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Editorial on the Research Topic

Astrocytes, a Kaleidoscope of Diversities, a Pharmacological Horizon

Astrocytes are specialized glia, vital for neural circuit function, and represent a population of
complex and functionally diversified cells (Chai et al., 2017). Physiological multiplicity of
astrocytes is apparent among different brain circuits and microcircuits, further individual
astrocytes display heterogenous signaling properties depending on the subcellular
compartments. With respect to injury and disease, astrocytes undergo several phenotypic
changes that may be protective or deleterious with regard to pathology in a context-dependent
manner (Liddelow and Barres, 2017). Damages to the peripheral and central nervous tissue as well
as pathological alterations of complex organs, like the intestine, lead to astrocyte activation,
causing neuroanatomical and neurochemical transformations which sustain pathological signals
participating in maladaptive plasticity. Nevertheless, also during pathology, astrocytes (as a whole
or specific phenotypes or some yet-to-be identified population) maintain their neuroconservative
role (Zhou et al., 2020).

Thus research has the challenge to pharmacologically regulate astrocyte functions with special
focus on reducing neural aberrant excitation and promoting restorative signals.

The present research topic is intended to be a collection of new physiological and pathological
evidence regarding astrocyte features and functions focusing on the concept that astrocytes
represent a highly variegated population of cells that mediate neural circuit-specific roles in health
and disease.

Spampinato et al. have focused on two important astrocyte functions with pathophysiological
relevance: i) regulation of neural stem cell properties within adult neurogenic niches, positive
pleiotropic actions of utmost importance under neurodegenerative conditions as an attempt to
replace lost cell populations and ii) regulation of the integrity and functions of the blood-brain
barrier (BBB) in physiological condition and as a reaction to harmful events contributing to either
exacerbate or reduce BBB damage.

Another crucial physiological need satisfied by astrocytes is the cleansing of the cerebral tissue
from waste molecules. Aquaporin-4 (AQP-4), a brain water channel, plays a pivotal role in this
process. As shown in the review article of Valenza et al., it is mainly expressed on astrocytic endfeet
closest to blood vessels participating in several astrocyte signals. The review points out the latest
AQP-4 findings related to aging and Alzheimer’s disease as well as the available knowledge on
pharmacological tools to target AQP-4.
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As regards the cross-talk with the other nervous cells, classic
astrocyte-to-neuron communication encompasses the release of
messengers via exocytosis, carrier membrane transport and
opening of a wide-range of channels (Gundersen et al., 2015).
Nevertheless, recent evidence indicates that brain cells may
communicate via alternative pathways, including the release of
exosomes (Frühbeis et al., 2013). In this context, Venturini et al.
have found that astroglial processes could release neurogloblin-
containing exosomes as new non-conventional signals.

Among channels implied in the intercellular crosstalk,
connexins (Giaume et al., 2021) represents a conserved family
of membrane proteins that allow the ionic and molecular
exchange between the cytoplasm of adjacent cells (through gap
junction channels) or the communication between the
extracellular and intracellular space (via hemichannels)
(Leybaert et al., 2017). On this subject, Lagos-Cabré et al. have
reviewed and discussed evidence suggesting that cell adhesion
and cytoskeletal dynamics, both of which are relevant to cell
migration, take place by modulation of hemichannels rather than
gap junction channels.

Despite the evident astrocyte complexity in terms of
phenotype and function, the molecular basis of these
differences are unclear. Lozzi and co-workers, by using
bioinformatic approaches have demonstrated that cohorts of
transcription factors may modulate region-specific molecular
signatures in astrocytes. This evidence points out the idea that
differential expression of transcription factors governs astrocyte
diversity in the brain parenchyma.

Melatonin is produced in the pineal gland and released
according to the circadian rhythm (Cipolla-Neto and Amaral,
2018). Recently, this hormone has received attention due to its
neuroprotective effect via Nrf2 pathway (Cao et al., 2017). In this
issue, Chen and co-workers showed the protective action of
melatonin from heme-induced toxicity observed upon
intracerebral hemorrhage. They found that this response is
mediated by the activation of M2 receptors and the
transcription factor Nrf2.

Astrocytes do not express endothelin-1 (ET-1) in healthy
conditions, but they prominently express and release this
protein in multiple sclerosis demyelinated plaques (D’haeseleer
et al., 2013). In this scenario, the work of Hostenbach et al.
determined that diversity of pro-inflammatory cytokines causes
the production of ET-1, the latter being dramatically prevented by
the statin and the natural phenol simvastatin and resveratrol,
respectively.

The relevance of astrocytes in pathological conditions was
deepened by Siracusa et al. The loss of astrocyte functionality as a
result of cellular senescence has been related to neurodegenerative
disorders as well as to aging. Astrocytes can drive the
inflammatory response and contribute to the altered neuronal
activity in several frontal cortex pathologies such as ischemic
stroke and epilepsy. For these reasons, the authors discuss the
possibilities to target astrocytes as an approach toward
pharmacological therapies.

In this view, astroglia is implicated in the pharmacodynamic of
already known products. Recent developments have
demonstrated that astrocytes can indeed be the cellular targets
of neuroprotective agents. As demonstrated in the paper by Zhao
et al., vinpocetin, a semi-synthetic alkaloid from the leaves of
Phyllostachys pubescens, has anti-inflammatory, anti-oxidant and
anti-apoptotic actions both in vitro following oxygen-glucose
deprivation and in vivo against ischemia/reperfusion injury by
targeting specific astrocytic pathways. Specifically, it promotes
Connexin43 phosphorylation through the PI3K/Akt pathway,
which in turn promotes BBB integrity, cell-to-cell
communication with an overall reduction in brain edema and
tissue damage.

The natural compound 2,7,2′-trihydroxy-4,4′7′-trimethoxy-
1,1′-biphenanthrene (TTB) isolated from the orchid Liparis
nervosa (Thunb.) Lindl. has been studied by Liu et al. in an
in vitro model of oxygen-glucose deprivation/reoxygenation
injury (OGD/RI) on astrocytic cultures to mimic the
pathological condition named neonatal hypoxic/ischemic.
Data demonstrate that TTB is effective against cell death
preserving the intracellular antioxidant activity by activating
the transcription factor nuclear factor erythroid 2-related factor
2 (Nrf2) and related pathways. Additionally, TTB reverts
neurite loss induced by OGD/RI in neuron-astrocyte
cocultures.

In conclusion, this Research Topic offers novel information
about the role of astrocytes in neurophysiology and in
neuropathology as well as possible therapeutic approaches.
The pharmacological modulation of astrocytic targets is
encouraged as a breakthrough strategy for the relief from
several debilitating pathologies.
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TTB Protects Astrocytes Against 
Oxygen-Glucose Deprivation/
Reoxygenation-Induced Injury via 
Activation of Nrf2/HO-1 Signaling 
Pathway
Liang Liu 1,2,3*, Zhichen Zhao 1, Qimeng Yin 1 and Xiaolu Zhang 4*
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Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 
College of Veterinary Medicine, Yangzhou University, Yangzhou, China, 4 Department of Pharmacy, Clinical Medical College, 
Yangzhou University, Yangzhou, China

Neonatal hypoxic/ischemic encephalopathy (NHIE) is a severe condition that leads to 
death or neurological disability in newborns. The underlying pathological mechanisms are 
unclear, and developing the target neuroprotective strategies are urgent. 2,7,2′-trihydroxy-
4,4′7′-trimethoxy-1,1′-biphenanthrene (TTB) is a natural product isolated from Cremastra 
appendiculata (D. Don) Makino and Liparis nervosa (Thunb.) Lindl. TTB has demonstrated 
potent cytotoxic activity against stomach (HGC-27) and colon (HT-29) cancer cell lines. 
However, none of the studies have addressed the effects of TTB in NHIE. In the present 
study, an oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocyte injury 
model was established to investigate the effect of TTB and its potential mechanisms. Our 
results showed that TTB alleviated the OGD/R-induced reactive oxygen species increase 
and the intracellular antioxidant capacity of superoxide dismutase activity decrease. 
Moreover, TTB potentially prolonged the activation state of the nuclear factor erythroid 
2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway and maintained the protection 
against oxidative stress in OGD/R-induced astrocytes by inducing the nuclear translocation 
and up-regulation of Nrf2 along with the enhanced expression of the downstream target 
gene HO-1. Furthermore, TTB treatment diminished the accumulation of hypoxia-inducible 
factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression induced by 
OGD/R. We also found TTB-treated astrocytes reversed the inhibition of OGD/R on neurite 
growth of neurons by the astrocyte-neuron coculture system. In conclusion, TTB inhibited 
the OGD/R-induced astrocyte oxidative stress at least partially through the inhibition of 
HIF-1α and VEGF via the Nrf2/HO-1 signaling pathway.

Keywords: neonatal hypoxia/ischemic encephalopathy, TTB, oxygen-glucose deprivation/reoxygenation, astrocytes, 
Nrf2/HO-1 signaling pathway, HIF-1α, VEGF
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INTRODUCTION

Neonatal hypoxia/ischemic encephalopathy (NHIE), also 
described as stroke in the neonatal period, is one of the most 
prevalent causes of a potentially devastating neonatal brain 
injury with long-term neurological deficits such as mental 
retardation, cerebral palsy, motor deficits, epilepsy, and learning 
and behavioral disabilities, which affects 1 to 8 of every 1000 
live term births, with the highest rates in developing countries 
(Dilenge et  al., 2001; Kurinczuk et al., 2010). The cases of 
infantile cerebral palsy are caused by the same factors that cause 
adult cerebral palsy (Nelson, 2007). At present, therapeutic 
hypothermia protocols are formally endorsed treatments, 
which significantly improve outcomes by leading to delayed 
cell death. However, its effectiveness is limited in severe cases, 
as 40% to 50% of children with NHIE still die or suffer from 
long-term neurological disorders (Edwards et al., 2010). There 
are no effective pharmacological interventions available. To 
reduce the neurological consequences of NHIE, new and effective 
neuroprotective strategies are urgently needed.

Astrocytes are the largest population of glial cells in the brain 
and have been implicated in many functions as key mediators in 
the central nervous system (CNS). Astrocytes are highly involved 
in neuronal migration, adaptive plasticity, and synaptogenesis in 
the developing brain (Ullian et al., 2001; Guizzetti et al., 2014). 
The developing neonatal brain is particularly vulnerable to 
oxidative stress based on the immature free radical scavenging 
systems (Zorec et al., 2018). Several evidences have identified that 
NHIE causes long-lasting oxidative stress, a process aggravated 
by mitochondrial dysfunction. Reactive oxygen species (ROS) 
have been involved in the pathogenesis of NHIE and induce cell 
death via the oxidation of membrane lipids and proteins (Fatemi 
et al., 2009). Recently, a study demonstrated that astrocytes are a 
major source of increased brain ROS production during neonatal 
asphyxia (Parfenova et al., 2018).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a member 
of the basic region/leucine zipper transcription factor family that 
regulates several antioxidant pathways (Sandberg et al., 2014). 
Under unstressed conditions, Nrf2 is binding to the homodimeric 
protein Kelch-like ECH-associated protein 1 (Keap1), which 
becomes the Nrf2 Keap1 complex in the cytoplasm. In 
pathological processes, such as oxidative stress and other 
insult attacks, Nrf2 is activated by release from the antioxidant 
response element of Keap1 and translocated to the nucleus 
from the cytoplasm, which leads to accumulate in the nucleus, 
regulates genetic activities, and induces cytoprotective action (Cao 
et al., 2015). Nrf2 activation drives several functions, including 

antioxidative stress, antiapoptosis, and anti-inflammation, via 
several molecules and pathways (Shu et al., 2016).

2,7,2′-trihydroxy-4,4′7′-trimethoxy-1,1′-biphenanthrene 
(TTB) is a biphenanthrene isolated from Cremastra appendiculata 
(D. Don) Makino (Xue et al., 2006; Liu et al., 2016a) and Liparis 
nervosa (Thunb.) Lindl. (Liu et al., 2016b), which both belong 
to the family Orchidaceae. Research concerning bioactivities of 
TTB was very limited, and it was only reported to have cytotoxic 
activity against stomach (HGC-27) and colon (HT-29) cancer 
cell lines (Liu et al., 2016b). Therefore, it is necessary to explore 
other bioactivities of TTB.

Oxygen-glucose deprivation/reoxygenation (OGD/R) is 
a widely used cell model to mimic the aspects of cell death 
observed in a hypoxia brain injury model, including neonate 
HI and adult ischemic stroke (Cengiz et al., 2014; Tasca et al., 
2015). Several recent studies demonstrated that Nrf2 was 
regulated by special compounds in the rat neonatal HI brain 
injury model (Cui et al., 2017; Gao et al., 2018). We speculated 
that TTB may offer neuroprotection in part by regulating Nrf2 
in reactive astrocytes. In the current study, we investigated the 
effect of TTB on the OGD/R-induced astrocyte injury model, 
which is to mimic NHIE in vitro. We observed that Nrf2 
activation via TTB treatment improved astrocyte function 
by targeting oxidative stress. Our findings suggested that 
astrocytic Nrf2 could be a potential therapeutic target for the 
treatment of NHIE.

MATERIALS AND METHODS

Compound
The ethyl acetate extract of L. nervosa (Thunb.) Lindl. was isolated 
and purified using repeated column chromatography over 
Sephadex LH-20, RP-C18, silica gel, and semi-preparative high 
performance liquid chromatography (HPLC) to obtain TTB. The 
purity of TTB was at least 99% as judged by HPLC analysis. All 
the extraction, separation, and purification were performed by our 
group (Liu et al., 2016b).

Cell Culture
Postnatal day 1 Sprague–Dawley rats were purchased from 
the Comparative Medicine Center of Yangzhou University 
(Yangzhou, China) and used for culturing astrocytes as 
described previously (Hertz et al., 1998; Zhang et al., 2014). 
Briefly, the cerebral cortex was taken in a sterile environment 
and then dispersed with 0.25% trypsin (Gibco Co., Grand 
Island, NY, USA) for 10 min at 37°C. The cells were plated in 
75 cm2 flasks precoated with 40 µg/ml poly-d-lysine, grown 
in high-glucose Dulbecco’s modified Eagle medium (DMEM; 
Gibco Co.) containing 10% fetal bovine serum (FBS; Gibco 
Co)., 100 units/ml penicillin, and 100 μg/ml streptomycin 
(Solarbio, Beijing, China), and placed in an incubator at 5% 
CO2, 95% air at 37°C. The flasks were gentle shaken about 150 
times by hand to remove the layer of nonadherent cells growing 
on the top of the flat monolayer when changing the medium 
every 2 to 3 days. More than 95% astrocytes were achieved by 

Abbreviations: NHIE, neonatal hypoxic/ischemic encephalopathy; TTB, 
2,7,2′-trihydroxy-4,4′7′-trimethoxy-1,1′-biphenanthrene; OGD/R, oxygen-glucose 
deprivation/reoxygenation; CNS, central nervous system; ROS, reactive oxygen 
species; SOD, superoxide dismutase; LDH, lactate dehydrogenase; Nrf2, nuclear 
factor erythroid 2-related factor 2; HO-1, heme oxygenase-1; HIF-1α, hypoxia-
inducible factor-1α; VEGF, vascular endothelial growth factor; GFAP, glial 
fibrillary acidic protein; Keap1, Kelch-like ECH-associated protein 1; DMEM, 
high-glucose Dulbecco’s modified Eagle medium; MTT, 3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; H/I, hypoxia/ischemia.
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the cultures. After 14 days in culture, astrocytes were grown 
to confluence and then plated in the appropriate vessel. When 
the cultures  reached 70% to 80% confluence, cells were ready 
for treatment.

Establishment of OGD/R-Induced Injury of 
Astrocytes
The OGD/R model was established in astrocytes. Briefly, the cells 
were washed twice with phosphate-buffered saline (PBS) and 
incubated in glucose- and FBS-free medium and then placed in 
an anoxic incubator at 94% N2, 1% O2, 5% CO2 at 37°C. After 
OGD for 6 h, the medium was changed back to high-glucose 
DMEM containing 10% FBS and returned to the normal oxygen 
incubator for another 24 h. The blank control group in the 
experiment was always kept in a normal oxygen incubator and 
cultured in high-glucose medium containing 10% FBS. The cells 
were given OGD/R treatment with or without TTB (1.5625, 
6.25, and 25 µM). For certain experiments, the astrocytes 
were  preincubated in ML385 (Nrf2-specific inhibitor) for 12 h 
before OGD/R.

Cell Viability
Primary astrocytes were incubated into 96-well plates at a density 
of about 1 × 104 cells per well. Cell viability was estimated using 
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium 
bromide (MTT; Solarbio) and lactate dehydrogenase (LDH) 
assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, 
China). The optical absorbance was read on a plate reader at a 
wavelength of 490 nm for MTT. LDH release from damaged cell 
membrane was indicated as a percentage of total LDH according 
to the manufacturer’s instruction.

Measurement of Superoxide Dismutase 
(SOD) Levels
The SOD activity in the astrocytes was measured by a 
commercially available kit (Nanjing Jiancheng Bioengineering 
Institute) according to the manufacturer’s instruction. Briefly, 
after treatment, cells were washed with cold PBS twice and 
collected. The homogenates were centrifuged for 10 min at 10,000 
rpm at 4°C and supernatants were used for SOD activities. The 
optical absorbance was read on a plate reader at a wavelength 
of 450 nm. The protein concentration was determined by  
BCA assay.

Intracellular ROS Assay
Astrocytes were seeded in 96-well plates at a density of 1 × 
104 cells per well. After exposure to OGD/R, the medium 
with different concentrations of TTB was replaced with 
2′,7′-dichlorodihydrofluorescein diacetate (10 μM) in DMEM. 
The cells were incubated at 37°C for 30 min in the dark and 
then washed twice with PBS. The fluorescence was tested on 
a  microplate reader using excitation/emission wavelengths  
(Ex/Em) of 488/525 nm.

Western Blot Analysis
Total proteins were extracted with lysis radioimmunoprecipitation 
assay buffer (Applygen, Beijing, China) and protease inhibitor 
cocktail (Applygen). The protein concentrations were determined 
by BCA assay (Beyotime, Shanghai, China). All steps were carried 
out on ice. Nuclear and cytosolic proteins were extracted using a 
commercial kit (KeyGEN BioTECH’s, Nanjing, China). The extracts 
were boiled in a metal bath at 95°C for 5 min. Subsequently, sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis was carried out 
to separate the proteins. The proteins were then transferred to a 
polyvinylidene fluoride (PVDF; Solarbio) membrane for about 
1.5 h. After blocking in 5% nonfat milk (Applygen) for 2 h, the 
PVDF membrane was incubated with the primary antibodies anti-
Nrf2 (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-
heme oxygenase-1 (HO-1; 1:500; Wanlei Biotechnology, Shenyang, 
China), anti-hypoxia-inducible factor-1α (HIF-1α; 1:500; BBI, 
Shanghai, China), anti-β-actin (1:5,000; abclonal, Wuhan, 
China), and anti-lamin B (1:500; abclonal) overnight at 4°C 
then followed by horseradish peroxidase-conjugated secondary 
antibodies for 2 h at room temperature. The membranes were 
washed three times for 10 min before obtaining protein bands by 
enhanced chemiluminescence reagents (Beyotime) and analyzed 
by ImageJ.

Immunofluorescence Assay
The astrocytes were fixed with 4% paraformaldehyde for 30 
min and permeabilized with 0.1% Triton X-100 (Solarbio) for 
10 min at room temperature. After blocking with 3% bovine 
serum albumin for 30 min at room temperature, the cells were 
incubated with the primary antibody anti-Nrf2 (1:200; Santa 
Cruz Biotechnology) at 4°C overnight followed by Alexa Fluor 
488 donkey anti-mouse antibody or Alexa Fluor 594 donkey 
anti-rabbit antibody (1:500; Invitrogen, Carlsbad, CA, USA). 
Nuclei were stained by 4′,6-diamidino-2-phenylindole (DAPI; 
0.5 μg/ml; Beyotime), and images were acquired using a Zeiss 
fluorescence microscope attached to a digital camera.

Real-Time Polymerase Chain Reaction 
(PCR)
Total RNA was extracted using Trizol reagent and dissolved in 
ultrapure distilled water (Invitrogen). Equal amounts of RNA were 
reverse transcribed at 25°C for 5 min, 42°C for 60 min, and 70°C for 
5 min using RevertAid First Strand cDNA Synthesis Kit (Thermo 
Fisher Scientific, Waltham, MA, USA). cDNA amplification was 
carried out in 20 µl PCR buffer using AceQ quantitative PCR 
(qPCR) SYBR Green Master Mix (Vazyme, Nanjing, China). 
The primers used for amplification in the experiment were 
as  follows: HIF-1α sense 5′-GTCTCCATTACCTGCCTCTG-3′ 
and antisense 5′-GATTCTTCGCTTCTGTGTCTTC-3′, vascular 
endothelial growth factor (VEGF) sense 5′-ACCCCACAAAG 
AGCTAGATAG-3′ and antisense 5′-CCTCTTCACTAAATGAC 
AGTCCC-3′, and glial fibrillary acidic protein (GFAP) sense 
5′-CCTTGCGCGGCACGAACGAG-3′ and antisense 5′-CCGA 
GCGAGTGCCTCCTGGT-3′. mRNA levels were normalized 
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to levels of β-actin measured in the same samples (sense 
5′-GCGTCCACCCGCGAGTACAA-3′ and antisense 5′-TCCA 
TGGCGAACTGGTGGCG-3′).

Astrocyte-Neuron Coculture
The astrocytes were passed in glass coverslips placed into 24-well 
plate at cell density of 1 × 105 astrocytes per coverslip. When the 
cultures reached 70% to 80% confluence, the cells were subjected 
to OGD for 6 h and reoxygenation for 24 h; at the same time, 
primary neurons were extracted. After OGD/R in astrocytes was 
completed, primary neurons were seeded at a concentration of 
1.2 × 104 cells per well above the astrocytes and cocultured with 
DMEM for 24 h.

Statistical Analysis
Statistical analyses were performed using Prism 5 software 
(GraphPad Software, Inc., San Diego, CA, USA). Data were 
expressed as the mean ± standard error (SE) of at least three 
independent experiments and compared using one-way analysis 
of variance with Tukey’s test. p < 0.05 was considered statistically 
significant difference.

RESULTS

TTB Attenuated OGD/R-Induced Damage 
in Astrocytes
To examine the cell toxicity of TTB and the protective effect of TTB 
against cytotoxicity induced by OGD/R, the MTT assay was used 
to assess the viability of astrocytes. There was no cytotoxicity in 
the TTB concentration range from 1.5625 to 50 µM (Figure 1A). 
The viability of astrocytes exposed to OGD/R was significantly 
decreased compared to the blank control group, but this effect was 
reversed after treatment with TTB at concentrations of 1.5625, 
6.25, and 25 µM (Figure 1B). These results indicated that TTB 
treatment was noncytotoxic and TTB attenuated OGD/R-induced 
astrocyte damage. Exposure to OGD/R significantly increased the 
release of LDH, whereas treatment with TTB markedly reduced 
the OGD/R-induced LDH release in astrocytes (Figure 1C).

TTB Alleviated OGD/R-Induced Oxidative 
Stress in Astrocytes
To examine the effect of TTB treatment on OGD/R-induced 
oxidative stress in astrocytes, we examined the SOD activity and 
the ROS level. We found that treatment with TTB significantly 

FIGURE 1 | Cell toxicity of TTB in regular astrocytes and effect of TTB on cell viability under oxygen-glucose deprivation/reoxygenation (OGD/R) were evaluated. 
(A) Primary astrocytes were incubated with TTB at the concentration range from 1.5625 to 50 µM for 30 h in the normal incubator. Cell survival was estimated by 
the MTT assay. (B and C) Primary astrocytes were incubated with TTB at 1.5625, 6.25, and 25 µM for 6 h OGD and 24 h reoxygenation. Cell survival and cell death 
were estimated by the MTT and LDH assays, respectively. *p < 0.05, **p < 0.01 vs. blank control group; ###p < 0.001 vs. blank control group; *p < 0.05, **p < 0.01, 
***p < 0.001 vs. OGD/R group. Data are mean ± SE of three independent experiments.
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reversed the decrease of SOD activity and the increase of 
intracellular ROS due to OGD/R (Figures 2A, B). These results 
indicated that TTB significantly improved OGD/R-induced 
oxidative stress in astrocytes.

TTB Induced Nrf2 Up-Regulation and 
Nuclear Translocation in OGD/R-Injured 
Astrocytes
When a stress response occurs, intracellular Nrf2 is easily transferred 
to the nucleus from the cytoplasm, which subsequently initiates 
the transcriptional activation of various antioxidant enzymes 
and phase II detoxification enzymes. The effect of TTB on Nrf2 
expression and nuclear translocation in OGD/R-induced astrocytes 
was determined by Western blot and immunofluorescence. Lamin 
B was used to assess the purity of the nuclear fraction. As shown in 
Figure 3A, compared to the control group, Nrf2 protein expression 
was dramatically increased by OGD for 6 h and reoxygenation for 
24 h but decreased by 12 and 24 h OGD and 24 h reoxygenation. 
TTB at 6.25 µM up-regulated Nrf2 protein expression in all 
three time courses under OGD/R. Moreover, OGD for 6 h and 
reoxygenation for 24 h significantly increased Nrf2 nuclear 
translocation in astrocytes, and treatment with TTB at 1.5625, 6.25, 
and 25 µM further facilitated Nrf2 translocation to the nucleus 
compared to the OGD/R group (Figures 3B–D). These results 
indicated that TTB treatment could up-regulate Nrf2 expression 
and promote Nrf2 nuclear translocation under OGD/R condition.

TTB Activates the Nrf2/HO-1 Pathway
Nrf2 is activated under stress conditions and translocates to the 
nucleus to initiate transcriptional activation of HO-1. Therefore, 
we examined the effect of TTB on the expression of Nrf2 and 
HO-1 proteins in astrocytes by Western blot. Cells were incubated 
with TTB at 1.5625, 6.25, and 25 µM under OGD for 6 h and 
reoxygenation for 24 h. As a result, we found that, compared 
to the OGD/R group, Nrf2 and HO-1 expression in protein 
level was significantly up-regulated in the OGD/R+TTB group 
(Figures 4A, B), which indicated that TTB might get involved in 
the Nrf2/HO-1 signal pathway.

TTB Inhibited OGD-Induced HIF-1α 
Accumulation, VEGF Release, and GFAP 
Expression in Astrocytes
OGD/R injury could trigger HIF-1α up-regulation. Nrf2 and 
HIF-1α are two transcription factors that represent oxygen and 
redox state. We further observed the effect of TTB on HIF-1α 
expression in both protein and mRNA levels under OGD/R 
condition. Cells were treated with TTB in different concentrations 
(1.5625, 6.25, and 25 µM) for 6 h OGD and 24 h reoxygenation 
in astrocytes. The results showed that TTB treatment inhibited 
OGD/R-induced up-regulation of HIF-1α (Figures 5A, B). 
Moreover, VEGF and GFAP gene expressions were measured 
by qPCR. TTB inhibited OGD/R-induced increase in GFAP and 
VEGF gene expressions (Figures 5C, D).

TTB Prevented OGD/R-Induced Inhibition 
of Neurite Outgrowth in Neuron-Astrocyte 
Coculture System
To test the hypothesis that OGD-treated astrocytes inhibit neurite 
outgrowth and whether TTB could alleviate the inhibition, we 
plated the neurons on top of the OGD/R-treated astrocytes in the 
presence of TTB at a concentration of 6.25 µM. We observed that 
neurons cocultured with OGD/R-induced astrocytes developed 
shorter major and minor neurites compared to neurons cocultured 
with the control astrocytes, whereas TTB attenuated the OGD/R-
induce inhibition of neurite growth. (Figure 6A–D). This result 
indicated that TTB could regulate astrocyte function and promote 
neuronal growth.

Nrf2 Inhibitor Abolished the Protective 
Effect of TTB by the Nrf2/HO-1 Pathway 
in OGD/R-Injured Astrocytes
To investigate whether Nrf2 function contributes to the 
neuroprotective effects of TTB, astrocytes were incubated with 
ML385, the Nrf2-specific inhibitor, to inhibit Nrf2 expression. 
Under OGD/R treatment, the expression of Nrf2 and HO-1 was 
inhibited by ML385 at a concentration of 5 µM. ML385 also 

FIGURE 2 | TTB inhibited the oxidative stress in astrocytes under OGD/R exposure. Primary astrocytes were treated with OGD for 6 h and reoxygenation for 24 h in 
the presence of TTB at 1.5625, 6.25, and 25 µM. (A) SOD activity was determined by the SOD assay. (B) ROS levels were estimated by the ROS assay. ##p < 0.01, 
###p < 0.001 vs. blank control group; *p < 0.05, ***p < 0.001 vs. OGD/R group. Data are mean ± SE of three independent experiments.
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abolished TTB-induced increase in Nrf2 and HO-1 expression 
(Figures 7A–C). Moreover, the effect of TTB on the expression of 
HIF-1α and VEGF was inhibited by ML385 (Figures 7A, D, E). 
These data demonstrated that the neuroprotective effect of TTB 
may be through the activation of the Nrf2/HO-1 pathway.

DISCUSSION

NHIE causes a series of oxidative bursts, cell apoptosis, and cascade 
of inflammatory responses. The potential therapy strategies have 
been limited and unsatisfactory (Mulkey et al., 2011; Zalewska 

et al., 2015). Astrocyte dysfunction is critically involved in oxidative 
stress, apoptosis, and inflammation in the pathologic process 
of NHIE. The current studies were undertaken to identify the 
hypothesis that TTB exposure would initiate the protective response 
against OGD/R-induced injury in astrocytes, which is an in vitro 
model to mimic NHIE. The transcription factor Nrf2 was identified 
to play an important role in modulating the neuroprotective effects 
of TTB.

TTB is a natural biphenanthrene that is a relatively rare 
secondary metabolite in the plant kingdom. TTB was only 
reported to have cytotoxicity against HGC-27 and HT-29 
cancer cell lines (Liu et al., 2016b). TTB contains phenolic 

FIGURE 3 | TTB induced Nrf2 activation and nuclear translocation in OGD/R-injured astrocytes. Primary astrocytes were incubated with TTB under OGD/R. 
Total proteins from treated astrocytes were extracted and used for Western blot. Nuclear and cytosolic proteins were determined by Western blot and 
immunofluorescence. (A) TTB at 6.25 µM increased Nrf2 expression in total protein under OGD for 6, 12, and 24 h after 24 h reoxygenation. (B and C) TTB at 
1.5625, 6.25, and 25 µM decreased Nrf2 expression in the cytosol of astrocytes but increased in the nucleus at 6 h OGD and 24 h rexoygenation. Data are 
presented as relative density units normalized to β-actin. (D) Immunofluorescence staining was performed to detect the effects of TTB on Nrf2 translocation at 6 h 
OGD followed by 24 h rexoygenation. DAPI was used as a nuclei marker (40× magnification). #p < 0.05, ##p < 0.01, ###p < 0.001 vs. blank control group; *p < 0.05, 
**p < 0.01 vs. OGD/R group. Data are mean ± SE of three independent experiments.
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FIGURE 4 | TTB treatment activated Nrf2/HO-1 expression. Primary astrocytes were incubated with TTB at 1.5625, 6.25, and 25 µM for 6 h OGD and 
24 h reoxygenation. (A and B) Western blot was carried out to determine the expression of Nrf2 and HO-1, respectively. Data are presented as relative 
density units normalized to β-actin ##p < 0.01, ###p < 0.001 vs. blank control group; *p < 0.05 vs. OGD/R group. Data are mean ± SE of three independent 
experiments.

FIGURE 5 | TTB reduced HIF-1α, VEGF, and GFAP expression in OGD/R-injured astrocytes. Primary astrocytes were incubated with TTB at 1.5625, 6.25, and 
25 µM for 6 h OGD and 24 h reoxygenation. RNA was extracted and HIF-1α, VEGF, and GFAP mRNA levels were quantified by qPCR. Western blot was carried out 
for HIF-1α protein determination. Results were normalized to β-actin and expressed as fold over control. (A and B) HIF-1α mRNA expression was reduced by TTB 
treatment in OGD/R-injured astrocytes, which was consistent with HIF-1α protein level. (C and D) TTB inhibited VEGF and GFAP mRNA expression in OGD/R-
injured astrocytes. ##p < 0.01, ###p < 0.001 vs. blank control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. OGD/R group. Data are mean ± SE of three independent 
experiments.
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FIGURE 6 | Effects of TTB-treated astrocytes on hippocampal neuron neurite outgrowth. Astrocytes were treated with 6.25 µM TTB for 6 h OGD and 24 h 
reoxygenation. Hippocampal neurons were plated on top of pretreated astrocytes for an additional 24 h. Then, cultures were fixed and stained with the antibody 
of neuron-specific β-III-tubulin and a fluorescent secondary antibody. ImageJ was used to measure neurite length. (A) Control, (B) OGD/R, (C) TTB treatment, and 
(D) morphometric quantification of major neurite and minor neurite length. ###p < 0.001 vs. blank control group; **p < 0.01, ***p < 0.001 vs. OGD/R group. Data are 
mean ± SE of three independent experiments.

FIGURE 7 | Effects of ML385 (Nrf2-specific inhibitor) on Nrf2, HO-1, HIF-1α, and VEGF levels in OGD/R-treated astrocytes. Western blot and qPCR were carried 
out. Astrocytes were preincubated with ML385 at a concentration of 5 µM for 12 h and then cells were treated with 6.25 µM TTB for 6 h OGD and 24 h reoxygenation. 
(A–D) Expression of Nrf2, HO-1, and HIF-1α was determined by Western blot, respectively. (E) Expression of VEGF in the mRNA level was determined by qPCR. 
*p < 0.05, **p < 0.01, ***p < 0.001. Data are mean ± SE of three independent experiments.
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hydroxyl groups, which determines its significant antioxidant 
activity (Quiniou et al., 2008). Recent studies have identified 
that antioxidants can protect astrocytes from hypoxia/ischemia 
(H/I)-induced dysfunction (Bao et al., 2016). In the present 
study, we exposed primary cultures of astrocytes to OGD for 
6  h and reoxygenation for 24 h. Our results demonstrated for 
the first time that TTB at 6.25 and 25 μM increased cell survival 
significantly in OGD/R-induced injury. TTB also decreased the 
LDH release to the culture medium.

H/I exposure causes an oxidative stress and induces a significant 
damage in brain tissue, which can be described as an increase in 
the rate of ROS generation and imbalance of antioxidant defense 
system in the molecular level (Brekke et al., 2017; Parfenova 
et al., 2018). Excessive ROS initiates pro-inflammatory or growth 
stimulatory signals that are associated with cell death. Therefore, 
new pharmacological strategies aimed at the antioxidant system 
may potentially improve clinical management. The present study 
demonstrated that OGD/R exposure markedly increased ROS 
production in astrocytes compared to the control group and this 
increase was attenuated by TTB treatment. SODs, the antioxidant 
enzymes, are generally considered as O2- scavengers against tissue 
and cellular damage caused by ROS (Fridovich, 1995; Li et al., 
2008). In our study, OGD/R induced the decrease of SOD activity 
and TTB prevented the decrease of SOD activity in response to 
OGD/R. These data illustrated that TTB treatment had protective 
roles against OGD/R-induced oxidative stress.

Nrf2 is a well-known key regulator of cellular resistance 
to oxidants and is activated through translocation from 
the cytoplasm to the nucleus, where it induces HO-1 gene 
expression as a target antioxidative gene (Kensler et al., 2007; 
Wu et al., 2015). HO-1, a rate-limiting enzyme in the transition 
of heme into biliverdin, also has a pivotal function in response 
to oxidative stress (Cao et al., 2017). When Nrf2 is up-regulated 
and translocated into the nucleus from the cytoplasm 
under stress conditions, the process is also essential for the 
activation of HO-1 expression (Kang et al., 2015). Growing 
evidence demonstrated that the Nrf2/HO-1 signaling pathway 
participated in the process of oxidative stress in several brain 
dysfunctional diseases (Meng et al., 2016; Bellaver et al., 2017; 
Zhao et al., 2018). Several antioxidant ingredients indicated 
that they protected cell damage by up-regulating Nrf2 and  
HO-1 expression in various diseases (Hsu et al., 2012; Yao et al., 
2015; Jung et al., 2017). To explore whether TTB-induced 
cytoprotection was dependent on the presence of Nrf2 by 
inhibiting oxidative stress, the astrocytes were treated with 
OGD in different time courses of 6, 12, and 24 h followed by 
reoxygenation for 24 h. Our results showed that the protein 
levels of Nrf2 were increased by OGD for 6 h and reoxygenation 
for 24 h but decreased by OGD for 12 or 24 h and reoxygenation 
for 24 h compared to the control group. Meanwhile, TTB 
up-regulated Nrf2 expression in total protein at all time points 
compared to the OGD/R group. The results demonstrated 
TTB potentially prolonged the activation state of the Nrf2 
pathway and maintained the protection against oxidative stress 
in OGD/R-induced astrocytes. Furthermore, with OGD for 6 
h and reoxygenation for 24 h treatment, TTB facilitated Nrf2 
translocation to the nucleus and increased Nrf2 expression in 

the nucleus, suggesting that TTB promoted the activation of the 
Nrf2/HO-1 pathway in H/I injury in the early phase.

HIF-1α is an important transcription factor in a wide variety 
of responses to hypoxia (Chavez et al., 2000). Using the astrocyte-
neuron coculture model, the selective loss of HIF-1α function in 
neuron induced neuronal susceptibility to H/I injury, whereas 
the loss of HIF-1α function in astrocytes inhibits neuronal death 
by hypoxia (Vangeison et al., 2008). During hypoxia-induced 
CNS injury, HIF-1α expression targets multiple genes, including 
VEGF. The activation of VEGF expression under hypoxic 
conditions has been investigated in several studies. Notably, 
astrocytes secrete basal levels of VEGF under physiological 
conditions and the expression is further up-regulated by hypoxia. 
VEGF gene expression is transcriptionally regulated by HIF-1α 
(Marti et al., 2000; Schmid-Brunclik et al., 2008; Wiesner et al., 
2013). Some previous studies identified that VEGF protects 
neurons from ischemic insults and promoted neurogenesis 
after cerebral ischemic injury (Ma et al., 2012; Liu et al., 2018). 
However, other studies reported that anti-VEGF treatment 
blocks vascular leakage in hypoxia (Nordal et al., 2004; Kaur 
et al., 2006). In the present study, it showed that OGD/R induced 
HIF-1α and VEGF up-regulation. TTB inverted the effect of 
OGD/R on HIF-1α/VEGF expression in astrocytes. The results 
disclosed that the HIF-1α/VEGF pathway might be involved in 
the astrocyte oxidative stress, providing new insights into TTB 
protection.

Nrf2 and HIF-1α represent the oxygen and redox state-
dependent transcription factors. Their stabilization by redox 
status decides the cell fate, which means the existence of interplay 
between Nrf2 and the HIF-1α/VEGF signaling pathway under 
H/I injury. One study demonstrated that hypoxia induced Nrf2 
activation, resulting in the induction of Nrf2-dependent target 
thioredoxin-1 enhancement of HIF-1α response in A549 cells 
(Malec et al., 2010). Li et al. indicated that Nrf2 knockdown 
inhibits venous hypertension-induced activation of the HIF-1α/
VEGF pathway (Li et al., 2016). In our study, TTB may act as an 
Nrf2 activator that up-regulated and maintained Nrf2 expression 
after OGD/R. To further explore whether the protection of TTB 
on OGD/R-induced injury in astrocytes was dependent on 
the activation of the Nrf2 pathway, ML385, a small-molecule 
Nrf2 inhibitor, was implemented to observe the protective 
mechanism of TTB. ML385 increases the ubiquitination and 
inhibits the proteasome degradation of Nrf2 binding to Keap1 
and subsequently suppresses Nrf2 expression (Jung et al., 
2018). Our results displayed that, with the combination of TTB 
and MLB385 treatment, MLB385 reversed the TTB-induced 
up-regulation of Nrf2 and HO-1 expression in OGD/R-induced 
astrocytes. These results indicated that the activation of the Nrf2/
HO-1 signaling pathway after TTB treatment was responsible 
for the protection of antioxidative stress. Furthermore, we found 
that, under OGD/R treatment in astrocytes, MLB385 induced 
the maintenance of the high level of HIF-1α expression. The 
combination of TTB and MLB385 decreased the HIF-1α protein 
level compared to MLB385 alone. These results suggested that 
TTB inhibited OGD/R-induced astrocyte oxidative stress at least 
partially through the down-regulation of HIF-1α and VEGF via 
the Nrf2/HO-1 signaling pathway.
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CNS diseases, such as trauma, H/I injury, neuroinflammation, 
or neurodegeneration, cause astrocytes to become reactive. 
Reactive astrocytes were verified to control formation, 
maintenance, function, and the removal of neuronal synapses 
(Eroglu and Barres, 2010; Koizumi et al., 2018). Our study verified 
that OGD/R induced astrocyte reactivation by up-regulating 
GFAP expression. Meanwhile, TTB inhibited GFAP expression, 
which revealed that TTB inhibited OGD/R-induced astrocyte 
reactivation. The mechanism might go through the alteration of 
factor secretion and gene expression. A previous study showed 
that proteins released by astrocytes selectively increased neuron 
axon length, branching, function, and synapse formation 
(Hughes et al., 2010). Other study demonstrated that astrocytes 
produced mRNAs that encoded synaptic adhesion proteins, 
which affected neuronal synapse formation (Cahoy et al., 2008). 
Astrocyte-neuron interaction might participate in neuronal 
plasticity. In our study, with neuron-astrocyte coculture, OGD/
R-induced astrocytes inhibited neurite growth in neurons 
compared to the control group. TTB-treated astrocytes reversed 
the inhibition of OGD/R on neurite growth of neurons in the 
coculture system. It suggested that TTB regulated astrocyte 
function and subsequently promoted neuronal plasticity under 
H/I injury. However, the deep mechanism of which factors 
were secreted by astrocytes and which genes were regulated 
remains unknown.

Taken together, TTB displays antioxidant activities in 
OGD/R-induced astrocytes. Our study provides evidence that 
TTB effectively suppresses excessive ROS production and 
increases SOD activity in terms of attenuation of HIF-1α and 
VEGF expression by activating the Nrf2/HO-1 pathway, which 
depends on Nrf2 nuclear translocation and up-regulation of 
HO-1, to protect OGD/R-induced cell oxidative stress. Also, 
TTB administration in reactive astrocytes by OGD/R might 
contribute to reverse the inhibition of OGD/R on neurite 
growth in neurons. These data suggest that TTB could be a novel 

medication that imparts effective neuroprotection against NHIE 
to prevent cerebral oxidative stress-induced injury.
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Secondary injuries mediated by oxidative stress lead to deterioration of neurological
functions after intracerebral hemorrhage (ICH). Cortical astrocytes are among the most
important cells in the central nervous system (CNS), and play key roles in maintaining
redox homeostasis by providing oxidative stress defense. Hemin is a product of
hemoglobin degradation, which has strong toxicity and can induce reactive oxygen
species (ROS). Melatonin (Mel) and its metabolites are well tolerated without toxicity,
prevent tissue damage as well as effectively assist in scavenging free radicals. We
evaluated the hemin neurotoxicity to astrocytes and the resistance of Mel-treated
astrocytes to hemin neurotoxicity. And we found Mel induced PKCα phosphorylation
(p-PKC), nuclear translocation of Nrf2 in astrocytes, and upregulation of HO-1, which
contributed to the reduction of ROS accumulation and cell apoptosis. Nrf2 and HO1
protein expression upregulated by Mel were decreased after administration of PKC
inhibitor, Ro 31-8220 (Ro 31). Luzindole (Luz), a melatonin receptor inhibitor, suppressed
p-PKCα, HO-1, and Nrf2 expression upregulated by Mel and increased cell apoptosis
rate. The upregulation of HO-1 induced by Mel was depressed by knocking down Nrf2
expression by siRNA, which also decreased the resistance of astrocytes to toxicity of
hemin. Mel activates astrocytes through PKCα/Nrf2/HO-1 signaling pathway to acquire
resistance to toxicity of hemin and resist from oxidative stress and apoptosis. The
positive effect of Mel on PKCα/Nrf2/HO-1 signaling pathway may become a new target
for neuroprotection after intracerebral hemorrhage.

Keywords: intracerebral hemorrhage, hemin, melatonin, PKCα, Nrf2, oxidative stress

INTRODUCTION

ICH is a particularly destructive form of stroke with high mortality and morbidity, and
survivors typically have severe nervous harm (Qureshi et al., 2009; Keep et al., 2012). Although
surgical decompression of hemorrhage is widely believed to be a life-saving method, there is no
authenticated medical or surgical treatment for ICH (Adeoye and Broderick, 2010; Keep et al.,
2012; Hemphill et al., 2015). Mounting evidence suggests that intracerebral infusion of hemoglobin
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(Hb) and its catabolite such as iron, bilirubin and hemin is a
major cause of brain injury induced by ICH (Zhao et al., 2011;
Keep et al., 2012; Xi et al., 2014). These molecules increase
the secretion of inflammatory cytokines including IL-1β and
TNF-α, which play a key role in inflammation and enlarge the
inflammatory cascade (Wang J. et al., 2018). Oxidative stress
is a state in which reactive oxygen species (ROS) production
and antioxidant capacity are imbalanced due to the dysfunction
of the cellular antioxidant system (Santofimia-Castano et al.,
2015). Excessive ROS could lead to oxidative stress, destroying
DNA, lipids and protein, and ultimately leading to irreversible
damage and apoptosis of cells (Jung et al., 2010; Reczek and
Chandel, 2015). The astrocyte, the major gliocyte in CNS, helps
to maintain CNS stability and protects neurons against oxidative
stress, besides providing neurotrophic factors (Huang et al., 2016;
Liu et al., 2017; Wu et al., 2017). Therefore, inhibition of oxidative
stress in astrocytes is paramount.

Protein kinase C (PKC) enzymes play a major role in
many metabolic and signaling pathways, and participate in
the regulation of gene expression, cell growth, migration,
proliferation, differentiation and apoptosis. Therefore, lack of
PKC and/or its dysregulation may lead to different pathologies,
such as diabetes, heart failure, Alzheimer’s and Parkinson’s
diseases, inflammatory diseases, oxidative stress, and even cancer
(Isakov, 2018). PKCα is a typical subtype of PKC and plays an
important role in antioxidant stress (Chueakula et al., 2018).
It has been reported that phosphorylation of Nrf2 by PKC
is a key event for Nrf2 nuclear translocation in response to
oxidative stress (Huang et al., 2000, 2002). Nrf2 is a member
of NF-E2 family of nuclear basic leucine zipper transcription
factors, being a key transcription factor that regulates antioxidant
reaction against ROS (Itoh et al., 1999; Shih et al., 2003).
Nrf2 is usually combined with an actin binding protein
Kelch-like ECH associated protein 1 (Keap1) and anchored
in the cytoplasm (Jung et al., 2010; Negi et al., 2011; Wang
et al., 2012; Deng et al., 2015). Upon cells stimulation, Nrf2
then escapes from Keap1-mediated degradation, transfers from
cytosol into nucleus, and subsequently binds to a promoter
sequence called antioxidant response (ARE) (Tao et al., 2013;
Kleszczynski et al., 2016) to produce a cytoprotective response
characterized by high expression of antioxidant enzymes such
as hemeoxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase
1 (NQO1), Superoxide Dismutase 2 (SOD2), glutamate cysteine
ligase (GCL), and glutathione S-transferase (GST), for example
(Kensler et al., 2007; Liu et al., 2015; Kleszczynski et al.,
2016). Among them, HO-1 presents a cytoprotective effect
on oxidative and inflammatory stress, showing an important
metabolic function. It is also the rate-limiting step of oxidative
catabolism in heme group (Parada et al., 2014). In different
cellular models, the induction of HO-1 is usually related to
cell protection, including cerebral ischemia (Parada et al., 2014;
Liu et al., 2015).

Melatonin (N-acetyl-5-methoxytryptamine, Mel) is a
neurohormone produced in the pineal gland and released
in the blood and cerebrospinal fluid (CSF) in a circadian
rhythm (Aladag et al., 2009; Cao et al., 2017; Cipolla-Neto
and Amaral, 2018). Mel as well as its metabolites are well

tolerated without toxicity, prevent tissue damage as well as
effectively assist in scavenging hydroxyl radical (HO), nitric
oxide (NO), superoxide anion radical (O2 -), peroxynitrite
anion (ONOO–), and peroxynitrous acid (ONOOH), and other
free radicals (Reiter et al., 2000; Wu et al., 2012). Recently, the
effects of Mel on Nrf2 pathway have attracted more attention,
specially due to its neuroprotective effect (Negi et al., 2011;
Wang et al., 2012; Deng et al., 2015; Kleszczynski et al., 2016;
Trivedi et al., 2016; Cao et al., 2017). Mel has already been
reported to decrease neuroinflammation and oxidative stress
via Nrf2 in experimental diabetic neuropathy (Negi et al., 2011).
Wang et al. (2012) have evaluated the protection of Mel on
early brain injury from subarachnoid hemorrhage (SAH) via the
Nrf2-ARE pathway.

Whether the anti-oxidative effect of Mel in hemin treated
astrocytes is related to the PKCα/Nrf2/HO-1 signaling pathway
has not been thoroughly studied. Consequently, our team
assumed Mel regulated the signaling pathway of PKCα/Nrf2/HO-
1 and might be an effective way to combat oxidative damage
induced by hemin. In our study, we evaluated cell viability
and apoptosis of Mel-treated astrocytes exposed to hemin. ROS,
TNNEL staining, immunostaining, and protein expression of
PKCα, Nrf2 and HO-1 were evaluated to study the resistance
mechanisms of Mel-treated astrocytes to Hemin oxidative stress
through PKCα/Nrf2/HO-1 signaling pathway.

MATERIALS AND METHODS

Isolation and Culture of Astrocytes
All experimental schemes were authorized by the Institutional
Animal Care and Use Committee of Shanghai Jiao Tong
University in Shanghai, China. The primary astrocyte cells were
prepared from pallium of newborn C57BL/6 mice, within 24 h
from birth, obtained from Jester Laboratory Animal Co., Ltd.
(Shanghai, China). After removing meninges and blood vessels
as much as possible, the remaining cortical tissues were gently
ground with 0.25% trypsin and digested at 37◦C for 10 min, then
plated on a 75 cm2 flask coated with poly-D-lysine (Corning,
United States) at a density of 20,000 cells/cm2, and kept at 37◦C
at 95% humidity and 5% carbon dioxide (CO2). The cells fused
in 13–14 days, and half of the media was replaced by fresh media
every 4 days. Pure second-to eighth-generation astrocytes were
used for the following experiments.

