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The 14th International Congress of Neuroimmunology, ISNI 2018, was held in August 
2018 in Brisbane, Australia, and is a biennial event organized by the International 
Society of Neuroimmunology (ISNI). The theme of ISNI 2018 was “Travelling the 
Neuroimmunological Translational Highway”, and the Congress highlighted many 
research discoveries that bridge the gap between basic and clinical sciences, and 
which impact our understanding of pathogenic immune-mediated mechanisms in 
diseases affecting the nervous system.

In this Research Topic, we aim to give a comprehensive overview of topics highlighted 
at the Congress, showcasing the current state of the field of neuroimmunology and 
where it is going in the near future.
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Editorial on the Research Topic

Update on Translational Neuroimmunology - Research of ISNI 2018

With its roots firmly planted in the fields of CNS autoimmunity and infection, the rapidly growing
field of neuroimmunology is branching out to include almost every area of neurophysiology
and neurological disease to encompass brain development and function, psychiatric illnesses,
inflammatory demyelinating diseases, cancer, infections, and neurodegeneration of the central and
peripheral nervous systems. The nervous system is also functionally intimately interconnected,
via immune mechanisms, to multiple other processes and organ systems including systemic
inflammation, gut microbiome, and chronic pain, to name a few. The scope of neuroimmunology
and its implications for the understanding of human health and disease, from diagnosis
through therapeutics, was highlighted during the 14th Congress of the International Society for
Neuroimmunology (ISNI) 2018, and the associated 2nd Global Schools of Neuroimmunology
(GSNI), held together in August 2018 in Brisbane, Australia. The richness of topics covered is
further illustrated through the series of related articles presented in this special issue of Frontiers in
Neurology entitled “Update on Translational Neuroimmunology Research of ISNI 2018.”

The Congress highlighted the importance taking the knowledge gained from translational
research and clinical experience back into the research environment to gain further understanding
of immune-mediated diseases affecting the human CNS and how to overcome them. During the
meeting, dedicated symposia covered diverse topics of CNS and PNS autoimmunity, immune
dysfunction, and immunotherapy, covering a wide range of neuroimmune interactions in health
and disease. For example, disease topics ranged from immune-mediated conditions, such as
multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), myasthenia gravis,
and autoimmune encephalopathies and neuropathies, to inflammation in conditions usually
thought of as neurodegenerative, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), motor
neuron diseases, neuropsychiatric diseases, as well as traumatic injuries and infections by parasites
and neurotropic RNA viruses including West Nile and Zika.

The involvement of immune mechanisms in psychiatric diseases was introduced at GSNI on
the first day of the meeting and during the main meeting in talks by Lennox and Brown. In
this issue, McCombe et al. review the emerging evidence that the peripheral immune system
contributes to motor neurodegeneration in amytrophic lateral sclerosis (ALS), and implications for
therapeutic targeting to manage the disease. This parallels current thinking in AD that peripheral
inflammation influences inflammation in the brain. In a similar vein, Yates et al. review the current
evidence suggesting that extracellular vesicles (EVs) shed from CNS cells, cross the blood brain
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barrier (BBB), and play a critical role in activating peripheral
immune responses to traumatic CNS injury. Vilquin et al.
describe the consequences of autoimmune attack against
components of the neuromuscular junction in myasthenia gravis,
focusing on the response of the ultimate target in this disease,
the muscle. Fujii et al. turn their attention to investigating
the link between allergic inflammation and neuropathic pain,
describing a possible role for spinal cord glial inflammation
and autoantibodies that target sensory neurons in the dorsal
root ganglia.

The dramatic clinical success of B cell depleting
immunotherapies in patients with MS, as well as CNS diseases
that involve autoantibodies such as NMOSD, has focused
research on understanding the critical roles of B cells, and
their interactions with T cells, in the pathogenesis of MS
and other neuroimmune diseases. B cells produce antibodies,
present antigens to T cells, and produce pro-inflammatory
and anti-inflammatory cytokines, and all these functions
can contribute to CNS autoimmunity. At the Congress, The
Immunology Lecture delivered by Vinuesa was dedicated to
rare mutations that contribute to systemic autoimmunity. Focus
was placed on genes that control mechanisms involved in the
production, selection and elimination of memory B cells and
antibody production, and specifically on the role of roquin, an
E3 ubiquitin ligase, in the control of B cell-T cell interactions
by T follicular helper cells (TFH) (1). In the Dale McFarlin
Lecture delivered by Martin, we learnt that memory B cells
increase the spontaneous autoproliferation of peripheral T
helper (Th1) cells as well as non-classical Th1 cells (CCR6+
CXCR3+; Th17.1 cells) (2). Importantly, T cell autoproliferation
is abnormally increased in MS patients during the remission
phase of the disease and is likely to drive disease (2). B cells
do this in a HLA-DR1-dependent manner, and depletion of
B cells by anti-CD20 antibodies reduces T-cell proliferation,
thereby providing one mechanistic basis for therapeutic B cell
depletion in MS. The same group identified a new putative
target autoantigen in MS, RASGRP2, expressed in both brain
and B cells (2). Insights from pediatric-onset MS discussed by
Bar-Or also explored novel antigenic targets and emphasized the
importance of cellular interactions between memory B cells, T
cells and myeloid cells (3). Autoantibody-mediated pathologies
of the peripheral and central nervous systems were a main topic
of the meeting discussed by Vincent, De Seze, Mathey, Kusunoki
and Kiernan. In this issue, van Langelaar et al. further discuss the
types of T cell-B cell interactions that might be important for MS
pathogenesis, Greer et al. report that autoantibodies to the major
myelin protein, proteolipid 181–230 peptides, are increased in a
subgroup of MS patients and that their levels positively correlate
with disease severity, while Young reviews the differential effects
of antibodies to the GluN1 subunit of the glutamate NMDA
receptor in pathogenesis of neurological diseases.

Neutrophils are amongst the first immune cells to reach
the CNS in the MS model experimental autoimmune
encephalomyelitis (EAE) and are present in the CNS during
NMOSD and severe MS, but little is known of their role in
disease pathogenesis. Vallieres showed that neutrophils adopt
macrophage-like properties once entering the CNS in a B

cell-dependent EAE model and to promote inflammation
via the neutrophil-specific protease ASPRV1 (4). Moreover,
Korn discussed mechanisms by which polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSC), phenotypically
related to neutrophils, control B cell accumulation and cytokine
secretion during CNS autoimmunity (5). The involvement
of other innate immune mechanisms in neurodegenerative
disorders, such as heat shock proteins and the inflammasome,
was also given attention by Amor, Issazadeh-Navikas, and Ting.

MS research is increasingly focused onmyeloid cells and CNS-
resident cells such as astrocytes, microglia, and oligodendrocytes,
which contribute to disease pathology through additional
mechanisms likely relevant for other neurologic diseases. One
topic that remains hotly debated in the MS field is the identity
of the antigen-presenting cell that is responsible for reactivating
T cells in the CNS, and thereby licensing them to induce
demyelinating lesions, since this is a potential target for more
selective therapy. Various cell types, including dendritic cells,
B cells, barrier-associated macrophages (BAM), and microglia
are able to present antigen to T cells in the context of MHC
class II, although which one is involved in the pathogenesis of
EAE and MS still remains to be identified. Important targets are
also the effector molecules communicating these interactions, as
discussed by Becher for (GM-CSF) (6).

The functions of CNS-resident myeloid cell (microglia) in
neuroinflammation continue to intrigue researchers. Unlike
their peripheral counterparts (monocytes and macrophages),
microglia perform essential functions in the CNS not only in
pathologic states such as in repair of tissue damage, as discussed
by Popovich, but also under normal physiologic conditions,
such as shaping neuronal networks and clearing debris
by phagocytosis. Loss of these functions during development
has been implicated in schizophrenia and potentially in autism
spectrum disorders, while loss of the same functions in the
context of chronic inflammation may contribute to pathology
in diseases such as MS and AD. For example, Waisman
reported that selective depletion of A20 (an inhibitor of the
transcription factor NF-κB) in microglia, was sufficient to induce
spontaneous neuroinflammation and CNS infiltration by CD8+
T cells, pointing to a homeostatic function for microglia in
the brain (7). The TAM family of receptor tyrosine kinases,
Tyro3, Axl, and Mertk, has been implicated in demyelination,
remyelination and MS susceptibility, and Kilpatrick reported
that Mertk plays a role in beneficial microglia function in an
experimental demyelination model, and that Tyro3 is important
for developmental myelination of the CNS (8). In this issue,
Benmamar-Badel et al. review data regarding a unique subset of
microglia that is found in development, during normal aging and
in diverse diseases and discuss the possible functional significance
of these cells. It is clear that much more needs to be learnt
regarding the differential functions of myeloid cell subtypes
before these cells can be both effectively and safely targeted
for therapy.

Evidence for inflammatory functions of CNS-resident
oligodendrocyte precursor cells (OPC) was presented by
Ransohoff wherein IL-17-induced Act1-NOTCH1 interactions
in OPC promoted the inflammatory responses, cell proliferation
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and inhibited OPC differentiation into mature oligodendrocytes
thereby inhibiting remyelination. Genetic depletion of NOTCH1
in OPC in mice, or administration of a decoy peptide based
on IL-17RA, were sufficient to inhibit Th17-induced EAE (9).
Increasing complexity of astrocyte function in disease is also
being appreciated. Liddelow reported that astrocytes can be
converted by microglia into a neurotoxic phenotype in diseases
such as AD and PD, and agents that inhibit the formation
of neurotoxic astrocytes could be used to treat these so-far
untreatable diseases (10). Quintana described a novel metabolic
mechanism involving cytosolic phospholipase A2 interactions
with mitochondrial antiviral signaling protein (MAVS), which
leads to activation of NF-κB and drives pro-inflammatory
activities of astrocytes in EAE and MS, while interfering with
the metabolic support of neurons by astrocytes. These findings
identified a candidate drug to be repurposed for therapeutic
modulation of astrocyte pro-inflammatory activities, while they
also provide a novel link between viral infections, metabolism,
CNS inflammation and neurodegeneration (11).

Our current understanding of CNS immune privilege and
CNS barriers, including the blood brain barrier (BBB), blood
CSF barrier (B-CSF), and brain surface barrier, was reviewed by
Engelhardt at GSNI and elaborated during the congress itself,
where the perivascular space at the BBB was implicated as a main
entry point for immune cell infiltration in MS (12). Brain barrier
dysfunction also occurs in other neurodegenerative diseases.
Aging of the choroid plexus was described by Schwartz in an
experimental AD model and was associated with the immune
dysfunction and cognitive defects that are characteristic of this
disease (13). Targeting of the choroid plexus using blockers
of immune-inhibitory checkpoints, such as PD-1, evoked IFN-
γ dependent immune responses, which in turn improved the
recruitment of monocyte-derived macrophages including so-
called disease-associated macrophages (DAMs), into the CNS
and reduced disease features (13). These findings provide another
example where the immune system exerts protective functions
in the CNS during disease. Drugs that protect barrier function
represent promising new therapies for MS, and as described by
Yong include approved drugs such as minocycline, a tetracycline
antibiotic used to treat acne, and novel inhibitor analogs
of extracellular matrix components called chondroitin sulfate
proteoglycans (CSPGs) (14).

Well-deserved attention was given to the gut-CNS axis and,
in particular, the role of gut microbiota in immune homeostasis
of the brain and in triggering CNS autoimmunity. This field
developed following a landmark discovery made in the field of
neuroimmunology just one decade ago. Since then the functional
relationships between the gut microbiome and its effects on
CNS pathology driven by peripheral and resident cells have
been subject to intense investigation, as introduced at GSNI
by Barazini, and updated in the Congress by Wekerle, Miyake,
Weiner, Quintana and Yamamura, and by recent reviews (15–18).
This special issue includes reviews from Jogia and Ruitenberg on
the significance of gut microbiota in traumatic spinal cord injury,
and fromCady et al., on the importance of dietary phytoestrogens
in protection in EAE and possibly MS.

Several talks highlighted the neuroimmunology of infectious
diseases of both the peripheral and central nervous systems,
including cerebral malaria by Idro and viral infections by Klein,
Pender, Basu and Yamano.

The search for improved diagnostic biomarkers continues,
and is a particular focus of articles published in this special issue.
While MS is the most common inflammatory demyelinating
disease of the CNS, other rare disorders include NMOSD
and anti-MOG associated disease, and the need for accurate
diagnosis is stressed since prognosis and treatment of these
three diseases are different. In this issue, Prain et al. describe
a clinically-based survey of NMOSD in Australia and New
Zealand, and critically evaluate different assays for anti-AQP4
and anti-MOG antibodies used in the diagnosis of NMOSD
and anti-MOG associated disease, respectively. In the case of
anti-AQP4 antibody seronegative NMOSD, differential diagnosis
from MS might be difficult. The current status of medical
imaging research in MS and NMOSD, and its role in the
diagnosis and management of these two diseases was discussed
at the meeting by Stankoff and Paul, and is reviewed in this
issue by Kuchling and Paul. Tea et al. together with the
Australasian and New Zealand MOG Study Group, discuss data
analysis tools for maximizing the diagnostic power of FACs
cell-based assays that detect MOG autoantibodies. Gastaldi et
al. critically report the results and main shortcomings of the
2018 Italian Neuroimmunology Association external quality
assessment program (EQAP), which evaluated assays using a
wide range of markers including oligoclonal bands, antibodies
to intracellular and surface neuronal antigens, AQP4, MOG, and
myelin-associated glycoprotein (MAG) antibodies, in different
assay types used by 34 different laboratories. Jiang et al.,
describe improved novel biomarkers in the CSF of patients
with autoimmune encephalitis for differential diagnosis between
viral infections and autoimmune encephalitis. Masvekar et al.
investigated whether apoptotic bodies/ apoptosomes, which
are vesicles released from apoptotic cells, could represent a
biomarker for MS, by measuring total and cell-specific apoptotic
bodies in the CSF of MS patients by FACS using annexin V and
antibodies to cell-specific markers.

Novel immunotherapeutic strategies for wide range of
peripheral and central nervous system diseases, including
neuropathies, myasthenia gravis, and pediatric CNS disorders
were discussed during the meeting. The powerful therapeutic
value of neural stem cells was the subject of The John Newsom
David Lecture delivered by Martino (Ottoboni et al.) and The
Rita Levi-Montalcini Neurobiology Lecture delivered by Bartlett
(19), and is further highlighted in this special issue in a review
by Ottoboni et al.. News of a phase I safety trial using allogenic
human NSC in MS patients with progressive MS was shared by
Martino, and strategies for further improvement of this approach
by using autologous induced pluripotent stem cell derived NSC
were considered. The homeostatic functions of NSC in brain
inflammation and their contribution to remyelination and brain
repair in experimental models was reported. Under conditions
of inflammation, NSC are maintained in an immature state and
secrete LIF, which in turn promotes remyelination. In a separate
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report by Kilpatrick, oligodendrocyte-specific expression of the
TAM receptor Tyro3 was necessary for remyelination in a
demyelination model in mice (8). The possibility that these
mechanisms interact to mediate CNS repair in demyelinating
disease remains to be investigated. On the other hand, positive
regulators of neurogenesis from NSC in the hippocampus are
found to be stimulated by exercise and healthy lifestyle (19). The
importance of microglial and astrocytic gap junction proteins
in the modulation of CNS pathology was pointed out in talks
by Suzumura and Kira. In this issue, Finardi et al., provide
evidence that microRNAs miR106b-25 and miR17-92, which
are upregulated in MS patient T regulatory cells, are involved
in the development of experimental neuroinflammation and
might represent novel therapeutic targets. In the context of
glioma, in this issue Sarkar et al. provide evidence that the
antibiotic demeclocycline reduces the growth of brain tumor
initiating cells through direct and indirect effects via activation
of myeloid cells.

Further advancing the spirit of translational research in the
neuroimmunology field, the importance of improved animal
models of autoimmunity and infection was highlighted in the
talks by Liblau, Baker, De Seze, Klein and O’Connor. Several
new animal models have been developed to recapitulate findings
from the clinic and to aid deeper mechanistic studies into disease
pathogenesis. A humanized mouse model for Rasmussen’s
encephalitis was generated by transplanting patient PBMC’s into

immunodeficient NSG mice, as reported by Prat (20), as were
B cell models for MS and NMOSD, including one in which
sequences encoding human AQP 4 antibody isolated from an
NMOSD patient were knocked into the mouse heavy chain locus
as reported by Kuchroo (21), and another EAE model induced
by immunization with AQP4 201-220 peptide in AQP4 KO
mice as reported by Zamvil (22). In this issue, Giannoccaro et
al. review results and the limitations of current animal models
of autoantibody-mediated neurological diseases, and discuss the
increasing evidence that maternal antibodies to neuronal surface
antigens in the maternal circulation can reach the fetal brain
during gestation causing neurodevelopmental disorders.

In summary, this collection represents the broad range of
NeuroImmunology research presented at the 14th Congress of
the International Society for Neuroimmunology (ISNI) 2018,
and the associated 2nd Global Schools of Neuroimmunology
(GSNI), highlighting new developments in this rapidly
moving field, as well as unanswered research questions and
unmet clinical needs. This growing body of research sets
up the stage for the upcoming ISNI/GSNI 2021 meeting in
Nice, France.
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We have compared five different assays for antibodies to aquaporin-4 in 181 cases

of suspected Neuromyelitis optica spectrum disorders (NMOSD) and 253 controls to

assess their relative utility. As part of a clinically-based survey of NMOSD in Australia

and New Zealand, cases of suspected NMOSD were referred from 23 centers. Clinical

details andmagnetic imaging were reviewed and used to apply the 2015 IPND diagnostic

criteria. In addition, 101 age- and sex-matched patients with multiple sclerosis were

referred. Other inflammatory disease (n = 49) and healthy controls (n = 103) were

also recruited. Samples from all participants were tested using tissue-based indirect

immunofluorescence assays and a subset were tested using four additional ELISA and

cell-based assays. Antibodies to myelin oligodendrocyte glycoprotein (MOG) were also

assayed. All aquaporin-4 antibody assays proved to be highly specific. Sensitivities

ranged from 60 to 94%, with cell-based assays having the highest sensitivity. Antibodies

to MOG were detected in 8/79 (10%) of the residual suspected cases of NMOSD. Under

the 2015 IPND diagnostic criteria for NMOSD, cell-based assays for aquaporin-4 are

sensitive and highly specific, performing better than tissue-based and ELISA assays. A

fixed cell-based assay showed near-identical results to a live-cell based assay. Antibodies

to MOG account for only a small number of suspected cases.

Keywords: neuromyelitis optica, autoantibody, aquaporin, myelin oligodendrocyte glycoprotein, astrocytopathy,

demyelination

INTRODUCTION

Neuromyelitis optica spectrum disorders (NMOSD) (1) encapsulate a variety of defined
neurological clinical presentations associated with autoantibodies to aquaporin-4 (AQP4) (2).
Detection of antibodies to AQP4 is of immense value in the accurate diagnosis and management
of NMOSD, which represent about 1% of central nervous system (CNS) inflammatory disease (3).
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The current diagnostic criteria for NMOSD permit the inclusion
of AQP4 antibody negative cases, but this requires additional
radiological criteria (1).

Myelin oligodendrocyte glycoprotein (MOG) antibody-
related demyelinating disease is emerging as another antibody
mediated inflammatory disorder of the CNS which shares
some overlapping features with NMOSD (4). In particular, a
predilection for lesions of the optic nerve and spinal cord is
seen in both conditions (5, 6). However, there are some very
clear clinical distinctions between the two disorders. MOG
antibody-related demyelinating disease accounts for up to one
third of cases of pediatric demyelinating disease, often presenting
with acute disseminated encephalomyelitis, a clinical picture that
is rare in NMOSD (7). In addition, the distribution of the spinal
cord lesions is subtly different with lesions of the high cervical
spine (C1/2) being seen in NMOSD and lesions extending all
the way to the conus being seen in MOG antibody-related
demyelinating disease (8).

We recently performed a nationwide prevalence survey of
NMOSD across Australia and New Zealand (9). We have
compared the relative utility of a variety of AQP4 antibody assays
and studied the prevalence of positivity for MOG antibodies in
this population, with the aim of guiding best laboratory practice
and interpretation of results for clinicians.

METHODS

Case Ascertainment
Possible cases of NMOSD were identified through a network
of 23 neurology clinics specializing in demyelinating diseases
of the CNS (ICD-10 G35-G37) across Australia and New
Zealand. These centers match the population distribution of both
countries. Participating centers referred cases to the coordinating
center in Queensland if they had features suggestive of NMOSD
as previously described (9). Cases were excluded if no serum
sample was supplied and results of prior AQP4 antibody testing
were not available, insufficient clinical data to make a diagnosis
were supplied or if an alternate diagnosis became apparent.
All subjects provided written informed consent. Institutional
human research ethics committee approval was obtained for all
participating sites. The period of data collection was from 1
January 2011 to 31 December 2013. The 2015 International Panel
for NMO Diagnosis (IPND) diagnostic criteria for NMOSD
(ICD-10 G36) were applied retrospectively.

Referring neurologists were also requested to recruit age-
and sex-matched patients with multiple sclerosis, who did not
have any of the features suggestive of NMOSD. Additional
controls consisted of patients with other inflammatory diseases
(infectious and rheumatological) and healthy blood donors.
The other inflammatory diseases included infections (varicella,
systemic CMV, infectious mononucleosis), Sjögren’s syndrome
and systemic lupus erythematosus. All participants gave written,
informed consent to participation in this study and the
study protocol was approved by the Human Research Ethics
Committee at all participating sites.

Demographic details (age and gender) together with clinical
details sufficient to confirm a diagnosis of NMOSD or MS were

collected, including relapse history andMR imaging as previously
described (9). Cases were then defined as “NMOSD” (meeting
seropositive or seronegative 2015 IPND criteria) (1), “suspected
NMOSD” (cases having features suggestive of NMOSD but not
meeting 2015 IPND criteria), or “MS” (meeting 2010 McDonald
criteria with no features suggestive of NMOSD) (10). The
remaining control groups were other inflammatory disease and
healthy blood donors.

