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Editorial on the Research Topic

Advanced Deep Learning Methods for Biomedical Information Analysis (ADLMBIA)

Due to numerous biomedical information sensing devices, such as Computed Tomography (CT),
Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography
(SPECT), and Positron Emission Tomography (PET), to Magnetic Particle Imaging, EE/MEG,
Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and
Atomic Force Microscopy, and so on, a large amount of biomedical information has been gathered
in recent years. However, developing advanced imaging methods and computational models for
efficient data processing, analysis, and modeling from the collected data remains a challenge.

Deep learning (DL) approaches have been rapidly developed in recent years, both in terms
of methodologies and practical applications. DL techniques provide computational models of
multiple processing layers to learn and represent data with multiple levels of abstraction. DL allows
the capture of intricate structures of large-scale data implicitly and is ideally suited to some of the
hardware architectures that are currently available.

The purpose of this Research Topic is to provide a diverse but complementary set
of contributions to demonstrate new developments and applications of deep learning and
computational machine learning to solve problems in biomedical engineering.

MRI and its related modalities are fundamental imaging tools in biomedical engineering. The
method of Germuska et al. is based on the simultaneous acquisition of cerebral blood flow (CBF)
and blood oxygen level-dependent (BOLD) weighted images during respiratorymodulation of both
oxygen and carbon dioxide. The authors present a machine learning implementation for the multi-
parametric assessment of dual-calibrated fMRI data.Moreno López et al. evaluate two unsupervised
approaches to denoise MRI in the complex image space using the raw information that k-space
holds. The first method is based on Stein’s Unbiased Risk Estimator, while the second approach is
based on a blindspot network, limiting the network’s receptive field.

Social media is now another critical tool that can provide information for biomedical analysis.
Shah et al. use the advancement of natural language processing algorithms and large-scale data
analysis. Their in-depth results show that the proposed method provides a viable solution in less
time with the same accuracy compared to traditional methods.

Omics are novel, comprehensive approaches for analyzing the genetic or molecular profiles
of humans and other organisms. Hassanzadeh and Wang use an integrated deep belief network
to differentiate high-risk cancer patients from the low-risk ones in terms of overall survival.
Their study analyzes RNA, miRNA, and methylation molecular data modalities from labeled and
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unlabeled samples to predict cancer survival and subsequently
provide risk stratification.

The surface electromyography (sEMG) assesses muscle
function by recording muscle activity above the muscle on the
skin. In the paper of Shi et al., the knee flexion angle, hip flexion
angle, ankle dorsiflexion angle, and sEMG signals of the seven
muscles around the knee of three different data sets (walking
data set, running data set, and walking and running mixed data
set) are used as input of the 1D CNN. The attention mechanism
is added to the network to observe the dimension feature that
the network pays more attention to, thereby increasing the
interpretability of the model.

Optical character recognition (OCR) technology is a solution
for automating data extraction from printed or written text from
a scanned document or image file and then converting the text
into a machine-readable form to be used for data processing. The
paper of Froese et al. builds a script that extracts real-time images
from a medication pump and then processes them using Optical
Character Recognition to create digital text from the image.
This text is then transferred to an ICM + real-time monitoring
software parallel with other retrieved physiological data.

A computed tomography (CT) scan combines a series of X-
ray images taken from different angles around the body and uses
computer processing to create cross-sectional images. The paper
of Wang et al. builds a 12-layer convolutional neural network
(12l-CNN) as the backbone network. Afterward, PatchShuffle is
introduced to integrate with 12l-CNN as a regularization term
of the loss function. Their model is named PSCNN. Moreover,
multiple-way data augmentation and Grad-CAM are employed
to avoid overfitting and locating lung lesions.

There is one review paper included in this Research Topic.
Lan et al. introduce the origin, specific working principle,
and development history of the generative adversarial network
(GAN), various applications of GAN in digital image processing,
Cycle-GAN, and its application in medical imaging analysis, as

well as the latest applications of GAN in medical informatics
and bioinformatics.

The ultimate goal of this Research Topic is to promote
research and development of deep learning for multimodal
biomedical images by publishing high-quality research articles,
reviews, or perspectives, among other article types, in this rapidly
growing interdisciplinary field.
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When conducting data analysis in the twenty-first century, social media is crucial to the

analysis due to the ability to provide information on a variety of topics such as health,

food, feedback on products, and many others. Presently, users utilize social media to

share their daily lifestyles. For example, travel locations, exercises, and food are common

subjects of social media posts. By analyzing such information collected from users, health

of the general population can be gauged. This analysis can become an integral part of

federal efforts to study the health of a nation’s people on a large scale. In this paper,

we focus on such efforts from a Canadian lens. Public health is becoming a primary

concern for many governments around the world. It is believed that it is necessary to

analyze the current scenario within a given population before creating any new policies.

Traditionally, governments use a variety of ways to gauge the flavor for any new policy

including door to door surveys, a national level census, or hospital information to decide

health policies. This information is limited and sometimes takes a long time to collect

and analyze sufficiently enough to aid in decision making. In this paper, our approach

is to solve such problems through the advancement of natural language processing

algorithms and large scale data analysis. Our in-depth results show that the proposed

method provides a viable solution in less time with the same accuracy when compared

to traditional methods.

Keywords: data analysis, natural language processing, social media analysis, health analysis, machine learning,

calories and physical activity

1. INTRODUCTION

Every year, Internet access is multiplying at a rate of 7% around the world (1). The level of yearly
growth of social media users in Canada however is almost twice as high at 13%. Canada is a good
representation for Internet usage with regards to the rest of the world as Canada had a 36.79million
people as of 2018, and among them, 33.05 million are Internet users. This is almost 90% of total
population (1). As Internet access and quality increases, it creates an ideal condition for the growth
of social media and other online activities. From 2017 to 2018 alone, Canadian’s social media
penetration reached 68% of the total population with 25.56 million people. The reason behind
the exponential growth of social media users is mainly due to the technological advancement of
smartphones and qualitative Internet services (with an average speed of Internet 45.64 Mbps in
Canada) (1). This shows how deeply social media and the Internet has penetrated Canadian society.
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An average Canadian spends approximately 6 h of their time
every day on the Internet. Eighty-nine percent of the total
population use the Internet daily for various activities (1).
Smartphones are essential for social media, as they enable users
to share their activities with ease of accessibility when compared
to traditional social media devices such as computers. In current
applications we see cameras integrated right into the application
to upload content instantly without the hassle of conventional
equipment. In Canada, smartphone users are growing with a rate
of 6% every year which will increase the usage of social media,
the Internet and different online services (1). This naturally
generates an enormous amount of data and information which
can be cultivated to form trends. Twitter has the most significant
amount of activity among the social media platforms, at 7.2
million monthly active users all over Canada. The raw data
collected includes all types of information from reviews of
restaurants/products, political views, user’s likes/dislikes, daily
routines, just to name a few. Since Twitter provides a qualitative
source of information that is a good measure of all social media
platforms, in this paper our approach is to consider Twitter
for analysis of public health as was originally shown in Dodds
et al. (2). There are many factors which effect the quality of
life and are complicated to measure directly. Presently, the best
technique used to measure the quality of life are traditional
surveys (3). However, the problem with these techniques include
the types of data collected, actual collection of data, cost, degree
of randomness, and time involved with the survey. These are all
mitigating factors. Due to this conventional method, the chances
of error are also increased. This in turn effects the decision of
health policies andmonitoring as it is not a proper representation
but only a skim of the actual state of health within a given
demographic area.

By studying the health of the population, trends can be
formed with regards to prevalent health conditions. For example,
diabetes, cancer, and heart conditions (4). Many of these health
conditions are correlated with nutrition and level of daily
physical activity. Health policy creators within government know
this and conducts surveys, and programs to analyze the current
health of nations (5). They can then use the information collected
to put in appropriate policies and programs in order to help the
population stay healthy and active.

The rest of the paper is organized as follows. In section 1, an
introduction was given. Next, related works are discussed to get
an idea of the similar current research being done in our field
of health analysis in section 2. We then discuss the limitations
in data analysis and how they can be solved in section 2.1. Our
methodology is presented which includes: data cleaning, creating
a database, phrase detection, and model training in section 3.
Final results are given and form a detailed health analysis for
Canada in section 4. Finally, this work concludes by summarizing
our results and discuss the future possibilities in section 5.

2. RELATED WORK

Google Flu Trends was a real-time flu detection tool based on
Google search query (6). If individuals search for a solution

for the flu or any medical information related to the flu, the
algorithm uses that information and considers their location
as a potential flu affected area (6). However, the algorithm
was proven to be ineffective. Paul and Drendze (7) gave a
correlation when comparing cancer tweets, showing that there
are higher obesity and tweets regarding smoking. They also
found a negative relationship between health care coverage
and tweets posted about diseases. With more sophisticated
algorithms the accuracy of the data increases and this can be
used to discover more true trends when looking at Twitter for
health analysis.

Shawndra et al. (8) found that people who search about
sodium content per recipe directly correlated with the number
of people admitted in the emergency room of a major urban
Washington hospital for congestive heart failure. Eichstaedt
found that sentiment analysis of tweet language outperforms the
traditional socioeconomic surveys for predicting heart disease
at the country level (9). They correlated the growth of negative
emotions in Twitter with the risk factor of heart disease on a large
scale. This shows that social media analysis can be more effective
than traditional surveys andmay be the next step of methodology
for future analysis done by the government.

Culotta et al. (10) analyzed tweets which contain the daily
habits of the account holders. The results were a “deep
representation” of the US community in regards to their daily
negative engagement concerning their routine such as watching
television, playing, or reading. Abbar also did an analysis of data
on Twitter for caloric analysis at the country level. They classified
food-related tweets and found the caloric value of such food.
This analysis gave a brief understanding of the food habits of
the people in different demographic areas (11). Subsequently,
Lexicocaloricmeter (LCM) became one of the most sophisticated
approaches toward the health analysis of people at the country
level. This is done by utilizing social media. LCM is an online
instrument that is designed for measuring social, physical, and
psychological examination at a large scale. Sharon et al. (12)
developed it for public health monitoring and to create health
policies through data-centric comparison of communities at all
scales. Oversimplification exists in data analysis whichmeans that
the data is being classified in basic categories. Doing this results
in looking only at the data present instead of looking deeper into
the meaning or relevance of the data. This methodology is known
to cause bias. An example of this is a piece of data from a Twitter
account that says “the test was a piece of cake.” This idiomatic
expression that has very little to do with food. Instruments like
LCM will take this data as a food tweet and add it to is trends.
This causes errors and inaccurate trends which needs to be
addressed in future models. Models need to have a resistance
to oversimplification. LCM extracts text related to caloric input
and caloric output and calculates their caloric content (13, 14).
They also use food phrases from a 450-plus database and physical
activity phrases from a 550-plus database. The second step is to
group categorically similar words and phrases into small pieces
called lemmas. They then assign caloric values to it, based on the
food and physical activity. To get these lemmas, they use a greedy
selection algorithm. Food caloric value is represented as Cin and
activity caloric value is represented as Cout . Crat is calculated as
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shown in Equation (1).

Crat =
Cin

Cout
(1)

To find the average caloric value of different provinces or
countries, frequency of all food and activity related words is
counted and then caloric values to all words are assigned. Next,
the standard Crat formula is used to compute the caloric ratio of
each place. The authors consider 80.7 kilograms as the average
weight for metabolism equivalent of tasks; this is subtracted from
the calorie’s physical activity value.

2.1. Limitations
For simplicity, the LCM did not use any filter for tweets beyond
their geographic locations. This causes bias in the data-set
because the user may live/eat in different locations. This also
causes the users eating habits to affect another location’s data-
set instead of affecting there home location data-set. For example
a given user might be from Toronto and go on a trip and eat
in Montreal. With LCM’s current filter the user’s data will affect
the data-set gathered from two separate locations instead just
Toronto as it should. This causes a loophole in the data-set that
will cause inaccuracy.

LCM’s data-set is quite limited with only 451 food phrases
(15). The food phrase data-set has the most common food names
which limits its applicability. Also when people talk about the
food, it can be called anything such as the name of special dish in
a certain restaurant (15). Different cultures have different foods
and this is very important in a country as diverse as Canada. So
the database of food phrases in our model must be large in order
to accommodate for all possibilities in order to be accurate.

Another limitation of LCM is that the Twitter account may
talk about food or an activity in a metaphorical perspective.
Food words are commonly used in idiomatic expressions in
the English language. Some examples include: “bring home the

bacon,” “crying over spilledmilk,” and “cup of tea.” LCMwill still
consider these phrases as food items in their system and assign
values to them. The approach used in LCM cannot solve this
problem, and therefore creates bias in the system. An example
of this includes if a person tweets the phrase “you are the apple

of my eye,” the present algorithm will consider apple as a food.
But in this case, it is not related to food. Also, a lack of Natural
Language Processing (NLP) understanding of such approach
creates higher chances for the bias output (16). Due to this,
unnecessary data will enter the data-set and create false trends,
over-fitting and decrease accuracy of the overall analysis.

3. METHODOLOGY

In the design of our system, the focus of the system was placed on
large scale analysis of social media data with regards to health
analysis. The focus of the system is also on training a NLP
model based on a large amount of data that is processed to
get factual information about the health of Canadians. Figure 1
shows the architecture of our health analysis system. It is divided
into two subsections, namely training (offline mode) and the

analysis component (active system). As shown in Figure 1,
the first step is to collect all the raw data. To manage and
process data, Elasticsearch system is used which is designed and
developed through Elasticsearch locally at Lakehead University’s
High-performance computing facility (17). It can handle and
analyze Terabytes of text data with a low time overhead. This
helped collect the necessary data very efficiently from the pool
of data. Once the pool of data was collected, the next step was
data cleaning.

3.1. Data Cleaning

BOX 1 | Data cleaning examples.

Step 1: Emoji or Emoticons gave there respective meaning

Original text: “I am getting 2 old to be mango Gonna retire soon and be

joesh #ROFL :-)”

Processed text: “i am getting 2 old to be mango gonna retire soon and be

joesh #ROFL Happy face smiley”

Step 2: Covert all text in lower-case characters

Original text: “I am getting 2 old to be mango Gonna retire soon and be

joesh #ROFL”

Processed text: “i am getting 2 old to be mango gonna retire soon and be

joesh #rofl happy face smiley”

Step 3: Removing stop words

Original text: “i am getting 2 old to be mango gonna retire soon and be

joesh #rofl”

Processed text: “getting 2 old mango gon na retire soon joesh #rofl happy

face smiley”

Step 4: Removing special characters

Original text: “getting 2 old mango gon na retire soon joesh #rofl”

Processed text: “getting 2 old mango gon na retire soon joesh rofl happy

face smiley”

Step 5: Removing numbers

Original text: “getting 2 old mango gon na retire soon joesh rofl”

Processed text: “getting old mango gon na retire soon joesh rofl happy

face smiley”

Data cleaning is crucial when dealing with user’s raw data
such as tweets, feeds, or chats, as shown in Box 1. Raw data is
not structured or cleaned unlike typical formats such as blogs or
essays. When tweets are written, it may include hashtags, slang
words, emojis, emoticons, and unstructured data. Because of that,
raw data is used as a feature in the model as an input; to make
this data more sensible and more reliable for the model it must
be cleaned.

In the first step of data cleaning, all Emojis or Emoticons
are converted to there respective meaning through the “emot”
open source library given in Shah (18). It helps to understand
the text when a name that is not in the database. When emojis
are related to food, it will be easy to understand that the tweet is
related to food. In the next step, all text is converted into lower
case which makes word matching and processing easy in further
processes. Step 3 is removing stop words which help to eliminate
unnecessary features in our model (the, a, an, when, what). The
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FIGURE 1 | Architect of the analysis system.

next step is to remove special characters. Finally, numbers are
removed. This is because numbers are not useful for identifying
whether the text is related to food or not and it is also not a
source of information for our analysis. Removing all unnecessary
text or data will limit the size of the feature matrix and speed up
the training and classification task as some features are directly
propositional to the speed of model training. As the number of
features increases the speed of training the model also increases
as given in Batista et al. (19). Here, hashtags are not removed
because it gives valuable information. For example, when users
talk about specific foods which are not common but use hashtags
alongside text, for example #burger#delicious, then the user is
talking about a burger or some other food which can be quickly
identified. So, special characters were removed while keeping
hashtagged text.

3.2. Database
To calculate the caloric value, two types of data-sets are needed:
first for food and its caloric values and the second for activity
and its caloric-burn value. When a data-set is gathered for food,
our research found out that there is not even a single data-set
available which includes the different types of food items and
their nutrition values. At present, the Canadian Food Nutrient
Database and USDA Food Composition Databases are the main
sources of information related to food and nutrition facts of the
food in Canada. But the limitation with these databases is the lack
of data in terms of specific foods/items such as “Chickenmasala”
or “Penne arrabiata.” Usually, people tweet about specific items
they eat during their meal at a restaurant or any other place. It
means the present data-set is very domain-oriented for things
such as fast food, vegetables, or frozen foods, but they will not
contain all themajor types of food that people talk about on social
media as shown before. There are other problems after getting
the data-set. First, to find what type of specific food the users
talk about. Next, to find the caloric value of that specific food.
To solve these problems, a new data-set is needed that combines
different food domains which contain all major foods and their
different nutrition values. This is why, “Food in one” dataset was
created which includes a combination of all open source data-
sets such as the Open Food Facts which is a major source of food

TABLE 1 | Food database.

Name Data

food_name Name of the food

food_ingredients Ingredients use to make the food

fat_100g Fat per 100 g of food

energy_100g Energy value per 100 g of the food

carbohydrate_100g carbohydrate value of that food at 100 g

names, Canadian Nutrient File, and USDA Food Composition
Databases. Table 1 shows the structure of current food data-set.

Our newly created data-set contains 338, 889 foods with all the
required information. This is an open source database available at
DataLab. This includes all different types of major food sources
like fruits, vegetables, fast food, and regular food. In our data-
set, more than 70% of the food items are from the USA, Canada,
and France. This is because our focus is mainly on Canada’s
health situations and these are the main sources of food in the
Canadian market.

To understand the nutritional value of all food items in the
database a Normalized Kernel Density Estimation KDE is used.
Figure 2 is the KDE diagram of all the food that is present in
the data-set. This is along with their nutrition values including
fat, carbohydrate, and energy per 100 grams. As can be seen in
the second bar chart energy values mostly lie between mid-range
while the fat bar chart has diverse values from an extreme high to
an extreme low. This represents the diverse nature of our data-set
that includes various type of foods.

Figure 3 shows the normalized KDE graph of nutrition values
of vegan and non-vegan food, where orange represents the vegan
food, and blue represents the non-vegan food. The results show
that the distribution is quite similar for products with “Vegan”
labels. As shown in the Figure 3 non-vegan food has high fat and
energy values when compared to vegan foods on average. While
the scatter graph, between carbohydrates and fat, shows a vegan
diet has a lower energy value when compared to non-vegan foods
with regards to the same amount of carbohydrate. The last raw
scatter graph shows that all our food is categorized as vegan or
non-vegan food.
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FIGURE 2 | Nutrition value of all food types in the database.

To differentiate between vegan and non-vegan food, our
methodology involved first finding out if the word “vegan” is
present beside the name of the food in the database as shown in
Algorithm 1. Then vegetables, fruits, and juice were added as well
to the vegan food category. Any other foods are considered as
non-vegan food.

Figure 4 shows the KDE graph of carbohydrates per 100 g
concerning the distribution between vegan and non-vegan foods.
It also shows that some non-vegan food has high carbohydrate
content than vegan foods. While, in other aspects of nutrition,
the gap between vegan and non-vegan food is not so big.

Figure 5 shows the KDE graph of fat per 100 g distribution
between vegan and non-vegan foods. It also shows that some

Algorithm 1: Identifying food is vegan or non-vegan

Input: List of food name in data-set

Result: Food is Vegan or Non-Vegan

1 FoodDataset;

2 while Food_in_FoodList do
3 name = Food;

4 if name contains "vegan" then
5 flag = True;
6 else

7 flag = False;
8 end

9 end
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FIGURE 3 | Nutrition values of vegan vs. non-vegan food in the database.

non-vegan foods have sharply high-fat content than vegan
products. In other aspects, there is not much of a big difference
between vegan and non-vegan foods, for example, fat content.

Figure 6 shows the KDE graph of energy per 100 g distribution
between vegan and non-vegan food.

In order to analyze public health, the second database needed

is an activity database, where the average activity time is taken

and related to its caloric values. The most common activities
that are posted by people on social media were chosen. The
database now contains 1, 400 different activities and their caloric
values that are available. To calculate the average caloric value,
fixed weight, and metabolism were used with average Canadian
weight at 80.3 kg. Table 2 shows the attributes of the activity
data-set.

To analyze public health on a large scale, the Twitter data-
set was considered as the primary source for data. This will
be used to do basic querying and analysis of the system at
a large scale; Elasticsearch based analysis system is developed
for real-time querying and searching of Twitter data (17).
From that system, 99, 999, 986 tweets were analyzed between
2018 and 2019.

3.3. Phrase Detection
In social media, a text data phrase gives more information
than a single word. In previous work, one of the limitations
is the inability to understand the phrases of multi-words.
For example, when anyone tweets “you are the apple of

my eye,” it considers “apple” as a food item. In our system
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FIGURE 4 | KDE of carbohydrates per 100 g.

FIGURE 5 | KDE of fat per 100 g.

FIGURE 6 | KDE of energy per 100 g.

apple of my eye is considered as a single phrase, which has
a specific meaning. One common example as well is “you
are a smart cookie” where “smart cookie” has meaning as a
phrase. To overcome this limitation new features are added

during the training of the NLP algorithm. This algorithm was
developed initially by Williams (20), and it is based on the
distance between two words. This text partitioning algorithm
is based on William’s fine-grained text segmentation algorithm.
It considers the whole text as two parts: word and non-
word tokens. The important feature of this algorithm is that
it considers non-word tokens as a linker between two words.
For example, in the phrase “apple of my eye,” “of,” and “my”
are non-words and works as a joiner of the single phrase with
singular meaning.

Algorithm 2 is a phrase detection algorithm that uses a
concatenation operation. This links the tokens together to create
forms and then finds out how related the form is to the lexicon.
If the form is not correlated with the lexicon then the next
possible form is analyzed. If the form is related to the lexicon,
it is considered as a phrase.

Algorithm 2: Phrase detection algorithm

Input: List of words of the text - tokens
Result: List of tokens as Phrase - lexemes

1 phrase_detection(tokens):
2 lexemes[]
3 N = length(tokens)
4 while N do

5 index = (N+1):1
6 foreach i in index do
7 form = join(token[0:i])
8 remaining = tokens[i:N]
9 if form related lex then

10 lesemes = lexemes.add(form)
11 if length(tokens)=1 then
12 pass
13 else

14 tokens = remaining
15 end

16 end

17 break

18 end

19 end

20 return lexemes

Algorithm 2 is based on Boundary-based multi-word
expression segmentation with text partitioning by Williams
(20). This algorithm focuses on the next possible word pair,
which means a lower precision and efficiency for complex bound
phrases. But the phrase information will be derived from a gold
standard data-set. For example, Supersense-tagged Repository of
English with Unified Semantic and Riter and Lowlands data-set
of superscience-annotated tweets for the SemEval in Williams
(20). Due to that pre-information of the phrases finding, results
with simple and common phrases are easy. Box 2 shows the
results of the phrase extraction algorithm used.
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BOX 2 | Phase extraction results.

text: “I saw the sweet potatoes.”

phrase: “[’sweet’, ’potatoes’]”

text: “My daughter is an apple of my eyes.”

phrase: “[’apple’, ’eyes’, ’daughter’]”

Our results shows that the phrase detection algorithm will
analyze the text and predict phrases for example the phrases
“sweet potatoes” and “apple eyes daughter” are a single phrase.
Even though our data cleaning process removes stop words the
phrase detection algorithm can still detect a complicated sentence
like “my daughter is the apple of my eye” as the phrase “apple
eyes daughter.”

3.4. Model Training
In the next step, the machine learning model was trained for
classification of the tweet. As shown in Figure 7, our first step
is to take the raw data and clean it (explained in section 3).
After cleaning the data, feature engineering was performed. In
feature engineering, term frequency-inverse document frequency
(tf-idf) is created and phrase extraction occurs. Here, phrases
as a single word are used as a feature in tf-idf. After that,
the model was trained and then used as a pre-trained model
for binary classification of the tweet for food and non-food
related tweets.

Two types of features were used: tf-idf with phrases and
word embedding with 2 g. Tf-idf is used for Naïve Bayes (NB),
Logistic Regression (LR), and Random Forest (RF), and Support
Vector Machine (SVM). Embedding for Shallow neural network
(SNN), Convolutional neural network (CNN), and Reinforcement
neural network (RNN-GRU) was used.

TABLE 2 | Activity database.

Name Data

activity_name Activity name

caloric_value Caloric value of the activity

4. ANALYSIS AND RESULTS

In previous works, researchers tried to find the caloric value
through non-NLP or basic NLP algorithms. Because of that,
the false positive rate of data was high, and this decreased
the accuracy of the results. False positive errors will start
to increase as the data amounts increase (21). This affects
the accuracy and accountability of the system. Many models
are available for the classification of text. In this paper the
binary form of classification is much easier than multi-class
classification. It also removes the necessity of the necessity
to use advanced deep learning algorithms. The first algorithm
tested was LR. This measures the relationship between one
or more categorical dependent and independent variables. It
will be estimated through logistic (sigmoid is more common
presently) function.

Figure 8 shows the confusion matrix of LR. It also shows
that 92% of food tweets were successfully identified. While
recognizing only 85% of the non-food tweet as non-food. But
the false positive ratio is very high, 15% which landed into more
noisy data.

FIGURE 8 | Logistic regression confusion matrix.

FIGURE 7 | Precessing pipeline of the system.
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Figure 9 shows the training curve of LR. As shown, as
the number of training samples increases its accuracy is
also increasing.

Our second algorithm is the NB algorithm with tf-idf
features on a word level. This classification of algorithm
techniques is based on Bayes’ theorem. This assumes
Independence between predictors. Meaning, it implies that
one feature in the model is unrelated to another feature.

Figure 10 shows the confusionmatrix of NB. It also shows that
the methodology can successfully identify 91% of food tweets as
food tweet, while only 61% of the non-food tweets as non-food
tweets and a high rate of false positive as 39%, which is quite high
to get accurate results. Figure 11 shows the training curve of NB.

FIGURE 9 | Logistic regression training curve.

FIGURE 10 | Naïve Bayes confusion matrix.

It shows the accuracy of the algorithm increases as the sample size
is increased. After 400 K samples, the accuracy of the algorithm
is almost at 80%.

The third model analyzed was the RF model. This is a type
of bagging model, and it is a part of the tree based model. An
advantage of this model is that it gives more accurate pr editions
when comparing it to any simple CART or regression model in
specific scenarios. Figure 12 shows the confusion metric of RF.
It also shows that our methodology successfully identified 97%
of the food tweets as food tweets, while 88% of the non-food
tweets are recognized as non-food tweets. On the other hand,
the false positive rate is also as low at 12%. This result shows
the highest accuracy among the other tested models. Figure 13

FIGURE 11 | Naïve Bayes training curve.

FIGURE 12 | Random Forest confusion matrix.
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shows the learning curve of RF. It also shows that the accuracy of
the algorithm increases as the data size increases.

Table 3 shows an overview of the accuracy of the different
models used to test our methodology. From the above analysis,
the RFmodel gives us the best results for the binary classification
of tweets in food and non-food categories. The next step is to
get information about the calories and the user’s activity based
on our data-set. Three different values became our focus: caloric
value they gain from their food (Cin), the caloric value they
burn from their activity (Cout), and their caloric ratio from the
first two values (Crat) (Equation 1). Those three values are co-
related to the 37 measures of the well being and health. In
LCM, the authors found a statistically strong correlation between
high blood pressure, inactivity, diabetics, and obesity rates (12).
Now to count these three values Cin, Crat , Cout our methodology
depends on the benefits from each individual tweet.

Algorithm 3 gives the value of Cin value for Crat as shown
in Equation (1). In the first step, tweets in our data-set are
taken to produce the caloric value of each tweet using the

Algorithm 3: Cin algorithm

Input: Tweet text (T), list of food, dictionary of caloric value
of food with food name as key

Result: Cin

1 Global Frequency_Matrix = {}
2 Global FoodList = list_of_food
3 Global FoodDict = dictionary of caloric value of food with
food name as key

4 Calorie_consumption(text):
5 phrase = phrase_detection(text)
6 while word in text do
7 if phrase in FoodList then
8 cal = FoodDict[phrase]*Frequency(phrase);
9 Frequency_Matrix[phrase]++;

10 else

11 if word is FoodList then
12 cal = FoodDict[word]*Frequency(word);
13 Frequency_Matrix[word]++;

14 else

15 return 0
16 end

17 end

18 return 0

19 end

20 calorie = 0
21 Get_Cin(Tweets):
22 while tweet in Tweets do
23 calorie = calorie + Calorie_consumption(tweet)
24 end

25 return Cin= calorie/sum(Frequency_Matrix)

Calorie_consumption function. In that function, text is used to
locate any food phrases. In the second step, the individual words
or phrases that are found in the tweet are compared to the food
data-set. If present, caloric value is taken of the word or phrase
from the food dictionary. Then calories of the given food are
multiplied with the frequency of that word in the text. It is then
stored in the Frequency matrix and to get a normalized Cin value.
The sum of all calorie values from all the tweets are divided by the
sum of the frequency matrix.

