks 
or CFs and NRVMs transfected with adenovirus for 3–5 days, 
were homogenized with RIPA lysis buffer (Beyotime Institute of 
Biotechnology, Haimen, China). The lysates were centrifuged at 
10,000g for 10 min (4°C) and the supernatants were collected. 
Equal amounts of proteins (40 µg) were separated by SDS-PAGE 
and then transferred to polyvinylidene difluoride membranes. 
Membranes were incubated with primary antibodies overnight 
at 4°C and then probed with horseradish-peroxidase-conjugated 
secondary antibodies for 30 min at room temperature (Table 
1). Blots were visualized with Enhanced chemiluminescence 
detection (ECL; Beyotime Institute of Biotechnology). β-actin 
was used as a loading control.

Total RNA extraction and real-time PCR study were performed 
as previously described (Liu et al., 2019; Yin et al., 2019). A total 
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mRNA was isolated from heart or cells by TRIzol Reagent 
(Invitrogen), and complementary DNA (cDNA) was synthesized 
from total RNA by the RevertAid First Strand cDNA Synthesis 
Kit (Toyobo, Tokyo, Japan). RT-qPCR was performed using gene-
specific primers (Table 2) and SYBR Green (Takara Bio, Japan). 
Relative mRNA expression was quantitated by 2-ΔΔCt comparative 
quantification method, normalized to β-actin expression. All 

western blot and PCR analyses were repeated at least three times 
to verify results.

Transthoracic Echocardiography 
Measurements
A noninvasive transthoracic echocardiography method was 
used to evaluate the morphology and function of left ventricle. 
Echocardiography was performed in anesthetized animals. 
M-mode echocardiography was conducted in parasternal long-
axis view to obtain echocardiographic parameters using a High-
Resolution Imaging System (GE Vivid E95, USA) equipped with 
a 12-MHz probe(12S).

Immunohistochemistry and Histological 
Staining
The hearts and cells were fixed with 4% paraformaldehyde and 
embedded in paraffin. CFs and NRVMs were permeabilized 
in 0.2% Triton X-100 in PBS. Deparaffinized sections (6-um 
thickness) were stained with Masson’s trichrome, Hematoxylin 
and Eosin (HE) or TUNEL. Deparaffinized sections (6-um 
thickness) or CFs were stained with primary antibodies overnight 
at 4°C with anti-α-SMA and/or anti-Vimentin or HIF-1α, and 
NRVMs were stained with anti-caspase-3, respectively, followed 
by the secondary antibody for 2 h at 37°C. Nuclei were stained 
with 4’,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich). The 

TABLE 2 | Polymerase chain reaction primers used in this study.

Gene Accession no. Primer (5’—3’) Size (bp)

R-β-actin NM_031144.3 sense CGTTGACATCCGTAAAGACCTC 110
antisense TAGGAGCCAGGGCAGTAATCT

R-IL-11 NM_133519.4 sense GCCAGATAGAGTCGTTGCCC 188
antisense AGGTAGGTAGGGAGTCCAGATTG

R-TGF-β1 NM_021578.2 sense GTGGCTGAACCAAGGAGACG 195
antisense AGGTGTTGAGCCCTTTCCAG

R-Smad3 NM_013095.3 sense GGGAGACATTCCACGCTTCA 233
antisense CTGGTTGCAGTTGGGAGACTG

R-HIF-1α NM_024359.1 sense AAGCCCAGAGTCACTGGGACT 118
antisense GTACTCACTGGGACTGTTAGGCTC

R-BAX NM_017059 sense TGAACTGGACAACAACATGGAG 148
antisense AGCAAAGTAGAAAAGGGCAACC

R-Bcl2 NM_016993.1 sense TTGTGGCCTTCTTTGAGTTCG 214
antisense TTCAGAGACAGCCAGGAGAAATC

R-caspase3 NM_012922 sense ATGCTTACTCTACCGCACCCG 138
antisense GGTTAACACGAGTGAGGATGTGC

R-caspase9 NM_031632.1 sense GCCAGAGGTTCTCACACCAGA 171
antisense GAAGGGCAGAAGTTCACGTTG
H-Id2 NM_031632.1 sense CCCAGAACAAGAAGGTGAGCA 245

antisense TATTCAGCCACACAGTGCTTTGC
R-α-SMA NM_031004.2 sense TCCTGACCCTGAAGTATCCGAT 260

antisense ACCAGTTGTACGTCCAGAAGCA
R-Collagen I NM_053304.1 sense TCCTGACCCTGAAGTATCCGAT 161

antisense ACCAGTTGTACGTCCAGAAGCA
R-Collagen III NM_032085.1 sense AGAGGCTTTGATGGACGCAA 269

antisense GGTCCAACCTCACCCTTAGC
R-Id2 NM_013060.3 sense ACCTGGACAGAACCAAACGTC 108

antisense TCATTCGACATAAGCTCAGAAGG

TGF-β1, Transforming growth factor-β1; α-SMA, alpha smooth muscle actin; HIF-1α, hypoxia induced factor-1 alpha; IL-11, interleukin 11; Id2, Inhibitor of 
differentiation 2. R, rat; H, human.

TABLE 1 | Antibodies used in this study.

Antibodies name Catalog number Manufacturer name

β-Actin AS1107 TDY
Cleaved caspase3 #9664 CST
Cleaved caspase9 AF5240 affbiotech
Bax #2772 CST
Bcl-2 ab196495 abcam
Id2 sc-398104 santa
α-SMA ab32575 Rabbit
Collagen I ab34710 abcam
Collagen III ab7778 abcam
TGF-β 1 AF1027 affbiotech
Smad3 #9523 CST
HIF-1α ab1 abcam
IL-11 bs-1827R BOAOSEN
MMP-2 ab92536 abcam
TIMP-1 ab61224 abcam
HRP-Goat anti Rabbit AS1107 ASPEN
HRP-Goat anti Mouse AS1106 ASPEN

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 134944

https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Id2 Improves Cardiac Function Post-InfarctYin et al.

5

negative controls lacking the primary antibody were included. 
Fluorescence images were captured by the fluorescent microscope 
(BX51 systems, Olympus, Tokyo, Japan). Semiquantitative 
analysis of the tissue staining images was performed using the 
Image-Pro Plus 6.0 System (Media cybernetics, USA).

Statistical Analysis
Data were expressed as means ± SEM and were analyzed by 
GraphPad Prism 5. One-way analysis of variance (ANOVA) was 
performed for multiple groups, followed by Bonferroni’s multiple 
comparison test. Unpaired Student’s t-test was performed to 
compare two groups. All data were subjected to formal tests for 
normality. Data not following normal distribution were evaluated 
by non-parametric tests. A P-value of <0.05 was considered 
statistically significant.

RESULTS

Myocardial Fibrosis and Id2 Expression in 
Rat Hearts Post-MI
Masson’s trichrome staining showed the presence of collagen 
deposition in the border and infarct zones in MI rats (Figure 
1A and Supplementary Table 1). HE staining results confirmed 
cardiac hypertrophy in the infarct and border zones compared 
to the sham group (Figure 1B). Myofibroblasts, transformed 
from CFs and characterized by α-SMA and vimentin-positive, 
were not detected in the sham group but were strongly expressed 
in the border and infarct zones of post-MI rats (Figure 1C and 
Supplementary Table 1). Immunofluorescence showed that Id2 
expression was increased in infarct zone and border zone (Figure 
1D). Western blot analysis affirmed that Id2 protein expression 
increased after 24 h and 2 weeks MI at the border zone (Figures 
1E, F). Ad-GFP-Id2 and Ad-GFP adenovirus were transfected 
to normal rat hearts. Frozen heart slices from the adenovirus 
injected areas showed a green fluorescence, and the protein 
expression of Id2 in those Ad-Id2 injected areas was significantly 
higher compared to GFP group after transfection for 3 days, 7 
days, 2 weeks and 4 weeks(Figures 1G, H).

Adenoviral Id2 Delivery Improves Cardiac 
Function and Ameliorates Cardiac 
Remodeling After MI
Male SD rats were randomly divided into four groups: sham 
operation group (sham, n = 15), MI group (MI, n = 15), MI+Ad-
GFP group (GFP, n = 15), and MI+Ad-GFP-Id2 group (Id2, 
n = 15). There was no difference in body weight (BW) and lung 
weight (LW) among the four groups after 2 weeks. The heart 
weight (HW), HW/BW ratio and HW/LW ratio were higher in 
MI group and GPF group compared to the sham group (Figures 
2A–E and Supplementary Table 2). The echocardiography 
showed that LVEDD, LVESD, LVEDV and LVESV significantly 
increased, whereas FS and LVEF decreased in the MI group 
and GFP group relative to the sham group (Figures 2F–L and 
Supplementary Table 2), illustrating that cardiac function 

was deteriorated after MI. HW, HW/BW ratio, HW/LW ratio, 
LVEDD, LVESD, LVEDV, and LVESV were lower, while FS and 
LVEF were higher in Id2 group compared to MI group and GFP 
group. In addition, hemodynamic parameters such as systolic 
blood pressure (SBP) and mean blood pressure were markedly 
reduced in MI groups and in GFP groups, which were restored 
in rats that received Ad-Id2 delivery. There were no difference 
of heart rates among the four groups (Supplementary Table 2). 
These findings indicated that over-expression of Id2 can remodel 
cardiac structure and improve cardiac function.

Over-Expression of Id2 Reduces Cardiac 
Fibrosis Post-MI
Reactive myocardium remodeling after MI leads to cardiac 
fibrosis. This is associated with myofibroblast differentiation, ECM 
accumulation and impaired the balance of MMPs and TIMPs. 
HE and Masson staining showed that hypertrophy and collagen 
deposition were higher in MI group and GFP group compared 
to sham groups. The fibrotic area was 59.50 ± 1.4% and 56.64 ± 
5.6% in MI group and GFP group, respectively, and Id2 treatment 
reduced the fibrotic size to 33.63 ± 3.7% (P < 0.05) (Figures 3A–C 
and Supplementary Table 3). Immunofluorescence revealed 
that α-SMA and vimentin were co-expression in MI group and 
GFP group, but the phenomenon was not detected in the sham 
group and Id2 group (Figure 3D). Western blot analysis further 
confirmed that the protein levels of α-SMA, Collagen I, Collagen 
III, MMP2 and TIMP1 were augmented after MI. Id2 treatment 
decreased the protein levels of α-SMA, Collagen I, Collagen III, 
modulated the balance between MMP2 and TIMP1 compared to 
GFP group and MI group (Figures 3E, F).

Determination of Optimal MOI and CCK-8 
Incubation Time
Two days after cell isolation, NRVMs were transfected with either 
Ad-GFP-Id2 or Ad-GFP at different multiplicity of infection 
(MOI) values (MOI = 0, 10, 20, 50, 100, 200). CFs of passages 3–6 
were digested in culture dishes and then inoculated in 24-well 
plates and 6-well pates. When cell confluence reached 70–80%, 
Ad-GFP-Id2 and Ad-GFP in DMEM/F12 were added to the cells 
at different MOI values (MOI = 0, 10, 20, 50, 100, 200). After 
12 h of incubation period, a fresh complete medium was added. 
The cells were observed under a light and fluorescent microscope 
(BX51 systems; Olympus Corporation, Tokyo, Japan). After 
transfection for 24 h, the CFs and NRVMs exhibited a green 
fluorescence. The results showed that as the MOI increased, the 
fluorescence intensity of Ad-GFP-Id2 increased. The highest MOI 
that did not reduce the number of cells was chosen as the optimal 
MOI value for infection. As shown in Figure S1A(1–6) and 
Figure S1C(1–6), the optimal MOI was 50 and 100 in NRVMs 
and CFs, respectively. Furthermore, immunohistochemistry 
staining was performed to establish the identity of the isolated 
cells. CFs were vimentin-positive and α-SMA-negative (Figure 
S1D(1–4)), while NRVMs displayed high expression of cardiac 
troponin-I(c-TnI) (Figure S1B(1–3)). The mRNA levels of Id2 
were significantly higher in Id2 group than in the control group 
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FIGURE 1 | Myocardial Fibrosis and Id2 expression in rat hearts post-MI. (A) Masson’s trichrome staining post-MI after 2 weeks (n = 6). Blue staining represents 
fiber tissue. Scale bars represent 100 um. (B) HE staining post-MI after 2 weeks (n = 6). Scale bars represent 100 um. (C) Immunofluorescence images of 
myofibroblasts derived from CFs (n = 6). Green, vimentin; red, α-SMA; blue, nuclei. Scale bars represent 100 um (n = 6). (D) Immunofluorescence images show 
Id2 expressions in MI rats and sham rats. Red, Id2; blue, nuclei. Scale bars represent 100 um. (E, F) Id2 protein levels detected by western blot analysis after MI. 
(G, H) Rats were intramyocardially injected with Ad-GFP-Id2 or Ad-GFP for 3 days, 7 days, 2 weeks and 4 weeks. The fluorescence of Ad-GFP and Ad-GFP-Id2 in 
injected area of rat heart after transfected 2 weeks (G). The protein levels of Id2 in left ventricular myocardium were examined by Western Blot (H). h, hours; d, days; 
w, weeks. β-actin was used as the loading control. Data represent means ± SEM (n = 3). *,P < 0.05 VS Sham group, 0 h or GFP group.
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FIGURE 2 | Id2 improved cardiac structure and function. (A–E) Four groups’ comparison represented Id2 can ameliorate cardiac structure by reducing the HW/BW 
or HW/LW ratio index. (F–L) Densitometric analysis of the data demonstrated a significantly improvement of cardiac function in Id2 groups. BW body weight, HW 
heart weight, Lung weight, FS fractional shortening, LVEF left ventricular ejection fraction, LVESD left ventricular end-systolic diameter, LVEDD left ventricular end-
diastolic diameter, LVESV left ventricular end-systolic volume, LVEDV left ventricular end-diastolic volume, HR heart rate, Bp blood pressure. Data represent means ± 
SEM. Heart weight index (n = 10), Transthoracic echocardiography measurements (n = 7). *P <0.05, vs sham group; #P <0.05, vs MI group and GFP group.
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and GFP group at 48 h after transfection (Figure S1E). The 
results showed that Ad-GFP-Id2 transfection was successful and 
lead to a stable Id2 expression in vitro. Besides, the rate of CFs 
proliferation after incubation with CCK-8 reagent for 1 or 2 h 
was the same as that of the primary state. In contrast, incubation 
of CFs with CCK-8 reagent for 4 h increased CFs proliferation 
obviously, indicating that CCK-8 reagent did not have any effect 
on cell proliferation within 2 h. Thus, 2 h duration was regarded 
as the optimal incubation time (Figure S1F).

Id2 Protects CFs Against Cardiac Fibrosis 
In Vitro
Although Id2 expression increased after MI, the cellular source 
of Id2 was not known. Thus, we treated NRVMs and CFs in 
hypoxia environment for 6 h and 12 h, respectively. Figures 
4A–C showed that the level of Id2 was not different between 
normal NRVMs and CFs. In the early hypoxia stage, the 
expression of Id2 was higher in NRVMs than in CFs, and over-
rode the level of Id2 in NRVMs at the late hypoxic stage. Thus, 

FIGURE 3 | Adenoviral Id2 delivery ameliorated cardiac remodeling post-MI. (A, B) Representative Masson’s trichrome staining (A) and histogram of connective 
tissue percentage (B) of hearts. Blue staining indicates connective tissue (n = 6). Scale bars represent 100 um. (C) Representative HE staining images (n = 6). Scale 
bars indicate 100 um. (D) immunofluorescence images of myofibroblasts derived from CFs (n = 6). Green, vimentin; red, α-SMA; blue, nuclei. Scale bars represent 
100 um. (E, F) Western blot analysis of protein expressions in rat hearts among the four groups (n = 3). β-actin was used as the loading control. Data represent 
means ± SEM. *,P < 0.05, vs sham group; # ,P < 0.05, vs MI group and GFP group;   in panel (E) including α-SMA, Collagen I, Collagen III in both MI and 
GFP group; in panel (E) including MMP2, TIMP-1 in both MI and GFP group.
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FIGURE 4 | Continued
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we inferred that NRVMs and CFs can express Id2 in a time-
dependent manner.

Numerous studies have shown that myofibroblasts derived from 
CFs are markers of cardiac fibrosis. To clarify whether Id2 directly 
modulates myofibroblast differentiation, we treated CFs with TGF-
β1 or hypoxia. The CFs were placed in incubators with hypoxic or 
normal conditions for 6, 8, 10, 12, and 24 h, after which the absorbance 
values were measured at 450 nm. It was observed that the proliferation 
of CFs increased along with the time of hypoxia (Figure 4D), so did 
the mRNAs of α-SMA (Figure 4E, Supplementary Table 4) and Id2 
(Figure 4F). Since the mRNA levels of Id2 reached peak levels at 12 
h, we chose 12 h as the optimal hypoxia time for CFs stimulation. 
The results showed that CFs exposed to hypoxic environment 
expressed higher mRNA and protein levels of α-SMA, Collagen I and 
Collagen III, then these effects were reversed by over-expression of 
Id2. Treatment with TGF-β1 (10 ng/ml) increased the expression of 
mRNA and protein levels of α-SMA, Collagen I and Collagen III in 
CFs compared to control groups. Id2 treated group expressed lower 
levels of α-SMA, Collagen I, and Collagen III levels in contrast to TGF-
β1 group and TGF-β1+GFP group (Figures 4G–J). Similar findings 
were obtained by immunofluorescence analysis following hypoxia and 
TGF-β1 stimulation (Figures 4K–L and Supplementary Table 5).

Over-Expression of Id2 Reduces Cardiac 
Fibrosis Via TGF-β1/Smad3/HIF-1α/IL-11 
Pathways
We further explored the mechanisms in which Id2 exhibits the 
anti-fibrotic effects. We detected that TGF-β1, smad3, HIF-1αand 

IL-11 highly expressed in MI hearts and GFP hearts compared 
to the sham group (Figure 5A). Moreover, treatment of CFs with 
TGF-β1 elevated the mRNA and protein levels of smad3, HIF-
1αand IL-11 (Figures 5B, C), which matched with expression 
levels of CFs exposed to hypoxia (Figures 5D–F, Supplementary 
Figure 2). It was also found that the injections of Ad-GFP-Id2 into 
the myocardium and rat CFs decreased the expression of TGF-β1, 
smad3, HIF-1α and IL-11. Thus, we concluded that Id2 can inhibit 
cardiac fibrosis through TGF-β1/smad3/HIF-1α/IL-11 pathway.

To further examine the effect of TGF-β1/smad3/HIF-1α/
IL-11 on Id2, Oltipraz, an inhibitor of HIF-1αactivation was 
used. This experiment was divided into six groups: control group 
(control), Ad-GFP-Id2 group (Id2), Oltipraz group (Oltipraz) 
(10 mmol/L), hypoxia group (hypoxia), hypoxia+Ad-GFP-Id2 
group (hypoxia+Id2), and hypoxia+Oltipraz group (10 mmol/L) 
(hypoxia+Oltipraz). Figures 5G–I showed that Oltipraz and 
Ad-GFP-Id2 decreased the expression of HIF-1αin CFs at 
normal conditions. The protein level of HIF-1αwas lower in 
hypoxia+Id2 and hypoxia+Oltipraz compared to hypoxia group 
as reconfirmed by the immunofluorescence tests.

Id2 Decreases Apoptosis Both In Vivo and 
In Vitro
The apoptotic effects of Id2 were evaluated by the TUNEL 
staining. The number of apoptotic cells (TUNEL positive cells) 
were higher in MI group and GFP group than in the sham group 
and Id2 group. This implies that MI promoted cardiomyocyte 
apoptosis and over-expression of Id2 might prevent these adverse 

FIGURE 4 | NRVMs or CFs treated with hypoxia or TGF-β1. (A–C) Comparison of Id2 in NRVMs and in CFs (n = 3). (D) The proliferation rate of CFs in different hypoxia 
time (n = 5). (E, F) The mRNA levels of α-SMA (E) and rat Id2 (F) in CFs treated with the multi-hypoxia time (n = 3). (G–J) qRT-PCR and Western blot were performed 
to detect the mRNA levels of α-SMA, Collagen I, Collagen III in CFs treated with TGF-β1(10 ng/ml) for 24 (G) or hypoxia environment for 12 h (H) and the protein 
expressions of α-SMA, Collagen I, Collagen III in CFs treated with TGF-β1(10 ng/ml) for 24 h (I) or hypoxia environment for 12 h (J) (n = 3). (K, L) immunofluorescence 
images of myofibroblasts derived from CFs, which were treated with TGF-β1 (G) and put under hypoxia environment (H), respectively (n = 3). Green, vimentin; red, 
α-SMA; blue, nuclei. Scale bars represent 100 um. β-actin was used as the loading control. Data represent means ± SEM. *P < 0.05 VS control group or 0 h ; #P < 
0.05 VS TGF-β1 group, TGF-β1+GFP group, hypoxia group, or hypoxia+GFP group;  in panels (G, I) including α-SMA, Collagen I, Collagen III in both TGF-β1 
group and TGF-β1+GFP group;  in panels (H, J) including α-SMA, Collagen I, Collagen III in both hypoxia group and hypoxia+GFP group;  in panel 
(I) including α-SMA, Collagen I, Collagen III in TGF-β1+Id2 group;  in panel (J) including Collagen I, Collagen III in hypoxia+Id2 group.
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FIGURE 5 | Continued
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effects. The apoptotic cells displayed yellow-brown nuclei whereas 
normal cells had light blue nuclei. The rate of apoptosis was higher 
in MI group and GFP group compared to the sham group (MI 
31.00% ± 0.9% vs GFP 31.70% ± 1.49% vs sham 7.20% ± 0.25%), 
and Id2 reversed these effects to some extent (Id2 17.30% ± 0.25%) 
(Figures 6A, B and Supplementary Table 6). In addition, Id2 
protected against apoptosis post-MI from apoptosis by decreasing 
the expression of bax, bcl-2, cleaved-caspase3 and cleaved-
caspase9 (Figure 6C). Furthermore, immunofluorescence assays 
confirmed that Id2 prevented the myocardium from apoptosis in 
vivo (Figures 6D, E and Supplementary Table 7).

To determine whether Id2 can reduce cell apoptosis in vitro, 
isolated NRVMs were exposed to hypoxia and then analyzed by 
flow cytometry. Results showed that the apoptosis rate of NRVMs 
increased with hypoxia exposure time and the mRNA level of Id2 
reached the peak at 6 h (Figures 7A–F). Therefore, we chose 6 
h as the optimal hypoxia exposure time. Besides, the expression 
levels of markers of cell apoptosis, bax/bcl-2, c-caspase3 and 
c-caspase9 were gradually increased along with the hypoxia 
time-course (Figure 7G). The hypoxic models were divided into 
four groups: control group (C), hypoxia group (h), hypoxia+GFP 
group (H+G) and hypoxia+Ad-GFP-Id2 group (H+I). The 
results showed that the mRNA and protein levels of bax/bcl, 
c-caspase3 and c-caspase9 were lower in H+I group compared 
to H group and H+G group (Figures 7H, I). Collectively, these 
results demonstrated that Id2 ameliorated myocardial apoptosis 
post-MI in vivo and attenuated apoptosis of NRVMs in vitro. To 
reveal the mechanism of Id2 in reducing apoptosis, the protein 
level of HIF-1α in the four groups was measured. Figure 7J shows 
that HIF-1α expression in NRVMs increased after exposure 
to hypoxic environment, while Id2 treatment inhibited it. We 
therefore inferred that Id2 inhibited apoptosis through HIF-1α.

DISCUSSIOn
Accumulating evidences indicate that Id2 plays a role in organic 
fibrotic diseases. A recent study by Vigolo et al. identified Id 
protein as the a key target of BMPR1A-SMAD1/5/8 signaling 
in renal fibrosis (Vigolo et al., 2019). Moreover, Id protein is 
stimulated by TGF-β1 and BMP7, and it acts as a molecular 
switch which determines the fate of cells by regulating the 
timing from cell proliferation to differentiation. Therefore, it 
might serve as a therapeutic target for corneal fibrosis (Izumi 
et al., 2006; Mohan et al., 2016). Id2 is a downstream target of 
BMP7 which antagonizes the TGF-β1-dependent fibro-genic 
activity in liver fibrosis and pulmonary myofibroblastic cells 
(Kinoshita et al., 2007). More importantly, Id is a member of 
the Id family associated with the Helicopter-loop-Helix (HLH) 
protein, which lacks the basic amino acid sequence necessary 
for DNA binding. Consequently, it can interact with the basic 
helix-loop-helix (Basic Helix-loop-Helix, bHLH) to form a 
heterodimer and inhibit the bHLH to link relevant DNA or other 
tissue-specific bHLH transcription factors (Lasorella et al., 2014). 
Id2 inhibits HLH transcriptional factors such as MyoD in liver 
fibrosis, thereby reducing differentiation of hepatic stellate cells 
and promoting cell proliferation. Finally, it has been reported 
that overexpression of Id2 attenuates pulmonary fibrosis by 
regulating c-Abl and Twist (Yang et al., 2015). The data described 
above show that Id2 is closely related with fibrosis.

The Id family proteins highly expressed in the early stage 
of embryonic growth and heart development. Particularly, 
Id1, Id2, and Id3 are detected in the heart, whereas Id4 is not. 
Fraidenraich et al. (2004) demonstrate that Id1 and Id3 regulate 
cardiac development for the first time and other several following 
studies have shown that Id family is involved in the formation 

FIGURE 5 | Id2 inhibited myofibroblast differentiation via TGF-β1/smad3/HIF-1α/IL-11 pathways. (A) The protein levels of TGF-β1, smad3, HIF-1α, IL-11 in rat 
hearts. (B, C) qRT-PCR and Western blot were performed to detect the mRNA levels (C) or the protein expressions (B) of smad3, HIF-1α, IL-11 in CFs treated with 
TGF-β1 (10 ng/ml) for 24 h. (D)The mRNA levels of TGF-β1, smad3, HIF-1α, IL-11 in CFs treated with different hypoxia time. (E–F) qRT-PCR and Western blot were 
performed to detect the mRNA levels (F) or the protein expressions (E) of TGF-β1, smad3, HIF-1α, IL-11 in CFs treated with hypoxia for 12 h. (G) The protein levels 
of HIF-1α in six groups (n = 3). (H, I) immunofluorescence images of CFs among six groups in vitro (n = 6). Red, HIF-1α; blue, nuclei. Scale bars represent 100 um. 
β-actin was used as the loading control. Data represent means ± SEM (n = 3). *P < 0.05, vs sham group or control group. #P <0.05, vs MI group, GFP group, TGF-
β1 group, TGF-β1+GFP group, hypoxia group, or hypoxia+GFP group;  in panel (A) including TGF-β1, smad3, HIF-1α, IL-11 in both MI group and GFP 
group;  in panels (B, C) including smad3, HIF-1α, IL-11 in both TGF-β1 group and TGF-β1+GFP group;  in panel (B) including smad3, HIF-1α, 
IL-11 in TGF-β1+Id2 group;  in panel (D) including TGF-β1, smad3, HIF-1α, IL-11 in both 12 h and 24 h;  in panels (E, F) including TGF-β1, 
smad3, HIF-1α, IL-11 in both hypoxia group and hypoxia+GFP group.
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of the cardiac mesoderm (Cunningham et al., 2017). Id2 knock-
out during embryonic E9.5-E14.5 leads to fatal defects in cardiac 
development, such as systemic and pulmonary circulation 
abnormalities, ventricular septal defect as well as myocardial 
hypoplasia.

Cardiac remodeling caused by MI is characterized by 
formation of α-SMA stress fibers, production of ECM proteins 
such as collagen I or collagen III, activation of TGF-β1 canonical 
and non-canonical pathway, myofibroblast differentiation and 
fibrosis of myocardial tissue (Frangogiannis, 2019). In this study, 
we found, for the first time, that Id2 over-expression after MI 
inhibited cardiac fibrosis. Results showed that Id2 improved 
cardiac function and attenuated cardiac fibrosis. These effects 

were associated with inhibition of myofibroblast differentiation, 
reduction of ECM accumulation and balance of MMP-TIMP 
system. Thus, Id2 over-expression influenced pathological 
cardiac remodeling post-MI.

We further explored the signaling molecules that mediate the 
anti-fibrotic effects of Id2. The TGF-β/Smad signaling pathway 
participates in the pathogenesis of cardiac fibrosis, and Smad3 
plays a central role in TGF-β1-induced excessive accumulation 
of ECM components (Bujak et al., 2007; Hu et al., 2018; Zhang 
et al., 2018). As a key factor in organ fibrosis, TGF-β1 plays an 
indispensable role in cardiac fibrosis. Id2 is an inhibitory factor 
downstream of the TGF-β1 signaling. Secondly, HIF-1α, which 
increases following exposure to hypoxia, might be a target for 

FIGURE 6 | Id2 reduced carmyocyte apoptosis post-MI. (A, B) Representative TUNEL staining. The apoptotic cells show yellow-brown nuclei, while the normal 
cells exhibit light blue nuclei. (n = 6). Scale bars represent 100 um. (C) The protein levels of c-caspase3, c-caspase9, bax and bcl-2 in rat hearts (n = 3). (D) The 
apoptotic cell rate in four groups. (E) Immunofluorescence images of cardiomyocytes among four groups in vivo (n = 6). Red, c-caspase3; blue, nuclei. Scale 
bars represent 100 um. β-actin was used as the loading control. Data represent means ± SEM. *P <0.05, vs control group. #P <0.05, vs MI group and GFP 
group;  in panel (C) including c-caspase3, c-caspase9, bax and bcl-2 in both MI group and GFP group;  in panel (C) including c-caspase3, 
c-caspase9, and bcl-2 in Id2 group.
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FIGURE 7 | Continued
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preventing cardiac perivascular fibrosis by inhibiting endothelial-
to-mesenchymal transition (Zhang et al., 2017). Besides, it is 
reported that HIF-1α-Smad3 transcriptional complexes regulate 
the transcription of several genes, e.g., pheromone in red blood 
cells or type-I collagen in human tubular epithelial cells (Sanchez-
Elsner et al., 2004; Baumann et al., 2016). This complex is activated 
under hypoxic conditions or/and TGF-β1 stimulation. As a DNA 
binding inhibitor, Id2 binds to HIF-1α to form a heterodimer, 
which might block the effects of HIF-1α (Teng and Li, 2014). 
Recent studies have shown that IL-11 is a crucial determinant of 
cardiac fibrosis. Schafer et al. states that IL-11 together with other 
fibrotic factors can cause malignant myocardial fibrosis (Schafer 
et al., 2017). To further determine the effect of TGF-β1/smad3/
HIF-1α/IL-11 on Id2, Oltipraz, an inhibitor of HIF-1α, was used. 
Results showed that Id2 inhibited HIF-1α, similar to the effects of 
Oltipraz in normal and hypoxia environment.

In addition, Id2 protected the myocardium from apoptosis, 
which is consistent with previous reports. Numerous studies have 
confirmed that Id family can reduce cell apoptosis (Sun et al., 
2016; Zhao et al., 2016; Yin et al., 2017; Fan et al., 2018). However, 
it is also reported that Id2 can induce apoptosis in hypoxia- or 
ischemia-induced neuronal injury and lead to abnormal brain 
development (Park et al., 2013; Guo et al., 2015). Therefore, 
whether Id2 reduces or induces apoptosis requires further 
analysis. In this study, we found that Id2 reduced apoptosis in 
MI rat hearts and in NRVMs. To further explore the potential 
anti-apoptotic mechanisms of Id2, we detected the protein levels 
of HIF-1α in NRVMs. We found that HIF-1α was increased after 
exposure of cells to hypoxic environment, but Id2 inhibited this 
increase. Besides, other studies have illustrated that HIF-1α plays 
an essential role in NRVMs’ apoptosis. Thus, we inferred that Id2 
inhibited apoptosis by inhibiting HIF-1α.

However, we did not explore the interaction between HIF-1α 
and Id2. As mentioned above, Id2 was involved in cardiac 
fibrosis. Given that HIF-1α is a DNA-binding inhibitor, we 
hypothesize that Id2 may reduce the formation of HIF-1α-Smad3 
transcriptional complexes, thereby promoting the transcription 
of IL-11. Further studies are required to pursue this possibility. 
Another limitation of this study is that we only focus on cardiac 
fibrosis induced by MI. In fact, many factors can lead to cardiac 
fibrosis, such as aging. In addition, we found that Id2 protected 
the myocardium from apoptosis via HIF-1α. But the exact role 
of Id2 in cell apoptosis remains unclear. Finally, our experiments 
were performed using SD rats while some of the previous 
researches mentioned above were performed in mice. We used 
rats because of their larger sizes. Compared to mice, the survival 
rate of rats post-MI is higher and the CFs and NRVMs isolated 

from rats are more stable. Thus, to validate the effects of Id2 on 
cardiac function, experiments should be performed in other 
animal species. The type of cells used in such experiments should 
be considered when interpreting the results since Id2 may have 
diverse effects in different cell-lines.

In conclusion, this study provided the first evidence that 
Id2 protected against cardiac fibrosis. The results showed that 
Id2 ameliorated cardiac fibrosis in rats post-MI by inhibiting 
TGF-β1/smad3/HIF-1α/IL-11 pathway. Thus, Id2 might be a 
therapeutic target for cardiac fibrosis after MI.
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Many conditions affecting the heart, brain, and even the eyes have their origins in blood 
vessel pathology, underscoring the role of vascular regulation. In age-related macular 
degeneration (AMD), there is excessive growth of abnormal blood vessels in the eye 
(choroidal neovascularization), eventually leading to vision loss due to detachment of 
retinal pigmented epithelium. As the advanced stage of this disease involves loss of 
retinal pigmented epithelium, much less attention has been given to early vascular events 
such as endothelial dysfunction. Although current gold standard therapy using inhibitors 
of vascular endothelial growth factor (VEGF) have achieved initial successes, some 
drawbacks include the lack of long-term restoration of visual acuity, as well as a subset of 
the patients being refractory to existing treatment, alluding us and others to hypothesize 
upon VEGF-independent mechanisms. Against this backdrop, we present here a 
nonexhaustive review on the vascular underpinnings of AMD, implications with genetic 
and systemic factors, experimental models for studying choroidal neovascularization, and 
interestingly, on both endothelial-centric pathways and noncell autonomous mechanisms. 
We hope to shed light on future research directions in improving vascular function in 
ocular disorders.

Keywords: choroidal neovascularization, endothelial, vascular mechanisms, age-related macular degeneration, 
disease models

INTRODUCTION
Endothelial dysfunction underlies the crux of many conditions, which may implicate comorbidities. 
One example is choroidal neovascularization, a process in wet or exudative age-related macular 
degeneration (AMD), characterized by the abnormal intravasation of choroidal vasculature into 
the retinal epithelium or subretinal tissue. This often involves dysfunctional and leaky vessels, 
which then lead to the accumulation of fluid and blood in the macula (Chirco et al., 2017; Saini 
et al., 2017). AMD is the principal cause of permanent blindness among elderly over 60 years in 
industrialized countries (Stan et al., 2004; Pascolini and Mariotti 2012; Wong et al., 2014). It has a 
prevalence of 8.7% which will increase with ageing populations, adversely affecting the quality of life 
of 196 million people by 2020. As one would expect, it will incur substantial public health burden in 
the next few decades (Friedman et al., 2004; Seddon et al., 2005; Wong et al., 2014; Jonas et al., 2017). 
Among AMD cases with acute visual impairment, wet AMD is responsible for approximately 90% 
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of cases (Ferris et al., 1984). Despite the rising prevalence of this 
debilitating condition, current treatment strategies for wet AMD 
mostly revolve around inhibitors of vascular endothelial growth 
factor and photodynamic therapy. Both have considerable 
limitations such as lack of long-term improvement on visual 
acuity (Rofagha et al., 2013; Fernández-Robredo et al., 2014; 
Bracha et al., 2017; Dunn et al., 2017; Jaffe et al., 2017; Malek et al., 
2018) and secondary inflammatory side effects (Ho et al., 2016). 
These bring to light the necessity for a deeper understanding of 
the disease (Fernández-Robredo et al., 2014; Bracha et al., 2017; 
Malek et al., 2018).

Endothelial dysfunction plays a role in many human diseases. 
Patients with early vascular abnormalities have been found to 
acquire AMD and associated cardiovascular and cerebrovascular 
diseases later in their lives (Cheung and Wong, 2014). Research 
on AMD has mainly focused on retinal pigmented epithelium 
deficit as that is the ultimate pathological change leading to 
vision loss, whereas mechanisms of endothelial dysfunction 
in choroidal neovascularization remain elusive. Limitations 
with the current gold standard treatment for wet AMD using 
inhibitors of vascular endothelial growth factor (VEGF) have 
revealed possibilities of VEGF-independent pathways (Huang 
et  al., 2016). Despite advances in genome wide association 
studies (GWAS), risk variants associated with AMD are hardly 
translated into the intended development of diagnostics and 
treatment. It is slowly being recognized that genetic risk variants 
exert minuscule influences as they often have no direct relevance 
to the illness. In fact, they are postulated to act through complex 
regulatory networks to influence the activity of key genes that are 
more biologically connected to the disease (Boyle et al., 2017).

We recognize that emerging studies are discovering a 
significant involvement of endothelial pathology in choroidal 
neovascularization. Here, we provide a nonexhaustive review 
to address the vascular underpinnings of AMD, provide 
information on state-of-the-art experimental models of choroidal 
neovascularization, and interpret existing knowledge on 
endothelial mechanisms with heterotypic interplay of different 
cell types and environmental factors.

vASCULAR ETIOLOGY IN AGE-RELATED 
MACULAR DEGENERATION

Endothelial Dysfunction in Early Stages
While the pathogenesis of wet AMD is still poorly understood, 
several reports suggest a vascular etiology for the disease. The 
choroidal endothelial cells that form choriocapillaris vessel 
walls are lost even before the occurrence of retinal pigmented 
epithelium dysfunction, suggesting that vascular dysfunction 
could be the first trigger of wet AMD (Lutty et al., 2009; 
Bhutto and Lutty, 2012; Biesemeier et al., 2014; Mullins et al., 
2014). Histologically, choriocapillaris tissue near the site of 
choroidal neovascular lesions exhibit decreased density without 
accompanying retinal pigmented epithelium disruption (Bhutto 
and Lutty 2012). Indeed, the choriocapillaris endothelium in 
aging macula is highly subject to complement activation stress 
and decreases in density with increasing drusen in dry or 

non-exudative AMD. Complement accumulation present in 
early stages may lead to choriocapillaris loss (Berenberg et al., 
2012; Mullins et al., 2014). The resultant loss of vascular support 
to the retinal pigmented epithelium releases angiogenic signals 
which stimulate abnormal intravasation of choroidal vessels 
into subretinal layers, observed in some cases of nonexudative 
AMD which progress to wet AMD. Furthermore, it is well 
established that the functions of retinal pigmented epithelium 
and choriocapillaris show tight mutualistic dependence and 
atrophy of either structures leads to a dysfunction of the other 
(Blaauwgeers et al., 1999; Marneros et al., 2005; Biesemeier 
et al., 2014; Seddon et al., 2016; Chirco et al., 2017). Therefore, 
the pathogenesis of choroidal neovascularization may arise from 
initial structural changes in the vasculature (Figure 1).

vasculopathy in Choroidal  
Neovascular Lesions
In addition to vascular degeneration in the early stages of AMD, 
vascular dysfunction is manifested in late stage neovascular 
outcomes, such as polypoidal choroidal vasculopathy (PCV). 
PCV is a subtype of wet AMD that is most prevalent in Asians 
(Wong et al., 2014; Huang et al., 2016). It is characterized 
by abnormal branching vascular networks and a presence 
of polypoidal or aneurysmal dilations at the terminal ends 
of these networks. These polypoidal lesions appear as 
hyperfluorescent nodules in fundus indocyanine angiography 
(Yannuzzi et al., 1990; Liu et al., 2016). Choroidal vessels in 
PCV display hyalinization, an arteriosclerotic phenotype 
characterized by the replacement of smooth muscle tissue with 
ill-defined basement membrane-like material, as observed in 
histopathological sections (Leishman 1957; Okubo et al., 2002; 
Kuroiwa et al., 2004; Nakashizuka et al., 2008). The aneurysmal 
dilations observed at terminal ends of aberrant networks also 
have vascular causes. They have been purported to be a result 
of dysfunction of elastin, homocysteine-associated oxidative 
stress and endothelial dysfunction (Cheng et al., 2014). The 
presence of hyalinization and aneurysms clearly indicate that 
PCV is a vasculopathy of the inner choroidal vasculature with 
arteriosclerotic features.

Wong et al. (2016) have presented a comprehensive 
review of the epidemiology, detailed risk factors and clinical 
manifestations of two wet AMD subtypes - PCV and typical 
choroidal neovascularization. Mechanisms that could lead to 
common vessel wall pathology in PCV and typical choroidal 
neovascularization include impaired extracellular matrix 
metabolism (Nakashizuka et al., 2008; Jones et al., 2011), 
involvement of the high-density lipoprotein pathway (Liu et al., 
2014), choroidal vascular hyperpermeability associated with 
genetic polymorphisms ARMS2 A69S (rs10490924) and CFH 
(rs1329428) (Yoneyama et al., 2016), and choroidal venous 
congestion leading to thickened choroid and choroidal vascular 
hyperpermeability in PCV (Chung et al., 2013) (Figure 1). 
Notably, levels of VEGF in the aqueous humor of patients with 
typical choroidal neovascularization were found to be higher 
than that in PCV patients. It is postulated that the two wet AMD 
subtypes could have different pathological mechanisms, with 
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typical choroidal neovascularization being more VEGF-driven 
than PCV (Tong et al., 2006).

Genetic Basis of Age-Related  
Macular Degeneration
In the past few decades, GWAS on AMD cohorts have revealed 
several disease-associated risk variants. The Genetics of AMD in 
Asians Consortium conducted a genome-wide and exome-wide 
association study to uncover the most common single nucleotide 
polymorphisms (SNPs) associated with wet AMD specifically 
in the East Asian population (Cheng et al., 2015). Consistent 
with previously identified variants, the SNPs ARMS2-HTRA1 
rs10490924, CFH rs10737680, CETP rs3764261, ADAMTS9 
rs6795735, C2-CFB rs429608, and CFI rs4698775 were the 
most significantly associated with wet AMD. In European and 
Asian populations, the most common SNPs seem to converge 
on the gene HTRA1 and complement pathway-related genes. 
Advances in GWAS have generated more targets than biological 
interpretation can translate them into new therapeutics. 
Emerging functional studies are primarily focused on how 
those SNPs impact on retinal pigmented epithelium. We will 
further discuss how HTRA1 and complement factors could lead 
to aberrant vascular outcomes in a later section on Vascular 
Mechanisms in Choroidal Neovascularization.

The risk variant residing in proximity to the promoter region 
of HTRA1 seems to be associated with elevated levels of HTRA1 
in the retinal pigmented epithelium. It has been postulated that 
HTRA1 upregulation could lead to Bruch’s membrane matrix 
breakdown, hence promoting choroidal vessel invasion (Yang 
et al., 2006; Jones et al., 2011). Variants in complement genes CFH, 
CFB, C2, C3, C5, and SERPING1 also suggest important roles of 
complement dysregulation in AMD (Khandhadia et al., 2012). 
SNPs affecting CFH and C3 result in decreased CFH inhibition, 

thus leading to increased alternative complement pathway 
activation (Nishida et al., 2006; Yu et al., 2014; Zhang et al., 2018), 
which might contribute to an angiogenic microenvironment 
favoring progression to choroidal neovascularization. Table 1 
represents a brief overview on the topmost variants with known 
molecular effects and implicated mechanisms contributing to 
AMD. Genetics of AMD and PCV have been reviewed extensively 
by our colleagues (Wong et al., 2016).

Limitation of Current Treatments
At present, gold standard therapy for wet AMD involves 
intravitreal administration of VEGF inhibitors such as 
bevacizumab, ranibizumab and aflibercept, based on the notion 
of VEGF being a main driver of angiogenesis (Xu and Chen, 2016; 
Siedlecki et al., 2017; Fogli et al., 2018). These are humanized 
monoclonal antibodies which act to decrease elevated VEGF 
at the site of neovascularization, eventually restoring retinal 
thickness and function (Golbaz et al., 2011). Other interventions 
for wet AMD include verteporfin photodynamic therapy, which 
is used in combination with anti-VEGF therapy to stimulate 
polyp regression in PCV (Cho et al., 2012; Qian et al., 2018). 
While anti-VEGF therapy has restored vision for many, the 
monotherapy does not improve visual acuity in a substantial 
number of AMD patients as a form of long-term management 
(Rofagha et al., 2013; Fernández-Robredo et al., 2014; Bracha 
et al., 2017; Dunn et al., 2017; Jaffe et al., 2017; Malek et al., 
2018). Furthermore, approximately 15% of AMD patients do 
not respond to anti-VEGF treatment (Krebs et al., 2013). Zhang 
and colleagues have neatly reviewed potential mechanisms of 
resistance to anti-VEGF therapy (Zhang and Lai, 2018). In fact, 
the same anti-VEGF therapy tackling both PCV and typical 
wet AMD result in different treatment outcomes. PCV patients 
exhibit a poor response to anti-VEGF monotherapy compared 

FIGURE 1 | Vascular contribution to wet age-related macular degeneration (AMD) pathogenesis. Top image: Healthy macula; Bottom left image: Vascular changes 
could occur early in disease progression, manifested as a reduction in choriocapillaris density through loss of endothelial cells; Bottom right image: Vasculopathy is 
also observed in polypoidal choroidal vasculopathy and typical choroidal neovascularization, such as polypoidal/aneurysmal dilations of vessels and arteriosclerotic 
features. Mechanisms in common vessel wall pathology in polypoidal choroidal vasculopathy (PCV) include impaired extracellular matrix production and choroidal 
vascular hyperpermeability.
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to typical wet AMD patients (Gomi et al., 2008; Lai et al., 2008; 
Liu et al., 2016; Zhang and Lai 2018). While it reduced subretinal 
fluid, visual acuity and retinal thickness, anti-VEGF monotherapy 
failed to eliminate polypoidal lesions after a year of treatment, 
which could lead to recurrence of exudative maculopathy (Gomi 
et al., 2008; Lai et al., 2008; Tsujikawa et al., 2010). Considering 
these limitations of anti-VEGF therapy, there might be a need for 
alternative strategies targeting wet AMD upon greater elucidation 
of the mechanisms of wet AMD.

Photodynamic therapy has several limitations. Firstly, the 
procedure has considerable side effects. Photodynamic therapy 
could cause secondary subretinal hemorrhage, retinal pigmented 
epithelium tears, and choroidal ischemia, resulting in further visual 
deficit (Lai et al., 2004; Lee et al., 2008; Teo et al., 2018). Administration 
of photodynamic therapy may also exacerbate existing intraocular 
inflammation in PCV (Ho et al., 2016). Secondly, photodynamic 
therapy does not entirely occlude the branching vascular network 
in PCV eyes, allowing new active polyps to emerge from persistent 
networks and hence triggering disease recurrence (Akaza et al., 
2007; Lee et al., 2008). Therefore, photodynamic therapy does 
not prevent recurrence of PCV. Lee and colleagues proposed that 
polyps are more susceptible to photodynamic therapy than the 
branching vascular network because verteporfin is mainly taken 
up by proliferative endothelial cells that express high low-density 
lipoprotein receptors. Endothelial cells at polyp sites are more 
proliferative than those at the branching vascular network and are 
therefore more susceptible to verteporfin. Overall, the presence of 

secondary inflammatory side effects and its inability to prevent 
recurrence have rendered photodynamic therapy questionable 
as an efficacious treatment option. The aforementioned issues 
contributing to current treatment limitations for wet AMD surface 
a key question of whether we have sufficiently understood the 
mechanistic underpinnings of exudative macular degeneration and 
PCV, and whether alternative therapeutic angles are possible.

LINKING vASCULAR ASPECTS FROM 
OCULAR DISORDERS TO DISEASES OF 
THE BRAIN AND HEART
Scientists and clinicians have traditionally viewed AMD as a stand-
alone disease that is confined to the eye. However, recent results from 
large-scale epidemiological studies have consistently shown that 
AMD is associated with several other disorders (Cheung and Wong, 
2014). It is important to note that due to AMD’s chronic degenerative 
nature, the disease tends to be associated with other chronic disorders 
such as cardiovascular and neurodegenerative disorders (Wong 
et al., 2006; Tan et al., 2008; Ohno-Matsui 2011; Lee et al., 2019). 
With accumulating evidence pointing to an increased risk of AMD 
in patients suffering from cardiovascular and neurodegenerative 
disorders and vice-versa, studies have started looking at common 
mechanisms that might underlie the associations. Here, we believe 
that blood vessels may provide some insights to the mechanistic link 
between AMD, cardiovascular, and neurodegenerative diseases.

TABLE 1 | Common age-related macular degeneration (AMD) variants with known molecular effects and associated mechanisms. 

Risk variant Study references Population/Type of cases Effect of variant Implicated mechanisms 
contributing to AMD

ARMS2-HTRA1 
rs10490924

(DeWan et al., 2006) Asia (Hong Kong)/wet AMD In linkage disequilibrium with 
rs11200638; surrogate marker for 
functional polymorphism rs11200638 
(DeWan et al., 2006)

–

(Fritsche et al., 2013) Europe and Asia (Meta-analysis 
of GWAS)/advanced AMD

(Yu et al., 2011) Europe (Meta-analysis of 
GWAS)/advanced AMD

(Cheng et al., 2015) East Asia/wet AMD
HTRA1 rs11200638 (DeWan et al., 2006) Asia (Hong Kong)/wet AMD Increase in HTRA1 mRNA and protein 

[in RPE (DeWan, et al., 2006; Yang 
et al., 2006), in aqueous humor 
(Tosi et al., 2017) and in drusen 
(DeWan et al., 2006; Yang et al., 2006)]

Higher HTRA1 levels increase activity 
of degradative ECM enzymes and 
compromise Bruch membrane 
integrity, favoring choroidal invasion 
(Yang et al., 2006; Jones et al., 2011).

CFH rs10737680 (Fritsche et al., 2013) Europe and Asia (Meta-analysis 
of GWAS)/advanced AMD

Loss of function mutation in CFH 
which disrupts binding of CFH to 
C3b [Reported for common allele 
CFH Y402H and rare penetrant allele 
R1210C] (Clark et al., 2010; Clark 
et al., 2013; Manuelian et al., 2003; 
Ferreira et al., 2009; Weismann et al., 
2011)

Decreased CFH inhibition of C3b 
results in increased alternative 
complement pathway activation 
[Reported for common allele CFH 
Y402H and rare penetrant allele 
R1210C] (Clark et al., 2010; Clark et al., 
2013; Manuelian et al., 2003; Ferreira 
et al., 2009; Weismann et al., 2011)

(Cheng et al., 2015) East Asia/wet AMD
C3 rs2230199 (Fritsche et al., 2013) Europe and Asia (Meta-analysis 

of GWAS)/advanced AMD
Alteration of configuration of first ring 
of macroglobulin domains, reducing 
binding of C3 to CFH (protein studies 
using electron microscopy) (Nishida 
et al., 2006; Zhang et al., 2018)

Reduced C3 binding to CFH 
increases complement activation 
(Zhang et al., 2018)

Amongst the large repertoire of AMD single nucleotide polymorphisms (SNPs) generated by genome wide association studies (GWAS), several such as ARMS2-HTRA1 
rs10490924, HTRA1 rs11200638, CFH rs10737680, and C3 rs2230199 have been further interrogated for their molecular effects and mechanisms leading to AMD.
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AMD and Dementia
With a globally aging population, age-related diseases such as 
AMD and dementia have received unprecedented attention. These 
diseases have been known to contribute largely to our economic 
burden and healthcare expenses (Gordois et al., 2012). A recent 
meta-analysis of association between the two diseases proved 
that they tend to comorbid (Rong et  al., 2019). Furthermore, 
a longitudinal study which followed 3,877 dementia-free 
participants who were diagnosed with eye disorders, found 
that those with AMD had a 50% increased risk of developing 
Alzheimer’s disease later on (Lee et al., 2019). Interestingly, 
AMD and Alzheimer’s disease share several degenerative and 
pathological features such as oxidative stress, inflammation, 
and deposition of amyloid-rich materials (Beatty et al., 2000; 
Golde 2002; Lin and Beal 2006; Hollyfield et  al., 2008). Such 
common pathological features between the two diseases may be 
attributed to the close anatomical link between the retina and 
brain, explained by their shared developmental origin from the 
neural tube. Recognized as “the window to the brain,” research 
have looked into using the blood vessels of the eye as a proxy to 
evaluate brain health (London et al., 2013; Lim et al., 2016; Yoon 
et al., 2019). While the vascular mechanisms that underlie the 
associations between AMD and dementia are largely still poorly 
described, here, we discuss two potential vascular links between 
AMD and dementia.

The first vascular link between AMD and dementia is 
highlighted by the deposition of vascular amyloid-β associated with 
tissue degeneration in both diseases. Traditionally, Alzheimer’s 
disease, the most frequent cause of dementia, is hypothesized to 
arise due to an imbalance between amyloid-β production and 
clearance, resulting in increased levels of amyloid-β in the central 
nervous system. Amyloid-β accumulation subsequently causes 
neurotoxicity and cognitive impairment (Hardy and Selkoe 
2002). Similarly, deposition of amyloid-β at the site of choroidal 
vessels and in extracellular deposits known as drusen, has been 
found in AMD patients (Dutescu et al., 2009; Kam et al., 2010; 
Ohno-Matsui 2011; Wang et al., 2011). Multiple reservoirs of 
amyloid-β have been found in the aging retinas of AMD patients 
and elevated amyloid-β levels were found to be associated with 
the key stages of AMD progression (Ohno-Matsui 2011). The 
similarities in brain and ocular amyloid-β deposition suggest 
that similar pathogenic mechanisms might underlie these two 
diseases. From a vascular angle, amyloid-β has toxic effects on 
the vascular unit in both brain and eye. In cerebral amyloid 
angiopathy, a vascular abnormality frequently accompanying 
Alzheimer’s disease, amyloid-β directly hinders the adhesion 
of vascular smooth muscle cells to the basement membrane, 
leading to vascular damage (Mok et al., 2006). In the ageing 
retina, amyloid-β deposits from multiple reservoirs surrounding 
the retina exert pro-inflammatory and pro-angiogenic effects 
on the retinal pigmented epithelium, the choroidal vasculature 
and the neuroretina, which may lead to increased vascular 
permeability and triggering of choroidal neovascularization. 
This may occur on top of non-vascular effects of amyloid-β such 
as retinal pigmented epithelium degeneration and senescence 
and increased reactive oxygen species (Ratnayaka et al., 2015). 

Therefore, amyloid-β deposits may be a common mediator of 
vascular abnormalities in both AMD and Alzheimer’s disease.

With multiple failed clinical trials targeted at removing 
amyloid-β from the brain, researchers have turned to other 
possible hypotheses to explain the cause of Alzheimer’s 
disease (Holmes et al., 2008; Karran et al., 2011). The role of 
the blood vessel in cognitive dysfunction is well described by 
others (Snyder et al., 2015; Sweeney et al., 2018; Nortley et al., 
2019). Cerebrovascular dysfunction might precede amyloid-β 
deposition in Alzheimer’s disease. In a 25-year longitudinal 
study on dementia, the presence of vascular risk factors at 
midlife was associated with higher levels of amyloid-β at late-life, 
indicating the role of vascular disease early in Alzheimer’s disease 
(Gottesman et al., 2017). Notably, adults with early cognitive 
dysfunction were found to develop brain microvascular damage 
independent of amyloid-β changes (Nation et al., 2019). Indeed, 
neuroimaging studies have found that patients with Alzheimer’s 
disease exhibit neurovascular impairment such as lowered 
cerebral blood flow and atherosclerotic vessels (Arvanitakis et al., 
2016; van de Haar et al., 2016; Kisler et al., 2017). Postmortem 
interrogations of cerebral microvasculature depict reduced 
density, length, and diameter in Alzheimer’s disease compared 
with age-matched controls (Fischer et al., 1990; Buee et al., 1994; 
Bouras et al., 2006). These microvascular abnormalities show 
parallels to vascular dysfunction found in AMD. As described 
in an earlier section, such vascular dysfunction includes 
decreased choriocapillaris density in early stages of AMD and 
atherosclerotic features in choroidal vessels with polypoidal 
choroidal vasculopathy (Leishman 1957; Bhutto and Lutty 
2012). Moreover, in Alzheimer’s disease, the breakdown of the 
blood-brain barrier is observed, often caused by cerebrovascular 
dysfunction (Sweeney et al., 2018; Nation et al., 2019). In AMD, 
the breakdown of the outer blood-retinal barrier is observed, due 
to cumulative pathological events affecting its key component – 
the retinal pigmented epithelium – and surrounding tissues 
involved – Bruch’s membrane and choroidal vasculature (Ambati, 
et al., 2013). These parallel pathologies may be explained by 
the functional and structural similarities of the blood-brain 
and blood-retinal barriers, both of which are derived from the 
developing neural tube (Ohno-Matsui 2011; London et al., 2013). 
Although we are still uncertain of the causative mechanisms that 
underlie AMD and Alzheimer’s disease, the similarity of vascular 
pathology between the two diseases highlights a possible 
mechanistic link between AMD and neurodegenerative diseases.

AMD and Cardiovascular Diseases
Studies have found that changes in ocular microvascular 
pathology may be associated with underlying systemic vascular 
diseases such as cardiovascular disease. Increasing evidence has 
demonstrated that AMD may share identical risk factors and 
pathogenic mechanisms with cardiovascular diseases (Wu et al., 
2014). In particular, both share several vascular-related factors 
highlighting the need to understand common mechanistic 
pathways that may result in an increased risk of developing 
one disease when one has the other (Tan et al., 2007; Yang 
et al., 2014; Pennington and DeAngelis 2016). For example, 
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having atherosclerotic carotid arteries and hypertension may be 
linked to a higher risk of AMD (Vingerling et al., 1995; Cheung 
et  al., 2007; Hogg et al., 2008; Klein et al., 2013). Conversely, 
AMD and atherosclerotic retinal vessels have been suggested 
to be a predictor of coronary artery disease (Tedeschi-Reiner 
et al., 2005; Thomas et al., 2015). Additionally, it has been 
proposed that inflammatory markers in the eye are linked with 
activation of inflammatory pathways in the heart (Seddon et al., 
2004). Studies have uncovered the involvement of vascular-
related molecular mechanisms such as chronic inflammation, 
endothelial dysfunction, and oxidative stress between AMD and 
cardiovascular diseases (Cai and Harrison 2000; Machalińska 
et al., 2012; Klein et al., 2014).

Endothelial dysfunction often refers to a range of 
deteriorative endothelial responses that includes altered vascular 
inflammatory responses, vascular growth dysregulation, and 
vascular remodeling impairments (Gimbrone, 1995). Clinical 
trials and research data have shown that endothelial dysfunction 
is implicated in AMD through dysregulation of VEGF and 
soluble ICAM1 secretion that is linked to neovascularization 
(Lip et al., 2001; Schaumberg et al., 2007). Similarly, studies have 
found that endothelial dysfunction precedes the development of 
atherosclerosis (Davignon and Ganz 2004; Mudau et al., 2012) 
and may be temporally associated with myocardial ischemia 
(Hasdai et al., 1997). Most recently, attention has been given 
to characterizing circulating endothelial cells as a hallmark of 
vascular impairments. Circulating endothelial cells, once part 
of the vascular endothelial monolayer, enter the bloodstream 
due to damage in the blood vessels. Notably, elevated number 
of circulating endothelial cells have been detected in individuals 
affected by cardiovascular diseases and AMD, which reflects 
vasculopathy in both diseases (Boos et al., 2006; Erdbruegger 
et al., 2006; Machalińska et al., 2011). Taken together, vascular-
related injury is a common pathological pathway implicated in 
the pathogenesis of AMD and cardiovascular diseases.

Investigations into the molecular mechanisms that link similar 
pathologies observed in AMD, dementia, and cardiovascular 
diseases are still in its infancy due to limited understanding of 
the causative mechanisms of these diseases. We propose that 
a closer look at the vascular mechanisms could yield answers 
on the purported associations. Specifically, studies on vascular 
endothelial cells, smooth muscle cells and pericytes of the eye, 
brain, and heart can potentially illuminate pathways that connect 
these diseases.

EXPERIMENTAL MODELS OF CHOROIDAL 
NEOvASCULARIZATION
As the causative mechanisms of AMD remain elusive, the 
use of experimental models that recapitulate clinical features 
accurately will greatly enhance our understanding of AMD 
etiology. Numerous in vivo and in vitro models have attempted to 
recapitulate the disease characteristics in its early and late stages. 
However, none have managed to recreate all the important 
pathological features seen in AMD owing to the disease’s complex 
interplay of genetic and environmental factors. This complexity 

is furthermore compounded by the differences in the ocular 
anatomy between animal models, cellular models and humans. 
Despite the limitations, existing animal and cellular models have 
uncovered important findings on the role of vascular system in 
wet AMD (Rosenfeld et al., 2006; Jager et al., 2008). As mentioned 
in our earlier section, current therapies aim at targeting blood 
vessel growth and angiogenic factors (Couch and Bakri 2011; 
Lally et al., 2012), with greater success of anti-VEGF therapy in 
certain subtypes of wet AMD. The focus has been pivoted toward 
the vascular system and the involvement of vascular-related 
molecular mechanisms in AMD pathogenesis. In this section, 
we review existing models of choroidal neovascularization and 
suggest potential improvements that could better enable the 
study of AMD pathophysiology.

In Vivo Models
Animal models of choroidal neovascularization generally involve 
introducing a breach to the integrity of Bruch’s membrane in the 
macula. This is achieved using laser and light, surgical methods, 
or manipulation through transgenic animals. Out of the three 
methods, models of laser-induced choroidal neovascularization 
are most widely adopted (Lambert et al., 2013). The first in vivo 
model of choroidal neovascularization was developed by Ryan 
(1979) using photocoagulation methods to induce a defect in the 
Bruch’s membrane of the eyes of primates (Ryan, 1979). Building 
on this method, other groups were able to induce choroidal 
neovascularization with a higher rate of success in mouse models 
by modifying the different types of lasers (e.g., argon laser, 
krypton laser) and parameters targeted by the lasers (Dobi et al., 
1989; Frank et al., 1989; Tobe et al., 1998).

The procedure to induce choroidal neovascularization in 
animal models starts with anesthetizing the animal and then 
dilating their pupils with an antimuscarinic drug, tropicamide. 
Laser photocoagulation is then performed to generate burns and 
laser spots in the areas of the eye surrounding the optic nerve. 
After laser treatment, the formation of a bubble at the burn 
spot indicates a rupture of the Bruch’s membrane and this is 
necessary for choroidal neovascularization to occur. Laser spots 
with bubbles would be continually observed posttreatment for 
the occurrence of choroidal neovascularization using imaging 
methods such as confocal microscopy (Kramer et al., 2000). 
Laser-induced choroidal neovascularization models have 
become a standard for treatment evaluation and studying in vivo 
mechanisms (Grossniklaus et al., 2010; Lambert et al., 2013). The 
merits of the model are that it is highly reproducible, inexpensive, 
and time-efficient to create. However, like the limitations of any 
in vivo model, the findings in animals may not be translated to 
humans. Compared to human eyes, mice and rats do not possess 
a macula in their eyes which proves to be a huge limitation 
when studying AMD as the main area of degeneration occurs 
at the macula. Furthermore, it is important to note that there 
are stark anatomical differences between biologically developed 
choroidal neovascularization and laser induced choroidal 
neovascularization in animal models. For example, undergoing 
the laser treatment could damage the neural retina, which is 
not typically affected in an individual with AMD, and these 
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neuroretinal changes remove the biological similarity between 
experimental choroidal neovascularization and human choroidal 
neovascularization (Pennesi et al., 2012). In the end, it should 
be noted that laser induced acute injury does little to mimic the 
chronic onset of ocular neovascularization in diseases.

These laser-treated animal models have since been used to 
investigate the various molecular mechanisms of choroidal 
neovascularization and potential pharmacological interventions 
(Tobe et al., 1998; Bora et al., 2003; Tolentino et al., 2004; 
Jones et al., 2008). One of the more notable findings that led to 
current therapeutics was the importance of VEGF signaling in 
the development of choroidal neovascularization (Kwak et al., 
2000). Treatments targeting VEGF signaling showed success 
in preventing vision loss and improving visual acuity for AMD 
patients at the early and late stages (Rosenfeld et al., 2006; CATT 
Research Group, 2011; Vogel et al., 2017). Apart from targeting 
VEGF, other studies open the possibility for therapeutics to 
inhibit and target other signaling pathways. Recently, apelin 
and TGF-β signaling were reported to play an essential role to 
trigger choroidal neovascularization in mouse models (Jiao et al., 
2017; Wang et al., 2017). Additionally, transcriptional coactivator 
Yes-associated protein (YAP) was found to promote choroidal 
neovascularization formation by upregulating the proliferation of 
endothelial cells (Yan et al., 2018). Moreover, recent advances in 
nanotechnology have leveraged on choroidal neovascularization 
mouse models to pioneer a noninvasive method for treating 
choroidal neovascularization where local delivery of drugs are 
administered through light-triggered targeting (Wang et al., 
2019). These findings underscore the value provided by in-vivo 
models of choroidal neovascularization.

Over the past few years, several optimizations and new 
developments have been made to augment existing in vivo 
models of laser-induced choroidal neovascularization (Poor 
et al., 2014; Gong et al., 2015). Recently, a preclinical mouse 
model of a complex heart disease was reported to accurately 
mimic the actual disease in vivo by combining the systematic 
manifestations of the disease instead of trying to recreate all 
the pathology (Schiattarella et al., 2019). In fact, AMD may be 
viewed as an manifestation of systematic disease (Cheung and 
Wong, 2014). Studies have widely reported associations between 
AMD and hypertension, cardiovascular disease, cerebrovascular 
disease, chronic kidney disease, and neurodegenerative disorders 
(Hogg et al., 2008; Nitsch et al., 2009; Kaarniranta et al., 2011; 
Chung et al., 2014). To the best of our knowledge, models of 
choroidal neovascularization created in combination with other 
stress paradigms such as metabolic perturbations have not 
been created. Perhaps scientists studying angiogenesis in ocular 
diseases such as AMD and diabetic retinopathy can apply similar 
principles to their animal models in order to account for systemic 
effects and interplay with other organ systems.

In Vitro Models
With the recent announcement of the closing of Wellcome 
Sanger Institute animal research facility, it has signaled a shift in 
the scientific community’s preference for in vitro methods (Else 
2019). Cellular systems are widely used as a working model for 

hypothesis testing due to their ease of handling, amenability to 
genetic manipulation and possibility to interrogate cell type-
specific effects in isolation of other cofounding factors present 
in in vivo models. The use of primary choroidal endothelial cell 
lines has pinpointed signaling dysregulations in these cells as the 
main cause of new blood vessel formation in wet AMD (Wang 
and Hartnett 2016). However, human- and animal-derived 
choroidal endothelial cells can only be obtained post-mortem, 
making them a relatively scarce resource. Cells obtained from 
patients in advanced stage of AMD often limit their relevance 
in studying onset of choroidal neovascularization. Additionally, 
there are other constraints such as the difficulty in maintaining 
endothelial identity in long-term cell cultures (Rops et al., 2004).

The breakthrough by Takahashi and Yamanaka (2006) in 
discovering that differentiated cells can be reprogrammed back 
to its pluripotent state has revolutionized scientific research and 
allowed pluripotent stem cell derivatives to be used in place 
of primary cells (Takahashi and Yamanaka, 2006). Songstad 
et al. (2017) has reported success in generating choroidal 
endothelial cells from human pluripotent stem cells. They 
first reprogrammed human fibroblast from an individual with 
normal ocular history into induced pluripotent stem cells 
(iPSCs). These human iPSCs were differentiated alongside with 
a RF/6A cell line which was originally isolated from the choroid-
retina of a rhesus macaque fetus (Lou and Hu, 1987). The 
differentiated choroidal endothelial cells expressed a choroid-
restricted marker, carbonic anhydrase IV, and a fenestration 
marker. As part of the characterization, these differentiated 
cells were benchmarked against the transcriptomic signature 
of RF/6A cells (Songstad et al., 2017). However, a recent study 
led by Makin et al. (2018) conducted a rigorous characterization 
of the RF/6A cell line and found that RF/6A cells lack several 
key endothelial markers and phenotypic properties, hence 
limiting its use in validating iPSC-derived choroidal endothelial 
cells. It is still a common challenge in the iPSC field to achieve 
homogenous population of cell derivatives. Given that carbonic 
anhydrase IV is the closest and only known marker restricted to 
the choroid in the eye (Hageman et al., 1991), more research into 
specific cell fate markers would help in the generation of a pure 
population of these cells.

A recent study by Giacalone et al. (2019) discovered a way 
to immortalize human isolated choroidal endothelial cells 
by transducing them to express an endothelial cell specific 
promoter, CDH5p-hTERT/CDH5p-Tag. The immortalized 
choroidal endothelial cell line offers promise for a more reliable 
in vitro model as it expresses endothelial specific markers (vWF 
and CD34), the choroid-restricted marker carbonic anhydrase 
IV, AMD-related proteins (CFH), and display functional 
endothelial characteristics (Giacalone et al., 2019). On the other 
hand, scientists have cocultured choroidal endothelial cells with 
retinal pigmented epithelial cells to develop an in vitro disease 
model that more faithfully mimics the anatomical association of 
different cell types in the human eye [reviewed by Chichagova 
et al. (2018)]. As loss of functional cells occurs at the early stage 
of AMD, cell replacement therapy may potentially serve as a 
treatment for AMD (Veckeneer et al., 2017). Clinical trials for 
replacement with healthy retinal pigmented epithelial cells are 
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underway. There remains concerns for possible complications 
such as the uncontrolled proliferation of lab-grown cells which 
have slowed down some of the trials (Garber 2015). Nevertheless, 
with more advanced technology, bioengineers are leveraging 
on 3D printing methods to create scaffolds of blood vessels for 
laboratory and clinical use (Huang and Zhang, 2014). Recently, 
a group led by Wimmer et al. (2019) successfully developed 3D 
blood vessels organoids that functioned strikingly similar to real 
human blood vessels when transplanted into mice (Wimmer 
et al., 2019). These in vitro vascular platforms offer a promising 
and exciting outlook for enabling research on vasculopathy as 
research continues to push the frontiers of creating functional 
human-like blood vessels.