Antibody Assays
Any prior AQP4 antibody testing results were collected
using a standard questionnaire in all cases. Serum samples
were obtained and tested for AQP4 antibodies using indirect
immunofluorescence staining techniques on mouse, rat, or
monkey brain tissue and rat or mouse kidney sections at one
of four testing sites (see Supplementary Table 1 for details).
A subset of samples was also tested using an ELISA kit
(RSRTM, UK), as well as two fixed cell-based slide kits from
Euroimmun R© and a live cell based assay (11). The two slides
each consisted of two chips of HEK cells transfected with
M1 and M23 isoforms of AQP4 in one and M23 AQP4
and MOG in the other (Euroimmun R©, Germany). The tissue-
based indirect immunofluorescence testing was undertaken in 4
centers across Australia. The ELISA, and fixed-cell based assays
were performed by the Autoimmunity section of the Division
of Immunology, Pathology Queensland Central Laboratory,
Brisbane, Australia, as per the manufacturer’s instructions. The
live cell-based assay was performed in the Nuffield Department
of Clinical Neurosciences, Oxford, UK, as previously described
(12). All assays were performed by researchers blinded to the
final diagnostic status of the cases and results from Brisbane
and Oxford were collated by a blinded third party based in
Cambridge, UK, who then distributed the final combined results
to all parties. The typical outputs of the tissue-based and
live cell-based assays are shown in Figure 1. MOG antibodies
were detected using three different assays: a commercial fixed
cell-based assay (Euroimmun R©, Germany), a live cell-based
assay, and a live cell-based fluorescence activated cell sorting
(FACS) assay. The fixed cell-based assay was performed as per
the manufacturer’s instructions. The live cell-based assay was
performed in the Nuffield Department of Clinical Neurosciences,
Oxford, UK, as previously described (13) and the FACS assay was
performed at the Westmead Immunology Laboratory, Sydney,
Australia as previously described (14). Seropositivity for AQP4 or
MOG antibodies was defined as either a positive result on any of
the tissue-based indirect immunofluorescent assays or a positive
result on at least 2 cell-based assays (including repeated FACS
assay for MOG antibodies).

Statistics
Results are presented as n/N (%) of positive or negative antibody
assays in cases and controls. Non-parametric statistics were
used to assess differences in the demographic distribution of
cases and controls. The optimal cut-off for the ELISA antibody
level was assessed using receiver operator characteristic (ROC)
curve analysis. Sensitivity and specificity with 95% confidence
intervals (CI) were used to assess utility of the assays. Degree of
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FIGURE 1 | Positive outputs for AQP4 antibodies using tissue-based indirect

immunofluorescence on mouse cerebellum (A), and live cell-based assay (B).

agreement between the assays was assessed using Cohen’s kappa
coefficient. All statistical analysis was performed using SPSS R©

v24 (IBM R©, US).

RESULTS

In total, 189 cases of suspected NMOSD were referred. Of
these 8/189 (4%) were excluded due to lack of an available
serum sample. Of 181 suspected NMOSD cases, 80 met the
2015 IPND diagnostic criteria for NMOSD. Of these, 73/80
(91%) were seropositive for AQP4 antibodies and 7/80 (9%)
were seronegative, leaving 101 suspected NMOSD cases. Not all
of the seronegative NMOSD cases were tested with all assays.
There were 108 cases of MS referred of which 7/108 (6%)
had no serum available, leaving 101 included MS controls.
Serum was available for 49 inflammatory disease and 103 blood
donor controls. The inflammatory disease controls included
the following: systemic lupus erythematosus (15), Sjögren’s
syndrome (8), cytomegalovirus infection (9), Epstein-Barr virus
infection (7), and varicella zoster infection (6). The demographic
details for cases and controls are given in Table 1. There were
no statistically significant differences in gender (X2 = 0.503,
p = 0.478) or age distribution (Mann-Whitney U p = 0.145)
between NMOSD cases and MS controls, indicating that our
age- and sex-matching strategy had been effective. No data
were available for the blood donor controls as these samples
were provided anonymously as required by Australian Red
Cross. The inflammatory disease controls were older, but when
combined with the MS controls were not significantly different
to NMOSD cases. The proportion of females in inflammatory
disease controls (61%) compared with NMOSD cases (89%) was
significantly lower (X2 = 13.548, p < 0.001). When MS and
inflammatory disease controls were combined the proportion of
females increased (77%), but remained significantly different (X2

= 4.474, p= 0.034).
ROC curve analysis (see Figure 2) of the ELISA test kit results

showed an optimal cut-off of equal to or >10 (arbitrary units),
which had a sensitivity of 60% (95%CI 45–98%) and specificity of
97% (95%CI 93–98%). This level was used to determine positivity
on the ELISA assay.

TABLE 1 | Demographic details of cases and controls.

Group tested N Gender, female

n/N (%)

Age, years

median (range)

CASES

NMOSD 80 71/80 (89) 47 (19-85)

Suspected

NMOSD

101 68/101 (67)* 40 (15 – 72)*

CONTROLS

Multiple sclerosis 101 86/101 (85) 46 (16 – 73)

Inflammatory

disease

49 30/49 (61)* 59 (21 – 97)*

Blood donors 103 N/A N/A

Overall 253 116/150 (77)* 49.5 (16 – 97)

*Statistically significantly different from NMOSD cases (p < 0.05). NMOSD, neuromyelitis

optica spectrum disorders.

FIGURE 2 | ROC curve analysis for most appropriate cut off (arrow) for ELISA

AQP4 assay.

Tissue-based indirect immunofluorescence testing for AQP4
antibodies was performed in 424/434 (98%) of cases and controls.
A cell-based AQP4 assay was performed in 307/434 (71%) of
cases and controls. The sensitivity for various assays in NMOSD
and suspected NMOSD together with their specificity in the
various control groups and overall controls is given in Table 2.
The results of the Euroimmun R© M1 and M23 biochips on a
shared slide proved to be identical and so these results have been
considered together. The most sensitive assays were the fixed and
live cell-based assays, which gave very similar results (see Table 2
and Supplementary Table 2). The overall sensitivity of the live
cell-based assay was 92% (95% CI 78–97%) and specificity was
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TABLE 2 | Sensitivity and specificity of autoantibody assays.

Group tested N T-IIF ELISA EI-M1/M23 EI-CBA Ox-CBA MOG

CASE SENSITIVITY—n +ve/N (%)

NMOSD

[95% CI for sensitivity]

80 62/78 (78)

[69–87]

25/42 (60)

[45–73]

38/42 (90)

[78–96]

34/36 (94)

[82–99]

33/36 (92)

[78–97]

0/48 (0)

[0–7]

Suspected NMOSD 101 8/79 (10)

CONTROL SPECIFICITY—n –ve/N (%)

Suspected NMOSD 101 99/99 (100) 62/64 (97) 61/64 (95) 42/43 (98) 49/49 (100)

Multiple sclerosis 101 98/98 (100) 48/48 (100) 48/48 (100) 20/20 (100) 21/21 (100) 52/52 (100)

Inflammatory disease 49 49/49 (100) 43/49 (88) 49/49 (100) 49/49 (100) 49/49 (100) 48/49 (98)

Blood donors 103 99/100 (99) 102/103 (99) 103/103 (100) 103/103 (100) 82/82 (100) 89/90 (99)

Overall

[95% CI for specificity]

354 346/346 (99.7)

[98–100]

255/264 (97)

[94–98]

242/245 (99)

[97–100]

214/215 (99.5)

[97–100]

201/201 (100)

[98–100]

189/191 (99)

[96–100]

T-IIF, tissue-based indirect immunofluorescence; ELISA, enzyme linked immunosorbent assay; EI M1/M23, Euroummun® M1/M23 biochip slide; EI-CBA, Euroimmun® AQP4 fixed

cell-based assay; Ox-CBA, Oxford AQP4 live cell-based assay; MOG, myelin oligodendrocyte glycoprotein antibody assay; NMOSD, neuromyelitis optica spectrum disorders.

100% (95% CI 98–100%). Whilst less sensitive (78% [95% CI 69–
87%]), the tissue-based indirect immunofluorescence assay also
proved to be very specific (99.6% [95% CI 98–100%]). The ELISA
test was positive in 6 inflammatory disease controls, but none of
the blood donor or MS controls. The ELISA assay proved to be
the least sensitive (60% [95%CI 45–98%]) and least specific (97%
[95% CI 93–98%]).

The degree of concordance between assays was generally high,
and particularly so for the cell-based assays, as shown in Table 3.
In the suspected NMOSD cases, there were 5 cases who were
positive on the Euroimmun R© M1/M23 assay or the ELISA assay
alone. As these cases were negative on all other cell-based assays
they were not included in the NMOSD cases and remained as
suspected NMOSD. Inclusion of the suspected NMOSD cases
as controls for the calculation of specificity did not significantly
change the results.

Amongst suspected NMOSD cases, 8 were positive for MOG
antibodies. One of these was also positive for both the AQP4 and
MOG biochips on the same fixed cell-based assay. This case was
negative for all other cell-based assays for AQP4 antibodies and
was confirmed as positive forMOG antibodies by FACS assay and
so was not considered to be a case of NMOSD, but rather as a case
of MOG antibody-related demyelinating disease. Thus, we did
not identify any AQP4 and MOG antibody double positive cases.
One MOG antibody positive case met the clinical/MRI 2015
IPND criteria for a diagnosis of NMOSD, but was considered
as a MOG antibody-related demyelinating disease case. When
the sensitivity and specificity analysis was restricted to cases with
testing available for all assays (AQP4 and MOG) results were not
significantly different (Supplementary Tables 2, 3).We observed
a clear correlation between the number of positive tests (tissue
and cell-based assays) and the ELISA antibody level (Figure 3).
However, antibody levels >100 were seen in a few samples with
only one positive result on the other assays.

TABLE 3 | Concordance and agreement for AQP4 antibody assays.

Assay T-IIF ELISA EI M1/M23 EI AQP4

ELISA 121/141 (86)

0.556 n/a

<0.001

EI M1/M23 131/141 (93) 121/141 (86)

0.790 0.605 n/a

<0.001 <0.001

EI AQP4 132/141 (94) 122/141 (87) 136/141 (96)

0.808 0.620 0.904 n/a

<0.001 <0.001 <0.001

Ox AQP4 134/141 (95) 122/141 (87) 136/141 (96) 139/141 (99)

0.847 0.612 0.902 0.960

<0.001 <0.001 <0.001 <0.001

All data presented as: Concordance n/N (%); bold values represent the Cohen’s kappa

coefficient; italic value represent the P-value; n/a, not applicable.

T-IIF, tissue-based indirect immunofluorescence; ELISA, enzyme linked immunosorbent

assay; EI M1/M23, Euroummun® M1/M23 biochip slide; EI-CBA, Euroimmun® AQP4

fixed cell-based assay; Ox-CBA, Oxford AQP4 live cell-based assay.

DISCUSSION

We have conducted a rater-blinded comparison of 5 different
assays for antibodies to AQP4 in a population of cases with
suspected NMOSD and a variety of controls. Consistent with
previous studies (11, 12, 16, 17) we have found that the sensitivity
of cell-based assays, both fixed and live cell-based assays, was
higher (90–94%) than for either an ELISA assay (60%) or
tissue indirect immunofluorescence (78%). The sensitivity of
cell-based assays was at the higher end of previously reported
data for studies using the 2006 Wingerchuk or earlier diagnostic
criteria for NMOSD in adult, Caucasian populations (64–98%)
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FIGURE 3 | Box and whisker plot of ELISA antibody levels according to the

proportion of positive AQP4 assays (tissue-based indirect

immunofluorescence, Euroimmun® M1/M23 biochip slide, Euroimmun®

AQP4/MOG biochip slide and Oxford live cell-based assay). Central bar shows

the median, boxes represent interquartile range, and whiskers indicate range.

(11, 12, 15, 18–20). This likely reflects the stricter radiological
requirements of the 2015 IPND criteria. In addition to having
typical presenting attacks, cases must also fulfill additional MRI
criteria for the commoner presenting lesions (e.g., longitudinally
extensive spinal cord lesion, long optic nerve lesion or area
postrema lesion on imaging). All assays proved to be highly
specific (≥97%) with the Euroimmun R© fixed cell-based AQP4
and live cell based assays showing 100% specificity. False
positives were more common amongst cases with MS and other
inflammatory diseases with the ELISA assay having the highest
false positive rate. This finding has also been noted previously
(17). The concordance between assays, particularly for the cell-
based assays was high.

The status of cases with positive results for one cell-based assay
in the remaining suspected NMOSD cases remains uncertain.
This may reflect greater sensitivity in “true positives.” However,
they may also represent false positives. Currently, there is no
means to determine the true status of these cases although repeat
testing over time may prove useful. The fact that the number
of positive tests correlates well with the ELISA antibody level
suggests that false negative results may occur when antibody
levels are low, reflecting a sensitivity issue. However, the
possibility of this being due to lower specificity of these assays
cannot be discounted.

Amongst suspected NMOSD cases who were seronegative for
AQP4 antibodies and did not meet the 2015 IPND diagnostic
criteria for NMOSD 8/79 (10% [95% CI 5–19%]) were positive
for MOG antibodies. This is again consistent with previous
studies that have shown positivity rates for MOG antibodies in
this population of 8–32% (17, 19, 21, 22). Specificity for MOG
antibodies was 190/191 (99% [95% CI 96–100%]). No cases
were positive for both AQP4 (on more than one assay) and
MOG antibodies.

One advantage of the present study was that all cases were
identified clinically by clinicians experienced in diagnosing
inflammatory disease of the CNS and not based upon the results
of laboratory testing, which introduces an inherent bias and the
potential for low pre-test probability. The fact that not all cases
were assessed using all assays is a weakness in this study, but
when the analysis was restricted to only cases tested for all AQP4
antibody assays the results were not significantly different. The
finding of identical results for the M1 and M23 AQP4 antibody
assays is contrary to prior studies which have indicated a higher
sensitivity for the M23 isoform (18). However, another recent
study found the same result (23). The lack of clinical inclusion
criteria for rarer presentations which had not been defined at
the time of this study (e.g., area postrema lesion) is a further
weakness of this study. Cases with these features were included
and the numbers of missed cases is likely to have been small.
However, depending on the relative frequency of positive AQP4
antibodies in these cases this could have had an impact on the
reported sensitivity. There is no data to suggest that the rate of
seropositivity in these cases would be different.

We have confirmed the high sensitivity and specificity for a
wide range of AQP4 antibody assays in identifying NMOSD. The
high sensitivity is to be expected, because of the inclusion of
positive AQP4 antibodies as a part of the diagnostic criteria in
the presence of a single characteristic presentation (1). The higher
sensitivity of cell-based assays makes these preferable over other
AQP4 assays in the identification of NMOSD. The fact that more
than half of all suspected NMOSD cases are negative for both
AQP4 and MOG antibodies remains a diagnostic dilemma. The
issue of whether these cases are false negatives on the available
assays or represent phenocopies of NMOSD remains unresolved.
It is possible that yet more antibodies remain to be identified in
this patient population or that a T-cell mediated process more
akin to that hypothesized for MS pathology may be responsible
for these cases (24). The high specificity of both AQP4 and MOG
antibody assays means that in clinical practice, where there is
a characteristic clinical presentation, a positive antibody result
can be taken as being indicative of NMOSD or MOG antibody-
related demyelinating disease respectively. Caution should be
applied in the setting of concurrent inflammatory diseases, due
to potential false positive results. The recent 2015 IPND criteria
identify a closely defined group of NMOSD cases suitable for
research purposes, but leaves a wider group of cases with a similar
phenotype unclassified.
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Inflammation following traumatic injury to the central nervous system (CNS) persists long

after the primary insult and is known to exacerbate cell death and worsen functional

outcomes. Therapeutic interventions targeting this inflammation have been unsuccessful,

which has been attributed to poor bioavailability owing to the presence of blood-CNS

barrier. Recent studies have shown that themagnitude of the CNS inflammatory response

is dependent on systemic inflammatory events. The acute phase response (APR) to

CNS injury presents an alternative strategy to modulating the secondary phase of injury.

However, the communication pathways between the CNS and the periphery remain

poorly understood. Extracellular vesicles (EVs) are membrane bound nanoparticles that

are regulators of intercellular communication. They are shed from cells of the CNS

including microglia, astrocytes, neurons and endothelial cells, and are able to cross the

blood-CNS barrier, thus providing an attractive candidate for initiating the APR after acute

CNS injury. The purpose of this review is to summarize the current evidence that EVs play

a critical role in the APR following CNS injuries.

Keywords: extracellular vesicles, traumatic brain injury, spinal cord injury, inflammation, acute phase response

INTRODUCTION

Acute CNS injuries, including traumatic brain and spinal cord injury (TBI; SCI), as well as stroke,
are a major global burden (1, 2). These neurological disorders have a collective global incidence
rate of 500–700 per 100,000 people (3), and have extremely high morbidity, requiring lifelong
subsequent care at a substantial financial and emotional cost (4, 5). Whilst the primary causes of
TBI and SCI, and even to some extent stroke, are largely unavoidable, the ensuing secondary injury
and ongoing inflammatory response can significantly worsen outcome and could be amenable to
therapeutic intervention (6–9). Themechanisms that promote the inflammatory response to injury,
and the communication pathways that convey messages about CNS health status to the systemic
immune system, are the subject of intense investigation, but it is becoming clear that extracellular
vesicles (EVs) play a pivotal role.

Acute CNS Injury—Primary vs. Secondary Injury
Damage to the CNS following a neurotraumatic event occurs in two distinct phases (7, 10, 11). The
primary phase is largely mechanical, whereby the physical insult causes direct structural damage to
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neuronal tissue and the vasculature, resulting in immediate cell
death, and hemorrhage, ischemia and/or oedema.

The primary phase occurs within a short window of time,
whereas the secondary phase has been shown to persist for
days, weeks, even months after the injury (12, 13). Although
not damaged directly during the initial insult, CNS tissue
surrounding the injury is highly vulnerable to secondary
damage (10, 14). Hypoxia, excitotoxicity, free radical formation,
breakdown of blood-CNS barriers and release of proteases, all
contribute to further cell death (10, 15). Moreover, activated
microglia and astrocytes, as well as infiltrating leukocytes from
the periphery, release cytokines and chemokines that create
a pro-inflammatory microenvironment (6, 7, 13). Collectively,
this results in the progressive destruction of CNS tissue,
known as “bystander tissue damage”, which considerably impairs
functional recovery (16).

Previous studies utilizing rodent models have shown that
the secondary phase of traumatic CNS injury is dependent
on the acute phase response (APR), a systemic inflammatory
response occurring predominantly in the liver (17). In response
to CNS damage, hepatic expression of pro-inflammatory
mediators significantly increases as early as 2 h post-insult
(17–21). In turn, these mediators trigger the mobilization
and priming of leukocytes from the bone marrow, which
then translocate to the site of injury, as well as seemingly
uninvolved peripheral organs. The spleen releases its reservoir
of pro-inflammatory monocytes and increases expression of
IFN-γ, TNF, and IL-6 amongst others (22–24). Systemic
inflammatory response syndrome (SIRS) which can lead tomulti-
organ dysfunction syndrome (MODS) is also not uncommon
in patients (25–29). Concurrent immunosuppression of the
adaptive immune components is often observed (30, 31),
leaving patients also highly susceptible to infections. Peripheral
immune responses thus significantly increase patient mortality
and morbidity.

Interestingly, suppression of the peripheral inflammatory
response has been shown to ameliorate CNS inflammation (20,
32–35). Modulation of the APR by targeting the production
of acute phase proteins, or Kupffer cell depletion, both reduce
neutrophil recruitment to the CNS in models of TBI and SCI (20,
33). Therefore, suppression of the APR may offer an alternative
strategy of minimizing tissue loss and functional deficits after
traumatic CNS injuries. However, it must be acknowledged that
modulating systemic inflammation is complex; paradoxically,
exacerbating periphery inflammation has similarly been shown
to reduce lesion size and leukocyte infiltration of the CNS
post-injury (36, 37). As such, it has been suggested that the
systemic response can also serve as an immune “distraction”,
redistributing leukocyte populations from the injured CNS to
other sites, although it remains unclear to where the leukocytes
redistribute (17). It is likely that timing of the inflammatory
insult is key, and improving our understanding of it will ease
therapeutic targeting.

The initiation signal for the activation of the peripheral
response is unclear. Both humoral and neuronal methods have
been investigated, yet vagotomized animals still exhibit an
APR (38, 39), and thus far no consistent molecular candidates

have been identified that can fully explain this response (40).
There is growing evidence that extracellular vesicles, novel
mediators of communication between distant organs, provide the
missing link.

Extracellular Vesicles
Extracellular vesicles (EVs) is a general term that defines all
cell-derived particles encapsulated in a lipid bilayer, which are
enriched for proteins, lipids, and nucleic acids (41–44). They
are typically classified according to their biogenesis (Figure 1);
apoptotic bodies (1,000–5,000 nm) are released from the plasma
membrane as part of programmed cell death, microvesicles
(150–1,000 nm) are blebbed from the cell membrane, whilst
exosomes (40–150 nm) are generated via the endolysosomal
pathway and stored in multivesicular bodies (MVB) prior to
release by exocytosis.

Whilst EVs have been investigated as a phenomenon for
more than 30 years, the significant role EVs play in intercellular
communication is only just being recognized. Indeed, a plethora
of studies have identified EVs as important mediators of not only
normal physiology, but also of pathology. They have been shown
to be released from almost all cell types, including neurons (45,
46), microglia (47, 48), astrocytes (35), and CNS endothelial cells
(49). EVs have also been isolated from almost all bodily fluids,
including cerebrospinal fluid (CSF) (50, 51) and plasma (52).
They have shown a unique capacity to disseminate information
around the body, including across the blood-CNS barrier (35), to
exert their effects both locally and systemically to distant organs,
making them attractive candidate mediators of CNS-to-immune
communication following injury.

EV-mediated cell communication has been associated in
a number of neurological diseases, where they have been
shown to be vectors of pathogenic proteins, propagating both
Alzheimer’s and Parkinson’s disease (53–56). In brain cancers,
EVs derived from tumor cells have been shown to act locally
in facilitating proliferation, growth and angiogenesis (57–60),
as well as distally in other organs aiding metastasis (61). In
turn, distal cancers are able to metastasize to the brain via
EVs as well (61–63). In the periphery, circulating EVs isolated
from LPS-treated animals have been shown to induce gliosis
and expression of pro-inflammatory molecules in the brains
of naïve mice (64). Moreover, EVs released from stimulated
brain endothelial cells have been shown to induce hepatic
TNF and CXCL1 expression in naïve rats, in turn inducing a
sickness behavior phenotype (49). Together, these studies suggest
the presence of a CNS-periphery communicatory axis that is
mediated by EVs. As such, investigating EVs in the context of
traumatic CNS injuries is of great interest. Here, we will evaluate
the current evidence that EVs mediate the communicatory
pathways between the CNS and the periphery following
traumatic CNS injury.