Study Design
The study was performed in three parts. In vitro experiments
were designed as follows. In the first part, we evaluated the
hemin neurotoxicity to astrocytes and the resistance of Mel-
treated astrocytes to hemin neurotoxicity. In the second part, we
specifically focused on PKC inhibitor, Ro 31-8220 (Ro 31) and
the Mel receptor inhibitor, Luzindole (Luz). The regulation of Ro
31 and Luz on hemin resistance in Mel-treated astrocytes was
studied in this part. In the third part, we studied whether Mel-
treated astrocytes transfected with 50 nM si-Nrf2 could resist the
hemin neurotoxicity.
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Experiment 1
Astrocytes were seeded on 6, 12, 24, or 96-well plates, treated with
30 µM hemin for 24 h, with or without 30 or 60 µM Mel (Control,
Control + 60 µM Mel, Hemin, Hemin + 30 µM Mel, Hemin +
60 µM Mel). Dosages of hemin and Mel were chosen as described
previously (Wang Z. et al., 2018). Cells were gathered for cell
viability assay, luciferase reporter gene assay, TUNEL staining,
intracellular ROS detection, immunostaining, western blotting
analysis, and real-time PCR analysis.

Experiment 2
Astrocytes were seeded on 6, 12, or 24-well plates, pre-treated
with or without 1 µM Luz/3 µM Ro 31 for 6 h, then exposed
to 30 µM hemin, with or without 60 µM Mel for 24 h (Control,
Hemin, Hemin+Mel, Hemin+Mel+ Luz/ Ro 31). The dosage
of Ro 31 and Luz was selected according to previous studies
(Juszczak et al., 2014; Santofimia-Castano et al., 2015). Cells
were gathered for TUNEL staining, immunostaining and western
blotting analysis.

Experiment 3
Fifty nanomolar si-Nrf2 or negative control siRNA (si-NC) were
transfected to astrocytes for 48 h, followed by 30 µM hemin
incubation, with or without 60 µM Mel for 24 h (Control,
Hemin + Mel, Hemin + si-NC + Mel, Hemin + si-Nrf2 +
Mel). Cells were gathered and operated according to methods
of experiment 2.

Drug Administration and siRNA
Transfection
Hemin and Mel (Aladdin, China) were dissolved in absolute
ethyl alcohol and diluted with 0.9% normal saline. Ro 31
were purchased from TargetMol, United States. Luz were
purchased from Santa Cruz Biotechnology, United States.
We transfected astrocytes with Nrf2 specific small interfering
RNA (si-Nrf2) (GenePharma, China) by Lipofectamine R© 2000
transfection reagent (Invitrogen, United States) according to
the manufacturer’s instructions. Western blotting was applied to
prove the si-Nrf2 knockdown efficiency.

Cell Viability Assay
Cell viability was assessed using Cell Counting Kit-8 (CCK-8)
(Beyotime, China) according to the manufacturer’s instructions.
Cells were seeded into a 96-well plate at a density of 104 per well.
After 24 h, the cells were treated with 0, 5, 10, 20, 30, 40, and
50 µM hemin with or without 60 µM Mel for 24 h. Then 10 µL
CCK-8 working fluid was added to each pore and cultured for
4h at cell culture incubator with 37◦C, 95% humidity and 5%
CO2. The results of CCK-8 was tested by the microplate reader
(Biotec, United States) at 450 nm and expressed as a percentage
of the control group.

Cytotoxicity Assessment by Lactate
Dehydrogenase (LDH) Assay
Lactate dehydrogenase cytotoxicity kit (Beyotime Biotechnology,
China) was used to detected cytotoxicity according to the

manufacturer’s instructions. Cells were plated in 24-well plates.
Cells were exposed to 30 µM hemin with or without 30 or 60 µM
Mel for 24 h. The results of LDH was tested by the microplate
reader (Biotec, United States) at 490 nm and expressed as a
percentage of the control group.

Detection of ROS
Cells were plated on 6-well plates, handled according to
experiment design. ROS assay kit (Beyotime Biotechnology,
China) was used to detect ROS accumulation according to
the manufacturer’s instructions. Astrocytes were incubated with
10 µM DCFH-DA in serum free DMEM for 30 min at cell
culture incubator with 37◦C under 95% humidity with 5% CO2.
Cells were washed with phosphate buffer solution (PBS) three
times, and five randomly fields were pictured using a fluorescence
microscope (Leica, Germany).

Plasmid Constructs and Luciferase
Reporter Gene Assay
Luciferase reporter gene assay was used to analyze whether
there was a direct link between Nrf2 and HO-1 in primary
astrocytes. A fragment of HO-1 that contains the promotor
binding sequence (−500 bp upstream to 100 bp downstream)
was cloned into a luciferase reporter construct (GenePharma).
Overexpressed Nrf2 plasmid (Nrf2) (GenePharma) was
constructed using the empty vector PCDNA 3.1 and transfected
into primary astrocytes on 12-well plates. PCDNA 3.1 was used
as a negative control (NC). Luciferase activity was measured
24 h after transfection using Dual-Glo Luciferase Reporter Assay
kit (Promega) according to the directions of the manufacturer.
Experiments were repeated three times independently.

TUNEL Staining
TUNEL staining (In Situ Cell Death Detection Kit, Roche,
Germany) was used to detected cellular apoptosis. Astrocytes
were seeded onto coverslips and handled according to experiment
designs. Then the cells were fixed in 4% paraformaldehyde (PFA)
for 10 min. After washing with PBS three times, cells were
permeated with 0.3% Triton X-100 for 10 min. The coverslips
were embedded under the reaction fluid in dark humidified
atmosphere for 60 min at 37◦C. Then the nuclei were stained with
DAPI (1:5000, Beyotime Biotechnology, China) for 5 min at room
temperature in the dark. The TUNEL-positive cells displaying red
nuclear staining were observed and analyzed by a confocal laser-
scanning microscope (Leica, Germany). Five fields were chosen
randomly under high power magnification, and the apoptosis
ratio was calculated as number of TUNEL-positive cells to total
number of cells.

Immunostaining
Cells were plated onto coverslips, handled according to
experiment design. The cells were fixed in 4% PFA for 10 min.
After washing with PBS three times, fixed cells were permeated
with 0.3% Triton X-100 for 10 min, and blocked with 1%
bovine serum albumin (BSA) for 1h at room temperature, then
incubated overnight at 4◦C with primary antibodies: rabbit
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anti-Nrf2 polyclonal antibody (1:200, Santa Cruz Biotechnology,
United States) and rabbit anti-HO-1 polyclonal antibody (1:300,
Abcam, United Kingdom). After washing with PBS three
times, the cells were incubated with corresponding secondary
fluorescent antibodies (1:300, Invitrogen, United States): Alexa
Fluor 488 donkey anti-rabbit IgG for 1 h at room temperature.
And then the nuclei were counterstained with DAPI (1:5000,
Beyotime Biotechnology, China). A confocal laser-scanning
microscope (Leica, Germany) was used to observe and analyze
fluorescence images.

Western Blotting Analysis
Cells were plated on 6-well plates, handled according to
experiment design and a previous study (Jing et al., 2019).
RIPA lysis buffer (Merk Millipore, Germany) with protease
inhibitor cocktail (Roche, Swiss) was used to obtain the cell
lysate. BCA Protein Assay Kit (Thermo Fisher Scientific,
United States) was used to determine the protein concentrations.
Each protein sample (30 µg) was loaded for electrophoresis,
then transferred onto polyvinylidene difluoride (PVDF)
membranes, blocked with 5% non-fat milk and 0.05%
Tween-20 at room temperature for 1 h. The membranes
were incubated overnight at 4◦C with primary antibodies:
rabbit anti-Nrf2, mouse anti-β-actin (1:1000, Santa Cruz
Biotechnology, United States), rabbit anti-HO-1 (1:2000,
Abcam, United Kingdom) and rabbit anti-p-PKCα (1:2000,
ABclonal Technology, China). Later, the membranes were
washed three times and incubated with proper horseradish
peroxidase conjugated secondary antibody for 1 h at room
temperature. After washing, the membranes were reacted
with enhanced chemiluminescence (ECL) solution (Thermo
Fisher Scientific, United States). We used Tanon image system
(Shanghai, China) to detect the chemiluminescence signal. The
relative intensity of the bands was performed by ImageJ 1.6.0
(NIH, United States).

Total RNA Extraction and Quantitative
Real-Time PCR (RT-PCR) Analysis
Cells were plated on 12-well plates and handled according
to experiment design. Total RNA was extracted using Trizol
reagent (Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s protocol. Reverse transcription and amplifying
was carried out using reverse transcriptase and Taq DNA
polymerase (Yeasen Biotech Co., Ltd., Shanghai, China),
respectively. RT-PCR analyses were performed using the SYBR
Green Master Mix Kit (Yeasen Biotech Co., Ltd.) and the
PCR thermal cycler (Applied Biosystems, CA, United States).
Nrf2, HO-1, NQO1, SOD2, IL-6, IL-10, and TNFα mRNA
expressions were determined and quantified to the expression
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The
mRNA relative expressions were normalized to control group.
The primer sequences are listed in Table 1.

Statistical Analysis
Statistical analysis was performed by SPSS 21.0 (SPSS Inc.,
Chicago, IL, United States). All data were presented as the

mean ± standard error of the mean (SEM) of at least
three independent experiments. The average bands density for
control groups was set as 1.0, and values of all band density
were normalized by the average value of control group to
facilitate comparisons. Statistical comparison was performed
using Student’s t-test or one-way analysis of variance (ANOVA)
tests. Statistical significance was deemed at P < 0.05.

RESULTS

Neurotoxicity Induced by Hemin Led to
Primary Astrocytes Apoptosis
In order to observe the neurotoxicity induced by hemin on
primary astrocytes, CCK-8 and LDH releasing assays were used
to evaluate cell viability and cell death. Our results showed that
cell viability decreases with hemin dosage (Figure 1A). According
to our experimental results, 30 µM hemin was chosen for the
subsequent experiments as it could significantly increase cell
death (P < 0.01).

Mel Treatment Enhances the Resistance
of Astrocytes to Neurotoxicity From
Hemin, and Regulated Cytokines mRNA
Expression
To explore whether Mel-treated astrocytes gain resistance to
neurotoxicity from hemin, primary astrocytes were exposed
to 30 µM hemin for 24 h, with or without 30 or 60 µM
Mel. After Mel administration, astrocytes were resistant to
neurotoxicity induced by hemin (Figure 1A) and LDH releasing
assay (Figure 1B) showed Mel-treatment significantly decreased
LDH releasing. The cell apoptosis rate decreased significantly in
Mel-treated astrocytes compared to non-treated cells (P < 0.001)
(Figure 2). We found that the protective effect of Mel
was dose-dependent. Higher Mel doses presented a stronger

TABLE 1 | Primer sequences for qRT-PCR.

Gene Forward primer/ Reverse primer (5′-3′)

HO-1 CAAGGAGGTACACATCCAAGCC/
TACAAGGAAGCCATCACCAGCT

NQO1 TGGTGACATAATCCGACAAGAT/
TTACCCACCTGAATGCCATAAT

SOD2 ACGCCACCGAGGAGAAGTACC/
CGCTTGATAGCCTCCAGCAACTC

IL-6 TGGGACTGATGCTGGTGACA/
ACAGGTCTGTTGGGAGTGGT

IL-10 CTGCTATGCTGCCTGCTCTTACTG/
ATGTGGCTCTGGCCGACTGG

TNFα TGATCGGTCCCAACAAGGA/
TGCTTGGTGGTTTGCTACGA

GAPDH GATGGTGAAGGTCGGTGTGA/
TGAACTTGCCGTGGGTAGAG

HO-1, heme oxygenase 1; NQO1, NAD(P)H quinone oxidoreductase 1; SOD2,
superoxide dismutase 2; IL-6, interleukin 6; IL-10, interleukin 10; TNFα, tumor
necrosis factor α; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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FIGURE 1 | Mel-treatment protected astrocytes from neurotoxicity induced by hemin. (A) Astrocytes were exposed to 0, 5, 10, 20, 30, 40, and 50 µM hemin for
24 h with or without 60 µM Mel, then the cell viability was evaluated by CCK-8. (B) Astrocytes were exposed to 30 µM hemin with or without 30 or 60 µM Mel for
24 h, and the cell death was evaluated by LDH releasing assay; (C) DCFH-DA probes were loaded, the intracellular ROS were observed using fluorescent
microscope, bar = 400 µm; (D) mRNA expression of TNFα, IL-6, and IL-10 was checked. The relative expression of the mRNA was normalized to control.
(E) Luciferase activity analysis was examined and normalized to control. The results of densitometric analysis of the bands were plotted into histogram. Difference
between groups was analyzed using One-way ANOVA analysis or Student’s t-test. ∗P < 0.05 and ∗∗P < 0.01.
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FIGURE 2 | The effect of Mel on astrocytes apoptotic ratio in five groups was
indicated. TUNEL staining (red) was used to mark apoptotic cells,
bar = 200 µm. The apoptosis rate was plotted into histogram and the relative
expression of the proteins was normalized to control. Difference between
groups was analyzed using One-way ANOVA analysis or Student’s t-test.
∗∗P < 0.01.

antitoxic effect than lower doses (Figures 1A,B). Then we
checked the mRNA expression of cytokines. TNFα and IL-
6 decreased significantly after Mel treatment (P < 0.001 and
P < 0.05, respectively), while IL-10 increased significantly
(P < 0.05) (Figure 1D).

Mel Down-Regulated ROS Accumulation
Induced by Hemin
The neurotoxicity of hemin is mainly due to the production of
ROS. To explore whether Mel-treatment could protect astrocytes
against neurotoxicity from hemin by blocking intracellular
ROS accumulation, ROS probe DCFH-DA was loaded into
the cells. The results (Figure 1C) showed that hemin could
significantly increase ROS accumulation while Mel-treatment
significantly reduced intracellular ROS accumulation induced by
hemin (P < 0.05).

Mel Up-Regulated Astrocytes HO-1
Expression After Hemin Exposure, and
Up-Regulated NQO1, SOD2 mRNA
Expression Simultaneously
HO-1 catalyzes hemin oxidative catabolism. In order to
explore whether the protective effect of Mel-treatment

is related to HO-1 induction, the expression of HO-1
was detected by immunostaining and western blotting.
The immunostaining revealed that the HO-1 staining in
astrocytes after hemin exposure increased after Mel-treatment
(Figure 3A). Then we further investigated HO-1 protein
expression by western blotting analysis. The results revealed
that the HO-1 protein expression after Mel treatment
was increased in parallel with HO-1 immunostaining
(P < 0.01) (Figure 3B). The up-regulation capability of
Mel was dose-dependent.

Subsequently, we further examined the effect of Mel on the
mRNA expression of phase II antioxidant enzymes besides HO-1.
The results were consistent with the protein expression of HO-1
(P < 0.01, P < 0.01, and P < 0.01, respectively) (Figure 3C).

Mel Increased Astrocytes Nrf2
Expression and Promoted Nrf2 Nuclear
Translocation
Nrf2 is the major endogenous regulator of antioxidant reaction.
Luciferase gene reporter showed that the fluorescence
activity of astrocytes with overexpressed Nrf2 plasmid
increased significantly, compared with the NC plasmid
(P < 0.01) (Figure 1E). By immunostaining and western
blotting, we observed whether the HO-1 expression was
regulated by Nrf2 signaling pathway. The immunostaining
(Figure 4A) showed that activated Nrf2 transferred into
the nuclei of astrocytes under the stimulation of Mel.
The protein expression of Nrf2 after 30 and 60 µM Mel
stimulation (Figure 4B) was higher than those of no-
treatment groups (P < 0.01). Western blotting of nuclear
and cytoplasmic samples (Figure 4C) revealed that the Nrf2
ratio of nucleus to cytoplasm of astrocytes treated with Mel
was significantly higher than that of no-treatment group
(P < 0.01) and Nrf2 nuclear augmentation also showed a dose
dependence (Figure 4C).

Mel Increased Astrocytes p-PKCα

Expression, and Nrf2 and HO1
Expression Decreased After PKC
Inhibition
Protein kinase C activation is a key event of Nrf2 nuclear
translocation during oxidative stress. We observed that p-PKCα

protein expression was higher in the Mel treated group than
in untreated ones (P < 0.01) (Figure 5A), with a simultaneous
increase in Nrf2 and HO1 expression. When we administrated
the PKC inhibitor (Ro 31) in addition to Mel, both p-PKCα

(P < 0.05) and HO-1 and Nrf2 (P < 0.01 and P < 0.01,
respectively) upregulations by Mel were suppressed (Figure 5B).

Luz Inhibits the Protective Effect of Mel
and Down-Regulated HO-1, Nrf2, and
p-PKC Expression of Mel-Treated
Astrocytes After Hemin Exposure
To explore the potential mechanisms of Mel, we administrated
Mel receptor inhibitor (Luz) in addition to Mel treatment.
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FIGURE 3 | Mel-treatment induced HO-1 expression in astrocytes. (A) Immunostaining showed the expression of HO-1 in astrocytes treated with or without 60 µM
Mel for 24 h, the nuclei were counterstained with DAPI, bar = 100 µm. (B) Western blotting analysis of HO-1 expression in astrocytes treated with Mel of indicated
dose. (C) mRNA expression of HO-1, NQO1, and SOD2 in astrocytes treated with Mel was further examined. The relative expression of the proteins and mRNA was
normalized to control. The results of densitometric analysis of the bands were plotted into histogram. Difference between groups was analyzed using One-way
ANOVA analysis or Student’s t-test. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001 vs. control group.

TUNEL staining (Figure 6A) showed that after Luz
administration, the numbers of TUNEL-positive cells were
significantly increased than in the Mel group (P < 0.001). Luz

also strongly suppressed the protein expression of HO-1, Nrf2,
and p-PKCα up-regulated by Mel compared to Mel group
(P < 0.01, P < 0.01, and P < 0.05, respectively) (Figure 6B).
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FIGURE 4 | Mel-treatment induced Nrf2 expression and promoted its nuclear translocation. (A) Immunostaining showing the subcellular expression of Nrf2 in
astrocytes treated with or without 60 µM Mel for 24 h. The nuclei were counterstained with DAPI, bar = 50 µm. (B) Western bloting analysis of Nrf2 expression in
astrocytes treated with Mel of indicated dose. (C) Nrf2 protein expression of cytoplasmic and nuclear from 0, 30, 60 µM Mel treated was analyzed. β-actin and H3
were, respectively, used as loading control for cytoplasmic and nuclear protein expression. The relative expression of the proteins was normalized to control. The
results of densitometric analysis of the bands were plotted into histogram. Difference between groups was analyzed using One-way ANOVA analysis or Student’s
t-test. ∗P < 0.05 and ∗∗P < 0.01 vs. control group or 0 µM group.
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Nrf2 Knockdown Offset the Protection
Effect of Mel on Neurotoxicity From
Hemin
To explore whether the protection effect of Mel treatment relied
on Nrf2, we transfected astrocytes with si-Nrf2 and si-NC. We
used western blotting to check the efficiency of knockout, and
about 82.14% of Nrf2 expression was restrained by si-Nrf2
(P < 0.001) (Figure 7A). After astrocytes infected with si-Nrf2
and si-NC were treated with 30 µM hemin for 24 h, with or
without 60 µM Mel, TUNEL staining (Figure 7B) revealed that
si-Nrf2 significantly increased the number of TUNEL-positive
cells compared to si-NC (P < 0.001). Western blotting showed
that si-Nrf2 significantly depressed HO-1 up-regulation induced
by Mel, compared to si-NC (P < 0.01), but there was no
significant difference in p-PKC (Figure 7C).

DISCUSSION

The major findings of this study are as below: (1) the cell viability
of astrocytes was decreased after hemin exposure, in a dose-
dependent manner; (2) astrocytes are extensively damaged by
neurotoxicity induced by hemin without Mel treatment, but after
treated with Mel, Mel helped astrocytes resist the neurotoxicity
and reduce the degree of damage; (3) Mel administration
induced PKCα phosphorylation, Nrf2 upregulation and nuclear
translocation in astrocytes, and led to phase II enzyme HO-1
upregulation; (4) Nrf2 and HO1 protein expression upregulated
by Mel were blocked after administration of PKC inhibitor, Ro 31;
(5) Mel-induced activation of PKCα/Nrf2/HO1 pathway could be
partly abolished by Mel receptor inhibitor, Luz; (6) the in vitro
protective effect of Mel on astrocytes was PKCα/Nrf2 dependent.

Mel, secreted by the pineal gland, possesses multiple
pharmacological properties (Cipolla-Neto and Amaral, 2018).
Mel as well as its metabolites are highly effective endogenous
antioxidants. They are often used as a protective factor and
antioxidant in many experiments and studies (Reiter et al., 2000;
Cipolla-Neto and Amaral, 2018). Several recent studies propose
that Mel prevents kidney injury (Sener et al., 2002), pancreatitis
injury (Jung et al., 2010), and liver injury (Jung et al., 2009;
Kang and Lee, 2012) by decreasing oxidative stress. In terms of
neuroprotection, Mel has been reported to play an active role
in several neurological disease, such as epilepsy (Brigo et al.,
2016), Parkinson’s disease (Mendivil-Perez et al., 2017), cerebral
ischemia (Yang et al., 2015), intracerebral Hemorrhage (Wang Z.
et al., 2018), and SAH (Dong et al., 2016; Zhao et al., 2017).

These beneficial properties impel us to think over the
mechanism of Mel on astrocytes to protect ICH from oxidative
stress. Both Mel and Nrf2 pathways play a vital role in oxidative
stress. To date, although several studies have reported about
the role of Mel on the Nrf2/ARE pathway (Jung et al., 2009,
2010; Negi et al., 2011; Wang et al., 2012; Deng et al., 2015;
Kleszczynski et al., 2016; Trivedi et al., 2016; Cao et al., 2017), the
mechanism is still not definitely clear. Our results were in favor of
neuroprotection of Mel on astrocytes as Mel treatment not only
reduced ROS accumulation but also enhances the resistance of

FIGURE 5 | P-PKCα expression in astrocytes exposed to hemin with Mel
treatment, with or without PKC inhibitors. Western blotting analysis of p-PKCα

expression in astrocytes treated with Mel of indicated dose (A). (B) After
administration of PKC inhibitors (RO 31), p-PKCα and its downstream
expression were significantly inhibited. The relative expression of the proteins
was normalized to control. The results of densitometric analysis of the bands
were plotted into histogram. Difference between groups was analyzed using
One-way ANOVA analysis or Student’s t-test. ∗P < 0.05 and ∗∗P < 0.01 vs.
control group.

astrocytes to neurotoxicity from hemin in vitro. Furthermore, we
found that Mel treatment increased PKCα phosphorylation and
Nrf2 and its phase II enzyme HO1 expression when compared to
the untreated group, being those effects dose-dependent, which
impelled us to consider Mel as a potential neuroprotection drug
against ICH through PKCα/Nrf2/HO1 pathway.

Protein kinase C is one of several protein kinases able to
modify Nrf2 to activate its release from keap1 (Huang et al.,
2002). PKC phosphorylation of Nrf2 serine 40 results in the
escape or release of Nrf2 from Keap1, translocate to the nucleus,
and bind to the ARE that leads to coordinated activation of
gene expression (Huang et al., 2002; Niture et al., 2010). It
was reported that direct phosphorylation of Nrf2 by PKC is
a key event of Nrf2 nuclear translocation in oxidative stress
(Huang et al., 2000). In addition, PKCα inhibitors could reduce
the expression of Nrf2, leading to the down-regulation of HO-
1 (Yun et al., 2010). Nrf2 is an important transcription factor
regulating antioxidant defense (Deng et al., 2015; Kleszczynski
et al., 2016). Once stimulated by oxidative stress, Nrf2 is released
by Keap1 and would be translocated to the nucleus binding
to ARE and promoting the transcription of HO-1, phase II
detoxification enzyme genes (Wang et al., 2012; Chen et al., 2015;
Deng et al., 2015; Liu et al., 2015; Santofimia-Castano et al., 2015;
Kleszczynski et al., 2016). Nrf2-ARE pathway is considered as
a multi-organ protective agent and has been reported to play
a key role in several CNS diseases, such as SAH (Chen et al.,
2011), cerebral ischemia (Shih et al., 2005), traumatic brain injury
(Wang J. et al., 2018), and cerebral hemorrhage (Chen et al.,
2015). In addition, Nrf2 signaling pathway would be activated in
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FIGURE 6 | Luz inhibited the protection effect of Mel and suppressed HO-1 and Nrf2 expression after hemin exposure. Astrocytes were transfected with or without
Luz for 6 h, then followed by 30 µM hemin incubation, with or without 60 µM Mel for 24 h, (A) TUNEL staining (red) was used to mark apoptotic cells, bar = 100 µm.
(B) Western bloting analysis of p-PKCα, Nrf2, and HO-1 protein expression was examined according to the experimental design. The relative expression was
normalized to control. The results of apoptosis rate and densitometric analysis of the bands were plotted into histogram. Difference between groups was analyzed
using One-way ANOVA analysis or Student’s t-test. ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.01.
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FIGURE 7 | Nrf2 knockdown suppressed Mel-induced upregulation of HO-1 expression and increased the numbers of TUNEL-positive cells. (A) Western blotting
analysis of Nrf2 expression in control, si-NC, si-Nrf2 transfected astrocytes. Astrocytes were transfected with or without si-NC or si-Nrf2 for 48 h, then followed by
30 µM hemin incubation, with or without 60 µM Mel for 24 h; (B) TUNEL staining (red) was used to mark apoptotic cells, bar = 100 µm; (C) The HO-1 and p-PKCα

expression was analyzed by western blotting. The relative expression was normalized to control. The results of apoptosis rate and densitometric analysis of the
bands were plotted into histogram. Difference between groups was analyzed using One-way ANOVA analysis or Student’s t-test. ∗∗P < 0.01 and ∗∗∗P < 0.01.
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FIGURE 8 | Diagram outlining the mechanism of Mel on PKCα/Nrf2/HO-1 signaling pathways. Mel induced PKCα phosphorylation (p-PKC), nuclear translocation of
Nrf2 in astrocytes, and upregulation of HO-1, then restraining ROS accumulation and cell apoptosis.

astrocytes to protect astrocytes as well as their adjacent neurons
from oxidative damage (Kraft et al., 2004; Wang J. et al., 2018).
Wang et al. (2007) also pointed out that when the Nrf2 gene was
knocked out, neurological function might be impaired after the
ICH. The mechanism may relate to ROS-induced DNA damage
and neuronal cell death by apoptosis (Ito et al., 2001; Wang
and Tsirka, 2005; Wang et al., 2007). Our results were parallel
with those reports and indicated that phosphorylation of PKCα

increased after MEL treatment, followed by up-regulation of
Nrf2 and HO-1, which subsequently led to a decrease in ROS
accumulation and apoptosis after hemin exposure.

Subcellular distribution of Nrf2 was further studied. The
results indicated that Nrf2 expression was upregulated and Nrf2
translocated into the nucleus after Mel treatment. It was reported
by Negi et al. (2011) that Mel stabilizes and activates Nrf2 in
both cytoplasm and nucleus. In our study, Mel did increase
Nrf2 expression both in nucleus and cytoplasm, but the growth
increase in nucleus was more significant than that in cytoplasm.
When the cellular protective mechanism was activated by stress
impacts, Nrf2 will be translocated into the nucleus, which may
be an effective way to maintain cell survival (Kleszczynski et al.,
2016). This may explain our results that Nrf2 expression in
nucleus was higher than that in cytoplasm. We also found that

the Nrf2 upregulation and nuclear translocation depended on the
phosphorylation of PKCα, and this phenomenon was terminated
by PKC inhibitors. When we used Mel receptor inhibitors, Luz,
these positive results were blocked, phosphorylation of PKCα

was inhibited, upregulation of Nrf2 and HO1 were reversed, and
correspondingly, nuclear translocation was suppressed, which
confirmed that Mel protects astrocytes against apoptosis through
PKCα/Nrf2-HO1 signaling pathway.

To further confirm that the protective effect of Mel treatment
is Nrf2 dependent, we knocked down the expression of Nrf2
with Nrf2 specific siRNA. Our results indicated that Mel-induced
HO-1upregulation was significantly suppressed by si-Nrf2, and
the ROS accumulation and cell apoptosis were significantly
increased, compared to si-NC group. Rodriguez et al. (2007)
have shown that disruption of Nrf2 enhanced the upregulation
of NF-κB activity and pro-inflammatory cytokines in brain
injury, and vice versa, a low level of TNFα (2–5 ng/ml) could
evoke significant nuclear translocation of Nrf2 with increased
DNA/promoter binding and transactivation of Nrf2 targets
(Shanmugam et al., 2016). Such phenomenon indicated that there
might be an interaction between the pro-inflammatory signaling
pathway and the Nrf2/HO-1 signaling pathway (Kleszczynski
et al., 2016). Yin et al. (2015) have shown that the HO-1 inhibitor,
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ZPP-IX, not only decreased the HO-1 expression and inhibited
the Nrf2 entering nucleus, but also triggered the NF-κB entering
nucleus, resulted in the over-expression of NF-κB and TNF-α.
This result corresponded to the research of Poss and Tonegawa
(1997) that animals developed a chronic inflammatory disease
in a HO-1 knockout mice model. Our study also showed that
MEL therapy downregulated TNFα and IL-6 expression, and
upregulated IL-10 expression in astrocytes after hemin exposure.
This was probably due to the antioxidant defense mechanism
induced by elevated Nrf2 and nuclear translocation, or additional
activation of inflammatory pathways, which need to be further
explored in our future research.

This experiment used mice astrocytes to simulate oxidative
stress of cerebral hemorrhage in vitro in order to study the
protective effect of Mel on astrocyte through PKCα/Nrf2/HO-1
pathway. As far as we know, this may be the first report that shows
that melatonin attenuates hemin induced oxidative damage
in primary astrocytes via PKCα/Nrf2/HO1 signaling pathway
in vitro. The potential mechanism of Mel on PKCα/Nrf2/HO-1
signaling pathways is shown in Figure 8. Unfortunately, there
were still several limits in our studies. We only used in vitro Nrf2
knockout model and PKC inhibition to verify the effect of Mel
on PKCα/Nrf2/HO-1 pathway. We lack Nrf2 knockout and PKC
inhibition experiments in vivo to verify our theory, there may
be other possibilities that Mel affects PKCα/Nrf2/HO1 pathways
through other independent effects, such as cross-transmission
between signaling pathways, microenvironment effects and cell-
to-cell connections. It is important to note that Luz is just a Mel
receptor inhibitor. The inhibition of the membrane receptors
influence many of Mel actions, but does not inhibit all of them,
as Mel presents direct actions, that are non-receptor dependent,
and nuclear receptor-dependent actions. This study deals with
the inhibition of the membrane receptor of Mel, so we set up
blank group, control group and so on to minimize the error. In
further research, we will focus on the protective effect of Mel on
ICH through PKCα/Nrf2/HO1 signaling pathway in vivo.

Our results suggest that Mel activated PKCα/Nrf2/HO1
signaling pathway, inducing PKCα phosphorylation,
upregulation as well as nuclear translocation of Nrf2, to protect
astrocytes against neurotoxicity, and apoptosis from hemin.

The protective effect of Mel on astrocyte depends on PKCα

phosphorylation and the activation of Nrf2. The mechanisms
by which Mel is coupled to PKCα and Nrf2 deserve future study.
It is still worthwhile to take PKCα/Nrf2/HO1 signaling pathway
combined with Mel as a target for neuroprotection after ICH.
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Astrocytes are a population of cells with distinctive morphological and functional 
characteristics that differ within specific areas of the brain. Postnatally, astrocyte 
progenitors migrate to reach their brain area and related properties. They have a 
regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, 
controlling blood–brain barrier permeability and maintaining extracellular homeostasis. 
Mature astrocytes also express some genes enriched in cell progenitors, suggesting they 
can retain proliferative potential. Considering heterogeneity of cell population, it is not 
surprising that their disorders are related to a wide range of different neuro-pathologies. 
Brain diseases are characterized by the active inflammatory state of the astrocytes, which 
is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, 
the loss of astrocytes function as a result of cellular senescence could have implications 
for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, 
and for the aging brain. Astrocytes can also drive the induction and the progression of the 
inflammatory state due to their Ca2+ signals and that it is strongly related to the disease 
severity/state. Moreover, they contribute to the altered neuronal activity in several frontal 
cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current 
knowledge pertaining to astrocytes’ role in brain pathologies and discuss the possibilities 
to target them as approach toward pharmacological therapies for neuro-pathologies.

Keywords: astrocytes, Alzheimer disease, Huntington disease, epilepsy, ischemic stroke, drug

INTRODUCTION

During development, radial glial cells are the primary neural stem cells developing all neurons 
such as astrocytes, microglia cells, ependymal cells, and oligodendrocytes (Taverna et al., 2014). 
Mature astrocytes are categorized for functional and morphology proprieties. In the frontal cortex, 
these cells can be morphologically distinguished in four types: fibrous astroglia, protoplasmic, 
varicose, and interlaminar projections placed in the white matter and I, II, III, IV, V, and VI layers 
(Vasile et al., 2017). Other functional and morphological distinct astrocytes are unipolar Bergmann 
glia with radial ascending processes and elongated radial glia-like tanycytes. In the cerebellum, 
Bergmann glia control the synapsis of Purkinje cells (De Zeeuw and Hoogland, 2015), while in the 
hypothalamus, tanycytes are specialized in the modulation of neuroendocrine functions (Prevot 
et al., 2018). One of the most important astrocytes function is to deliver energy to neurons by the 
astrocyte-neuron lactate shuttle (Bass et al., 1971; Sherwood et al., 2006). Astrocytes modulate 
Ca2+ variations that influence neuronal activity releasing gliotransmitters (Peteri et al., 2019). 
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The modulation of the neurotransmitter uptake involves the 
excitatory transporters 1 and 2 (EAAT1 and 2) (Roberts et 
al., 2014). In response to inflammation and injury, astrocytes 
become reactive. They can be divided in two main categories: 
scar-forming astrocytes and hypertrophic astrocytes (Khakh et 
al., 2017). Several studies underline that reactive astrocytes alter 
them homeostatic functions such as potassium ion uptake, ion 
buffering, Ca2+ signaling, and excitatory neurotransmitter uptake 
(Rossi and Volterra, 2009). Regulation of astrocytes functions 
affected several brain pathologies such as Alzheimer disease, 
Huntington disease, Ischemic stroke, and epilepsy.

ALZHEIMER DISEASE

AD is a neurodegenerative disease with motor abnormalities, 
cognitive changes, and behavioral impairment. It is 
characterized by the aggregation of amyloid-β plaques in 
vessel walls and accumulation of the protein tau in neural 
cells. Astrocytes in this pathology contribute to the loss 
of neuroprotection and to the gaining of pathological 
characteristics. At the beginning, astrocytes have a protective 
role up-taking and degrading amyloid-β. The progression 
of disease leads to reduced astrocyte clearance of amyloid-β 
that contribute to gain of function (Garwood et al., 2017). 
Furthermore, amyloid-β accumulation stimulates astrocytes 
to produce pro-inflammatory mediators inducing a positive 
feedback of activation (González-Reyes et al., 2017).

It has been shown that amyloid-β co-operates with several 
receptors located on astrocytes such as scavenger receptors, 
TLRs, lipoprotein, glycoprotein and acetylcholine receptors, 
chemokine, and complement receptors (Farfara et al., 2008). 
Scavenger receptors are a group of evolutionally conserved 
membrane receptors expressed on the surface of microglia, 
macrophages, and dendritic cells (Wilkinson and El Khoury, 
2012). To date, they have been classified into six classes (scavenger 
receptor A, B, C, D, E, and F) even if some members of this 
family remain unclassified (RAGE, CD163, and SR-PSOX). Of 
particular interest during AD are CD36, RAGE (receptor for 
advanced glycation end products), SCARA-1 (scavenger receptor 
A-1), and MARCO (macrophage scavenger receptor with 
collagenous structure). SCARA-1 is involved in clearance of Aβ, 
while MARCO forms a complex with formyl peptide–receptor-
like 1 (FPR1) upon encountering Aβ. MARCO may decrease 
the inflammatory response in microglia through the FPR-1 via 
the ERK 1/2 intracellular signaling and the inhibition of cAMP 
(Brandenburg et al., 2010). CD36 and RAGE are implicated in 
activation of microglia by Aβ. CD36 cooperates with the other 
innate immune pattern recognition receptor like the TLRs to 
outline pathogen-specific responses. Once engaged by Aβ, CD36 
forms a complex with TLR-6 and TLR-4 causing ROS production 
and inflammasome activation (Stewart et al., 2010). RAGE 
receptor is one of the most characterized unclassified scavenger 
receptor and has been reported to produce proinflammatory 
modifications in astrocytes when binds amyloid-β (González-
Reyes et al., 2017). RAGE in turn activates the NF-κB (Yan 
et al., 1994) and its downstream pathway including p21, 

Cdc42-Rac, ras, MAPK (Taguchi et al., 2000), ERK (Wilkinson 
and El Khoury, 2012), and JNK (González-Reyes et al., 2017). 
RAGE is highly expressed vasculature and neurons in AD brains 
compared with the un-diseased (Arancio et al., 2004). RAGE 
located on endothelial cells in implicated in transporting Aβ into 
the brain (Mackic et al., 1998), and also increasing the diapedesis 
of monocytes across the blood–brain barrier (Giri et al., 2000). 
Once bound to soluble Aβ, RAGE induces microglial activation 
and chemotaxis following a concentration gradient, leading to 
a microglial accumulation around Aβ plaques (Wilkinson and 
El Khoury, 2012). RAGE mediates also the phagocytic profile 
of astrocytes and the interaction with other ligands, including 
S100β, involved in Alzheimer disease neuroinflammation 
(Cirillo et al., 2015). S100β produced by astrocytes is a common 
feature of Alzheimer disease (Bosch et al., 2015). It is associated 
with depressive behavior and cognitive flexibility and regulates 
neuronal oscillations (Stroth and Svenningsson, 2015; Brockett 
et al., 2018).

Moreover, morphological modifications of astrocytes in 
Alzheimer disease involve alterations in K+ neurovascular 
regulation, by downregulation of Kir4.1 and BKCa, causing 
irregular cerebral blood flow (González-Reyes et al., 2017). 
Also, Ca2+ signaling is altered by amyloid-β accumulation 
(Haughey and Mattson, 2003). In astrocytes, this accumulation 
modifies the expression of the nicotinic acetylcholine receptors 
(nAchRs) and metabotropic glutamate receptor 5 (mGluR5), 
changing Ca2+ homeostasis (Xiu et al., 2005; Lim et al., 2013). 
Through this pathway, astrocytes increase glutamate signaling 
and led to the downregulation of its transporters (Masliah et al., 
1996). Glutamate aberrant trafficking is linked to the modified 
cholesterol synthesis (Tian et al., 2010; Merlini et al., 2011; 
Talantova et al., 2013). A prodromal symptom to Alzheimer’s 
disease can be the glucose hypometabolism (Mosconi et al., 2006). 
Carriers of apolipoprotein Eε4 (APOEε4) allele display lower 
glucose metabolism in different brain area with an augmented 
risk for AD (Reiman et al., 2004). Astrocytes signaling is a useful 
target to prevent and control the development of the AD.

HUNTINGTON DISEASE

Huntington disease is a genetic neurodegenerative disease with 
neuropsychiatric and motor dysfunctions. It is caused by a 
trinucleotide repeat (CAG) in the gene for Htt. This expansion 
caused a different form of Htt (mHtt) which aggregates (Bunner 
and Rebec, 2016). Astrocytes are more efficient than neurons 
in clearance of aggregates, so they are more resistant to mHtt 
accumulation (Zhao et al., 2016; Jansen et al., 2017; Zhao et al., 
2017). However, when mHtt aggregates into astrocytes modifies 
glutamate signaling, causing neuronal excitotoxicity (Shin et al., 
2005; Bradford et al., 2009). This condition is a typical feature 
of Huntington disease but has also been described several 
cases without alteration in glutamate release (Parsons et al., 
2016). Astrocytes in Huntington disease are characterized by a 
decreased expression of Kir4.1 (Tong et al., 2014; Zhang et  al., 
2018). It influences GLT1-mediated homeostasis and Ca2+ 
signaling (Tong et al., 2014; Jiang et al., 2016). These dysfunctions 
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head the reactive state of astrocytes bringing about the possibility 
neurotoxicity can induce inflammation as secondary effect of 
Huntington disease (Tong et al., 2014).

During the inflammatory state, microglia trigger the 
activation of astrocytes releasing factors such as TNF-α, C1q, 
and IL-1α (Khakh and Sofroniew, 2015; Liddelow et al., 2017). 
They decreased synaptic maintenance and phagocytic activity 
(Bradford et al., 2009) and increase degeneration neurons and 
oligodendrocytes (Liddelow et al., 2017).

mHtt accumulation modifies astrocytes exosome (Hong 
et al., 2017) and BDNF (Hong et al., 2016) release. Restoration 
of BDNF expression from astrocytes displays neuroprotective 
effects (Giralt et al., 2010; Hong et al., 2016; Reick et al., 2016). It 
has been displayed that astrocytes are intricated in a wide range 
of pathological features of Huntington disease, so they can be 
used as a novel therapeutic target.

EPILEPSY

Epilepsy is a group of brain disorders characterized by 
unpredictable and periodic occurrence of seizures. The cause of 
most cases of epilepsy is unknown. Some cases occur as the result 
of brain injury, stroke, brain tumors, infections of the brain, 
and birth defects through a process known as epileptogenesis 
(Goldberg and Coulter, 2013). Known genetic mutations are 
directly linked to a small proportion of cases (Pandolfo, 2011). 
Although the symptoms of a seizure may affect any part of the 
body, the electrical events that produce the symptoms occur 
in the brain. Epileptic seizures are the result of excessive and 
abnormal neuronal activity in the cortex of the brain (Fisher 
et al., 2005).

The most common of these pathologies is the hippocampal 
sclerosis or mesial temporal sclerosis. It is characterized by 
gliosis, neuronal cell loss in the hippocampal areas, synaptic 
reorganization, and microvascular proliferation. A study 
published in PloS Biology shows how the interaction between 
neurons and astrocytes is one of the mechanisms that contributes 
to the generation of epileptic discharges. Believed in the past 
to be simple “helpers” of neurons, astrocytes have revealed 
over time cells that play a much more active role in the brain 
(Gomez-Gonzalo et al., 2010). Astrocytes express ion channels, 
transmitter receptors, and transporters and, thus, are endowed 
with the machinery to sense and respond to neuronal activity. 
Glutamate transporters are located on several neuronal cell 
types, but astrocytes are mainly involved in the glutamate uptake 
(Steinhauser et al., 2016). GLT-1, the glutamate transporter 
located on astrocytes, is involved in the bulk of extracellular 
glutamate clearance and is responsible of the increased levels 
in epileptogenic foci. Moreover, glutamine synthetase is 
reduced in the hippocampus of temporal lobe epilepsy patients 
compared to the healthy one. This downregulation leads to a 
slow glutamate–glutamine cycling and an accumulation of the 
transmitter in the extracellular space and astrocytes, providing a 
metabolic mechanism for astrocyte-dependent hyperexcitability. 
A few studies have highlighted the contribution of ionotropic 
glutamate receptors in convulsion generation. AMPA receptors, 

in particular the subtype composed by subunits GluR1 to GluR4, 
are abundantly expressed on astrocytes. Epilepsy patients show 
an enhanced expression of GluR1 flip variants accounts for 
the prolonged receptor in hippocampal astrocytes. Prolonged 
receptor opening increases influx of Na+ and Ca2+ ions, blocking 
astroglial Kir channels which increase depolarization reducing 
the K+ buffering capacity of astrocytes (Steinhauser et al., 2012). 
All this process contributes to hyperexcitability. In this condition, 
extracellular [K+] could increase from ~ 3 mM to 10–12 mM; and 
glial cells take the most K+ released by active neurons. As already 
mentioned, the primary mechanism for spatial K+ buffering 
and K+ reuptake is via glial inwardly rectifying K+ channels 
(Kir channels). Kir channel subtypes (Kir1–Kir7) differ in 
functional properties and tissue distribution; Kir4.1 is the most 
abundantly in brain astrocytes. Astrocytes are also joined by gap 
junctions, which allow these cells to redistribute through the glial 
network the K+ ions excessively accumulated at sites of intense 
neuronal activity. Accordingly, increasing evidence indicates 
that dysfunctional astrocytes are crucially involved in processes 
leading to epilepsy (Steinhauser and Seifert, 2012).

ISCHEMIC STROKE

Ischemic stroke is a brain damage which can lead to death or 
disabilities. It results from a vasculature dysfunction with occlusion 
of blood vessels by embolus or thrombus. The reduced or blocked 
blood flow causes loss of oxygen and glucose and in turn synthesis 
of ATP via glycolysis and oxidative phosphorylation. These 
conditions produce excitotoxicity and malfunction of astrocytes 
glutamate transporters, fundamental in the synaptic cleft in 
clearing glutamate release (Yi and Hazell, 2006; Zou et al., 2010). 
Increased glutamate release in the extracellular area induces 
the overexpression of rNMDARs and caused overloading of 
intracellular Ca2+ (Tanaka et al., 1997; Medvedeva et al., 2009). This 
energy depletion influences membrane potential depolarization 
and ionic gradients in neurons and astrocytes. In particular, 
astrocytes, comparing neurons, are less susceptible to glutamate 
cytotoxicity induced by brain stroke, but they display proliferation 
and up-regulation of GFAP levels producing reactive astrogliosis 
(Sofroniew, 2000). Reactive astrocytes are usually found in the 
focal lesions with tissues reorganization and formation of glial 
scars (Sofroniew, 2000). White matter astrocytes are especially 
sensible to ischemic stroke (Chen et al., 2016). The ischemic core 
shows a predominant presence of hypertrophic astrocytes with 
a larger Ca2+ signal compared to the penumbra region, the area 
surrounding the ischemic locus (Ding et al., 2009). Transcriptome 
analysis of activated astrocytes from inflamed brain after middle 
cerebral artery occlusion shows expression of genes encoding 
neuroprotective mediators and included cytokines (IL-6, IL-1, 
IL-1β, IL-10), transforming growth factor-β (TGFβ), interferon-γ 
(IFN-γ), thrombospondins, and neurotrophic factors (Zamanian 
et al., 2012). High levels of cytokines induce increasing levels of 
nitric oxide (NO) (Stoll et al., 1998) and apoptosis of neuronal cells 
(Clark and Lutsep, 2001) and inhibit neurogenesis (Monje et al., 
2003). Reactive astrocytes also release chemokines after ischemia 
(Kim, 1996). In vascular endothelial cells, chemokines increased 
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adhesion molecules levels, attracting immune cells (Sofroniew, 
2000). Astrocytes are the first cells of the nervous system where 
the class II major histocompatibility complex (MHC) (Dong and 
Benveniste, 2001) was shown. MHC II presents antigens to CD41 
T-helper cells and is expressed on antigen presenting cells (APCs). 
Moreover, astrocytes express pattern recognition receptors (PRRs) 
as scavenger receptor, TLRs, and complement proteins playing a 
role in immune response regulation (Bsibsi et al., 2006).

These features let us to consider astrocyte a possible regulator 
of the ischemic context, considering that chronic of inflammation 
is influenced by the degree of tissue injury and exacerbation of 
the damage.

DISCUSSION

To date, only five drugs are accepted by the Food and Drug 
Administration (FDA) for the cure of AD: donepezil, galantamine 
and rivastigmine, memantine, and a drug composed of donezil 
and memantine (Table 1). Unfortunately, the use of these drugs 
is aimed at improving the excellence of life of patients, and 
they are not capable to stop the progression of the disorder 
(Caselli  et al., 2017). So, it is important to find innovative 
treatments that improve therapeutic results. Aβ plaques increase 
the proinflammatory cytokines (Patel et al., 2005; Colombo 
and Farina, 2016) and the production of free radicals (Carson 
et al., 2006; Wyss-Coray and Rogers, 2012) with consequent 
activation of the astrocytes. In a late study conducted on APP/
PS1 transgenic mice and on mixed neuronal/glial cultures, it 
was shown that curcumin improves spatial memory, stimulates 
cholinergic neuronal function, and, through PPAR-γ, reduces 
the activation of the inflammatory process in microglia and 
astrocytes (González-Reyes et al., 2017). Additional natural 
phytochemicals have demonstrated an anti-inflammatory and 
immunosuppressive capacities in AD models (Table 1), e.g., the 
triptolide extract inhibits astrocyte activation in the APP/PS1 
transgenic mouse model of AD (Li et al., 2016). Punicalagin, a 
pomegranate derivative, reduces neuroinflammation (lowering 
TNF-α and IL-β) and also prevents oxidative stress by reducing 
iNOS, COX-2, and ROS production (Kim et al., 2017). Other 
mixtures that may have a probable role against dementia (Libro 
et al., 2016) are cannabinoid agonists such as WIN, 2-AG, and 
methanandamide (Table 1) that have shown anti-inflammatory 
activities in primary astrocytes grown later exposure to Aβ1–42 or 
Aβ25–35 (Aguirre-Rueda et al., 2015; Gajardo-Gomez et al., 2017). 
Other approaches to diminish oxidative stress in AD models 
involve stimulants of endogenous antioxidant factors (Table 1) 
such as pelargonidine (Sohanaki et al., 2016), Bambusae concretio 
Silicea (Jeong et al., 2005), and the new compound Monascin 
(Shi et al., 2016). In in vivo and in in vitro analyses, it has been 
shown that exogenous antioxidant compounds (Table  1) also 
have beneficial effects. Among these, we have resveratrol (Wang 
et al., 2016), tocotrienol (vitamin E) (Ibrahim et al., 2017), 
anthocyanins (Rehman et al., 2017), epicatechin (Cuevas et al., 
2009), and 3H-1,2-dithiole-3-thione (a powerful free radical 
scavenger) (Wang et al., 2017). Aβ accumulation from astrocytes 
can also be decreased using IL-1β or TNF-α/TNF-α, PPAR-γ 

receptor agonists, minocycline or nicergoline, and tyrosine kinase 
inhibitors (Von Bernhardi et al., 2010; Kitazawa et al., 2011; 
Mandrekar-Colucci et al., 2012; Tweedie et al., 2012). NSAIDs 
are drugs that bind to and activate the PPAR-γ receptor (Jaradat 
et al., 2001; Wick et al., 2002) leading to reduced activation of 
glial cells (Combs et al., 2000; Bernardo and Minghetti, 2006) 
and cytokine-mediated inflammation (Sastre and Gentleman, 
2010; De Nuccio et al., 2015).