Both in vivo and in vitro models of choroidal neovascularization 
have been developed for researchers to study pathology from 
molecular to cellular and system level. Each model has its own 
strengths and weaknesses. Both in vivo and in vitro models are 
complementary and can be manipulated appropriately to address 
certain limitations as well as develop more fit-for-purpose 
models of ocular angiogenesis.

vASCULAR MECHANISMS IN CHOROIDAL 
NEOvASCULARIZATION
Here, we provide a nonexhaustive review of the known 
vascular mechanisms in choroidal neovascularization, ranging 
from the source of pathological endothelial cells to noncell 
and cell autonomous mechanisms leading to choroidal 

neovascularization. Figure 2 provides an overview of our 
discussion in this section.

Source of Endothelial Cells in Choroidal 
Neovascularization
It was believed that all newly formed vessels in choroidal 
neovascularization arise from pre-existing choroidal vasculature 
(Ishibashi et al., 1987). However, in the 1990s, researchers 
discovered that circulating progenitor cells of bone marrow 
origin could in part contribute to postnatal vasculogenesis in 
both physiological and pathological neovascularization (Asahara 
et al., 1997; Asahara et al., 1999). Accumulating evidence 
then showed that circulating bone marrow progenitor cells 
contributed to newly generated endothelial cells specifically in 
choroidal neovascularization. Various groups have used the 
technique of transplanting EGFP-expressing bone marrow cells 
from EGFP donor mice into recipient mice and subsequently 
subjecting them to laser photocoagulation to induce injury in 
the choroid. The extent of donor derived GFP+ cells recruited 
to choroidal vasculatures or sites of Bruch membrane injury was 
then quantified. Often, GFP+ endothelial cells were found to give 
rise to different degrees of contribution to lesion endothelial cells 
(Sengupta et al., 2003; Tomita et al., 2004). Besides endothelial 
cells, a proportion of GFP+ cells was found to be immunoactive 
for vascular smooth muscle markers (Espinosa-Heidmann et al., 
2003). Variability in levels of contribution to lesion endothelial 
cells was also observed depending on the stage of progression of 
choroidal neovascularization (Espinosa-Heidmann et al., 2005; 

FIGURE 2 | Vascular mechanisms in choroidal neovascularization.
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Hou et al., 2006). In addition, circulating adult hematopoietic 
stem cells are mobilized into the injury region and are able 
to form endothelial cells that are subsequently incorporated 
into choroidal neovasculature (Chan-Ling et al., 2006). Such 
hemangioblast activity was also observed in a murine model of 
retinal neovascularization (Grant et al., 2002). Similarly, evidence 
of bone marrow contribution to choroidal neovascularization 
was observed in humans. Using AC133 a putative marker of 
both human hematopoietic stem and bone marrow-derived 
progenitor cells, Sheridan et al. identified the presence of bone 
marrow-derived progenitor cells in excised human choroidal 
neovascularization sections, albeit in very low numbers (Sheridan 
et al., 2006). Table 2 presents a summary of the aforementioned 
in vivo studies.

The mechanisms by which bone marrow progenitors are 
recruited to choroidal neovascularization sites have been 
described. Bone marrow derived cells incorporated into choroidal 
vasculature only at sites of laser-induced injury (Espinosa-
Heidmann et al., 2003; Sengupta et al., 2003; Takahashi et al., 2004; 
Hou et al., 2006). This suggests that vascular injury is required 
for the mobilization of these cells and the microenvironment of 
the choroidal neovascular lesion might secrete molecular signals 
that assist in the recruitment and differentiation of circulating 
progenitor cells into vascular endothelial and smooth muscle 
cells in situ (Hou et al., 2006). Gao and colleagues have proposed 
that the process occurs in four phases: mobilization, migration, 
adhesion, and differentiation (Gao et al., 2016). Upon local tissue 
injury, the levels of various cytokines such as VEGF, granulocyte 
colony-stimulating factor (G-CSF), and erythropoietin (EPO) 
increase, which result in MMP9 activation, triggering the release 
of bone marrow cells from interacting stromal cells in the bone 
marrow (mobilization). The chemotactic gradients of cytokines 
then facilitate the migration of bone marrow cells to the local 
neovascular lesion site. Key chemokine mediators in choroidal 
neovascularization include the chemoattractant stromal derived 
factor (SDF-1), which is upregulated by retinal pigmented 
epithelium upon laser injury and binds to its concomitant receptor 

CXCR4 on bone marrow cells (Zhang et al., 2011). Cell adhesion 
molecules such as VCAM-1 and ICAM-1 then facilitate the 
adhesion of migrated bone marrow cells to existing endothelial 
cells at the site of choroidal neovascularization. The final phase 
of differentiation of the bone marrow progenitors to endothelial 
cells, smooth muscle cells, and macrophages then occur at the 
site of choroidal neovascularization. To summarize, choroidal 
neovascular injury specifically mobilizes and incorporates new 
vascular cells from the bone marrow into the injury site utilizing 
a complex repertoire of factors, pointing to the need to consider 
these processes in the pathological mechanisms of wet AMD.

Of note, there are also several studies that refute the contribution 
of bone marrow cells to postnatal vasculogenesis. Okuno and 
colleagues showed that bone marrow-derived cells did not 
contribute to the wound healing site as differentiated endothelial 
cells, but instead mainly as pro-angiogenic macrophages (Okuno 
et al., 2011). Grunwald et al. proposed that these recruited bone 
marrow cells are retained close to the neovasculature and exert 
proangiogenic effects on in situ endothelial cells (Grunewald 
et al., 2006). In line with the latter, Purhonen and colleagues 
demonstrated that during vasculogenesis none of the recruited 
bone marrow-derived cells contributed to the endothelium and 
contended that in vivo endothelial differentiation is a rare event 
for these cells (Purhonen et al., 2008). Alternatively, resident 
stem-like/progenitor cells have been discovered in pre-existing 
endothelium which demonstrate colony-forming ability (Naito 
et al., 2012). Wakabayashi and colleagues found that these 
resident progenitors (termed endothelial side population cells) 
did not originate from bone marrow and were thus distinct from 
bone marrow-derived endothelial progenitors. The endothelial 
side population cells isolated from murine choroidal tissue also 
displayed strong colony-forming ability in vitro, and increased 
proliferation upon laser-induced choroidal neovascularization 
in vivo, suggesting their ability to contribute to neovascular 
vessels (Wakabayashi et al., 2013). These studies highlight 
that postnatal vasculogenesis occurs to a significant extent in 
choroidal neovascularization. Taken together, endothelial cells 

TABLE 2 | Summary of studies reporting bone marrow origin of endothelial cells in choroidal neovascularization.

Study references Model 
species

Percentage of CD31+ endothelial 
cells in choroidal neovasculature 
that were bone-marrow derived

Total donor-derived bone 
marrow contribution to 
choroidal neovasculature

Percentage of bone marrow 
population in choroidal 
neovasculature that were 
endothelial

Tomita et al. ( 2004) Murine – – 70%
Sengupta et al. (2003) Murine – 40 – 45% –
Espinosa-Heidmann et al. (2003) Murine – 17% 41%
Takahashi et al. (2004) Murine 5.3% 22% (total no. of cells: 154 

± 37; no. of marrow-derived 
cells: 34 ± 17)

20%

Espinosa-Heidmann et al. (2005) Murine 65% in early choroidal 
neovascularization (3 days) 50% in late 
choroidal neovascularization (4 weeks)

20 – 40% –

Hou et al. (2006) Murine 70% in early choroidal 
neovascularization (7 days) 50% in late 
choroidal neovascularization (4 weeks)

– 31%

Sheridan et al. (2006) Human – <0.1% stained for AC133 –
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that participate choroidal neovascularization could potentially 
originate from these sources: (1) circulating bone marrow 
progenitors, (2) circulating hematopoietic stem cells that have 
hemangioblast activity, and (3) vessel-residing endothelial side 
population cells that have high colony-forming activity. Figure 3 
provides a graphical representation of our discussion above.

Noncell Autonomous Mechanisms
Vascular Endothelial Growth Factor in  
Pathological Angiogenesis
Dysregulation of VEGF signaling in lesion sites is known as one of 
the key stimuli for pathological angiogenesis (Kinnunen and Ylä-
Herttuala, 2012). VEGF, existing as its various isoforms VEGF121, 
VEGF145, VEGF165, VEGF189, and VEGF206, is a potent angiogenic 
molecule that is known to stimulate proliferation, migration, 
tube formation, and vascular permeability of endothelial cells 
(Ferrara et al., 1991; Papadopoulos et al., 2012). The physiological 
importance of VEGF in the outer retina is well known. 
During fetal development, the retinal pigmented epithelium 
constitutively releases VEGF and FGF2 that are crucial for 
development of the choriocapillaris (Saint-Geniez and D’Amore, 
2004; Anand-Apte and Hollyfield, 2010). VEGF released from 
the basal side of the RPE monolayer is required for the formation 
of fenestrations in the choriocapillaris (Blaauwgeers et al., 1999; 
Marneros et al., 2005). These important structures serve a role 
of allowing large macromolecules to be transported in and out 
of choroidal circulation (Anand-Apte and Hollyfield, 2010). In 
vivo studies report that knock-out of vegf in the RPE resulted in 
total ablation of the choriocapillaris (Korte et al., 1984; Kurihara 
et al., 2012). Therefore, locally synthesized VEGF from the 
RPE is critical for the maintenance of the choriocapillaris. In 
physiological conditions, ocular levels of VEGF are low, but in 
pathological conditions like choroidal neovascularization, VEGF 

levels are significantly elevated in affected sites (Kvanta et al., 
1996; Kinnunen and Ylä-Herttuala, 2012). Of note, the VEGF 
isoform found to participate predominantly in pathological 
angiogenesis is VEGF164/165 (Ishida et al., 2003). In pathological 
angiogenesis, VEGF from hypoxic retina is believed to be the key 
driver (Miller et al., 1997; Papadopoulos et al., 2012). On top of its 
known functions of stimulating angiogenesis of choroidal vessels, 
elevated VEGF in the RPE leads to barrier integrity breakdown 
which could promote neovascularization (Ablonczy et al., 2011; 
Marneros 2013). As a proof of concept, treatment with VEGF 
antagonists have shown some success in reducing choroidal 
neovascularization lesion size and slowing the rate of vision loss 
(Schlingemann and Witmer, 2009; Kinnunen and Ylä-Herttuala, 
2012; Papadopoulos et al., 2012). However, anti-VEGF drugs are 
not entirely effective to treat all choroidal neovascularization 
lesions in wet AMD and are also unable to prevent recurrence 
of symptoms, therefore pointing to the role of other interacting 
pathways of pathological neovascularization.

Upregulation of High-Temperature Requirement A 
Serine Peptidase 1
High-temperature requirement A serine peptidase 1 (HTRA1) 
is a multi-functional serine protease expressed in endothelium, 
epidermis, and neurons that regulates vascular growth and 
maintenance and is required for the normal development of 
vasculature in the brain and eye (De Luca et al., 2003; Jiang et al., 
2012; Zhang et al., 2012). In 2006, it was reported that the SNP 
rs11200638 on the promoter sequence of HTRA1 at chromosome 
10q26 was the strongest casual genetic risk factor for AMD. The 
risk allele AA was associated with elevated levels of both HTRA1 
mRNA in lymphocytes of AMD donors and HTRA1 protein in 
retinal pigmented epithelium of AMD donors (DeWan et al., 
2006; Yang et al., 2006). In line with these findings, Chan et al. 

FIGURE 3 | Sources of recruited endothelial cells in choroidal neovascularization. Endothelial colony-forming cells (yellow) from the bone marrow can be mobilized 
from the bone marrow into the circulation, migrate to the site of neovascularization, and differentiate into vascular cells that form the new vasculature. Hematopoietic 
stem cells (blue) can be mobilized to the site of injury, differentiate into endothelial cells and be incorporated into newly formed vasculature. Tissue-resident 
endothelial side population cells (green) residing in choroidal endothelium have been proposed to contribute to choroidal neovascularization upon injury.
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found that HTRA1 mRNA expression was higher in the macula 
of AMD eyes with the AA genotype compared to non-AMD eyes 
(Chan et al., 2007). Elevated HTRA1 levels was also observed 
in the aqueous humor of patients with wet AMD (Tosi et al., 
2017). The overexpression of human HTRA1 in the RPE of mice 
has been shown to result in development of PCV (choroidal 
lesions with polypoidal structure), although classic choroidal 
neovascularization formation was not observed (Jones et al., 
2011). Furthermore, presence of HTRA1 protein was observed 
in the drusen of AMD patients (DeWan et al., 2006; Yang et al., 
2006). Several mechanisms have been proposed for how HTRA1 
overexpression could lead to choroidal neovascularization 
observed in wet AMD. Firstly, HTRA1 has been suggested to 
increase activity of degradative extracellular matrix enzymes 
and thus promote matrix breakdown (Grau et al., 2006; Jones 
et al., 2011). In vivo studies of transgenic mice overexpressing 
HTRA1 in the RPE described ultrastructural changes in Bruch’s 
membrane ECM (Vierkotten et al., 2011). It was therefore 
suggested that, in wet AMD, higher levels of HTRA1 compromise 
the integrity of Bruch’s membrane, allowing infiltration of 
choroidal vasculature through the layered matrix (Yang et al., 
2006). Secondly, HTRA1 is also known to inhibit the activity 
of transforming growth factor (TGF-ß) family proteins which 
have important roles in angiogenesis and extracellular matrix 
production (Oka et al., 2004; Zhang et al., 2012). Mathura et al. 
reported that the TGF-ß proteins BMP-2 and BMP-4 might serve 
as repressors of RPE growth and any dysregulation of the BMPs 
might lead to aberrant wound repair as observed in proliferative 
retinopathies (Mathura et al., 2000). Therefore, increased levels 
of HTRA1 in the RPE of AMD patients with risk genotype might 
result in pathological choroidal neovascularization through (1) 
promoting degradation of Bruch’s membrane and compromising 
barrier function and (2) inhibiting BMP signaling thus removing 
a negative regulator for aberrant wound repair response.

Oxidative Stress
Antioxidants have been found to slow progression of 
progression from early AMD to advanced stages of AMD (wet 
AMD or severe geographic atrophy), thus highlighting the role 
of oxidative stress in AMD progression (Dong et al., 2009). 
Oxidative stress may facilitate in creating a pro-angiogenic 
environment in the outer retina and choroid, which coupled 
with altered integrity of Bruch’s membrane may trigger the 
development of choroidal neovascularization as observed in 
wet AMD (Dong et al., 2009). In addition, oxidative stress is also 
known to stimulate premature senescence of RPE, a key event 
in the pathogenesis of AMD (Supanji et al., 2013). Senescent 
RPE has been found to increase the expression of VEGF and 
downregulate CFH, both of which are known to contribute to 
the development of choroidal neovascularization (Marazita 
et al., 2016; Kaarniranta et al., 2018). Of note, Supanji et al. 
showed that oxidative stress stimulated RPE cells to increase 
production of HTRA1 which when in excess accelerated 
premature senescence of the RPE cells (Supanji et al., 2013), 
suggesting that HTRA1 also has a role in influencing RPE 
senescence. These studies point to the complex role of oxidative 
stress in contributing to ocular neovascularization.

Complement Dysregulation
The complement system participates in the innate immune 
response as the first immediate acting system before cellular 
response is carried out by macrophages and neutrophils. It 
is composed of more than 30 small proteins and activation 
products with chemotactic, inflammatory, cytotoxic, and 
antimicrobial functions (Zipfel, 2009). Once fully activated, 
formation of the membrane attack complex will occur, which 
is then be able to destroy cells and pathogens (Xu and Chen, 
2016). Membrane attack complex deposition occurs naturally 
in healthy aging choriocapillaris (Mullins et al., 2014; Chirco 
et al., 2016). With a physiological balance of activation and 
repression of the complement system, self-tissue destruction 
is avoided. In AMD pathogenesis, a lack of repression of the 
complement system is implicated (Maugeri et al., 2018). Multiple 
complement products, such as C3, C5b-9, CFH, and CFB have 
been found in AMD lesions and drusen (Nozaki et al., 2006; Xu 
and Chen, 2016). Furthermore, as revealed by GWAS, genetic 
polymorphisms in complement genes such as CFH, CFB, 
C2, C3, C5, and SERPING1 confer risk for AMD, suggesting 
the role of complement dysregulation in the pathogenesis of 
AMD (Khandhadia et al., 2012). However, while numerous 
components are involved in AMD, only C3 and C5 have been 
reported for their roles in choroidal neovascularization. Nozaki 
et al. showed that induction of choroidal neovascularization 
in vivo increased levels of C3a and C5a, and C3a and C5a 
induced increase in VEGF secretion by primary human RPE in 
vitro (Nozaki et al., 2006). Knock out of the C3 gene protected 
mice from choroidal neovascularization after laser treatment 
(Bora et al., 2005), and genetic ablation of both C3a and C5a 
receptors results in lower VEGF secretion by RPE cells leading 
to decreased choroidal neovascularization (Nozaki et al., 
2006). Overall, build-up of membrane attack complex in the 
choriocapillaris and dysregulated complement activation might 
contribute to an angiogenic environment for the development of 
choroidal neovascularization.

Cell Autonomous Mechanisms
Platelet Derived Growth Factor
The long-term efficacy of anti-VEGF monotherapy on visual 
outcomes has been variable, with the need for repeated and 
lifelong treatment for patients with wet AMD (Singer et al., 
2012; Rofagha et al., 2013; Silva et al., 2013). A common trend of 
initial visual improvement in the first few months followed by a 
plateau that lasts throughout the course of treatment has raised 
the notion of anti-VEGF resistance. In tumor studies, anti-
VEGF resistance has been attributed to the secretion of platelet-
derived growth factor (PDGF) by tumor cells which stimulate 
the recruitment and proliferation of pericytes to developing 
vasculature. On top of the physical stabilizing support rendered 
by pericytes, PDGF stimulates pericytes to upregulate VEGF 
which promote endothelial survival (Reinmuth et al., 2001; 
Franco et al., 2011). In choroidal neovascular sites, tip cells 
that form the vascular front express PDGF, causing recruitment 
of pericytes to the neovasculature and thereafter microvessel 
maturation. Newly recruited pericytes form a protective barrier 
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around the newly formed endothelium in the face of anti-
VEGF therapy, reducing the effect of VEGF inhibitors and 
explaining the plateau phase in long term anti-VEGF treatment 
(Franco et al., 2011; Pachydaki et al., 2012). In line with this 
hypothesis, choroidal neovascular lesions from patients who 
were unresponsive to anti-VEGF therapy, were also found to 
be well-formed and “consistently exhibit pericytes” (Pachydaki 
et al., 2012).

Considering these findings, PDGF inhibitors were proposed 
in combination therapy with current anti-VEGF monotherapy 
for wet AMD. E10030 (Fovista; Ophthotech, New York, NY) is 
a DNA aptamer against PDGF that was recently assessed for its 
efficacy in combination therapy with the anti-VEGF treatment 
ranibizumab (Lucentis). The results from a phase 2b clinical 
trial showed that there was a 62% benefit from baseline with 
combination therapy compared with anti-VEGF monotherapy 
(Jaffe et al., 2017). However, much to the disappointment of 
clinical investigators, the following two phase 3 trials showed 
that Fovista in combination with ranibizumab showed no 
superiority over ranibizumab monotherapy. Further on, two 
other phase 2 studies investigating Fovista in combination with 
two other anti-VEGF approved drugs were terminated (Dunn 
et al., 2017). The failed anti-PDGF clinical trials have taught us 
a few lessons: firstly, that phase 3 trials should not be designed 
based on retrospective subgroup analyses of phase 2 trial results 
(as was done in Fovista phase 3 trials) (Rosenfeld and Feuer, 
2018), and secondly, that failure with PDGF antagonists indicate 
the need to shift efforts to target other mechanisms of choroidal 
neovascularization in AMD.

Angiopoietin-2
Angiopoietin-2 (ANG2) is a proangiogenic cytokine that plays a 
role in both angiogenesis and immune activation, both of which 
are integral processes in the pathogenesis of wet AMD (Fiedler 
et al., 2006; Wolf and Langmann, 2019). ANG2 levels have been 
found to be upregulated in aqueous humor of wet AMD human 
donors and increasing with disease severity (Ng et al., 2017). 
Due to its additional role in inflammation that is implicated in 
wet AMD, ANG2 has become a potential therapeutic target in 
wet AMD beyond anti-VEGF therapies (Gahn and Khanani, 
2018). In vivo experiments have recently demonstrated ANG2 
and VEGF combinatory inhibition led to reduced neovascular 
lesion formation in a spontaneous chronic choroidal 
neovascularization mouse model (JR5558 mice) (Foxton 
et  al., 2019). This has been carried forward to phase 1 and 2 
clinical trials with the bispecific antibody anti-VEGF-A/ANG2 
(RG7116; Roche/Genetech). Currently, RG7116, now known as 
faricimab, is being tested in phase 3 trials in comparison with the 
VEGF trap drug aflibercept (Eylea) (Wolf and Langmann 2019). 
The shift in efforts towards VEGF-independent pathways in wet 
AMD is promising; and it is hoped that more novel targetable 
candidates would be uncovered.

Vasoactive Agents
Endothelial cells produce a physiological balance of 
vasoactive substances to regulate vascular function, such as 

the vasoconstrictor endothelin-1 (ET-1) and the vasodilator 
nitric oxide (NO). ET-1 levels increase while NO availability 
decreases during aging, resulting in increased vasoconstriction 
and impaired vasodilation, which could lead to constriction of 
smaller vessels associated with ischemia of the choriocapillaris 
(decreased choroidal blood flow) seen in severe dry AMD 
(Stauffer et al., 2008; El Assar De La Fuente et al., 2012; 
Totan et  al., 2015). Decreased choroidal blood flow in dry 
AMD has been correlated with severity of dry AMD, and 
could increase the risk for ischemia and hypoxia leading to 
choroidal neovascularization in wet AMD (Grunwald et al., 
2005). Totan et al. showed that patients with wet AMD exhibit 
increased ET-1 and decreased NO in the plasma, indicating that 
endothelial dysfunction is apparent in these patients (Totan et 
al., 2015). With age being the largest risk factor for AMD, it 
is not surprising that age-related vascular dysfunction would 
contribute to the progression of AMD, as seen also in a number 
of age-related diseases (Ehrlich et al., 2009; Akpek and Smith, 
2013). Therefore, endothelial dysfunction in the choriocapillaris 
could play a role in AMD pathogenesis.

CONCLUSION
With the great momentum in the study of choroidal 
neovascularization, there remains knowledge gaps which 
the scientific and clinical communities could address. We 
propose that further research on the following areas could 
be illuminating. (1) AMD subtypes could have different 
etiology, rendering it important to investigate subtype-
specific mechanisms. Genomics distinguishing typical 
AMD and polypoidal choroidal vasculopathy may elucidate 
subtype-specific mechanisms. (2) Perturbations to choroidal 
vasculatures may have to be looked in the context of other 
influences. Existing experimental models could be adapted to 
recapitulate potential systemic/immune factors, as well as to 
study endothelial interplay with other cell types. (3) Finally, 
there is a need to explore both VEGF- and non-VEGF pathways 
to enhance the success of combinatorial treatment. We hope 
that vascular-targeting strategy will help advance therapy for 
early intervention.
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Endothelial cells are important constituents of blood vessels that play critical roles in
cardiovascular homeostasis by regulating blood fluidity and fibrinolysis, vascular tone,
angiogenesis, monocyte/leukocyte adhesion, and platelet aggregation. The normal
vascular endothelium is taken as a gatekeeper of cardiovascular health, whereas
abnormality of vascular endothelium is a major contributor to a plethora of
cardiovascular ailments, such as atherosclerosis, aging, hypertension, obesity, and
diabetes. Endothelial dysfunction is characterized by imbalanced vasodilation and
vasoconstriction, elevated reactive oxygen species (ROS), and proinflammatory factors,
as well as deficiency of nitric oxide (NO) bioavailability. The occurrence of endothelial
dysfunction disrupts the endothelial barrier permeability that is a part of inflammatory
response in the development of cardiovascular diseases. As such, abrogation of
endothelial cell activation/inflammation is of clinical relevance. Recently, hydrogen
sulfide (H2S), an entry as a gasotransmitter, exerts diverse biological effects through
acting on various targeted signaling pathways. Within the cardiovascular system, the
formation of H2S is detected in smooth muscle cells, vascular endothelial cells, and
cardiomyocytes. Disrupted H2S bioavailability is postulated to be a new indicator for
endothelial cell inflammation and its associated endothelial dysfunction. In this review, we
will summarize recent advances about the roles of H2S in endothelial cell homeostasis,
especially under pathological conditions, and discuss its putative therapeutic applications
in endothelial inflammation-associated cardiovascular disorders.

Keywords: endothelial cell, gasotransmitters, hydrogen sulfide, inflammation, cardiovascular disease
INTRODUCTION

Currently, cardiovascular disease is identified to be a major cause of people death around the world,
and this situation is estimated to remain for many years to come, thus bringing a considerable
burden to the world’s health resource (Mathers and Loncar, 2006). It is well known that poor diet,
smoking, obesity, and physical inactivity are various modifiable risk factors for cardiovascular
diseases, all of which lead to a proinflammatory state (Allende-Vigo, 2010). Actually, a wide range of
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evidence supports a crucial role of inflammatory response in the
pathogenesis of cardiovascular diseases through driving
endothelial cell activation/dysfunction (Carter, 2012).
Therefore, it is not unexpected that huge efforts have been
made to identify therapeutically potential targets to halt
endothelial cell inflammation.

The blood vessels are composed of connective tissue,
fibroblasts, endothelial cells, and vascular smooth muscle cells
(VSMCs). On the innermost side of blood vessels, the normal
endothelium is a semipermeable layer between blood stream and
blood vessel wall. Due to its tight specialized cell-to-cell
junctions, the endothelium forms a barrier that selectively
limits the movement of macromolecules (Rahimi, 2017). The
barrier is critically involved in vascular tone, fluid homeostasis,
and host defense (Zhang et al., 2018b). Activated endothelial cells
may release various cytokines, chemokines, and growth factors
that promote the proliferation, migration, and permeability of
endothelial cells (Park-Windhol and D’amore, 2016). The
endothelial cells with inflammatory phenotype cause
inflammation in the blood vessels, resulting in endothelial
dysfunction and following progression of cardiovascular
diseases (Sun et al., 2016). In accordance with this notion,
endothelial cell inflammation is directly responsible for various
cardiovascular diseases, such as hypertension, atherosclerosis,
aging, stroke, heart disease, diabetes, obesity, venous thrombosis,
and intimal hyperplasia (Sun et al., 2017; Castro-Ferreira et al.,
2018; Haybar et al., 2019; Zhong et al., 2019).

In the endothelium, hydrogen sulfide (H2S), the third
endogenous gaseous molecule after nitric oxide (NO) and
carbon monoxide (CO), is synthesized and observed (Pan
et al., 2017). Over the last decade, the roles of H2S in the
pathogenesis of endothelial dysfunction have grown
Frontiers in Pharmacology | www.frontiersin.org 278
exponentially. As a result, the current understanding of H2S-
mediated endothelial cell functions in both heath and disease
continues to deepen. However, the potential molecular
mechanisms that underlie H2S-mediated cardiovascular
homeostasis, especially endothelial inflammation, are not
comprehensively elucidated. The present review focuses on
the current progress regarding the roles of H2S in endothelial
inflammation-related cardiovascular disorders including
hypertension, atherosclerosis and diabetes. Furthermore, we
will discuss the possible challenges for developing H2S-
derived therapeutics to treat endothelial dysfunction in
cardiovascular disorders.
ENDOTHELIAL DYSFUNCTION
AND INFLAMMATION

The dysfunction of endothelial cells in the vasculature is
profoundly implicated in the pathogenesis of cardiovascular
disorders (Boulanger, 2016). Mounting evidence has shown
that endothelial cell dysfunction is characterized by disrupted
vascular tone and redox balance, and increased inflammatory
reactions within the blood vessel wall (Ooi et al., 2018)
(Figure 1). Most commonly, the impaired endothelium-
dependent vasodilatation is defined as a hallmark of
endothelial dysfunction, which is critically responsible for
several cardiovascular disorders including diabetes mellitus,
hypertension, atherosclerosis, aging and heart failure (Leung
and Vanhoutte, 2017; Suryavanshi and Kulkarni, 2017). More
recently, endothelial activation is also a prominent alteration in
endothelial dysfunction, which refers to the upregulations of
chemokines and adhesion molecules and other proteins involved
FIGURE 1 | Mechanisms linked to endothelial dysfunction. Several key mechanisms that promote endothelial dysfunction.
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in cell–cell interactions (Weber and Noels, 2011; Ng et al., 2018),
thus leading to the prothrombotic and proinflammatory
circumstance in the blood vessels.

In activated endothelial cells, the expressions of
proinflammatory cytokines, chemokines, enzymes, and
adhesion molecules are substantially upregulated (Baghai et al.,
2018). It is highly possible that endothelial cell inflammation
plays an important role in the pathogenesis of endothelial
dysfunction in cardiovascular disorders. Therefore,
identification of endothelial cell-derived inflammatory factors
and its underlying mechanisms may be effective in preventing
the progression of cardiovascular diseases.
Frontiers in Pharmacology | www.frontiersin.org 379
REGULATION OF ENDOTHELIAL
FUNCTION BY H2S UNDER
PHYSIOLOGICAL CONDITION

As the third endogenous gasotransmitter, H2S is primarily
synthesized in mammalian tissues through enzymatic or non-
enzymatic pathways (Li et al., 2011; Liu et al., 2012). The
majority of endogenous H2S is produced by three enzymes
including cystathionine g-lyase (CSE), cystathionine b-synthase
(CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) in
mammalian tissues (Liu et al., 2011) (Figure 2). In the vascular
endothelium, H2S is synthesized via the enzymatic metabolism of
FIGURE 2 | H2S and NO biosynthetic pathways in blood vessels. (A) L-cysteine is the substrate for the formation of H2S through three H2S-producing enzymes, L-
cysteine is catalyzed by CSE to produce pyruvate, ammonia, and thiocysteine, the latter is then decomposed to cysteine and H2S. The endogenous H2S production
by CBS is related with the condensation of homocysteine with L-cysteine, followed by the formation of cystathionine and H2S. Direct reaction of L-cysteine and a-
ketoglutarate by CAT yields the release of 3-MP and L-glutamate, 3-Mercaptopyruvate is transported into the mitochondria where it is catalyzed to sulfurous acid,
pyruvate and thiosulfate by 3-MST. In the presence of reduced glutathione, the thiosulfate is reduced to glutathione disulfide and H2S. It is well accepted that H2S
can increase eNOS activity and thereby subsequent NO production directly or through AMPK/Akt signaling pathway. (B) NO is produced in all tissues by NOS-
dependent (L-arginine-NO pathway) and -independent (nitrate-nitrite-NO pathway) pathways. A recently discovered pathway for NO generation is the serial reduction
of the inorganic anions nitrate and nitrite. With the assistance of three isoforms of NOS including nNOS, eNOS, and iNOS, L-arginine is oxidized into L-citrulline with
NO. NO is found ro increase CSE activity and expression and then stimulate H2S production. (C) In endothelial cells, vasoconstrictor agonists stimulate the release of
Ca2+ and cause formation of calcium-calmodulin (CaM) via the PLCb/IP3/DAG pathway. Then, CaM can simultaneously activate eNOS and CSE that yield NO and
H2S, respectively. H2S, hydrogen sulfide; NO, nitric oxide; 3-MP, 3-mercaptopyruvate; CAT, cysteine aminotransferase; CSE, cystathionine g-lyase; CBS,
cystathionine b-synthase; 3-MST, 3-mercaptopyruvate sulfurtransferase; CaM, calcium-calmodulin; PLCb, phospholipase Cb; IP3, inositol-3-phosphate (IP3); DAG,
diacylglycerol (DAG); eNOS, endothelial NO synthase; iNOS, inducible NO synthase; nNOS, neuronal NO synthase.
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CBS/CSE using cysteine as the substrates (Tao et al., 2017;
Mitidieri and Gurgone, 2019). Likewise, the involvement of 3-
MST and cysteine aminotransferase (CAT) in endothelial
generation of H2S has been demonstrated (Wang, 2012).

The regulation of vascular tone by H2S may be dependent on
endothelium-independent and -dependent manners (Wang
et al., 2015b). In the vasculature, H2S has been shown to
induce vasodilation in aorta (Zhao et al., 2001), gastric artery
(Kubo et al., 2007), mesenteric artery (Cheng et al., 2004), and
internal mammary artery (Webb et al., 2008). The underlying
mechanism by which H2S relaxes blood vessels is related with
activation of vascular smooth muscle ATP-sensitive K+ (KATP)
channels (Zhao et al., 2001), independently of the endothelium.
The involvement of KATP channels in H2S-induced vasodilation
is further confirmed by a finding that this relaxation is partially
blocked by an inhibitor of KATP channels glibenclamide (Webb
et al., 2008). Despite of these results, the exact mechanism of how
KATP channels are directly activated by H2S still remains
unknown. It is also reported that 4-aminopyridine-sensitive K+

channels are involved in H2S-induced relaxation in the rat
coronary artery (Cheang et al., 2010). The H2S donor sodium
hydrosulfide (NaHS) induces concentration-dependent
vasorelaxation in both mesenteric arteries and aortas, which is
blocked by the KCNQ-type Kv channel inhibitor XE991,
suggesting the involvement of KCNQ channels in H2S-
mediated peripheral artery relaxation (Schleifenbaum et al.,
2010). Moreover, Ca2+ channels or sparks (Jackson-Weaver
et al., 2015), Cl(-)/HCO(3)(-) channels (Kiss et al., 2008), the
NO pathway (Ali et al., 2006), phospholipase A2 (D’emmanuele
Di Villa Bianca et al., 2011), transient receptor potential (TRP)
channels (White et al., 2013), and metabolic/mitochondrial
effects (Kiss et al., 2008), are also suggested to be implicated in
H2S-induced vasorelaxation. H2S appears to play an important
role in vasorelaxation via multidimensional mechanisms. In the
endothelium, recent studies have provided several lines of
evidence to support that H2S might function as an
endothelium-derived relaxing factor (EDRF), which shares
many common traits with other EDRFs (Wang, 2009).
Interestingly, the vasorelaxation actions of H2S are more
remarkable in peripheral resistance arteries than in large-
conduit arteries , the effects require the membrane
hyperpolarization of both VSMCs and endothelial cells, as well
as activation of endothelial intermediate conductance (IK(Ca))
and small conductance (SK(Ca)) potassium channels (Mustafa
et al., 2011; Tang et al., 2013). The definition of H2S as an
endogenous EDHF might shed light on possible therapeutic
effects of H₂S on pathological abnormalities in the vascular
system. Still, more extensive and mechanistic studies are
needed to determine whether H2S is a new EDRF in the future.

The endothelial cells also orchestrate tube formation and
angiogenesis (Watson et al., 2017). H2S is reported to stimulate
endothelial proliferation, migration, and angiogenesis (Wang
et al., 2010b) (Figure 3). Furthermore, administration of H2S
promotes angiogenesis in the Matrigel plug assay (Cai et al.,
2007). However, it should be pointed out that high dose of H2S
loses the ability to induce angiogenesis (Cai et al., 2007). In a rat
Frontiers in Pharmacology | www.frontiersin.org 480
model of chronic hindlimb ischaemia, intraperitoneal injection
of the H2S donor NaHS at the lower dose significantly improves
capillary density, angiographic scores, thus improving hindlimb
blood flow (Wang et al., 2010a). In line with the results discussed
earlier, higher dose of the H2S donor is found to be ineffective in
this model (Wang et al., 2010a). On these grounds, we speculate
that the effects of H2S donors in angiogenesis may range from
physiological, cytoprotective effects (low concentration) to
cytotoxic effects (which are generally apparent at higher
concentrations) (Szabo and Papapetropoulos, 2011). From a
genetic perspective, mutant mice lacking CSE exhibit a variety
of pathological features, including delayed wound healing
secondary to inhibition of angiogenesis (Papapetropoulos et al.,
2009). It has been reviewed that several cellular signaling
pathways, such as the PI3K/Akt pathway, the mitogen
activated protein kinase (MAPK) pathway, and ATP-sensitive
potassium channels, are involved in H2S-mediated angiogenic
effects (Szabo and Papapetropoulos, 2011). In addition to this,
further study has demonstrated that H2S specifically disrupts
cys1045-cys1024 disulfide bond in vascular endothelial growth
factor receptor 2 (VEGFR2) and then stimulates its
conformation for angiogenesis (Tao et al., 2013). As a
molecular switch, H2S is also reported to activate signal
transducer and activator of transcription 3 (STAT3) (Kan
et al., 2014), mammalian target of rapamycin (mTOR), and the
VEGFR2 pathway (Zhou et al., 2016), then the endothelial cell
proliferation and angiogenesis are observed. It is noteworthy that
FIGURE 3 | Schematic illustration of the underlying mechanisms of H2S-
induced angiogenesis. H2S, hydrogen sulfide; NO, nitric oxide; Akt, protein
kinase B; p38, p38 mitogen-activated protein kinases; eNOS, endothelial NO
synthase; VEGF, vascular endothelial growth factor; VEGFR2, vascular
endothelial growth factor receptor 2; PDE, phosphodiesterase; GC, guanylate
cyclase; cGMP, cyclic guanosine monophosphate; PKG, protein kinase G;
SIRT1, sirtuin 1; KATP, ATP-sensitive K+ channels; MAPK, mitogen-activated
protein kinase; STAT3, signal transducer and activator of transcription 3;
PLCb, phospholipase Cb; IP3, inositol-3-phosphate (IP3).
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due to its proangiogenic effects, H2S might lead to pathological
angiogenesis in atherosclerotic plaques, thus facilitating plaque
vulnerability (Van Den Born et al., 2016). In spite of this,
therapeutic angiogenesis is important for wound healing, organ
ischaemia, or the reperfusion of previously ischaemic organs
(Caporali and Emanueli, 2011; Dulmovits and Herman, 2012; Ng
et al., 2018). For this reason, the reparative angiogenesis by H2S
may provide novel therapeutic avenues for post-ischemic
neovascularization. Due to the physiological importance of H2S
in the endothelium, further research is indispensable to examine
the novel roles of endogenous H2S in the regulation of
cardiovascular functions.
ROLE OF H2S IN ENDOTHELIAL
INFLAMMATION

Using intravital microscopy, H2S donors are found to attenuate
the leukocyte adherence in rat mesenteric arteries induced by
aspirin, this effect may be likely dependent on activation of KATP
channels (Zanardo et al., 2006; Zuidema and Korthuis, 2015). In
accordance with this, blockade of endogenous H2S exacerbates
leukocyte-mediated inflammation in the endothelium (Zanardo
et al., 2006). By contrast, NaHS promotes leukocyte rolling and
adherence in mesenteric venules of mice with cecal ligation and
puncture (CLP)-induced sepsis (Zhang et al., 2007). These
conflicting results imply that H2S acts as a pivotal regulator of
leukocyte activation under different inflammatory states.
However, in recent years, more studies support that H2S could
inhibit the process of endothelial cell inflammation (Wen et al.,
2018). For instance, specific endothelial deletion of CSE is
associated with the development of endothelial inflammation
and atherosclerosis, effects that are reversed on treatment with a
polysulfide donor (Bibli et al., 2019). H2S treatment reduces the
increases in inflammatory mediators such as vascular cell
adhesionmolecule-1 (VCAM-1), intercellular adhesionmolecule-
1 (ICAM-1) andmonocyte chemoattractant protein-1 (MCP-1) in
endothelial cell induced by tumour necrosis factor-a (TNF-a),
and the underlying mechanism of this protective effect is primarily
mediated by inhibition of soluble TNF-a shedding and its relevant
MCP-1 release (Perna et al., 2013). Similarly, exogenous H2S
attenuates Ang II-induced inflammation response via inhibition
of the nuclear transcription factor-kB (NF-kB) signaling pathway
in endothelial cells (Hu et al., 2016). Inhibition of the NF-kB
pathway is also required for H2S to attenuate pulmonary
endothelial cell inflammation and subsequent pulmonary
hypertension (Feng et al., 2017b). Endogenous H2S could
directly induce sirtuin1 (SIRT1) sulfhydration and stability, thus
reducing aortic inflammation and atherosclerotic plaque
formation (Du et al., 2019). Deficiency of CSE increases
endogenous sulfur dioxide (SO2) level in endothelial cells, and
blockade of endogenous SO2 aggravates CSE knockdown-induced
NF-kB pathway and its downstream inflammatory factors release
in endothelial cells (Zhang et al., 2018a), suggesting that the
increased endogenous SO2 generation might act as a
compensatory mechanism for the downregulated CSE/H2S
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pathway in endothelial inflammatory response (Zhang et al.,
2018a). It is concluded that the anti-inflammatory effects of H2S
donors show tremendous promise for the treatment of endothelial
inflammation-related cardiovascular disorders.

In response to proinflammatory cytokines, the leukocyte or
macrophages are activated and recruited to the endothelium,
thus causing the development of endothelial dysfunction-related
cardiovascular diseases (Fang et al., 2013). Fortunately, H2S is
found to alleviate vascular inflammation through various
signaling pathways, including inhibition of NF-kB and
nucleotide-binding oligomerization domain, leucine rich
repeat, and pyrin domain-containing protein 3 (NLRP3)
inflammasome, activation of KATP channels and voltage- and
calcium-gated potassium (BKCa) channels (Fiorucci et al., 2005;
Zanardo et al., 2006; Zuidema et al., 2010; Altaany et al., 2014;
Bourque et al., 2018; Li et al., 2019). These possible mechanisms
of H2S may explain that H2S can diminish vascular inflammation
and attenuate the vascular injury, suggesting that the anti-
inflammation effect of H2S is a benefit for cardiovascular
protection. Next, we will discuss the beneficial roles of H2S-
mediated suppression of endothelial dysfunction in
cardiovascular disorders including atherosclerosis, diabetic
cardiovascular complications and hypertension.
H2S-RELATED ENDOTHELIAL
DYSFUNCTION IN ATHEROSCLEROSIS

Atherosclerosis, a chronic vascular disease of large and medium
arteries, involves various risk factors including lipid deposition,
hypertension, inflammatory factors, and hyperhomocysteinemia,
which synergistically elicit endothelial dysfunction (Baszczuk
et al., 2014). Biochemical effects of these factors on the
endothelium could lead to endothelial cell damage and
vascular remodeling (Baszczuk et al., 2014). This important
event induces endothelial inflammation, macrophage
differentiation, foam cell formation, platelet deposition, and
thrombus formation (Chistiakov et al., 2017; Rahman and
Woollard, 2017). As such, correction of endothelial
dysfunction could be a therapeutic strategy for management
of atherosclerosis.

In recent years, considerable evidence indicates that the
downregulated CSE/H2S pathway plays a pathophysiologic role
in the development of atherosclerosis (Kanagy et al., 2017; Fan
et al., 2019). CSE-knockout mice fed with atherogenic diet exhibt
more severe atherosclerosis, suggesting that the disturbed CSE/
H2S pathway predisposes the animals to the development of
atherosclerosis (Mani et al., 2013). Macrophage inflammation
directly contributes to necrotic core formation and plaque
instability in atherosclerosis (Kavurma et al., 2017). In oxidized
low density lipoprotein (ox-LDL)-treated macrophage, the levels
of CSE mRNA and protein expression, as well as H2S production
are remarkably decreased, thus, this finding indicates that
alterations of the CSE/H2S pathway plays an important role in
ox-LDL-s t imula ted macrophage inflammat ion and
atherosclerosis (Wang et al., 2013b). It is worth noting that
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CBS deficiency may cause hyperhomocysteinemia, which is an
independent risk factor for the development of atherosclerosis
(Zhang et al., 2012a; Yuan et al., 2017). In transgenic CBS-
deficient mice, the emegence of hypercholesterolemia accelerates
atherosclerotic lesions via oxidative stress and inflammatory
monocyte generation (Zhang et al., 2009). On the other hand,
vascular calcification and neointimal hyperplasia are also
involved in the progression of atherosclerosis (Durham et al.,
2018; Yu et al., 2018). Not surprisingly, the production of H2S
and CSE protein expression are obviously decreased in rats with
vascular calcification (Wu et al., 2006). The CSE expression and
H2S production are impaired during the development of balloon
injury-induced neointimal hyperplasia in rats, and this effect is
obviously reversed by H2S treatment (Meng et al., 2007). In mice
with high fat diet for 16 weeks, it is found that CSE protein level
is downregulated in the liver, the lung, and the aortic
endothelium, 3-MST was also reduced in the liver (Peh et al.,
2014). By contrast, CBS expression was higher in the liver and
the kidney (Peh et al., 2014). These results suggest that an
abnormal H2S pathway may be an important factor for the
pathophysiology of metabolic disorders and atherosclerosis.

The anti-atherosclerotic mechanisms of H2S have been
gradually described, including anti-inflammatory response,
anti-oxidative action, endothelial function preservation,
inhibition of foam cell formation and regulation of ion
channels (Altaany et al., 2014; Mani et al., 2014; Xu et al.,
2014; Wang et al., 2017; Barton and Meyer, 2019). Reduced
CSE expressions at both mRNA and protein levels are detected in
ox-LDL-treated endothelial cells and in aortas from
apolipoprotein E knockout (ApoE-/-) mice (Leucker et al.,
2017). In this study, the authors demonstrated that increased
histone deacetylase 6 (HDAC6) downregulated CSE and H2S
production via posttranslational modifications, thus leading to
endothelial cell dysfunction and the development of
atherosclerosis (Leucker et al., 2017). In cultured vascular
endothelial cells, the expressions of miR-455-3p, endothelial
nitric oxide synthase (eNOS) protein and NO production are
augmented by H2S. Besides, H2S levels and miR-455-3p
expressions are also increased in human atherosclerosis plaque,
suggesting that the miR-455-3p/eNOS/NO axis is required to
H2S to circumvent the development of atherosclerosis (Li et al.,
2017). Genetic deletion of CSE exaggerates atherosclerosis in
ApoE-/- mice, and treatment of CSE-knockout mice with H2S
inhibits the development of atherosclerosis (Mani et al., 2013),
pinpointing that endogenous H2S may be of benefit in the
treatment of atherosclerosis. In addition, the augmented
expressions of selectins (P-selectin and E-selectin) and cell
adhesion molecules (ICAM-1 and VCAM-1) are observed in
vascular endothelial cells from CSE knockout mice (Mani et al.,
2013). GYY4137, a novel slow-releasing H2S compound, retards
atherosclerotic plaque formation and partially restores
endothelium-dependent relaxation in ApoE-/- mice through
decreasing vascular inflammation and oxidative stress (Liu
et al., 2013). Preconditioning with NaHS also grants a
protection in atherosclerosis, as manifested by decreased
atherosclerotic plaque size and aortic ICAM-1 levels (Wang
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et al., 2009). Supplementation with H2S ameliorates, while
inhibition of H2S formation intensified aortic CX3CR1 and
CX3CL1 expressions and the formation of atherosclerosis
(Zhang et al., 2012b). Recently, H2S induces S-sulfhydration of
kelch-like ECH-associated protein 1 (Keap1) and nuclear factor
erythroid 2-related factor 2 (Nrf2) dissociation from Keap1,
followed by Nrf2 nuclear translocation and anti-oxidize effects
in endothelial cells, contributing to the ameliorating effect of H2S
on atherosclerosis in the context of diabetes (Xie et al., 2016).
Furthermore, in a mouse model of disturbed flow-induced
atherosclerosis, application of H2S donor NaHS considerably
attenuates the severity of atherosclerosis via upregulating
expressions of angiotensin converting enzyme 2 (ACE2), thus
converting pro-atherosclerotic Ang II to anti-atherosclerotic
angiotensin 1-7 (Ang-(1-7)) (Lin et al., 2017). At the cellular
level, NaHS promotes the expression of ACE2 to exert anti-
inflammatory properties in lipopolysaccharide (LPS)-stimulated
endothelial cells, as pretreatment with a selective ACE2 inhibitor
DX600 abrogates the anti-inflammatory effect of NaHS (Lin
et al., 2017). The results showed that endogenous H2S system
was involved in the development of atherosclerosis. Exogenous
H2S could confer beneficial effects on the pathogenesis
of atherosclerosis.

Also, H2S is involved in shear stress and blood viscosity. The
occurrence of atherosclerosis may be initiated due to changed
patterns of blood flow and ensuing shear stress (Dunn et al.,
2015). It is well established that atherosclerotic plaque formation
in the endothelium is site specific, and disturbed blood flow
formed at the lesser curvature of the aortic arch and branch
points promotes plaque formation, whereas steady laminar flow
at the greater curvature is indicated to be atheroprotective (Heo
et al., 2016). The branches and curvatures of the blood vessels are
predisposed to endothelial dysfunction and atherosclerosis
progression (Zhou et al., 2014). Under oscillatory shear stress,
H2S treatment inhibits monocyte adhesion to endothelial cells
via activating the NO-producing Akt/eNOS signaling pathway
(Go et al., 2012). Conversely, H2S impairs shear stress-induced
dilation of isolated mouse coronary arteries by inhibition of NO
generation (Chai et al., 2015). It is likely that both H2S and NO
are implicated in the shear stress-induced atherosclerosis.
However, further investigation is required to help us obtain
more novel insights into the underlying mechanisms.
H2S-RELATED ENDOTHELIAL
DYSFUNCTION IN DIABETIC VASCULAR
COMPLICATIONS

Circulating levels of H2S are markedly reduced in diabetic animal
models, such as diabetic rats (Jain et al., 2010; Suzuki et al., 2011),
diabetic mice (Brancaleone et al., 2008), and also in diabetic
patients (Jain et al., 2013; Suzuki et al., 2017). However, the
mRNA level of CSE in the aortas of diabetic rats is not altered
(Denizalti et al., 2011). Likewise, the expressions of CSE, CBS,
and 3-MST are unaltered in either high glucose-treated
endothelial cells or in the aortas of diabetic rats (Jain et al.,
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2010; Coletta et al., 2015). On the contrary, it has been
demonstrated that both high glucose and palmitate inhibit CSE
expression and H2S production in rat aortic endothelial cells,
while exogenous H2S could protect endothelial cells against
apoptosis under high glucose and palmitate stimulation via
suppressing oxidative stress, decreasing mitochondrial
fragments and promoting mitophagy (Liu et al., 2017). The
CSE expression and H2S content are significantly reduced in
granulation tissues of wounds in obese diabetic mice when
compared with control mice (Zhao et al., 2017). The
expression of CSE and H2S level are reduced after renal
ischemia/reperfusion injury in diabetes mellitus (Chen et al.,
2018). In comparison with control mice, the H2S content and
CSE expression in heart tissues of diabetic rats are also markedly
lower (Guo et al., 2017). In progressive diabetic nephropathy,
CSE expression is markedly reduced, whereas CBS expression is
unaffected (Yamamoto et al., 2013). By contrast, the protein and
mRNA expression of CBS are specifically decreased in the
kidney, while CSE expression remains unchanged in obese
diabetic mice (Liu et al., 2018). Interestingly, CSE expression is
upregulated in cerebral microvessels of type I diabetic rats
(Streeter et al., 2013). Although the data are conflicting, they
raise the possibility that H2S may be a double-edged sword under
diabetic pathophysiology. Certainly, more research is needed to
determine the molecular mechanisms underlying the changed or
unchanged expressions of H2S-generating enzymes/H2S under
diabetic conditions.

Despite of the aforementioned results, recent study has
demonstrated that 3-MST activity is inhibited in endothelial
cells during hyperglycemia, leading to reduced H2S level,
impaired angiogenesis, and suppressed mitochondrial function
(Coletta et al., 2015). It is highly probable that inactivation of 3-
MST and elevated H2S depletion are putative mechanisms for the
decreased circulating H2S levels in hyperglycemic endothelial
cells. The high glucose-incubated vascular rings exhibit impaired
endothelium-dependent relaxation, and this effect is rescued by
CSE overexpression or H2S supplementation (Suzuki et al.,
2011). In the same study, they have also shown that the
vascular rings from mice with gene knockout of CSE display
an aggravated impairment of endothelium-dependent relaxation
in response to hyperglycemia (Suzuki et al., 2011). It is
anticipated that genetic modulations of CSE, CBS or 3-MST
levels are effective approaches to experimentally investigate the
roles of H2S in diabetic vascular complications.

Exposure to high glucose results in elevated ROS production
and apoptosis, as well as decreased superoxide dismutase activity
in endothelial cells, and all the above responses could be
eliminated by pretreatment with H2S (Guan et al., 2012).
Exogenous H2S alleviated the ROS overproduction and
apoptosis in hyperglycemic endothelial cells through inhibiting
necroptosis (Lin et al., 2018). In the aortas of diabetic rats, the
connexin (Cx) 43 and 40 expressions are downregulated, while
protein kinase C (PKC) and nicotinamide adenine dinucleotide
phosphate-oxidase (NADPH) oxidase subunits are upregulated,
H2S appears to be effective in attenuating these abnormalities
(Zheng et al., 2010). The novel mitochondria-targeted H2S
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donors AP123 and AP39 are proven to prevent hyperglycemia-
triggered oxidative stress and metabolic abnormalities in
microvascular endothelial cells, suggesting that these
compounds could be useful for the treatment of diabetic
vascular complications (Gero et al., 2016). Induction of H2S by
Ginkgolide B alleviates endothelial dysfunction via inhibiting
oxidative stress and increasing NO bioavailability in diabetic rats
(Wang et al., 2015a). It is likely that the cardiovascular protective
effects of H2S in diabetes may be mediated by inhibition of
oxidative stress.

Inhibition of the leptin/leptin receptor signal pathway
contributes to the protective effects of H2S on high-glucose-
induced injuries in endothelial cells (Wu et al., 2016).
Pretreatment with H2S prevents high glucose-induced ICAM-1
levels as well as NF-kB activation in endothelial cells (Guan et al.,
2013). Besides, stimulation of endothelial cells with high glucose
significantly promotes the secretion of endothelin-1 with the
concomitant suppression of H2S production, and administration
of H2S attenuates the release of endothelin-1 induced by high
glucose (Guan et al., 2015). The increasing recognitions of
protective effects of H2S in high glucose-induced endothelial
inflammation provide a new avenue of antagonism towards
diabetic vascular complications.

In addition, high glucose/palmitate-induced excessive
autophagy in endothelial cells is rectified by H2S, this may be
mediated by the Nrf2-ROS-adenosine 5’-monophosphate
(AMP)-activated protein kinase (AMPK) signaling pathway
(Liu et al., 2016). However, another group demonstrates that
exogenous H2S inhibits mitochondrial apoptosis and promotes
mitochondrial autophagy, thus protecting endothelial cells
against apoptosis induced by high glucose and palmitate (Liu
et al., 2017). These contradictory results suggest that additional
research is necessary to ascertain the role of autophagy in H2S-
mediated protective actions on diabetic endothelial dysfunction.
H2S-RELATED ENDOTHELIAL
DYSFUNCTION IN HYPERTENSION

The abnormal levels of H2S have been found to be correlated with
hypertension (Szabo, 2007; Whiteman and Winyard, 2011).
Specifically, in a clinical study, patients with severe hypertension
exhibited lower plasma H2S level (Meng et al., 2015). In subjects
with pulmonary hypertension, both CSE expression and H2S level
are significantly lower than those in healthy population (Sun et al.,
2014). In situ hybridization analysis has shown that the expression
of CSE mRNA is downregulated in the pulmonary arteries of rats
with pulmonary hypertension (Xiaohui et al., 2005). Likewise, the
reduced protein contents of CSE and CBS are detected in
pulmonary artery endothelial cells from tobacco smoke-induced
emphysema and pulmonary hypertension (Han et al., 2011). It has
been revealed a marked reduction in CBS and CSE expression as
well as H2S production in mesenteric artery and carotid artery
from dexamethasone-induced hypertensive rats (D’emmanuele Di
Villa Bianca et al., 2015). By contrast, the suppressed CBS
expression and reduced H2S concentration in the kidney are
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observed in high salt-induced hypertension in Dahl rats (Huang
et al., 2015). A decreased CSE/H2S activity is a potential
contributor to the pathogenesis of maternal hypertension in
preeclampsia (Wang et al., 2013a). Also, the plasma H2S level
and CSE protein expression in thoracic aorta are all suppressed in
spontaneously hypertensive rats (SHR) in comparison with
normotensive rats (Yan et al., 2004; Ahmad et al., 2014). An
intriguing study has illustrated that the blood pressure is enhanced
by treatment with the combination of CSE inhibitor DL‐
propargylglycine (PAG) or the CBS inhibitor aminooxyacetic
acid (AOA) in rats, while either compound alone has no any
effect on the arterial pressure, suggesting that H2S plays a critical
role in regulating blood pressure (Roy et al., 2012). Despite that
the expression of 3-MST is still uncertain under hypensive
condition, 3-MST gene therapy improves renovascular
dysfunction in response to hyperhomocysteinemia (Sen et al.,
2012). Thus, a better understanding of the biochemical functions
of the H2S-producing enzyme 3-MST as well as its roles in
hypertension may lead to new therapeutic targets based on
modulation of H2S production. Overall, these studies suggest
that endogenous H2S dysregulation plays an important role in
regulating hypertneison-associated pathological processes.

As mentioned above, a close relationship between H2S-related
endothelial dysfunction and hypertension is confirmed by an
observation that genetic deletion of CSE causes the development
of hypertension in mice (Yang et al., 2008). In these CSE
knockout mice, the endothelium-dependent relaxation of
resistance mesenteric arteries is particularly impaired (Yang
et al. , 2008). In a mouse model of Ang II-induced
hypertension, both aortic endothelial function and NO
bioavailability are significantly attenuated, and these are
reversed by treatment with H2S (Al-Magableh et al., 2015).
Conversely, blockade of endogenous H2S exacerbates these
abnormalities (Al-Magableh et al., 2015). In other studies,
application of H2S donors decrease blood pressure, reverse
vascular remodeling via suppressing VSMC proliferation, and
collagen deposition in the blood vessels (Zhao et al., 2001; Li
et al., 2008; Wang, 2012; Meng et al., 2015; Tomasova et al.,
2015). H2S therapy markedly restores eNOS function and NO
bioavailability in Nw-nitro-l-arginine methyl ester (L-NAME)-
induced hypertensive rats (Ji et al., 2014). In agreement with this,
the improvement of endothelial function by H2S is largely
attributed to inhibition of oxidative stress, suppression of renin
angiotensin system (RAS), downregulation of BMP4/COX-2
pathway, or activation of the PPARd/PI3K/Akt/AMPK/eNOS
pathway, thus contributing to the antihypertensive mechanism
of H2S in renovascular hypertensive rats (Xue et al., 2015; Xiao
and Dong, 2016; Xiao et al., 2018). In SHR, exogenous H2S
administration significantly reduces blood pressure and
abrogated damaged endothelial dysfunction via inactivation of
NLRP3 inflammasome and oxidative stress (Li et al., 2019). H2S
treatment blunts increases in systolic blood pressure and
ameliorates endothelial dysfunction by inhibiting oxidative
stress in lead-induced hypertensive rats (Possomato-Vieira and
Goncalves-Rizzi, 2018). These results demonstrate that the H2S
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pathway may provide potential therapeutic target for treating
different hypertension models.

Importantly, supplementation with S-zofenopril ameliorates
vascular endothelial dysfunction by potentiating the H2S
pathway in spontaneously hypertensive models (Bucci et al.,
2014). Moreover, exercise training counteracts hypertension,
ameliorates vascular remodeling, and endothelial dysfunction
via restoring bioavailability of H2S and NO in hypertensive rats
(Gu et al., 2013). HDAC6 inhibitor tubastatin A alleviates Ang
II-induced high blood pressure and vasoconstriction by
preventing the protein degradation of CSE (Chi et al., 2019).
Overall, these studies suggest that upregulation of H2S may be
considered as a promising strategy for preventing the
progression of hypertension and its associated endothelial
dysfunction (Figure 4). However, further in-depth research is
still required to understand the precise underlying mechanisms,
and this will be helpful to develop better therapeutic employment
of H2S in the treatment of hypertension.
EVIDENCE FOR H2S/NO CROSSTALK IN
ENDOTHELIAL INFLAMMATION

Due to the importance of H2S and NO in cardiovascular disease,
the interactive regulatory functions of H2S and NO in endothelial
dysfunction-associated cardiovascular disease may be a very
attractive subject. In other words, the biological interactions of
H2S with NO could influence each other’s fate in the
endothelium as described previously (Wang et al., 2015b;
Nagpure and Bian, 2016; Wu and Hu, 2018) (Figure 2).

Studies on H2S/NO interaction in inflammation response,
especially in endothelial cell inflammation, have been less
extensive. Administration of LPS increases H2S synthesis,
upregulates CSE and iNOS expressions, and promotes
myeloperoxidase activity in the liver, whereas the effects are
inhibited by the NO donor, nitroflurbiprofen (Anuar et al.,
2006). These results suggest that downregulation of H2S
biosynthesis is responsible for the augmented anti-
inflammatory activity of nitroflurbiprofen in the liver (Anuar
et al., 2006). In turn, pretreatment with H2S is able to inhibit
LPS-induced iNOS expression and NO production via heme
oxygenase 1 (HO-1) expression in macrophages (Oh et al., 2006).
In accordance with this finding, H2S donor inhibits the release of
the pro-inflammatory mediators and NO production, potentially
via NF-kB inactivation in LPS-treated macrophages (Whiteman
et al., 2010). The pulmonary CSE expression and H2S levels are
downregulated in a model of inflammatory lung disease (Chen
et al., 2009; Whiteman and Winyard, 2011). NaHS, a donor for
H2S, significantly attenuates pulmonary iNOS activation in
ovalbumin-treated rats (Chen et al., 2009). Moreover, H2S is
found to act as an anti-inflammatory agent contributing to
gastrointestinal mucosal defense through NO-dependent
pathway (Jensen et al., 2017). In cardiovascular system,
vasodilation is impaired and endothelial H2S content is
decreased in vessels from obese mice, this may be attributed to
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the increased iNOS activity in proinflammatory macrophages
(Candela et al., 2017). This finding suggests that macrophages-
derived iNOS promotes microvascular endothelial dysfunction
through reducing the bioavailability of H2S in the blood vessel
(Candela et al., 2017). GYY4137, a novel slow-releasing H2S
compound, is reported to attenuate vascular inflammation and
improve endothelial function via activating aortic eNOS
phosphorylation in ApoE-/- mice (Liu et al., 2013). A number
of studies have showed that H2S strengthens endothelial NO
production via activating eNOS phosphorylation (Predmore
et al., 2011; Xiao et al., 2018), which results in ameliorating the
development of hypertension (Xiao et al., 2018). Taken together,
the above studies imply that a complex interaction between H2S
and NO might serve as an important regulator for endothelial
inflammation and associated endothelial dysfunction. However,
the potential mechanisms of the interactions between H2S and
NO in endothelial inflammation remain unclear. As research in
this area progresses and more data are available, it will help us to
better understand the underlying mechanisms.
ROLE OF H2S IN INTESTINAL
MICROBIOTA AND CIRCADIAN RHYTHMS

It should be emphasized that intestinal microbiota is also an
emerging factor for human health and disease, including
cardiovascular diseases (Tang et al., 2017). In recent years, both
human and animal experiments have established that alterations in
the composition, function, andmetabolites of intestinal flora might
induce gut microflora dysbiosis, contributing to the pathogenesis
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of cardiovascular disorders (Tang et al., 2019). Circadian
rhythmicity is a characteristic of mammalian metabolism that
orchestrates metabolic processes in living organisms based on day/
night light cycles (Liu and Chang, 2017). Disturbance of circadian
rhythmicity is associated with increased risk for metabolic obesity,
diabetes, and cardiovascular dysfunction (Crnko et al., 2018).
Similarly, the intestinal microbiota exhibits their own circadian
rhythmicity in terms of composition and functions (Tahara et al.,
2017). Circadian disorganization may affect the intestinal
microbiota which may result in metabolic syndrome and
cardiovascular diseases (Voigt et al., 2016). Accumulating
evidence has indicated that circadian rhythm disruption in
intestinal microbiota is involved in various human diseases,
including cardiovascular diseases (Jin et al., 2019). Thereafter,
interfering with the composition, function, and metabolites of
the intestinal flora or recovery of the normal circadian rhythm in
the intestinal flora may provide valuable insights into potential
therapeutic strategies for cardiovascular diseases.

Notably, the cysteine degradation by the microbiota is taken
as a dominant pathway for H2S generation (Basic et al., 2017).
Intestinal microbiota is a potential target of H2S, and H2S acts on
gastrointestinal epithelium to modify the gut microbiota
(Wallace et al., 2018). It has been reviewed that H2S is a
double-edge sword for the intestinal epithelium with beneficial
effect at low concentration (nanomolar to low micromolar), but
deleterious effects at higher concentrations (high micromolar to
millimolar) (Blachier et al., 2019). Considering the critical
importance of intestinal microbiota and H2S in maintaining
cardiovascular homeostasis, it is believed that intestinal
microbiota-derived H2S integrates microbial and circadian cues
FIGURE 4 | Schematic illustration of underlying mechanisms in which H2S protects against hypertension. H2S lowers high blood pressure via vasodilatation by
activation of vascular KATP channels and inhibition of Ca2+ influx. The PPARd/PI3K/Akt/AMPK signaling pathway participates in H2S-induced NO production. These
above events cause vasodilation. H2S inhibits ROS production via Nrf-2/HO-1 related redox sensitive signaling pathways. In addition, H2S treatment blunts increases
in systolic blood pressure by inhibiting inflammation-related signaling pathways. H2S, hydrogen sulfide; NO, nitric oxide; Akt, protein kinase B; eNOS, endothelial NO
synthase; PKG, protein kinase G; PI3K, phosphoinositide 3-kinase; PPARd, peroxisome proliferators-activated receptor d; AMPK, adenosine 5’-monophosphate
(AMP)-activated protein kinase; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase 1; NF-kB, nuclear factor-kappa B; BMP4, bone
morphogenetic protein 4; COX-2, cyclooxygenase-2; NLRP3, nucleotide-binding oligomerization domain, leucine rich repeat, and pyrin domain-containing protein 3.
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for regulation of diurnal metabolic rhythms, thereby influencing
the endothelial dysfunction in cardiovascular system. However, it
is still largely unknown with respect to the roles of H2S in
intestinal microbiota-mediated endothelial dysfunction. The
relationship between H2S and intestinal microbiota in
cardiovascular regulation may be a very interesting topic. As
the gut microbiota leads to much more H2S production from
cysteine than endogenous metabolism, it is likely that H2S from
the bacterial or intestinal epithelium may be a critical
determinant for cardiovascular health or disease. However,
additional investigation is warranted to identify the exact roles
of H2S in intestinal microbiota and circadian rhythms. Our
current understanding of the relationship between H2S and
intestinal microbiota in endothelial inflammation-related
cardiovascular disorders is expanding continuously. The
interaction between their signaling pathways is increasingly
recognized as the future direction for the research in the
gasotransmitters field.
CONCLUDING REMARKS AND
FUTURE PERSPECTIVES

In addition to NO deficiency and intestinal flora, other factors
including oxidative stress (Nakahira et al., 2011), endoplasmic
reticulum stress (Battson et al., 2017; Luchetti et al., 2017),
mitochondrial dysfunction (Gao et al., 2018), hypoxia (Feng
et al., 2017a), homocysteine (Esse and Barroso, 2019), and
immune activation (Pan et al., 2017) are also closely related
with endothelial inflammation and dysfunction in cardiovascular
diseases. With in-depth research, our knowledge on the
underlying mechanisms of H2S-mediated suppression of
endothelial cell inflammation is expanding and it is now
apparent that interactions between H2S and endothelial
inflammation-regulated pathways may be proposed as a
promising approach for cardiovascular disease therapy. A
better understanding of such interactions will be favorable to
develop novel therapeutic strategies for endothelial dysfunction-
related cardiovascular diseases.

Due to a myriad of biological functions of H2S, there has been a
growing interest regarding the enormously therapeutic potential
of H2S in various diseases including cardiovascular diseases.
However, our current knowledge on cardiovascular protective
effects of H2S is mainly from animal or cell experiments using H2S
donors or inhibitors of H2S-producing enzymes. Whether the
promising effects of these chemicals in animal studies can be
Frontiers in Pharmacology | www.frontiersin.org 1086
transferable to clinical studies warrants further studies. As such, it
should be mentioned that clinical trial results will also pave the
way to a better understanding of the effectiveness of H2S in human
diseases. In one completed clinical trial in healthy volunteers and
subjects with impaired renal function received known
concentrations of sodium sulfide (cl inicaltrials .gov,
NCT00879645). Despite that only some results have been
announced so far, but the treatment could be considered safe
because no serious adverse effects are occurred in the involved
patients. However, some caution can be warranted as another
clinical trial regarding the potential of H2S in coronary artery
bypass graft patients was terminated without undisclosed reasons
(NCT00858936) and one had been withdrawn before enrollment
(NCT01007461). Some other completed trials are completed to
test the role of H2S in inflammatory diseases such as ulcerative
col i t is (NCT01282905) or septic shock and stroke
(NCT01088490). However, to date, no results are posted due to
unknown reasons. Therefore, further results and information
from those ongoing and future trials will help to elucidate the
physiological and pathophysiological importance of H2S in
various diseases.