TRAUMATIC BRAIN INJURY (TBI)

TBI is a devastating disorder, affecting over 55 million people
globally (2). The current lack of available treatments is commonly
attributed to gaps in our knowledge of the secondary phase

Frontiers in Immunology | www.frontiersin.org 2 November 2019 | Volume 10 | Article 272318

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yates et al. CNS Injuries and EVs

FIGURE 1 | EV biogenesis. EVs are typically classed according to their biogenesis. Apoptotic bodies and microvesicles are released from the plasma membrane in

blebbing and budding mechanisms, respectively. In contrast, exosomes are generated by the endolysomal pathway; internal budding of an endosome results in a

multivesicular body which fuses with the plasma membrane, releasing exosomes by exocytosis.

of injury (14). Human clinical data has confirmed that TBI
induces a robust inflammatory response in the periphery which
is predictive of poor outcome (65). In conjunction, numerous
studies have consistently demonstrated that circulating EVs are
significantly elevated in TBI patients during the acute phase
of injury (66, 67). For example, Nekludov et al. (66) showed
a transcranial gradient in EV concentration; more EVs were
detected in the cerebrovenous compared to arterial blood,
indicating that the increase in circulating EVs originated from
the brain. Increases in EVs in the circulation of patients with
TBI have been reflected in rodent studies (35, 48, 49, 52, 68, 69).
Hazelton et al. (52) showed an increase in plasma EVs during the
first 24 h after TBI, whilst Couch et al. (49) and Dickens et al.
(35) both showed increases in an IL-1β model of inflammatory
focal brain lesions. Critically, inhibition of EV release from
the CNS has been shown to attenuate the systemic response
to brain inflammation, and subsequently inhibit leukocyte
infiltration (35). Nekludov et al. further demonstrated that whilst
leukocyte- and platelet-derived EVs were increased after injury,
the circulating EVs were predominantly of endothelial origin,
the concentration of which was 7-fold greater than in healthy
controls. Dickens et al. (35) showed however that a proportion
of plasma EVs released after striatal IL-1β injection are derived
from astrocytes, and that these translocate to the liver, spleen,
and lung, further linking EV-mediated signaling with the APR
following CNS injury. Microglia and astrocytes both release
EVs in response to DAMP-mediated activation with ATP (47).

In turn, microglia-derived EVs enriched for IL-1β have been
reported in the plasma of TBI patients (48). From these studies,
it is easy to assume that EV population changes are due to
increased release from cells of the CNS. However, EVs derived
from hematopoietic cells can also signal to the brain, and their
uptake here was exacerbated by peripheral inflammation (70).
Delineating the origin of EVs could identify the critical players
in CNS-periphery communication, and may identify a specific
cellular target for EV-based therapeutics.

Functional analysis of plasma EVs from models of brain
injury determined that plasma EVs were pro-inflammatory and
able to induce a systemic inflammatory response in naïve rats,
in the absence of CNS injury (49). It has been established
that EVs are capable of interacting with granulocytes and
lymphocytes; they have been shown to carry MHC class I and
II, and contribute to antigen presentation (71–75). Therefore,
they may directly activate the peripheral immune system
through receptor-ligand mechanisms. Moreover, microvesicles
and apoptotic bodies are enriched for phosphatidylserine (PS) on
the outer leaflet, which not only assists in promoting budding,
but also encourages uptake by macrophages and dendritic
cells (76, 77). This is highly relevant considering the ongoing
apoptosis of CNS cells post-injury. Kumar et al. (48) showed
that EVs depleted of their content with the surfactant PEG-
TB had lost their ability to activate microglia in vitro, making
it clear that the composition of EVs is vital for them to
exert their effect.
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As well as surface chemistry, EV cargo appears to be key to
the function of the EVs after TBI. Plasma EVs isolated from TBI
patients were found to have distinct and unique protein profiles
in comparison to those isolated from healthy controls (68,
78). When exogenous pro-inflammatory EVs were administered
intravenously to a model of TBI, the EVs were found to
exacerbate both the APR, and the subsequent neuroinflammation
and pathology (52). Importantly, this response was dependent
on the cellular origin of the EVs. Particles derived from
macrophages had the greatest effect on hepatic expression of
pro-inflammatory molecules, as well as infiltrating neutrophils
in the brain, compared to those from endothelial cells and
plasma samples. Cargo analysis revealed differential miRNA
content in the different EVs, suggesting the particles exert
their effect through transfer of specific genetic transcripts.
Indeed, Dickens et al. (35) identified that miRNA in astrocyte-
derived EVs target the PPAR-α pathway, leading to increased
NFκB activity and cytokine production in the liver. However,
EVs have been found to be enriched for pro-inflammatory
molecules themselves, including cytokines, chemokines, and
inflammasome proteins. Inflammatory EVs have been reported
to transport IL-1β (47, 48, 79, 80), IL-6 and CCL2 (81), as
well as chemokine receptors, such as CCR5 (82). Collectively,
these studies suggest a more direct mechanism of initiating and
propagating inflammation.

In addition to the activation of a systemic inflammatory
response, TBI-associated coagulopathy (TBI-AC) has been
associated with EV signaling (83). Following injury, TBI patients
often develop a hypercoagulable state, leading to an increased risk
of thrombosis (84–86). This has been associated with increased
mortality (84), and platelet dysfunction has been reported to play
a causal role (83). It is thought that the circulating EV population
is predominantly shed from platelets (87), and these platelet-
derived particles have greater procoagulant activity than platelets
themselves (88). TBI induces the release of EVs from platelets (66,
67, 69), and circulating microparticles following TBI were shown
to have procoagulant properties ex vivo (89). Moreover, Tian et al.
(69) were able to reproduce systemic coagulopathy in uninjured
mice through adoptive transfer of TBI plasma EVs. Together,
these data indicate that platelet-derived EVs may be responsible
for TBI-AC, which could be attributed to the exposure of PS on
the outer EV leaflet. It is also likely that brain-derived particles
interact with platelets directly to promote systemic coagulation
and thrombosis. Astrocyte- and neuronal-derived EVs have been
isolated from the blood of TBI animals, and were found to be
procoagulant in phenotype (69). Thus, EV-mediated changes in
systemic function are not limited to alterations in inflammatory
status after injury.

SPINAL CORD INJURY (SCI)

In comparison to brain pathologies, the role of EVs following SCI
has been somewhat overlooked. Whilst systemic inflammation
has been well-documented in SCI patients (26, 90–93), studies
have focused on its contribution to functional outcome rather
than the manner in which it is communicated. To our
knowledge, there is currently no data that describes changes
in the circulating EV population and their influence on

pathophysiology of SCI. That being said, EVs have been isolated
from the CSF of deceased SCI patients (94). These EVs were
found to be enriched for the inflammasome-associated proteins
NLRP1, caspase-1, and ASC, suggesting a pro-inflammatory
phenotype. The authors speculated that these EVs may be able
to trigger an innate immune response in vivo, which would
correspond with TBI associated data, however, EV-mediated
effects on systemic inflammation and immune activation were
not investigated. These authors additionally demonstrated that
neuronal exosomes loaded with siRNA could localize to the
lesion epicenter following SCI when injected systemically, further
supporting the hypothesis of an EV-mediated CNS-periphery
communicatory axis.

Preliminary, unpublished data from our group suggest that
SCI induces a significant increase in plasma-derived EVs
during the acute phase of injury, which is consistent with
human and animal models with brain injuries. However, it
is necessary to determine the specific role of these SCI-
induced changes in the circulating EV population in propagating
peripheral inflammation and the subsequent effect on lesion
development. Whilst TBI data may provide some insight, it
must be acknowledged that the overall impact on the APR and
lesion progression is likely to be different (17). Anatomically,
the distribution of gray and white matter, as well as the
distribution and phenotype of microglia are quite different
in the spinal cord compared to the brain. Moreover, they
both respond differently to traumatic injury in that the blood-
spinal cord barrier (BSCB) shows greater breakdown after
trauma compared to the blood-brain barrier (BBB), and also
that there is increased local CXC chemokine expression and
recruitment of neutrophils to the parenchyma of the spinal
cord compared to the brain. Regarding the systemic response,
peripheral administration of the PPARα agonist fenofibrate
blocked the APR and neutrophil recruitment to the brain after
an intrastriatal microinjection of IL-1β injection (35), however
it was found to be an ineffective treatment in experimental
SCI (95). These differences must be taken into consideration
when assessing the impact of EV signaling following injury,
as manipulation of the cascade after SCI may have differential
effects on lesion progression and patient recovery compared
to TBI.

EVS AS THERAPY

It is clear that interrupting EV signaling may be useful to
treat inflammation, but some groups have also used the EVs
themselves as a therapeutic agent, specifically EVs derived from
stem cells. This strategy is certainly attractive, circumventing
the ethical issues with embryonic and fetal stem cells, as well
as being less invasive with low or no tumorigenicity. Moreover,
the ability to use autografted stem cells will eliminate the
risk of rejection. Most studies to date have almost exclusively
utilized EVs released by mesenchymal stem cells (MSCs), and
these have consistently been shown to improve functional
recovery and behavior deficits in models of TBI (96, 97)
and SCI (98–100). EVs derived from progenitor cells, such
as endothelial colony-forming cells (101) and neural stem
cells (102), appear to have similar neuroprotective effects in
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animal models. Kobayashi et al. (103) demonstrated that EVs
derived from induced pluripotent stem cells (iPSCs) were
able to both increase angiogenesis and the rate of wound
closure in a model of skin wound healing. Whether iPSC-EVs
have therapeutic potential in the context of TBI/SCI remains
to be investigated.

The mechanisms underlying the neuroprotective actions of
stem cell-derived EVs are currently under investigation. To date,
they have been shown to be internalized by endothelial cells
(101), neurons (104), astrocytes (104), oligodendrocytes (105),
and microglia (106) in the CNS, suggesting they may exert
their effect directly. However, improvements after injury are not
necessarily due to prevention of cell death, as no change in
lesion volume has often been reported (97, 107). Rather, EVs
may exert their effect by stimulating endogenous restorative
mechanisms that promote recovery. Zhang et al. (97) have shown
MSC-EVs enhanced vascular density and neurogenesis, with a
concurrent reduction in brain inflammation in a TBI model.
Increased angiogenesis has also been shown in a model of
SCI (108), following treatment with MSC-EVs. One potential
mechanism that has been proposed is the transfer of miRNAs

(11). Xin et al. (104) demonstrated that EV-associated miR-
133b transferred to astrocytes and neurons was responsible
for stimulating neurite outgrowth in their stroke model,
and that inhibition of miRNA machinery proteins attenuated
this effect (109). Exosomal miR-17-92 (109, 110), miR-134
(105), and miR-124-3p (111) have additionally been implicated
in neuroprotection. Bioengineering MSCs to produce EVs
overexpressing these transcripts are currently under investigation
(110, 112–114). In the majority of these studies, EVs are
administered intravenously to the periphery which is important
as MSC-EVs have been shown to additionally modulate the
systemic immune response following traumatic CNS injuries.
In a model of SCI, improvements in locomotor function
have been attributed to suppression of the systemic immune
response by stimulated MSC-EVs, as circulating neutrophils
were reduced and monocytes were retained in the spleen (100).
MSC-EVs have been shown to localize to this organ (106), and
splenectomies improve neurological outcomes in models of SCI
(22); it would be of interest to investigate the effect of MSC-
EVs in injury models with splenectomy to determine if their
beneficial effect remains.

FIGURE 2 | Visualized hypothesis of EV-mediated systemic inflammation response to traumatic CNS injury. Acute traumatic injuries to the brain and spinal cord

induce the release of extracellular vesicles into circulation. These EVs localize to peripheral organs whereby they induce the production of pro-inflammatory molecules

(chemokines, cytokines, acute phase proteins), in turn stimulating the mobilization of leukocytes which infiltrate both the CNS and peripheral organs. This systemic

immune response is referred to as the acute phase response.
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CONCLUSIONS

In the last decade, interest in EVs has increased exponentially
for both biomarker and therapeutic purposes, as more studies
identify EV signaling as a key component of normal physiology
and pathology. However, whilst fields such as gynecology
have led the way, the investigation of the role that EVs
play in the context of acquired neurological diseases is
relatively new. Here, we have discussed how it has been
consistently shown that the circulating EV population is
altered by trauma to the CNS (Figure 2). The collected
evidence presented here suggests that EVs mediate the systemic
response following CNS injury, and that manipulation of
this pathway can protect the CNS from secondary damage.
However, our understanding of the underlying mechanisms
and the consequences of manipulation of the EV population,
is limited, and fundamental questions remain. For instance,
it is unclear whether EV biogenesis after injury is different
from the mechanisms that govern basal EV production. It

also remains unclear whether the absolute number of EVs in
the circulation is the most important factor, or whether the
enrichment of circulating EVs from CNS-derived populations,
that is barely detectable in the periphery without specific
markers, is more important. Moving forward, it is clear that
the role of EVs in the pathogenesis of systemic inflammation
following CNS injury warrants further investigation to underpin
development of successful therapeutic strategies and improve
functional outcomes.
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Multiple sclerosis (MS) is an inflammatory disease of the central nervous system

(CNS) that leads to the death of neurons and oligodendrocytes, which cannot be

measured in living subjects. Physiological cellular death, otherwise known as apoptosis,

progresses through a series of stages which culminates in the discharge of cellular

contents into vesicles known as apoptotic bodies (ABs) or apoptosomes. These ABs

can be detected in bodily fluids as Annexin-V-positive vesicles of 0.5–4.0µm in size. In

addition, the origin of these ABs might be detected by staining for cell-specific surface

markers. Thus, we investigated whether quantifications of the total and CNS cell-specific

ABs in the cerebrospinal fluid (CSF) of patients provided any clinical value in MS.

Extracellular vesicles, from CSF of 64 prospectively-acquired subjects, were collected in

a blinded fashion using ultra-centrifugation. ABs were detected by flow cytometry using

bead-enabled size-gating and Annexin-V-staining. The origin of these ABs was further

classified by staining the vesicles for cell-specific surface markers. Upon unblinding, we

evaluated the differences between diagnostic categories and correlations with clinical

measures. There were no statistically significant differences in the numbers of total or

any cell-specific ABs across different disease diagnostic subgroups and no significant

correlations with any of the tested clinical measures of CNS tissue destruction, disability,

MS activity, and severity (i.e., rates of disability accumulation). Overlap of cell surface

markers suggests inability to reliably determine origin of ABs using antibody-based flow

cytometry. These negative data suggest that CNS cells in MS either die by non-apoptotic

mechanisms or die in frequencies indistinguishable by current assays from apoptosis of

other cells, such as immune cells performing immunosurveillance in healthy conditions.

Keywords: multiple sclerosis, cerebrospinal fluid, apoptotic bodies, clinical outcomes, flow cytometry, cell surface

markers

INTRODUCTION

Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system (CNS),
leading to the demyelination of axons and neurodegeneration. Alongside traumatic brain injury,
it is the most frequent cause of neurological disability in young adults (1). Findings from prior
studies led to the hypothesis that MS can be largely divided into two stages, starting with the
inflammatory phase in the periphery and later entering into the neurodegenerative phase (2).
Although great progress has been made in understanding the inflammatory components of the
disease, the neurodegenerative components are still obscure.
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Currently, there are two main ways to measure
neurodegenerative process in living human subjects: structural
imaging and measurement of neurofilament light chain protein
(NFL) (3, 4). Structural (MRI) imaging identifies CNS tissue
destruction as brain/spinal cord atrophy. However, MRI imaging
fails to provide cellular or molecular information and therefore
cannot reliably measure the loss of crucial cell types such as
neurons and oligodendrocytes, especially when loss of these
CNS cells may be masked by infiltration of CNS tissue by
immune cells or by compensatory astrogliosis. With emergence
of ultra-sensitive Single Molecule Analysis (Simoa) NFL assay
(5, 6) blood (serum or plasma) NFL levels can be measured
both in healthy subjects and MS patients. In MS NFL levels
are increased during MS activity and they can weakly predict
subsequent MS progression on a group, but not individual levels
(4, 7–11). Thus, there is still a need to develop biomarkers of
neuronal and oligodendroglial injury/loss that can be applied on
a patient level.

Pathology studies have shown the presence of apoptotic
cells, mainly oligodendrocytes and neurons, at the site of MS
lesions (2, 12, 13), suggesting that CNS cell apoptosis plays
an important role in the irreversible neurological disability
during the progressive stage of MS. This hypothesis was further
supported by animal modeling with antiapoptotic protein B-
cell lymphoma-2 (Bcl-2)-overexpressing transgenic mice; in
comparison with wild type (WT) these transgenic mice showed
reduced experimental autoimmune encephalomyelitis (EAE)-
severity, despite similar inflammatory response (14).

Apoptotic cells progress through a series of stages including
chromatin condensation, DNA fragmentation, membrane

TABLE 1 | Subjects’ demographics data based on their disease diagnosis.

Diagnosis HD NIND OIND CIS RR-MS P-MS

N Female/male 4/6 1/4 0/12 2/0 11/6 11/7

Age Average 43.8 42.2 56.8 53.3 46.2 60.6

SD 12.1 13.1 13.3 6.1 10.3 6.0

Range 24.3–60.5 26.4–60.3 24.5–70.0 48.9–57.6 24.2–66.5 49.9–70.0

Clinical disease activity Active/non-active NA NA NA NA 4/13 2/16

COMRIS-CTD Average NA NA NA NA 11.7 15.9

SD NA NA NA NA 7.4 6.2

Range NA NA NA NA 2.2–24.2 1.5–25.1

EDSS Average NA NA NA NA 2.4 5.3

SD NA NA NA NA 1.6 1.8

Range NA NA NA NA 1.0–6.5 2.5–7.5

CombiWISE Average NA NA NA NA 20.5 43.7

SD NA NA NA NA 12.3 16.4

Range NA NA NA NA 6.9–51.2 20.5–70.0

MS-DSS Average NA NA NA NA 1.3 2.2

SD NA NA NA NA 0.8 1.0

Range NA NA NA NA 0.5–3.4 0.5–4.0

CombiWISE slope Average NA NA NA NA 1.7 1.9

SD NA NA NA NA 1.5 1.5

Range NA NA NA NA −1.2–4.6 −1.1–4.3

blebbing, and cell shrinkage, which all culminate in the discharge
of cellular contents into extracellular vesicles, known as apoptotic
bodies (ABs) or apoptosomes (15, 16). Previous studies have
tried to isolate and identify ABs from subject’s body fluid and
use them as markers of respective disease-related degenerative
processes (17–20).

Thus, the goal of the current study was to identify the presence
of apoptotic cells in the CNS of living subjects by measuring
the total and cell-specific ABs in cerebrospinal fluid (CSF) of
patients. Additionally, we asked whether densities of total or cell-
specific ABs differentiate MS from healthy donors (HDs), and
within MS patient cohorts correlate with clinical measures of
CNS tissue destruction, disability, MS activity and severity (i.e.,
rates of disability accumulation).

MATERIALS AND METHODS

Cell Cultures and Treatments
Human neuroblastoma cells (SK-N-SH; ATCC# HTB-11,
Manassas, VA) were cultured on poly-L-lysine (PLL; Sigma-
Aldrich, St. Louis, MO) -coated plates (Costar, Corning,
NY), in Dulbecco’s modified Eagles medium (DMEM; Gibco,
Gaithersburg, MD) supplemented with fetal bovine serum (FBS;
Gemini Bio-Products, Sacramento, CA), and sodium pyruvate
(Lonza, Walkersville, MD). Cells were either left untreated
(Control) or treated with Staurosporine (0.5µM; R&D Systems
Inc., Minneapolis, MN). Twenty four hours after treatment,
culture supernatants were collected and stored on ice until
further use. Cells were washed with phosphate-buffered saline
(PBS; Gibco, Gaithersburg, MD) and detached from plate using
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trypsin-EDTA solution (Sigma-Aldrich); detached cells were
pelleted and stored on ice until further use.

CSF Collection and Processing
All subjects were recruited under IRB-approved protocols
(Comprehensive Multimodal Analysis of Neuroimmunological
Diseases of the Central Nervous System, ClinicalTrials.gov
Identifier: NCT00794352; and Evaluation and Follow-up of
Patients with Cryptococcosis, ClinicalTrials.gov Identifier:
NCT00001352) and all patients provided written informed
consent. CSF from subjects were collected per standardized
operating procedures (21). CSF aliquots were prospectively
labeled using alphanumeric code, stored on ice until further use
and analyzed in a blinded fashion.

Isolation of Apoptotic Bodies
ABs were isolated from culture supernatants and CSF as
previously described (19, 22–24). Briefly, cells were isolated and
removed by pelleting at 335 g for 10min. To remove cell-debris,

cell-free supernatants were centrifuged at 1,000 g for 10min;
followed by another centrifugation at 2,000 g for 30min to pellet
ABs. Pelleted ABs were resuspended and washed with PBS.

Flow Cytometry
ABs were stained with Annexin V-FITC, and cells were stained
with Annexin V-FITC and Propidium Iodide (TACS R© Annexin
V Kit; Trevigen Inc., Gaithersburg, MD) as per manufacturer’s
instructions. CSF ABs were also stained for CNS cell-specific
surface markers to identify their origin: We used cell-surface
markers previously employed in isolation of human CNS cells
from brain specimens using immune-panning, and validated
by cell-specific RNA profiles (25, 26): CD90 (Neuronal surface
marker; Human CD90/Thy1 APC-conjugated Antibody; R&D
Systems, Minneapolis, MN; Clone # Thy-1A1), HepaCAM
(Astroglial surface marker; Human HepaCAM Antibody; R&D
Systems; Clone # 419305; tagged with DyLight 405; Novus
Biologicals, Centennial, CO), GalC (Oligodendroglial surface

FIGURE 1 | (A) Representative flow cytometry images of cells stained with Annexin V-FITC and propidium iodide after control or Staurosporine (0.5µM) treatment for

24 h. (B) Plot of apoptotic cells (%). The error bars represent standard deviation (n = 6); data were analyzed using Wilcoxon test, P = 0.031. *p < 0.05.
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marker; Anti-Galactocerebroside Antibody; EMD Millipore,
Burlington, MA; Clone # mGalC; tagged with PerCP-Cy5.5;
Novus Biologicals), CD31 (Endothelial cell surface marker

(27); Human CD31/PECAM-1 PE-conjugated Antibody; R&D
Systems; Clone # 9G11), and CD14 (Myeloid lineage cell surface
marker (28); Alexa Fluor R© 700 anti-human CD14 Antibody;

FIGURE 2 | (A) Flow cytometry images of size calibration beads (1, 4, and 6µm beads). (B) Representative flow cytometry images indicating process of ABs

identification using size gate (1–4µm) and Annexin V-FITC staining, from cell culture supernatants after control or Staurosporine (0.5µM) treatment. (C) Plot of ABs

(1–4µm and Annexin V-positive events). The error bars represent standard deviation (n = 6); data were analyzed using Wilcoxon test, P = 0.031. *p < 0.05.
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BioLegend, San Diego, CA; Clone # HCD14). Briefly, after wash
with PBS, pelleted ABs were resuspended in Annexin V-FITC
and fluorescence-tagged antibodies against cell-specific surface
markers in Annexin V-binding buffer (provided with TACS R©

Annexin V Kit) and incubated in dark for 15min at room
temperature. Stained ABs were washed with binding buffer and
then analyzed using fluorescence-activated flow cytometer (BD
LSR II Flow Cytometer, BD Biosciences, San Jose, CA). Gating on
ABs included size gate [1–4µm (29)], using Flow Cytometry Size
Calibration Kit (ThermoFisher Scientific, Grand Island, NY). The
vesicles in 1–4µm size gate were further analyzed for Annexin V
and cell-specific surface markers’ staining.