The astrocyte carries most of the extracellular glutamate. 
Therefore, damage to astrocytes affects their capability to perceive 
or respond to an increase in glutamate levels which leads to the 

TABLE 1 | Neurologically active drugs.

Disease Drug category References

AD FDA accepted Donepezil, galantamine, rivastigmine, 
memantine, and donezil + memantine 
(Caselli et al., 2017)

Natural 
phytochemicals

Triptolide extract (Li et al., 2016) and 
punicalagin (Kim et al., 2017)

Cannabinoid agonists WIN, 2-AG, and methanandamide 
(Aguirre-Rueda et al., 2015; Gajardo-
Gomez et al., 2017)

Endogenous 
antioxidant factors

Pelargonidine (Sohanaki et al., 2016), 
Bambusae concretio Salicea (Jeong 
et al., 2005), monascin (Shi et al., 
2016)

Exogenous antioxidant 
compounds

Resveratrol (Wang et al., 2016), 
tocotrienol (Ibrahim et al., 2017), 
anthocyanins (Rehman et al., 2017), 
epicatechin (Cuevas et al., 2009), 
and 3H-1,2-dithiole-3-thione (Wang 
et al., 2017)

Stimulators of the 
GLT1 expression 

Penicillin, cephalosporin, ampicillin, 
estrogen, riluzole, and insulin (Frizzo 
et al., 2004; Brann et al., 2007; Ji 
et al., 2011)

Activators of the GLT1 
translation

Pyridazine and LDN/OSU-0212320 
(Colton et al., 2010; Xing et al., 2011)

GABA receptor 
antagonists

(Yuan and Shan, 2014)

Epilepsy AED Valproic acid, lamotrigine, 
phenobarbital, gabapentin, felbamate, 
and topiramate (French and Gazzola, 
2011)

Anticancer drug Rapamycin (Huang et al., 2010; Kim 
and Lee, 2019)

Allosteric potentiators 
of glutamine 
synthetase, 
regulators of AQP4 
trafficking, interleukin 
1 antagonists, and 
agonists or allosteric 
potentiators of TNFR2

(Wetherington et al., 2008) (Crunelli 
et al., 2015)

Ischemic 
stroke

Stimulators of the 
GLT1 expression

Ceftriaxone (Ouyang et al., 2007; 
Verma et al., 2010), carnosine (Shen 
et al., 2010), and tamoxifen (Lee 
et al., 2009)

Inhibitors of p53 
activity

MicroRNA-29a (Ouyang et al., 2013; 
Ouyang et al., 2014)

Stimulators of 
angiogenesis

Ecdysterone (Luo et al., 2011) and 
omega-3 polyunsaturated fatty acids 
(Wang et al., 2014)
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destruction of the microenvironment near neurons causing an 
over-stimulation of NMDA receptors, responsible for changes in 
cognitive functions in the frontal cortex (Finsterwald et al., 2015). 
Current studies have shown that the damage to astrocytes induced 
by Aβ is responsible for the reduced expression of GLT1 in AD. 
Therefore, drugs that target astrocytic glutamate transporters to 
ameliorate their expression and role represent a possible target 
for neurodegenerative syndromes. In this regard, there are two 
pharmacological approaches to increase GLT expression: either 
by increasing GLT1 promoter activation or by activating GLT1 
translation (Rothstein et al., 2005; Kong et al., 2014). Among the 
compounds able to stimulate the expression of GLT1 already 48h 
after drug treatment, there are β-lactam antibiotics comprising 
penicillin and its derivatives, as well as cephalosporin antibiotics. 
Other mixtures such as ampicillin, estrogen, riluzole, and insulin 
have also been found to increase GLT1 expression (Frizzo et al., 
2004; Brann et al., 2007; Ji et al., 2011) (Table 1). Instead, among 
compounds that have been found to activate the GLT1 translation 
(Table 1), we have a series of compounds based on pyridazine and 
LDN/OSU-0212320 (Colton et al., 2010; Xing et al., 2011). Finally, 
recent studies have correlated GABAergic neurotransmission 
with the pathological changes of AD (Li et al., 2011). Damaged 
astrocytes produce a copious amount of GABA that is released 
to inhibit excitatory neurotransmission in the dentate gyrus. In 
addition to GABA, monoamine oxidase-B (MAO-B) has been 
reported to be altered on reactive astrocytes (Jo et al., 2014), 
and the enzyme is upregulated in the post mortem brain of 
individuals with AD (Saura et al., 1994). In an animal model of 
Alzheimer, it has been shown that the administration of GABA 
receptor antagonists (Table 1) improve long-term memory in the 
hippocampus (Yuan and Shan, 2014).

HD is a disease that progressively destroys neurons in the 
brain and leads to severe motor and cognitive deficits. To date, 
no cure is available, but researchers have made progress that 
can lead to effective therapies. Numerous studies suggest that 
astrocytes may be intricated in HD. In particular, it has been 
observed that mHTT accumulations in striatal astrocytes are 
present in the brains of HD patients and in HD mouse models 
(Bradford et al., 2009). Several HD mouse models have been used 
to evaluate the contribution of astrocytes to HD pathophysiology. 
In one of these studies, astrogliosis was evaluated as it 
frequently accompanies brain disorders. In conjunction with 
the start of symptoms, a high number of astrocytes showed 
mHTT inclusions and an important reduction in fundamental 
functional proteins. One of these proteins was Kir4.1 (Tong 
et  al., 2014). These results propose that mHTT is correlated 
with early termination of the expression of essential functional 
astrocyte proteins (e.g., Kir4.1), which modifies the function of 
astrocytes without triggering astrogliosis. Furthermore, striatal 
astrocytes of HD mice show depolarized membrane potentials 
and lower membrane conductances when mice are symptomatic. 
This is owing to the function and lower expression of the Kir4.1 
channels. Deficiencies in latent membrane potential were 
recovered by selective release of Kir4.1 from adeno-associated 
viruses (AAV) and a specific astrocyte promoter. Furthermore, 
it has been observed that the loss of Kir4.1 currents in striatal 
astrocytes leads to reduced K+ spatial buffering, which leads to 

higher environmental K+ levels in HD mouse models. Therefore, 
the astrocytic channels Kir.4.1, and other astrocytic molecular 
mechanisms can represent appreciated targets for therapeutic 
development (Khakh and Sofroniew, 2014).

Other approaches currently being studied for HD therapy 
point to both to obtain information on the mechanisms of 
disease progression and to silence the expression of mHTT 
using antisense oligonucleotides. A new approach is to detect 
novel factors that increase neurogenesis and/or stimulate the 
reprogramming of endogenous neuroblasts and parenchymal 
astrocytes to produce new healthy neurons to substitute the 
lost ones and/or strengthen the neuroprotection of preexisting 
striatal and cortical neurons (Sassone et al., 2018).

Regarding epilepsy, to date, more than 20 antiepileptic drugs 
(AEDs) (Table1) have been developed, including valproic 
acid, lamotrigine, phenobarbital, gabapentin, felbamate, and 
topiramate (French and Gazzola, 2011). Despite this, ~30% of 
patients respond poorly to treatment (Kwan and Brodie, 2000). 
In contrast, 70% of patients can attain long-term remission 
under AED treatment. However, many AEDs are associated with 
adverse side effects that are experienced by a substantial number 
of patients. Thus, significant unmet medical needs still must be 
overcome for the real and safe treatment of epilepsy. Many studies 
have suggested that inequities between excitatory and inhibitory 
signals may cause epilepsy (White et al., 2007; Bialer and White, 
2010). AEDs currently used to stop epileptic seizures act mostly 
by blocking ion channels and inhibiting neuronal excitability. 
Rapamycin, which was approved by the FDA as an anticancer 
drug (Table 1), has been demonstrated as another potential 
antiepileptic agent with broader clinical relevance (Huang et al., 
2010; Kim and Lee, 2019). Unfortunately, rapamycin can inhibit 
cell proliferation and motility; thus, the safety of long-term 
rapamycin treatments must be assessed in advance. However, 
the role of the mTOR inhibition strategy for the treatment of 
epilepsy remains viable (Russo et al., 2014). Today, it is clear that 
astrocytes play prominent roles in information processing in 
the epileptic brain. Insights gleaned from careful studies of the 
properties of reactive astrocytes suggest several novel targets for 
drug development (Table 1), including allosteric potentiators of 
glutamine synthetase, regulators of AQP4 trafficking, interleukin 
1 antagonists, and agonists or allosteric potentiators of TNFR2 
(Wetherington et al., 2008) (Crunelli et al., 2015).

To date, pharmacological treatments for ischemia/
reperfusion have palliative effects and require almost immediate 
administration after damage (Van Der Worp and Van Gijn, 
2007). To overcome this problem, it is indispensable to find 
new treatments focused mainly on long-term neuroprotection. 
Strategies targeting astrocytes may be an option as the increase 
in astrocyte survival during ischemic stress is connected with 
increased neuronal survival. It has been observed that induction 
of glial-specific purinergic receptor activation (P2Y1R) leads to 
greater consumption of mitochondrial O2 and stimulation of 
ATP production by astrocytes thus reducing neuronal damage 
to astrocytes and cell death and therefore brain damage (Zheng 
et al., 2013; Liu and Chopp, 2016). Furthermore, infarct area 
improved even after administration of TGF-α (Sharif et al., 
2007). This treatment also led to a significant functional recovery 
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in rats after MCAO (Justicia et al., 2001). Other experiments 
indicate that another therapeutic potential involves the increase 
in astrocytic glutamate transport after stroke. Thus, the increased 
expression of the glutamate transporter GLT-1 in astrocytes 
with ceftriaxone (Table 1) (Ouyang et al., 2007; Verma et al., 
2010) protects neurons from ischemia (Chu et al., 2007). Other 
compounds that improve neurological function and reduce the 
infarct area are carnosine (Shen et al., 2010) and tamoxifen (Lee 
et al., 2009) (Table 1). Both substances preserve the expression of 
GLT-1 on astrocytes by reducing glutamate levels and attenuating 
the consequent excitotoxicity. Another target for stroke therapy 
is p53 (Table 1) since inhibition of p53 activity has been shown 
to hinder astrocyte activation and glutamate intake (Ahn et al., 
2015). Even microRNAs, approximately of which are expressed in 
astrocytes as microRNA-29a, appear to be intricate in the control 
of cerebral ischemia and may represent targets for improving 
stroke outcome (Ouyang et al., 2013; Ouyang et al., 2014). More 
recently, reference is made to cell therapy which aims at finding 
cells that can induce regeneration. Astrocyte transplantation 
conducts to recovery of axonal myelination, variation of the 
immune response, and issue of neurotrophic factors that prevent 
oxidative stress and excitotoxic injury (Choudhury and Ding, 
2016). Other studies have suggested to astrocytes a therapeutic 
target based on their control by genetic change of proteins 
associated to the immune response and exacerbation of reactivity 
and cytotoxicity (Merienne et al., 2015). Finally, it was observed 

that post-stroke angiogenesis not only ameliorate blood perfusion 
in the ischemic area but also supports cerebral parenchymal 
cells, comprising astrocytes, the issue of neurotrophic factors, to 
stimulate neurogenesis, which therefore improves remodeling 
cerebral and long-term neurological function after stroke (Zhang 
and Chopp, 2009). Consequently, angiogenesis represents a valid 
reparative machinery that has been verified in numerous studies 
(Table 1). For example, treatment with ecdysterone ameliorates 
neurological function by improving astrocyte stimulation and 
angiogenesis after focal cerebral ischemia in rats (Luo et al., 2011). 
Transgenic overproduction of omega-3 polyunsaturated fatty 
acids in mice recovers post-stroke revascularization and increases 
endogenous angiogenesis by inducing angiopoietin 2 production 
in astrocytes, which consequently stimulated endothelial cell 
proliferation and BBB formation, proposing that the integration 
of omega-3 polyunsaturated fatty acids is a possible angiogenic 
treatment able to increase brain repair and improve long-term 
functional recovery after ischemic stroke (Wang et al., 2014).
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Astrocytes are essential for proper regulation of the central nervous system (CNS). 
Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of 
molecules which play pivotal physiological roles in nervous tissues and whose abnormal 
regulation has been associated with several CNS disorders. In agreement with these 
findings, recent studies have provided exciting insights into the key contribution of astrocyte-
derived signals in the pleiotropic functions of these cells in brain health and diseases. In 
the future, deeper analysis of the astrocyte secretome is likely to further increase our 
current knowledge on the full potential of these cells and their secreted molecules not 
only as active participants in pathophysiological events, but as pharmacological targets 
or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight 
recent findings in our and other laboratories on selected molecules that are actively 
secreted by astrocytes and contribute in two distinct functions with pathophysiological 
relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their 
progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) 
integrity and function.

Keywords: astrocytes, blood–brain barrier, neural stem cells, neurogenesis, niche, paracrine signals, secretome

INTRODUCTION
Astrocytes are essential for brain homeostasis. They indeed support neurons both structurally and 
functionally by providing nutrients and neurotrophic factors, removing neurotransmitters and waste 
metabolites to ensure a homeostatic environment (Perez-Alvarez and Araque, 2013). Astrocytes 
regulate neurogenesis, axonal guidance, synaptogenesis (Allen and Lyons, 2018), as well as blood–
brain barrier (BBB) function. Although still controversial, astrocytes may also release gliotransmitters 
to modulate synaptic transmission (Araque et al., 2014; Fiacco and McCarthy, 2018). Last but not least, 

Abbreviations: ahNG, adult hippocampal neurogenesis; AJ, adherens junctions; aNG, adult neurogenesis; CCL, CC 
Chemokine Ligand; CXCL, C-X-C motif chemokine 12; DG, dentate gyrus; ECM, extracellular matrix; ICAM-1, intercellular 
adhesion molecule 1; IFNγ, interferon γ; IL-1, interleukin 1; IL-6, interleukin 6; LCN-2, lipocalin-2; NB, neuroblast; NPC, 
neural progenitor cell; NSC, neural stem cell; NVU, neurovascular unit; OB, olfactory bulb; PBMCs, peripheral blood 
mononuclear cells; SGZ, subgranular zone; SVZ, subventricular zone; TNFα, tumor necrosis factor α; TSP, thrombospondin; 
VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.
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after brain injury, astrocytes are involved in neuroinflammatory 
responses in an attempt of repair and/or remodeling.

Astrocytes are highly secretory cells, with their secretome 
containing hundreds of molecules (Chen and Swanson, 2003; 
Dowell et al., 2009; Harada et al., 2015). Recent proteomic 
studies provided exciting insights into the contribution of 
astrocyte-derived signals in their pleiotropic functions in brain 
health and diseases (Jha et al., 2018). In this minireview, we will 
highlight recent findings on some molecules actively secreted 
by astrocytes and implicated in two specific functions, namely, 
regulation of neural stem cells (NSCs) and their progeny within 
adult neurogenic niches and modulation of BBB function. These 
apparently distant conditions are analyzed together as they share 
a strict dependence on astrocyte-secreted products.

ASTROCYTeS AS KeY MODULATORS IN 
ADULT NeUROGeNIC NICHeS
The term adult neurogenesis (aNG) refers to the generation of new 
functionally integrated neurons in the adult brain. This peculiar 
form of neuroplasticity occurs in restricted areas of mammalian 
brain, the subventricular zone (SVZ) in the lateral ventricles and the 
subgranular zone (SGZ) in the hippocampal dentate gyrus (DG).

While the SVZ region is considered a poorly relevant 
neurogenic site in humans, neurogenesis occurring in the DG 
appears of physiological significance. Recently, the presence of 
thousands of adult-born neuroblasts (NBs) in the hippocampus 
of healthy people was described (Moreno-Jimenez et al., 2019). 
In this region, neural stem/progenitor cells (NSC/NPC) self-
renew and give rise to transiently amplifying progenitor cells 
which, in turn, can generate NBs capable of terminal neuronal 
differentiation. Post-mitotic neuronal progeny can be functionally 
integrated as granule cells into the adult hippocampal circuitry 
(Bond et al., 2015; Kempermann et  al., 2015). In recent years, 
adult hippocampal neurogenesis (ahNG) has attracted growing 
interest due to its potential involvement in cognition and memory, 
mood, and emotional behavior (Aimone et al., 2010; Eisch 
and Petrik, 2012; Aimone et al., 2014; Bortolotto et al., 2014). 
ahNG is profoundly dysregulated in several neuropsychiatric/
neurodegenerative disorders opening to the possibility that it 
may participate in their pathophysiology or contribute to some 
associated symptoms, such as dementia and depressed mood 
(Grilli and Meneghini, 2012; Bortolotto and Grilli, 2016; Yun 
et al., 2016). Very recently, it has been reported that postmortem 
tissue from AD patients contained remarkably fewer DG NBs 
suggesting their degeneration in the disease (Moreno-Jimenez 
et al., 2019). This seminal paper confirmed previous key studies 
in the field (Spalding et al., 2013; Boldrini et al., 2018).

An important functional and anatomical concept in 
aNG is the "neurogenic niche," a permissive and instructive 
microenvironment which is crucial for preserving NSC functions, 
including their proliferative and differentiative properties 
(Ghosh, 2019). Although cell–cell contacts are relevant, paracrine 
signals originating from astrocytes within the niche appear very 
important. It was demonstrated that astrocytes are important 
neurogenic niche components which instruct NSC/NPC to 

adopt a neuronal fate (Song et al., 2002). Hence, the interest in 
the identity of astrocyte-secreted niche signals has been growing 
(Casse et al., 2018). We will now highlight key findings showing 
how astrocytes modulate aNG through release of different classes 
of secretory substances, as summarized in Figure 1.

Morphogens
Among the first candidate molecules identified for their role in 
aNG were morphogenic factors of the Wnt protein family. Several 
members, including Wnt3 and Wnt7, are expressed by hippocampal 
astrocytes together with Wnt receptors and Wnt/β-catenin 
signaling pathway components (Lie et al., 2005). Hippocampal 
niche astrocytes actively induce ahNG through secretion of Wnt 
proteins and activation of Wnt downstream signaling pathways. 
Overexpression of Wnt3 enhances neuronal differentiation, while 
blockade of Wnt signaling strongly reduces ahNG in vivo and in 
vitro (Lie et al., 2005). Moreno-Estelles demonstrated that Wnt7a 
released by astrocytes in the adult neurogenic niche is a key factor 
promoting NSC self-renewal (Moreno-Estelles et al., 2012).

Gliotransmitters
D-serine and Glutamate (Glu) were identified as molecules 
by which niche astrocytes regulate maturation, survival, and 
functional integration into local synaptic networks of adult-
born neurons. To investigate the role of astrocytic exocytosis on 
aNG, SNAP Receptor protein (SNARE)-dependent exocytosis 
was genetically impaired in niche astrocytes (Sultan et al., 2015). 
Inhibition of vesicular release resulted in severely impaired 
integration and survival of newly generated hippocampal 
neurons, whereas developmentally born neurons appeared 
unaffected (Sultan et al., 2015). Adult-born neurons located 
within the territories of exocytosis-deficient astrocytes displayed 
reduced dendritic spine density and glutamatergic synaptic 
input, which correlated with decreased D-serine. Chronic 
administration of D-serine partially rescued defective phenotypes 
and restored N-methyl-D-aspartate (NMDA)-mediated synaptic 
transmission and dendritic maturation in mice with impaired 
astrocytic vesicular release (Sultan et al., 2015). The observation 
that rescue was only partial suggested that other molecules 
released by astrocytes could be important for maturation of 
adult-born hippocampal neurons. A critical role of vesicular 
Glu release from astrocytes was previously demonstrated in 
the SVZ where newly generated NBs migrate a long distance to 
reach their final destination, the olfactory bulb (OB). Platel et 
al. demonstrated that migrating NBs, which acquire functional 
NMDA receptor activity on their way to the OB, are ensheathed 
by astrocytes releasing glutamate in a Ca2+-dependent manner 
(Platel et al., 2010). They showed that: i) increasing calcium in 
astrocytes induced NMDA receptor activity in NB; ii) blocking 
vesicular astrocytic release eliminated spontaneous NMDA 
receptor activity in NB; and iii) deletion of functional NMDA 
receptors in adult-born NB decreased generation and survival of 
newborn neurons in adult OB (Platel et al., 2010). Altogether, 
these findings correlate astrocyte-released Glu with generation, 
survival, and functional integration into local synaptic networks 
of adult-born OB neurons.
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extracellular Matrix (eCM) Proteins
Several astrocyte-secreted ECM proteins modulate cellular 
functions. Usually these proteins are expressed at high levels 
during development and at lower levels in adulthood. Upon 
brain injury, their expression is upregulated, especially in reactive 
astrocytes, and they are often associated with CNS remodeling 
and synaptogenesis. Some ECM proteins play also an important 
role in the neurogenic microenvironment. The most investigated 
astrocyte-secreted matricellular proteins are thrombospondins 
(TSPs) which mediate cell–cell and cell–matrix interaction by 
binding other ECM components, membrane receptors, growth 

factors, and cytokines. TSP-1 represents a key astrocyte-derived 
pro-neurogenic factor which promotes neuronal differentiation of 
NSC (Lu and Kipnis, 2010). Adult TSP-1−/− mice exhibit reduced 
NSC proliferation and neuronal differentiation in both SVZ and 
SGZ (Lu and Kipnis, 2010). The voltage-gated calcium channel 
α2δ1 subunit was proposed to be a receptor which mediates TSP-1 
synaptogenic effects (Eroglu et al., 2009). The α2δ1 subunit was 
also proven to be functionally expressed by adult hippocampal 
NPC and to mediate TSP-1 and pregabalin (an anticonvulsant/
analgesic α2δ1 ligand) pro-neurogenic effects both in vitro and in 
vivo (Valente et al., 2012). These findings were further extended 

FIGURe 1 | Role of astrocyte-derived molecules in the adult neurogenic niche. In the permissive and instructive microenvironment of the neurogenic niche, 
astrocytes profoundly modulate adult neurogenesis through soluble signals. Neural stem/progenitor cells (NSC/NPC) self-renewal, neuronal commitment/
differentiation, migration of neuroblasts, as well as survival and functional integration of newly born neurons can be affected by different classes of astrocytic-derived 
factors such as morphogens (i.e., Wnt3 and Wnt7), gliotransmitters (i.e., D-serine and glutamate), extracellular matrix (ECM) proteins [i.e., thrombospondin 1 (TSP-
1)], and cytokines/chemokines/acute phase proteins [i.e., IL-1β, IL-6, and lipocalin-2 (LCN-2)].
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in recent studies proposing a key role for nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) signaling whose 
activation occurs in adult NSC via membrane receptors, including 
neurotransmitter receptors and α2δ1 (Meneghini et al., 2010; 
Bortolotto et al., 2017a; Bortolotto et al., 2019). NF-κB p50−/− 
mice exhibit strongly reduced ahNG in vivo (Denis-Donini et al., 
2008) and in vitro (Meneghini et al., 2013; Valente et al., 2015; 
Bonini et al., 2016). Interestingly, TSP-1 promotes an increase 
in the percentage of newly formed neurons in wild type, but not 
in p50−/−-derived ahNPC which have reduced α2δ1 expression 
levels (Cvijetic et al., 2017). Altogether, these data suggested 
that a disturbed astrocyte–NSC communication via TSP-1 may 
contribute to defects in ahNG in absence of p50.

Cytokines and Acute Phase Proteins
In contrast with the notion that inflammatory cytokines inhibit 
neuronal differentiation (Vallieres et al., 2002; Monje et al., 
2003), IL-1β and IL-6, both highly expressed in neurogenic 
niches astrocytes, strongly promote NSC neuronal differentiation 
(Barkho et al., 2006). Lipocalin-2 (LCN-2) is an acute phase protein 
produced by and acting on astrocytes (Jha et al., 2015) which serves 
as "help-me" signal to activate astrocytes and microglia (Xing et al., 
2014). Although its modulatory role in the CNS is not completely 
understood LCN-2 is commonly regarded as a deleterious signal 
(Ferreira et al., 2015) and a key target in regulating astrocyte 
reactivity. Indeed it has been demonstrated that knockdown of 
LCN-2 leads to reduced protein secretion from reactive astroglial 
cells, counteracting the perpetuation of inflammation in nearby 
astrocytes (Smith et al., 2018). LCN-2 is encoded by a NF-κB 
target gene (Uberti et al., 2000), and its expression is increased in 
the secretome of p50−/− astrocytes (Cvijetic et al., 2017; Bortolotto 
and Grilli, 2017b). Initially, based on these findings and its 
deleterious effects, our group hypothesized that overexpressed 
LCN-2 may contribute to impaired ahNG in p50−/− mice. To our 
surprise, LCN-2 promoted, in a concentration-dependent manner, 
neuronal differentiation of ahNPC. Under the same experimental 
conditions, LCN-2 had little effect on neuronal differentiation 
of p50−/− ahNPC which exhibited downregulation of the LCN-2 
receptor 24p3R (Cvijetic et al., 2017). Altogether, these novel data 
proposed LCN-2 as a novel and unexpected astroglial-derived 
signal able to promote neuronal fate specification of ahNPC 
(Bortolotto and Grilli, 2017b). Recently, these findings were 
further extended by the demonstration that LCN-2−/− mice display 
deficits in proliferation and neuronal commitment of NSC and, in 
parallel, hippocampal dysfunction (Ferreira et al., 2018).

In summary, at present several astrocyte-derived signals 
which act as positive modulators of NSC and their progeny have 
been identified and characterized. Of note, little is currently 
known on soluble molecules of astrocytic origin which may exert 
negative effects on aNG. Anatomical and functional segregation 
along the hippocampal dorso-ventral axis is a well-established 
concept (Grilli et al., 1988; Tanti and Belzung, 2013), and 
marked differences in neurogenesis rate have been described in 
the dorsal compared to the ventral dentate gyrus (Piatti et al., 
2011). It would be interesting to investigate whether subregional 
specificities in ahNG may also rely, at least in part, on different 
astrocyte-secreted molecules.

THe DUAL ROLe OF ASTROCYTIC-
DeRIveD FACTORS: FROM eNDOTHeLIAL 
PROTeCTION TO DISRUPTION OF BBB 
FUNCTION
The BBB is constituted by specialized endothelial cells, supported 
in their functions by astrocytes and pericytes, and is part of a more 
complex network, the neurovascular unit (NVU), that includes 
also microglia, neurons, and mast cells. Brain microvascular 
endothelial cells, the main anatomical BBB elements, express tight 
junctions (TJs) and adherens junctions (AJs) (Huber et al., 2001; 
Dejana and Giampietro, 2012), that allow a selective para- and 
transcellular movement of molecules and solutes across the barrier 
(Garg et al., 2008; Garcia et al., 2014). Trafficking through the BBB 
is regulated by specific transporters (Kastin and Pan, 2008), as well 
as by efflux pumps such as P-glycoprotein (P-gp) (Begley, 2004). 
The BBB contributes to make CNS a site of immune privilege, as 
low expression of adhesion molecules and tightness of cell-to-
cell connections limit the access of pathogens and immune cells, 
preserving immune surveillance (Engelhardt and Ransohoff, 2005).

Astrocytes appear fundamental in BBB function. In vitro,  
barrier properties are lost in the absence of astrocytes (Ghazanfari 
and Stewart, 2001) and reestablished by astrocyte conditioned 
media or when astrocyte–endothelial cells contact is provided 
(Tao-Cheng et al., 1987; Neuhaus et al., 1991; Hayashi et al., 1997; 
Colgan et al., 2008). Further, endothelial cells derived from non-
CNS districts, cultured in the presence of astrocytes or astrocyte-
secreted factors, acquire BBB specific features, including 
expression of TJ or P-gp (Prat et al., 2001; Abbott et al., 2006).

Pericytes and radial glia, the major source of astrocyte 
precursors (McDermott et al., 2005), are essential in an early stage 
of barrier induction, whereas astrocytes play a major role later 
on, favoring barrier maturation and maintenance (Obermeier 
et al., 2013; Obermeier et al., 2016).

In pathological conditions, morphological changes in reactive 
astrocytes may induce loss of their interaction with endothelial 
cells (Alvarez et al., 2013). Depending on insult type, astrocytes 
undergo loss-of-function [e.g., failure of glutamate uptake (Broux 
et al., 2015)] and/or gain-of-function [production of a wide range 
of molecules including cytokines (Gimsa et al., 2013; Brambilla, 
2019)]. All these events can lead to reduction or exacerbation 
of BBB damage. Herein we will analyze the crosstalk between 
astrocytes and endothelial cells in BBB function, focusing on few 
astrocytic soluble mediators that belong to the classes discussed 
above (Figure 2).

Morphogens
Sonic hedgehog (Shh) is one of the main mediators of BBB 
induction. It is expressed in astrocytes, and its receptor has been 
detected in vivo in mice and human blood vessels as well as in 
cultured BBB endothelial cells (Alvarez et  al., 2011). Its genetic 
deletion results in reduced expression of endothelial junctional 
proteins and accumulation of solutes in CNS (Alvarez et al., 2011). 
Shh is overexpressed in astrocytes following an ischemic insult 
and reinforces junctional tightness (Liu et al., 2019) thus reducing 
BBB leakage and brain edema (Xia et al., 2013). Accordingly, Shh 
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mimetics promote immune-quiescence dampening leukocyte 
extravasation into the CNS, through the downregulation of 
adhesion molecules, as observed both in vitro (Alvarez et al., 2011) 
and in vivo (Singh et al., 2017). Retinoic acid (RA) is produced by 
radial glia and behaves as a morphogen playing a main role during 
brain development (Halilagic et al., 2007; Mizee et al., 2013). It 
is enhanced in reactive astrocytes after middle cerebral artery 
occlusion (Kong et al., 2015) and contributes to ameliorate barrier 
properties. RA indeed reinforces the expression of junctional 
proteins and P-gp in endothelial cells (Mizee et al., 2013) and 
reduces inflammatory genes (IL-6, CCL2, and VCAM-1) (Mizee 
et al., 2014). It also modifies ICAM-1 glycan composition (Chen 
et al., 2012), affecting the interaction of endothelial cells with 
PBMCs, an event that is modulated by astrocytes (Spampinato 
et al., 2019). Thus, beyond their physiological function in 
barrierogenesis, both Shh and RA play a role in the delay of BBB 
breakdown under pathological conditions.

Trophic Factors
The main vascular trophic factor is VEGF-A. In contrast to its main 
activity in promoting angiogenesis, proliferation, differentiation, 
and survival of endothelial cells during brain development (Esser 
et al., 1998; Zhao et al., 2015), in adulthood VEGF is a potent 
inducer of BBB disruption. Reactive astrocytes are VEGF-A 
primary source and increased BBB immunoreactivity is often 
observed in animal models of multiple sclerosis (Maharaj and 
D'Amore, 2007; Argaw et al., 2012), Alzheimer's disease (Zand 
et al., 2005), ischemia, and traumatic brain injury (Shore et al., 
2004; Jiang et al., 2014; Wu et al., 2018). Acting either directly on 
its receptors on endothelial cells, (Argaw et al., 2012; Chapouly 
et al., 2015), or indirectly, through the modulation of matrix 
metalloproteinases (MMPs) (Michinaga et al., 2015; Spampinato 
et al., 2017), VEGF-A induces changes in the tightness of 
endothelial junctions, causing brain edema, as well as leukocyte 
adhesion and infiltration in the CNS. Accordingly, blockade of 

FIGURe 2 | The dual role of astrocytic-derived factors on blood–brain barrier (BBB). Under physiological conditions, astrocytes release morphogens [sonic hedgehog 
(Shh) and retinoic acid (RA)], trophic factors (VEGF), and gliotransmitters (Glu) that, reinforcing both the formation of new vessels and the tightness of their junctions, 
improve the proper endothelial function at the BBB. After inflammatory stimuli, secretion of morphogens (Shh and RA) is reactivated in an attempt to reduce the 
inflammatory-mediated damage on endothelial layer. On the contrary, VEGF and Glu induce junctional damage and BBB leakiness, as well as increased expression of 
efflux pumps [P-glycoprotein (P-gp)]. The secretion of cytokines and chemokines is further increased, thus facilitating BBB leakage and leukocyte migration.
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VEGF-A through specific antibodies alleviates BBB disruption 
(Michinaga et al., 2018), whereas VEGF-A knockdown in 
astrocytes results in reduced endothelial expression of MMP9 
and prevention of barrier leakage (Spampinato et al., 2017).

Cytokines and Chemokines
Cytokines released by reactive astrocytes in close proximity to 
the BBB induce TJ re-organization [TNF and IFNγ (Chaitanya 
et al., 2011), CCL2 (Yao and Tsirka, 2014)], and immune cells 
recruitment [CXCL10, CCL2, CCL5, IL-8, CXCL12 (Brambilla, 
2019)], further contributing to neuroinflammation. By stimulating 
proteosomal degradation of junctional proteins (Chang et al., 
2015), astrocyte-derived IL-6 increases barrier permeability and 
the release of chemokines, thus enhancing PBMCs' access into 
the CNS (Takeshita et  al., 2017). Astrocytes may also mediate 
endothelial responses to cytokines. Their presence is in fact 
necessary for INFγ to affect barrier properties, whereas only slight 
effects are reported on endothelial cells cultured alone (Chaitanya 
et al., 2011). Conversely, astrocytes counteracted increased barrier 
permeability induced by TNF alone, or in association with IL-6, 
on induced plutipotent stem cells-derived endothelial cells. The 
modulation of BBB properties by astrocyte-derived factors appears 
to be the result of a complex balance. Indeed, stressed astrocytes 
release not only factors triggering barrier breakdown (i.e., IFNγ, 
IL-1β, CCL5, CCL2, and CCL4), but anti-inflammatory ones like 
IL-4 (Mantle and Lee, 2018).

In addition, among astrocyte-derived factors, granulocyte 
and macrophage colony-stimulating factor (GM-CSF) exhibits a 
dual and controversial role. While promoting TJ internalization 
and downregulation (Shang et al., 2016; Zhang et al., 2018) and 
monocyte migration through the BBB (Vogel et al., 2015), GM-CSF 
also protects endothelial cells from apoptosis (Spampinato et al., 
2015), induces claudin-5 overexpression (Shang et al., 2016), 
and stimulates angiopoietin-1 release from pericytes, thereby 
reducing barrier permeability (Yan et al., 2017).

Gliotransmitters
Glu modifies BBB function through interaction with endothelial 
NMDA and metabotropic glutamate receptors. Activated 
astrocytes release large amounts of glutamate that act on 
endothelial NMDA receptors and promote oxidative stress (Scott 
et al., 2007), TJ disruption, and increased BBB permeability 
(Andras et al., 2007). Further, glutamate increases the expression 
of P-gp, as reported in endothelial cells cultured with astrocytes 

derived from amyotrophic lateral sclerosis (ALS) patients 
(Mohamed et al., 2019). This  condition can justify "P-gp–
mediated pharmacoresistance" (Mohamed et al., 2017), often 
observed in diseases including ALS and epilepsy (Avemary et al., 
2013; Feldmann et al., 2013).

CONCLUDING ReMARKS
Our current understanding of the role of astrocytes in adult 
mammalian brain is growing exponentially, unraveling a 
remarkable variety of functions under the control of these cells 
both under physiological and pathological conditions. In recent 
years, the fact that astrocytes execute many of their crucial 
functions in a paracrine manner is also providing fuel to major 
advancements in astrocyte biology. Several proteins identified 
in studies that have applied proteomics for comprehensive 
profiling of astrocyte-secreted proteins confirmed that many of 
them correlate with well-known astrocyte-mediated cell-to-cell 
communication pathways. In some cases, soluble signals released 
by astrocytes in vitro created the opportunity to propose novel 
unexpected roles for these molecules and astrocytes. Hopefully, in 
the future, deeper analysis of the astrocyte secretome may further 
increase our current knowledge on the full potential of these cells 
and their secreted molecules not only as active participants in 
pathophysiological events, but as pharmacological targets or 
even as therapeutics for CNS diseases.

AUTHOR CONTRIBUTIONS
All authors contributed to the discussion, preparation, and 
proofreading of the manuscript.

FUNDING
This work was partially supported by PRIN MIUR 2017. VB was 
supported by a SIF/MSD fellowship 2016. SFS was supported by 
a SIF/MSD fellowship 2017.

ACKNOwLeDGMeNTS
The authors would like to apologize to all researchers whose 
relevant work could not be quoted, due to space limitations.

ReFeReNCeS
Abbott, N. J., Ronnback, L., and Hansson, E. (2006). Astrocyte-endothelial 

interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7 (1), 41–53. doi: 
10.1038/nrn1824

Aimone, J. B., Deng, W., and Gage, F. H. (2010). Adult neurogenesis: integrating 
theories and separating functions. Trends Cognit. Sci. 14 (7), 325–337. doi: 
10.1016/j.tics.2010.04.003

Aimone, J. B., Li, Y., Lee, S. W., Clemenson, G. D., Deng, W., and Gage, F. H. (2014). 
Regulation and function of adult neurogenesis: from genes to cognition. 
Physiol. Rev. 94 (4), 991–1026. doi: 10.1152/physrev.00004.2014

Allen, N. J., and Lyons, D. A. (2018). Glia as architects of central nervous system 
formation and function. Sci. 362 (6411), 181–185. doi: 10.1126/science.aat0473

Alvarez, J. I., Dodelet-Devillers, A., Kebir, H., Ifergan, I., Fabre, P. J., and Terouz, S., 
et al. (2011). The hedgehog pathway promotes blood-brain barrier integrity 
and CNS immune quiescence. Sci. 334 (6063), 1727–1731. doi: 10.1126/
science.1206936

Alvarez, J. I., Katayama, T., and Prat, A. (2013). Glial influence on the blood brain 
barrier. Glia 61 (12), 1939–1958. doi: 10.1002/glia.22575

Andras, I. E., Deli, M. A., Veszelka, S., Hayashi, K., Hennig, B., and Toborek, M. 
(2007). The NMDA and AMPA/KA receptors are involved in glutamate-
induced alterations of occludin expression and phosphorylation in brain 

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 134649

https://doi.org/10.1038/nrn1824
https://doi.org/10.1016/j.tics.2010.04.003
https://doi.org/10.1152/physrev.00004.2014
https://doi.org/10.1126/science.aat0473
https://doi.org/10.1126/science.1206936
https://doi.org/10.1126/science.1206936
https://doi.org/10.1002/glia.22575
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Astrocytes as Relevant Secretory Cells in the BrainSpampinato et al.

7

endothelial cells. J. Cereb. Blood Flow Metab. 27 (8), 1431–1443. doi: 10.1038/
sj.jcbfm.9600445

Araque, A., Carmignoto, G., Haydon, P. G., Oliet, S. H., Robitaille, R., and Volterra, 
A. (2014). Gliotransmitters travel in time and space. Neuron 81 (4), 728–739. 
doi: 10.1016/j.neuron.2014.02.007

Argaw, A. T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J. N., et al. (2012). 
Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS 
inflammatory disease. J. Clin. Invest. 122 (7), 2454–2468. doi: 10.1172/JCI60842

Avemary, J., Salvamoser, J. D., Peraud, A., Remi, J., Noachtar, S., Fricker, G., et al. 
(2013). Dynamic regulation of P-glycoprotein in human brain capillaries. Mol. 
Pharm. 10 (9), 3333–3341. doi: 10.1021/mp4001102

Barkho, B. Z., Song, H., Aimone, J. B., Smrt, R. D., Kuwabara, T., Nakashima, K., 
et al. (2006). Identification of astrocyte-expressed factors that modulate neural 
stem/progenitor cell differentiation. Stem Cells Dev. 15 (3), 407–421. doi: 
10.1089/scd.2006.15.407

Begley, D. J. (2004). ABC transporters and the blood-brain barrier. Curr. Pharm. 
Des. 10 (12), 1295–1312.

Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., 
et al. (2018). Human hippocampal neurogenesis persists throughout aging. Cell 
Stem Cell 22 (4), 589–599 e585. doi: 10.1016/j.stem.2018.03.015

Bond, A. M., Ming, G. L., Song, H. (2015). Adult mammalian neural stem cells and 
neurogenesis: five decades later. Cell Stem Cell 17 (4), 385–395. doi: 10.1016/j.
stem.2015.09.003

Bonini, S. A., Mastinu, A., Maccarinelli, G., Mitola, S., Premoli, M., La Rosa, L. R., 
et al. (2016). Cortical structure alterations and social behavior impairment 
in p50-deficient mice. Cereb Cortex 26 (6), 2832–2849. doi: 10.1093/cercor/
bhw037

Bortolotto, V., Bondi, H., Cuccurazzu, B., Rinaldi, M., Canonico, P. L., and 
Grilli,  M. (2019). Salmeterol, a β2 adrenergic agonist, promotes adult 
hippocampal neurogenesis in a region-specific manner. Front. Pharmacol. 10, 
1000. doi: 10.3389/fphar.2019.01000

Bortolotto, V., Cuccurazzu, B., Canonico, P. L., and Grilli, M. (2014). NF-kappaB 
mediated regulation of adult hippocampal neurogenesis: relevance to mood 
disorders and antidepressant activity. BioMed. Res. Int. 2014, 612798. doi: 
10.1155/2014/612798

Bortolotto, V., and Grilli, M. (2016). Not only a bad guy: potential proneurogenic 
role of the RAGE/NF-kappaB axis in Alzheimer's disease brain. Neural Regener. 
Res. 11 (12), 1924–1925. doi: 10.4103/1673-5374.197130

Bortolotto, V., and Grilli, M. (2017b). Novel insights into the role of NF-κB p50 in 
astrocyte - mediated fate specification of adult neural progenitor cells. Neural 
Regener. Res. 12 (3), 354–357. doi: 10.4103/1673-5374.202919

Bortolotto, V., Mancini, F., Mangano, G., Salem, R., Xia, E., Del Grosso, E., 
et al. (2017a). Proneurogenic effects of trazodone in murine and human 
neural progenitor cells. ACS Chem. Neurosci. 8 (9), 2027–2038. doi: 10.1021/
acschemneuro.7b00175

Brambilla, R. (2019). The contribution of astrocytes to the neuroinflammatory 
response in multiple sclerosis and experimental autoimmune encephalomyelitis. 
Acta Neuropathol. 137 (5), 757–783. doi: 10.1007/s00401-019-01980-7

Broux, B., Gowing, E., and Prat, A. (2015). Glial regulation of the blood-brain 
barrier in health and disease. Semin. Immunopathol. 37 (6), 577–590. doi: 
10.1007/s00281-015-0516-2

Casse, F., Richetin, K., and Toni, N. (2018). Astrocytes' contribution to adult 
neurogenesis in physiology and Alzheimer's disease. Front. Cell Neurosci. 12, 
432. doi: 10.3389/fncel.2018.00432

Chaitanya, G. V., Cromer, W. E., Wells, S. R., Jennings, M. H., Couraud,  P.  O., 
Romero, I. A., et al. (2011). Gliovascular and cytokine interactions modulate 
brain endothelial barrier in vitro. J. Neuroinflammation 8, 162. doi: 
10.1186/1742-2094-8-162

Chang, C. Y., Li, J. R., Chen, W. Y., Ou, Y. C., Lai, C. Y., Hu, Y. H., et al. 
(2015). Disruption of in vitro endothelial barrier integrity by Japanese 
encephalitis  virus-Infected astrocytes. Glia 63 (11), 1915–1932. doi: 10. 
1002/glia.22857

Chapouly, C., Tadesse Argaw, A., Horng, S., Castro, K., Zhang, J., Asp, L., et al. 
(2015). Astrocytic TYMP and VEGFA drive blood-brain barrier opening in 
inflammatory central nervous system lesions. Brain 138 (Pt 6), 1548–1567. doi: 
10.1093/brain/awv077

Chen, C., Diao, D., Guo, L., Shi, M., Gao, J., Hu, M., et al. (2012). All-trans-retinoic 
acid modulates ICAM-1 N-glycan composition by influencing GnT-III levels 

and inhibits cell adhesion and trans-endothelial migration. PloS One 7 (12), 
e52975. doi: 10.1371/journal.pone.0052975

Chen, Y., and Swanson, R. A. (2003). Astrocytes and brain injury. J. Cereb. Blood 
Flow Metab. 23 (2), 137–149. doi: 10.1097/01.WCB.0000044631.80210.3C

Colgan, O. C., Collins, N. T., Ferguson, G., Murphy, R. P., Birney, Y. A., Cahill, P. A., 
et al. (2008). Influence of basolateral condition on the regulation of brain 
microvascular endothelial tight junction properties and barrier function. Brain 
Res. 1193, 84–92. doi: 10.1016/j.brainres.2007.11.072

Cvijetic, S., Bortolotto, V., Manfredi, M., Ranzato, E., Marengo, E., Salem, R., et al. 
(2017). Cell autonomous and noncell-autonomous role of NF-kappaB p50 in 
astrocyte-mediated fate specification of adult neural progenitor cells. Glia 65 
(1), 169–181. doi: 10.1002/glia.23085

Dejana, E., and Giampietro, C. (2012). Vascular endothelial-cadherin and 
vascular stability. Curr. Opin. Hematol. 19 (3), 218–223. doi: 10.1097/
MOH.0b013e3283523e1c

Denis-Donini, S., Dellarole, A., Crociara, P., Francese, M. T., Bortolotto, V., and 
Quadrato, G., et al. (2008). Impaired adult neurogenesis associated with short-
term memory defects in NF-kappaB p50-deficient mice. J. Neurosci. 28 (15), 
3911–3919. doi: 10.1523/JNEUROSCI.0148-08.2008

Dowell, J. A., Johnson, J. A., and Li, L. (2009). Identification of astrocyte secreted 
proteins with a combination of shotgun proteomics and bioinformatics. J. 
Proteome Res. 8 (8), 4135–4143. doi: 10.1021/pr900248y

Eisch, A. J., and Petrik, D. (2012). Depression and hippocampal neurogenesis: a 
road to remission? Sci. 338 (6103), 72–75. doi: 10.1126/science.1222941

Engelhardt, B., and Ransohoff, R. M. (2005). The ins and outs of T-lymphocyte 
trafficking to the CNS: anatomical sites and molecular mechanisms. Trends 
Immunol. 26 (9), 485–495. doi: 10.1016/j.it.2005.07.004

Eroglu, C., Allen, N. J., Susman, M. W., O'Rourke, N. A., Park, C. Y., Ozkan, E., 
et al. (2009). Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin 
receptor responsible for excitatory CNS synaptogenesis. Cell 139 (2), 380–392. 
doi: 10.1016/j.cell.2009.09.025

Esser, S., Wolburg, K., Wolburg, H., Breier, G., Kurzchalia, T., Risau, W. (1998). 
Vascular endothelial growth factor induces endothelial fenestrations in vitro. 
J. Cell Biol. 140 (4), 947–959. doi: 10.1083/jcb.140.4.947

Feldmann, M., Asselin, M. C., Liu, J., Wang, S., McMahon, A., and Anton-
Rodriguez, J., et al. (2013). P-glycoprotein expression and function in patients 
with temporal lobe epilepsy: a case-control study. Lancet Neurol. 12 (8), 777–
785. doi: 10.1016/S1474-4422(13)70109-1

Ferreira, A. C., Da Mesquita, S., Sousa, J. C., Correia-Neves, M., Sousa, N., Palha, 
J. A., et al. (2015). From the periphery to the brain: Lipocalin-2, a friend or foe? 
Prog. Neurobiol. 131, 120–136. doi: 10.1016/j.pneurobio.2015.06.005

Ferreira, A. C., Santos, T., Sampaio-Marques, B., Novais, A., Mesquita, S. D., 
Ludovico, P., et al. (2018). Lipocalin-2 regulates adult neurogenesis and 
contextual discriminative behaviours. Mol. Psychiatry 23 (4), 1031–1039. doi: 
10.1038/mp.2017.95

Fiacco, T. A., and McCarthy, K. D. (2018). Multiple lines of evidence indicate that 
gliotransmissiondoes not occur under physiological conditions. J. Neurosci. 38 
(1), 3–13. doi: 10.1523/JNEUROSCI.0016-17.2017

Garcia, K. O., Ornellas, F. L., Martin, P. K., Patti, C. L., Mello, L. E., and Frussa-
Filho, R., et al. (2014). Therapeutic effects of the transplantation of VEGF 
overexpressing bone marrow mesenchymal stem cells in the hippocampus 
of murine model of Alzheimer's disease. Front. Aging Neurosci. 6, 30. doi: 
10.3389/fnagi.2014.00030

Garg, S. K., Banerjee, R., and Kipnis, J. (2008). Neuroprotective immunity: T 
cell-derived glutamate endows astrocytes with a neuroprotective phenotype. 
J. Immunol. 180 (6), 3866–3873. doi: 10.4049/jimmunol.180.6.3866

Ghazanfari, F. A., and Stewart, R. R. (2001). Characteristics of endothelial cells 
derived from the blood-brain barrier and of astrocytes in culture. Brain Res. 
890 (1), 49–65. doi: 10.1016/s0006-8993(00)03053-5

Ghosh, H. S. (2019). Adult neurogenesis and the promise of adult neural stem 
cells. J. Exp. Neurosci. 13, 1179069519856876. doi: 10.1177/1179069519856876

Gimsa, U., Mitchison, N. A., and Brunner-Weinzierl, M. C. (2013). Immune 
privilege as an intrinsic CNS property: astrocytes protect the CNS against 
T-cell-mediated neuroinflammation. Mediators Inflammation 2013, 320519. 
doi: 10.1155/2013/320519

Grilli, M., and Meneghini, V. (2012). “NF-κB proteins in adult neurogenesis: 
relevance for learning and memory in physiology and pathology,” in 
Transcription factors CREB and NF-κB: involvement in synaptic plasticity and 

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 134650

https://doi.org/10.1038/sj.jcbfm.9600445
https://doi.org/10.1038/sj.jcbfm.9600445
https://doi.org/10.1016/j.neuron.2014.02.007
https://doi.org/10.1172/JCI60842
https://doi.org/10.1021/mp4001102
https://doi.org/10.1089/scd.2006.15.407
https://doi.org/10.1016/j.stem.2018.03.015
https://doi.org/10.1016/j.stem.2015.09.003
https://doi.org/10.1016/j.stem.2015.09.003
https://doi.org/10.1093/cercor/bhw037
https://doi.org/10.1093/cercor/bhw037
https://doi.org/10.3389/fphar.2019.01000
https://doi.org/10.1155/2014/612798
https://doi.org/10.4103/1673-5374.197130
https://doi.org/10.4103/1673-5374.202919
https://doi.org/10.1021/acschemneuro.7b00175
https://doi.org/10.1021/acschemneuro.7b00175
https://doi.org/10.1007/s00401-019-01980-7
https://doi.org/10.1007/s00281-015-0516-2
https://doi.org/10.3389/fncel.2018.00432
https://doi.org/10.1186/1742-2094-8-162
https://doi.org/10.1002/glia.22857
https://doi.org/10.1002/glia.22857
https://doi.org/10.1093/brain/awv077
https://doi.org/10.1371/journal.pone.0052975
https://doi.org/10.1097/01.WCB.0000044631.80210.3C
https://doi.org/10.1016/j.brainres.2007.11.072
https://doi.org/10.1002/glia.23085
https://doi.org/10.1097/MOH.0b013e3283523e1c
https://doi.org/10.1097/MOH.0b013e3283523e1c
https://doi.org/10.1523/JNEUROSCI.0148-08.2008
https://doi.org/10.1021/pr900248y
https://doi.org/10.1126/science.1222941
https://doi.org/10.1016/j.it.2005.07.004
https://doi.org/10.1016/j.cell.2009.09.025
https://doi.org/10.1083/jcb.140.4.947
https://doi.org/10.1016/S1474-4422(13)70109-1
https://doi.org/10.1016/j.pneurobio.2015.06.005
https://doi.org/10.1038/mp.2017.95
https://doi.org/10.1523/JNEUROSCI.0016-17.2017
https://doi.org/10.3389/fnagi.2014.00030
https://doi.org/10.4049/jimmunol.180.6.3866
https://doi.org/10.1016/s0006-8993(00)03053-5
https://doi.org/10.1177/1179069519856876
https://doi.org/10.1155/2013/320519
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Astrocytes as Relevant Secretory Cells in the BrainSpampinato et al.