Algorithm 4 gives the value of Cout value for Crat as shown in
Equation (1). In the first step, tweets in our data-set are taken to
get the caloric values of each possible word in the tweet. Next,
each word from each tweet is checked with the activity data-
set. The data-set will give a caloric burn value for each tweet.
To normalize the Cout value, the summation of caloric values is
divided by the frequency of each activity phrase. To count the
Cout values, how many calories a person can burn is stored from
a particular activity. For that, a body weight of 80.7 kg is assumed
as the standard average weight of a Canadian adult.

Table 4 is the result of the 100 K tweets gathered between 2018
and 2019. 50 K tweets were chosen pertaining to food and 50
K tweets pertaining to activity from each province and territory
randomly, which combine to form our 100 K tweet data-set
(22). The Twitter API was used to collect the data without any
filters and therefore makes our collection of tweets random (23).
Table 4 shows the top 10 foods in Canada, and it clearly shows
that junk food and hot drinks are the most common.

Algorithm 4: Cout algorithm

Input: Tweet text (T)
Result: Cout

1 Global Frequency_Matrix = {}
2 Global ActivityList = list_of_activity
3 Global ActivityDict = dictionary of caloric value of activity
with activity name as key.

4 Calorie_burn(text):
5 while word in text do
6 if word in ActivityList then
7 cal = ActivityDict[word]*Frequency(word);
8 Frequency_Matrix[word]++;

9 else

10 return 0;
11 end

12 return 0

13 end

14 calorie = 0
15 Get_Cout(Tweets):
16 while tweet in Tweets do
17 calorie = calorie + Calorie_burn(tweet)
18 end

19 return Cout= calorie/sum(Frequency_Matrix)
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FIGURE 13 | Random Forest training curve.

TABLE 3 | Model accuracy.

Model Accuracy %

Naïve Bayes 79.202

Linear regression 89.155

Random Forest 93.406

CNN 60.142

RNN-GRU 60.034

SVM 56.031

TABLE 4 | Top 10 food in Canada.

Rank Food Number of tweets

1 Coffee 38,785

2 Burger 35,166

3 Pizza 34,369

4 Noodles 27,891

5 Cake 18,456

6 Pie 17,982

7 Juice 16,711

8 Tea 16,631

9 Fruits 15,987

10 Veggies 11,473

Table 5 is the list of the top 10 activities in Canadian tweets.
It clearly shows that large number of people are choosing
to watch something regularly instead of physical exercise. It
also shows that walking and running are the most common
exercises people do. This means physical inactivity is increasing
throughout Canada.

Figure 14 shows the most common foods people tweeted
about in different provinces and territories of Canada. Clearly
in Ontario and Alberta, the most common foods tweeted are
Pizza, while Quebec’s most common food is Fries. It also shows

TABLE 5 | Top 10 activity in Canada.

Rank Activity Number of tweets

1 Watching (seeing) 42,489

2 Reading 31,762

3 Walking 28,127

4 Running 27,838

5 Drinking 27,339

6 Sitting 24,347

7 Cooking 22,561

8 Skiing 18,947

9 Gym 16,585

10 Playing 14,191

that coffee is the most common tweeted drink in provinces like
Manitoba, Saskatchewan, Yukon, and Northwest Territories as
compared to tea, which is more common in tweets originating
from British Columbia.

Figure 15 is about the most common activities people tweeted
about in different provinces and territories of Canada. The result
shows that watching (TV) is the most common activity in dense
populated provinces of Canada. This includes Ontario, Quebec,
Alberta, Yukon, and Northwest Territories. This shows that there
is less physical activity among people in these provinces, which
is an alarming situation when looking at the individual’s food
consumption versus activity they do to burn calories.

From the Canadian government’s own health analysis (24),
it shows that Ontario and Quebec have 38.3 and 23.2% of the
total population respectively. When both are combined, it is
61.5% of the total population. Caloric ratio is highly correlated to
blood pressure and obesity, which according to LCM that 77.92%
population has a higher chance of getting obese and/or higher
blood pressure which is a staggering percentage. Our results here
correlate directly to the results given by the Canadian Institute
of Health Information report “Obesity in Canada” (25). It also
shows the rapid growth of Obesity in Ontario and Quebec.

Figure 16 shows the Caloric ratio based on Equation (1). If the
ratio is >1 that means that the province’s consumption is greater
than the caloric usage. The opposite is true when the ratio is <1.
According to Figure 16, Yukon, Newfoundland and Labrador,
and Saskatchewan’s caloric consumption is higher than their
caloric burning at this instance. Northwest Territories, Manitoba,
and British Columbia have a caloric burn that is higher than
their caloric consumption. Caloric ratio is highly correlated to
blood pressure and obesity (12). When looking at Figure 16,
77.92% population has a caloric ration >1.0. This can cause
greater chance of getting obese, and higher blood pressure. This
population estimation is based on the population numbers from
the 2016 Canadian Census and was calculated by adding up the
populations from each individual province with a 1.0 caloric ratio
or higher. This is alarming because it represents such a huge part
of Canada’s population.

Obesity percentages for the provinces of Canada are analyzed
in Figure 16. When looking at the Obesity in Canada report,
published in 2017, the order of provinces from lowest obesity rate
to highest obesity rate is the following:
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FIGURE 14 | Canadian’s tweets on food.

1. British Columbia
2. Quebec
3. Ontario
4. Alberta
5. Manitoba
6. Saskatchewan
7. Newfoundland and Labrador (25).

When comparing that with the lowest to highest rank in
Figure 16, British Columbia is clearly the lowest, while Quebec
and Ontario are tied, and Alberta and Manitoba are switched in
ranks, Saskatchewan and Newfoundland and Labrador are the
highest. The significance of the comparison above is that it shows
a strong correlation between Figure 16 and the data from the
report. The provinces with the highest ratios also have the highest
obesity rates and the opposite is also true. This goes as far as to
show that our data can be just as reliable as a published Canadian
report. By using this knowledge, the Canadian government can
target healthy living programs in the provinces that need it like
Newfoundland and Labrador.

Figure 16 only shows one caloric ration per province from
the tweets collected at that instance. In order to become obese
you need to constantly have a ratio >1 over the span of weeks.
That way you are consuming more calories that you are burning

which leads to the gaining of weight. Therefore, our Figure 16
can be considered as one data point in an obesity rate trend and
in the future it can be added with many other points taken in
different times to accurately show the rate of obesity in Canada.
By this logic you can also see the trend from one point to another
and immediately see if the programs implemented to counteract
obesity have worked. The result is going from tweets to a real time
analysis of the rate of obesity in Canada.

5. CONCLUSION AND FUTURE WORK

Developing high-performance machine learning model with
a limited amount of training data is always a challenge,
as it restricts the use of more complex deep learning and
neural models. Our model gives 93.406% accuracy in binary
classification of food and non-food tweet. This result shows that
social media analysis on a large scale with the use of better
NLP algorithms can help us to identify food and activity related
tweets more accurately. This helps us to gain a larger perspective
on daily activities and its effect on people’s health. Our results
convey a complex relationship between health and social media.
The presented approach is faster when compared to traditional
survey methods causing data to be readily available as well a close
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FIGURE 15 | Canadian’s tweets on activity.

FIGURE 16 | Caloric ratio of tweets in Canada.
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representation of real time. Here, many promising future works
are possible such as a more dynamic way to calculate calories
based on age, gender and work profile. Another limitation is that
when our model looks at the tweet it only recognizes the food but
it leaves out the quantity of said food. In example, our model will
not be able to differentiate 1 apple from 10 apples.
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wearesocialcom/blog/2018/01/global-digital-report-2018 (2018).

2. Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM.

Temporal patterns of happiness and information in a global social

network: Hedonometrics and Twitter. PLoS ONE. (2011) 6:e26752.

doi: 10.1371/journal.pone.0026752

3. Disease Control Prevention. Health-Related Quality of Life: Wellbeing

Concepts (2011).

4. Karami A, Dahl AA, Turner-McGrievy G, Kharrazi H, Shaw G Jr.

Characterizing diabetes, diet, exercise, and obesity comments on Twitter. Int

J Inform Manage. (2018) 38:1–6. doi: 10.1016/j.ijinfomgt.2017.08.002

5. Grover P, Kar AK, Davies G. Technology enabled Health—Insights from

twitter analytics with a socio-technical perspective. Int J Inform Manage.

(2018) 43:85–97. doi: 10.1016/j.ijinfomgt.2018.07.003

6. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu:

traps in big data analysis. Science. (2014) 343:1203–5. doi: 10.1126/science.

1248506

7. Paul MJ, Dredze M. You are what you Tweet: analyzing Twitter for public

health. Icwsm. (2011) 20:265–72.

8. Hill S, Merchant R, Ungar L. Lessons learned about public health from

online crowd surveillance. Big Data. (2013) 1:160–7. doi: 10.1089/big.2013.

0020

9. Eichstaedt JC, Schwartz HA, Kern ML, Park G, Labarthe DR, Merchant RM,

et al. Psychological language on Twitter predicts county-level heart disease

mortality. Psychol Sci. (2015) 26:159–69. doi: 10.1177/0956797614557867

10. Culotta A. Estimating county health statistics with twitter. In: Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems. Toronto,

ON: ACM (2014). p. 1335–44.

11. Abbar S, Mejova Y, Weber I. You tweet what you eat: studying food

consumption through twitter. In: Proceedings of the 33rd Annual ACM

Conference on Human Factors in Computing Systems. Seoul: ACM (2015). p.

3197–206.

12. Alajajian SE, Williams JR, Reagan AJ, Alajajian SC, Frank MR, Mitchell

L, et al. The lexicocalorimeter: gauging public health through caloric

input and output on social media. PLoS ONE. (2017) 12:e0168893.

doi: 10.1371/journal.pone.0168893

13. Medvedyuk S, Ali A, Raphael D. Ideology, obesity and the social determinants

of health: a critical analysis of the obesity and health relationship. Crit Public

Health. (2018) 28:573–85. doi: 10.1080/09581596.2017.1356910

14. Diener E. Subjective well-being. Psychol Bull. (1984) 95:542.

15. Alajajian SE, Williams JR, Reagan JA, Alajajian SC, Frank RM, Mitchell L,

et al. Available online at: https://figshare.com/articles/S1-dataset-tweetIDS_

txt_zip/4530965/1 (2017).

16. McIntyre L, Jessiman-Perreault G, Mah CL, Godley J. A social network

analysis of Canadian food insecurity policy actors. Can J Diet Pract Res. (2018)

79:60–6. doi: 10.3148/cjdpr-2017-034

17. Shah N, Willick D, Mago V. A framework for social media data

analytics using Elasticsearch and Kibana. Wireless Netw. (2018) 1–9.

doi: 10.1007/s11276-018-01896-2

18. Shah N. Open Source Emoticons and Emoji Detection Library: Emot(stable

v2.2) (2018). Available online at: https://github.com/NeelShah18/emot

(accessed February 28, 2019).

19. Batista R, Pottie K, Bouchard L, Ng E, Tanuseputro P, Tugwell P.

Primary health care models addressing health equity for immigrants: a

systematic scoping review. J Immigr Minor Health. (2018) 20:214–30.

doi: 10.1007/s10903-016-0531-y

20. Williams JR. Boundary-based MWE segmentation with text partitioning.

arXiv [preprint] arXiv:160802025. (2016). doi: 10.18653/v1/W17-4401

21. Mohan S, Thirumalai C, Srivastava G. Effective heart disease Prediction

using hybrid machine learning techniques. IEEE Access. (2019) 7:81542–54.

doi: 10.1109/ACCESS.2019.2923707

22. Mick P, Parfyonov M,Wittich W, Phillips N, Pichora-Fuller MK. Associations

between sensory loss and social networks, participation, support, and

loneliness: analysis of the Canadian longitudinal study on aging. Can Fam

Phys. (2018) 64:e33–41.

23. Clarkson K, Srivastava G, Meawad F, Dwivedi AD. Where’s @Waldo?:

finding users on Twitter. In: Artificial Intelligence and Soft Computing -

18th International Conference, ICAISC 2019. Zakopane (2019). p. 338–49.

doi: 10.1007/978-3-030-20915-5_31

24. Brook JR, Setton EM, Seed E, Shooshtari M, Doiron D. The Canadian

Urban Environmental Health Research Consortium–a protocol for

building a national environmental exposure data platform for integrated

analyses of urban form and health. BMC Public Health. (2018) 18:114.

doi: 10.1186/s12889-017-5001-5

25. Government of CanadaHig.Obesity in Canadian Adults: It’s AboutMore Than

Just Weight (2017).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Shah, Srivastava, Savage and Mago. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Public Health | www.frontiersin.org 14 January 2020 | Volume 7 | Article 40019

https://www.datalab.science/
https://www.datalab.science/
https://wearesocialcom/blog/2018/01/global-digital-report-2018
https://wearesocialcom/blog/2018/01/global-digital-report-2018
https://doi.org/10.1371/journal.pone.0026752
https://doi.org/10.1016/j.ijinfomgt.2017.08.002
https://doi.org/10.1016/j.ijinfomgt.2018.07.003
https://doi.org/10.1126/science.1248506
https://doi.org/10.1089/big.2013.0020
https://doi.org/10.1177/0956797614557867
https://doi.org/10.1371/journal.pone.0168893
https://doi.org/10.1080/09581596.2017.1356910
https://figshare.com/articles/S1-dataset-tweetIDS_txt_zip/4530965/1
https://figshare.com/articles/S1-dataset-tweetIDS_txt_zip/4530965/1
https://doi.org/10.3148/cjdpr-2017-034
https://doi.org/10.1007/s11276-018-01896-2
https://github.com/NeelShah18/emot
https://doi.org/10.1007/s10903-016-0531-y
https://doi.org/10.18653/v1/W17-4401
https://doi.org/10.1109/ACCESS.2019.2923707
https://doi.org/10.1007/978-3-030-20915-5_31
https://doi.org/10.1186/s12889-017-5001-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


ORIGINAL RESEARCH
published: 31 March 2020

doi: 10.3389/frai.2020.00012

Frontiers in Artificial Intelligence | www.frontiersin.org 1 March 2020 | Volume 3 | Article 12

Edited by:

Shuihua Wang,

University of Leicester,

United Kingdom

Reviewed by:

Yi Chen,

Nanjing Normal University, China

Blaise Frederick,

Harvard Medical School,

United States

*Correspondence:

Michael Germuska

germuskam@cardiff.ac.uk

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Artificial Intelligence

Received: 31 May 2019

Accepted: 09 March 2020

Published: 31 March 2020

Citation:

Germuska M, Chandler HL, Okell T,

Fasano F, Tomassini V, Murphy K and

Wise RG (2020) A Frequency-Domain

Machine Learning Method for

Dual-Calibrated fMRI Mapping of

Oxygen Extraction Fraction (OEF) and

Cerebral Metabolic Rate of Oxygen

Consumption (CMRO2).

Front. Artif. Intell. 3:12.

doi: 10.3389/frai.2020.00012

A Frequency-Domain Machine
Learning Method for Dual-Calibrated
fMRI Mapping of Oxygen Extraction
Fraction (OEF) and Cerebral
Metabolic Rate of Oxygen
Consumption (CMRO2)

Michael Germuska 1*, Hannah Louise Chandler 1, Thomas Okell 2, Fabrizio Fasano 3,

Valentina Tomassini 1,4,5, Kevin Murphy 1 and Richard G. Wise 1,5,6

1Cardiff University Brain Research Imaging Centre (CUBRIC), Department of Psychology, Cardiff University, Cardiff,

United Kingdom, 2 FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging,

University of Oxford, Oxford, United Kingdom, 3 Siemens Healthcare Ltd., Camberley, United Kingdom, 4Division of

Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom,
5Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy,
6 Institute for Advanced Biomedical Technologies, “G. D’Annunzio University” of Chieti-Pescara, Chieti, Italy

Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain’s

metabolic oxygen consumption (CMRO2), which is essential for understanding and

monitoring neural function in both health and disease. However, in depth study of oxygen

metabolism with MRI has so far been hindered by the lack of robust methods. One

MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral

blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during

respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated

methodology has shown promise in the research setting, current analysis methods are

unstable in the presence of noise and/or are computationally demanding. In this paper,

we present a machine learning implementation for the multi-parametric assessment of

dual-calibrated fMRI data. The proposed method aims to address the issues of stability,

accuracy, and computational overhead, removing significant barriers to the investigation

of oxygen metabolism with MRI. The method utilizes a time-frequency transformation

of the acquired perfusion and BOLD-weighted data, from which appropriate feature

vectors are selected for training of machine learning regressors. The implemented

machine learning methods are chosen for their robustness to noise and their ability to

map complex non-linear relationships (such as those that exist between BOLD signal

weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used

to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate

CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are

used to train the regressors, with data simulated to cover a wide range of physiologically

plausible parameters. The performance of the implemented analysis method is compared

to published methods both in simulation and with in-vivo data (n = 30). The proposed
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method is demonstrated to significantly reduce computation time, error, and proportional

bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis

pipeline has the potential to not only increase the detectability of metabolic difference

between groups of subjects, but may also allow for single subject examinations within a

clinical context.

Keywords: calibrated-fMRI, oxygen extraction fraction, CMRO2, OEF, machine learning

INTRODUCTION

Under normal conditions the brain’s energy needs are met
via a continuous supply of oxygen and glucose for the local
production of ATP via aerobic metabolism (Verweij et al., 2007).
Any disruption of the supply of oxygen to the brain tissue
can have significant consequences (Safar, 1988), and impaired
cerebral oxygen metabolism is associated with a wide variety of
neurological conditions (Frackowiak et al., 1988; Ishii et al., 1996;
Miles and Williams, 2008). Therefore, monitoring and mapping
the brain’s consumption of oxygen is vital for understanding the
diseases and mechanisms by which the metabolic consumption
of oxygen may be affected. The cerebral metabolic rate of
oxygen consumption (CMRO2) has traditionally been measured
with positron emission tomography (Frackowiak et al., 1980).
However, this method has some substantial limitations including
the use of ionizing radiation and the need for local production
of 15-oxygen labeled tracers. Due to these limitations there is
great interest in developing alternative, non-invasive, methods of
mapping CMRO2. One promising technique of non-invasively
mapping CMRO2 is the so-called dual-calibrated fMRI (dc-
fMRI) method (Bulte et al., 2012; Gauthier et al., 2012). This
method is finding growing adoption in the research setting, and
has already been applied in Alzheimer’s disease (Lajoie et al.,
2017), carotid artery occlusion (De Vis et al., 2015), and studies of
pharmacological modulation (Merola et al., 2017). For a review
of the method and details on the its practical application please
see Germuska and Wise (2019). Despite the promise shown
by this technique, the reported between-session repeatability is
relatively low (Merola et al., 2018) and improvements in the
data acquisition and/or analysis are required if individualized
assessment is to be made possible.

One of the key difficulties in analyzing dual-calibrated fMRI
data is noise propagation through the analysis pipeline, which
leads to unstable parameter estimates. We have previously
presented regularized non-linear least squares fitting approaches
that utilize prior physiological knowledge to produce more
robust parameter estimates (Germuska et al., 2016, 2019). Even
though such regularization reduces the mean square error it does
so by trading off a reduction in variance with an increase in
bias. An alternative approach to reduce the prediction error is
the use of noise insensitive machine learning regressionmethods.
Decision tree based regression methods, for example random
forest (Breiman, 2001) and extremely randomized trees (Geurts
et al., 2006), are robust to both output (Breiman, 2001; Geurts
et al., 2006) and input noise (Yue et al., 2018) and are able
to capture non-linear relationships between input features and

target parameters. This noise immunity is likely due to the
randomization included in the choices of features at splitting
nodes (random forest) and cut-points (extremely randomized
trees), which improve the generalizability of the regressors. For
non-linear mappings with a high degree of complexity artificial
neural networks, such as the multi-layer perceptron (MLP), a
feedforward network withmultiple hidden layers, offer amachine
learning method that is inherently robust to noise (Bernier et al.,
1999). In this paper we present an analysis pipeline comprised of
an extremely randomized trees regressor and a MLP, cascaded to
infer resting CBF and CMRO2 from dual-calibrated fMRI data. A
frequency-domain representation of simulatedMRI data with the
additive noise is used to train each of the regressors. Simulated
data has the advantage over in-vivo data in this application as
it allows a balanced dataset to be generated that covers a broad
range of physiological variation. Such a dataset is essential to
avoid bias in parameter estimation and to provide generalizability
across groups and diseases. A frequency-domain representation
is chosen as it allows for convenient dimensionality reduction,
with most of the information of interest encoded at low temporal
frequencies, and takes advantage of the superior ability of
artificial neural networks to learn discriminative features from
frequency-domain representation of a signal compared to a time-
domain representation (Hertel et al., 2016). The performance
of the proposed machine learning (ML) implementation is
compared to an existing regularized non-linear least squares
(rNLS) method (Germuska et al., 2019) both in simulation
and in data acquired from a cohort of 30 healthy volunteers.
We hypothesized that the machine learning approach would be
able to achieve comparable or reduced prediction error with
significantly reduced bias and computational overhead.

MRI DATA ACQUISITION

Thirty healthy volunteers (16 males, mean age 32.53 ± 6.06
years) were recruited to the study, see Supplementary Table 1

for demographic data. The local ethics committee approved
the study and written informed consent was obtained from
each participant. Blood samples were drawn via a finger prick
prior to scanning and were analyzed with the HemoCue Hb
301 System (HemoCue, Ängelholm, Sweden) to calculate the
systemic [Hb] value for each participant. All data was acquired
using a Siemens MAGNETOM Prisma (Siemens Healthcare
GmbH, Erlangen) 3T clinical scanner with a 32-channel receiver
head coil (SiemensHealthcare GmbH, Erlangen). The acquisition
protocol was as previously described (Germuska et al., 2019).
Briefly, an 18-min dual-excitation pseudo-continuous arterial
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TABLE 1 | Range of physiological parameters used in the dc-fMRI data simulations for training of the machine learning regressors.

OEF CBF

(ml/100g/min)

[Hb]

(g/dL)

Mean capillary transit time

(CBVcap/CBF, s)

PminO2

(mmHg)

Cerebral vascular reactivity

(% CBF/mmHg CO2)

K

0.05–0.75 1–250 10–18 0.25–4.0 0–30 1–7 0.01–0.25

spin labeling (pCASL) and BOLD-weighted acquisition was
acquired during modulation of inspired oxygen and carbon
dioxide. Gas modulation was performed according to a protocol
previously proposed by our lab (Germuska et al., 2016), and
end-tidal monitoring was performed throughout the acquisition
from the volunteer’s facemask using a rapidly responding gas
analyzer (PowerLab R©, ADInstruments, Sydney, Australia). The
prototype pCASL sequence (Germuska et al., 2019) parameters
were as follows: post-labeling delay and label duration 1.5 s, EPI
readout with GRAPPA acceleration (factor = 3), TE1 = 10ms,
TE2 = 30ms, TR = 4.4 s, 3.4 × 3.4mm in-plane resolution, and
15 (7mm) slices with 20% slice gap.

SYNTHETIC MRI DATA GENERATION

Synthetic data was simulated to match the 18-min in-vivo
acquisition protocol using standard physiological models for the
change in BOLD signal (Bulte et al., 2012; Gauthier and Hoge,
2013; Wise et al., 2013), as summarized by Equation (1).

1BOLD

BOLD0
= M











1−

(

CBF

CBF0

)α





1− CaO2−CMRO2/CBF
ϕ[Hb]

1−
CaO2,0−CMRO2,0/CBF0

ϕ[Hb]





β










(1)

Where, BOLD/BOLD0 is the fractional change in BOLD signal
due to a change in arterial oxygen content (CaO2) or CBF due
to either a hyperoxic or hypercapnic respiratory stimulus. M is a

lumped parameter that is equal to K · TE ·
(

(1− SvO2) ·
[

Hb
])β

.
Where K is a scaling factor dependent on the field strength,
resting venous blood volume, tissue structure, and water
diffusion effects in the extravascular space. [Hb] is the blood
hemoglobin concentration and SvO2 is the venous oxygen
saturation. φ is the oxygen binding capacity for Hb (1.34 ml/g),
α is the Grubb exponent that couples blood volume and blood
flow changes, and β is a field strength dependent constant that
summarizes the non-linear effects associated with the tissue
structure and water diffusion effects. The values of α and β were
fixed to the optimized values (0.06 and 1) found by Merola et al.
(2016), which minimize the error in OEF estimates over a range
of vascular physiology. The subscript 0 represents the baseline or
resting state. The hyperoxic and hypercapnic stimuli are assumed
to be iso-metabolic, so CMRO2 = CMRO2,0.

The arterial spin labeling signal was modeled according to
the simplified pCASL kinetic model (Alsop et al., 2015), and
physiological constraints on baseline parameters were applied
according to a simple model of oxygen exchange (Gjedde, 2002;

Hayashi et al., 2003) (Equation 2).

CMRO2,0 = D

[

P50
h

√

2

OEF0
− 1− PminO2

]

(2)

Where D is the effective oxygen diffusivity of the capillary
network and can be expressed as a product of the effective oxygen
permeability and the capillary blood volume,D = κ ·CBVcap. P50
is the blood oxygen tension at which hemoglobin is 50% saturated
(26 mmHg), h is the Hill coefficient (2.8) and PminO2 is the
minimum oxygen tension at the mitochondria [which is thought
to be negligible in healthy tissue (Gjedde, 2002)]. In the modeling
we assume a fixed value for κ of 3 µmol/mmHg/ml/min,
corresponding to a typical diffusivity of 3 (Mintun et al., 2001)
to 4 µmol/100 g/mmHg/min (Vafaee and Gjedde, 2000) for
CBVcap = 1–1.33 ml/100 g. The physiological parameter space
encompasses a wide range of plausible physiology including
both healthy and dysfunctional brain tissue, and is summarized
in Table 1. A summary of MRI abbreviations and all model
parameters used in the simulations is given in Table 2.

The partial pressure of arterial oxygen (PaO2) and change
in carbon dioxide (1PaCO2) were modeled to match the range
of end-tidal recordings acquired from healthy volunteers. The
baseline PaO2 had a range of 90–120 mmHg, 1PaO2 was 200–
300 mmHg, and 1PaCO2 was set to 8–12 mmHg. Rectangular
stimulus blocks were convolved with a gamma density function
with shape parameter 0.5–2.5 to account for the variation in
biological rise and fall times of the hyperoxic and hypercapnic
stimuli. Drift in 1PaCO2, which was observed in some subjects,
was included by adding a bandpass filtered noise signal (fourth
order IIR filter, lowcut/highcut = 0.005/0.05 of the Nyquist
frequency). Change in the arterial blood longitudinal relaxation
rate due to dissolved oxygen was included in pCASL calculations
as per (Germuska et al., 2019). Noise (BOLD tSNR = 90, pCASL
tSNR = 3 for CBF = 60 ml/100 g/min) was added to simulated
BOLD and pCASL time series. The pCASL noise was bandpass
filtered (fourth order IIR filter, lowcut/highcut = 0.05/0.8 of the
Nyquist frequency) and the BOLD noise was lowpass filtered
(first order IIR filter, highcut = 0.5 of the Nyquist frequency) to
match the noise characteristics of the in-vivo data. In addition,
the BOLD timeseries data was highpass filtered with a 320 s cut-
off using the filter implementation in FSL (Jenkinson et al., 2012),
which is routinely used for de-trending fMRI data. Figure 1
shows 50 randomly generated pCASL and BOLD timeseries
overlaid with the temporal mean to demonstrate the typical
output of the simulations. Please note that the pCASL timeseries
are divided by the equilibrium magnetization of arterial blood
(M0blood), and the baseline signal has been set to zero for
display purposes.
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TABLE 2 | Summary of model parameters and abbreviation used in the dc-fMRI

data simulations and their definitions.