Subjects’ Demographics Data
A total of 64 CSF samples were analyzed. After unblinding
diagnostic codes, this cohort consisted of healthy donors (HD,
n = 10), non-inflammatory neurological disorders (NIND, n
= 5), other inflammatory neurological disorders (OIND, n =

12; mainly, comprised of Cryptococcal Meningitis patients),

clinically isolated syndrome that did not yet fulfill MS diagnostic
criteria (CIS, n = 2), relapsing-remitting MS (RR-MS, n = 17),
and progressive MS [P-MS, comprised of both secondary- (SP-
MS) and primary-progressive MS (PP-MS), n = 18] (Table 1).
MS diagnostic subgroups (CIS, RR-MS, SP-MS, and PP-MS)
were classified using McDonald’s criteria, 2010 revisions (30).
MS cohort (both RR- and P-MS) was further separated based on
disease activity (active vs. non-active MS) using clinical relapses
and new contrast-enhancing or new MRI lesions.

Statistical Analyses
ABs data for subjects’ CSF samples were acquired with the
operator blinded to subjects’ clinical diagnoses. After data
acquisition for all subjects, ABs per ml of CSF were compared
across disease diagnostic subgroups (HD, NIND, OIND, RR-MS,
and P-MS) using one-way ANOVA; as we have acquired CSF
samples from only two CIS subjects, they were not included
in analyses. Also, within MS subjects, ABs per ml of CSF
were compared across disease activity (active vs. non-active

FIGURE 3 | (A) Representative flow cytometry image indicating how size gate was used to select 1-4µm vesicles from patients’ CSF samples. (B) Representative

flow cytometry image showing process of identification of ABs from 1 to 4µm sized vesicles using Annexin V-FITC staining (1–4µm and Annexin V-positive events).

(C) Representative flow cytometry images showing how origin of ABs was identified using CNS cell-specific surface markers staining.
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MS) using non-parametric (Mann–Whitney) test. Within MS
subjects, ABs per ml of CSF were correlated with machine-
learning-optimized clinical and imaging measures of CNS tissue
destruction [Composite MRI scale of CNS tissue destruction,
COMRIS-CTD (31)], disability [Expanded Disability Status
Scale, EDSS (32) and Combinatorial Weight-Adjusted Disability

Scale, CombiWISE (33)], severity [Multiple Sclerosis Disease
Severity Scale, MS-DSS (34)], and disability progression slopes
(CombiWISE Slope) derived from linear regression models from
CombiWISE measurements during longitudinal follow-up after
LP collection using Spearman correlation analysis (GraphPad
Prism 7; GraphPad Software Inc., La Jolla, CA).

FIGURE 4 | Plots of total and CNS cell-specific ABs adjusted for CSF volume (ABs/ml CSF). Each point represents individual subject; and error bars represent

standard deviation (n: HD = 10, NIND = 5, OIND = 12, RR-MS = 17, and P-MS = 18); data were analyzed using one-way ANOVA.
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RESULTS

In vitro Model Validation
We validated our “identification and assessment of Abs” model

using human neuronal cell line (SK-N-SH) cultures. As a
positive control for induction of apoptosis we used Staurosporine

treatment (0.5µM, 24 h). Apoptotic cells were identified by

staining with Annexin V and PI and were analyzed using flow
cytometry. According tomanufacturer’s (TACS R© Annexin V Kit)
instructions both Annexin V and PI-negative cells are live, only
Annexin V-positive cells are early-apoptotic, both Annexin V-
and PI-positive cells are late-apoptotic and only PI-positive cells
are necrotic (Figure 1A). After Staurosporine treatment, the % of
apoptotic cells was significantly elevated (Figure 1B).

FIGURE 5 | Plots of total and CNS cell-specific ABs adjusted for CSF volume (ABs/ml CSF). Each point represents individual MS subject; and error bars represent

standard deviation (n: non-active MS = 29 and Active MS = 6); data were analyzed using nonparametric (Mann–Whitney) test.
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Quantifying the induction of apoptosis by Staurosporine in
our culture conditions, we next sought to quantify ABs in cell
culture supernatants in order to demonstrate that our assay
could differentiate between the release of ABs from control and
Staurosporine-treated cultures. To this end, size gates [1–4µm,
an average size of ABs (29)] were applied in combination with
Annexin V staining. First, 1–4µm size gates were set using 1,
4, and 6µm beads (Figure 2A; Flow Cytometry Size Calibration
Kit, ThermoFisher Scientific). Within 1–4µm vesicles ABs
were identified as Annexin V positive (Figure 2B). Total ABs
were quantified (1–4µm and Annexin V-positive events); after
Staurosporine treatment the total number of ABs in cell culture
supernatants were significantly elevated (Figure 2C).

Analyses of CSF Apoptotic Bodies
Verifying the flow-cytometry-based ABs detection in cell culture
supernatants, we next applied the same assay to prospectively-
acquired CSF samples. As described in the methods, extracellular
vesicles were collected using the differential centrifugation
approach. 1–4µm vesicles were selected using size gate set by
known sized beads (Figure 3A). From these vesicles total ABs
were detected using Annexin V staining (1–4µm and Annexin
V-positive events; Figure 3B).

While total number of ABs in the CSF may be clinically
useful, we considered the possibility that apoptosis occurs in
the intrathecal compartment also under physiological conditions:
e.g., any activated immune cell may cross the blood brain
barrier as a part of active immunosurveillance mechanism. Such
immune cell (e.g., T lymphocyte), if not re-activated in the CNS
compartment, may either re-cycle back to blood via lymphatic
system, or undergo apoptosis as part of physiological termination
of the immune response (35, 36). Thus, we envisioned that the
assay that could identify the cellular origin of ABs may have
significantly higher clinical utility. To this end, we employed
fluorescently-tagged antibodies specific for surface markers of
different CNS cells. Selected surface markers/antibodies were
previously validated as CNS cell-types-specific, because they were
used to isolate specific CNS cells (i.e., neurons, oligodendrocytes,
astrocytes, microglia, and endothelial cells) from human
brain samples via immunopanning. Subsequent sequencing

of thus-isolated CNS cell types validated that expected cell-
specific transcripts were only expressed in appropriate CNS
cell-type (25, 26).

The utilized cell-specific markers were: CD90+ ABs (neurons
derived ABs), HepaCAM+ ABs (astrocytes derived ABs), GalC+
ABs (oligodendrocytes derived ABs), CD31+ ABs (endothelial
cells derived ABs), and CD14+ ABs (myeloid cells derived ABs)
(Figure 3C). Total number of ABs and cell-specific ABs were
adjusted for CSF volume to obtain the number of ABs per ml of
CSF (ABs/ml).

Upon unblinding the diagnostic categories, we observed no
statistically significant differences in number of total as well as
CNS cell-specific ABs across disease diagnostic subgroups or MS
activity (Figures 4, 5). However, while using non-overlapping
cell-surface markers (i.e., each selected cell surface marker is
specific for one CNS cell type and should not be expressed
on any other CNS cells), we observed substantial co-expression
of these markers on individual ABs. This overlap could be
quantified by howmuch the sum of cell-specific ABs exceeds total
ABs (Figure 4 and Supplementary Data File 1). Because the sum
of cell-specific ABs always exceeded total number of ABs, we
conclude that ABs most likely exhibited non-specific binding of
antibodies. High non-specific antibody binding is a well-known
problem affecting apoptotic cells, as apoptosis-induced changes
in plasma cell membrane upregulate “eat me” signals recognized
by phagocytes, including enhanced, non-specific binding of
antibodies (37–39).

Consequently, we observed no correlations between the
numbers/concentrations of total or any cell-specific ABs with
accurate clinical and imaging measures CNS tissue destruction,
disability, MS severity, and disability progression (Table 2).

DISCUSSION

MS has been studied extensively regarding the inflammatory
component of disease (40). However, neurodegenerative
component of MS, or immune-mediated destruction of specific
CNS cells cannot be measured in living subjects. In this study,
we attempted to analyze apoptosis in living subjects by assessing
ABs in CSF. While there have been previous attempts to

TABLE 2 | Correlation analysis (Spearman r and P-values) between adjusted total (T-ABs) and CNS cell-specific ABs (ND-ABs, neurons; AD-ABs, astrocytes; OD-ABs,

oligodendrocytes; ED-ABs, endothelial cells; and MD-Abs, myeloid cells) in subjects’ CSF (ABs/ml CSF) and their clinical measures of CNS tissue destruction, disability,

and severity.

T-ABs ND-ABs AD-ABs OD-ABs ED-ABs MD-ABs

COMRIS-CTD Spearman r −0.20 −0.02 −0.10 −0.13 −0.19 −0.08

P-value 0.25 0.89 0.57 0.46 0.26 0.66

EDSS Spearman r −0.07 0.23 0.07 0.01 0.07 0.15

P-value 0.69 0.19 0.70 0.97 0.68 0.38

CombiWISE Spearman r −0.11 0.25 0.07 0.02 0.00 0.13

P-value 0.53 0.14 0.68 0.92 0.99 0.45

MS-DSS Spearman r −0.18 0.04 −0.08 −0.09 −0.13 −0.04

P-value 0.29 0.84 0.64 0.63 0.44 0.82

CombiWISE slope Spearman r −0.29 0.05 −0.05 −0.08 −0.30 −0.08

P-value 0.09 0.80 0.76 0.64 0.08 0.65
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analyze blood/serum extracellular vesicles as markers of CNS
disorders (41–43), there is no evidence for the presence of
CNS ABs in blood/serum; this is likely due to their large size
(0.5–4µm) (16, 24, 29, 44) which prevents ABs from crossing
the blood brain barrier (BBB) or their rapid elimination from
the blood by the splenic or hepatic reticulo-endothelial system.
Moreover, blood/serum naturally has a basal level of ABs
from immune system cells which arise during regular immune
responses (45, 46).

Our in-vitro studies validated that selected flow-cytometry
assay measures ABs released to culture supernatants.
Additionally, using CNS cell-specific surface markers
previously validated in human immunopanning isolation
of specific CNS cell-types provided high expectation that
enumeration of CNS cell-specific ABs may be of clinical
value. Unfortunately, after breaking the diagnostic codes
we observed no differences between diagnostic categories
and no correlations with any clinical or imaging outcomes
of disability, CNS tissue destruction or MS severity. While
some may argue that our study was under-powered to detect
differences between diagnostic categories, we had good
representation of subjects from all four diagnostic categories
and found no biologically plausible trends. We concluded
that expanding our dataset using the same assay would be
futile, as such test could never be applied on a patient-
level and therefore cannot outperform current tests such
as NFL.

There are several possible interpretations of our negative
results: as cell-surface proteins are often shed during apoptosis
(47–49) and changes in cell membrane structure induced by
apoptosis increase non-specific binding of antibodies (37–39),
accurate determination of the origin of apoptotic bodies using
flow cytometry may not be possible. The interference from
non-specific binding is supported by the observed overlap
of multiple CNS cell-type specific surface markers on the
individual ABs. If non-specific antibody binding, rather than
shedding of cell-surface markers from apoptotic cells was the
main cause of our negative results, then attempting to use
alternative reagents for detection of cell-surface molecules,
such as DNA-aptamers (50) may be of use. Unfortunately,
such alternative reagents are not commercially available for
validated CNS cell-surface markers. Flow cytometry may also
not be an ideal method for analyzing ABs, as older flow
cytometers have low resolution for subcellular particles. Our
employment of enhanced gating guided by size beads and
validation of our assay in cell-culture supernatants mitigated
this impediment.

The fate of ABs after their release from the CNS cells is
unknown; while somemay be secreted to the CSF via extracellular
fluid, others, perhaps most, are likely phagocytosed closer to their
origin (51–53). Especially, in the context of pro-inflammatory

environment rich in myeloid cells such as activatedmicroglia and
infiltrating macrophages, this local capture of ABs may be much
more efficient in MS and OIND controls than in healthy subject,
mitigating expected differences between diagnostic categories.
Thus, CSF concentrations of ABs may not reliably reflect their
CNS origin.

We conclude that measuring ABs in the CSF using flow
cytometry does not provide desired clinical value.We present our
negative report in an effort to prevent other investigators from
pursuing this path without incorporating substantial technical
advancement that may mitigate problems identified in our
study. Thus, a need to develop CNS cell-specific biomarkers
reflective of neurodegenerative mechanisms associated with CNS
diseases remains.
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Allergic diseases are associated with central and peripheral nervous system diseases

such as autism spectrum disorders and eosinophilic granulomatosis with polyangiitis,

which frequently causes mononeuritis multiplex. Thus, it is possible that patients with

an atopic constitution might develop multifocal inflammation in central and peripheral

nervous system tissues. In a previous study in Japan, we reported a rare form

of myelitis with persistent neuropathic pain (NeP) in patients with allergic disorders.

However, the underlying mechanism of allergic inflammation-related NeP remains to

be elucidated. First, we analyzed the effect of allergic inflammation on the nociceptive

system in the spinal cord. Mice with atopy showed microglial and astroglial activation

in the spinal cord and tactile allodynia. In a microarray analysis of isolated microglia

from the spinal cord, endothelin receptor type B (EDNRB) was the most upregulated

cell surface receptor in mice with atopy. Immunohistochemical analysis demonstrated

EDNRB expression was upregulated in microglia and astroglia. The EDNRB antagonist

BQ788 abolished glial activation and allodynia. These findings indicated that allergic

inflammation induced widespread glial activation through the EDNRB pathway and NeP.

Second, we investigated whether autoantibody-mediated pathogenesis underlies allergic

inflammation-related NeP. We detected specific autoantibodies to small dorsal root

ganglion (DRG) neurons and their nerve terminals in the dorsal horns of NeP patients

with allergic disorders. An analysis of IgG subclasses revealed a predominance of IgG2.

These autoantibodies were mostly colocalized with isolectin B4- and P2X3-positive

unmyelinated C-fiber type small DRG neurons. By contrast, immunostaining for

S100β, a myelinated DRG neuron marker, showed no colocalization with patient IgG.

Immunoprecipitation and liquid chromatography-tandem mass spectrometry identified

plexin D1 as a target autoantigen. Patients with anti-plexin D1 antibodies often

present with burning pain and thermal hyperalgesia. Immunotherapies, including plasma

exchange, are effective for NeP management. Therefore, anti-plexin D1 antibodies

may be pathogenic for immune-mediated NeP, especially under allergic inflammation

conditions. Thus, allergic inflammation may induce NeP through glial inflammation in the

spinal cord and the anti-plexin D1 antibody-mediated impairment of small DRG neurons.
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INTRODUCTION

Allergic diseases are associated with central and peripheral
nervous system diseases such as autism spectrum disorders
(1–3) and eosinophilic granulomatosis with polyangiitis,
which frequently causes mononeuritis multiplex (4, 5). These
observations indicate that patients with an atopic constitution
develop multifocal inflammation in central nervous system
(CNS) and peripheral nervous system (PNS) tissues (6).

We previously reported a rare form of myelitis with persistent
neuropathic pain (NeP) in Japanese patients with allergic diseases
(7, 8). Nationwide surveys have found that this form of myelitis
is widely distributed in Japan (6, 9). Similar cases have also
been reported in Western countries (10, 11). Patients with
this form of myelitis as well as atopy often showed cervical
cord involvement, mainly in the posterior lesion, and exhibited
sensory impairment including NeP in all four limbs (6, 9). We
found a loss of myelin and axon and eosinophil infiltration in
biopsied spinal cord lesions from these patients (12, 13). Thus,
we designated this form of myelitis “atopic myelitis (AM)” and
established diagnostic criteria (14). Definite AM is defined as:
(1) patients meeting the absolute criteria [myelitis with unknown
etiology; positivity for allergen-specific IgE; and absence of brain
MRI lesions fulfilling the Barkhof criteria for MS (15)] plus
the pathological criteria (spinal cord biopsy samples showing
existence of perivascular lymphocyte cuffings with various
degrees of eosinophil infiltration, sometimes accompanied by
granuloma); or (2) patients meeting the absolute criteria plus at
least two of the three supporting positive criteria [present or past
history of atopic disease; serum hyperIgEemia; increased level of
interleukin (IL)-9 or eotaxin in cerebrospinal fluid (CSF)] plus
one supporting negative criterion (no oligoclonal bands in CSF).
Probable cases of AM are defined as: (1) patients meeting the
absolute criteria plus one of the supporting positive criteria plus
the one supporting negative criterion; or (2) patients meeting
the absolute criteria plus at least two of the supporting positive
criteria. In patients with AM, there were significant positive
correlations between disease duration and Kurtzke Expanded
Disability Status Scale score (16) and Sensory Functional scale
score (17). However, the underlying mechanism of allergic
inflammation-related NeP remains to be elucidated.

Recent studies have established a crucial role of immune
system activation in modulation of NeP (18, 19). Pro-
inflammatory cytokines, such as tumor necrosis factor (TNF)-α,
interferon gamma (IFNγ), IL-1β, IL-6, and IL-17, were shown
to be elevated in sera and CSF of patients with NeP (20, 21).
Because receptors for these cytokines are expressed on sensory
neurons, pro-inflammatory cytokines may exert direct effects
on nociceptive sensory neurons and induce NeP. Moreover,
treatment with anti-inflammatory cytokines, such as IL-4 and
IL-10, was reported to alleviate NeP in animal models (22, 23).
Moreover, passive transfer of Th1 cells to athymic nude rats
lacking mature T cells enhanced pain hypersensitivity in the
recipient mice (24). In contrast, passive transfer of polarized
Th2 cells attenuated pain hypersensitivity in the recipient mice.
These findings suggest that Th2-dominant allergic inflammation
may be protective for NeP. However, in clinical practice, we

often encounter patients with both allergic disease and severe
NeP (6), suggesting that other NeP mechanisms are operative.
Accumulating evidence indicates that activation of spinal
microglia, resident macrophages in the CNS, is crucial for NeP
generation and modulation (25, 26). Peripheral nerve damage
induces microglial activation in the dorsal horn of the spinal
cord. Activated microglial mediators in the spinal dorsal horn,
such as TNF-α, IL-1β, and brain-derived neurotrophic factor
(BDNF), increase excitatory synaptic transmission and cause
NeP via neuron-glial interactions (27). We further focused on B
cell hyperactivation, which induces NeP through production of
autoantibodies against antigens in the somatosensory pathway in
response to the allergic condition (19, 28). Indeed, autoantibodies
against sensory neurons were detected in autoimmune diseases
associated with pain, such as Guillain–Barré syndrome (29) and
complex regional pain syndrome (CRPS) (30), and depletion of B
cells reduced NeP in CRPS model mice (31).

In this Mini Review, we will discuss the possible NeP
mechanisms associated with allergic inflammation, on the
basis of findings from animal models of allergic disease
and autoantibodies against sensory neurons of patients with
allergic diseases.

ALLERGIC INFLAMMATION INDUCES
NEUROPATHIC PAIN THROUGH THE
ACTIVATION OF GLIAL CELLS

First, we analyzed the effect of allergic inflammation on the
nociceptive system of the spinal cord in an animal model of
allergic disease (32). We induced atopic diathesis, bronchial
asthma, or atopic dermatitis in C57BL/6 mice by intraperitoneal
sensitization with ovalbumin (OVA) (50 µg) and aluminum
hydroxide hydrate (2mg) on days 0, 7, and 14 (atopic diathesis
model), followed by nasal aspiration of OVA solution (2.5
mg/ml) for 4 consecutive days (days 15–18) (bronchial asthma
model) or direct OVA application (100 µg) on tape-stripped skin
(atopic dermatitis model). Mice with atopy showed microglial
and astroglial activation in the dorsal horn of the spinal cord.
A higher expression of FBJ murine osteosarcoma viral oncogene
homolog B (FosB), a neuronal activation marker, was also seen
in the dorsal horn of mice with atopy compared with mice
without atopy. Additionally, we found activated endothelial cells
and extravasation of serum albumin in atopic mice, suggesting
blood–brain barrier (BBB) impairment. There was neither
demyelination nor axonal degeneration in the spinal cord of
mice with atopy. We used von Frey filaments to evaluate tactile
allodynia in mice with atopy (33) and found that atopy model
mice had severe tactile allodynia.

In a microarray analysis of isolated microglia from the spinal
cord of mice with atopy, microglia showed an augmented
pro-inflammatory signature, including IL-1β, CD38, and
prostaglandin-endoperoxide synthase 2, which are known to be
upregulated in activated microglia (34, 35). Endothelin receptor
type B (EDNRB) was the most upregulated cell surface microglial
receptor in mice with atopy. Immunohistochemical analysis
confirmed that EDNRB expression was upregulated in microglia
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and astroglia, and that spinal cord neurons did not express
EDNRB. Meanwhile, endothelin receptor type A (EDNRA),
another main receptor for endothelin, was not detected in
microglia, astroglia, and neurons of the spinal cord of atopic
mice. We further found increased levels of endothelin-1 (ET-1),
an EDNRB ligand, in serum by ELISA, and observed marked
up-regulation of ET-1 in alveolar epithelial cells and epidermis
of atopic mice by immunohistochemistry. We then analyzed
whether a selective EDNRB antagonist, BQ-788, would affect glial
activation and tactile allodynia in atopic mice. BQ-788 treatment
abolished microglial, astroglial, and neuronal activation and
allodynia. Because the neuronal expression of EDNRB was not
detected in atopic mice, the EDNRB antagonist primarily acted
on microglia and astroglia rather than neurons. Thus, microglia
and astroglia are important for the emergence of allergic
inflammation-related NeP via the ET-1/EDNRB pathway.

We also conducted a neuropathological examination of
autopsied spinal cord lesions from a patient with AM. We found
microglial and astroglial activation in the dorsal horn of the
spinal cord and the loss of myelin and axons, as seen in previously
biopsied AM cases (12, 13). EDNRB expression was upregulated
in microglia and astroglia, similar to in our atopy model mice.
Moreover, we found elevated serum ET-1 levels in AM patients
compared with healthy controls without atopy. Together, these
findings indicate that allergic inflammation induces widespread
glial activation, which persistently activates the nociceptive
system in the spinal cord via the ET-1/EDNRB pathway.

ANTI-PLEXIN D1 ANTIBODY-RELATED
NEUROPATHIC PAIN IN PATIENTS WITH
ALLERGIC DISEASES

Allergic inflammation can enhance autoantibody production
(28) and plasma exchange has been reported to improve
NeP in patients with AM (6, 36). Therefore, we investigated
whether an autoantibody-mediated mechanism underlies allergic
inflammation-related NeP.