Until now, endothelial inflammation and dysfunction remain
mortal factors for cardiovascular diseases. It is anticipated that a
full understanding of the modulatory mechanisms of the link
between endothelial inflammation and destructive H2S
bioavailability might promote the translation of H2S biology to
clinical management of endothelial dysfunction-related
cardiovascular diseases. To achieve this, more original work
remains to be experimentally evaluated in the future.
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Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps take up Ca2+ from the
cytoplasm to maintain the balance of intracellular Ca2+. A decline in expression or activity
of SERCA results in persistent store-operated calcium entry (SOCE). In cardiomyocytes as
well as vascular smooth muscle cells (SMCs), SERCA2 acts as an important regulator of
calcium cycling. The purpose of this study is to identify and better understand the role of
transglutaminases2 (TG2) as a key factor involved in SERCA2 serotonination (s-SERCA2)
and to elucidate the underlying mechanism of action. Human pulmonary venous smooth
muscle cell in normal pulmonary lobe were isolated and cultured in vitro. Establishment of
hypoxic pulmonary hypertension model in wild type and TG2 knockout mice. SERCA2
serotonylation was analyzed by co-(immunoprecipitation) IP when the TG2 gene silenced
or overexpressed under normoxia and hypoxia in vivo and in vitro. Intracellular calcium ion
was measured by using Fluo-4AM probe under normoxia and hypoxia. Real-time (RT)-
PCR and Western blot analyzed expression of TG2, TRPC1, and TRPC6 under normoxia
and hypoxia. Bioactivity of cells were analyzed by using Cell Counting Kit (CCK)-8, flow
cytometry, wound healing, RT-PCR, andWestern blot under PST-2744 and cyclopiazonic
acid. We confirmed that 1) hypoxia enhanced the expression and activity of TG2, and 2)
hypoxia increased the basal intracellular Ca2+ concentration ([Ca2+]i) and SOCE through
activating TRPC6 on human pulmonary vein smooth muscle cells (hPVSMC). Then, we
investigated the effects of overexpression and downregulation of the TG2 gene on the
activity of SERCA2, s-SERCA2, basal [Ca2+]i, and SOCE under normoxia and hypoxia in
vitro, and investigated the activity of SERCA2 and s-SERCA2 in vivo, respectively. We
confirmed that SERCA2 serotonylation inhibited the activity of SERCA2 and increased the
Ca2+ influx, and that hypoxia induced TG2-mediated SERCA2 serotonylation both in vivo
and in vitro. Furthermore, we investigated the effect of TG2 activity on the biological
behavior of hPVSMC by using an inhibitor and agonist of SERCA2, respectively. Finally,
we confirmed that chronic hypoxia cannot increase vessel wall thickness, the right
ventricular systolic pressure (RVSP), and right ventricular hypertrophy index (RVHI) of
vascular smooth muscle-specific Tgm2−/− mice. These results indicated that hypoxia
promoted TG2-mediated SERCA2 serotonylation, thereby leading to inhibition of
SERCA2 activity, which further increased the calcium influx through the TRPC6
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channel. Furthermore, tissue-specific conditional TG2 knockout mice prevents the
development of pulmonary hypertension caused by hypoxia. In summary, we uncovered a
new target (TG2) for treatment of chronic hypoxic pulmonary hypertension (CHPH).
Keywords: serotonylation, TG2, SERCA2, pulmonary venous smooth muscle cell, store-operated calcium entry, [Ca2+]i
INTRODUCTION

Pulmonary arterial hypertension (PAH) is a condition marked
by high blood pressure in the lungs and vascular remodeling,
which can lead to right heart failure (RHF), and even death.
Vascular remodeling in the lungs is characterized by the
excessive proliferation, movement, and blockage of apoptosis
of pulmonary vascular smooth muscle cells (Dai et al., 2018). In
previous studies, many researchers paid close attention to the
role of pulmonary arteries on PAH, however more recently more
and more studies have revealed that pulmonary veins (PVs) also
play an important role on PAH (Jin et al.2013; Zhao et al.,1993;
Kulik, 2014). Chronic hypoxic exposure, vasoconstriction, and
structural alterations occur not only in pulmonary arteries (PAs)
but also in PVs, each contributing significantly to total
pulmonary vascular resistance (Raj and Chen, 1986; Zhao
et al., 1993; Raj et al., 1990, 1992; Gao and Raj, 2005; Peng
et al., 2010). In addition, intrapulmonary arteries and veins
contributed to the increase in pulmonary vascular resistance
during hypoxia (Aguero et al., 2016; Nelson et al., 2016; Sahoo
et al., 2015). The abnormal proliferation and migration of
pulmonary vein smooth muscle cells (PVSMCs) formed the
pathological basis of pulmonary vein remodeling. In our
previous study, we indicated that transient receptor potential
cation 6 (TRPC6), not TRPC1, was functionally upregulated in
rat PVs and PVSMCs in response to chronic hypoxia (CH).
There is evidence to suggest that TRPC6 channels are activated,
in the setting of hypoxia, by both stores operated and receptor
operated mechanisms, however the relative contribution of each
to TRPC6 activity remains contentious. It was widely believed
that ROCE produced a large amount of calcium influx in a short
time, causing acute pulmonary vessels vasoconstriction, and
SOCE produced a small and persistent calcium influx which
played an important role on chronic pulmonary vascular
remodeling (Yuan et al., 2009; Xu et al., 2014; Peng et al.,
2015). Hypoxia increased the proliferation and migration of
PVSMCs, which was attenuated by siTRPC6 (Xu et al., 2014).
After the endoplasmic reticulum (ER) has released Ca2+, the
enhanced intracellular Ca2+ concentration ([Ca2+]i) is
maintained by Ca2+ from the store-operated Ca2+ entry
(SOCE). SOCE regulates adding Ca2+ back into the ER, which
prevents Ca2+ from entering and enables restorative resting of
acid; SOCE, store-operated calcium entry;
ration; SERCA, sarco-endoplasmic reticulum
2 serotonination; TG2, transglutaminases2;
ension; RVSP, right ventricular systolic
r hypertrophy index; hPVSMC, human
e cell; TRPC, transient receptor potential
-hydroxytryptamine; WT, wild type; Tgm2
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Ca2+. This exhibits a mediating effect on [Ca2+]i, which
facilitates the resting [Ca2+]i in the nanomolar range by way
of sarco(endo)plasmic reticulum calcium ATPase (SERCA).
SERCA activi ty increases upon the release of ER/
sarcoplasmatic reticulum (SR) Ca2+, which allows for rapid re-
uptake of cytosolic Ca2+ (Luo et al., 1994). Subtype SERCA2 was
a key modulator of calcium cycling in both cardiomyocytes and
vascular SMCs, and the pulmonary arterial SERCA2 expression
is down-regulated in a rat monocrotaline model of PH as well as
in humans with PAH (Sahoo et al., 2015). 5-Hydroxytryptamine
(5-HT and serotonin) is a well-known small protein that plays a
central role in the pathogenesis of PAH and vascular remodeling
(Lee et al., 1991; Lee et al., 1998; Lee et al., 1999; Liu et al., 2011;
Thomas et al., 2013; Penumatsa et al., 2014a). Previous research
has found that the enzyme tissue transglutaminase 2 (TG2)
regulates the cross-linking of proteins with 5-HT. This is a
post-translational process of monoaminylation, which is
known as “serotonylation” TG2 activity and is active in both
smooth muscle proliferation and contraction produced by 5-HT
(Penumatsa et al., 2014b; He et al., 2016; Yu et al., 2016; Chen
et al., 2018; Liu et al., 2018). Moreover, in our previous study, we
used tandem mass spectrometry and immunoprecipitation of
cardiomyocytes to confirm that SERCA2 was another target
protein for 5-HT, and was named SERCA2 serotonylation
(Wang et al., 2016). We speculated that CH inhibits the
activity of SERCA2 by serotonylation, thereby activating
TRPC6-mediated SOCE to increase the intracellular calcium
concentration and promote cell proliferation and migration.
MATERIALS AND METHODS

Reagents
Cyclopiazonic acid (CPA) and PST-2744 (SERCA2 agonists,
Sigma-Aldrich, St. Louis, MO, USA), 5-BP, and Fluo-4 AM
probes were from Life Technologies (Thermo Fisher Scientific,
Waltham, MA, USA), culture–insert two well (ibidi
GmbH, Germany).

Small Interfering Ribonucleic Acid
and Recombinant Adenovirus
hPVSMCs at 70–80% confluence was transfected with siRNA and
recombinant adenovirus. Takes 2.5 ml (six-well) Lipofectamine®

RNAiMAX Reagent (Thermo Fisher Scientific) and 5 ml (six-well)
siRNA into two centrifuge tubes with 250 ml serum-free and
antibiotic-freeDEME/F-12mediumseparately, andblendbygently
shaking. Then, add diluted siRNA to diluted Lipofectamine®

RNAiMAX Reagent, and incubate for 5 min at room
temperature. Add siRNA-lipid complex to hPVSMCs (six-well)
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and then add 500 ml medium to six well for 1 ml. Replace fresh
medium after 8 h and continue to culture hPVSMCs for 48 h.

Recombinant adenovirus (1×1,010 TU/ml) was diluted 1,000
times in medium. Add the diluted Recombinant Adenovirus to a
six-well plate and add 1 ml to each well. Replace fresh medium
after 12 h and continue to culture hPVSMCs for 72 h. hPVSMCs
were treated with hypoxia after completing stable transfection.
Small-interfering RNA (siRNA) molecules targeting human
TRPC1, TRPC6, and TG2 messenger RNAs (mRNAs) were
purchased from GenePharma biotech company, China. For
TRPC1, TRPC6, and TG2 overexpression, adenoviral vectors
were purchased from GenePharma biotech company, China.
TRPC1 siRNA: sense strand: GGAUGUGCGGGAGGUG
AAGTT; antisense strand: CUUCACCUCCCGCACAUCCTT;
TRPC6 siRNA: sense strand: GCCACUCACUCAACG
UUAATT; antisense strand: UUAACGUUGAGUGA
GUGGCTT. TG2 siRNA: sense strand: GCCUGAUCCUU
CUAGAUGUTT; antisense strand: ACAUCUAGAAGGA
UCAGGCTT. The efficiency of the TG2 siRNA and adenovirus
were about 68 and 230% mRNA, 15 and 170% protein. The
efficiency of the TRPC1 siRNA and adenovirus were about 67
and 263% mRNA, 20 and 160% protein. The efficiency of the
TRPC6 siRNA and adenovirus were about 71 and 233% mRNA,
17 and 211% protein. For specific analysis, please referred to
Supplementary Materials.

Vascular Smooth Muscle-Specific Tg2
Knockout Mice
Vascular smooth muscle-specific Tgm2 knockout mice were
generated using standard Cre-LoxP-based gene targeting
strategies. The final targeting vector for Tgm2 conditional
knockout was constructed and subsequently delivered to
vascular smooth cells. Male adult Tgm2 conditional knockout
mice and female adult Tg(Tagln-cre)1Her/J were purchased
from The Jackson Laboratory (USA) on a C57BL/6J
background. These Tgm2t/t floxed mice possessed loxP sites
flanking exons 6–8 of the transglutaminase 2, C polypeptide
(Tgm2) gene. Under the control of mouse transgelin (smooth
muscle protein 22-alpha), the transgenic mice expressed Cre
recombinase. Cre-mediated recombination, when crossed with a
strain possessing the appropriate loxP site-flanked sequence, will
delete the flanked sequence in vascular smooth muscle cells. Mice
were housed in groups of four in standard polypropylene cages in
12-h light-dark cycle approved by the Nanjing Medical
University animal welfare guidelines (Nanjing, China).
Genotyping was performed via PCR using DNA extracted
from tail clippings with a Direct PCR (Tail) Kit (ViaGen
Biotech Inc, USA). In brief, 8 to 10-week old male mice were
used for in vivo experiments. Mice were assigned to experimental
groups based on their genotype and SM22a-Cre+/− status.
Selection of animal for CH treatment was performed randomly
and in a blinded manner.

Cell Isolation
Human pulmonary vein smooth muscle cells (hPVSMCs) were
aseptically isolated from the intrapulmonary vein (fourth level)
from surgical pulmonary lobectomy at room temperature. After
Frontiers in Pharmacology | www.frontiersin.org 394
removing adhering fat, connective tissue, and endothelial cells,
the dissected media of the PVs was cut into small pieces (1–
2 mm2) and covered by autoclaved glass coverslips in cell culture
dishes. Next, we cultured fourth level hPVSMCs in DMEM/F-12
(HyClone, USA) which was supplemented with 10% fetal bovine
serum (FBS) (Biological Industries, Israel), and 1% Penicillin-
Streptomycin liquid (Gibco, USA) at 37°C and 5% CO2.
PVSMCs were identified by positive immunostaining with
anti-a-SMA monoclonal antibody (Abcam, UK). Cells at
passages 2–3 were used in experiments, and each experiment
was repeated at least three times with different preparations of
cells. While the cells cultured in a tri-gas incubator, we
performed hypoxia preconditioning (Forma Series II 3131
Water Jacket CO2 Incubator, Thermo Scientific, USA) for 12
or 24 h with oxygen concentration in 1% (Weisel, et al., 2014).

Pulmonary Arterial Hypertension Model
In vivo, 8-week male wild-type (WT) mice (n = 6) and TG2
knockout (Tgm2−/−) mice (n = 6) were exposed to hypoxia (10%
O2) in a normobaric chamber for 6 weeks, which represented the
hypoxia group. Another set of identical WT mice (n = 6) and
Tgm2−/− mice (n = 6) were kept under normal conditions for 6
weeks, and represented the normoxia groups. The chamber
(AiPu XBS-02B, China) had an external oxygen controller,
sensing the ambient oxygen concentration and replacing it
with nitrogen when necessary. The chamber was partially
ventilated. At the end of the treatment period, hemodynamic
indexes were determined, and lung tissue of mice were collected
(Chen et al., 2018; Liu et al., 2018).

Hemodynamic and Morphometric
Measurements
Mice were anesthetized with 1% pentobarbital sodium (80 mg/kg
ip). Then the RSVP was measured by closed-chest insertion into
the right ventricle (RV), in order to measure the mean
pulmonary arterial pressure of spontaneously breathing,
anesthetized animals using a xiphocostal approach. This
entailed using a 22-gauge needle that was connected to a
pressure transducer, both of which were controlled by the
PowerLab system (ADInstruments, Australia). In order to
specify the position of the needle, we used the wave form and
our data were recorded using the Chart program (part of the
PowerLab system). We then extracted the heart and lungs from
the mice and separately weighed the right ventricle and the left
ventricle plus interventricular septum (LV+S). This allowed us to
examine the extent of RV hypertrophy. We calculated the right
ventricular hypertrophy index (RVHI) according to the
following formula: RVHI = [RV/(LV+S)]. Lung sections from
inferior lobe of right lung were prepared and processed using
hematoxylin-eosin (HE) staining using a standard protocol.
Tissue sections were observed under a light microscope. At
400× magnification small pulmonary vessels of at least three
animals per group ranging from 50 to 100 mm in internal
diameter were assessed. The percentage medial layer thickness
[MT% = 100 x (medial layer thickness)/(vessel semidiameter)]
and area [MA% = 100 (cross-sectional medial layer area)/(total
cross-sectional vessel area)] of peripheral pulmonary arteries
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were analyzed using a blind-method image-processing program
(Image-Pro Plus, Version 6.0) (He et al., 2016; Chen et al., 2017).

Co-Immunoprecipitation Assay
To determine the interaction between SERCA2 and 5-HT in vivo
and in vitro, hPVSMCs were lysed in an immunoprecipitation
(IP) lysis buffer (KeyGen BioTech, China) after incubation with
5-HT (1 mM) and Ca2+(6.7 mM). Cell lysates were cleared by
centrifugation at 10,000 rpm for 5 min at 4°C. Briefly, distal
(≥2th generations) PV relative to atrium were dissected from
lungs of male mice after finishing hypoxia. The thin layer of
adventitia was carefully stripped off with fine forceps, and the
endothelium was wiped off using a cotton swab. Total protein
was extracted using an immunoprecipitation (IP) lysis buffer
(KeyGen BioTech, China) for distal PV tissue. The protein
content was measured using a bicinchoninic acid assay (BCA)
protein assay (KeyGen BioTech, China). In brief, magnetic beads
were resuspended in the vial. And 50 µl Protein A/G magnetic
beads were added to a 1.5 ml tube, and 150 µl binding buffer (50
mM Tris, 150 mM NaCl, 0.1% Triton X-100, pH 7.5) was added
into the tube twice to perform magnetic separation. Next, 200 µl
of 30 mg/ml anti-SERCA2 mouse monoclonal antibody (Abcam,
UK) was added to pretreat the magnetic beads. The tube was
rotated for 1 h at room temperature or 4 h at 4°C, then
resuspended thoroughly by pipetting up and down. Magnetic
separation was performed and the supernatant was discarded
twice. Tubes were removed from the magnetic separator and the
sample containing the antigen (Ag) (200 µl) was added and
gently pipetted to resuspend the Protein A/G magnetic beads-Ab
complex. The mixture was incubated overnight at 4°C under
rotation to allow Ag to bind to the Protein A/G magnetic Bbads-
Ab complex. Next, the magnetic beads-Ab-Ag complex was
washed three times using 300 µl binding buffer per wash.
Magnetic separation was performed between each wash,
supernatant was removed and resuspended by gentle pipetting.
The Protein A/G magnetic beads-Ab-Ag complex was
resuspended in 150 µl binding buffer and the bead suspension
were transferred to a clean tube to avoid co-elution of the
proteins bound to the tube wall. Then, the supernatant was
discarded and 30 ml of 1× sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) loading buffer was added, mixed
well, and heated at 95°C for 5 min. The supernatant was collected
for SDS-PAGE detection by magnetic separation, then 5-HT and
SERCA2 expression were evaluated in the final supernatant using
Western blot analysis using an anti-serotonin antibody (Abcam,
UK) and anti-SERCA2 rabbit polyclonal antibody (Abcam, UK).

SERCA2 Activity Assay
SERCA2 is a member of the ATPase family, which can
decompose ATP into ADP and inorganic phosphorus. Analysis
of the amount of inorganic phosphorus determined the level of
ATPase activity by using ultramicro-Ca2+-ATPase detection kit
(Jiancheng Bioengineering Institute, China). The treated
hPVSMCs were digested, centrifuged, and the supernatant was
removed, leaving layers of cells, and 200 ml of ultrapure water was
added to each tube to prepare a 107/ml cell suspension, which
Frontiers in Pharmacology | www.frontiersin.org 495
was disrupted by an ultrasonic pulverizer. The prepared cell
suspension did not centrifuge and the total protein concentration
was measured by the BCA method. In vivo, pulmonary veins
were isolated from WT and Tgm2−/− mice under hypoxia and
normoxia. In brief, 9 vol of ultrapure water were added to the
veins, and veins were mechanically disrupted in an ice bath, and
centrifuged at 2,500 rpm for 10 min. Next, the supernatant was
collected, diluted 10-fold, and the total protein concentration
was measured by the BCA method. Enzymatic reactions and
phosphorus determination were carried out according to the kit
instructions. An UV spectrophotometer (Mapada UV-3100PC,
China) was used to measure the absorbance of samples at a
wavelength of 636 nm and 1 cm optical path after ultrapure
water zero setting. The optical density (OD) value was used in
the following formula to calculate the activity of ATPase. Activity
of ATPase (U/mgprot) = (the OD value of the sample − the OD
value of the control)/(OD value of standard-OD value of
blank)×0.02 mmol/l×6×2.8÷total protein concentration of
sample (mg protein/ml) (Guo et al., 2017).

TG2 Activity Assay
For measurement of TG2 activity, 5-BP (400 mM, Thermo
Scientific, USA) activity was visualized with fluorochrome-
labeled HRP-added streptavidin. In brief, hPVSMCs were
grown at a rate of 80% on glass coverslips (CitoGlas, China).
hPVSMCs were exposed to 5-BP for an h prior to the exposure to
hypoxia/normoxia, after 24 h of free-serum starvation. As a
negative control, the incubation of 5-BP was omitted.
Following the hypoxia/normoxia treatment, cells were fixed
with 4% formaldehyde (Biosharp, China) for 20 min at room
temperature. Cells were treated with 0.1% Triton X-100 for 30
min after complete removal of paraformaldehyde. Then, cells
were blocked with 5% BSA in 0.1% Triton X-100 for 1 h at 4°C.
Then, cells were incubated with 2 mg/L Streptavidin Alexa Fluor
488 Streptavidin HRP (YeaSen Bio, China) overnight at 4°C.
Finally, cells were treated with 4′,6-diamidino-2-phenylindole
(DAPI) (Leagene Biotechnology, China) at 37°C for 5 min, and
was then sealed with nail polish. We examined the stained
sections under a light microscope (Nikon Eclipse TE2000-S,
Japan). The green fluorescence intensity per cell was calculated
using ImageJ software to quantitatively analyze the activity of
TG2 (Occhiogrosso et al., 2012).

Measurements of [Ca2+]i and Store-
Operated Calcium Entry
In order to quantify the [Ca2+]i in groups of hPVSMCs using an
Infinite M200 PRO plate-reader (Tecan, Switzerland), the
hPVSMCs were seeded into 96-well plates, with each well
containing 104 cells. After 2 days, the medium was replaced
with DMEM/F12 (with no serum), and the cells were used after
incubation for another 24 h. Cells were washed with HEPES [4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid]-buffered
saline (HBS: 135 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl2,
1.5 mM CaCl2, 11.6 mM HEPES, 11.5 mM D-glucose, pH
7.3), and loaded with fluo-4 by incubation with Fluo-4-AM
(2 mM) in HBS (100 ml per well). After 30 min at 37°C, HBS
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replaced the medium at a rate of 100 ml per well, and the
fluorescence from Fluo-4AM (excitation 485 nm, emission
525 nM) was recorded at 5-min intervals for 30 cycles using
Tecan i-control. For the measurement of SOCE, hPVSMCs were
treated as in the following four steps. Step one, hPVSMCs
were treated with HBS solution for 5 min. Step two,
hPVSMCs were treated with free-Ca2+ HBS solution
included 5 mM nifedipine (Aladdin Industrial Corporation,
China) and 10 mM CPA (Sigma-Aldrich, St. Louis, MO, USA).
Step three, hPVSMCs were treated with free-Ca2+ HBS solution
included 5 mM nifedipine and 10 mM CPA for 10 min. Step four,
hPVSMCs were treated with HBS solution for 10 min.
Fluorescence was only recorded in steps 2 and 3. The change in
intracellular Ca2+ concentration was represented by the change of
fluorescence intensity.The ratiooffluorescence intensity (F/F0)was
used to compare intracellular Ca2+ concentration under different
treatments (F: the average fluorescence intensity under different
treatments, F0: the initial fluorescence intensity) (Dale et al., 2018;
Zhu et al., 2018).

Real-Time Polymerase Chain Reaction
Total RNA from hPVSMCs with different treatments was isolated
by using the RNAprep pure cell Kit (TianGen BioTech, China)
according to themanufacturer’s protocol. TheRNAconcentrations
were determined using a NanoDrop ND-1000 spectrophotometer
(Thermo Scientific). Equal amounts of total RNA were reversed
transcribed using the FastQuant RT Kit (with gDNase) (TianGen
BioTech, China). RT-PCR was performed with the SuperReal
PreMix Plus (SYBR Green) (TianGen BioTech, China) and Prism
7500 SDS (Applied Biosystems; Thermo Fisher Scientific, USA).
The primers for TRPC1 were: h-TRPC1-s ATGTGCTTGGGA
GAA ATGCTG, h-TRPC1-a TCTTGATGATCGTTTTGGTCG.
The primers for TRPC6 were: h-TRPC6-sACTCCTTCCT
AATGAAACCAGCAC, h-TRPC6-a CAGATTTCTTTACATT
CAGCCCATA. The primers for h-b-actin were: h-ACTIN-s
CACCCAGCACAATGAAGATCA AGAT, h-b-actin-a CCAG
TTTTTAAATCCTGAGTCAAGC. The primers for TG2 were: h-
TG2-s TATGGCCAGTGCTGGGTCTTCGCC, h-TG2-a GGCTC
CAGGGTTAGGTTGAGCAGG. The relative gene expression
values were calculated using the DDCt method (DDCt = DDCt
treated − DDCt untreated control) and the equation y = 2 − DDCt
and b-actin served as the control.

Lung Tissue Immunohistochemistry
Lung tissues were fixed in 4% paraformaldehyde, processed, and
embedded in paraffin. We carefully examined the cores and
inserted them into new paraffin blocks, using Tissue Arrayer
Minicore (Alphelus, Plaisir, France). We deparaffinized the
sections with a thickness of 5 mm and washed them with 100%
ethanol, 90% ethanol, 70% ethanol, and then distilled water.
These sections were then prepared for antigen retrieval in a
citrate buffer with a pH of 6.0 by heating them in a microwave for
5-min cycles. The sections were then incubated overnight at a
temperature of 4°C with a 1:200 diluted Anti-TG2 antibody
(Abcam, USA), after which we incubated them with biotin-
labeled Rabbit Anti-Mouse IgG H&L preabsorbed (Abcam,
USA) for immunostaining (Chihong, et al., 2017).
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Western Blot Analysis
Protein samples were prepared in a similarway aswas described for
co-IP analysis. In brief, 30 mg of protein was loaded per lane, with a
buffer of 8% SDS-PAGE gel subsequently transferred to
polyvinylidene fluoride or polyvinylidene difluoride (PVDF)
membranes. Following the transfer, the membranes were
incubated overnight at 4°C with anti-TG2 monoclonal antibody
(1:1,000, Abcam, UK), anti-osteopontin polyclonal antibody
(1:1,000, Abcam, UK), anti-SM22a polyclonal antibody (1:1,000,
Abcam, UK), anti-b-actin monoclonal antibody (1:1,000, Abcam,
UK), and anti-calponin polyclonal antibody (1:1,000, Abcam, UK).
Then, membranes were washed and incubated with an HRP-
conjugated secondary antibody and developed using a ECL
Substrate Kit (Invent Biotechnology, USA). The subsequent
processes were performed according to the manufacturer’s
instructions. The image was taken by a Tanon-4600
Chemiluminescent Imaging System (Tanon, China) for 1–3 min.
Specific bands were analyzed according to apparent molecular sizes.

Cell Proliferation Assay and Apoptosis
Detection
FBS-free medium starvation for 24 h, hPVSMCs were treated
with 10 mM cyclopiazonic acid (CPA) (SERCA2 inhibitor,
Sigma-Aldrich, St. Louis, MO, USA) and 5 mM PST-2744
(SERCA2 agonists, Sigma-Aldrich, St. Louis, MO, USA) for 24
and 48 h, respectively. The proliferation of cells was examined
using a Cell Counting Kit-8 assay (Dojindo, Japan). Cells were
seeded at 5,000 cells/well into 96-well plates with 100 ml culture
medium. Then, 10 ml of CCK-8 solution was added to the cells at
specific time points and cells were incubated for 3 h at 37°C.
Then, the absorbance at 450 nm was measured using a
Microplate Reader (Bio-Rad, USA). Cells were seeded at 5×104
cells/well into six-well plates in 2,000 ml culture medium.
Apoptosis was examined by flow cytometric analysis. An
Annexin V-EGFP/PI double stain assay (KeyGen BioTech,
China) was performed following the manufacturer’s protocol.

Wound Scratch Assays
A total of 5 × 105 cells/ml hPVSMCs suspension was prepared as
usual. Then, 70 µl of the suspension was placed into a culture–
insert two well (ibidi GmbH, Germany). Shaking is avoided as
this will result in an inhomogeneous cell distribution. Cells were
incubated at 37°C and 5% CO2. After appropriate cell adherence
(24 h), the culture–insert two well was gently removed by using
sterile tweezers, and the outer area was filled with cell culture
medium. In brief, hPVSMCs were seeded on two-wells silicone
inserts with a defined cell-free gap culture dish, incubate at 37°C
and 5% CO2 as usual, after appropriate cell attachment (24 h)
gently remove the Culture-Insert 2 Well by using sterile tweezers.
Grab a corner of the Culture-Insert 2Well. Fill the usedwell or dish
with cell freemedium. The scratch healing area of cells was detected
after 12 and24hand imagedunderamicroscope (Olympus, Japan).

STATISTICAL ANALYSIS

Data are expressed as the mean ± SE; for at least three independent
replicates (n ≥ 3). Data analyses were performed using either the
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Turkey andDunnett test or the Student’s t test.Apvalue of less than
0.05was considered statistically significant. Statistical analysis of the
data was employed by one-way analysis of variance (ANOVA)
using a post-test depending on the requirement.
RESULTS

Effects on TG2 Expression and Activity
From Hypoxia
As shown in Figure 1A, no differences in expression of TG2
protein and mRNA were observed at various time points under
normoxia. Compared with the normoxia group, expression of
TG2 mRNA and protein significantly increased after hypoxia
treatment for 12, 24, and 48 h and was time-dependent. As
shown in Figure 1B, cells were stained with Alexa Fluor 488
Streptavidin-conjugated horseradish peroxidase (HRP) to detect
TG2 localization. No differences in cytosolic fluorescence was
observed at various time points under normoxia (Figure 1B-b).
The streptavidin staining for (biotinamido)pentylamine (BP)
incorporation showed a time dependent increased cytosolic
fluorescence under hypoxia compared to the normoxia group
(Figure 1B-a). The graph presented in (Figure 1B-c) shows the
quantification of the relative 5-BP fluorescent intensities that are
normalized to number of cells per image. Together, these data
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showed that hypoxia enhanced the expression and activity of
TG2 and was time -dependent.

Effect of Hypoxia on the Activity of
SERCA2 and Expression of SERCA2
Serotonylation
In vitro, cells produced more organic phosphorus (IP) when the
TG2 gene was silenced, whereas cells produced less organic
phosphorus when the TG2 gene overexpressed under
normoxia. In addition, our findings showed that hypoxia
significantly prevented cells from producing inorganic
phosphorus, which was regulated by TG2. When compared to
the normoxia group, silencing of the TG2 gene did not increase
the production of inorganic phosphorus under hypoxic
conditions (Figure 2A). Next, we used co-IP to analyze the
level of s-SERCA2 protein. Our data showed that the expression
of s-SERCA2 protein was significantly increased when the TG2
gene was overexpressed, whereas the expression of s-SERCA2
protein decreased when the TG2 gene was silenced under
normoxic conditions. When compared to the normoxia group,
the expression of s-SERCA2 protein significantly increased
under hypoxia, however the expression did not significantly
increase when the TG2 gene was silenced under hypoxia.
When comparing the two groups of cells regarding TG2 gene
overexpression or TG2 gene silencing, we found that the activity
FIGURE 1 | Effects of hypoxia on the expression and activity of TG2 in vivo and in vitro. All values are presented as the mean ± S.E.M. Nor, normoxia; Hyp, hypoxia;
WT, wild type; Tgm2−/−. (A-a) The level of TG2 messenger RNA (mRNA) (n = 3, *p < 0.05 compared with the normoxic group). (A-b) TG2 protein band and the
level of TG2 protein (n = 3, *p < 0.05 compared with the normoxic group, **p < 0.05 compared with normoxia). (B) Cells were exposed to 5-BP for 1 h prior to
exposure to hypoxia/normoxia after 24 h of free-serum starvation. As a negative control, 5-BP incubation was omitted. Cells were then exposed to hypoxia or
normoxia for 12, 24, and 48 h, and stained with streptavidin-conjugated BP incorporation, and 4′,6-diamidino-2-phenylindole (DAPI). The image shows the overlay of
TG2 and 5-BP staining, which indicates the co-localization. (B-a) The green fluorescence was stronger after treatment with hypoxia and time-dependent. (B-b)
Green fluorescence was weak and no marked differences in the normoxic group were observed. (B-c) The figure shows the relative fluorescence intensity (n = 3,
*p < 0.05 as compared to the normoxic group). (C) TG2 location on the pulmonary vessels by using immunohistochemistry. (D) The level of TG2 protein and mRNA
expression on the pulmonary veins under normoxia and hypoxia (n = 6, *p < 0.05 compared with the normoxic group). (E) The level of TRPC6 protein and mRNA
expression on the pulmonary veins under normoxia and hypoxia (n = 6, *p < 0.05 compared with the normoxic group).
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of TG2 played a key role in serotonylation in vitro (Figure 2B).
In vivo, Tgm2−/− mice produced more organic phosphorus than
WT mice under normoxic and hypoxic conditions, however
there no differences were observed in the production of organic
phosphorus between WT mice under normoxia and Tgm2−/−

mice under hypoxia (Figure 2C). The levels of SERCA2-s on the
PV were detected by co-IP. The expression of s-SERCA2 protein
in WT mice was higher when compared to that in TG2 mice
under normoxia. Hypoxia increased the expression of s-SERCA2
protein in WT mice, but did not affect the expression of s-
SERCA2 protein in Tgm2−/− mice. Similarly, when comparing
the two groups of WT mice or the two groups of Tgm2−/− mice,
we found that the activity of TG2 played a key role in
serotonylation in vivo (Figure 2D). Combined, these findings
showed that serotonylation of SERCA2 inhibited the activity of
SERCA2, and hypoxia induced serotonylation of SERCA2, which
was modulated by the key enzyme of TG2 in vivo and in vitro.
Furthermore, the activity of TG2 may play a key role in SERCA2
serotonylation both in vivo and in vitro.

Effect of SERCA2 Serotonylation on
[Ca2+]i and Store-Operated Calcium
Entry in Human Pulmonary Vein Smooth
Muscle Cells
As shown in Figure 3B, hypoxia (1% O2) induced a marked
increase in basal [Ca2+]i from 6.81 ± 1.14 to 13.88 ± 0.26. In the
normoxia group, the cell basal [Ca2+]i decreased from 6.81 ±
1.14 to 1.40 ± 0.04 when the TG2 gene was silenced, and
increased from 6.81 ± 1.14 to 8.30 ± 0.03 when the TG2 gene
was overexpressed. In the hypoxia group, the cell basal [Ca2+]i
decreased from 13.88 ± 0.26 to 6.95 ± 0.16 when the TG2 gene
was silenced, and increased to 20.48 ± 0.25 when the TG2 gene
was overexpressed. Thus, both groups showed a similar trend.
Further comparison of the two groups showed that hypoxia did
not significantly reduce the basal [Ca2+]i when the TG2 gene
was silenced. Our data showed that nifedipine specifically
blocked the L-type voltage-dependent calcium channel
(VDCC). CPA promoted the release of calcium ions from the
sarcoplasmic reticulum, causing a brief increase in [Ca2+]i that
allowed for large amounts of calcium ions to flow into cells
through the SOCE channel after restoring the extracellular
calcium concentration. As shown in Figures 3A, C, semi-
quantitative detection of SOCE by Dfluorescence [the
difference in fluorescence intensity between cells that were
perfused Hank’s Balanced Salt Solution (HBSS) and Ca2+-free
HBSS] under normoxia and hypoxia. We established a time
course curvilinear of time−Dfluorescence by GraphPad software
to analyze dynamic changes in [Ca2+]i. Hypoxia induced a
marked increase in the peak of time−Dfluorescence curve from
164.33 ± 7.64 to 228.00 ± 14.42. In the normoxia group, the peak
D[Ca2+]i decreased from 164.33 ± 7.64 to 130.33 ± 4.51 when the
TG2 gene was silenced, and increased to 207.00 ± 6.25 when the
TG2 gene was overexpressed. In addition, in the hypoxia group,
the peak D[Ca2+]i decreased from 228.00 ± 14.42 to 165.33 ±
11.01 when the TG2 gene was silenced, and increased to 383.67 ±
13.50 when the TG2 gene was overexpressed. Further
comparison of the two groups showed that hypoxia did not
Frontiers in Pharmacology | www.frontiersin.org 798
significantly increase the calcium influx when the TG2 gene was
silenced. Thus, these data showed that TG2-mediated SERCA2
serotonylation can promote calcium ion influx through SOCE.

Effect of TRPC1 and TRPC6 on [Ca2+]i
and Store-Operated Calcium Entry in
Human Pulmonary Vein Smooth Muscle
Cells Under Hypoxia
Many studies have shown that hypoxia increased expression of
TRPC6, not TRPC1, on pulmonary artery smooth muscle cells
(Lu et al., 2008; Xia et al., 2014; Wang et al., 2016). When
compared to the control group, the expression of TRPC6
mRNA and protein was significantly increased and time-
dependent under hypoxia, whereas the expression of TRPC1
mRNA and protein was not significantly increased or decreased
under hypoxia (Figure 4A). As one of the main channels
mediating the extracellular calcium influx on the cell
membrane, the TRPC channel was an indispensable molecule
during the formation of chronic hypoxic pulmonary hypertension
(CHPH). We analyzed [Ca2+]i and SOCE by silencing and
overexpression of the TRPC1 and TRPC6 genes under hypoxia.
Semi-quantitative analysis of basal [Ca2+]i by F/F0 and SOCE
was performed by time-Dfluorescence curve under hypoxia. As
shown in Figure 4B-b, the basal [Ca2+]i increased from 2.81 ±
0.29 to 5.04 ± 0.05 after TRPC6 gene overexpression, but
decreased to 1.64 ± 0.06 after TRPC6 gene silencing. The basal
[Ca2+]i of silencing and overexpressing of the TRPC1 gene were
2.82 ± 0.25 and 2.73 ± 0.29, respectively. When compared with
normal cells, [Ca2+]i was not significantly different when the
TRPC1 gene was silenced or overexpressed. Next, we measured
the peak of time-Dfluorescence curve to analyze SOCE. As shown
in Figure 4B-a, c, the peak fluorescence increased from 193.00 ±
4.00 to 314.67 ± 2.89 after TRPC6 gene overexpression, and
decreased to 114.33 ± 2.31 after TRPC6 gene silencing. The peak
fluorescence of silencing and overexpressing TRPC1 gene were
200.67 ± 10.60 and 206.00 ± 5.00, respectively. In fact, silencing or
overexpressing TRPC1 did not effect peak fluorescence.
Combined, these data showed that hypoxia activated TRPC6-
mediated SOCE to promote the extracellular calcium influx.

Effect of Cyclopiazonic Acid and PST-2744
on Human Pulmonary Vein Smooth Muscle
Cell Proliferation, Apoptosis, Migration,
[Ca2+]i, Store-Operated Calcium Entry,
and Cell Phenotype
Proliferation, Apoptosis, and Migration
When compared to the control group, CPApromoted proliferation
of hPVSMCs in a time-dependentmanner, but PST-2744 inhibited
proliferation of hPVSMCs in a timely fashion (Figure 5A).
Secondly, examined the rate of cell apoptosis by using flow
cytometry. When compared to the control group, CPA inhibited
apoptosis ofhPVSMCs ina time-dependentmanner, howeverPST-
2744 promoted apoptosis of hPVSMCs in a time-dependent
manner (Figure 5B). Thirdly, we analyzed migration of cells by
using Culture-Insert 2 Well (ibidi, German). Compared to control
group, CPA promoted cell migration and resulted in a reduced
wound left by the insert. However, PST-2744 prevented cells
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migration and resulted in a residual wound by the insert (Figure
5C). These data showed that CPA inhibited cell apoptosis, and
promoted cell proliferation and migration, whereas PST-2744
promoted cell apoptosis, and inhibited cell proliferation
and migration.

[Ca2+]i and Store-Operated Calcium Entry
SERCA is an ion pump that takes up calcium ions from the
cytoplasm of the endoplasmic reticulum. The decreased
expression or activity of SERCA2 was the main cause of
persistent SOCE. Time-Dfluorescence curve (Figure 5E)
showed that the normal [Ca2+]i was 6.97 ± 1.16. Moreover,
the [Ca2+]i of cells treated with CPA for 12 and 24 h was 8.69 ±
0.43 and 14.82 ± 0.88, respectively. In addition, the [Ca2+]i of
cells treated with PST-2744 for 12 and 24 h was 5.36 ± 0.46 and
4.03 ± 0.19, respectively. As shown in Figure 5D, the peak of
time-Dfluorescence curve was measured to analyze SOCE. The
normal peak fluorescence was 171.33 ± 6.11. The peak
fluorescence of cells treated with CPA for 12 and 24 h were
221.67 ± 8.62 and 265.00 ± 6.00, respectively, and the peak
fluorescence the of cells treated with PST-2744 for 12 and 24 h
was 143.67 ± 5.69 and 116.67 ± 6.51, respectively. Combined,
these data showed that inhibition of the SERCA2 activity
Frontiers in Pharmacology | www.frontiersin.org 899
promoted extracellular calcium influx in a time-dependent
manner, whereas and increase in SERCA2 activity decreased
the extracellular calcium influx in a time-dependent manner.

Cell Phenotype
Unlike skeletal muscle and cardiomyocytes, vascular smooth
muscle cells (VSMCs) are non-terminally differentiated cells
with a strong plastic phenotype. The VSMCs of normal adult
animals were mainly contractile phenotypes. Under the influence
of various stimulating factors, the phenotype of VSMCs can be
transformed from a differentiated phenotype with a contractile
function to a dedifferentiated phenotype with a strong
proliferation and migration ability. In this study, we focused
on contractile phenotype protein markers, calopnin, and secreted
protein marker, osteopontin, which were evaluated by Western
blot analysis. PST-2744 suppressed the expression of osteopontin
protein, but promoted the expression of calopnin protein. In
addition, CPA suppressed the expression of calopnin protein, but
promoted expression of osteopontin protein (Figure 5F). These
data showed that CPA promoted transformation from a
differentiated phenotype to a dedifferentiated phenotype, and
PST-2744 promoted transformation from a dedifferentiated
phenotype to a differentiated phenotype.
FIGURE 2 | The inorganic phosphorus production and s-SERCA2 protein expression of human pulmonary vein smooth muscle cells (hPVSMCs) and the pulmonary
vein. Cells were treated with Ca2+ (6.7 mM), 5-HT (1 mM), and hypoxia (1%) for 24 h. Mice were housed under hypoxic conditions (10% O2) for 6 weeks. All values
are presented as the mean ± S.E.M. Inorganic phosphorus, IP; Hyp, hypoxia; Nor, normoxia; TG2−/−, TG2 gene silencing; TG2+/+, TG2 gene overexpression; WT,
wild type mice; Tgm2−/−, vascular smooth muscle-specific TG2 knockout mice. (A) Analysis of inorganic phosphorus produced by six groups of hPVSMCs. Hypoxia
significantly prevented cells from producing inorganic IP (n = 3, *p < 0.05 vs. normoxia). When compared to the normoxia group, silencing of the TG2 gene did not
increase IP under hypoxia (n = 3, **p > 0.05 compared with normoxia). (B) Co-IP analyzing the expression of s-SERCA2 protein in vitro. Relative expression of
s-SERCA2 protein. Hypoxia significantly increased s-SERCA2 protein expression on hPVSMCs (n = 3, *p < 0.05 vs. normoxia). When silencing TG2 gene, hypoxia
did not affect s-SERCA2 protein expression under hypoxia (n = 3, **p > 0.05 compared with normoxia). (C) Analysis of inorganic phosphorus produced by WT and
Tgm2−/− mice. WT mice produced more IP under normoxia than under hypoxia (n = 6, *p < 0.05 vs. normoxia). There no differences were observed in the
production of IP between WT mice under normoxia and Tgm2−/− mice under hypoxia (n = 6, **p > 0.05 compared with WT mice under normoxia). (D) Co-IP
analyzed expression of s-SERCA2 protein in vivo. Relative expression of s-SERCA2 protein. Hypoxia significantly increased s-SERCA2 protein expression (n = 6,
*p < 0.05 vs. WT mice under normoxia). Hypoxia increased the expression of s-SERCA2 protein in WT mice, but did not affect the expression of s-SERCA2 protein
in Tgm2−/− mice (n = 6, **p > 0.05 compared with WT mice under normoxia).
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TG2 Reverses Hypertension of the Right
Ventricle and Remodeling Vascular
In vivo, as shown in Figure 6A, based on mouse tail genetic
identification, heterozygous and SM22a-Cre− was considered
wild-type (WT), homozygous and SM22a-Cre+ was considered
a Tgm2 complete knock-out (Tgm2−/− type). Three WT and
Tgm2−/−mice were randomly selected to identify the expression
of TG2 protein by Western blot (WB) analysis, which indicated
that TG2 protein was normally expressed in the PV of WT mice
but not in that of Tgm2−/−mice. As shown in Figures 6C, D we
measured the right ventricular systolic pressure (RVSP) of mice
by using a closed-chest insertion into the right ventricle (RV) and
a xiphocostal angle approach under hypoxia for 6 weeks. We
found that the RVSP of Tgm2−/−mice andWTmice was 18.15 ±
0.45mmHgand18.35 + 0.76mmHg, respectively, undernormoxia,
which was not significantly different between groups. The RVSP of
WTmice increased from18.15±0.45mmHgto34.05±0.99mmHg
after hypoxia exposure for 6weeks, andwenoticed somedifferences
between WT mice under normoxia and Tgm2−/− mice under
hypoxia. The RVSP of Tgm2−/−mice under hypoxia 22.79 ± 6.79
mmHg was slightly higher when compared to that of WT mice
under normoxia, however no statistical significance was achieved.
After measurement of RVSP, heart and lung tissues were collected.
Weights of the RV and the left ventricle (LV) plus interventricular
septum (LV+S) were measured separately. The RVHI of Tgm2−/−
mice and WT mice were 0.20 ± 0.010 and 0.21 + 0.009 under
normoxia, respectively.Moreover, the RVHI of Tgm2−/−mice and
WT mice were 0.25 ± 0.063 and 0.34 + 0.055 under hypoxia. The
trend of RHVI was consistent with that of RVSP. As shown in
Frontiers in Pharmacology | www.frontiersin.org 9100
Figure 6B, hematoxylin and eosin (H&E) staining showed thatMT
%ofTgm2−/−mice andWTmicewere9.90±0.30 and10.37±0.67,
and MA% of Tgm2−/− mice and WT mice were 19.13 ± 1.00 and
18.40 ± 0.62 under normoxia respectively. The MT% of Tgm2−/−
mice andWTmice were 9.63 ± 0.70 and 43.30 ± 1.67, andMA%of
Tgm2−/− mice and WT mice were 8.97 ± 0.47 and 70.67 ± 0.50
under hypoxia respectively. The data showed that there was no
significant difference in vesselwall thickness betweenTgm2−/− and
WTmice under normoxia.However, vascularwall thickness ofWT
mice significantly increased after hypoxic treatment, whereas
vascular wall thickness of Tgm2−/− mice was not significantly
increased after hypoxic treatment. Together, these data showed that
TG2 reversed hypertension of the right ventricle and
vascular remodeling.
DISCUSSION

Here, we revealed a novel mechanism in which TG2 alleviated
hypoxia-induced pulmonary vein remodeling. Our findings
demonstrated that the activity of SERCA2 was regulated by a new
post-translational modification (PTM) “serotonylation” and
SERCA2 serotonylation inhibited activity of SERCA2.
Cytoplasmic Ca2+ storage was depleted when the activity of
SERCA2 was inhibited, then TRPC6 was activated which further
increased SOCE to lead to a continuous increase of intracellular
calcium, consequently promoting proliferation and migration of
hPVSMCs.Moreover,wedemonstrated that the activity ofSERCA2
played an important role on the biological behavior of hPVSMCs.
FIGURE 3 | Effect of SERCA2 serotonylation on [Ca2+]i and store-operated calcium entry (SOCE) in human pulmonary vein smooth muscle cells (hPVSMCs). The
ratio of the fluorescence intensity (F/F0) was used to compare [Ca2+]i. The difference in fluorescence intensity was used to compare SOCE. L-type voltage-
dependent calcium channel (VDCC) antagonist, nifedipine. SERCA2 antagonist, cyclopiazonic acid (CPA). All values are presented as the mean ± S.E.M. (A) Time
course curvilinear of time−Dfluorescence by GraphPad software to analyze SOCE. DFluorescence, the difference in fluorescence intensity between cells perfused with
Hank’s Balanced Salt Solution (HBSS) and Ca2+-free HBSS. (B) Semi-quantitative analysis of intracellular basal [Ca2+]i by F/F0 (n = 3, *p < 0.05 compared with the
normoxic group). (C) Histogram analysis of the peak-to-valley value of the time-fluorescence curve (n = 3, **p > 0.05 compared with normoxic group).
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It is well known that 5-HT plays an important role on the
development of HPAH. In order to understand the molecular
mechanism involved, most studies focused on the 5-HT
transporter and 5-HT receptor. For example, some evidence
indicated that 5-HT-related stimulation of pulmonary artery
smooth muscle cell (PASMC) proliferation required 5-HT
internalization through the 5-HT transporter (5-HTT) (Lee
et al., 1991; Lee et al., 1998; Lee et al., 1999; Eddahibi et al.,
2001; Abid et al., 2012). In addition, 5-HT2A and 5-HT2B were
also involved in hypoxia-induced pulmonary artery remodeling
and proliferation of human pulmonary artery smooth muscle
cells (hPASMC) (Keegan et al., 2001; Welsh et al., 2004; Maclean
and Dempsie, 2010; Occhiogrosso et al., 2012). New insight
regarding the possible mechanism by which intracellular 5-HT
might exert an intracellular effect stems from our in vitro studies
with SMCs, which showed that 5-HT serotonylates
(transaminates) take up intracellular proteins through the
enzyme transglutaminase (TGase) (Liu et al., 2011).

As previously mentioned, transglutaminase2 (TG2) is a
ubiquitous multifunctional protein that catalyzed the post-
translational modification of proteins via a calcium-dependent
transglutamidation reaction. Modification of TG2 substrate
proteins by transamidation has been shown to be important in
cell survival, apoptosis, and cytoskeleton organization (Watts
et al., 2009; Kumar and Mehta, 2012; Gundemir et al., 2013;
Penumatsa and Fanburg, 2014). Moreover, its expression is finely
Frontiers in Pharmacology | www.frontiersin.org 10101
regulated at the transcriptional level by cytokines, retinoids,
NFkB, and by inflammatory and hypoxic stimuli (Ientile et al.,
2007; Nurminskaya and Belkin, 2012; Eckert et al., 2014). In fact,
as early as in 2003, Walther et al. firstly demonstrated that
serotonin (5-HT) was transamidated to small GTPases by
transglutaminases during activation and aggregation of
platelets, rendering these GTPases constitutively active, and
provided evidence for a receptor-independent signaling
mechanism, termed here as “serotonylation” for the first time
(Walther et al., 2003). Several studies have demonstrated that the
serotonylation of RhoA, fibronectin, and smooth muscle b-actin
all play important roles in aortic vascular contractility (Guilluy
et al., 2007; Guilluy et al., 2009; Liu et al., 2011).

It is well known that the ryanodine receptor (RyR) and
SERCA play an important role in hypoxia-induced pulmonary
vascular remodeling by regulating calcium influx. Chronically
high levels of intracellular calcium in pulmonary SMCs trigger
signaling pathways that allow cellular proliferation, migration,
and dedifferentiation, all of which are factors that contribute to
hypertrophic vascular remodeling (Kuhr et al., 2012), and SERCA2
was a keymodulator of calcium cycling in both cardiomyocytes and
vascular SMCs (Kawase and Hajjar, 2008). Hypoxia reduced
SERCA2 activity, however its mechanism of action was unclear,
involving a variety of accessory proteins and kinases, and SERCA2
had multiple PTM of protein sites. PTM was an important way to
regulate its activity (Vangheluwe et al., 2005). More importantly,
FIGURE 4 | Expression of TRPC1, TRPC6, and the effect of TRPC1 and TRPC6 on [Ca2+]i and store-operated calcium entry (SOCE) in human pulmonary vein
smooth muscle cells (hPVSMCs) under hypoxia. L-type voltage-dependent calcium channel (VDCC) antagonist, nifedipine. SERCA2 antagonist, cyclopiazonic acid
(CPA). Nor, normoxia; Hyp, hypoxia; TRPC(−/−), TRPC gene silencing; TRPC(+/+), TRPC overexpression. DFluorescence, difference in fluorescence intensity
between cells perfused with Hank’s Balanced Salt Solution (HBSS) and Ca2+-free HBSS. All values are presented as the mean ± S.E.M. (A-a) TRPC1 and TRPC6
protein bands and the level of TG2 protein. (A-b) The relative level of TRPC1 messenger RNA (mRNA) and protein (n = 3, **p > 0. 05 as compared to the normoxic
group). (A-c) The relative level of TRPC6 mRNA and protein (n = 3, *P < 0. 05 as compared to the normoxic group). (B) The ratio of fluorescence intensity (F/F0) was
used to compare [Ca2+]i. Time-Dfluorescence curve was used to compare SOCE. (B-a) Time course curvilinear of time-Dfluorescence by GraphPad software to
analyze SOCE. (B-b) Semi-quantitative analysis of [Ca2+]i by F/F0 (n = 3, #p < 0.05 as compared to hypoxia group, ##p > 0.05 as compared to the hypoxia group).
(B-c) Histogram analysis of the peak-to-valley value of the time-fluorescence curve (n = 3, *p < 0.05 as compared to hypoxia group).
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once the activitywas inhibited, it was difficult to reverse (Tong et al.,
2010). Our study firstly proposed a new PTMof SERCA2, SERCA2
serotonylation. We demonstrated that hypoxia enhanced SERCA2
serotonation, expression, and activity of TG2 both in vivo and in
vitro. Conversely, hypoxia inhibited the activity of SERCA2 in vivo
Frontiers in Pharmacology | www.frontiersin.org 11102
and in vitro. To further investigate the effect of serotonation on the
activity of SERCA2,we establishedvascular smoothmuscle-specific
TG2 knockout (Tgm2−/−) mice, overexpressed, and silenced TG2
gene on cells, and the results demonstrated that TG2-mediated
serotonation inhibited SERCA2 activity under hypoxia. As
FIGURE 5 | Effect of cyclopiazonic acid (CPA) and PST-2744 on cell proliferation, apoptosis, migration, [Ca2+]i, store-operated calcium entry (SOCE), and cell
phenotype. PST, PST-2744; Con, control. 12, 12 h. 24, 24 h. DFluorescence, difference in fluorescence intensity between cells perfused with Hank’s Balanced Salt
Solution (HBSS) and Ca2+-free HBSS. All values were presented as the mean ± S.E.M. (A) Rate of proliferation measured by Cell Counting Kit (CCK)-8 assay. CPA
promoted cell proliferation in a time-dependent manner. PST-2744 suppressed cell proliferation in a time-dependent manner (n = 3, *p < 0.05 as compared to the
control group, **p < 0.05 as compared to the control group). (B) Apoptosis rate measured by flow cytometry. CPA suppressed cell apoptosis in a time-dependent
manner. PST-2744 promoted cell apoptosis in a timely fashion. Quantitative analysis of the apoptosis rate (n = 3, *p < 0.05 as compared to the control group,
**p < 0.05 as compared to the control group). (C) Wound healing assay for human pulmonary vein smooth muscle cells (hPVSMCs). CPA promoted wound healing,
whereas PST-2744 prevented wound healing. (C) Quantification of wound-healed area of hPVSMCs (n = 3, *p < 0.05 as compared to the control group, **p < 0.05
as compared to the control group). (D) Time-Dfluorescence curve was used to compare SOCE. Time course curvilinear of time-Dfluorescence by GraphPad software
to analyze SOCE. Histogram analysis of the peak-to-valley value of the time-fluorescence curve (*p < 0.05 as compared to the control group, **p < 0.05 as
compared to the control group). (E) The ratio of fluorescence intensity (F/F0) was used to compare [Ca2+]i. Semi-quantitative analysis of [Ca2+]i by F/F0 (n = 3,
*p < 0.05 compared with the control group, *p < 0.05 compared with the control group). (F) Western blot analysis for the expression of calopnin and osteopontin
protein. PST-2744 suppressed the expression of osteopontin protein, but promoted expression of calopnin protein. CPA suppressed the expression of calopnin
protein, but promoted expression of osteopontin protein. Quantitative analysis of the relative expression of calopnin and osteopontin protein (n = 3, *p < 0.05
compared with the control group, **p < 0.05 compared with the control, *p < 0.05 compared with the control, **p < 0.05 compared with the control group).
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mentioned earlier, our results confirmed that TG2was a ubiquitous
multifunctional protein that catalyzed the PTM, which was
consistent with the increased activity of TG2 that promoted
fibronectin (sFn) serotonylation in the sera of humans with
pulmonary arterial hypertension (PAH) and in the sera and lungs
of experimental rodent models of PH (Penumatsa et al., 2014a). In
fact, there was a potential cross-talking between serotonylation and
other relevant signal pathway. According toWu et al., during early
reperfusion, theROS/JAK2/STAT3pathwaysplay a crucial role in i)
IHH (intermittent hypobaric hypoxia)-maintained intracellular
CA(2+) homeostasis by improving postischemic SERCA2
activity, by increasing SR Bcl-2 and its interaction with SERCA2;
and ii) the IHH-improved mitochondrial functioning (Yuan et al.,
2009). Oxidative stress influences various proteins. Oxidative stress
influences various proteins and biological processes, and there was
also cross-interaction between oxidative stress and SUMOylation
(Rigato et al.,2002; Feligioni et al., 2011; Leitao et al., 2011;Wu et al.,
2015). The intensity of SUMOylation ofmany proteinswas affected
by oxidative stress (Shishido et al., 2008; Pandey et al., 2011;
Shrivastava et al., 2014; Sahin et al., 2014). SUMOylation
enhances the stability and activity of SERCA2a (Feligioni and
Nistico, 2013). Upgrading the intensity of SERCA2a-
SUMOylation increases the protein level of SERCA2a and
improves cardiac function in animal models with heart failure
(HF) (Feligioni and Nistico, 2013). Although the relation between
oxidative stress and SERCA2a-SUMOylation still needs to be
investigated, Jing Yao et al. suggested the possible role of
SERCA2a-SUMOylation on the obesity-induced cardiac
Frontiers in Pharmacology | www.frontiersin.org 12103
dysfunction and PA-induced cardiomyocyte dysfunction (Kho
et al., 2011).

It was generally believed that SOCE was a small and persistent
calcium influx, often associated with chronic hypoxic pulmonary
vascular remodeling (Yuan et al., 2009; Wu et al., 2015). We
found that TRPC6, not TRPC1 was highly expressed in
hPVSMCs after hypoxia treatment, and basal [Ca2+]i and
SOCE were increased and decreased when the TRPC6 gene
silenced and overexpressed, respectively. However, silencing or
overexpression of the TRPC1 gene did not have an effect on [Ca2
+]i and SOCE. These results suggested that CH may increase
SOCE and [Ca2+]i through activating the TRPC6 channel on
hPVSMCs, however the mechanism was not clear. Our study
highly suggested that SERCA2 serotonination may be a new
mechanism for hypoxia-induced imbalance of intracellular
calcium ions. We further demonstrated that the activity of
SERCA2 was closely related to proliferation, migration, and
phenotype of cells by using an inhibitor and agonist of
SERCA2. Furthermore, we demonstrated that the activity of
TG2 played a key role in serotonylation in vivo and in vitro.

Finally, we analyzed the vascular remodeling of Tgm2−/−mice
under hypoxia. The index of morphology and hemodynamics of
WTmicewas consistent with pathological features of CHPHunder
hypoxia for 6 weeks. However, after the same treatment of hypoxia,
the above-mentioned indexes of Tgm2−/− mice did not
significantly increase, although it did not reach the level of WT
mice under normoxia. Therefore, we speculated that TG2 can
reverse pulmonary vascular remodeling, which provided a novel
FIGURE 6 | TG2 reverses right ventricle pressure and vessel remodeling. WT, wild type; Hyp, hypoxia; Nor, normoxia; Tgm2−/−, TG2 gene knockout. MT% =
100×(medial layer thickness)/(vessel semidiameter) and area [MA% = 100×(cross-sectional medial layer area)/(total cross-sectional vessel area)]. All values are
denoted as the mean ± S.E.M. (A) Homozygous mice-SM22a-Cre+. Western blot analysis of pulmonary veins using an anti-TG2 polyclonal antibody. (B)
Hematoxylin-eosin (H&E) staining in mice pulmonary vessels. No difference in vessel wall thickness was observed between WT and Tgm2−/− mice under normoxia.
The wall thickness of pulmonary vessels significantly increased in WT mice after 6 weeks of hypoxia (n = 6, *P > ;0.05 compared with under normoxia, **P > 0.05
compared with under normoxia). (C, D) The measurement of right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) in wild-type (WT)
and TG2 knockout mice were treated with normoxia and hypoxia (5% O2, 6 weeks) (n = 6, *P > ;0.05 compared with under normoxia, **P > 0.05 compared with
under normoxia).
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target and orientation for treatment of CHPH. A limitation of the
current experimental design was the low replicates (n = 3) in the
cell-based experiments, albeit statistical significance was reached.

CONCLUSIONS

We firstly demonstrated that hypoxia promoted TG2-mediated
SERCA2 serotonylation, leading to inhibition of SERCA2
activity, which further increased the calcium influx through the
TRPC6 channel, which eventually resulted in excessive cell
proliferation, migration, and blockage of apoptosis, thereby
promoting pulmonary vascular remodeling (Figure 7).
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FIGURE 7 | A model for TG2-mediated SERCA2 serotonylation on hypoxic pulmonary vein remodeling. Upon depletion of ER Ca2+ stores, store-operated calcium
entry (SOCE) channels and TRPC6 channels promoting entry of Ca2+ across the plasma membrane (PM). Hypoxia promoted TG2-mediated SERCA2
serotonylation, leading to inhibition of SERCA2 activity, which further increased the calcium influx through the TRPC6 channel, which eventually resulted in excessive
cell proliferation, migration, and blockage of apoptosis, thereby promoting pulmonary vascular remodeling. Right ventricular systolic pressure (RVSP), right ventricular
hypertrophy index (RVHI), and wall thickness of pulmonary veins (PVs) of Tgm2−/− mice did not significantly increase under hypoxia for 6 weeks.
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Septic cardiomyopathy (SCM) is a complication that is sepsis-associated cardiovascular
failure. In the last few decades, there is progress in diagnosis and treatment despite the
lack of consistent diagnostic criteria. According to current studies, several hypotheses
about pathogenic mechanisms have been revealed to elucidate the pathophysiological
characteristics of SCM. The objective of this manuscript is to review literature from the
past 5 years to provide an overview of current knowledge on pathogenesis, diagnosis
and treatment in SCM.

Keywords: sepsis, heart failure, septic cardiomyopathy, pathogenesis, treatment, diagnosis, left ventricular
ejection fraction

INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated immune response
to an infection (Singer et al., 2016) and has become one of the top ten leading causes of death in
developed and developing countries (Hawiger, 2018), with a mortality rate as high as 30% (Morin
et al., 2015). Septic shock is defined as hypotension with lactic acid >2 mmol/L after adequate fluid
resuscitation (Singer et al., 2016) and its death rate can be as high as 50% (Lu et al., 2019). First
described over 40 years ago, septic cardiomyopathy (SCM) is an acute cardiac disorder caused by
sepsis (Beesley et al., 2018), which is reversible and can be restored at an early stage of sepsis (Lu
et al., 2019). The reported incidence of SCM in patients with sepsis or septic shock is inconsistent,
ranging from 13.8 to 40% due to lack of large-scale studies and uniform diagnostic criteria (Li et al.,
2019; Lu et al., 2019). In patients with sepsis combined with SCM, the mortality is increased 2–3
times, up to 70–90% (Ehrman et al., 2018; Fan and Zhang, 2018; Li et al., 2019). Epidemiological
studies have shown that male, younger age, higher lactate level and previous history of heart
failure/coronary heart disease as well as lactic acid level (>4.0 mmol/L) when admitted to ICU
are associated with SCM (Sato et al., 2016; Li et al., 2019). Other evidences have shown that acute
physiology and chronic health evaluation system II score (Caser et al., 2014) and the application of
catecholamine were positively correlated with occurrence of SCM (Wang and Li, 2015).

The myocardial depressant factors (MDFs) have been proposed since the 1950s
(Lefer, 1982; Fan and Zhang, 2018), referring to active substances that suppress the
action of the heart. Currently, recognized MDFs include cytokines, the complement
system, nitric oxide (NO), lipopolysaccharides (LPS) etc. Cytokines include tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and high mobility
protein box 1 (HMGB1) (Beesley et al., 2018; Lu et al., 2019). Moreover, the activations
of Toll like receptors (TLRs) and nuclear factor kappa B (NF-κB) contribute to
pathogenesis of SCM (Martin et al., 2019). In general, SCM is defined as the decrease
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in left ventricular ejection fraction (LVEF) and ventricular
dilatation during sepsis (Beesley et al., 2018). Clinically, in
addition to proper management of infection and sepsis control,
maintenance of hemodynamic stability is the first step for patients
with SCM. The currently recommended treatment strategy
is symptomatic, and there is no specific treatment in septic
patients with SCM.

Some progress has been made in understanding the
pathogenesis of SCM. In recent years, there are excellent review
articles regarding the pathophysiology of cardiomyopathy,
present review focuses on the current the evidence on pathogenic
mechanism of SCM and the potential of diagnoses and
treatments for SCM.

PATHOGENESIS

Presently, the pathogenesis of SCM is still in its exploration
stage. The role of inflammatory cytokines in the pathogenesis
of sepsis was identified. But all antibodies based on specific
pro-inflammatory cytokines as targets have failed in clinical
trials (Kumar, 2019). This indicates that some others factors
are involved in the pathogenesis of SCM like mitochondrial
dysfunction and exosomes in cardiac myocytes, suggesting
that SCM is caused by many contributing factors. We will
highlight recent discoveries of pathogenic mechanisms that are
associated with SCM.

The Complement System
Sepsis can lead to the activation of the complement system,
resulting in increasing the amount of complement component
5 (C5a). C5a reacts with its receptor, leading to cytokine storm,
lymphocyte apoptosis, neutrophilic innate immune function
loss, cardiomyopathy, disseminated intravascular coagulation,
etc. Meanwhile, C5a also affects intracellular calcium homeostasis
(Fattahi et al., 2018a; Ward and Fattahi, 2019). SCM is
associated with decreased levels of three key enzymes (serca2,
NCX, and Na+/K+-atpase) in cardiomyocytes, which are
complement receptor-dependent (Fattahi et al., 2018a). Some
studies have suggested that histones may be a target for reducing
cardiac dysfunction in sepsis. Interestingly, the investigation
of mechanism has found that extracellular histones appearing
in sepsis plasma require C5a receptors (Kalbitz et al., 2015).
A study evaluated the cardiac function and contractility of
cardiomyocytes in rats with cecal ligation and puncture (CLP).
The left ventricular pressure decreased significantly. These
defects were prevented in CLP rats by blocking antibody against
C5a. After the addition of recombinant rat C5a, both sham and
CLP myocardial cells showed significant systolic dysfunction.
These data indicates that CLP induces the generation of
C5a receptor by cardiomyocytes, and the production of C5a
leads to the interaction of C5a-C5a receptor, leading to the
dysfunction of cardiomyocytes, then resulting in the impairment
of cardiac function, suggesting interventions directly targeted at
C5a interception or C5a receptor blockade may be a new and
promising treatment for patients with SCM (Niederbichler et al.,
2006). A study from Keshari et al. has shown that inhibition of C5

protects organ failure and reduces mortality in baboon model of
sepsis via decreasing plasma LPS concentration and inhibiting the
production of inflammatory cytokines. In addition, C5 inhibitor
attenuated sepsis-increased soluble uPAR, thrombomodulin and
angiopoietin-2 in plasma, suggesting that C5 inhibition may
also protect against endothelial cell dysfunction (Keshari et al.,
2017). Another study using Soliris (Eculizumab), an FDA-
approved C5 inhibitor, for the treatment of paroxysmal nocturnal
hemoglobinuria (PNH) has shown that Eculizumab application
in a septic child rescued the sepsis-induced multiorgan failure,
including cardiac dysfunction (Galic et al., 2019). All the above
studies indicate that C5 is closely related to the occurrence of
SCM, and suggesting that a C5 inhibitor may be a promising
treatment for patients with SCM.

Mitochondrial Dysfunction in Cardiac
Myocytes
Cardiomyocytes have a high mitochondrial density, which
allows them to produce adenosine triphosphate (ATP)
quickly. ATP provides the energy for both energy-consuming
endergonic reactions and energy-releasing exergonic reactions.
Mitochondrial dysfunction can seriously affect heart function
in sepsis. Mitochondrial damage occurs in SCM, mainly
manifested as morphological and functional changes, including
interrupted oxidative phosphorylation, impaired mitochondrial
respiration rate, free radical production of mitochondria,
decreased mitochondrial membrane potential, attenuated
autophagy, and apoptosis (Tan Y. et al., 2019). Takasu et al.
(2013) conducted autopsies on 17 patients who died of sepsis and
have found that six of them had mitochondrial micro-structural
damage including mitochondrial swelling, ridge loss, as well as
rupture of inner and outer membrane. They have demonstrated
that the integrity of the mitochondrial micro-structure is
necessary to ensure that mitochondria produces enough energy.
When the micro-structure is damaged, mitochondria becomes
dysfunctional. Durand et al. (2017) have discussed mitochondrial
oxidative phosphorylation disorder in SCM, and pointed out
that reactive oxygen species (ROS) and other substances, such
as cytochrome C produced in mitochondria, were considered
as a signal related to apoptosis. BAP31, a B cell receptor-related
protein, may affect mitochondrial homeostasis and endoplasmic
reticulum function. The transcription of BAP31 was inhibited in
LPS-treated cardiomyocytes. While melatonin could up-regulate
the expression of BAP31, this effect depends on the MAPK-ERK
pathway. Inhibition of the ERK pathway and/or inhibition of
BAP31 could diminish the beneficial effects of melatonin on
mitochondrial function and endoplasmic reticulum homeostasis
under LPS stress, suggesting that ERK-BAP31 pathway can
be a regulator of mitochondrial function and endoplasmic
reticulum homeostasis (Zhang et al., 2019). Yes- related protein
(Yap), a transcriptional activator in the Hippo signaling,
plays an important role in mitochondrial function, especially
mitochondrial fission function, which is associated with a variety
of cardiovascular diseases. In a mouse model of SCM, LPS
down-regulated the expression of Yap, while Yap overexpression
can maintain cardiac function and reduce myocardial cell death
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via regulating mitochondrial fission (Yu et al., 2019). Chen
et al. (2019a) found that the myocardial cells in septic mice
were significantly overexpression of long non-coding RNA
(LncRNA) SOX2 overlapping transcript (SOX2OT), suggesting
that SOX2OT contributed to mitochondrial dysfunction in
SCM. Receptor-interacting protein kinase3 (Ripk3) may regulate
signaling pathways that are related to mitochondrial injury,
endoplasmic reticulum stress, and cell scaffold balance. Zhong
et al. (2019) found that Ripk3 expression was increased in
LPS-infected cardiomyocytes. Mitochondrial autophagy plays
an integral role in cardiac dysfunction. A study has shown that
Beclin-1, an autophagy protein, modulates inflammation and
improves cardiac function in the LPS-induced animal sepsis
(Sun et al., 2018).