Variable/

abbreviation

Expression (units)

OEF Oxygen Extraction Fraction (dimensionless)

CMRO2 Cerebral Metabolic Rate of Oxygen consumption (µmol/100 g/min)

CBF Cerebral Blood Flow (ml/100 g/min)

φ Oxygen binding capacity of hemoglobin (1.34 ml/g)

[Hb] Hemoglobin concentration (g/dL)

CaO2 Arterial oxygen content (ml/ml)

PaO2 Arterial oxygen tension (mmHg)

SaO2 Arterial oxygen saturation (dimensionless)

SvO2 Venous oxygen saturation (dimensionless)

α Grubb exponent

β Venous morphology/deoxy-hemoglobin—BOLD exponent

BOLD Blood Oxygenation Level Dependent signal

ASL Arterial Spin Labeling

M0blood Arterial blood MRI signal equilibrium magnetization (dimensionless)

PLD ASL post-label delay time (1.0–3.0 s)

M Maximum possible BOLD signal (BOLD calibration parameter)

K BOLD scaling factor = M/([Hb] × (1 – SvO2))
β

D Effective oxygen diffusivity of the capillary network (µmol/100

g/mmHg/min)

CBVcap Capillary blood volume (ml/100 g)

PminO2 Minimum oxygen partial pressure at the mitochondria (mmHg)

h Hill coefficient (2.8)

κ Effective permeability of capillary endothelium and brain tissue

(µmol/mmHg/ml/min)

METHODS

A schematic diagram describing the analysis/training pipeline
is shown in Figure 2. ASL and BOLD timeseries data,
either simulated (as described in section Synthetic MRI Data
Generation) or in-vivo data, are Fourier transformed into
magnitude and phase data. This frequency domain data
is then truncated after the first 15 data points (low pass
filtered) and combined with physiological recordings and
sequence parameters to create a feature vector for model
training/prediction (if in-vivo data is being analyzed). Parameter
estimation is carried out in a two-stage process; first the
resting blood flow (CBF0) is estimated, and then rate of
oxygen consumption.

Truncation of the frequency domain data removes high-
frequency content that is unrelated to either the hyperoxic or
hypercapnic respiratory modulations and thus removes noise
from the training data. The resting blood flow is estimated
separately from the rate of oxygen consumption to reduce the
complexity of the required mapping between the MRI data
and the target parameters. Additionally, the use of extremely
randomized trees (ET) regression rather than an artificial neural
network at this stage in the pipeline takes full advantage of the
noise immunity of decision tree based methods (Yue et al., 2018)
and reduces the potential of overfitting. The inclusion of the

FIGURE 1 | Example of simulated time-domain data (BOLD and ASL) with

added noise and variation in physiological parameters, showing periods of

hypercapnic (green) and hyperoxic (light blue) stimuli. The dark blue line

represents the mean time-course over the example time series. Note the

pCASL signal is normalized by the equilibrium magnetization of arterial blood

(MO) and has had the baseline signal subtracted for display purposes.

post-label delay in the feature vector is necessary to incorporate
an implicit slice timing correction for CBF0 calculation, while the
blood oxygenation parameters ([Hb],1PaO2, SaO2,0, CaO2,0) are
included here due to the influence of dissolved oxygen on the
longitudinal relaxation rate of arterial blood. In total each feature
vector that is input into the ET regressor consists of 65 entries.

The result of the ET regression is then incorporated into
the feature vector (now 66 entries) and input into an ensemble
of MLPs to predict CMRO2,0/CaO2,0, from which CMRO2,0

and OEF0 can be calculated (CMRO2/CaO2 = OEF × CBF
via the Fick principle). The blood oxygenation parameters in
this case not only inform on the relaxation rate of arterial
blood, but also link the CBF and BOLD signal changes to the
underlyingmetabolic parameters as described by Equation (1). In
practice each MLP in the ensemble is trained individually, with
the average of their predictions being used for inference when
deployed for the analysis of in-vivo data.

The ET regressor and MLP were implemented in Scikit
learn (Pedregosa et al., 2011). The extremely randomized trees
regressor was trained with the following options, number of
estimators = 50, bootstrap = True, and out-of-bag samples
were used to estimate the R2 on unseen data. A total of 50,000
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FIGURE 2 | Schematic diagram of the frequency-domain machine learning pipeline. Raw data is pre-processed prior to the construction of a feature vector. This initial

feature vector is used to estimate baseline perfusion. The perfusion estimate is then included in the feature vector fed into an ensemble of multilayer perceptron

networks used to estimate the resting rate of oxygen metabolism.

simulations were used for training. The MLP network has two-
hidden layers and 50 nodes in each layer. The activation function
for each node was chosen to be a rectified linear unit (ReLU).
The ADAM solver was used for training with 1 × 106 simulated
feature vectors and 10% of the data were used for early stopping.
Data simulation and training was repeated 40 times to create an
ensemble of MLP networks to further reduce the uncertainty in
parameter estimates (Sollich and Krogh, 1996).

The validation score for the extremely randomized trees
regressor for predicting resting cerebral blood flow was 0.997,
slightly greater than the results obtained for a random forest
implementation (0.961). The validation score for the MLP
estimation of CMRO2,0/CaO2,0 were 0.923 ± 0.002. Training of
the MLP network was also undertaken while eliminating key
elements of the simulation or feature vectors to see how this
affected the performance of the MLP. When BOLD data was
excluded from the feature vector the validation score dropped
to 0.577. Excluding the CO2 and O2 stimuli (but including
the BOLD data) reduced the validation scores to 0.63 and
0.71, respectively.

A further 5,000 simulated datasets (with OEF restricted to
0.15–0.65, all other parameters as in Table 1) were constructed
to compare the performance of the proposed machine learning
implementation with a previously implemented regularized non-
linear least squares fitting method (Germuska et al., 2019).
Each method was compared to the simulated data using a
robust regression method (bisquare) in terms of the RMS error
and proportional bias. A bisquare cost function was used for
the regression to reduce the influence of outliers and allow a
robust estimate of the proportional bias. The rNLS fitting was
implemented with regularization applied to the resting OEF and
the effective oxygen diffusivity (D), as previously described. The

relative weighting between OEF and diffusivity regularization
was maintained constant, as per the optimization in Germuska
et al. (2019). However, the total weighting was varied to assess
the impact on OEF and CMRO2 error and proportional bias
(slope of the simulated parameter values plotted against the
parameter estimates).

RESULTS

Simulations
Analysis of the simulated data demonstrated a substantial
reduction in the RMS error of machine learning OEF estimates
compared to rNLS estimates. The bisquare RMS error was 0.047
when using the mean prediction from the 40 MLP networks,
and 0.055 for a randomly chosen MLP network. The rNLS
approach produced a minimum bisquare RMS error of 0.094.
The ML approach displayed negligible proportional bias in OEF
estimates (slope of true vs. estimated values = 0.982), whereas
rNLS estimates had variable levels of bias depending on the
level of regularization, see Figure 3A for a summary of the
results. As expected from the OEF results, ML estimates of
CMRO2 also had significantly reduced error and bias compared
to the rNLS implementation. The proportional bias for the ML
implementation was 0.977 compared to a minimum bias of
0.913 for the rNLS method. The bisquare RMS error in CMRO2

estimates for the ML implementation was 20.3 µmol/100 g/min
(22.6 for an individual MLP network) whereas the error for rNLS
estimates ranged from 29.6 to 52.4 µmol/100 g/min depending
on the level of bias (with greater bias coinciding with reduced
error) (see Figure 3B).

Training of the MLP with reduced feature vectors (excluding
the BOLD data) or limited respiratory stimuli (excluding either
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FIGURE 3 | Root mean squared error and proportional bias in OEF0 (A) and CMRO2,0 (B) estimates for each analysis method fitting to simulated data (5,000

simulations). Solid blue line plots the error and bias for increasing regularization weighting for the regularized non-linear least squares analysis.

CO2 or O2 modulation) highlights the importance of each signal
and stimulus in estimate the rate of oxygen consumption. As
expected, removing the BOLD signal resulted in a significant
reduction in the network’s ability to estimate CMRO2 (validation
R2 reduced from 0.923 for the full model to 0.58). In this instance
there should be no information relating to OEF in the feature
vector and so the inference is based solely on the correlation
between baseline flow and CMRO2 in the simulated data. Adding
the BOLD data back in but with only an O2 stimulus does
little to improve the performance of the network (R2 = 0.63).
This is not unexpected as the hyperoxic BOLD signal is largely
related to venous blood volume (Blockley et al., 2013) with
little influence from OEF. Perhaps unexpectedly, including the
CO2 stimulus but not the O2 stimulus significantly improves
the ability of the network to infer resting CMRO2 (R2 = 0.71).
While this is still significantly worse than the full model, it
suggests that some quantitative metabolic information may be
extracted from hypercapnic calibration studies that are normally
employed to estimate relative changes in CMRO2 (Hoge, 2012).
Additionally, such results suggest that the simulation framework
could be utilized to optimize data acquisition by designing

respiratory stimuli that maximize the performance of the ML
implementation, and that such respiratory paradigms may be
different compared to those for standard analysis methods
(which are unable to infer resting CMRO2 information from a
hypercapnic calibration experiment).

In-vivo
Due to the limited availability and technical challenges associated
with acquiring 15-oxygen PET data for CMRO2 mapping (the
gold standard approach) it is difficult to directly validate the
in-vivo results obtained in this study. However, a number
of fundamental relationships between resting physiological
parameters have consistently been observed across groups
of healthy individuals. Here we compare these observed
relationships against the acquired data to infer the relative
error and bias for each analysis method. One of the most
frequently reported relationships in the healthy human brain is
that resting blood flow is linearly correlated with resting oxygen
metabolism (Scheinberg and Stead, 1949; Lebrun-Grandie et al.,
1983; Leenders et al., 1990; Coles et al., 2006; Powers et al.,
2011). Additionally, PET data suggests that the OEF should
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FIGURE 4 | (A) Coefficient of variation of gray matter OEF0 estimates vs. slope of [Hb]-OEF0 relationship for each analysis method (rNLS fitting evaluated with

increasing levies of regularization). The [Hb]-OEF0 slope has been normalized by the ML ensemble estimate of the [Hb]-OEF0 slope. (B) Coefficient of variation of gray

matter OEF0 estimates vs. the slope of the CBF-CMRO2 relationship, normalized by the ML (ensemble) estimate of the CBF-CMRO2 slope. Solid blue line plots the

coefficient of variation against the slope for increasing regularization weighting for regularized non-linear least squares analysis. The asterisk indicates the chosen level

of regularization for subsequent analysis/comparisons.

be approximately uniform across the cerebral gray matter (e.g.,
Hyder et al., 2016). Thus, we can use the coefficient of variation
(COV) of gray matter OEF estimates as an indicator of parameter
error, and examine the variation in the slope of the CBF-
CMRO2 relationship to infer the proportional bias or sensitivity
to physiological variation of CMRO2 estimates.

As in the simulation experiments we investigated the in-vivo
analysis for varying levels of regularization in the rNLS analysis
and compare this to the ML results. Figure 4B plots the COV
in OEF estimates for increasing levels of regularization against
the slope of the CBF-CMRO2 regression (normalized by the
slope of the ML estimate). As predicted by the simulations, the
slopes of the ML estimates and the rNLS estimates are similar
when little regularization is applied, with the slope of the rNLS
estimates slightly reduced compared to the ML approach. As
more regularization is applied the COV of OEF estimates is
reduced and the slope between CBF and CMRO2 decreases,
clearly demonstrating the trade-off between variance and bias.

Again, as predicted by the simulations, the COV in ML estimates
is significantly less than COV in rNLS estimates for a similar
CBF-CMRO2 slope.

To investigate the bias in OEF estimates we take advantage
of another physiological relationship reported in the literature;
cerebral oxygen extraction is inversely related to [Hb] (Ibaraki
et al., 2010) and the closely related parameter Hct (Morris
et al., 2018). Taking the same approach as before we observe in-
vivo results that closely match predictions from the simulation
(see Figure 4A). As in the simulations, the slope in the
[Hb]-OEF relationship is similar between the ML method
and rNLS approach for a moderate amount of regularization.
However, the slope is substantially increased when usingminimal
regularization, and reduced when applying strong regularization.

Figure 5 shows scatter plots of the gray matter CBF-CMRO2

and [Hb]-OEF relationships observed with the ML and rNLS
methods across the 30 healthy volunteers studied. The rNLS
results are shown for a single level of regularization, where the
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FIGURE 5 | Scatter plots of gray matter C8F-CMRO2 and [Hb]-OEF relationships observed with rNLS (A1 and A2) and ML ensemble (B1 and B2) methods across 30

healthy volunteers.

slope of the [Hb]-OEF relationship most closely matches that of
the ML analysis (see Figure 4). The coefficient of determination
is greater for the ML approach for each relationship, with R2

values of 0.56 and 0.35 for the CBF-CMRO2 and [Hb]-OEF
relationships, compared to 0.34 and 0.14 for the rNLS approach
(p < 0.05 for all correlations).

Table 3 reports the results of a bivariate regression of OEF
against [Hb] and CBF for both analysis methods. The slopes
of the relationship between OEF and [Hb] are similar to that
reported in healthy subjects by (Ibaraki et al., 2010), −1.75 Hb
(g/dL). As per Ibaraki et al. the relationship between CBF and
OEF did not reach significance (p = 0.44) for the ML approach,
however a significant negative correlation was observed in the
rNLS analysis (p = 0.005). A univariate analysis of CMRO2,0

against CBF0 is consistent with that observed in healthy controls
by (Powers et al., 2011) (β1 = 0.2) for both analysis methods, β1
= 0.32 (p < 0.001) and β1 = 0.24 (p < 0.001) for the ML and
rNLS approaches respectively.

Figure 6 shows a comparison between CBF0, OEF0, and
CMRO2,0 parameter maps calculated with the ML method
(single MLP network and ensemble of 40 networks) and the
rNLS method. The image shows seven slices from a single
subject, which have been interpolated for display using cubic
b-spline interpolation (Ruijters and Thevenaz, 2012) using
FSLeyes (10.5281/zenodo.1470761). As expected OEF0 is not
well-estimated in the white matter, due to the T1 decay of the
arterial spin labeling signal and the longer arrival time of white
matter blood. Across graymatter containing voxels maps of OEF0

TABLE 3 | Results of a bivariate regression of OEF0 against CBF0 and [Hb] for 30

healthy volunteers analyzed with the ML (ensemble of MLPs) and rNLS

fitting methods.

Predictor ML β1 (p value) rNLS β1 (p value)

[Hb] −1.42 (0.001) −2.23 (0.001)

CBF −0.07 (0.44) −0.37 (0.005)

Intercept 61.95 (<0.001) 89.48 (<0.001)

calculated with the ML methods are more uniform than those
calculated with the rNLS approach, with the ensemble approach
visibly outperforming the singe network MLP estimates. These
observations are consistent with the results of the simulations
and the gray matter COV observed for in-vivo OEF0 estimates.
However, it is also apparent from the images that each method
demonstrates sensitivity to regional susceptibility effects. For
example, in the pre-frontal cortex and inferior temporal lobes the
images show greater variability in OEF0 estimates, with regions of
both over and under-estimation apparent. This instability is likely
due to reduced BOLD SNR in these locations and alteration of the
susceptibility of air in and around the nasal cavity and paranasal
sinuses due to modulation of the inspired oxygen content during
data acquisition. It is clear that the ML estimates, in particular
those made from the ensemble of MLPs, are more robust to such
regional susceptibility effects.

The in-vivo analysis also highlights the improvement in
computational efficiency of the proposed method. The rNLS
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FIGURE 6 | Example parameter maps (CBF0, OEF0, and CMRO2,0) from a single subject for each analysis method. Machine learning estimates of OEF0 are more

uniform than regularized non-linear least squares estimates. Using an ensemble of MLP networks further reduces the spatial variation in OEF0 estimates.

approach took ∼20min to analyze a complete dataset on a
standard laptop (2.8 Ghz Intel Core i7, 16GB memory), while the
ML approach was able to complete the same analysis in ∼10–
20 s (depending on the number of networks in the ensemble of
MLP regressors).

DISCUSSION AND CONCLUSIONS

Instability in parameter estimates made using noisy in-vivo
data may be reduced by incorporating prior knowledge of
physiological parameters (e.g., Chappell et al., 2010; Frau-Pascual

et al., 2014; Mesejo et al., 2015; Germuska et al., 2016). Previous
investigation of such methods (Germuska et al., 2016) suggests
that they are an effective means to increase the robustness of
CMRO2 estimates made with dc-fMRI. However, these methods
are computationally expensive and must necessarily make a trade
off between parameter uncertainty and parameter sensitivity.
Thus, they are not well-suited to high throughput or rapid data
analysis and care must be taken when using such methods not
to unduly bias parameter estimates toward the priors. In the
work presented here we take a different approach by training a
machine learning implementation that is robust to input noise.
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Given an appropriately selected (or generated) training dataset, a
well-implemented solution will be unbiased, robust, and have a
low computational overhead.

Computer modeling suggests that the proposed method
outperforms previous analysis methods both in terms of
uncertainty and bias. In-vivo data supports the predicted
improvement in uncertainty with a significant reduction in
the COV of gray matter OEF0 estimates when compared
to a regularized non-linear least squares fitting of the data.
Additionally, agreement was found between the predicted
behaviors of each method and their associated biases when
compared to reported physiological relationships. Qualitatively,
the in-vivo parameter maps suggest that the ML approach,
especially when paired with an ensemble implementation, is
more robust to physiological noise; producing physiologically
plausible parameter estimates in challenging brain regions, e.g.,
near the frontal sinuses. Such physiological noise was not
modeled in the training data so it is perhaps unexpected that
the ML method is robust to these noise sources. However, it
is plausible that the discriminative features identified from the
frequency-domain representation of the data during training
are less sensitive to these regional susceptibility changes than a
traditional time-domain fit of the data. It is possible that this
aspect of the ML approach could be enhanced by extending
the training data to include such regional susceptibility changes,
either on their own or in combination with a spatially informed
approach to data fitting.

The use of an ensemble of MLP networks reduced parameter
uncertainty in simulation and reduced the coefficient of variation
in graymatter OEF0 estimates in-vivo, demonstrating its utility in
this application. However, it is anticipated that enforcing network
diversity during training could make further improvements in
performance. As it is has previously been demonstrated that,
in the presence of noise, the performance of an ensemble of
networks can always be improved by explicitly encouraging
diversity during training (Reeve and Brown, 2018).

The machine learning implementation presented here
employs a combination of proven signal processing (time-
frequency transformation) and machine learning methods
(decision trees and fully connected artificial neural networks)
that have been shown to select appropriate features for
learning and are robust to input noise. The proposed analysis
pipeline demonstrates an improvement in both the accuracy
and precision in parameter estimates compared to published
methods, and is appropriate for the study of both healthy
volunteers and in clinical investigations. However, there are still
many avenues that could be explored both in terms of signal
processing and machine-learning. For example time domain
data could be converted to 2D time-frequency representations,
such as a spectrogram, or into spectrogram-like representations
using wavelet transforms (for increased time resolution). This
type of pre-processing would open the door to the application
of 2D convolution neural networks (CNN) that have been so
successfully applied in the domain of image processing. It is
possible that the application of such approaches could further
improve the performance of machine learning when analyzing
dc-fMRI data. However, a thorough investigation of all available

machine learning methods and associated pre-conditioning of
the data is beyond the scope of the current study, which focuses
instead on the realization of a practical solution by combining
well-proven techniques for the analysis of signal data.

All in-vivo analysis in this manuscript is performed in the
absence of spatial smoothing, which is often employed to
improve statistical estimates made from fMRI data (Friston et al.,
1995). We chose not to employ spatial smoothing in this analysis
for two principle reasons: first any such spatial filtering implies
a prior assumption regarding the spatial extent of any variation
(Rosenfeld and Kak, 1982), and can thus lead to unwanted loss
of sensitivity to physiological variation; second we did not want
to increase the potential contamination of gray matter voxels
with non-tissue signals, such as CSF or macrovessels (both of
which are not included in the underlying signal model). The
current study does not make any direct comparison between
smoothed and unsmoothed analysis pipelines, however the
presented method clearly avoids any possible smoothing artifacts
that might otherwise bias the analysis.

A limitation of the proposed method is the need to train
new regressors for a given gas paradigm and set of acquisition
parameters, e.g., arterial spin labeling tagging duration, repetition
time and duration of the acquisition. In addition, there is a
requirement that the in-vivo gas manipulation does not deviate
significantly from the range of simulated designs. While it is
a relatively straightforward process to retrain the regressors
with a new set of parameters, to match the local acquisition
protocol, the scope of the method could be increased if
individualized gas traces could be incorporated into the training
data; allowing a single pre-trained implementation to be applied
across studies.

The simulations and in-vivo results suggest that the proposed
analysis method could significantly increase the utility of dc-
fMRI, reducing the number of participants needed to detect a
group difference in oxygen metabolism or oxygen extraction
fraction and offering more physiological interpretability of
metabolic differences or alteration due to a stimulus. In addition,
the significant reduction in processing time and the improved
robustness of the individual parameter maps reduces two of the
hurdles restricting clinical implementation of such techniques.
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A Corrigendum on

A Frequency-Domain Machine Learning Method for Dual-Calibrated fMRI Mapping of
Oxygen Extraction Fraction (OEF) and Cerebral Metabolic Rate of Oxygen Consumption
(CMRO2)
by GermuskaM., Chandler H., Okell T., Fasano F., Tomassini V., Murphy K.,Wise R. G. (2020). Front.
Artif. Intell. 3:12. doi: 10.3389/frai.2020.00012

In the original article, there was a mistake in Table 3 as published. The labels for [Hb] and OEF0 were
swapped. The corrected Table 3 appears below.

In the original article, there was an error. Reference to Table 3 in the text had the labels for
[Hb] and OEF0 swapped. A correction has been made to Results, In-vivo, paragraph 5:

“Table 3 reports the results of a bivariate regression of OEF against [Hb] and CBF for both analysis
methods. The slopes of the relationship between OEF and [Hb] are similar to that reported in healthy
subjects by Ibaraki et al. (2010), −1.75 Hb (g/dL). As per Ibaraki et al. the relationship between CBF
and OEF did not reach significance (p � 0.44) for the ML approach, however a significant negative
correlation was observed in the rNLS analysis (p � 0.005). A univariate analysis of CMRO2,0 against
CBF0 is consistent with that observed in healthy controls by Powers et al. (2011) (β1 � 0.2) for both
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analysis methods, β1 � 0.32 (p < 0.001) and β1 � 0.24 (p < 0.001)
for the ML and rNLS approaches respectively.”

The authors apologize for these errors and state that this does
not change the scientific conclusions of the article in any way. The
original article has been updated.

Copyright © 2021 Germuska, Chandler, Okell, Fasano, Tomassini,Murphy andWise. This
is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in
this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with
these terms.

TABLE 3 | Results of a bivariate regression of OEF0 against CBF0 and [Hb] for 30
healthy volunteers analyzed with the ML (ensemble of MLPs) and rNLS fitting
methods.

Predictor ML β1 (p value) rNLS β1 (p value)

[Hb] −1.42 (0.001) −2.23 (0.001)
CBF −0.07 (0.44) −0.37 (0.005)
Intercept 61.95 (<0.001) 89.48 (<0.001)
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The basic Generative Adversarial Networks (GAN) model is composed of the input vector,

generator, and discriminator. Among them, the generator and discriminator are implicit

function expressions, usually implemented by deep neural networks. GAN can learn the

generative model of any data distribution through adversarial methods with excellent

performance. It has been widely applied to different areas since it was proposed in 2014.

In this review, we introduced the origin, specific working principle, and development

history of GAN, various applications of GAN in digital image processing, Cycle-GAN,

and its application in medical imaging analysis, as well as the latest applications of GAN

in medical informatics and bioinformatics.

Keywords: Generative Adversarial Networks (GAN), generator, discriminator, data augmentation, image

conversion, biomedical applications

INTRODUCTION

Generative Adversarial Networks (GAN) was introduced into the field of deep learning by
Goodfellow et al. (1). As can be seen from its name, GAN, a form of generative models, is trained
in an adversarial setting deep neural network. More specifically, GAN learns the generative model
of data distribution through adversarial methods. GAN is the most successful generative model
developed in recent years and has become one of the hottest research directions in the field of
artificial intelligence. Because of its excellent performance, GAN attracts great attention since it
was proposed. It is especially important that GAN can not only be used as a generative model
with excellent performance, but also its inspiring adversarial learning idea penetrates deeply into all
aspects of deep learning, resulting in a series of new research directions and various applications (2).

The basic function of GAN is to train a generator and discriminator in an adversarial way. Based
on different requirements of projects, either a stronger generator or a more sensitive discriminator
is designed as the target goal. In this manuscript, we focus on the generation purpose of GAN
used in four areas: digital image processing, medical image processing, medical informatics, and
its latest applications in omic data. The generation purpose can be further categorized into data
simulation (3), data augmentation for small dataset (4), style transformation (5), and gene data
simulation (6). The great successful applications of GAN in medical image generation (7, 8) and
cell gene imputation (6) motivated us to review the literatures in these four sub areas, rather than
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just focusing on the digital image processing field. We searched
in the top conferences of computer science and Google Scholar
with keywords related to GAN. Through screening the literature
abstracts by our team in digital image processing, medical
imaging analysis, medical informatics, and bioinformatics,
respectively, the literature that was very relevant to our subject
was retained for full text reading. The contents of these eligible
literatures are summarized below.

A BRIEF OVERVIEW OF GAN

Origin of GAN
In general, deep learningmodels can be divided into discriminant
models and generative models (9). In the perspective of the
probability and statistical theory, a discriminant model is a
method of modeling the relationship between unknown data
y and known data x. A generating model refers to a model
that can randomly generate observations, especially under the
condition of given some implicit parameters (10). Due to the
invention of algorithms such as Back Propagation (BP) and
Dropout, the discriminant model has been evolved rapidly.
The development of the generative model is lagged due to the
difficulty of modeling, though the generative model has a pivotal
role in the history of machine learning. When processing large
amounts of data, such as images, speech, text, genomics, etc., the
generative models can help us simulate the distribution of these
high-dimensional data. It will be beneficial formany applications,
such as super-resolution, data augmentation, image and medical
image conversion, caption generation, electronic health records
data generation, biomedical data generation, data imputation,
and other ill-posed problems (11–15).

Likelihood describes the probability of the event under
different conditions when the results are known (16). Sometimes
we may not know the distribution function, but we know the
observed data. Therefore, the maximum likelihood estimation
is applied to evaluate model parameters using the observed
data. Traditional generativemodels such as Restricted Boltzmann
Machine (RBM) (17, 18), Gaussian Mixture Model (GMM)
(19), Naive Bayes Model (NBM) (20), Hidden Markov Model
(HMM) (20) and so on, are mostly based onmaximum likelihood
estimate. However, while the explicitly defined probability
density function brings computational tractability, maximum
likelihood estimation may not represent the complexity of
the actual data distribution and cannot learn the high-
dimensional data distributions. The majority of generative
models require the utilization of Markov chains. GAN uses
latent codes to express latent dimensions, control data implicit
relationships, etc. and does not require Markov chains (21).
Adversarial networks can represent very sharp, even degenerate
distributions, while Markov chain-based approaches require
somewhat ambiguous distributions so that the chains can
be mixed between patterns. Various types of loss functions
can be integrated into GAN models. This allows different
types of loss functions to be designed for different tasks,
all of which can be learned and optimized under the GAN
framework. GAN is also a nonparametric modeling method
and does not require an approximate distribution of training

data to be defined in advance. When probability density is not
computable, some traditional generative models that rely on the
statistical interpretation of data cannot be used for learning and
application. But GAN can still be used in such cases.

Specific Principles of GAN
In this section, we will introduce the architecture and specific
principles of GAN. Basic GAN model is composed of an
input vector, a generator, and a discriminator. The generator
and discriminator are implicit function expressions, usually
implemented by deep neural networks (22).

We use abstract mathematical language to explain the basic
principles of the GAN. The fixed distribution Pdata (x) is usually
calculated based on the assumption that the data distribution
for the training sample x is Pdata. However, this distribution is
difficult to be determined. The traditional methods assume that
the distribution Pdata (x) obeys a Gaussian mixture distribution
and uses themaximum likelihood as the solution. However, when
the model is complicated, it is often unable to calculate and the
resulting performance is limited (23). This is due to the limited
expression ability of the Gaussian distribution itself. Thus, neural
networks were proposed to define the distribution Pg(x). The
generator is a neural network with parameter θg . It collects the
random variable z from the prior distribution and maps it to the
pseudo-sample distribution through the neural network, that is,
the generated data is recorded as G (z) and the data distribution
is recorded as Pg(z). The input z usually uses Gaussian noise,
which is a random variable or a random variable in the potential
space. According to θg, a simple input distribution can be used to
generate various complex distributions. The Pg(x) generated by
the generator and the real image distribution Pdata (x) should be
as similar as possible (24). So, for the generator, the target is to
find a G∗ as shown below.

G∗ = arg min
G

Div(Pg , Pdata) (1)

Then the next question is how to calculate the difference between
the two distributions. If the form of Pdata (x) and Pg(x) is
known, it can be calculated to make Pdata (x) and Pg(x) get close.
Although we don’t know the specific distribution, we can sample
from it. So, GAN proposed a very magical way, discriminator,
to calculate the difference between the two distributions. The
discriminator was defined by the original GAN as a binary
classifier (25) with θd. During training, when the input is a real
sample x, the output of discriminator should be 1, otherwise, the
output goes to 0. For defining discriminator, Goodfellow et al. (1)
used binary cross entropy function, which is commonly used for
binary classification problems.