We screened novel autoantibodies against dorsal root
ganglion (DRG) neurons and the dorsal horn, which are involved
in generating NeP, in patients with various neurologic diseases
including AM, using a tissue-based indirect immunofluorescence
assay (IFA) (37). We found specific autoantibodies against small
DRG neurons and their nerve terminals in the dorsal horn of the
spinal cord (37), and these autoantibodies were more frequently
detected in patients with NeP than subjects without NeP (10% vs.
0%; p < 0.05). IgG subclass analysis revealed a predominance of
IgG2, which weakly activates complement. These autoantibodies
mostly colocalized with isolectin B4 (IB4)- and P2X3-positive
unmyelinated C-fiber type small DRG neurons. By contrast,
immunostaining for S100β, a myelinated DRG neuron marker,
showed no colocalization with patient IgG. These findings
showed that NeP patients’ IgG binding was restricted to
unmyelinated DRG neurons. In the dorsal horn of the spinal
cord, patient IgG axonal staining colocalized with a lamina
I marker calcitonin gene-related peptide (CGRP) and lamina

II marker IB4. Therefore, IgG binding in patients with anti-
small DRG neuron antibodies was restricted to the superficial
dorsal horn (laminae I and II). These autoantibodies also bound
to vasoactive intestinal peptide (VIP)-positive postganglionic
parasympathetic nerve fibers in the skin. In western blotting
(WB) using mouse DRG, these autoantibodies recognized a
common 220 kDa band. Liquid chromatography-tandem mass
spectrometry with immunoprecipitates revealed plexin D1 was
the autoantigen.

Plexin D1 is a receptor for semaphorin 3E, an axon
guidance factor and immune regulator (38) expressed in the
nervous system, B cells, macrophages, endothelial cells, and
skin (38). Given that the presence of plexin D1 in DRG
sensory neurons has not been investigated, we assessed the
expression of plexin D1 in human DRG sensory neurons
(37). Immunohistochemical analysis of human DRG and spinal
cord tissues with an anti-human plexin D1 antibody revealed
that plexin D1 was expressed in small DRG neurons and the
superficial dorsal horn. The immunostaining of small DRG
neurons and spinal dorsal horn by IgG from all anti-small
DRG neuron antibody-positive patients was removed by pre-
incubation with recombinant human plexin D1 extracellular
domain in a concentration-dependent manner (37). Therefore,
we confirmed plexin D1 is a relevant autoantigen. Additionally,
plexin D1 extracellular domain contains antigenic epitopes for
autoantibody recognition. Then, we performed a propidium
iodide (PI) assay to assess plasma membrane permeability using
dissociated mouse DRG neurons and heat-inactivated sera from
NeP patients with anti-plexin D1 antibodies. Heat-inactivated
sera from NeP patients with anti-plexin D1 antibodies showed
a significant increase in the percentage of PI-positive cells
compared with those without anti-plexin D1 antibodies (37).
These findings suggest that anti-plexin D1 IgG2 antibodies may
invade the DRG where the BBB and blood–nerve barrier are
absent, bind to plexin D1 on the surface of unmyelinated C-fiber
type DRG neurons, and impair the plasma membranes of small
pain-conveying neurons, resulting in their dysfunction.

In Table 1, we have summarized the clinical features of
patients with anti-plexin D1 antibodies based on our previous
study (37). The patients with anti-plexin D1 antibodies were
predominantly female, although the difference in anti-plexin
D1 antibody positivity rates between female and male patients
with NeP was not significant (12.3 vs. 5.4%; p = 0.33). The
age at onset was relatively young. The clinical courses were
relapsing or fluctuating. The underlying neurological diseases
of 11 patients with anti-plexin D1 antibodies included atopic
myelitis, neuromyelitis optica spectrum disorders, multiple
sclerosis, neurosarcoidosis, and erythromelalgia. The common
comorbidities in patients with anti-plexin D1 antibodies were
allergic diseases and collagen diseases. The patients commonly
developed burning pain, thermal hyperalgesia, and peripheral
vascular dysfunction symptoms. The current perception
threshold test showed abnormalities of C-fibers. Plasma exchange
and intravenous methylprednisolone pulse therapy were effective
for NeP management. These findings suggest that anti-plexin
D1 antibodies may be pathogenic in immune-mediated NeP,
especially under allergic inflammation conditions.
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TABLE 1 | Clinical findings for 11 patients with anti-plexin D1 antibodies.

Characteristic Summary

Female sex, number (%) 9 (81.8)

Age at onset, mean ± SD

(range), years

26.3 ± 13.3 (12–53)

Underlying diseases,

number (%)

AM 6 (54.5), NMOSD 2 (18.2),

RRMS 1 (9.1), neurosarcoidosis 1 (9.1),

erythromelalgia 1 (9.1)

Coexisting disorders,

number (%)

Allergic diseases 10 (90.9), collagen-vascular

diseases 4 (36.4), malignant neoplasms 1 (9.1)

Clinical course, number (%) Relapsing 9 (81.8), fluctuating 2 (18.2)

Neurological manifestations,

number (%)

NeP 11 (100), sensory impairment 11 (100), motor

weakness 10 (90.9), hyperreflexia 10 (90.9),

peripheral vascular autonomic dysfunction

symptoms 5 (45.5), hand muscle atrophy 2 (18.2),

visual impairment 2 (18.2)

Quality of NeP, number (%) Burning 6 (54.5), tingling 6 (54.5), thermal

hyperalgesia 5 (45.5), allodynia 2 (18.2), pinprick

hyperalgesia 2 (18.2), squeezing 2 (18.2)

Electrophysiological

findings, number (%)a
MEP abnormality of CNS 8 (72.7), CPT abnormality

of C-fiber 6 (100), SEP abnormality of CNS 4 (36.4),

SEP abnormality of PNS 3 (27.3), NCS abnormality

3 (33.3), QSART abnormality 1 (100)

Immunotherapy response

for NeP, number (%)b
Improved 7 [mPSL pulse 4 and mPSL pulse plus PE

3] (100)

aPercentage among tested patients who underwent each electrophysiological

examination. bPercentage among patients treated with various immunotherapies.

CNS, central nervous system; CPT, current perception threshold; MEP, motor-evoked

potentials; mPSL, methylprednisolone; NCS, nerve conduction study; NeP, neuropathic

pain; NMOSD, neuromyelitis optica spectrum disorders; PE, plasma exchange; PNS,

peripheral nervous system; QSART, quantitative sudomotor axon reflex test; RRMS,

relapsing-remitting multiple sclerosis; SEP, somatosensory-evoked potentials.

HYPOTHETICAL MECHANISMS
UNDERLYING ALLERGIC
INFLAMMATION-RELATED NEUROPATHIC
PAIN

Glial Activation in Allergic Inflammation
Allergic diseases are associated with a risk for autism spectrum
disorders (ASD) and attention-deficit and hyperactivity disorder
(ADHD) (1, 2, 39). Moreover, microglia and autoantibodies
against brain proteins are also associated with the pathogenesis
of ASD (40–42). A recent transcriptome study using cortical
tissue samples from patients with ASD showed microglial
activation in cortical tissues of ASD patients (43). In an animal
model of ASD, microglia from the offspring of mothers with
allergic asthma exhibited epigenomic alterations in dysregulated
genes (44). Therefore, allergic inflammation may contribute
to the pathogenesis of ASD through microglial activation.
However, it is unknown how allergic inflammation causes
microglial activation. ASD children had significantly higher
serum levels of anti-myelin basic protein (MBP) and anti-
myelin-associated glycoprotein (MAG) antibodies than healthy
children and the levels of autoantibodies against MBP and
MAG were significantly correlated with the presence of allergic
symptoms (45). Therefore, allergic inflammation might induce

the production of autoantibodies against neurons and glial cells,
which leads to CNS damage. However, no specific autoantibodies
produced by allergic inflammation have been identified.

In our previous study (32), expression of EDNRB was
upregulated in spinal microglia and astroglia from atopic
mice and an autopsied AM case. By contrast, expression of
EDNRA was not detected in microglia and astroglia of atopic
mice. In the normal condition, expression of EDNRA in the
spinal cord is observed in vascular smooth muscle cells and
the superficial dorsal horn (primary afferent nerve fibers),
while expression of EDNRB in the spinal cord is observed in
radial glia, a small population of astroglia, ependymal cells,
and vascular endothelial cells (46) (Supplementary Table 1).
Therefore, allergic inflammation can induce overexpression of
EDNRB in microglia and astroglia in the spinal cord.

We also found an overproduction of ET-1 in sera, alveolar
epithelial cells, and skin tissues from atopic mice and elevated
serum ET-1 in patients with AM. Previous studies reported
increased ET-1 expression in the epidermis of atopic dermatitis
patients (47) and the bronchial epithelium of asthma patients
(48). Additionally, several studies reported that ET-1 attenuated
BBB permeability (49). Therefore, the overproduction of ET-1 in
inflamed tissues may induce BBB hyperpermeability and activate
microglia and astroglia via the ET-1/EDNRB pathway in allergic
inflammation. Then, glial activation might activate second-order
sensory neurons in the dorsal horn of the spinal cord, causing
NeP (Figure 1).

A previous study showed that the ET-1/EDNRB pathway has
dual effects on the nociceptive system in response to pathological
conditions (50). The ET-1/EDNRB pathway exhibited pro-
nociceptive effects in inflammatory pain models (51, 52).
Furthermore, because ET-1 enhances capsaicin-induced release
of substance P and CGRP, as nociceptive mediators, from isolated
sensory neurons without EDNRB expression, ET-1 induced pro-
nociceptive effects independently of EDNRB (53). In contrast,
the ET-1/EDNRB pathway exerted anti-nociceptive effects in a
subcutaneous hindpaw ET-1 injection model (54) and a bone
cancer model (55). In our atopic mice, the ET-1/EDNRB pathway
exhibited pro-nociceptive effects. Although EDNRA is normally
expressed in small DRG neurons while EDNRB is expressed in
satellite glial cells and myelinating Schwann cells surrounding
axons (56) (Supplementary Table 1), we have not investigated
the PNS expression of EDNRA and EDNRB in our atopic mice.
Further studies are required to achieve a deeper understanding of
the nociceptive effects of ET-1 in allergic inflammation.

Mechanism of Anti-plexin D1 Antibody
Production in Allergic Inflammation
Although NeP patients with anti-plexin D1 antibodies have
various underlying neurological diseases, they have common
coexisting comorbidities, mainly allergic diseases (37), that
enhance the production of autoantibodies (28). Therefore, the
production of anti-plexin D1 antibodies is considered to be
associated with allergic inflammation. Interestingly, the anti-
plexin D1 IgG main subclass was IgG2, which predominantly
recognizes carbohydrate epitopes (57). Plexin D1 is heavily
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FIGURE 1 | Schematic overview of our hypothesis that allergic inflammation induces immune-mediated neuropathic pain. Anti-plexin D1 antibodies invade the dorsal

root ganglia (DRG) where the blood–brain barrier (BBB) and blood–nerve barrier are absent, bind to unmyelinated small DRG neurons (primary sensory neurons), and

cause neuropathic pain. Moreover, the overproduction of ET-1 (endothelin-1) in inflamed tissues induces BBB hyperpermeability and activates microglia and astroglia

via the ET-1/EDNRB (endothelin receptor type B) pathway in allergic inflammation. Glial activation leads to the activation of second-order sensory neurons in the dorsal

horn of the spinal cord and, ultimately, neuropathic pain.

glycosylated, especially at the extracellular IPT/TIG3 domain,
which is the same region that immunoprecipitates as identified
by mass spectrometry (37). IgG2 is preferentially produced
against polysaccharides of environmental microorganisms. AM
patients frequently have high levels of IgE antibodies to mite
antigens, such as Dermatophagoides pteronyssinus (Dpt) and
Dermatophagoides farinae, which are also heavily glycosylated
(6, 9). Of note, IgG2 antibodies were reported to comprise
up to 50% of antibodies against Dpt in atopic patients with
high levels of anti-Dpt IgE antibodies (58). Thus, allergic
inflammation may facilitate anti-plexin D1 antibodies through
the molecular mimicry of carbohydrates such as plexin D1
and environmental allergens, including Dpt. IgG2 is a low
inducer of complement activation and antibody-dependent cell-
mediated cytotoxicity compared with IgG1 (57, 59), which might
explain the observation that anti-plexin D1 antibody-positive

NeP patients, especially AM patients, experience only minor
disabilities other than NeP (6).

Action of Anti-plexin D1 Antibodies
Neurological manifestations of NeP patients with anti-plexin
D1 antibodies commonly include burning pain and thermal
hyperalgesia (37). These symptoms reflect C-fiber type DRG
neuron impairment (60). Because anti-plexin D1 antibodies
specifically bind to C-fiber DRG neurons, anti-plexin D1
antibodies might be the cause of C-fiber type DRG neuron
impairment and NeP. Indeed, in our in vitro study, anti-plexin
D1 antibodies inducedmembrane hyperpermeability and cellular
swelling of DRG neurons independent of complement activation.
Because plexin D1 regulates cytoskeleton stability through actin
polymerization (61), anti-plexin D1 antibodies may induce
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complement-independent cytotoxicity to DRG neurons through
the dysregulation of cytoskeleton stability.

CONCLUSION

On the basis of the above-mentioned findings, we propose
that increased humoral immunity in allergic individuals may
cause anti-plexin D1 antibody production through molecular
mimicry with environmental allergens (Figure 1). Anti-plexin
D1 antibodies can invade the DRG where the blood–nerve
barrier is absent and damage primary pain-conducting neurons,
triggering NeP. In addition, allergy may induce the activation
of spinal microglia and astroglia via the ET1/EDNRB pathway,
which might activate second-order sensory neurons and
predispose allergic individuals to NeP. Although there is no
evidence of a direct interaction between the ET-1/EDNRB and
semaphorin/plexin D1 pathways, activation of the ET-1/EDNRB
pathway may allow anti-plexin D1 antibodies to invade the
CNS via the hyperpermeable BBB. Plasma exchange can remove
circulating serum ET-1 and anti-plexin D1 antibodies, and
ameliorate NeP associated with allergic inflammation.

Given that the prevalence of allergic diseases has been
increasing over recent decades (62), we predict that allergic
inflammation-related neurological diseases will also increase.
Therefore, a better understanding of the neuro-immune

interactions in allergic diseases might lead to novel therapeutic
approaches to treat allergy-related neurological diseases.

AUTHOR CONTRIBUTIONS

TF, RY, and JK: study concept and design, manuscript
development, writing, and funding.

FUNDING

This study was supported by grants from the Japan Society for
the Promotion of Science KAKENHI (Grant nos. 19H01045
and 19K17037).

ACKNOWLEDGMENTS

We thank Kyoko Iinuma and Yukino Miyachi for Technical
Support. We thank Nia Cason, PhD, from Edanz Group (www.
edanzediting.com/ac) for editing a draft of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2019.01337/full#supplementary-material

REFERENCES

1. Lyall K, Van de Water J, Ashwood P, Hertz-Picciotto I. Asthma and allergies

in children with autism spectrum disorders: results from the CHARGE study.

Autism Res. (2015) 8:567–74. doi: 10.1002/aur.1471

2. Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and

inflammation of the brain in the pathogenesis of autism spectrum disorders.

Transl Psychiatry. (2016) 6:e844. doi: 10.1038/tp.2016.77

3. Xu G, Snetselaar LG, Jing J, Liu B, Strathearn L, Bao W.

Association of food allergy and other allergic conditions with autism

spectrum disorder in children. JAMA Netw Open. (2018) 1:e180279.

doi: 10.1001/jamanetworkopen.2018.0279

4. Vaglio A, Buzio C, Zwerina J. Eosinophilic granulomatosis with

polyangiitis (Churg-Strauss): state of the art. Allergy. (2013) 68:261–73.

doi: 10.1111/all.12088

5. Cottin V, Bel E, Bottero P, Dalhoff K, Humbert M, Lazor R, et al. Revisiting the

systemic vasculitis in eosinophilic granulomatosis with polyangiitis (Churg-

Strauss): a study of 157 patients by the Groupe d’Etudes et de Recherche

sur les Maladies Orphelines Pulmonaires and the European Respiratory

Society Taskforce on eosinophilic granulomatosis with polyangiitis (Churg-

Strauss). Autoimmun Rev. (2017) 16:1–9. doi: 10.1016/j.autrev.2016.

09.018

6. Isobe N, Kira J, Kawamura N, Ishizu T, Arimura K, Kawano Y. Neural damage

associated with atopic diathesis: a nationwide survey in Japan. Neurology.

(2009) 73:790–7. doi: 10.1212/WNL.0b013e3181b6bb6b

7. Kira J, Yamasaki K, Kawano Y, Kobayashi T. Acute myelitis associated

with hyperIgEemia and atopic dermatitis. J Neurol Sci. (1997) 148:199–203.

doi: 10.1016/S0022-510X(97)05369-0

8. Kira J, Kawano Y, Yamasaki K, Tobimatsu S. Acute myelitis with

hyperIgEaemia and mite antigen specific IgE: atopic myelitis. J Neurol

Neurosurg Psychiatry. (1998) 64:676–9. doi: 10.1136/jnnp.64.5.676

9. Osoegawa M, Ochi H, Minohara M, Murai H, Umehara F, Furuya H, et al.

Myelitis with atopic diathesis: a nationwide survey of 79 cases in Japan. J

Neurol Sci. (2003) 209:5–11. doi: 10.1016/S0022-510X(02)00441-0

10. Zoli A, Mariano M, Fusari A, Bonifazi F, Antonicelli L. Atopic

myelitis: first case report outside Japan? Allergy. (2005) 60:410–1.

doi: 10.1111/j.1398-9995.2004.00689.x

11. Gregoire SM, Mormont E, Laloux P, Godfraind C, Gilliard C. Atopic myelitis:

a clinical, biological, radiological and histopathological diagnosis. J Neurol Sci.

(2006) 247:231–5. doi: 10.1016/j.jns.2006.05.045

12. Kikuchi H, Osoegawa M, Ochi H, Murai H, Horiuchi I, Takahashi H, et al.

Spinal cord lesions of myelitis with hyperIgEemia and mite antigen specific

IgE (atopic myelitis) manifest eosinophilic inflammation. J Neurol Sci. (2001)

183:73–8. doi: 10.1016/S0022-510X(00)00475-5

13. Osoegawa M, Ochi H, Kikuchi H, Shirabe S, Nagashima T, Tsumoto T,

et al. Eosinophilic myelitis associated with atopic diathesis: a combined

neuroimaging and histopathological study.Acta Neuropathol. (2003) 105:289–

95. doi: 10.1007/s00401-002-0645-2

14. Isobe N, Kanamori Y, Yonekawa T, Matsushita T, Shigeto H, Kawamura N,

et al. First diagnostic criteria for atopic myelitis with special reference to

discrimination from myelitis-onset multiple sclerosis. J Neurol Sci. (2012)

316:30–5. doi: 10.1016/j.jns.2012.02.007

15. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH,

et al. Comparison of MRI criteria at first presentation to predict

conversion to clinically definite multiple sclerosis. Brain. (1997) 120:2059–69.

doi: 10.1093/brain/120.11.2059

16. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an

expanded disability status scale (EDSS). Neurology. (1983) 33:1444–52.

doi: 10.1212/WNL.33.11.1444

17. Ainiding G, Yamashita K, Torii T, Furuta K, Isobe N, Matsushita T,

et al. Clinical disability progression and platelet GP IIb/IIIa values

in patients with atopic myelitis. J Neuroimmunol. (2012) 246:108–12.

doi: 10.1016/j.jneuroim.2012.03.009

18. Raoof R, Willemen HLDM, Eijkelkamp N. Divergent roles of immune

cells and their mediators in pain. Rheumatology. (2018) 57:429–40.

doi: 10.1093/rheumatology/kex308

19. Xu M, Bennett DLH, Querol LA, Wu LJ, Irani SR, Watson JC, et al.

Pain and the immune system: emerging concepts of IgG-mediated

Frontiers in Neurology | www.frontiersin.org 6 December 2019 | Volume 10 | Article 133742

www.edanzediting.com/ac
www.edanzediting.com/ac
https://www.frontiersin.org/articles/10.3389/fneur.2019.01337/full#supplementary-material
https://doi.org/10.1002/aur.1471
https://doi.org/10.1038/tp.2016.77
https://doi.org/10.1001/jamanetworkopen.2018.0279
https://doi.org/10.1111/all.12088
https://doi.org/10.1016/j.autrev.2016.09.018
https://doi.org/10.1212/WNL.0b013e3181b6bb6b
https://doi.org/10.1016/S0022-510X(97)05369-0
https://doi.org/10.1136/jnnp.64.5.676
https://doi.org/10.1016/S0022-510X(02)00441-0
https://doi.org/10.1111/j.1398-9995.2004.00689.x
https://doi.org/10.1016/j.jns.2006.05.045
https://doi.org/10.1016/S0022-510X(00)00475-5
https://doi.org/10.1007/s00401-002-0645-2
https://doi.org/10.1016/j.jns.2012.02.007
https://doi.org/10.1093/brain/120.11.2059
https://doi.org/10.1212/WNL.33.11.1444
https://doi.org/10.1016/j.jneuroim.2012.03.009
https://doi.org/10.1093/rheumatology/kex308
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fujii et al. Allergy-Related Neuropathic Pain

autoimmune pain and immunotherapies. J Neurol Neurosurg Psychiatry.

(2018). doi: 10.1136/jnnp-2018-318556. [Epub ahead of print].

20. Allison DJ, Thomas A, Beaudry K, Ditor DS. Targeting inflammation

as a treatment modality for neuropathic pain in spinal cord injury:

a randomized clinical trial. J Neuroinflammation. (2016) 13:152.

doi: 10.1186/s12974-016-0625-4

21. Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ.

Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS.

Pain. (2005) 116:213–9. doi: 10.1016/j.pain.2005.04.013

22. Eijkelkamp N, Steen-Louws C, Hartgring SAY, Willemen HLDM,

Prado J, Lafeber FPJG, et al. IL4-10 Fusion protein is a novel drug

to treat persistent inflammatory pain. J Neurosci. (2016) 36:7353–63.

doi: 10.1523/JNEUROSCI.0092-16.2016

23. Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10

therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage

recruitment, and endoneurial TNF-alpha expression. Pain. (1998) 74:35–42.

doi: 10.1016/S0304-3959(97)00148-6

24. Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain

following peripheral nerve injury in rats. Neuroscience. (2004) 129:767–77.

doi: 10.1016/j.neuroscience.2004.08.035

25. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular

mechanisms and therapeutic potential. Nat Rev Neurosci. (2018) 19:138–52.

doi: 10.1038/nrn.2018.2

26. ChenG, Zhang YQ,Qadri YJ, Serhan CN, Ji RR.Microglia in pain: detrimental

and protective roles in pathogenesis and resolution of pain. Neuron. (2018)

100:1292–311. doi: 10.1016/j.neuron.2018.11.009

27. Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, et al. Microglia are

indispensable for synaptic plasticity in the spinal dorsal horn and chronic

pain. Cell Rep. (2019) 27:3844–59.e6. doi: 10.1016/j.celrep.2019.05.087

28. Valenta R, Mittermann I, Werfel T, Garn H, Renz H. Linking

allergy to autoimmune disease. Trends Immunol. (2009) 30:109–16.

doi: 10.1016/j.it.2008.12.004

29. Yuki N, Chan AC, Wong AHY, Inoue T, Yokai M, Kurihara T, et al.

Acute painful autoimmune neuropathy: a variant of Guillain-Barré syndrome.