In summary, the findings from experimental animal models
have shown that changes in mitochondrial morphology and
function are involved in the pathogenesis of SCM. Understanding
molecular mechanisms of mitochondrial injury may provide
evidence for developing new therapeutic targets for SCM.

Toll-Like Receptors in Cardiomyocytes
Toll-like receptors (TLRs), a trans-membrane glycoprotein on
the surface of the cell membrane, is an important part of the
immune system that can identify different pathogen associated
molecular patterns (PAMPs). The stimulation of TLRs by PAMPs
causes the nuclear translocation of nuclear factor kappa B (NF-
κB), and then leads to the expression of inflammatory mediators,
such as TNF-α and interleukins (ILs) (Dalton and Shahul, 2018).
Signaling regulated by TLRs is classified MyD88-dependent and
MyD88-independent pathways. TLRs form homodimers, and
one or more adaptor proteins such as MyD88, MAL/TIRAP,
TRIF or TRAM, which are then recruited into the cytoplasm
after the binding of TLRs to their respective ligands. MyD88
dependent pathway is utilized by most TLRs except TLR3 (Feng
and Chao, 2011). In MyD88-dependent pathway, MyD88 binds
IRAK4, IRAK1, and/or IRAK2, and promotes their binding
to TRAF6, then leads to the activation of TAK1 by TRAF6.
After a series of activations/reactions, this eventually leads to
nuclear translocation of NF-κB, which activates the expression
of various inflammatory genes (called gene storms), causing
host dysfunction and multiple organ dysfunction (Hawiger,
2018). In MyD88 independent pathways, such as Trif-dependent
pathways, Trif interacts with TRAF3 to activate TBK1 and IKKi,
and then cause the phosphorylation of IRF3. Phosphitylated
IRF3 is transferred into the nucleus to activate type I IFN
and IFN-induced gene transcription. Myocardial cells express
TLR2, TLR3, TLR4, and TLR9 (Vallejo, 2011). A study by
Fattahi et al. (2018b) has shown that LVEF was increased and
plasma pro-inflammatory cytokines (TNF-α, IL-1, IL-6) were
decreased significantly in a mouse septic model with TLR9 and
TLR3 deletion, suggesting that TLR9 and TLR3 activation is
associated with dysfunction of heart in sepsis. TLR4 can bind
to LPS, and then cause the release of a variety of inflammatory
factors, finally insults in cardiac dysfunction (Vallejo, 2011).
TLR4 regulates oxidative stress in ryanodine receptor 2 (RyR2),
leading to increased Ca2+ leakage in the sarcoplasmic reticulum
(SR) of cardiac myocytes (Yang et al., 2018). Chen et al. (2019b)

analyzed gene expression in septic patients compared with
control, showing that TNF-α, JAK and transcriptional activation
(STAT) signaling pathways were up-regulated. Cirulis et al.
(2019) provided the evidence for the role of interferon signaling
in SCM using a human study. The linkage between activations of
TLRs/its downstream signals and SCM has been established from
current investigations. Inhibition of TLR4 has shown protective
effect on SCM in experimental animal models (Fenhammar et al.,
2014; Yang et al., 2018). Based on those findings, targeting TLRs
to develop new therapeutic approaches is promising.

Nitric Oxide and Nitric Oxide Synthase in
Cardiac Myocytes
Nitric oxide is synthesized by the oxidation of L-arginine by
nitric oxide synthase (NOS) expressed in cardiac myocytes. NOS
can be divided into three subtypes, namely neuronal nitric oxide
synthase (nNOS), inducible nitric oxide synthase (iNOS), and
endothelial nitric oxide synthase (eNOS) (Martin et al., 2019).
The only small amount of NO produced by nNOS and eNOS
are noted in physiological state, but NO produced by eNOS
plays a protective role in vascular endothelium and vascular
function (Mingjie and Zheng, 2018). iNOS are not responsible
for producing NO in normal physiological state. However, iNOS
will produce a large amount of NO when an inflammatory
response occurs (Martin et al., 2019). In humans, neutrophils
also express iNOS. Bacterial invasion leads to the activation of
TLRs, which causes elevated inflammatory meditators (cytokines,
chemokines etc.) that overstimulate neutrophils, then cause the
expression of iNOS and subsequently increase the production of
NO, finally result in up-regulation of G-protein-coupled receptor
kinase 2 (GRK2), down-regulation of CXC chemokine receptor 2
(CXCR2), shedding of L-selectin, decrease in adhesion molecules,
and influence of neutrophil chemotaxis (Spiller et al., 2019).
A number of experiments have confirmed that the production of
NO by iNOS can impair heart function, such as down-regulating
adrenaline receptors, decrease sensitivity of myocardium to Ca2+

and also damage to mitochondria, etc. (Martin et al., 2019). We
have discussed the role of mitochondrial dysfunction in cardiac
myocytes in SCM previously. A study has shown that melatonin
(an iNOS inhibitor) prevents the destruction of mitochondrial
homeostasis after sepsis, restores ATP production and improves
the survival rate of sepsis (Cimolai et al., 2015). This evidence
supports the hypothesis that mitochondrial homeostasis and
increased NO play a role in the pathogenesis of SCM.

Nicotinic Acetylcholine Receptor α7
Subunit
Alpha 7 nicotinic acetylcholine receptor (α7nAchR) is widely
expressed in the cytokine-producing immune cells such
as macrophages, dendritic cells and T cells (Souza et al.,
2019). α7nAchR is an important element of the cholinergic
anti-inflammatory pathway (CAP). Acetylcholine (Ach), a
neurotransmitter released by stimulation of vagus nerve, binds
to α7nAchR on cell surface and inhibits the degradation of
NF-κB inhibitory proteins through a series of intracellular
signals, preventing its separation from NF-κB, thereby inhibiting
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the translocation of NF-κB and reducing the release of pro-
inflammatory cytokines (Chao et al., 2015). The evidences from
some studies have shown that the expression of α7nAchR in
LPS-induced septic mouse model is significantly decreased
compared with control group (Kong et al., 2017). At the
same time, dexmedetomidine can reduce the expressions of
apoptotic proteins, IL-6, IL-1, and TNF-α through α7nAchR
activation, thus protecting the myocardium in septic mice.
GTS-21, a synthetic selective stimulant of α7nAchR, has
been shown to reduce myocardial injury via modulating
inflammation (decreases in IL-6, IL-1β, TNF-α and activation
of NF-κB P65) and apoptosis in LPS-induced sepsis in mice
(Kong et al., 2018). Although there are a few studies on the
activation of CAP in this area, the beneficial role of CAP
activation in SCM will be emphasized in the future because
α7nAchR is an essential mechanism for the CAP which has
revealed potent immunomodulatory properties in various
diseases including SCM.

The Effects of Exosomes on Cardiac
Function in Sepsis
Exosomes are small cell-derived vesicles originate from
leukocytes, platelets and dendritic cells, etc. (Monteiro
et al., 2017). Exosomes are a double-edged sword that can
protect and cause SCM. The roles of exosomes in SCM is
mainly considered from two mechanisms that are exosomal
nicotinamide adenine dinucleotide phosphate (NADPH) and
microRNA-223 (Monteiro et al., 2017). A study has shown
that exosomes can induce vascular apoptosis and myocardial
dysfunction by the mechanisms that are related to inflammation
and oxidative stress (Real et al., 2018). In patients with sepsis,
increased platelet-derived exosomes containing NADPH oxidase
subunits similar to phagocytes in blood can help to produce ROS.
Therefore, inhibiting the secretion of platelet exosomes would
be beneficial for patients with sepsis. A study used GW4869
(a neutral sphingomyelinase inhibitor for blocking exosome
generation) to investigate the effects of blockade of exosome
release on the production of inflammatory cytokines and
sepsis-induced myocardial dysfunction, suggesting that GW4869
deceased production of pro-inflammatory cytokines in vitro and
inflammatory response in vivo via the inhibition of exosome
generation. In addition, the attenuation of cardiac dysfunction
and improvement of survival are noted in septic mice (Essandoh
et al., 2015). Also, another component from exosomes, iNOS,
can produce NO that is related to myocardial dysfunction in
sepsis (Monteiro et al., 2017; Spiller et al., 2019). Figure 1 is the
Illustration of the roles platelet-derived exosomes in SCM. On
the contrary, MiRNAs are non-coding segments of RNA, which
regulate the transcription of specific proteins. Studies have shown
that miR-223 is down-regulated in patients who died of sepsis.
miR-223 can inhibit the expression of endothelial cell adhesion
molecule (ICAM-1) and negatively regulates transcription
activator 3 (STAT3). Studies have shown that miR-223 found in
exosomes and derived from mesenchymal stem cells (MSC) has
a protective effect on cardiac function (Monteiro et al., 2017; Ge,
2019). Less amounts of miR-223 from MSC-derived exosomes

are observed in blood in patients with septic shock, suggesting
an impact of exosomes on cardiac dysfunction and mortality
(Monteiro et al., 2017). Despite the inconsistencies regarding
the role of exosomes in SCM, the association between SCM and
exosomes has been established from current studies.

Imbalance of Calcium Homeostasis in
Cardiac Myocytes
In sepsis, decrease in density of L-type calcium channels
and down-regulated sensitivity to calcium in myocardia
myofilaments lead to decreased intracellular free calcium
concentration and imbalance of calcium homeostasis, which
eventually leads to decreased calcium-binding troponin and
contractility (Dalton and Shahul, 2018). High mobility group
box (HMGB) protein increases intracellular ROS level by
interacting with TLR4, thereby increasing oxidative stress and
phosphorylation of ryanodine receptor in cardiac myocytes.
Meanwhile, increased ROS can enhance Ca2+-mediated
Ca2+ leakage in SR, Ca2+ depletion from SR, and damage in
myocardial excitation-contraction coupling (Kakihana et al.,
2016). A study has shown beneficial effect of TLR4 inhibitor
(TAK-242) through preventing SR Ca2+ leak in septic mice.
Coincidentally, TLR4 deficiency significantly improved cardiac
function and corrected abnormal Ca2+ handling in septic
mice (Yang et al., 2018), which indicate that the critical role of
TLR4-dependent SR Ca2+ leak in the development of SCM.

The pathogenesis of SCM is extremely complex and our
manuscript tends to discuss various mechanisms involved in
SCM. Current studies indicate that the occurrence of SCM is
the result of multiple factors including superantigen interaction
with TLRs, then increase expressions of TNF-α and IL-
1β that stimulate the immunocytes to produce other pro-
inflammatory factors such as IL-6 as well as ROS. A large
number of inflammatory cytokines and ROS can cause a series
of direct damage to cardiovascular dysfunction, disequilibrium of
calcium homeostasis, mitochondrial dysfunction, down regulated
expression of β adrenaline receptor, and eventually lead to cardiac
dysfunction (Figure 2).

DIAGNOSIS OF SEPTIC
CARDIOMYOPATHY

Currently, there is no unified international definition for SCM.
In the 1980s, SCM was defined as the decrease in left ventricular
ejection fraction (LVEF) and ventricular dilatation during sepsis
(Beesley et al., 2018). However, LVEF depends profoundly on
loading conditions, it has been increasingly acknowledged to
be an inaccurate marker of intrinsic cardiac function largely.
Now, some groups define SCM as an acute cardiac dysfunction
syndrome caused by sepsis, which has nothing to do with
ischemia (Beesley et al., 2018). In addition, it has one or
more of the following characteristics: (i) decreased ventricular
contractility; (ii) left ventricular dilation under normal or low
filling pressure; (iii) right ventricular dysfunction and/or left
ventricular dysfunction with a reduced response to fluid infusion
(Martin et al., 2019). Currently, the challenges of defining SCM
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FIGURE 1 | The roles of platelet-derived exosomes in SCM. Platelet-derived exosomes contain NADPH oxidase subunits similar to phagocytes can produce NO.
Also, another component from exosomes, iNOS, can produce NO that is related to myocardial dysfunction in sepsis. NO can cause the up-regulation of GRK2,
down-regulation of CXCR2, shedding of L-selectin, decrease in adhesion molecules, and influence of neutrophil chemotaxis.

FIGURE 2 | The pathogenic mechanism of SCM. Specific components called ligands of viruses, bacteria or fungi bind to TLRs then go through a series of cascade
reactions that cause NF-κB to be transcribed into the nucleus, causing the expression of inflammatory factor genes and producing a large number of inflammatory
mediators. These inflammatory factors can cause a series of direct damage to cardiovascular dysfunction, disequilibrium of calcium homeostasis, mitochondrial
dysfunction, down regulated expression of β adrenaline receptor, and eventually lead to cardiac dysfunction.
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include: (i) how to evaluate cardiac function under the condition
of high preload and postload; (ii) how to obtain longitudinal
echocardiography data about cardiac function throughout the
pathogenetic process (Sanfilippo et al., 2019).

To date, there is no gold diagnostic standard for SCM.
Most clinical studies use LVEF < 50% as a diagnostic criteria
(Ruian and Chen, 2018). Based on previous studies, diagnostic
criteria of SCM should include two aspects: the presence of
myocardial systolic and/or diastolic disorders, and the exclusion
of other conditions leading to cardiac dysfunction. Here, with the
exception of LVEF, we will discuss some other markers that may
contribute to the diagnosis of SCM.

Indicators Used to Assess Cardiac
Function
Echocardiogram: Echocardiography and doppler imaging can
detect abnormalities in systolic and diastolic function of the
heart in patients with severe sepsis or septic shock. There are
three main indicators, namely myocardial performance index
(MPI), mitral ring systolic displacement (MAPSE) and global
longitudinal strain (GLS). MPI, also known as Tei index, is a
parameter measured by echocardiography (Beesley et al., 2018).
The formula for MPI is: MPI = (ventricular isometric systolic
time + ventricular isometric diastolic time)/ejection time. Some
studies have indicated that left ventricular MPI is positively
correlated with BNP and cardiac Troponin I (cTnI), and
negatively correlated with LVEF. In a study of 47 patients with
sepsis, Nizamuddin et al. (2017) found that deterioration of MPI
within 24 h of admission was associated with increased 90-day
mortality. MAPSE is an indicator used to assess global and local
systolic function of the left ventricle. A small sample prospective
study by Havaldar (2018) showed that MAPSE could predict
mortality from SCM. Recently, some studies on speckle tracking
echocardiography (STE) are performed, which can monitor GLS
that refers to the changes in the length of myocardium during
the period of contraction and the end of diastole (Jiahui and
Cai, 2018). A large amount of data shows that GLS is more
helpful for the early recognition and diagnosis of SCM than
LVEF reduction (defined as left ventricular systolic dysfunction)
(Jiahui and Cai, 2018). Ehrman et al. (2019) proposed that
GLS was the preferred method for studying the relationship
between left ventricular systolic function and prognosis in the
patients with SCM. However, no diagnostic criteria of GLS is
available for SCM currently. Vasques-Novoa et al. (2019) also
reported that myocardial edema detected by magnetic resonance
imaging in three patients with SCM. Magnetic resonance may
be a promising modality for the diagnosis of SCM. Although
auxiliary instrumental examination is not specific for SCM, it is
an adjunct to early detection of SCM in patients with sepsis.

Modified Shock Index (MSI) and Some
Other Biological Markers
Modified shock index (MSI) refers to heart rate/mean arterial
pressure, which can reflect both systolic and diastolic functions.
Jayaprakash et al. (2018) conducted a retrospective study on 624
patients with severe sepsis or septic shock and concluded that

the increase of MSI in the early stage (12 h) was correlated to
the incidence of cardiac dysfunction, sequential organ failure
assessment (SOFA) score and mortality. MSI was found to be
promising predictors in febrile patients with sepsis. However,
no single cut-off values of MSI was found to have an optimal
accuracy for prediction of sepsis-related outcomes like SCM.
Further studies are required to assess the incorporation of MSI
in a multi-item scaling system for the prediction of SCM.

Some biological markers, such as B-type natriuretic peptide
(BNP) and troponin I are elevated in patients with SCM,
which have no diagnostic value specifically (Ruian and Chen,
2018). Chen et al. (2019b) analyzed the gene expressions from
patients with SCM and proposed that CCL2, STAT3, MYC, and
Serpine1 might be potential biomarkers or therapeutic targets
for SCM. Although there is no conclusive evidence that these
markers are associated with SCM, they may provide some clues
for diagnosing SCM.

For the diagnosis of SCM, cardiac dysfunction caused by
other diseases should be excluded. It is important to distinguish
it from acute coronary syndrome. Coronary angiography and
coronary computed tomography angiography (CCTA) can
determine whether there is myocardial ischemia. But it is a
risky examination for the patients with sepsis. Some studies
have suggested using ultrasonic myocardial perfusion technology
to examine myocardial perfusion abnormalities in the area of
impaired myocardial wall in patients with sepsis. SCM and
coronary syndromes can be distinguished by this method,
but it is still invasive (Ruian and Chen, 2018). Also, other
cardiomyopathies should be excluded, such as hypertrophic
cardiomyopathy, dilated cardiomyopathy. These diseases usually
have a long history and are slower to be developed.

TREATMENT

Due to the uncertainty of pathogenesis of SCM, no effective
disease-modifying treatment is currently available. The strategies
to deal with SCM is to control the primary disease to prevent the
occurrence of secondary SCM. Specific treatment for SCM is still
being developed. Currently some drugs and device-based therapy
have been used clinically.

Clinical Treatment
Drug Therapy: Levosimendan, Natriuretic Peptide,
Combination of Chinese and Western Medicine
Levosimendan is a calcium ion sensitizer, which can directly
bind to troponin to increase myocardial contractility, but
there is no significant change in heart rate and myocardial
oxygen consumption. Studies have shown that levosimendan can
effectively reduce the plasma lactic acid in sepsis and increase the
myocardial contractility, but its application cannot reduce usage
of norepinephrine and has no significant improvement in the
mortality of SCM (Chang et al., 2018).

Natriuretic peptide, a recombinant human brain natriuretic
peptide (rhBNP), can bind to human endogenous natriuretic
peptide receptor. Natriuretic peptide not only can expand the
arteries and veins, urinate and expel sodium to reduce the preload
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and afterload of the heart, but also can inhibit renin-angiotensin-
aldosterone system (RAAS) and sympathetic nervous system,
which has been widely used clinically for treating heart failure
via effectively relieving hemodynamic abnormalities and cardiac
dysfunction. Shi et al. (2015) reported that a patient with
SCM caused by intestinal obstruction and diffuse peritonitis
was recovered using natriuretic peptide. Yin et al. (2016)
conducted a prospective study to observe 42 patients with sepsis
complicated with cardiac dysfunction, showing that natriuretic
peptide significantly improved the heart rate, mean arterial
pressure, BNP, acute physiology and chronic health evaluation
(APACHE-II) score, peripheral vascular resistance index (SVRI)
and extracellular pulmonary fluid index (ELWI).

Combination of Chinese and western medicine: Clinical
studies have shown the application of anti-infection and organ
support therapy (MOST) accompanied by traditional Chinese
medicine (fu zheng jie du hua yu granules) can further reduce
acute physiology and chronic health evaluation (APACHE-II)
score and other indicators such as procalcitonin (PCT), BNP
and cTnI, in patients with SCM (Haiyun et al., 2016). Animal
experiments have also shown that tanshinone IIA, a member
of the major lipophilic components extracted from the root of
Salvia miltiorrhiza Bunge, has a protective effect on myocardial
injury in septic rat model (Dekun et al., 2016). However,
further investigations are needed to clarify its mechanism of
beneficial effect in SCM.

Non-drug Therapy: ECMO, IABP, Blood Purification
ECMO
In septic patients complicated with SCM, extracorporeal
membrane oxygenation (ECMO) is a feasible rescue strategy.
Some approaches have been reported that application of anti-
infection combined with ECMO has been used to treat the
patient with SCM and septic shock caused by infection and
hemorrhage of ileal diverticulum (Liu et al., 2017). Vogel et al.
(2018) conducted retrospective analysis and concluded that the
survival rate in patients with SCM could reach up to 75% after
4 days of veno-arterial-venous (VAV) ECMO treatment.

IABP
Intra-aortic balloon counter-pulsation (IABP) supports cardiac
function by unloading contractions and enhancing relaxation.
The former can lower systolic blood pressure and the latter
can raise diastolic blood pressure. A retrospective study was
performed among 38 cases with the application of IABP,
suggesting that IABP is effective for the patients with cardiac
shock by increasing mean arterial pressure and reducing dosage
of catecholamine during the acute phase of sepsis. However,
no improvement in long-term survival was observed (Takahashi
et al., 2019). Kenshiro Wada also reported that a patient
combined with chronic cardiac insufficiency was recovered using
V-A ECMO and IABP (Wada et al., 2019).

Blood purification has long been used to treat sepsis.
Recently, Andreja Sinkovic reported that a patient with
lymphoma, splenectomy and autologous bone marrow
transplant and receiving chemotherapy, and accompanying
severe pneumococcal infections, septic shock, SCM and

unacceptable drug therapy, was subjected to blood purification.
The reductions in the level of IL-6, lactic acid deposition and the
dosage of vascular vasopressors, improvement of left ventricular
systolic function and clinical features were observed after
treatment for 36 h (Sinkovic et al., 2018). CytoSorb is a non-
temperature, sterile disposable endotoxin and cytokine sorbent
that reduces circulating cytokines such as IL-1β, TNF-α, IL-6, etc.
(Gruda et al., 2018; Ankawi et al., 2019). A retrospective study by
Brouwer et al. (2019) showed that continuous renal replacement
therapy (CRRT) combined with Cytosorb improved the 28-day
survival rate for septic shock compared with CRRT alone. All
those methods have been applied clinically. However, only a
few cases have been reported. A large-scale randomized clinical
trial and prospective study are needed to better understand and
evaluate the value of these approaches to treat SCM.

Potential Treatments
Gene Therapy
Some studies suggested that the pathogenesis of sepsis is the
damage of micro-vessels caused by “Genomic Storm”(Hawiger,
2018). Bacteria, fungi, infectious agents and viral nucleic
acids bind to TLRs, causing the activation of stress response
transcription factors (SRTFs), such as NF-κB, and activated
protein 1 (AP-1), which in turn activate multiple genes encoding
pro-inflammatory cytokines and chemokines, leading to septic
shock and multiple organ dysfunction (Hawiger, 2018). Based
on this observation, gene therapy for sepsis and SCM has
been proposed. Studies have demonstrated that miR-21-3p
inhibitors can improve cardiac dysfunction and mitochondrial
ultrastructure damage caused by LPS, suggesting that miR-
21-3p may be a potential target for SCM treatment (Wang
et al., 2016). Zheng et al. (2017) proposed that miR-135a
may serve as a therapeutic target in SCM because miR-135a
can aggravate sepsis-induced inflammation and myocardial
dysfunction possible via activation of p38 MAPK/NF-κB
pathway. An et al. (2018) provided evidence that miR-146a can
decrease pro-inflammatory cytokines and suppress apoptosis via
inhibition of NF-κB activity by targeting TRAF6 and IRAK1. Cao
et al. (2019) reported that miR-23b prevent NF-κB activation via
inhibiting TRAF6 and IκκB, resulting in significant alleviation in
cell injury induced by LPS as well as improvement in cell survival
rate. We believe that gene therapy is the preferred method for
SCM therapy in the future because it is targeted therapy with
low side effects.

Mitochondrial Targeted Therapy
Structural and functional disorders of mitochondria affect the
production of energy in cardiac myocytes, resulting in cardiac
dysfunction. Maintaining the stability of mitochondrial structure
and protecting its function have become the target of treating
septic myocardium. Melatonin can restore the physiological
functions of mitochondria and endoplasmic reticulum, maintain
the stability of cytoskeleton, and thus improve cardiac function
in septic mice (Zhang et al., 2019). The study on molecular
mechanism has shown that melatonin attenuates the expression
of BAP31 that interacts with mitochondria-localized proteins
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and regulates mitochondrial function (Zhang et al., 2019; Zhong
et al., 2019). Kokkinaki et al. (2019) showed that chemically
synthesized diglucoside (LGM2605) can reduce the accumulation
of cardiac ROS, protect mitochondrial function in heart, reverse
myocardial injury, and improve the survival rate in a mouse
model of sepsis.

Inhibition of Inflammatory Mediators
Independent growth factor I (GFI-I) can inhibit the expression
of NF-κB and TNF-α, thus inhibiting LPS-induced inflammatory
response and apoptosis of HPC2 cells (Zheng et al., 2017).
3,3′-Diindolylmethane (DIM) is a potential therapeutic drug
with scavenging free radicals and antioxidant effects. Studies
have shown that DIM can significantly inhibit the expression
of IL-6 and TNF-α induced by LPS, suggesting that DIM may
be a new perspective for treating SCM (Luo et al., 2018).
Qiangxin 1 formula effectively inhibited the expression of IL-
1β, TNF-α, thus protecting the cardiac function of sepsis (Xu
et al., 2018). Tan’s team demonstrated that hydrogen gas (H2)
had a protective effect on cardiac insufficiency in LPS-induced
sepsis in mice by blocking nuclear translocation of NF-κB
(Tan S. et al., 2019). Supplementation of exogenous brain-
derived neurotrophic factor (BDNF) can increase the level
of BDNF in cardiac myocytes, improve cardiac dysfunction,
reduce oxidative stress, and increase the survival rate in septic
animals. Honda et al. found that the remote ischemic conditioner
(RIC) could improve the ventricular function, cardiac output
and survival rate in an LPS-induced septic mouse model
(Honda et al., 2019). RIC may be a useful tool to improve
the cardiomyopathy induced by sepsis clinically. Based on
these observations, to reduce the level of inflammatory factors
and regulate inflammatory signal are still the key for the
treatment of SCM.

The treatments discussed in this section are only from animal
experiments and have not been applied clinically. Whether or

not the genetic response in animal models can mimic human
inflammatory disease is controversial.

CONCLUSION

Septic cardiomyopathy, although it is reversible at early stage,
has a high mortality rate because its pathogenesis is not well-
understood. In terms of diagnosis and treatment, it is an
important subject in clinical and basic research. Previous studies
in this area have been limited by poor diagnostic strategies
that only relied on LVEF reduction. In this review, we have
not only discussed pathogenesis of SCM in detail, but also
introduced some other approaches that are associated with the
diagnosis of SCM. Early detection and intervention of SCM in
patients with sepsis can reduce mortality. For example, MSI is
considered as a “predictor” of SCM (Jayaprakash et al., 2018),
and MAPSE can predict mortality in SCM (Havaldar, 2018).
A large number of new studies are needed to improve the
understanding pathogenesis of SCM. It is believed that in the
near future, the pathogenesis of SCM can be clarified and
specific targeted therapeutic drugs can be developed to reduce the
mortality of SCM.
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The key characteristic of cardiovascular disease (CVD) is endothelial dysfunction, which is
likely the consequence of inflammation. It is well demonstrated that chemokines and their
receptors play a crucial role in regulating inflammatory responses, and recently, much
attention has been paid to chemokine receptor 5 (CCR5) and its ligands. For example,
CCR5 aggravates the inflammatory response in adipose tissue by regulating macrophage
recruitment and M1/M2 phenotype switch, thus causing insulin resistance and obesity.
Inhibition of CCR5 expression reduces the aggregation of pro-atherogenic cytokines to
the site of arterial injury. However, targeting CCR5 is not always effective, and emerging
evidence has shown that CCR5 facilitates progenitor cell recruitment and promotes
vascular endothelial cell repair. In this paper, we provide recent insights into the role of
CCR5 and its ligands in metabolic syndrome as related to cardiovascular disease and the
opportunities and roadblocks in targeting CCR5 and its ligands.

Keywords: CCR5, inflammation, endothelial dysfunction, cardiovascular disease, metabolic syndrome
INTRODUCTION

Metabolic syndrome (MetS), including obesity, hypertension, hyperglycemia, and dyslipidemia, has
detrimental effects on the endothelium, contributing to the development of cardiovascular diseases
(CVD) (Nikolopoulou and Kadoglou, 2014; Yao et al., 2014). One of the key common central
mechanisms linking all of these diseases is underpinned by an exaggerated inflammatory response
(Lumeng et al., 2007). In recent years, evidence has accumulated that chemokine receptor 5 (CCR5)
and its ligands play a critical role in regulating the inflammatory response. For example, CCR5
aggravates the inflammatory response in mouse adipose tissue by regulating macrophage recruitment
and M1/M2 phenotype switching, thus causing insulin resistance and obesity (Kitade et al., 2012).
Inhibition of CCR5 expression reduces the accumulation of pro-atherogenic cytokines and monocytes
to the site of arterial injury. However, therapies targeting CCR5 and its ligands have not performed
consistently with regard to preventing metabolic syndrome related diseases (Kennedy et al., 2013;
Slominski et al., 2017), indicating that CCR5 and its ligands might play a double-edged role in the
progression of these diseases. More importantly, emerging evidence shows that CCR5 is specifically
expressed in endothelial cells and endothelial progenitor cells (EPCs). CCR5 facilitates progenitor cell
in.org March 2020 | Volume 11 | Article 1461117
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recruitment and promotes vascular endothelial repair in a mouse
model (Ishida et al., 2012; Suffee et al., 2012; Zhang et al., 2015b).
Although inhibiting CCR5 expression reduces the inflammatory
response, it also aggravates the endothelial damage, thus
significantly limiting the actual effectiveness of therapeutic
interventions. Therefore, studying the mechanisms of CCR5 and
its ligands that control these processes in the endothelial cells and
the inflammatory response will provide further understanding of
the pathophysiology of cardiovascular disease and may be used to
develop novel pharmacological strategies.
CCR5 AND ITS LIGANDS

CCR5, a member of the guanine nucleotide binding protein (G
protein) coupled receptors (GPCR), has been known as a key
player in HIV-1 entry into target cells from its discovery (Berger
et al., 1999). CCR5 binds and responds to chemokine ligand 3
(CCL3) (Table 1), chemokine ligand 4 (CCL4), and chemokine
ligand 5(CCL5). CCR5 is expressed in macrophages, activated T
cells, natural killer cells, endothelial cells, and EPCs. CCR5
participates in the regulation of proinflammatory response by
modulating the behavior, survival, and retention of immune cells
in tissues (Kohlmeier et al., 2011). In addition, CCR5 can be
expressed in non-immune system cells, notably in astrocytes,
microglia, and neurons, which are involved in neuronal survival
and differentiation (Sorce et al., 2011).

CCL3, also known as macrophage inflammatory protein-a
(MIP-a), is released from activated platelets, mast cells, and
Frontiers in Pharmacology | www.frontiersin.org 2118
neutrophils (Weber, 2005; Montecucco et al., 2008). Previous
studies indicated that CCL3 activates neutrophils via the
mediation of firm adherence and the (subsequent)
transmigration of neutrophils as a result of lipid mediator
production. CCL4 is also called macrophage inflammatory
protein-b (MIP-b) and was first isolated from culture medium
containing lipopolysaccharide-activated macrophages. CCL4 can
induce the chemotaxis of different cell types, including natural
killer cells, monocytes/macrophages, and coronary endothelial
cells (Mirabelli-Badenier et al., 2011). The chemotactic activity of
CCL5, initially considered to be a T cell-specific protein that is
stored in and released from various cells, including endothelial
cells, EPCs, monocytes/macrophages and fibroblasts, recruits
activated T cells, NK cells, and basophils to the site of an
inflammatory response (Appay and Rowland-Jones, 2001).
CCR5 AND ITS LIGANDS IN RELATION TO
ENDOTHELIAL FUNCTION

Endothelial cells line the interior surface of all blood vessels and
are involved not only in delivering blood to all vital organs but
also in maintaining the homeostasis of the vasculature. A large
body of evidence has shown that diabetes, ischemia, and
atherosclerosis (Suffee et al., 2012; Zhang et al., 2015b; Ali and
Woodman, 2019) have adverse effects on the endothelium, which
contributes to the development of CVD. One of the key common
central mechanisms linking all of these diseases is based on
exaggerated inflammation. In all cases, the interaction between
TABLE 1 | Summary of data of CCR5 and its ligands, primary source, main effects, and main references.

Gene
name

Expressed by/primary
source

Main effects References

Pro-inflammation Endothelium repair and
angiogenesis

CCL3 Monocytes/macrophages,
T cells, vascular smooth
muscle cells, eosinophils,
coronary endothelial cells,
and platelets.

Mediates the recruitment of
macrophages into the injured site by
binding with its receptor, CCR5.

CCL3 induces the infiltration of
macrophages into the damaged
retina and produces vascular
endothelial growth factor (VEGF) by
binding to CCR5, and eventually
promotes corneal
neovascularization.

Ridiandries et al., 2016; Menten et al., 2002;
DiPietro et al., 1998; Lu et al., 2008.

CCL4 Monocyte, T cells, B
lymphocytes, NK cells,
dendritic cells, vascular
smooth muscle cells, and
neutrophils.

Chemoattractants for immature
dendritic cells and macrophages/
monocytes, attracts macrophages to
destroy islet cells.

Increases VEGF-C expression and
promotes lymph angiogenesis in
oral cancer cells.

Ridiandries et al., 2016; Menten et al., 2002;
Chang and Chen, 2016; Lien et al., 2018.

CCL5 T-cells, epithelial cells and
activated platelets

Mediates the macrophage recruitment
and M1/M2 phenotype switching,
recruits leukocytes and certain natural-
killer cells, promotes smooth muscle
cells phenotypic switching from the
contractile to synthetic phenotype.

CCL5 is pro-angiogenic in the
ischemic tissues and subcutaneous
model, promotes the
revascularization and muscle
regeneration by binding to its
receptor, CCR5.

Suffee et al., 2012; Liu et al., 2014; Zhang et al.,
2015b; Ridiandries et al., 2016; Lin et al., 2018.

CCR5 Monocytes/macrophages,
activated T cells,
endothelial cells,
endothelial progenitor cells
(EPCs), natural killer cells,
astrocytes, microglia, and
neurons.

Promotes infiltration of monocytes/
macrophages to the injured site,
aggravates hepatic steatosis and insulin
resistance, and increases triglyceride
synthesis.

Accelerates the homing of EPCs to
damaged endothelial cells,
promoting endothelial repair or the
formation of neovascularization.

Suffee et al., 2017; Bjerregaard et al., 2019;
Rookmaaker et al., 2007; Potteaux et al., 2006;
Berres et al., 2010; Ishida et al., 2012; Kitade
et al., 2012; Shen et al., 2013; Liu et al., 2014;
Zhang et al., 2015b; Ridiandries et al., 2016;
Perez-Martinez et al., 2018; Yan et al., 2019.
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the endothelium and inflammatory cells plays a key role in the
initiation of the pathological condition.

Previous studies have demonstrated that chemokines can directly
regulate the migration and recruitment of cells to injury sites via
inflammation. All CC-chemokines contain nuclear factor-kappa B
(NF-kB) binding motifs, and their expression is significantly
upregulated under inflammatory conditions (Werts et al., 2007;
Ridiandries et al., 2016). CCL3, CCL4, and CCL5 are upregulated
when induced by an inflammatory stimulus (Laurence, 2006; Zhang
et al., 2015a; Ridiandries et al., 2016). Increased expression of CCL3/
CCL4/CCL5 mediates the arrest and transmigration of monocytes/
macrophages into the damaged endothelium by binding with its
receptor CCR5 (Zhang et al., 2015b; Ridiandries et al., 2016), which is
involved in the inflammatory response to endothelial injury. Blocking
CCR5 alleviated myocardial ischemia–reperfusion injury in rats by
regulating the cardiac inflammatory response (Shen et al., 2013).
CCR5 deficiency could reduce macrophage aggregation into
atherosclerotic plaques in a hypercholesterolemic mouse model
(Potteaux et al., 2006).

In addition to their roles in mediating inflammation, CCL5
has also been shown to play a role in the process of ischemia-
mediated physiological angiogenesis (Suffee et al., 2017;
Bjerregaard et al., 2019) and endothelial repair (Maarten B.
et al., 2007; Zhang et al., 2015b; Yan et al., 2019). CCL5/CCR5
is specifically expressed in endothelial cells and EPCs, and
endothelial cell specific CCR5 is involved in the regulation of
vascular regeneration in ischemic tissues (Suffee et al., 2017).
Administration of CCL5-loaded microparticles could improve
the clinical score of mice after limb injury as well as promote the
revascularization and the muscle regeneration. Yan et al. (2019)
verified that CCR5 expression was upregulated in vascular
endothelial growth factor (VEGF) modified macrophage in
vitro after treatment with VEGF-modified macrophages
therapy accelerated reendothelialization and attenuated
neointima formation in the wire-induced carotid artery injury
mouse model. CCL5 is pro-angiogenic in a rat model of
subcutaneous injury. One in vitro study found that the effects
of CCL5-mediated angiogenesis are at least partially dependent
on VEGF secretion by endothelial cells, as the effects are weaker
when endothelial cells are incubated with anti-VEGF receptor
antibodies (Suffee et al., 2012). According to the leucocyte subset
chemokine expression, patients with age-related macular
degeneration (AMD) of neovascularization have different
responses to anti-VEGF receptor antibody treatment, with
good responders to the anti-VEGF loading dose having higher
CCR1 expression on monocytes and lower CCR5 expression on
CD14+ T cells, indicating that CCR5 may be an effective way to
provide individualized treatment for neovascular AMD
(Bjerregaard et al., 2019).

EPCs, as a kind of precursor cell derived from bone marrow
that can differentiate into endothelial cells, play an important
role in neovascularization during tissue repair (Zhang et al.,
2015b). In a mouse skin injury model, deletion of the CCR5 gene
reduced the accumulation of vascular EPCs and the formation of
neovascularization, and it eventually delayed the healing of
damaged skin. When EPCs carrying the CCR5 gene are
Frontiers in Pharmacology | www.frontiersin.org 3119
transferred into CCR5-/- mice, EPCs accumulated at the site of
injury and restored normal neovascularization (Ishida et al.,
2012). CCL5 is involved in the homing of bone marrow-
derived EPCs in glomerular endothelial repair. In a mouse
model of reversible glomerulonephritis, administration of a
CCR5 inhibitor (METRANTES) reduced the participation of
EPCs in glomerular vascular repair (Rookmaaker et al., 2007). In
a hypercholesterolemic ApoE-/- mouse model, overexpression of
CCR5 contributes to the homing of EPCs to damaged endothelial
cells, promoting endothelial repair, improving endothelial
dysfunction, and ultimately stabilizing atherosclerotic plaques
(Zhang et al., 2015b).

CCR5 and its ligands play an important role in regulating tissue
angiogenesis, but the exact mechanism is still unclear. A study (Liu
et al., 2014) on human chondrosarcoma cells revealed that
pretreatment with a phosphatidylinositol 3-kinase (PI3K)
inhibitor repressed the VEGF production and angiogenesis
induced by CCL5/CCR5, suggesting that the PI3K-dependent
pathway plays a crucial role in CCL5/CCR5-mediated angiogenesis.

In addition to CCL5, CCL3 and CCL4 are also involved in the
process of revascularization. In alkali-induced corneal
neovascularization of mouse models, CCL3 could induce the
infiltration of macrophages into the damaged retina and the
production VEGF by binding to CCR5, eventually promoting
corneal neovascularization (Lu et al., 2008). Anti-CCL3
antiserum has been shown to decrease angiogenic activity in a
murine wound repair model (DiPietro et al., 1998). CCL4 was
proven to increase VEGF-C expression and promote
lymphangiogenesis in oral cancer cells (Lien et al., 2018).
CCR5 AND ITS LIGANDS IN METABOLIC
SYNDROME

Obesity
Obesity is characterized as low-grade systemic or chronic
inflammation that is associated with an increased incidence of
metabolic syndrome, cardiovascular disease, and tumor (Despres
and Lemieux, 2006; Nikolopoulou and Kadoglou, 2014).
Excessive fat tissue expansion triggers the secretion of
cytokines and chemokines (Brownlee, 2005), which in turn
attract various leukocytes, leading to fatty tissue inflammation.

The exact role of CCR5 and its ligands in the pathogenesis of
obesity is still obscure, but there are several studies that have
continuously reported this finding (Yao et al., 2014). Gao et al.
(2015) noted that phosphatidyl-ethanol-amine-N-methyl
transferase-deficient mice were resistant to high fat diet-
induced obesity. This may result from decreased expression of
CCL5. Similarly, Pisano et al. (2017) found that weight gain in
patients on antipsychotics is associated with the extent of CCL5
expression. CCL5, as a neuroendocrine element, modulates food
intake and body temperature of C57BL/6 mice through
unidentified receptors in the hypothalamus (Chou et al., 2016),
thus affecting the body weight. In a high-fat diet-induced obese
mouse model (Kitade et al., 2012), CCR5 plays a critical role in
adipose tissue macrophage recruitment and polarization.
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Deletion of CCR5 reduces the transition of macrophages from
the pro-inflammatory M1 phenotype to the anti-inflammatory
M2 phenotype and ameliorated obesity-induced insulin
resistance. This observation is consistent with previous studies
that have indicated that CCR5 could directly induce the
transition of the M1/M2 phenotype by modulating the
alteration of Ly6C high and Ly6C low monocyte subsets
(Soehnlein et al., 2013; Huh et al., 2018); further studies are
required to clarify the details of this mechanism.

Hyperglycemia
CCR5 and its ligands have been shown to be associated with the
pathogenesis of both type 1 diabetes mellitus (T1DM) and type 2
diabetes mellitus (T2DM). As we know, the main pathological
mechanism of T1DM is the pancreatic islet b-cell death
(Ashcroft and Rorsman, 2012). CCL4 is upregulated in the islet
autoantibody-positive T1DM patients and relatives at high risk
of developing T1DM, and increased expression of CCL4
aggravates b-cell death and early islet graft loss by stimulating
the trafficking of macrophages into injured pancreatic islets
(Hanifi-Moghaddam et al., 2006). Moreover, the extracellular
regulated protein kinases and NF-kB pathway may be involved in
the process of CCL4 production by stimulating CD40-CD40L
interaction in human pancreatic islets (Barbe-Tuana et al., 2006).

In patients with diabetes, CCL5 and CCR5 are upregulated in
the peripheral blood (Slominski et al., 2019; Inayat et al., 2019).
Exogenous insulin supplementation may reduce concentrations
of CCL5 in patients with newly diagnosed type 2 diabetes
compared with the control subjects (Bogdanski et al., 2007).
Epidemiological studies have indicated that CCR5 promoter
function mutation (CCR5 59029 G to A alteration) could be a
susceptibility factor for type 2 diabetes and the CCR5 59029 A
positive genotype increased the risk for type 2 diabetes
(Kochetova et al., 2019). The exact mechanism of CCR5 gene
mutation and the pathogenesis of type 2 diabetes are still unclear.
Since the metabolic hallmark of type 2 diabetes is insulin
resistance, previous studies have shown that CCR5 gene
knockout in mice could prevent insulin resistance and diabetes
induced by a high-fat feeding. The beneficial effects of CCR5
deficiency were correlated with reduced recruitment and the M2-
dominant shift of macrophages in adipose tissues (Kitade et al.,
2012). However, this finding is contrary to Chou et al’ s studies,
which suggested that the CCR5 gene knockout in mice impairs
the regulation of energy metabolism in the hypothalamus (Chou
et al., 2016). Both in vitro tissue culture and ex vivo stimulation
studies indicated that the activation of PI3K-Akt pathways and
insulin signaling were impaired in the hypothalamus of CCR5
knockout mice. METRANTES, a CCR5 antagonist, abolished the
dephosphorylation of insulin receptor substrates-1 (IRS-1)S302

and insulin signal activation. In addition, intracerebroventricular
delivery of the CCR5 antagonist interrupted hypothalamic
insulin signaling and led to glucose intolerance. In summary,
CCR5 may be involved in the pathogenesis of type 2 diabetes
through mediating insulin resistance and hypothalamic insulin
signaling regulation. However, there are still many unanswered
questions about the exact effect of CCR5 in the pathogenesis of
Frontiers in Pharmacology | www.frontiersin.org 4120
type 2 diabetes. Additional research is needed in the future to
confirm this conclusion.

Microvascular complications are the leading cause of death in
diabetic patients. The recruitment of leukocytes to kidney tissue
during T2DM is an early event in the pathogenesis of diabetic
kidney disease (DKD). CCR5 mRNA was faintly detected in
the normal tubulointerstitial compartment tissue (Mezzano et al.,
2003). After the high glucose treatment, CCR5 expression was
upregulated in the tubulointerstitial compartment during the
process of diabetes. Since CCL5/CCR5 participates in the
formation of inflammatory infiltrates during glomerulonephritis,
inhibition of CCR5 exerts renal protection during early
glomerulonephritis through its anti-inflammatory properties
(Turner et al., 2008). The correlation between the CCR5 gene and
the risk of DKD is conflicting and inconclusive. An oral CCR2/
CCR5 antagonist (PF-04634817) slightly reduced albuminuria in
adults with DKD (Gale et al., 2018). However, in ob/ob mice,
treatment with a dual CCR2/CCR5 antagonist (MK-0812) showed
no protective effect on DKD (O'Brien et al., 2017). Although adipose
tissue inflammation was decreased in this mouse model, the
improvement was insufficient to overcome the metabolic
imbalances of type 2 diabetes. The mutations in the CCR5 gene
promoter region (CCR5 59029 G to A alteration) and deletion of 32
nucleotides (CCR5-D32) lead to genetic inactivation of CCR5 (Nazir
et al., 2014). Previous studies have found that CCR5-59029 G/A was
an independent risk factor for DKD (Yahya et al., 2019). The CCR5
59029A-positive genotype was correlated with an increased risk for
albuminuria (Zhang et al., 2016). Mlynarski et al. (2005) showed
that the CCR5-D32 mutation increased the risk of kidney disease in
men with type 1 diabetes; however, this outcome is contrary to that
of Prasad et al. (2007) who found that CCR5-D32 was not related to
nephropathic type 2 diabetes patients. Skrzypkowska et al. (2019)
even indicated that 32 allele-bearing individuals exhibit more
beneficial values of kidney function parameters. Specifically, the
wt/Δ32 and Δ32/Δ32 carriers exhibited a higher number of
CD34+VEGFR2+ and CD34+VEGFR2+c-Kit+ cells than that in the
wild type counterparts.

In addition, CCR5-D32 gene mutation was associated with
retinopathy in patients with type 1 diabetes. Previous studies
indicated that tumor necrosis factor (TNF)-a, vascular cell
adhesion molecule (VCAM)-1, and intercellular cell adhesion
molecule (ICAM)-1 were upregulated in diabetic patients with
CCR5-D32 carriers (Joussen et al., 2002; Slominski et al., 2017).
TNF-a plays a major role in the degeneration of retinal
capillaries. Since ICAM-1 is the primary adhesion molecule
involved in the pathogenesis of diabetic retinopathy (DR), the
elevated level of ICAM-1 may facilitate the recruitment of
leukocytes into the damaged retina (McLeod et al., 1995).
Thus, the mutation of CCR5 gene (CCR5-D32) in the retina
may lead to upregulating expression of other cytokines that
exacerbate retinal damage.

Dyslipidemia
Diabetes is often accompanied by dyslipidemia as a result of
insulin resistance. Dyslipidemia has been demonstrated to be
detrimental to diabetes microvascular and macrovascular
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complicat ions (Cooper and Jandele i t -Dahm, 2005;
Margeirsdottir et al., 2008).

Clinical research has shown that the expression levels of CCL5
and CCR5 were increased in the subcutaneous adipose tissue of
obese individuals in comparison with those in the lean population,
which could be reduced back to the normal levels through physical
exercise (Baturcam et al., 2014). One study (Kim et al., 2018)
reported that ultraviolet irradiation of human sun-protected
subcutaneous fat in vitro could induce CXCL5 and CCL5
production; CCL5 treatment dose-dependently reduced
triglyceride (TG) content and downregulated the expressions of
acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl
CoA desaturase (SCD), and sterol regulatory element-binding
protein-1(SREBP-1) in human adipocytes. The changes could be
reversed when the CCL5 receptor, the CCR5 gene, is deleted,
suggesting that CCL5 impairs the synthesis of TG by reducing the
expression of SREBP-1 and lipogenic enzymes through binding to
its receptor, CCR5. In a nonalcoholic fatty liver disease mouse
model, treatment with a CCR5 antagonist, maraviroc, could
ameliorate hepatic steatosis via downregulation of dietary lipid
absorption or de novo lipogenesis (Perez-Martinez et al., 2018).
This also accords with Kitade et al.’s (2012) earlier observations,
which showed that the deletion of the CCR5 gene reduced the
content of TG and the lipogenic genes expression in mice. Similarly,
Berres et al. (2010) even found that the administration of CCR5
antagonist markedly ameliorated hepatic fibrosis and accelerated
fibrosis regression inmousemodels of liver fibrosis. Epidemiological
research (Hyde et al., 2010) has also shown that there was a
significant positive correlation between the CCR5-D32 mutation
and elevated serum high-density lipoprotein cholesterol (HDL) and
reduced serum TG, both of which are beneficial from a
cardiovascular perspective.

In addition to endothelial cells, dyslipidemia could drive the
phenotypic modulation of smooth muscle cells (SMCs) and
cause SMCs phenotypic alteration from the physiologically
contractile to the pathophysiologically synthetic phenotype.
CCR5 and CCL5 play crucial roles in the phenotypic
modulation of SMCs. In HFD fed mouse model, the CCR5 and
CCL5 gene knockouts showed significantly decreased levels of
serum lipids and increased expressions of the SMCs contractile
phenotype in the thoracoabdominal aorta as compared with the
levels observed in wild-type mice. In vitro, CCL5 treated human
aorta derived SMCs could induce cell proliferation and promote
the phenotypic switching from the contractile to the synthetic
phenotype (Lin et al., 2018).

Hypertension
Hypertension is an important risk factor for the development of
cardiovascular diseases (Perticone et al., 2004). Previous studies
have shown that angiotensin II (Ang II) promotes the infiltration
of T cells and monocytes into perivascular adipose tissues
(pVAT) (Mikolajczyk et al., 2016). Subsequent studies have
demonstrated that the activation and recruitment of T cells
and monocytes into pVAT is very important in the
pathogenesis of renin-angiotensin system (RAS)-dependent
hypertension (Guzik et al., 2007).
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CCL5 is produced by several tissues that contribute to the
regulation of the vasoconstriction and diastolic function, such as
the vascular endothelium, vascular smooth muscle (Jordan et al.,
1997), glomeruli (Wolf et al., 1997), renal tubules (Wada et al.,
1999), and the central nervous system (Gouraud et al., 2011).
CCL5 expression is upregulated in the aorta and pVAT during
RAS-dependent hypertension. Previous studies have shown that
there is a significant positive correlation between CCL5
expression and blood pressure in the Ang II-induced
hypertension mouse model (Mikolajczyk et al., 2016). CCL5
could enhance the genesis of perivascular inflammation, thus
affecting the development of hypertensive vascular dysfunction.
The deletion of CCL5 reduces the infiltration of leukocytes and T
lymphocytes into pVAT and importantly, this is independent of
blood pressure changes.

Furthermore, the effects of CCL5 signaling on hypertensive
organ damage appear to be tissue-and context-dependent. For
example, CCL5 and CCR5 are possibly involved in the
pathogenesis of pulmonary arterial hypertension (PAH). CCL5
can be released from endothelial cells and perivascular fibroblasts.
Anti-endothelial cell antibody (AECA)-positive systemic sclerosis
patients are associated with an increased risk of PAH, which may
result from the increased CCL5 expression induced in endothelial
cells by the stimulation with AECA. CCR5 is expressed in the
macrophages, pulmonary artery endothelial cells, and pulmonary
artery smooth muscle cells. Inhibition of CCR5 expression in mice
model decreased perivascular macrophages recruitment and the
proliferation of pulmonary-artery smooth muscle cell during
hypoxia exposure (Mamazhakypov et al., 2019). However, this
finding is contrary to previous studies which have suggested that
CCL5 plays an important protective role in hypertension-induced
renal injury. In the angiotensin II-induced hypertension mice
model, CCL5 gene deficiency exhibited markedly aggravation of
kidney damage, macrophage infiltration, and proinflammatory
cytokine expression, which led to the aggravation of urinary
albumin excretion (Rudemiller and Crowley, 2017). This may be
explained by the blockade of one chemokine leading to the
upregulated expressions of other cytokines that exacerbate RAS-
dependent hypertension, as CCL2 blockade abrogates the enhanced
renal macrophage infiltration and interstitial fibrosis in CCL5-
deficient mice (Mikolajczyk et al., 2016; Rudemiller et al., 2016).

Atherosclerosis
Atherosclerosis is characterized by the accumulation of lipids,
immune cells, and cell debris in the vessel wall, which form
atherosclerotic lesions that can grow over time and eventually
occlude the blood vessels, leading to ischemia and angina
(Halvorsen et al., 2015; Pothineni et al., 2017). As a chronic
inflammatory disease, atherosclerosis is associated with many
chemokines and chemokine receptors (Zhang et al., 2015b;
Andersen et al., 2019; Van der Vorst et al., 2019).

In recent years, much attention has been focused on the role of
CCR5 and its ligands, which is crucial in the context of
atherosclerosis initiation and progression (Pai et al., 2006; Afzal
et al., 2008; Zhang et al., 2015a). CCR5 is expressed in the
endothelial cells, monocytes/macrophages, and leukocytes
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(Soehnlein et al., 2013). CCL5 may be released from activated
platelets and T cells. During the progression of atherosclerotic
disease, CCR5 and CCL5 proteins are faintly detected when there
are no visible atherosclerotic plaques and are highly expressed in
the stable plaques and advanced unstable plaques (Zhang et al.,
2015b). Activated platelets release CCL5 (Gleissner et al., 2008),
transferring CCL5 to the surface of injured endothelial cells and
leading to increased monocyte/macrophage and leukocyte
adhesion to the atherosclerotic vascular wall by binding with its
receptor, CCR5 (Soehnlein et al., 2013; Zhang et al., 2015b), both
of which are adverse effects from a cardiovascular perspective. The
deletion of the CCR5 gene in apolipoprotein E-deficient (ApoE-/-)
mice has a protective effect on diet-induced atherosclerosis and
reduces the infiltration of mononuclear and Th1 type immune
response. CCR5 is also associated with a more stable plaque
phenotype (Braunersreuther et al., 2007). Administration of the
CC chemokine antagonist METRANTES (Veillard et al., 2004) or
treatment with [44AANA47]-RANTES (Braunersreuther et al.,
2008) inhibits the progression of atherosclerosis in a
hyperlipidemic mouse model. This inhibition of lesions is
associated with reduced infiltration of leukocytes into plaques
and increased content of smooth muscle cells and collagen
content, indicating a more stable plaque phenotype. Systemic
CCL5 deficiency in ApoE-/- mice was found to cause reduced
neointima formation after carotid artery injury (Czepluch et al.,
2016). The atheroprotective effect of CCL5 deficiency might be
mediated by the upregulation of kruppel-like factor 4 expression
in smooth muscle cells. For HIV-infected patients, treatment with
a CCR5 antagonist (Maraviroc) could significantly improve
endothelial dysfunction, arterial stiffness, and early carotid
atherosclerosis (Francisci et al., 2019). Matrix metalloproteinases
(MMP) are involved in the vascular remodeling and
immunomodulation during the process of atherosclerosis
(Clemente et al., 2018). Studies have demonstrated that mice
deficient for MT4-MMP have higher numbers of patrolling
monocytes/macrophages adhered to inflamed endothelial cells,
leading to larger lipid deposits in atherosclerotic plaques.
Interestingly, these effects could be reversed by CCR5 inhibition
(Clemente et al., 2018). However, epidemiological studies have
shown that the association between CCR5 gene mutation and the
risk of atherosclerosis-related diseases is conflicting and
inconclusive. Previous studies have found that CCR5-D32 allele
bearing individuals exhibit more beneficial values of
cardiovascular function parameters (Pai et al., 2006; Afzal et al.,
2008; Hyde et al., 2010). There was a significant positive
correlation between CCR5-D32 allele bearing individuals and
reduced susceptibility to CVD (Afzal et al., 2008) or
development of CVD in a North Indian population (Pai et al.,
2006). This may be due to CCR5 deficiency affecting lipid
metabolism (Hyde et al., 2010). CCR5-D32 was significantly
associated with higher levels of HDL-C and lower levels of TG,
both of which are beneficial from a cardiovascular perspective.
However, this outcome is contrary to those of Sharda et al. (2008)
and Apostolakis et al. (2007) who found that there was no
significant difference between the CCR5-D32 and the risk of
CVD. Zhang et al. (2015a) even indicated that the CCR5-D32
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increased the risk of atherosclerotic disease in Asian population
(Zhang et al., 2015a). Moreover, previous studies have reported
that a CCR5 gene promoter region mutation (CCR5-59029 G/A)
was an independent risk factor for CVD (Simeoni et al., 2004;
Vogiatzi et al., 2009). The CCR5 59029A-positive genotype was
correlated with an increased risk of acute coronary syndrome
(Ting et al., 2015). Considering that the role of CCR5 gene
mutation in the risk of CVD is controversial, further studies
with more focus on the association is therefore suggested.

In addition to CCL5, CCL3 and CCL4 have also been reported
to participate in the process of atherosclerosis. CCL3 was highly
expressed in atherosclerotic plaques, and the treatment with
atorvastatin alleviated atherosclerotic lesions through inhibition
of the 5-Lipoxygenase pathway and downregulation of CCL3
expressions in an atherosclerotic mouse model (Yang et al.,
2013). CCL4 was also upregulated in vulnerable atherosclerosis
plaques and was expressed by T cells in advanced atherosclerotic
lesions in stroke patients (Montecucco et al., 2010). Studies has
been conducted in a cohort of hypertensive patients for an average
follow-up period of 37.2 ± 19.9 months; the result found that
elevated serum CCL4 levels is an independent predictor of stroke
and cardiovascular events (Tatara et al., 2009).
DISCUSSION

It is generally assumed that CCR5 and its ligands play a critical
role in promoting inflammation by recruiting immune cells, such
as monocytes and T cells. They may contribute to insulin
resistance by M1/M2 phenotype switching of macrophages that
infiltrate adipose tissues (Kitade et al., 2012). On the one hand, an
impaired insulin signal via PI3K-Akt directly reduces endothelial
NO synthase (eNOS) activation (Rask-Madsen and King, 2007),
leading to endothelial dysfunction. On the other hand, long-term
exposure of endothelial cells to high levels of glucose induces
cellular dysfunction (Brownlee, 2005) and production of CCR5
and its ligands (Li et al., 2013). Adipokines, primarily adiponectin
and TNF-a, secreted by fat tissue, also contribute to endothelial
damage (Rask-Madsen and King, 2007), which is regarded as the
initiation of cardiovascular diseases. CCR5 seems to be associated
with endothelial dysfunction via proinflammatory activity (Figure
1A) (Yao, et al., 2014).

However, therapies targeting CCR5 and its ligands are not
always satisfactory. Populations with CCR5-D32 are not
consistently protected from diabetes and its complications.
Deletion of CCR5 or treatment with a CCR5 antagonist in mouse
model did not always reverse the inflammatory status in metabolic
syndrome. One possible explanation may be that blockade of one
chemokine leads to the upregulated expressions of other cytokines
that exacerbate cellular dysfunction and inflammation. Another
explanation may point to the potential therapeutic effect role of
CCR5 in endothelial repair. The macrophages recruited by CCR5
may release various pro-angiogenic factors, including VEGF, basic
fibroblast growth factor (bFGF), and platelet derived growth factor
(PDGF) (Figure 1B) (Ridiandries et al., 2016). In addition, CCR5
facilitates the recruitment of EPCs into injured vessels and enhances
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endothelial regeneration, which may also explain the genetic
inactivation of CCR5 as an independent risk factor for DR and
DKD (Slominski et al., 2017).

CCR5 is a double-edged sword for metabolism-related
cardiovascular diseases, which may result from the patients
with varying degrees of damage at different growth stages. In
addition, the specificity of populations and organs should also be
taken into consideration. Further studies are required to clarify
the details of the mechanism.
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Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and
hypertension, and affects over one billion people. Independently, the components of
metabolic syndrome each have the potential to affect the endothelium to cause vascular
dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome
have significantly advanced our understanding of this multifactorial condition. In this mini-
review we compare the currently available rodent models of metabolic syndrome and
consider their limitations. We also discuss the numerous mechanisms by which metabolic
abnormalit ies cause endothelial dysfunction and highlight some common
pathophysiologies including reduced nitric oxide production, increased reactive oxygen
species and increased production of vasoconstrictors. Additionally, we explore some of
the current therapeutics for the comorbidities of metabolic syndrome and consider how
these benefit the vasculature.

Keywords: endothelial dysfunction, vascular disease, cardiometabolic abnormalities, nitric oxide, reactive
oxygen species
OVERVIEW

Metabolic syndrome is a growing epidemic affecting ~20% of adults (over a billion people) (O’Neill and
O’Driscoll, 2015; Saklayen, 2018). This complex, multifactorial disorder arising from metabolic
disturbances is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension
(Grundy et al., 2005). Another characteristic of metabolic syndrome is chronic low-grade
inflammation (De Ferranti and Mozaffarian, 2008; Sharma, 2011). These factors all contribute to the
elevated risk of cardiovascular disease, acute cardiovascular events (including stroke and myocardial
infarction), type 2 diabetes mellitus (T2DM), or further complications such as renal disease (O’Neill and
O’Driscoll, 2015; Tune et al., 2017). Vascular dysfunction is a key contributor to the pathogenesis of all of
these disorders (Rajendran et al., 2013). Metabolic syndrome not only causes social and economic
burdens, but significantly impacts morbidity and mortality. This review will describe how metabolic
syndrome affects the regulation of vascular function and tone. Specifically, wewill focus on rodentmodels
ofmetabolic syndrome, highlighting the changes that occur to endothelial function and adipose tissue and
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consider relevance to clinical translation in humans. We will also
discuss potential areas for further research to advance knowledge on
vascular pathophysiology in metabolic syndrome.

Current Rodent Models for Metabolic
Syndrome
An ideal translational animal model for metabolic syndrome would
closely resemble the human anatomy and pathophysiology of the
disease (Emini Veseli et al., 2017). Thus, an important consideration
when choosing an animal model is that it mimics the key clinical
criteria that define metabolic syndrome. The International Diabetes
Federation definesmetabolic syndrome as central obesity and at least
two of the following: dyslipidemia (>150 mg/dl plasma triglycerides
and/or reduced high-density lipoproteins (HDL) < 40mg/dl formen
and <50 mg/dl for women), elevated blood pressure (≥130 mmHg
systolic and/or≥ 85mmHgdiastolic), or hyperglycemia (≥100mg/dl
fasting plasma glucose) (Alberti et al., 2006). Importantly, many
patients do not present with all of these classifications, and similarly
there is no one animal model that mimics all of these abnormalities
of metabolic syndrome.

Genetic Mouse Models
Genetic models of obesity and diabetes allow for the evaluation of
specific molecular mechanisms. C57BL/6J-Lepob mice, more
commonly known as ob/ob mice, were one of the first genetic
models of obesity. These mice lack leptin due to a spontaneous
homozygous mutation on the leptin gene, causing marked obesity,
hyperinsulinemia, and hyperglycemia by 12 weeks of age. By
approximately 24 weeks of age, ob/ob mice develop left
ventricular hypertrophy and cardiac fibrosis and are in a pro-
inflammatory state (La Cava, 2017). The C57BL/KsJ-db/db (db/db)
mouse is a related genetic mouse model, which has a defective
leptin receptor (Wang et al., 2014). By 13 weeks of age, db/dbmice
are overweight and have hyperglycemia and dyslipidemia
(increased plasma triglycerides, total cholesterol, and non-
esterified fatty acids). Importantly, endothelium-dependent
aortic relaxation to acetylcholine (ACh) is impaired whereas that
to direct nitric oxide donors remains unaffected, indicating
endothelial dysfunction (Dong et al., 2010). Additionally, db/db
mice have elevated circulating leptin which promotes a pro-
inflammatory state, linked to the increased activity of
interleukin-6 (IL-6) (La Cava, 2017). Neither ob/ob nor db/db
mice, however, display increased blood pressure—unlike a large
proportion of humans with metabolic syndrome—and are
therefore not ideal models for the many such people with
metabolic syndrome (Mark et al., 1999).

Genetic Rat Models
Zucker Fatty rats are among the most common genetic rat
models of metabolic syndrome and are deficient in the leptin
receptor due to a missense mutation in the gene. This increases
circulating leptin levels and rats are obese by 3–5 weeks of age
(Aleixandre de Artinano and Miguel Castro, 2009). These rats
variably develop hyperglycemia (the severity is variable between
studies, and sometimes within the same cohort), dyslipidemia,
and hypertension (Zucker and Zucker, 1961; Marsh et al., 2007;
Yokoi et al., 2013; Wang et al., 2014; Wong et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 2128
However, several studies also report conflicting data, with
lower systolic blood pressure in Zucker fatty rats compared to
the lean controls (Aleixandre de Artinano and Miguel Castro,
2009). Thus, while in some studies the model does appear to
accurately reflect the presentation of metabolic syndrome
patients in the clinic, inconsistencies between different studies
make it difficult to develop definitive conclusions.

The Dahl salt-sensitive rat is widely used to study salt-induced
hypertension and, when crossed with Zucker fatty rats, the resulting
offspring are DahlS.Z-Leprfa/Leprfa (DS/obese) rats. DS/obese rats
have hyperphagia and develop abdominal obesity, hypertension,
dyslipidemia, and T2DM and thus, appear to be a useful model for
advanced metabolic syndrome (Hattori et al., 2011). Obese
spontaneously hypertensive rats (also known as Koletsky rats) are
another animal model used to studymetabolic syndrome. These rats
are obese by 5 weeks of age and develop hyperlipidemia even when
fed a normal chow diet. Mild hyperinsulinemia is present with only
slight hyperglycemia. At 3months of age, spontaneous hypertension
occurs with mean arterial pressure rising to ≥180 mmHg
(Aleixandre de Artinano and Miguel Castro, 2009).

Diet-Induced Rodent Models
Diet modifications are often used to study metabolic syndrome due
to pronounced effects on metabolism and in turn, hormonal,
glucose, and lipid pathways. Fructose-enriched diets are effective
for inducing metabolic syndrome and act via several mechanisms to
promote obesity (Johnson et al., 2007). Mechanisms relevant to the
satiety center suggest that fructose stimulates the production of
insulin and leptin but inhibits ghrelin (Teff et al., 2004). Other studies
suggest that the addition of fructose simply makes food more
appetizing and stimulates increased food intake and weight gain
(Lowette et al., 2015). Simple and complex carbohydrates are
essential nutrients and the main source of energy for the body.
Adopting a sedentary lifestyle in conjunction with excessive
carbohydrate consumption can result in an imbalance in energy,
which increases blood glucose and increases release of insulin. This
imbalance predisposes individuals to weight gain and decreases
insulin sensitivity (Wong et al., 2016).

A high fat diet (HFD) can also be used to induce metabolic
syndrome. Mice fed a HFD from 4 to 6 weeks of age develop
obesity, hyperglycemia, and endothelial dysfunction after 10 weeks
(Kobayasi et al., 2010; Liu et al., 2016). In some instances, systolic
blood pressure is mildly raised (by ~10 mmHg), suggesting a pre-
hypertensive state (Taylor et al., 2018). HFD mice have increased
quantities ofwhite adipose tissue, which enhances the expression of
pro-inflammatory mediators such as tumor necrosis factor alpha
(TNF-a). This mechanism is thought to be a key driver for insulin
resistance in obesity (Makki et al., 2013). To date, numerous types
of HFD regimens have been used, with variations in the amount of
fat (20 to 60%of total energy) and its source (lard, beef tallow, olive,
or coconut oil) as well as the duration of feeding and age of animals.
The fat source appears to be particularly important. Fats derived
from lard, coconut and olive oil increase body weight, plasma
insulin and triglyceride and decrease plasma adiponectin
concentrations in male Wistar rats (Buettner et al., 2006).
Alternatively, beef tallow derived-fat increases plasma leptin,
insulin, and lipid concentrations (Hsu et al., 2009).
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HFD rodent models display most of the features of metabolic
syndrome, but patients with metabolic syndrome would typically
consume a higher proportion of simple carbohydrates than most
HFD models in the literature (Panchal and Brown, 2011). Diets
comprising both high fat and high carbohydrate components
promote even more of the features of metabolic syndrome in
rodents and are therefore more clinically representative than just
HFD alone (Panchal and Brown, 2011). One potential criticism of
these diet-induced models is that they rarely lead to atherosclerosis.
Thus, HFD regimens are often combined with mice that are
genetically dyslipidemic to incorporate the atherosclerotic
phenotype in metabolic syndrome. For example, apolipoprotein E-
deficient (ApoE−/−) mice and low density lipoprotein receptor
deficient (LDLR−/−) mice show similar metabolic profiles to the
diet-induced models described above, but have the added
complication of advanced atherosclerosis (Emini Veseli et al., 2017).

Despite there being a variety of rodent models of metabolic
syndrome available (summarized in Table 1), the precise
mechanisms behind the progression to a diseased vascular state
remain poorly understood. Obesity and the abnormalities associated
with metabolic syndrome (i.e., hypertension, dyslipidemia,
hyperglycemia) adversely impact vascular structure and function
(Beckman et al., 2002). The remainder of this reviewwill address this.

The Role of Metabolic Syndrome
Comorbidities on Endothelial Dysfunction
Endothelial dysfunction predisposes the vasculature to a heightened
contractile state due to an imbalance between endothelium-derived
Frontiers in Pharmacology | www.frontiersin.org 3129
relaxing (e.g., NO, PGI2, EDH downregulation) and contracting
factors (e.g., TxA2, ET-1 upregulation) (Guzik et al., 2000; Lerman
and Zeiher, 2005). Endothelial dysfunction also promotes pro-
inflammatory and oxidative stress pathways via endothelial
mitochondrial reactive oxygen species (ROS) driving vascular
growth and remodeling (Cai and Harrison, 2000; Shenouda et al.,
2011;Widlansky andGutterman, 2011). This fundamental switch of
the endothelium in metabolic syndrome to a dysfunctional state,
involves the host immune system and production of ROS (Deanfield
et al., 2007), and the progression of diseases occurs via a variety of
dynamic changes within the vasculature (Figure 1). There are many
detailed reviews regarding the function of the endothelium in a
physiological state (Cai and Harrison, 2000; Endemann and
Schiffrin, 2004; Hadi et al., 2005; Rajendran et al., 2013), and thus,
this review will focus on the mechanisms of endothelial dysfunction
that accompany the comorbidities of metabolic syndrome. Some
animal models of metabolic syndrome inherently present with
multiple comorbidities—for example diet-induced models may
present hyperglycemia, dyslipidemia, and obesity. However, the
studies mentioned in this section focus on individual
comorbidities and their effect on endothelial dysfunction.