8

memory formation. Ed. Bentham Science Publishers. (Sharjah, United Arab 
Emirates), 79–96. doi: 10.2174/978160805257811201010079

Grilli, M., Nisoli, E., Memo, M., Missale, C., and Spano, P. (1988). 
Pharmacological characterization of D1 and D2 dopamine receptors in rat 
limbocortical areas. II. Dorsal Hippocampus. Neurosci. Lett. 87, 253–258. doi: 
10.1016/0304-3940(88)90457-0

Halilagic, A., Ribes, V., Ghyselinck, N. B., Zile, M. H., Dolle, P., and Studer, M. 
(2007). Retinoids control anterior and dorsal properties in the developing 
forebrain. Dev. Biol. 303 (1), 362–375. doi: 10.1016/j.ydbio.2006.11.021

Harada, K., Kamiya, T., and Tsuboi, T. (2015). Gliotransmitter release from 
astrocytes: functional, developmental, and pathological implications in the 
brain. Front. Neurosci. 9, 499. doi: 10.3389/fnins.2015.00499

Hayashi, Y., Nomura, M., Yamagishi, S., Harada, S., Yamashita, J., and Yamamoto, 
H. (1997). Induction of various blood-brain barrier properties in non-neural 
endothelial cells by close apposition to co-cultured astrocytes. Glia 19 (1), 13–26.

Huber, J. D., Egleton, R. D., and Davis, T. P. (2001). Molecular physiology and 
pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci. 
24 (12), 719–725. doi: 10.1016/s0166-2236(00)02004-x

Jha, M. K., Kim, J. H., Song, G. J., Lee, W. H., Lee, I. K., Lee, H. W., et al. 
(2018). Functional dissection of astrocyte-secreted proteins: implications 
in brain health and diseases. Prog. Neurobiol. 162, 37–69. doi: 10.1016/j.
pneurobio.2017.12.003

Jha, M. K., Lee, S., Park, D. H., Kook, H., Park, K. G., Lee, I. K., et al. (2015). 
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci. 
Biobehav. Rev. 49, 135–156. doi: 10.1016/j.neubiorev.2014.12.006

Jiang, S., Xia, R., Jiang, Y., Wang, L., and Gao, F. (2014). Vascular endothelial 
growth factors enhance the permeability of the mouse blood-brain barrier. PloS 
One 9 (2), e86407. doi: 10.1371/journal.pone.0086407

Kastin, A. J., and Pan, W. (2008). Blood-brain barrier and feeding: regulatory roles 
of saturable transport systems for ingestive peptides. Curr. Pharm. Des. 14 (16), 
1615–1619. doi: 10.2174/138161208784705423

Kempermann, G., Song, H., and Gage, F. H. (2015). Neurogenesis in the Adult 
Hippocampus. Cold Spring Harb Perspect. Biol. 7 (9), a018812. doi: 10.1101/
cshperspect.a018812

Kong, L., Wang, Y., Wang, X. J., Wang, X. T., Zhao, Y., Wang, L. M., et al. (2015). 
Retinoic acid ameliorates blood-brain barrier disruption following ischemic 
stroke in rats. Pharmacol. Res. 99, 125–136. doi: 10.1016/j.phrs.2015.05.014

Lie, D. C., Colamarino, S. A., Song, H. J., Desire, L., Mira, H., Consiglio, A., et al. 
(2005). Wnt signalling regulates adult hippocampal neurogenesis. Nat. 437 
(7063), 1370–1375. doi: 10.1038/nature04108

Liu, S., Chang, L., and Wei, C. (2019). The sonic hedgehog pathway mediates 
Tongxinluo capsule-induced protection against blood-brain barrier disruption 
after ischaemic stroke in mice. Basic Clin. Pharmacol. Toxicol. 124 (6), 660–669. 
doi: 10.1111/bcpt.13186

Lu, Z., and Kipnis, J. (2010). Thrombospondin 1–a key astrocyte-derived 
neurogenic factor. FASEB J. 24 (6), 1925–1934. doi: 10.1096/fj.09-150573

Maharaj, A. S., and D'Amore, P. A. (2007). Roles for VEGF in the adult. Microvasc 
Res. 74 (2–3), 100–113. doi: 10.1016/j.mvr.2007.03.004

Mantle, J. L., and Lee, K. H. (2018). A differentiating neural stem cell-derived 
astrocytic population mitigates the inflammatory effects of TNF-alpha and 
IL-6 in an iPSC-based blood-brain barrier model. Neurobiol. Dis. 119, 113–
120. doi: 10.1016/j.nbd.2018.07.030

McDermott, K. W., Barry, D. S., and McMahon, S. S. (2005). Role of radial glia in 
cytogenesis, patterning and boundary formation in the developing spinal cord. 
J. Anat. 207 (3), 241–250. doi: 10.1111/j.1469-7580.2005.00462.x

Meneghini, V., Bortolotto, V., Francese, M. T., Dellarole, A., Carraro, L., Terzieva, S., 
et al. (2013). High-mobility group box-1 protein and β-amyloid oligomers 
promote neuronal differentiation of adult hippocampal neural progenitors 
via receptor for advanced glycation end products/nuclear factor-κB axis: 
relevance for Alzheimer's disease. J. Neurosci. 33 (14), 6047–6059. doi: 10.1523/
JNEUROSCI.2052-12.2013

Meneghini, V., Francese, M. T., Carraro, L., and Grilli, M. (2010). A novel role 
for the receptor for advanced glycation end-products in neural progenitor cells 
derived from adult SubVentricular Zone. Mol. Cell Neurosci. 45 (2), 139–150. 
doi: 10.1016/j.mcn.2010.06.005

Michinaga, S., Kimura, A., Hatanaka, S., Minami, S., Asano, A., Ikushima, Y., 
et al. (2018). Delayed administration of BQ788, an ETB antagonist, after 
experimental traumatic brain injury promotes recovery of blood-brain barrier 

function and a reduction of cerebral edema in mice. J. Neurotrauma 35 (13), 
1481–1494. doi: 10.1089/neu.2017.5421

Michinaga, S., Seno, N., Fuka, M., Yamamoto, Y., Minami, S., Kimura, A., et al. 
(2015). Improvement of cold injury-induced mouse brain edema by endothelin 
ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 
and vascular endothelial growth factor-A. Eur. J. Neurosci. 42 (6), 2356–2370. 
doi: 10.1111/ejn.13020

Mizee, M. R., Nijland, P. G., van der Pol, S. M., Drexhage, J. A., van Het Hof, B., 
Mebius, R., et al. (2014). Astrocyte-derived retinoic acid: a novel regulator of 
blood-brain barrier function in multiple sclerosis. Acta Neuropathol. 128 (5), 
691–703. doi: 10.1007/s00401-014-1335-6

Mizee, M. R., Wooldrik, D., Lakeman, K. A., van het Hof, B., Drexhage, J. A., and 
Geerts, D., et al. (2013). Retinoic acid induces blood-brain barrier development. 
J. Neurosci. 33 (4), 1660–1671. doi: 10.1523/JNEUROSCI.1338-12.2013

Mohamed, L. A., Markandaiah, S., Bonanno, S., Pasinelli, P., and Trotti, D. 
(2017). Blood-brain barrier driven pharmacoresistance in amyotrophic lateral 
sclerosis and challenges for effective drug therapies. AAPS J. 19 (6), 1600–1614. 
doi: 10.1208/s12248-017-0120-6

Mohamed, L. A., Markandaiah, S. S., Bonanno, S., Pasinelli, P., and Trotti, D. 
(2019). Excess glutamate secreted from astrocytes drives upregulation of 
P-glycoprotein in endothelial cells in amyotrophic lateral sclerosis. Exp. Neurol. 
316, 27–38. doi: 10.1016/j.expneurol.2019.04.002

Monje, M. L., Toda, H., and Palmer, T. D. (2003). Inflammatory blockade restores 
adult hippocampal neurogenesis. Sci. 302 (5651), 1760–1765. doi: 10.1126/
science.1088417

Moreno-Estelles, M., Gonzalez-Gomez, P., Hortiguela, R., Diaz-Moreno, M., San 
Emeterio, J., Carvalho, A. L., et al. (2012). Symmetric expansion of neural stem 
cells from the adult olfactory bulb is driven by astrocytes via WNT7A. Stem 
Cells 30 (12), 2796–2809. doi: 10.1002/stem.1243

Moreno-Jimenez, E. P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., 
Cafini, F., Pallas-Bazarra, N., et al. (2019). Adult hippocampal neurogenesis 
is abundant in neurologically healthy subjects and drops sharply in patients 
with Alzheimer's disease. Nat. Med. 25 (4), 554–560. doi: 10.1038/s41591-019- 
0375-9

Neuhaus, J., Risau, W., and Wolburg, H. (1991). Induction of blood-brain barrier 
characteristics in bovine brain endothelial cells by rat astroglial cells in 
transfilter coculture. Ann. N Y Acad. Sci. 633, 578–580. doi: 10.1111/j.1749-
6632.1991.tb15667.x

Obermeier, B., Daneman, R., and Ransohoff, R. M. (2013). Development, 
maintenance and disruption of the blood-brain barrier. Nat. Med. 19 (12), 
1584–1596. doi: 10.1038/nm.3407

Obermeier, B., Verma, A., and Ransohoff, R. M. (2016). The blood-brain barrier. 
Handb. Clin. Neurol. 133, 39–59. doi: 10.1016/B978-0-444-63432-0.00003-7

Perez-Alvarez, A., and Araque, A. (2013). Astrocyte-neuron interaction 
at tripartite synapses. Curr. Drug Targets 14 (11), 1220–1224. doi: 
10.2174/13894501113149990203

Piatti, V. C., Davies-Sala, M. G., Espósito, M. S., Mongiat, L. A., Trinchero, M. F., 
and Schinder, A. F. (2011). The timing for neuronal maturation in the adult 
hippocampus is modulated by local network activity. J. Neurosci. 31 (21), 7715–
7728. doi: 10.1523/JNEUROSCI.1380-11.2011

Platel, J. C., Dave, K. A., Gordon, V., Lacar, B., Rubio, M. E., and Bordey, A. (2010). 
NMDA receptors activated by subventricular zone astrocytic glutamate are 
critical for neuroblast survival prior to entering a synaptic network. Neuron 65 
(6), 859–872. doi: 10.1016/j.neuron.2010.03.009

Prat, A., Biernacki, K., Wosik, K., and Antel, J. P. (2001). Glial cell influence on the 
human blood-brain barrier. Glia 36 (2), 145–155.

Scott, G. S., Bowman, S. R., Smith, T., Flower, R. J., and Bolton, C. (2007). 
Glutamate-stimulated peroxynitrite production in a brain-derived endothelial 
cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. 
Biochem. Pharmacol. 73 (2), 228–236. doi: 10.1016/j.bcp.2006. 09.021

Shang, S., Yang, Y. M., Zhang, H., Tian, L., Jiang, J. S., Dong, Y. B., et al. (2016). 
Intracerebral GM-CSF contributes to transendothelial monocyte migration in 
APP/PS1 Alzheimer's disease mice. J. Cereb. Blood Flow Metab. 36 (11), 1978–
1991. doi: 10.1177/0271678X16660983

Shore, P. M., Jackson, E. K., Wisniewski, S. R., Clark, R. S., Adelson, P. D., and 
Kochanek, P. M. (2004). Vascular endothelial growth factor is increased 
in cerebrospinal fluid after traumatic brain injury in infants and children. 
Neurosurgery 54 (3), 605–611. doi: 10.1227/01.neu.0000108642.88724.db

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 134651

https://doi.org/10.2174/978160805257811201010079
https://doi.org/10.1016/0304-3940(88)90457-0
https://doi.org/10.1016/j.ydbio.2006.11.021
https://doi.org/10.3389/fnins.2015.00499
http://doi.org/10.1016/s0166-2236(00)02004-x
https://doi.org/10.1016/j.pneurobio.2017.12.003
https://doi.org/10.1016/j.pneurobio.2017.12.003
https://doi.org/10.1016/j.neubiorev.2014.12.006
https://doi.org/10.1371/journal.pone.0086407
http://doi.org/10.2174/138161208784705423
https://doi.org/10.1101/cshperspect.a018812
https://doi.org/10.1101/cshperspect.a018812
https://doi.org/10.1016/j.phrs.2015.05.014
https://doi.org/10.1038/nature04108
https://doi.org/10.1111/bcpt.13186
https://doi.org/10.1096/fj.09-150573
https://doi.org/10.1016/j.mvr.2007.03.004
https://doi.org/10.1016/j.nbd.2018.07.030
https://doi.org/10.1111/j.1469-7580.2005.00462.x
https://doi.org/10.1523/JNEUROSCI.2052-12.2013
https://doi.org/10.1523/JNEUROSCI.2052-12.2013
https://doi.org/10.1016/j.mcn.2010.06.005
https://doi.org/10.1089/neu.2017.5421
https://doi.org/10.1111/ejn.13020
https://doi.org/10.1007/s00401-014-1335-6
https://doi.org/10.1523/JNEUROSCI.1338-12.2013
https://doi.org/10.1208/s12248-017-0120-6
https://doi.org/10.1016/j.expneurol.2019.04.002
https://doi.org/10.1126/science.1088417
https://doi.org/10.1126/science.1088417
https://doi.org/10.1002/stem.1243
https://doi.org/10.1038/s41591-019-0375-9
https://doi.org/10.1038/s41591-019-0375-9
https://doi.org/10.1111/j.1749-6632.1991.tb15667.x
https://doi.org/10.1111/j.1749-6632.1991.tb15667.x
https://doi.org/10.1038/nm.3407
https://doi.org/10.1016/B978-0-444-63432-0.00003-7
http://doi.org/10.2174/13894501113149990203
https://doi.org/10.1523/JNEUROSCI.1380-11.2011
https://doi.org/10.1016/j.neuron.2010.03.009
https://doi.org/10.1016/j.bcp.2006.09.021
https://doi.org/10.1177/0271678X16660983
https://doi.org/10.1227/01.neu.0000108642.88724.db
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Astrocytes as Relevant Secretory Cells in the BrainSpampinato et al.

9

Singh, V. B., Singh, M. V., Piekna-Przybylska, D., Gorantla, S., Poluektova, L. Y., 
and Maggirwar, S. B. (2017). Sonic Hedgehog mimetic prevents leukocyte 
infiltration into the CNS during acute HIV infection. Sci. Rep. 7 (1), 9578. doi: 
10.1038/s41598-017-10241-0

Smith, J. A., Braga, A., Verheyen, J., Basilico, S., Bandiera, S., Alfaro-Cervello, C., 
et al. (2018). RNA nanotherapeutics for the amelioration of astroglial reactivity. 
Mol. Ther. Nucleic Acids 10, 103–121. doi: 10.1016/j.omtn.2017.11.008

Song, H., Stevens, C. F., and Gage, F. H. (2002). Astroglia induce neurogenesis 
from adult neural stem cells. Nat. 417 (6884), 39–44. doi: 10.1038/417039a

Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, 
H. B., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. 
Cell 153 (6), 1219–1227. doi: 10.1016/j.cell.2013.05.002

Spampinato, S. F., Merlo, S., Fagone, E., Fruciano, M., Barbagallo, C., Kanda, T., 
et al. (2019). Astrocytes modify migration of PBMCs induced by β-amyloid in 
a blood-brain barrier in vitro model. Front. In Cell. Neurosci. 13. doi: 10.3389/
fncel.2019.00337

Spampinato, S. F., Merlo, S., Sano, Y., Kanda, T., and Sortino, M. A. (2017). 
Astrocytes contribute to Abeta-induced blood-brain barrier damage through 
activation of endothelial MMP9. J. Neurochem. 142 (3), 464–477. doi: 10.1111/
jnc.14068

Spampinato, S. F., Obermeier, B., Cotleur, A., Love, A., Takeshita, Y., Sano,  Y., 
et al. (2015). Sphingosine 1 phosphate at the blood brain barrier: Can the 
Modulation of S1P receptor 1 influence the response of endothelial cells and 
astrocytes to inflammatory stimuli? PloS One 10 (7), e0133392. doi: 10.1371/
journal.pone.0133392

Sultan, S., Li, L., Moss, J., Petrelli, F., Casse, F., Gebara, E., et al. (2015). Synaptic 
integration of adult-born hippocampal neurons is locally controlled by 
astrocytes. Neuron 88 (5), 957–972. doi: 10.1016/j.neuron.2015.10.037

Takeshita, Y., Obermeier, B., Cotleur, A. C., Spampinato, S. F., Shimizu, F., 
Yamamoto, E., et al. (2017). Effects of neuromyelitis optica-IgG at the blood-
brain barrier in vitro. Neurol. Neuroimmunol Neuroinflamm 4 (1), e311. doi: 
10.1212/NXI.0000000000000311

Tanti, A., and Belzung, C. (2013). Neurogenesis along the septo-temporal 
axis of the hippocampus: Are depression and the action of antidepressants 
region-specific? Neurosci. 252, 234–252. doi: 10.1016/j.neuroscience.2013. 
08.017

Tao-Cheng, J. H., Nagy, Z., and Brightman, M. W. (1987). Tight junctions of brain 
endothelium in vitro are enhanced by astroglia. J. Neurosci. 7 (10), 3293–3299.

Uberti, D., Grilli, M., and Memo, M. (2000). Contribution of NF-kappaB and p53 
in the glutamate-induced apoptosis. Int. J. Dev. Neurosci. 18 (4-5), 447–454. 
doi: 10.1016/s0736-5748(00)00018-6

Valente, M. M., Allen, M., Bortolotto, V., Lim, S. T., Conant, K., and Grilli, 
M. (2015). The MMP-1/PAR-1 axis enhances proliferation and neuronal 
differentiation of adult hippocampal neural progenitor cells. Neural Plast 2015, 
646595. doi: 10.1155/2015/646595

Valente, M. M., Bortolotto, V., Cuccurazzu, B., Ubezio, F., Meneghini, V., Francese, 
M.  T., et al. (2012). alpha2delta ligands act as positive modulators of adult 
hippocampal neurogenesis and prevent depression-like behavior induced 
by chronic restraint stress. Mol. Pharmacol. 82 (2), 271–280. doi: 10.1124/
mol.112.077636

Vallieres, L., Campbell, I. L., Gage, F. H., and Sawchenko, P. E. (2002). Reduced 
hippocampal neurogenesis in adult transgenic mice with chronic astrocytic 
production of interleukin-6. J. Neurosci. 22 (2), 486–492.

Vogel, D. Y., Kooij, G., Heijnen, P. D., Breur, M., Peferoen, L. A., van der Valk, P., 
et al. (2015). GM-CSF promotes migration of human monocytes across the blood 
brain barrier. Eur. J. Immunol. 45 (6), 1808–1819. doi: 10.1002/eji.201444960

Wu, L., Ye, Z., Pan, Y., Li, X., Fu, X., Zhang, B., et al. (2018). Vascular endothelial 
growth factor aggravates cerebral ischemia and reperfusion-induced blood-
brain-barrier disruption through regulating LOC102640519/HOXC13/ZO-1 
signaling. Exp. Cell Res. 369 (2), 275–283. doi: 10.1016/j.yexcr.2018.05.029

Xia, Y. P., He, Q. W., Li, Y. N., Chen, S. C., Huang, M., Wang, Y., et al. (2013). 
Recombinant human sonic hedgehog protein regulates the expression of ZO-1 
and occludin by activating angiopoietin-1 in stroke damage. PloS One 8 (7), 
e68891. doi: 10.1371/journal.pone.0068891

Xing, C., Wang, X., Cheng, C., Montaner, J., Mandeville, E., Leung, W., et al. (2014). 
Neuronal production of lipocalin-2 as a help-me signal for glial activation. 
Stroke 45 (7), 2085–2092. doi: 10.1161/STROKEAHA.114.005733

Yan, M., Hu, Y., Yao, M., Bao, S., and Fang, Y. (2017). GM-CSF ameliorates 
microvascular barrier integrity via pericyte-derived Ang-1 in wound healing. 
Wound Repair Regener. 25 (6), 933–943. doi: 10.1111/wrr.12608

Yao, Y., and Tsirka, S. E. (2014). Monocyte chemoattractant protein-1 and 
the blood-brain barrier. Cell Mol. Life Sci. 71 (4), 683–697. doi: 10.1007/
s00018-013-1459-1

Yun, S., Donovan, M. H., Ross, M. N., Richardson, D. R., Reister, R., Farnbauch, 
L. A., et al. (2016). Stress-induced anxiety- and depressive-like phenotype 
associated with transient reduction in neurogenesis in adult nestin-CreERT2/
diphtheria toxin fragment A transgenic mice. PloS One 11 (1), e0147256. doi: 
10.1371/journal.pone.0147256

Zand, L., Ryu, J. K., and McLarnon, J. G. (2005). Induction of angiogenesis in the 
beta-amyloid peptide-injected rat hippocampus. Neuroreport 16 (2), 129–132. 
doi: 10.1097/00001756-200502080-00011

Zhang, H., Zhang, S., Zhang, J., Liu, D., Wei, J., Fang, W., et al. (2018). ZO-1 
expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular 
endothelial cells. J. Cereb. Blood Flow Metab. 38 (5), 809–822. doi: 
10.1177/0271678X17702668

Zhao, F., Deng, J., Yu, X., Li, D., Shi, H., and Zhao, Y. (2015). Protective effects 
of vascular endothelial growth factor in cultured brain endothelial cells 
against hypoglycemia. Metab. Brain Dis. 30 (4), 999–1007. doi: 10.1007/
s11011-015-9659-z

Conflict of Interest: The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be construed as a 
potential conflict of interest.

Copyright © 2019 Spampinato, Bortolotto, Canonico, Sortino and Grilli. This is an open-
access article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Pharmacology | www.frontiersin.org November 2019 | Volume 10 | Article 134652

https://doi.org/10.1038/s41598-017-10241-0
https://doi.org/10.1016/j.omtn.2017.11.008
https://doi.org/10.1038/417039a
https://doi.org/10.1016/j.cell.2013.05.002
https://doi.org/10.3389/fncel.2019.00337
https://doi.org/10.3389/fncel.2019.00337
https://doi.org/10.1111/jnc.14068
https://doi.org/10.1111/jnc.14068
https://doi.org/10.1371/journal.pone.0133392
https://doi.org/10.1371/journal.pone.0133392
https://doi.org/10.1016/j.neuron.2015.10.037
https://doi.org/10.1212/NXI.0000000000000311
https://doi.org/10.1016/j.neuroscience.2013.08.017
https://doi.org/10.1016/j.neuroscience.2013.08.017
http://doi.org/10.1016/s0736-5748(00)00018-6
https://doi.org/10.1155/2015/646595
https://doi.org/10.1124/mol.112.077636
https://doi.org/10.1124/mol.112.077636
https://doi.org/10.1002/eji.201444960
https://doi.org/10.1016/j.yexcr.2018.05.029
https://doi.org/10.1371/journal.pone.0068891
https://doi.org/10.1161/STROKEAHA.114.005733
https://doi.org/10.1111/wrr.12608
https://doi.org/10.1007/s00018-013-1459-1
https://doi.org/10.1007/s00018-013-1459-1
https://doi.org/10.1371/journal.pone.0147256
http://doi.org/10.1097/00001756-200502080-00011
https://doi.org/10.1177/0271678X17702668
https://doi.org/10.1007/s11011-015-9659-z
https://doi.org/10.1007/s11011-015-9659-z
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology/
http://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Frontiers in Pharmacology | www.frontiers

Edited by:
Juan Andrés Orellana,

Pontifical Catholic University of Chile,
Chile

Reviewed by:
Ursula Wyneken,

University of the Andes, Chile
Edward J. Goetzl,

University of California,
San Francisco, United States

*Correspondence:
Manuela Marcoli

marcoli@pharmatox.unige.it

†Present address:
Arianna Venturini,

Telethon Institute of Genetics and
Medicine, Pozzuoli, Italy

‡These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 24 July 2019
Accepted: 13 November 2019
Published: 02 December 2019

Citation:
Venturini A, Passalacqua M,

Pelassa S, Pastorino F, Tedesco M,
Cortese K, Gagliani MC, Leo G,
Maura G, Guidolin D, Agnati LF,
Marcoli M and Cervetto C (2019)

Exosomes From Astrocyte
Processes: Signaling to Neurons.

Front. Pharmacol. 10:1452.
doi: 10.3389/fphar.2019.01452

ORIGINAL RESEARCH
published: 02 December 2019
doi: 10.3389/fphar.2019.01452
Exosomes From Astrocyte
Processes: Signaling to Neurons
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Mariateresa Tedesco4,5, Katia Cortese6, Maria Cristina Gagliani6, Giuseppina Leo7,
Guido Maura1, Diego Guidolin8, Luigi F. Agnati 7,9, Manuela Marcoli 1,10*

and Chiara Cervetto1
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DIBRIS, University of Genova, Genova, Italy, 6 Section of Anatomy, Department of Experimental Medicine, University of
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Karolinska Institutet, Stockholm, Sweden, 10 Centre of Excellence for Biomedical Research CEBR, University of Genova,
Genova, Italy

It is widely recognized that extracellular vesicles subserve non-classical signal
transmission in the central nervous system. Here we assess if the astrocyte processes,
that are recognized to play crucial roles in intercellular communication at the synapses and
in neuron-astrocyte networks, could convey messages through extracellular vesicles. Our
findings indicate, for the first time that freshly isolated astrocyte processes prepared from
adult rat cerebral cortex, can indeed participate to signal transmission in central nervous
system by releasing exosomes that by volume transmission might target near or long-
distance sites. It is noteworthy that the exosomes released from the astrocyte processes
proved ability to selectively target neurons. The astrocyte-derived exosomes were proven
positive for neuroglobin, a protein functioning as neuroprotectant against cell insult; the
possibility that exosomes might transfer neuroglobin to neurons would add a mechanism
to the potential astrocytic neuroprotectant activity. Notably, the exosomes released from
the processes of astrocytes maintained markers, which prove their parental astrocytic
origin. This potentially allows the assessment of the cellular origin of exosomes that might
be recovered from body fluids.

Keywords: adult astrocytes, astrocyte processes, cerebral cortex, ex-vivo, exosomes, extracellular vesicles,
neuroglobin, neuron-astrocyte cocultures
Abbreviations: CNS, central nervous system; EVs, extracellular vesicles; GFAP, glial fibrillary protein; NGB, neuroglobin;
BSA, bovine serum albumin; MAP-2, microtubule-associated protein 2; PFA, paraformaldehyde; PBS, phosphate buffer
solution; b III Tub, b III Tubulin.
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INTRODUCTION

The relevance of neuron-astrocyte network function in the
intercellular communication in central nervous system (CNS) as
well as in the vulnerability to neurodegenerative and
neuropsychiatric diseases is widely accepted (see Halassa and
Haydon, 2010; Sofroniew, 2015; Verkhratsky et al., 2016). In the
neuron-astrocyte networks the perisynaptic astrocyte processes
function as sensors of transmitters in the extracellular environment
—acted upon by neurotransmitters and gliotransmitters through a
volume transmission mode of communication (see for reviews
Agnati and Fuxe, 2000; Vizi, 2000)—and modulate neural activity
by clearing glutamate and by releasing gliotransmitters (see
Verkhratsky et al., 2016; Cervetto et al., 2018 and references
therein); they also regulate extracellular space volume and coverage
of synapses (Xie et al., 2013). Indeed, they represent the astrocyte
compartment specially devoted to bidirectional neuron-astrocyte
communication in the complex interaction involvingpre- andpost-
synapticelements(thetripartitesynapse;Araqueetal.,1999)withthe
extracellular matrix (the tetrapartite synapse; Thalhammer and
Cingolani, 2014; Agnati et al., 2018) and to regulation of
synapse plasticity.

An increasing amount of evidence indicates that extracellular
vesicles (EVs) operate as carriers of signals in CNS. Intercellular
communication through EVs is generally accepted as a mode of
non-synaptic communication inCNS—the roamer-type of volume
transmission—contributing to the role of the extracellular space in
the signaling diffusion and codification in the brain (Agnati et al.,
2014). Exosomes—EVs of about 30–100nmdiameter, released into
the extracellular spaceupon fusionofmultivesicular bodieswith the
plasma membrane—are recognized to play multiple roles in both
physiological and pathological conditions in CNS (Février and
Raposo, 2004; Raposo and Stoorvogel, 2013 and references
therein). Various CNS cell types, including neurons, microglia
and oligodendroglia, can release exosomes; while cultured
astrocytes have been reported to secrete exosomes (see Taylor et al.,
2007; Guescini et al., 2010; Wang et al., 2011; Wang et al., 2012;
Guitart et al., 2016; Willis et al., 2017; Hira et al., 2018; Pascua-
Maestro et al., 2019; Pei et al., 2019; Xu et al., 2019; see also
Verkhratsky et al., 2016 and Lafourcade et al., 2016), less is known
on the ability of astrocytes to release exosomes in neuron-
astrocyte networks.

Here we investigate on the possibility that the processes of
astrocytes might convey messages in non-classical mode through
EVs. We report for the first time that astrocytic processes freshly
prepared from adult rat cerebral cortex and originating from
astrocytes that have matured in astrocyte-neuron networks, are
provided with structures resembling multivesicular bodies and can
release vesicles, which exhibit the features of exosomes. Therefore,
although their subcellular origin cannot be directly demonstrated,
the vesicles can be considered bona-fide exosomes (from now on,
“exosomes”). Moreover, we report that the exosomes can transport
neuroglobin (NGB). NGB, a protein produced mainly in neurons
within the CNS but also detected in astrocytes, and exhibiting anti-
oxidant, anti-apoptotic, and anti-inflammatory effects, might
function as a neuroprotectant against hypoxic/ischemic insult, b-
amyloid, or H2O2 toxicity (see Guidolin et al., 2014; Guidolin et al.,
Frontiers in Pharmacology | www.frontiersin.org 254
2016; Van Acker et al., 2019 and references therein). Noteworthy,
the exosomes released from the astrocyte processes were able to
selectively target neurons. The finding that astrocytic processes
express and release NGB might contribute additional mechanisms
to the astrocyte neuroprotective potential.
MATERIALS AND METHODS

Chemicals and Reagents
Percoll, bovine serum albumin (BSA), poly-L-ornithine, PKH67
fluorescent cell linker kit (catalog number PKH67GL MIDI67),
and all the salts were from Sigma-Aldrich St. Louis, MO USA.
The primary or secondary antibodies were from Sigma-Aldrich
[mouse anti-synaptophysin, catalog number: S5768; rabbit anti-
glial fibrillary protein (GFAP), catalog number: G9269; mouse
anti-GFAP (clone G-A-5), catalog number: G3893; mouse anti-
ezrin, catalog number: E8897; mouse anti-b-actin, catalog
number: A2228; rabbit anti-b III tubulin, catalog number:
SAB4500088], from Synaptic Systems, Goettingen, Germany
[rabbit anti-microtubule-associated protein 2 (MAP2), catalog
number: 188 003], from Merck Millipore Corporation,
Darmstadt, Germany [mouse anti-oligodendrocyte (RIP),
catalog number: MAB1580; mouse anti-integrin-aM (clone
OX-42), catalog number: CBL 1512], from Santa Cruz
Biotechnology Inc, Dallas, TX USA [rabbit anti-NGB (clone
FL-151); catalog number: sc-30144] or from Thermo-Fisher
Scientific Inc, Waltham, MA USA [mouse anti-Alix (clone
3A9), catalog number: MA1-83977; mouse anti-Tsg101 (clone
4A10), catalog number: MA1-23296; Alexa-Fluor 488 or 633
conjugated goat anti-rabbit or anti-mouse secondary
antibodies]. The horseradish peroxidase-linked anti-rabbit or
anti-mouse secondary antibodies were from Cell Signaling
Technology Inc, Danvers, MA USA. Prolong Gold Antifade
Mountant were from Molecular Probes, Eugene, OR USA; the
microporous filters and the polyvinylidene difluoridemembrane
were bought from Merck Millipore Corporation, Darmstadt,
Germany. The mini gel used for western blot were from Bio-Rad
Laboratories, Hercules, CA USA; ECL-PLUS kit was from GE
Healthcare, Milano, Italy; Neurobasal, DMEM, B27, Glutamax,
and Pen-Strepto were from Gibco by Thermo-Fischer
Scientific Inc.

Animals
Adult male rats (200–250 g, Sprague–Dawley) were housed at
constant temperature (22 ± 1°C) and relative humidity (50%)
under a regular light-dark schedule (lights on 7 AM–7 PM).
Food and water were freely available. To prepare primary
neuronal cultures Sprague–Dawley rat embryos at the day 18
of gestation (E18) were used. The pregnant dams were
anes the t i zed and the embryos were ex t rac ted by
caesarian section.

Animal care and experimental procedures complied with the
European Communities Parliament and Council Directive of 22
September 2010 (2010/63/EU) and with the Italian D.L. n. 26/
2014, and were approved by the Italian Ministry of Health
December 2019 | Volume 10 | Article 1452
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(protocol number 26768 of November 2012 and protocol
number 75F11.N.6JI of August 2018), in accordance with
Decreto Ministeriale 116/1992. All efforts were made to
minimize the number of animals used and their suffering, and
no in vivo technique was used.

Preparation of Purified Astrocytic
Processes
Purified astrocyte processes (gliosomes) were prepared from the
cerebral cortex of adult male rats. Briefly, after decapitation, the
tissue was rapidly removed and placed in ice-cold medium.
Purified gliosomes were prepared by a discontinuous Percoll
gradient according to Nakamura (Nakamura et al., 1993) as
previously reported (see Cervetto et al., 2018). Briefly, rat
cerebral cortices were homogenized in 10 volumes of 10 mM
Tris/HCl pH 7.4 with 0.32 M sucrose, using a glass-Teflon tissue
grinder (clearance 0.25 mm). The homogenate was centrifuged
(5 min at 4°C and 1,000 g) to remove nuclei and debris and the
supernatant stratified on a discontinuous Percoll gradient (2, 6,
10, and 20% (v/v) in Tris-buffered sucrose) and centrifuged for 5
min at 4°C and 33,000 g. The layer between 2% and 6% (v/v)
Percoll (gliosomal fraction; purified astrocyte processes) was
collected and washed by centrifugation. For release
experiments, purified astrocyte processes were suspended in
standard HEPES medium (mM: NaCl 128, KCl 2.4, MgSO4

1.2, KH2PO4 1.2, CaCl2 1.0, and HEPES 10 with glucose 10,
pH 7.4). Protein determinations were carried out using serum
bovine albumin as the standard (see Cervetto et al., 2018).

Confocal Microscopy on Gliosomes
and Synaptosomes
Immunofluorescence confocal microscopy on gliosomes and
synaptosomes was performed according to sequential staining
methods (see Cervetto et al., 2016; Cervetto et al., 2018). Briefly,
gliosomes and synaptosomes were fixed and permeabilized in 2%
paraformaldehyde (PFA)/0,1% Triton X-100 in phosphate buffer
solution (PBS) pH 7.4 and then incubated in the diluted primary
antibodies in 3% BSA in PBS (over-night, 4°C). The following
primary antibodies were used: mouse anti-synaptophysin
(1:1,000), rabbit anti-GFAP (1:1,000); mouse anti-RIP
(1:10,000), and mouse anti-integrin-aM (1:25). After washing
with PBS the preparations were incubated with the appropriate
Alexa-Fluor 488 or 633 conjugated secondary antibodies
(1:1,000). Gliosomes and synaptosomes were then smeared
onto coverslips with anti-fade mounting medium (ProLong
Gold). Images were collected by means of a three-channel TCS
SP2 laser-scanning confocal microscope (Leica Wetzlar,
Germany) using a plan apochromatic oil immersion objective
60×/numeric aperture 1.43. The ImageJ software (Wayne
Rasband, National Institutes of Health, Bethesda, MD, USA)
was used to count positive particles using 3D-counter object
analyzed application (Threshold = 50 in all the fields—Fiji
ImageJ). The percentage of GFAP, synaptophysin, RIP, and
integrin-aM positive particles was estimated in three to five
non-overlapping fields from three different preparations of
gliosomes and synaptosomes, and are expressed as mean ± SEM.
Frontiers in Pharmacology | www.frontiersin.org 355
Release Experiments and Extracellular
Vesicle Isolation and Characterization
We collected the EVs released from the astrocyte processes
essentially by applying the method used to collect the
gliotransmitters released from isolated perfused astrocyte
processes (gliosomes) or the neurotransmitters released from
isolated perfused nerve terminals (synaptosomes). Briefly,
gliosomes were stratified on microporous filters (MF-
Millipore™, Thickness: 180µm; Pore size: 0.65µm; Merck-
Millipore) at the bottom of parallel perfusion chambers at 37°
C and continuously perfused (0.5 ml/min) with a standard
medium as described previously (Cervetto et al., 2017; Cervetto
et al., 2018). After 5-min perfusion, perfusate fractions were
collected in a 10-min sample. The perfusate was pelleted by
ultracentrifugation at 110,000 g for 90 min (Guescini et al., 2010)
and the EVs were resuspended i) in PBS to perform nanosight
analysis by using a dynamic light scattering; ii) in loading buffer
for performing western blot analysis; iii) in diluent C, according
to PKH67 kit technical instructions, to be labeled with the
exosome dye PKH67 for assessing their ability to target cells.

Dynamic Light Scattering
To measure the size of the EVs released from astrocyte processes
we performed the nanosight analysis on ultracentrifugation
pellet resuspended in PBS using the Zetasizer Nano ZS90
particle sizer at a 90° fixed angle (Malvern Instruments,
Worcestershire, United Kingdom), as previously described
(Marimpietri et al., 2013). Nanosphere™ size standards with a
mean diameter of 57 ± 4 nm (Thermo Scientific) were used for
particle sizer calibration. The analysis was replicated on three
different samples.

Western Blot
The western blot analysis was performed both on gliosomes,
synaptosomes, and EVs. Proteins were denatured in Laemmli
sample buffer and then subjected to a SDS-polyacrylamide gel
electrophoresis (13% or 4–20% gradient mini gel) 200 V for 50
min (gliosomes: 5–20 µg/lane; synaptosomes: 10µg/lane; EVs:
estimated amount of proteins: 2.53–6.32 µg/lane; Mini-Protean
TGX Gel, Bio-Rad Laboratories), followed by electroblotting
(100 V for 50 min) on polyvinylidene difluoride membrane
(Immobilon-P PVDF; Millipore Corporation). The blot has
been cut probing different regions of the same blot with
multiple antibodies. Immunodetection was performed using
the following primary antibodies: mouse anti-Alix (1:1,000);
mouse anti-Tsg101 (1:800); rabbit anti-NGB (1:300); mouse
anti-GFAP (1:1,000); mouse anti-ezrin (1:500); rabbit anti-
MAP-2 (1:1,000); and rabbit anti-b III tubulin (1:1,000).
Primary antibodies were incubated over-night at 4°C followed
by washing and the application of horseradish peroxidase-linked
anti-rabbit or anti-mouse (Cell Signaling Technology) secondary
antibodies, incubated for 1 h at room temperature. Western blots
were developed with the ECL-PLUS kit (GE Healthcare),
according to the manufacturer's instructions. Band detection
and densitometry were performed using the Chemi-Doc
System and the quantity one software package (Bio-Rad
December 2019 | Volume 10 | Article 1452
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Laboratories). The membranes were stripped using Re-blot plus
solution (Merck-Millipore Corporation) and re-probed with
mouse anti-b-actin (1:10,000) also to estimate the amounts of
proteins in exosomes. Developed films were analyzed using
specific software (GelDoc; Bio-Rad Laboratories).

Electron Microscopy
Ultrastructural analysis of gliosomes and exosomes was performed
by negative staining method. Briefly, 5µl drops of gliosomes or
purified exosomes were placed onto formvar and carbon-coated
copper grids and adsorbed for 20 min at room temperature. The
excess of buffer was removed by using a filter paper. Then, grids
were fixed in 2%PFA inPBS pH7.2 for 5min andwashed out three
timeson largedropsofdistilledwater.Gridswere then incubated for
5 min at room temperature with 1% aqueous solution of uranyl
acetate. Contrast enhancement was obtained by further incubating
the grids with a mixture of 1% uranyl acetate and 1%
methylcellulose for 5 min. After drying, grids with gliosomes or
exosomes were immediately observed with a CM10 electron
microscope (Philips, Eindhoven, The Netherlands). Digital
images were taken with a Megaview II camera.

Labeling of Exosomes
For immunofluorescence analysis, the exosome pellet was
resuspended in diluent C and stained with the dye PKH67
according to the producer's technical bulletin (Fitzner et al.,
2011). The dye was gently pipetted with the sample, and after 5
min at room temperature, the staining reaction was stopped
bringing the volume up to 35mlwith 10%BSA in PBS. Exosomes
were pelleted by ultracentrifugation (110,000 g for 90 min) and
resuspended in 150 µl of Neurobasal. In parallel as control
condition, we prepared the control samples with equal
volumes of PBS plus the same amount of diluent C, PKH67
dye, 10%BSA and PBS, and by omitting the exosomes, to exclude
any non-specific labeling of cells by micelles of the aliphatic dye
or by the excess of dye.

Neuron-Astrocyte Co-Cultures
Primary cortical cells were derived from Sprague–Dawley rat
embryonic day 18 (E18). Culture preparation was performed as
previously described (Chiappalone et al., 2006). Briefly, E18
timed pregnant Sprague–Dawley rat was euthanized by CO2

and cervically dislocated in accordance with institutionally
approved animal care. Embryos were dissected and cortices
isolated in Hank's buffer solution without Ca2+ and Mg2+. All
tissue was collected and maintained in ice-cold buffer solution
and, to obtain a single-cell suspension, cerebral cortices were
enzymatically digested at 37°C with warm TrypLe Express for
15–18 min in a water bath. The digestion was stopped by
adding medium (Neurobasal or DMEM) complemented with
10% FCS (fetal calf serum) for 3 min, after this interval the
medium was carefully removed and the cortices, transferred in
Neurobasal/B27 (supplemented with Glutamax and Pen-
Strepto), were mechanically triturated with a sterile fire-
polished Pasteur pipette. Single-cell suspension was well mixed,
counted, and diluted. Finally, cells were plated on poly-L-ornithine
Frontiers in Pharmacology | www.frontiersin.org 456
(100 µg/ml) coated coverslips inserted into multiwells plates at
the density around 5.0x 104cell/cm2. The primary cultures were
kept at 37°C in humidified atmosphere of 5% CO2 in air. The
culture medium was changed weekly, until the uptake
experiments at 21 DIV, at the end of the 3 weeks of
development of the in vitro culture the percentage
composition of the cell population was distributed with 70 ±
15% of neurons and 30 ± 15% of glial cell (the percentage of
neurons and astrocytes were estimated in three to five non-
overlapping fields from three different cultures, and are expressed
as mean ± SEM), consistent with previous findings (Chiappalone
et al., 2006). Immunofluorescence assays were performed using
rabbit anti-MAP-2 (1:500), mouse anti-GFAP (1:1,000), and
DAPI dye. See a representative image acquired by
epifluorescence microscopy in Figure 3A.

Cellular Uptake of Exosomes
Exosomes, made fluorescent with the PKH67 lipophilic dye, were
dispersed (16 µl) in the same culture medium where the
coverslips were immersed with the neuronal networks and
incubated for 1 h at 37°C in humidified atmosphere of 5%
CO2 in air.

In parallel, as a negative control, the same volume (16 µl) of
control sample was loaded onto other coverslips from the same
neuronal preparation, and left to incubate for 1 h under the same
conditions as above. After the time interval had elapsed, both the
coverslips with the exosomes and those with control sample were
washed repeatedly to remove the excess.

To evaluate the uptake capabilities of the exosomes, the
experiments were repeated on three different neuronal
preparations, developed in vitro for 3 weeks, and the biological
sample was subjected to specific marking to confirm its
neuronal/glial morphology and exosomes uptake. Briefly, the
cells were fixed in 4% PFA, blocked with 3% BSA, and incubated
primarily with rabbit or mouse primary antibodies (over-night at
4°C in humid chamber) and then with Alexa Fluor 546 donkey
anti-mouse and 633 goat anti-rabbit (1h at room temperature).
The following primary antibodies were used: rabbit anti-b III
tubulin (1:500) or rabbit anti-MAP2 (1:500), or rabbit or
mouse anti-GFAP (1:1,000). The excessive antibodies were
washed by PBS. The glass coverslips were mounted with
antifade mounting medium and observed using confocal
microscopy (see above).
RESULTS

Gliosomes Obtained From Adult Rat
Cerebral Cortex Are a Purified Preparation
of Cerebrocortical Astrocyte Processes
At confocal microscopy, the astrocyte processes appeared labeled
with the anti-GFAP antibody (a marker identifying astrocytes),
and were negative for synaptophysin, integrin-aM, and RIP
(marke r s fo r the ne rve t e rmina l s , m i c rog l i a , o r
oligodendrocytes, respectively. Figures 1A–I). As a control, we
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FIGURE 1 | Astrocyte processes obtained from adult rat cerebral cortex. Negligible contamination of gliosomes, positive for the specific glial marker GFAP (A, D, G),
by subcellular no-astrocytic particles. Immunofluorescent assay for synaptophysin (B), RIP (E) or integrin-aM (H) markers for nerve terminals, microglia, and
oligodendrocytes, respectively. As a positive control, the immunofluorescent assay for synaptophysin (J) was performed on cerebral cortical synaptosomes scarcely
contaminated by subcellular GFAP-positive particles (K). Bars (C, F, I, L) represent the percent of positive particles (% ± SEM of positive particles counted in three
to five no-overlapping fields from n = 3 different preparations): GFAP (C, F, I, solid bars; L, empty bar), synaptophysin (C empty bar; L solid bar; L, empty bar), or RIP
or integrin-aM (F or I, respectively; empty bar). Scale bars are indicated in the figures. Western blot analysis of gliosomes and synaptosomes (M, N). The absence of
cross-contamination of the astrocyte processes and nerve terminals is shown (M): MAP2, b III tubulin, and GFAP proteins were used as selective markers for the
synaptosome or gliosome preparations. Presence of the astrocytic markers GFAP and ezrin, and of the exosome markers Alix and Tsg101 in the gliosomes (N).
Electron microscopy image of a cortical astrocyte processes. A single gliosome is shown containing vesicles scattered in the cytoplasm and a multivesicular body
(O). Scale bars: 200 nm. Schematic of a perfusion unit of the apparatus allowing recovery of extracellular vesicles (exosomes) released from the processes during
perfusion (P). For other experimental details, see Materials and Methods.
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also show that the nerve terminals (synaptosomes) prepared
from rat cerebral cortex were positive for synaptophysin and
negative for GFAP (Figures 1J–L). The Western blot analysis
showed the absence of contamination by neural specific proteins
(MAP2 and b III tubulin) in the gliosome preparation, and the
negligible contamination of the cerebral cortical synaptosomes
prepared in parallel (Figure 1M). The findings indicate that
gliosomes are a purified preparation of processes of
cerebrocortical astrocytes, negligibly contaminated by
neuronal, microglial, or oligodendroglial particles. The
processes were also analyzed by Western blot and were found
to express the astrocytic markers GFAP and ezrin, the exosome
endosomal-lysosomal sorting proteins Alix and Tsg101, and
NGB (Figure 1N). The electron microscopy analysis on
gliosomes revealed the presence of multivesicular bodies and
scattered vesicles inside the astrocyte processes (Figure 1O).

Purified Astrocytic Processes Release
Extracellular Vesicles Exhibiting the
Characteristics of Exosomes
The EVs released and recovered in the perfusate from
cerebrocortical astrocyte processes (see Figure 1P for a
scheme of perfusion unit) were firstly analyzed using
nanosight dynamic light-scattering analysis and electron
Frontiers in Pharmacology | www.frontiersin.org 658
microscopy imaging, and subsequently for the presence of the
exosome specific protein markers Alix and Tsg101. At dynamic
light-scattering analysis, the EVs showed a bell-shaped size
distribution profile, peaking at mode 60 nm (range 50–75) (see
in Figure 2A the tracing of a representative experiment from
three different experiments with similar results). The observed
size is consistent with the theoretical size of exosomes and
previous observations (Skog et al., 2008). The typical cup shape
appearance at the ultrastructural level and their size (electron
microscopy images, Figure 2B) are consistent with previously
reported exosome electronmicroscopy images (see Raposo and
Stoorvogel, 2013). The EVs were verified for the presence of
astrocytic markers, namely for GFAP and ezrin. Using western
blot analysis, we obtained signaling for both GFAP and ezrin in
the EVs recovered from the perfusion collected samples
(Figure 2C), demonstrating the astrocytic source of the
particles collected.