Muscle Nerve. (2018) 57:320–4. doi: 10.1002/mus.25738

30. Dirckx M, Schreurs MW, de Mos M, Stronks DL, Huygen FJ. The prevalence

of autoantibodies in complex regional pain syndrome type I. Mediators

Inflamm. (2015) 2015:718201. doi: 10.1155/2015/718201

31. Li WW, Guo TZ, Shi X, Czirr E, Stan T, Sahbaie P, et al. Autoimmunity

contributes to nociceptive sensitization in a mouse model of complex regional

pain syndrome. Pain. (2014) 155:2377–89. doi: 10.1016/j.pain.2014.09.007

32. Yamasaki R, Fujii T, Wang B, Masaki K, Kido MA, Yoshida M, et al. Allergic

inflammation leads to neuropathic pain via glial cell activation. J Neurosci.

(2016) 36:11929–45. doi: 10.1523/JNEUROSCI.1981-16.2016

33. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative

assessment of tactile allodynia in the rat paw. J Neurosci Methods. (1994)

53:55–63. doi: 10.1016/0165-0270(94)90144-9

34. Lively S, Schlichter LC.Microglia responses to pro-inflammatory stimuli (LPS,

IFNγ+TNFα) and reprogramming by resolving cytokines (IL-4, IL-10). Front

Cell Neurosci. (2018) 12:215. doi: 10.3389/fncel.2018.00215

35. Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, et al.

Dual role of CD38 in microglial activation and activation-induced cell death.

J Immunol. (2008) 181:92–103. doi: 10.4049/jimmunol.181.1.92

36. Murai H, Arahata H, Osoegawa M, Ochi H, Minohara M, Taniwaki T, et al.

Effect of immunotherapy in myelitis with atopic diathesis. J Neurol Sci. (2004)

227:39–47. doi: 10.1016/j.jns.2004.08.001

37. Fujii T, Yamasaki R, Iinuma K, Tsuchimoto D, Hayashi Y, Saitoh BY, et al. A

novel autoantibody against plexin D1 in patients with neuropathic pain. Ann

Neurol. (2018) 84:208–24. doi: 10.1002/ana.25279

38. Kumanogoh A, Kikutani H. Immunological functions of the neuropilins and

plexins as receptors for semaphorins. Nat Rev Immunol. (2013) 13:802–14.

doi: 10.1038/nri3545

39. Chen MH, Su TP, Chen YS, Hsu JW, Huang KL, Chang WH, et al. Is atopy

in early childhood a risk factor for ADHD and ASD? A longitudinal study. J

Psychosom Res. (2014) 77:316–21. doi: 10.1016/j.jpsychores.2014.06.006

40. Takano T. Role of microglia in autism: recent advances. Dev Neurosci. (2015)

37:195–202. doi: 10.1159/000398791

41. Koyama R, Ikegaya Y. Microglia in the pathogenesis of autism spectrum

disorders. Neurosci Res. (2015) 100:1–5. doi: 10.1016/j.neures.2015.06.005

42. Rossi CC, Van de Water J, Rogers SJ, Amaral DG. Detection of plasma

autoantibodies to brain tissue in young children with and without

autism spectrum disorders. Brain Behav Immun. (2011) 25:1123–35.

doi: 10.1016/j.bbi.2011.02.011

43. Gupta S, Ellis SE, Ashar FN, Moes A, Bader JS, Zhan J, et al. Transcriptome

analysis reveals dysregulation of innate immune response genes and

neuronal activity-dependent genes in autism. Nat Commun. (2014) 5:5748.

doi: 10.1038/ncomms6748

44. Vogel Ciernia A, Careaga M, LaSalle JM, Ashwood P. Microglia from

offspring of dams with allergic asthma exhibit epigenomic alterations in genes

dysregulated in autism. Glia. (2018) 66:505–21. doi: 10.1002/glia.23261

45. Mostafa GA, Al-Ayadhi LY. The possible relationship between allergic

manifestations and elevated serum levels of brain specific auto-

antibodies in autistic children. J Neuroimmunol. (2013) 261:77–81.

doi: 10.1016/j.jneuroim.2013.04.003

46. Peters CM, Rogers SD, Pomonis JD, Egnaczyk GF, Keyser CP, Schmidt JA,

et al. Endothelin receptor expression in the normal and injured spinal cord:

potential involvement in injury-induced ischemia and gliosis. Exp Neurol.

(2003) 180:1–13. doi: 10.1016/S0014-4886(02)00023-7

47. Aktar MK, Kido-Nakahara M, Furue M, Nakahara T. Mutual upregulation

of endothelin-1 and IL-25 in atopic dermatitis. Allergy. (2015) 70:846–54.

doi: 10.1111/all.12633

48. Pe’gorier S, Arouche N, Dombret MC, Aubier M, Pretolani M. Augmented

epithelial endothelin-1 expression in refractory asthma. J Allergy Clin

Immunol. (2007) 120:1301–7. doi: 10.1016/j.jaci.2007.09.023

49. Leung JW, Chung SS, Chung SK. Endothelial endothelin-1 overexpression

using receptor tyrosine kinase tie-1 promoter leads to more severe

vascular permeability and blood brain barrier breakdown after transient

middle cerebral artery occlusion. Brain Res. (2009) 1266:121–9.

doi: 10.1016/j.brainres.2009.01.070

50. Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin

system as an emerging therapeutic target for the treatment of chronic pain. J

Pain Res. (2014) 7:531–45. doi: 10.2147/JPR.S65923

51. Baamonde A, Lastra A, Villazón M, Bordallo J, Hidalgo A, Menéndez

L. Involvement of endogenous endothelins in thermal and mechanical

inflammatory hyperalgesia in mice. Naunyn Schmiedebergs Arch Pharmacol.

(2004) 369:245–51. doi: 10.1007/s00210-003-0841-1

52. De-Melo JD, Tonussi CR, D’Orléans-Juste P, Rae GA. Articular nociception

induced by endothelin-1, carrageenan and LPS in naive and previously

inflamed knee-joints in the rat: inhibition by endothelin receptor antagonists.

Pain. (1998) 77:261–9. doi: 10.1016/S0304-3959(98)00098-0

53. Dymshitz J, Vasko MR. Endothelin-1 enhances capsaicin-induced peptide

release and cGMP accumulation in cultures of rat sensory neurons. Neurosci

Lett. (1994) 167:128–32. doi: 10.1016/0304-3940(94)91044-8

54. Gokin AP, Fareed MU, Pan HL, Hans G, Strichartz GR, Davar G.

Local injection of endothelin-1 produces pain-like behavior and

excitation of nociceptors in rats. J Neurosci. (2001) 21:5358–66.

doi: 10.1523/JNEUROSCI.21-14-05358.2001

55. Peters CM, Lindsay TH, Pomonis JD, Luger NM, Ghilardi JR, Sevcik

MA, et al. Endothelin and the tumorigenic component of bone cancer

pain. Neuroscience. (2004) 126:1043–52. doi: 10.1016/j.neuroscience.2004.

04.027

56. Tu NH, Katano T, Matsumura S, Ito S. Involvement of endothelin B receptor

in peripheral nerve regeneration using sciatic nerve transection–regeneration

model. Pain Res. (2015) 30:167–72. doi: 10.11154/pain.30.167

57. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes:

from structure to effector functions. Front Immunol. (2014) 5:520.

doi: 10.3389/fimmu.2014.00520

58. Saint-Remy JM, Lebrun PM, Lebecque SJ, Masson PL. Human immune

response to allergens of house dust mite, Dermatophagoides pteronyssinus.

Eur J Immunol. (1988) 43:338–47. doi: 10.1002/eji.1830180706

59. Isobe N, Yonekawa T, Matsushita T, Kawano Y, Masaki K, Yoshimura

S, et al. Distinct features of immunoglobulin G2 aquaporin-4 antibody

carriers with neuromyelitis optica. Clin Exp Neuroimmunol. (2015) 6:154–8.

doi: 10.1111/cen3.12179

Frontiers in Neurology | www.frontiersin.org 7 December 2019 | Volume 10 | Article 133743

https://doi.org/10.1136/jnnp-2018-318556
https://doi.org/10.1186/s12974-016-0625-4
https://doi.org/10.1016/j.pain.2005.04.013
https://doi.org/10.1523/JNEUROSCI.0092-16.2016
https://doi.org/10.1016/S0304-3959(97)00148-6
https://doi.org/10.1016/j.neuroscience.2004.08.035
https://doi.org/10.1038/nrn.2018.2
https://doi.org/10.1016/j.neuron.2018.11.009
https://doi.org/10.1016/j.celrep.2019.05.087
https://doi.org/10.1016/j.it.2008.12.004
https://doi.org/10.1002/mus.25738
https://doi.org/10.1155/2015/718201
https://doi.org/10.1016/j.pain.2014.09.007
https://doi.org/10.1523/JNEUROSCI.1981-16.2016
https://doi.org/10.1016/0165-0270(94)90144-9
https://doi.org/10.3389/fncel.2018.00215
https://doi.org/10.4049/jimmunol.181.1.92
https://doi.org/10.1016/j.jns.2004.08.001
https://doi.org/10.1002/ana.25279
https://doi.org/10.1038/nri3545
https://doi.org/10.1016/j.jpsychores.2014.06.006
https://doi.org/10.1159/000398791
https://doi.org/10.1016/j.neures.2015.06.005
https://doi.org/10.1016/j.bbi.2011.02.011
https://doi.org/10.1038/ncomms6748
https://doi.org/10.1002/glia.23261
https://doi.org/10.1016/j.jneuroim.2013.04.003
https://doi.org/10.1016/S0014-4886(02)00023-7
https://doi.org/10.1111/all.12633
https://doi.org/10.1016/j.jaci.2007.09.023
https://doi.org/10.1016/j.brainres.2009.01.070
https://doi.org/10.2147/JPR.S65923
https://doi.org/10.1007/s00210-003-0841-1
https://doi.org/10.1016/S0304-3959(98)00098-0
https://doi.org/10.1016/0304-3940(94)91044-8
https://doi.org/10.1523/JNEUROSCI.21-14-05358.2001
https://doi.org/10.1016/j.neuroscience.2004.04.027
https://doi.org/10.11154/pain.30.167
https://doi.org/10.3389/fimmu.2014.00520
https://doi.org/10.1002/eji.1830180706
https://doi.org/10.1111/cen3.12179
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fujii et al. Allergy-Related Neuropathic Pain

60. Emery EC, Young GT, Berrocoso EM, Chen L, McNaughton PA. HCN2 ion

channels play a central role in inflammatory and neuropathic pain. Science.

(2011) 333:1462–6. doi: 10.1126/science.1206243

61. Tata A, Stoppel DC, Hong S, Ben-Zvi A, Xie T, Gu C. An image-based

RNAi screen identifies SH3BP1 as a key effector of Semaphorin 3E-PlexinD1

signaling. J Cell Biol. (2014) 205:573–90. doi: 10.1083/jcb.201309004

62. Platts-Mills TA. The allergy epidemics: 1870-2010. J Allergy Clin Immunol.

(2015) 136:3–13. doi: 10.1016/j.jaci.2015.03.048

63. Liu S, Premont RT, Kontos CD, Huang J, Rockey DC. Endothelin-1 activates

endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma

subunit signaling to protein jinase B/Akt. J Biol Chem. (2003) 278:49929–35.

doi: 10.1074/jbc.M306930200

64. Smith EP, Shanks K, Lipsky MM, DeTolla LJ, Keegan AD, Chapoval SP.

Expression of neuroimmune semaphorins 4A and 4D and their receptors in

the lung is enhanced by allergen and vascular endothelial growth factor. BMC

Immunol. (2011) 12:30. doi: 10.1186/1471-2172-12-30

65. Kawaguchi Y, Suzuki K, Hara M, Hidaka T, Ishizuka T, Kawagoe M,

et al. Increased endothelin-1 production in fibroblasts derived from

patients with systemic sclerosis. Ann Rheum Dis. (1994) 53:506–10.

doi: 10.1136/ard.53.8.506

66. Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS,

Travis WD, et al. Endothelins, peptides with potent vasoactive properties,

are produced by human macrophages. J Exp Med. (1990) 172:1741–8.

doi: 10.1084/jem.172.6.1741

67. Wanschel A, Seibert T, Hewing B, Ramkhelawon B, Ray TD, van Gils JM, et al.

Neuroimmune guidance cue emaphorin 3E is expressed in atherosclerotic

plaques and regulates macrophage retention. Arterioscler Thromb Vasc Biol.

(2013) 33:886–93. doi: 10.1161/ATVBAHA.112.300941

68. Elisa T, Antonio P, Giuseppe P, Alessandro B, Giuseppe A, Federico C, et al.

Endothelin receptors expressed by immune cells are involved in modulation

of inflammation and in fibrosis: relevance to the pathogenesis of systemic

sclerosis. J Immunol Res. (2015) 2015:147616. doi: 10.1155/2015/147616

69. Koehl B, Nivoit P, El Nemer W, Lenoir O, Hermand P, Pereira C. The

endothelin B receptor plays a crucial role in the adhesion of neutrophils to

the endothelium in sickle cell disease. Haematologica. (2017) 102:1161–72.

doi: 10.3324/haematol.2016.156869

70. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, Merte J, et al. Semaphorin 3E

and plexin-D1 control vascular pattern independently of neuropilins. Science.

(2005) 307:265–8. doi: 10.1126/science.1105416

71. Holl EK, Roney KE, Allen IC, Steinbach E, Arthur JC, Buntzman A, et al.

Plexin-B2 and Plexin-D1 in dendritic cells: expression and IL-12/IL-23p40

production. PLoS ONE. (2012) 7:e43333. doi: 10.1371/journal.pone.0043333

72. Levin ER. Endothelins. N Engl J Med. (1995) 333:356–63.

doi: 10.1056/NEJM199508103330607

73. MacCumber MW, Ross CA, Snyder SH. Endothelin in brain: receptors,

mitogenesis, and biosynthesis in glial cells. Proc Natl Acad Sci USA. (1990)

87:2359–563. doi: 10.1073/pnas.87.6.2359

74. Guruli G, Pflug BR, Pecher S, Makarenkova V, Shurin MR, Nelson

JB. Function and survival of dendritic cells depend on endothelin-

1 and endothelin receptor autocrine loops. Blood. (2004) 104:2107–15.

doi: 10.1182/blood-2003-10-3559

75. Wu JH, Li Y, Zhou YF, Haslam J, Elvis ON, Mao L, et al. Semaphorin-

3E attenuates neointimal formation via suppressing VSMCs migration and

proliferation. Cardiovasc Res. (2017) 113:1763–75. doi: 10.1093/cvr/cvx190

76. Giaid A, Gibson SJ, Ibrahim BN, Legon S, Bloom SR, Yanagisawa M, et al.

Endothelin 1, an endothelium-derived peptide, is expressed in neurons of the

human spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA. (1989)

86:7634–8. doi: 10.1073/pnas.86.19.7634

77. Holl EK, O’Connor BP, Holl TM, Roney KE, Zimmermann AG, Jha S, et al.

Plexin-D1 is a novel regulator of germinal centers and humoral immune

responses. J Immunol. (2011) 186:5603–11. doi: 10.4049/jimmunol.1003464

78. Li JJ, Wu LH, Cao Q, Yuan Y, Yang L, Guo ZY, et al. Endothelins-

1/3 and endothelin-A/B receptors expressing glial cells with

special reference to activated microglia in experimentally induced

cerebral ischemia in the adult rats. Neuroscience. (2010) 167:665–77.

doi: 10.1016/j.neuroscience.2010.02.062

79. Choi YI, Duke-Cohan JS, Ahmed WB, Handley MA, Mann F, Epstein

JA, et al. PlexinD1 glycoprotein controls migration of positively

selected thymocytes into the medulla. Immunity. (2008) 29:888–98.

doi: 10.1016/j.immuni.2008.10.008

80. Hültner L, Ehrenreich H. Mast cells and endothelin-1: a life-saving

biological liaison? Trends Immunol. (2005) 26:235–8. doi: 10.1016/j.it.2005.

03.007

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Fujii, Yamasaki and Kira. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 8 December 2019 | Volume 10 | Article 133744

https://doi.org/10.1126/science.1206243
https://doi.org/10.1083/jcb.201309004
https://doi.org/10.1016/j.jaci.2015.03.048
https://doi.org/10.1074/jbc.M306930200
https://doi.org/10.1186/1471-2172-12-30
https://doi.org/10.1136/ard.53.8.506
https://doi.org/10.1084/jem.172.6.1741
https://doi.org/10.1161/ATVBAHA.112.300941
https://doi.org/10.1155/2015/147616
https://doi.org/10.3324/haematol.2016.156869
https://doi.org/10.1126/science.1105416
https://doi.org/10.1371/journal.pone.0043333
https://doi.org/10.1056/NEJM199508103330607
https://doi.org/10.1073/pnas.87.6.2359
https://doi.org/10.1182/blood-2003-10-3559
https://doi.org/10.1093/cvr/cvx190
https://doi.org/10.1073/pnas.86.19.7634
https://doi.org/10.4049/jimmunol.1003464
https://doi.org/10.1016/j.neuroscience.2010.02.062
https://doi.org/10.1016/j.immuni.2008.10.008
https://doi.org/10.1016/j.it.2005.03.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


MINI REVIEW
published: 19 December 2019
doi: 10.3389/fneur.2019.01343

Frontiers in Neurology | www.frontiersin.org 1 December 2019 | Volume 10 | Article 1343

Edited by:

Fabienne Brilot,

University of Sydney, Australia

Reviewed by:

Maartje G. Huijbers,

Leiden University Medical

Center, Netherlands

Marco Morsch,

Macquarie University, Australia

*Correspondence:

Jean-Thomas Vilquin

jt.vilquin@institut-myologie.org

Specialty section:

This article was submitted to

Multiple Sclerosis and

Neuroimmunology,

a section of the journal

Frontiers in Neurology

Received: 12 September 2019

Accepted: 05 December 2019

Published: 19 December 2019

Citation:

Vilquin J-T, Bayer AC, Le Panse R and

Berrih-Aknin S (2019) The Muscle Is

Not a Passive Target in Myasthenia

Gravis. Front. Neurol. 10:1343.

doi: 10.3389/fneur.2019.01343

The Muscle Is Not a Passive Target in
Myasthenia Gravis
Jean-Thomas Vilquin*, Alexandra Clarissa Bayer, Rozen Le Panse and Sonia Berrih-Aknin

Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France

Myasthenia gravis (MG) is a rare autoimmune diseasemediated by pathogenic antibodies

(Ab) directed against components of the neuromuscular junction (NMJ), mainly the

acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated,

but they include a combination of genetic predisposition, triggering event(s), and

hormonal components. MG disease is associated with defective immune regulation,

chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is

characterized by muscle fatigability that is very invalidating and can be life-threatening

when respiratory muscles are affected. MG is not cured, and symptomatic treatments

with acetylcholinesterase inhibitors and immunosuppressors are life-long medications

associated with severe side effects (especially glucocorticoids). While the muscle is the

ultimate target of the autoimmune attack, its place and role are not thoroughly described,

and this mini-review will focus on the cascade of pathophysiologic mechanisms taking

place at the NMJ and its consequences on themuscle biology, function, and regeneration

in myasthenic patients, at the histological, cellular, and molecular levels. The fine

structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal

complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular

and molecular reactions taking place in the muscle involve several cell types as well

as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be

altered. Altogether, the studies reported in this review demonstrate that the muscle is

not a passive target in MG, but interacts dynamically with its environment in several

ways, activating mechanisms of compensation that limit the pathogenic mechanisms of

the autoantibodies.

Keywords: myasthenia, muscle, neuromuscular junction, acetylcholine receptor, autoimmunity, cytokines,

transcriptome

INTRODUCTION

Autoimmune Myasthenia Gravis (MG) is characterized by muscular weakness aggravated by
exercise and improved by rest. The symptoms fluctuate, whichmakes the clinical diagnosis difficult.
MG is mediated by antibodies (Ab) to components of the neuromuscular junction (NMJ), the
muscle is thus the target of the autoimmune attack. About 85% of MG patients present Ab against
the acetylcholine receptor (AChR) (1). In about 5% of MG patients, the autoreactive Ab target the
muscle-specific kinase (MuSK) protein (2), which is involved in the clustering of AChRs (3). More
recently, the agrin receptor LRP4 (low-density lipoprotein receptor-related protein 4), which forms
a complex with MuSK, has been recognized as a novel autoantigen in a small proportion of MG
patients without anti-AChR or -MuSK Ab (4). Antibodies to cortactin and agrin (5, 6) have been
described, but their presence is most often concomitant to one of the other types of Ab.
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MG is a complex disease to which genetic predispositions
and defects of the immune system contribute (7–9). Thymic
abnormalities are frequently found in the subgroup of MG with
anti-AChR Ab but not in that with anti-MuSK Ab (10), and
thymectomy has clinically favorable effects in AChR-MG (11),
but not in MuSK-MG (12). MG patients with anti-AChR Ab
can be classified in several subgroups according to the age of
onset, the gender, thymic pathology, and anti-AChR antibodies
[Reviewed in (13)]. While the defects of the immune system are
richly described (7, 14, 15), reviews on the mechanisms taking
place at the level of the muscle tissue are more sporadic (16–18),
therefore we will focus on this aspect.

ULTRASTRUCTURAL AND
PHYSIOLOGICAL CHANGES OF THE NMJ
IN MG

The development and maintenance of the NMJ are primarily
dependent on the agrin-MuSK-LRP4 signaling system (19, 20).
LRP4 and MuSK are anchored in the post-synaptic membrane.
Agrin, secreted by the nerve terminal, binds to LRP4, which
then binds to the extracellular domain of MuSK, resulting in
phosphorylation and activation of MuSK (19). Phosphorylated
MuSK recruits then Dok-7, an adaptor protein that becomes
phosphorylated and recruits additional signaling molecules
essential for synapse formation and AChR clustering (21).

Detailed structure and mechanism of the NMJ have been
described in several reviews (22–25). Briefly, the post-synaptic
membrane is characterized by deep junctional folds, the top
of which are rich in AChRs, while voltage-gated Na+ channel
(VGSCs) are concentrated in the depths [Review in (22, 24)].
There are ∼10,000 AChR per square micrometer on the muscle
surface in themotor plate, whereas the concentration is negligible
outside the synaptic area. At the presynaptic side, 150,000–
300,000 vesicles contain a quantum of acetylcholine (ACh) each
(∼10 000 molecules). Upon local depolarization, one quantal
content (about 20 vesicles) is released in the synaptic cleft. The
binding of ACh to AChRs induces an entry of Na+ into the
muscle fibers, causing the local depolarization of the membrane
and forming the endplate potential (EPP). The EPP stimulates
the opening of the VGSCs, and upon reaching the firing
threshold, a further influx of Na+ ions ensues, and the action
potential spreads along the muscle fiber. It reaches and opens
the stocks of intracellular calcium that finally trigger the muscle
contraction (Figure 1A). In the healthy NMJ, the amplitude
of EPP exceeds the threshold necessary to produce an action
potential in the muscle. The ratio between the actual EPP and the
threshold required to generate an action potential represents the
safety factor of neuromuscular transmission, which is especially
important during intense activation of the NMJ (26). In humans,
the safety factor is about two, whereas it is higher in rodents or
feline (27).