Hyperglycemia
In db/db and ob/ob mice, endothelium-dependent vasodilatation is
impaired in the coronary arterioles, aorta, and mesenteric arteries.
This impairment is associated with enhanced superoxide
production and the activation of immune responses downstream
of the NACHT, LRR, and PYD domains-containing protein 3
TABLE 1 | Summary of different rodent models of metabolic syndrome and their effects on varying vessels.

Model Age Species Sex Vessel Effect of metabolic syndrome Ref

HFD (45% kcal from fat) for 32 weeks 37 weeks C57BL/6J mice M MA ↑ Superoxide and NOX activity in PVAT (Gil-Ortega et al.,
2014)

WD (30% fructose, 20% lard, 18%
protein, 5% cellulose) for 42 weeks

50 weeks Sprague-Dawley
rats

M TA ↑ROCK pathway associated with insulin
resistance

(Elrashidy et al., 2019)

High carbohydrate, HFD (% kcal from
fat + 15% fructose in drinking water)

24 weeks Sprague-Dawley
rats

M CA,
MA

↑Insulin sensitivity and lipid profiles; ↓SBP (Senaphan et al.,
2015)

HFD (59% kcal from fat) for 16 weeks 24 weeks Swiss mice F Aorta ↑ SBP and DBP; ↓ aortic relaxation to ACh but
not SNP; ⟷ aortic IL-1b and IL-6 protein
expression; ↓ aortic NF-kB

(Kobayasi et al., 2010)

HFD (42% kcal from fat) for 30 weeks 35 weeks C57BL/6J mice M TA, CA ↑Prostanoids and vascular thromboxane
receptor gene expression

(Traupe et al., 2002)

C57BL/6J-Lepob (ob/ob) 27–32
weeks

C57BL/6J mice M Aorta
MA

↑Plasma insulin, PKC activity, GRK2 protein
levels; ↓aortic insulin-induced relaxation, ACh-
induced relaxation

(Winters et al., 2000;
Taguchi et al., 2011)

C57BL/KsJ-db/db (db/db) 16 weeks C57BL/KsJ mice M MA ↑Production of superoxide anions; ↓ACh-
induced relaxation and BH4 bioavailability

(Pannirselvam et al.,
2002)

Zucker diabetic fatty (ZDF fa/fa) rat 9–11 weeks Zucker diabetic
fatty rats

M Aorta ↑FFA-induced NADPH oxidase activation and
ROS production

(Chinen et al., 2007)

Spontaneously hypertensive rats 14 months Spontaneously
hypertensive rats

M TA ↑ROS formation, NADPH oxidase activity and
protein expression of NOX 1 and NOX 2;
↓ACh-induced relaxation

(Wind et al., 2010)

HFD (20.5% protein, 35.7%
carbohydrates, and 36.0% fat)

24–28
weeks

Dahl-Salt
Sensitive rats

F and M Aorta ↑HFD male and female SBP at 4 weeks and
CD4+ T cells and T helper cells, greater CD3+
T cells in males, and greater % of pro-
inflammatory T cells in males

(Taylor et al., 2018)
March 2020 | V
ACh, acetylcholine; BH4, tetrahydrobiopterin; CA, carotid arteries; DBP, diastolic blood pressure; F, female; FFA, free fatty acid; GRK2, G protein-coupled receptor kinase 2; HFD, high fat
diet; IL, interleukin; Kcal, kilocalorie; M, male; MA, mesenteric arteries; NF-kB, nuclear factor kappa beta; NOX, NADPH oxidase; PKC, protein kinase C; PVAT, perivascular adipose tissue;
ROCK, Rho kinase; SBP, systolic blood pressure; SNP, sodium nitroprusside; TA, thoracic aorta; WD, western diet.
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inflammasome, which reduces the function of endothelium-
dependent relaxing factors and the regulation of insulin (Bagi et
al., 2003; Okon et al., 2003; Vandanmagsar et al., 2011). Endothelial
dysfunction is not only a consequence of insulin resistance, but also
impairs insulin signaling to further reduce insulin sensitivity,
thereby resulting in a destructive cycle in metabolic syndrome
and diabetes. In obese Zucker rats, altered insulin signaling
disrupts insulin-mediated NO production (via downregulation of
eNOS expression) to impair vasodilatation in resistance arteries.
The involvement of ROS and subsequent degradation of BH4 (a
cofactor essential for NO synthesis from eNOS) synthesis in insulin
resistance is thought to play a role in the impairment of NO-
dependent vasodilatation (Eringa et al., 2007). In T2DM patients,
ROS reduces the availability of BH4 (Heitzer et al., 2000). Reduced
interaction between BH4 and eNOS leads to eNOS uncoupling and
production of superoxide instead of NO (Heitzer et al., 2000). In
Frontiers in Pharmacology | www.frontiersin.org 4130
that study, an infusion of BH4 partially counteracted the reduced
ACh-induced vasodilation, demonstrating that eNOS uncoupling
and reduction of NO availability contribute to endothelial
dysfunction in T2DM (Heitzer et al., 2000). An early study using
female streptozotocin (STZ)-induced diabetic rats found impaired
endothelial function in mesenteric arteries due mainly to altered
production of vasodilators rather than ROS (Taylor et al., 1992).
Endothelial dysfunction is region-specific in this model— as
endothelial impairment was absent in the aortae of the diabetic
animals (Taylor et al., 1994). The therapeutic potential of
antioxidants has been a key area of interest in hyperglycemia
research due to their ability to scavenge/neutralize ROS (Morrow
et al., 2003; Davis et al., 2006; Versari et al., 2009). However, large
clinical studies have investigated the effects of anti-oxidant vitamins
(such as vitamin E and C) in diabetes, and these did not reduce the
incidence of vascular disease (Heart Protection Study Collaborative
FIGURE 1 | Current therapies for the comorbidities of metabolic syndrome, targetting nitric oxide and reactive oxygen species signaling in endothelial dysfunction.
Metabolic syndrome is characterized by an increase in visceral adiposity, blood pressure, glucose intolerance, and dyslipidemia. Individually, these co-morbidities
induce endothelial dysfunction by increasing reactive oxygen species (ROS) and reducing nitric oxide (NO; pathways indicated in black). ROS is increased via
increases in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and pro-inflammatory adipokines and reductions in superoxide dismutase (SOD). This
reduces endothelial nitric oxide synthase (eNOS) production via two key mechanisms: reduced L-arginine conversion and soluble guanylate cyclase (sGC) activity.
Uncoupling of eNOS occurs via two mechanisms [tetrahydrobiopterin (BH4) and 5′-AMP-activated protein kinase (AMPK) inactivation] to further reduce eNOS activity.
Increased cyclooxygenase-2 (COX-2) activity drives the production of vasoconstrictor prostanoids (PGF2a, prostaglandin F2a; TXA2, thromboxane A2) and decreases
prostacyclin (PGI2) production. ROS also drives the production of other endothelium-derived contracting factors (ET-1= endothelin-1, 5-HT= serotonin and PE=
phenylephrine). Many first-line therapeutic drugs for the co-morbidities of metabolic syndrome (colored) target these mechanisms. Metformin (blue) reduces AMPK
inactivation and peroxynitrite (ONOO-) production. Angiotensin converting enzyme (ACE) inhibitors (pink) reduce SOD activity. Statins (yellow) reduce AMPK
inactivation and ROS production and increase sGC activity. Spironolactone and dipeptidyl peptidase-4 (DPP4) increase eNOS activity. Spermidine (turquoise) and
vitamin D (dark yellow) inhibit the activation of pro-inflammatory adipokines released from adipose tissue, and spermidine promotes AMPK activation. BH2, 7,8-
dihydrobiopterin; cGMP, cyclic guanosine-3′,5′-monophosphate; cGK1, cGMP-dependent protein kinase-1; ROCK, RhoA associated protein kinase; GLP1,
glucagon-like peptide 1. Created with BioRender.com.
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G, 2002; Xu and Zou, 2009). Furthermore, acute hyperglycemia
promotes vasoconstrictor-prostanoid production and thus, an
increased vascular smooth muscle cells (VSMC) contractility and
vascular tone (Bagi et al., 2003; Okon et al., 2003).

There are a number of therapeutics available for the treatment
of hyperglycemia. Pharmacological therapies such as
thiazolidinediones, statins, and metformin not only improve
insulin sensitivity, but also endothelium-dependent
vasodilation in patients with type 2 diabetes (Paniagua et al.,
2002; Yee A et al., 2004; Xu and Zou, 2009) and in diabetic
rodent studies (Kanda M and Ichihara, 2003; Wong et al., 2006).
Metformin is the first-line drug used for the treatment of
hyperglycemia. Despite this, the precise mechanisms by which
metformin lowers blood glucose levels are still unclear, but
AMPK activation is thought to be a key target of action
(Eriksson and Nystrom, 2014). AMPK is also thought to be a
potential target in reversing endothelial dysfunction by
promoting eNOS phosphorylation to stimulate NO production
(Davis et al., 2006; Xu and Zou, 2009). Conversely, cell-culture
studies indicate that this occurs independently of AMPK
activation in mouse microvascular endothelial cells, but rather
via eNOS and Akt phosphorylation (Ghosh et al., 2015). Thus,
the involvement of AMPK in metformin therapy may require the
involvement of other cell-types. A newer therapeutic strategy for
hyperglycemia is glucagon‐like peptide‐1 receptor agonists and
dipeptidyl peptidase‐4 inhibitors. Glucagon-like peptide-1 is a
direct endothelium-dependent vasodilator, and is also NOS-
dependent. The vasoprotective effects of glucagon-like peptide-
1 receptor agonists have been shown in a number of clinical
studies too, however, there are also studies that show detrimental
effects on the vasculature (Ban et al., 2008). Such detrimental
effects appear to occur with chronic long-term administration
(>4 weeks), highlighting the importance of determining long-
term effects of hyperglycemia medications on the vasculature.

Dyslipidemia
Endothelial relaxation is impaired via multiple pathways in
dyslipidemia. In humans with hypercholesterolemia, ACh-induced
vasodilatation is reduced, whereas Gi-independent bradykinin-
induced vasodilatation remains unchanged (Matsumoto et al.,
2004; Gendron et al., 2007).This indicates a selective loss of some
vasorelaxation pathways in hypercholesterolemia (Matsumoto et al.,
2004; Gendron et al., 2007). Rodent models have been previously
used to study lipidmetabolism and its links to cardiovascular disease,
however there are significant differences between lipidmetabolism in
rodents andhumans. For example,mice carry themajority of plasma
cholesterol in HDL, whereas humans carry it in low-density
lipoproteins (LDL) (Gordon et al., 2015). However, there are
similarities between the species that should be noted. For the
protein diversity of HDL and LDL size ranges are similar in both
humans and mice, and mice have minor proteins that are identified
in humans which play a role in inflammation and innate immunity
(Gordon et al., 2015). Themajority of rodent dyslipidemia studies to
date (characterized by increased triglycerides, decreased HDL and
abnormal LDL) have been performed inApoE−/−mice. Interestingly,
despite severe hypercholesterolemia, young ApoE−/− mice have
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normal vascular function. Importantly, once challenged with either
HFD or ageing to induce atherosclerotic lesions, relaxation (both
endothelial-dependent and -independent) is impaired.

In non-rodent animal models, such as hypercholesterolemic
rabbits, L-arginine treatment inhibits atherosclerosis and improves
NO-mediated vasodilatation in thoracic and abdominal aortae and
iliac arteries by enhanced NO synthesis and eNOS expression
(Jeremy et al., 1996; Hayashi et al., 2005) The increased levels of
oxidized low-density LDL in dyslipidemia has cytotoxic potential
and atherogenic properties, and may also attenuate NO activity. In
cultured human endothelial cells, oxidized LDL exposure decreased
eNOS messenger RNA (mRNA) expression (Shi et al., 2014). In
human umbilical vein endothelial cells, eNOSmRNA degradation is
also linked to upregulation of the pro-inflammatory cytokine TNF-
a in atherosclerotic lesions. Therefore, pro-inflammatory cytokines
that interfere with eNOS mRNA levels may reduce eNOS activity
and impair vasorelaxation in dyslipidemia (Yoshizumi et al., 1993).
Transmembrane receptor LOX-1 can also directly mediate oxidized
LDL inducing superoxide formation through the activation of
nuclear factor kappa B (Cominacini et al., 2000; Sangle and Shen,
2010). Not only does this contribute to lipid accumulation through
macrophages and inflammatory cytokines, high levels of circulating
oxidized LDL acts on receptors that decrease L-arginine availability,
thus altering NO production and ultimately endothelial function
(Saraswathi and Hasty, 2006). Statins are used in the clinic to lower
blood LDL cholesterol. An added benefit of statins is that they also
reverse endothelial dysfunction in dyslipidemic patients (Bonetti et
al., 2003). Cell culture studies confirm that statins stabilize eNOS
mRNA to increase NO production in human endothelial cells
(Bonetti et al., 2003). Additionally, statins l also reduce
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
activity by downregulating NOX-1 mRNA expression, thus
suppressing O2

− generation in hypertensive rats further
contributing to the protective effects of statins (Wassmann et al.,
2002; Antonopoulos et al., 2012). Spermidine, a precursor to
polyamines, has been shown to exert anti-inflammatory
properties, and to inhibit age-related oxidative protein damage
and ROS. To target lipid metabolism, spermidine induces AMPK
pathway to regulate autophagy, in turn inhibiting expression of fatty
acids (Gao et al., 2018).

Obesity
In obesity, the severity of endothelial dysfunction strongly correlates
with the degree of visceral adiposity (Lobato et al., 2012). This is
likely to be due tomultiple pathways, such as adipocyte hypertrophy,
hypoxia and macrophage infiltration (Leal Vde and Mafra, 2013).
Similar to hypertensive conditions, visceral adiposity increases
oxidative stress, and promotes changes in the pro-inflammatory
adipokine profile resulting in eNOS uncoupling (Li et al., 2015).
Specifically, circulating pro-inflammatory adipokines such as
visfastin, apelin, retinol binding protein-4, vaspin, serum amyloid
A, plasminogen activator inhibitor-1, angiotensinogen, chemerin
and are increased in obesity. Conversely, obesity is associated with
reduced adiponectin, omentin, and zinc-a2-glycoprotein (Leal Vde
and Mafra, 2013). In obesity, NADPH oxidase upregulation also
accentuates ROS production and induce endothelial dysfunction in
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the aorta (Serpillon et al., 2009; Jiang et al., 2011). In endothelial cells,
the nuclear factor-kB (NF-kB) pathway mediates inflammation by
increasing ROS production and reducing NO production (Kobayasi
et al., 2010). Additionally, surrounding adipocytes secrete products
that stimulate the increase of adhesion molecules and apoptosis of
endothelial cells (Kobayasi et al., 2010). Although obese patients
present with elevated NF-kB expression, it is unknown whether the
direct inhibition of this pathway improves endothelium-dependent
relaxation (Silver et al., 2007).Weight loss is the primary objective for
obese patients. In obese patients with essential hypertension, calorie
restriction demonstrated beneficial effects and improvement in
endothelium-dependent vasodilation stimulating an increased
release of nitric oxide (Sasaki et al., 2002).

In diet-induced obese mice, vascular dysfunction (in the thoracic
aorta and carotid artery) is associated with increased thromboxane
gene expression and vasoconstrictor prostanoids (Traupe et al.,
2002). Non-selective COX inhibition blocks ACh-induced
contraction but selective inhibition of COX-2 is without effect
(Traupe et al., 2002). Additionally, thromboxane synthase
inhibitors did not affect ACh-induced contraction, indicating that
vascular dysfunction in obesity is driven by upregulation of vascular
thromboxane receptor and endothelium-dependent prostanoid
vasoconstrictors (Traupe et al., 2002). COX-inhibition also altered
ET-1-induced contraction (Traupe et al., 2002; Mundy et al., 2007).
This provides evidence that, not surprisingly, multiple mechanisms
are involved in endothelial dysfunction in obese rodents.
Importantly though, diet-induced obese mice are normotensive,
indicating that obesity-induced endothelial dysfunction is likely
independent of changes to blood pressure.

Epidemiological studies indicate that low vitamin D levels are
associated with all of aforementioned co-morbidities of metabolic
syndrome (Snijder et al., 2005; Awad et al., 2012). In vitro studies
demonstrate that vitamin D3 inhibits pre-adipocyte proliferation by
downregulating adipogenesis genes (Zhuang et al., 2007) and
reducing obesity-induced inflammation (Marcotorchino et al.,
2012). Despite ample evidence that vitamin D hinders the
development of adipose, the precise mechanism by which vitamin
D influences obesity has not yet been elucidated.

Hypertension
The pathophysiology of hypertension is multifactorial and
related to activation of the sympathetic nervous system, renin-
angiotensin-aldosterone system, pro-inflammatory mediators,
endothelial dysfunction, and increased oxidative stress
(Oparil et al., 2003). Sustained elevated pressure in the
vasculature promotes premature ageing and increased
endothelial cell turnover (Bleakley et al., 2015). The
regenerated endothelial cells have an impaired ability to release
endothelium-derived relaxing factors (Tang and Vanhoutte,
2010). Endothelial dysfunction has been demonstrated in most
animal models of hypertension including spontaneously
hypertensive rats (SHRs), angiotensin II-induced hypertension,
Dahl salt-sensitive rats, and the two-kidney one-clip model
(Stankevicius et al., 2002; Yang et al., 2004; Michel et al.,
2008). A sustained elevation of blood pressure is linked with
decreased levels of NO and increased vascular ROS (Konukoglu
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and Uzun, 2017). Oxidative stress plays a major role in the
pathophysiology of hypertension-induced endothelial
dysfunction. ROS alone promote vasoconstriction and impair
antioxidant production (Santilli et al., 2015). Superoxide and
other ROS inhibit NO bioavailability in several ways. Superoxide
can react directly with NO to form peroxynitrite. This leads to
eNOS uncoupling, thus aggravating the reduced NO production
and promoting endothelial dysfunction (Bakker et al., 2009).
Peroxynitrite can also nitrate other proteins, altering their
function (Pacher et al., 2007). This correlates with studies in
hypertensive patients reporting decreased NO availability and
increased serum malondialdehyde [a clinical indicator of
elevated ROS; (Wattanapitayakul et al., 2000; Guzik et al.,
2002; Armas-Padilla et al., 2007)]. Increased NADPH oxidase
activity has been observed in angiotensin II-induced
hypertension, deoxycorticosterone acetate-salt hypertension
and SHRs. In angiotensin II-infused mice, increased ROS is
linked to eNOS uncoupling, BH4 oxidation and further increases
in superoxide, impairing endothelial function. This is also
associated with downregulation of downstream targets of NO,
such as cyclic-GMP, soluble guanylate cyclase, protein kinase G-
dependent phosphory l a t ion , S -n i t ro sy l a t i on , and
transnitrosylation (Mollnau et al., 2002; Zhang, 2017).
Clinically, there is an abundance of pharmacological
treatments for hypertension that directly target the renin
angiotensin aldosterone system (incl. angiotensin converting
enzyme inhibitors and angiotensin II receptor blockers). In
addition to blocking renal sodium reabsorption and plasma
volume expansion (Ferrario and Schiffrin, 2015), many of these
also improve endothelial dysfunction. This occurs via inhibition
of vascular angiotensin I and II conversion and by increasing NO
bioavailability (Farquharson and Struthers, 2000). The precise
mechanisms by which this occurs varies between the different
types of drugs. Mineralocorticoid receptor antagonists such as
spironolactone increases NO bioavailability via the upregulation
of eNOS and downregulation of the proinflammatory cytokine
TGF-ß (Adel et al., 2014). ACE inhibitors increase NO
bioavailability via three key mechanisms: increased
intracellular calcium to increase NO production; blocking
natural endopeptidase to inhibit local bradykinin degradation;
and enhancing activity of the antioxidant superoxide dismutase
(Enseleit et al., 2003).

The transformation of arachidonic acid by cyclooxygenase
results in the production of endoperoxides, releasing endothelial-
derived contracting factors (Vanhoutte et al., 2005). Importantly,
many rodent studies show evidence of increased vasoconstrictor
prostanoid responses in hypertension (Vanhoutte et al., 2005;
Vanhoutte and Tang, 2008). Conversely, blunted endothelium-
dependent vasodilation is the key underlying cause of vascular
dysfunction in hypertensive humans (Vanhoutte et al., 2005).
Therefore, while the impact of hypertension on the vasculature is
similar between species, the underlying mechanisms may differ.
This highlights the challenge of translating pre-clinical findings
to a clinical setting. Thus, identification and use of the most
representative animal models of human disease are vital for
progressing our understanding of these conditions.
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CONCLUSION

Accompanying the global rise in obesity, metabolic syndrome is an
escalating public health concern. Metabolic syndrome is a
multifactorial disorder, and hence it is not surprising that
numerous signaling pathways contribute to the subsequent
endothelial dysfunction. Despite this, the majority of current
therapies that treat the comorbidities of metabolic syndrome and
improve endothelial dysfunction target NO and ROS signaling
(Figure 1). Future studies should investigate the effects of
Frontiers in Pharmacology | www.frontiersin.org 7133
therapeutics which target vasoconstrictor prostanoids, another key
mechanism of endothelial dysfunction in metabolic syndrome.
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Cardiovascular diseases represent a complex group of clinical syndromes caused by a
variety of interacting pathological factors. They include the most extensive disease
population and rank first in all-cause mortality worldwide. Accumulating evidence
demonstrates that cytokines play critical roles in the presence and development of
cardiovascular diseases. Interleukin-12 family members, including IL-12, IL-23, IL-27
and IL-35, are a class of cytokines that regulate a variety of biological effects; they are
closely related to the progression of various cardiovascular diseases, including
atherosclerosis, hypertension, aortic dissection, cardiac hypertrophy, myocardial
infarction, and acute cardiac injury. This paper mainly discusses the role of IL-12 family
members in cardiovascular diseases, and the molecular and cellular mechanisms
potentially involved in their action in order to identify possible intervention targets for the
prevention and clinical treatment of cardiovascular diseases.

Keywords: cardiovascular diseases, IL-12 family members, atherosclerosis, coronary artery disease, hypertension,
aortic dissection, viral myocarditis
INTRODUCTION

To date, cardiovascular disease remains the leading killer worldwide, especially in less-developed
areas (Leong et al., 2017). It is not only a serious threat to patients' lives, but also poses a serious
psychological burden to patients and their families. Although a large number of useful drugs and
new technologies have been widely used in clinical treatment over recent years and have
significantly improved survival rates, the overall prognosis of cardiovascular diseases is still very
poor, and the death rate related to cardiovascular diseases is far higher than that of other diseases,
even malignant tumors (Donofrio et al., 2014; Dukkipati et al., 2017; Bethel et al., 2018).

There are four members of the interleukin-12 (IL-12) family, including IL-12, IL-23, IL-27, and IL-
35. An obvious feature of IL-12 family members is that each consists of two heterogeneous dimers,
including an a subunit (p19, p28, and p35) and a b subunit [p40 and Epstein-Barr virus-induced
protein 3 (EBI3)] (Vignali and Kuchroo, 2012; Sun et al., 2015). Therefore, deletion of either an a or b
subunit can cancel the biological effects of the IL-12 family cytokines. Interestingly, the receptor for IL-
in.org March 2020 | Volume 11 | Article 1291137
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12 family members also consists of two protein chains. Among
them, the IL-12 receptor (IL-12R) utilizes IL-12Rb1 and IL-12Rb2,
IL-23 signaling employs IL-12Rb1 and IL-23R, and IL-27 signals
through gp130 and WSX-1; however, an exception is IL-35R,
which consists of two downstream signals, including gp130-gp130
or IL-12Rb1-IL-12Rb1 (Presky et al., 1996; Oppmann et al., 2000;
Pflanz et al., 2004; Collison et al., 2012). Molecular signaling
mechanisms involving IL-12 family members are basically similar,
and are all mediated by members of the Janus kinase (JAK) signal
transducers and activators of transcription (STAT) family,
especially JAK1/2-STAT1/3/4 (Ihle, 1995; O'Shea et al., 2002;
Delgoffe et al., 2011). All IL-12 family members can be secreted
by both immune and non-immune cells (Vignali and Kuchroo,
2012; Sun et al., 2015). For the immune cells, IL-12, IL-23, and IL-
27 are mainly derived from effector T lymphocytes, macrophages,
and dendritic cells, while IL-35 is mainly secreted by T helper cells
(Tregs) (Langrish et al., 2004; Hunter, 2005; Collison et al., 2009;
Collison et al., 2010; Andrews et al., 2016; Wei et al., 2017). IL-12
and IL-23 are considered to be pro-inflammatory factors that
amplify downstream inflammatory signals. IL-35 plays an anti-
inflammatory role and protects against tissue damage mediated by
Frontiers in Pharmacology | www.frontiersin.org 2138
inflammatory responses, while IL-27 has a two-sided effect on the
regulation of inflammation, in which it can not only play an anti-
inflammatory role, but also a pro-inflammatory role, depending
on the inflammatory environment (Ma and Trinchieri, 2001;
Kastelein et al., 2007; Collison and Vignali, 2008; Vignali et al.,
2008; Cox et al., 2011; Vignali and Kuchroo, 2012; Wojno and
Hunter, 2012; Sun et al., 2015). The subunits, receptors, signaling
pathways, and regulatory roles of the members of the IL-12 family
in inflammation are listed in Table 1.
INTERLEUKIN-12 FAMILY MEMBERS AND
CARDIOVASCULAR DISEASE

Interleukin-12 Family Members and
Atherosclerosis, Coronary Artery Disease
Atherosclerosis and coronary artery diseases due to
atherosclerosis are chronic inflammatory disorders, and
infiltration by immune cells and inflammatory factors can be
observed at all stages of disease development (Peter et al., 2009;
Longenecker et al., 2016; Rahman and Fisher., 2018). IL-12
TABLE 1 | The subunits, receptors, signaling pathways of the IL-12 family members.

IL-12 IL-23 IL-27 IL-35 References

Subunits a: p35 a: p19 a: p28 a: p35 Vignali and Kuchroo, 2012; Sun et al.,
2015b: p40 b: p40 b: EBI3 b: EBI3

Receptors IL-12Rb1+IL12-Rb2 IL-12Rb1+IL-23R gp130+ WSX-1 1. gp130+IL-12Rb2
2. gp130+gp130
3. IL-12Rb2+lL-12Rb2

Presky et al., 1996; Oppmann et al.,
2000; Pflanz et al., 2004; Vignali and
Kuchroo, 2012; Collison et al., 2012;
Sun et al., 2015

Pathways JAKs: JAK2, TYK2
STATs: STAT4

JAKs: JAK2, TYK2
STATs: STAT3,
STAT4

JAKs: JAK1, JAK2
STATs: STAT1, STAT3

JAKs: JAK1, JAK2
STATs: STAT1,
STAT3, STAT4

Ihle, 1995; O'Shea et al., 2002; Delgoffe
et al., 2011; Vignali and Kuchroo, 2012;
Sun et al., 2015

Main
sources

Mø, Th1 Mø, activated DCs, Myeloid cells, such as Mø and
activated DCs

Treg Langrish et al., 2004; Hunter, 2005;
Collison et al., 2009; Collison et al.,
2010; Vignali and Kuchroo, 2012; Sun
et al., 2015; Andrews et al., 2016; Wei
et al., 2017

Other
sources

activated DCs, NK, B
cells, Th9, Th17

gd T cells, B cells, NK
cells, ECs, innate
lymphoid cells

T cells, B cells, epithelial cells,
plasma cells, and ECs

Activated DCs, Mø,
placental trophoblast
cells

Langrish et al., 2004; Hunter, 2005;
Collison et al., 2009; Collison et al.,
2010; Vignali and Kuchroo, 2012; Sun
et al., 2015; Andrews et al., 2016; Wei
et al., 2017

Role in
immune
response

Induce Th1 and Mø1
differentiation

Induce and promote
th17 differentiation

IL-27 alone has no apparent
stimulatory properties, collaboration
with other ILs promote or inhibit T
cell differentiation and proliferation

Promote Treg activity,
suppress the Teff cell
(Th1, and Th17 )
activity

Ma and Trinchieri, 2001; Kastelein
et al., 2007; Collison and Vignali, 2008;
Vignali et al., 2008; Cox et al., 2011;
Vignali and Kuchroo, 2012; Wojno and
Hunter, 2012; Sun et al., 2015

Regulation
of
inflammation

Except inflammatory
environment induced
by DOX or Ang II, all
play pro-inflammatory
role

Always play a pro-
inflammatory roles, no
anti-inflammatory
effects had been
reported

Not only play an anti-inflammatory
role, but also play a pro-
inflammatory effects, may be
associated with inflammatory
microenvironment

Always relieves the
inflammatory response

Davenport and Tipping, 2003; Vignali
and Kuchroo, 2012; Jin et al., 2012;
Koltsova et al., 2012; Li et al., 2012;
Yan et al., 2012; Jääskeläinen et al.,
2013; Abbas et al., 2015; Subramanian
et al., 2015; Sun et al., 2015; Andrews
et al., 2016; Tao et al., 2016; Hu et al.,
2016; Gregersen et al., 2017;
Fatkhullina et al., 2018; Ye et al.,
2018b; Jia et al., 2019; Liu et al., 2019;
Vargas-Alarcón et al., 2019; Ye et al.,
2019
Mø, macrophages, Mø1, M1 macrophages; DCs, dendritic cells; natural killer cell; endothelial cells; DOX; doxorubicin.
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family members have significantly higher levels of expression in
patients with atherosclerosis and coronary artery disease, and are
closely related to the progression of these diseases.

Clinical Data
Previous studies reported that plasma IL-12 concentrations are
significantly increased in many types of atherosclerosis and
atherosclerotic cardiovascular disease, including stable angina
pectoris (SAP), non-ST segment elevation myocardial infarction
(NSTEMI), ST-elevation myocardial infarction (STEMI), acute
myocardial infarction (AMI), and gradually increased SAP,
unstable angina pectoris (UAP), and AMI (Zhou et al., 2001;
Correia et al., 2010; Lin et al., 2012; Yong et al., 2013; Chistiakov
et al., 2015; Opstad et al., 2016; Zykov et al., 2016). Clinical data
showed that patients with coronary artery disease exhibit higher
circulating IL-23 levels (Lin et al., 2012; Abbas et al., 2015; Sun
et al., 2019a). In coronary artery disease patients who underwent
percutaneous coronary intervention (PCI) with drug-eluting
stents (DES), subjects with in-stent restenosis show higher
circulating IL-23 levels in peripheral blood mononuclear cells
(PBMCs) (Khojasteh-Fard et al., 2012). Numerous studies have
confirmed that IL-27 expression is increased in plasma and
plaques in the coronary and carotid arteries of coronary artery
disease patients (Kempe et al., 2009; Jin et al., 2012; Lin et al.,
2012; A Shahi et al., 2015; Gregersen et al., 2017). Abundant
evidence identifies that IL-35 expression is significantly reduced
in patients with coronary artery disease; plasma IL-35 levels are
gradually reduced in SAP, UAP, and AMI patients, and
decreased plasma IL-35 levels are inversely correlated with the
left ventricular ejection fraction (LVEF) in coronary artery
diseases (Lin et al., 2012; Rasa et al., 2018; Zhu et al., 2018).

Gene polymorphisms in members of the IL-12 family have
been reported to be associated with the occurrence or
progression of coronary artery disease. An IL-23R
polymorphism was observed to be related to coronary artery
disease, and the IL-23R rs6682925T/C polymorphism may
independently relate to the presence of coronary artery disease
(Zhang et al., 2014a). IL-27 gene polymorphism had no effect on
the presence of subclinical atherosclerosis, while closely related
to atherosclerosis and coronary artery disease, rs26528 T and
rs40837 A alleles significantly reduced the risk of coronary artery
disease (Posadas-Sánchez et al., 2017; Vargas-Alarcón et al.,
2019). No research about gene polymorphisms of IL-12 and
IL-35 and the presence of coronary artery disease was
reported yet.

Animal Studies
Elevated serum IL-12 levels are observed of atherosclerosis in
ApoE-KO mice, and increased IL-12 levels are associated with
the progression of atherosclerosis (Jääskeläinen et al., 2013).
Accumulating animal study reports also demonstrate that
treatment with exogenous recombinant murine IL-12
significantly aggravates the progression of atherosclerosis, and
increases aortic atherosclerotic plaque areas in both ApoE-
knockout mice and in low density lipoprotein (LDL) receptor-
deficient mice, while cancelation the biological effects of IL-12
Frontiers in Pharmacology | www.frontiersin.org 3139
can significantly diminish such effects (Lee et al., 1999;
Davenport and Tipping, 2003; Hauer et al., 2005). In a murine
myocardial infarction model, canceling the biological effects of
IL-12 alleviates cardiac dysfunction by promoting angiogenesis
(Kan et al., 2016). In a recent study, Shi et al. reported that
knockout of IL-12p35 subunit, which can cancel the biological
effects of IL-12 and IL-35, significantly aggravated Th1/Th2 and
Th17/Treg imbalance and increased atherosclerotic plaque areas
in ApoE mice, which may suggest that the pro-atherosclerotic
effects of IL-12 can be mediated by promoting the CD4+ T
lymphocyte differentiation imbalance (Huang et al., 2019).

The role of IL-23 in atherosclerosis is controversial. Therapy
involving IL-23p19, a subunit of IL-23, had no significant effect
on atherosclerosis development in ApoE-deficient mice,
although inflammatory responses were reduced (Wang et al.,
2019). Another study reported that there was no significant
difference in atherosclerotic area between low-density
lipoprotein receptor (LDLR) knockout mice and IL-23 + LDLR
double-knockout mice, after they were all fed with high-fat diet
(Engelbertsen et al., 2018). A recent study reported that
deficiency of IL-23 significantly decreased IL-22 expression in
ApoE-knockout mice, and also reduced expression of IL-22,
thereby relieving the release of inflammatory substances, and
thus alleviating the process of atherosclerosis (Fatkhullina et al.,
2018). Subramanian et al. reported that granulocyte-macrophage
colony stimulating factor (GM-CSF) up-regulates the expression
of IL-23, which further promotes the differentiation of
macrophages and atherosclerosis development (Subramanian
et al., 2015). These studies suggest that IL-23 has a strong
regulatory effect on inflammation mediated by a high-fat diet
in both ApoE-knockout mice and LDL-R-knockout mice
(Subramanian et al., 2015; Engelbertsen et al., 2018;
Fatkhullina et al., 2018; Wang et al., 2019), while the special
role of IL-23 in atherosclerotic progression is unclear and further
studies are needed to clarify this aspect.

Both the effects of IL-27R and IL-27 on atherosclerosis were
reported. Koltsova et al. found that knockout of IL-27R
significantly enhanced Th17 immune responses, up-regulated
inflammatory responses, promoted the expression of tumor
necrosis factor (TNF) and IL-17A, and further promoted the
development of atherosclerosis in ApoE-deficient mice (Koltsova
et al., 2012). Hirase et al. also reported that knockout of IL-27
plays similar roles in atherosclerosis development in LDLR-
knockout mice; the mechanism may be related to the
promotion of macrophage differentiation (Hirase et al., 2013).
Ryu et al. found that in a high-fat diet-treated ApoE-knockout
mouse atherosclerotic model, blockade of IL-27 signaling
increased the plaque area via promotion of autoimmune
follicular helper T cell responses (Ryu et al., 2018). These
results suggest that IL-27 may be an important target for the
treatment and prevention of atherosclerosis and coronary artery
disease by inhibiting the differentiation of various immune cells
and reducing inflammatory responses, thereby alleviating
atherosclerotic progression. Hence, IL-27 may be an important
target for the treatment and prevention of atherosclerosis and
coronary artery disease.
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Contrary to clinical experiments, as an anti-inflammatory
cytokine, IL-35 expression in mouse atherosclerotic plaques was
significantly increased (Wang et al., 2014). A small number of
other studies, however, have reported increased IL-35 expression
in atherosclerotic plaques and serum in ApoE mice fed with a
high-fat diet, as well as in the plasma of patients with coronary
artery disease (Gorzelak-Pabiś et al., 2017; Li et al., 2018). Using a
mouse model of atherosclerosis, administration of recombinant
mouse IL-35 significantly decreased plaque area in the aortic
root, and Treg immune responses were also found to be
enhanced (Tao et al., 2016). In a recent study, Shi et al.
reported that knockout of IL-12p35 subunit, which can cancel
the biological effects of IL-12 and IL-35, significantly aggravated
Th1/Th2 and Th17/Treg imbalance and increased
atherosclerotic plaque areas in ApoE mice, given that mouse
IL-35 reverses Th35/Treg imbalance and up-regulates
atherosclerosis development, whereas there were no effects on
Th1/Th2 imbalance (Huang et al., 2019). In a recently published
study, two subunits of IL-35 found in the left anterior descending
branch following its ligation induced myocardial infarction in
the heart tissues in mice. In addition, exogenous IL-35 treatment
can significantly reduce infarct area of the left ventricle and
reduce the incidence of left ventricular rupture; the mechanisms
underlying this phenomenon may be related to the inhibitory
role of IL-35 in the apoptosis of myocardial macrophages, thus
increasing the differentiation of M2 macrophages and
augmenting the expression of collagen (Jia et al., 2019). In rat
models of coronary artery disease, IL-35 treatment significantly
promotes early drug-eluting stent endothelialization; its
mechanism may be related to the regulation of the activation
of M2 macrophages (Liu et al., 2019). These studies have
demonstrated that IL-35 regulates the differentiation of various
immune cells involved in the progression of atherosclerotic
heart disease.

Interleukin-12 Family Members and
Hypertension
Hypertension is a complex group of clinical syndromes.
Although the specific mechanisms remain unclear, it has been
demonstrated that a variety of pathological factors are involved
in the process of hypertension, among which immune responses
and inflammation are most closely related to hypertension
(Kirabo et al., 2014; Pober, 2014; Guzik and Touyz, 2017).

So far, little research has been conducted on IL-12 family
members and hypertension. Data from clinical experiments
reported that plasma IL-12 levels are significantly increased in
hypertensive patients, and are positively correlated with both
systolic blood pressure (SBP) and diastolic blood pressure (DBP)
(Ye et al., 2019). IL-12 polymorphism is closely related to the
incidence of hypertension-induced complications: hypertension
patients who carry the IL12B 1159 A/A genotype exhibit a lower
risk of incidence of stroke, while IL12B A/A carriers have an
elevated risk of stroke (Timasheva et al., 2008).

In an animal study, angiotensin II (Ang II) infusion
significantly increased aortic IL-12p35 expression and
macrophages were the primary source (Ye et al., 2019). In an
Frontiers in Pharmacology | www.frontiersin.org 4140
Ang II-induced mouse hypertension model, IL-12p35 knockout
promoted M1 macrophage differentiation and elevated blood
pressure, while IL-12 treatment unexpectedly lowered blood
pressure (Ye et al., 2019). Another study reported that
knockdown of IL-12p35 did not affect Ang II-induced
hypertension (Li et al., 2012). One possible reason for this is
that the IL-12p35 knockout mice in that study were treated for
only a week, which is too short a period for blood pressure to
change. Little research has been conducted regarding IL-23, IL-
27, and IL-35 in relation to hypertension. One group reported
that in deoxycorticosterone acetate and Ang II-treated mice,
deficiency of IL-17 could decrease IL-23 expression and
accelerate kidney injury (Krebs et al., 2014), and another study
found that treatment with recombinant mouse IL-35 had no
effects on blood pressure in Ang II-treated mice (Ye et al., 2019).
Interleukin-12 Family Members and Aortic
Aneurysms and Aortic Dissection
Aortic aneurysms and aortic dissection are both degenerative
lesions of the aorta and share the same pathological mechanisms,
such as the excessive loss of aortic extracellular matrix mediated
by multiple pathological factors, especially local aortic
inflammation (Mallat et al., 2016; Rabkin, 2017; Raffort et al.,
2017; Sherifova and Holzapfel, 2019).

There have been few studies regarding IL-12 family members,
aortic aneurysms, and aortic dissection. Davis et al. reported that
IL-12 levels in aortic tissue and serum were not significantly
different in patients with abdominal aortic aneurysms compared
to those in patients without abdominal aortic aneurysms (Davis
et al., 2001). In aortic dissection patients, decreased plasma IL-35
concentrations were observed compared to non-aortic dissection
patients (Ye et al., 2018a). In addition, no studies have been
conducted on IL-12 family members and aortic aneurysms and
aortic dissection.

Only one recent animal study reported that deletion of IL-27R
reduced the formation of abdominal aortic aneurysm in ApoE
deficiency mice, the mechanisms may be associated with a
blunted accumulation of myeloid cells in the aorta (Peshkova
et al., 2019).
Interleukin-12 Family Members and
Cardiac Fibrosis
Cardiac fibrosis is a common feature of many heart diseases and
is closely related to deterioration in cardiac function. The essence
of cardiac fibrosis is that pathological factors activate cardiac
fibroblasts, leading to abnormal deposition and increased
numbers of cardiac collagen fibers (Moore-Morris et al., 2015;
Gorabi et al., 2019).

All studies on IL-12 family members and cardiac fibrosis have
been focused on animal studies and no related clinical studies
have been reported. In an earlier report, the authors reported that
infusion with Ang II increases cardiac IL-12 expression derived
from cardiac macrophages; detection of IL-12 promotes the
activation of CD4+ T lymphocytes and increases differentiation
of M2 macrophages, thereby up-regulating the activation of the
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transforming growth factor-b1 (TGF-b1) signaling pathway, which
then aggravates cardiac fibrosis (Li et al., 2012). Inmousemodels of
myocardial infarction, deletion of IL-23 significantly reduces the
expressionofmultiplefibrosismarkers, includinga-smoothmuscle
actin (a-SMA), collagen I, and collagen III (Savvatis et al., 2014).
Unexpectedly, Yan et al. also reported that IL-23 deficiency
amplifies the inflammatory response and promotes the release of
various inflammatory factors, especially IL-17, which further
promotes the infiltration and deposition of gdT cells in the left
ventricle, promotes the apoptosis of cardiomyocytes, and
aggravates cardiac fibrosis in a murine myocardial infarction
model (Yan et al., 2012). In addition, IL-12p35 knockout
increased the levels of cardiac mitochondrial reactive oxygen
species (ROS) and calcium ion overload, which further
aggravated mitochondrial dysfunction and energy failure,
increased myocardial cell apoptosis, worsened cardiac
dysfunction, and increased cardiac fibrosis in 25-month-old aging
mice (Ye et al., 2020). However, how the cytokines IL-12 and IL-35
mediate these biological effects is currently unknown. Furthermore,
no studies concerning IL-27 and IL-35 related to cardiac fibrosis
have been reported.

Interleukin-12 Family Members and
Cardiac Ischemia Reperfusion Injury
Ischemia reperfusion injury of the heart is an important issue
that cannot be ignored in heart transplantation. A large number
of studies have confirmed that myocardial apoptosis mediated by
inflammatory responses after cardiac reperfusion is one of the
most important mechanisms of ischemia reperfusion injury of
the heart (Shin et al., 2017; Schanze et al., 2019).

Numerous animal studies have reported that members of the
IL-12 family are involved in cardiac ischemia-reperfusion injury.
In a recent study, Yan found that dectin-2 deficiency could
protect against cardiac ischemia-reperfusion injury via
alleviating Th1 immune responses and further decreasing IL-
12 expression (Yan et al., 2017). An earlier study reported that
high-mobility group box 1 (Hmgb-1) promoted ischemia-
reperfusion injury in a mouse cardiac transplantation model
(Zhu et al., 2013). In subsequent studies, pentraxin-3 and
necrostatin-1 were also found to attenuate ischemic
reperfusion injury by decreasing the expression of IL-23
(Zhang et al., 2014b; Zhu et al., 2014). Hu et al. reported that
administration of mouse anti-IL-23 neutralizing antibody
significantly reduced the expression of inflammatory markers
such as IL-6, tumor necrosis factor a (TNF-a), and pro-oxidant
markers such as malondialdehyde (MDA), and decreased the
levels of superoxide dismutase (SOD), thereby relieving cardiac
ischemia reperfusion injury (Hu et al., 2016). Up-regulation of
cardiac IL-23 expression by adenovirus significantly increased
the expression of serum lactate dehydrogenase (LDH) and
creatine kinase myocardial band (CK-MB), elevated the
expression of apoptosis-related proteins and infarcted areas,
and these effects could be reversed by AG490, an inhibitor of
the JAK2-STAT pathway (Liao et al., 2017). However, the roles of
both IL-27 and IL-35 in cardiac ischemia and reperfusion injury
have not been studied to date.
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Interleukin-12 Family Members and Atrial
Fibrillation
Atrial fibrillation is one of the most common arrhythmias and
can lead to vascular embolizations, the most serious of which is
cerebral artery embolization. Literature reports confirm that the
mechanism of atrial fibrillation may be closely related to the
occurrence of atrial fibrosis (Jalife and Kaur, 2015; Nattel, 2017).

Previous clinical studies have reported that elevated IL-12
expression is observed in left atrial tissues of atrial fibrillation
patients (Stein et al., 2008; Lappegård et al., 2013). Chen et al.
found that IL-27 genetic variants, including the rs153109 G allele
and GG genotype, increased the occurrence of atrial fibrillation
in the Chinese Han population (Chen et al., 2017a).

Recent animal studies have reported that inhibition of Ang II-
induced M1 macrophage differentiation and reduction of IL-12
release can reduce the occurrence of atrial fibrosis and atrial
fibrillation (Sun et al., 2019b). No studies on the expression and
mechanisms of the involvement of IL-23 and IL-35 in atrial
fibrillation have been reported.

Interleukin-12 Family Members and Viral
Myocarditis
Viral myocarditis is an uncommon heart disease. The death rate
involving severe myocarditis exceeds that of AMI. Immune
responses induced by viral infection are an important cause of
myocardial injury in viral myocarditis (Chen et al., 2013; Pollack
et al., 2015).

So far, although no clinical experiments have been reported
on IL-12 family members and viral myocarditis, a large number
of animal experiments have confirmed that all IL-12 family
members are associated with viral myocarditis. Substantial
evidence indicates that IL-12 expression is increased in both
plasma and heart tissue of coxsackievirus B3-induced viral
myocarditis in mice. In addition, elevated IL-12R levels were
also found in heart tissue of mice with viral myocarditis
(Fairweather et al., 2003; Nyland et al., 2012; Jenke et al., 2014;
Zha et al., 2015; Miteva et al., 2017; Zhang et al., 2017). In an
earlier study, the authors found that treatment with
coxsackievirus B3 significantly increased both cardiac IL-12p35
and IL-12p40 expression, and treatment with recombinant
mouse IL-12 and anti-IL-12 neutralizing antibodies reduced
and increased mortality, respectively, in mice with viral
myocarditis (Shioi et al., 1997). In a subsequent study, Nishio
et al. reported that carvedilol treatment increases both IL-12 and
interferon-g (IFN-g) expression, thereby reducing virus
replication and thus improving survival rates in viral
myocarditis mice (Nishio et al., 2003). In another study,
Fairweather et al. demonstrated that the protective effect of IL-
12 in viral myocarditis is mediated by activation of the STAT4
pathway and promotion of IFN-g release. Knockout of the
STAT4 pathway and IFN-g can significantly reverse the
protective effects of IL-12 and aggravate myocardial cell injury
and mortality (Fairweather et al., 2005). Similarly, circulating IL-
23 levels were also observed to be increased in coxsackievirus B3-
induced mouse viral myocarditis (Yang et al., 2011; Sesti-Costa
et al., 2017). Although there are no direct reports concerning the
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effects of IL-23 on viral myocarditis, emodin can reduce
myocardial injury and mortality mediated by viral myocarditis
by reducing the expression of IL-23, indicating that IL-23 can
aggravate myocardial injury in viral myocarditis (Jiang et al.,
2014). In an initial study, Kong et al. found that IL-27 levels were
elevated in mice with viral myocarditis, and regulated IL-17
expression, suggesting that IL-27 may be involved in the
development of viral myocarditis (Kong et al., 2014). In a
follow-up study, Zhu et al. found that IL-27 inhibited immune
responses to Th17 and reduced the expression of IL-17, thereby
protecting against coxsackievirus B3-induced viral myocarditis
(Zhu et al., 2015). Unlike other members of the IL-12 family, IL-
35 levels were found to be reduced in a mouse model of viral
myocarditis, and were negatively correlated with the severity of
viral myocarditis, as was the frequency of Tregs (Hu et al., 2014;
Ouyang et al., 2017; Xu et al., 2018). In addition, up-regulation of
IL-35 expression can significantly reduce Th17-mediated
immune responses, and decrease IL-17 expression, thereby
alleviating cardiac injury caused by viral myocarditis (Hu et al.,
2014). These studies have confirmed that all IL-12 family
members are involved in the course of viral myocarditis, and
the mechanisms involved in their action are related to the
regulation of Th1 and Th17 immune responses. Whether other
immune cells are involved needs further confirmation.

Interleukin-12 Family Members and
Cardiomyopathy
Cardiomyopathy is a rare heart disease characterized by enlarged
ventricular spaces with unknown etiology. Its pathological
mechanisms are very complex, and many factors, including
genetic variation, can induce its occurrence (Heinig et al., 2017).

Data from previous clinical experiment reported that IL-12
expression was found to be unchanged in patients with idiopathic
dilated cardiomyopathy and their relatives (Marriott et al., 1996),
whereas IL-12 expression was found to be elevated in patients with
autoimmune cardiomyopathy or alcoholic cardiomyopathy (Izumi
et al., 2000; Jenke et al., 2013; Panchenko et al., 2015). IL-12R gene
polymorphisms, including IL-12B3'UTRCand IL-12B 3'UTRCC,
result in significantly higher gene expression, and may increase the
incidence of Chagas cardiomyopathy (Zafra et al., 2007). Similar to
the IL-12 expression trends, circulating or cardiac IL-23 levels were
found to be increased in patients with dilated cardiomyopathy, and
with idiopathic dilated cardiomyopathy (Yi et al., 2009; Li et al.,
2010; Myers et al., 2016). Individuals with IL-12, IL-23R
polymorphisms, such as SNP rs10889677, are more susceptible to
dilated cardiomyopathy among theChineseHanpopulation, rather
than those with rs1884444 and rs11465817 (Chen et al., 2009).
Elevated IL-27 mRNA levels were observed in the heart tissue of
human dilated cardiomyopathy patients, and an IL-27 gene
polymorphism involving SNP rs153109, rather than SNP
rs17855750, predisposes to dilated cardiomyopathy in the
Chinese Han population (Noutsias et al., 2011; Chen et al.,
2017b). The expression of IL-35 in human cardiomyopathy has
not been reported.

In a mouse model of cardiac myosin immunized-mice, the
absence of IL-12R significantly reduced cardiac immune responses
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and delayed the progression of autoimmune cardiomyopathy,
whereas knockout of the STAT4 pathway and IFN-g
significantly reversed the protective effect of IL-12 in
autoimmune cardiomyopathy (Afanasyeva et al., 2001). In
another study, Fairweather et al. found that knockout of IL-12R
significantly slowed the progression of dilated cardiomyopathy in
murine chronic viral myocarditis (Fairweather et al., 2004). Using
IL-12p35 and IL-12p40 knockout mice and anti-IL-23 neutralizing
antibodies, other researchers found that IL-23, rather than IL-12,
exacerbated the progression of a localized underwear purchase
response in the heart and autoimmune myocarditis, which could
be blocked by anti-IL-17 neutralizing antibodies (Sonderegger
et al., 2006). In a recent study, Wu et al. demonstrated that IL-
23 is necessary to initiate cardiac autoimmunity by stimulating the
activation and differentiation of CD4+ T lymphocytes (Wu et al.,
2016). In contrast there have been no studies regarding
cardiomyopathy and involvement of IL-27 and IL-35.

Interleukin-12 Family Members and Other
Cardiovascular Diseases
IL-12 family members are also implicated in other cardiovascular
diseases that are less common, such as congenital heart disease,
ventricular fibrillation, and rejection after cardiac transplantation.

In earlier studies, it was reported that in young children
with congenital heart disease, circulating IL-12 levels did not
exhibit significant change after surgery (Madhok et al., 2006).
Furthermore, the IL-27 gene polymorphism, SNP rs153109,
rather than rs17855750, is associated with congenital atrial
septal defects and congenital ventricular septal defects (Zhang
et al., 2016). In addition, IL-12 levels in plasma and brain
tissue are significantly increased in an animal model of cardiac
arrest after ventricular fibrillation. (Janata et al., 2014; Heo
et al., 2017). In a mouse model of heart transplantation,
administration of an anti-IL-12p40 antibody significantly
reduced invasion by gdT cells, reduced the expression of
various inflammatory factors, and greatly improved the
survival of mice (Wang et al., 2012). In an animal model of
acute myocardial injury induced by the chemotherapeutic
drug doxorubicin, deletion of IL-12p35 significantly
increased cardiac injury, which was associated with
increased inflammatory responses, oxidative stress, apoptosis,
and autophagy. Treatment with recombinant mouse IL-12
significantly reversed these effects, suggesting that both IL-
12 and IL-35 may play protective roles in cardiac injury
induced by doxorubicin (Jia, 2018; Ye et al., 2018b;
Ye et al., 2018c).
CONCLUSIONS

The current review sought to describe the composition, structure,
molecular receptors, signaling pathways, and regulatory roles of
each IL-12 family member. The expression of IL-12 family
members in different cardiovascular diseases in humans and
animals, and the regulatory effect of IL-12 family members on
inflammatory response in different cardiovascular models are also
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summarized in this paper in Tables 2 and 3. In addition, we also
described the roles and possible mechanisms of involvement of IL-
12 members in different cardiovascular diseases. Among these IL-
12 familymembers, IL-12 can aggravate a variety of cardiovascular
diseases, in addition to acute cardiac injury induced by
Frontiers in Pharmacology | www.frontiersin.org 7143
doxorubicin, and hypertension prompted by Ang II. IL-23
mostly plays a role in injury. IL-27 has a two-sided regulatory
effect in cardiovascular disease, with both protective and damaging
effects; while IL-35 has been found to play a protective role in all
cardiovascular diseases. Just as Table 4. Although IL-12 family
TABLE 2 | Expression of IL-12 family members in cardiovascular diseases.

Diseases IL-12 IL-23 IL-27 IL-35 References

Mouse AS Increase Increase – Contro Jääskeläinen et al., 2013; Wang et al., 2014;
Subramanian et al., 2015

IR Increase Increase – – Zhu et al., 2013; Zhang et al., 2014b; Zhu et al.,
2014; Yan et al., 2017

CAD Increase – – Decrease Wang et al., 2014; Kan et al., 2016
Hypertension Increase Increase – – Li et al., 2012; Krebs et al., 2014; Ye et al., 2019
Viral myocarditis Increase Increase Increase Decrease Fairweather et al., 2003; Yang et al., 2011; Nyland

et al., 2012; Jenke et al., 2014; Kong et al., 2014;
Hu et al., 2014; Zha et al., 2015; Zhang et al., 2017;
Miteva et al., 2017; Sesti-Costa et al., 2017; Ouyang
et al., 2017; Xu et al., 2018

CM – – – – –

AA, AD – – – – –

AF – – – – –

Human AS – – Increase – Gregersen et al., 2017
IR – – – – –

CAD Increase Increase Increase Contro Zhou et al., 2001; Kempe et al., 2009; Correia et al.,
2010; Lin et al., 2012; Khojasteh-Fard et al., 2012;
Jin et al., 2012; Yong et al., 2013; Chistiakov et al.,
2015; Abbas et al., 2015; A Shahi et al., 2015; Zykov
et al., 2016; Opstad et al., 2016; Zhu et al., 2018;
Rasa et al., 2018; Sun et al., 2019a

Hypertension Increase – – – Ye et al., 2019
Viral myocarditis – – – – –

CM Increase Increase Increase – Marriott et al., 1996; Izumi et al., 2000; Yi et al.,
2009; Li et al., 2010; Jenke et al., 2013; Panchenko
et al., 2015; Myers et al., 2016; Wu et al., 2016

AA, AD Unchanged – – Decrease Davis et al., 2001; Ye et al., 2018a
AF Increase – – – Stein et al., 2008; Lappegård et al., 2013
AS, atherosclerosis; IR, ischemia-reperfusion; CAD, coronary artery diseases; CM, cardiomyopathy; AA, arterial aneurysm; AD, aortic dissection; AF, atrial fibrillation; Contro, controversial.
TABLE 3 | Regulation of different inflammatory environments by members of the interleukin-12 family.

Organ Mouse Model IL-12 IL-23 IL-27 IL-35 References

Heart Wild type Ang II Down – – – Li et al., 2012
Wild type CVB3 Both Up Down – Shioi et al., 1997; Nishio et al., 2003; Fairweather

et al., 2005; Jiang et al., 2014; Zhu et al., 2015
Wild type LLDB Up – Down Kan et al., 2016; Jia et al., 2019; Liu et al., 2019
Wild type IR Up Up – – Zhu et al., 2013; Zhang et al., 2014b; Zhu et al.,

2014; Hu et al., 2016; Yan et al., 2017; Liao et al.,
2017

Wild type DOX Down – – Down Jia, 2018; Ye et al., 2018b; Ye et al., 2018c
Aorta Wild type Ang II Down – – – Ye et al., 2019

ApoE-/-, LDLR-/- HFD Up Both Both Down Lee et al., 1999; Davenport and Tipping, 2003;
Hauer et al., 2005; Koltsova et al., 2012; Hirase
et al., 2013; Subramanian et al., 2015; Kan et al.,
2016; Tao et al., 2016; Engelbertsen et al., 2018;
Fatkhullina et al., 2018; Ryu et al., 2018; Huang
et al., 2019; Huang et al., 2019; Wang et al., 2019;
Jia et al., 2019; Liu et al., 2019
Ang II, angiotensin II; CVB3, Coxsackievirus B3; LLDB, ligation of left anterior descending branch; IR, ischemia-reperfusion; DOX, doxorubicin; HFD, high-fat diet.
Up: magnify inflammatory response.
Down: alleviate inflammatory response.
Both: both the magnification and reduction of inflammatory response were reported.
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members are involved in various biological effects such as
inflammatory responses, oxidative stress, and apoptosis, the
regulation of immune cell differentiation and inflammation is
still the most important mechanism for the involvement of IL-12
in the development of cardiovascular diseases. In view of this, IL-
12 family members may be potential targets for clinical
prevention, intervention, and treatment of cardiovascular
diseases. Hence, when considering IL-12 family members as
potential targets for cardiovascular disease therapy, the influence
of other cytokines and interactions involving interleukin family
members should be considered.
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Jishou Zhang1,2,3†, Menglong Wang1,2,3†, Jing Ye1,2,3†, Jianfang Liu1,2,3, Yao Xu1,2,3,
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Background: Sepsis-induced cardiomyopathy (SIC) is a common severe complication
of sepsis that contributes to mortality. SIC is closely associated with excessive
inflammatory responses, failed inflammation resolution, and apoptotic damage. Resolvin
E1 (RvE1), an omega-3 polyunsaturated fatty acid (PUFA)-derived metabolite, has been
reported to exert anti-inflammatory or proresolving activity in multiple animal models
of inflammatory disease. However, the therapeutic potential of RvE1 in SIC remains
undetermined, which was, therefore, the aim of the present study.

Methods: C57BL/6J mice were randomly divided into three groups: control,
lipopolysaccharide (LPS), and LPS + RvE1. Echocardiography, Western blotting (WB),
quantitative real-time (QRT)-PCR, histological analyses, and flow cytometry were used
to evaluate cardiac function, myocardial inflammation, and the underlying mechanisms.

Results: The RvE1-injected group showed improved left ventricular (LV) function and
reduced serum lactate dehydrogenase (LDH) and creatine kinase myocardial bound
(CK-MB) levels. Compared to LPS treatment alone, RvE1 treatment inhibited the
infiltration of neutrophils and macrophages into the heart and spleen and suppressed
the secretion of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and
monocyte chemoattractant protein (MCP)-1, in the heart. We also observed that the
activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB
signaling pathways was blocked by RvE1 treatment, and this inhibition contributed to
the improvement in the inflammatory response induced by LPS. RvE1 inhibited LPS-
induced M1 macrophage polarization and promoted macrophage polarization toward
the M2-like phenotype in both the heart and spleen. In addition, LPS administration
dysregulated cyclooxygenase (COX) and lipoxygenase (LOX) in the heart, which were
rectified by RvE1 treatment. RvE1 also reduced myocardial apoptosis rate in response
to LPS-induced heart injury.
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Conclusion: RvE1 protects the heart against SIC possibly through the inhibition of
the MAPK and NF-κB inflammatory signaling pathways, modulation of macrophage
polarization, and reduction in myocardial apoptosis. RvE1 may be a novel lipid mediator
for the treatment of SIC.

Keywords: sepsis-induced cardiomyopathy, resolvin E1, inflammation, mitogen-activated protein kinase,
macrophage polarization, apoptosis

INTRODUCTION

Sepsis is defined as life-threatening organ dysfunction and is
caused by a dysregulated host response to infection. LPS from
the bacterial cell wall is frequently used for the induction of
sepsis (Xianchu et al., 2018). Sepsis-induced cardiomyopathy
is a common complication of severe sepsis and is closely
associated with the prognosis of patients. Evidence has suggested
that myocardial injury caused by sepsis has characteristics
of an excessive inflammatory response, failed resolution of
inflammation, and apoptotic damage, which may ultimately
bring about qualitative and quantitative myocardial alterations
(Sharma, 2007; Deutschman and Tracey, 2014; Kong et al.,
2017). Therefore, it is imperative that a novel strategy to
protect patients against sepsis-induced myocardial injury via
the inhibition of inflammation, promotion of inflammation
resolution, or inhibition of cardiac myocyte apoptosis is found.
In fact, promoting the switch from the inflammation phase to the
resolution phase is a significant method to prevent heart injury
(Cheng et al., 2017) and has become a hotpot about popular
approach for regulating inflammation.

Anti-inflammatory lipid chemokines, including lipoxins,
resolvins, protectins, and maresins, have shown remarkable
beneficial effects in several animal models of disease, including
atherosclerosis, diabetes, and obesity (Serhan, 2017). Resolvin
E1 (RvE1) is one such chemokine. RvE1 is biosynthesized
from EPA, which is metabolized to produce 18R-hydroxy-
5Z,8Z,11Z,14Z,16E-EPA (18R-HEPE) via aspirin-acetylated
COX-2 in endothelial cells or via a COX-independent pathway
involving cytochrome P450 and is subsequently transformed
by 5-LOX in neutrophils (Arita et al., 2005). The proresolving
activity of RvE1 is mediated by the receptor ERV1/ChemR23,
which is a G-protein-coupled receptor (Arita et al., 2005;
Pirault and Back, 2018). The overexpression of ERV1/ChemR23
enhances the protective impact of RvE1 in several animal models
of inflammation (Gao et al., 2013; Herrera et al., 2015; Sima et al.,
2017). In addition, RvE1, showing as an antagonist, interacts with
the BLT1 and ultimately attenuates LB4-dependent inflammation
(Arita et al., 2007).

Previous studies indicated that RvE1 has remarkable anti-
inflammatory and proresolution effects in many diseases, such
as keratitis, periodontitis, allergic asthma, bacterial pneumonia,

Abbreviations: BLT1, leukotriene B4 (LB4) receptor 1; CAD, cardiovascular
disease; COX, cyclooxygenase; EPA, eicosapentaenoic acid; HEPE, hydroxy-
5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid; HETE, hydroxy-eicosatetraenoic
acid; LOX, lipoxygenase; LPS, lipopolysaccharide; MI, myocardial infarction;
PG, prostaglandin; PUFA, polyunsaturated fatty acid; SIC, sepsis-induced
cardiomyopathy.

and acute lung injury (Seki et al., 2010; Flesher et al., 2014;
Lee et al., 2015, 2016). Recent trials have shown that in the
cardiovascular system, RvE1 prevents vascular inflammation,
attenuates atherogenesis (Hasturk et al., 2015; Salic et al.,
2016), and facilitates myocardial recovery from ischemia in the
early stage by suppressing the infiltration of dominant Ly6Chi

monocytes/macrophages and the secretion of pro-inflammatory
cytokines (Liu et al., 2018b).

Based on these effects of RvE1, in this study, we examined
whether RvE1 protects against LPS-induced acute heart injury
and further investigated its underlying mechanism.

MATERIALS AND METHODS

Reagents
RvE1 (5S, 12R, 18R-trihydroxy-6Z, 8E, 10E, 14Z, 16E-EPA,
purity ≥ 95%, λmax, 272 nm) was purchased from Cayman
Chemical (Ann Arbor, MI, United States). LPS was obtained from
Sigma-Aldrich (St. Louis, MO, United States).

Animals
All experimental procedures complied with the National
Institutes of Health (NIH) Guide for the Care and Use
of Laboratory Animals and were approved by the Animal
Care and Use Committee of Renmin Hospital of Wuhan
University (Wuhan, China).

Adult male C57BL/6 mice (aged 6–8 weeks) were
purchased from Vital River Laboratory Animal Technology
Co. Ltd. (Beijing, China). Mice were maintained in a
humidity/temperature-controlled environment (70% relative
humidity, 22◦C) in a standard laboratory of the Cardiovascular
Research Institute of Wuhan University with a 12:12-h light–
dark cycle and were supplied with rodent food and water. These
animals were acclimatized to the environment for 2 weeks and
then randomly assigned into three groups: the control group,
LPS exposure group, and LPS + RvE1 group. Mice were treated
with LPS (10 mg/kg) via once intraperitoneal (i.p.) injection
and pretreated i.p. with RvE1 (25 µg/kg) or vehicle (0.9%
endotoxin-free saline) 30 min prior to LPS administration. Mice
were sacrificed after 6 h of LPS treatment.

Echocardiography
After 6 h of LPS treatment, mice anesthetized with 1.5–2%
isoflurane, were subjected to echocardiographic analysis using
a Mylab 30CV ultrasound (Esaote S.P.A., Genoa, Italy) with
a 10-MHz linear array ultrasound transducer. The heart rate
(HR) and the left ventricular (LV) function, which included
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the LV ejection fraction (LVEF), fractional shortening (FS), LV
end-systolic diameter (LVESD), and LV end-diastolic diameter
(LVEDD), were assessed.

Biochemical Determination
After the echocardiography analysis, animals were maintained
under anesthesia, blood samples were taken from each mouse and
centrifuged for 15 min at 3,000× g. Then, the serum was used to
detect lactate dehydrogenase (LDH) activity and creatine kinase
myocardial bound (CK-MB) levels following the manufacturer’s
protocols (all from Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

Histological Analysis
Hearts were isolated and arrested in 10% KCl solution, and
spleens were subsequently isolated. Then, after fixation with
4% paraformaldehyde for 5 days, the hearts and spleens
were embedded in paraffin and sliced into approximately
5 µm sections. Subsequently, the sections were stained with
hematoxylin and eosin (H&E) for histological analysis.

Immunofluorescence
For immunofluorescence, each heart or spleen section was
deparaffinized and blocked with 10% bovine serum albumin.
Subsequently, the heart or spleen sections were incubated
overnight at 4◦C with one of the following primary antibodies:
(a) anti-Ly6G antibody, (b) anti-CD68 antibody (R&D Systems),
(c) anti-CD206 antibody (R&D Systems), and (d) anti-CD80
antibody (R&D Systems). Then, the sections were washed
in phosphate-buffered saline (PBS) and incubated for 1 h
at 37◦C with secondary antibodies [horseradish peroxidase
(HRP) goat anti-rabbit immunoglobulin G (IgG)]. Nuclei were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI).

TdT-Mediated dUTP Nick-End Labeling
Assay
TdT-mediated dUTP nick-end labeling (TUNEL) staining was
performed as previously described (Ye et al., 2018). Briefly,
apoptosis of the left ventricle was assessed with a TUNEL
kit (Millipore, United States) following the manufacturer’s
instructions. Light microscopy was used to evaluate apoptosis.

Quantitative Real-Time PCR
Total heart or splenic RNA was extracted with TRIzol reagent
(Invitrogen Life Technologies, United States). Oligo(dT) primers
and a Transcriptor First Strand cDNA Synthesis kit (Roche,
Germany) were used to synthesize cDNA. For the PCR
amplification, LightCycler 480 SYBR Green Master Mix (Roche,
Germany) was used. The mRNA expression levels of the target
genes were normalized to those of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). The quantitative real-time (QRT)-
PCR primers are shown in Table 1.

Western Blotting
The cardiac tissue protein was extracted, and the protein
concentration was assessed, as previously described (Ye et al.,

2018). Protein was separated by electrophoresis using Laemmli
sodium dodecyl sulfate (SDS)-polyacrylamide gels and then
transferred to Immobilon-FL polyvinylidene fluoride (PVDF)
membranes (Millipore, United States). Subsequently, after
being blocked with 5% non-fat milk for 1 h, the membranes
were incubated at 4◦C overnight with the following primary
antibodies: ChemR23 (Santa Cruz Biotechnology, United States),
Bax [Cell Signaling Technology (CST), United States], Bcl-2
(Abcam, United States), c-caspase 3 (CST, United States),
phosphorylated/total-p65 (p/T-P65; CST, United States),
phosphorylated/total-extracellular signal-regulated kinase
(p/T-ERK; CST, United States), phosphorylated/total-c-
Jun N-terminal kinase (p/T-JNK; CST, United States),
phosphorylated/total-p38 mitogen-activated protein kinase
(p/T-P38 MAPK; CST, United States), and GAPDH (CST,
United States). Then, the membranes were treated with a second
antibody at room temperature for 1 h. Finally, antibody binding
was detected with a two-color infrared imaging system (Odyssey,
LI-COR Biosciences, Lincoln, United Kingdom). The protein
expression intensity was normalized to that of GAPDH.