Both the exosome specific protein markers Alix and Tsg101
were present in the vesicles (Figure 2D), confirming that the EVs
recovered in the perfusate from the processes exhibit the features
of exosomes.

Gliosomes and exosomes were also labeled with anti-NGB
antibody (Figure 2E), indicating that exosomes carry
NGB protein.
FIGURE 2 | Characterization of rat cerebrocortical astrocyte processes-released exosomes. Size distribution of exosomes released from the astrocyte processes, as
assessed by the zetasizer nano ZS90 particle sizer. Curve shows a representative tracing (from three samples obtained from three different experiments with similar
results) (A). Electron microscopy images of vesicles released from astrocyte processes. Note the cup shape appearance and size, consistent with previously
reported exosome electron microscopy images characteristics (B; scale bar: 100 nm). Presence of astrocytic markers, exosomal markers, and of NGB (C–E).
Western blot for the astrocytic markers GFAP and ezrin in gliosome preparation and in exosomes released from gliosomes (C). Western blot for the exosomal
markers Alix and Tsg101 in gliosome preparation and in gliosome-released exosomes (D). Western blot for NGB in gliosome preparation and in gliosome-released
exosomes (E). For other experimental details, see Materials and Methods.
December 2019 | Volume 10 | Article 1452

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Venturini et al. Exosomes From Astrocyte Processes
The Released Exosomes Selectively
Target Neurons and Can Be Internalized
by Neurons
The exosomes released and recovered in the perfusate from
cerebrocortical astrocyte processes were able to target cells in
neuron-astrocyte co-cultures. Notably, in the co-cultures, only
GFAP-negative cells were targeted by the exosomes, while
GFAP-positive astrocytes were not. In particular, we found
that exosomes targeted cells exhibiting the morphological
features of neurons (Figure 3); labeling with the neuronal
markers MAP-2 and b III tubulin confirmed the selective
transfer of astrocyte-released exosomes to neurons (Figures
3B–I; Video 1). Notably, confocal microscopy confirmed the
ability of exosomes to be internalized rather than being attached
to the surface of the neuronal membrane (Figures 3B–H); we
found evidence for exosome presence inside the neurons both at
their projections (Figures 3B–H) and at the perinuclear region
(Figure 3I). Interesting to note, exosome traveling to
perinuclear region was already reported in PC12 cells as well
a s in human- induced p lur ipo tent s t em ce l l s or in
human neuroblastoma cell lines (Tian et al., 2010; Sardar
Sinha et al., 2018).
DISCUSSION

Our main finding is represented by the fact that exosomes can be
released from astrocyte processes and selectively target neurons;
these exosomes might transfer NGB of astrocytic origin. The
relevance and the novelty of these findings are to be considered
in light of the following considerations:

-Although it was already demonstrated that exosomes can be
released from cultured astrocytes (Guescini et al., 2010),
astrocytes in culture can only marginally mimic the behavior
of astrocytes in situ. We here report on processes of astrocytes
acutely prepared from adult rat cerebral cortex, thus reflecting
the behavior of astrocyte processes in mature cerebrocortical
neuron-astrocyte networks. Notably, these processes were
positive for ezrin, an astrocytic cytoskeletal protein selective
marker of the perisynaptic astrocyte processes, required for the
astrocyte processes structural plasticity (see Cervetto et al., 2018
and references therein). In the perfusate from the processes we
collected particles that proved to be positive for the specific
protein markers for exosomes, the endosomal-lysosomal sorting
proteins Alix and Tsg101, indicating that exosomes can be
released from the processes. In fact, electron microscopy
imaging indicated the presence of multivesicular bodies in the
processes, consistent with their ability to release exosomes.
Astrocyte processes might therefore participate in a roamer-
type of volume transmission through the release of exosomes.
Thus, the processes are capable of contributing in multiple
modes to the signal transmission in CNS, both receiving
messages and sending messages of different type, and
presumably with different half-life and targets, such as the
gliotransmitters (e.g. glutamate, that can be rapidly taken up
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and/or activate non synaptic glutamate receptors) and signals
that may be transferred through EVs. Notably, perisynaptic
processes exhibit plasticity and can rapidly change their
morphology, modifying the coverage of pre- and postsynaptic
elements at the synapses (Reichenbach et al., 2010; Bernardinelli
et al., 2014); plasticity of perisynaptic processes has been
reported to result in dramatic changes of the interstitial space
during sleep or pharmacological anesthesia (Xie et al., 2013). We
can hypothesize that the conceivable consequent opening of the
synapses might reduce the "privacy" of synaptic wiring
transmission in favor of volume transmission, suggesting that
astrocyte signaling through volume transmission might have
different relevance and functions depending on physiological
cycles and the state of synaptic coverage. This would contribute
to the shift from a neurocentric to a neuro-astrocentric view of
the brain functioning, as the perisynaptic astrocyte processes
may be the source for both classical volume transmission
through the release of gliotransmitters, and for roamer-type
volume transmission through the release of exosomes. By this
way, the astrocyte processes might be capable of inducing
transient phenotype changes in the receiving cells (see Agnati
et al., 2014 and references therein).

The exosomes released from the astrocyte processes were
found to target neurons. It was already shown that exosomes
from cultured astrocytes could contact co-cultured neurons to
promote neurite outgrowth of neighboring neurons and/or
neuronal survival (see Janas et al., 2016 and references therein;
Frühbeis et al., 2012; Caruso Bavisotto et al., 2019) and could
protect neurons against ischemic damage (see Hira et al., 2018;
Pei et al., 2019; Xu et al., 2019). This is however to our
knowledge, the first evidence indicating that ex-vivo astrocytes
—in particular, astrocyte processes acutely prepared from adult
astrocytes that have matured in neuron-astrocyte network—can
selectively communicate to neurons through exosomes. In the
framework of the complex bidirectional signaling coordinating
the function of the neuron-astrocyte networks the evidence that
the astrocyte processes can release exosomes to target neurons
adds a further mode of astrocyte-to-neuron communication that
might be of significant (and so far uncovered) importance in
physiological as well as in pathological conditions. As a matter of
fact, exosomes transfer from astrocyte might result in a transient
phenotype change of the receiving neurons, e.g. by enrichment in
neuroprotective factors (see below) or by expression of receptors
(see exosomes carrying functionally competent neurotransmitter
receptors to receiving cells; Guescini et al., 2012) making neurons
transiently able to recognize and decode extracellular signals,
with possible relevant neuropharmacological implications. The
ability of astrocyte-derived exosomes to effectively transfer
signals and functions to neurons is a crucial point worth to be
investigated in the future. Also, it remains not understood why
some neurons (and their projections) are preferentially targeted
by exosomes; further investigation is required to understand the
neurochemical characteristics or the attracting pathways of the
neurons/neurona l pro jec t ions to which exosomes
preferentially bind.
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FIGURE 3 | Neurons: targets for the exosomes. Confocal images showing exosomes targeting neurons when added to a neuron-astrocyte co-culture.
Characteristics of the neuron-astrocyte co-culture; see coexistence of GFAP-positive (green) astrocytes and MAP2-positive (red) neurons in a representative
epifluorescence microscope image at 21 div and their relative distribution at 3 and 21 div culture (A). DAPI stained was used to marker cellular nucleus. Scale bar is
indicated in the figure. See that exosomes (marked with PKH67, green) preferentially contact GFAP-negative cells, while GFAP-positive astrocytes are not targeted
(blue in B, C, red in J, K). Exosomes selectively target cells positive for the neuronal markers MAP2 (in B, C, D–F) or b III tubulin (red in G-I). The images are the
merge of a single z stack of the two channels (D–F, H–L) or representative maximum intensity projections of the acquired z stacks of the two or three channels
(B–C; G). See in Video 1 the z-axis analysis related to the panel B. Note internalization of exosomes (D–I): evidence for exosome presence inside the neuronal
projections (D–H) and at the perinuclear region (I). A control sample prepared in parallel by omitting the exosome excluded the non-specific labeling of cells (L).
Scale bars are indicated in the figures. For other experimental details, see Materials and Methods.
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-The exosomes were found to carry NGB. As a matter of fact,
it was initially thought that NGB in mammals was expressed
exclusively in neurons of the nervous system. NGB, however, was
also observed in astrocytes and reactive astrocytes (see Della
Valle et al., 2010 and references therein). In particular, it was
hypothesized that NGB may be produced by astrocytes for
secretion, possibly as a neuroprotective agent for neurons
(Della Valle et al., 2010). Astrocytes, indeed, are recognized to
play multiple roles in diverse pathological conditions in the
brain, playing both neuroprotective and detrimental roles (see
Verkhratsky et al., 2016) The possibility that astrocyte processes
could release NGB through exosomes would allow them to send
long-distance messages to cells, to transiently change their
susceptibility to damage, and to participate in the beneficial
effects of astrocytes in ischemic injury (see Verkhratsky et al.,
2016 and references therein).

Actually, NGB can serve multiple crucial roles in cell defense
and resistance to degeneration, and transferring NGB from
astrocytes might contribute to protecting neurons. In this
respect, it was reported that estradiol regulates NGB expression
both in neurons and astrocytes through ERb-mediated
mechanisms and that this regulation of the expression of NGB
may be part of the neuroprotective mechanisms activated by
estradiol in astrocytes (see references in Guidolin et al., 2014;
Guidolin et al., 2016). As a matter of fact, transferring signals
through exosomes has been proposed to be involved in the
participation of glial cells to neurodegeneration or
neuroprotection (see Verkhratsky et al., 2016; Lafourcade et al.,
2016); by supporting the ability of astrocyte-derived exosomes to
target neurons, our findings indicate that astrocytes might
participate to neuron neuroprotection by transferring NGB
through this mode of astrocyte-neuron communication.
Notably, the roles for exosomes in transferring protective
signals to neurons were already suggested on the basis of data
from cultured astrocytes (Taylor et al., 2007; Wang et al., 2011;
Guitart et al., 2016; Hira et al., 2018; Pascua-Maestro et al., 2019;
Pei et al., 2019; Xu et al., 2019).

-Exosomes, being released from a variety of cells, have been
proposed as peripheral markers for diagnostic-prognostic
purposes in various diseases. They have been also proposed as
peripheral markers for CNS diseases; however, one of the
problems in their reliability as markers, besides the correct
classification of exosomes, is their origin (Raposo and
Stoorvogel, 2013). It is to note that exosomes recovered in the
blood and originating from astrocytes were reported to behave
as marker for stress-induced disease (Gómez-Molina et al.,
2019). Also, recently GFAP-positive exosomes originating
from astrocytomas were found in the blood and were claimed
to be of help to the glioma classification (Van Bodegraven et al.,
2019). Furthermore, astrocyte-derived EVs were found in
periphery in neuroinflammatory conditions or after brain
focal radiation (Dickens et al., 2017; Willis et al., 2017; Cai
et al., 2017). Inaddition to functioningasbiomarkersofdifferent
pathological conditions, the astrocyte-derived exosomes in
blood might also target peripheral organs in the brain-to-
periphery signaling (Dickens et al., 2017; Cai et al., 2017; see
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also Gómez-Molina et al., 2019). Worthy of note, we here
indicate that a subcellular region of astrocytes—the processes
that are devoted to sending/receiving signals in the nervous
system—might be primarily involved in signal communication
through exosomes. Notably, the finding that astrocyte-derived
exosomes are posit ive for astrocytic markers al lows
hypothesizing that analysis of these markers could help to
understand the cellular origin of (parental cells originating
the) exosomes that might be recovered in peripheral blood
from healthy or diseased CNS.
CONCLUSIONS

In conclusion, our findings for the first time indicate that the
astrocyte processes acutely prepared from astrocytes matured in
a neuron-astrocyte network in CNS might participate to signal
transmission by releasing exosomes, which, in turn might target
near or long-distance targets by volume transmission. The
exosomes released by the processes proved to selectively target
neurons, adding a new non-conventional mode of astrocyte-to-
neuron signal transmission, with unexplored impact on
integrative communication in the CNS and neuropharmacological
implications. Indeed, releasing NGB-carrying exosomes might be a
mode for astrocytes to operate as a signal toprotectneighboringcells
in neuron-astrocyte networks. Also, our findings could help to
understand the parental cell origin of the exosomes that might be
recovered from peripheral blood.
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VIDEO 1 | Neurons: targets for the exosomes. A z-axis analysis of astrocyte-
derived exosomes marked with PKH67 (green) co-localization with MAP2 (red) in
primary astrocyte neuron co-culture (scanning 0.14 mm z axis; 50 stacks). The
merge images of each z field were imported as a sequence and then saved as a
movie with three frames per second (ImageJ). GFAP (blue).
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Background: In the human central nervous system (CN), resting astrocytes do not
visually show endothelin-1 (ET-1)-like immunoreactivity. In patients with multiple sclerosis
(MS), an inflammatory disorder of the CNS, high levels of ET-1 are found in reactive
astrocytes in demyelinated plaques. ET-1 may contribute to the pathology of MS by
interrupting the blood-brain-barrier, enhancing inflammatory responses, excitotoxicity and
reducing cerebral blood flow.

Methods: We used the human astrocytoma cell line 1321N1 to investigate the role of
inflammatory cytokines involved in MS lesions (IL-1b, TNF-a, IFN-g, LPS, IL-10, TGF-b) on
astrocytic ET-1 upregulation. Prucalopride, rolipram, fenofibrate, fluoxetine, simvastatin,
daglutril, and resveratrol were investigated as potential candidate drugs to suppress
cytokine-induced astrocytic ET-1 production. Effects on ET-1 production were measured
using both ELISA and RT-qPCR.

Results and Conclusions: ET-1 secretion by astrocytoma cells was only stimulated by
the pro-inflammatory cytokines IL-1b and TNF-a. Fluoxetine, simvastatin, and resveratrol
significantly inhibited this IL-1b- and TNF-a-induced ET-1 production. Simvastatin and
resveratrol significantly reduced ET-1 mRNA levels, indicating an effect at the level of
transcription. Fluoxetine significantly reduced endothelin converting enzyme-1 mRNA
levels, suggesting and effect at the level of protein-processing. The required
concentrations of simvastatin (>0.1 µM) and resveratrol (>10 µM) cannot be achieved in
humans using pharmacologically accepted doses. Fluoxetine exerted a significant inhibitory
effect on ET-1 secretion at a concentration of 5 µM, which is pharmacologically achievable
in human brain, but the effect was modest (<50% suppression) and probably not sufficient
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to obtain a clinically relevant ET-1 effect. Our in vitromodel can be a useful screening tool in
the development of new drugs to suppress astrocytic ET-1 production. The effect of
simvastatin was for the most part mediated via the mevalonate pathway, suggesting that
this might be an interesting target for further drug development.
Keywords: multiple sclerosis, endothelin-1, astrocytes, cytokines, inflammation, fluoxetine, simvastatin, resveratrol
INTRODUCTION

Multiple sclerosis (MS) is a chronic disorder of the central
nervous system (CNS) that is pathologically characterized by
the appearance of focal inflammatory lesions associated with
demyelination and gliosis (plaques), disseminated in place and
time. In addition, degenerative processes take place, including a
progressive diffuse axonal degeneration and hippocampal
neuronal loss (Compston and Coles, 2008). Destructive
immune responses play a key role in the generation of focal
lesions. The mechanisms responsible for the degenerative
processes, which largely determine long-term disability in
patients with MS are less well understood.

High levels of endothelin-1 (ET-1) have been found both in
plasma and cerebrospinal fluid (CSF) of MS patients (Speciale
et al., 2000; Haufschild et al., 2001). The likely source of this ET-1
production are reactive astrocytes in focal MS lesions, which
express high levels of ET-1, while resting astrocytes in human
brain visually do not show ET-1 immunoreactivity (D’Haeseleer
et al., 2013). Mice with astrocytic ET-1 overexpression developed
more severe experimental allergic encephalomyelitis (EAE),
which is an animal model for the inflammatory lesions in MS
(Guo et al., 2014).

The increased levels of ET-1 produced by reactive astrocytes
may contribute to the pathology of MS by interrupting the
blood-brain-barrier (BBB), enhancing the inflammatory
responses, promoting excitotoxicity, and lowering cerebral
blood flow (CBF) (Hostenbach et al., 2016). The manner by
which astrocytes affect myelination seems to correlate with their
level of reactivity (Nash et al., 2011; Kiray et al., 2016), and ET-1
released from reactive astrocytes acts as negative regulator of the
differentiation of oligodendrocyte progenitor cells and
remyelination (Hammond et al., 2014). ET-1 is also a potent
vasoconstrictor, and previous research has shown that CBF in
MS patients is already globally impaired from the early stages of
the disease (Law et al., 2004; D’haeseleer et al., 2011).

Chronic cerebral hypoperfusion on itself may contribute to
the pathology of MS. Animals subjected to chronic cerebral
hypoperfusion developed axonal degeneration, focal white
matter lesions with apoptosis of oligodendrocytes, myelin
breakdown, inflammatory reactions, gliosis (Tomimoto et al.,
2003), and neuronal loss in the hippocampal CA1 region (Ohta
et al., 1997), which are all pathological features of MS.

We have shown that the oral administration of a single dose
of the ET antagonist bosentan in MS patients can restore their
CBF to values found in healthy volunteers (D’Haeseleer et al.,
2013). This finding formed the basis for this study. The aim was
to test a number of cytokines, found in MS lesions, for their
in.org 265
ability to induce ET-1 production in astrocytic cells in vitro. The
most relevant cytokine-induced in vitro model will then be used
to screen a series of existing compounds for human use that pass
the blood-brain barrier and may have potential to suppress ET-
1 production.

The synthesis of ET-1 is mainly regulated at the transcription
and translation level resulting in a 212-amino acid protein,
preproET-1, which is further processed by a furin-like
proprotein convertase to an inactive intermediate, big ET-1,
which is then cleaved by an endothelin-converting enzyme
(ECE) or other proteases into ET-1 (Hostenbach et al., 2016).

A number of drugs have been shown to influence ET-1
synthesis in other cell lines by acting at different levels of ET-1
expression. Others may on mechanistic grounds be candidate
drugs to inhibit cellular ET-1 synthesis. For our study, the
following compounds were selected: simvastatin, resveratrol,
fluoxetine, prucalopride, rolipram, fenofibrate, and daglutril.

Simvastatin has been shown to downregulate ET-1 expression
in human fetal astrocytes transfected with HIV-Tat protein, and
decrease the transcription rate of the ET-1 gene in bovine
endothelial cells (Hernandez-Perera et al., 2000; Chauhan
et al., 2007).

Resveratrol inhibited ET-1 mRNA expression in cultured
endothelial cells through attenuating the activator protein-1
binding site (AP-1) of the ET-1 promotor (Liu et al., 2003).

Fluoxetine activates protein kinase A (PKA) in astrocytes and
the ET-1 promotor element FoxO1 is a physiological substrate
for PKA by the mean of phosphorylation and thus inhibition of
FoxO1 (Lee et al., 2011).

Prucalopride reduced interferon-g-induced MHC class II and
B7 costimulatory immunostaining in cultured astrocytes.
Furthermore, the drug is known to enhance the intracellular
cAMP production, which in turn can activate PKA (Zeinstra
et al., 2006).

Ro l ip r am i s an inh ib i to r o f cyc l i c nuc l eo t ide
phosphodiesterase responsible for the inhibition of the
degradation of cAMP, which in turn will activate PKA. The
drug has been shown to prevent ET-1 induced actions in
perfused lung tissue of rat (Held et al., 1997).

Fenofibrate inhibits ET-1 expression in human endothelial
cells, through enhanced expression of the transcriptional
Küppel-like factor 11 which inhibits the ET-1 promotor, and
on the other hand through inhibition of glycogen synthase
kinase-3 activity, which will also inhibit ET-1 expression.

Daglutril has an endopeptidase (endothelin-converting
enzyme) inhibiting effect and was shown to antagonize ET-1
induced vasoconstrictor activity in isolated human vaginal tissue
(Rahardjo et al., 2013).
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MATERIALS AND METHODS

Regulation of ET-1 Production in Cultured
Human Astrocytoma Cells
Astrocytoma Cell Line
The human astrocytoma cell line 1321N1 (gift from dr. Sarah
Gerlo, Lab of Eukaryotic Gene Expression and Signal
Transduction, Gent University, Belgium) was cultured in
DMEM (Dulbecco’s Modified Eagle’s medium; Thermo Fisher,
Belgium) with 10% FBS (Fetal Bovine Serum; Thermo Fisher,
Belgium), 1% Fungizone (Thermo Fisher Belgium), and 1% Pen-
strep (Penicillin-Streptomycin-medium; Thermo Fisher
Belgium) in a humidified 5% CO2 atmosphere at 37°C. After
approximately 1 week, they were fully grown and plated out in
12-well plates at a concentration of 30,000 cells per 2 ml DMEM.
After 3 days, cells were confluent and used for the experiments
described below.
Incubation With Inflammatory Cytokines
Cells were cultured for 6 h in either the absence or presence of
inflammatory modulators, after which the supernatant was
collected for the measurement of ET-1 and frozen at -80°C. A
number of pro-inflammatory and anti-inflammatory cytokines
were tested: TNF-a (Tumor Necrosis Factor alfa; Miltenyi
Biotec, The Netherlands) at concentrations of 1, 10, 50, 100,
and 250 ng/ml, IFN-g (Interferon gamma; Life Technologies,
Belgium) at a concentration of 100 ng/ml, IL-1b (Interleukin -1
beta; Life Technologies, Belgium) at 1, 10, 50, 100, and 250 ng/
ml, LPS (Lipopolysacharide; Sigma Aldrich, Germany) at 0.5 and
10 mg/ml, thrombin (Sigma Aldrich, Germany) at 3 units/ml, IL6
(interleukin 6; R&D systems, Germany) at 10 ng/ml and 100 ng/
ml, IL-10 (interleukin-10; Life Technologies, Belgium) at 10ng/
ml and 100ng/ml and TGF-b (Transforming Growth Factor
-beta; Sigma Aldrich, Belgium) at 10 ng/ml and 100 ng/ml.
TNF-a, IL-1b, IL6 and IL10 were solved in LPS-free water
(pharmacy University Hospital Brussels); LPS in PBS;
thrombin in Ultrapure Water (Sartorius Biotech, type: Arium®

Pro UV, Germany); IFN-g in BSA (N,O-bis (trimethylsilyl)
acetamide, Sigma Aldrich, Germany). The concentrations of
the cytokines used were chosen according to previous
experiments in cell cultures reported in the literature.
Incubation With Compounds to Suppress
ET-1 Secretion
All drugs were dissolved in a proper dissolvent: prucalopride
(Selleckchem, The Netherlands), rolipram (Tocris Bioscience,
UK), fenofibrate (Sigma Aldrich, Germany), simvastatin (Merck
Millipore, United Kingdom), daglutril SLV 306 (AxonMedchem,
The Netherlands), resveratrol (Sigma Aldrich, Germany) in
Dimethyl Sulfoxide (DMSO; Sigma Aldrich, Germany), and
fluoxetine (Sigma Aldrich, Germany) in Ultrapure water
(Sartorius Biotech, type: Arium® Pro UV, Germany).

Different concentrations of all the components were tested
starting from active concentrations used in the literature.
Prucalopride at concentrations of 50nM, 250 nM, 500nM;
Frontiers in Pharmacology | www.frontiersin.org 366
rolipram at 1µM, 5µM, 10µM; fenofibrate at 10µM, 50µM,
100µM; simvastatin at 1nM, 10nM, 100nM, 5µM, 25µM;
daglutril at 1µM, 10µM, 50µM; resveratrol at 1µM, 10µM,
100µM, and fluoxetine at 1 µM, 5µM, and 10µM.

In the course of the experiments we also tested dibutyryl-
cAMP (dbcAMP, Sigma Aldrich, Germany) in Ultrapure water
at concentrations of 100µM, 250µM, and 500µM and mevalonate
(Sigma Aldrich, Germany) in DMSO at concentrations of 10 µM
and 100 µM.

To evaluate the effects of the selected drugs on ET-1 secretion,
astrocytoma cells were incubated with the compound or vehicle
for 24 h before the addition of TNF-a and IL-1b at a final
concentration of 100 ng/ml each and supernatant for ET-1
measurements was taken 6 h after their administration. We
used the combination of both cytokines because both are
present in MS lesions.
Enzyme-Linked Immunosorbent Assay (ELISA)
Concentrations of ET-1 in the supernatant of the cultured
human astrocytoma cells were measured using the Endothelin
Pan Specific ELISA kit® (R&D systems, Abingdon, UK),
according to the manufacturer’s instructions. This kit not only
measures ET-1 but has a cross-reactivity with both ET-2 and
ET-3. A study reported that neonatal rat astrocytes also produce
ET-3 (Ehrenreich et al., 1991). We tested a specific Endothelin-1
ELISA kit (IBL International, Hamburg, Germany) and found
that ET-1 concentrations were the same as the ET concentrations
measured with the Pan Specific ELISA kit. Therefore, for the
screening experiments we used the Endothelin Pan Specific
ELISA kit® to reduce the costs.
Quantitative Real-Time Polymerase Chain Reaction
(RT-qPCR)
RNA was isolated from cell pellets of cultured human
astrocytoma cell line using the RNeasy Mini Kit® (Qiagen,
Hilden, Germany), according to the manufacturer ’s
instructions. cDNA was reversely transcribed using TaqMan™
Reverse Transcription Reagents (Thermo Fisher Scientific,
Belgium). The expression of the transcripts for ET-1, ECE-1,
and GAPDH were assessed using TaqMan™ gene expression
assays with respectively following assay IDs: Hs00174961_m1,
Hs01043735_m1, Hs00206701_m,1 and Hs02758991_g1. The
mRNA levels of ET-1 and ECE-1 were normalized to GAPDH
mRNA expression.
Statistical Analyses
Statistical analyses were performed using GraphPad Prisms 6.0b
software. Data in all experiments are presented as the mean ±
standard deviation (SD) of at least 4 independent experiments.
Significant differences were tested with either the Mann Whitney
U-test or the Kruskal-Wallis-test (including the Dunn’s Multiple
Comparisons Test). Values were considered statistically
significant when P < 0.05.
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RESULTS

Upregulation of ET-1 by Inflammatory
Cytokines
Figure 1A shows that cultured astrocytoma cells produce very
low basal levels of ET-1 and that TNF-a and IL-1b, both at a
concentration of 100ng/ml, significantly increased ET-1 levels in
the culture medium. No further increase of ET-1 levels was
obtained at concentrations of 250ng/ml. In the Kruskal-Wallis-
test, the increase in ET-1 was not significantly different between
TNF-a and either IL-1b or the combination of both cytokines.

Effects of the other tested cytokines (INFg, LPS, thrombin, IL-
6, IL-10, TGF-b) were not statistically significant (not shown).

Effects of the Compounds on
ET-1 Secretion
A concentration-dependent decrease in ET-1 secretion was
found for simvastatin (Figure 1B), fluoxetine (Figure 1C), and
resveratrol (Figure 1D). Simvastatin, fluoxetine, and resveratrol
did not affect basal (noncytokine stimulated) ET-1 levels in the
culture medium.
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Incubations with prucalopride, rolipram, fenofibrate, and
daglutril were without effect (not shown). Furthermore, in the
course of the experiments with the drugs fluoxetine, prucalopride,
and rolipram, we also tested the effect of dbcAMP on ET-1
secretion, since this component can activate PKA which in turn
may regulate the ET-1 promoter element FoxO1. We tested
dbcAMP in different concentrations, but there was no
significant effect on ET-1 secretion (not shown). This indicates
that drugs acting through the cAMP pathway have no effect on
the ET-1 production, and that the positive effect of fluoxetine was
likely obtained through a cAMP independent mechanism.

To test whether suppression the cholesterol synthesis pathway
is key to the inhibition of ET-1 secretion by simvastatin, we tested
the effect of mevalonate supplementation in the presence of
simvastatin (Figure 2). Addition of mevalonate 10µM to the
cells for the most part attenuated the inhibiting effect of
simvastatin on ET-1 secretion, indicating that simvastatin
decreases ET-1 levels, at least partially, through the mevalonate-
pathway. Mevalonate alone did not have a significant effect. A
higher concentration of mevalonate (100µM) could not further
attenuate the inhibiting effect of simvastatin (not shown).
FIGURE 1 | Effects of (A) pro-inflammatory cytokines (TNF-a and IL-1b) on ET-1 secretion in cultured human astrocytoma cells and inhibitory concentration-
response curves for (B) simvastatin, (C) fluoxetine and (D) resveratrol. Cytokines were administrated to obtain a final concentration of 100 ng/ml each and
supernatant for ET-1 measurements was taken 6 h after their administration (n = 5). For the inhibitory experiments (n = 4), cells were pre-incubated with the drug for
24 h before their stimulation with the inflammatory cytokines. Data are presented as means ± SD. Dose-response curves were generated with GraphPad Prisms
6.0b software. ∗P < 0.001 and ∗∗P < 0.05 vs. the vehicle group.
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To assess at which level the production of ET-1 is regulated by
fluoxetine, simvastatin, and resveratrol, we measured ET-1
mRNA levels. Both simvastatin (5 and 25 mM) and resveratrol
(100 mM) significantly decreased the levels of ET-1 mRNA,
indicating that these drugs act at the level of transcription
(Figure 3). In contrast, fluoxetine 5 and 10µM was associated
with an increase in ET-1 mRNA levels and a decrease in ECE-1
mRNA levels (Figure 4). Intracellular protein levels were not
affected by fluoxetine (Figure 5). Taken together, our findings
suggest that fluoxetine decreases ET-1 production by reducing
ECE-1, which converts big ET-1 to ET-1.
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DISCUSSION

We found that ET-1 secretion in human astrocytoma cells was
stimulated by the pro-inflammatory cytokines IL-1b and TNF-a,
which are known to be present in focal MS lesions (Bittner et al.,
2014). The ET-1 promotor contains response elements for
activator protein-1 (AP-1), which is the most important
regulator for ET-1 (Stow et al., 2011), FoxO1 (Nicholson et al.,
2010; Lee et al., 2011), and NF-kB (Morishita et al., 2014). The
presence of the NF-kB response element can explain the
stimulating effect of these pro-inflammatory cytokines.

We found no statistically significant difference in the level of
ET-1 production by the astrocytoma cells using the highest
concentration of TNF-a and the highest concentration of IL-
1b. There was no additive effect by using both cytokines, which
may be explained by the fact that each cytokine on itself already
produced a maximal effect on ET-1 production, and it suggests
that both cytokines act through the same mechanism.

Among the compounds tested, only simvastatin, resveratrol
and fluoxetine significantly inhibited ET-1 production in human
astrocytoma cells. Release of ET-1 by reactive astrocytes can be
regulated at different levels, including transcription, translation,
protein-processing or secretion of ET-1. The suppressive effect
on ET-1 production by simvastatin and resveratrol was regulated
at the mRNA level, whereas fluoxetine, at least partially, acted at
the level of protein-processing.

We found that concentrations of 5 and 25 µM of simvastatin
were needed to suppress transcription of the ET-1 gene and
production of ET-1. With both concentrations a decrease of 89%
of the ET-1 concentrations was obtained. However, these
concentrations can never be reached in human brain when
pharmacological doses of simvastatin between 20 mg and 80
mg (high dose simvastatin) are used. Pleiotropic effects of statins
in previous in vitro cell experiments not related to ET-1
production were also found at concentrations of 1–50 µM
FIGURE 2 | Effects of mevalonate (Meval) 10mM on the inhibiting effect of 5mM
simvastatin (Sim) on ET-1 secretion in cultured astrocytoma cells. Cells were
pre-incubated with the compounds for 24 h before their stimulation with TNF-a
and IL-1b. Mevalonate alone had no effect on ET-1 secretion but significantly
attenuated the inhibiting effect of simvastatin on ET-1 secretion (n = 4).
Data are presented as means ± SD. P < 0.05 vs. simvastatin. *p = 0.0286.
FIGURE 3 | Effects of (A) simvastatin (∗P < 0.05) and (B) resveratrol (∗P < 0.05) on ET-1 mRNA expression. Results were normalized to housekeeping GADPH
mRNA expression. Cells were pre-incubated with the compounds for 24 h before their stimulation with TNF-a and IL-1b. RNA was isolated from the human
astrocytoma cell pellets taken 6 h after their administration. Data are presented as means ± SD (n = 4).
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(Björkhem-Bergman et al., 2011). However, the mean
concentration of statins in human serum after therapeutic
doses is 1000 times lower (1–15 nM). Furthermore, only 1%–
5% of this quantity is pharmacologically active and only one
third of this serum concentration can reach the CNS (Björkhem-
Bergman et al., 2011). Our results demonstrated that the effect of
simvastatin was at least for the most part mediated via the
mevalonate pathway, suggesting that this might be an interesting
target for further drug development.

Simvastatin has been investigated in clinical trials in patients
with MS. A meta-analysis performed in 2012 concluded that the
addition of statins to interferon therapy did not significantly
influence the relapse risk, disease progression, or EDSS scores in
patients with relapsing remitting MS (Bhardwaj et al., 2012). A
small study presented in 2014 suggested that simvastatin 80 mg a
day in patients with secondary progressive MS might reduce the
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rate of whole-brain atrophy compared with placebo (Chataway
et al., 2014). A phase 3 trial to confirm this effect in secondary
progressive MS is ongoing in the UK (Williams et al., 2019). If
simvastatin would have a beneficial effect in MS, our study
suggests that it is not due to an effect on ET-1 production.

Fluoxetine concentrations of 5 and 10 µM significantly
reduced ET-1 secretion, corresponding with a concentration
decrease of 31% and 45%, respectively. Treatment of humans
for 29 days with 40 mg fluoxetine resulted in brain fluoxetine
levels of approximately 5 µM as assessed with magnetic
resonance spectroscopy (Karson et al., 1993). A dose of 40 mg
fluoxetine, which is often used in clinical practice, may thus be
able to reduce ET-1 concentrations in brain, but the effect is
probably too small to obtain a clinically significant effect, where
an almost complete suppression of ET-1 should be achieved. Our
findings that prucalopride, rolipram, and dbcAMP had no
influence on astrocytic ET-1 secretion argue against the
possibility that the effect of fluoxetine was mediated through
the cAMP-dependent PKA pathway.

It has been shown that oral administration of fluoxetine in
mice prevented EAE or ameliorated ongoing EAE. This was
associated with a downregulation of different inflammatory
cytokines (Il-6, IL-10, TNF-a, among others), indicating that
this was the result of immunomodulatory effects of fluoxetine
(Bhat et al., 2017). Preliminary evidence of a possible
immunomodulatory effect of fluoxetine was also found in a
small pilot study in patients with relapsing remitting MS. A
daily dose of 20 mg fluoxetine tended to reduce the formation of
new inflammatory lesions on magnetic resonance imaging of the
brain compared to placebo (Mostert et al., 2008). Two
randomized placebo-controlled trials with a daily dose of 40
mg of fluoxetine in patients with progressive MS, which reflects
progressive axonal degeneration that proceeds rather
independent ly of inflammat ion , fa i l ed to show a
neuroprotective benefit (Wood, 2018; Cambron et al., 2019).

Resveratrol, a dietary antioxidant polyphenol is present in a
number of regularly consumed plant species like berries, grapes
and peanuts and is a major constituent of red wine. In a study
with healthy volunteers, a single dose of 25 mg resveratrol was
given as a dietary supplement. The concentration of the 14C-
FIGURE 5 | Intracellular levels of ET-1 after the administration of different
concentration of fluoxetine (Flu). Cells were pre-incubated with fluoxetine for
24 h before their stimulation with TNF-a and IL-1b. Concentrations of ET-1
were measured in cell lysates taken 6 h after their administration. There were
no significant differences between the intracellular ET-1 concentrations. Data
are presented as means ± SD (n = 6).
FIGURE 4 | Effects of fluoxetine on (A) ET-1 mRNA expression (∗P < 0.01) and (B) ECE-1 mRNA expression (∗P < 0.01). Results were normalized to housekeeping
GADPH mRNA expression. Cells were pre-incubated with the compounds for 24 h before their stimulation with TNF-a and IL-1b. RNA was isolated from the human
astrocytoma cell pellets taken 6 h after their administration. Data are presented as means ± SD (n = 9).
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labelled resveratrol measured with high-performance liquid
chromatography, 1 h after oral intake, was very low in the
systemic circulation (about 2 µM), due to a very rapid and
extensive metabolism by the bacterial flora in the human
intestine. In another study where 5 g of resveratrol was
administered orally to ten healthy volunteers, the maximum
plasma concentration reached was 2, 36 µM (Walle et al., 2004).
None of the in vivo pharmacokinetic studies in humans have
shown plasma concentrations greater than 10 µM. In the brain,
the concentration will probably be even lower. Resveratrol was
well-tolerated and adverse reactions were mild at a dose of
maximally 1 g a day; above this dose diarrhea was frequently
reported. This dose can be assumed as the upper limit for clinical
trials. In our study, we only found an inhibitory effect of
resveratrol on ET-1 production by the astrocytoma cells at a
concentration of 100 µM, but not at 10 µM.

A limitation of our study is that we used a human
astrocytoma cell line as screening model, because they differ
from primary human astrocytes and do not completely reflect
the in vivo situation. However, the human astrocytoma cell line
that we used is a well-established stable cell line capable of
responding to cytokine exposure in a manner typical of reactive
astrogliosis and is therefore a valuable cellular model in the
assessment of in vitro drug screening. It is probably more
relevant to the human response than existing animal cell-based
models. It was our intention to confirm clinically significant
positive findings in cultured human astrocytes. However, we did
not proceed further because all results in the screening phase
with the human astrocytoma cell line were disappointing.
CONCLUSION

Drugs that inhibit inflammation-induced ET-1 production in
reactive astrocytes might widen the therapeutic arsenal in MS.
Fluoxetine, simvastatin, and resveratrol, which are all drugs able
to pass the blood-brain-barrier, suppressed inflammation-
induced ET-1 secretion in cultured human astrocytoma cells.
However, only fluoxetine exerted an effect at concentrations that
are pharmacologically achievable in humans, but the effect was
modest and probably insufficient to obtain a clinically relevant
Frontiers in Pharmacology | www.frontiersin.org 770
effect. Our in vitro model can be useful screening tool in the
development of new drugs to suppress astrocytic ET-1
produc t ion , wh i ch mus t then be ab l e to use in
pharmacologically feasible doses. The mevalonate pathway
might be an interesting target for further drug development.
Suppressing astrocytic ET-1 production may be a potential
therapeutic target in diverse other neurodegenerative disorders
associated with reactive astrocytosis (Hostenbach et al., 2016).
Due to the current lack of a suitable compound to suppress
astrocytic ET-1 production we have started a phase 2 trial in MS
patients with the ET-1 receptor antagonist bosentan
(Hostenbach et al., 2019).
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Astrocytes have long been considered the supportive cells of the central nervous system,
but during the last decades, they have gained much more attention because of their active
participation in the modulation of neuronal function. For example, after brain damage,
astrocytes become reactive and undergo characteristic morphological and molecular
changes, such as hypertrophy and increase in the expression of glial fibrillary acidic protein
(GFAP), in a process known as astrogliosis. After severe damage, astrocytes migrate to
the lesion site and proliferate, which leads to the formation of a glial scar. At this scar-
forming stage, astrocytes secrete many factors, such as extracellular matrix proteins,
cytokines, growth factors and chondroitin sulfate proteoglycans, stop migrating, and the
process is irreversible. Although reactive gliosis is a normal physiological response that
can protect brain cells from further damage, it also has detrimental effects on neuronal
survival, by creating a hostile and non-permissive environment for axonal repair. The
transformation of astrocytes from reactive to scar-forming astrocytes highlights migration
as a relevant regulator of glial scar formation, and further emphasizes the importance of
efficient communication between astrocytes in order to orchestrate cell migration. The
coordination between astrocytes occurs mainly through Connexin (Cx) channels, in the
form of direct cell-cell contact (gap junctions, GJs) or contact between the extracellular
matrix and the astrocytes (hemichannels, HCs). Reactive astrocytes increase the
expression levels of several proteins involved in astrocyte migration, such as avb3
Integrin, Syndecan-4 proteoglycan, the purinergic receptor P2X7, Pannexin1, and Cx43
HCs. Evidence has indicated that Cx43 HCs play a role in regulating astrocyte migration
through the release of small molecules to the extracellular space, which then activate
receptors in the same or adjacent cells to continue the signaling cascades required for
astrocyte migration. In this review, we describe the communication of astrocytes through
Cxs, the role of Cxs in inflammation and astrocyte migration, and discuss the molecular
mechanisms that regulate Cx43 HCs, which may provide a therapeutic window of
opportunity to control astrogliosis and the progression of neurodegenerative diseases.
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INTRODUCTION

Astrocytes are the most numerous glial cells in the central
nervous system (CNS) and comprise nearly half the volume of
the adult mammalian brain (Agulhon, 2008; Filous and Silver,
2016). As such, astrocytes are critical for supporting neuronal
structure and brain homeostasis (Chung et al., 2015).
Additionally, astrocyte functions include metabolic regulation
of neurons, synaptic support, establishment of the blood–brain
barrier (BBB), and a defense mechanism that constrains an
injured or damaged site (Brown and Ransom, 2007; Sofroniew
and Vinters, 2010; Pekny, 2016).

During development, differentiating newborn astrocytes
undergo migration in order to reach their final destination
(Goldman, 1997), whereas astrocytes in the adult brain are
quiescent under normal physiological conditions. These star-
like cells are arranged in the brain as tiling domains, where they
do not intermingle their processes (Halassa, 2007; Cao, 2010).
This segregation of processes is thought to occur by contact
inhibition during postnatal development and is lost in disease or
post-injury conditions (Sofroniew, 2009).

Events occurring in response to brain damage involve the
participation of glial cells and, particularly, astrocytes. During
the first stages of the lesion, damaged axons are exposed to
inhibitory molecules, such as those found in the myelin sheath of
oligodendrocytes. Interaction of neuronal receptors with these
myelin ligands results in low regenerative capacity of the injured
neuronal processes (Cao, 2010). Additionally, astrocytes undergo
varying morphological and molecular changes after damage,
through a process called reactive gliosis (Figure 1) (Sofroniew,
Frontiers in Pharmacology | www.frontiersin.org 273
2009; Burda and Sofroniew, 2014), which is triggered by different
molecules derived from the blood, inflammatory cells, or released
from injured cells, such as adenosine trisphosphate (ATP),
endothelin-1, and the pro-inflammatory cytokines tumor
necrosis factor (TNF), interleukin-1b (IL-1g), interferon
gamma (IFNg) and IL-6 (Giulian, 1988; Ahmed, 2000; John
et al., 2003; Gadea et al., 2008). The response of astrocytes during
gliosis varies according to their proximity to the injured site.
Thus, astrocytes close to the injury change from a quiescent to a
reactive state, in which astrocytes suffer cellular hypertrophy,
acquire a fibroblast-like amoeboid morphology, and increase the
expression of diverse proteins, such as glial fibrillary acidic
protein (GFAP), vimentin, nestin, and the inducible nitric
oxide synthase (iNOS) (Miyake, 1988; Clarke, 1994; Lagos-
Cabre, 2017). After severe injury, there is a pronounced
hypertrophy of the astrocyte cell body and processes, and
astrocytes migrate to the injured site, where they increase their
proliferation. These notorious changes significantly decrease
individual astrocyte domains and therefore, the processes
arising from several astrocytes overlap and form the glial scar,
which isolates the damaged tissue and protects the adjacent nerve
cells from harmful molecules (Homkajorn et al., 2010). The
confinement of the damaged area after an injury requires that
astrocytes polarize and migrate to the affected zone, where they
avoid propagation of the lesion by the uptake of extracellular
signals, such as glutamate, free iron, cytokines, ATP, ADP, or
adenosine (Bylicky et al., 2018). Interestingly, these are the same
molecules that induce the reactive phenotype in the first place.
Therefore, reactive gliosis not only protects CNS cells from
further damage, but also exerts harmful effects on neuronal
FIGURE 1 | Astrocytes undergo astrogliosis in a pro-inflammatory environment. Astrocytes change their morphology from a non-reactive into a reactive state when
exposed to pro-inflammatory cytokines.They undergo hypertrophy and not only change their shape, but also their protein expression; up to this stage, the process is
reversible and reactive astrocytes do not overlap their branches. These cells then proliferate and migrate to the lesion site to form the glial scar, where they secrete
many factors, such as extracellular matrix (ECM) proteins, cytokines, growth factors (GF), and chondroitin sulfate proteoglycans (CSPG). In this scar-forming stage,
astrocytes no longer move, and the process is irreversible.
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survival and axonal regeneration (Pekny and Pekna, 2014;
Sofroniew, 2014). Within 24 h after injury, and during the
formation of the glial scar, astrocytes increase the secretion
and deposition of chondroitin sulfate proteoglycans (CSPGs)
into the extracellular matrix (ECM) which, together with the
myelin-associated inhibitory molecules, create a hostile and non-
permissive environment for axonal repair (Jones et al., 2003).

Reactive astrocytes can be classified as naïve (non-reactive),
reactive, or scar-forming astrocytes, depending on their location
and markers. Naïve and scar-forming astrocytes do not move,
and astrocytes in the glial scar express N-Cadherin (Kanemaru,
2013). In contrast, reactive astrocytes (that move), express b-
catenin, and metalloproteases, such as MMP2 and MMP13
(Verslegers, 2013). These important hallmarks suggest that
there is a temporal sequence in the progression from naïve to
reactive astrocytes, and then from reactive to scar-forming
astrocytes. Since reactive astrocytes migrate to the injury site,
isolate inflammatory cells and help repair tissue, this reactive
stage constitutes a window of opportunity for interventions given
that, up to this point, the process is reversible (Figure 1). These
findings indicate that astrocyte migration is an important
regulator of glial scar formation and highlight the relevance of
studying the molecular mechanisms that regulate astrocyte
motility. Additionally, in order for astrocytes to capture the
signals of their surrounding microenvironment, they need to
efficiently communicate with each other to orchestrate and
synchronize, accordingly, each step of their movement. This
coordination is achieved mainly by Connexin (Cx) channels, that
can establish two distinct forms of communication: either
through gap junctions (GJs), allowing direct cell-cell
communication, or through hemichannels (HCs), that provide
a pathway for the release and uptake of small molecules to and
from extracellular compartments, respectively (Vicario, 2017).
By sensing extracellular cues, astrocytes utilize their GJs or HCs
in order to inform other cells of possible damage (Retamal,
2007). Furthermore, Cx HCs allow astrocytes to release
molecules that can play a relevant role in autocrine/paracrine
signaling in the brain (Retamal, 2007; Orellana et al., 2013;
Alvarez, 2016; Lagos-Cabre, 2017), thereby potentiating
important responses, such as cell migration (Alvarez, 2016;
Lagos-Cabre, 2017).

The conversion of naïve astrocytes into motile and reactive
cells observed after acute injury also occurs after stroke and
neurodegenerative diseases, such as Alzheimer´s disease (AD)
and Amyotrophic Lateral Sclerosis (ALS). Of note, reactive
astrocytes up regulate the expression of several proteins that
participate in astrocyte migration, such as avb3 Integrin, the
heparin sulfate proteoglycan Syndecan-4, the purinergic P2X7
receptor (P2X7R), as well as Cx43 and Pannexin1 (Px1) HCs
(Lagos-Cabre, 2017).

Astrocytes are the cells with the highest level of Cxs in the
CNS (Nagy and Rash, 2000). The first evidence of astrocytic Cxs
that particularly formed GJs was obtained in situ by freeze-
fracture electron microscopy (Brightman and Reese, 1969;
Dermietzel, 1974). Later, in 1991, Cx43 was found to be one of
the major Cx subtypes in astrocytes (Dermietzel, 1991). The
Frontiers in Pharmacology | www.frontiersin.org 374
pivotal role of Cxs in astroglial connectivity was demonstrated
with Cx43/Cx30 double knockout (KO) mice, in which
intercellular communication was lost (Dermietzel, 2000).
However, the first relationship between Cxs and astrocyte
migration was discovered in Cx43 KO mouse fetuses, using
organotypic brain slice cultures that showed an irregular
distribution of astrocytes (Perez Velazquez, 1996). Importantly,
this finding led to the idea that Cx43 played a relevant role in
regulating astrocytic mobility. Since then, several studies have
reported that Cxs affect astrocyte migration (Homkajorn et al.,
2010; Kotini and Mayor, 2015; Lagos-Cabre, 2018).

The focus of this review will be on the ability of Cxs to form
HCs in astrocytes, in particular Cx43 HCs, and how they control
astrocyte migration by releasing small molecules to the
extracellular space. These molecules activate receptors in the
same or adjacent cells, which then continue the signaling
cascades required for astrocytes to move. We will also compare
the functions of HCs and GJs in cell communication and the
interplay between these two cellular channels in the regulation of
cell migration.
ASTROCYTES AND CELL
COMMUNICATION

Astrocytes possess a characteristic star-like shape that
distinguishes them from other non-neuronal cells of the glial
family; however, despite the fact that astrocytes outnumber
neurons and the o the r g l i a ( i . e . , m i c rog l i a and
oligodendrocytes) in rodents, their important role has always
been undermined by neurons (Sosunov, 2014; Allen and Eroglu,
2017). In the human brain, there are many different types of
astrocytes that can be identified by the combination of distinct
cell markers, such as CD44, EAAT1, EAAT2, Aquaporin, and
GFAP (Sosunov, 2014). The number of astrocytes in the human
brain seems to vary according to the region, from 20–50%, and
the exact ratio of total glial cells to neurons, although
controversial, seems to be closer to one (von Bartheld
et al., 2016).