In AChR-MG disease, morphometric analysis reveals
degenerative changes of the postsynaptic regions with widening
and simplification of synaptic clefts and accumulation of debris
in the synaptic zone (28, 29) (Figure 1B). In addition, nerve

terminals are often smaller than normal size, and their sprouting
may be observed (28). The degradation of the post-synaptic
membrane results in a decrease in the expression of the AChR
and the VGSCs channels, both contributing to the significant
reduction of the safety factor: (1) EPP is lowered by the partial
loss of functional AChRs and (2) the firing threshold is raised
due to the reduction in the density of the sodium channels (30).
During prolonged synaptic activity, as the quantal content of
ACh normally runs down, the summation of EPP falls below the
threshold, and they can no longer trigger the action potential
of the muscle fibers (Figure 1B, numbers 1, 2, 3, 4). Then,
several NMJ will present perithreshold EPP and intermittent
transmission failures concomitantly, and the summation of
several progressive blocks of NMJ transmission will lead to the
MG symptoms (31).

Interestingly, the extraocular muscles (EOM) have
physiologically less developed post-synaptic folding, hence
a lower baseline safety factor, which could explain their high
predisposition to dysfunction inMG (32). Furthermore, in ocular
MG, these muscles are susceptible to complement-mediated
attack due to a deficiency in complement-inhibitory proteins of
the EOM and orbital tissue (33).

MECHANISMS OF ACTION OF THE Ab

Anti-AChR Ab
The pathogenicity of anti-AChR Ab has been shown by their
ability to transfer the disease to control animals (34) and to
reduce the number of α-bungarotoxin binding sites in myotube
cultures (35). There is no correlation between the clinical severity
of the disease and the Ab titer, but there is a correlation between
the Ab titer and the ability of the sera to degrade AChR in vitro
(36). However, in patients with immunosuppressive treatment,
the changes in the level of anti-AChR antibodies is correlated
with the clinical score (37).

Anti-AChR Ab can reduce the expression of muscle AChR
by several mechanisms (Figure 1B): (1) removal of AChRs
due to cross-linking and subsequent internalization (number
2); (2) functional AChR block (number 3), and (3) activation
of complement with formation of membrane-attack complexes
(MAC) that cause focal lysis (number 4) [Review in (38)]. Anti-
AChR Ab are mainly IgG1 and IgG3 isotypes that bind the
complement. This mechanism is likely the most pathogenic one:
(a) there is an inverse relationship between the integrity of
junctional folds and the abundance of C9, one molecule of the
MAC (39); (b) mice mutated for complement factors (C3, C4, C5,
C6) develop a lower incidence of MG upon active immunization,
and their NMJ does not harbor the MAC [Review in (38)]; (c)
Some patients with refractory MG have significant, often rapid,
improvement in symptoms when treated with eculizumab, that
inhibits the cleavage of C5 (40); (d) NMJ degradation decreases
the safety factor and the efficacy of the transmission (41).

Anti-MuSK Ab
As a receptor tyrosine kinase, MuSK interacts with a plethora
of proteins and downstream pathways, some of which involved
in nuclear anchoring, gene transcription, Wnt interactions,
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FIGURE 1 | Simplified structure and function of the neuromuscular junction (A) and physiological Changes in autoimmune Myasthenia Gravis (B). Direct, indirect

consequences of the various autoantibodies and compensatory mechanisms, are identified by numbers. Anti-MuSK and anti-LRP4 autoantibodies act mainly by

(Continued)
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FIGURE 1 | inhibiting AChR clustering (1). Anti-AChR antibodies reduce the expression of muscle AChR by removal of AChRs due to cross-linking, internalization, and

degradation (2), functional AChR block (3), and activation of complement with formation of membrane-attack complexes that cause focal lysis (4). Blinding of

anti-AChR antibodies also include muscle production of paracrine factors, microvesicles and exosomes, as well as cytokines (5) with potential effects over neighboring

structures (satellite cells, muscle cells and nerve terminal). Pro-inflammatory environment can be enhanced during MG acute phase by infiltrating macrophages release

of cytokines (6). Compensatory mechanism at molecular (7,8) and cellular levels (9) preserve MG muscle fibers from the AChR autoantibodies induced damage. Ach,

Acetylcholine; AChR, Acetylcholine receptor; LRP-4, low-density lipoprotein receptor-related protein; MAC, membrane attack complex; MuSK, muscle specific kinase;

VGSC, voltage-gated sodium channel.

scaffolding, and AChR stabilization (20). MuSK-MG is often
characterized bymuscle atrophy and excellent response to plasma
exchanges. Experimentally, animals that received repeated daily
injections of patient IgG (42) or actively immunized with
MuSK (43) show impaired neuromuscular transmission, with
reductions in endplate AChR and EPP amplitudes [Review in
(44)]. In vitro, anti-MuSK Ab induce inhibition of proliferation
of a cell line, an effect correlated with disease severity and anti-
MuSK Ab titer, that could explain the muscle atrophy in MuSK+
MG patients (45). The isotype of anti-MuSK Ab is generally IgG4
that lacks complement-activating properties and is considered
functionally monovalent and is thus unable to induce antigenic
modulation (46). Anti-MuSK Ab bind to a structural epitope in
the first Ig-like domain ofMuSK, prevent binding betweenMuSK
and LRP4 and inhibit agrin-stimulated MuSK phosphorylation
resulting in defects of AChR clustering (Figure 1B, number
1) (47). In addition, anti-MuSK Ab block binding of ColQ to
the NMJ, that may lead to compromised agrin-mediated AChR
clustering and AChR deficiency in MuSK-MG patients (48).
Finally, some anti-MuSK Ab are directed against the Cysteine-
rich domain of MuSK that mediates the Wnt-MuSK interactions
(49). In summary, by contrast with anti-AChRAb, anti-MuSKAb
induce a functional effect by interfering withMuSK signaling and
AChR clustering.

Anti-LRP4 Ab
Mice immunized with the extracellular domain of LRP4
exhibit MG-associated symptoms, including muscle weakness,
reduced compound muscle action potentials, and compromised
neuromuscular transmission (50, 51). Additionally, fragmented
and distorted NMJs are evident at both the light and electron
microscopic levels suggesting that LRP4 contributes to NMJ
maintenance in adulthood. In nerve terminals, a reduction in
synaptic vesicle density and ACh release is observed, while on
the postsynaptic side, AChR density is significantly reduced, with
flattened junctional folds (50). Interestingly, injection in mice of
neural agrin (N-agrin) that binds to LRP4 leads toMG-associated
symptoms, suggesting that agrin Ab may also play a role in MG
pathogenesis (52).

MOLECULAR AND CELLULAR CHANGES
IN MG MUSCLE

Several changes have been described inside and outside the
giant syncytial muscle cell, and the importance of the local
environment is increasingly considered (Figure 1B).

Inflammation and Cytokines
It is generally admitted that diffuse signs of inflammation
are not evident in the muscle of MG patients. First of all,
immune cells are scarcely found (29) [Review in (53)]. Second,
the transcriptome analysis did not reveal an inflammatory
signature (54).

However, increased expression of cytokines (TNF-α, IL-1, and
IL-6) due to infiltrating macrophages has been described in the
muscle of models of experimental autoimmune MG (EAMG),
during the early phase of the disease (55) (Figure 1B, number
6). In addition, muscle tissues can also produce immunologically
relevant factors. Rat skeletal muscle exposed to anti-AChR Ab
synthesizes MCP-1, IL-15, and NO, that promote the generation
of disease symptoms (56–58) (Figure 1B, number 5). Besides,
myotubes in MG and EAMG overexpress IP-10 and CXCR3,
two molecules regulated by interferon-γ (59). Interestingly, the
skeletal muscle also upregulates the PD-L1 in MG, which may
participate in the control of the local immune-mediated damage
through the function of a checkpoint inhibitor (60).

Some cytokines and inflammatory proteins are increased
in the sera of MG patients and constitute an inflammatory
environment (61–64), then direct effects of these molecules on
muscles could be suspected. As a proof of concept, muscle cells
are responsive to IL-4, IL-6, IFN-γ, and LPS, by producing
immunologically relevant molecules and may become antigen-
presenting cells (65, 66). The expression of Toll-like receptors by
the skeletal muscle could favor the sensitization of the muscle to
the environment [reviewed in (67)].

Molecular Changes and Mechanisms of
Compensation
Whether the molecular and cellular changes observed in and
around the NMJ participate in the pathogenesis of MG disease or
provide a mechanism of compensation are still an open question.
Here, we will focus on two of these compensatory mechanisms.

First, the decreased expression in AChR is compensated by the
release of an increased number of vesicles containing ACh, that
has been shown in bothmuscles ofMG patients and experimental
rat models (Figure 1B, number 8) (27, 31, 68). The mechanism
of this compensation may reside in several elements of the NMJ
[Review in (27)]. At the presynaptic level, Ca2+/calmodulin-
dependent protein kinase II (CaMKII) act through activation by
Ca2+ (69), and this mechanism has been shown to be involved in
themodel of rats treated with alpha-bungarotoxin (70). Although
not directly demonstrated in MG models, neuroligin (71), and
Munc18 would act through the modulation of the number of
docked release-ready vesicles (72). From the post-synaptic side,
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LRRK2 would trigger the increase of the size of the release-
ready pool of vesicles (73). It has also been suggested that a
specific pool of ACh vesicles, with a slower turn-over, would be
used for transient increase of quantal content (74). LRP4 may be
considered as a retrograde factor acting from muscle toward the
presynaptic side (75). Clinically, the compensatory mechanism
mediated by increased quantal content would be especially
important during phases of intense, repetitive stimulation of
the NMJ as it would counterbalance the natural rundown of
quantal contents partially. Importantly, it should be noted that
in MuSK-MG, this compensatory mechanism is not present, or
it is blocked by the Ab, and these patients develop more severe
disease (25, 27, 76).

Second, as a consequence of the attack of the AChR by Ab
(Figure 1B, number 7), the degradation of the AChR is followed
up by increased mRNA level expression of AChR subunits in
muscles of myasthenic rats, rabbits, and mice compared with
control animals (77–79). In MG patient muscle, the increase
in AChR subunit transcripts correlates with the severity of the
disease, indicating that this mechanism takes place only when the
expression of AChR is significantly altered (80); in vitro studies
show that the increase in AChR mRNA appears after a certain
threshold loss of AChR (induced by monoclonal anti-AChR Ab)
(80, 81). The expression of AChR is the resultant of loss and
re-expression. Without such a mechanism of compensation, the
AChR expression could be dramatically reduced, resulting in
a fatal disease. Thus, this compensatory mechanism aims to
balance the loss of AChR in human MG and is triggered above
a certain degree of AChR loss (80).

Upregulation of AChR expression could also result from
activation of neuregulin1/ErbB signaling pathway through
overexpression of MuSK and rapsyn (82). Whether this pathway
is implicated in MG has not been documented.

Other molecular alterations have been described in EAMG
models and are likely to be secondary to the cross-reactive
immune response. Notably, caveolin-3 shows aberrant
overexpression. This muscle-specific membrane protein
localized to the sarcolemma and T-tubule system is usually
needed for muscle repair and skeletal muscle development (83).
Also, the glucose-regulated protein 78 (GRP78) mRNA that
is activated by ER stress is increased, suggesting that muscle
weakness in MG might be caused by both NMJ disruption and
ER stress (84). Another intriguing observation relates to the bone
mineral density at skeletal sites, which is significantly decreased
in the femur of EAMG mice compared to control animals, in
parallel with the severity of the disease (85).

TRANSCRIPTOMIC ANALYSIS

A transcriptomics study was performed in 3 different muscles
[EOM, diaphragm, and extensor digitorum longus (EDL)] in rats
passively receiving anti-AChR Ab. Changes in 62 genes common
among all muscle groups fall into four major categories (stress
response, immune response, metabolism, and transcription
factors). Interestingly, the EOM demonstrated a distinct RNA
expression signature from EDL and diaphragm (86).

Transcriptome analyses were also performed on muscle
biopsies from MG patients (compared with healthy controls)
and on models of active EAMG in rats (compared with
control rats). Similar changes in human and rat myasthenic
muscles were found, highlighting the deregulation of genes
included in the muscle fiber category. Also, genes related to cell
metabolism and immune response were deregulated: Insulin-
Like Growth Factor 1 (IGF-1) and Interleukin-6 (IL-6) pathways
were identified. Indeed, increased IL-6 production was observed
in human muscle cell cultures treated with MG sera or anti-
AChR Ab. Besides, monoclonal anti-AChR Ab decrease Akt
phosphorylation in response to insulin, indicating an effect of the
Ab on cell metabolism (54). Since Akt plays a key role in multiple
cellular processes such as growth and glucose metabolism, this
reduced phosphorylation of Akt may have a significant impact on
themuscle homeostasis, and fatigability observed inMGpatients.

EFFECTS ON SATELLITE CELLS

Satellite cells (SCs) are quiescent muscular stem cells (Figure 1).
After an injury, a process ofmuscle degeneration occurs, followed
by the activation of the SCs that proliferate, become so-called
myoblasts, differentiate, and fuse to give rise to new fibers (87).

Recently, the article by Attia et al. (88) unveiled an unexpected
action of the anti-AChR Ab on these SCs. First, muscle sections
from MG and EAMG contain an increased number of SCs
identified by the Pax7 marker. Besides, SCs isolated from MG
muscles proliferate as myoblasts and differentiate more actively
than cells from control muscles. In addition, after a muscle
injury induced in the EAMGmouse model, several changes were
observed: a decrease in fiber size and MyoG mRNA expression
and an increase in the number of fibers and embryonic myosin
heavy-chain mRNA expression. These alterations suggest that as
a result of the autoimmune attack, there is a delay in maturation
of the muscle fibers.

A direct effect of the anti-AChR Ab on SC is unlikely since
SCs do not express AChR. More likely, the binding of anti-
AChR Ab to their antigens impairs the NMJ (see the mechanisms
above) and alters the production of several paracrine factors,
micro-vesicles, or exosomes by the muscle. These factors could
then induce paracrine effects on the neighboring SCs associated
with subtle modifications of the epigenetic signatures (Figure 1B,
Number 9). This leads to the expression of MyoD and MyoG
in MG SCs that will proliferate and differentiate more than in
healthy ones.

Together, these data propose that MG muscles from EAMG
mice regenerate worse than control ones. From a clinical
perspective, symptom exacerbation upon sports practice or after
a muscle injury could also be due to difficulties for MG patients
to regenerate their muscle.

CONCLUSION AND PERSPECTIVES

In MG disease, the Ab to the different components of the NMJ
have pathogenic consequences that are more extended than a
focused effect on the target antigens. In other autoimmune
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diseases, the attack by the Ab and by the MAC would have
induced the death of the target cells. In the case of the muscle,
this does not occur, but activation of molecular transcription
and signaling pathways, mechanisms of compensation, and
biological effects on local cell types such as satellite cells
demonstrate that the muscle responds actively. Thus, the muscle
is not a passive target in MG but interacts dynamically with
its environment in several ways. However, the number of
studies examining theses processes is still quite limited. A
better appraisal of these processes would allow identifying new
mechanisms and pathways, and new levels for symptomatic
medical interventions. New approaches are rapidly developing to
model MG and facilitate such studies. Indeed, with the advent

of pluripotent stem cells differentiation, and the growth of
bioengineering, cocultures of human myogenic and neurogenic

cells are possible in two (89) or three dimensions (90, 91),
so as to study the effect of MG Ab, and/or to provide
organoid-like platforms for the study of pathologies and their
drug design.
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Background: Neuroimmunology has impressively expanded in the past decade. Novel

assays, especially cell-based assays (CBAs) can detect conformational antibodies (Abs)

recognizing antigens in their native conformation. Generally, the availability of in-house

and of commercial tests has improved the diagnostics, but introduced demanding

laboratory tasks. Hence, standardization and quality controls represent a key step to

promote accuracy. We report on the results of the 2018 external quality assessment

program (EQAP) organized by the Italian Neuroimmunology Association.

Methods: EQAP regarded 10 schemes, including oligoclonal bands (OCBs),

intracellular-neuronal (ICN)-Abs, neuronal-surface (NS)-Abs, aquaporin-4

(AQP4)-Abs, myelin oligodendrocyte glycoprotein (MOG)-Abs, myelin-associated

glycoprotein (MAG)-Abs, ganglioside-Abs, acetylcholine-receptor (AChR)-Abs, and

muscle-specific-kinase (MuSK)-Abs, and 34 laboratories. Assays were classified as

tissue-based assays (TBAs), solid-phase assays (SPAs), liquid-phase assays (LPAs),

and CBAs. Thirty-three samples were provided.

Results: Three-quarter of the tests were commercial. Median accuracy for the

laboratories was 75% (range 50–100). In 8/10 schemes, at least one sample provided

discrepant results. Inter-laboratory “substantial agreement” was found in 6/10 schemes

(AChR, MuSK, MAG, AQP4, MOG, and NS-Abs), whereas the worst agreements

regarded OCBs and ganglioside-Abs. Both commercial and in-house assays performed

better in experienced laboratories.

Conclusions: Assays could be divided in (a) robust commercial tests with substantial

inter-laboratory agreement (MAG-Abs; AChR- and MuSK-Abs); commercial/“in-house”

tests with (b) partial inter-laboratory agreement (AQP4-Abs, MOG-Abs, NS-Abs,
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ICN-Abs), and (c) with large inter-laboratory disagreement (OCBs, ganglioside-Abs). This

real-life snapshot of the neuroimmunology test performances highlights shortcomings

attributable to technician-dependent performances, assay structural limitations, and

errors in test interpretations.

Keywords: external quality assessment scheme, standardization, neuroimmunology, antibodies, tissue-based

assays, cell-based assays, radioimmunoassays, ELISA

INTRODUCTION

External quality assessment (EQA) testing is part of a wider
educational approach aimed to improve and monitor quality
in laboratory diagnostics. Since 2000, the Italian Association
of Neuroimmunology (AINI) has espoused this commitment,
which includes the production of standardizations of methods
and of clinic-laboratory guidelines (1). Over these years,
neuroimmunology diagnostics has been facing formidable
challenges, especially after the discovery of autoantibodies
to cell-surface neuroglial proteins, which associate with
many potentially treatable neurological disorders (2, 3).
Such autoantibodies preferentially bind antigens when
their tertiary structure is preserved. This has revolutionized
the neuroimmunology diagnostics, with the diffusion of
“conformational” tests, such as cell-based assays (CBAs) and
immunohistochemistry on lightly-fixed brain tissues for the
diagnosis of autoimmune encephalitis (4), and for the differential
diagnosis of the acquired demyelinating diseases of the CNS,
including multiple sclerosis (5).

These new techniques have been developed as in-house
protocols in specialized laboratories, thus requiring a proper
expertise that often lacks in the large clinical chemistry
laboratories using commercially available CBAs. In these
laboratories, moreover, neuroimmunology diagnostics
performed with automated or semi-automated systems is
increasingly incorporated.

We herein report on the results of the 2018 EQA program
that involved Italian laboratories of the AINI network, and that
was extended to few European laboratories. These results provide
a snapshot on how the participating laboratories perform, and
useful information on the degree of reliability and accuracy
characterizing each single test in real life.

MATERIALS AND METHODS

External Quality Assessment Program

Design
The Neuroimmunology Laboratories in Pavia and in
Milan were the program coordinators. The program was
composed of 10 schemes, each addressing different areas
of neuroimmunology diagnostics: oligoclonal IgG bands
(OCBs) detection [with isoelectric focusing (IEF)] and pattern
interpretation, intracellular neuronal antibodies (ICN-Abs),
neuronal surface antibodies (NS-Abs), aquaporin-4 antibodies
(AQP4-Abs), myelin oligodendrocyte glycoprotein antibodies

(MOG-Abs), myelin associated glycoprotein antibodies (MAG-
Abs), ganglioside-Abs, acetylcholine receptor antibodies
(AChR-Abs), and muscle specific kinase antibodies (MuSK-
Abs). Twenty-nine Italian and five European laboratories
participated to the EQA program (Supplementary Table 1 and
Supplementary Figure 1). Each laboratory chose to take part
to any number of the proposed schemes. The procedures for
sample handling are described in Supplementary Figure 2.

A total number of 25 serum samples and 4 serum-CSF
pairs were used (Table 1). The clinical diagnosis associated
to each sample was established by trained neurologists (MG,
DF, and FB). The results obtained by the coordinating centers
(Pavia and Milan) were considered as the reference results. The
participating laboratories were requested to test the samples
according to their own routine standard operating procedures,
and results were reported to the coordinating team using
a result form. Report forms asked to classify the tested
sample as “positive” or “negative” and to report the specific
antibody type detected. Quantitative results from enzyme-linked
immunosorbent assay (ELISA) and radioimmunoassays (RIAs)
were collected, when appropriate.

All the results of the present EQA program will be presented
anonymized, to preserve the confidential nature of the single
laboratory performance.

Assays
Assays were classified as: (a) solid-phase assays (SPAs), including
blots and ELISA; (b) tissue-based assays (TBAs), including
immunohistochemistry/immunofluorescence on rodent and
primate brain, or peripheral nerve; (c) cell-based assays (CBAs),
including live and fixed CBA; (d) liquid-phase assays (LPAs),
namely RIAs.

Commercial assays were performed according to
manufacturer’s instructions. In house CBAs and TBAs were
performed according to published protocols, but adapted to each
laboratory routine (6–10).

Statistical Analysis
Test results were considered as “concordant” or “discordant”
when they matched/did not match the reference result, and
“partially concordant” when they either reported incompletely
what provided as reference, or when an additional positivity not
included in the reference result was reported.

Qualitative variables were summarized as percentages, and
quantitative variables as median with ranges.

Accuracy was calculated for each laboratory (frequency
of tests concordant with the reference result among all the
tests performed by the single laboratory). Between-laboratory
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TABLE 1 | Samples used in the AINI EQA program.