Loss = −(y log
(

ŷ
)

+
(

1− y
)

log (1− ŷ)) (2)

Where ŷ is the probability that the model prediction sample is a
positive example, and y is the sample label. If the sample belongs
to a positive example, the value is 1; otherwise, the value is 0.
A specific sample may come either from the real distribution
or the generated distribution. The positive and negative cases
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are substituted into Pdata and Pg , respectively. The whole object
function for discriminator is:

V (G,D) = Ex∼Pdata

[

logD (x)
]

+ Ex∼Pg [log (1− D(x))] (3)

By merging Equation (1) into (3), the objective function of the
basic GAN is defined by Equation (4):

min
G

max
D

V (G,D) = min
G

max
D

Ex∼Pdata

[

logD (x)
]

+Ez∼Pz [log (1− D(G (z ) ))] (4)

By optimizing this objective function, we can get a GAN model.
GAN’s training can be regarded as a min–max optimization
process. The generator wants to deceive the discriminator, so
it tries to maximize discriminator’s output when a fake sample
is presented to the discriminator. Instead, the discriminator
attempts to distinguish the difference between real and false
samples. Consequently, discriminator tries to maximizeV (G, D)
while generator tries to minimize V (G, D), thus forming
the minimax relationship. During the training of GAN, the
parameters of G (θg) and D (θd) are continuously updated.
When the generator is undergoing training, the parameters of
the discriminator are fixed. The data generated by the generator
is marked as fake and input into the discriminator. The error is
calculated between the output of the discriminator D (G(z)) and
the sample label, and the parameters of generator are updated
using the error of BP algorithm. When the discriminator is
undergoing training, the parameters of the generator being fixed.
Discriminator gets positive sample x from the real data set, and
the generator generates a negative sampleG (z). The output of the
discriminator and sample labels are used to calculate the error.
Finally, the parameters of the discriminator are updated by the
error of BP algorithm.

Ideally, the generator and discriminator are in equilibrium
when Pdata (x) = Pg(x). When the generator is fixed, we can
take the derivative of V (D, G) to find the optimal discriminator
D∗(x), as shown in the Equation (5).

D∗ (x) =
Pg(x)

Pg (x) + Pdata (x)
(5)

By substituting the optimal discriminator in the Equation (3).

max
D

V (G,D) =− 2 log 2+ 2JSD(Pdata (x) ‖ Pg (x ) ) (6)

The objective function can be further calculated as optimizing
the JS divergence of Pdata (x) and Pg (x) under the optimal
discriminator (26).

Development History of GAN
GAN is an excellent generative model. However, the original
GAN model has many problems, such as the vanishing gradient,
difficulty in training, and poor diversity (27). Many efforts
have been devoted to obtaining better GANs through different
optimization methods. Therefore, since 2014, theories and
articles related to GAN have emerged in an endless stream, and

many new GANs-based models have been proposed to improve
the stability and quality of the generated results (28).

A number of review articles have summarized and classified
the current GAN-related models (22, 24, 29). Creswell et al.
(22) classified the evolution of GAN models from the aspects of
architectural development and loss function improvement. Hong
et al. (29) summarized the development of GAN models from
the aspects of theoretical analysis, supervised, unsupervised, and
common problems. Guo et al. (24) focused on the improvement
of the model structure, the expansion of the theory, the novel
application and so on. We will introduce several common
improvements of GAN here.

Conditional Generative Adversarial Networks (CGAN)

CGAN is an improved GANmodel proposed byMirza et al. (30).
Unlike the original GAN, CGAN uses a supervised approach
increasing controllability of generated results. CGAN takes the
random noise z and the category label c as inputs of the generator
and the generated sample/real sample and category label as inputs
of the discriminator to learn the correlation between labels and
images. By introducing a conditional variable y into the modeling
and adding conditions to the model with additional information
y, the data generation process can be guided.

Deep Convolutional Generative Adversarial Networks

(DCGAN)

One year after the first GAN paper was published, researchers
found that the GAN model was unstable and required a lot of
training skills. In 2015, Radford et al. (31) proposed an upgraded
version of the GAN architecture, named DCGAN. The authors
of DCGAN improved the architecture of the original GAN with
deep convolutional networks (CNNs). So far, DCGAN’s network
structure is still widely used and is the hottest GAN architecture
and a milestone in the history of GAN. Compared with the
original GAN, DCGAN almost completely uses the convolution
layer instead of the fully connected layer. The discriminator is
almost symmetric with the generator. The entire network does
not have pooling layers and up-sampling layers. DCGAN also
used Batch Normalization algorithm to solve the problem of
vanishing gradient.

f-GAN

The objective function of the original GAN can be seen as
minimizing the JS divergence between two distributions. In
fact, there are many ways to measure the distance between
two distributions, and JS divergence is just one of them.
Defining different distance metrics can result in different
objective functions. Nowozin et al. (32) applied f -divergence
to GAN (f -GAN) for training generative neural samplers. The
f -divergence is a function Df (P ‖ Q) that measures the
difference between two probability distributions P and Q. Under
the framework of f -divergence, f -GAN generalizes various
divergences so that the corresponding GAN target can be derived
for a specific divergence. Many common divergences (33),
such as KL-divergence, Hellinger distance, and total variation
distance, are the special cases of f -divergence, coinciding with
a particular choice of f. Many improvements in GAN training

Frontiers in Public Health | www.frontiersin.org 3 May 2020 | Volume 8 | Article 16436

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Lan et al. GAN in Biomedical Informatics

TABLE 1 | Literatures for the application of GAN in image processing.

References Model Public dataset

Mirza and Osindero (30) CGAN MNIST

Radford et al. (31) DCGAN LSUN, IMAGENET-1K

Nowozin et al. (32) f-GAN MNIST Digits, LSUN

Zhao et al. (34) EBGAN MNIST digit, LSUN, CelebA,

ImageNet

Arjovsky et al. (26) WGAN LSUN-Bedrooms

Karras et al. (37) proGAN CelebA, LSUN

Ledig et al. (12) SRGAN Set5, Set14, BSD100

Pathak et al. (38) Context

encoder

Paris Street View, ImageNet

stability are achieved by using different distance metrics between
distributions, such as Energy-based GAN (EBGAN) (34), Least
Squares GAN (LSGAN) (35), etc.

Wasserstein Generative Adversarial Networks

(WGAN)

WGAN mainly improved GAN from the perspective of the
loss function. WGAN theoretically explained the reason for
the instability of GAN training, that is, cross entropy (JS
divergence) is not suitable for measuring the distance between
distributions with disjoint parts. Therefore, WGAN proposed
a new distance measurement method, Earth Moving Distance,
also known as Wasserstein distance or optimal transmission
distance, which refers to the minimum transmission quality that
converts the probability distribution q to p (probability density
is called probability quality in discrete cases) (26, 36). The
superiority of Wasserstein distance compared to KL divergence
and JS divergence is that even if two distributions do not
overlap, Wasserstein distance can still reflect their distance. The
theoretical derivation and interpretation of WGAN are quite
complicated. The authors of WGAN (26) pointed out that the
use of Wasserstein distances needs to satisfy a strong continuity
condition, i.e. Lipchitz continuity.

In short, GAN still has many unresolved problems and can be
further improved in various aspects.

APPLICATION OF GAN IN IMAGE
PROCESSING

GAN is widely used in virtual image generation (Table 1).
Whether it is a face image, a room scene image, a real image
(37) such as a flower or an animal, or an artistic creation image
such as an anime character (39), it can be learned using GAN to
generate new similar images (Figure 1). GAN is fully utilizing its
unique advantages and has evolved from the original GAN to the
progressively growing GAN (proGAN). Its imaging generation
capability has been greatly improved from 32 × 32 resolution to
2K true and false HD resolution (37).

Image super-resolution task (SR) is to generate high-
resolution images from low-resolution images. Image
super-resolution algorithms are important in areas such as

video surveillance, medical diagnostics, and remote sensing
applications. Super-resolution problem is actually an ill-posed
problem because the lost high-frequency details are difficult
to recover during the resolution of the image. Traditional
methods are generally interpolated, and interpolation inevitably
creates blurring. However, GAN can learn the distribution of
high-resolution images to a certain extent, so that high-quality
images with better quality can be generated. CNN has also
achieved very good results in single-frame super-resolution
reconstruction and can achieve a higher peak signal-to-noise
ratio (PSNR) (40, 41). However, most of them use MSE as the
objective function. Although a higher peak signal-to-noise ratio
can be achieved using MSE, when the image down-sampling is
higher (four times), the reconstructed picture will be too smooth
and lose details. Thus, in 2016, Super Resolution GAN (SRGAN)
was proposed by Ledig and others of Twitter. SRGAN was the
first to propose the application of GAN to super-resolution
reconstruction (12). The generated model of SRGAN takes
a blurred low-resolution image as input and outputs a clear
image with high resolution. The discriminant model of SRGAN
determines whether the input image is a “true high-resolution
image” or a high-resolution image converted from a low-
resolution image. This greatly simplifies the learning process
of the image super-resolution model. Because traditionally
conducting an image super-resolution needs to model some
high-frequency details, but here the purpose of generating model
training is simplified to the confusing discriminant model.
Compared to previous results based on deep learning models for
image super-resolution such as SRResNet, etc., GAN’s images
can provide more details.

Image inpainting refers to the process of reconstructing
missing or damaged parts of images and videos. It involves in
image editing and image generation and is a process of artificially
filling a region where information on the image is missing
according to certain rules. Conventional image inpainting
methods typically utilize undamaged image information to
estimate missing portions and autofill the missing parts.
Therefore, a structure-based partial differential equation (PDE)
image restoration algorithms were proposed. The repair process
of these models is similar to the diffusion phenomenon of
physics, and the key and the difficulty lies in how to build a
diffusion model. When the image damage area is large, the repair
effect plummets. Texture-based image inpainting algorithms
emerged as the times require, and the effect based on partial
differential equations was improved to some extent. Because the
traditional image inpainting algorithms depend on the structure
or texture information of the image, they cannotmeet basic repair
requirements, and often cannot achieve satisfactory results,
when the image semantic information is missing. Deep learning
has strong learning ability and can learn advanced features
from images, so the inpainting problem can be solved with
such features (42–44). Image inpainting is a problem between
image editing and image generation, so using the GAN model
can solve this problem well. The solution for using GAN is
to input an image with missing part to the generator. The
generator will use this missing input image to generate a new
complete image. The discriminator will learn to judge whether
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FIGURE 1 | Digital image diagram of GAN.

this image is realistic enough and feedback to the generator.
Through continuous training to optimize, the generator can
finally generate a complete image that is sufficiently realistic.
Then the inpainting was finished. Context encoder (38) is a
pioneering work of deep learning in the field of image inpainting.
Pathak et al. (38) trains an encoder-decoder and combines
adversarial network loss to predict the missing portion according
to the context pixel and structural semantics of the missing area.
The network is able to obtain a reasonable image structure and
can quickly and accurately evaluate the repair results (45–47).
Because GAN’s generator and discriminator can be any form of
neural network, different network architectures can be selected
for solving different problems. The autoencoder model was used
as the generator part in our previous work (3). This is because the
autoencoder is also an important generative model. It encodes
the input data and generates new data through the decoding
operation. It can retain the characteristics of the original input
and introduce the newly generated part. Therefore, it can not
only keep the undefected part of the inpainting input, but also
generate some data for filling in the missing area by using
autoencoder. Our discriminator is a simple binary classification
discriminant neural network whose input are the generated
repaired image and the complete image in the original dataset.
By learning to distinguish between the two, the generator is
prompted to generate results that are more in line with the
dataset, thereby completing the inpainting.

APPLICATION OF GAN IN MEDICAL IMAGE
PROCESSING

Multiple factors such as time cost, labor cost, economic cost, etc.
make it more difficult for researchers to acquire labeled medical
images than normal images. However, there is a great demand
for medical images by scholars nowadays. For example, the deep
learning-based model can achieve a better performance in the
fields of medical image segmentation, classification, registration,
etc. than the hand-crafted features when dealing with a large
amount of data (48). Traditional image augmentation methods
can be used for its purpose. However, the generated images by
traditional augmentation methods share a similar distribution

with the original ones (49, 50). Those methods are not suitable
for the need of generating more incidences among different
patients. Accordingly, GAN is used more popular in medical
image analysis, such as data augmentation and multi-modality
image translations.

Recently, with the development of deep learning algorithms
and the growing of labeled image datasets, convolutional neural
networks (CNN)-based models (51) have achieved great success
in many computer vision tasks, such as object detection (52),
semantic segmentation (53), human action recognition (54)
and so on.

Since 2014, many CNN-based medical image analysis works
(55, 56) have shown great learning possibility when enough
images are available for model training. The database like TCGA
(57) supplies a large number of images for some common
diseases. Since image acquisition and annotation is a time-
consuming process, image data for many diseases remains scarce.

There are many deep learning models that are pre-trained on
larger image datasets such as ImageNet (58), COCO (59), and so
on. Transfer learning (60) uses limited labeled data for supervised
training. In the transfer learning tasks, most of the weights of the
model keep fixed and only the weights of the last several layers
are fine-tuned on the new dataset. In this way, a well pre-trained
deep neural network is applied in the medical image analysis.

Transfer learning may still suffer from lack of training
images (61). As mentioned above, traditional data augmentation
methods can only generate data that share a close distribution
with the original ones. If the data set is too small, these methods
almost have no effort on the data augmentation. GAN (26)
supplies a solution to the lack of data in medical image analysis.
In the following section, we will discuss the applications of single
GAN and Cycle-GAN in medical image analysis (Table 2).

GAN Used in Medical Image Analysis
Pandey et al. (64) proposed a two-stage strategy to generate nuclei
cell images and their corresponding masks based on GAN. In
their first stage, a generator is trained to generate the synthesis
masks from noise like conventional GAN model does. On their
second stage, a conditional GAN utilized real mask and random
noises to train a generator for synthesizing images. Finally, they
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TABLE 2 | Literatures for the application of GAN in medical image processing.

References Model Public Dataset

Zhang et al. (62) PAC-GAN VIPeR, CUHK03, Market-1501

Dirvanauskas et al. (63) GAN/medical Miri TL

Pandey et al. (64) Two-stage

GAN/Medical

Kaggle Data Science bowl’s first

stage of competition

Frid-Adar et al. (65) GAN Private

Chen et al. (66, 67) Dense GAN A large publicly accessible brain

structural MRI database

Mahapatra and

Bozorgtabar (68)

Skip-

connection

GAN

http://www.eyepacs.com/

Yi and Babyn (69) SAGAN National Cancer Imaging Archive

Shitrit and Raviv (70) GAN Private

Zhu et al. (5) Cycle GAN Cityscapes, Google Maps, CMP

Facade Database, UT Zappos50K,

ImageNet

Wolterink et al. (71) Cycle GAN Private

Hiasa et al. (4) Cycle GAN Private

Huo et al. (72) Cycle GAN Private

Tanner et al. (73) Cycle GAN Private

Zhang et al. (74) Cycle GAN Private

Zhang et al. (75) Cycle GAN Private

utilized these two generators to generate images and masks from
random noise.

Dirvanauskas et al. (63) generated human embryo cell
images for three stages (one-cell, two-cell, and four-cell) by a
conventional GAN model. All the synthesized images could be
used to facilitate the development, training, and evaluation for
embryo image processing tasks.

Zhang et al. (62) used GAN-based model to solve the data
shortage problems in person re-identification task. Two view
images (cross view images) are generated by a conditional
GAN from existing original images and skeleton images. After
that, these cross-view images are sent into a discriminator for
person re-identification.

Frid-Adar et al. (65) used two variations of GAN models to
generate synthetic liver lesions. The synthetic images contained
the regions of interest (ROI) on abdomen CT images with
a resolution of 64 × 64. Experiment results showed that the
synthetic data augmentation from these two GAN models
improved classification accuracy from 77.5 to 85.0% compared
to the classic data augmentation.

Chen et al. (66) proposed a high-resolution MRI (HR MRI)
image generation architecture. Instead of generating 2D HR
MRIs, the authors generated 3D HR MRIs to learn 3D structures
of MRI volumetric images. However, 3D networks bring more
computing requirements. To solve this problem, the authors
used 3D dense net-based architecture (67) in the generator. By
combining 3D dense net and GAN, synthetic HR MRIs have
more local image textures and details.

Mahapatra and Bozorgtabar (68) used local saliency maps and
GAN for generating high-resolution retinal images. In addition
to the GAN’s lost function, they also added local saliency loss

FIGURE 2 | The architecture of Cycle-GAN.

from the difference between HR images and low-resolution
images in the saliency maps.

Yi and Babyn (69) proposed a deep neural
network-based architecture for low dose CT denoizing.
The generator-synthesized denoized CT image was sent to a
sharpness detection network for comparison with a conventional
CT image. This branch contributes a sharpness lost for the GAN
objective function.

Shitrit and Raviv (70) applied GAN to accelerate the MRI
image generation process. Instead of generating MRI images
from existing MRI images, the authors used GAN to generate
missing k-space samples. Their approach can be used for time-
sensitive or resolution-sensitive MRI scan tasks.

Huo et al. (72) proposed a similar GAN architecture for
splenomegaly segmentation. Instead of generating images from
random noises, the authors used a U-Net (76) based architecture
to get a segmented version and a Dice lost function as the
discriminator. Isola et al. (77) used a Patch-GAN model as the
discriminator for the patches from both the generated images and
the ground truth images.

Cycle-GAN Used in Medical Image Analysis
Cycle-GAN (5) is utilized to learn the mapping from a domain
image set X (or A in Figure 2) to another domain image set Y
(or B in Figure 2) when the pairwise alignments between the two
domains are unavailable. The forward generator is defined as G
and the backward generator as F. The cycle consistency forces
F(G(x))≈x and G(F(y)) ≈y. F◦G or G◦F works similarly to an
auto-encoder (78) for learning the representations of the original
images. A similar method was presented by Yi et al. (79).

It is essential that images from two different sources must
have shared visual content, such as from wild horses to zebras.
Normal image translation may be greatly affected when there
is a significant difference between two domains. However, it
is more suitable for multi-modality medical image synthesis,
such as synthesizing images from Magnetic Resonance Imaging
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FIGURE 3 | The experiment results from Cycle-GAN, where real B is the real MRI image, fake A is the generated CT image based on the real MRI image, and rec B is

the reconstructed MRI image based on the generated CT image of heart for a patient.

(MRI) to Computed Tomography (CT) (71) for diagnosing some
specific diseases.

Wolterink et al. (71) applied Cycle-GAN to CT and MRI
images of brain tumors in the radiotherapy treatment planning.
Since a limited number of patients had paired CT and MRI
images, unpaired images were generated from the paired images
by first padding the images into a larger resolution and
then cropping them into the same smaller resolution. Their
results showed that Cycle-GAN trained with unpaired images
outperforms a single GAN trained with paired images.

Hiasa et al. (4) improved the Cycle-GAN architecture by
adding the gradient consistency loss with the goal of better
edge alignment between the MRI images and CT images.
Comparing the generated CT/MRI images with the actual ones,
the gradient consistency had improved the synthesis accuracy
and segmentation accuracy.

Huo et al. (80) combined Cycle-GAN and segmentation
network in an end-to-end manner to take advantage of
the complementary information between synthesis and
segmentation. The final lost function of their network consisted
of the Cycle-GAN lost functions and the segmentation
loss function. Compared with the first synthesis and then
segmentation method (81), the method from Huo et al. achieved
better segmentation results on the spleen and other organs.
Their experiments indicate that MRI images with multiple
organ labels can be used to generate corresponding segmented
CT images. Tanner et al. (73) used Cycle-GAN for MRI-CT
deformable image registration of thoracic and abdominal organs.
Jin et al. (82) applied Cycle-GAN for CT-MRI image synthesis.
A discriminator was added for the real paired CT-MRI images
and generated paired CT-MRI images. The combination of
paired images and unpaired images achieved the lowest mean
absolute error.

Yue et al. (74) proposed a task-driven generative model
for X-ray image segmentation. A U-Net-based network (76)

was trained supervised on Digitally Reconstructed Radiographs
(DRRs) for organs segmentation. Thereafter, a Cycle-GAN was
trained for DRRs and X-ray images synthesis. Specifically,
the segmentation loss generated by the previously trained
segmentation network was added to the cycle of real DRRs to
fake X-ray to reconstructed DRRs. In that case, the segmentation
results of X-ray images were greatly improved.

Zhang et al. (75) replaced discriminators with segmenters to
address shape consistency problem. 3D fully convolution layers
were used in the Cycle-GAN network and long-range U-Net
network. Experiment results showed that the Cycle-GAN-based
synthesis network and segmentation network were mutually
beneficial in segmenting cardiovascular volumes.

We applied Cycle-GAN to achieve a good conversion between
the CT and MRI images based on the data from MICCAI
Workshop (Figure 3).

APPLICATION OF GAN IN MEDICAL
INFORMATICS

With the development of health informatization, hospital
information systems, Internet of Things (IoT)-based health
Platform, wearable devices and other platforms have led to the
explosive growth of medical data, such as electronic medical
records (EMR) (83). The growth in the quantity and quality of
medical data has also facilitated the use of scientific research
and algorithms in medicine. However, due to data security,
especially privacy security, although patient’s data can be de-
identified, the medical data after de-identification can still be
re-identified by some combinations. Because there are barriers
between the health information systems, it is very difficult to
correlate medical data collected from different media, resulting in
less medical data available for scientific research. The application
of medical informatics often requires a large number of data
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TABLE 3 | Literatures for the application of GAN in medical informatics.

References Model Public dataset

Choi et al. (84) medGAN PAMF, MIMIC III

Baowaly et al. (85) medGAN,

WGAN-GP, BGAN

MIMIC-III

Yoon et al. (86) RadialGAN MAGGIC

Che et al. (87) ehrGAN Private

Esteban et al. (88) RGAN, RCGAN Philips eICU database

Li et al. (89) GAN IQVIA longitudinal prescription (Rx)

and medical claims (Dx) database

Guan et al. (90) mtGAN Private

Yang et al. (91) GAN UCI medical database, Cerebral

stroke dataset

Tang et al. (92) IRGAN 4705 hyperlipidemia questions from

the internet

Hassouni et al. (93) GAN WISDM

to train parameters. The lack of medical data severely limits
the application of deep learning algorithms, especially artificial
intelligence in the field of medical informatics. Therefore, the
development of medical informatics is behind fields such as
medical images.

GAN has proven to play an important role in generating
images and has shown good performance in generating
continuous data. Since the gradient function is required to be
differentiable, the traditional GAN cannot generate discrete data.
In medical data, the diagnosis of a disease and the severity of the
disease are discrete data. Due to the high cost, less labeled, and
unbalanced classification medical data are available. Therefore,
we explored the application of GAN in generating discrete data
based on real medical data and in solving problems such as fewer
labels and unbalanced classifications (Table 3).

Choi et al. (84) generated synthetic electronic health records
(EHR) by using medical Generative Adversarial Networks
(medGAN) based on the Sutter Palo Alto Medical Foundation
(PAMF) and the Medical Information Mart for Intensive Care
(MIMIC-III) datasets. The original GAN cannot be directly used
to learn the discrete data of patients. medGAN can handle high-
dimensional multi-label discrete variables (binary and count
variables such as diagnoses, medications, and procedure codes)
by leveraging the autoencoder to overcome the limitation from
the original GAN. The autoencoder learned from real patient
records and the same decoder in autoencoder was used to
construct the discrete output after the generator. The authors
obtained impressive results for discrete variables. Baowaly et al.
(85) synthesized more realistic EHR than those generated
by the medGAN using MIMIC-III, extended MIMIC-III, and
Taiwan National Health Insurance Research Database (NHIRD).
Two synthetic data generation models, Wasserstein GAN with
gradient penalty (WGAN-GP) and boundary-seeking GAN
(BGAN), were applied based on the medGAN framework. These
two GAN models were named as medWGAN and medBGAN,
respectively. The count (the frequency of a specific ICD or
procedure of disease) and binary data (presence or absence of
a specific ICD code) were created using medGAN, medWGAN,
and medBGAN. Their results showed that the two improved

FIGURE 4 | The architecture of LSTM-based GAN in medical informatics.

GANmodels outperformed themedGAN.medBGANperformed
best in these three models.

Yoon et al. (86) used the auxiliary datasets, external datasets
from related but different hospitals, as the noise for a GAN
framework based on the fact that the patient distribution from
one hospital will be better matched by the patient distribution
from another hospital than by random noise such as Gaussian,
enlarging the target dataset effectively. They used 14 studies of
MAGGIC to create target datasets and compared the prediction
performance between the proposed radialGAN, target-only GAN
and benchmarks such as conditional-GAN and starGAN, etc.
Integrating datasets from different hospitals by radialGAN can
improve the performance of target-specific predictive models.

Che et al. (87) used two longitudinal real clinical datasets
of heart failure and diabetes to investigate how well ehrGAN
generated EHR as real samples. The structure of the basic
prediction model was adopted in the discriminator. Based
on the variational contrastive divergence, the generator was
altered for semi-supervised learning setting. Data augmentation
was performed by semi-supervised learning utilizing ehrGAN
to boost risk prediction; thus, generalization capacity and
prediction performance were improved.

Esteban et al. (88) presented a recurrent GAN (RGAN)
and a recurrent conditional GAN (RCGAN) to generate
sequences without/with some conditional inputs. Long Short-
Term Memory (LSTM) was selected as the architecture for both
discriminator and generator. They predicted whether or not a
patient will become “critical” in the near future based on the
four most frequently recorded variables measured by bedside
monitors from Philips eICU database using a method named
“Train on Synthetic, Test on Real” (TSTR). The models trained
on the synthetic dataset from LSTM-based GAN (Figure 4)
achieved performance at times comparable to that of the real data
on the eICU dataset.
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FIGURE 5 | Bioinformatics diagram of GAN.

Li et al. (89) used GAN to predict if a patient has a rare disease.
The log probability of unlabeled data as real data was maximized
and added in the objective function of the discriminator based
on the IQVIA longitudinal prescription and medical claims
database. Compared to the baseline techniques, the prediction
accuracy of the semi-supervised learning framework for rare
disease detection (precision-recall curves and area under the
curve) was 5% higher.

Guan et al. (90) used medical text GAN (mtGAN) to reinforce
the electronic medical record texts. mtGAN is a conditional GAN
that takes designated disease features as input and generates
corresponding EMR text to address privacy issues as well as
inadequate and unbalanced and the insufficient and imbalance
samples problem.

Yang et al. (91) presented a semi-supervised method in
association with GAN to support medical decision making. In
their study, GAN generated synthetic data by taking labeled set as
input. Labels of the unlabeled set were predicted by two learners.
By taking the expanded labeled set as input, GAN was used
again to generate the labeled set. Both expanded labeled set and
synthetic set were used as the training set to be classified based on
the cerebral stroke set collected from IoT-based platform.

Tang et al. (92) proposed a GAN-based method to
automatically retrieve patient questions. Supervised deep
learning-based approaches were used to determine the similarity
between patient questions. Their study showed that fine tuning
with GAN can improve performance. Hassouni et al. (93) used
GAN with LSTM to generate realistic simulation environments
based on the WISDM dataset. Their results showed that the
model trained on the data artificially generated by the GAN had
similar performance trained on real data.

APPLICATION OF GAN IN
BIOINFORMATICS

As a branch of the life science, bioinformatics is a new
multidisciplinary field that understands and organizes

information related to biomolecules through a combination
of disciplines such as applied mathematics, biology, computer
science, and statistics (94). It applies conventional statistics,
modern computer science, machine learning, and other
modeling algorithms to explore large volumes of biological
data, including molecular sequences of DNA, RNA, proteins
and metabolites, and other whole genome data. Bioinformatics
research and applications include analysis of molecular sequence
and genomics data; genome annotation; molecular folding,
modeling, and design; building biological networks; analysis
of the cellular organization and computational evolutionary
biology (95, 96).

One of the most important and difficult issues for
bioinformatics researchers is the accessibility and availability
of large datasets. Though the increased throughput and
technological advances have changed the landscape of
metagenomics, the cost of sequencing is still relatively high. In
addition, since the accessibility of data for research purpose
involves many legal and ethical issues, bioinformatics data
is highly sensitive (97). The lacking of available biological
samples could result in imbalanced datasets, which can lead
to over-fitting problems and poor classification performance.
Recently, researches have used GAN to generate data samples to
overcome these problems (Figure 5). Here, we present some of
bioinformatics application cases (Table 4).

Ghahramani et al. (98) successfully simulated realistic
scRNA-seq data using WGAN-GP, covering diverse scRNA-seq
datasets of various cell types, including mouse epidermal, mouse
neural and human hematopoietic single-cell RNA-seq data
spanning from different laboratories and experimental protocols.
The performance was evaluated at different checkpoints using
t-distributed stochastic neighbor embedding (t-SNE) and the
correlation between real cells and generated cells. As the training
steps increased, the generator was capable of producing cells
mapping to multiple clusters in the t-SNE plot, covering different
cell types, cell states, cell origin and experimental batches present
in the combined real dataset (98). By using the generative model,
the researchers were able to obtain a universal representation
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TABLE 4 | Literatures for the application of GAN in bioinformatics.