Flow Cytometry
Flow cytometry of mice heart tissue was performed as previously
described in our study (Wang et al., 2018). Briefly, isolated cell
suspensions from hearts were filtered, centrifuged, resuspended,
and blocked with a CD16/32 antibody. Samples were then
incubated with primary antibodies for 1 h at 4◦C in dark. The
antibodies include anti-CD45, PE (BD Bioscience), and anti-
CD11b+, FITC (BD Bioscience).

Statistical Analysis
All results are presented as the mean ± standard error of the
mean (SEM). Differences between groups were determined by
Student’s t-test (two groups) or one-way analysis of variance
(ANOVA) followed by Dunnett’s test or Tukey’s test (three
groups). The significance criterion was set at a p-value < 0.05.

RESULTS

Lipopolysaccharide Upregulates the
Expression of ChemR23 and BLT1 in the
Heart
We first examined the expression of ChemR23 and BLT1
in the heart after LPS treatment. According to the QRT-
PCR results, LPS treatment significantly increased the cardiac
expression of BLT1 (Figure 1A) and ChemR23 (Figure 1B).
In addition, Western blotting (WB) results showed that the
expression of ChemR23 was increased by the administration of
LPS (Figure 1C).

Resolvin E1 Attenuates
Lipopolysaccharide-Induced Myocardial
Dysfunction
Compared to that in the control group, LVEF (Figure 2C)
and FS (Figure 2D) in the LPS group were markedly reduced,
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TABLE 1 | Primers for quantitative real-time PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

IL-1β GGGCCTCAAAGGAAAGAATC TACCAGTTGGGGAACTCTGC

IL-6 AGTTGCCTTCTTGGGACTGA TCCACGATTTCCCAGAGAAC

MCP-1 ACTGAAGCCAGCTCTCTCTTCCTC TTCCTTCTTGGGGTCAGCACAGAC

BLT1 GGCTGCAAACACTACATCTCC TCAGGATGCTCCACACTACAA

ChemR23 ATGGAGTACGACGCTTACAACG GGTGGCGATGACAATCACCA

CD80 GGCCTGAAGAAGCATTAGCTG GAGGCTTCACCTAGAGAACCG

CD86 GCTTCAGTTACTGTGGCCCT TGTCAGCGTTACTATCCCGC

CD163 TCCACACGTCCAGAACAGTC CCTTGGAAACAGAGACAGGC

CD206 CAGGTGTGGGCTCAGGTAGT TGTGGTGAGCTGAAAGGTGA

CD38 TCTCTAGGAAAGCCCAGATCG GTCCACACCAGGAGTGAGC

CD36 ATGGGCTGTGATCGGAACTG TTTGCCACGTCATCTGGGTTT

i-NOS CGAAACGCTTCACTTCCAA TGAGCCTATATTGCTGTGGCT

Arg-1 AACACGGCAGTGGCTTTAACC GGTTTTCATGTGGCGCATTC

COX-1 GATTGTACTCGCACGGGCTAC GGATAAGGTTGGACCGCACT

COX-2 AACCGCATTGCCTCTGAAT CATGTTCCAGGAGGATGGAG

5-LOX TGTTCCCATTGCCATCCAG CACCTCAGACACCAGATGCG

ALOX-15 AAAGGCACTCTGTTTGAAGCG CACCAA GTGTCCCCTCAGAAG

Bax TGAGCGAGTGTCTCCGGCGAAT GCACTTTAGTGCACAGGGCCTTG

BCL-2 TGGTGGACAACATCGCCCTGTG GGTCGCATGCTGGGGCCATATA

ALOX-15, arachidonate 15-lipoxygenase; BLT1, leukotriene B4 (LB4) receptor 1; COX, cyclooxygenase; IL, interleukin; LOX, lipoxygenase; MCP, monocyte
chemoattractant protein.

FIGURE 1 | Lipopolysaccharide (LPS) increases the expression of leukotriene B4 (LB4) receptor 1 (BLT1) and ChemR23 in the heart. Relative mRNA levels of BLT1
(A) and ChemR23 (B) in the control and LPS group (n = 5). (C) Representative Western blotting bands and quantitative results of protein levels of ChemR23 in the
left ventricular (LV) tissue (n = 5) (the raw western blotting bands can be found in the Supplementary Data Sheet 1). Data are presented as the mean ± SEM.
*P < 0.05 compared with the control (CTRL) group.

whereas LVEDD (Figure 2A) and LVESD (Figure 2B) were
obviously increased, which suggest that LPS treatment reduces
LV function. In contrast, these changes were significantly

reversed by RvE1 (25 µg/kg) treatment (Figures 2A–D),
which indicates that RvE1 protects LV function in LPS-
induced heart injury.
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FIGURE 2 | Resolvin E1 ameliorates cardiac function in mice challenged with lipopolysaccharide (LPS). Left ventricular end-diastolic diameter (LVEDD) (A), LV
end-systolic diameter (LVESD) (B), LV ejection fraction (LVEF) (C), and LV fractional shortening (LVFS) (D) were evaluated by echocardiography in each group (n = 6).
Serum levels of lactate dehydrogenase (LDH) (E) and creatine kinase myocardial bound (CK-MB) (F) were measured in each group (n = 5). Data are presented as the
mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the LPS group.

Resolvin E1 Reduces the Serum Levels
of Creatine Kinase Myocardial Bound
and Lactate Dehydrogenase in a
Lipopolysaccharide-Induced Sepsis
Model
To test the effect of RvE1 on LPS-induced myocardial injury,
we examined the levels of marker enzymes of myocardial injury
in the serum. Compared to those in the control group, the
CK-MB and LDH levels in the LPS treatment group were
significantly increased (Figures 2E,F). However, pretreatment
with RvE1 notably mitigated these changes (Figures 2E,F),
which suggests that RvE1 pretreatment alleviates LPS-induced
myocardial injury in mice.

Resolvin E1 Reduces Inflammatory
Cytokine Production Induced by
Lipopolysaccharide in Cardiac Tissue
Left ventricular tissue from the three groups was further analyzed
for the expression of a panel of inflammatory cytokines, including
IL-1β, IL-6, and MCP-1. Compared to those in the control
group, the mRNA levels of these inflammatory cytokines were
markedly increased after 6 h of LPS exposure. However, the
increase in inflammatory cytokine levels was observably inhibited

by supplementation with RvE1 (Figure 3A). Similarly, compared
to the cecal ligation and puncture (CLP) group, the mRNA levels
of IL-1β and IL-6 were significantly reduced by treatment of RvE1
(Supplementary Figures 1A,B).

Resolvin E1 Reduces the Infiltration of
Inflammatory Cells in the Heart
We also evaluated the infiltration of inflammatory cells in the
heart by immunofluorescence. Compared to that in the control
group, the infiltration of CD68+ macrophages and Ly6G+
neutrophils in the heart in the LPS group were significantly
increased (Figures 3B,C). Interestingly, these changes were
obviously mitigated by RvE1 treatment (Figures 3B,C). Similarly,
these trends were also observed in CLP mouse models
(Supplementary Figures 1E,F). Flow cytometry results also
showed that LPS increased the infiltration of CD45+ cells and
CD45+ CD11b+ cells in the heart, which was reversed by
pretreatment of RvE1 (Figures 3D,E). These results indicate that
RvE1 reduces the infiltration of inflammatory cells in the heart.

Resolvin E1 Mediates Macrophage
Polarization in the Heart
To analyze the effect of RvE1 on macrophage differentiation in
LPS-induced myocardial injury, we first detected the expression
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FIGURE 3 | Resolvin E1 inhibits the inflammation response in the heart. (A) mRNA levels of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and monocyte
chemoattractant protein (MCP)-1] were assessed in cardiac tissue (n = 5). Infiltration of neutrophils (B) and macrophages (C) in the heart in different groups (n = 4)
(scale bar, 50 µm). (D) Flow cytometry analysis of CD45+ cells (n = 3). (E) Flow cytometry analysis of CD45 + CD11b + cells (n = 3). Data are presented as the
mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the lipopolysaccharide (LPS) group.

of surface markers or soluble regulators of macrophages in
the heart using QRT-PCR. The mRNA levels of M1 markers,
including CD80, CD86, CD38, and i-NOS, were observably
increased in the LPS group, but pretreatment with RvE1
significantly inhibited this increase (Figure 4A). Conversely,
treatment with LPS reduced the expression of M2 markers
(CD163, CD206, and CD36), and RvE1 treatment significantly
reversed this trend (Figure 4B). In addition, compared to the
CLP group, RvE1 also reduced the mRNA level of CD38 and
increased the level of Arg-1 (Supplementary Figures 1C,D).
Then, we also evaluated the expression levels of i-NOS by
WB; the results revealed that the levels of i-NOS were lower
in the LPS + RvE1 group than those in the LPS group
(Figure 4C). In addition, immunofluorescence staining showed
similar results: lower CD80 expression (Figure 4D) and higher
CD206 expression (Figure 4E) were observed in the LPS+ RvE1

group than the LPS group. These results suggest that in cardiac
tissue, RvE1 may inhibit LPS or CLP-induced MI polarization
and promote macrophage polarization toward the M2 phenotype,
which suppresses inflammation and promotes the resolution
of inflammation.

Resolvin E1 Reduces the Infiltration of
Inflammatory Cells and Mediates
Macrophage Polarization in the Spleen
Immunofluorescence results showed that RvE1 reduced the
infiltration of CD68+ macrophages and Ly6G+ neutrophils in
the spleen challenged with LPS (Figures 5A,B). We also evaluated
the effect of RvE1 on macrophage polarization in the spleen.
Treatment with LPS increased the mRNA levels of M1 markers
(CD80, CD86, and i-NOS) and reduced the levels of M2 markers
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FIGURE 4 | Resolvin E1 protects mice against lipopolysaccharide (LPS)-induced heart injury through the reprogramming of macrophage polarization in the heart.
(A) mRNA levels of M1 markers, including CD80, CD86, CD38, and i-NOS, in the left ventricular (LV) tissue of each group (n = 5). (B) mRNA levels of M2 markers,
including CD163, CD206, CD36, and Arg-1, in the LV tissue of each group (n = 5). (C) i-NOS was assessed by Western blotting in the LV tissue of each group (n = 4)
(the raw western blotting bands can be found in the Supplementary Data Sheet 1). (D) CD80 was assessed by immunofluorescence in the LV tissue of each
group (n = 4) (scale bar, 50 µm). (E) CD206 was assessed by immunofluorescence in the LV tissue of each group (n = 4) (scale bar, 50 µm). Data are presented as
the mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the LPS group.

(CD163, CD206, and Arg-1). However, pretreatment with RvE1
significantly diminished these trends (Figures 5C,D). Similarly,
immunofluorescence staining revealed that the expression levels
of CD80 (Figure 5E) were notably reduced, and the expression
levels of CD206 (Figure 5F) were significantly increased in the
LPS + RvE1 group compared to those in the LPS group. These
results reveal that RvE1 may also suppress the inflammation
of the spleen by promoting macrophage M2 polarization and
inhibiting M1 polarization, ultimately accelerating the resolution
of systemic inflammation induced by LPS.

Resolvin E1 Mediates the Expression of
Cyclooxygenase and Lipoxygenase in
the Myocardial Tissue of
Lipopolysaccharide-Treated Mice
Previous studies have suggested that COX and LOX may
play a critical role in the formation of lipid mediators and
the regulation of inflammation (Kain et al., 2014). In the
present study, QRT-PCR was used to evaluate the expression
of these immune-sensitive enzymes. We found that LPS
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FIGURE 5 | Resolvin E1 reduces the infiltration of inflammatory cells and mediates macrophage polarization in the spleen. (A,B) Infiltration of neutrophils and
macrophages in the spleen in different groups (n = 4) (scale bar, 50 µm). (C) mRNA levels of M1 markers, including CD80, CD86, and i-NOS, in the spleen of each
group (n = 5). (D) mRNA levels of M2 markers, including CD163, CD206, and Arg-1, in the spleen of each group (n = 5). (E) CD80 was assessed by
immunofluorescence in the spleen of each group (n = 4) (scale bar, 50 µm). (F) CD206 was assessed by immunofluorescence in the spleen of each group (n = 4)
(scale bar, 50 µm). Data are presented as the mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the lipopolysaccharide
(LPS) group.

treatment significantly reduced the mRNA levels of COX-
1 and 5-LOX in the heart, and this effect was reversed
by RvE1 (Figures 6A,C). On the contrary, arachidonate 15-
LOX (ALOX-15) levels were increased in the myocardial
tissue of LPS-treated mice, and pretreatment with RvE1
obviously mitigated the trend compared to LPS treatment
alone (Figure 6D). In addition, the mRNA levels of COX-
2 were significantly increased in the LPS group and further
increased in the LPS + RvE1 group (Figure 6B). These results
suggest that RvE1 mitigates the inflammation of cardiac tissue
possibly associated with the modulation of lipid mediator-
related enzymes. However, the association between RvE1 and

lipid mediator-related enzymes in spleen remains to be further
studied (Figures 6E–H).

Resolvin E1 Reduced
Lipopolysaccharide-Induced Myocardial
Apoptosis in vivo and in vitro
To assess whether RvE1 prevents LPS-induced cardiomyocyte
apoptosis, we first detected the activation of apoptosis-related
signaling pathways. The QRT-PCR results revealed that the
mRNA levels of Bax were higher and the levels of Bcl-2
were lower in the LPS group than those in the control group
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FIGURE 6 | Resolvin E1 mediates the expression of cyclooxygenase (COX) and lipoxygenase (LOX) in the myocardial tissue of lipopolysaccharide (LPS)-treated
mice. (A–D) COX-1, COX-2, 5-LOX, and arachidonate 15-lipoxygenase (ALOX-15) in the left ventricular (LV) tissue were evaluated by QRT-PCR in each group
(n = 5). (E–H) COX-1, COX-2, 5-LOX, and ALOX-15 in the spleen were evaluated by QRT-PCR in each group (n = 5). Data are presented as the mean ± SEM.
*P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the LPS group.

(Figure 7A). However, the expression of Bax was reduced and
the expression of Bcl-2 was increased in the RvE1-pretreatment
group compared to those in the LPS group (Figure 7A). Similarly,
WB results also suggested that Bax and c-caspase 3 levels were
lower and the Bcl-2 level was higher in the LPS + RvE1 group
than those in the LPS group (Figures 7B,C). In addition, after
treatment with LPS for 6 h, an increase in the number of TUNEL-
positive cells was observed in mice, and pretreatment with RvE1
alleviated this trend (Figure 7D). In vitro, WB results showed
similar results (Supplementary Figures 2A–C).

Resolvin E1 Inhibits the Activation of the
Mitogen-Activated Protein Kinase and
Nuclear Factor-κB Signaling Pathways in
the Myocardial Tissue of
Lipopolysaccharide-Treated Mice
We further examined the activation of MAPK and NF-κB
signaling pathways, which play a key role in regulating the
production of inflammatory mediators, in cardiac tissue. Our
results revealed that phosphorylation of P38, c-Jun N-terminal
kinase (JNK), extracellular signal-regulated kinase (ERK), and
P65 were increased in LV myocardial tissue from the LPS

group (Figures 8A–E). However, levels of these LPS-activated
signaling molecules were markedly reduced by RvE1 treatment
(Figures 8A–E).

DISCUSSION

In the present study, we reveal that RvE1 attenuates LPS-
induced cardiomyocyte injury, as evidenced by the improvement
in cardiac function, decrease in the expression of myocardial
damage markers, and reduction in the levels of pro-inflammatory
cytokines. We also observed that the expression of the RvE1
receptors ChemR23 and BLT1 was increased after treatment
with LPS, indicating that RvE1 might exert a protective effect
by interacting with these receptors. In addition, RvE1 treatment
inhibited the infiltration of inflammatory cells, regulated
M1/M2 macrophage polarization in the heart and spleen, and
modulated the expression of COX and LOX in the heart, which
correlated with the resolution of inflammation. In addition, RvE1
also inhibited the MAPK and NF-κB inflammatory signaling
pathways and mitigated the apoptosis of myocardial cells.
In summary, these findings indicate that RvE1 might be a
potent lipid metabolite that exerts protective effects against
sepsis-induced cardiac injury by inhibiting local and systemic
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FIGURE 7 | Resolvin E1 attenuates lipopolysaccharide (LPS)-induced cardiomyocyte apoptosis. (A) mRNA levels of Bax and Bcl-2 in each group (n = 5). (B,C)
Representative Western blotting bands (B) (the raw western blotting bands can be found in the Supplementary Data Sheet 1) and quantitative results (C) of
c-caspase-3, Bax, and Bcl-2 in each group (n = 5). (D) Representative images of TdT-mediated dUTP nick-end labeling (TUNEL) staining and the quantitative results
in each group (n = 4) (scale bar, 50 µm). Data are presented as the mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the
LPS group.

inflammatory responses, modulating macrophages polarization
and reducing the rate of myocardial apoptosis.

Sepsis-induced cardiomyopathy is associated with high
morbidity and mortality rates in critically ill patients (Romero-
Bermejo et al., 2011; Deutschman and Tracey, 2014). LPS is
frequently used to induce SIC in mice. It has been proposed
that experimental septic myocardial injury was mainly evidenced
by myocardial dysfunction and elevation of myocardial injury
markers, including LDH, CK, and CK-MB (Chen et al., 2017,
2018). RvE1, an omega-3 polyunsaturated fatty acid (PUFA)-
derived metabolite, exhibits anti-inflammatory or proresolving
activity in multiple animal models of inflammatory diseases,
such as periodontal inflammation, psoriatic dermatitis, and acute
allergic asthma (Flesher et al., 2014; Balta et al., 2017; Sawada
et al., 2018). In addition, previous research has indicated that
RvE1 attenuates LPS-induced inflammation in vitro (Baker et al.,
2018). As previously mentioned, RvE1 also plays a protective role

in multiple CVDs [coronary artery disease (CAD)], including
atherosclerosis, MI, and reperfusion injury (Keyes et al., 2010;
Hasturk et al., 2015; Liu et al., 2018b). Therefore, it is highly
necessary to clarify the functional roles of RvE1 in SIC.
Interestingly, we found that LPS treatment increased serum
LDH and CK-MB levels, and this increase was reversed by
pretreatment with RvE1. In addition, RvE1 improved LVEF and
FS in hearts challenged with LPS. These results suggest that RvE1
plays a protective role in septic heart injury.

Inflammatory cells and inflammatory cytokines play an
important role in the inflammatory response to pathologic
stimuli. Myocardial infiltration by immune cells, especially
neutrophils and macrophages, contributes to sepsis-induced
cardiac dysfunction, which is attenuated by the inhibition of the
influx of these cells (Chen J. et al., 2016; Zheng et al., 2017). The
levels of pro-inflammatory cytokines, including tumor necrosis
factor (TNF)-α, IL-1β, IL-6, and MCP-1, have been observed to
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FIGURE 8 | Resolvin E1 inhibits the activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways in the myocardial tissue
of lipopolysaccharide (LPS)-treated mice. (A) Representative Western blotting bands of p/T-p38, p/T-ERK, p/T-JNK, and p/T-p65 in each group (the raw western
blotting bands can be found in the Supplementary Data Sheet 1). Quantitative results of p-P38 (B), p-ERK (C), p-JNK (D), and p-P65 (E) in each group (n = 5).
Data are presented as the mean ± SEM. *P < 0.05 compared with the control (CTRL) group, #P < 0.05 compared with the LPS group.

increase in the myocardium in response to sepsis (Chen J. et al.,
2016; Huang et al., 2018). These cytokines are considered to be
myocardial depression factors and exert an injurious effect on
cardiomyocytes. Additionally, the neutralization of IL-6 and IL-
1β contributes to the inhibition of the inflammatory response
(Eger et al., 2018). In the present study, LPS treatment increased
the mRNA levels of IL-1β, IL-6, and MCP-1 in cardiac tissue,
and this increase was reduced by RvE1 pretreatment. Similarly,
RvE1 reduced the sepsis-induced infiltration of neutrophils
and macrophages in myocardial tissues. Consistent with this
research, a previous study suggested that the anti-inflammatory
mediator RvE1 reduces LPS-induced inflammation in vitro
(Baker et al., 2018). Therefore, RvE1 may protect mouse hearts
from septic injury by suppressing inflammation. In addition,
the overexpression of the RvE1 receptors BLT1 and ChemR23
enhances the anti-inflammatory effect of RvE1 (Arita et al.,
2007; Gao et al., 2013; Herrera et al., 2015; Sima et al., 2017).
In this study, LPS treatment increased the expression of BLT1
and ChemR23 in the myocardium, which contributed to the
protective effect of RvE1 against SIC.

The production of pro-inflammatory mediators is closely
regulated by the activation of multiple signaling pathways,
including MAPKs (ERK, JNK, and p38) and NF-κB. In the
heart, LPS promotes the phosphorylation of ERK, JNK, p38,
and p65, which enhances the production of pro-inflammatory

mediators (Chen R.C. et al., 2016; Zhao et al., 2016). In vitro,
RvE1 suppresses the production of cytokines in pulmonary
macrophages by reducing the nuclear translocation of NF-κB
p65 (Flesher et al., 2014). However, whether RvE1 prevents the
phosphorylation of MAPK and p65 in SIC is still unknown.
Our results revealed that the expression levels of p-ERK, p-JNK,
p-P38, and p-P65 were lower in the RvE1 + LPS group than
those in the LPS group, which occurred in parallel with the
reduction in the levels of pro-inflammatory mediators. Therefore,
the protective effect of RvE1 in LPS-induced heart injury may
be closely associated with the inhibition of MAPK and NF-κB
signaling pathways.

Modulation of the macrophage phenotype plays a crucial role
in inflammatory processes and might be a novel strategy for the
treatment of sepsis (Mahajan et al., 2015; Guo et al., 2018). LPS
induces macrophage polarization to the M1 phenotype, which is
associated with pro-inflammatory mediator production and heart
injury. In contrast, M2 macrophages secrete increased amounts
of anti-inflammatory cytokines and protect the heart against
LPS-induced injury (Dai et al., 2015). Previous studies have
suggested that protectin D1 regulates macrophage function and
that RvD1 stimulates the M2 macrophage phenotype, which is
associated with the resolution of lung inflammation and adipose
tissue inflammation (Titos et al., 2011; Serhan et al., 2014).
RvE1 was found to promote macrophage polarization toward an
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M2-like phenotype, and these macrophages exerted a protective
effect against vascular inflammation induced by mechanical
injury (Liu et al., 2018a). Interestingly, our results revealed
that RvE1 promotes macrophage polarization toward the M2-
like phenotype (CD163, CD206, and Arg-1) and inhibited LPS-
induced M1 macrophage polarization (CD80, CD86, and i-NOS).
Therefore, RvE1 might reduce the LPS-induced inflammation
response by regulating the reprogramming of macrophages.
In addition, recent studies have demonstrated that CD163
plays a potentially proresolution role in models of resolving
inflammation possibly by mediating IL-10 release and heme
oxygenase-1 synthesis (Gilroy and De Maeyer, 2015). In this
study, the expression of CD163 was increased in the RvE1 group
compared to that in the LPS group, which indicates that RvE1
might play an important role in the resolution phase of LPS-
induced heart injury.

Immunometabolism, primarily driven by COX and LOX,
is closely associated with inflammation, especially following
MI (Kain et al., 2014). Previous research has suggested that
COX-1 might play a significant anti-inflammatory role in
diabetes-impaired wound tissue by driving PG synthesis, which
contributes to the tightly controlled resolution of inflammation
(Goren et al., 2006). In our study, RvE1 treatment significantly
increased the expression of COX-1, indicating that RvE1
contributes to the resolution of inflammation in SIC. The
inhibition of COX-2 has a protective effect in many inflammatory
diseases, whereas COX-2 still exerts biological activities to
resolve inflammation in the resolution phase. The RvD1-induced
activation of COX-2 expedites the resolution of inflammation and
has therapeutic potential for the management of acute respiratory
distress syndrome (Gao et al., 2017). Consistent with the results
of previous studies, we found that the expression of COX-2
was increased after 6 h of LPS administration and was further
increased by RvE1 treatment, suggesting that RvE1 improves the
resolution of inflammation by enhancing the activation of COX-
2 in the resolution phase. 5-LOX contributed to the synthesis of
resolvins. Previous studies revealed that omega-3-enriched lipid
emulsions enhanced macrophage efferocytosis and phagocytosis
through 5-LOX (Korner et al., 2018). ALOX-15 is an enzyme
that can produce 12-hydroxy-eicosatetraenoic acid (HETE) from
arachidonic acid. The inhibition of ALOX-15 might inhibit
inflammation and reduce vascular permeability by eliminating
12-HETE production in acute lung injury (Zarbock et al., 2009).
Interestingly, RvE1 also reduced the expression of ALOX-15 and
increased the expression of 5-LOX, which was consistent with
the improvement in cardiac function. Therefore, RvE1 might be
tightly associated with the modulation of lipid mediator-related
enzymes in SIC.

Myocardial apoptosis is also a crucial process during SIC,
and inhibition of apoptosis has been found to be protective
(Sharma, 2007). RvE1 administration protected cardiomyocytes
against apoptosis and improved cardiac function by reducing
the secretion of pro-inflammatory cytokines in the peri-infarct
zones (Liu et al., 2018b). Therefore, we used TUNEL staining,
QRT-PCR, and WB to detect cardiomyocyte apoptosis in SIC.
Our results showed that the number of TUNEL-positive nuclei
and the expression of Bax and c-caspase 3 were reduced by

RvE1 treatment, whereas the expression of Bcl-2 was increased.
These results demonstrate that RvE1 significantly protects
cardiomyocytes against sepsis-induced apoptosis.

The spleen is an important peripheral immune organ that is
a critical reservoir of immune phagocytes, including neutrophils
and monocytes/macrophages, and has been reported to play
a crucial role in the clearance of pathogens in sepsis (Jahng
et al., 2016; Kapellos et al., 2017). Previous studies have reported
that the reduction in the number of neutrophils in the spleen
is closely associated with the improvement of cardiac function
and inhibition of the inflammatory response (Kain et al., 2015).
In addition, M2 macrophage polarization in the spleen has
a significantly beneficial effect on inflammation post-MI and
sepsis (Kain et al., 2015; Taratummarat et al., 2018). Therefore,
the crosstalk between the heart and spleen may affect the
regulation of inflammation. In this study, the LPS-induced
increase in neutrophil and macrophage densities in the spleen
was attenuated by RvE1; this effect was also observed in the
heart. In addition, the inhibition of M1 polarization and the
induction of M2 polarization have been observed to contribute
to the improvement of sepsis after RvE1 administration.

CONCLUSION

In conclusion, our results indicate that RvE1 protects the heart
from sepsis-induced heart injury. The mechanism is possibly
associated with the inhibition of MAPK and NF-κB inflammatory
signaling pathways, modulation of macrophage polarization, and
reduction in myocardial apoptosis. These findings suggest that
RvE1 might be a high potential lipid mediator for the treatment
of SIC.
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Post-cardiac arrest myocardial dysfunction significantly contributes to early mortality after
the return of spontaneous circulation. However, no effective therapy is available now.
Aldehyde dehydrogenase 2 (ALDH2) enzyme has been shown to protect the heart from
aldehyde toxicity such as 4-hydroxy-2-nonenal (4-HNE) and oxidative stress. In this study,
we evaluated the effect of enhanced activity or expression of ALDH2 on post-cardiac
arrest myocardial dysfunction and survival in a rat cardiac arrest model. Furthermore, we
elucidated the underlying mechanisms with a focus on mitochondrial reactive oxygen
species (ROS) production in a cell hypoxia/reoxygenation model. A total of 126 rats were
used for the ALDH2 activation or cardiac overexpression of ALDH2 studies.
Randomization was done 10 min before the respective agonist injection or in vivo gene
delivery. We showed that enhanced activity or expression of ALDH2 significantly improved
contractile function of the left ventricle and survival rate in rats subjected to cardiac arrest-
cardiopulmonary resuscitation procedure. Moreover, ALDH2 prevented cardiac arrest-
induced cardiomyocyte death from apoptosis and mitochondrial damage.
Mechanistically, 4-HNE, a representative substrate of ALDH2, was dominantly
increased in the hypoxia/reoxygenation-exposed cardiomyocytes. Direct addition of 4-
HNE led to significantly augmented succinate accumulation and mitochondrial ROS
in.org March 2020 | Volume 11 | Article 3731163
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production. Through metabolizing 4-HNE, ALDH2 significantly inhibited mitochondrial
ROS production. Our findings provide compelling evidence of the cardioprotective effects
of ALDH2 and therapeutic targeting this enzyme would provide an important approach for
treating post-cardiac arrest myocardial dysfunction.
Keywords: aldehyde dehydrogenase 2, cardiopulmonary resuscitation, post-cardiac arrest myocardial dysfunction,
cardiomyocyte death, mitochondrial reactive oxygen species
INTRODUCTION

Sudden cardiac arrest remains a major public health burden in
terms of high mortality and morbidity worldwide (Hayashi et al.,
2015). While efforts to initiate rapid cardiopulmonary
resuscitation (CPR), e.g., establishment of medical emergency
outreach teams, have improved the return of spontaneous
circulation (ROSC) to 30–40% of patients with cardiac arrest,
the mortality thereafter remains >50% (Neumar et al., 2008;
Hazinski et al., 2015). Post-cardiac arrest myocardial dysfunction
is an important cause of circulatory failure and early mortality
after ROSC (Kern et al., 1996; Stub et al., 2011). Among the
multiple factors, ischemia/reperfusion injury plays an essential
role in the pathological progression of myocardial dysfunction.
However, there is currently no effective therapeutic approach for
post-cardiac arrest myocardial dysfunction as well as ischemia/
reperfusion injury.

Mitochondria, as the center of energy supply and reactive
oxygen species (ROS) production, play a crucial role as targets
and drivers of ischemia/reperfusion injury after cardiac arrest
(Penna et al., 2013; Matsuura et al., 2017). One mitochondrial
feature during the ischemia/reperfusion processes is the ROS
production (Zweier et al., 1987; Murphy and Steenbergen, 2008;
Chouchani et al., 2014). Recently, mitochondrial ROS have been
shown to be an important factor in contributing sudden cardiac
death and myocardial dysfunction (Dey et al., 2018). However,
the mechanism of mitochondrial ROS production and
mitochondria-targeted treatments designed to ameliorate
mitochondrial oxidative stress are still under study (Murphy,
2016; Dey et al., 2018).

Aldehydes are generated through lipid peroxidation on
mitochondrial and plasma membranes in response to oxidative
stress and have been observed in the heart after cardiac arrest
(Hayashida et al., 2012). Aldehydes can easily diffuse from the
side of their origin (i.e., membranes) and reach and attack targets
intracellularly and extracellularly, forming adducts with
macromolecules including proteins, DNA, and lipids which
usually modulates or disrupts their functions (Roede and
Jones, 2010; Li et al. , 2018). Aldehydes can impair
mitochondria by attacking on Cys, Lys, or Arg amino acid
residues of mitochondrial proteins, but the underlying
mechanism is still unclear (Roede and Jones, 2010; Li et al.,
2018). Therefore, clarifying the role of aldehydes in
mitochondrial injury and effectively clearing these highly
harmful aldehydes is crucial to protect mitochondria from
ischemia/reperfusion injury and alleviate post-cardiac arrest
myocardial dysfunction.
in.org 2164
Aldehyde dehydrogenase 2 (ALDH2) has recently emerged as
a critical health-promoting enzyme, which is primarily expressed
in the mitochondria in a wide variety of organs, including the
heart (Li et al., 2018). Previous studies have suggested that
ALDH2 plays a central protective role in several types of
cardiac diseases and global cellular oxidative stress mainly
through metabolizing various aldehydes, such as 4-hydroxy-2-
nonenal (4-HNE) which is the most abundant and reactive
carbonyl species (Chen et al., 2014; Ji et al., 2016; Liu et al.,
2018). However, the influence of ALDH2 on post-cardiac arrest
myocardial dysfunction and mitochondrial ROS has not been
investigated yet. Thus, the aims of this study are (1) to evaluate
the effect of enhanced activity or expression of ALDH2 on
myocardial dysfunction and survival after cardiac arrest, (2) to
examine the importance of ALDH2 in reducing cardiomyocyte
death and mitochondrial injury, and (3) to elucidate the
under ly ing mechan i sms by which ALDH2 exer t s
cardioprotection with a focus on mitochondrial ROS production.
METHODS

Animals
Adult male Wistar rats were purchased from the Department of
Experimental Animals of Shandong University (Jinan, China)
and acclimatized in the housing facility for at least 1 week before
the cardiac arrest and CPR (CA-CPR) procedure. Rats were fed
with normal chow and were free to access tap water at a constant
temperature of 21.0°C ± 1.0°C, with a fixed 12-h light/dark cycle.
A total of 126 rats were assigned to 1 of 3 animal study
frameworks: (1) protocol 1 of the ALDH2 activation study
(n = 53)—Alda-1 (10 mg/kg, Sigma-Aldrich, St. Louis,
Missouri) was administered via intraperitoneal injection 30
min before cardiac arrest; (2) protocol 2 of the ALDH2
activation study (n = 28)— Alda-1 (10 mg/kg) was
administered via intraperitoneal injection at the start of
resuscitation; and (3) cardiac overexpression of ALDH2 study
(n = 45)—adeno-associated virus (serotype 9) (AAV9)-ALDH2
or AAV9-Veh was delivered via tail vein injection at 2.5 × 1011

vector genomes/rat 4 weeks before cardiac arrest. In each animal
cohort, rats were randomized respectively to CA-CPR group and
CA-CPR+Alda-1 group, or AAV9-Veh+CA-CPR group and
AAV9-ALDH2+CA-CPR group 10 min before the injection.
Furthermore, rats in protocol 1 of the ALDH2 activation study
were assigned to 1 of 3 tissue collection time points. At 1 h after
ROSC, rats were euthanized for assessing mitochondrial
morphology of heart. At 4 h after ROSC, rats were euthanized
March 2020 | Volume 11 | Article 373
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for myocardial functional and histological assessment. At 72 h
after ROSC, rats were euthanized for assessing survival rate,
myocardial function, and histology. In protocol 2 of the ALDH2
activation, rats with ROSC were followed up for 72 h for survival
rate analysis. The myocardial function was detected within 4 h
and at 72 h after ROSC. In the cardiac overexpression of ALDH2
study, rats were assigned to two tissue collection time points. At 1
h after ROSC, rats were euthanized for assessing mitochondrial
morphology of heart. At 4 h after ROSC, rats were euthanized for
myocardial functional and histological studies. Additional details
about animal study can be found in the flowchart in Figure 1.
The study was approved by the Institutional Animal Care and
Use Committee of Shandong University, in accordance with
National Institutes of Health Guidelines.

Cardiac Arrest and CPR Procedure
CA-CPR procedure was performed in rats as previously
described with minor modifications (Huang et al., 2008; Kim
et al., 2016; Wang et al., 2016). Briefly, rats were anesthetized
with pentobarbital sodium (45 mg/kg, intraperitoneal injection).
The oral trachea intubation with a 14-G cannula was performed
and ventilator settings included a tidal volume of 0.7 ml/100 g, a
respiratory rate of 70 breaths/min and FiO2 of 21%. PE-50 tubes
filled with heparinized saline were inserted into the right femoral
artery for blood pressure monitoring and blood gas sampling,
and into the right femoral vein for epinephrine administration.
The Millar pressure-volume catheter (ADInstruments, Sydney,
Australia) was inserted through the right carotid artery and
advanced into the left ventricle, as appropriate. The rectal
temperature was monitored and maintained at 37°C ± 0.5°C
by a heating pad. Blood pressure, left ventricular pressure, and
Frontiers in Pharmacology | www.frontiersin.org 3165
needle-probe electrocardiogram monitoring data were recorded
with the PowerLab acquisition system (ADInstruments). CA was
induced by asphyxia via turning off the ventilator and clamping
the endotracheal tube. CA was defined as the femoral mean
arterial pressure (MAP) < 30 mmHg. After 8 min of asphyxia, the
mechanical ventilator was reinitiated. The epinephrine (2 mg/100
g, once every 3 min) was administered, and chest compression
(200 beats/min) was performed, attempting for 10 min at most.
ROSC was defined as the return of sinus rhythm with a MAP ≥60
mmHg lasting for at least 5 min.

Cells and Hypoxia/Reoxygenation
Procedure
Rat cardiomyoblasts cel l l ine (H9c2) and primary
cardiomyocytes isolated from adult male wild type (WT)
mice and ALDH2 knockout (KO) mice were used. Cells were
cultured normally in a humidified incubator with 95% air/5%
CO2 at 37°C. Hypoxia/reoxygenation procedure was induced by
exposing cells in a hypoxic workstation (H35, Don Whitley
Scientific, Bingley, United Kingdom) containing 94% N2, 5%
CO2, and 1% O2 at 37°C with serum-deprived media for 4 h and
then culturing cells under normal conditions with complete
media for another 2 h. Alda-1 (20 mmol/L) or Daidzin (60
mmol/L, Sigma-Aldrich) was added to the media 30 min before
hypoxia/reoxygenation.

In Vivo Gene Delivery
The recombinant AAV9 vector carrying rat ALDH2 with a
cardiac troponin T (cTNT) promoter and green fluorescent
protein (GFP) (AAV9-ALDH2) (Hanbio Inc, Shanghai, China)
or carrying only cTNT and GFP (AAV9-Veh) as a negative
FIGURE 1 | The flowchart of the animal study.
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control was delivered to male rats via a bolus tail vein injection at
2.5 × 1011 vector genomes/rat. After 4 weeks, the expression of
GFP in the liver, skeletal muscle, and heart tissue in rats receiving
gene delivery was observed under a fluorescence microscope
(Olympus Corporation, Tokyo, Japan), and the expression levels
of ALDH2 were detected by western blot analysis.

Measurement of Myocardial Function
Left ventricular cardiac output (CO) and ejection fraction (EF)
were measured by Millar pressure-volume catheter
(ADInstruments). Left ventricular end diastolic diameter
(LVEDD) and left ventricular end systolic diameter (LVESD)
were measured to calculate EF, fractional shortening (FS), left
ventricular end diastolic volume (LVEDV), and left ventricular
end systolic volume (LVESV) by echocardiography
(VisualSonics, Toronto, Canada) as described previously
(Wang et al., 2011).

Tissue Collection and Processing at Pre-
Specified Time Points
Rats were euthanized by transcardial perfusion with saline and
then hearts were harvested rapidly. At 1 h after ROSC, the left
ventricular tissue was cut into ~1 mm3 pieces and each piece was
fixed with glutaraldehyde overnight for the transmission electron
microscope (TEM) exanimation. At 4 h and 72 h after ROSC, the
left ventricular tissue was washed in saline, snap frozen in liquid
nitrogen and stored at −80°C for ALDH2 activity, ALDH2
expression, and cardiac ROS analysis; otherwise, the left
ventricular tissue was fixed in 4% formaldehyde, embedded in
paraffin, and cut into sections of 6 mm in thickness to
assess apoptosis.

Fluorescently-Labeled Alda-1
Alda-1 was combined with lissamine rhodamine B200, a red
natural luciferin, by electrostatic adherence (Jieyi Biotech,
Shanghai, China) and administered to rats via intraperitoneal
injection. After 4 h, the left ventricular tissue was observed under
a fluorescence microscope (Olympus Corporation).

Measurement of Myocardial Apoptosis
Apoptosis was assessed by transferase mediated dUTP nick-end
labeling (TUNEL) staining using ApopTag® In Situ Apoptosis
Detection Kits (Millipore, Burlington, Massachusetts) (Tan et al.,
2012; Liu et al., 2017). After staining, the sections were observed
under a fluorescence microscope (Olympus Corporation) and
measured by Image-Pro Plus 6.0 (Media Cybernetics,
Rockville, Maryland).

Examination of Mitochondrial Morphology
Thin sections (70 nm) of left ventricular tissue were stained and
examined using a scanning TEM (JEOL Ltd., Tokyo, Japan)
(Huang et al., 2011). The severity of mitochondrial structural
damage was semi-quantified using Flameng grading of 1 through
5 as described previously (Flameng et al., 1980; Hawong
et al., 2015).
Frontiers in Pharmacology | www.frontiersin.org 4166
Determination of Plasma Creatine Kinase-
MB (CK-MB)
Blood samples were centrifuged at 1000 × g for 20 min to collect
plasma. The levels of CK-MB were measured using enzyme-
linked immunosorbent assay (ELISA) (Cloud-clone,
Wuhan, China).

Determination of Blood Gas
Arterial blood was obtained at 15 min, 1 h, and 4 h after ROSC
and blood gas profiles (pH, PaO2, PaCO2, glucose, and lactate)
were measured immediately using automated blood gas analyzer
(Instrumentation Laboratory, Bedford, Massachusetts).

Measurement of ALDH2 Activity
The mitochondria were isolated frommyocardial tissue using the
Tissue Mitochondria Isolation Kit (Beyotime, Nanjing, China).
The mitochondria were sonicated, centrifuged at 11,000 × g for
10 min at 4°C and the supernatant was collected to measure
ALDH2 activity. The supernatant was incubated with 50 mmol/L
sodium pyrophosphate, 2.5 mmol/L NAD+, and 10 mmol/L
propionaldehyde for 10 min. Acetaldehyde as the substrate of
ALDH2 was oxidized to acetic acid, whereas NAD+ was reduced
to NADH which was used to determine ALDH2 activity.
Production of NADH was determined by spectrophotometric
absorbance at 340 nm (Thermo Scientific, Waltham,
Massachusetts) (Wang et al., 2011; Tan et al., 2012).

Isolation of Primary Cardiomyocytes From
Adult Mice
The ALDH2 KO mice were provided by University of
Occupational and Environmental Health (Fukuoka, Japan).
The cardiomyocytes were isolated from adult male WT mice
and ALDH2 KO mice (all were C57BL/6 background) as
described previously (Ackers-Johnson et al., 2016; Pang et al.,
2016). Briefly, mice were sacrificed after anaesthetized with 2%
isoflurane, and hearts were rapidly excised and mounted onto a
temperature-control led (37°C) Langendorff system
(ADInstruments). The hearts were perfused retrogradely
through the aorta with collagenase II (Sigma-Aldrich),
collagenase IV (Sigma-Aldrich), and collagenase IV (Sigma-
Aldrich) for about 20 min until digestion was apparent. The
digested left ventricles were then cut into ~1 mm3 pieces and
dissociated by pipetting 2 min. After four sequential rounds of
gravity settling using three intermediate calcium reintroduction
buffers to gradually restore calcium concentration to
physiological levels, the cell pellet which was enriched with
myocytes was collected and used for the experiments within 8
h after isolation.

Measurement of Mitochondrial ROS,
Cellular ROS, and Cardiac ROS
The mitochondrial ROS levels in H9c2 cells and primary
cardiomyocytes were measured with MitoSOX Red reagent, a
mitochondrial superoxide (O2

-) indicator (Invitrogen, Carlsbad,
California) (Roberge et al., 2014; Ji et al., 2016). Cells were
incubated with 5 mmol/L MitoSOX Red for 10 min at 37°C
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhang et al. ALDH2 in Post-Cardiac Arrest Myocardial Dysfunction
protected from light. The cellular ROS levels in H9c2 cells were
measured by incubating with 10 mmol/L 2′,7′-dichlorofluorescin
diacetate (DCFH-DA) (Beyotime) for 30 min at 37°C protected
from light which was converted to fluorescent 2′,7′-
dichlorofluorescein (DCF) by ROS (Ji et al., 2016). The O2

-

levels in cardiac tissue were measured using dihydroethidium
(DHE) (Beyotime), an oxidative fluorescent dye (Ji et al., 2016;
Zhang et al., 2016). Frozen sections (6 mm) of myocardium were
incubated with 10 mmol/L DHE for 30 min at 37°C protected
from light and incubated with DAPI (Boster, Wuhan, China) for
2 min to label nuclei. After incubation, cells and tissue sections
were observed under a fluorescence microscope (Olympus
Corporation). The intensity of fluorescence was quantified by
ImageJ software (U.S. National Institutes of Health, Bethesda,
Maryland). Three samples of each group were studied and five
randomly selected fields of each sample were evaluated. The
mean intensity of fluorescence of the five fields for each sample
was used for statistical analysis.

Measurement of Mitochondrial
Respiratory Function
Mitochondrial respiratory function evaluated by oxygen
consumption rate (OCR) was assessed using a Seahorse XFe24
analyzer with the Seahorse XF Cell Mito Stress Test Kit (Agilent
Technologies, Santa Clara, California) as described previously
(Ikeda et al., 2016; Tsushima et al., 2018). Briefly, ~105 cells were
seeded in a 24-well plate specific for the Seahorse XFe24
instrument and underwent hypoxia/reoxygenation procedure.
After the hypoxia/reoxygenation procedure, cells were
equilibrated with XF assay media supplemented with 25 mmol/
L glucose, 1 mmol/L sodium pyruvate, and 2 mmol/L L-
glutamine. Then, the OCR was analyzed by Seahorse XFe24
analyzer with the following inhibitors: 1 mmol/L oligomycin
(Oligo), 1 mmol/L carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP), and 0.5 mmol/L rotenone/antimycin
A (Rot/Ant).

Adenosine 5'-Triphosphate (ATP) Assay
Cellular ATP contents were measured by a firefly luciferase-
based ATP assay kit (Beyotime) according to the manufacturer’s
instructions. Briefly, cells were schizolysized and centrifuged at
12,000 × g for 5 min at 4°C to collect the cell supernatant which
was then mixed with ATP detection working solution. The
protein concentration of sample was measured and the
standard curve of ATP concentration was prepared. The ATP
level was measured based on the emitted light by a luminescence
plate reader (Thermo Scientific).

Measurement of Succinate Levels
The levels of succinate were assessed colorimetrically using the
established Succinate Assay Kit (Abcam, Cambridge, UK)
according to the manufacturer’s instructions (Karlstaedt et al.,
2016). Briefly, cells were washed with cold PBS, resuspended in
succinate assay buffer, homogenized, and centrifuged for
12,000 × g for 5 min at 4°C to collect supernatant. The
samples were then incubated with the reaction mix for 30 min
at 37°C. The standard curve of succinate concentration was
Frontiers in Pharmacology | www.frontiersin.org 5167
prepared. The level of succinate was measured colorimetrically
at 450nm (Thermo Scientific).

Measurement of Mitochondrial Membrane
Potential
The mitochondrial membrane potential was measured by
incubating cells with 100 nmol/L TMRM (Invitrogen) for 30
min at 37°C. After rinsed twice, cells were observed under a
fluorescence microscope (Olympus Corporation). The intensity
of fluorescence was quantified by ImageJ software (U.S. National
Institutes of Health) and was used to indicate the mitochondrial
membrane potential. Three samples of each group were studied
and five randomly selected fields of each sample were evaluated.
The mean value of the five fields for each sample was used for
statistical analysis.

Assessment of Succinate Dehydrogenase
(SDH) Carbonylation
To detect the levels of SDH carbonylation, SDH was
immunoprecipitated by incubating 500 mg cell lysate with 2–10
mg anti-SDHA antibody (Abcam) overnight at 4°C, followed by
incubation with 20 ml protein A/G agarose (Beyotime) for 2 h at
4°C. Immunoprecipitates were washed, resuspended in 1×
sample buffer, boiled for 5 min, and analyzed by western
blot analysis.

Cell Treatment With 4-HNE
When detecting the level of mitochondrial ROS, cellular
succinate, and mitochondrial membrane potential, 4-HNE
(BioVision, Milpitas, California) with different concentrations
(10 mM, 20 mM, or 40 mM) was incubated with ~106 cells for 4 h.
And when detecting SDH carbonylation, 40 mM 4-HNE was
incubated with ~5×106 cells for 4 h.

Western Blot Analysis
Protein samples were separated by SDS-PAGE and transferred to
nitrocellulose membranes (Millipore). After blocked with 5%
milk, the blots were probed with antibodies against ALDH2
(1:1,000, Abcam), b-actin (1:1,000, Cell Signaling Technology,
Danvers, Massachusetts), and 4-HNE-protein adducts (1:1,000,
Abcam). For assessment of SDH carbonylation, blots were
probed with anti-DNPH antibody (1:1,000, Abcam) after
incubated with 0.5 mmol/L 2, 4-dinitro phenylhydrazine
(DNPH, Sigma-Aldrich) for 30 min or probed with anti-SDHA
antibody (1:1,000, Abcam) (Wu et al., 2016; Li et al., 2018).
Membranes were washed and incubated with horseradish
peroxidase-conjugated secondary antibodies (1:10,000) for 2 h
and detected using the chemiluminescence method. The
intensity of the bands was quantified by ImageJ software (U.S.
National Institutes of Health).

Immunofluorescence Staining
The distribution of 4-HNE-protein adducts in cells was detected
using immunofluorescence staining. Briefly, cells grown on cover
slip were fixed with 4% formaldehyde and permeated with 0.5%
Triton X-100. After blocked with goat serum, cells were
incubated with primary antibody against 4-HNE-protein
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adducts (1:1,000, Abcam) overnight. Cells were washed and
incubated with secondary antibody for 1 h. Then, cells were
incubated with 100 nmol/L Mito-tracker Red (Beyotime) for 30
min at 37°C protected from light and incubated with DAPI
(Boster) for 2 min to label nuclei. The fluorescence of 4-HNE-
protein adducts, Mito-tracker Red and DAPI was observed under
a fluorescence microscope (Olympus Corporation).

Statistical Analysis
The continuous data were presented as mean ± SEM. Group
comparisons were performed by one-way analysis of variances
(ANOVA) with Tukey’s post hoc test or Student’s t-test.
Comparisons between time-based measurements within
each group were performed by repeated-measures ANOVA.
Survival was presented by Kaplan-Meier curves, and the log-
rank test was used for comparing survival rate between groups. A
P value <0.05 was considered statistically significant (2-tailed).
RESULTS

Baseline and Procedural Characteristics
of the Animal Study
There were no significant differences in the baseline body weight,
heart rate, MAP, left ventricular CO, EF or FS between the CA-
CPR group and the CA-CPR+Alda-1 group in the ALDH2
activation study (Supplemental Table 1). In addition, no
differences were observed in cardiac arrest duration, CPR
duration, or ROSC rate between the CA-CPR group and the
CA-CPR+Alda-1 group in the ALDH2 activation study
(Supplemental Table 2). Similar results with regard to the
baseline and procedural features were found in the cardiac
overexpression of ALDH2 study (Supplemental Tables 3 and 4).

Activation of ALDH2 Effectively Improves
Post-Cardiac Arrest Myocardial
Dysfunction and Survival Rate
Myocardial function within 4 h after ROSC, as evaluated by left
ventricular CO and EF using Millar pressure-volume catheter,
was markedly reduced in all rats subjected to CA-CPR procedure
(Figure 2A) compared with their respective baseline in protocol
1 of the ALDH2 activation study (Supplemental Table 1). Alda-
1 reached the heart after intraperitoneal administration
(Supplemental Figure 1) and significantly increased both left
ventricular CO and EF, with the improvement in left ventricular
CO occurring as early as 15 min after ROSC and the
improvement in left ventricular EF occurring at 1 h after
ROSC (Figure 2A). Similar trends for 4-h myocardial function
after ROSC, as evaluated by left ventricular EF and FS using
echocardiography, were observed in protocol 2 of the ALDH2
activation study (Figure 2B). Taken together, these results
demonstrate that upregulation of ALDH2 activity by Alda-1
improves myocardial function within 4 h after ROSC.

We further evaluated left ventricular EF and FS at 72 h after
ROSC using echocardiography in the CA-CPR group and the
CA-CPR+Alda-1 group in the two protocols of the ALDH2
Frontiers in Pharmacology | www.frontiersin.org 6168
activation study. The impairment of left ventricular EF and FS
remained significant in the CA-CPR group compared with their
respective baseline in both protocol 1 and protocol 2; however,
left ventricular EF and FS in the CA-CPR+Alda-1 group were
restored to 92.0 and 89.7% of their baseline levels, respectively, in
protocol 1 and restored to 86.3 and 82.5% of their baseline levels,
respectively, in protocol 2 (P > 0.05 versus their respective
A

B

C

D

FIGURE 2 | The effect of ALDH2 activation by Alda-1 on post-cardiac arrest
myocardial dysfunction and survival rate. (A) Left ventricular cardiac output
(CO) and ejection fraction (EF) evaluated by Millar pressure-volume catheter
within 4 h after ROSC in protocol 1 of the ALDH2 activation study (n = 6
animals per group). (B) Left ventricular EF and fractional shortening (FS)
evaluated by echocardiography within 4 h after ROSC in protocol 2 of the
ALDH2 activation study (n = 9 animals per group). (C) Left ventricular EF and
FS evaluated by echocardiography at 72 h after ROSC in the two protocols of
the ALDH2 activation study (n = 3–9 animals per group). (D) Kaplan-Meier
survival curves within 72 h after ROSC in the two protocols of the ALDH2
activation study. Myocardial function between groups was compared by
Student’s t-test and time-based measurements within each group were
compared by repeated-measures ANOVA. The survival rate between groups
was compared by the log-rank test. Data are presented as mean ± SEM. *P
< 0.05, **P < 0.01 versus CA-CPR group.
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baselines, Figure 2C and Supplemental Table 1). The 72-h
survival rate was 30.0% in the CA-CPR group, whereas it was
81.8% in the CA-CPR+Alda-1 group in protocol 1. The log-rank
test revealed markedly improved survival rate in the CA-CPR
+Alda-1 group compared with the CA-CPR group (P < 0.05,
Figure 2D). The same trend for survival rate between the CA-
CPR group and CA-CPR+Alda-1 group was observed in
protocol 2 (Figure 2D). Collectively, these results demonstrate
that upregulation of ALDH2 activity reveals significant
improvement in the 72-h myocardial function and survival rate.

We also determined the activity and expression levels of
ALDH2 in myocardium in rats subjected to CA-CPR
procedure. The results showed that the activity of ALDH2 was
reduced by 58.8% at 4 h and 64.8% at 72 h after ROSC,
respectively, which was significantly elevated by Alda-1;
however, the expression levels of ALDH2 did not alter during
the observation periods (Supplemental Figure 2). These findings
Frontiers in Pharmacology | www.frontiersin.org 7169
can explain why upregulation of ALDH2 activity has a protective
effect on post-cardiac arrest myocardial dysfunction.

Activation of ALDH2 Attenuates Cardiac
Arrest-Induced Cardiomyocyte Death and
Mitochondrial Injury
Because we saw no differences of the cardioprotection effect
between these two protocols of ALDH2 activation study and in
order to keep consistence with the ALDH2 overexpression study
which enhanced ALDH2 activity before cardiac arrest, the rats in
protocol 1 of the ALDH2 activation study were used for the
following mitochondrial morphology and biomedical
investigations. As expected, cardiac myocyte apoptosis was
increased sharply at both 4 h and 72 h after ROSC in the CA-
CPR group, which was significantly attenuated by Alda-1
(Figure 3A). The levels of plasma CK-MB were increased 3.0-
fold at 72 h after ROSC, which were abolished by Alda-1 (Figure
A

C

B

D

E

FIGURE 3 | The effect of ALDH2 activation by Alda-1 on post-cardiac arrest cardiomyocyte death, mitochondrial structural damage, and cardiac ROS levels.
(A) Representative photographs of cardiomyocyte apoptosis by TUNEL staining at 4 h after ROSC and quantification at 4 h and 72 h after ROSC (n = 3–4 animals per group).
Scale bar = 100 mm. (B) The plasma levels of CK-MB at 4 h and 72 h after ROSC (n = 3–4 animals per group). (C) Representative photographs and quantification of
mitochondrial morphology by TEM examination at 1 h after ROSC (n = 3 animals per group). Scale bar = 1 mm. (D) Representative photographs of dihydroethidium (DHE)
staining at 4 h after ROSC and quantification at 4 h and 72 h after ROSC (n = 3–4 animals per group). Scale bar = 100 mm. (E) Representative immunoblots and
quantification of 4-HNE-protein adducts at 4 h and 72 h after ROSC (n = 3–4 animals per group). Group comparisons were performed by ANOVA with Tukey’s post hoc test.
Data are presented as mean ± SEM. **P < 0.01, ***P < 0.001 versus Con group; #P < 0.05, ###P < 0.001 versus CA-CPR group.
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3B). Consisted with these findings, obvious mitochondrial
structural damage was observed at 1 h after ROSC in the CA-
CPR group, which was partially reversed by Alda-1 (Figure 3C).
The elevated cellular ROS levels (Figure 3D) and 4-HNE-protein
adducts (Figure 3E) were also inhibited by Alda-1. However,
there were no significant differences in the levels of blood gas
(pH, PaO2, PaCO2, glucose, and lactate) between the CA-CPR
group and the CA-CPR+Alda-1 group at 15 min, 1 h, or 4 h after
ROSC, respectively (Supplemental Table 5). These results
suggest that myocardial cell death and mitochondrial damage
should be the disordered physiological processes that cause post-
cardiac arrest myocardial dysfunction, whereas upregulation of
ALDH2 activity could attenuate these disorders.

Enhanced Expression of ALDH2 Improves
Post-Cardiac Arrest Myocardial
Dysfunction
To further validate the cardioprotective effect of ALDH2
activation, we examined whether enhancing the expression of
ALDH2 had protective effect on post-cardiac arrest myocardial
dysfunction. The AAV9 vector carrying ALDH2 with a cTNT
promoter was constructed, which led to the increased expression
of ALDH2 in the heart, but not in the liver or skeletal muscle
(Figure 4A and Supplemental Figure 3). Cardiac specific
overexpression of ALDH2 significantly improved left
ventricular EF, evaluated by echocardiography, within 4 h after
ROSC compared with that in the CA-CPR group (Figure 4B).
The mitochondrial structural damage at 1 h after ROSC was
significantly prevented by cardiac specific overexpression of
ALDH2 (Figure 4C). The elevated cellular ROS levels (Figure
4D) and 4-HNE-protein adducts (Figure 4E) were also inhibited
by cardiac specific overexpression of ALDH2. However, ALDH2
overexpression did not affect the levels of blood gas at 15 min, 1
h, or 4 h after ROSC (Supplemental Table 6). These findings
indicate that enhancement of ALDH2 through both enzymatic
activation and protein overexpression attenuates post-cardiac
arrest myocardial dysfunction.

Alda-1 Specifically Activates ALDH2 and
Suppresses Hypoxia/Reoxygenation-
Induced Mitochondrial ROS
We explored the molecular mechanisms by which ALDH2
exerted cardioprotection after cardiac arrest through regulation
of its activity in a rat cardiomyoblast hypoxia/reoxygenation
model, focusing on mitochondrial ROS. The levels of
mitochondrial ROS were increased 5.7-fold during hypoxia/
reoxygenation, the extent of which was significantly reduced by
Alda-1; inhibition of ALDH2 by Daidzin did not further increase
the mitochondrial ROS levels (Figure 5A). Similar inverse trends
were observed for the cellular ATP levels (Figure 5B). The
overall cellular ROS levels were also elevated during hypoxia/
reoxygenation, which were inhibited by Alda-1 (Supplemental
Figure 4). Additionally, mitochondrial respiratory dysfunction
reflected by the reduced OCR under hypoxia/reoxygenation was
markedly reversed by Alda-1 (Figure 5C). These results show the
dramatically increased levels of mitochondrial ROS and the
Frontiers in Pharmacology | www.frontiersin.org 8170
concomitant disorders of mitochondrial energy generation
during reoxygenation could be inhibited by Alda-1, suggesting
control of mitochondrial ROS should be an important function
of ALDH2.

Furthermore, we assessed the specificity of Alda-1 on
ALDH2, which has not been proved in the previous studies
yet. Primary cardiomyocytes were obtained from ALDH2 KO
mice and its background WT mice, respectively. ALDH2 KO
cardiomyocytes generated more mitochondrial ROS under
hypoxia/reoxygenation compared with the cardiomyocytes
from WT mice; however, Alda-1 had no effect on the levels of
mitochondrial ROS in ALDH2 KO cardiomyocytes (Figure 5D).
Similar findings were observed for hypoxia/reoxygenation-
induced mitochondrial respiratory dysfunction (Figure 5E).
These results indicate that Alda-1 has no other targets in
mitochondrial protection except interacting with ALDH2.

4-HNE Is Increased Under Hypoxia/
Reoxygenation and Promotes
Mitochondrial ROS Production
We further examined whether the effect of ALDH2 on inhibiting
mitochondria ROS production during hypoxia/reoxygenation
was attributed to its enzymatic function against toxic aldehyde
overload. 4-HNE, a representative substrate of ALDH2, was
selectively investigated. The 4-HNE-protein adducts were
increased 2.1-fold after 4 h of hypoxia followed by 2 h of
reoxygenation, which were distributed in both the
mitochondria and the cytoplasm (Figure 6A and
Supplemental Figure 5). Importantly, 4-HNE increased the
levels of mitochondrial ROS 3.2-fold (Figure 6B). Since
previous evidence has shown that the accumulated succinate is
the main driver of mitochondrial ROS production (Chouchani
et al., 2014), we hypothesized that 4-HNE may interfere with this
process. We observed that the levels of mitochondrial ROS were
aggravated by addition of succinate during hypoxia/
reoxygenation (Figure 6C), which were blocked by dimethyl
malonate (DMM), a membrane-permeable precursor of the SDH
competitive inhibitor and SDH is a critical enzyme responsible
for succinate generation (Figure 6D). It was interesting that 4-
HNE stimulation resulted in the elevated succinate accumulation
in a concentration-dependent manner (Figure 6E) and increased
mitochondrial membrane potential (Figure 6F). Additionally,
augmented SDH carbonylation was observed with 4-HNE
treatment (Figure 6G). Treatment with DMM inhibited 4-
HNE-induced increase of mitochondrial ROS levels (Figure
6B). Taken together, these data suggest that aldehydes play an
essential role in mediating succinate accumulation and
mitochondrial ROS production, which may explain why
enhancement of ALDH2 inhibits mitochondrial ROS
production during hypoxia/reoxygenation (Figure 7).
DISCUSSION

In this study, we demonstrate that enhanced activity or expression
of ALDH2 attenuates myocardial dysfunction, cardiomyocyte
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death, and mitochondrial injury in a rat cardiac arrest model.
Importantly, ALDH2 restores 72-h myocardial contractile
function and substantially improves the survival rate after
cardiac arrest. In the mechanistic studies, we reveal that
aldehydes, 4-HNE, increased after ischemia/reperfusion injury
which promotes succinate accumulation and mitochondrial ROS
production. By clearing 4-HNE, ALDH2 suppresses mitochondrial
ROS. Therefore, our results clearly suggest the protective role of
ALDH2 in post-cardiac arrest myocardial dysfunction through a
novel mechanism of suppressing aldehydes-mediating
mitochondrial ROS production.
Frontiers in Pharmacology | www.frontiersin.org 9171
We used the asphyxia-induced cardiac arrest model in this
study which is a well-established model to study cardiovascular
dysfunction after cardiac arrest and the baseline cardiovascular
parameters in this study are consistent with previous reports
(Huang et al., 2007; Huang et al., 2008; Oh et al., 2017). We
evaluated the effect of ALDH2 on post-cardiac arrest myocardial
dysfunction through either upregulation of ALDH2 enzymatic
activity or cardiac specific overexpression of ALDH2 in the
animal studies. The cardioprotective performance of ALDH2
was established through these complete evaluations. Therefore,
the beneficial role of ALDH2 in heart diseases is extended to the
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FIGURE 4 | The effect of cardiac overexpression of ALDH2 on post-cardiac arrest myocardial dysfunction and mitochondrial structural damage. (A) Representative
immunoblots and quantification of ALDH2 expression in the liver, skeletal muscle, and heart tissue (n = 5 animals per group). **P < 0.01 versus AAV9-Veh group.
(B) Left ventricular EF within 4 h after ROSC in AAV9-Veh+CA-CPR and AAV9-ALDH2+CA-CPR group (n = 7–8 animals per group). *P < 0.05 versus AAV9-Veh
+CA-CPR group. (C) Representative photographs and quantification of mitochondrial morphology by TEM examination at 1 h after ROSC (n = 3 animals per group).
Scale bar = 1 mm. ***P < 0.001 versus Naïve group; ###P < 0.001 versus AAV9-Veh+CA-CPR group. (D) Representative photographs of dihydroethidium (DHE)
staining at 4 h after ROSC (n = 4 animals per group). Scale bar = 100 mm. *P < 0.05, ***P < 0.001 versus Naïve group; ###P < 0.001 versus AAV9-Veh+CA-CPR
group. (E) Representative immunoblots and quantification of 4-HNE-protein adducts at 4 h after ROSC (n = 4 animals per group). Myocardial function between
groups was compared by Student’s t-test and time-based measurements within each group were compared by repeated-measures ANOVA. The mitochondrial
morphology, DHE intensity, and 4-HNE-protein adducts between groups were compared by ANOVA with Tukey’s post hoc test. Data are presented as mean ±
SEM. **P < 0.01 versus naïve group; #P < 0.05 versus AAV9-Veh+CA-CPR group.
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life-threatening cardiac arrest thus far. In addition, the unifying
characteristics of these strategies are that the interventions were
applied before the restoration of blood flow to the myocardium
in rats subjected to cardiac arrest (Eltzschig and Eckle, 2011; Patil
et al., 2015). While pharmacologic interventions before cardiac
arrest are impossible due to the unexpected occurrence of cardiac
events in routine settings, our results offer an original concept
that therapies targeting ALDH2 in treating cardiac arrest could
be initiated at an early time window, e.g., during basic life
Frontiers in Pharmacology | www.frontiersin.org 10172
support. It is notable that although the mechanisms by which
Alda-1 increases ALDH2 activity have been clarified in the
previous literature (Perez-Miller et al., 2010), we first showed
the specificity of Alda-1 on ALDH2, especially in mitochondrial
protection. Our results suggest it is worth the effort to translate
Alda-1 into clinical therapies or to explore new candidates which
can enhance ALDH2 activity.

There are several other potentially therapeutic approaches
that have been shown to be effective in improving post-cardiac
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FIGURE 5 | The effect of Alda-1 on mitochondrial ROS levels and mitochondrial energy generation capacity during hypoxia/reoxygenation (H/R). (A–C) Data are
from H9c2 cells and are presented as mean ± SEM. (A) Representative photographs and quantification of mitochondrial ROS levels (n = 3 samples per group). Scale
bar = 250 mm. ***P < 0.001 versus Con group; ###P < 0.001 versus H/R group. (B) The levels of cellular ATP (n = 3 samples per group). **P < 0.01, ***P < 0.001
versus Con group; ##P < 0.01 versus H/R group. (C) Mitochondrial respiratory function evaluated by OCR and quantification of maximal OCR (n = 3 samples per
group). The maximal OCR was calculated by subtracting non-mitochondrial respiration rate (the final rate after Rot/Ant) from the maximal FCCP rate. *P < 0.05
versus H/R group. (D, E) Data are from primary cardiomyocytes isolated from adult male WT mice and ALDH2 KO mice, and are presented as mean ± SEM.
(D) Representative photographs and quantification of mitochondrial ROS levels (n = 3 samples per group). Scale bar = 250 mm. ***P < 0.001 versus WT group; ###P
< 0.001 versus WT+H/R group. (E) Mitochondrial respiratory function evaluated by OCR and quantification of maximal OCR (n = 5–6 samples per group). *P < 0.05,
**P < 0.01 versus WT+H/R group. Group comparisons were performed by ANOVA with Tukey’s post hoc test or Student’s t-test.
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arrest myocardial dysfunction. Pharmacological inhibition of
mitochondrial permeability transition pore with cyclosporine A
at the onset of resuscitation or after ROSC preserves myocardial
function and attenuates post-cardiac arrest myocardial injury in
the rabbit and rat models of cardiac arrest (Cour et al., 2011;
Knapp et al., 2015). Natural hibernation signaling central
mediator pentazocine, a d-opioid receptor agonist, improves
cardiac index after ROSC, which is returned to ~95% of
baseline in a rat cardiac arrest model (Fang et al., 2006). In
Frontiers in Pharmacology | www.frontiersin.org 11173
this study, we provide a new target for attenuating post-cardiac
arrest myocardial dysfunction, which exhibits similar effects with
previous studies. This evidence is all from animal studies;
however, whether anyone could protect human victims of
cardiac arrest requires further investigation.

We observed 4-HNE-overload and mitochondrial injury in
heart after cardiac arrest. Aldehydes were found in heart and
brain after cardiac arrest as reactive stress markers, however how
aldehydes lead to cardiac injury and how to clear them were still
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FIGURE 6 | The effect of 4-HNE on mitochondrial ROS levels, succinate accumulation, mitochondrial membrane potential and SDH carbonylation. (A) Representative
immunoblots and quantification of 4-HNE-protein adducts under hypoxia/reoxygenation (H/R) (n = 3 samples per group). (B) Representative photographs and quantification of
mitochondrial ROS levels under the treatment of 4-HNE (40 mM) and 4-HNE (40 mM) +dimethyl malonate (DMM) (n = 3 samples per group). (C, D) The mitochondrial ROS
levels after the addition of succinate or dimethyl malonate (DMM) during hypoxia/reoxygenation (H/R) (n = 4 samples per group). (E) The levels of succinate under the
treatment of 4-HNE (n = 3 samples per group). (F) The quantification of mitochondrial membrane potential under the treatment of 4-HNE (40 mM) (n = 3 samples per group).
(G) Representative immunoblots and quantification of SDH carbonylation under the treatment of 4-HNE (40 mM) (n = 3 samples per group). Group comparisons were
performed by ANOVA with Tukey’s post hoc test or Student’s t-test. Data are presented as mean ± SEM. *P < 0.05, ***P < 0.001 versus Con group; #P < 0.05 versus Con
+4-HNE group or H/R group; ###P < 0.001 versus H/R group.
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indefinite (Hayashida et al., 2012; Liu et al., 2016). Mitochondrial
damage in heart was observed from 1 min to 1 h after ROSC
(Tsai et al., 2011; Huang et al., 2015). We found that
mitochondrial ROS was involved in the mitochondrial
dysfunction, impaired mitochondrial morphology, and
cardiomyocytes apoptosis. Additionally, mitochondrial ROS
were able to drive both acute emergent events, such as
electrical instability responsible for sudden cardiac arrest, and
chronic heart failure remodeling (Dey et al., 2018). However,
protective treatments specifically targeted to mitochondria are
still under study (Murphy, 2016; Dey et al., 2018). In this study,
we found that ALDH2 could reduce mitochondrial ROS,
therefore protecting mitochondria and heart after cardiac arrest.