The previous conception of astrocytes as being mere
supporting cells for neurons is no longer valid. Today, it is
known that astrocytes surround the pre- and post-synaptic
membranes, thereby forming the “tripartite synapse” (Allen
and Eroglu, 2017), and achieving functional integration and
physical proximity to stimulate and regulate the activity of
chemical synapses. Astrocytes also support and enhance the
delivery of substrates required by neurons and act, for
example, as a highway for glucose (Muller et al., 2018).
Notably, and because astrocytes function primarily by
anaerobic glycolysis, they can survive in low oxygen
environments much longer than neurons. Astroglial Cx30 and
Cx43 allow the diffusion of energy metabolites such as glucose
and lactate and therefore, contribute to metabolic networks that
are able to feed distant neurons in conditions such as
hypoglycemia and/or high neuronal demand of energy
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substrates (Rouach, 2008). Astrocytes can also assist the
metabolic needs of neurons by buffering molecules such as
glutamate, K+, nitric oxide (NO), hydrogen peroxide (H2O2),
and ammonia (Tsacopoulos and Magistretti, 1996; Dienel and
Hertz, 2001; Aubert, 2007; Hertz et al., 2007). Astrocyte
functions extend to the formation of the BBB by tightly
apposing their end-feet to the endothelial cell vessels, thus
helping with the maintenance of brain capillary permeability
(Blanchette and Daneman, 2015; Zhao, 2015). In addition,
astrocytes establish the principal defense mechanism after
injury, surrounding the lesion site with their extended feet to
avoid the propagation of damaging molecules (Ben Haim, 2015).
To achieve all these functions, astrocytes need to sense and
respond to signaling molecules, and then communicate with
other astrocytes and their surroundings. Astrocytes display an
extensive communication network by directly connecting cells
through GJs, which are channels that consist of two facing
connexons formed by a hexameric ring of Cxs, specifically
Cx43/30 (Anders, 2014). Consequently, Cxs appear as one of
the most important proteins related to cell communication in
astrocytes, contributing to the coordination and maintenance of
physiologic CNS function.
PROPERTIES OF CONNEXIN CHANNELS

All Cxs share a similar topology, with four alpha-helical
transmembrane domains connected by two extracellular loops
and one intracellular loop, and two cytoplasmic N- and C-
terminal domains (Bennett, 2016). The principal feature of Cxs
is the capacity to form GJs for the interchange of metabolites and
Frontiers in Pharmacology | www.frontiersin.org 475
second messengers between contacting cells, or HCs that
participate in paracrine and autocrine cellular signaling. HCs
are permeable to different types of small molecules < 1.2 kDa,
depending on the Cx isoform involved (Giaume, 2013; Oyamada
et al., 2013; Nielsen, 2017; Nielsen, 2017): ions such as Ca2+, Na+,
and K+; second messengers such as inositol 1,4,5 trisphosphate
(IP3), cAMP, and cGMP; metabolites such as ATP, glutamate,
glucose, and glutathione; and other small molecules (Kumar and
Gilula, 1996; Kang, 2008; Bosch and Kielian, 2014; De Bock,
2014). This permeability allows the communication between cells
through a complex syncytial network. The long-distance
mechanism described in the early 90's for astrocyte
communication via the intercellular passage of Ca2+ waves
through GJs (Cornell-Bell, 1990) is debatable at present. The
velocity of transport of IP3 through GJs for example, is 100-fold
faster than that of Ca2+ itself (Allbritton et al., 1992; Hofer et al.,
2002; De Bock, 2014), and because IP3 might release Ca2+ from
intracellular stores by activating IP3 receptors (IP3R) (Allbritton
et al., 1992; Hofer et al., 2002) rather than by directly moving Ca2+

as initially thought, the passage of IP3 molecules through GJ
channels allows faster communication between cells. In the case of
ATP released through HCs (Stout, 2002), accumulating evidence
indicates that it activates purinergic receptors in the same
(autocrine) or in neighboring (paracrine) cells, which induces
the Ca2+ influx (Suadicani, 2004; Henriquez, 2011; Scemes and
Spray, 2012; Alvarez, 2016; Lagos-Cabre, 2017) required for the
propagation of Ca2+ (Figure 2).

The electrophysiological properties of Cxs are well known
and their conductance allows to differentiate them and confirm
the presence of specific Cxs in a given cell type (Retamal, 2007;
Giaume, 2013). Cx HCs, also named connexons, can be formed
FIGURE 2 | Astrocytes form an interconnected network through calcium. Astrocytes utilize the propagation of intercellular calcium (Ca2+) waves to achieve long-
distance communication. There are two routes by which Ca2+ is mobilized through astrocytes: i) one pathway involves the passage of either IP3 (orange dots) or
Ca2+ (purple dots) through gap junction channels (green connexon) and ii) the other route depends on the release of ATP (green dots) through hemichannels (orange
connexon), and subsequent activation of purinergic receptors (purple pore) in the same (autocrine) or in neighboring (paracrine) cells, which promote Ca2+ uptake.
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by hexamers of the same (homomeric) or different (heteromeric)
Cx subunits, while in the case of GJs, they are called homotypic
or heterotypic when the two channels are formed by either
homomeric or heteromeric connexons (Kumar and Gilula,
1996). On the other hand, the permeability of HCs and GJs
also relies on subunit composition. For example, GJs formed by
Cx40, Cx43 or Cx45 in cardiac cells show high permeability for
several dyes with molecular weight above 400 Da, including
Lucifer Yellow (LY) and propidium iodide (PI); in contrast,
Cx30.2 shows no permeability for these two dyes (Rackauskas et
al., 2007). The presence of Cx30.2, even in heterotypic GJs,
precludes the permeability for LY or PI, suggesting that the
presence of a non-permeable subunit is enough to completely
modify the properties of GJs (Rackauskas et al., 2007).
Interestingly, Cxs such as Cx30.2, which are permeable to
small molecules, would be more adapted for electrical
communication rather than metabolic transfer. Furthermore,
GJs show selective permeability for biologically relevant
molecules, such as second messengers; for instance, GJs formed
by Cx43 have a 3-fold increase in permeability to cAMP
compared to those formed by Cx26, and a 30-fold increase in
permeability when compared to Cx36 channels, as tested in HeLa
cells (Bedner, 2006). To add another level of complexity, Cxs can
form homocellular GJs, such as neuron-neuron and astrocyte-
astrocyte GJs, and heterocellular GJs, such as those formed
between neurons and astrocytes (Nagy and Rash, 2000). Thus,
the specific permeability properties and features of Cxs depend
on the functionality of the distinct channels that they form. This
specificity regulates channel conductance, electrical
communication and metabolic coupling between cells
(Vicario, 2017).

Since Cxs have a short life of only 1–5 h (Berthoud, 2004), the
synthesis and delivery of new Cx proteins to the membrane is
coupled to simultaneous GJ internalization, recycling to the
membrane and Cx degradation (Segretain and Falk, 2004;
Gilleron, 2009). Evidence has shown that Cxs can also be
regulated by different types of post-translational modifications,
like phosphorylation/dephosphorylation; and changes by
oxidation, including effects of NO, hydrogen sulphide, or
carbon monoxide, but not sulphur dioxide (Pogoda, 2016).
Other modifications include acetylation, methylation, or
ubiquitination (Pogoda, 2016). The stability of Cx43 on
membranes depends, in part, on its interaction with the actin-
associated proteins Zonula Occludens protein 1 (ZO-1) and
Drebrin. The dissociation of Cx43/ZO-1 and Cx43/Drebrin
from the cytoskeleton, through Src, has been found to promote
Cx43 instability (Suh et al., 2012; Ambrosi, 2016; Sorgen, 2018).

Post-translational modification of Cxs is mainly represented
by phosphorylation processes. Therefore, Cxs significantly
interact with various protein kinases, as well as phosphatases.
The cytoplasmic carboxy-terminal tail region of Cxs serves as a
substrate for several kinases (Lampe and Lau, 2004; Marquez-
Rosado, 2012), such as Cdk5 (Qi, 2016), ERK1/2 (De Vuyst,
2009), Akt (Park, 2007), PKA (Solan and Lampe, 2014), and PKC
(Ek-Vitorin, 2006). The phosphorylation of Cx43 by Cdk5 on
Ser279 and Ser282 decreases its membrane targeting and
Frontiers in Pharmacology | www.frontiersin.org 576
promotes its proteasomal degradation (Qi, 2016). GJs can be
internalized after their ubiquitination as annular junctions in a
clathrin-dependent process, and are sorted through the
endosomal/lysosomal degradation pathway (Laird, 2006). In
addition, Cx43 phosphorylation on S279/282 decreases GJ
channel gating (Cottrell, 2003). On the other hand, Akt
phosphorylates Cx43 in S373, forming larger GJs with higher
communicational potential; this facilitates the turnover of GJs
via the formation of an annular complex (Solan and Lampe,
2014). Moreover, Akt, PKA and PKC hierarchically
phosphorylate Cx43 on various serine residues, thereby
regulating the binding and release of ZO-1 from GJs, events
that determine GJ function and endocytosis (Solan and Lampe,
2014; Thevenin, 2017).

Despite the large number of kinases that phosphorylate Cxs,
HC activity is regulated only by PKA, PKC, MAPK and Akt
(Pogoda, 2016). PKC-mediated phosphorylation of HCs formed
by Cx43 abolishes sucrose and LY permeability by
conformational changes in the structure of Cx43 (Bao et al.,
2004). While phosphorylation by PKC closes Cx43 HCs,
evidence from osteocyte cells indicates that their opening
induced by shear stress depends on Cx43 phosphorylation by
Akt on Ser369/Ser373 (Batra, 2014). Additionally, functional
studies with lipid vesicles containing Cx43 HCs pre-loaded
with fluorescent probes have indicated that phosphorylation of
Cx43 by MAPK reduces the permeability of these liposomes
(Kim, 1999). Given the large number of phosphorylation sites on
Cx43, phosphatase-mediated dephosphorylation of Cx43 has
been reported as an enhancer of HC permeability (Kim, 1999),
while in GJs this post-translational modification enforces
structural changes that reduce their functional coupling in
astrocytes (Li et al., 2005). The role of serine/threonine
phosphatases is to limit GJ conductance and enhance HC
permeability. Thus, the regulation of Cx expression and
activity has become a rich field of study for the analysis of
their functional role in different physio-pathological conditions
and today, GJs and HCs are not just viewed as mere connection
proteins but rather as important regulators of cellular function.
ASTROCYTES AND CONNEXINS DURING
INFLAMMATION

Different Cx isoforms are expressed in the brain. Thus far, 11 of
the 21 Cx isoforms that have been described have been detected in
the CNS (Mayorquin, 2018). Different types of astrocytes express
several Cxs (Beyer, 2001; Giaume, 2013; Mansour, 2013; Bosch
and Kielian, 2014), with Cx 30 and Cx43 being the mayor ones
(Giaume and McCarthy, 1996). Additionally, Cx26, Cx30, Cx40,
Cx45, and Cx46 mRNA has been detected in cultured astrocytes
from Cx43 KO mice (Dermietzel, 2000), mRNA for Cx26, Cx30,
Cx32, Cx40, and Cx43 has also been detected by single-cell RT-
PCR in hippocampal astrocytes (Blomstrand, 2004), and GJs in
cultured astrocytes are mainly composed of Cx43 (Dermietzel,
1991; Giaume, 1991). Cxs in astrocytes, oligodendrocytes,
microglia and neurons are characterized according to the
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developmental state, region and cell-type specific isoform
expression, suggesting that Cxs play a critical role in the
regulation and maintenance of various CNS functions (Lapato
and Tiwari-Woodruff, 2018). Cx43 is ubiquitously expressed in
astrocytes throughout the brain, and along with Cx26 and Cx30,
contributes to the interconnection of the astrocyte network (Rash,
2001); however, Cx26 and Cx30 are less abundant in astrocytes
(Contreras, 2004). This expression profile probably determines
the autocrine and paracrine signaling interaction that mediates
glial and neuroglial communication (Lapato and Tiwari-
Woodruff, 2018). Importantly, Cx43 is upregulated under
inflammatory conditions and in astrocytes derived from
transgenic hSODG93A mice, which is an animal model of ALS.
The astrocytes of ALS mice exhibit increased number of GJs,
active HCs, and elevated levels of intracellular Ca2+ concentration
([Ca2+]i) (Almad, 2016; Lagos-Cabre, 2017). Additionally,
pharmacological blockade of Cx43 with both GJ or HC blockers
offers neuroprotection tomotor neurons cultured with hSODG93A

astrocytes, suggesting a detrimental role of Cx43 in ALS
neurodegenerative models (Almad, 2016). Blocking Cx43 has
also shown protective effects in other neurodegenerative
conditions, such as hypoxia and glaucoma (Vicario, 2017).
Moreover, strategies combining Cx mimetic peptides to target
glial and endothelial GJs and HCs with drugs that preclude
electrical synaptic signaling pathways have been considered to
improve survival of neurons in neurodegenerative diseases and
injuries. These mimetic peptides have revealed a reduction in
inflammatory signaling after blockage of Cx43 HC activity
(Moore and O'Brien, 2015).

Given the extensive expression and regulation of Cxs in glial
cells, there has been a significant interest in the role that they play
in different neuropathologies. These diseases are not only specific
to the CNS, but also involve the peripheral nervous system,
among other systems (Abrams and Scherer, 2012). A number of
these brain pathologies are associated with glial reactivity, and
since Cx43 is highly expressed and regulated in astrocytes,
relevant correlations of Cx43 changes are related with these
pathologies (Giaume, 2013). Both in human tissue as well as in
animal models, changes in Cx43 expression have been associated
with ischemia and stroke, epilepsy, brain infection, inflammation
and traumatic brain injury (Giaume, 2010). Furthermore, Cx43
also plays a relevant role in neurodegenerative diseases such as
AD, Parkinson´s disease, ALS, Multiple sclerosis (Xing, 2019)
and neuropsychiatric diseases, including major depressive
disorder (Kim, 2018), highlighting the deleterious effect of
compromising Cx43 functions in astrocytes.

On the other hand, we have reported in non-reactive
astrocytes, that b3 Integrin overexpression leads to increased
Cx43 levels (Lagos-Cabre, 2017), suggesting that Cx43 regulatory
elements are downstream of b3 Integrin-induced signaling. This
agrees with reports showing that b3 Integrin can regulate the
transcription factor NF-kB, which in turn, would regulate Cx43
expression by binding to its promoter (Alonso, 2010;
Balasubramaniyan, 2013). Reports indicate that Cx expression
is controlled by several common and well known transcription
factors, such as Sp1, Sp3 and AP-1 (Oyamada et al., 2013).
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However, tissue-specific expression of Cxs is regulated by
particular transcription factors, such as NKx2.5, Shox2, or
Tbx5 for cardiac tissue Cxs; HNF1 and Mist for digestive
system Cxs, and Wnt or Sox10 for neural tissue-related Cxs
(Oyamada et al., 2013). In astrocytes, ciliary neurotrophic factor
receptor a (CNTFRa) appears as a regulator of Cx43 expression
by binding to CNTF-response elements (Ozog, 2004; Oyamada
et al., 2013). Importantly, as previously mentioned, b3 Integrin is
upregulated under inflammatory conditions in the brain (Lagos-
Cabre, 2017) and therefore, a clear link between Cx43 and the b3
Integrin seems to exist in disease progression.

Pannexins (Pxs) are proteins similar to Cxs, but only
structurally related and without sequence homology (Panchin,
2000). This protein family is composed of three members (Px1,
Px2 and Px3), which are orthologues to insect innexins (Panchin,
2000; Baranova, 2004; Giaume, 2013). Despite the capacity of
innexins to form GJs in insects, Pxs appear to form only HCs in
mammals (Giaume, 2013). However, Pxs can form GJs when
they are overexpressed in mammalian cells (Vanden Abeele,
2006). Px1 is the most studied and most ubiquitous Px. Px2 has
been related to neuronal differentiation and tumor development
processes, while Px3 has been involved in osteoblast and
chondrocyte differentiation and sperm transportation
(Bruzzone, 2003; Baranova, 2004; Turmel, 2011; Penuela et al.,
2013). Interestingly, astrocytes express Px1 and Px2 (Giaume,
2013), and our own work indicates that Px1 is upregulated in
astrocytes treated with the pro-inflammatory cytokine TNF or in
astrocytes that overexpress b3 Integrin (Lagos-Cabre, 2017).
Therefore, an interesting possibility is that Px1, as observed for
innexins, might form GJs in reactive astrocytes, in which Px1 is
upregulated. In addition, Px1 participates, together with Cx43, in
astrocyte migration induced by neuronal cues (Alvarez, 2016).
Intriguingly, functional Px1 channels have been found in several
blood components, such as red blood cells and platelets (Isakson,
2017). However, red blood cells lack Cx43 and do not promote
vesicular release of ATP under physiological conditions (Locovei
et al., 2006; Qiu, 2011); thus, the dynamic flow of red blood cells,
which depends on the ATP released from the intracellular space,
occurs through Px1 rather than Cx43 channels (Forsyth, 2011).

Astrocyte reactivity is a response to any pathological
condition in the CNS, characterized not only by reactive
gliosis, but also by the activation of mononuclear phagocytes,
neuronal injury, and cell death, events which normally are linked
to changes in the activity and regulation of several major CNS
Cxs, such as Cx29, Cx30, Cx32, Cx36, Cx43, and Cx47 (Decrock,
2015; Belousov, 2017). Reactivity in astrocytes not only manifests
with changes in cell morphology, but also at the level of
expression and activity profile of various proteins, including
Cxs and Pxs (Retamal, 2007; Homkajorn et al., 2010; Giaume,
2013; Bosch and Kielian, 2014; Ben Haim, 2015; Abudara, 2015;
Alvarez, 2016; Almad, 2016; Garré, 2016; Grygorowicz et al.,
2016; Lagos-Cabre, 2017; Yi et al., 2017). Interestingly, at least in
the case of ALS and the animal model of multiple sclerosis
(experimental autoimmune encephalomyelitis, EAE), it seems
that the reactive phenotype in astrocytes is achieved at early
stages of the disease, even before the appearance of early
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symptoms (Levine, 1999; Grygorowicz et al., 2016). In the ALS
mouse model, for example, astrocytes derived from the spinal
cord of neonatal mice show reactive phenotype markers after 14
days of in vitro culture (Lagos-Cabre, 2017). Considering that in
this animal model, the symptoms only appear after 3 months
(Gurney, 1994; Rojas, 2014), reactive astrocytes may play an
important role in the onset and progression of this
neurodegenerative disease. Likewise, early appearance of
astrogliosis markers has been recently reported in an induced
EAE rat model (Grygorowicz et al., 2016). In this study, the
authors show that as early as 2-4 days post induction of EAE, the
levels of GFAP and S100b (another gliosis marker) are elevated,
whereas the first symptoms manifest only after 10 days post EAE
induction (Grygorowicz et al., 2016). These findings suggest that
astrocyte reactivity is an early, if not the first step, in the onset of
these diseases.

Intriguingly, the reactive phenotype is also achieved in vitro
by the addition of pro-inflammatory cytokines such as IL-1b and
TNF, or by the addition of conditioned medium from activated
microglia (Retamal, 2007; Lagos-Cabre, 2017), suggesting that
astrocytes in culture retain all the relevant components that can
trigger the reactive response. Pro-inflammatory molecules not
only upregulate astrocyte Cx43 and Px1, but also increase b3
Integrin expression levels and induce astrocyte reactivity (Lagos-
Cabre, 2017). Moreover, the reactive phenotype in astrocytes can
also be achieved by overexpression of proteins in the absence of
cytokine treatments. We have recently reported that by
overexpressing b3 Integrin, astrocytes increase the expression
of reactivity markers, such as GFAP and iNOS, and attain a
functional reactive phenotype by increasing Cx43, Px1, and
P2X7R expression levels and ATP release. These changes make
astrocytes responsive to external cues that promote cell
polarization and migration (Lagos-Cabre, 2017; Lagos-Cabre,
2018). On the other hand, silencing of b3 Integrin precludes
stimulus-induced astrocyte migration even when the cells are
treated with TNF (Lagos-Cabre, 2017). Additionally,
Strużyńska's group described a temporally coincident elevated
expression of Cx43, P2X7R and reactivity markers, where the
sole blockade of P2X7R decreased astrogliosis and ameliorated
EAE symptoms in an animal model (Grygorowicz et al., 2016). In
the same line, Cx43 mimetic peptides have been reported to
reduce astrogliosis and cytokine release, improving function after
spinal cord injury (O'Carroll, 2013). These results, together with
the recent findings that support the reversibility of astrocyte
reactivity (Hara, 2017), indicate that the regulation of the
signaling pathway that involves HC opening, ATP release, and
the activation of the P2X7R might provide a therapeutic window
of opportunity to control astrogliosis and the progression of
neurodegenerative diseases.

Despite the capacity of Cxs to form GJs, HCs formed by these
proteins seem to be mostly affected by a pro-inflammatory
environment. For example, the strong reactivity of astrocytes
observed in AD is accompanied by an increase in the activity of
Cx43 HCs, which maintain the reactive phenotype by releasing
toxic molecules to the extracellular space (Yi et al., 2017). In
pilocarpine-induced status epilepticus mice, Cx43 and Cx40
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levels increase in GFAP-positive astrocytes, effect that lasts for
at least 2 months in the hippocampus (Wu, 2015). Similarly, in
astrocytes treated with conditioned media from microglia
activated by LPS, Giaume and co-workers found an increase in
astrocyte permeability, along with a decrease in GJ
communication (Retamal, 2007), demonstrating the
importance of HCs -rather than GJs- during inflammation.

As stated above, increased levels of Cx43 during astrocyte
reactivity help maintain the reactive phenotype of astrocytes and
microglia by releasing ATP, glutamate and other molecules to
the extracellular space, generating a positive feedback loop (Ben
Haim, 2015). In the same context, high Cx43 levels in reactive
astrocytes derived from ALS mice help sustain an increase in
[Ca2+]i induced by mechanical or ATP stimulation, which is
abolished by a Cx43-blocking peptide (Almad, 2016). In
agreement with these findings, mice with genetically reduced
levels of Cx43 show attenuation of LPS-induced sepsis, which
includes reduction of activated microglia and cytokine
production (Zhou, 2015). These reports highlight Cx43 as a
key element to maintain the astrocyte reactive phenotype by
promoting ATP release and Ca2+ signals.

When spinal cord astrocytes are stimulated with fibroblast
growth factor 1 (FGF-1), which stimulates astrocyte reactivity as
well, increased Px1 and Cx43 HC opening induces cell
permeability, ATP release and [Ca2+]i increase (Garré, 2016).
Interestingly, the opening of these HCs is prevented by the
addition of a Phospholipase C gamma (PLCg) inhibitor or by
loading cells with BAPTA-AM (Garré, 2016), suggesting that Ca2+

signals likely derived from activation of IP3R in the endoplasmic
reticulum (ER) are involved in HC opening. Supporting this idea,
in vivo studies have shown that after a brain cortex injury, the
surrounding astrocytes become reactive. Interestingly, their
reactivity can be prevented with BAPTA-AM, which reduces
GFAP levels and glial scar formation (Gao, 2013), demonstrating
the requirement of Ca2+ signals in this process. Similarly, in the
astrocyte DITNC1 cell line, as well as in primary astrocytes treated
with TNF, Ca2+ is released from the ER and ATP is released
through HCs, in a complex signal transduction cascade that results
in changes in cell shape and initiation of cell migration when
stimulated with the neuronal protein Thy-1/CD90 (Henriquez,
2011; Alvarez, 2016; Lagos-Cabre, 2017; Lagos-Cabre, 2018). Thy-
1/CD90 is a glycoprotein from the neuronal surface that binds to
astrocytes by engaging avb3 Integrin and Syndecan-4 receptors,
recruiting diverse focal adhesion proteins that include PLCg. The
activation of PLCg results in DAG and IP3 production and
consequent IP3R activation, Ca2+ release from the ER, and
opening of Cx43 and Px1 HCs, which release ATP to the
extracellular space. ATP then binds to the P2X7R, allowing Ca2+

entry and thus, inducing morphological changes and cell migration
(Henriquez, 2011; Alvarez, 2016; Lagos-Cabre, 2017; Lagos-Cabre,
2018) (Figure 3). These findings demonstrate the ability of HCs to
release molecules that sustain an increased [Ca2+]i to maintain the
astrocyte reactive phenotype and therefore, suggest that Ca2+ is a
key player in the modulation of astrocyte reactivity. Since
migration of astrocytes under either physiological or pathological
conditions is a very complex process, future systematic studies are
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needed to fully elucidate the relevant role of Ca2+ in astrocyte
migration and reactivity.
REGULATION OF CELL MIGRATION BY
CONNEXINS

Cell migration is an essential process for the development,
maintenance and healing of multicellular organisms. By sensing
their environment, cells polarize, extend filopodia and
lamellipodia to the leading front, adhere to the ECM proteins
through integrins and Syndecan-4, and form focal adhesions and
bundles of actin microfilaments called stress fibers. These focal
points of adhesion to ECM proteins, along with stress fibers, allow
cells to contract their rear and promote forward cell movement
(Ladoux and Mege, 2017). Until now, astrocyte migration has not
been studied extensively and detailed mechanisms remain largely
unknown. While single-cell migration has been studied in depth,
collective cell migration is a less studied process that refers to the
coordinated movement of cell groups, sheets, or chains (De
Pascalis and Etienne-Manneville, 2017). However, collective cell
migration cannot be simplified as a group of independent cells
that move at the same speed and direction; but as a more complex
phenomenon that can improve migration efficiency by rendering
cells with specific features (Mayor and Etienne-Manneville, 2016).
Just as single cells, migrating cell groups are equally relevant; they
govern collective cell migration during embryonic development,
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wound healing, and cancer cell invasion, among other processes
(Ladoux and Mege, 2017). Collective cell migration relies on both
cell-environment, as well as cell-cell interactions, and on several
proteins related to cell-cell communication, including proteins
forming not only GJs, but also adherens junctions and tight
junctions (Ladoux and Mege, 2017).

Cxs participate in the migration of astrocytes (Homkajorn
et al., 2010; Alvarez, 2016; Lagos-Cabre, 2017) and several
other cell types, such as neurons (Qi, 2016; Laguesse, 2017),
cancer cells (Graeber and Hulser, 1998), keratinocytes (Jaraiz-
Rodriguez, 2017) and bone marrow stromal cells (Jin, 2017).
Reports have indicated that the mutant Cx26S17F, related to
keratitis-ichthyosis-deafness syndrome (KIDS), reduces GJ
communication, and decreases collective migration of
primary keratinocytes (Press, 2017). Interestingly, despite
the fact that Cx26S17F mice show normal skin wound
closure, their repaired zone is thicker than in controls,
suggesting abnormal remodeling (Press, 2017). Similarly,
wound-healing assays with HeLa cells that overexpress Cx26
show increased Rac1-dependent cell migration, along with
downregulation of N-Cadherin (Polusani, 2016). It appears
that the reduced levels of N-Cadherin release a break for cell
migration that acts by “sequestering” Rac1 and other cellular
components near the membrane; thus, when N-Cadherin
levels go down, Rac1 is released and activated, allowing cell
migration (Polusani, 2016). Of note, these authors also show
that decreased levels of both N-Cadherin and cell migration
FIGURE 3 | Molecular mechanism involved in Thy-1/CD90-induced astrocyte adhesion and migration. In the context of neuron (upper red lipid bilayer) and astrocyte
(lower green lipid bilayer) communication, neuronal Thy-1/CD90 interacts with both avb3 Integrin and Syndecan-4 astrocytic receptors, triggering PLCg activation, IP3

production, IP3R activation, increase in cytosolic Ca2+, and opening of hemichannels and subsequent ATP release. Extracellular ATP mediates P2X7R integrin-
dependent transactivation, allowing Ca2+ entry, which results in morphological changes of astrocytes (increased adhesion) and later, cell migration.
January 2020 | Volume 10 | Article 1546

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Lagos-Cabré et al. Connexins in Astrocyte Migration
are dependent on Cx26-forming GJs, but not HCs (Polusani,
2016). Therefore, GJs seem important for the regulation of
collective cell migration, in processes such as skin wound
repair and tumor invasion.

On the other hand, Cx43 favors migration of projection
neurons over radial glial cells in the developing brain (Laguesse,
2017). In this report, it is indicated that Cx43 favors cell-to-cell
contact by interacting with elongator complex elements such as
Elp1 and Elp3, allowing the acetylation of Cx43 and its membrane
localization (Laguesse, 2017). Such membrane destination of
Cx43 dependent on acetylation levels has also been reported in
HeLa cells (Laguesse, 2017). An important observation in these
studies is that channel activity was not required for neuronal
migration. In other cases, the function of GJs as channels seems
less clear, but cellular localization of Cx43 at the plasma
membrane also seems to control cell migration by favoring cell
adhesion. It will be important to determine if these “channel-
dependent” or “channel-independent” functions require the
presence of functional GJs or HCs, respectively, and whether or
not these Cx structures acting as scaffolds are also important for
cell migration (Kameritsch et al., 2012).

Accumulating evidence has also indicated that Cxs can
enhance and inhibit cancer cell migration, depending on the
stage of the disease and tissue involved (Kotini andMayor, 2015).
Cx26 and Cx43 expression levels are increased in invasive lesions
and in lymph node metastases of breast cancer (Jamieson, 1998;
Kanczuga-Koda, 2006). Overexpression of Cx43 in breast cancer
metastatic cell lines enhances tumorigenesis without affecting GJ
formation or cell motility (Li, 2008). Another report has
indicated a correlation between Cx43 levels and metastatic
potential in prostate cancer cells (Zhang, 2015), whereas in
testicular cancer cells resistant to cisplatin, overexpression of
Cx43 reduces migration/invasion of these cells (Wu, 2018). More
importantly, the role of Cx43 in cell migration was first described
in breast MCF-10A epithelial cells using a siRNA screening
approach designed to identify genes that regulate cell motility
(Simpson, 2008). In these cells, Cx43 controls migration and
directionality, since knockdown of Cx43 leads to erratic, slow
and reverse migration. This could be related to the increased
capacity of MCF-10A cells to form protrusions, which results in
cells with a more polygonal shape and diminished ability to
migrate. Interestingly, a similar cellular shape has been observed
in cardiac neural crest cells from Cx43-/- mice (Xu, 2006;
Matsuuchi and Naus, 2013). Stachowiak and co-workers have
shown that reincorporation of Cx43 through microvesicles
derived from HeLa cells decreases migration of MDA-MB231
breast tumour cells (Ferrati, 2017). These Cx43-containing
microvesicles are described to form GJs in these breast cancer
cells, favoring the idea that functional GJs, rather than HCs,
decrease cell migration. Considering these results, the role of
Cx43 in cell migration still seems controversial. Perhaps, there is
a critical amount of Cx43 at the plasma membrane that favors GJ
formation, which might also determine the cellular ability to
either move or remain stationary.

Accordingly, Cx43 has been involved in the inhibition of
glioma cell migration (Jaraiz-Rodriguez, 2017). However, this
Frontiers in Pharmacology | www.frontiersin.org 980
effect relies on the interaction of Cx43 with c-Scr, and not on its
activity as a channel or HC. In many cells, active c-Src
phosphorylates and activates focal adhesion kinase (FAK),
creating additional binding sites for protein-complex
formation. These complexes induce formation of focal
adhesions, which are essential for cells to adhere to a substrate
and migrate (Dubash, 2009). Cx43 forms a complex with c-Src
and inhibits Src activity by recruiting its inhibitor, C-terminal Src
kinase (Csk), to the complex (Gonzalez-Sanchez, 2016).
Therefore, Cx43 HCs could induce or repress cell motility by
interacting with a different set of molecules, at least, in
deregulated cells such as glioma cells and other cancer cells,
where GJs can act as inhibitors of cell migration. Therefore, it
seems clear that Cxs play an important role in cell migration in
various cell types, but the final outcome is either membrane
expression level- or cell-context-dependent.

In summary, despite available information concerning the
mechanisms governing cell migration in various cell types,
astrocyte migration still requires future research in order to
better understand the molecular mechanisms that Cxs use to
regulate motility, in order to serve as potential targets for the
development of clinical interventions for astrogliosis and
glioma metastasis.
CONNEXINS AND ASTROCYTE
MIGRATION

Astrocytes in the adult brain are non-migratory cells; i.e., are
quiescent under normal physiological conditions. However, they
can be activated to become migratory under pathological
conditions such as trauma, ischemia, infection, inflammation
and neurodegeneration (Zhan, 2017). Recent in vivo studies
indicate that reactive astrocytes undergo hypertrophy, cell
polarization, and cell migration (Bardehle, 2013; Moore and
Jessberger, 2013; Sirko, 2013). Conversely, astrocytes reportedly
undertake migration upon injury or other pro-inflammatory
conditions to form a glial scar and repair the area of the lesion
(Bush, 1999; Faulkner, 2004; Sofroniew, 2005; Chai, 2013).
Results from embryonic brain slices of Cx43 KO mice show
abnormal distribution of astrocytes when compared with the
normal counterpart (Perez Velazquez, 1996; Kotini and Mayor,
2015). Similar experiments performed in a subline of Cx43 KO
mice called “Shuffler”, which exhibits defects in brain
architecture and astrocyte distribution, strongly suggest
migration defects of astrocytes lacking Cx43 (Wiencken-
Barger, 2007; Kotini and Mayor, 2015). Our own findings with
neonatal rat astrocytes activated in vitro by the addition of TNF
or other cytokines, indicate that only reactive astrocytes move in
response to external stimuli (Lagos-Cabre, 2017). In this context,
Cx43 appears to be the most relevant HC-forming protein
involved in reactive astrocyte migration, since the specific
inhibitory peptide Gap19 abolishes HC opening and cell
migration induced by neuronal Thy-1/CD90 (Alvarez, 2016;
Lagos-Cabre, 2017). Therefore, pro-inflammatory signals that
trigger astrocyte reactivity seem to be necessary for these cells to
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move in response to extracellular cues, and their migration is
related to the presence of Cx43.

Thy-1/CD90 activates its two receptors, avb3 Integrin and
Syndecan-4, only in TNF-treated astrocytes (Leyton, 2001; Kong,
2013; Alvarez, 2016; Lagos-Cabre, 2017), likely because the
expression levels of both receptors are enhanced upon pro-
inflammatory conditions (Lagos-Cabre, 2017). Importantly,
proteins upregulated by TNF treatment also include: Cx43,
Px1, P2X7R, GFAP, and iNOS (Lagos-Cabre, 2017). The
engagement of avb3 Integrin and Syndecan-4 by Thy-1/CD90
in reactive astrocytes triggers similar intracellular signaling
pathways as those described for DITNC1 astrocytes (see
Figure 3), including Ca2+ release from the ER, opening of
Cx43 and Px1 HCs, ATP release, and P2X7R activation, with
the consequent further increase in [Ca2+]i required for cell
migration (Abudara, 2015; Alvarez, 2016; Garré, 2016;
Grygorowicz et al., 2016; Lagos-Cabre, 2017). However, this
molecular mechanism seems to be necessary only for mature
astrocytes, since the addition of conditioned media from
microglia or IL-1b to astrocyte progenitor cultures reduces cell
migration and spontaneous Ca2+ oscillations in these cells
(Striedinger and Scemes, 2008). These astrocyte progenitors
also show release of ATP to the extracellular medium, but in
an exocytosis-dependent fashion that also depends on Ca2+

(Striedinger et al., 2007).
Despite the key role of ATP in astrocyte migration, the

addition of different concentrations of extracellular ATP to
non-reactive astrocytes only induces a graded reactive
phenotype, including proliferation and stellation; however,
under these conditions, astrocyte phenotype is not
accompanied by an increase in GFAP and cells do not migrate
in wound-healing assays (Adzic, 2017). These results indicate
that even though ATP triggers various attributes of activated
astrocytes, this is not sufficient to induce a full reactive
phenotype in astrocytes. On the contrary, Wang and
Frontiers in Pharmacology | www.frontiersin.org 1081
coworkers showed that astrocytes migrate after ATP or UTP
treatment and increase their GFAP and avb3/b5 Integrin levels,
of which the latter is important for astrocyte migration after UTP
treatment (Wang, 2005). In this study, the authors utilize
primary astrocytes in culture, and suggest that they migrate
because the nucleotides induce astrocyte reactivity, which is
supported by the increased expression of GFAP and integrins.
Despite the fact that Cxs were not investigated in these studies,
by adding ATP (or UTP) to the extracellular medium of
astrocytes and inducing astrocyte reactivity, Cx43 may also be
upregulated (Lagos-Cabre, 2017), possibly explaining the effect
observed in cell migration.

The localization of Cx43 is also modified in reactive astrocytes.
Under normal conditions, Cx43 ismostly localized in intracellular
vesicles, but after the addition of TNF, it localizes in a near-to-
membrane zone (Lagos-Cabre, 2017); this result also supports the
importance of HCs in astrocyte reactivity and migration. Indeed,
the levels of Cx43 at the plasma membrane could regulate ATP
release and, as a consequence, increase [Ca2+]i, which is necessary
for cell migration (Alvarez, 2016; Lagos-Cabre, 2017).
Consequently, any increase in [Ca2+]i should lead to cell
migration. In support of this assumption, Hayashi and
coworkers observed that the increase in Ca2+ induced by
ionomycin was necessary and sufficient to induce cell migration
of leading edge mesodermal cells treated with this ionophore
(Hayashi et al., 2018). Interestingly, our own results show that
only partial cell migration (8.2 ± 1.8%wound closure compared to
2.7 ± 1.2% of control samples, Figure 4) is observed when
astrocytes are treated with ionomycin in a wound healing assay,
while after pre-treating with TNF, ionomycin significantly
enhances migration (15.3 ± 4.1%), with respect to treatment
with only ionomycin (Figure 4). Pre-incubation with BAPTA-
AM completely abolishes astrocyte migration induced by
ionomycin/TNF treatment (Figure 4), indicating the necessity
of cytosolic Ca2+ for the response. However, although TNF alone
FIGURE 4 | Astrocyte migration induced by ionomycin. Primary astrocytes from rat cortexes were isolated and cultured as published before (Lagos-Cabre, 2017).
Astrocytes were seeded in 24 well-plates and treated or not with 10 ng/ml of TNF for 48 h. Astrocytes were then subjected to a scratch with a pipette tip and
floating cells were washed away before treatment addition. Left panel: Representative images of the wound-healing assay with pseudocolor of selected treatments.
The green color represents cells in the wound edge at 0 h and the red color, cells of the same wound 24 h after treatment. Right panel: Wound-healing assay
quantification of astrocyte migration 24 h after treating cells with 1 µM of ionomycin. Where indicated, cells were pre-incubated with 5 µM BAPTA-AM for 30 min,
prior to ionomycin addition. Wound closure was higher in cells treated with ionomycin + TNF, revealing increase of migration. Values in the graph represent mean ±
s.e.m. of three independent experiments. The results were analyzed using one-way ANOVA and Tukey's post-test. Statistical significance is indicated, *p < 0.05.
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does not produce changes in either [Ca2+]i, ATP release, or cell
migration (Sofroniew, 2014), it appears to prime the cells to
respond to additional stimuli. Considering that TNF induces
astrogliosis, these results suggest that the reactive phenotype is a
key step for astrocytes to move and that [Ca2+]i increase, although
necessary, is not sufficient to induce astrocyte migration. This
potentiation of the migratory effect induced by TNF is interesting
and suggests that the increase in P2X7R protein levels (Lagos-
Cabre, 2017) (or other Ca2+ channels) could explain the difference
in migration by further increasing the Ca2+ influx induced by
ionomycin. Alternatively, since astrocyte migration involves
elevation of cytosolic Ca2+ via both ER release downstream of
integrin activation and uptake of extracellular sources through
ATP-gated-P2X7R pores (Figure 3), it is possible that Ca2+ is
elevated at specific times and places. Therefore, the bulk of Ca2+

induction by ionomycin does not mimic all events that are
triggered by physiological ligands, such as Thy-1/CD90. We
have previously shown that astrocytes require TNF to respond
to Thy-1/CD90, which induces a robust elevation of [Ca2+]i by the
release of ATP and activation of the P2X7R (Lagos-Cabre, 2017).
Here, we confirmed that an increase in [Ca2+]i alone only slightly
affects astrocyte migration, an event that further requires the
molecules that are overexpressed by TNF treatment (such as Cx
HCs) to maintain, for example, a reactive phenotype, or to sustain
a positive feedback loop between ATP release, P2X7R activation,
and [Ca2+]i increase. In our previous reports we have shown that
two Ca2+ sources are needed to induce astrocyte migration: one
dependent on Ca2+ released from internal stores and triggered by
integrin engagement, which is necessary for Cx43 HC opening;
and another related to ATP release and P2X7R activation
(Henriquez, 2011; Alvarez, 2016; Lagos-Cabre, 2017). Thus,
although ionomycin increases [Ca2+]i in an artificial manner,
low levels of Cx43 and P2X7R at the plasmamembrane -due to the
lack of pro-inflammatory signals- could explain the reduced effect
of the ionophore on cell migration.

Alternatively, enhanced [Ca2+]i induced by ionomycin might
stimulate the opening of different pores, other than Cx HCs, but
that share P2X7R properties, as has been reported in 2BH4
thymic epithelial cells and peritoneal macrophages (Faria, 2009).
The nature of this pore was not determined and the authors
indicated that pore activation induced by [Ca2+]i depends on
calmodulin, PLC, MAPK, and cytoskeleton components (Faria,
2009). According to the scratch assay results that we show here,
primary astrocytes treated with ionomycin alone increase their
migration, but to a level not as high as that in cells pre-treated
with TNF (Figure 4). Thus, the key event seems to be a pro-
inflammatory stimulus that, apart from provoking elevated levels
of many surface proteins (Lagos-Cabre, 2017), could regulate
distinct intracellular signaling pathways that might activate the
alternative pore proposed by Farias and coworkers.

We have proposed that TNF elevates b3 Integrin cluster
formation in astrocytes by increasing the expression of avb3
Integrin at the plasma membrane. A low level of clustering could
trigger signaling cascades involved in focal adhesion formation,
including PLCg activation and Ca2+ release via IP3R activation to
yet undetectable levels, but that prompts cells to quickly respond
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to stimuli like ionomycin. We have tested Cx43 HC opening by
LY uptake in ionomycin-treated astrocytes and found that these
HCs open even in the absence of TNF (Lagos-Cabre, 2018).
These results suggest that: i) HC opening and astrocyte
migration are two independent processes that can potentiate
each other with Thy-1/CD90 stimulation (see above); ii) HC
opening is only part of the mechanism required to be activated in
order to trigger a response; and iii) the LY dye could be passing
through a pore that is different from HCs, but that opens with
ionomycin treatment (Faria, 2009). Additionally, the
combination of ionomycin and Thy-1/CD90 induces lower
migration levels than Thy-1/CD90 and TNF applied together
in a Boyden chamber transmigration assay (Lagos-Cabre, 2018).
The latter reinforces the idea that Thy-1/CD90 has a limited
capacity to stimulate non-reactive cells and that ionomycin does
not produce all the changes induced by TNF. Thus, astrocyte
migration requires many molecular components increased by
TNF and cannot be replaced by an artificial [Ca2+]i increase,
supporting the idea that Ca2+ is necessary, but not sufficient for
astrocytes to migrate. Of note, the different elements that interact
with each other to regulate astrocyte migration are also regulated
by different signaling pathways related to various astrocytic
functions. These mechanisms will provide insights for future
research on astrocyte migration.
CONCLUDING REMARKS

In this review, we summarized studies related to cell migration
and regulation of this process by Cxs. The information exposed
here strongly suggests that astrocyte reactivity, as well as
migration in a pro-inflammatory environment, relies
predominantly on Cx HCs, rather than GJs.

Despite the similarity between Cxs, all of them show different
properties that provide a broad spectrum of responses in any
given situation. However, Cx43 probably emerges as the main Cx
involved in astrocyte physiology, controlling its reactive
phenotype, allowing migration and facilitating cell-cell
communication with surrounding cells.

The effect of Cxs on migration is usually observed during
inflammation, and the presence of Cx HCs is required to
maintain the reactive phenotype of astrocytes after injury.
Inhibition of Cx HCs with peptides or blockade of the P2X7R
improves function after spinal cord injury or EAE symptoms,
respectively, indicating that the modulation of this signaling
pathway could provide a therapeutic opportunity to treat these
conditions. Release of ATP by Cx HCs and intake of Ca2+

through the P2X7R are among the crucial steps for astrocyte
reactivity and migration, demonstrating that these two processes
are closely related, since only reactive astrocytes migrate.

The participation of Cxs in astrocyte migration is related to
their function as channels and the communication that they
mediate through cell-cell, as well as cell-ECM interactions.
Importantly, the regulation of cell adhesion and cytoskeletal
dynamics, both of which are relevant to cell migration, occurs
by post-translational modifications of Cxs, which are induced by
January 2020 | Volume 10 | Article 1546
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kinases, phosphatases, and acetylases. In this scenario, both
phosphorylation and acetylation regulate membrane
localization of Cxs.

It is easy to speculate that GJs are not related to the
maintenance of the negative conditions that characterize
astrogliosis , s ince they exert their role in cell-cell
communication and not in cell-ECM communication. We
believe that single-cell migration is the operating mechanism
during astrogliosis, and considering that GJs are reportedly more
important for collective migration, and that this type of cell
movement is not observed in the CNS after injury (Carbonell,
2005; Retamal, 2007), we propose that mostly HCs, rather than
GJs, are related to astrocyte migration.

The presence of Cx HCs in astrocytes is not only important
for the initiation of reactivity or migration, but also to maintain
the reactive phenotype during longer periods, which then
increases the negative effects of neurological diseases or pro-
inflammatory conditions. This Cx role has been supported by
several groups and could represent an important target for
treatment or prevention of such pathologies. However, due to
the importance of Cx HCs in astrocyte reactivity and migration, a
specific treatment based on HC blockade should be pursued,
especially for neurodegenerative diseases and astrocytoma/
glioma treatment.

New studies able to discriminate between the two distinct Cx
channel activities are necessary to enlighten the specific Cx roles
in physiological and pathological conditions and for future
development of interventions that will be able to ameliorate
the detrimental effects of CNS injury and neurodegenerative
diseases. The challenge will be to modulate reactive astrocytes
according to the optimal regenerative responses desired, and to
define the correct therapeutic window according to the specific
stage of the pathology. These future therapeutic strategies should
Frontiers in Pharmacology | www.frontiersin.org 1283
consider both pharmacological and nonpharmacological
approaches to enrich the environment necessary for CNS
regeneration (Pekny and Pekna, 2014). Furthermore, future
research on the complex molecular mechanisms that regulate
astrocyte migration is also needed for the development of clinical
interventions for astrogliosis.
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Among the diverse cell types included in the general population named glia, astrocytes
emerge as being the focus of a growing body of research aimed at characterizing their
heterogeneous and complex functions. Alterations of both their morphology and activities
have been linked to a variety of neurological diseases. One crucial physiological need
satisfied by astrocytes is the cleansing of the cerebral tissue from waste molecules.
Several data demonstrate that aquaporin-4 (AQP-4), a protein expressed by astrocytes, is
crucially important for facilitating the removal of waste products from the brain.
Aquaporins are water channels found in all district of the human organism and the
most abundant isoform in the brain is AQP-4. This protein is involved in a myriad of
astrocytic activities, including calcium signal transduction, potassium buffering, synaptic
plasticity, astrocyte migration, glial scar formation and neuroinflammation. The highest
density of AQP-4 is found at the astrocytic domains closest to blood vessels, the endfeet
that envelop brain vessels, with low to zero expression in other astrocytic membrane
regions. Increased AQP-4 expression and loss of polarization have recently been
documented in altered physiological conditions. Here we review the latest findings
related to aging and Alzheimer’s disease (AD) on this topic, as well as the available
knowledge on pharmacological tools to target AQP-4.

Keywords: aquaporin-4, aging, Alzheimer’s disease, astrocytes, glymphatic system, brain clearance,
perivascular space
INTRODUCTION

During the past 15 years, glial cells have gained noticeable attention, as their complex and
heterogeneous functions were progressively getting discovered and understood. Glial cells have
been recognized as essential supportive cells for neurons with a variety of specific and crucial
homeostatic functions, including, but not limited to, uptake and release of chemical transmitters
(Allen and Barres, 2009). For example, a growing body of literature demonstrates that synaptic
function and plasticity require not just the presynaptic and postsynaptic neurons, but also the
presence of glial cells, specifically astrocytes, Schwann cells, and microglia (Araque et al., 1999) with
the contribution of the extracellular matrix too, forming a multi-partite structure referred as
synaptic cradle (Dityatev and Rusakov, 2011; Verkhratsky and Nedergaard, 2014; Pekny et al., 2016;
Verkhratsky and Nedergaard, 2018).
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Among the diverse cell types included in the general
population named glia, astrocytes emerge as being the focus of
a growing body of research aimed at characterizing their
heterogeneous and complex functions. Indeed, alterations of
both their morphology and activities have been linked to a
variety of neurological disorders and diseases (Scuderi et al.,
2013; Scuderi et al., 2018b). Multiple and disparate changes
occur in astrocytes (e.g., from hypertrophy to atrophy, from
proliferation to cell death) in a highly heterogeneous and
complex way, both context-dependent and disease-specific.
Astroglial pathological modifications are driven by different
signaling mechanisms and produce diverse responses from
adaptive to maladaptive, and further they may change along
the course of a disease (Sofroniew, 2014; Pekny et al., 2016;
Verkhratsky et al., 2017).

One, out of many, crucial physiological need satisfied by
astrocytes is the cleansing of the cerebral tissue from waste
molecules. Indeed, without a waste disposal system, the brain
would accumulate unwanted molecules that would interfere
with its optimal functioning. Such cleansing system has been
the topic of intense research and debates among scientists. In
2012 the original view of waste products disposed by diffusion
was challenged by the publication of a research paper
describing a water and solute clearance system regulated by
astrocytes (Iliff et al., 2012). The authors indeed named it
glymphatic system to underline the crucial role of glial cells.
Experiments were carried out in living mice, injecting
fluorescent tracers into the subarachnoid space of the brains,
and then imaging their real-time movement using two-photon
microscopy. Results suggested that the cerebrospinal fluid (CSF,
mimicked by the tracers) moves by convective flow along the
perivascular space between a vessel and the endfeet of
astrocytes escheating the vasculature. The fluid penetrates the
extracellular space of the parenchyma from the perivascular
space as the artery branches into arterioles and capillaries. At
this level, the CSF mixes with the interstitial fluid filling up of
metabolic waste, moving by diffusion (Holter et al., 2017)
toward the perivascular space of venules and capillaries to
ultimately reach the lymphatic vessels (Louveau et al., 2015),
which drain the molecules absorbed from the dural meninges
to the cervical lymph nodes (Aspelund et al., 2015). This
system was found dependent on aquaporin-4 (AQP-4), a
bidirectional water channel highly expressed by astrocytes,
since deletion of Aqp-4 gene in mice severely reduced (nearly
70%) clearance from the brain (Iliff et al., 2012; Mestre et al.,
2018). Authors then conclude that AQP-4 facilitates convective
flow out of the periarterial space and into the interstitial space
(Iliff et al., 2012; Nedergaard, 2013).