References Model Public dataset

Ghahramani et al. (98) Wasserstein-GAN (WGAN)

with gradient penalty loss

function

GSE90848, GSE67602,

GSE99989

Marouf et al. (99) Conditional single-cell

GAN

68,579 PBMCs (healthy

donor A)

Xu et al. (6) Generative adversarial

networks for scRNA-seq

imputation

GSE65525

Li et al. (100) GAN Not applicable

Anand and Huang (101) GAN Protein Data Bank

Killoran et al. (102) GAN Not applicable

Gupta and Zou (103) Feedback GAN Uniprot database

Wang et al. (104) GAN GEO, GTEx, 1000G

RNA-Seq expression data

of epidermal differentiation and the representation features can
be used to predict the effect of cell state perturbations on gene
expression at high temporal resolution. The task of the generator
was to produce realistic output data from a random latent
space vectors z. Corresponding latent space vectors of terminally
differentiated and undifferentiated cells (zdifferentiatedand zbasal)
were obtained according to the correlation between the real
expression profiles and those generated, and the difference
between these vectors was calculated as δ = zdifferentiated − zbasal.
Then 1,000 time points were interpolated between the latent
space differentiation vectors δ (98), so the dynamics of time-
series gene expression over cell differentiation could be explored
using the GANmodel, which cannot be detected by experiments.
By doing so, transiently expressed and subsequently down-
regulated genes associated with the process of differentiation can
be identified. They also performed a sensitivity analysis of the
discriminator network to identify biological state-determining
genes. By analyzing those networks, the authors obtained
regulatory relationships for inferred genes.

Marouf et al. (99) built a single cell GAN model for scRNA-
seq data generation using a Peripheral Blood Mononuclear
Cell (PBMC) scRNA-seq dataset with 68,579 cells. A customed
Library Size Normalization (LSN) function and Fully-Connected
Neural Network with Batch Normalization were used in the
scGAN’s generator to improve training speed and stability.
scGAN was able to model the dependency and correlation of
intergenic, which are a hallmark of biological gene-regulatory
networks. scGAN also captured gene count distributions and
correlations well, and the training time was proportional to the
complexity and size of scRNAseq datasets.

Marouf et al. (99) proposed a conditional scGAN model
(cscGAN) for the realistic generation of single-cell RNA-seq
data. The projection discriminator, along with the Conditional
Batch Normalization and LSN function in the generator, is used
to generate specific cell types of interest while learning multi-
cell type complex data. Conditional generation of cell types
could be used to augment the number of sparse specific cell
populations that might represent only a small part of the total
cells sequenced. However, it may help to solve the class imbalance

problem. Similar to the above research, Wang et al. used CGAN
for inferring target gene expression profiles by incorporating
both adversarial and L1-norm loss terms. Comparative analysis
showed that this model outperformed previous linear methods
in gene expression inference (104).

Xu et al. proposed the GAN for scRNA-seq imputation
(scIGANs), which uses generated realistic rather than observed
cells to avoid the limitations, such as many sources of technical
noises and dropouts, and the powerless for rare cells. ScIGANs
converts the expression profiles of individual cells to images and
feeds them to GAN. The trained generative network produces
expression profiles representing the realistic cells of defined types.
The generated cells, rather than the observed cells, are then used
to impute the dropouts of the real cells (6).

Hi-C is commonly used to study three-dimensional genome
organization. Hong et al. (105) developed a GAN, namely
DeepHiC, to predict high-resolution Hi-C contact maps from
low-coverage sequencing data. DeepHiC can reproduce high-
resolution Hi-C data from as few as 1% down sampled reads.
Application of DeepHiC to Hi-C data on mouse embryonic
development can facilitate chromatin loop detection with
higher accuracy.

Killoran et al. (102) developed a WGAN-based deep
generative network for creating newDNA sequences by encoding
the discrete sequences of characters (the nucleotides A, C, G, T)
into a continuous representation using one-hot encodings. The
authors proposed a joint approach that extends an activation
maximization version by incorporating a trained generator
model on a dataset of 4.6M 50-nucleotide-long sequences
encompassing chromosome 1 of the human genome hg38. This
approach is suitable for discrete sequences such as DNA. They
found that the generative model can learn important structures
from DNA sequences, and can be used to explore and design new
DNA sequences with desired properties (102).

Guptaand Zou (103) proposed a novel feedback-loop
architecture, called Feedback GAN (FBGAN) to optimize
synthetic gene sequences for desired properties using an external
function analyzer. The feedback-loop model consists of two
components, including GAN and a differentiable neural network.
GAN was used to generate novel raw gene sequences. The
differentiable neural network named analyzer converted a
gene sequence into a probability that the sequence encoded
an antimicrobial peptide (AMP). The n top-ranked favorable
generated sequences replaced the oldest n genes present in the
discriminator training dataset. This model was able to generate
synthetic genes coding for peptides of up to 50 amino acids
in length, and the peptides can be optimized for the secondary
alpha-helical structure of the resulting peptides (103).

Anand and Huang (101) applied GAN to generate protein
structures by encoding protein structures in terms of pairwise
distances between α-carbons on the protein backbone by
using data from the Protein Data Bank, and used the
Alternating Direction Method of Multipliers (ADMM) and
Rosetta algorithm to transform 2D pairwise distances into
3D Cartesian coordinates. The authors compared their work
with traditional HMMs-based methods. They found that their
generator model could learn to construct meaningful secondary
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structure elements such as alpha helices and beta sheets. The
generated maps were highly variable and similar but not identical
to the actual data, indicating that the GAN model was not
just memorizing the training data. Finally, the authors verified
that the generative model can reconstruct missing sections of
corrupted protein structures (101).

Similarly, Yeh et al. (106) also proposed a 2D distance
map representation of protein GAN model to predict particular
missing regions in a protein structure using the idea of image
inpainting. The author used this model to learn the distribution
of a particular loop region with the context of the loop region
from the candidate patch pool and successfully predicted the loop
region (100). Compared to the traditional time-consuming and
expensive experimental methods such as X-ray crystallography
or NuclearMagnetic Resonance (NMR), this GANmodel is more
convenient and time-saving.

Accurate identification of prognostic biomarkers is an
important but challenging goal in bioinformatics. Kim et al.
(107) applied GAN model to specify candidate prognostic gene
module by graph learning algorithms and evaluated genes scores
via a PageRank algorithm using multiple-omics data, including
copy number, gene expression, DNA methylation, and somatic
mutation data from five cancer types. Firstly, they reconstructed
functional interaction networks (FIs network) that included
known pathways in human biology. Then the reconstructed FIs
network was learned by GAN to select features via PageRank
with GAN weights, and finally, the prognosis was predicted.
They successfully identified a number of genes involved in
cancer development and analyzed their roles in biological
pathways. Their model showed better predictive accuracy than
existing methods.

There are some other applications in bioinformatics using
GAN to enhance gene expression classification. Huynh et al.
realized new data generation from original training datasets
through the combination of GANwith nonlinear Support Vector
Machines (SVMs). The results of GAN-SVM model displayed
a better performance than the most advanced classification
methods, including k-nearest neighbors (KNN), SVMs, decision
tree (DTs) of C4.5, and random-forest (RFs) (108). Bhat
et al. proposed a deep generative machine learning architecture
(DeepCancer) to test the ability of GAN in classifying breast
cancer and prostate cancer samples via the features learned by
the discriminator. The results showed that the generative model
achieved a high accuracy score (109).

CONCLUSION

In this article, we briefly introduced the origin, working principle,
the development history of GAN, and numerous applications to
the areas of digital image processing, medical imaging analysis,
medical informatics, and bioinformatics.

In digital image processing, GAN can do image generation,
high-resolution images generation from low-resolution images
and image inpainting, which perform well and are widely used.
Considering too many applications in digital image processing,
due to space limitations, we only selected the articles with

the most citations as the lead application to introduce, which
leads to some applications in the directions of image processing
weren’t introduced comprehensively such as Style migration,
image coloring, etc.

From the application of GAN in medical images, we can
see that GAN-based models provide a good solution for data
shortage in medical image analysis. It can be regarded as one of
the important additions to the manual labeling from radiologists.
The models based on a single GAN are more used as data
augmentation methods to increase the variety and quantity of
images in the same modality. On this basis, Cycle-GAN-based
models make translations between multiple modalities possible.
Involving in segmentation networks within the Cycle-GAN
models, cross-modality segmentations can be learned in an end-
to-end manner. This will effectively promote the application
and development of deep learning algorithms in medical image
analysis. However, GAN or Cycle-GAN still have limitations.
For example, the CT images from the head cannot be generated
from the CT images of the abdomen or MRI images from the
legs. Researchers need to carefully design their data flow and
lost functions to avoid problems such as non-convergence or
model collapse. Additionally, some medical image analysis tasks
require detailed 3D information of the organ. Involving 3D
feature learning or 3D segmentation in the GAN-based model
would be a challenge.

Based on EMR or EHR data, although GAN can generate
realistic synthesized discrete data, continuous data, and even
time series data to solve the issues of fewer labels and
unbalanced classifications in medical informatics, there are
still some limitations. How to evaluate these generated data
and how to apply these generated data to solve medical
problems has been controversial, which requires real data
to validate.

So far, the application of GAN models in bioinformatics
is still in a relatively early stage of development. Most
studies applied GAN to generate and/or augment datasets.
The above results have demonstrated the similarity of the
data generated using GAN models to the original data. Most
machine learning algorithms work well when the number of
cases in each class is roughly equal. So, using the generated
data, we can not only perform a lot of downstream analyses,
such as detecting marker genes, dimensionality reduction
and clustering, and reconstructing a particular secondary
structure, but also decrease the number of human and animal
experiments with a concomitant reduction in experimental
costs, addressing important ethical and financial issues. In
addition, GAN framework can work with any type of
neural networks, so its application in bioinformatics will be
more extensive.

In conclusion, more and more applications of GAN in
biomedical research are being proposed. Some of GANs
such as WGAN, Cycle-GAN, CGAN, medGAN are receiving
more and more attention because of their importance in
biomedical research. Although GAN has its advantages in
simulating various problems, there are also some limitations.
For example, when the sample size is small, the accuracy
of the model will be relatively low. As GAN uses deep
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neural networks as generators, poor interpretability is also a
common problem.
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Early accurate diagnosis of patellofemoral pain syndrome (PFPS) is important to prevent

the further development of the disease. However, traditional diagnostic methods for PFPS

mostly rely on the subjective experience of doctors and subjective feelings of the patient,

which do not have an accurate-unified standard, and the clinical accuracy is not high.

With the development of artificial intelligence technology, artificial neural networks are

increasingly applied in medical treatment to assist doctors in diagnosis, but selecting a

suitable neural network model must be considered. In this paper, an intelligent diagnostic

method for PFPS was proposed on the basis of a one-dimensional convolutional neural

network (1D CNN), which used surface electromyography (sEMG) signals and lower limb

joint angles as inputs, and discussed the model from three aspects, namely, accuracy,

interpretability, and practicability. This article utilized the running and walking data of

41 subjects at their selected speed, including 26 PFPS patients (16 females and 10

males) and 16 painless controls (8 females and 7 males). In the proposed method, the

knee flexion angle, hip flexion angle, ankle dorsiflexion angle, and sEMG signals of the

seven muscles around the knee of three different data sets (walking data set, running

data set, and walking and running mixed data set) were used as input of the 1D CNN.

Focal loss function was introduced to the network to solve the problem of imbalance

between positive and negative samples in the data set and make the network focus on

learning the difficult-to-predict samples. Meanwhile, the attention mechanism was added

to the network to observe the dimension feature that the network pays more attention to,

thereby increasing the interpretability of the model. Finally, the depth features extracted

by 1D CNN were combined with the traditional gender features to improve the accuracy

of the model. After verification, the 1D CNN had the best performance on the running

data set (accuracy= 92.4%, sensitivity= 97%, specificity= 84%). Compared with other

methods, this method could provide new ideas for the development of models that

assisted doctors in diagnosing PFPS without using complex biomechanical modeling

and with high objective accuracy.

Keywords: patellofemoral pain syndrome, one-dimensional convolutional neural network, focal loss, attention

mechanism, joint angles, surface electromyography
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INTRODUCTION

Patellofemoral pain syndrome (PFPS) is a common knee joint
disease in clinical practice, with a prevalence of 10–28% in the
general population, about a quarter of the total population, which
is often caused by degenerative changes of articular cartilage (1–
3). This disease is common in athletes and women, causing severe
pain during sports and daily activities, and it affects athletes’
careers to a large extent (1, 4). PFPS will have a certain impact on
the physical and mental health of patients, making the patients
unable to lead an active life (5). Most of the daily activities,
that is, up and down stairs, sitting, and squatting, will aggravate
the pain of the patients (6). Moreover, PFPS may develop into
patellofemoral osteoarthritis (7).

Timely detection and definite diagnosis are the keys to prevent
the aggravation of PFPS, but they are not easy (2, 8). Despite
the high incidence of PFPS, the pathophysiology of PFPS is
unclear (9, 10). Considering that the onset of PFPS is caused
by many factors, misjudgment easily occurs (11). At present, the
cause of PFPS has two explanations. One is biomechanical joint
dislocation, muscle weakness, and excessive joint load around
the patella, and the other is pain caused by nerve structure on
neurodynamic (6). According to the survey, no clear diagnostic
criteria are available at present, but some acceptable reference
standards are identified, such as patellar apprehension, patella
palpation, patellar apprehension,Waldron test, compression test,
and patellar tracking (2). However, these standards are mostly
dependent on the subjective judgment of doctors, and the whole
diagnosis results andmedical effect are strongly related to the rich
experience and knowledge of experts, which are not friendly to
young doctors. Different standards will lead to different diagnosis
results, and no accurate and unified standard is identified for
judging PFPS; thus, the diagnostic accuracy is relatively poor (8,
12). Although some PFPS diagnoses in the form of questionnaires
(such as the Kujala score) have high sensitivity and specificity,
they rely on the subjective answers of the patient and include
a certain degree of privacy of the patient, which is difficult for
some patients to cooperate (13). At present, invasive orminimally
invasive methods are primarily used to assist in the detection
of knee injury and diseases. Among the methods, MRI, CT,
and other non-invasive detection methods can be more effective
in the detection of knee injury and diseases, but these large-
scale instruments and equipment are expensive, which are not
convenient for daily inspection. As a minimally invasive method,
arthroscopy can provide detailed diagnosis information, but
repeated incision of the knee joint will cause pain to patients,
which is not conducive to the recovery of injury and diseases.
Therefore, exploring a new high-precision and low-cost non-
invasive PFPS detection method is necessary.

In recent years, increasing studies have focused on the
relationship between PFPS and biomechanical parameters (2,
14, 15). Ferrari et al. used the mid-band parameters of surface
electromyography (sEMG) to distinguish PFPS by independent
t-test and other methods (2). Bernard et al. explored whether
the coordination of body strength in patients with PFPS has

changed (16). Besier et al. used electromyography and lower limb

kinematics data to drive a musculoskeletal model and evaluate

the muscle strength of PFPS patients and painless subjects
during walking and running (17). Myer et al. used a multiple
linear logistic regression model to predict the knee-abduction
moment when athletes land and explore the relationship between
high knee-abduction moment and increased risk of PFPS (18).
However, most of the parameters required in these studies
are obtained through artificial extraction or the biomechanical
model, which is time-consuming. The biomechanical model is
based on the musculoskeletal model to establish the relationship
between the sEMG signal and joint movement. Nevertheless,
the coordination mechanism of the human nerves, muscles, and
skeletal system cannot be fully understood, which leads to the
inability to accurately simulate the human neuromusculoskeletal
system, which causes a fatal flaw in the calculation model, that is,
an “individual error.”

Previous studies have shown that when the principle of
the system is not clear or unknown, the artificial neural
network driven by data has good system characterization and
individual adaptability (19). With the development of artificial
intelligence technology, artificial neural network methods have
been increasingly used in the field of biomechanics and disease
diagnosis (20–22). For example, Keijsers et al. used plantar
pressure measurements as input to an artificial neural network
to classify forefoot pain (23). Otag et al. used an artificial neural
network to obtain the ligamentum patellae angle and explained
that the prevalence of PFPS in women is greater than that in men
based on the difference in angle values between men and women.
However, the accuracy in the classification of the left and right
knees is mediocre, only 67% (24). Biomechanics will include a
variety of non-linear problems, which can be well-solved by an
artificial neural network. Thus, this study aims to construct a
convolutional neural network (CNN) model to distinguish PFPS
through several easy-to-measure biomechanical parameters.
Traditional CNN mostly uses two-dimensional convolution, but
these biomechanical parameters are generally time series, which
have a certain periodicity; thus, this paper proposes to use one-
dimensional convolution, causing the filters to only slide on the
time axis. Retaining the correlation among various parameters
can achieve the time variability of biomechanical parameters and
improve the accuracy of network discrimination.

The main contribution of this study is to propose a
high-precision, low-cost and easy-to-implement computer-
aided diagnostic method, which provides a new idea for the
development of a convenient PFPS diagnostic model. The focal
loss function is introduced to optimize the network parameters,
which improves the balance of the 1D CNN results. By adding
attention mechanism into the network and visualizing the output
features, we can increase the interpretability of the model to
analyze the diversity of biomechanical features involved in
PFPS. Moreover, some studies have shown that there are gender
differences in PFPS. In this paper, the depth features extracted
by one-dimensional CNN are combined with the traditional
gender features, and these features are classified through the full
connection layer to improve the accuracy of the model.

The rest of this paper is as follows. The second section
introduces the data sets and preprocessing methods used in
this experiment, and then introduces the neural network model
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TABLE 1 | Mean ± SD age, height, and body mass of subjects.

PFPS Controls

Males (n = 10) Females (n = 16) Males (n = 7) Females (n = 8)

Age (years) 30.5 ± 4.5 28.7 ± 4.6 27.2 ± 3.0 28.8 ± 4.7

Height (m) 1.78 ± 0.08 1.68 ± 0.06 1.80 ± 0.05 1.66 ± 0.05

Mass (kg) 73.5 ± 15.7 62.7 ± 10.0 73.4 ± 18.1 58.3 ± 4.6

FIGURE 1 | Data partition in 10-fold cross-validation.

used in this experiment and the experimental environment in
detail. In the third section, the experimental results are given and
compared. The fourth section discusses the experimental results,
and the fifth section summarizes and prospects the full text.

METHODS

Experimental Data
This study was a retrospective exploratory secondary analysis of a
subset of an open data set. This public data set primarily recorded
the lower limb kinematic data and sEMG signals of PFPS patients
and painless control subjects during walking and running and
muscle strength obtained from the musculoskeletal model (17).
A total of 27 patients with patellofemoral pain (16 female, 11
male) and 16 painless control groups (eight female, eight male)
were included in the study. These patients and painless controls
were identified by professional doctors, and they were tested for
walking, running, and squatting at a self-selected pace. In this
paper, 10 kinds of biomechanical characteristics were selected in
walking and running tests, which included three kinds of joint
angle values [knee flexion (KF) angle, hip flexion (HF) angle,
ankle dorsiflexion (ADF) angle], and seven kinds of sEMG signals
[semimembranosus (SEB), rectus femoris (RF), biceps femoris
short head (BF), vastus medialis (VM), vastus lateralis (VL),
lateral gastrocnemius (LG), and medial gastrocnemius (MG)].
These parameters were selected because they were related to
PFPS, which could be measured in real-time without using
biomechanical modeling. The original sEMG data used a zero-lag
fourth-order recursive Butterworth filter (30Hz) for high-pass
filtering and a Butterworth low-pass filter (6Hz) for full-wave
rectification and filtering. The detailed collection of the entire
data set could be found in Reference (17). The experimental data
used in this research were obtained from the public data set of
this website (https://www.sciencedirect.com/science/article/pii/
S0021929009000396?via%3Dihub).

Data Pre-processing
The data should be cleaned before placing into the neural
network. Considering that certain data were missing in the
walking and running data of subjects 4 and 43, we eliminated
them and tested the data of the remaining 41 subjects, including
26 PFPS patients (16 female, 10 male) and 15 painless controls
(eight female, sevenmale). Each subject had walking and running
test data. We combined the data of each subject into a 100 ∗

10 matrix to adapt to the input form of a convolutional neural
network (100 time-series recorded values, 10 characteristics). The
relevant information on subjects is shown in Table 1.

The original data had already filtered out the noise, and no
filter was needed, but we needed to standardize the parameters
of each subject. The range of the joint angle value and EMG
signal value was quite different, which was not conducive to the
convergence of the neural network; thus, we standardized the
range to make it consistent:

Xi=
Xi−X̄

Xstd
, (1)

where X̄ is the mean of each feature of the original data X, and
Xstd is the variance of each feature of the original data X.

The preprocessed data were equivalent to a two-dimensional
matrix. We flipped the data in the training set horizontally,
but we cannot flip such date vertically because the column
represented the time axis, which had strong correlation.
Therefore, the number of training sets can be doubled, and the
performance of the neural network model can be improved.

Experimental Protocol
We randomly selected 70% of the subjects as the training set and
30% as the test set, and the proportion of PFPS patients and
painless controls in the training set was the same as that in the
test set. The training set and test set were processed similarly,
and then the training set was placed into the neural network
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FIGURE 2 | Overall flow chart of the method.

for training. Considering that our data set was small and the
proportion of PFPS patients was large, we adopted hierarchical
10-fold cross-validation to adjust the network parameters, avoid
specificity, and maximize the utilization of data. The training set
was equally divided into 10 equal parts, and the proportional
relationship between PFPS patients and painless controls in
each set was the same. Nine of them were used to train the
network, and one was used for verification, which was circularly
repeated 10 times to ensure that each copy was used, which is
shown in Figure 1.

In this paper, several artificial neural network models
commonly used in classification tasks were selected for
testing, including extreme learning machine (ELM), back
propagation neural network (BP), one-dimensional convolution
neural network (1D CNN), two-dimensional convolution neural
network (2D CNN), long short-term memory (LSTM), VGGNet,
and AlexNet. The BP neural network here refers to a fully
connected neural network with a hidden layer. This article
focused on the 1D CNN, and the other neural networks were
primarily used for comparison. Except for VGGNet and AlexNet,
all parameters of other artificial neural networks were obtained
through 10-fold cross-validation to avoid particularity. The
overall flow chart of the method is shown in Figure 2.

Network Structure
CNN has been proven to have great advantages in a variety of
classification tasks, such as image recognition, natural language
processing, and human action recognition (25–30). In recent
years, a number of excellent CNN classification models have
been created, such as AlexNet (31) and VGGNet (32). These two
network models belong to the best of their kind, particularly
in image classification. In addition, they are often found in
medical image classification, which is a good computer-aided
diagnostic method. These two models have many parameters.
For small data sets, most researchers use transfer learning (33,
34). The data set in this paper is also relatively small, but it
is not suitable for transfer learning, because the premise of
transfer learning is that the data in the original task and the
target task are similar, that is, there is a certain Association
for learning. However, most of the training data used in these
large-scale classification models such as AlexNet and VGGNet

are based on image data, which is very different from the
multidimensional time series data in this paper, so it is not
applicable.

Most of the CNN convolution kernels are two-dimensional.
However, according to the characteristics of biomechanical
parameters belonging to time-series data, this article utilized the
1D CNN for learning. The network structure of 1D CNN in
this paper is shown in Figure 3. We replaced the convolution
kernel in the AlexNet model and VGGNet model with one-
dimensional convolution kernel to make a better comparison,
and other network structures remained unchanged.

Our inputs were the 100 ∗ 10 matrixes. First, we added a
soft attention mechanism to the input, which could reweight
the input information adaptively before convolution. This
process separated important input features. Then, in the first
convolutional layer, we defined 16 filters (also known as feature
detector) with the convolution kernel size of 3. The filters only
slid on the time axis, and the sliding step size was 1. During
training of the first layer, we obtained 16 different feature maps.
The structure of the filters in the second convolutional layer
was the same as that of the first layer, which was used to learn
complex features. The max pooling layer would slide a window
of height 2 on the feature map with a step size of 1 and replace
it with the maximum value, which discarded half of the value.
After the pooling operation, part of the information would be
lost; thus, the number of filters in the next two convolutional
layers was increased to 32. We added a dropout layer with a
dropout ratio of 0.3 (30% of neurons were randomly ignored)
after the last convolutional layer to avoid overfitting. Then, we
expanded the feature map output of the convolution layer into
a one-dimensional vector. Simultaneously, we placed the gender
characteristics through binary encoding (01 for males and 10
on behalf of females) and fused such characteristics with the
depth feature extracted from the convolution layer. Finally, the
fused features were placed into a fully connected neural network
with 50 neurons for learning, which were reduced to a vector
of length 2 (representing the two types of output) through
the softmax activation function. Meanwhile, the optimization
algorithm selected Adam and set the learning rate to 0.00001 and
the number of iterations to 4,000.

The network structure of the 2D CNN was similar to that of
the 1D CNN; however, the convolution kernels of the 2D CNN
were two-dimensional, which were set to 3 ∗ 3. This network
was designed to facilitate comparison with the 1D CNN. The
network structure of ELM and BP only had a single hidden layer.
The number of neurons in the hidden layer of ELM and BP
was 174 and 37, respectively, which were obtained by ten-fold
cross-validation (Figure 4).

In addition to ELM, other neural networks optimized
the parameters by reducing loss. The ordinary cross-
entropy loss function was used to optimize the network
parameters in most artificial neural networks. Given the
large proportion of PFPS tags in the data set, misjudging
painless subjects as PFPS by the neural network was easy.
Thus, we utilized the focal loss function, which could solve
the problem of imbalance between positive and negative
samples and reduce the impact of easy-to-predict samples
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FIGURE 3 | Overall framework of the 1D CNN.

FIGURE 4 | From left to right are the 10-fold cross-validation results of ELM and BP on the running dataset.

(35, 36):

LOSS = −a(1−y
′

)r∗logy
′

, y = 1, (2)

LOSS = −(1− a)y
′r∗log(1− y

′

), y = 0, (3)

where y = 1 is the label of PFPS, and y = 0 is the label

of painless control. y
′
is the corresponding predicted label. α

is the balance adjustment factor, and r is used to control the
rate of adjustment. When the sample is easy to predict, that

is, y
′
is larger, its weight 1 − y

′
will be smaller. Meanwhile,
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FIGURE 5 | Loss curve and accuracy curve of using focal loss function and

cross-entropy loss function for the 1D CNN.

setting r > 0 can reduce the loss weight of easy-to-predict
samples, which can make the model pay more attention
to the difficult-to-predict samples during training. Through
many experiments, we set α to 0.2 and r to 2. Moreover,
the difference between using the focal loss function and the
ordinary cross-entropy loss function for the neural network is
shown in Figure 5.

However, ELM does not need to adjust the parameters
by iteratively reducing the loss. When the input weight and
the bias of the hidden layer are randomly determined, the
output matrix of the hidden layer is uniquely determined. The
training of the neural network is transformed into solving a
linear system:

Hβ = T, (4)

where H is the output of the hidden layer node; β is the output
weight, and T is the expected output. We can obtain the output
weight β by transforming H into the generalized inverse matrix

H
′
and multiplying T.
At present, LSTM is the most popular model in processing

time series, which can solve the problem of long-term
dependence on information very well. So, this paper also takes
this model into account and compares it with 1D CNN. The
LSTMmodel used in this paper consists of 32 basic units.

Evaluation Indicators
There are many indicators to evaluate the quality of a neural
network. However, considering that this research involves the
auxiliary diagnosis of diseases, this article used three evaluation
indicators, including accuracy (ACC), sensitivity (SES), and

specificity (SPC), which were expressed as follows:

ACC =
TP+ TN

TP+ FP+ FN+ TN
, (5)

SES =
TP

TP+ FN
, (6)

SPC =
TN

TN+ FP
, (7)

where TP, TN, FN, and FP indicate true positive, true negative,
false negative, and false positive, respectively.

In this paper, Keras was used as a deep learning model
framework, and TensorFlow was selected as the backend,
which created a 1D CNN model. Meanwhile, the experimental
environment was CUDA 10.1; the GPU was NVIDIA GeForce
GTX 1080; the CPU was Intel Core i7-8700, and the operating
system was Windows 10.

RESULTS

We tested each model on three different data sets of the subjects,
including walking data, running data, and the combination of
walking and running data to explore the pros and cons of the
models as a whole. The three data sets were divided similarly, and
70% of the data sets were randomly selected for training, and the
training data were subjected to 10-fold cross-validation to obtain
the optimal model parameters. Then, the remaining 30% of the
data were used for testing. Considering that our data set was
small, the batch size of the network was set to the entire training
set. Using this method, the loss direction determined by the full
data set could represent the sample population, thereby moving
accurately toward the direction of the extreme value.

We repeated each experiment 10 times independently and
took the average of the results as the judgement of the model. For
the data division of each trial, the data distribution in the training
set and test set was the same.

Comparison Results of all Neural Network

Models
The overall results are shown in Tables 2–4. It can be seen
from the figure that all the neural network models have the best
effect on the running data set. In order to make the comparison
results on the running data set more visible, this paper makes a
histogram, as shown in Figure 6.