Additionally, we provided a new understanding about the
mechanisms of mitochondrial ROS production after cardiac
arrest. In the present, there has no agreed conclusion about how
mitochondrial ROS are produced. Some people believed that
electron “leakage” from damaged mitochondrial electron
transport chain during ischemia/reperfusion constituted a
major source of mitochondrial ROS (Han et al., 2008).
Recently, it was reported that there was a common pathway,
that succinate oxidation and a high mitochondrial membrane
potential were two essential requirements for mitochondrial
ROS production (Chouchani et al., 2014; Chouchani et al.,
2016; Mills et al., 2016). In this study, we found that 4-HNE
mediate mitochondrial ROS production and amplify the ROS-
induced ROS systems. 4-HNE is one of the lipid peroxidation-
derived aldehydes which has been most intensively studied. We
observed the 4-HNE could induce the carbonylation of SDH
which is a critical enzyme responsible for succinate generation.
Additionally, 4-HNE promoted succinate accumulation and led
to increase in mitochondrial membrane potential and
mitochondrial ROS levels. These findings provide novel
evidence for the role of aldehydes in mitochondrial
ROS production.
Frontiers in Pharmacology | www.frontiersin.org 12174
Several limitations should be considered. Firstly, although we
identify the significant improvement of ALDH2 on post-cardiac
arrest myocardial dysfunction and 72-h survival rate in a rat
cardiac arrest model, we do not assess the long-term outcome.
Secondly, we are unable to determine definitively whether the
protective effect of ALDH2 is through suppressing mitochondrial
ROS production during cardiac arrest due to the technique
challenge for detecting mitochondrial ROS in living organisms
as accurately as in cells. Thirdly, we did not test the dose-
response study or more therapeutic windows within which
enhancing ALD2 activity is beneficial after cardiac arrest. Thus,
further investigations are needed to answer these questions.

In summary, we demonstrate that enhanced activity or
expression of ALDH2 reduces cardiomyocyte death and
mitochondrial injury, attenuates post-cardiac arrest
myocardial dysfunction, and improves 72-h survival rate in a
rat cardiac arrest model. Our results also imply that the
protective role of ALDH2 may be through suppressing 4-
HNE-mediating mitochondrial ROS production. These
findings suggest therapeutic targeting ALDH2 would provide
an important approach for treating post-cardiac arrest
myocardial dysfunction and warrants clinical validation.
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FIGURE 7 | The proposed molecular mechanisms of the protective effect of ALDH2 on post-cardiac arrest myocardial dysfunction. The aldehydes, e.g. 4-HNE,
which are accumulated during ischemia/reperfusion result in mitochondrial ROS (mROS) burst. The latter triggers a series of orchestrated events including reduced
mitochondrial respiratory capacity, reduced ATP generation, increased mitochondrial structure damage, and cardiomyocyte death, thereby contributing to myocardial
dysfunction. Evidence from this study show that targeting ALDH2 would provide an important approach for treating post-cardiac arrest myocardial dysfunction
through inhibiting mitochondrial ROS production.
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Bazedoxifene Attenuates Abdominal
Aortic Aneurysm Formation via
Downregulation of Interleukin-6/
Glycoprotein 130/Signal Transducer
and Activator of Transcription 3
Signaling Pathway in Apolipoprotein
E–Knockout Mice
Dan Yan1,2†, Haiyan Ma1,3†, Wei Shi1, Pengcheng Luo1, Tianshu Liu1, Junyi Guo1,
Maocai Zhai1, Jingwen Tao1, Shengqi Huo1, Chenglong Li4, Jiayuh Lin5, Sheng Li1,
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People’s Hospital of Shangqiu, Shangqiu, China, 4 Department of Medicinal Chemistry, College of Pharmacy, University of
Florida, Gainesville, FL, United States, 5 Department of Biochemistry and Molecular Biology, University of Maryland School of
Medicine, Baltimore, MD, United States

Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by
aortic dilatation and predominantly affects an elderly population. Accumulating evidence
suggests that Interleukin-6 (IL-6) and the signal transducer and activator of transcription 3
(STAT3) play an important role in formation of AAAs. However, it remains unclear whether
Bazedoxifene (BAZ) could suppress the activation of IL-6/GP130/STAT3 in vascular cells
and the formation of AAA. Here we explored the effect of BAZ on AngII-stimulated AAA
formation. ApoE–/– mice infused with AngII for 28 days using osmotic minipumps were
treated with placebo or 5mg/kg BAZ. In our results most of the AngII-induced mice
developed AAA with exacerbated inflammation, degradation of elastin fibers, STAT3
phosphorylation, and increased expression of matrix metalloproteinases (MMPs). These
effects were markedly attenuated by BAZ. Furthermore, BAZ suppressed the stimuli-
induced (IL-6 or AngII) expression of P-STAT3, MMP2 and MMP9 in vascular smooth
muscle cells (VSMCs). BAZ inhibited wound healing, colony formation and suppressed
STAT3 nuclear translocation in vitro. In conclusion, these results indicated that BAZ
downregulated IL-6/GP130/STAT3 signaling and interfered with AAA formation induced
by AngII in ApoE–/– mice, which indicates a novel potential strategy for the prevention and
therapy of AAA.
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INTRODUCTION

Abdominal aortic aneurysm (AAA) is a potentially life-
threatening degenerative vascular disease affecting 6% to 9% of
men over the age of 65 years, with an annual death toll of more
than 15,000 (Baxter et al., 2008; Wang et al., 2013; Argyriou et al.,
2018). Although in most patients no symptoms manifest, AAA
progresses over time and eventually ruptures, leading to a high
mortality rate (Hoornweg et al., 2008; Ohno et al., 2018).
Currently, there is no pharmaceutical strategy that diminishes
aneurysm progression during the early stages. Surgery and
endovascular repair with stents are the main treatments for
AAA (Wang et al., 2013; Ijaz et al., 2016). There is an existing
gap in the study of the occurrence and development of AAA,
suggesting that exploring potential mechanisms could play a
critical role in the prevention and treatment of abdominal aortic
aneurysm in clinical work.

The formation of AAA is a complex process, involving
remodeling of the extracellular matrix (ECM), chronic
inflammation and the degradation of elastin fibers regulated by
matrix metalloproteinases (Nordon et al., 2011). A number of
reports have demonstrated an increased expression of matrix
metalloproteinases (MMPs) in AAA and genetic variants have
been proposed to be associated with AAA (Dilme et al., 2014).
MMPs, particularly MMP2 and MMP9, degrade the extracellular
matrix and elastic fibers leading to the development and
progression of AAA (Dilme et al., 2014; Ghosh et al., 2015).

Recently, aortic wall inflammation, which is considered to be the
most significant causative factor contributing to the degradation and
remodeling of the ECM, has been highlighted in the development
and progression of AAA (Ohno et al., 2018). Interleukin-6 (IL-6),
one of the proinflammatory cytokines, exerts its effect via the IL-6
receptors (IL-6R) and induces homodimerization with its co-
receptor gp130, resulting in the phosphorylation of the
transcription factor STAT3 (Ferreira et al., 2013). It has been
reported that IL-6 signaling – including the expression of IL-6
and phosphorylation of STAT3 (P-STAT3) – is over-activated in
AAA lesions (Liao et al., 2012). Genetic studies have shown an
association between genetic variation in IL-6R and the risk of
developing AAA (Harrison et al., 2013), indicating that targeting
IL-6R may be a useful strategy in combatting AAA. These studies
suggest that the IL-6/GP130/STAT3 signaling pathway may play an
important role in the formation and development of AAA.
Inhibition of the IL-6/GP130 interface, and hence influencing the
phosphorylation of STAT3, may be a new therapeutic option
for AAA.

Bazedoxifene (BAZ) has been approved by the FDA (Food and
Drug Administration) for the prevention and treatment of
postmenopausal osteoporosis. In our previous study, using
multiple ligand simultaneous docking (MLSD) and drug
repositioning approaches, we identified that BAZ exhibited a new
function targeting the IL-6/GP130 protein-protein interface (Li
et al., 2014). BAZ could suppress tumor growth and induce
apoptosis in human cancer cells and in a tumor xenograft mice
model (Li et al., 2014; Chen et al., 2018). Whether BAZ is effective at
suppressing IL-6/GP130/STAT3 signaling or inhibiting the
formation of AAA is still unclear. Herein, we reported the
Frontiers in Pharmacology | www.frontiersin.org 2178
suppressive effect of BAZ on the formation and development of
AAA. We found that BAZ attenuated the development and severity
of AngII-stimulated AAA in ApoE−/− mice and that BAZ could
suppress the phosphorylation of STAT3 and the expression of
MMP2 and MMP9. Moreover, a similar effect of BAZ was shown
in mouse vascular smooth muscle cells (VSMCs). These results may
indicate that BAZ exhibits inhibition against the IL-6/GP130/
STAT3 signaling pathway and may be promising for use in the
prevention or treatment of AAA patients in future.
MATERIALS AND METHODS

Animal Experiment
All animal experiments were carried out in accordance with
National Institute of Health guidelines and approved by the
Experimental Animal Research Committee of Tongji Medical
College, Huazhong University of Science and Technology. Mice
were anesthetized using 2% isoflurane mixed with 0.5-1.0 L/min
100% O2. We used a classic AAA model in which a continuous
AngII infusion in 8-week-old male apolipoprotein-E-deficient
(ApoE−/−) mice induces AAA formation after implantation by
subcutaneously implanted mini-osmotic pumps (Model 2004,
Alzet, CA, USA) (Vorkapic et al., 2016). All ApoE−/−mice were
randomly divided into three groups: control (n=12), AngII
(n=13), BAZ (n=12). AngII powder (Sigma) was solubilized in
0.9% sodium chloride and loaded into mini-osmotic pumps for
systemic hormone delivery (1000 ng/kg/min infusion rate and
28-day duration) following subcutaneous implantation in the
dorsum of mice. ApoE−/− mice in the control group were infused
with 0.9% NaCl. The AngII-infused mice were then randomized
into two groups (both were fed a normal diet), one group was
treated with a vehicle control and the other was given 5mg/kg
BAZ (purchased from Cayman Chemical Company, Ann Arbor,
Michigan, USA) every day during Ang II infusion. BAZ was
dissolved in a PBS solution containing 20% hydroxypropyl-beta-
cyclodextrin (HPBCD) and 5% DMSO. After 28 days, aorta
tissues were harvested from euthanized mice.

Histology
The aortas were embedded in paraffin and cut into 5–10mm
cross-sections, then stained with hematoxylin and eosin (H&E),
or elastica van Gieson (EVG) staining for elastin.

Immunohistochemistry
The tissue sections were deparaffinized and dehydrated by
fractionation using xylene and ethanol. The sections were
incubated for 1h at room temperature or overnight at 4°C with
the following primary antibodies: IL-6 (anti-rabbit, D220828,
Sangon, Shanghai, China), P-STAT3 (Tyrosine 705, #9145, CST),
MMP2 (sc-8835, Santa Cruz), MMP9 (sc-6841, Santa Cruz), a-
smooth muscle actin (a-SMA, Clone 1A4, DAKO) and CD68
(#76437, CST). After washing with PBS, tissue sections were
incubated with biotinylated secondary antibody for 90 min at
room temperature. Then an avidin-biotin peroxidase complex
was added for another 30 minutes. Then diaminobenzidine was
April 2020 | Volume 11 | Article 392

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Yan et al. BAZ Attenuates AngII–Induced Aneurysms
added as a substrate that reacts with immune cells to make stain
and then the tissue sections counterstained with hematoxylin.

Cell Culture and Treatment
The mouse vascular smooth muscle cell (VSMC) line was
purchased from American Type Culture Collection. All cells
were cultured in a humidified 37°C incubator grown with 5%
CO2, using DMEM (Dulbecco’s modified Eagle’s medium)
containing 10% fetal bovine serum (FBS, Gibico) and 1%
penicillin/streptomycin (Sigma).

Western Blot Analysis
After pretreatment with different concentrations of BAZ (10, 15,
20 mmol/L) or DMSO for 2h, VSMCs were induced by IL-6 or
AngII for 30 minutes or 12h before collection. The collected cells
lysed in a modified RIPA buffer containing phosphatase
inhibitors and protease inhibitors. The protein concentration
was detected by a BCA protein assay kit. Proteins in each sample
were subjected to SDS-PAGE, then the following primary
antibodies were used for western blotting: MMP2 (sc-8835,
Santa Cruz), P-STAT3 (Tyrosine 705, #9131, CST), MMP9 (sc-
6841, Santa Cruz), and GAPDH (#2118, CST). Blots were
developed with horseradish peroxidase-conjugated conjugated
secondary antibodies and protein detection was performed using
an enhanced chemiluminescence (ECL) western blot kit
according to the manufacturer’s instructions.

ELISA
Vascular smooth muscle cell lines were seeded in 48-well plates
(3×104 cells/well) and starved for 10h. Cells were treated with
AngII (10-7mol/L) or DMSO for 0h, 2h, 4h, 8h, 12h or 24h. Then
cell culture medium was collected for ELISA (Rat intact PTH
ELISA Kit, Elabscience, Wuhan, China).

Colony Formation Assay
VSMCs were plated with 1×103 cells/well in 6-well plates then
BAZ (15, 20 mM) or DMSO was added for 4 h. After treatment
5000 live cells were reseeded on 10 cm plates with no-drug
medium and incubated for 14 days. Colonies were then washed
with PBS for three times and stained with crystal violet (0.5%),
after fixing with paraformaldehyde (4%) for 20 min. After the
crystal violet was removed, plates were washed with PBS
and dried.

Wound Healing
Approximately 2×105 cells were seeded in 6-well plates. A linear
scratch was generated with a 10-µl pipette tip after the cells
reached 100% confluence and were then washed with PBS to
remove non-adherent cells. After treatment with 10mmol/L or
15mmol/L BAZ or DMSO for 2 hours, the medium was changed
and fresh medium containing 10% FBS was added. The distance
migrated was observed after 12 h or 24 h under the microscope.
The cell migration ratio was calculated as following: Cell
migration ratio (%) = (specific day wound surface area − initial
wound area)/initial wound area × 100%.
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Immunofluorescence Staining Analysis
VSMCs cells were seeded into 6-well plates with pre-placed sides.
After the cells are attached, the cells were pretreated with BAZ for
2h, then stimulated by IL-6 for 30 mins. After processing, the cells
were washed and then fixed with paraformaldehyde for 15
minutes at room temperature. After two washes with PBS, a
PBS buffer containing 0.3% Triton X-100 and 5% normal goat
serum was added to permeabilize cells at room temperature for
one hour. Next the cells were incubated with a polyclonal rabbit
antibody P-STAT3 (1:50 dilution) or STAT3 (1:100 dilution)
overnight at 4°C. The cells were washed with a PBS buffer
supplemented with 0.1% Tween-20 three times after the
overnight incubation. Subsequently, the cells were incubated
with Cy3-conjugated anti-rabbit secondary antibody (1:100;
Jackson ImmunoResearch Laboratories, West Grove, PA) at
room temperature for 1 h and then stained with nuclear
−specific DAPI (vector Laboratories, Burlingame, CA, USA) for
5 min. Digital images were captured by fluorescent microscopy.

Quantitative PCR Analysis
VSMCs were treated with BAZ (20 mmol/L) or DMSO for 2
hours. Then AngII or IL-6 was added for 30 minutes or 4 hours
before cells were collected. Total RNA was extracted with an HI
Pure RNA extract Kit (Magen, China) and converted to cDNA
using a Rever Tra Ace qPCR RT kit (TOYOBO, Japan). The
silencing efficiency was detected by RT-PCR performed on the
ABI Step One Plus (Applied Biosystems, USA) with SYBR green
PCR mix (TOYOBO, Japan) according to the manufacturer’s
instructions. The specific oligos used in the study were as follows:
MMP2 (forward): 5′-ACACCAAGAACTTCCGACTATCCA
ATG-3′, MMP2 (reverse): 5′-CAGTACCAGTGTCAGTATCA
GCATCAG -3′; MMP9(forward): 5′-CTCCTGGTGCTCCTGG
CTCTAG-3′, MMP9(reverse): 5′-GTGTAACCATAGCGGTAC
AGGTAATCC-3′, GAPDH (forward): 5′-AGTGCCAGCCTCG
TCTCATA-3′, GAPDH (reverse): 5-′AGAGAAGGCAGCCC
TGGTAA-3′. The fold change of relative mRNA expression
was calculated using the 2-DDCt method.

Cell Viability Assay
Cell Counting Kit-8 (CCK-8) assay kits (Promoter
Biotechnology Ltd, Nanjing, China) were used to detect the
cell viability. Cells were planted in a 96-well plate with 1×104

cells/well. After attachment, VSMCs were treated with different
dosages of BAZ (5, 10, 15, 20 µM) or DMSO for 24 h. CCK‐8 was
added (10 mL/well), and the absorbance was measured at a
wavelength of 450 nm.

Statistical Analysis
Data were presented as the mean ± SEM. The difference between
groups was evaluated by one-way ANOVA (Analysis of variance)
with Bonferroni’s post hoc. Statistical significance was defined as
P < 0.05 or P < 0.01. Statistical analysis was performed using
SPSS software (version 13.0). All experiments were performed at
least three times independently.
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RESULTS

BAZ Attenuates the Formation and
Severity of Aneurysms of AngII-Induced
AAA in ApoE−/− Mice
We detected the suppressive effect of BAZ in the development of
abdominal aortic aneurysm in AngII-induced mice. As shown in
Figure 1A, compared to the AngII-induced group, BAZ
significantly attenuated the formation and severity of
abdominal aortic aneurysm. An aortic diameter increase of
approximately 50% was defined as the development of AAA
(Tsai et al., 2013). As shown in Figure 1C, the incidence of AAA
was calculated from all the animals in each group. Continuous
infusion of AngII in mice increased the incidence of AAA (7/13,
53.84%) compared with the control group (0/12, 0%). However,
the incidence of AAA significantly decreased with BAZ
treatment (3/12, 25%) in comparison to the AngII group (7/13,
53.84%). Moreover, the external diameter of the aorta was also
attenuated by treatment with BAZ when compared with AngII-
induced group in APOE–/–, as shown in Figure 1D. During the
intervention period of 28 days, there were four deaths (4/13,
30.77%) in the AngII group, three deaths (3/12, 25%) in the BAZ
group and no deaths or aneurysms were observed in the control
group (Supplementary Figure 1). The survival curves were
analyzed with Logrank test. The mortality rate of AngII-
induced mice was slightly decreased by treatment with BAZ,
when compared to the AngII group at the end of the experiment
(day 28). Although there was no significant difference between
the AngII and BAZ groups (P=0.23). These results indicated that
treatment with BAZ attenuated the formation of AAA in Ang II-
induced mice and decreased the expansion of the aorta. The
structure of BAZ was shown in Figure 1F.

The part of the aortas with maximum diameter were collected
and embedded. H&E staining of cross-sections showed that
AngII infusion led to a significant thickening of the abdominal
aortic wall. While BAZ treatment markedly reduced wall
thicknesses (Figure1Ba). The relative thickness of the aortic
wall was further determined. As shown in Figure1E, Baz
treatment significantly decreased the aortic wall thickness
compared with AngII. In addition, BAZ treatment significantly
reduced elastin degradation in AAA lesions of AngII-infused
ApoE−/− mice. EVG stained sections suggested that elastin fibers
exhibited apparent discontinuity and disintegration in the aortic
wall of the AngII-infused mice. While treatment with BAZ
obviously reversed the degradation of elastin induced by AngII
(Figure 1Bb). These results indicated that BAZ could
significantly attenuate the development and severity of
aneurysms in AngII-infused ApoE−/− mice.

BAZ Inhibits Expression of P-STAT3,
MMPs and Attenuates Aortic Wall
Remodeling and Inflammation in AngII
Treated ApoE−/− Mice
It has been reported that AngII-infused ApoE knock-out mice
mostly present AAAs around the suprarenal area immediately distal
to the branch of the renal artery (Daugherty et al., 2006). So, we
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selected aortic sections from the aneurysm-prone areas for
histological character ist ics analysis . Representative
immunohistochemical staining was shown in Figure 2. To detect
the effect of BAZ on IL-6/GP130/STAT3 signaling, the expression of
P-STAT3 in abdominal aortas of three groups of mice was
compared. Western blot analysis showed that AngII infusion led
to increased phosphorylation of STAT3 at Tyr705, however, BAZ
could inhibit the expression of P-STAT3 (Figures 1G–I).
Immunohistochemistry showed similar results. As in Figure 2Ab,
the expression of P-STAT3 was increased (brown nuclei represent
P-STAT3 positive) in the vascular wall of AngII-induced mice. BAZ
could decrease the expression of P-STAT3. As shown in Figure
2Aa, the level of IL-6 was increased in the vessel wall of abdominal
aortic aneurysms in AngII-infused ApoE-/- mice compared to
similar sections of aorta in saline-infused control mice. While
treatment with BAZ could significantly decrease the expression of
IL-6 in the same vessel wall section of aortas. Simultaneously, we
also tested the expression of IL-6 in mouse serum via ELISA. As
shown in Supplementary Figure 2, the expression of IL-6 in serum
was increased dramatically in Ang II-induced mice. However, BAZ
treatment deceased the expression of IL-6 in serum compared with
only AngII-infused mice. MMPs, especially MMP2 and MMP9,
whose expressions were increased in the abdominal aortas of AngII-
induced ApoE−/− mice, participate in the process of AAA
development. Immunohistochemical staining and western blotting
showed that administration of BAZ significantly down-regulated
the expression of MMP2 and MMP9 (Figures 1G, J, K, 2B).
Abundant infiltration by CD68-positive macrophages was
detected in the adventitia and media of the aortic aneurysms
from the AngII-infused mice. Increased expression of CD68 was
detected in the suprarenal section of aortas in AngII-induced group
without BAZ, while the expression of CD68 was significantly
inhibited by BAZ (Figure 2C). Hyperproliferation of VSMCs in
the aortic wall plays an important role in AAA. Our results
indicated that BAZ inhibited the over-proliferation of VSMCs in
AAA lesions of AngII-infused ApoE–/– mice. As shown in Figure
2D, treatment with BAZ decreased the expression of a-SMA when
compared with AngII-infused mice.

Bazedoxifene Inhibits the Phosphorylation
of STAT3 Induced by IL-6
Vascular smooth muscle cells, which act as a major component
of the aortic wall, play an important role in AAA (Yao et al.,
2019). VSMCs were used to test the effect of BAZ in vitro. Our
results showed that Interleukin-6 could induce the
phosphorylation of STAT3 in VSMCs (Figures 3A, B). BAZ
inhibited the phosphorylation of STAT3 induced by IL-6 but had
no significant effect on the overall expression of STAT3 in
VSMCs (Figures 3A–D).

Bazedoxifene Suppresses the
Phosphorylation of STAT3 Induced by
AngII
We also found that AngII could induce phosphorylation of
STAT3 in VSMCs (Figures 3E, F). Similarly, BAZ, which has
been reported to inhibit the IL-6/GP130 interface, could also
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suppress the phosphorylation of STAT3 as induced by AngII and
without an effect on overall STAT3 levels (Figures 3E–H).

To explore the mechanism, we first detected the effect of
AngII on IL-6 secretion. When the cells were stimulated with
AngII, the concentration of IL-6 was increased in the
Frontiers in Pharmacology | www.frontiersin.org 5181
supernatant. This result suggested that AngII could induce the
secretion of IL-6 in VSMCs (Figure 3I). It has been reported that
in the classic IL-6 signaling pathway IL-6 binds to the
membrane-bound IL-6 receptor (IL-6R) and then recruits
GP130 to form the IL-6/IL-6Ra/GP130 heterotrimer which is
A B

C D E

F G H

I J K

FIGURE 1 | The structure of BAZ and the effect of BAZ on the development of Ang-II-induced abdominal aortic aneurysm (A) Morphometrical change of AAA in
ApoE–/– mice. Representative images of macroscopic features in aneurysms from sacrificed mice after 28 days. Scale bar denotes 2 mm. (B) Histological change of
aneurysms in mice shown by hematoxylin eosin (H&E) (Ba) and elastin van Gieson (EVG) (Bb) staining. Scale bar denotes 400 mm. (C) The incidence of AAA was
calculated from all of the animals in each group. (D) BAZ treatment significantly deceased the external diameter of the aorta (n=9). (E) Relative aortic wall thickness of
each group (n=9). (F) The structure of Bazedoxifene (BAZ). (G) Western blots for the expression of P-STAT3, T-STAT3, MMP2 and MMP9 in mice aneurysms. (H)
Relative gray intensity to STAT3 and (I–K) relative gray intensity to GAPDH was calculated (n = 3). Data were expressed as mean ± standard error of the mean. #P <
0.05 compared with the control group, *p < 0.05, **p < 0.01 compared with the AngII group.
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followed by the activation and phosphorylation of STAT3.
However, in IL-6 trans signaling IL-6 can also bind to soluble
forms of IL-6R (sIL-6R) and then bind to gp130 (Ferreira et al.,
2013; Aparicio-Siegmund et al., 2019). So we further detected the
effects of sIL-6R on IL-6 or Ang II induced STAT3
phosphorylation. As shown in our results, sIL-6R could slightly
decrease IL-6-induced STAT3 phosphorylation at lower
concentrations but increased STAT3 phosphorylation at higher
concentrations (Figures 3J–L). It was very interesting to find that
the phosphorylation of STAT3 induced by AngII could be
inhibited by sIL-6R (Figures 3N–P). The density of pSTAT3
was normalized by the total density of STAT3 (Figures 3D, H,
M, Q). These data indicated that AngII-induced activation of
STAT3 was at least partially mediated by the IL-6
signaling pathway.

BAZ Suppresses the Expression of MMP2,
MMP9 Induced by IL-6 and AngII
In our results, western blotting showed that BAZ suppressed the
expression of MMP2 and MMP9 induced by IL-6 and AngII
(Figures 4A, D). Relative gray intensity to GAPDH was shown
in Figures 4B-F. Moreover, we found the mRNA expression of
MMP2 and MMP9 induced by IL-6 and AngII was decreased by
BAZ (Figures 4G–J).

BAZ Inhibits STAT3 Activation in the
Nucleus in VSMCs
After pretreatment with BAZ for 2 hours, VSMCs were induced
with IL-6 for another 30 minutes and P-STAT3 or STAT3 was
detected by immunofluorescence staining. After stimulation by IL-
6, STAT3 was phosphorylated and translocated into the nucleus in
VSMCs. However, most of the STAT3 was retained in the
Frontiers in Pharmacology | www.frontiersin.org 6182
cytoplasm of cells treated with BAZ (Figure 5B). In addition, IL-
6 induced STAT3 phosphorylation in the nucleus, which was
blocked by BAZ in VSMCs (Figure 5A). Thus, these data
suggested that the suppression of STAT3 phosphorylation by
BAZ might impair STAT3 transcriptional functions in VSMCs.

BAZ Suppresses Cell Migration, Colony
Forming Capacity and Cell Viability in
VSMCs
STAT3 phosphorylation was involved in the over-activation of
vascular smooth muscle cells. We next evaluated whether BAZ
could inhibit cell migration and colony formation, which are
important processes in the development of abdominal aortic
aneurysms. As shown in Figure 6A, VSMCs were pretreated
with BAZ for 4 h, then the same number of viable cells were
planted at the same cell densities in 10 cm plates. After
incubation for two weeks, cells were stained with crystal violet.
BAZ could clearly inhibit colony formation in VSMCs. Wound
healing assays were used to detect the effect of BAZ on cell
migration in vascular smooth muscle cells. Our results showed
that treatment with BAZ caused a reduction in wound healing
(Figures 6B, C). Meanwhile, the CCK-8 assay suggested that
BAZ suppressed cell viability in VSMCs (Figure 6D). These
results may indicate BAZ could suppress the formation of AAA
via the inhibitory effect on over-proliferation in VSMCs.
DISCUSSION

Abdominal aortic aneurysm is a serious vascular disease with a
high mortality rate and no effective therapeutic treatment is
available except for aneurysmectomy (Erbel et al., 2015).
A B

C D

FIGURE 2 | Effect of BAZ on the abdominal aorta via immunohistochemical staining in mice. (A) Expression and distribution of P-STAT3 and IL-6 (both brown-
stained) in cross-sections of aorta from ApoE–/–mice. (B) The expression of MMP2 and MMP9 was detected via immunohistochemical staining in the abdominal
aorta of ApoE–/– mice. (C) Representative immunohistochemical staining of CD68 in aortic cross-sections. (D) Representative images showing a-SMA expression in
aortic cross-sections. The scale depicts 100mm for each interval in A(b) and 200mm in A(a) B, C, D.
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Despite the fact that animal studies have identified several
potential therapeutic targets in the pathogenesis of AAA,
pharmacotherapy for AAA is yet to be established (Baxter
et al., 2008; Ohno et al., 2018). It has been reported that there
was no significant association between AAA progression and the
use of statins, beta blockers, angiotensin-converting enzyme
Frontiers in Pharmacology | www.frontiersin.org 7183
inhibitors or angiotensin II receptor blockers (Baxter et al.,
2008; Kokje et al., 2015), which indicated that there may be
other mechanisms involved in the progression of AAA. In our
results, BAZ could inhibit the activity of the IL-6/GP130/STAT3
signaling pathway and significantly decreased the severity of
AAA in an AngII-induced ApoE−/− mice model. BAZ could also
A B C D

E

I
J

K L M

N O P Q

F G H

FIGURE 3 | BAZ suppresses the phosphorylation of STAT3 induced by IL-6 and AngII in VSMCs. Cells were pretreated with BAZ for 2 hours and then stimulated
with IL-6 (A) and AngII (E), western blotting was used to show the expression of P-STAT3 and STAT3. (I) ELISA was used to exam the effect of AngII on the
secretion of IL-6 in vitro. (J) The effect of sIL-6R at different concentrations on IL-6 signaling transduction. (N) The effect of AngII or sIL-6R on the expression of P-
STAT3. (B, C, F, G, K, L, O, P) Relative gray intensity to GAPDH was calculated. (D, H, M, Q) Relative gray intensity to T–STAT3 was calculated. Data were
expressed as mean ± standard error of the mean (n = 3). #P < 0.05 compared with the control; *P< 0.05, **P< 0.01compared with IL-6 or AngII.
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inhibit the expression of P-STAT3, MMP2 and MMP9 in vivo
and in vitro. It could also inhibit the proliferation of VSMCs and
maladaptive responses to inflammation which accompanied the
overexpression of pro-inflammatory mediators in vivo (Butoi
et al., 2016; Das et al., 2017). These results suggest that BAZ may
have a protective effect on the treatment of AAA by inhibition of
the IL-6/GP130/STAT3 signaling pathway. That may provide a
new option for the prevention and treatment of AAA.
Frontiers in Pharmacology | www.frontiersin.org 8184
Although the pathogenesis of AAA remains unclear, a large
body of evidence supports the critical role of inflammation (Aoki
et al., 2007). IL-6 as a multicellular cytokine has been reported to
participate in cell proliferation, apoptosis and various
inflammatory responses (Hunter and Jones, 2015). In an
inflammatory response, IL-6 exerts its function through
binding to its receptor (IL-6R, located on cell membranes, or
stays in a soluble state in plasma) by forming a binary complex
A B C

D E
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F

FIGURE 4 | BAZ suppresses the expression of MMP2 and MMP9 induced by IL-6 and AngII in VSMCs. Pretreatment of BAZ for 2 hours suppressed the increase in
both MMP2 and MMP9 expression induced by IL-6 (A) and AngII (D). Relative gray intensity to GAPDH was calculated (n = 3) (B, C, E, F). The mRNA expression of
MMP2 and MMP9 was assessed by qRT-PCR and normalized to GAPDH and is expressed in arbitrary units. BAZ suppressed the mRNA expression of MMP2 and
MMP9 induced by IL-6 (I, J) and AngII (G, H). Data were presented as the mean ± SEM. #P < 0.05 compared with the control; *P< 0.05, **P< 0.01 compared with
IL-6 or AngII.
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and then recruiting glycoprotein 130 (GP130) leading to the
formation of the IL-6/IL-6R/GP130 heterotrimer. The
homodimerization of the IL-6/IL-6Ra/GP130 trimers initiate
an intracellular signaling cascade of phosphorylation of Janus
kinases (JAKs), thereby activating a downstream effector STAT3
via phosphorylation (Li et al., 2014). Genetic and observational
associations imply a link between IL-6 and AAA disease (Hunter
and Jones, 2015). Furthermore, a systematic review and meta-
Frontiers in Pharmacology | www.frontiersin.org 9185
analysis suggested that the IL-6 receptor pathway might be a
causal signaling in human AAA pathogenesis and inhibition of
IL-6R may contribute to AAA treatment (Harrison et al., 2013).
STAT3, one of the significant downstream target genes of IL-6,
has been documented in the pathogenesis of AAA (Ohno et al.,
2018; Yao et al., 2019). It has been reported that an increased
expression of P-STAT3 is identified in AAA tissues compared
with non-aneurysmal controls (Liao et al., 2012). Moreover, in
A

B

FIGURE 5 | BAZ suppresses STAT3 activation in nucleus and the nuclear translocation induced by IL-6 in VSMCs. After pretreatment with BAZ for 2 hours, cells
were stimulated with IL-6 for another 30 minutes, and then STAT3 activation (A) and STAT3 nuclear translocation (B) were detected by immunofluorescence staining
as described. Scale bar represents 200mm.
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our results, BAZ, which has been reported to inhibit the IL-6/
GP130 protein-protein interface, significantly decreased the
severity of AAA in ApoE−/− mice. Furthermore, BAZ could
suppress the phosphorylation of STAT3 in vitro and in vivo.
These results may suggest that the IL-6/GP130/STAT3 pathway
may take a significant role in the pathogenesis of abdominal
aortic aneurysm. More importantly, the inhibition of the IL-6/
GP130/STAT3 pathway might become a new target for the
prevention or treatment of AAA.

A number of studies have shown that AngII induces AAA by
increasing the inflammatory profile, however, its specific molecular
pathway remains unclear (Weiss et al., 2014). Despite the fact that
animal studies have shown that the use of AT1 receptor inhibitors
may protect against abdominal aortic aneurysms, the outcomes of
clinical research has been unsatisfying and often remains
inconsistent (Maekawa et al., 2017). Use of AT1-receptor
antagonists does not affect AAA growth (Weiss et al., 2014). It
indicates that there may be other molecular pathways involved in
the occurrence and development of abdominal aortic aneurysms
induced by AngII. However, our results demonstrated that AngII-
induced activation of STAT3 was mediated by IL-6, at least in part.
We found P-STAT3 induced by AngII could be inhibited by soluble
IL-6 receptors (sIL-6R), a specific constituent of the trans-signaling
of IL-6, which could limit IL-6-induced P-STAT3 at low
concentrations but increase P-STAT3 at higher concentrations.
Frontiers in Pharmacology | www.frontiersin.org 10186
Furthermore, BAZ, which could impede the IL-6/GP130 interface,
could also inhibit the phosphorylation of STAT3 induced by AngII.
These results indicate that IL-6/GP130/STAT3 may participate,
albeit partially, in the response to AngII in VSMCs. This may
provide a theoretical basis for the treatment of AAA by targeting the
IL-6/GP130/STAT3 signaling pathway.

Bazedoxifene has been approved by the FDA for use as a
treatment for osteoporosis in clinics. It has been reported that
BAZ could reduce cerebral aneurysm ruptures in rats in a blood
pressure-independent manner and that BAZ has no significant
effect on blood pressure (Maekawa et al., 2017). Moreover, in our
previous research, we demonstrated that Bazedoxifene could bind to
the GP130 D1 domain and inhibit the IL-6/GP130 protein-protein
interface (Li et al., 2014). Subsequently, it suppresses STAT3
phosphorylation and transcription induced by IL6. Various
studies have shown Bazedoxifene could inhibit tumor growth by
targeting the IL-6/GP130/STAT3 signaling pathway (Wu et al.,
2016; Xiao et al., 2017; Chen et al., 2019; Ma et al., 2019). Based on
our study, we found Bazedoxifene could attenuate the formation
and severity of aneurysms, which may expand the application of
Bazedoxifene to the prevention and treatment of abdominal aortic
aneurysms in clinics. Despite reports that some small molecule
compounds, such as Ursolic acid (Zhai et al., 2018) and S31-201
(Qin et al., 2015), could decrease the incidence and severity of AAAs
by inhibiting the phosphorylation of STAT3 in an AngII-infused
A

B C

D

FIGURE 6 | BAZ inhibits colony formation and wound healing in VSMCs. (A) Cells were pretreated with BAZ (15 or 20 mM) or DMSO for 4 h, then colony formation
was evaluated after two weeks. Scale bar denotes 1 cm. (B) After BAZ treatment for 2h, the migration ability of VSMCs was detected using wound-healing assays.
Scale bar represents 400 mm. (C) Cell migration was assessed. (D) BAZ reduced cell viability of VSMCs. *P< 0.05, **P< 0.01 compared with the control.
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ApoE–/– mouse model, to date no small molecule STAT3 inhibitor
is available for clinical therapy. Compared with these compounds
(which are not used clinically), Bazedoxifene has advantages in
terms of stability, security and oral absorbency. Drug repurposing is
a valuable approach in delivering new AAA therapeutics rapidly
into clinics.

The limitations of our study require consideration. Several
animal models of AAA have been developed in mice including
injury of the aortic wall with calcium chloride or elastase (Patelis
et al., 2017). Compared with other models, the AngII-infused
model supports an imbalance of the renin-angiotensin system in
the pathogenesis of AAA (Zhang et al., 2009). Infusion of AngII
via subcutaneous osmotic minipumps in ApoE–/– mice has also
been shown to result in the formation of AAAs, which could
mimic the inflammatory microenvironment and exhibit many
characteristics of human AAA including rupture of the elastic
layer, activation of matrix metalloproteinases, macrophage
infiltration and so on (Senemaud et al., 2017). Differences
between species and individuals perhaps lead to diverse
consequences. For example, unlike humans, mice often present
suprarenal AAAs and their relevance remains somewhat limited
by their inability to expand indefinitely with time (Patelis et al.,
2017). So further experiments might be needed to evaluate the
effect of BAZ in human AAA. On the other hand, although our
results suggested a significant effect of BAZ on AAA in VSMCs
and in animals, whether the in vivo effect of BAZ was dependent
on the IL-6/GP130/STAT3 signaling pathway was still unclear in
our work due to the complicated mechanisms of AAA.

In summary, we demonstrated that BAZ might play a protective
role in the pathology of AAA in AngII-induced mice. As an FDA-
approved drug with known pharmacokinetics and safety,
Bazedoxifene has great potential to be used in clinics for the
treatment of AAA. Moreover, considering BAZ as a
pharmacological template, we established a basis for increasing
the rate of development of drugs that selectively target the IL-6/
GP130/STAT3 pathway with better bioavailability and fewer side
effects. It may provide a novel strategy for the prevention and
therapy of AAA in clinics.
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FIGURE S1 | Kaplane-Meier curves of the survival of APOE-/-. Data represent the
Kaplan-Meier curve depicting mouse survival. (n=13 for the AngII group, n=12 for
the control group and BAZ group. P=0.23, for AngII vs BAZ, log-rank test).

FIGURE S2 | The expression of IL-6 in mice serum. The expression of IL-6 in mice
serum was decreased by BAZ treatment compared with AngII-induced (n=9). Data
were expressed as mean ± standard error of the mean. #P < 0.05 compared with
the control group, *p < 0.05, compared with the AngII group.
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Diabetes is associated with an increased mortality risk due to cardiovascular
complications. Hyperglycemia-induced oxidative stress underlies these complications,
leading to an impairment in endogenous nitric oxide (NO•) generation, together with
reductions in NO• bioavailability and NO• responsiveness in the vasculature, platelets and
myocardium. The latter impairment of responsiveness to NO•, termed NO• resistance,
compromises the ability of traditional NO•-based therapeutics to improve hemodynamic
status during diabetes-associated cardiovascular emergencies, such as acute myocardial
infarction. Whilst a number of agents can ameliorate (e.g. angiotensin converting enzyme
[ACE] inhibitors, perhexiline, statins and insulin) or circumvent (e.g. nitrite and sGC
activators) NO• resistance, nitroxyl (HNO) donors offer a novel opportunity to
circumvent NO• resistance in diabetes. With a suite of vasoprotective properties and
an ability to enhance cardiac inotropic and lusitropic responses, coupled with preserved
efficacy in the setting of oxidative stress, HNO donors have intact therapeutic potential in
the face of diminished NO• signaling. This review explores the major mechanisms by
which hyperglycemia-induced oxidative stress drives NO• resistance, and the therapeutic
potential of HNO donors to circumvent this to treat cardiovascular complications in type 2
diabetes mellitus.

Keywords: nitric oxide, diabetes, type 2 diabetes, cardiovascular disease, nitroxyl, HNO, nitric oxide resistance
INTRODUCTION

Globally, over 460 million individuals have diabetes, and this figure is projected to increase to 700
million by the year 2045 (Saeedi et al., 2019). It is estimated that 90% of these individuals have type 2
diabetes mellitus (T2DM), and approximately 10% have type 1 diabetes mellitus (T1DM)
(International Diabetes Federation, 2019). The leading cause of morbidity and mortality in
individuals with either diabetes subtype is cardiovascular disease (Htay et al., 2019). Individuals
with diabetes have an elevated risk of coronary artery disease, peripheral vascular disease, ischemic
stroke and heart failure (Almourani et al., 2019). These cardiovascular complications arise largely as
a consequence of hyperglycemia-induced oxidative stress, which impairs nitric oxide (NO•)
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signaling at the level of synthesis and responsiveness (Fiorentino
et al., 2013). This loss in NO• responsiveness, termed ‘NO•
resistance,' results largely due to “scavenging” of NO• by
superoxide and inactivation of its target, soluble guanylyl
cyclase (sGC) (Paolocci et al., 2001a; Worthley et al., 2007;
Ritchie et al., 2017). NO• resistance affects multiple sites in the
cardiovascular system, including the myocardium, vasculature
and platelets (Qin et al., 2020). As such, patients with diabetes fail
to respond to the anti-aggregatory and vasodilator effects of
NO•-based pharmacotherapies during cardiovascular
emergencies, such as acute myocardial infarction, transient
myocardial ischemia and acute decompensated heart failure
(Dautov et al., 2013). Several pharmacotherapies including
statins, some angiotensin-converting enzyme (ACE) inhibitors,
perhexil ine, and insulin (in the presence of severe
hyperglycemia) ameliorate NO• resistance (Chirkov and
Horowitz, 2007), while sGC activators primarily circumvent
the problem (Costell et al., 2012). However, there are
limitations associated with their clinical utility, particularly as
these amelioration strategies are not instantaneously effective,
and thus unsuitable for emergency situations. On the contrary,
nitroxyl (HNO) donors circumvent NO• resistance and thus
promote vasodilation, while uniquely inducing positive inotropic
and lusitropic responses that persist in conditions of oxidative
stress (e.g. heart failure, diabetes) where responses to NO• are
diminished (Paolocci et al., 2003; Chin et al., 2016; Tare et al.,
2017; Qin et al., 2020). Although the aforementioned
cardiovascular changes are associated with both T1DM and
T2DM, due to the prevalence of the latter, this review will
explore the major mechanisms that drive impairments in NO•
signaling in T2DM, and highlight the therapeutic potential of
HNO donors to circumvent this problem, in order to alleviate
acute hemodynamic complications in T2DM.
NITRIC OXIDE SIGNALING IN THE
CARDIOVASCULAR SYSTEM

Nitric Oxide Synthesis
NO• plays an important role in maintaining cardiovascular
homeostasis. This occurs through its vasodilator capacity,
inhibition and reversal of platelet aggregation, suppression of
inflammation and oxidative stress, inhibition of thrombosis and
modulation of vascular smooth muscle cell (VSMC) proliferation
and vascular remodeling (Napoli et al., 2006; Ignarro, 2019).
NO• is endogenously synthesized by three isoforms of the NO•
synthase (NOS) enzyme, specifically, neuronal NOS (nNOS),
inducible NOS (iNOS) and endothelial NOS (eNOS), also known
as NOS1, NOS2 and NOS3, respectively (Salerno et al., 2018). All
three enzymes consist of two subunits, an N-terminal oxygenase
domain that binds the substrate L-arginine, cofactor
tetrahydrobiopterin (BH4) and a heme iron group, and a C-
terminal reductase domain that binds nicotinamide adenine
dinucleotide phosphate (NADPH), flavin adenine dinucleotide
phosphate (FAD) and flavin mononucleotide (FMN) (Qian and
Fulton, 2013). Between these domains, exists a calmodulin
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binding sequence, that binds calcium (Ca2+) (Förstermann and
Sessa, 2012).

eNOS is considered the predominant isoform constitutively
expressed in the cardiovascular system, where it is responsible for
the synthesis of NO• in endothelial cells, cardiomyocytes and
platelets (Radziwon-Balicka et al., 2017; Ritchie et al., 2017). In
endothelial cells, eNOS produces NO• in response to stimulation
by shear stress or receptor agonists including bradykinin,
acetylcholine, substance P, thrombin, histamine or b-
adrenoceptor agonists (Premer et al., 2019). Under basal
conditions, eNOS is present in an inactive state bound to
either caveolin-1 or caveolin-3, which are located in small
invaginations of the plasma membrane known as caveolae, in
endothelial cells or cardiomyocytes, respectively (Massion et al.,
2003). Upon stimulation by shear stress or agonists, intracellular
Ca2+ levels increase, leading to recruitment of the Ca2+-
calmodulin sequence, which displaces caveolin-1 or caveolin-3
from the enzyme leading to eNOS activation (Förstermann and
Sessa, 2012). Subsequently, the cofactor BH4 and heat shock
protein 90 (hsp90) are recruited, together with protein kinase B/
Akt, which phosphorylates Ser1177, thereby activating eNOS
(Sharma et al., 2012). This leads to electron transfer from
NADPH by FAD and FMN, allowing O2 to bind to the heme
iron group on eNOS, resulting in the conversion of L-arginine to
NO• and L-citrulline (Stuehr et al., 2004; Mancardi et al., 2005).
NO• is also generated from NOS-independent sources such as
from nitrite and dietary nitrate. In brief, following absorption of
dietary nitrate from the gastrointestinal tract, salivary
commensal bacteria reduce nitrate to nitrite. Nitrite can then
circulate and be converted to NO• via the nitrite reductase
activity of several proteins (e.g. deoxyhemoglobin, xanthine
oxidoreductase), providing a NOS-independent pathway for
NO• generation (Farah et al., 2018). The major physiological
modulator of eNOS activity appears to be tissue concentrations
of the competitive NOS antagonist asymmetric dimethylarginine
(ADMA) (Böger, 2004; Cooke, 2005).

Nitric Oxide Signaling in the Vasculature
NO• signals predominantly via its intracellular receptor, sGC. In
the vasculature, endothelium-derived NO• diffuses into
underlying VSMCs in a paracrine manner, where it binds to the
ferrous (Fe2+) heme iron on sGC (Mancardi et al., 2005; Korkmaz
et al., 2018). Activation of sGC leads to the production of 3,5-
cyclic guanosine monophosphate (cGMP), intracellular levels of
which are regulated by phosphodiesterases (PDEs), which
hydrolyze cGMP to GMP (Kass et al., 2007). cGMP effectors
include cGMP-dependent protein kinases (cGKs), PDEs and
cGMP-gated ion channels (Kemp-Harper and Schmidt, 2009).
cGKs phosphorylate target proteins leading to a reduction in
intracellular Ca2+ concentration, resulting in VSMC relaxation
and vasodilation, and suppression of VSMC proliferation (Kemp-
Harper and Schmidt, 2009) (Figure 1). Similarly, the anti-
aggregatory actions of NO• are mediated predominantly via the
sGC/cGMP signaling pathway. Thus NO• generated by the
endothelium diffuses into the blood vessel lumen where it
inhibits platelet aggregation, platelet adhesion to the vascular
wall, and thrombosis (Förstermann and Sessa, 2012).
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NO• also signals independently of sGC via direct protein S-
nitrosylation: NO• reacts with thiols on cysteine residues of
target proteins, resulting in modulation of their biological
functions (Mancardi et al., 2005; Lima et al., 2010). This is of
particular relevance in the vasculature whereby NO• limits
superoxide generation via S-nitrosylation of p47phox, a critical
subunit of the reactive oxygen species (ROS)-generating enzyme,
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
2 (Nox2) (Selemidis et al., 2007), thus protecting against vascular
oxidative stress.

Moreover, NO• plays a key anti-inflammatory/anti-
atherogenic role, with an ability to limit the activation and
transmigration of monocytes through the endothelium to the
site of vascular injury via the reduction of endothelial adhesion
molecules [e.g. vascular adhesion molecule-1 (VCAM-1);
(Spiecker et al . , 1997)], chemokine [e.g. monocyte
chemoattractant protein-1 (MCP-1); (Zeiher et al., 1995)] and
cytokine expression (e.g. interleukin-6 (IL-6); (De Caterina et al.,
1995)). These actions of NO• may be explained, in part, by its
inhibitory effects on nuclear factor kappa-B (NF-kB) and NLRP3
inflammasome activation. NO• suppresses NF-kB signaling via
S-nitrosylation of its regulatory subunit and transcription factor,
IKKb and p65, respectively (Qian and Fulton, 2012). This leads
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to decreased expression of pro-inflammatory and pro-
atherogenic mediators including intracellular adhesion
molecule-1 (ICAM-1), VCAM-1 (Spiecker et al., 1997; Qian
and Fulton, 2012), MCP-1 and IL-6 (De Caterina et al., 1995;
Zeiher et al., 1995). Moreover, NO• regulates the NLRP3
inflammasome, which is a multiprotein signaling complex
expressed in macrophages, that activates caspase-1, resulting in
the maturation and secretion of the pro-inflammatory cytokines,
interleukin-1b (IL-1b) and interleukin-18 (IL-18) (Chen and
Sun, 2013). NO• inhibits NLRP3 inflammasome activation, likely
via suppression of expression of the NLRP3 activator
thioredoxin-interacting protein (TXNIP) (Sverdlov et al., 2013;
Chong et al., 2015), thus decreasing caspase-1 activation and
secretion of mature IL-1b and IL-18 (Hernandez-Cuellar et al.,
2012; Mao et al., 2013). In addition, NO• also has the capacity to
limit mast cell degranulation, reducing the release of
inflammatory mediators and cytokines and thereby inhibiting
the initiation of acute vascular inflammatory processes
(Coleman, 2002).

Overall, the entire spectrum of endogenous NO• effects is
pro-homeostatic, and confers protection against both
atherosclerotic plaque development and rupture. Indeed, NO•
normally functions as a ‘firehose', dousing out the flames of
FIGURE 1 | Nitric oxide signaling in the vasculature and myocardium. In endothelial cells and cardiomyocytes, nitric oxide (NO•) is produced by endothelial nitric
oxide synthase (eNOS) following stimulation by shear stress (blood flow) or the presence of agonists such as bradykinin. Upon stimulation, the cofactor
tetrahydrobiopterin (BH4) is recruited, resulting in the conversion of L-arginine to NO• and L-citrulline. In the vascular lumen, NO• inhibits platelet aggregation and
leukocyte adhesion and migration. NO• produced by endothelial cells diffuses into underlying vascular smooth muscle cells (VSMCs) where it suppresses proliferation
and binds to the ferrous (Fe2+) heme group on its biological target, soluble guanylyl cyclase (sGC). Activation of sGC leads to the production of 3',5'-cyclic guanosine
monophosphate (cGMP) resulting in vasodilation. NO• produced by endothelial cells from coronary vessels, diffuses into cardiomyocytes, where in combination with
NO• produced intracellularly by eNOS and neuronal nitric oxide synthase (nNOS), induces myocardial relaxation, and has anti-hypertrophic effects. NO• also
suppresses thioredoxin-interacting protein (TXNIP) formation in cardiomyocytes and the vasculature.
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incipient plaque rupture and protecting against acute
cardiovascular events.

Nitric Oxide Signaling in the Myocardium
As in the vasculature, NO• plays a key role in the regulation of
heart function. NO•, generated by endothelial cells lining the
coronary vasculature, diffuses into cardiomyocytes where, in
combination with cardiomyocyte nNOS and eNOS-derived
NO•, it has anti-hypertrophic effects, enhances myocardial
relaxation and improves left ventricular diastolic distensibility
(Rosenkranz et al., 2002; Paulus and Bronzwaer, 2004). These
actions of NO• are mediated via sGC/cGMP signaling, and are
cGK-dependent. cGK modulates excitation-contraction coupling
through phosphorylation of troponin I, myosin-binding protein
C and titin, thus decreasing myofilament Ca2+ sensitivity (Farah
et al., 2018). cGK also phosphorylates phospholamban on the
sarcoplasmic reticulum Ca2+-ATPase pump (SERCA2a) pump,
increasing Ca2+ reuptake into the sarcoplasmic reticulum
(Ritchie et al., 2009). Moreover, cGK suppresses L-type
calcium channel activity, further decreasing intracellular Ca2+

levels, which attenuates the positive inotropic effects of beta-
adrenergic signaling, thus promoting cardiomyocyte relaxation
(Massion et al., 2003). cGK also has anti-hypertrophic effects,
due to its ability to regulate Ca2+ current by modulating L-type
Ca2+ channel activity, suppress mitogen-activated protein
kinases, and inhibit myocyte growth and expression of
hypertrophic genes (Ritchie et al., 2009). NO• also modulates
myocardial energetic production through its actions on
mitochondria, where it inhibits mitochondrial respiration and
glucose uptake, and promotes free fatty acid uptake (Massion
et al., 2003; Paulus and Bronzwaer, 2004).
IMPAIRED CARDIOVASCULAR NITRIC
OXIDE SIGNALING IN DIABETES

Impaired NO• signaling is present in a wide range of forms of
cardiovascular pathologies and has been documented in obesity,
diabetes, hypertension, atherosclerosis, congestive cardiac
failure, aortic stenosis, angina pectoris, unstable angina,
hyperglycemia/diabetes, myocardial infarction, acute atrial
fibrillation, ageing and polycystic ovarian syndrome (Lees
et al., 1998; Chirkov and Horowitz, 2007; Sverdlov et al., 2014).
In the presence of most coronary risk factors, NO• signaling is
impacted with evidence of a reduction in both synthesis of and
responsiveness to NO• (Worthley et al., 2007; Ito et al., 2015).

Impaired Nitric Oxide Generation
With regard to NO• generation, severe hyperglycemia can lead to
an impairment via reduction of the critical eNOS cofactor BH4,
increased ADMA, eNOS uncoupling, increased arginase activity
and decreased nitrite reduction (Tousoulis et al., 2013; Kövamees
et al., 2016). Reduced BH4 levels have been identified in human
umbilical vein endothelial cells exposed to high glucose
conditions, and in aortae isolated from diabetic mice
(Xu et al., 2007). In this study, hyperglycemia decreased BH4
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levels via inhibition of 26S proteasome activity of guanosine 5'-
triphosphate cyclohydrolase I (GTPCH), which is a rate-limiting
enzyme of BH4 synthesis, and increased levels of peroxynitrite,
which oxidizes BH4 to dihydrobiopterin (BH2), thereby
uncoupling eNOS (Xu et al., 2007). The authors also found
attenuated endothelium-dependent vasodilation in response to
acetylcholine in aortae from diabetic mice, indicating impaired
vascular generation or responsiveness to NO• per se (Xu et al.,
2007). Similarly, increases in forearm blood flow in response to
acetylcholine, measured by venous occlusion plethysmography,
were impaired in individuals with T2DM, when compared to
non-diabetic controls (Heitzer et al., 2000). Interestingly,
concomitant infusion of BH4 improved forearm blood flow
responses to acetylcholine in T2DM, indicating that the
observed impairment in endothelium-dependent vasodilation,
and hence NO• generation, may be due to decreased BH4

(Heitzer et al., 2000).
NOS competes with arginases and argininemethyltransferases

(PRMT), for its substrate, L-arginine. Arginase converts L-
arginine into L-ornithine or urea, and arginase activity is
elevated in disease states associated with endothelial
dysfunction, including T2DM (Shemyakin et al., 2012;
Kövamees et al., 2016). Similarly, PRMT catalyze the
methylation of L-arginine to monomethylarginine (MMA),
which is converted to ADMA by type 1 PRMT (Zakrzewicz and
Eickelberg, 2009). ADMA is a competitive NOS inhibitor,
reducing NO• generation (Vallance et al., 1992). Indeed,
plasma ADMA levels have been proposed as a clinically
re levant biomarker of endothel ia l dysfunct ion and
cardiovascular disease (Zhou et al., 2017). Thus, a reduction in
endothelium-dependent vasodilation in patients with T2DM,
following ingestion of a high fat meal, has been associated with
increased levels of ADMA (Fard et al., 2000). However,
surprisingly ADMA concentrations are paradoxically lower in
diabetic than non-diabetic patients (Horowitz et al., 2018),
suggesting that NO• generation by NOS activation is not a
major problem in such individuals.

An interesting point for consideration is that endothelial
dysfunction has a component ofNO• resistance that is difficult to
dissect in individual patients byNOS-dependent activation, such
as administration of acetylcholine and salbutamol. Thus, it is
unclear whether the observed “endothelial dysfunction” is
predominantly a reflection of decreased eNOS activity and/or
of impaired ability of NO• to signal per se. This distinction
between “endothelial dysfunction” and isolated NO• resistance
was highlighted in a study by Okon et al., where sensitivity to the
endothelium-dependent vasodilator acetylcholine was 10-fold
lower inmammary arteries from patients with T2DM, compared
to non-diabetic patients, indicating endothelial dysfunction
(Okon et al., 2005). Moreover, eNOS gene and protein
expression was decreased in T2DM mammary arteries by
approximately 50 and 30%, respectively, compared to non-
diabetic counterparts (Okon et al., 2005). However, while this
reduction in vasodilator response to acetylcholine in T2DM
could be due to impaired NO• generation as a consequence of
decreased eNOS expression and activity, the authors also found
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that the vasodilator responses to the endothelium-independent
NO• donor, sodiumnitroprusside (SNP), were also attenuated in
T2DM mammary arteries, indicating reduced vascular
responsiveness to NO•, and hence the presence of NO•
res is tance . Similar ly , brachial-ar tery flow-mediated
vasodilation was found to be impaired in patients with T2DM
with or without coronary heart disease, when compared to age-
and sex-matched non-diabetic controls (Ito et al., 2015).
However, the authors did not examine endothelium-
independent vasodilation via the use of a NO• donor such as
SNP. Therefore, in this study, it is unclear whether the
impairment in brachial-artery flow mediated vasodilation in
patients with T2DM was due to impaired vascular NO•
generation or signaling or both. This highlights the importance
of testing vascular responsiveness to a NO• donor to delineate
the bases for impaired responses to NOS activators.

Nitric Oxide Resistance
NO• resistance represents a multifaceted disorder, in which
impairments in NO• signaling lead to diminished NO•-
responsiveness in platelets, the vasculature and myocardium,
resulting in a loss in the vaso- and cardio-protective effects of
endogenous and exogenous NO• (Chirkov and Horowitz, 2007).
In patients with cardiovascular disease, the presence of NO•
resistance is an independent predictor of adverse cardiovascular
events and mortality risk (Schachinger et al., 2000; Willoughby
et al., 2012). Several studies have identified NO• resistance in
T2DM (Williams et al., 1996; van Etten et al., 2002; Anderson
et al., 2005; Okon et al., 2005; Shemyakin et al., 2012). In
platelets, the NO• donor SNP inhibited aggregation by 15.4 ±
7% in T2DM, compared to 73.1 ± 5.9% in healthy controls,
indicating decreased platelet responsiveness to NO• in T2DM,
and thus the presence of NO• resistance (Anderson et al., 2005).
In studies by Williams et al., and van Etten et al., patients with
T2DM displayed vascular NO• resistance, indicated by reduced
brachial artery flow-mediated vasodilation in response to SNP,
compared to healthy controls (Williams et al., 1996; van Etten
et al., 2002). Similarly, vasodilator response of the brachial artery
in response to intra-arterial infusion of SNP was lower in
patients with coronary artery disease and T2DM, compared to
healthy controls, indicating decreased VSMC responsiveness to
NO•, and thus NO• resistance (Shemyakin et al., 2012). To the
best of our knowledge, the presence of myocardial NO•
resistance has not thus far been examined in T2DM. However,
in a rat model of T1DM, both myocardial contractile and
relaxation responses to the NO• donor diethylamine-NONOate
(DEA/NO) were impaired, establishing the presence of
myocardial NO• resistance in T1DM (Qin et al., 2020). Thus,
it is probable that NO• resistance also occurs at the level of the
human myocardium in T2DM, particularly as platelet and
vascular responsiveness to NO• is diminished in these patients.
Although the pathogenesis of T2DM is different to that of
T1DM, they are both characterized by hyperglycemia, and
associated with oxidative stress, both of which can contribute
to impairment of NO• signaling (Fiorentino et al., 2013).
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OXIDATIVE STRESS AS A CONTRIBUTOR
TO NITRIC OXIDE RESISTANCE

NO• resistance occurs largely due to oxidative stress, where ROS
scavenge NO• and reversibly inactivate sGC, resulting in
impaired tissue responsiveness to endogenous or exogenous
NO• (Dautov et al., 2013; Tare et al., 2017). Oxidative stress
refers to an imbalance between the generation of ROS and their
clearance by endogenous antioxidants, such as superoxide
dismutase, catalase and glutathione peroxidase (Wink et al.,
2001). ROS consist of free-radical species, including
superoxide, peroxyl, hydroxyl and hydroperoxyl, and non-
radicals, such as hydrogen peroxide, peroxynitrite and
hypochlorous acid (Phaniendra et al., 2015). They are
generated by the mitochondrial electron transport chain, in
addition to several other sources including xanthine oxidase,
NADPH oxidases, iNOS, and uncoupled eNOS (Brownlee, 2005;
Pignatelli et al., 2018).

ROS have a marked impact on NO• generation and signaling.
Specifically, NO• reacts rapidly with superoxide forming the
powerful oxidant peroxynitrite, which reduces the bioavailability
of NO• (Ritchie et al., 2017). In Langendorff-perfused rat hearts,
superoxide directly quenches NO•, reducing basal- and agonist-
induced NO• release and subsequent vasodilation of the
coronary vasculature, in the absence of modifications in eNOS
expression or activity (Paolocci et al., 2001a). Peroxynitrite
uncouples eNOS by oxidizing BH4 to BH2, which leads to
electron donation to molecular oxygen (O2), resulting in the
generation of superoxide, further exacerbating oxidative stress
(Farah et al., 2018). In addition, peroxynitrite is able to oxidize
the ferrous (Fe2+) heme group on sGC to its ferric (Fe3+) state,
desensitizing the enzyme to NO•. Furthermore, oxidation of the
heme group weakens its binding, resulting in a heme-free form of
sGC which is susceptible to ubiquitin-dependent degradation
(Meurer et al., 2009). Consequently, tissue responsiveness to
endogenous and exogenous NO• is impaired, resulting in NO•
resistance (Ritchie et al., 2017) (Figure 3).

Hyperglycemia-Induced Oxidative Stress
In T2DM, hyperglycemia can lead to oxidative stress via
increased NADPH oxidase activity, overproduction of
mitochondrial ROS and elevated expression of TXNIP
(Figure 2) (Aon et al., 2015). Elevated myocardial NADPH
oxidase-derived superoxide production has been identified in a
mouse model of T2DM, and was found to exacerbate left
ventricular remodeling and heart failure post-myocardial
infarction, when compared to non-diabetic controls
(Matsushima et al., 2009). Moreover, internal mammary
arteries from patients with T2DM undergoing coronary bypass
surgery, displayed elevated NADPH oxidase-derived superoxide
levels, and increased membrane translocation of the Nox1/2
regulatory subunits p47phox and Rac1 (Antonopoulos et al.,
2015). Nox1 and Nox2 are the major sources of ROS in the
vascular wall (Drummond et al., 2011). Therefore, increased
membrane translocation of their regulatory subunits p47phox and
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Rac1 suggests that activation of Nox1/2 is elevated in the
vasculature in T2DM.

Hyperglycemia can also stimulate overproduction of
mitochondrial ROS, as higher levels of intracellular glucose-
derived pyruvate increase flux of electron donors NADH and
FADH2 into the electron transport chain (Giacco and Brownlee,
2010). This increases the voltage gradient across the
mitochondrial membrane, preventing electron transfer within
complex III (Giacco and Brownlee, 2010). Consequently,
electrons accumulate at coenzyme Q10, which donates
electrons to molecular oxygen, resulting in superoxide
generation, which combined with superoxide generated from
other sources such as NADPH oxidase, causes DNA strand
breaks (Pacher and Szabó, 2005; Giacco and Brownlee, 2010).
This results in activation of poly (ADP-ribose) polymerase
(PARP), an enzyme involved in DNA repair, which under
normal conditions, resides within the nucleus in an inactive
state (Brownlee, 2005). Once activated, PARP modifies the
glycolytic enzyme glyceraldehyde-3 phosphate dehydrogenase
(GAPDH), reducing its activity (Brownlee, 2005). Decreased
GAPDH activity leads to overactivation of the hexosamine
pathway, upregulation of protein kinase C (PKC), elevated
glucose flux through the polyol pathway and increased
formation of advanced glycation end-products (AGEs), all of
which can promote impairments in NO• generation and/or
signaling (Fiorentino et al., 2013) (Figure 2).
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Hexosamine Pathway
In the hexosamine pathway, O-GlcNAc transferase (OGT)
catalyzes a post-translational modification, known as O-
GlcNAcylation, of proteins modulating their biological activity
(Qin et al., 2017). Increased O-GlcNAcylation has been
identified in patients with T2DM (Degrell et al., 2009;
Springhorn et al., 2012). Overactivation of this pathway can
lead to elevated endothelial expression of the pro-inflammatory
and pro-atherogenic mediators VCAM-1, ICAM-1 and
plasminogen activator inhibitor-1 (PAI-1) (Fiorentino et al.,
2013) (Figure 2). A recent study identified decreased NO•
production, reduced eNOS expression, and increased O-
GlcNAcylation of eNOS in perivascular adipose tissue from
thoracic aortae from rats with metabolic syndrome (da Costa
et al., 2018). As a result, the anti-contractile capacity of the
perivascular adipose tissue was diminished (da Costa et al.,
2018). Moreover, increased O-GlcNAcylation of myocardial
proteins has been associated with cardiac dysfunction in mouse
models of T2DM (Fülöp et al., 2007; Marsh et al., 2011).

Protein Kinase C
PKC consists of a family of serine/threonine kinases, which play an
important role in signal transduction of several vascular functions,
including regulation of angiogenesis, endothelial cell permeability,
extracellular matrix deposition and vasoconstriction (Kizub et al.,
2014). In a study by Tabit et al., in patients with T2DM, endothelial
FIGURE 2 | Hyperglycemia-induced oxidative stress impairs nitric oxide signaling. Hyperglycemia induces oxidative stress via increased activity of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes including Nox2, resulting in superoxide (O2

−) generation. In mitochondria, hyperglycemia increases
reactive oxygen species (ROS) production including O2

−, which stimulates thioredoxin-interacting protein (TXNIP) expression. TXNIP promotes activation of the
NLRP3 inflammasome, which activates caspase-1, resulting in the maturation and secretion of the pro-inflammatory cytokines, interleukin-1b (IL-1b) and interleukin-
18 (IL-18). O2

− also causes strand breaks in DNA, leading to activation of poly (ADP-ribose) polymerase (PARP), which reduces activity of glyceraldehyde-3
phosphate dehydrogenase (GAPDH). Decreased GAPDH activity leads to overactivation of the hexosamine pathway, upregulation of protein kinase C (PKC), elevated
glucose flux through the polyol pathway and increased formation of advanced glycation end-products (AGEs). This leads to activation of Nox and NF-kB signaling,
resulting in increased expression of pro-inflammatory and pro-atherogenic mediators including vascular adhesion molecule-1 (VCAM-1), intracellular adhesion
molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and interleukin-6 (IL-6). Upregulation of these pathways
results in impaired flow-mediated vasodilation, reflecting both endothelial dysfunction and nitric oxide (NO•) resistance.
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expression of PKCb was elevated and associated with impaired
flow-mediateddilationof the brachial artery (Tabit et al., 2013).The
authors also found increased endothelial levels of the peroxynitrite
derivative nitrotyrosine, and elevated activity of NF-kB, indicating
the presence of endothelial inflammation and nitrosative/oxidative
stress in T2DM (Tabit et al., 2013).

The Polyol Pathway
In the polyol pathway, glucose is reduced to sorbitol by aldose
reductase, which consumes NADPH in the process (Chandra
et al., 2002). NADPH consumption limits NO• production and
exacerbates oxidative stress, as NADPH is required for the
production of NO• and the antioxidant reduced glutathione
(Ramana et al., 2003; Lorenzi, 2007). The deleterious effects of
sorbitol on the microvasculature have been demonstrated in rat
gracilis arterioles, where exposure to sorbitol stimulated vascular
production of ROS, and impaired endothelium-dependent and
endothelium-independent vasodilation to a NO• donor,
indicating that sorbitol can induce endothelial dysfunction
with a substantial component of NO• resistance (Toth et al.,
2007) (Figure 2). In addition, methylglyoxal, an intermediate of
this pathway, is implicated in endothelial dysfunction and
elevated in patients with T2DM (Wang et al., 2007; Lund et al.,
2011). Methylglyoxal is also a potent glycating agent that reacts
with intracellular and extracellular proteins, resulting in the
formation of AGEs (Lund et al., 2011).