Thirteen aquaporins have been identified so far and, among
them, the AQP-4, isolated from rat brain in 1994 (Hasegawa
et al., 1994; Jung et al., 1994), is recognized as the most
abundant water channel of the central nervous system (CNS).
It is expressed by glial cells, specifically by astrocytes and
ependymal cells, mostly in regions close to vessels throughout
the CNS, including the spinal cord, and the cerebellum (Jung
et al., 1994; Frigeri et al., 1995). Two isoforms have been
Frontiers in Pharmacology | www.frontiersin.org 289
identified in humans, that are AQP-4-M1 and AQP-4-M23
(Sorani et al., 2008a; Sorani et al., 2008b). Nielsen and
collaborators were the firsts to describe that astrocytes
express polarized AQP-4, such that the higher density of the
channel is found at domains closest to blood vessels and the
pia mater, with low to zero expression in other astrocytic
membrane regions, except for some synapses (Nielsen
et al., 1997).

The presence of the glymphatic disposal system in the
human brain has not been fully demonstrated yet, although
some evidence concurs to confirm it (Eide and Ringstad, 2015;
Taoka et al., 2017; Rasmussen et al., 2018). Despite these, not all
scientists believe that such glymphatic waste system actually
exists, at least as presented by Iliff et al. (2012) because of some
inconsistent findings suggesting that solute transport does not
depend on the astrocytic AQP-4 (Smith et al., 2017; Iliff and
Simon, 2019; Smith and Verkman, 2019). Debates are ongoing
about the type of flow supporting the clearance system, as it is
pressure-driven convective flow (generated by pulsation of
arteries and collapse and inflation of veins) (Iliff et al., 2013;
Ray et al., 2019), or diffusive down to gradient (Asgari et al.,
2016; Smith et al., 2017; Smith and Verkman, 2018). Despite
this, evidence demonstrates that AQP-4 deletion impairs blood-
brain interface permeability to water (Papadopoulos and
Verkman, 2005).

Despite the ongoing scientific debates, some new findings
have been collected during the past 5 years valuing the notion
that specific AQP-4 localization in astrocytes and its expression
might be crucial aspects in physiological and pathological
conditions (Figure 1). Here we review the latest findings
related to aging and AD on this topic, as well as the available
knowledge on pharmacological tools to target AQP-4. However,
AQP-4 is involved in a myriad of astrocytic activities, including
calcium signal transduction (Thrane et al., 2011), potassium
buffering (Jin et al., 2013), synaptic plasticity (Fan et al., 2005;
Ding et al., 2007; Zeng et al., 2007), astrocyte migration
(Saadoun et al., 2005; Auguste et al., 2007), glial scar
formation (Saadoun et al., 2005; Wu et al., 2014), and
neuroinflammation (Li et al., 2011) (for extensive review refer
to Xiao and Hu, 2014; Hubbard et al., 2018; Mader and
Brimberg, 2019).

AQP-4 in Aging and Alzheimer’s Disease
Aging is the greatest risk factor for developing dementia and
Alzheimer’s disease (AD). Aging is a process that involves the
whole organism, including the clearance system of the brain. It is
often associated with shorter duration of sleep time (Wolkove
et al., 2007), which is the period of activity of the aforementioned
cerebral waste disposal system (Xie et al., 2013). Aqp-4 gene
expression has been found increased in cerebral and cerebellar
cortices of aged (17-month-old) mice compared to their adult
counterpart (Gupta and Kanungo, 2013). Similarly, age-
dependent raise in AQP-4 expression has been reported in the
hippocampal CA1 region of 12-month-old compared to 6-
month-old 3×Tg-AD mice, a triple transgenic model of AD,
irrespective of genotype (Bronzuoli et al., 2019). In accordance,
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Zeppenfeld et al., reported in 2017 that altered AQP-4
immunostaining was associated with increasing age in post-
mortem human cortices. Therefore, it can be hypothesized that
the upregulation of astrocytic AQP-4 responds to a physiological
need for compensating general astrocytes morphological or
functional alterations known to occur both in rodents and
human post-mortem aged brains (Hoozemans et al., 2011;
Bronzuoli et al., 2019). However, this hypothesis needs further
direct demonstrations.

Aged brains show also altered AQP-4 localization
(Zeppenfeld et al., 2017). Indeed, a study from the Nedergaard
group demonstrated increased perivascular GFAP in aged (18
months) compared to young (2–3 months) C57BL/6 mice,
coupled with a significant, but modest, loss of perivascular
localization (Kress et al., 2014). A loss of vascular localization
of AQP-4 has been demonstrated in old (24-months) compared
to young (6-months) TgSwDI mice, which develop age-
dependent accumulation in amyloid, together with general
reactive gliosis, as shown by increased number of GFAP-
positive astrocytes and Iba 1-positive microglia (Duncombe
et al., 2017). Preservation of perivascular localization of AQP-4
in aged human individuals was predictive of preserved cognitive
abilities (Zeppenfeld et al., 2017). Additionally, the arterial
pulsating force was lower as well as the rate of clearance of the
tracer injected into the brains was slower in aged compared to
young C57BL/6 mice (Kress et al., 2014).

Measurements of beta-amyloid (Ab) deposition in human by
positron emission tomography (PET) show that Ab begins to
abnormally deposit within the brain between age 40 and 50,
thus far before clinical symptoms (Villemagne et al., 2013). This
stage of the disease is termed preclinical or prodromal AD; it is
characterized by patients having no symptoms of the disease
yet, and only few molecular alterations have begun to appear
(Hyman et al., 2012). Oxidative stress, as well as signs of
neuroinflammation and reactive astrocytes, have been
documented at early stages of the disease, before the
Frontiers in Pharmacology | www.frontiersin.org 390
appearance of massive Ab deposition and tau hyper-
phosphorylation (Zhu et al., 2004a; Zhu et al., 2004b; Jack
et al., 2010; Rodriguez-Vieitez and Nordberg, 2018). In absence
of neuronal atrophy, a premature presence of reactive
astrogliosis can be detected in animal models of AD, as in 6-
month-old 3×Tg-AD mice (age that corresponds to a mild stage
of pathology). A study using a novel non-invasive magnetic
resonance imaging protocol reports lower water influx into the
CSF of mice expressing high senile plaque density (APP/PS1
mice) compared to their wild-type counterpart (Igarashi et al.,
2014a), similar to what seen in AQP-4 knock-out mice (Igarashi
et al., 2014b). AQP-4 knock-out mice show reduced (−50%)
intracerebrally infused Ab clearance compared with wild-type
littermates (Iliff et al., 2012). The association of AQP-4 deletion
in APP/PS1 mice brought to a significant increase of both
soluble and insoluble Ab in the brain, without affecting
synthesis or degradation of the protein (Xu et al., 2015).
Moreover, bidirectional relationship between sleep and AD
has been reported, such that patients with AD experience
sleep disturbances as well as poor sleep predisposes to AD (Ju
et al., 2014). Indeed, brain waste products, such excessive Ab
and tau, are cleared during sleep time (Xie et al., 2013; Shokri-
Kojori et al., 2018). Based on this, a recent report investigated
the association of single-nucleotide polymorphisms (SNPs) in
Aqp-4 gene with sleep latency, duration, and amount of
radiolabeled Ab imaged through PET scans carried out in
healthy volunteers >60 years old. They found one SNP
associated with poor sleep quality, and two SNPs associated
with short sleep duration and consequent higher Ab burden. In
contrast, one SNP, the rs2339214, was associated with higher
Ab and also longer sleep duration (Rainey-Smith et al., 2018).
All these accumulating evidence suggests that deposits of Ab
and tau are consequences of impaired clearance, rather than of
increased production (Benveniste et al., 2019).

Burfeind and collaborators identified five SNPs in the Aqp-4
gene and analyzed their possible association with cognitive
FIGURE 1 | Figure shows representative schemes for expression and polarization/localization of AQP-4 in healthy (left) and dysfunctional (right) perivascular
astrocyte. Astrocytes processes wrap the vessel forming a sheath around it. Cerebrospinal fluid (CSF) flows in the perivascular space created around the vessel. The
astrocytic water channel AQP-4 is polarized, as it is densely expressed by astrocytes almost exclusively at the endfeet, in direct contact with the perivascular space,
where it facilitates the interchanges of water. In aging and some pathological conditions, such as Alzheimer’s disease (AD), AQP-4 loses its polarization in reactive
astrocytes and it is found diffusively expressed. Also, higher AQP-4 expression has been documented in Parkinson’s disease, cerebral ischemia, amyotrophic lateral
sclerosis, and other neurological diseases (for review see Xiao and Hu, 2014; Mader and Brimberg, 2019).
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decline exclusively in AD patients. Their results identified two
Aqp-4 SNPs associated with rapid, and two with slow, cognitive
decline (Burfeind et al., 2017). Another report from the same
group studied the association between perivascular AQP-4
localization and its expression levels with AD pathology in
humans, showing for the first time that total AQP-4 expression
was increased in the AD cortex compared to cognitively intact
subjects, both young and aged. The raise was correlated with Ab
deposits. Additionally, loss of perivascular AQP-4 was associated
with AD Braak stage and density of Ab plaques (Zeppenfeld
et al., 2017). Ten years before, increased expression of AQP-1,
but not AQP-4, was reported in the frontal cortex of patients
with early AD stage (Perez et al., 2007). AQP-4 was found highly
diffused in the parenchyma of post-mortem human AD brains
and of a mouse model of AD (5xFAD), with particular
localization near Ab plaques rather than near vasculature
(Smith et al., 2019), supporting the hypothesis that a change in
AQP-4 localization might be a crucial aspect in AD
neuropathology. Interestingly, since 5xFAD mice showed
increased neuronal Ab, they propose that AQP-4 peri-plaques
localization might be a defense mechanism to counteract Ab
deposition (Smith et al., 2019). However, further studies are
needed to demonstrate this novel and intriguing hypothesis.
Anyway, the cited evidence supports the idea that several
alterations, including control of water, ions and solute
clearance, occur in aging and early stages of AD.

Pharmacological Tools Targeting AQP-4
Despite the massive preclinical and clinical efforts, no effective
treatments are currently available for patients with AD. Recent
evidence concurs that the best time for intervention is when the
disease is not fully overt. This preclinical phase of the disease is
difficult to diagnose because, at present, there are no specific
biomarkers able to reliably and timely detect it. Disappointing
results of the latest clinical trials has prompted researchers to
rethink possible pharmaceutical targets and therapeutic
approaches, including targeting AQP-4. However, malfunction
of the brain cleansing system because of aging brings to waste
piling up, including proteins as Ab and tau. Therefore,
a s t rocy t i c AQP-4 seems to represen t a poss ib l e
pharmacological candidate to be targeted in AD at its earliest
s tage , before abnormal protein accumulat ion and
neurodegeneration occur. So far, some molecules have been
tested for activity to AQP-4, but none in in vitro or in vivo
models of AD (Lan et al., 2016; Tradtrantip et al., 2017). Some
phytocompounds with antioxidant properties have shown to be
active on AQP-4. Among them, pinocembrin, a flavonoid
contained in propolis, seems to be able to downregulate AQP-
4 expression in a rodent model of focal cerebral ischemia (Gao
et al., 2010); curcumin treatment reduced hypoxia-hypercapnia-
induced brain edema by downregulating the messenger RNA
(mRNA) expression levels of AQP-4 in rats (Yu et al., 2016) and
dampening AQP-4 and GFAP overexpression in a rat model of
acute spinal cord injury (Nesic et al., 2010). Similar results were
published with epigallocatechin gallate treatment, an essential
Frontiers in Pharmacology | www.frontiersin.org 491
ingredient of green tea (Ge et al., 2013). Acute administration of
carvacrol, a terpenoid, dose-dependently attenuates brain edema
induced by cerebral hemorrhage in mice by downregulating
brain Aqp4 gene and protein expression, likely reducing
astrocyte swelling (Nesic et al., 2010). Preliminary studies in
our laboratory suggest that in vivo chronic treatment of 3×Tg-
AD mice and their wild-type counterpart with the ALIAmide
palmitoylethanolamide (PEA) is able to reduce the upregulated
expression of hippocampal AQP-4 selectively in AD-like mice.
Numerous evidence demonstrates the anti-inflammatory and
neuroprotective properties of PEA (Scuderi et al., 2012; Scuderi
et al., 2014; Skaper et al., 2015), and we have recently
demonstrated in vivo the efficacy of a formulation of
ultramicronized PEA (um-PEA) in reducing several AD-like
molecular and behavioral signs in 3×Tg-AD mice (Bronzuoli
et al., 2018; Scuderi et al., 2018a). However, further studies are
needed to verify the effects of formulations containing PEA on
AQP-4 expression and functions.

Interestingly, it has recently been reported that atorvastatin,
already in use in the clinical setting as lipid-lowering drug, may
prevent ischemic brain edema through downregulation of
astrocytic AQP-4 expression in rats. Authors proposed a
mechanism involving the attenuation of p38-MAPK signaling
(Cheng et al., 2018). Similarly, 2-(nicotinamide)-1,3,4-
thiadiazole (TGN-020) was shown to act as a potent AQP-4
inhibitor in a rodent model of ischemia (Pirici et al., 2018;
Catalin et al., 2018). A Japanese herbal compound named
Goreisan was able to reduce edema in an in vivo model of
hypoxic-ischemic encephalopathy by reducing the lesion-
induced upregulation of AQP-4 protein expression, and
ameliorating the rat survival rate compared to the control
group (Nakano et al., 2018). Similarly, in a rat model of
traumatic brain injury (TBI), acute administration of the
hormone ghrelin was able to prevent post-TBI upregulation of
AQP-4 expression (Lopez et al., 2012). Chronic treatment with
dabigatran etexilate, a thrombin inhibitor, showed an indirect
effect on AQP-4, preventing its misplacement found in
TgCRND8 mice, a mouse model of AD (Cortes-Canteli et al.,
2019). Thus, converging evidence demonstrates that targeting
AQP-4 seems to be a promising pharmacological approach in
several brain pathologies. For example in major depressive
disorder there is a clear reduction in the coverage of blood
vessels by AQP-4-positive astrocyte endfeet (Rajkowska et al.,
2013). Intriguingly, Di Benedetto and collaborators found that
AQP-4 is necessary to mediate fluoxetine-induced growth of
astrocytic processes in rats (Di Benedetto et al., 2016).

New AQP-4 partial antagonists have been discovered by
library screening by Aeromics, Inc. (OH, USA). The drug
AER-270, and its prodrug with enhanced solubility AER-271,
have shown beneficial results on brain edema in two different
model of cerebral injury in rats, reducing swelling and behavioral
neurological damage (Farr et al., 2019). Since AQP-4 was found
up-regulated in the aging brain, and mislocalized in AD, it would
be interesting to test the hypothesis that treatment with AQP-4
modulator may slower brain senescence process and prevent
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neurological deficit through a fine regulation of this water
channel. However, the effect of therapeutic interventions
targeting AQP-4 will depend on the balance between the
beneficial increased water clearance and deleterious effects on
astrocytic morphological changes. Since not all pathological
conditions are associated with impaired blood brain barrier
(BBB), AQP-4-targeting drug should be able to cross an intact
BBB, as for example in prodromal stages of AD. However,
reaching this perfect balance between maximum benefit and
limited toxicity depends on future further understanding of the
biology of AQP-4.
Frontiers in Pharmacology | www.frontiersin.org 592
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Astrocytes are the most abundant type of glial cell in the central nervous system
and perform a myriad of vital functions, however, the nature of their diversity remains
a longstanding question in neuroscience. Using transcription factor motif discovery
analysis on region-specific gene signatures from astrocytes we uncovered universal
and region-specific transcription factor expression profiles. This analysis revealed that
motifs for Nuclear Factor-I (NFI) are present in genes enriched in astrocytes from
all regions, with NFIB and NFIX exhibiting pan-astrocyte expression in the olfactory
bulb, hippocampus, cortex, and brainstem. Further analysis into region-specific motif
patterns, identified Nkx3-1, Stat4, Pgr, and Nkx6-1 as prospective region-specific
transcription factors. Validation studies revealed that Nkx6-1 is exclusively expressed
in astrocytes in the brainstem and associates with the promoters of several brainstem
specific target genes. These studies illustrate the presence of multiple transcriptional
layers in astrocytes across diverse brain regions and provide a new entry point for
examining how astrocyte diversity is specified and maintained.

Keywords: astrocyte, transcription factor, brain, cellular diversity, bioinformatics

INTRODUCTION

The brain is composed of an incredible array of diverse cell types, of which, glial cells account
for approximately half of this mosaic (Fu et al., 2013; Herculano-Houzel, 2014). Astrocytes, a
principal subtype of glial cell, were traditionally thought to be a homogenous population of cells
that only function to provide support to neurons. However, astrocytes are now known to perform
a multitude of essential functions, such as buffering neurotransmitters, regulating synaptogenesis,
modulating synaptic transmission, and maintaining the blood-brain barrier (Abbott et al., 2006). In
addition, calcium signaling within astrocytes has been shown to control neuronal physiology and
animal behavior (Chai et al., 2017; Yu et al., 2018). Taken together, astrocytes are now known to
contribute to nearly every aspect of brain physiology and function (Khakh and Deneen, 2019). Their
ability to execute a wide array of functions challenges the notion that astrocytes are a homogenous
population of cells.

Astrocytes are electrically silent cells, making it difficult to characterize their functional
diversity based on electrophysiological activities. Methods for understanding neuronal cell
diversity, such as whole cell electrophysiology (Anderson et al., 2001), morphological
criteria, and imaging- based analysis reveals little information about astrocytes because they
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are not excitable, exhibit grossly uniform (albeit complex)
morphologies, and lack subtype-specific markers for imaging
(Jobling and Gibbins, 1999; Khakh and Sofroniew, 2015).
Critically, the lack of reliable, astrocyte-specific markers has
severely hindered the development of tools to study astrocytes.
The identification of Aldh1l1 as a marker that broadly and
specifically labels astrocytes (Anthony and Heintz, 2007; Cahoy
et al., 2008), and the subsequent development of transgenic
mice (Anthony and Heintz, 2007) has enabled astrocytes to be
isolated and further analyzed. These tools have also enabled
further molecular probing of astrocyte transcriptomes, revealing
extensive molecular heterogeneity (Bayraktar et al., 2015).
Unique astrocytic gene signatures have been found across brain
regions (Morel et al., 2017; Duran et al., 2019), and it has
been demonstrated that region-specific astrocyte transcriptomes
translate to neural-circuit based functional differences (Chai
et al., 2017). In addition to regional diversity, five distinct
astrocyte sub-populations have been identified across a host
of brain regions, and characterization of these sub-populations
revealed functional diversity amongst these subpopulations
with respect to synapse formation (Lin et al., 2017). While
our understanding of astrocyte heterogeneity has advanced
considerably, many questions remain about how this intrinsic
heterogeneity is encoded, and whether and how these regionally
distinct signatures are converted to functional differences.

One important question remaining is what controls the
unique expression profiles observed in astrocyte populations
from distinct brain regions? In the spinal cord, positionally
distinct subpopulations of astrocytes arise from the differential
expression of transcription factors during development and
this combinatorial transcription factor code results in three
distinct astrocyte subpopulations in the developing spinal
cord (Hochstim et al., 2008). Applying this rationale to the
brain, we hypothesized that differential transcription factor
expression contributes to the observed regional diversity of
astrocytes in the mature brain. Toward this, we sought to
decipher transcription factor expression profiles associated
with astrocyte populations by surveying region specific
molecular profiles. Bioinformatic analyses of astrocyte gene
signatures from the olfactory bulb, hippocampus, cortex,
and brainstem identified cohorts of transcription factors
involved in modulating region-specific molecular signatures.
We identified generalized astrocytic transcriptional regulators,
as well as three region-specific transcription factors in adult
astrocytes. Our findings suggest that differential expression
of transcription factors influences astrocyte diversity in the
mammalian brain.

MATERIALS AND METHODS

Animals, Tissue Dissociation, and FACS
Analysis
All research and animal care procedures were approved by
the Baylor College of Medicine Institutional Animal Care and
Use Committee and housed in the Association for Assessment
and Accreditation of Laboratory Animal Care-approved animal
facility at Baylor College of Medicine. Both male and female BAC

Aldh1l1–eGFP mice were used. All strains were maintained on
C57BL6 background.

The olfactory bulb, hippocampus, cortex, and brainstem from
16-week old Aldh1l1–eGFP mice was dissected and dissociated
using the protocol in Lin et al., 2017. Fluorescence activated cell
sorting (FACS) was performed on a BD FACSAria III instrument
(100-µm nozzle and 20-p.s.i. setting) with FACSDIVA software,
and eGFP+ astrocytes were sorted into a 1.5-ml eppendorf tube
containing RLT lysis buffer from the RNeasy Micro Kit (74004,
QIAGEN) with 1% ß-Mercaptoethanol.

Total RNA Extraction, Library
Preparation and Sequencing
Total RNA was extracted from Aldh1l1–eGFP+ FAC-sorted
cells using the RNeasy Micro Kit (74004, QIAGEN) and quality
controlled using the High Sensitivity RNA Analysis Kit (DNF-
472-0500, Agilent formerly AATI) on a 12-Capillary Fragment
Analyzer. cDNA synthesis, library construction and rRNA
depletion was performed on 5 ng total of RNA using the Trio
RNA-Seq System (0507-96, NuGEN). The resulting single index
libraries were validated using the Standard Sensitivity NGS
Fragment Analysis Kit (DNF-473-0500, Agilent formerly AATI)
for size confirmation and quantified using the Quant-iT dsDNA
Assay Kit, high sensitivity (Q33120, Thermo Fisher). Samples
were diluted to equimolar concentrations (2 nM), pooled, and
denatured according to the manufacturer’s protocol. The final
library dilution of 1.3 pM was sequenced on a NextSeq500
using the High Output v2 kit (FC-404-2002, Illumina) for
paired-end (2 × 75) sequencing of approximately 40 million
reads per sample.

Bioinformatics Analysis
Demultiplexed sequencing files were downloaded from
BaseSpace and quality control was assessed using fastQC
(v0.10.1) and MultiQC (v0.9) (Ewels et al., 2016). Reads were
mapped to the mouse genome (10 mm) using STAR (v2.5.0a)
(Love et al., 2014). Rsamtools (v2.0.0) and GenomicFeatures
(v1.32.2) were used to build count matrices and gene models for
expression quantification. UCSC transcripts were downloaded
from Illumina iGenomes in GTF file format. We determined
reads per million (RPM) using GenomicAlignments (v1.16.0).
Principal component analysis (PCA) was performed using
rlog transformed gene expression matrix of global gene
expression >1 for each region. DESeq2 (v1.20.0) was used
for both differential gene expression analysis and read count
normalization. Expression heat maps were generated using
ComplexHeatmap (v2.0.0).

Astrocyte Region-Specific Gene
Signatures
To identify unique gene signatures, we compared global gene
expression from one region to all three other regions using
DESeq2. This process was repeated to determine region-specific
gene expression patterns. We defined differentially expressed
genes (DEGs) as those with normalized reads per million (RPM)
>5 in at least two of the replicates and expression fold-change
>1.5 at p< 0.01. Gene Ontologies associated with region-specific
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DEGs were determined using Enrichr and visualized using
GOplot (v1.0.2) and ggplot2.

Motif Analysis
To identify any transcription factor motifs that are enriched
across region-specific gene signatures, the DEGs from each
region were pooled to comprise one list of 3555 genes. These
genes were analyzed using Hypergeometric Optimization of
Motif EnRichment (HOMER) (v4.10) to identify transcription
factor motifs enriched within 2 kb of the gene’s promoter
sequence. To be considered enriched across all regions
the transcription factor motif had to be present in at least
50% of DEGs from each region. Transcription factors
with enriched motifs were further analyzed to determine
their expression patterns across regions. Those with an
RPM >5 in at least two of the replicates were used for
downstream analysis.

Applying the same parameters outlined above, DEGs from
each region were individually subjected to motif analysis using
HOMER to discover transcription factor motifs enriched within
2 kb of the gene’s promoter sequence. The resulting list
of enriched motifs was filtered based on expression data to
identify regionally specific transcription factors. We considered
a transcription factor regionally enriched only with a fold change
>2 at p < 0.01 in the region of interest.

Immunocytochemistry
Perfusion and tissue collection were performed as described
previously in Huang et al., 2016. Briefly, mice were deeply
anesthetized by isoflurane and then fixed by transcardiac
perfusion with PBS followed by 4% PFA in PBS. Tissues for
histological analysis were harvested immediately after perfusion.
The tissues were then fixed 6 h in 4% PFA in PBS and
cryopreserved by overnight incubations in 20% sucrose. Tissues
were embedded in OCT compound (Sakura) and sectioned.
We collected 30 µm sections of brains with a cryostat and
stained them as floating sections. Prewarmed solution of sodium
citrate (pH 6.0) was added to immerse the sections, and
the sections were incubated in 75◦C water bath for 10 min.
Sections were allowed to cool down to room temperature
and then blocked for 20 min in a PBS solution containing
10% serum (matched to the host used for the secondary
antibodies) and 0.3% Triton X-100. Primary antibody incubation
was performed in the blocking solution overnight at 4◦C for
floating sections. Secondary antibody incubation was performed
in the PBS solution with 0.1% Triton X-100 for floating
sections at room temperature for 1 h. Sections were washed
between incubations with PBS containing 0.1% Triton X-100.
DAPI was included in the penultimate wash. We used these
primary antibodies at the following dilutions: chicken anti-
GFP 1:1000 (Abcam, ab13970), mouse anti-Nkx6.1 (DSHB,
F55A10), rabbit anti-Pgr 1:200 (Invitrogen, MA5-14505), rabbit
anti-NFIB (Millipore Sigma, HPA003956), and rabbit anti-NFIX
(Abcam, ab101341). Secondary antibodies conjugated to DyLight
488, 549, or 649 were used at a dilution of 1:500 and raised
in goat or donkey (Jackson ImmunoResearch Laboratories).
Sections were mounted with antifade mounting medium

(VECTASHIELD) and imaged via epifluorescent microscopy
(Zeiss M1 with ApoTome2 and ZEN2 software) or Nikon A1-Rs
confocal microscope.

Transcription Factor Target Identification
Potential transcription factor targets were predicted using
HOMER’s annotatePeaks.pl with the -m option. Each set
of regional DEGs was interrogated for the presence of the
associated transcription factor motif allowing zero mismatch.
Only genes that had the appropriate motif sequence within
2 kb of the transcriptional start site were considered possible
targets. The resulting list was then subset to include only
genes with a fold change >2.5 for each region. Predicted
target enrichment was visualized using ComplexHeatmap
(v2.0.0) and circlize (v0.4.6). Gene Ontologies of predicted
targets were determined using Enrichr (Chen et al., 2013;
Kuleshov et al., 2016).

Chromatin Immunoprecipitation (ChIP)
Brainstems were collected from 16-week old mice for ChIP-PCR
validation of Nkx6-1 targets. Tissue was coarsely chopped
and washed with cold PBS before dissociation with a pellet
homogenizer. The homogenate from 6 dissociated brainstems
were pooled for subsequent sample preparation. Crosslinking
was performed using freshly prepared 1.1% formaldehyde
solution (11% formaldehyde, 100 mM NaCl, 1 mM EDTA,
50 mM HEPES pH 7.9) while rocking for 10 min and neutralized
by adding glycine (125 mM). Samples were centrifuged at
3500 rpm for 5 min at 4◦C, washed with PBS (containing 1 mM
PMSF), and pellets were stored at −80◦C or lysed immediately.
All remaining buffers contain protease inhibitors (Roche Cat.
04693132001). To release nuclei cell pellets were resuspended in
PBS/PMSF containing 0.5% Igepal and washed with cold ChIP-
Buffer 1 (0.25% Triton-X100, 10 mM EDTA, 0.5 mM EGTA,
10 mM HEPES pH 6.5) and rotated for 10 min at 4◦C followed
by centrifugation at 1200 rpm for 5 min at 4◦C and washing with
ChIP-Buffer 2 (200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA,
10 mM HEPES pH 6.5) while rotating at room temperature. Cells
were collected via centrifugation and incubated in ChIP lysis
buffer (0.5% SDS, 5 mM EDTA, 25 mM Tris–HCl pH 8) for 15–
20 min at room temperature to lyse nuclei. Lysates were sonicated
to approximately 200–500 bp length fragments using a Bioruptor
(Diagenode, model XL). Fragment lengths of chromatin were
confirmed using the Standard Sensitivity NGS Fragment Analysis
Kit (DNF-473-0500, Agilent formerly AATI) on a 12-Capillary
Fragment Analyzer and quantified using Quant-it dsDNA assay
kit (Cat. Q33120). An input of 100 µg of sonicated chromatin
was used for each experiment, and 1 ug was saved as input
chromatin. Samples were diluted 5-fold with ChIP-dilution
buffer (1% Triton-X100, 2 mM EDTA, 150 mM NaCl, 20 mM
Tris–HCl pH 8) and immunoprecipitation was performed
overnight at 4◦C with 10 µg of Nkx6-1 antibody (F55410,
DSHB) and mouse IgG (Santa Cruz Biotechnology, sc-2025)
while rotating. Samples were then incubated with Dynabeads
(Invitrogen) for 6 h and purified through a series of washes with
TSE1 buffer (0.1% SDS, 1% Triton-X100, 2 mM EDTA, 20 mM
Tris–HCl pH 8, 150 mM NaCl), TSE2 buffer (0.1% SDS, 1%
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Triton-X100, 2 mM EDTA, 20 mM Tris–HCl, 500 mM NaCl),
LiCl buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate,
1 mM EDTA, 10 mM Tris–HCl, pH 8) and TE buffer (10 mM
Tris–HCl pH 8, 1 mM EDTA). Samples with beads were then
incubated at 65◦C for 20 min in ChIP Elution buffer (1% SDS,
0.1 M NaHCO3). ChIP samples and input control were incubated
at 55◦C with proteinase K (0.2 mg/ml) and NaCl (125 mM)
for 3 h followed by overnight incubation at 65◦C to reverse
crosslinking. Immunoprecipitated DNA was purified using the
Qiagen PCR purification kit and analyzed using primers specific
to the Hoxc4 and Hoxb3 promoters (Hoxc4 -forward: 5′-GGC
CAAGAGGGTTGG, reverse: 5′-GCAGTCTGTGTAGGTCA
CAG, Hoxb3-forward: 5′-GCCATTCTGTGTAGACAAGAGC,
reverse: 5′-CGGAGAGACGGCTAACAC).

RESULTS

Astrocytes Display Brain Region-Specific
Gene Expression Signatures
Aldh1l1 is a validated marker of astrocytes (Anthony and
Heintz, 2007; Cahoy et al., 2008) and Aldh1l1-eGFP mice have
been generated as a tool that broadly, yet specifically, labels
astrocytes throughout the brain (Figures 1A–E). To query region
specific gene signatures from astrocytes, Aldh1l1-eGFP mice
were used to FACS isolate astrocytes from four brain regions
(olfactory bulb, hippocampus, cortex, and brainstem) for mRNA-
Seq analysis (Figure 1F). We performed whole transcriptome
RNA-Sequencing, and to verify that the resultant molecular
profiles reflect astrocyte-specific signatures, we compared our
data set with existing gene signatures linked to neurons and
astrocytes (Lin et al., 2017), finding that our astrocyte expression
profiles are consistent with astrocytic-signatures (Figure 1G
and Supplementary Datasheet 1). To further confirm that
these cells exhibit molecular features exclusive to astrocytes,
we examined expression of established markers of astrocytes,
neurons, oligodendrocytes, and microglia from our sequencing
data (Figure 1H). Together, these data indicate that we have
successfully isolated Aldh1l1-eGFP astrocytes and profiled their
transcriptomes from distinct brain regions.

To evaluate the regional diversity of these astrocyte
populations, we probed the transcriptome of the four brain
regions using various bioinformatics approaches. First, we used
principal component analysis (PCA) as an unbiased approach
to analyze global gene expression patterns in each region.
The PCA revealed distinct gene expression patterns that were
unique for each region (Figure 2A). The olfactory bulb (OB)
and brainstem (BS) displayed the greatest expression pattern
variation, suggesting that astrocytes in the OB and BS are
transcriptomically different from astrocytes in other regions.
Additionally, the hippocampus (HC) and cortex (CX) exhibited
only 19% variability, indicating that astrocytes in the HC and
CX share the most similar molecular expression patterns.
A similar relationship was also observed between cortical and
hippocampal samples in the study from Morel et al., 2017. These
results indicate that our independently derived datasets are

consistent with previous studies and further support the notion
that astrocytes maintain region specific molecular signatures.

Next, we sought to identify region-specific gene signatures.
Toward this, we performed differential gene expression analysis
by comparing one region to all three other regions to
determine region-specific differentially expressed genes (DEGs).
The identified DEGs are unique to the region of interest, such
that a DEG is significantly up or down regulated only in the
respective region when compared to all other regions and exhibits
a fold change >1.5 at p < 0.01. We found 1360 DEGs in the
OB, 398 DEGs in the HC, 505 DEGs in the CX, and 1292 DEGs
in the BS (Supplementary Table 1). Visualized in Figures 2B–E
we show the expression of each set of DEGs across regions to
highlight the enrichment of these DEGs in their respective region.
This transcriptome analysis supports observations from the PCA,
showing that astrocytes in each of the four regions demonstrate
unique, region-specific expression profiles and that the OB and
BS are more molecularly distinct than astrocytes from other brain
regions. Interestingly, the HC displayed fewer DEGs than any
other region, and of those DEGs only 15% were upregulated,
while >80% of hippocampal DEGs are downregulated compared
to other regions.

Finally, to gain insight into the cellular pathways regulated
by these DEGs, we performed gene ontology (GO) analysis on
the DEGs from each brain region (Figure 2F). We found that
DEGs from each region are involved in an array of diverse
biological processes. For instance, the HC DEGs were enriched
for ligand-gated cation channel activity, while the DEGs from the
OB were associated with cell-cell junction assembly and adhesion.
Critically, we also found some enriched biological processes that
are conserved across regions including synaptic transmission and
glutamate receptor activity. These results indicate that astrocytes
from these distinct brain regions exhibit two broad layers of
molecular features: conserved and unique.

Region-Specific Gene Signatures Display
Universal Transcription Factor
Expression
To investigate how transcriptional regulation maintains
conserved gene ontologies across the brain, we pooled all region-
specific DEGs, hypothesizing that since these distinct DEGs are
associated with some functionally redundant gene ontologies
across the brain, they are likely to be regulated by universally
conserved transcription factors. We analyzed the pool of 3555
DEGs from all regions for transcription factor motif enrichment,
querying transcription factor binding sites within 2 kb of the 5′
promoter regions of these genes. We found seven transcription
factor motifs (RPM >5) that were significantly enriched in
DEGs from all four brain regions (Figure 3A), and the top three
most significantly enriched motifs were that of Nkx2-2, Maz
and NFI-family members NFIA, NFIB, NFIX (Figures 3B–D).
Interestingly, these transcription factors have previously been
implicated in developmental oligodendrogenesis and gliogenesis
(Deneen et al., 2006; Cai et al., 2010; Liu et al., 2016) but have not
been studied in adult astrocytes. To ensure equal representation
of these transcription factor motifs across DEGs from each
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FIGURE 1 | Isolation and verification of Aldh1l1-eGFP astrocytes from selected regions. (A–E) Validation of Aldh1l1-eGFP cell specificity through
immunofluorescence in, (A) whole brain, (B) olfactory bulb, (C) hippocampus, (D) cortex, and (E) brainstem. (F) Schematic of the approach used to investigate
astrocyte regional diversity in the adult mouse brain. (G) Validation of cell identity through normalized expression of astrocyte and neuron specific genes. (H) Gene
expression levels (in reads per million; RPM) of markers for astrocytes, neurons, oligodendrocytes, and microglia. Scale bar = 100 µm. OB, olfactory bulb; HC,
hippocampus; CX, cortex; BS, brainstem.
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FIGURE 2 | Astrocytes display regionally distinct gene signatures. (A) Principal component analysis plot from RNA-Seq results of four brain regions. (B–E) Heatmap
showing differentially expressed genes from each region (B) OB DEGs; purple, (C) HC DEGs; blue, (D) CX DEGs; green, (E) BS DEGs; red p-value < 0.01 for all
regions. (F) Gene Ontology analysis plot of regional differentially expressed genes.

region we determined how many genes from each regional
signature had an Nkx2-2, Maz, and NFI binding site within 10 kb
of the transcriptional start site. The Nkx2-2 motif was identified
in 67% of DEGs from each region. The Maz motif was most
enriched in the HC DEGs but was still present in 77% of DEGs
from each of the other three regions. The NFI motif was the most
frequently identified of the three transcription factors in all the
regions with its binding sequence appearing in at least 96% of
DEGs from each region (Figure 3E). We also determined GO
categories associated with the genes containing these universally
conserved transcription factor binding sites to gain insight into
the pathways or biological processes through which they may act.
As expected, genes containing these motifs are found in ontology
categories centralized around brain development and astrocyte
function (Figure 3F).

Our in silico analysis suggests that NFI transcription factors
operate in mature astrocytes to regulate the expression of
key genes associated with synaptic physiology. Moreover,
NFI transcription factors exhibit a significantly higher motif
frequency in all regional DEGs; therefore, we set out to validate
expression of the NFI family members in adult astrocytes
from all four regions. Since NFIA is known to be expressed
in adult astrocytes (Laug et al., 2019), we sought to confirm
expression of the other NFI family members: NFIB and NFIX.
Using immunohistochemistry, we found that NFIB and NFIX
co-localize with Aldh1l1-eGFP astrocytes in all four brain regions
(Figure 3G). We find that NFIB and NFIX expression is equally
widespread across all four brain regions and can be found
in approximately 86% of Aldh1l1-eGFP expressing astrocytes
throughout the brain (Figure 3H). Furthermore, consistent with
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FIGURE 3 | Regional gene signatures exhibit universally conserved transcription factor motif enrichment. (A) Significant transcription factor motifs enriched in all
regional DEGs. (B–D) Motif sequence and normalized expression of top 3 most significantly enriched motifs across surveyed brain regions (B) Nkx2-2, (C) Maz,
(D) NFIA/NFIB/NFIX. (E) Frequency of motif occurrence in each region DEGs (F) Statistically significant Gene Ontologies associated with each transcription factor.
p-value < 0.05. (G) Representative images of immunofluorescence staining of Aldh1l1-eGFP (green) and NFIB or NFIX (red). Yellow arrows indicate double positive
cells. (H) Quantification of immunofluorescence staining. n = 3 scale bar = 50 µm.
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previous findings (Chen et al., 2017), we also observed expression
of NFIB and NFIX in neurons, though not to the same extent as
their astrocytic expression. Taken together, these analyses suggest
the presence of conserved transcription factor programs across
diverse brain regions that function to maintain expression of
genes that regulate core astrocytic functions.

Astrocytes Exhibit Region-Specific
Transcription Factor Signatures
Thus far, our observations indicate the existence of transcription
factors that are universally expressed in nearly all adult
astrocytes, across a host of diverse brain regions. Given that
transcription factor patterning has been shown to define distinct
regional expression profiles in the spinal cord (Liu et al., 2003;
Hochstim et al., 2008) and because our cross-region comparisons
identified unique molecular profiles for each brain region
(Figures 2B–E), we next sought to determine whether astrocytes
from these distinct regions also exhibit unique transcription

factor expression profiles. Toward this, we first analyzed the
DEGs from each region individually for transcription factor motif
enrichment. After compiling a list of known motif sequences
enriched in each region, we filtered the list so that only
significantly upregulated transcription factors were considered
to determine which, if any, were enriched in only one region
(Figure 4A). Using a fold change threshold of 2 at p < 0.01 we
were able to identify uniquely enriched transcription factors in
the OB, CX, and BS (Figures 4B–E). The HC did not show any
significant transcription factor enrichment owing to the fact that
it did not exhibit a robust DEG profile (Figure 4C). In the OB and
BS, several transcription factors were significantly upregulated,
but only the most highly upregulated transcription factor was
used for downstream networking analysis and validation. We
found Nkx3-1 in the OB (Figure 4B) and Nkx6-1 in the BS
(Figure 4E), both of which were almost exclusively expressed
in the region of interest. In the CX, we found that Pgr was
detectable in all four regions but was expressed more than
4-fold in the CX compared to other regions (Figure 4D). These

FIGURE 4 | Transcription factor motif enrichment is regionally distinct. (A) Schematic of bioinformatic approach to identify region-specific transcription factors.
(B–E) Volcano plot showing significance versus log2 fold change. Transcription factor motifs enriched in each region’s DEGs colored. Most upregulated statistically
significant transcription factor motif sequence and normalized expression shown. (B) Nkx3-1 in OB, (C) Stat4 in HC, (D) Pgr in CX, (E) Nkx6-1 in BS. p-value < 0.01.
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results suggest that astrocytes exhibit region-specific expression
of transcription factors.

Next, we sought to validate our bioinformatics analyses
by performing immunolabeling with antibodies to candidate
transcription factors on brains from 16-week old Aldh1l1-eGFP
mice. We found that the CX-specific transcription factor, Pgr,
was expressed in neurons throughout the brain. However, Pgr
co-localized with 51% (Figure 5Q) of Aldh1l1-eGFP expressing

astrocytes only in the CX (Figures 5A–H), supporting our
hypothesis that Pgr may regulate astrocytic molecular profiles in
the CX. Antibody staining of Nkx6-1 revealed that it is expressed
exclusively in the BS, where it co-localizes with 74% of Aldh1l1-
eGFP astrocytes (Figures 5I–P,R). Interestingly, not all astrocytes
expressed Pgr or Nkx6-1 in their respective regions, likely due
to additional layers of local diversity (Lin et al., 2017). These
results, in conjunction with our validation studies on NFI-family

FIGURE 5 | Transcription factors are regionally specific in vivo. (A–H) Representative images of Immunofluorescence staining of Pgr (red) in the (A) OB, (B) HC,
(C) CX, and (D) BS. (I–P) Antibody staining of Nkx6-1 (red) in the (I) OB, (J) HC, (K) CX, and (L) BS. (E–H) and (M–P) are the same panels as in (A–D) and (I–L),
respectively, but include Aldh1l1-eGFP expression (green). Yellow arrows indicate double positive cells. (Q–R) Quantification of immunofluorescence staining. (Q) Pgr
and (R) Nkx6-1. n = 4 Scale bar = 50 µm.
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members, indicate that astrocytes exhibit both universal and
region-specific transcription factor expression profiles.

Predicted Targets of Regional
Transcription Factors
It has been suggested that astrocytes maintain regional
heterogeneity to afford them specialized functions for interacting
with neurons in their specific regional circuitry units (Chung
et al., 2015; Hasel et al., 2017). Region-specific transcription
factor profiles may be a means to orchestrate these specialized
profiles, therefore, we set out to investigate the region-specific
transcriptional networks controlled by the above-mentioned
transcription factors. Toward this, we sought to identify potential
targets of the region-specific transcription factors identified
above. First, we further curated the region-specific signatures,
focusing on the location of the region-specific transcription factor
motif sequence using HOMER, and relative expression of a given

DEG (Figure 6A). A gene was considered a target if it had an
instance of the motif sequence within 2 kb of the transcription
start site and was significantly upregulated by at least a 2.5-fold at
p < 0.01. Using this approach, we identified 66 predicted targets
of Nkx3-1 in the OB, 45 for Nkx6-1 in the BS, and only 5 for Pgr
in the CX. As there were no significantly enriched transcription
factors identified in the HC it was not considered in subsequent
analysis. The log2 transformed RPM of each transcription factor’s
targets are visualized in a heatmap (Figure 6B).

Next, to determine what biological pathways these potential
targets were associated with we performed GO analysis
(Figure 6C). Targets of each transcription factor were associated
with distinct GO categories such as sensory perception of smell in
the OB and pattern specification process in the BS. To determine
if these regional transcription factors are actively regulating
potential targets, we chose the top 3 most likely candidates from
each region shown in Figure 6D. Since Nkx6-1 showed the
most specific expression pattern in mouse brain (Figures 5L,P),

FIGURE 6 | Transcriptional regulatory network profiling. (A) Schematic of methodology for predicting transcription factor targets. (B) Heatmap showing log2
transformed expression of potential transcription factor targets. (C) Gene ontology analysis of predicted targets. (D) Circos plot to visualize top predicted targets by
transcription factor, line width represents fold change. (E) ChIP-PCR Schematic and ChIP-PCR result of Nkx6-1 binding at Hoxc4 and Hoxb3 promoters in the
brainstem.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2020 | Volume 14 | Article 61104

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00061 February 19, 2020 Time: 17:13 # 11

Lozzi et al. Astrocyte Transcription Factors

we sought to validate the top targets of Nkx6-1 in the BS by
ChIP-PCR. Among the top 3 most likely candidates, Hoxc4
and Hoxb3 were found to have a Nkx6-1 binding motif at
their proximal promoters. We collected the BS from 16-week
old mice, performed chromatin immunoprecipitation (ChIP)
with Nkx6-1, and PCR amplified regions with the Nkx6-1
motif (Figure 6E). We confirmed binding of Nkx6-1 at the
promoters of Hoxc4 and Hoxb3 in the adult BS (Figure 6E).
Taken together, these data provide additional support that our
bioinformatic pipeline can identify region-specific transcription
factors that are active in manipulating the regional molecular
landscape of astrocytes.

DISCUSSION

A Bioinformatic Approach to Study
Astrocyte Heterogeneity
The molecular heterogeneity of astrocytes across diverse brain
regions has been profiled extensively in recent years, but a
clear understanding of the mechanisms that give rise to their
vast diversity has long eluded us. In the present study we
hypothesized that differential expression of transcription factors
controls the region-specific molecular signatures observed in
astrocytes across the brain. To test this, we analyzed the
astrocyte transcriptomes across four brain regions to first
establish DEGs in each region of interest that constitute region-
specific gene signatures. Further analysis of region-specific
DEGs revealed functionally redundant gene ontologies are
associated with the unique gene profiles from each region.
Together, these observations suggest that core astrocyte functions
are achieved through distinct molecular mechanisms. This
prompted us to search these signatures for transcription
factors whose expression is conserved across all region-specific
DEGs, as these transcription factors may regulate functionally
redundant gene ontology pathways. Critically, we find the
motif sequence of the NFI family of transcription factors
enriched in DEGs and ubiquitous expression of NFIB/NFIX in
astrocytes from all four regions (Figure 3). Finally, we identified
transcription factors in the OB, CX, and BS whose expression
is enriched in only the region of interest to regulate region-
specific pathways in astrocytes. These results present a new
bioinformatic approach to study astrocyte diversity through
the lens of transcription factors and the essential regulatory
mechanisms they offer.

Unique and Conserved Transcription
Factors Regulate the Astrocyte
Transcriptome
Transcriptomic analyses have indeed revealed unique region-
specific astrocyte signatures that translate to spatially distinct
functional differences (Chai et al., 2017; Morel et al., 2017).
However, an important question remains regarding how
regionally distinct astrocytes in the brain are endowed
with these unique molecular and functional features. One
explanation is that a homogenous population of astrocytes

migrate throughout the brain during development, and
after reaching their final location they develop region-
specific molecular and function distinctions. Toward this,
it has been suggested that astrocytes undergo molecular
reorganization upon terminal migration to become specialized
for interacting with neighboring neurons in their specific
region (Molofsky et al., 2014; Chai et al., 2017). Indeed,
studies have shown that astrocytes from different regions
uniquely modify their molecular signatures upon loss of
neuronal glutamatergic signaling (Morel et al., 2014) or
activation of sonic hedgehog signaling from neighboring
neurons (Farmer et al., 2016).

Another possibility is that these diverse features of astrocytes
are developmentally pre-ordained, where molecularly distinct
subpopulations of astrocytes are specified, and each subtype
migrates to different locations where they maintain region-
specific heterogeneity into adulthood. In support of this
mechanism, it has been shown that astrocyte spatial identity
(Tsai et al., 2012) and heterogeneity (Morel et al., 2017) is
intrinsically defined by early embryonic dorsoventral axis
patterning. Additionally, a combinatorial code involving
differential expression of transcription factors during
development was shown to specify astrocyte positional
identity which results in distinct populations of astrocytes
in the spinal cord (Hochstim et al., 2008). Whether astrocyte
heterogeneity is specified in conjunction with developmental
patterning or cultivated later according to regional circuitry
requirements remains to be determined, but undoubtably
transcriptional regulation plays a role in the complex quandary
of astrocyte diversity.

Here, we ask if a transcription factor code can be defined
for maintaining regionally distinct astrocyte populations. By
interrogating region-specific DEGs our analysis revealed Nkx2-2,
Maz and NFI family members as transcription factors that
are universally conserved across the brain and regulate
functionally redundant gene ontologies. Nkx2-2 is known to
repress neurogenesis to promote oligodendrocyte precursor
cell differentiation (Zhou et al., 2001). Nkx2-2 does not co-
localize with the astrocytic marker GFAP (Qi et al., 2001), and
enrichment of the its motif in adult astrocytes suggests that it
likely represses these astrocytic genes during oligodendrocyte
development. The second conserved regulator, Maz, has been
shown to stimulate gliogenesis in vitro by regulating Notch
signaling (Liu et al., 2016). Here, we chose to focus on
the third regulator, the NFI family of transcription factors
because its conserved motif sequence occurs most frequently
in all regional gene profiles. Previously, NFIA and NFIB have
been shown as necessary and sufficient to initiate gliogenesis
(Deneen et al., 2006). Less is known about the role of NFIX
in glia, although it has been suggested that NFIB can activate
NFIX after the gliogenic switch to regulate terminal glial
differentiation in the spinal cord (Matuzelski et al., 2017).
Despite being characterized during developmental gliogenesis
we find expression of all NFI family members in adult
astrocytes. These data suggest a continued importance of
gliogenic fate determinants in adult astrocytes, and it warrants
further investigation.
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Additionally, our data suggests that Nkx3-1, Pgr, and Nkx6-
1 may act as region-specific transcription factors to regulate
the unique molecular profiles observed in astrocytes across
regions. The HC had the fewest DEGs compared to the
other regions, making it more difficult to identify enriched
transcription factors. However, the identification of region-
specific transcription factors in the OB, CX, and BS suggests
that the unique molecular signatures identified in each region
may be maintained by Nkx3-1, Pgr, and Nkx6-1, respectively.
Nkx3-1 expression was reported in the OB, but it has not
been studied in astrocyte function or maintenance (Tanaka
et al., 1999). Previous studies have shown that Pgr regulates
Nrg1 to modulate synaptic activity and synaptogenesis in
astrocytes (Lacroix-Fralish et al., 2006). It is widely accepted
that Nkx6-1 is involved in specification (Zhao et al., 2014),
patterning (Liu et al., 2003) and astrocyte positional identity
(Hochstim et al., 2008) in the developing spinal cord. A role
for Nkx6-1 in development has been well defined, but it
has not been studied in adult astrocytes. Thus, we further
validated the expression of Pgr and Nkx6-1 in vivo and
found that Pgr is expressed in neurons throughout the
brain, but colocalizes with astrocytes only in the cortex while
Nkx6-1 expression is exclusive to the BS where it labels
most astrocytes. These data supported our hypothesis that
astrocyte regional heterogeneity is maintained by region-specific
transcription factors. Furthermore, the region-specific expression
of a developmental patterning factor suggests astrocyte diversity
may be intrinsically specified during development and it merits
investigation in future studies.