Results of Attention Mechanism
According to the comparison results in the previous section, this
paper will make further research on the running data set. The soft
attention mechanism could reweight all information adaptively
before aggregation. Consequently, important information could
be separated, and the interference of unimportant information
could be avoided to improve the accuracy. In this study, the
weight of time dimension was fixed, and only the input feature
dimension was weighted. After the neural network model was
trained, the weight of feature dimension was determined. Finally,
we visualized the weight assigned to each feature by the attention
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TABLE 2 | Results on walking data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.68 0.77 0.53 43.8

2D CNN 0.61 0.81 0.29 158

LSTM 0.63 0.73 0.51 153.1

VGGNet 0.61 0.91 0.14 1913

AlexNet 0.61 1.00 0.00 800.7

ELM 0.66 0.89 0.29 0.02

BP 0.58 0.59 0.55 4.32

TABLE 3 | Results on running data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.924 0.97 0.84 43.7

2D CNN 0.64 0.81 0.35 157.4

LSTM 0.79 0.83 0.69 152

VGGNet 0.74 0.80 0.59 1912.4

AlexNet 0.769 0.88 0.60 800.5

ELM 0.71 0.88 0.51 0.03

BP 0.65 0.87 0.32 4.42

TABLE 4 | Results on combined walking and running data set.

Network models ACC SES SPC Training time(s)

1D CNN 0.77 0.77 0.70 43.8

2D CNN 0.615 0.88 0.20 160

LSTM 0.76 0.90 0.58 155

VGGNet 0.62 0.80 0.42 1914

AlexNet 0.76 0.84 0.64 801

ELM 0.59 0.82 0.20 0.03

BP 0.56 0.66 0.40 4.51

mechanism and observed the features that belonged to the key
features (Figure 7).

Visualization Results of the CNN Model
In this section, the T-SNE method was used to visualize the
feature distribution of the input layer, final convolution layer,
and output layer of the four CNN models for running data
set. In this way, we can easily compare the ability of learning
features from the original biomechanical data among different
CNN models Figure 8).

DISCUSSION

As shown in Tables 2–4, all the neural network models perform
best in the running data set, which indicates that PFPS will have
a significant impact on the lower limb biomechanical features
of patients during running. Pain is a protective mechanism for
patients, and patients will take corresponding compensatory
behavior to complete the exercise to reduce pain, thereby

resulting in changes in biomechanical features. The task intensity
of running is higher than that of walking, which may lead to
evident compensatory changes in patients with pain, thereby
making the neural network easier to learn.

By adding attention mechanism into the 1D CNN model and
outputting the weight results of attention mechanism, we ranked
the importance of biomechanical features in identifying PFPS
and determined the biomechanical features that were important
for the identification of PFPS. As shown in Figure 6, the three
most concerned features of the neural network are VM, SEB,
and KF. However, whether the changes of these biomechanical
features cause PFPS, or whether the pain of PFPS causes the
changes of these biomechanical features, that is, whether these
biomechanical features are risk factors for PFPS, remain unclear.

All neural network models have high specificity and low
sensitivity. There are two reasons for this result. First, more PFPS
patients are included in the data set, which makes the learning of
the network prone to deviation. Second, the data set is relatively
small, which makes the neural network easy to overfit. Previous
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FIGURE 6 | The results of each neural network on the running data set.

FIGURE 7 | Attention probability distribution of input features on running

data set.

studies have shown that CNN tends to perform better in big data.
In the case of a larger data set, we hypothesize that the accuracy of
our model can be improved. In addition, although ELM and BP
are feedforward neural networks with a hidden layer, the number
of hidden layer nodes is different when they reach the optimal
situation probably because their network weights are determined
in different ways. ELM directly determines the weight of neurons
in the hidden layer by solving the generalized inverse matrix,
whereas BP gradually determines the weight of neurons in the
hidden layer by back propagation.

In all data sets, the 1D CNN performs best, particularly
on the running data set (ACC = 0.924, SES = 0.97, SPC =

0.84). Meanwhile, the comparison of the classification results
shows that the 1D CNN is suitable for the characteristics of
these biomechanical parameters than the 2D CNN. In addition,
the introduction of focal loss does not greatly improve the
accuracy of the neural network, but it makes the neural network
easier to learn to ensure that the SES and SPC values will not
differ remarkably. The results of 1D CNN are also better than

FIGURE 8 | Visualization of feature representations extracted from input layer,

last convolutional layer and output layer for running data set.

LSTM, which may be because 1D CNN pays more attention
to the feature changes in local time period, while LSTM is
more suitable for data with long-term dependence. The disease
detection of pain type should pay more attention to the instant
changes caused by pain. Moreover, because LSTM adopts full
connection computing mode, its computation is very time-
consuming, resulting in poor real-time performance. Compared
with the LSTM model, the local connection and weight sharing
mechanism of the 1D CNN model reduces a large number of
network parameters, so that themodel can train faster and reduce
the risk of overfitting.

In this paper, the t-SNE method was used to reduce the
dimension and visualize the features extracted from the CNN
model and determine whether the features extracted from the
neural network model were separable, which increased the
interpretability of the model. As shown in Figure 7, the 1D CNN
model constructed in this paper could easily obtain segment
able features.

CONCLUSION

This paper proposed a method to assist the diagnosis of PFPS
through the 1D CNN model. Different from previous studies,
this method does not require complex biomechanical models,
and it can achieve high accuracy (ACC = 0.924) only through
some directly measurable biomechanical parameters and the
gender of subjects. This method is easy to operate. After the
neural network has learned a certain number of features, the
model is saved. Then, the PFPS can be intelligently determined
by the neural network in real-time through the lower limb
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joint angle values and sEMG signals of subjects in a gait
cycle. This prospective study provides new insights into the
auxiliary diagnosis of PFPS, which can be used to develop a
convenient, efficient, and universal auxiliary diagnosis model
for PFPS.

Compared with previous research (2, 37), the method of this
study has higher sensitivity (SES = 97%), and specificity (SPC
= 84%). Ferrari et al. used the mid-band parameters of sEMG,
which were associated with anterior knee pain to determine
PFPS. The method had 70% sensitivity and 87% specificity, and
the trial involved 51 subjects, including 22 PFPS patients and 29
painless controls (2). Briani et al. used the sEMG signal of VM to
diagnose PFPS, and obtained 72% sensitivity and 69% specificity,
and obtained 68% sensitivity and 62% specificity through the
sEMG signal of VL. The trial involved 59 subjects, including 31
patients with PFPS and 28 painless controls (37).

This study is a preliminary investigation, and its applicability
requires caution. This study has some limitations, which need
to be considered in future studies. For example, a comparative
experiment should be conducted to explore whether these
biomechanical changes caused by pain or PFPS caused by these
biomechanical changes. Another limitation is that the data set
of the paper is relatively small, and the convolutional neural
network often performs better on large data sets; therefore, larger
sample size must also be considered in the next work. Meanwhile,
future work must focus on the specific subclassifications of
PFP diagnoses.
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Evaluation of MRI Denoising Methods
Using Unsupervised Learning
Marc Moreno López1*, Joshua M. Frederick2 and Jonathan Ventura2
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In this paper we evaluate two unsupervised approaches to denoise Magnetic Resonance
Images (MRI) in the complex image space using the raw information that k-space holds.
The first method is based on Stein’s Unbiased Risk Estimator, while the second approach
is based on a blindspot network, which limits the network’s receptive field. Both methods
are tested on two different datasets, one containing real kneeMRI and the other consists of
synthetic brain MRI. These datasets contain information about the complex image space
which will be used for denoising purposes. Both networks are compared against a state-
of-the-art algorithm, Non-Local Means (NLM) using quantitative and qualitative measures.
For most given metrics and qualitative measures, both networks outperformed NLM, and
they prove to be reliable denoising methods.

Keywords: deep learning, denoising, k-Space, MRI, unsupervised

1 INTRODUCTION

Magnetic Resonance Imaging, MRI, is one of the most widely used imaging techniques, as it provides
detailed information about organs and tissues in a completely non-invasive way. InMRI, data needed
to generate images is directly sampled from the spatial frequency domain; however, the quality of this
data can be deteriorated by several thermal noise sources and artifacts. Noise in MRI is of major
consequence as it can mislead and result in inaccurate diagnoses of patients. In addition to visually
corrupting the recovered images, noise is also an obstacle when conducting quantitative imaging on
the MRI. The utility of MRI decreases if a region or specific tissue suffers from a low signal to noise
ratio. Thus, there is a necessity for an efficient MRI reconstruction process, where denoising methods
are applied to noisy images in order to improve both qualitative and quantitative measures of MRI.

Additionally, in the case of in vivoMRI, noise is implicit to the acquisition process. When taking
an MRI of a living subject, there are multiple noise factors. All other factors withheld, the MR
machine has an innate noise component when acquiring an image due to a thermal factor. Another
source of thermal noise is inversely proportional to the amount of time that the subject stays inside
the MR machine, and while in the machine the subjects movements also contribute to the thermal
noise. Finally, the patient’s body temperature and the thermal factor from theMRmachine is another
key element, specially since a long exposure inside the MRmachine could lead to an increase in body
temperature, web (2017).

Thus, when training a MRI denoiser, no ground truth is available for the training procedure.
Likewise, due to previously discussed movement of the subject, two independent samples for
denoising strategies as used by Lehtinen et al. (2018) cannot be reasonably obtained. Thus either
synthetic data needs be generated for supervised learning or unsupervised and self-supervised
strategies must be employed. As such, we evaluate self-supervised solutions to MRI denoising. Deep
self-supervised image denoisers have been seeing recent success for general image denoising tasks,
and provide robust denoisers without requiring access to denoised images. Self-supervised denoisers
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generally under-perform supervised techniques, but arise
naturally in cases like MRI, where pure supervised learning is
infeasible.

While deep learning has seen success in many areas, there is a
lack of methods focused on denoising MRI. Additionally, many
traditional techniques denoise MRI in the magnitude space,
dismissing the innate spatial frequency information the MRI
contain. Most of the MRI denoising methods available use a
supervised approach where they use the original MRI as ground
truth. We wanted to explore an unsupervised approach using the
complex image space, where no ground truth data is needed.
Therefore, we will compare two unsupervised denoising
approaches that denoise MRI in the spatial frequency space,
competing with the more classical and widely used denoising
methods.

2 MATERIALS AND METHODS

2.1 Related Work
Previous attempts on MRI denoising can be categorized in three
different ways: traditional methods, supervised learning, and
unsupervised learning.

2.1.1 Traditional Methods
Traditional MRI denoising techniques are generally based on
filtering, transformations, or statistical methods such as Mohan
et al. (2014). Three of the most widely-usedmethods currently are
bilateral filtering by Tomasi and Manduchi (1998), non-local
means by Buades et al. (2005), and BM3D by Dabov et al. (2007).

The bilateral filter presented by Tomasi and Manduchi (1998)
is an edge preserving non-iterative method. When applied to an
image, it uses a low-pass denoising kernel which adjusts to the
original image spatial distribution of pixel-values. This helps
preserve the edges while denoising the image. In the presence
of sharp transitions, the kernel is weighted according to this
transition. This behavior is modeled by a convolution of the
intensity values of the image and a non-linear weighting function.

Non-local means, Buades et al. (2005), or NLM, uses the self
spatial similarities that natural images have. It exploits the
redundancy of the neighborhood pixels to remove the noise.
The simplicity of this filter consists of using those similarities to
find similar patches on the rest of the image to the patch being
denoised. This is known as neighborhood filtering. NLM assigns
confidence weights based on similarity to the original patch and
its distance from the center of the observed patch. The main issue
with NLM is that since it relies on a large space search, it can
create a bottleneck in terms of computation.

BM3D, Dabov et al. (2007), is a robust algorithm that has
several parameters that can be modified in order to achieve the
best denoising. It is an extension of NLM, in the sense that it uses
spatial similarities within the image. It starts by searching for
patches with similar intensities to the patch that is being
denoised. A 3D matrix containing the size of the patch and
the aggregated patches is built. Then, a 3D transform is applied.
So as to remove high frequency noises, the transform space is
filtered and thresholded. Finally, a denoised 3D block is yielded

by doing the inverse transformation. To recover the original
array, weights are assigned to every patch. These weights are
based on the variance and distance of the patch.

2.1.2 Supervised Learning
One of the most well-known approaches for supervised
denoising, DnCNN, is presented by Zhang et al. (2017). Their
method uses feed-forward Convolutional Neural Networks,
CNN. In order to improve both algorithm speed and
performance, they use residual modules and batch
normalization. This makes their network unique. Also, it does
not need to know the level of noise. So, it can perform blind
Gaussian denoising.

Bermudez et al. (2018) implemented an autoencoder with
skip connections. To test their method, they added Gaussian
noise to a T1-weighted brain MRI dataset from healthy
subjects. Benou et al. (2017) worked on spatio-temporal
denoising of brain MRI using ensembles of deep neural
networks. Each network is trained on a different variations
of SNR. By doing this, they generate different hypothesis and
then select the most likely one to generate a clean output curve
using a classification network. This method presented better
denoising results than those presented by Gal et al. (2010),
where they use a dynamic NLM method, and they were also
better than the results presented by Vincent et al. (2010),
where they use stacked denoising autoencoders. An interesting
approach is presented by Jiang et al. (2018). They use a multi-
channel DnCNN to denoise Rician noise in magnitude MRI
instead of Gaussian noise. They test their network for both
known and unknown levels of noise, which allows them to
create a more general model. Finally, Tripathi and Bag (2020)
present a CNN with residual learning to denoise synthetic
brain MRI. They use five different clean synthetic magnitude
datasets and add Rician noise to it. They also perform blind
denoising, where the network is tested with a different level of
noise than it was trained with. Their blind denoising test yields
interesting results, since they prove that, when the network is
trained with higher levels of noise and tested on lower levels of
noise, the network yields better results than when training and
testing with low noise.

2.1.3 Unsupervised Learning
For unsupervised image denoising a novel method is presented by
Xu et al. (2020), where they introduce a method that uses
corrupted test images as their ground truth “clean” images. To
train their network they use synthetic images consisting of small
alterations to the corrupted test image. They add more noise to
the test image, and they prove that if they introduce a small
amount of noise to the test image as an alteration, their network is
still capable of denoising the corrupt image and produce a clean
output. Given their training methodology, which trains an image-
specific network for each image to be denoised, their approach is
not well suited for MRI denoising, given the volume of images
contained in an MRI. Therefore, the denoising process would be
too time-consuming.

One of the most effective models used for unsupervised
denoising is presented by Soltanayev and Chun (2018) and it
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is based on Stein’s unbiased risk estimator, SURE. The SURE
estimator, presented by Stein (1981) is an unbiased MSE
estimator. The only problem with the SURE estimator is that
it can only be expressed in an analytical form. When this is not
available, Ramani et al. (2008) proposed a Monte-Carlo-based
SURE, MC-SURE. The work presented by Soltanayev and Chun
(2018) overcomes previous shortcomings and combines the
Monte-Carlo approximation and makes it available for deep
neural network models. Since it can be used with no need of
noiseless ground truth data, deep neural networks can be trained
for denoising purposes in an unsupervised manner.

The model Noise2Noise (N2N) by Lehtinen et al. (2018), saw
success in denoising images by learning to predict one noisy
image from another by training on independent pairs of noisy
images. The result is a model that predicts the expected value of
the noisy distribution for each pixel. For many real noise models,
Gaussian, Poisson, etc, this expected value is clean signal.

Building upon this, Noise2Void (N2V) by Krull et al. (2018)
developed a strategy which removes the need for two independent
samples, and instead learns to denoise an image in a fully self-
supervised way. In place of a second independent sample, N2V
learns to denoise from the receptive field of a single pixel,
excluding itself.

Using this strategy, Noise2Self developed a general framework
for this type of denoising problem for higher dimensional spaces,
and Laine et al. (2019) denoted this form of network as a
“blindspot” network and provide several improvements.

Despite all the progress in unsupervised denoising in other
areas, there is not that much work done in unsupervised MRI
denoising. One example is by Eun et al. (2020), where they
introduce a cycle generative adversarial network, CycleGAN to
denoise compressed sensing MRI. Thus, we wanted to further
explore this path, given the potential that unsupervised learning
showed in other fields and the lack of clean ground truth data
when working with MRI.

2.2 Background
2.2.1 K-Space
InMRI terminology, k-space is the 2D or 3D Fourier transform of
the MRI measured. When measuring an MRI, the complex values
are sampled using a pulse sequence, such as radio-frequency and
gradient pulses. At the end of the scan the data is mathematically
processed to produce a final image. Therefore k-space holds raw
data before reconstruction. K-space can be seen as an array of
numbers representing spatial frequencies in the MRI.

To transition between k-space and the complex image space, we
apply an inverse fast Fourier transform, and vice versa. Even
though they are visually different, the information contained in
both spaces is the exactly the same. In k-space, the axes represent
spatial frequencies instead of positions. The points plotted in this
space do not correspond one on one to the pixels on the image in
time domain. Every point in k-space contains information about
phase and spatial frequency for every pixel in the time as seen in
Figure 1.

In MRI, the thermal noise that deteriorates the k-space is
Gaussian. This Gaussian noise model can be defined as y � x + n,
where x is the original MRI signal and n is Gaussian noise. Even

after applying the inverse fast Fourier transform, the noise
remains Gaussian. If we converted the complex MRI to
magnitude MRI, then the noise would be Rician. This is why,
we want to explore Gaussian denoising of complex-value data and
avoid dealing with Rician noise in the magnitude space.

2.2.2 SURE Estimator
When training a network, a gradient-based optimization
algorithm is used such as the stochastic gradient descent
(SGD) Bottou (1999), momentum, or the Adam optimization
algorithm Kingma and Ba (2015) to optimize the loss. In our case,
we use the Mean Squared Error, MSE web (2020a), to calculate
the amount of noise present in the image.

1
M

∑M
j�1

�����h(y(j); θ) − x(j)
�����2 (1)

whereM is the number of samples in one batch of data. The main
issue with Eq. 1 is that, since we are working in an unsupervised
environment, we do not have access to x, the ground truth.
Therefore, an estimator for MSE needs to be used. This is done by
the SURE estimator presented in Eq. 2

1
M

∑M
j�1
⎡⎢⎣�����y(j) − h(y(j); θ)�����2 − Kσ2 + 2σ2 ∑K

i�1

zhi(y(j); θ)
zyi

⎤⎥⎦ (2)

noting that no noiseless ground truth data were used in Eq. 2.
The only problem with the SURE estimator is that the last

divergence is intractable. However it can be approximated using
the Monte-Carlo SURE estimator by Ramani et al. (2008).
Therefore the final risk estimator which will be used as a loss
function is

1
M

∑M
j�1
{y(j) − h(y(j); θ)2 − Kσ2 + 2σ2

ϵ (~n(j))t[h(y(j) + ϵ~n(j); θ)
− h(y(j); θ)]}

(3)

where ε is a small fixed positive number and n ∼ (j) is a single
realization from the standard normal distribution for each
training data j.

2.2.3 Blindspot Network
Laine et al. (2019) provide an improved blindspot architecture
and denoising procedure. The blindspot network architecture
combines multiple branches, where each branch restricts its
receptive field to a half-plane which does not contain the
center pixel. Then four branches are combined using 1 × 1
convolutions. This form allows for the receptive field to be
efficiently extended arbitrarily in every direction, while still
excluding the center pixel.

In N2V, the center pixel information is not exploited to
prevent the model from simply learning to output this value.
However, using Bayesian reason to the denoising task, we
have for a particular noisy pixel y and corresponding clean
signal x
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p(x ∣∣∣∣ y,Ωy)∝ p(y ∣∣∣∣ x)p(x ∣∣∣∣Ωy) (4)

where Ωy is the context given by the receptive field of the pixel y.
Thus, using a blindspot architecture to model a Gaussian prior
p(x ∣∣∣∣Ωy), the posterior mean Ex[p(x

∣∣∣∣ y,Ω)] has a closed form
solution for many noise models. This allows for the use of the
previously unexploited center pixel data at test time. In the case of
MRI, with a Gaussian noise model, the posterior mean can be
computed analytically.

2.2.4 Datasets
2.2.4.1 Knee MRI
The Center for Advanced Imaging Innovation and Research (CAI2R),
in theDepartment of Radiology atNewYorkUniversity,NYU, School
of Medicine and NYU Langone Health, released two MRI datasets,
Zbontar et al. (2018), Zbontar et al. (2020), to work on rapid image
acquisition and advanced image reconstruction. The deidentified
datasets consist of scans of knees and brains, which contain raw
k-space data. For this experiment, we decided to use single coil data
only, as it is the most widely used modality and due to its data size
compared to multi coil, which is smaller.

The knee single coil dataset contains 973 training subjects and
199 validation subjects. According to their website, the fully sampled
knee MRIs were obtained on 3 and 1.5 Tesla magnets. The raw
dataset includes coronal proton density-weighted images with and
without fat suppression. As such, NYU fastMRI investigators
provided data but did not participate in analysis or writing of
this report. A listing of NYU fastMRI investigators, subject to
updates, can be found at web (2020b).

Note that all knee MRI contain noise that varies from subject
to subject.

2.2.4.2 Brainweb
In most of today’s image analysis methods, a ground truth is
expected, even if just for validation. In the case of MRI, noise is
implicit to the in vivo acquisition process, and so no true noise
free MR dataset exists. The Brainweb dataset provides an easy
solution for this by creating a Simulated Brain Database (SBD)
Cocosco et al. (1997); web (1998); Kwan et al. (1999); Kwan et al.
(1996); Collins et al. (1998), where an MRI simulator is used to
created realistic MRI data volumes. In addition to providing a
predefined magnitude image dataset, the Brainweb simulator is
exposed to allow for custom simulations.

Using the custom simulator, we acquired raw frequency spatial
data for varied simulator parameters. This includes data
generated for all combinations of no, mild, moderate, and
severe multiple sclerosis (MS) lesions anatomic models with
the six available parameter templates. These six are generated
by combining the AI and ICBM protocols with either T1, T2, or
Proton Density (PD) weighting. For our purposes, we will only be
using T1 and T2. All together this allowed for the generation of 16
brain MR volumes simulated from a realistic parameter set. 12
subjects were used for training and four subjects were used for
testing. Additionally, the custom simulator allows for adding a
noise level; however, as we are treating this data as ground truth,
we did not use this feature. For all Brainweb experiments, we
performed cross-validation to ensure the validity of the results.

Since our blindspot network expects square input, each
individual slice of the MR volumes were zero padded in
k-space to have matching dimensions.

2.3 Training
All models were trained and tested using a single NVIDIA
GeForce GTX Titan X, with 12 GBytes of memory.

2.3.1 SURE Model
The gradient of Eq. 3 can be automatically calculated when
training a deep learning framework. Therefore, we use Eq. 3
as a cost function for a basic U-Net architecture, Ronneberger
et al. (2015), with five convolutional layers on both sides.

To train the SURE estimator in 2D, we use a U-Net of depth
5, convolution kernel size of 3 and 48 initial feature maps.
After each convolutional layer, a LeakyReLU is applied, except
for the last convolutional layer, where no activation function is
used. We train the network in batches of 10 for 300 epochs,
using the Adam optimizer with an initial learning rate of
3 × 10− 4. The data, both training and testing, is center
cropped to 320 × 320 for knee MRI and 192 × 192 for
brain MRI, using all available slices for both.

2.3.2 Blindspot Model
Due to large regions of no-signal in MRI and a shared standard
deviation across all pixels, many techniques exist to estimate the
standard deviation of the noise σ, Sardy et al. (2001). Thus, we use
a blindspot architecture with knowledge of σ, and our prior
becomes p(x ∣∣∣∣Ωy, σ). This modifies Eq. 4 in training to

p(x ∣∣∣∣ y,Ωy)∝ p(y ∣∣∣∣ x) p (x ∣∣∣∣Ωy, σ)
We train a 5-layer deep blindspot network in batches of 5 for 300 epochs.
The convolution kernel has size of 3 and there are 48 initial featuremaps.
No activation function is used. We use Adam optimizer with an initial
learning rate of 3 × 10− 4. The learning rate is reduced if the validation loss
has not decreased after ten epochs. The data, both training and testing, is
center cropped to 320× 320 for kneeMRI and 192× 192 for brainMRI,
using all available slices for both. For amore detailed network architecture
description, please refer to Laine et al. (2019).Weused the same blindspot
network and U-Net architecture as described in Laine et al. (2019).

3 RESULTS

For both datasets, different levels of noise were added to the
original images in order to do a quantitative comparison to NLM.
Since both models rely on Gaussian noise, we will only be adding
Gaussian noise to the images.

For the knee single coil dataset, we started by adding noise with
σ � 1 × 10− 5. Then, we followed with twice the amount of noise
with σ � 2 × 10− 5 to test both algorithms with an elevated amount
of noise. Finally, the average background noise, σ � 8.2 × 10− 6,
was calculated for all images and was used for the last test. The
three levels of noise can be seen in Figure 2. Since the data is
comprised of small values, a scale factor is needed. This factor is
calculated using the maximum value found in the dataset as a
reference. For both networks, a scale factor of 500 was used.
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For the Brainweb dataset, we added three different levels of
noise. To understand how the networks behave with different
levels of noise, we used low level noise with σ � 50, middle noise
with σ � 100 and high level noise with σ � 200. In this case, since
the data has much bigger values, a higher sigma is used. The three
levels of noise can be seen in Figure 3. Note how the data has to be
scaled too, specially for the SURE network, which is highly

sensitive to the input scale. For the Brainweb dataset, we
scaled all input by a factor of 1/25,000. While the blindspot
network presented good results even without the scaling factor, it
performed slightly better with scaling.

In order to evaluate the proposed algorithm, three
quantitative measures were used for the first three tests.
Through all tests, a qualitative measure will be used, based
on our perception of the images.

The three quantitative measures used are peak signal-to-
noise-ratio, PSNR, mean-squared error, MSE web (2020a) and
Structural Similarity Index Measure, SSIM Wang et al. (2004).
Both MSE and PSNR are used to compare image compression
quality, while SSIM is used for measuring the similarity
between two images.

MSE represents the cumulative squared error between the
compressed and the original image. The lower the value of MSE,
the lower the error. MSE can be defined as

MSE � ∑M,N[I1(m, n) − I2(m, n)]2
M pN

(5)

where M and N are the number of rows and columns in the
input image.

PSNR computes the peak signal-to-noise ratio between two
images. This ratio is used as a quality measurement between

TABLE 1 | Test results knee single-coil dataset.

σ Noisy MSE SURE MSE Blindspot MSE NLM MSE

8.2 × 10− 6 6.5954 × 10−11 3.6943 × 10− 11 3.9075 × 10− 11 3.9826 × 10− 11

1 × 10−5 9.8777 × 10−11 4.7123 × 10− 11 4.8734 × 10− 11 4.9732 × 10− 11

2 × 10−5 4.2101 × 10−10 9.0616 × 10− 11 8.7264 × 10− 11 9.0004 × 10− 11

σ Noisy PSNR SURE PSNR Blindspot PSNR NLM PSNR

8.2 × 10− 6 28.266 30.866 30.626 30.555
1 × 10−5 26.512 29.846 29.692 29.610
2 × 10−5 20.226 27.196 27.329 27.235

σ Noisy SSIM SURE SSIM Blindspot SSIM NLM SSIM

8.2 × 10− 6 0.7238 0.7795 0.7708 0.7661
1 × 10−5 0.6487 0.7284 0.7215 0.7119
2 × 10−5 0.3628 0.5579 0.5605 0.5653

TABLE 2 | Test results for the Brainweb dataset.

σ Noisy MSE SURE MSE Blindspot MSE NLM MSE

50 2,981.044 1,281.977 1,259.961 1,322.726
100 12,332.774 3,508.540 2,758.001 4,059.259
200 50,639.730 9,150.021 7,245.904 11,578.606

σ Noisy PSNR SURE PSNR Blindspot PSNR NLM PSNR

50 33.524 38.015 38.012 37.781
100 27.361 34.036 35.240 33.166
200 21.227 30.301 31.429 28.753

σ Noisy SSIM SURE SSIM Blindspot SSIM NLM SSIM

50 0.7663 0.8971 0.8977 0.8790
100 0.6314 0.8466 0.9066 0.8014
200 0.4710 0.7829 0.8409 0.6996

FIGURE 1 | Representation of how points translate between k-space and complex image space.
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the original and a compressed or reconstructed image. The
higher the PSNR, the better the quality of the image. PSNR can
be defined as

PSNR � 10log10(MAX2

MSE
) (6)

where MAX is the maximum achievable value in the input image
data type.

SSIM is a method for measuring the similarity between
two images. The SSIM index can be viewed as a quality
measure of one of the images being compared, taking into
account that the other image is regarded as of the
ground truth.

The main difference between SSIM and PSNR or MSE is that
SSIM quantifies the change in structural information, while
PSNR or MSE approach estimate absolute errors. Structural
information, such as luminance and contrast, is based on the

FIGURE 2 | Different levels of noise. (A) Low level σ � 8.2 × 10− 6. (B) Medium level σ � 1 × 10−5. (C) High level σ � 2 × 10− 5.