Advanced Glycation End-Products
AGEs are formed during non-enzymatic reactions between
reducing sugars or sugar-derived products and amino groups
on proteins, lipids or nucleic acids (Barlovic et al., 2010). AGEs
and their receptor (receptor for AGEs; RAGE) play a central role
in the pathogenesis of vascular complications (Thomas et al., 2005).
In patients with T2DM, plasma levels of AGEs are elevated, and
negatively correlated with endothelium-dependent and
endothelium-independent vasodilation (Tan et al., 2002).
Moreover, plasma levels of AGEs are approximately 74% higher
in patients with T2DM with vascular complications, compared to
those with T2DM without vascular complications (Farhan and
Hussain, 2019). Activation of RAGE by AGEs also stimulates
NADPH oxidase, increasing intracellular ROS generation,
subsequently activating NF-kB, resulting in the production of
pro-inflammatory and pro-atherogenic mediators, including IL-6,
VCAM-1, ICAM-1 and MCP-1 (Barlovic et al., 2010) (Figure 2).
Consequently, oxidative stress and inflammation are exacerbated,
leading to further impairments in NO• signaling (Andrews et al.,
2016). NF-kB activation also stimulates NO• generation by iNOS,
however, when superoxide levels are elevated, superoxide anions
react with NO• forming peroxynitrite (Wright et al., 2006). This
leads to a loss of the inhibitory effects of iNOS-derivedNO• onmast
cell stabilization (Coleman, 2002),which is critical for preventionof
plaque rupture and coronary vasospasm, which precede most
ischemic emergencies (Kovanen et al., 1995; Laine et al., 1999).

Thioredoxin-Interacting Protein (TXNIP)
Hyperglycemia is also associated with increased expression of
TXNIP via the glucose-response element in its gene
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(Turturro et al., 2007). Thioredoxin (TRX) is a key modulator of
intracellular redox stress, possessing antioxidant activity. TXNIP
serves as a negative regulator of TRX and contributes to oxidative
stress indiabetes, in addition to promoting inflammationwith a key
role inNLRP3 inflammasome activation (Schulze et al., 2004; Zhou
et al., 2010) (Figure 2). TXNIP gene expression is elevated in
peripheral bone mononuclear cells from patients with T2DM,
compared to patients with T1DM and non-diabetic controls
(Szpigel et al., 2018). This increase in TXNIP was accompanied
by elevated gene expression of NLRP3 and IL-1b, indicating that
TXNIP promotes inflammation inT2DMthrough activation of the
NLRP3 inflammasome (Szpigel et al., 2018). These actions of
TXNIP are likely to negatively impact NO• signaling in T2DM.
Indeed, a reciprocal relationship between platelet NO•
responsiveness and TXNIP expression has been demonstrated
(Sverdlov et al., 2013).

Collectively, these data provide robust evidence for a key role
of oxidative stress and inflammation in the development of
cardiovascular complications in T2DM. Central to the disease
pathology is an impairment in endogenous and exogenous NO•
signaling. Taking into consideration the more prominent role of
NO• resistance in impaired NO• signaling in diabetes, there is a
strong therapeutic focus on overcoming NO• resistance in this
disease setting.
CURRENT AND EMERGING
PHARMACOTHERAPIES TO OVERCOME
IMPAIRED NITRIC OXIDE SIGNALING:
A FOCUS ON NITRIC OXIDE RESISTANCE

Ashighlighted,NO• resistance is particularly debilitating inT2DM,
where themortality risk associatedwith cardiovascular emergencies
is increased (e.g. acute myocardial infarction, transient myocardial
ischemia, acute pulmonary edema) (Lindholm et al., 2005). In these
circumstances, rapid vasodilator and anti-aggregatory actions are
required yet NO•-based pharmacotherapies are ineffective. Thus,
whilst nitrovasodilators, including the organic nitrate glyceryl
trinitrate (GTN), have been clinically utilized since 1876 for the
treatmentof anginapectoris andheart failure (Sun et al., 2011), their
effectiveness is diminished in the very conditions for which they are
most needed. As such, NO•-independent therapeutic approaches
aimed at ameliorating or circumventing NO• resistance,
particularly to manage cardiovascular emergencies, are urgently
required for the diabetic population.

Amelioration Strategies
A number of treatments, including some ACE inhibitors,
perhexiline, statins, and reversal of severe hyperglycemia have
been shown to ameliorate NO• resistance (Table 1).

ACE Inhibitors
Increased activity of the renin-angiotensin system and the
generation of angiotensin II, which possesses pro-oxidative,
pro-inflammatory and vasoconstrictive properties, is associated
with many cardiovascular diseases (Ruszkowski et al., 2019). The
ACE inhibitors ramipril and perindopril decrease the formation
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of angiotensin II, and in large clinical trials (HOPE, Heart
Outcomes Prevention Evaluation; EUROPA, European Trial
on Reduction of Cardiac Events with Perindopril), have been
shown to reduce the incidence of myocardial infarction, cardiac
arrest, heart failure, stroke and diabetes-related complications in
aging, high-risk adults with vascular disease or diabetes (Yusuf
et al., 2000; Fox, 2003).

Whilst the precise mechanisms underlying the improved
cardiovascular outcomes following treatment with ramipril or
perindopril remain unclear, an ability of these ACE inhibitors to
ameliorate NO• resistance may contribute to treatment benefit.
Ramipril and perindopril have been shown to improve NO• donor
responsiveness, at least at the level of the platelet. In individualswith
chronic heart failure, treatment with perindopril for 4 days
improved platelet responsiveness to SNP, reducing the proportion
of subjects with platelet NO• resistance from 40 to 0% (Chirkov
et al., 2004). Similarly, the effect of ramipril on platelet
responsiveness to SNP was assessed in a randomized, placebo-
controlled, blinded study in older adults (aged ≥50 years) of high
cardiovascular risk (history of stroke, coronary artery disease,
peripheral vascular disease and/or diabetes) (Willoughby et al.,
2012). In this study, 3months of ramipril therapydecreased systolic
and diastolic pressure, and reduced augmentation index (Aix) and
plasma levels ofADMA,markers of arterial stiffness andendothelial
dysfunction, respectively (Willoughbyet al., 2012).The authors also
identified a separate group of participants with diabetes, who
displayed severe platelet NO• resistance at baseline, in which
ramipril therapy for 2 weeks improved platelet responsiveness to
SNP, suggesting improved sensitivity of sGC to NO• (Willoughby
et al., 2012).

Based on these findings, it is clear that long-term therapy with
the ACE inhibitors ramipril or perindopril overcomes NO•
resistance and provides protection against adverse cardiovascular
events in high-risk populations. However, ACE inhibitor-mediated
reversal of NO• resistance is not an option for patients who are
intolerant of ACE inhibition, many of whom are diabetic (Neutel,
2010; DuMond and King, 2011). Moreover, the use of ACE
inhibitors to attenuate NO• resistance in a cardiovascular
emergency is clinically impracticable with the CONSENSUS II
study (Cooperative New Scandinavian Enalapril Survival Study II)
showing that the intravenous administration of the ACE inhibitor,
enalaprilat, within 24 h of an acute myocardial infarct, increased
mortality (Swedberg et al., 1992).

Perhexiline
The anti-anginal agent, perhexiline, has shown some promise
with regard to ameliorating NO• resistance. Used in patients
refractory to commonly used antianginal therapies, the anti-
ischemic properties of perhexiline are attributed to its ability to
inhibit the mitochondrial enzyme carnitine palmitoyltransferase,
leading to the reduction in fatty acid metabolism and a shift to
greater carbohydrate metabolism by the myocardium (oxygen
sparing effect) (Ashrafian et al., 2007). In addition, perhexiline
limits oxidative stress via inhibition of NADPH oxidase
(Kennedy et al., 2006). Studies have demonstrated an ability of
perhexiline to improve platelet SNP responsiveness in patients
with stable angina pectoris (Chirkov et al., 2001), acute coronary
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syndromes (Willoughby et al., 2002) and aortic stenosis (Chirkov
et al., 2002). However, the clinical utility of perhexiline is limited
due to its complex pharmacokinetics and potential to cause
hepatic- and neuro-toxicity, necessitating close therapeutic
monitoring (Chong et al., 2016).

Statins
Statins are lipid-lowering drugs that are primarily used to treat
hypercholesterolemia and prevent the progression of
cardiovascular disease (Ko et al., 2019). Whilst statin therapy is
associated with improvement in endothelial function in patients
with cardiovascular disease (Reriani et al., 2011), evidence in
support of an ability of statins to ameliorate vascular NO•
resistance is conflicting. Thus, in patients with T1DM,
atorvastatin (40 mg/day; 6 weeks) was shown to improve
nitroglycerin-mediated dilatation in the brachial artery (Dogra
et al., 2005). Similarly, following an acute coronary syndrome,
atorvastatin treatment (80 mg/day, 16 weeks) lead to an
improvement in GTN-mediated dilation (Dupuis et al., 2005).
By contrast, atorvastatin (40 mg/day; 6 weeks) therapy in
patients with non-ischemic chronic heart failure, did not lead
to an improvement in GTN-mediated dilation in the brachial
artery (Strey et al., 2006). At the level of the platelet there is data,
albeit limited, to suggest that statin therapy ameliorates NO•
resistance. For example, in patients with acute coronary
syndrome, pharmacotherapy with statins was associated with
improved anti-aggregatory actions of SNP (Chirkov et al., 2001).
In addition, in individuals with mild hypercholesterolemia,
treatment with pravastatin (40 mg/day) for 3 months,
improved inhibition of platelet aggregation in response to SNP
(Stepien et al., 2003). Of note, the ability of statins to ameliorate
NO• resistance is unlikely due to their cholesterol lowering
actions per se, rather their pleiotropic effects such as an ability
to reduce superoxide generation and oxidative stress may be
responsible. However, acute introduction of statins during
evolving acute myocardial infarction has not convincingly
improved outcomes (Ostadal, 2012; Vavuranakis et al., 2017).

Reversal of Severe Hyperglycemia
As discussed, hyperglycemia is a key contributor to the endothelial
dysfunction and macrovascular complications associated with
diabetes. Moreover, hyperglycemia contributes to vascular NO•
resistance, such that glucose lowering, with long-term insulin
treatment (3.5 years), improves brachial artery vasodilatation to
SNP in patients with T2DM (Vehkavaara and Yki-Järvinen, 2004).
Similarly, in diabetic patients with severe hyperglycemia and acute
coronary syndromes, rapid correction of hyperglycemia via
intravenous insulin (12 h) increases platelet responsiveness to
NO• (Worthley et al., 2007). Such protective actions of insulin are
likely due to its ability to reduce oxidative stress, independently of
the potential for acute modulation of platelet TXNIP expression
(Chong et al., 2015). Indeed, in the DIGAMI study (Diabetes
Mellitus Insulin-Glucose Infusion in Acute Myocardial
Infarction), insulin infusion post-acute myocardial infarction,
followed by multi-dose subcutaneous insulin administration,
decreased mortality rate in patients with diabetes (Malmberg
et al., 1995). These findings suggest that the relatively rapid effects
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of infused insulin on platelet NO• responsiveness are of use in
patients experiencing acute myocardial infarction, however, it
should be noted that a component of NO• resistance may persist
following acute, aggressive glycemic control (12 h insulin i.v.
infusion) (Worthley et al., 2007).

Whilst the pharmacotherapies discussed have the potential to
ameliorateNO• resistance at the level of the vasculatureandplatelet,
all of these strategies have delayed onset of activity, taking hours to
days to take effect. As such they are unsuitable for emergency
situations (e.g. acute MI, transient myocardial ischemia or acute
pulmonary edema), in which rapid circumvention of NO•
resistance is required. This is of particular relevance in the
diabetic population in which cardiovascular emergencies occur
with greater frequency.
Circumvention Strategies
Emerging therapeutic strategies to circumvent NO• resistance,
include sGC activators, nitrite and HNO donors (Table 1).

sGC Activators
Since NO• resistance is associated with sGC oxidation to the
NO•-insensitive Fe3+-sGC and subsequent heme-deplete sGC
forms, the use of NO•- and heme-independent sGC activators to
overcome this limitation has gained considerable attention. sGC
Frontiers in Pharmacology | www.frontiersin.org 9197
activators target sGC in its oxidized (Fe3+) or heme-free states
and as such have greater efficacy under conditions of oxidative
stress (Sandner et al., 2019). Pre-clinical studies have identified
protective effects of sGC activators against ischemia/reperfusion
injury, myocardial infarction, diabetic cardiomyopathy and
diabetic nephropathy (Mátyás et al., 2015; Boustany-Kari et al.,
2016; Lee et al., 2017). Furthermore, sGC activatorsmay ameliorate
NO• resistance. Thus, chronic treatment of rats with heart failure
with the sGC activator, ataciguat (10 mg/kg/twice daily, 10 weeks)
improved the vascular response to exogenous NO• in aortic rings
and reduced platelet activation (Schäfer et al., 2010). Importantly,
sGC activators themselves are anti-aggregatory agents and their
anti-platelet actions in both humans (Mendes-Silverio et al., 2012)
and rodents (Roger et al., 2010) are augmented when sGC is
oxidized. Such findings suggest that sGC activators have the
potential to circumvent NO• resistance. Currently, however, the
clinical utility of this class of compound is unclear given their
profound, and sustained, blood pressure lowering effects in patients
with acute decompensated heart failure (Breitenstein et al., 2017)
andperipheral arterial occlusive disease (Sandner et al., 2019), in the
absence of a clear therapeutic benefit.

Nitrite
There is growing interest in the therapeutic potential of nitrite,
both as an alternate source of NO• and a signaling molecule in its
TABLE 1 | Current and emerging therapies to ameliorate and circumvent nitric oxide resistance.

Therapy Properties Limitations References

Amelioration strategies
ACE inhibitors:
Ramipril &
Perindopril

•Decrease angiotensin II formation
•Improve endothelial function by
decreasing bradykinin degradation

•Benefits observed following prolonged
use (days to months)
•Limited utility during cardiovascular
emergencies

(Murphey et al., 2003; Chirkov et al., 2004; Lob et al.,
2006; Willoughby et al., 2012)

Perhexiline •Anti-ischemic
•Inhibits mitochondrial enzyme carnitine
palmitoyltransferase

•Potential neuro- & hepato-toxicity
•Variable pharmacokinetics: close
therapeutic monitoring required

(Ashrafian et al., 2007; Chong et al., 2016)

Statins •Lower cholesterol
•Increase hepatic LDL uptake
•Enhance eNOS gene expression
•Enhance eNOS activity by reducing
caveolin-1 expression

•Benefits observed following prolonged
use (days to months)
•Limited utility during cardiovascular
emergencies

(Willoughby et al., 2002; Stepien et al., 2003; Chirkov
et al., 2004; Lundberg et al., 2015; Go et al., 2019)

Insulin
(in presence of
severe
hyperglycemia)

•Lower plasma glucose
•Reduce oxidative stress and
superoxide production

•NO• resistance can persist following
acute, aggressive glycaemic control
•Beneficial effects on mortality unclear

(Vehkavaara and Yki-Järvinen, 2004; Mehta et al., 2005;
Worthley et al., 2007)

Circumvention strategies
sGC activators •Bind to heme pocket of sGC

•Heme-independent
•Activate sGC if heme is oxidized or
detached

•Can cause hypotension (Follmann et al., 2013; Buys et al., 2018; Elgert et al.,
2019)

Nitrite •Converted to NO• via reductases
•Vasodilator & anti-aggregatory actions
potentiated in hypoxia

•Anti-platelet effect diminished in
patients with IHD
•Does not reduce infarct size post-acute
myocardial infarction

(Dautov et al., 2013; Siddiqi et al., 2014; Jones et al.,
2015)

Nitroxyl donors •Vasodilator, anti-aggregatory, positive
cardiac inotropic/lusitropic actions
•sGC-dependent & -independent
signaling
•Resistant to oxidative stress

•May cause coronary steal
•Long-term benefits remain to be
elucidated

(Irvine et al., 2007; Kemp-Harper, 2011; Dautov et al.,
2013)
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own right. Importantly, the vasodilator and anti-aggregatory
responses to nitrite are potentiated in the setting of hypoxia,
suggesting that it may have considerable advantages in the
treatment of acute cardiovascular disorders (Dautov et al.,
2014). However, current evidence in support of an ability of
nitrite to circumvent NO• resistance is limited, and hinges on the
concept that part of the effects of nitrite are NO•- and sGC-
independent. Thus, in platelets from patients with ischemic heart
disease, in whom NO• resistance is evident, the anti-aggregatory
effects of nitrite were found also to be diminished (Dautov et al.,
2014). By contrast, in heart failure patients with preserved
ejection fraction (HFpEF), resistance to the anti-aggregatory
actions of SNP was evident, yet the ability of nitrite to inhibit
platelet aggregation was maintained (Borgognone et al., 2018).
Whilst these anti-aggregatory actions of nitrite were mediated via
sGC activation, they were only due, in part, to NO•. The clinical
utility of nitrite in the circumvention of NO• resistance is also
tempered by the finding that in two clinical trials in patients with
acute myocardial infarction (NIAMI and NITRITE-AMI), nitrite
administration prior to reperfusion, did not reduce infarct size
(Siddiqi et al., 2014; Jones et al., 2015).

Nitroxyl-Based Therapies
HNO is the one-electron reduced and protonated form of NO•.
Using the prototypical HNO donors Angeli's salt (which is also a
source of nitrite) and iso-propylamine-NONOate (IPA-NO),
HNO has been shown to have distinct pharmacological
properties and therapeutic advantages when compared to its
redox sibling (Irvine et al., 2008; Bullen et al., 2011a). Specifically,
unlike NO•, the actions of HNO are preserved during oxidative
stress, as HNO is resistant to scavenging by superoxide (Irvine
et al., 2007; Kemp-Harper et al., 2016). Moreover, HNO causes
venous and arterial dilation (Tare et al., 2017), suppresses
vascular generation of ROS via rapid (within minutes), and
direct, inhibition of Nox2 oxidase (Miller et al., 2013) and is
resistant to tolerance development (unlike organic nitrates)
(Irvine et al., 2007). HNO also inhibits VSMC proliferation
and platelet aggregation (Tsihlis et al., 2010; Bullen et al.,
2011b; Dautov et al., 2013), and reduces endothelial expression
of adhesion molecules, monocyte activation and leukocyte
adhesion (Andrews et al., 2016). In the vasculature, HNO
induces vasodilation predominantly through sGC/cGMP
signaling and the preference of HNO for ferric (Fe3+) versus
ferrous (Fe2+) heme groups (Miranda et al., 2003) raises the
interesting possibility that HNO may preferentially target the
oxidized (Fe3+) versus reduced (Fe2+) forms of sGC. Such a
property may contribute to the preserved efficacy of HNO in the
face of oxidative stress, yet studies to date have not provided
evidence in support of an ability of HNO to activate oxidized
sGC (Miller et al., 2009; Zeller et al., 2009). In comparison to
NO•, HNO can also signal via distinct vascular pathways,
including the activation of voltage-dependent K+ channels
(Irvine et al., 2003; Andrews et al., 2009), ATP-sensitive K+

channels and the release of calcitonin gene-related peptide
(Figure 3) (Favaloro and Kemp-Harper, 2007; Chin et al.,
2014). Interestingly, HNO might also be endogenously
Frontiers in Pharmacology | www.frontiersin.org 10198
generated, however, in the absence of a validated method to
measure tissue levels, this is yet to be established conclusively
(Andrews et al., 2009; Kahlberg et al., 2016; Fukuto, 2019).
Another unique feature of HNO in comparison to NO•, is the
ability of HNO to react directly with thiols and thiol-containing
proteins (i.e. cysteines), independently of sGC/cGMP signaling
(Kemp-Harper, 2011). In the myocardium, this property allows
HNO to serve as a positive cardiac inotrope, interacting with
cysteine residues on thiol-containing proteins including
ryanodine receptors (Tocchet t i e t a l . , 2007) and
phospholamban, the regulatory phosphoprotein of the
sarcoplasmic reticulum Ca2+-ATPase pump (SERCA2a), to
enhance Ca2+ cycling (Keceli et al., 2019). HNO also increases
myofilament calcium sensitivity by promoting the formation of
disulfide bonds between myofilament cysteine residues (Gao
et al., 2012), Together, these actions of HNO result in
enhanced myocardial contractility and relaxation (Figure 3)
(Paolocci et al., 2007; Tocchetti et al., 2007). It should also be
noted that differently from legacy inotropes, the inotropic
response to HNO does not require the entry of extracellular
Ca2+ (Kohr et al., 2010).

These unique properties of HNO, together with its preserved
efficacy in the setting of oxidative stress, suggest that HNO
donors may circumvent NO• resistance and be of clinical
utility in a cardiovascular emergency.

Indeed, HNO donor compounds have displayed vaso- and
cardio-protective efficacy, particularly in disease states where
endothelial dysfunction and NO• resistance is present (Andrews
et al., 2016). At the level of the vasculature, there is evidence to
support an ability of both endogenous and exogenous HNO to
circumvent NO• resistance. Thus, in the diabetic rat aorta (Leo
et al., 2012) and small mesenteric arteries (Kahlberg et al., 2016;
Tare et al., 2017), endothelium-dependent relaxation mediated
by HNO is preserved, yet that mediated by NO• is impaired.
Moreover, in pre-clinical studies, vasorelaxation to the HNO
donors, Angeli's salt and IPA/NO are maintained in the diabetic
(Leo et al., 2012; Tare et al., 2017), hypercholesterolemic (Bullen
et al., 2011b) and hypertensive (Wynne et al., 2012; Irvine et al.,
2013) vasculature. Importantly, HNO can also circumvent
platelet NO• resistance. Thus, in hypercholesterolemic mice we
have shown that the anti-aggregatory actions of the HNO donor,
IPA/NO are preserved, yet those to the NO• donor, GTN are
impaired (Bullen et al., 2011b). Moreover, in patients with
coronary artery disease, the impaired anti-platelet response to
the NO• donor, SNP, is circumvented by the HNO donor, IPA/
NO (Dautov et al., 2013).

Whilst the discussion so far has focused on circumventing NO•
resistance in the vasculature and platelets, it is pertinent to note that
the myocardium is also susceptible to NO• resistance, such that
NO• can no longer enhance left ventricular (LV) relaxation (Qin
et al., 2020). Thus, following ischemia–reperfusion (I–R) injury
(Chin et al., 2016) or the induction of T1DM (Qin et al., 2020) in
rats, the ability of the NO• donor, DEA/NO to enhancemyocardial
relaxation is impaired. Such an impairment in myocardial
responsiveness to NO• (endogenous or exogenous) may facilitate
LV dysfunction, LV hypertrophy and cardiac remodelling
May 2020 | Volume 11 | Article 727

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Velagic et al. Nitroxyl to Circumvent NO• Resistance
(Nightingale et al., 2011; Sverdlov et al., 2011). Recent pre-clinical
studies have demonstrated that HNO donors can circumvent
myocardial NO• resistance. Specifically, unlike DEA/NO,
myocardial relaxation to Angeli's salt is preserved following I–R
injury in rat isolated hearts (Chin et al., 2016). In addition, Angeli's
salt was found to reduce the duration of ventricular fibrillation
following I–R injury (Chin et al., 2016). Similarly, the HNO donor
IPA/NO enhanced myocardial relaxation and contraction
responses in diabetic rat hearts, while responses to DEA/NO were
attenuated (Qin et al., 2020).

Collectively these findings suggest that HNO donors may be
particularly useful in acute cardiovascular emergencies
associated with NO• resistance. Indeed, the ability of HNO to
rapidly unload the heart (venous dilation) (Paolocci et al.,
2001b), improve coronary blood flow (arterial dilation)
(Paolocci et al., 2003; Andrews et al., 2015) and inhibit platelet
aggregation (Bermejo et al., 2005; Bullen et al., 2011b; Dautov
et al., 2013) is highly advantageous following an ischemic event.
Moreover, the positive inotropic and lusitropic properties of
HNO (Paolocci et al., 2003; Sabbah et al., 2013) provide a unique
therapeutic approach in which an improvement in myocardial
performance can also be achieved in this setting. Future studies
should also determine if HNO donors have the ability to stabilize
mast cells and if this action is preserved in the face of impaired
NO• signaling. Indeed, mast cell stabilization is critical for the
prevention of plaque rupture and coronary spasm, events which
Frontiers in Pharmacology | www.frontiersin.org 11199
trigger most cardiac ischemic emergencies (Kovanen and Bot,
2017). A caveat of many nitrovasodilators is the coronary steal
phenomenon, where non-specific vasodilators induce dilation in
non-ischemic regions and reduce systemic blood pressure,
causing blood flow to be directed away from ischemic regions
of need (Harrison and Bates, 1993). Whilst there is no current
evidence that HNO donors cause coronary steal, this concept has
not been fully interrogated and whether HNO selectivity targets
ischemic sites remains unknown. With the recent development
of the next-generation HNO donors and their ongoing clinical
evaluation, these concepts will need to be investigated.

To date, the therapeutic benefits of short-term HNO
administration has been a key focus. However, many of the
properties of HNO confer potential for long-term use in the
treatment of cardiovascular pathologies associated with impaired
NO• signaling. Thus in addition to the vasodilatory, anti-
aggregatory and inotropic actions of HNO donors, their ability
to attenuate oxidative stress (Lin et al., 2012; Miller et al., 2013),
inflammation (Andrews et al., 2016) and cardiac hypertrophy (Lin
et al., 2012; Irvine et al., 2013) and their resistance to tolerance
development (Irvine et al., 2011; Andrews et al., 2015) is
advantageous. Indeed, the long-term cardioprotective actions of
HNO in the diabetic heart is supported by our finding that chronic
in vivo administration of the HNO donor, 1-nitrosocyclohexyl
acetate (1-NCA, daily i.p. injection for 4 weeks) to streptozotocin-
treated mice, attenuated left ventricular diastolic dysfunction and
FIGURE 3 | Nitric oxide resistance and its circumvention by nitroxyl. Under oxidative stress, activity of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (Nox) enzymes, such as Nox2, is elevated, resulting in increased superoxide (O2

−) generation. O2
− reacts with nitric oxide (NO•), generating the powerful

oxidant, peroxynitrite (ONOO-), which oxidizes the ferrous (Fe2+) heme group of sGC to the ferric (Fe3+) or heme-free state, desensitizing the enzyme to NO•.
Consequently, tissue responsiveness to NO• is impaired, resulting in NO• resistance. Nitroxyl (HNO) is resistant to scavenging by O2

− and HNO donors offer an
opportunity to circumvent NO• resistance. In the vasculature, HNO causes vasorelaxation, inhibits platelet aggregation and reduces monocyte activation. In vascular
smooth muscle cells (VSMCs), HNO signals predominantly via activation of sGC and the subsequent increase in 3',5'-cyclic guanosine monophosphate (cGMP) and
may activate the oxidized (Fe3+) form of sGC. HNO also targets vascular voltage-dependent and ATP-sensitive K+ channels through a cGMP-dependent mechanism.
In the vasculature and myocardium, HNO interacts directly with Nox2 to suppresses O2

- generation. In cardiomyocytes, HNO has anti-hypertrophic effects, and
reacts directly with thiols and thiol-containing proteins including the sarcoplasmic reticulum Ca2+-ATPase pump (SERCA2a) and ryanodine receptors (RyR2) to
enhance Ca2+ cycling, together with increasing myofilament Ca2+ sensitivity, resulting in enhanced myocardial contractility and relaxation. The vaso- and cardio-
protective actions of HNO are preserved in the setting of oxidative stress and HNO donors offer a new therapeutic approach to treat diabetes-associated
cardiovascular complications.
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cardiomyocyte hypertrophy (Cao et al., 2015). With the recent
development of HNO donors with more favorable
pharmacokinetic properties (del Rio et al., 2014; Hartman et al.,
2018), it is anticipated that the therapeutic potential of this class of
compound in the treatment of both acute and chronic
cardiovascular diseases will be rigorously investigated.

Next-Generation Nitroxyl Donors
Given the short half-life, poor aqueous solubility and active by-
products released by the abovementioned HNO donors, novel
synthetic pure HNO donors have now been developed. These
include CXL-1020, which non-enzymatically decomposes to
HNO with a half-life of approximately 2.1 min (Sabbah et al.,
2013). CXL-1020 has been shown to induce positive inotropic
and lusitropic effects in murine cardiomyocytes from healthy or
failing hearts, and these effects were also observed in vivo in
failing canine hearts (Sabbah et al., 2013). In patients with acute
decompensated heart failure, intravenous infusion (4–6 h) of
CXL-1020 enhanced cardiac function by reducing left and right
ventricular pressures, decreasing systemic vascular resistance,
and increasing cardiac output and stroke volume (Sabbah et al.,
2013). These hemodynamic changes were not associated with
alterations in heart rate, or the occurrence of arrhythmias,
highlighting the safety, efficacy and potential therapeutic utility
of CXL-1020 for the treatment of cardiovascular disease, where
responsiveness to NO• is diminished (Sabbah et al., 2013).

These discoveries have led to the development of other HNO
donors with greater tolerability and more suitable half-lives for
therapeutic use in humans (Hartman et al., 2018). Of these, the
HNO donor BMS-986231 (half-life; 40–144 min), has been
shown to enhance cardiac contractile and relaxant responses,
while promoting vasodilation and reducing myocardial oxygen
consumption in canine models of heart failure (Hartman et al.,
2018). Moreover, in a phase I clinical trial in healthy individuals,
BMS-986231 (24- or 48-hour intravenous infusion) was well
tolerated, as the only drug-related adverse event reported was the
development of headaches, which were alleviated following
hydration, and are a common side effect of vasodilator therapy
(Cowart et al., 2019). Further, the vasodilator capacity of BMS-
986231 was evident with the HNO donor causing dose-
dependent reductions in systolic and diastolic blood pressure,
which were sustained during infusion, and returned to baseline
following infusion cessation (Cowart et al., 2019). Similar
findings were also observed in patients with heart failure,
where BMS-986231 reduced pulmonary arterial systolic and
diastolic pressure, while decreasing total peripheral vascular
resistance (Tita et al., 2017). Importantly, these hemodynamic
changes were not associated with changes in heart rate or the
presence of arrhythmias (Tita et al., 2017). In the StandUP-AHF
study (Study Assessing Nitroxyl Donor Upon Presentation with
Acute Heart Failure), patients hospitalized with heart failure with
reduced ejection fraction (HF-rEF) will receive intravenous
infusions of BMS-986231 at various doses or placebo for 48 h
(Felker et al., 2019). The results of this multicenter, randomized,
double-blind, placebo-controlled clinical trial will provide
further information about the safety and tolerability of HNO
donors with regard to hypotension (Felker et al., 2019).
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Whilst the poor aqueous solubility of BMS-986231 limits its
clinical use to intravenous administration, orally bioavailable
HNO donors are on the horizon (Tita et al., 2017). CXL-1036 is
an orally available HNO donor that also has a half-life (30
minutes) suitable for in vivo use and has been shown to
enhance cardiac contraction and relaxation, and reduce
myocardial demand, without altering heart rate in a canine
model of heart failure (del Rio et al., 2014).

To date, much of the focus of HNO donors has been on their
therapeutic potential in the treatmentof acutedecompensatedheart
failure. However, the novel vaso- and cardio-protective properties
of HNO highlight the therapeutic potential of HNO donors in the
treatment of a range of vascular and cardiac pathologies,
particularly where NO• signaling and responsiveness is impaired,
such as in T2DM. We eagerly await future studies which will
examine the ability for HNO donors to overcome NO• resistance
in patients with T2DM, and alleviate cardiovascular complications
associated with this disease.
CONCLUSION

A loss in the generation, bioavailability and responsiveness to
vasoprotective NO• is a key contributor to the cardiovascular
dysfunction and propensity towards acute myocardial ischemia
associated with T2DM. Underpinning the impairment in NO•
signaling (termed NO• resistance) is an increase in oxidative
stress, driven predominantly by hyperglycemia. The impact of
elevated ROS generation is far reaching, leading not only to
impaired vasodilator and anti-aggregatory capacity, but ab initio
reduction in therapeutic utility of NO•-based therapeutics. NO•
resistance constitutes an independent risk factor for subsequent
cardiovascular morbidity and mortality, and there is an urgent
need to treat diabetes associated endothelial dysfunction and
NO• resistance. Although perhexiline, statins and some ACE
inhibitors have shown promise in their ability to improve
hemodynamic and vasodilator responses in diabetes, there are
limitations associated with their use in emergency treatment of
cardiovascular disorders. HNO donors, however, present novel
pharmacological properties, including circumvention of NO•
resistance, which may facilitate a new therapeutic approach to
treat diabetes-associated cardiovascular complications.
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Epigenetics is defined as the heritable alterations of gene expression without changes to
the coding sequence of DNA. These alterations are mediated by processes including DNA
methylation, histone modifications, and non-coding RNAs mechanisms. Vascular aging
consists of both structural and functional changes in the vasculature including
pathological processes that drive progression such as vascular cell senescence,
inflammation, oxidation stress, and calcification. As humans age, these pathological
conditions gradually accumulate, driven by epigenetic alterations, and are linked to
various aging-related diseases. The development of drugs targeting a spectrum of
epigenetic processes therefore offers novel treatment strategies for the targeting of
age-related diseases. In our previous studies, we identified HDAC4, JMJD3, Fra-1, and
GATA4 as potential pharmacological targets for regulating vascular inflammation, injury,
and senescence.

Keywords: vascular aging, epigenetics, cell senescence, inflammation, oxidation stress, calcification
INTRODUCTION

In the 19th century, the father of modern medicine William Osler stated, “a man is only as old as his
arteries.” During vascular aging, pathological processes drive changes in the structure and function
of blood vessels including dysregulation in vascular homeostasis and vascular remodeling, leading to
lumen dilation, vascular stiffness, and thickening. At the molecular level dysregulation in vascular
homeostasis is promoted by vascular cell senescence, widespread inflammation, oxidation stress,
and calcification (Ding et al., 2018). It is now widely recognized that vascular aging is intimately
linked with cardiovascular diseases (CVD) including atherosclerosis (AS), hypertension, coronary
heart disease, and stroke (Lakatta and Levy, 2003b). Aside from high mortality rates, CVD also leads
to reduce quality of life in afflicted individuals and high burden on society and families (Van
Camp, 2014).

Epigenetics is defined as processes that governs the expression of a gene(s) without altering the
sequence of coding DNA. These heritable changes in expression are controlled by distinct chemical
modifications to bases present in DNA including DNA methylation and histone modification in
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addition to non-coding RNA (ncRNA) mechanisms. In healthy
tissues, normal gene expression occurs as a result of interactions
between genetic and environmental factors viz. smoking, obesity,
or alcohol consumption, which can cause dysregulation in
cellular homeostasis, having negative impacts on health.
Epigenetics changes can explained many of the interaction
between genes and environment cues and can explain altered
risk of developing diseases in humans (Feinberg, 2018). Indeed, as
age increases the cumulative effects of stress and environmental
impacts promotes the gradual accumulation of epigenetic changes
in tissues. These epigenetic changes could serve by increasing an
individuals susceptibility and risk of developing chronic diseases.
Fortunately, many of these epigenetic modifications can be
reversed, and targeting the respective enzymes that control
methylation or histone modifications has been proposed as
useful drug target in the treatment of age-related diseases.
Therefore, in the current review, coverage of vascular aging and
associated epigenetics processes will be covered. In addition, a
summary of the main pathological drivers of vascular cell
senescence, inflammation, oxidation stress, and calcification will
be provided. A better perspective of epigenetic changes that occur
during vascular aging will help to better understand the process of
vascular damage that occurs with age. This information could be
used to better development therapeutics or strategies to delay or
treat aging-related cardiovascular diseases (Sen et al., 2016).
Frontiers in Pharmacology | www.frontiersin.org 2208
VASCULAR AGING

Vascular aging is characterized by changes in both structural and
functional elements associated with blood vessels. Over the course
of time, vascular aging leads to lumen dilation, vascular stiffness,
and thickening, these changes being largely driven by pathological
processes including vascular cell senescence, widespread
inflammation, oxidation stress, and tissue calcification (Ding
et al., 2018). The structural and functional changes of blood
vessels that occurs during vascular aging are shown in Figure 1.

Structural Changes
Blood vessels (excluding capillaries) are composed of distinct
anatomical features comprising the intima, media, and
adventitia. The intima is largely composed of endothelial cells
(ECs) and is the first defensive layer important in mitigating the
development of vascular diseases. The media consists of vascular
smooth muscle cells (VSMCs), elastic fibers, and extracellular
matrix, and the adventitia, the outermost layer, is composed of
loose connective tissue. This region is consists of thick collagen
fibers and disordered elastin fibers. It is widely known that during
aging, significant change occur in the intima, and this alters the
function properties of this layer and, importantly, how the intima
interacts with adjacent regions like the media (Lakatta et al., 2009).
These changes promote altered responses to luminal dilation,
FIGURE 1 | The structure and functional changes of blood vessels. EC, endothelial cell; VSMC, vascular smooth muscle cell; AGEs, advanced glycation end
products; ROS, reactive oxygen species.
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vascular stiffness, and the thickening of blood vessels. Indeed,
research has shown that the diameter of the aorta of elderly people,
those over 65 years of age, increases by 15–20% compared with
that of tissues from younger individuals (Lakatta, 2003). In
addition, increased thickening of the arterial wall, largely driven
by thickening of the arterial intima and media (Lakatta and Levy,
2003a), is associated with increased abundance of hypertrophic
smooth muscle cells. Other common structural changes associated
with aged blood vessels include elastin breaks, increased collagen
abundance, and elevated levels of advanced glycation end products
(AGEs). Combined these changes have a dramatic impact on the
severity of vascular aging (Lakatta, 2003; Lakatta and Levy, 2003a).

Functional Changes
Increased arterial stiffness, decreased arterial compliance (AC),
reductions in vascular repair, and diminished capacity to control
processes like angiogenesis are important features of aging blood
vessels. Arterial stiffness and decreased AC can be attributed to
smooth muscle cell hypertrophy, arterial calcification, and ECM
remolding. One of the key reasons for the decline in the ability of
vessels to repair tissue damage is thought to be due to vascular
endothelial cell senescence (Lakatta and Levy, 2003a; Novella
et al., 2012).

Pathological Process During Vascular
Aging and Cardiovascular Diseases
Aging blood vessels promote the development of vascular diseases
and in turn accelerates the process of vascular aging. Numerous
epidemiological studies indicate that lipid levels, diabetes, sedentary
lifestyles, and various genetic factors increase the risk of coronary
heart disease, hypertension, heart failure, and stroke. Underpining
these changes are distinct biochemical and physiological changes
that drive changes in the cardiovascular system. In recent times, the
conventional cardiovascular continuum (CCC) in 2006 (Dzau et al.,
2006a; Dzau et al., 2006b) has proposed that CVD begins with risk
factors and progresses to terminal stage cardiac disease through a
series of steps. The main characteristics of CCC are viewed as
coronary artery atherosclerosis (AS), leading to coronary stenosis,
and myocardial ischemia and myocardial infarction. However, one
aspect not considered by the CCC criteria is the role of aging,
especially vascular aging in the occurrence and development of
CVD. Therefore, in 2010, the aging cardiovascular continuum
(ACC) suggested that a key component of CVD should include
aging (O’Rourke et al., 2010). Therefore, the ACC describes the
stages of cardiovascular disease (CVD) as vascular aging, which
promotes aorta dilation and sclerosis. In turn, these pathoglogical
changes lead to heart failure, terminal stage cardiac disease, and
death. In essence, the basic characteristics proposed by the ACC are
the progressive degradation of the proximal aorta with arterial
dilatation and sclerosis that has an adverse effects on the heart. If we
consider that aortic pulsation, then the repetitive stretching and
relaxation of arteries has occured 3 billion times in elderly people
over 80 years old; it is clear that aging is an important factor in this
process. As such, aging should be viewed as a risk factor for CVD,
since it explains 50% of all clinical CVD cases in senior citizen
(Cunha et al., 2017).
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Vascular aging and CVD have several common pathological
features when viewed at the molecular and cellular levels viz.
increased oxidative stress, a pro-inflammatory environment,
dysregulation in cell signaling, and altered response to
infiltrating immune cell types. These feactures, as mentioned,
provide sufficient conditions in the aged artery for the
development of cardiovascular disease. For example, arterial
aging and atherosclerosis have similar structural and
biochemical characteristics. Indeed, research has shown that
abnormal plasma cholesterol levels of young people is related
to arterial wall thickening, VSMCs, collagen proliferation, and
collagen deposition. These changes are similar to those observed
in elderly people with altered cholesterol levels (McGill et al.,
2008; Wang et al., 2010a). However, some animal studies show
that plasma lipid levels do not change with aging; however, the
prevalence, severity, and negative impact of atherosclerosis still
increase in aged animals (Eto et al., 2008). These observations
suggesting other molecular events are also important in driving
CVD. One clue then may be that many proteins that are highly
expressed in atherosclerotic tissues are also increased in aging
arterial walls such as MFG-E8 and MMPs (Fu et al., 2009).

The pathological processes assocociated with vascular aging
are characterized by vascular cell senescence, widespread
inflammation, oxidation stress, and calcification, and these
processes are summarized in Figure 2. As ECs age, the cells
become flattened and enlarged, the rates of proliferation is
diminished, and rates of apoptosis increased. In addition,
enrichment of the surrounding environment with inflammatory
mediators including interleukins-6 and tumour necrosis factor-a
results in the decreased ability to control vascular repair and
angiogenesis. Similalrly, the numbers of hypertrophic VSMCs
begin to increase, as do the rates of cell proliferation and
migration, and combined, this cellular transition drives
extracellular matrix (ECM) remolding. Critically, as rates of
inflammation increases over time, so do changes in cell
populations of EC and VSMCs, and this, in turn, stimulates
vascular aging and ultimately the endothelium damage. A widely
recognized key driver of chronic inflammation in the
vasculariture, especially during aging, is the renin-angiotensin II
(Ang II) signaling pathway. Changes in this signaling system
initiates a cascde of events leading to the activation of
downstream pro-inflammatory transcription factors like nuclear
factor kappa beta (NF-kB), the production of reactive oxygen
species (ROS) leading to oxidative damage, and the induction of
endoplasmic reticulum (ER) stress. ER and sarcoplasmic
reticulum are important pools of calcium; therefore, this could
promote dysregulation in Ca2+ signaling. Collectively, these
molecular events accelerate vascular remodeling (Cavallaro et al.,
2000; Lakatta et al., 2009; Wang et al., 2010a; Wang et al., 2010b;
Krebs et al., 2015). Under normal physiological conditions, ROS
are produced in the vascular system through two routes, the
mitochondrial and non-mitochondrial pathways. Importantly, in
healthy or younger cells, oxidative stress is controlled by cells
having the capacity to remove excess ROS via antioxidant system,
and this could potentially reduce the rates of oxidative damage to
mtDNA, respiratory chain complex proteins, and other important
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cellular components, therefore maintaining adequate cellular and
tissue redox homeostasis (Kadlec et al., 2016). However, during
aging, mitochondrial function can diminish, and this results in a
cumulative increase of mitochondrial damage and excessive ROS
production. Consequently, increased levels of ROS are generated
via active oxygen release mechanism, resulting in further damage
to the mitochondrial outer membrane and causing membranes to
rupture, intracellular calcium overload, DNA damage, and the
release of pro-apoptotic proteins like cytochrome C. This cascade
ultimately leads to the induction of apoptosis or necrosis and
further amplifies damage to aged or aging tissues fueling age-
related degenerative diseases (Mikhed et al., 2015).

Tissue calcification is also common in the aged cardio-
vascular system, and researchers have demonstrated that
senescent VSMCs are associated with a calcification phenotype.
Aging VSMCs produce appreciable levels of calpain-1, and these
promote blood vessels calcification, a process commonly referred
to as biomineralization (Jiang et al., 2012). Calcification activates
tissue transglutaminase (TG2) and upregulates calcification
promoter genes such as the osteoblast transcription factor
Runt-related transcription factor 2 (Runx2) and bone
Frontiers in Pharmacology | www.frontiersin.org 4210
morphogenetic protein-2 (BMP-2). These systems participate
in driving arterial calcification and sclerosis in the aging blood
vessel wall. It is now realized that vascular calcification is an
important cause of the increase in the incidence and mortality of
cardiovascular diseases (Leopold, 2013) and that calcification,
VSMCs hypertrophy, ECM remolding promote arterial stiffness
and decreased AC.
EPIGENETIC CONTROL OF GENE
EXPRESSION

Epigenetics is the heritable alterations of gene expression
without changing the DNA sequence and determines whether
a gene is turned on or off (Handy et al., 2011). Mounting
evidence shows that epigenetic mechanisms play an important
role in phenotypes and behavioral changes. Indeed, these
mechanisms go someway to explain why twins who grew up in
different locations and under differing environmental conditions,
yet having the same genetic background, can have differences in
lifespans or altered risks of chronic diseases such as diabetes or
FIGURE 2 | Pathological process during vascular aging. Pathological process promote the development of vascular aging and vascular aging accelerates the
pathological process. EC, endothelial cell; VSMC, vascular smooth muscle cell; ECM, extracellular matrix; CVD, cardiovascular diseases.
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hypertension (Fraga et al., 2005; Tan et al., 2013). Similarly,
dietary influences like caloric restriction can delay the occurrence
of age-dependent diseases via epigenetic mechanisms. Again,
these examples exemplify the intimate association between how
environmental factors can drive changes in epigenetic events that
control gene expression (Maegawa et al., 2017).

DNA Methylation
DNA methylation, the direct addition of a methyl group to the
5th carbon atom of cytosine, is one the most widely recognised
epigenetic mechanims known to regulate gene expression. CpG
islands, characterized as short interspersed DNA sequences that
are GC-rich regions. In mammalian cells, most of these CpG
regions can be methylated (Jeltsch, 2008). Importantly, de novo
DNA methylation status is governed by a family of enzymes
known as DNA methyltransferases that include DNMT3a and
DNMT3b, along with DNMT1 that is important during
replication (Okano et al., 1999). The activities of these enzymes
are readily influenced by environmental cues making DNA
methylation a dynamic process in cells and tissues (Tsaprouni
et al., 2014). Generally speaking, high methylation rates in the
gene promoter region of genes inhibit gene expression.
Inhibition in this instance is caused by altered (reduced)
transcription factors binding to promoters consensus regions
or by reducing the recruitment of chromatin modifying enzymes
(Kohli and Zhang, 2013). To date, a wide range of abnormal
DNA methylation patterns have been characterized in aged cells,
with many seen in various age-related diseases (Hai and
Zuo, 2016).

Histone Modifications
Histone modifications is another important epigenetic
mechanism that regulates gene transcription by changing how
histones proteins interact with DNA. Changes in DNA histone
interactions is important in controlling gene expression during
processes such as replication, transcription, and repair. Common
mechanisms of histone modification include methylation,
acetylation, phosphorylation, and ubiquitination. Unlike DNA
methylation, the effect of histone modifications on gene expression
may vary due to the specific type of chemical modifications
(Shahbazian and Grunstein, 2007). Enzymes that regulate
histone modifications include histone deacetylase (HDAC),
histone methyltransferase, and histone acetyltransferase, and it is
widely known that these enzymes play an important roles in the
process of vascular aging (Calvanese et al., 2009).

ncRNA Mechanisms
ncRNA is RNA that lacks the capacity to code for a protein.
Examples of ncRNA include microRNA (miRNA), long ncRNA
(lncRNA), and small interfering RNA (siRNA). Although
ncRNA has no direct affect on chromatin structure, it does
play an important role in post-transcriptional control of gene
expression (Gurha and Marian, 2013). Genome-wide RNA
sequencing shows that ncRNAs are differentially expressed in
both senescent and normal cells (Wu et al., 2015; Anderson
et al., 2016).
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DO EPIGENETICS MECHANISMS
CONTRIBUTE TO VASCULAR AGING?

The following introduces the pathological steps that are involved
in the epigenetic regulation of vascular aging. A summary of
these events and epigenetic targets are shown in Table 1.

Are Epigenetic Mechanisms Involved in
the Regulation of Vascular Cell
Senescence?
NAD-dependent deacetylase sirtuin-1 (SIRT1), is the most
thoroughly studied member of the Nuclear-localized type III
histone deacetylases (Situin) family. This protein is involved at
multiple levels during the stages of vascular aging, and plays an
important role vascular cell senescence as demonstrated by the
following observations: (1) the expression of SIRT1 in VSMCs of
mice is decreased with advancing age; (2) smooth muscle-specific
knockout of SIRT1 in animals promotes Angiotensin II (Ang II)
induced vascular senescence (Chen et al., 2016); (3) SIRT1 is
important in the deacetylation of histone H4K16, and that this
process inhibits senescence of ECs and is protective against
vascular aging (Wan et al., 2014); (4) SIRT1 can increase ECs
Kruppel-like factor 2 (KLF2) expression, which causes vascular
ECs to enter a “vaso-protective” state (Gracia-Sancho et al.,
2010); (5) energy restriction promotes increased SIRT1
expression in VSMCs and tissues and fights abdominal aortic
aneurysm (Liu et al., 2016); and finally, (6) nuclear-localized
SIRT6 protects telomeres in vascular ECs, tempering reductions
in replication capacity and premature cell senescence following
DNA damage (Cardus et al., 2013).

ncRNAs, especially miRNAs, are involved in vascular cell
senescence. miRNAs are short single-stranded ribonucleic acids
that can negatively regulate gene expression by base-pairing to
target mRNA and causing mRNA cleavage or translation
repression (Carthew and Sontheimer, 2009). For example, the
expression of miR-217 in ECs is seen to increase with age and can
inhibit the expression of SIRT1. Subsequent reductions in the
expression of SIRT1 increases the levels of senescent and
dysfunction ECs. Interestingly, miR-217 inhibition reportedly
slows the rates of cellular senescence in ECs (Menghini et al.,
2009). Similarly, miR-145 and miR-143 can regulate the
phenotypic transition of smooth muscle cells during vascular
aging and during the differentiation of smooth muscle. The miR-
143 and miR-145 work together targeted transcription factors
network, such as Klf4 (Kruppel-like factor 4) and myocardin and
Elk-1 (member of ETS oncogene family) and, on the one hand,
form a positive feedback mechanism to promote the
differentiation of smooth muscle cells, and on the other hand,
repress the proliferation of smooth muscle cells (Cordes et al.,
2009). The lncRNA H19 is expressed in the adult endothelium
and is reduced with advanced age. H19 inhibits the STAT3
signaling pathway, a key pathway regulating endothelial cell
senescence (Hofmann et al., 2019). Other lcRNAs such as
MEG3 prevent miR-128–dependent Girdin down regulation
and inhibits vascular endothelial cell senescence (Lan et al.,
2019). More recently, our research group has shown that Fos-
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related antigen 1 (Fra-1) plays an important role in Ang II–
induced vascular senescence. Fra-1 expression is dramatically
increased in Ang II–induced rat aortic endothelial cell (RAEC)
senescence (Yang et al., 2019).

Epigenetic Regulation of Inflammation in
Vascular Aging
Typically, an individuals inflammatory status increases with
age (Fulop et al., 2018). Studies on the methylation patterns in
the human genome have shown that hypermethylation of
DNA appears to correlated with chronic inflammation associated
with many aging-related diseases (Cutolo et al., 2014). For example,
in pathophysiological conditions such as atherosclerosis,
Frontiers in Pharmacology | www.frontiersin.org 6212
hypomethylation of the promoter region of monocyte
chemoattractant protein-1 (MCP-1) leads to increased expression
of MCP-1 and promotes the recruitment of inflammatory cells
accelerating the disease process (Liu et al., 2012).

In other research, the activation of SIRT1 in smooth muscle
cells reduces the stiffness of blood vessels; a process associate
with crosstalk with the NF-kB inflammatory signaling pathway
and the inhibition of inflammatory signaling (Fry et al., 2016).
Loss of functional SIRT1 resulted in hyperacetylated of NF-KB
and drives increased transcription of pro-inflammatory genes.
Similarly, cytoplasmic SIRT2 induces the deacetylate of p65
Lys310 and regulates NF-kB–dependent gene expression viz.
reduces transcription of pro-inflammation genes (Rothgiesser
TABLE 1 | Vascular aging related epigentics targets.

Targets Major findings Effects References

SIRT1 Decreases in VSMC of aged mice Enhance vascular inflammation (Chen et al., 2016)
Deacetylate histone H4K16 Improves the function of endothelial cells (Wan et al., 2014)
Increase ECs KLF2 expressions Vaso-protective (Gracia-Sancho et al., 2010)
Increased by energy limitation Fight abdominal aortic aneurysm (Liu et al., 2016)
Activation by SIRT1 activators Inhibit vascular remodeling, stiffness and calcification (Takemura et al., 2011; Winnik

et al., 2015; Fry et al., 2016; Badi
et al., 2018)

SIRT2 Deacetylate p65Lys310 Regulates inflammmation via NF-kB-dependent gene
expression

(Rothgiesser et al., 2019)

SIRT3 Missing will lead to the high acetylation and
inactivation of SOD2

Leading to an imbalance of redox homeostasis in blood
vessels

(Dikalova et al., 2017)

SIRT6 Protect telomere Avoiding premature cell senescence caused by DNA
damage

(Cardus et al., 2013)

HDAC3 Inhibit the activation of macrophages Lacking HDAC3 will be easily activated by IL-4 and
accelerate blood vessel’s inflammation

(Mullican et al., 2011)

HDAC4 Deacetylate FoxO3a Regulates vascular inflammation via activation of
autophagy

(Yang et al., 2018)

JMJD3 Deficiency of JMJD3 and Nox4 prohibits
autophagic activation

Attenuates neointima and vascular remodelling following
carotid injury

(Luo et al., 2018)

Fra-1 Directly binding and transcriptionally activating
p21 and p16 signaling

Promoting vascular aging (Yang et al., 2019)

GATA4 Directly binding to the the angiogenic factors
VEGFA and VEGFC promoter and enhancing
transcription.

Regulates Angiogenesis and Persistence of Inflammation (Jia et al., 2018b)

MCP-1 Hypomethylation of the promoter region in
atherosclerosis

Increases the expression of MCP-1, promotes the
recruitment of inflammatory cells

(Liu et al., 2012)

eNOS Hypermethylation of promoter region appears in
pathological conditions

Inhibiting the expression of eNOS and NO production (Chan et al., 2004)

p66Shc Contains a large number of methylation
modification sites

Modifying the methylation level to regulate the gene
expression in order to control mitochondrial produce
hydrogen peroxide

(Ventura et al., 2002; Cencioni et al.,
2013)

miR-217 Combined with the (3’-UTR) of SIRT1 to inhibit
the expression of SIRT1

Causing senescence and dysfunction of ECs (Menghini et al., 2009)

miR-143/miR-
145

miR-143 and miR-145 are activated in
differentiated smooth muscle cells

Inhibits the proliferation of smooth muscle cells (Cordes et al., 2009)

miR-210 Reduce the overproduction of ROS Regulates oxidation stress (Ma et al., 2018)
miR-135a/miR-
714/miR-762/
miR-712

Inhibit the outflow of calcium ions by disrupting
Ca2+ efflux proteins NCX1, PMCA1, and NCKX4

Promote VSMC calcification (Gui et al., 2012)

Long non-coding
RNA H19

Decreased expressed along with aging in the
adult endothelium

Inhibits STAT3 signaling pathway to regulate endothelial
cell senescence

(Hofmann et al., 2019)

Long noncoding
RNA MEG3

Impairing miR-128-dependent girdin down
regulation

Prevents vascular endothelial cell senescence (Lan et al., 2019)
September
SIRT, type III histone deacetylases (Sirtuin); VSMC, vascular smooth muscle cell; H4K16, histone4 Lysine16; KLF2, endothelial cells Kruppel-like factor 2. SOD2, superoxide dismutase 2;
HDAC, histone deacetylase; FoxO3a, Forkhead boxO3;MCP-1, monocyte chemoattractant protein-1; P66Shc, member of Shc (src homology and collagen homology) family; 3’-UTR, 3’-
untranslated region; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; ROS, reactive oxygen species; JMJD3, histone demethylase; GATA4, a member of GATA zinc-finger
transcription factor family; Fra-1, Fos-related antigen1; NF-kB, nuclear factor kappa-B; miR, micro RNA; NCX1, Na+-Ca2+ exchanger isoform 1; NCKX4, Na+/K+/Ca2+-exchange protein 4;
PMCA1, plasma membrane calcium ATPase 1; STAT3, signal transducers and activators of transcription.
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et al., 2019). These finding showing that acetylation status of NF-
kB is an important driver of rates of inflammation in cells and
tissues. Additional support comes from the knowledge that the
inhibition of histone deacetylases (HDAC) increases tumor
necrosis factor a (TNF-a) levels, the activation of the NF-kB
signaling pathway, and resultant increase in IL-8 expression
(Ashburner et al., 2001). Other members of the HDAC family
such as HDAC3 have been shown to inhibit the activation of
macrophages. In macrophages lacking HDAC3, there is an
increased response to stimulation by interleukin 4 (IL-4) that
likely drives increased rates of inflammation in blood vessel
leading to aging (Mullican et al., 2011). In addition, our research
on vascular aging points to a possible role of HDAC4 in
mitigating inflammatory responses in the vascular system.
HDAC4 appears to play an essential role in vascular
inflammation by regulates Ang II–induced autophagy via the
activation of FoxO3a deacetylation (Yang et al., 2018), work
recently communicated as an editorial focusing on
cardiovascular epigenetics (Tarun and Antoniades, 2018).
Additional research from our group has identified histone
demethylase Jumonji domain-containing protein 3 (JMJD3) as
a key epigenetic regulator of the inflammatory response in cells
(Liu et al., 2018). JMJD3 playing a pivitol role in rheumatoid
synovial hyperplasia in rheumatoid arthritis (RA) (Jia et al., 2018a;
Wu et al., 2019). Moreover, evidence also points to potential roles
for JMJD3 in vascular remodeling (Luo et al., 2018) and in the
regulation of the transcription factor GATA4. GATA4 functioning
in inflammation persistence and angiogenesis in rheumatoid
arthritis (RA) (Jia et al., 2018).

Other mechanisms linking epigenetic processes and
inflammatory status include the ncRNA molecule, miR-155.
miR-155 is a positive regulator of vascular inflammation, and
is abundant in activated macrophages and monocytes, and
potentially leaves blood vessels in a chronic inflammatory state.
Increased levels of miR-155 induce the expression of MCP-1, and
could encourage the recruitment of monocytes to vascular tissues
thus exacerbating the inflammatory response (Wu et al., 2014).
In contrast, miR-194 has opposing effects in that this miRNA can
inhibit inflammation. While the mechanisms for this still
required additional research, it is known that miR-194
overexpression can inhibit tumor necrosis factor receptor-
associated factor 6 (TRAF6), and this reduces the production
of monocyte inflammatory factors (Tian et al., 2015).

Regulation of Oxidation Stress in
Vascular Aging
Links between vascular aging, DNA methylation patterns and
oxidative stress are also seen in blood vessels. Regulation in the
expression of endothelial nitric oxide synthase (eNOS), which
encodes an endogenous nitric oxide synthase and is a source of the
vasoactive molecule nitric oxide (NO), is altered by methylation
status. Lower methylation patterns in the promoter region of
eNOS allow for gene transcription and is therefore important in
the production of NO and associated physiological processes
involving this gaseous signaling molecule. In pathological
situations hypermethylation in the eNOS promoter region
Frontiers in Pharmacology | www.frontiersin.org 7213
inhibits eNOS expression and causes diminished levels of NO
(Chan et al., 2004). Other proteins such as p66Shc, a protein
associated with endothelial dysfunction, are also regulated via
methylation status. The p66Shc protein is important in signaling
systems linked to the production of hydrogen peroxide (H2O2),
and the gene encoding for this protein is known to contains a large
number of methylation sites. Modification of the methylation
pattern is thus seen as a means to control the expression of this
protein (Ventura et al., 2002; Cencioni et al., 2013).

Potential roles of SIRT1 in mitigating oxidative stress in
smooth muscle cells has recently been proposed and suggested
to be important in reducing blood vessels stiffness (Fry et al.,
2016). Similarly, expression of SIRT3 a protein known to decline
in tissues by as much as 40% by the age of 65 also appears to be
important in mitigating oxidative stress. In cells lacking SIRT3,
the activity of the mitochondrial antioxidant enzyme superoxide
dismutase 2 (SOD2) is impaired due to hyperacetylation.
Consequently, elevated mitochondrial O2

• and diminished
endothelial NO are observed, leading to an imbalance of redox
homeostasis in blood vessels (Dikalova et al., 2017). Building on
this area of research are roles for miRNA and associated impacts
on redox systems linked to vascular ageing. To date, miR-210 has
recently been demonstrated to reduce the overproduction of
mitochondrial reactive oxygen species (ROS) (Ma et al., 2018).

Epigenetics Systems and Calcification in
Vascular Aging
SIRT1 can inhibit vascular remodeling, stiffness, and functions
in protection against atherosclerosis and vascular calcification
in mice and is indicative that SIRT1 has protective roles in
vascular injury diseases (Winnik et al., 2015). Evidence to
support protective roles come from several important pieces of
research. Firstly, that in vitro culture of VSMCs using media
containing high levels of phosphate (Pi) stimulates cell
senescence and calcification. These changes related to the
down-regulation of SIRT1 expression and the activation of p21
(WAF1/Cip1). Activation of p21(WAF1/Cip1) drives replicative
senescent in VSMC cells, a process that can be reversed in cells in
which p21(WAF1/Cip1) has been knockdown using molecular
approaches. Moreover, loss of functional p21(WAF1/Cip1)
abolishes Pi induced senescence and calcification in VSCMs.
Thirdly, knockdown of SIRT1 in cells promotes a transformation
to a calcification phenotype and promotes Pi-induced VSMC
senescence calcification. Interestingly, treatment of cells with the
SIRT1 induce resveratrol activates the protein and inhibits
VSMC calcification (Takemura et al., 2011). In allied areas of
research, the expression of the miRNA molecule miR-34a is
elevated in the aorta of aged mice and is associated with rates of
calcification. miR-34a is downregulating by SIRT1, this serving to
temper miR-34a induced VSMCs calcification (Badi et al., 2018).
Futhermore, the lncRNA-ES3/miR-34c-5p/BMF axis has recently
been shown to regulate high-glucose-induced VSMCs
calcification/senescence (Lin et al., 2019), and miR-135a, miR-
714, miR-762, and miR-712 are involved in VSMC calcification
by disrupting Ca2+ efflux proteins like NCX1, PMCA1, and
NCKX4 (Gui et al., 2012).
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EPIGENETICS REGULATION AND
TREATMENT OF VASCULAR AGING
AND CVD
As discussed in the previous sections, vascular aging contributes to
cardiovascular disease(s) including atherosclerosis, hypertension,
coronary heart diseases, and stroke. Vascular aging encompasses
many biochemical and physiological changes associated with
vascular remodeling, vascular homeostasic imbalance, vascular
cell senescence, a pro-inflammation state and increased rates of
oxidative stress, and tissue calcification. The interplay between
each of these conditions is complex and makes the development of
robust treatment strategies targetting vascular aging challenging.
Indeed, the targeting of a single vascular cell type or population or
a specific signaling system is difficult. However, the recognized
association between epigenetic regulation of multiple gene targets
coding for proteins regulating biochemical or physiological
processes linked to vascular aging may be achievable. Epigenetic
targets could serve as appropriate therapeutic targets suitable for
the management of vascular aging and related diseases in humans.
These treatments, if explored and developed further, may be more
effective, span several risk factors linked to the development of
vascular aging, and would have the added benefit that they are
reversible processes. Such systems could be exploited in the future
development of novel therapeutics. For example, our research has
demonstrated that JMJD3 could be a useful therapeutic target.
JMJD3 is a crucial epigenetic regulator involved in the
inflammatory response to LPS in macrophages. JMJD3
expression is controlled by the transcription factor Sp-1 and is
responsible for changes in the expression of cystathionine gamma-
lyase (CSE). This system negatively regulates the inflammatory
response in cells and tissues and reduce the progression of
rheumatoid arthritis (RA). Moreover, deficiency of JMJD3
reduces neointima formation after vascular injury by inhibits the
Nox4-autophagy signaling pathway. These observations
suggesting that JMJD3 may represent a novel target for the
development of new anti-inflammatory therapeutics for treating
RA, the prevention and treatment of intima hyperplasia-related
vascular diseases, and other pro-inflammatory conditions (Liu
et al., 2018; Jia et al., 2018a; Luo et al., 2018; Wu et al., 2019).
Likewise, the transcription factor GATA4, a key regulator of
angiogenesis and persistence of inflammation in RA may also
hold promise as a therapeutic target (Jia et al., 2018).We also show
that Fos-related antigen 1 (Fra-1) plays a novel and key role in
promoting vascular aging by directly binding and activating the
target proteins p21(WAF1/Cip1) and p16(INK4A) protein
signaling systems. Intervention of Fra-1 is a potential strategy
for the prevention of aging-related cardiovascular disorders (Yang
et al., 2019).

The development of epigenetically targeted therapeutics has
received considerable attention over the last decade and has lead
to the identification of several important epigenetic modified
protein inhibitors including the FDA-approved molecule
azacytidine and various inhibitors of DNMT1, HDAC, and
histone acetyltransferases (HAT) (Voelter-Mahlknecht, 2016).
These therapeutics could be adopted for use in the treatment of
Frontiers in Pharmacology | www.frontiersin.org 8214
specific CVD conditions. To date, epidrugs-based therapeutics
for the treatment of CVD mainly include compounds widely
used in the clinical that function through epigenetics-related
mechanisms, numerous natural compounds, and various newly
synthesized molecules. Our group has reported on the anti-
inflammation effects of the HDAC4 inhibitor Tasquinimod and
its use in the treatment of vascular inflammation-related diseases
(Yang et al., 2018). Other molecules of interest include common
statins used to lower serum cholesterol to prevent major
cardiovascular problems. Some statins may function as HDAC
inhibitor (Voelter-Mahlknecht, 2016). Likewise, trichostatin
A, an inhibitor of HDAC, prevents ventricular remodeling
by inhibiting TNF-a transcription and by promoting
cardiomyocyte survival by enhancing Akt phosphorylation
(Zhang et al., 2012). In addition, in experimental models of
myocardial infarction and atherosclerosis, the HDAC inhibitor
sodium butyrate inhibits NF-kB signal transduction and the
production of inflammatory molecules including TNF-
a, interleukin-6, vascular cell adhesion molecule-1, and
intercellular adhesion molecule-1, pointing to potential
pharmacological effects (Hu et al., 2014). The natural product
curcumin functions as an HAT inhibitor in rodent models of
heart failure preserving systolic function and preventing
ventricular hypertrophy (Pan et al., 2013). Similarly, molecules
like folic acid and B vitamins are DNMT inhibitors and
deficiencies in folic acid causes global DNA hypomethylation
that is associated with increased risk of CVD including coronary
heart disease, atherosclerosis, and anemia (Kim et al., 2007;
McNulty et al., 2008). The common analgesic, acetylsalicylic
acid appears to reduces ATP-binding cassette transporter A1
gene methylation rates in the pathophysiology conditions
associated with coronary heart disease and thus points to a
potentially new therapeutic strategy for this disease (Guay
et al., 2014). Likewise, the molecule 5- aza-2-deoxycytidinede
(DAC), an inhibitor of DNMT that can reverse rates of DNA
methylation, has been shown to re-active genes silenced by
hypermethylation viz. estrogen receptors a and b in normal
ECs and smooth muscle. Importantly, the failure of some
estrogen therapies to protect cardiac tissues from damage
could be due to epigenetic silencing of the female estrogen
receptor. The discovery of natural products that can be used to
alter SIRT1 activity in cells has also gained some interest. SIRT1
expression and activity can reduce during senescence-related
diseases and re-activation of SIRT1 in tissues may offer new
opportunities in the development of future drug candidates.
Indeed, one potential drug for disease intervention, is the
stilbene resveratrol, an activator of SIRT1. Resveratrol has been
repeatedly shown to effectively delay vascular senescence in mice,
and to improve cardiometabolic health (da Luz et al., 2012;
Pollack and Crandall, 2013; Kim et al., 2018). Finally, rapamycin-
induced miR-30a down-regulation is mediated via the targeting
of beclin1 and can inhibit the senescence of VSMCs (Tan et al.,
2019). It is clear that more research is needed to further address
the anti-aging effects of many of these molecules and in the
discovery of other compounds that could be used to manipulate
epigenetic systems in mammalian cells and tissues. In particular,
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pharmacologist should focus on research to assess the role of
other types of epigenetic targeting drugs. Identified molecules
could then drive developments in combined approaches to treat
CVD using epigenetic-based therapeutics coupled with hormone
replacement therapy (Schiano et al., 2015).
CONCLUSION AND PROSPECTS

Our understanding of the molecular mechanism controlling the
epigenetic regulation of gene expression has progressed
significantly over the last two decades. However, much has still
to be learnt, and our perceived ideas of epigenetic modulation
and its manipulation in vivo is far more complicated than
previously thought. Aging is an irreversible biological process
while epigenetic alternations are reversible and may offer novel
treatment strategies in patients with age-related CVD. New
methods and experimental research techniques are needed to
facilitate the manipulation of epigenetic processes in cells and
tissues. Indeed, recently a newly emerging epigenetic mechanism
involving RNA methylation has been reported (Yue et al., 2015);
however, its role in vascular biology is not yet clear and requires
further research. Another important problem to be solved in the
future is how to manipulate histone modification in specific
tissues like the vascular endothelium. This problem is critical
because systemic inhibition or activation of HDAC, or other
epigenetic enzymes may cause adverse reactions (Heerboth
et al., 2014). Building on these advances will be the ability to
monitor epigenetic changes in cells, this will be critical in making
advances in this field. Interestingly, the progressive development
of single-cell sequencing and single-cell epigenetic technologies
Frontiers in Pharmacology | www.frontiersin.org 9215
like scATAC-seq, scDNase-seq, and scChic-seq can be used to
study the mode of epigenetic regulation at the single-cell level, and
these technologies will offers exciting opportunities in the near
future (Nawy, 2014; Ku et al., 2019). In particular, these systems
will aid in the development of more elaborate models of epigenetic
regulation and will allow for the development of more accurately
therapeutics for use in epigenetic research. With regards to
vascular aging, a good start here would be research on newer
epigenetic pharmaceuticals, developed using drug repurposing
approaches; a safe and low-cost way to support future vascular
drug discovery (Xu et al., 2019). In addition, since epigenetic
mechanisms work in concert to regulate gene networks, there may
also be requirements for the development of epigenetic “cocktail”
therapies that can be exploited to target a spectrum of age-related
genes for treating age-related diseases.
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Activation of SIRT1 by resveratrol induces KLF2 expression conferring an
endothelial vasoprotective phenotype. Cardiovasc. Res. 85 (3), 514–519.
doi: 10.1093/cvr/cvp337
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