The Transcriptional Networks That
Modulate Astrocyte Diversity
While understanding how astrocyte diversity is specified and
maintained is important it is also critical to determine why
they display such broad diversity. One likely explanation is
that astrocyte diversity enables specialized interactions between
astrocytes and the neuronal circuits of their spatial domain (Tsai
et al., 2012). Indeed, when comparing astrocyte involvement in
neural circuits from the hippocampus and striatum differences
were observed between the two regions in potassium buffering,
glutamate recycling, and calcium signaling, among others
(Chai et al., 2017). These data highlight the importance
of defining the transcriptional networks regulated by region
specific transcription factors and translating molecular data into
functional profiles of astrocyte heterogeneity.

To investigate the regulatory networks that may be controlled
by these region-specific transcription factors we determined
which genes they are regulating by predicted targets of Nkx3-
1, Pgr, and Nkx6-1 in their respective brain regions. Nkx3-
1 and Nkx6-1 had the largest number of potential targets
and because Nkx6-1 showed the most exclusive region-specific
expression in the BS, we confirmed direct regulation of one
of its targets, Hoxc4 and Hoxb3, using ChIP-PCR. It is well
documented that Hox genes follow distinct regional expression
patterns and have been implicated in dorso-ventral patterning
of the spinal cord and hindbrain (Gaufo et al., 2004; Di Bonito

et al., 2013a). The role of Hox genes in the adult brain is not
well understood, although studies show their expression can be
detected in various regions throughout the adult brain (Hutlet
et al., 2016). Given the specific expression patterns of Hox genes
observed both during development (Di Bonito et al., 2013b) and
in adulthood (Hutlet et al., 2016) these targets of Nkx6-1 hint at
multilayered transcription factor regulation to control regional
astrocyte diversity.

Our discovery of Nkx6-1 as a region-specific transcription
factor in the adult brain, coupled with its established role
in developmental patterning of astrocytes in the spinal
cord, suggests that astrocytes in the brain are also subject
to transcriptionally regulated patterning. These prospective
patterning mechanisms could contribute to molecularly and
functionally diverse populations of astrocytes throughout the
brain. In summary, our study not only provides evidence
of a region-specific transcription factor code through the
identification of Nkx6-1, but also opens the door to identifying
and characterizing astrocytic patterning transcription factors in
the brain. In addition, our study defines a new approach to study
astrocyte diversity by interrogating transcription factor profiles
to provide insights into region-specific gene regulatory networks
across the brain.
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Vinpocetine (Vinp) is known for its neuroprotective properties. However, the protective
mechanism of Vinp against cerebral ischemia/reperfusion (I/R) injury should be further
explored. This study was designed to investigate the neuroprotective effects of Vinp
against oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro and cerebral
I/R injury in vivo and explore whether this mechanism would involve enhancement of
astrocytic connexin 43 (Cx43) expression via the phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT) pathway. In vitro, we detected astrocytic viability and extracellular
nitric oxide by an assay kit, intracellular reactive oxygen species by a DCFH-DA probe,
inflammation and apoptosis-related protein expression by immunofluorescence staining,
and the astrocytic apoptosis rate by flow cytometry. In vivo, we measured the cerebral
infarction volume, superoxide dismutase activity, malondialdehyde content, and the
expression of inflammation and apoptosis-related proteins. The results indicated that
Vinp ameliorated the detrimental outcome of I/R injury. Vinp attenuated astrocytic injury
induced by OGD/R and reduced cerebral infarction volume and cerebral edema in rats
with cerebral I/R injury. Moreover, Vinp reduced oxidative stress, inflammation, and
apoptosis induced by cerebral I/R injury in brain tissues. Meanwhile, Vinp increased
p-Cx43 and p-AKT expression, and the p-Cx43/Cx43 and p-AKT/AKT ratio, which
was decreased by cerebral I/R injury. Coadministration of PI3K inhibitors LY294002 and
BKM120 blunted the effects of Vinp. This study suggests that Vinp protects against
cerebral I/R injury via Cx43 phosphorylation by activating the PI3K/AKT pathway.

Keywords: stroke, cerebral ischemia/reperfusion, oxygen-glucose deprivation/reoxygenation, vinpocetine,
astrocyte, connexin 43, PI3K/AKT
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INTRODUCTION

Ischemic stroke has high morbidity and mortality and seriously
affects patient quality of life (Ribeiro et al., 2015). Timely
recovery of blood and oxygen supply to the ischemic brain
tissue is essential for ischemic penumbra survival. Thrombolytic
therapy is the best treatment option for ischemic stroke
(Sheth et al., 2015). However, reperfusion aggravates the
damage and provokes dysfunction through a cascade of
events such as calcium overload, excitotoxicity, oxidative stress,
inflammatory responses, and apoptosis, which are collectively
termed “ischemia-reperfusion injury” (I/R injury) (Dirnagl et al.,
1999). Therefore, effectively blocking the cascade of cerebral I/R
injury and exploring effective drugs for the treatment of ischemic
stroke are very important.

Astrocytes are abundant in the central nervous system, and
they play essential roles in maintaining brain function under
physiologic conditions and in influencing neuronal survival
under pathologic conditions, such as cerebral I/R injury and other
brain insults (Garman, 2011; Falkowska et al., 2015; Verkhratsky
et al., 2017). During ischemic stroke, astrocytes may be activated
and produce and release reactive oxygen species (ROS), pro-
inflammatory cytokines, and other factors that may negatively
influence the survival of neurons in the penumbra (Swanson
et al., 2004). Thus, preventing astrocytic inflammatory and
apoptotic effects may be a promising strategy for neuroprotection
in ischemic stroke (Cekanaviciute and Buckwalter, 2016;
Choudhury and Ding, 2016; Liu and Chopp, 2016).

The PI3K/AKT signaling pathway regulates a wide range of
cellular functions, including cellular differentiation, proliferation,
inflammation, and apoptosis (Cantley, 2002). Studies have
shown that phosphorylation of AKT (Ser473) reduces neuronal
apoptosis caused by cerebral I/R injury (Fukunaga and Kawano,
2003; Zhao et al., 2006), and LY294002-mediated inhibition of
the PI3K/AKT pathway blocked the cardioprotective effect of
atorvastatin against I/R injury in cardiocytes by downregulating
Connexin 43 (Cx43) (Bian et al., 2015). Moreover, activated AKT
can phosphorylate the C-terminal Ser373 residue of Cx43 (Solan
and Lampe, 2014). Since Cx43 is the most commonly expressed
gap junction protein in astrocytes (Orellana et al., 2011), and
increased Cx43 expression can reduce neuronal damage after
cerebral I/R (Nakase et al., 2003), we speculate that Cx43 is
involved in the PI3K/AKT pathway’s protective effects against
cerebral I/R injury.

Vinpocetine (Vinp) is a semi-synthetic alkaloid derivative
isolated from the leaves of Phyllostachys pubescens. Its anti-
inflammatory and anti-platelet aggregation effects on improving
cerebral blood flow, brain metabolism, and cognition have been
confirmed by various studies (Zhang et al., 2018; Zhang et al.,
2018). Vinp has been widely used in the treatment of stroke,
cerebral arteriosclerosis, and chronic cerebral insufficiency, and
it exhibits unique advantages in the treatment of dementia and
epilepsy. A previous study showed that Vinp similarly decreased
the inflammatory response by inhibiting NF-κB and TNF-α
expression after cerebral I/R injury (Wang et al., 2014); however,
its specific mechanism remains unknown. Cerebral I/R injury
can activate both astrocytes and microglia, which may produce

inflammatory cytokines and other toxic mediators (Kim et al.,
2016; Duris et al., 2018). Microglial TLR4/MyD88/NF-κB has
been shown to be one of the mechanisms by which Vinp
protects against cerebral I/R injury (Wu et al., 2017). However,
so far, no study has focused on whether Vinp’s protective
effects against cerebral I/R injury is related to astrocytes. Hence,
we hypothesized that Vinp may affect astrocytic Cx43 via the
PI3K/AKT pathway and thereby provide neuroprotection.

In this study, we explored the neuroprotective roles of
vinpocetine against oxygen-glucose deprivation/reoxygenation
(OGD/R) injury in vitro and cerebral I/R injury in vivo
and explore whether this mechanism would involve
enhancement of astrocytic connexin 43 (Cx43) expression
via the phosphatidylinositol 3-kinase/protein kinase B
(PI3K/AKT) pathway.

MATERIALS AND METHODS

Animal Care
The experiments adhered to the ethical standards of the
Institutional Animal Care Committee and were approved by
the Animals Ethics Committee of Jilin University. Male Wistar
rats (250–280 g) and newborn rats were obtained from the
Experimental Animal Center of Jilin University. Animals were
maintained in a specific pathogen-free animal breeding room at
24◦C under a 12 h day/night cycle with free access to water and
food. All possible measures were taken to avoid animals suffering
at each stage of the experiment.

Primary Rat Astrocytic Culture
Astrocytes were obtained from the cerebral cortex of newborn
rats as previously described (Schildge et al., 2013). Newborn
Wistar rats were decapitated, and the cerebral cortices were
isolated in cold Dulbecco’s Modified Eagle Media: Nutrient
Mixture F-12 (DMEM/F12) medium. Then, the meninges were
carefully removed, and the tissues were treated with 0.125%
trypsin solution for 15 min at 37◦C. DMEM/F12 containing
10% fetal bovine serum (FBS) was added, and the mixture
was centrifuged at 1300 rpm for 5 min. The sediment was
resuspended with DMEM/F12 containing 10% FBS. At a
concentration of 105/ml, cells were planted onto 75 cm2

flasks in 15 ml DMEM/F12 containing 10% FBS and 1%
penicillin/streptomycin and placed in an incubator (Thermo
Scientific, Waltham, MA, United States) at 37◦C with 95% air
and 5% CO2. After 24 h, the medium was changed in the
flasks, and then half of the medium was changed every 3 days.
After approximately 12 days, the astrocytic cultures reached
confluency. Oligodendrocytes and microglia were deprived from
astrocytic cultures by shaking on an orbital shaker for 6 h at 37◦C
(Schildge et al., 2013). The astrocytic cultures were treated with
0.25% trypsin solution for 3 min at 37◦C. Then, the cells were
harvested, and they were adjusted to a density of 2× 105 cells/ml
and planted on flasks. The third generation of primary cultured
astrocytes were used in our study. The purity of astrocytes was
higher than 95%, as confirmed by immunofluorescence staining
with a specific marker, the glial fibrillary acidic protein (GFAP)
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(ab7260, Abcam, United States). A representative result is shown
in Supplementary Figure S1A.

Oxygen-Glucose
Deprivation/Reoxygenation (OGD/R)
in vitro Model
As described previously (Ferrer-Acosta et al., 2017), oxygen-
glucose deprivation/reoxygenation (OGD/R) is a classic in vitro
model of I/R injury. Briefly, astrocytes were washed three times
with glucose-free DMEM and cultured in the same medium in
a hypoxia chamber with a mixture of 95% N2 and 5% CO2
for 12 h. Then, the astrocytes were cultured in normal DMEM
medium and re-oxygenated under normoxic conditions (95% air,
5% CO2) for 6 h.

The astrocytic cultures were divided into five groups: (1)
a control group, stimulated with DMSO; (2) an OGD/R
group, stimulated with DMSO during OGD/R injury; (3)
an OGD/R + Vinp group, stimulated with Vinp (30 µM)
(Gedeon Richter Pharmaceutical Co., Ltd., Budapest, Hungary)
during OGD/R injury; and (4) an OGD/R + Vinp + LY
group, stimulated with LY294002 (20 µM) (ab120243, Abcam,
Cambridge, MA, United States) and Vinp during OGD/R injury;
(5) OGD/R + Vinp + BKM group, stimulated with BKM120
(2 µM) (S2247, Selleck, Houston, TX, United States). LY and
Vinp were dissolved in DMSO at a final concentration of 100 mM
(Hong et al., 2013; Takac et al., 2013; Nivison-Smith et al.,
2015), and BKM was dissolved in DMSO at a final concentration
of 10 mM. As described above, all groups were stimulated
with the same volume of DMSO, and for the control group
0.33% DMSO proved to have no obvious toxicity on astrocytes
(Supplementary Figure S1B).

Cell Viability and Cytotoxicity Assay
Commercial cell counting Kit-8 (CCK-8) (Do-jindo, Kumamoto,
Japan) was used to detect cell viability (Ishiyama et al., 1997).
Primary astrocytes cultured to the third generation were seeded
in 96-well plates at a density of 104/well. The 96-well plates were
placed in a cell culture incubator for 24 h before being subjected
to OGD/R. Thereafter, 10 µL CCK-8 reagent was added to each
well. The 96-well plates were then placed in the cell culture
incubator for 2 h, and the absorbance at 450 nm was measured
by a microplate reader (Multiskan, Thermo Scientific, Waltham,
MA, United States).

Cytotoxicity was determined by measuring the lactate
dehydrogenase (LDH) of the cell culture supernatant using the
Cytotoxicity Detection Kit (C0016, Beyotime, Shanghai, China)
according to the manufacturer’s instructions (Lobner, 2000).
Briefly, the sample maximum enzyme activity control wells were
set according to the instructions. Astrocytic supernatants from
each group were centrifuged. In each well of the 96-well plate
was added 120 µL supernatant and 60 µL reagent. Then, the
96-well plate was incubated at room temperature for 30 min
in the dark, and the absorbance at 490 nm was measured
by a microplate reader. Experiments were repeated five times,
and each experiment contained five duplicate wells for each
astrocyte group.

Detection of Intracellular ROS and
Extracellular NO
The ROS Assay kit (S0033, Beyotime) was used to detect ROS in
astrocytes (Eruslanov and Kusmartsev, 2010). Briefly, astrocytes
were seeded at a density of 104 cells/well in 96-well plates. After
exposure to OGD/R injury, 10 µM of DCFH-DA in serum-free
DMEM medium was added to each well. After incubation for
30 min in the cell culture incubator, each well was washed three
times with serum-free DMEM and examined by a microplate
reader using excitation/emission wavelengths of 488/525 nm.

Astrocytic Nitric oxide (NO) release was detected using the
NO Assay Kit (S0021, Beyotime) (Weissman and Gross, 2001).
Astrocytes were seeded in 96-well plates. A total of 50 µL/well of
Griess Reagent I and 50 µL/well of Griess Reagent II were added
into each well immediately after the astrocytes were exposed to
OGD/R injury. The standard curve was constructed according to
the instructions. The absorbance at 540 nm was measured by a
microplate reader.

Astrocytic Immunofluorescence Analysis
Astrocytes were fixed with 4% paraformaldehyde at room
temperature for 30 min and washed three times with PBS. After
permeabilization with 0.2% Triton X-100 for 10 min and blocking
with 10% goat serum in PBS for 1 h, the cells were incubated with
rabbit anti-IL-1β (ab9722, Abcam; 1: 100), anti-TNF-α (ab66579,
Abcam; 1: 100), anti-Bcl-2 (ab194583, Abcam; 1: 50), and anti-
caspase-3 antibodies (ab13847, Abcam; 1:50) overnight at 4◦C,
followed by incubation with goat anti-rabbit IgG Fc (Alexa Fluor
647, ab150091, Abcam; 1:200) for 2 h at 25◦C. The cells were
then incubated with DAPI for 5 min and examined under a
fluorescence microscope (OLYMPUS BX51, Tokyo, Japan).

Astrocytic Apoptosis Assay
Apoptosis was assessed by flow cytometry using an FITC Annexin
V Apoptosis Detection Kit I (556547, Becton Dickinson, Franklin
Lakes, NJ, United States) according to the manufacturer’s
instructions (Frey, 1997). Briefly, cells were rinsed with ice-cold
PBS and then resuspended in 100 µL binding buffer (105 cells).
A total of 5 µL Annexin V and 5 µL PI were added to each sample,
and they were incubated for 15 min at 25◦C in the dark. Then,
400 µL binding buffer was added to each tube and cells were
immediately analyzed using a FACSC-LSR (Becton Dickinson)
and evaluated with the Flow Jo 7.6 software.

Middle Cerebral Artery Occlusion
(MCAO) Model and Animal Grouping
The MCAO model, a classic in vivo model of I/R injury, was
prepared as previously described (Longa et al., 1989). Briefly,
Wistar rats were anesthetized with chloral hydrate (350 mg/kg,
i.p.). Then, a midline incision in the neck was made to expose
the left external and internal arteries (ECA and ICA). The ECA
was cut between two ligations, and a 0.26 mm silicone-tipped
filament (2636, Xinlong lnc., Beijing, China) was inserted into the
ICA via the ECA at approximately 20 mm until a resistance was
felt, which ensured the occlusion of the MCA. Then, the suture
was tightened around the ECA stump and the incision was closed.
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After surgery, rats remained in the cage for 2 h. Then, the animals
were anesthetized again, and the filament was removed. During
surgery, the rats’ body temperature was maintained at a normal
level by heating pads. After awakening, the rats were maintained
in cages with free access to food and water for 12 h.

A total of 64 male Wistar rats were randomly divided into
four groups: (1) a sham group: the rats were injected with
0.9% normal saline and were not subjected to MCAO; (2)
an I/R group: the rats were injected with 0.9% normal saline
and subjected to MCAO; (3) a Vinp + I/R group: the rats
were injected with Vinp (10 mg/kg) and subjected to MCAO;
and (4) a Vinp + I/R + LY group: the rats were initially
injected with LY294002 (0.3 mg/kg) and then with Vinp 15 min
later and subjected to MCAO. All injections were administered
intraperitoneally 30 min prior to MCAO.

Neurological Evaluation
Neurological evaluation was performed after 2 h of ischemia and
12 h of perfusion by a researcher blinded to the experimental
groups. Evaluation was performed using a modified form (Longa
et al., 1989) as follows: (0) no deficits; (1) difficulty to fully extend
the contralateral forelimb; (2) inability to extend the contralateral
forelimb; (3) mild circling to the contralateral side; (4) severe
circling; and (5) falling to the contralateral side. Finally, the rats
were anesthetized and decapitated for the brain water content
assay, TTC staining, western blot, immunofluorescence, SOD
activity, and MDA content analyses.

TTC Staining
2,3,5-triphenyltetrazolium chloride (TTC, Sigma, St. Louis, MI,
United States) staining was used to visualize the ischemic
infarction (Bederson et al., 1986). After decapitation, the brains
were sliced into 2 mm sections, and each slice was incubated in
a 2% solution of TTC at room temperature for 20 min and fixed
in 4% paraformaldehyde. The brain sections were photographed
using a high-resolution digital camera (Olympus). The infarct
size was measured using the Image J software (NIH Image,
National Institutes of Health, Bethesda, MD, United States). The
percentage of the infarction size was calculated as described
previously (Jackman et al., 2011).

Brain Water Content Assay
The classic wet-dry method was used to measure brain water
content (Agrawal et al., 1968). Immediately after the rats were
sacrificed, the brains were taken and weighed to obtain the wet
weight. The samples were then dried in an oven at 100◦C for 48 h.
They were then weighed again to obtain the dry weight. Water
content = (wet weight−dry weight)/wet weight× 100%.

Measurement of SOD Activity and MDA
Content
Commercially available detection kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) were used to detect
SOD activity and MDA content according to the manufacturer’s
instructions as previously described (Hou et al., 2016). Briefly,
SOD activity was assessed using the xanthine oxidase method,

and MDA content was measured with the thiobarbituric acid
method. The samples were analyzed with a spectrophotometer
(BioRad, San Diego, CA, United States).

Immunofluorescent Analysis of Brain
Sections
After decapitation, the brains were harvested immediately,
immersed into pre-chilled isopentane (Beijing Chemical Factory,
Beijing, China), and placed inside a −80◦C refrigerator for
10 min for snap-freezing. Then, the brains were embedded in
optimum cutting temperature compound (Sakura Finetek Inc.,
Torance, CA, United States) and stored in the−80◦C refrigerator.
Subsequently, 10-µM section of the brain were obtained using a
cryomicrotome (Leica, Nussloch, Germany). The sections were
fixed with 4% paraformaldehyde at room temperature for 15 min
and washed three times with PBS. After permeabilization with
1% Triton X-100 for 10 min and subsequent blocking with
10% goat serum in PBS for 1 h, the sections were incubated
with mouse anti-GFAP (ab10062, Abcam, 1:500) and rabbit anti-
TNF-α (ab66579, Abcam; 1: 200) overnight at 4◦C, followed by
incubation with Alexa Fluor 647-conjugated goat anti-mouse
IgG (ab150115, Abcam; 1:200) and Alexa Fluor488-conjugated
goat anti-rabbit IgG (ab150077, Abcam; 1:200) for 1 h at 25◦C.
Experimental negative control was a section without any primary
antibody treatment. The slices were then incubated with DAPI
for 5 min and examined under a confocal microscope (Leica TCS
SP5, Nussloch, Germany).

Western Blot Analysis
The western blot analysis was conducted as previously described
(Hou et al., 2016). The cortex in the same set of rats or
the cultured astrocytes was crumbled and homogenized with
ice-cold lysis buffer (RIPA: NaVO3: PMSF: NaF = 92:5:2:1).
Proteins were extracted from the cerebral cortex tissue, and
the protein concentrations were assayed. Each sample (50 µg)
was loaded on a 12% sodium dodecyl sulfate polyacrylamide
gel electrophoresis apparatus and electrophoresis was carried
out until the bromophenol blue dye reached the bottom
of the gel. Then, the proteins were electro-transferred to
polyvinylidene fluoride membranes, and the membranes were
placed in 5% skim milk powder dissolved in TBS with
0.1% Tween-20 for 1 h. The membranes were incubated
with anti-Cx43 (ab11370, Abcam; 1:1000), anti-p-Cx43 (PA5-
37584, Thermo Fisher Scientific; 1:1000), anti-AKT (4691, Cell
Signaling Technology, Danvers, MA, United States; 1:1000),
anti-p-AKT (13038, Cell Signaling Technology; 1:1000), anti-
IL-1β (ab9722, Abcam; 1: 1000), anti-TNF-α (ab66579, Abcam;
1: 1000), anti-IL-10 (ab9969, Abcam; 1:2000), anti-Bcl-2
(ab194583, Abcam; 1:500), anti-caspase-3 (ab13847, Abcam;
1:500), and anti-β-actin (ab13847, Abcam; 1:2000) antibodies
diluted in 5% skim milk powder dissolved in TBST overnight
at 4◦C. The membranes were then washed with PBST and
incubated with a horseradish peroxidase-conjugated secondary
antibody for 1 h. The protein bands were quantified with the
Quantitation One software (Bio-Rad Laboratories, Hercules,
CA, United States).
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Statistical Analysis
All data are presented as the mean ± standard error of the
mean (SEM) from at least three independent experiments using
Graphpad Prism 6 (Inc., San Diego, CA, United States). Analysis
was carried out by one-way analysis of variance (ANOVA)
followed by Tukey’s post hoc tests. ∗P < 0.05, ∗∗P < 0.01 or
∗∗∗P < 0.001 denoted the significance thresholds.

RESULTS

Vinp Increased Astrocytic Viability and
Attenuated Astrocytic Injury Induced by
OGD/R
To investigate the neuroprotective effects of Vinp in primary
cultured astrocytes in vitro, we assessed cell viability in each
group via the CCK-8 assay (Figure 1A). The results showed
that approximately half of the astrocytes survived in OGD/R
group compared with the control group (56.86 ± 2.62%,
P < 0.001). Compared with OGD/R group, viability was
significantly improved in astrocytes treated with OGD/R + Vinp
(78.94 ± 2.78%, P < 0.001). However, this elevation was
reversed in the OGD/R + Vinp + LY group compared with
the OGD/R + Vinp group (61.77 ± 2.09%, P < 0.001).
We also measured astrocytic injury by testing the amount
of LDH released into the supernatant. This test showed that
OGD/R injury significantly increased the release of LDH
compared with that in the control group (35.77 ± 2.60% vs.
8.62 ± 0.75%, P < 0.001). Treatment with OGD/R + Vinp
remarkably decreased the release of LDH compared with
that in the OGD/R group (20.14 ± 1.99%, P < 0.001).
In comparison with OGD/R + Vinp group, coadministration
of LY294002, a PI3K inhibitor, resulted in an apparent
increased release of LDH (38.63 ± 1.81%, P < 0.001). These
findings indicated that Vinp could promote cell survival and
reduce cell damage in astrocytes subjected to OGD/R, and
the inhibition of the PI3K/AKT pathway could abolish the
protection of Vinp.

Vinp Attenuated Oxidative Stress in
Astrocytes Induced by OGD/R Injury
Increased ROS production is considered an initial step in OGD/R
injury (Dirnagl et al., 1999). To examine the effect of Vinp
on OGD/R injury-induced oxidative stress in astrocytes, we
detected intracellular ROS and NO released into the extracellular
supernatant (Figures 1C,D). The results showed that intracellular
ROS and extracellular NO was significantly increased after
OGD/R injury compared with the control group (P < 0.001),
but this elevation was reversed in the OGD/R + Vinp group
compared with the OGD/R group (P < 0.01). Compared
with the OGD/R + Vinp group, intracellular ROS and
extracellular NO in the OGD/R + Vinp + LY group was
markedly increased (P < 0.01). The data revealed that
Vinp decreased oxidative stress in astrocytes induced by
OGD/R injury, which was attenuated by a PI3K/AKT pathway
inhibitor (LY294002).

Vinp Alleviated Inflammatory Cytokine
Expression in Astrocytes After OGD/R
Injury
As previously mentioned, the large amounts of ROS generated
during OGD/R can induce inflammation by activating astrocytes
(Chan, 2001; Duris et al., 2018). To investigate the anti-
inflammatory effects of Vinp, we used immunofluorescence
staining to observe the expression of TNF-α and IL-1β

(Figures 1E,F). OGD/R injury resulted in significant increase in
astrocytic TNF-α and IL-1β expression compared with control
group, and this increase was blocked by treatment with Vinp
during OGD/R injury. Moreover, LY reversed the effect of Vinp
on astrocytes subjected to OGD/R, significantly increasing TNF-
α and IL-1β expression. The results indicated that the PI3K/AKT
pathway is involved in the anti-inflammatory effects of Vinp
against OGD/R injury.

Vinp Altered Apoptosis-Related Protein
Expression and Reduced the Apoptotic
Rate in Astrocytes After OGD/R Injury
As a cascade event, increased ROS may induce excessive
inflammatory responses which could activate pro-apoptotic
pathways (Duris et al., 2018), and therefore we evaluated the
anti-apoptotic effects of Vinp. Annexin V FITC/PI staining and
flow cytometry were used to detect the astrocytic apoptotic rate
(Figure 2A), and immunofluorescence staining was processed to
observe the expression of caspase-3 and Bcl-2 (Figures 2B,C).
We found that OGD/R injury resulted in a significant increase
in astrocytic caspase-3 expression, a significant reduction in Bcl-
2 expression, and an increase in apoptotic rate compared to
the control group (P < 0.001). Compared with the OGD/R
group, caspase-3 expression and astrocytic apoptotic rate
effectively decreased while Bcl-2 expression increased in the
OGD/R + Vinp group (P < 0.001). Furthermore, results showed
LY reversed the effect of Vinp on OGD/R-treated astrocytes,
significantly increasing astrocytic caspase-3 expression, reducing
Bcl-2 expression, and increasing apoptotic rate (P < 0.001). These
results indicated that the PI3K/AKT pathway is involved in the
anti-apoptotic effects of Vinp against OGD/R injury.

Vinp Decreased Brain Water Content and
Infarction Size in Rats After Cerebral I/R
Injury
Next, we prepared the classic MCAO models to evaluate the
early effects of Vinp against cerebral I/R injury in vivo. As
previously described, neurological deficit scores, brain water
content, and infarction size were measured to evaluate the effects
of Vinp against cerebral I/R injury after the rats were subjected
to ischemia for 2 h and reperfusion for 12 h. In the I/R group,
there were obvious symptoms of neurological deficits including
deviation to the right, circling, and inability to fully extend the
right upper limb. Treatment with Vinp did not significantly
reduce the neurological deficit scores (Figure 3A, P = 0.18).
The cerebral infarct size after MCAO is shown in Figures 3B,C.
In the I/R group, significant cerebral infarction was observed
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FIGURE 1 | Effects of Vinp on astrocytic viability, cytotoxicity, oxidative stress, and inflammation after OGD/R. (A) Astrocytic viability calculated as a percentage
relative to the control group (n = 5 in each group). (B) LDH release calculated as a percentage relative to maximum enzyme activity control well (n = 5 in each group).
(C) ROS levels calculated as a percentage relative to the control group (n = 5 in each group). (D) NO released into the supernatant evaluated by NO assay kit (n = 5
in each group). (E) Immunostaining showed the expression of TNF-α in astrocytes after OGD/R. (F) Immunostaining showed the expression of IL-1β in astrocytes
after OGD/R, and the nuclei were counterstained with DAPI (n = 3 in each group). Scale bars = 50 µm. Data are shown as the mean ± SEM. **P < 0.01,
***P < 0.001 using one-way ANOVA followed by Tukey’s post hoc tests. Vinp: Vinpocetine; LY: LY294002; OGD/R: oxygen-glucose deprivation/reoxygenation.
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FIGURE 2 | Effects of Vinp on astrocytic apoptosis after OGD/R. (A) Immunostaining showed the expression of Bcl-2 and caspase-3 in astrocytes after OGD/R.
(B) Immunostaining showed the expression of Bcl-2 and caspase-3 in astrocytes after OGD/R. The nuclei were counterstained with DAPI. Scale bars = 50 µm.
(C) Representative flow cytometry images of apoptosis observed with Annexin V FITC/PI staining. (D) Apoptosis analysis calculated as a percentage relative to total
cells. Data are shown as the mean ± SEM (n = 3 in each group). ***P < 0.001 using one-way ANOVA followed by Tukey’s post hoc tests. Vinp: Vinpocetine; LY:
LY294002; OGD/R: oxygen-glucose deprivation/reoxygenation.

compared with the sham group (32.92 ± 1.63%, P < 0.001),
and this phenotypic alteration was mostly abrogated in the
I/R + Vinp group compared with the I/R group (8.06 ± 1.10%,
P < 0.001). Compared to the I/R + Vinp group, infarct size in the
I/R + Vinp + LY group was significantly enlarged (28.04± 1.05%,
P < 0.001). The results of the water content of brain tissues
were consistent with the trend observed for infarction size
(Figure 3D). The results revealed that Vinp decreased the
infarction size and brain edema, while inhibition of PI3K/AKT
reversed the protection of Vinp.

Vinp Attenuated Oxidative Stress in the
Rat Cerebral Cortex After Cerebral I/R
Injury
We further examined oxidative stress in ischemic cerebral
cortices as the in vitro study, which is considered the initial step
of cerebral I/R injury. SOD activity is an important antioxidant
enzyme, and MDA content reflects oxidative damage (Chan,
2001), therefore, we examined SOD activity and MDA content

(Figures 3E,F). Compared to the sham group, SOD activity
significantly decreased, while MDA content increased in the I/R
group (P < 0.001). Treatment with Vinp effectively increased
SOD activity and decreased MDA content compared with the
I/R group (P < 0.001), whereas LY reversed the effects of
Vinp by decreasing SOD activity and increasing MDA content
compared with the I/R + Vinp group (P < 0.01). The above
findings suggested that Vinp attenuated oxidative stress induced
by cerebral I/R injury, which is related to the PI3K/AKT pathway.

Vinp Reduced Inflammation and
Apoptosis in the Rat Cerebral Cortex
After Cerebral I/R Injury
To validate if the response cascade was caused by cerebral I/R
injury, we examined the inflammation and apoptosis in vivo.
First, we performed immunofluorescent analysis to observe
the reactive astrocytes and inflammatory cytokine by double
immunostaining the brain cryosections with anti-GFAP and
anti-TNF-α antibodies (Figure 4). Cerebral I/R injury resulted
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FIGURE 3 | Effects of Vinp on infarction size, neurological deficits, brain water content, and oxidative stress in rats following MCAO. (A) Neurological deficit analysis
(n = 16 in each group). (B) Brain water content analysis (n = 3 in each group). (C) Representative images of cerebral infarction after ischemia for 2 h and reperfusion
for 12 h in rat brains by TTC staining. (D) Analysis of infarct size calculated as a percent relative to total cerebral volume (n = 3 in each group). (E) Analysis of SOD
activity (n = 5 in each group). (F) Analysis of MDA content (n = 5 in each group). *P < 0.05, **P < 0.01, ***P < 0.001 using one-way ANOVA followed by Tukey’s
post hoc tests. Vinp: Vinpocetine; LY: LY294002; I/R: ischemia/reperfusion; MCAO: middle cerebral artery occlusion; TTC: 2,3,5-triphenyltetrazolium chloride.

in a significant increase in the expression of GFAP and TNF-
α, and the co-localization of GFAP and TNF-α was compared
with that in the sham group. However, this increase was
blocked by Vinp treatment. Furthermore, LY reversed the
effect of Vinp in reactive astrocytes, significantly increasing
the expression of GFAP and TNF-α, and consequently, the
co-localization of GFAP and TNF-α. The results showed that
Vinp treatment significantly decreased cerebral I/R injury-
induced inflammation by reducing astrocyte activation. Then,
western blot analysis was used to detect the expression of
inflammation-associated proteins, IL-1β, TNF-α, and IL-10, and
apoptosis-related proteins, caspase-3 and Bcl-2 (Figures 5A,B).
IL-1β, TNF-α, and caspase-3 expression significantly increased
while Bcl-2 expression significantly decreased in the I/R
group compared with the sham group (P < 0.001). IL-
1β, TNF-α, and caspase-3 expression decreased while IL-10
and Bcl-2 expression increased in the I/R + Vinp group
compared to the I/R group (P < 0.001). Conversely, LY
blocked the above effects of Vinp, significantly increasing IL-
1β, TNF-α, and caspase-3 expression while decreasing IL-
10 and Bcl-2 expression (P < 0.01). Overall, these results
indicated that the PI3K/AKT pathway is involved in the
anti-inflammatory and anti-apoptotic effects of Vinp against
cerebral I/R injury.

Vinp Activated p-Cx43 via the PI3K/AKT
Pathway in the Rat Cerebral Cortex After
Cerebral I/R Injury
In order to explore whether the above protective effects of Vinp
are exerted by targeting Cx43 via the PI3K/AKT pathway, we
examined the expression of Cx43, p-Cx43, AKT, and p-AKT.
Compared to the sham group, I/R injury significantly repressed
the expression of Cx43 and p-Cx43 and the p-Cx43/Cx43 ratio
(Figure 5C, P < 0.01). Interestingly, Vinp could increase Cx43
and p-Cx43 expression and the p-Cx43/Cx43 ratio compared
with the I/R group, indicating the activation of the Cx43
(P < 0.001). However, significant reduction of p-Cx43 expression
and the p-Cx43/Cx43 ratio was observed in the I/R + Vinp + LY
group compared with I/R + Vinp group (P < 0.01). The
expression of p-AKT and the ratio of p-AKT/AKT were similar
to those of p-Cx43 and p-Cx43/Cx43, while the AKT levels did
not significantly differ among the groups (Figure 5D).

Vinp Activated p-Cx43 via the PI3K/AKT
Pathway in Astrocytes After OGD/R
Injury
To further explore whether the abovementioned protective
mechanism of Vinp are exerted by targeting the astrocytes, we
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FIGURE 4 | Effects of Vinp on reactive astrocytes and TNF-α in the rat cerebral cortex after I/R injury. Brain slices were analyzed with double immunostaining using
GFAP (red, a reactive astrocytic marker) and TNF-α (green, a pro-inflammatory cytokine). The nuclei were stained with DAPI (n = 3 in each group). Scale
bars = 50 µm. Vinp: Vinpocetine; LY: LY294002; I/R: ischemia/reperfusion;

examined the expression of Cx43, p-Cx43, AKT, and p-AKT
in vitro astrocyte cultures treated with BKM120 (a specific class
I PI3K inhibitor) (Figure 6). The results of Cx43, p-Cx43,
AKT, and p-AKT expression, and the ratio of p-Cx43/Cx43 and
p-AKT/AKT in each group of in vitro cultured astrocytes were
consistent with those observed in vivo. Moreover, there was no
significant difference between the OGD/R + Vinp + LY and
OGD/R + Vinp + BKM groups for the abovementioned proteins
and their phosphorylation. These results provide more evidence
that Vinp protects against cerebral I/R injury by targeting
astrocytic Cx43 via the PI3K/AKT pathway.

DISCUSSION

Ischemic stroke triggers a complex cascade of events, such as
excitotoxicity, calcium overload, oxidative stress, inflammation,

and apoptosis, which finally leads to dysfunction. For decades,
studies on ischemic stroke had mainly focused on neurons.
It is a rather recent concept that astrocytes could be a
promising therapeutic target for neuroprotection in ischemic
stroke (Cekanaviciute and Buckwalter, 2016; Choudhury and
Ding, 2016; Liu and Chopp, 2016). One of the mechanisms
is that astrocytes could transmit chemical signals or small
molecule metabolites through their gap junctions, thereby
affecting neuronal survival (Liu and Chopp, 2016).

Vinp was originally invented as a drug for the treatment
of diseases caused by cerebrovascular disorders, such as stroke
and vascular dementia. Vinp has been shown to be a cyclic
nucleotide phosphodiesterase 1 inhibitor (Souness et al., 1989)
that also inhibits voltage-dependent Na+ channels (Sitges et al.,
2005) and IκB kinase (IKK) to exert its anti-inflammatory
effects (Jeon et al., 2010). It also exerts significant antioxidant
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FIGURE 5 | Effects of Vinp on inflammation and apoptosis-related proteins, and the expression of Cx43, p-Cx43, AKT, and p-AKT in the rat cerebral cortex after I/R
injury. (A) Representative western blot images and quantification of proteins related to inflammation. (B) Representative western blot images and quantification of
proteins related to apoptosis. (C) Representative western blot images of Cx43 and p-Cx43, and quantification of Cx43, p-Cx43, and p-Cx43/Cx43.
(D) Representative western blot images of AKT and p-AKT, and quantification of AKT, p-AKT and p-AKT/AKT. Data are shown as the mean ± SEM (n = 5 in each
group). **P < 0.01, ***P < 0.001 using one-way ANOVA followed by Tukey’s post hoc tests. Vinp: Vinpocetine; LY: LY294002; I/R: ischemia/reperfusion.

activity by scavenging hydroxyl radicals (Pereira et al., 2000).
Although a previous study showed that Vinp can inhibit
the inflammatory response caused by cerebral I/R injury and
reduce the cerebral infarction volume (Wang et al., 2014),
the protective mechanism remains unclear. A study that
focused on the role of microglia in the neuroprotection of
Vinp proved that microglial TLR4/MyD88/NF-κB is one of
the mechanisms by which Vinp protects against cerebral I/R
injury (Wu et al., 2017). However, the role of astrocytes
in the effect of Vinp against the cascade injury caused by
cerebral I/R is unclear.

In this study, we investigated the early protective effects
of Vinp in vivo and in vitro in ischemic stroke models and
revealed previously unknown related mechanisms. We found
that in cerebral I/R injury rats, Vinp significantly protected
against I/R injury by reducing cerebral infarction volume and
brain edema. Interestingly, Vinp didn’t significantly reduce the
neurological deficit scores, which is contrary to the previous
study (Wu et al., 2017). This discrepancy may be a result
of the differences in time points and the number of animals
used in the two studies. Since the time point of our study
in vivo was cerebral ischemia for 2 h and reperfusion for

Frontiers in Neuroscience | www.frontiersin.org 10 April 2020 | Volume 14 | Article 223118

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00223 March 31, 2020 Time: 18:9 # 11

Zhao et al. Vinpocetine Protects Against Cerebral Ischemia-Reperfusion

FIGURE 6 | Effects of Vinp on the expression of Cx43, p-Cx43, AKT, and p-AKT in astrocytes after OGD/R. (A) Representative western blot images of Cx43 and
p-Cx43, and quantification of Cx43, p-Cx43, and p-Cx43/Cx43. (B) Representative western blot images of AKT and p-AKT, and quantification of AKT, p-AKT and
p-AKT/AKT. Data are shown as the mean ± SEM (n = 3 in each group). *P < 0.05, **P < 0.01, ***P < 0.001 using one-way ANOVA followed by Tukey’s post hoc
tests. Vinp: Vinpocetine; LY: LY294002; OGD/R: oxygen-glucose deprivation/reoxygenation; BKM: BKM120.

12 h, the degree of neurological deficit may be different
at the time point of ischemia for 1 h and reperfusion for
24 h used in the previous study. Furthermore, the number
of animals per group was 16 in this study, while it was 7
in the previous study, which may lead to different statistical
results. Similarly, findings indicated that Vinp could promote
cell survival and reduce cell damage (reduced LDH release)
in OGD/R astrocytes. We also explored the neuroprotection
of Vinp against the cascade events caused by cerebral I/R
injury. Since it is widely considered that the initial step of
cerebral I/R is the generation of large amounts of ROS (Dirnagl
et al., 1999), we tested the activity of SOD and the content of
MDA in the ischemic cortices in vivo, and intracellular ROS
and NO released into the supernatant in vitro. The results
revealed that Vinp had an antioxidant effect. It is known that
increased ROS may activate astrocytes and microglia, which may
produce pro-inflammatory mediators (Chan, 2001; Duris et al.,
2018). Blocking the production of pro-inflammatory cytokines
would be an important strategy to protect against I/R injury.
Thus, we examined the pro-inflammatory cytokines IL-1β and
TNF-α by immunofluorescence staining in astrocytes subjected
to OGD/R, and the results were consistent with the in vivo
immunofluorescence double immunostaining with the astrocytic
marker GFAP and TNF-α and with the immunoblotting results
of pro-inflammatory and anti-inflammatory cytokines. The
above in vivo and in vitro results suggest that Vinp could
exert anti-inflammatory effects through astrocytes. Oxidative

stress and excessive inflammatory responses could activate pro-
apoptotic pathways (Duris et al., 2018), and the activation of
caspase-3 is the central part of apoptosis. Thus, we examined
the expression of caspase-3 and anti-apoptotic protein Bcl-2
by immunofluorescence staining in vitro and immunoblotting
in vivo. The above results revealed that Vinp attenuated oxidative
stress damage, inflammatory responses, and apoptosis both
in vivo and in vitro.

Next, we explored the mechanisms involved in the protection
of Vinp. In vitro experiments, LY294002 was found to block
Vinp’s effects on intracellular ROS and extracellular NO, TNF-α
and IL-1β expression, caspase-3 and Bcl-2 expression, astrocytic
apoptotic rate. In vivo experiments, LY294002 was found to
block the effects of Vinp on SOD activity, MDA content, IL-
1β, TNF-α, IL-10, BCL-2, and caspase-3 expression. Moreover,
in vivo immunofluorescence experiments, LY294002 reversed the
effect of Vinp on reactive astrocytes, significantly increasing the
expression of GFAP and TNF-α and the co-localization of GFAP
and TNF-α. Overall, these results indicated that the PI3K/AKT
pathway is involved in the anti-oxidative, anti-inflammatory,
and anti-apoptotic effects of Vinp against cerebral I/R injury.
Additionally, we found that I/R injury resulted in decreased Cx43
expression and enhanced Cx43 dephosphorylation. However,
all these changes were inhibited by Vinp, suggesting that
Cx43 may play an important role in Vinp’s neuroprotection.
More importantly, the inhibition of the PI3K/AKT pathway by
LY294002 blocked the above neuroprotective effects of Vinp
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and reversed the p-Cx43 and p-Cx43/Cx43 changes in vivo.
We further confirmed the above findings by examining the
PI3K/AKT pathway and Cx43 in vitro cultured astrocytes with
the addition of BKM120 (a specific class I PI3K inhibitor, Burger
et al., 2011; Maira et al., 2012). In conclusion, this study showed
that Vinp regulates Cx43 in cerebral I/R injury through the
PI3K/AKT signaling pathway and provided evidence for its
clinical application.

Previous studies have reported that Cx43 is highly
phosphorylated under physiological conditions, and ischemia
will lead to Cx43 dephosphorylation. Cx43 dephosphorylation is
accompanied by the opening of the Cx43 hemichannel, leading to
increased influx of several harmful substances and enlargement
of the infarct size (Chew et al., 2010). Increased Cx43 expression
can reduce neuronal damage after cerebral I/R (Nakase et al.,
2003). Our previous studies showed that OGD/R injury can
cause Cx43 hemichannel opening and increase in the release of
ATP, which could activate the microglia to release numerous
inflammatory factors causing neuronal death (Yin et al., 2018).
In addition, the inflammatory response of astrocytes increases
after ischemic stroke, leading to increased release of extracellular
inflammatory factors that affect neuronal survival (Kawabori
and Yenari, 2015; Anrather and Iadecola, 2016). Consistent with
previous results, we found that cerebral I/R injury downregulated
Cx43 and p-Cx43, decreased SOD activity, increased MDA
content, decreased the expression of anti-apoptotic protein Bcl-
2, and enhanced the expression of apoptotic protein caspase-3
and pro-inflammatory cytokines TNF-α and IL-1β. Effectively,
Vinp enhanced Cx43 and p-Cx43 expression and attenuated
the aforementioned detrimental effects caused by cerebral I/R,
indicating that Vinp likely exerts neuroprotection by targeting
Cx43. Studies have shown that Cx43 affects the activation of the
inflammasome and the progression of acute kidney injury by
regulating the intracellular oxidative status (Huang et al., 2019).
Thus, we hypothesized that the protective mechanism of Vinp
may be involved in the inhibition of Cx43 internalization and
dephosphorylation, accompanied by the closure of the Cx43
hemichannel to reduce intracellular reactive oxygen species,
thereby reducing the inflammatory cascade and apoptosis.

Last, we explore the upstream mechanism of Cx43. Cx43
has multiple phosphorylation sites that can be activated by
different kinases (including PKA, AKT, and PKC) (Solan and
Lampe, 2009), where the C-terminal Ser373 site of the Cx43
can be phosphorylated by AKT (Solan and Lampe, 2014). The
PI3K/AKT is an important anti-apoptotic pathway within the
cell, and it can induce the formation of IKK by influencing
NF-κB and Bcl-2 by phosphorylating GSK-3β, which play
a protective role with anti-inflammatory and anti-apoptotic
effects (Park et al., 2006; Mullonkal and Toledo-Pereyra, 2007).
A previous study showed that PI3K/AKT plays a crucial role
in modulating Cx43 expression (Bhattacharjee et al., 2009),
conveying mechanical signals to the Cx43 hemichannel and
mediating its opening in osteocytes (Batra et al., 2014). Besides,
Cx43 has been shown to decrease expression in the heart
of AKT1−/−/iAKT2 knockout mice, revealing that AKT plays
an important role in maintaining systolic function and Cx43
protein stability (Ock et al., 2018). Inhibition of the PI3K/AKT

pathway by LY294002 can reduce Cx43 expression and block
the cardioprotective effect of atorvastatin (Bian et al., 2015).
Our results indicate that Vinp activates the PI3K/AKT pathway
by enhancing the expression of p-AKT (Ser473) to exert anti-
oxidative stress and anti-inflammatory effects, thereby exerting
anti-apoptotic effects. However, there was no significant change
in the expression of AKT, indicating that AKT exerts the above
effects through phosphorylation rather than protein expression.
Treatment with Vinp and the PI3K/AKT pathway inhibitor
LY294002 abolished the upregulation of p-Cx43(Ser373) caused
by Vinp after cerebral I/R injury, but not the significant
downregulation of Cx43 expression, strongly suggesting that
phosphorylation is the manifestation of Cx43 activity. These
results were also confirmed in vitro using a more than 95%
pure primary astrocyte culture. Meanwhile, the expression of
AKT and Cx43 induced by the treatment of Vinp and BKM120
(a specific class I PI3K inhibitor,Burger et al., 2011; Maira
et al., 2012) was not significantly different than that induced by
the treatment of Vinp and LY294002 in vitro, which provided
further evidence that Vinp targets the PI3K/AKT pathway and
regulates the phosphorylation of Cx43. Taken together, our
study suggests that the C-terminal Ser373 site of Cx43 can be
phosphorylated by AKT activity and plays an important role in
the neuroprotection of Vinp.

Our study showed that apoptosis is consistent with changes
in proinflammatory factors and oxidative stress, whether in
cerebral I/R injury or through the addition of Vinp or LY294002.
Previous studies have shown that cerebral I/R injury could
induce increased oxidative stress which may induce excessive
inflammatory responses that finally activate pro-apoptotic
pathways (Dirnagl et al., 1999). Activation of either the Fas,
TNF, and TRAIL receptor-mediated extrinsic pathways or direct
activation of intrinsic pathways ultimately leads to activation of
caspase-3 (Duris et al., 2018). Therefore, we speculate that the
anti-apoptotic effect of Vinp may be partly due to its antioxidant
and anti-inflammatory effects. Unfortunately, our study could
not elucidate the molecular mechanism by which inflammation
interacts with apoptosis in the protective effects of Vinp against
cerebral I/R. Despite this limitation, this study clearly showed the
protective mechanism of Vinp against ischemic stroke.

This study has some other limitations that must be
acknowledged. First, we analyzed the early effect of Vinp at
cerebral ischemia for 2 h and reperfusion for 12 h based on
the previous results of our research group, however, analyzing
the effects of Vinp at a longer time point is required. Second,
knocking-out the PI3K signaling pathway at the gene level, and
not just via PI3K inhibitors, could provide more precise results.
Furthermore, further studies are needed to test the effects of Vinp
on additional cerebral ischemic models.

CONCLUSION

Our study provides new insights into the treatment of ischemic
stroke and indicates that Vinp provided neuroprotection against
oxidative stress, inflammatory responses, and apoptosis caused by
cerebral I/R injury and that this protection may involve astrocytic
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Cx43 regulation via the PI3K/AKT signaling pathway. Therefore,
Vinp could be potentially used to develop a promising drug for
the treatment of ischemic stroke.
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