FIGURE 3 | Different levels of noise. (A) Low level σ � 50. (B) Medium level σ � 100. (C) High level σ � 200.

FIGURE 4 | Example of denoised knee MRI for σ � 8.2 × 10− 6. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for
every method for this particular subject. (A) Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 37.092—(D) Blindspot PSNR � 37.317—(E) NLM
PSNR � 36.350.
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fact that pixels have inter-dependencies, especially when they
are spatially close.

The overall index is a multiplicative combination of the three
terms and can be described the following way:

SSIM(x, y) � [l(x, y)]α · [c(x, y)]β · [s(x, y)]c (7)

where

l(x, y) � 2μxμy + C1

μ2x + μ2y + C1
,

c(x, y) � 2σxσy + C2

σ2
x + σ2

y + C2
,

s(x, y) � σxy + C3

σxσy + C3

(8)

FIGURE 5 | Example of denoised knee MRI for σ � 1 × 10− 5. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 30.800—(D) Blindspot PSNR � 30.953—(E) NLM PSNR �
30.189.

FIGURE 6 | Example of denoised knee MRI for σ � 2 × 10− 5. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 23.823—(D) Blindspot PSNR � 23.931—(E) NLM PSNR �
24.086.

FIGURE 7 | Example of denoised brain MRI for σ � 50. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 43.883—(D) Blindspot PSNR � 44.731—(E) NLM PSNR �
43.000.
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where μx , μy , σx , σy and σxy are the local means, standard
deviations, and cross-covariance for images x, y. If α � β � c
� 1, and C3 � C2/2 the index simplifies to:

SSIM(x, y) � (2μxμy + C1)(2σxy + C2)
(μ2x + μ2y + C1)(σ2

x + σ2y + C2) (9)

FIGURE 8 | Example of denoised brain MRI for σ � 100. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 38.130—(D) Blindspot PSNR � 39.072—(E) NLM PSNR �
37.108.

FIGURE 9 | Example of denoised brain MRI for σ � 200. The example image is the middle slice from one of the subjects. In this case, this is the PSNR for every
method for this particular subject. (A)Original image, no noise added—(B) Noisy image—(C) SURE PSNR � 29.610—(D) Blindspot PSNR � 30.904—(E) NLM PSNR �
26.616.

FIGURE 10 | (A)Original close-up. No noise added. (B)NLMdenoised close-up. (C) SURE network denoised close-up. (D)Blindspot denoised close-up. Observe
how all three algorithms do a good job at denoising, but NLM introduces undesired artifacts.
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For all the results that are presented here, an optimal h parameter
for the NLM algorithm was previously found and set to h � 0.71.
The patch size was set to 5 × 5 with a patch distance of 6.

The same tests were done for both the SURE network and
the blindspot network, Table 1, 2 respectively. For each
evaluation metric, the best scoring algorithm is highlighted
in bold.

4 DISCUSSION

As seen in Table 1 for the knee data, the SURE network presents
better results than NLM and blindspot for both σ � 1 × 10− 5 and

σ � 8.2 × 10− 6. In both those cases, MSE is smaller and both
PSNR and SSIM are larger than NLM and blindspot. Note how in
the case of σ � 2 × 10− 5, NLM does better than the SURE
network, but worse than blindspot, except for SSIM. Given
that this is an extreme case, where the amount of noise is
unrealistically elevated, it would be uncommon to find data in
those circumstances.

We can also see that the blindspot network presents better
results than NLM for all levels of noise, except for SSIM for
σ � 2 × 10− 5. Compared to SURE, it presents worse results for
σ � 1 × 10− 5 and σ � 8.2 × 10− 6. Note however, how in the case
of σ � 2 × 10− 5, blindspot outperforms both SURE and NLM
except for NLM SSIM. This presents a divergence in the

FIGURE 11 | (A)Original close-up. No noise added. (B)NLMdenoised close-up. (C) SURE network denoised close-up. (D)Blindspot denoised close-up. Observe
how NLM completely removes some of the tissue while both SURE and blindspot, do not remove as much noise, but do a better job at maintaining the tissue’s structure
without inserting any artifacts.

FIGURE 12 | Example 1 of denoised brain MRI without adding any noise. The example image is the middle slice from one of the subjects. (A) Original image, no
noise—(B) SURE denoised image—(C) Blindspot denoised image—(D) NLM denoised image.

FIGURE 13 | Example 2 of denoised brain MRI without adding any noise. The example image is the middle slice from one of the subjects. (A) Original image, no
noise—(B) SURE denoised image—(C) Blindspot denoised image—(D) NLM denoised image.
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results previously seen in the complex image space, where for
the case of high level noise, NLM was overall better than
blindspot and SURE.

For the Brainweb dataset, both networks present better results
in all scoring metrics than NLM. The best overall performing
network is the blindspot network, edging out the SURE network,
except in one case, PSNR for σ � 50, where SURE is slightly better
than blindspot. Again, we believe that in this case both networks
do better thanNLM even in the presence of high amounts of noise
because there is no background noise at all in the original images.
Therefore, the networks only need to remove just the added noise.

Another comparison can be done using qualitative measures,
based on observing the images and comparing all outputs. Using
Figures 4–6 as references, at a first glance, NLM does a better job
at taking noise out, but does it while having a negative effect on
the edges and the tissue pixels. NLM does an excellent job when
removing noise from the background, but does not do as well on
the tissue pixels. This can be a problem, since we want tomaintain
the tissue structure as much as possible. The SURE network does
a better job at preserving the tissue while doing a good job when
denoising. In some cases, NLM introduces artifacts that interfere
with the tissue pixels. In terms of edge preservation, again NLM
presents an undesired effect, which makes the edges look worse
than the original image.

For the Brainweb dataset, both networks present better results
in all scoring metrics than NLM. The best overall performing
network is the blindspot network, edging out the SURE network.
We believe that in this case both networks do better than NLM
even in the presence of high amounts of noise because there is no
background noise at all in the original images. Therefore, the
networks only need to remove just the added noise. We can see
this in Figures 7, 8, 9. NLM still presents an undesired effect on
the images which can be costly. If we take a closer look, we can see
some of the tissue details that the NLM is removing completely
and some of the artifacts that it presents. We can clearly see this in
Figures 10, 11.

After seeing how both networks outperform NLM in most
categories, the next step was to work with the original images
from the knee dataset, without adding any extra noise. When
doing this test, no quantitative measure can be used, since there is
no image to compare to. Therefore, only qualitative measures will
be used.

As seen in Figures 12, 13, both networks have mixed
results. Both networks still do a better job at preserving
the edges and tissue, but sometimes struggle to remove
noise from parts of the image without any tissue. This is
happening due to a few circumstances. First of all, when
training the data, there is no ground truth to compare it to.
This can lead to over-training and over-fitting. Second, the
inherent noise that the images have, might not be Gaussian
noise. This is also supported by the previous results that were
obtained for both datasets. Both the SURE and blindspot
network were outperformed only in the presence of high
levels of noise for the knee dataset. In the same conditions of

high level of noise for the Brainweb dataset, both networks
outperformed NLM. Therefore, the background noise from
the knee dataset has a negative effect on the networks, which
might indicate that it is not truly Gaussian. The discrepancy
in the type of noise might also be causing the calculated σ to
be irrelevant and misleading, since σ is used for both
networks. Despite all of this, the networks are competitive
with NLM in most cases.

5 CONCLUSION

We evaluated two unsupervised approaches to denoise Magnetic
Resonance Image, MRI, one approach based on a Stein’s
Unbiased Risk Estimator and another one based on a
Blindspot network. Using the complex image space, innate to
MRI, we tested a real dataset containing knee MRI, and a
synthetic dataset consisting of brain MRI. Both networks were
compared against Non-Local Means using quantitative and
qualitative measures. Both networks outperformed NLM for all
scoring metrics except when in the presence of exceptionally high
levels of noise. One interesting direction that we would like to
explore is 3D denoising using both networks. This is especially
compelling for the blindspot network, since we will have to
explore a 3D receptive field.
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An Integrated Deep Network for
Cancer Survival Prediction Using
Omics Data
Hamid Reza Hassanzadeh1 and May D. Wang2*

1School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, United States, 2Department of Biomedical
Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States

As a highly sophisticated disease that humanity faces, cancer is known to be associated
with dysregulation of cellular mechanisms in different levels, which demands novel
paradigms to capture informative features from different omics modalities in an
integrated way. Successful stratification of patients with respect to their molecular
profiles is a key step in precision medicine and in tailoring personalized treatment for
critically ill patients. In this article, we use an integrated deep belief network to differentiate
high-risk cancer patients from the low-risk ones in terms of the overall survival. Our study
analyzes RNA, miRNA, and methylation molecular data modalities from both labeled and
unlabeled samples to predict cancer survival and subsequently to provide risk
stratification. To assess the robustness of our novel integrative analytics, we utilize
datasets of three cancer types with 836 patients and show that our approach
outperforms the most successful supervised and semi-supervised classification
techniques applied to the same cancer prediction problems. In addition, despite the
preconception that deep learning techniques require large size datasets for proper training,
we have illustrated that our model can achieve better results for moderately sized cancer
datasets.

Keywords: deep belief networks, integrated cancer survival analysis, RNA-seq, precision medicine, deep learning,
multi-omics

INTRODUCTION

Advances in big data and high-throughput technologies during the past decade have led to massive
accumulation of high-dimensional omics data, which enables the data-driven prediction of disease
prognosis using molecular profiles. However, this data-driven prognosis remains challenging
because of the interplay of mostly unknown molecular factors from a haystack of millions of
molecular features. The general practice in prognosis of most of the malign diseases has been based
on the traditional methods without a comprehensive analysis of genetic and molecular profiles. This
is primarily due to the lack of reliable clinical decision support systems (CDSSs) that can efficiently
model and integrate information into actionable knowledge.

The association of molecular profiles with the onset of chronic diseases and their sub-types and
prognoses has been extensively reviewed and reported during the past years (Hsieh et al., 2018;
Collisson et al., 2019; Sicklick et al., 2019). Despite the success of a number of these approaches,
majority of them utilize the so-called shallow-learners, which often fall short in learning higher-order
abstract representations of the data and fail to capture complex inter-modality or intra-modality
interactions of features or their relationship with respect to clinical endpoints of interest. Often,
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shallow learners use a limited set of features derived from the
expert knowledge or feature reduction techniques, such as the
principal component analysis (PCA). Thus, they are limited in
their ability to learn non-linear higher-level informative features.
In contrast, deep learning (LeCun et al., 2015) is revolutionizing
the field of feature learning (also known as representation
learning) in biomedicine (Alipanahi et al., 2015; Fan et al.,
2015; Park and Kellis, 2015; Spencer et al., 2015; Wang S.
et al., 2016). Inspired by neuroscience, the power of deep
learning is its ability to represent high-dimensional data by
multiple levels of non-linearity abstractions and to train DL
models with more effective optimizations and regularization
techniques. Once such a representation is derived, any
classifier for the prediction task can use it.

To date, some studies have designed deep methods for
prediction and prognosis of cancer using different types of
modalities. Fakoor et al. (2020) used a stack of sparse auto-
encoders along with an augmenting dimensionality reduction
step using PCA, to learn features from gene expression data that
can help classify cancer types. They developed three variants of
their proposed paradigm and showed that they perform
reasonably well across different datasets in some of their
devised experiments, but not all. The addition of PCA to
extract new features from randomly selected probes is a
necessary step in their pipeline as the sparse stacked auto-
encoder is not enough by itself to predict informative features.
Moreover, their approach uses only a single data modality,
i.e., gene expression data, for prediction of cancer type. In
another study, Kumar et al. (2015) used a similar approach to
Fakoor et al. (2020), in their own domain of interest, to create
useful features from CT images to classify benign vs. malignant
lung nodules. They showed that their approach resulted in a
performance boost compared to the state-of-the-art approaches.
Azizi (2020) developed a supervised pipeline, based on the deep
belief network (DBN), for detection of prostate cancer given
ultrasound temporal data. The author used deep belief networks
to learn useful features, which are then fed into a support vector
machine classifier to predict cancer. In another study, Liang et al.
(2015) integrated several restricted Boltzmann machines (RBMs)
for an unsupervised task of grouping cancer tumors into different
clusters using cross-platform but same-type molecular data. They
showed that patients grouped in different clusters exhibit
differentiable Kaplan–Meier survival curves, which is an
indication of the soundness of their proposed clustering
approach. More recently, Zeng et al. (2020) used a supervised
learning approach based on the convolutional neural network for
subtyping of breast cancer. Besides the supervised nature of the
proposed model there, CNNs are severely restricted in capturing
long distance relations, due to their short receptive fields,
especially when the number of input features is orders of
magnitude larger than the utilized kernel width.

Despite many DL applications in different biomedical areas,
their success in cancer prediction and prognosis is still limited.
This is because deep architectures require high volumes of labeled
data samples (due to their expressiveness, Hastie et al., 2009) to
train DL models without data overfitting, which is a requirement
not always met in cancer-related domains. In this study, we

develop an integrated semi-supervised deep learning for risk
prediction in cancer cohorts with patients’ molecular profiles.
We present an integrated deep architecture to predict cancer
survival given the molecular profiles of cancer tumors. We show
that our integrated deep model can leverage the available
unlabeled data to enhance learning our deep model, a task
that is often achieved using semi-supervised learning
frameworks. Furthermore, we illustrate that the proposed
pipeline outperforms the support vector machine (SVM), a
supervised learner that has been successfully used in cancer-
related domains (Kim et al., 2012a; Ahmad, 2013; Tseng et al.,
2014) as well as the Laplacian SVM, an important graph-based
semi-supervised learning paradigm that is promising in solving
similar problems (Kim et al., 2012b; Kim and Shin, 2013; Park
et al., 2013).

DATASETS

The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) data
portal in the NCI/NIH (Cerami et al., 2012; Wang Z. et al., 2016)
hosts multi-modality data of thousands of patients. In this study,
we used data from kidney renal clear cell carcinoma (KIRC) and
head and neck squamous cell carcinoma (HNSC) diseases from
the TCGA data bank. We selected KIRC and HNSC because they
are moderately sized. On the one hand, they are not too small1 in
the number of specimens profiled, and on the other hand, we did
not intend to select a cancer type with a relatively large number of
samples, such as the invasive breast carcinoma, to showcase the
efficacy of the utilized architecture in learning generalizable
models. Furthermore, we downloaded RNA-seq expression
profiles of patients suffering from neuroblastoma (NB)
pediatric cancer from a previously published study (Zhang
et al., 2015). For the RNA-seq expression profiles, we used
three data modalities per sample, namely, the gene, the
isoform, and the junction. For the KIRC and HNSC datasets,
these were produced by Illumina HiSeq 2000 platforms and
quantified by RSEM (Li and Dewey, 2011). In case of the NB
dataset, we selected the results of mapping the reads to the
AceView (Thierry-Mieg and Thierry-Mieg, 2006) annotation
through the Magic alignment tool (Thierry-Mieg and Thierry-
Mieg, 2006). We also used the miRNA expression profiles for the
KIRC and HNSC datasets, which were generated by the Illumina
GAIIx platform, and finally, the Illumina Infinium
HumanMethylation27 platform produced the DNA
methylation data for the KIRC disease only. Table 1 lists the
available modalities and their statistics for each dataset.

MATERIALS AND METHODS

Recent years have witnessed a surge of interest in deep learning
(DL) and its successful applications in different domains (see

1Even though DBNs partially alleviate data scarcity in training, when the dataset is
too small, they cause data overfitting.
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promising examples in Hassanzadeh and Wang 2016; Esteva
et al., 2017; Hassanzadeh et al., 2017; Miotto et al., 2017), such
as image processing, speech recognition, computer vision, and
more recently in biology. Despite its success in a wide range of
areas, there are only a handful of studies reporting success stories
about the application of DL in cancer-related domains. In fact,
several attempts to deploy DL in biomedical domains have failed
to outperform other classical methods (Fakoor et al., 2020; Ditzler
et al., 2015). This is due to the selection of wrong components and
the DL architectures for the selected tasks. Moreover, these
pipelines are often designed for supervised tasks, which are
inefficient when dealing with censored data that are prevalent
in cancer databases. In this study, we developed a deep learning
model to deal with the dataset size limitation. This strategy is
equivalent to the semi-supervised learning (SSL) strategy, where
we leverage unlabeled samples to guide the training process of
network weights. Until recently, semi-supervised learning (SSL)
(Chapelle et al., 2009) approaches have been the dominant
practice to learn models that use both labeled and unlabeled
data. This is mainly due to their higher performance compared to
the purely supervised or unsupervised techniques. Different SSL
paradigms try to take advantage of unlabeled data in different
ways, but they all capture the probability distribution of the input
samples either directly or indirectly. In other words, what gives
SSL techniques an advantage over the supervised methods is their
ability to exploit all data, irrespective of the labels, to model a
more realistic marginal distribution of the input.

Data Description
Among all SSL techniques, Laplacian support vector machine
(LapSVM) is an outstanding recent technique that falls under the
category of graph-based SSL paradigms, which builds a graph
representation of the data (labeled and unlabeled) based on
domain knowledge or the similarity among samples. It has
shown the state-of-the-art performance in semi-supervised
classification problems (Belkin et al., 2006; Melacci and Belkin,
2011). The underlying assumption in LapSVM is that the
marginal distribution of the data can be represented in a low-
dimensional manifold that is representable by a similarity graph.

Formally speaking, if the marginal distribution of the data can be
supported on a low-dimensional Riemannian manifold, then by
exploiting its intrinsic geometry through enforcing a smoothness
constraint, one can introduce a preferential bias in the learning
process to yield a more accurate model. Thus, by adding a new
regularizer term for the smoothness on the manifold, one can
expand the framework of supervised learning methods that are
fully described by a cost function and regularizers such as SVM
and ridge regression to exploit the structure of the data using both
the labeled and the unlabeled data. Consequently, the Laplacian
SVM solution is defined as

f p � argmin
f ∈HK

1
l
∑l

i�1cA
����f ����2K + cI + ∫

x∈M

����∇Mf
����2dPX(x) (1)

whereV is the cost function, cA, cI are the regularizer coefficients
in the so-called ambient and the manifold spaces, respectively,
PX(x) is the marginal distribution of the data, and HK is the
corresponding reproducing kernel space. Belkin et al. (2006)
showed that, under certain conditions, the term corresponding
to the manifold regularization can be approximated with cI

N2f
TLf ,

whereN is the number of samples, f � [f (x1), . . . , f (xN )]T , and L
is the Laplacian of the graph underlying the data. As a result,
solvers that optimize the supervised SVMproblems efficiently can
be readily used to find the solution to the semi-supervised
LapSVM problem too.

Restricted Boltzmann Machines
RBMs (Hinton and Salakhutdinov, 2006) are the most common
building blocks in deep probabilistic models such as DBNs
(Goodfellow et al., 2016). These are undirected probabilistic
graphical models with a fully bipartite graphical structure (see
Figure 1A) that contains a layer of visible units, v, and a layer
of latent variables, h. Due to the expressiveness of these
models, they have become popular techniques in learning
features that are represented by the latent layers. RBMs can
also be stacked on top of each other to make deeper
architectures. Each unit in an RBM is a binary random
variable, and the visible layer of the first RBM in the stack

TABLE 1 | Data description.

Data modality (platform) Dataset # of features # of available samples

Labeled Unlabeled

Pos. Neg.

RNA-seq (Illumina HiSeq 2000) Gene KIRC 20533 110 141 281
HNSC 20533 115 128 276
NB 60780 115 104 279

Isoform KIRC 73601 110 141 281
HNSC 73601 115 128 276
NB 263546 115 104 279

Junction KIRC 249579 110 141 281
HNSC 249579 115 128 276
NB 340416 115 104 279

miRNA (Illumina GAIIx 2000) KIRC 1048 106 150 269
HNSC 1048 116 130 276

Methylation (Illumina Infinium HumanMethylation27) KIRC 21403 111 142 520
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represents the input data. The joint probability distribution in
an RBM is modeled as

P(v, h) � 1
Z
exp(−E(v, h)), (2)

where E(v, h) � −bTv − cTh − vTWh is the energy function, Z is
the partition function that normalizes the energy, and W is the
weight matrix that characterizes the underlying model. Despite
the intractable nature of the joint distribution due to the partition
function in Eq. 2, P(v, h) � 1

Z exp(−E(v, h)), the conditional
distributions are factorial in nature, that is,

P(hj � 1
∣∣∣∣v) � σ(cj + vTW :,j),

P(vj � 1
∣∣∣∣h) � σ(bj + hTW j,:),

where σ is the logistic sigmoid function. This makes the overall
distribution amenable to sampling, and hence, efficient
estimation of the joint probability distribution under the
model can be made.

Deep Belief Networks
The DBN was one of the first attempts that outperformed the
state-of-the-art shallow learners in image processing and marks
the beginning of the deep learning revolution. Even though this
class of deep models do not perform as well as the more advanced
deepmodels when a large body of labeled data is available, they do
surprisingly well in circumstances with less data.

Figure 1B shows a schematic representation of a deep belief
network. DBNs are generative models formed by stacking several
directed belief networks trying to capture causal relations and an
RBM layer on the top that acts as an associative model. The joint
probability distribution for a DBN with l layers is given by

P(x � h(0), h(1), . . . , h(l)) � ⎛⎝∏l−2
k�0

P(hk∣∣∣∣hk+1)⎞⎠P(h(l), h(l−1)),
P(h(l), h(l−1))∝ exp(b(l)h(l) + b (l−1)Th(l−1) + h(l−1)

T

Wh(l) ),
P(hk

∣∣∣∣hk+1) � σ(b(k)i +W(k+1)T
:,i h(k+1))∀i, k ∈ 1, . . . , l − 2,

where b(l),W(l) are the bias vector and the weight vector for the lth
layer, respectively.

Thus, DBNs providemulti-layer probabilistic representations of
data in an unsupervised way, and as a result, latent representation
of the low-level features can be obtained using several levels of
abstraction. Training and inference in deep belief nets is not a
tractable task. We adopt a heuristic approach called the contrastive
divergence (CD-k) proposed by Hinton and Salakhutdinov (2006)
to do the training and inference in our model. In summary,
this approach begins with training an RBM to maximize
Ev ∼ pdata and then another RBM to approximately maximize
Ev ∼ pdataEh(1) ∼ p(1)(h(1)|v) log p(2)(h(1)), where p(1)and p(2) are the
probability distributions characterized by the first and the second
RBMs, respectively. In other words, the second RBM is trained to
model the distribution over its input derived from sampling the
first RBM. This process can be repeated for as many layers as
needed and increases the variational lower bound on the log-
likelihood of the data each time a new layer is added. The DBN
initializes the weights of multi-layer perceptrons (MLPs), a
procedure dubbed as pre-training (Hinton and Salakhutdinov,
2006), to set the stage for the fine-tuning phase in the next
step. Specifically, by adding a sigmoid layer on top of a DBN
and reusing the generatively trained weights as the initial weights,
we can discriminatively train the underlying MLP (Bengio, 2007)
via conventional back-propagation–based techniques to converge
to a more accurate local optimum. Pre-training differentiates itself
from the SSL techniques by finding a proper initial point within the
complex search space in an informed way, without modifying the
objective function (Erhan, 2010).

Model Architecture
Figure 2 depicts the architecture of the proposed model. First, the
patients’ overall survival statuses are retrieved from the clinical
data in TCGA. Patients in the KIRC, HNSC, and NB datasets who
at the time of their last follow-up had survived for at least 5, 2.5,
and 9 years, respectively, were assigned to the positive survival
class. Similarly, patients who did not survive for the
corresponding period of time were assigned to the negative
(deceased) class, and the rest, i.e., patients whose latest
statuses were known to be alive and who yet did not live with
their disease long enough to pass the selected threshold, were put
into the unlabeled set. Table 1 demonstrates the number of
positive, negative, and, unlabeled patients. With each of the

FIGURE 1 | RBM (A) and DBN (B) model architectures.

Frontiers in Big Data | www.frontiersin.org July 2021 | Volume 4 | Article 5683524

Hassanzadeh and Wang Cancer Survival Prediction Using Omics Data

72

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


datasets, 15% of the labeled samples randomly selected to be a
validation dataset. The remaining 85% samples in the labeled set
are put into five-folds to conduct a five-fold cross-validation for
later analysis of our proposed pipeline.Next, we usemRMR(Peng et al.,
2005) to reduce the dimensionality of input modalities so that the
uninformative features are removed. mRMR is an incremental search
algorithm that looks for a subset of featureswith the highest relevance to
the class labels and lowest redundancy compared to each other. To
select the most relevant and yet least redundant probes from the
underlying molecular profiles, we discretized the scores pertaining to
each probe into three bins, based on its standard deviation across
samples (i.e., (−∞,−0.7σ], (−0.7σ, 0.7σ), and [0.7σ,∞)). We then
picked the set of top 50 mRMR selected probes (in a non-discretized
form) from all modalities combined, excluding the microRNA, as well
as the top 20 probes from the microRNA profiles. Subsequently, we
computed the per-probe z-score of the resulting subset of features
before feeding them into our models. It is worth noting that as our
DBN-based models are theoretically capable of extracting higher-order
informative features from a pool of raw input features, selecting an
optimal number of features from themolecular profiles is not a concern
here, as long as we choose a proportionate number of input features.

Next, we built a network with two hidden layers (the first layer
being a belief net comprising 15 neurons and the second layer is a
restricted Boltzmann machine with another 15 neurons). We
trained the model corresponding to each modality using the
contrastive divergence algorithm with k set to one, i.e., CD-1,
used the stochastic gradient descent with a batch size of 25 and a
weight decay of 0.001, and continued pre-training for 3,000
epochs to train the network. Subsequently, we augmented our
probabilistic DBN model with an additional fully connected
sigmoid layer followed by a softmax layer and initialized the
weights of the previous layers with those found by the CD-1
algorithm, as this has been shown to be a valuable initialization
for such networks. Furthermore, we used our labeled data in the
training set to fine-tune themodel with amaximum of 500 epochs
according to an early-stopping training strategy.

Because cancer has been known to be the outcome of
dysregulation of cellular mechanisms in different levels, a

single molecular data modality may not adequately explain the
sophisticated underlying mechanisms. To account for the
interactions, or otherwise correlations between molecular
factors with respect to the endpoint we are exploring (which is
the risk category of patients), we formed a hybrid model by fusing
the intermediate-level features (i.e., features that were generated
before the softmax layers) for pairs2 of single-modality models
and stacked a softmax layer on top of them (see Figure 2). We
also explored different model spaces by addingmore layers on top
of the fusion layer as it theoretically could result in capturing
more intricate interactions and hence better performance gains,
and we found that such architectures do not bring about further
improvements, which can be explained by the limited size of our
training sets and the complexity of the task. Finally, we trained the
overall model end-to-end, using the cross-entropy loss and the
stochastic gradient descent optimizer.

RESULTS

In this study, we investigate two major questions. First, would a
deep classifier help improving the performance of single-modality
models in predicting survivals? Second, would the integrated deep
belief net outperform the single-modalitymodels? Positive answers
to these questions would support the applicability of deep
networks in predicting survival and the feasibility of DBNs in
utilizing the redundant intermediate features to boost the
prediction performance. We compared the performance of the
proposedmodel with two baselines: 1) when we substitute the deep
belief parts with the supervised support vector machine (SVM)
classifiers and 2) when we use semi-supervised graph-based
Laplacian SVMs as a surrogate method. To address the

FIGURE 2 | The proposed model RBM. A set of features are first selected for each molecular profile, using mRMR. Then, for each molecular profile, latent features
are derived using deep belief nets, which are then fed into a sigmoid layer for downstream prediction.

2We tried the fusion of more than two data modalities as well; however, this led to
model overfitting and a drop in accuracy, due to the small size of datasets. We
hypothesize that adding more modalities can lead to a synergistic boost in the
prediction performance if more data become available.
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overfitting and underfitting problems due to the inappropriate
number of selected input features for the baselines, we use a
validation set to choose the best number of features output by
the mRMR feature selector. The validation sets are also used to
tune baselines’ hyper-parameters in Eq. 1. For the support vector
machines, we used the linear kernel as it resulted in the best
performance, in which case the performance remains robust with
respect to variations in the only model’s hyper-parameter, C. We

performed a grid search to find an appropriate number of input
probes, trying all numbers in the range (Belkin et al., 2006;
Alipanahi et al., 2015) with increments of five.3 Furthermore, to
make an unbiased comparison between the baselines, for SVM, we

FIGURE 3 | Kaplan–Meier curves and the log-rank p-values for the predictions made by the proposed work for different diseases (KIRC, HNSC, and NB) per
different modalities (gene, junction, and isoform). (A)RNA-seq gene, (B) RNA-seq junction, and (C)RNA-seq isoform for kidney cancer; (D)RNA-seq gene, (E) RNA-seq
junction, and (F) RNA-seq isoform for head and neck cancer; (G) RNA-seq gene, (H) RNA-seq junction, and (I) RNA-seq isoform for neuroblastoma. The curves show a
clear separation between the two predicted groups.

3We observed consistent performance drops due to model overfitting if more than
35 probes are selected.

Frontiers in Big Data | www.frontiersin.org July 2021 | Volume 4 | Article 5683526

Hassanzadeh and Wang Cancer Survival Prediction Using Omics Data

74

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


used the same implementation and solver as used in the LapSVM
method. For our LapSVM model, on the contrary, we performed a grid
search on the set of model’s hyper-parameters4 in addition to the size of
selected input probes. We found that the degree of 1, for the Laplacian
graph, and the sigma of 3.0 for the model’s RBF kernel remain the same
across all the sets of parameter configurations. For the extrinsic and
intrinsic regularization parameters, we searched the logarithmic search
spaces [1e−2,1e2] and [0,1e2], respectively.

Single-Modality Models
We first used only one modality as input (hence the single-
modality model) to show how deep belief networks can be
trained on relatively small cancer datasets to predict the
survival. Figure 3 depicts the Kaplan–Meier (KM) curves along
with the corresponding log-rank p-values for the predictions made

by our deep predictor for the three RNA-seq modalities (i.e., gene,
junction, and isoform). For each labeled sample, we trained the
model once on all but that sample and made a prediction on it,
repeated this process for all samples, and plotted the KM curves for
the combined predictions. According to the figure, our approach
produces meaningful clusters of high-risk and low-risk patients.
Furthermore, we benchmarked the proposed predictor against the
SVM and the Laplacian SVM (LapSVM). Specifically, we randomly
split cancer datasets into the train, test, and validation sets
100 times and subsequently trained deep models and baselines
once for each input modality listed in Table 1. Figure 4 illustrates
the boxplots of accuracies achieved during this experiment.
According to this figure, the trends observed in the prognostic
power of individual molecular datasets correlate and strongly
depend on the cancer type. Furthermore, the DBN is doing
consistently better than baseline methods on average.
Importantly, this improvement comes with a tighter confidence
interval, as illustrated in Table 2. Interestingly, despite the relative
success of the semi-supervised LapSVM in leveraging the unlabeled
data, it is unable to surpass the supervised SVM for some input

FIGURE 4 | Benchmarking support vector machines, Laplacian SVM, and deep belief networks.

4Sigma for the RBF kernel, the number of neighbors, the extrinsic and intrinsic
regularization parameters, and the power (degree) of the graph Laplacian to use as
the graph regularizer.
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modalities. This is because semi-supervised methods need a
significant amount of unlabeled data to learn the distribution of
input space efficiently, which does not hold for most cancer
datasets. DBN models, however, are more immune to this
shortcoming as evidenced by the results presented here.

The Multi-Modality Pipeline
Cancer is known to be a disease associated with dysregulation of
cellular mechanisms in different levels. Hence, no single molecular
modality is sufficient to predict cancer-related endpoints, such as the
survival (Chin and Gray, 2008). Therefore, changes in biological
pathways may be captured more accurately if different modalities
are integrated together seamlessly. Figure 4 suggests that the most
effective molecular modality regarding the prediction performance is
different across different cancer types. For instance, for the kidney
cancer dataset, the model trained over the RNA-seq: gene modality
results in the most accurate predictor, whereas in case of
neuroblastoma, RNA-seq: junction modality leads to the most
accurate model. Ideally, we would like to have an integrated
pipeline that is more accurate than each of the single modality
models individually. Our goal in this section is to examine whether
adding another molecular data modality can provide more prognostic

power given the proposed integration paradigm through an additional
sigmoid layer that is stacked on top of the RBM layer.

Figure 5 shows the heat map of accuracy improvements when
pairs of different inputmodalities are combined according to the final
pipeline design. Our results suggest that integration of latent features
generated by deep belief networks from different modalities leads to
improvements for majority of the cases. This improvement, however,
is not significant in case of integration of two RNA-seq modalities.
This is because they are different representations of the same source
of information and combining them will add little additional
predictive value. On the contrary, combining data of different
molecular levels can lead to more substantial improvements as is
the case with the integration of methylation/miRNA and the RNA-
seq data modality. Note that, for the HNSC dataset, miRNA does not
provide additional improvement, which is in agreement with recent
findings that miRNA is not directly related to the disease prognosis
(Hess et al., 2019), as also indicated by its poor prediction accuracy5 in

TABLE 2 | Mean (SD) of accuracies for 100 randomly initialized runs. The DBN has the smallest variance for the majority of datasets/modalities.

Modality

Gene Junction Isoform miRNA Methylation

Disease KIRC 63.27 (2.64) 65.13 (2.80) 64.52 (2.53) 54.43 (3.38) 63.39 (3.08)
64.62 (2.76) 62.65 (3.23) 65.0 (2.99) 55.71 (2.79) 62.88 (3.59)
67.48 (2.19) 66.97 (2.50) 66.49 (2.24) 62.9 (2.47) 65.71 (3.0)

HNSC 59.15 (2.78) 56.94 (3.57) 58.33 (3.12) 54.43 (3.38)
57.61 (3.13) 55.99 (3.79) 56.96 (3.19) 55.72 (2.79)
61.04 (3.2) 59.22 (3.1) 61.14 (2.85) 61.14 (2.85)

NB 83.39 (1.88) 84.94 (2.12) 83.81 (1.96)
85.86 (2.04) 87.15 (1.86) 85.96 (1.97)
87.18 (1.6) 87.78 (1.49) 86.97 (1.49)

FIGURE 5 | Improvement achieved after integrating pairs of modalities. Columns show the additionalmodality added to the single-modalitymodel (denoted by rows). Cell values
show the difference in accuracy between the integrated model and the single-modality model. Tables (A)–(C) correspond to KIRC, HNSC, and NB, respectively.

5The low accuracies reported for HNSC can be attributed to the biological
variability of samples, as this cancer type includes cancer of the oral cavity,
pharynx, larynx, nasal cavity, and salivary glands.
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Figure 4. Hence, its addition does not result in any improvement.
Interestingly, despite the large difference in the model’s
performance when trained on miRNA vs. other profiles, the
drop in performance of the integrated model is negligible,
suggesting that the integrated model can offer robustness as
well as synergistic gains in performance.

CONCLUSION

In this study, we developed a deep learning–based pipeline to
predict cancer survival. Because of the unsupervised nature of the
pre-training stage, we were able to leverage the unlabeled and
censored data to arrive at a better initialization of the model
parameters. Such an initialization is a critical step that drives the
final fine-tuned model to a more biologically relevant point in the
parameter space particularly when the number of layers in the
model increases. Our results showed that the proposed model
architecture can indeed achieve this goal by successfully
exploiting the information that is available in such data and
subsequently integrating derived features from different
molecular profiles. This is corroborated by the fact that our
trained models consistently outperformed the semi-supervised
baseline. Moreover, we showed that the most informative data
modality can be different across different cancer types, which
justifies the need for an integrated decision support system that
has the ability to generate synergistic improvements from
multiple available modalities. It is worth noting that the focus
and scope of this study was on presenting the merits of deep
models for extracting informative features from molecular
profiles of cancer tumors in an integrated manner. Needless to
say that including more modalities such as clinical and proteomic
data can enhance the prediction performance even further, as
shown in other studies (Liu et al., 2014; Yuan et al., 2014), and can
be considered a future work for a more comprehensive decision
support system. Another direction that requires further

exploration and attention is to evaluate the robustness of such
models in light of data scarcity and data variation. The presented
approach was an effort to address this challenge by exploiting
unlabeled data; however, an important question would be how
models trained on data from one study are generalizable and
applicable to the data acquired for the same disease but from
another study. Finally, it is desirable to know the strengths
and limitations of deep belief networks with other pre-
training frameworks used for training deep models, such
as the variational auto-encoders (An and Cho, 2015) and
the more recent contrastive learning (Falcon and Cho, 2020)
framework.

Despite all their success in extracting informative latent
features from data, deep models are considered black boxes
that learn by simple associations and co-occurrences
(Mamoshina et al., 2016). This obviates the need for human
intervention to generate hand-crafted features or to use the expert
knowledge but comes at cost of lacking transparency and
interpretability in such models. Making deep interpretable
models is currently an active research that has caught
attention of researches in the machine learning community
and is another dimension where this work can be expanded as
a future work.
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Bedside Pharmacological Data
Extraction: A Novel Application of
Artificial Intelligence for Clinical Data
Recording and Biomedical Research
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Introduction: As real time data processing is integrated with medical care for traumatic
brain injury (TBI) patients, there is a requirement for devices to have digital output.
However, there are still many devices that fail to have the required hardware to export
real time data into an acceptable digital format or in a continuously updatingmanner. This is
particularly the case for many intravenous pumps and older technological systems. Such
accurate and digital real time data integration within TBI care and other fields is critical as
we move towards digitizing healthcare information and integrating clinical data streams to
improve bedside care. We propose to address this gap in technology by building a system
that employs Optical Character Recognition through computer vision, using real time
images from a pump monitor to extract the desired real time information.

Methods: Using freely available software and readily available technology, we built a script
that extracts real time images fromamedication pumpand then processes themusingOptical
Character Recognition to create digital text from the image. This text was then transferred to
an ICM + real-time monitoring software in parallel with other retrieved physiological data.

Results: The prototype that was built works effectively for our device, with source code
openly available to interested end-users. However, future work is required for a more
universal application of such a system.

Conclusion: Advances here can improve medical information collection in the clinical
environment, eliminating human error with bedside charting, and aid in data integration for
biomedical research where many complex data sets can be seamlessly integrated digitally.
Our design demonstrates a simple adaptation of current technology to help with this
integration.

Keywords: computer vision, image modification, opitcal character recognition, system integration, data integration
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INTRODUCTION

Current therapeutic interventions in Traumatic Brain Injury
(TBI) are generally based on low frequency physiological
response over large sample sizes, focusing on long epoch
outcomes (Chalmers et al., 1981; Carney et al., 2017). Though
this methodology can be effective in identifying large global
phenomenon, momentary individualized events are masked
within these large datasets. Thus, methodologies are emerging
that leverage higher frequency data to find momentary
phenomenon that focus on individualized patient response to
medical treatment (Carney et al., 2017; Matchett et al., 2017;
Zeiler et al., 2018a). Furthermore, within TBI care, recent
literature has emerged connecting high frequency physiology
with TBI outcome (Balestreri et al., 2015; Cabella et al., 2017;
Zeiler et al., 2018b). Yet, few studies connect the momentary
response of high frequency physiology to current hourly recorded
therapeutic infusions (Froese et al., 2020a; Froese et al., 2020b;
Klein et al., 2020). Through the use of more robust and
individualized datasets, treatment guidelines can be focused on
patient specific healthcare interventions which can lead to more
individualized and personalized care. To take advantage of
emerging technologies and new health metrics, real time high
frequency physiological and treatment care data needs to be
recorded and integrated. However, despite this increase in
computational integration within health care, there are
countless devices that are either released with insufficient
digital output or are simply too outdated to carry the
necessary hardware infrastructure to output the required data
at a high frequency. This is particularly the case with many
commercially available and clinically utilized medication pumps.
As such, treatment information inmany instances is still recorded
manually at low frequency in bedside charts, or e-charts. Such
methods are prone to errors in data entry and are time consuming
for clinical staff.

The limited compatibility of many bedside medical devices
hinders clinicians’ ability to capture high frequency data, thus
there is a need to leverage interfaces that convert such data
from bedside devices directly into digital data. Many medical
devices use text displays to convey the required information to
the user. The text display therefore has the desired
information, but based on the antiquated hardware, it lacks
the compatibility to convert the information to a digital
format. This problem is described as Text Information
Extraction (TIE) (Jung et al., 2004) and has been addressed
in other environments like text-based image processing, (Park
et al., 1999; Kim et al., 2002; Carvalho, 2016) document
decoding (Cheng et al., 1997; Feng et al., 2006) and video
text extraction (Locating Characters in Sc, 1047; Fischer et al.,
1995). All of these systems extract alphanumeric characters
using Optical Character Recognition (OCR) via computer
vision techniques, which leverage artificial intelligence to
convert image characters into digital data (Schantz, 1982).
This method, although well documented, has yet to be adapted
for the use and conversion of medical monitoring equipment.
Therefore, with the emergence of new openly available
software and the universal nature of personal computers,

there is a potential to adapt past medical devices to the
computational age.

Furthermore, for the integration of many older medical
devices the only feasible solution to digital integration is
through the use of scripting (Carvalho, 2013; Delaney et al.,
2013; Carvalho, 2021). Likewise, as clinical data collection
exceeds the limits of humans, the need to leverage scripting to
ensure accurate data collection becomes necessary (Mardis, 2011;
Delaney et al., 2013). To bridge this gap in compatibility, we have
endeavoured to build a system that uses a camera to attain real
time output from a text based display screen from bedside
intravenous medication pumps and convert it into a
continuously updated digital format to be captured and linked
with other time-series data at the bedside in real time.

MATERIALS AND METHODS

Device Set-Up and Image Capture
This work was conducted at the Winnipeg Acute TBI
Laboratories, at the University of Manitoba. The set-up
consisted of a USB connected camera (Logitech C920s Pro
HD Webcam, Logitech, Newark, CA, United States) to take
real time images of a commercially and commonly available
intravenous medication pump (Baxter Colleague 3 CXE,
Baxter Canada, Mississauga, Canada) which currently has no
digital outport. Images are captured at 60 frames/second from a
USB camera and copied directly onto a basic consumer laptop,
see Figure 1. The full Python scripting language code (Python 3,
Scotts Valley, CA: CreateSpace) can be found in either
Supplementary Appendix A or GitHub (https://github.com/
lofro/TIE_OCR). The basic operation of this system leverages
4 main libraries in python; “pytesseract,” “cv2,” “serial” and
“tkinter.” “pytesseract” and is used for the OCR processing.
(Lee, 2007) “Cv2” is also an image processing and
manipulation library. (Bradski, 2000) The use of these libraries
will be detailed in the subsections to follow. “Serial” is a library in
python that allows for the creation and use of serial sockets
(Welcome to PySerial’s Documentation PySerial 3.4
Documentation). Finally, we used the “tkinter” library to
create the display and user interface that is seen in Figure 2
(Lundh, 1999). To create a video we leveraged the “cv2.
CaptureVideo” function to extract frames and the “tkinter.
Canvas” to display these frames. When either the snapshot
button is press or the time delay is reached, the current frame
captured will be processed.

Image Processing and Feature Extraction
The TIE for these images was performed using Python. On the
initiation of the code, an interface for the image capture will
appear, as shown in Figure 2. The subsequent image
manipulations are demonstrated in Figure 3, which illustrates
our method to solve the TIE problem. The TIE problem can be
divided into the following sub-problems: detection, localization,
tracking, extraction/enhancement, and recognition (Jung et al.,
2004). Within our design we focused on localization, extraction/
enhancement and recognition, as we can assume the images
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captured have some form of desired information, and that the
features of interest stay relatively constant.

An image can be captured manually or automatically after an
allotted time. Once the image is captured it goes through the
entire TIE image processing as seen in Figure 3, proceeding
alphabetically going from A to H. The two TIE subgroups of
image localization and extraction/enhancement are performed in
unison, shown in Figures 3A–E. Initially the image is converted
to grayscale using a “cv2” function (Figure 3A), then using Canny
edge detection, the image edges are traced (Figure 3B). (Open(X).
Canny Edge) Canny highlights the edges of an image using the
intensity gradient of the image, which is the color difference on
local pixels to find the edge of shapes within the image (Canny,
1986). Using these edges, we can differentiate the display from the

larger image by the rectangular aspect of the display. To do this
the edges are grouped into contours. Contours are the bounding
points that map the outline of a continuous white shape of
Figure 3B. Each continuous white shape is bounded by the
smallest, best fitting rectangle that contains all the contours of
that group. With all shapes having a respective bounding
rectangle, the largest area rectangle can be found, which is
assumed to be the display screen and used to give Figure 3C.

The image is then enlarged to improve the small feature edges
for the adaptive mean threshold. The adaptive mean threshold
uses the area of local pixel brightness to find a mean brightness
which then can be contrasted against the pixel of interest to
identify if it should be black or white, resulting in Figure 3D.
(Open(X). Image Thres) Next, the contours of Figure 3D are

FIGURE 1 | Setup for the camera and pump. General setup for our design, with the monitor display being captured through an external camera is displayed in
image (A) and (B). In figure B the USB wire connecting the computer to camera can be seen. The current design has the camera directly in front of the text display.

FIGURE 2 | Python interface. Left Panel–Displays digital photo of medication pump taken by the camera,Right Panel - Displays the interface of our system, with
real time data being updated from the extracted features from the medication pump display.
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found in a similar way as before, (using canny edge detection)
with the exception that it looks for the continuous black portions.
Like before, the continuous black shapes are all bounded by a
rectangle and used with their respective contours to rotate the
image and crop the image for a second time. To rotate the image,
a key horizontal line is needed (highlighted by the box around a
line in Figure 3E), this line is found by using the relative height to
length of the bounding rectangle. The bounding rectangle must
have a width greater than ¾ of the image width, and of the
rectangles that meet this criterion, the one with the smallest
height is chosen. Next, with the contours from which the
previously described bounding rectangle encompasses, the line
of best fit is made. That being, a best fit line is drawn through the
key horizontal line. This is the least squares regression line with
the contours as the points of interest. The best fit line is created
using a “cv2” function and has an output of a location and an
angle of rotation. (Bradski, 2000) This angle of rotation is also the
angle for the image to rotate. To find the cropping area, the width
and location of the bounding rectangle for the key horizontal line
is used to find the x component of the cropped image (the
horizontal location and width). The y component (vertical
location and height) is assumed to be at the 5 and 90% of the
initial image height, which allows the image to be cropped
(Figure 3E). This concludes the localization of the TIE process
as the image is focused on only the text display. The last step in
enhancement/extraction is performed using Google Tesseract’s

(Google Inc., https://github.com/tesseract-ocr/tesseract/) feature
selection function, this function uses an artificial intelligence
algorithm to find all key shapes within the image. (Lee, 2007)
These are then cropped from the initial image and displayed in a
consecutive order to give Figure 3F.

Character Recognition
The last part of the TIE process, recognition, uses Google
Tesseract OCR (Lee, 2007) to give the output text shown in
Figure 3G. This process, like all OCR, involves comparing a
library of identified shapes to the data, in this way the best
matched letter is assumed. (Lee, 2007) From Figure 3G the
desired values are extracted based on the nature of the OCR
output and design of the text display, that being, the dose is
always followed by the dose amount and left/time remaining,
and the medication type is found by a list of predefined words
of interest. Together the dose amount and medication can be
paired up, and in almost any fashion given as Figure 3H. To
improve accuracy, we found the key words (those being
greater then 4 characters of alphabetical values) and
connected those with a number in a similar location, for
the full OCR code see Supplementary Appendix A.2. From
here the data is digitized and can be output into any desired
format. A full process map of the above TIE and OCR
processes, from image capture to serial output can be seen
in Figure 4.

FIGURE 3 | Steps for image processing–TIE and OCR. TIE � Text Information Extraction, OCR � Optical Character Recognition. The processing proceeds in
alphabetical order. (A) is the initial image converted to grayscale. (B) is the grayscaled image processed with the Canny function. (C) is the grayscaled cropped image
using the rectangle contours of image (B). (D) is the adaptive mean threshold function of image (C). E is the cropped and rotated image (D) with the key horizontal line
contained within a box. F is the features found with the google tesseract of image (E). (G) is the string that Google Tesseract output from image (F). (H) is the final
output of the (G) string process.
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Digitized Data Capture
Using a virtual serial port, we sent the serialized data (Figure 3H)
to Intensive Care Monitoring “Plus” (ICM+) (Cambridge
Enterprise Ltd., Cambridge, United Kingdom, http://icmplus.
neurosurg.cam.ac.uk), generating continuously updating real
time data (Figure 2). The virtual serial port is an internal
design that acts like serial port for any RS232 ASCII streaming
device and was made using freely available software (null-modem
emulator (com0com), http://com0com.sourceforge.net).
(Hatchett, 1991) In ICM+ the data was parsed into the desired
functions identical to the parsing of any other device data. ICM+
was used as an example of a data acquisition platform for the
continuous time-series capture of such data, as it is the platform
utilized by our laboratory for bedside physiology research. The
above-described design can be integrated with any data
acquisition platform which can record serial data.

Finally, to show-case the capture of continuous medical pump
data in conjunction with other monitoring devices, we recorded
continuous bifrontal cerebral regional oxygen saturations using
near infrared spectroscopy (Covidien INVOS 7100, Medtronic

Canada) and continuous non-invasive arterial blood pressure
through a finger-cuff technique (Finapres NOVA Nanocare,
Finapres Medical Systems, Enschede, Netherlands, http://www.
finapres.com/home), in a volunteer. The regional oxygen
saturation was sampled at 1 Hz, while the arterial blood
pressure was sampled at 250 Hz. Therefore, we can run our
system in parallel with any number of compatible devises as
can be seen in Figure 5.

RESULTS AND DISCUSSION

System Performance
As this entire system was a proof of concept, the design proves
that there is technology available to complete an effective TIE
process on a human-based text interface output, using an
intravenous medication pump as an exemplar (examples of
captured frames that worked can be seen in Supplementary
Appendix B). Furthermore, the design used only a common
camera, a laptop and freely available open source software, (Lee,
2007; Bradski, 2000; Hatchett, 1991) demonstrating the
accessibility of this conversion system.

Though we built a working prototype, there were some key
issues that arose when operating the system. The first and
perhaps most important, is the slightly inconsistent nature of
the OCR recognition which has been documented in the past
(Carvalho, 2016; Schantz, 1982; Lee, 2007). When implementing
OCR, there is a tendency for letters and word orders to be
mismatched. For example, a common error is the letter “f”
interpreted as a “t,” i.e. “tentanyl” instead of “fentanyl.” This can
be bypassed by backend language algorithms and deep learning
techniques (Mokhtar et al., 2018; Le et al., 2019). Another
common issue encountered is the mismatch of numbers “5,”
“6”, “8” and “9,” which in operation have become
interchangeable with one another if the image is
insufficiently processed. To overcome this problem in
operation, converting the image to Figure 3F, with
significant space between the lines of text, improved
recognition. Also, the enlargement of features made the edges
more robust (improving extraction/enhancement of the image).
Though it must be acknowledged, in our described design and
camera setup, we did not require these improvements to get
sufficiently accurate data. Such modifications may be necessary
with cheaper and lower resolution cameras.

The second issue is the interference that background noise can
have on the image, which interferes with extraction and
enhancement. If the display is dim, with a light that reflects
directly in the camera, there are scenarios in which the captured
image data can be masked behind this light. Likewise, if the
camera is moved into such an angle as to obscure the image, the
OCR software fails to accurately extract the information.
Currently, there are no working examples that we know of
that effectively adjust images at obscure angles to effectively
output a coherent final image however, there are emerging
proposed solutions (Oakley and Satherley, 1998; Li and
Doermann, 1999; Li et al., 2000; Witten et al., 2004).
Therefore, in the implementation of this design the most

FIGURE 4 | Process Map–From Image Capture to Serial Output Figure
displays the process taken to convert the image into its digital information and
the steps to send the data to ICM+ (data acquisition platform). The best fit
rectangles and line are the key shapes used to crop and rotate the
image. Feature Extraction is a Google Tesseract function to find key shapes.
Key Information Reduction Function is a function used to find and order the
alphanumeric of interest.
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effective solution is setting up the camera to extract clear,
centered images.

Reflections on Impact of the Designed
System
The TIE/OCR Process
This system of converting real time data from a medical device
display into digital data, is the first that we have knowledge of.
As such, this system illustrates that there is a bridge between
computers and older devices that lack the necessary
compatibility, using TIE processing. In this way there is an
opportunity to extract data even when there is no capability of
directly accessing the digital port, or when no digital output is
offered. However, the design and operation of this system
enforces the desire for a robust TIE methodology, due to the
tenuous precision in the output. The mixed precision is caused
by errors mostly relating to the OCR methodology for
recognition, thus the field of text extraction is expanding
with new developments and emerging improvements to all
aspects of the TIE processing. These include word detection
using Markov Random Field (Yalniz and Manmatha, 2019)
and canonical correlation analysis, enhancing image quality by
layering multiple images, (Wemhoener et al., 2013) smoothing
edges by using corner detection, (Yalniz and Manmatha, 2012)
and having more robust feature detection methods (Witten
et al., 2004; Oakley and Satherley, 1998; Li et al., 2000; Li and

Doermann, 1999) with more areas and designs proposed to
improve information retrieval from images (Allan et al., 2003).
These improvements highlight ideas to incrementally change
the TIE methodology and enhance text extraction.
Furthermore, by leveraging Deep Learning techniques
before and after the OCR process, the shortcomings that are
inherit with the OCR could be addressed. The two key areas to
apply these Deep Learning solutions would be the creation of
the improved text images (Figures 3E,F) and error correction
(Figures 3G,H), which have emerging methods to address
them (Mokhtar et al., 2018; Le et al., 2019; Namysl and Konya,
2019; Yin et al., 2019; Karthikeyan et al., 2021).

For individuals who endeavour to build a similar TIE system,
the use of a prebuilt OCR is recommended. The open-source
nature of Google Tesseract OCR makes it easily adaptable but
supported under the Google banner also gives it access to a vast
database to build its character recognition library on. As well,
Google Tesseract OCR offers language conversion for over 50
different languages. (Lee, 2007) As global health becomes
integrated, systems that can be adapted for a global
community become imperative. These platforms bear the
added benefit of being supported by a wide group of people,
improving not only its functionality but its robustness as it
pertains to various aspects including varying text font styles
and languages. Therefore, although in theory it is possible to
build one’s own OCR system, there is limited practical reason to
do so.

FIGURE 5 | ICM + Final Output. Displays the final output on ICM + over a 60 s period from top to bottom; the arterial blood pressure, fentanyl, sodium chloride and
regional oxygen saturations.
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Application to Bedside Medical Big Data
Aside from the novel application of computer vision to solve a
digitization problem for medical device data, the TIE also offers
the removal of the human element within data collection, as
humans account for a large amount of the inconsistency within
data processing (Barchard and Pace, 2011). In both the clinical
care provision and biomedical research fields, data accuracy is
critical. Errors in bedside or e-chart data entry, associated with
human-based methods, can impact care delivery and safety for
patients by allowing for treatment decisions to be made on
inaccurate information. Similarly, accuracy of data in
biomedical research is paramount as the focus of care becomes
more responsive and individualized.

The TIE also improves the volume and frequency of data
collection from such medical devices, exponentially higher
than any human-based recording method. In almost all
clinical data extraction, but in particular TBI data, the
treatment methodologies are often updated at an hourly
rate, with limited concern for the minute-to-minute
fluctuations within care. Emerging studies in TBI research
identify an optimal cerebral perfusion pressure which is
coupled to minute to minute changes in physiology,
(Steiner et al., 2002; Aries et al., 2012), with measures like
intracranial pressure being well documented as having
targeted goals to achieve (Cabella et al., 2017; Carney et al.,
2017; Zeiler et al., 2020). Such targets require the
implementation of high frequency data analysis, however
the treatments associated with these goals is either
undocumented, or lack precision in documentation as to
the exact momentary changes within care. Thus, methods to
improve time resolution, allowing data to be linked with other
physiologic information for a clearer picture of treatment
response/effect, is required, as highlighted in our example
in Figure 5. Moreover, the nature of digitized information
makes the update, dissemination, and archiving to prevent
data loss a nearly trivial task. Thus, the breakdown or damage
to one device can be mitigated by having continuous multi-
connected data streams, limiting data loss.

FUTURE DIRECTIONS

Despite the novel and interesting results described, future work is
required in this area for further optimization. For this type of
design there is a need to focus on three basic future
implementations: the first, is creating a more robust TIE
process with a focus on image enhancement and recognition.
Such work will encompass variation in camera face angles and
screen brightness/hues. The goal is to improve the efficiency of
the output to more suitably honed results. Thus, the
implementation of some previously proposed solutions to the
OCR process using Deep Learning methods will be explored,
including; convolutional neural networks, (Allan et al., 2003)
neural machine translation techniques (Mokhtar et al., 2018) and
provide improved lexicons.

The second area to address is a refined layout and interface.
The goal for this style of technology is to have any user intuitively

operate the device. As such, there will be work put in place to
design a functional package that can be downloaded and will run
like any other application. All of this will be done with freely
available open-source software in order to promote the goal of
improved data management and global health. One further aim is
to expand applications to other medical devices and pumps that
are commercially available.

Finally, to deploy this technology in both simulated and
real-world healthcare environments. An example would be to
setup this device in a simulation lab which is utilized to
practice critical resuscitation skills for clinicians and
trainees, prior to real-world application. Once feasibility
and accuracy has been assessed in the simulated
environment, the system can then be deployed in a real-
world critical care environment here at the Health Sciences
Centre in Winnipeg or other centers. Here real-time
operational limitations will be explored, and the algorithms
improved as needed. All future renditions and investigations
will lead to improvements in the source code, which will be
made openly available as new versions arise on GitHub.
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