Test Sample N Code Material Titer* Clinical Diagnosis Sent as

Isolectric focusing 1 S1L1 Serum-CSF pair – Post-infectious

encephalomyelitis

Mirror (pattern #4)

2 S2L2 Serum-CSF pair – Hydrocephalus and MGUS Monclonal

gammopathy

(pattern#5)

3 S3L3 Serum-CSF pair – Multiple Sclerosis Mixed (pattern#3)

4 S4L4 Serum-CSF pair – Clinically Isolated Syndrome OCB (pattern#2)

Onconeural antibodies 5 O1 Serum NA Paraneoplastic cerebellar

degeneration (ovarian

tumor)

Yo pos

6 O2 Serum NA Stiff person syndrome GAD pos

7 O3 Serum NA Healthy control Neg

Neuronal Surface antibodies 8 C1 Serum 1:1200 Limbic encephalitis LGI1 pos

9 C2 Serum 1:400 NMDAR encephalitis NMDAR pos

10 C3 Serum – Healthy control Neg

AQP4 antibodies 11 Q1 Serum – Healthy control Neg

12 Q2 Serum 1:10 NMOSD Pos

13 Q3 Serum 1:100 NMOSD Pos

MOG antibodies 14 G1 Serum 1:160 Optic neuritis Pos

15 G2 Serum – Healthy control Neg

16 G3 Serum 1:640 Transverse myelitis Pos

MAG antibodies 17 MAG1 Serum 40000BTU DADS neuropathy Pos

18 MAG2 Serum 25000BTU DADS neuropathy Pos

19 MAG3 Serum 17000BTU DADS neuropathy Pos

Ganglioside antibodies 20 P1 Serum NA Miller-Fisher syndrome Gq1b IgG pos

21 P2 Serum – Healthy control Neg

22 P3 Serum NA CANOMAD GD1b IgM and GQ1b

IgM pos

23 P4 Serum NA Motor Multifocal Neuropathy GM1 IgM pos

AChR antibodies 24 A1 Serum 3.2 nmol/L Myasthenia gravis Pos

25 A2 Serum 7.8 nmol/L Myasthenia gravis Pos

26 A3 Serum – Healthy control Neg

MuSK antibodies 27 M1 Serum 1.2 nmol/L Myasthenia gravis Pos

28 M2 Serum – Healthy control Neg

29 M3 Serum 1.4 nmol/L Myasthenia gravis Pos

CSF, cerebrospinal fluid; MGUS, monoclonal gammopathy of uncertain significance; OCB, oligoclonal bands; NA, not available; GAD, glutamic acid decarboxylase; LGI1, leucine rich

glioma inactivated protein 1; NMDAR, N-methyl-D-aspartate receptor; AQP4, aquaporin 4; NMOSD, neuromyelitis optica spectrum disorder; MOG, myelin oligodendrocyte glycoprotein;

MAG, myelin associated glycoprotein; BTU, Bühlmann Titer Units; DADS, distally acquired demyelinating sensory neuropathy; CANOMAD, Chronic Ataxic Neuropathy, Ophthalmoplegia,

IgM paraprotein, cold Agglutinin, Disialosyl antibodies; AChR, acetylcholine receptor; MuSK, muscle specific kinase.

*Titres are reported as endpoint titrations unless otherwise specified according to the coordinating centers results.

agreement for each scheme was calculated using Fleiss’ Kappa
test with 95% confidence intervals (CI). Agreement was classified
as following: “poor,” kappa = 0.0; “slight,” 0.00 ≤ kappa ≤ 0.20;
“fair,” 0.21 ≤ kappa ≤ 0.40; “moderate,” 0.41 ≤ kappa ≤ 0.60;
“substantial,” 0.61≤ kappa≤ 0.80; “almost perfect,” 0.81≤ kappa
≤ 1.00 (11).

RESULTS

Overall Results
Twelve/34 laboratories participating to the EQA program took
part to 1–2 schemes, 10/34 to 3–5 schemes and 12/24 to

>5 schemes (Supplementary Figure 1 and Table 1). The OCB
scheme was the most attended (24/34 laboratories), followed by
AQP4-Abs (20/34 laboratories).

Considering the total number of assays used by each
laboratory in the EQA program, themost common assay type was
SPAs (48.3%), followed by CBAs (32.4%) (Figure 1). Commercial
assays were more common, and accounted for 76.7% of the
total. The remaining 23.3% of the assays were made “in-house”
(Figure 1).

The overall performance of all laboratories is showed in
Figure 2. Twelve/34 (67.6%) laboratories had an accuracy >80%
(Figure 2A). Overall median accuracy was 75% (range 50–100)
(Figure 2B; Supplementary Table 2).
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FIGURE 1 | Assays used in the AINI-EQA program. The figure considers the number laboratory using (A) either in house or commercial assays or (B) a specific assay

type. A single laboratory could use more than one assay. MOG, myelin oligodendrocyte glycoprotein; NS, neuronal surface; AQP4, aquaporin 4; MuSK, muscle

specific kinase; ICN, intracellular neuronal; IEF, isoelectric focusing. SPA, solid phase assay; CBA, cell-based assay; LPA, liquid-phase assay; TBA, tissue-based assay.

In 8/10 schemes at least one sample was critical, providing
at least one discordant result among laboratories. The highest
number of discordant results was found in OCB pattern
interpretation (39.6%), ICN-Abs (23.4%), and NS-Abs (23.4%)
(Figure 2A). A “substantial agreement” between laboratories was
found in 6/10 schemes.

Detailed results from each scheme are depicted in
Supplementary Figures 3–5.

Oligoclonal IgG Bands
Background of the Assay
The detection of the intrathecal production of oligoclonal
immunoglobulins, which can be revealed in form of “discrete
bands” on IEF, has high diagnostic relevance in multiple
sclerosis (12), and in other inflammatory neurological diseases
(13). Difficult-to-control factors, such as room temperature and
humidity, gel conductivity, electroendosmosis, and ampholytes
lot-to-lot differences, can affect the IEF technique making
between-laboratory agreements very difficult to achieve (13).
Interpretative issues of the IEF runs add complexity to the picture
(14, 15). The introduction of semi-automated systems for IEF
has simplified the test, but there is no comparison study on test
performance vs. “in-house” assembled systems.

Results of AINI EQAS
The IEF scheme was split in two separate tasks. The first one
required to establish presence or absence of OCBs in each of
the four paired serum and CSF controls (8 samples), whilst the

second required to interpret each of the ensuing IEF run as a
whole, on the basis of the five patterns established by the 1994
consensus report on the topic (14).

S4L4 was the most critical sample, as it showed a few faint
unique-to-CSF bands.

In this sample, bands were identified by 6/24 laboratories, and
only 2/24 provided a correct interpretation of pattern #2 (14).

The serum-CSF pair S2L2, sent as pattern #5 (monoclonal
gammopathy), was misinterpreted as a mirror, or a mixed
pattern, by 10/24 laboratories.

As for the methods, 8/24 laboratories used “in-house”
assembled IEF systems (where optimal run conditions were
established in each laboratory), six using home-made agarose
gels, two using commercial gels; the other 16 laboratories
exploited semi-automated IEF systems. Overall accuracy of
“in-house” assembled systems, which were used in the most
experienced laboratories, was slightly, but not statistically
significant superior than that of semi-automated systems, in both
the task of band detection (85.9 and 81.3%, respectively), and of
pattern interpretation (62.5 and 48.4%, respectively)

Overall agreement was “moderate” for bands detection (Fleiss’
kappa = 0.51), and only “fair” for pattern interpretation (Fleiss’
kappa= 0.31) (Figure 2C).

Conclusions
In line with the other previous programs on OCBs promoted
by AINI, this EQA revealed the difficulties in detecting OCBs
in critical samples. Even when recognized, OCBs can be

Frontiers in Neurology | www.frontiersin.org 4 January 2020 | Volume 10 | Article 138556

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gastaldi et al. AINI 2018 EQA Program

FIGURE 2 | Laboratory performances and schemes results in AINI-EQA program. (A) Accuracy is represented by the number of concordant results obtained by each

lab in all the schemes joined. Each lab participated to a variable number of schemes; (B,C) represent the performance (B) and the concordance of results (C) in each

scheme (MAG and AChR schemes are not represented since all results were concordant). MOG, myelin oligodendrocyte glycoprotein; NS, neuronal surface; AQP4,

aquaporin 4; MuSK, muscle specific kinase; ICN, intracellular neuronal; IEF, isoelectric focusing.

misinterpreted as wrong patterns, with risks of wrong messages
to the clinicians.

AQP4 Antibodies
Background of the Assay
The presence of serum AQP4-Abs identifies acquired
demyelinating syndromes of the CNS mainly affecting
the optic nerves and spinal cord, collectively defined as
Neuromyelitis Optica Spectrum Disorders (NMOSD) (16),
which are in differential diagnosis with MS. Initially, AQP4-Abs
were detected with immunohistochemistry on rodent brain,
but currently CBAs are the gold standard (17, 18). When
compared with ELISAs, CBAs offer the advantage of being
conformational (19). The AQP4 protein arranges on the cell
surface in tetramers, associated in the orthogonal particle arrays
(OPAs) that are relevant for AQP4-Ab binding (20–22). In a
multicenter comparison of AQP4-Abs detection assays, CBAs
resulted the most sensitive assays (6). Both live and fixed CBAs

showed good analytical performances, although live CBAs
performed with slightly higher accuracy (6). The use of ELISAs is
progressively decreasing due to inferior performances compared
to CBAs (6, 17, 21).

Results of AINI EQAS
CBAs were used by 18/19 laboratories (“in-house” live CBAs for
two of them), and only one used a commercial ELISA. The overall
agreement was “substantial” (Fleiss’ kappa: 0.66, 95%CI: 0.52–
0.79). Fifteen/20 laboratories reached 100% accuracy. Sample Q2,
a low AQP4-Ab-positive serum from an NMOSD patient (titer
1:10 on the commercial CBA) was reported as negative by 5/19
laboratories. Only one laboratory, using the commercial CBA,
reported the reference negative sample Q3 as AQP4-Ab positive.

Conclusions
The interpretation of fluorescence in samples with low titers
of AQP4-Abs can be challenging, and could lead to false
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negative results in the routine practice. The comparison between
in-house and commercial CBA performances suggests that
erroneous output evaluations mainly explained the relatively
low concordance.

MOG Antibodies
Background of the Assay
Using non-conformational methods, MOG-Abs had been
associated with MS for decades (23). Subsequently, these
antibodies, when detected with appropriate conformational
methods, have been increasingly associated with non-MS
acquired demyelinating syndromes, such as optic neuritis and
transverse myelitis (7, 24–26). Since only conformational MOG-
Abs are considered clinically relevant, CBAs are the gold
standard for their detection (27). CBAs are performed on live
cells transfected with human full-length MOG; bound IgG can
then be detected with either an anti-total human-IgG (9), or
an anti-human-IgG1, as secondary antibodies. (7) The output
readout can be performed either by fluorescence microscopy,
or flow-cytometry (28, 29). Recently, a commercial CBA for
MOG-Abs detection relying on fixed cells has become available.
In a three-center comparison, the fixed CBA showed rather
good concordance with the live CBAs, with slightly lower
specificity (30).

Results of AINI EQAS
Given the recent identification of MOG-Abs, this was the first
year that the scheme was included in the AINI EQA program.
Only laboratories using CBAs participated to this scheme, seven
with “in-house” protocols with different characteristics of the
secondary antibodies, which recognized total IgG (n = 3), IgG1

(n = 1), or both (n = 1). The remaining six laboratories used the
commercial fixed CBA.

The two positive samples had medium to high titers (1:320–
1:640), and were positive for IgG1 antibodies. The overall
agreement was substantial (Fleiss’ kappa: 0.71, 95%CI: 0.5–0.92).
Eleven/13 laboratories correctly identified MOG-Abs in sample
G1 and G2, and 13/13 recognized G3 as negative.

Conclusions
The participation of experienced laboratories only to this EQAS,
using both live and/or fixed CBAs, likely accounted for overall
good performances.

Neuronal Surface Antibodies
Background of the Assay
NS-Abs represent an expanding group of autoantibodies
targeting key proteins implicated in synaptic function (3, 31).
These antibodies associate with a wide spectrum of disorders
variably presenting with cognitive impairment, seizures,
movement disorders, and autonomic dysfunction, defined as
“autoimmune encephalitis” (2, 32). After the identification
of antibodies against the N-methyl-D-aspartate receptor
(NMDAR), many other NS-Abs have been discovered in the
last years (33, 34), including those against leucine rich glioma
inactivated-1 (LGI1) and contactin-associated protein-like 2
(CASPR2), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor 1 and 2 (AMPAR), and γ-aminobutyric acid A or B
receptor (GABAA/BR).

The use of conformational assays is crucial for NS-Ab
detection (35), and includes CBAs and/or TBAs on rodent brain
optimized with light fixation procedures (4). TBAs can be, at
least for some Abs, more sensitive than CBAs, although CBAs are
necessary to identify antigenic targets (36). The combination of
TBAs and CBAs can improve diagnostic accuracy (37).

A commercial fixed CBA is currently available for the most
frequently detectable NS-Abs. Rarer NS-Ab reactivities require
appropriate “in-house” diagnostics (2).

Results of AINI EQAS
As most laboratories used the commercial test that includes only
the most frequent NS-Abs (NMDAR-Abs, LGI1-Abs, CASPR2-
Abs, AMPAR-Abs, and GABABR-Abs), the EQA scheme was
restricted to these Abs. Eleven/fourteen laboratories used the
commercial CBA, whilst two used a strategy combining “in-
house” TBAs and “in-house,” or commercial CBA. One laboratory
used “in-house” live CBAs only (Table 2).

Sample C2 [from a patient with definite NMDAR encephalitis
(32)] was the only one providing conflicting results, as 9/14
laboratories failed to detect NMDAR antibodies. This sample
tested at the coordinating center showed 1:200 positive titer using
a TBA, and 1:10 positive titer using the commercial CBA (weak
positivity) (42).

Conclusions
Discrepancies were mainly due to difficulties in detecting
low titer NMDAR-Abs. This supports the message that, in
autoimmune encephalitis, testing for both serum and CSF can
increase diagnostic accuracy (42). Indeed, the paired CSF sample
of the C2 control was positive at high titer.

Intracellular Neuronal Antibodies
Background of the Assay
ICN-Abs target nuclear or cytoplasmic antigens, and associate
with a wide range of neurological syndromes often occurring
in association with a tumor (paraneoplastic neurological
syndromes, PNS). Classic PNS include, among others, limbic
encephalitis, paraneoplastic cerebellar degeneration, and
subacute sensory neuronopathy (43, 44). Although their
association with cancer is much rarer, GAD-Abs are often
included in this group, and are associated with stiff person
syndrome, epilepsy, or cerebellar ataxia, but also type-1
diabetes (45–47).

ICN-Abs are usually identified with screening TBAs on
murine or primate cerebellum, followed by confirmatory SPAs
(commercial line/dot blots). Blots include the most common
antibody targets, with some differences on the panel according to
the manufacturer (Table 2). Although blots can be more sensitive
than TBA in rare cases (48), their use without TBAs can lead to
false positive results, and is therefore discouraged (4, 49, 50). In-
house CBAs have been used with selected antigens, such as CV2
and SOX1, showing a higher sensitivity compared to commercial
blots (51, 52). GAD antibodies can be quantified using ELISAs,
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TABLE 2 | Assays used in the AINI EQA program.

Test Assay N of labs/total* Main features

Oligoclonal IgG bands Semi-automated systems 15/23 Precast agarose gels (small-medium size); manufacturer’s recommended

run conditions; direct immunofixation

In-house assembled

systems

8/23 In-house or commercial precast agarose gels (large size); run conditions

optimized in each laboratory; capillary blotting and immunofixation

Intracellular neuronal

antibodies

Immunohistochemistry on

fixed primate brain + blot A

6/16 Commercial (Euroimmun) chip + line-blot (Ravo), antigens: HuD, Yo, Ri,

CV2 (CRMP5), Amphiphysin, Ma1, Ma2

Immunohistochemistry on

fixed primate brain + blot B

6/16 Commercial (Euroimmun) chip + line-blot (Euroimmun), antigens: HuD, Yo,

Ri, CV2 (CRMP5), Amphiphysin, Ma, PCA-2, Tr, SOX1, titin, recoverin

blot A only 4/16 Line-blot (Ravo or Euroimmun), antigens: see above

Neuronal Cell Surface

antibodies

Immunohistochemistry on

rat brain + in-house CBA

2/16 In-house obtained slices from lightly fixed rat brain + in-house fixed

(Euroimmun), or live CBA designed according to the staining pattern on

tissue (10, 36)#

In-house CBA 1/16 Live CBAs for specific antigens (38, 39)#

Commercial CBA 13/16 Fixed CBA mosaic chip (Euroimmun); antigens: NMDAR, LGI1, CASPR2,

AMPAR 1/2, GABABR

AQP4 antibodies In-house CBA 2/20 Live CBA, transfection with M23 AQP4 isoform

Commercial CBA 17/20 Fixed CBA (Euroimmun), transfection with M23 AQP4 isoform

Commercial ELISA 1/20 RSR Limited, no information on AQP4 isoform used

MOG antibodies In-house CBA A 3/13 Live CBA, transfection with full-length MOG, total IgG secondary antibody,

titration cut-off (1:160) (8, 9)#

In-house CBA B 1/13 Live CBA, transfection with full-length MOG, IgG1 secondary antibody (7)#

In-house CBA C 1/13 Live CBA, transfection with full-length MOG, total IgG secondary antibody,

titration cut-off 1:160 + IgG1 secondary antibody (7, 9)#

In-house live CBA D 2/13 Like CBA A, cytofluorimetric analysis (40)#

Commercial CBA 6/13 Live CBA, transfection with full-length MOG, total IgG secondary antibody,

titration cut-off (1:10)

MAG antibodies Commercial ELISA 10/14 Bühlmann

Immunohistochemistry 1/14 Commercial, Immco Diagnostics

Immunohistochemistry+blot 1/14 Commercial, not specified

Commercial blot 1/14 Ravo

Commercial blot 1/14 Euroimmun

Antibodies to In-house ELISA 5/15 In accordance with INCAT (41)

Gangliosides Commercial blot 3/15 Line blot (Euroimmun)

Commercial ELISA 4/15 Bühlmann

Commercial blot 3/15 Dot blot (Generic Assay)

AChR antibodies Commercial RIA 5/8 IBL International; RSR Limited

Commercial ELISA 3/8 RSR Limited

MuSK antibodies Commercial RIA 4/5 RSR Limited

Commercial ELISA 1/5 RSR Limited

NMDAR, N-methyl-D-aspartate receptor; LGI1, leucine rich glioma inactivated 1; CASPR2, contactin-associated protein-like 2; GABABR, γ-aminobutyric acid B receptor; AMPAR,

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; AQP4, aquaporin 4; ELISA, enzyme-linked immunosorbent assay; MOG, myelin oligodendrocyte glycoprotein; MAG,

myelin associated glycoprotein; INCAT, Inflammatory Neuropathy Cause and Treatment; RIA, radioimmunosorbent assay; AChR, acetylcholine receptor; MuSK, muscle specific kinase.

*Single laboratories can use more than one test; CBA, cell-based assay; #In-house assays were performed according to published protocols, but adapted to each laboratory routine.

RIAs, and luciferase immunoprecipitation system (LIPS) (47, 53),
which are more sensitive than TBAs and line/dot blots (4).

Results of AINI EQAS
Among the participating laboratories, the ICN-Ab detection
was characterized by some heterogeneity of laboratory assays.
Twelve/sixteen laboratories used a combination of TBAs and
confirmatory SPAs, with two different commercial line blots
(each used by six laboratories). Four laboratories did not perform

a screening with TBA. No laboratory performed ELISAs, or LPAs
for GAD antibodies.

Overall agreement for this scheme was “fair” (Fleiss’ Kappa:
0.39, 95%CI: 0.3–0.49).

Sample O2 was wrongly identified as negative by 4/16
laboratories. One of the laboratories detected a compatible
staining pattern with TBA, not confirmed on line blots, and
the three remaining laboratories performed the line blot only.
In addition, for the same sample 8/16 laboratories additionally
reported a positivity for titin-Abs detected with line blots. The
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same reactivity was reported by 7/16 laboratories with the sample
O3 (sent as negative). Titin-Abs are variably used in patients with
myasthenia gravis (MG) as biomarker of thymoma (54). O2 and
O3 patients did not show any clinical manifestation of MG, and
had no thymoma.

Conclusions
The poor performances of many laboratories in this EQA scheme
could have the following main reasons: (a) TBAs are mandatory
screening tests (42), so that using only line/dot blots, based on
recombinant proteins, can yield false positive and false negative
results (49); (b) the recognition of particular ICN-Abs patterns
on TBAs is challenging (42); (c) faint antibody reactivities on
line/bot blots should be interpreted as negative results.

The introduction of the titin antigen in the commercial
dot/line blots for ICN-Abs is questionable, as MG had been
considered an “independent disease,” and thus excluded by the
diagnostic criteria for PNS (42).

Ganglioside Antibodies
Background of the Assay
Ganglioside-Abs are associated with a wide spectrum of
inflammatory peripheral neuropathies (55). However, only
few of them have actual diagnostic meaning and associate
with well-defined clinical phenotypes. These include: (a)
antibodies against a dialosyl epitope, a sequence contained in
GD1b, GD3, GT1b, and GQ1b molecules in patients with a
paraproteinemic neuropathy defined as CANOMAD (Chronic
Ataxic Neuropathy, Ophthalmoplegia, IgM paraprotein, cold
Agglutinin, Disialosyl antibodies) (56, 57); (b) GM1 IgM-Abs
in patients with motor multifocal neuropathy with conduction
blocks (MMN) (58); (c) GQ1b (with/without GT1a) IgG
antibodies in patients with Fisher syndrome, a variant of
Guillain-Barrè syndrome (GBS) with ophthalmoplegia and
ataxic neuropathy (59, 60). GD1a, GM1a, GM1b, and GalNAc-
GD1a-Abs (IgG isotype) characterize the acute motor axonal
neuropathy (AMAN), and GM1 and GD1a-antibodies (IgG
isotype) characterize acute motor and sensory axonal neuropathy
(AMSAN), but these axonal forms of GBS are more common
in Asia and Central and South America than in North America
and Europe.

Thin layer chromatography is considered the gold standard,
but it is often unavailable for routine diagnostics, for
which available options include line/dot blots and ELISAs,
with suboptimal performances (56). In order to improve
standardization, in 1999 an ELISA for ganglioside-Abs has
been proposed by an experts panel (INCAT-ELISA) (41), and is
still considered a valid assay notwithstanding the documented
inter-laboratory variability (61). Limiting the tests to the above-
mentioned autoantibodies, and considering positive results only
when high titers are detected represent useful recommendations
for clinicians (61).

Results of AINI EQAS
Five/fifteen laboratories performed ELISAs according to
the INCAT guidelines, 4/15 used commercial ELISAs, and
6/15 commercial blot from two different manufacturers

(Table 2). The EQA scheme for ganglioside-Abs had the lowest
agreement (Fleiss’ kappa: 0.29, 95%CI: 0.21–0.36), and the
lowest accuracy (median: 50; range: 25–100) within the EQA
program. Twelve/fifteen laboratories performed suboptimally,
showing an accuracy ≤50%. Sample P1 (from a patient with
Fisher syndrome) was correctly reported as GQ1b-IgG positive
by 14/15 laboratories, but three laboratories additionally
identified other ganglioside-Abs, such as GM1-IgM, or GT1a
IgG, which, however, can coexist with GQ1b-IgG. Sample P3
(from a patient with CANOMAD) was classified as positive for
both GD1b and GQ1b-IgM. Only three laboratories showed
agreement with the reference value. Four/fifteen laboratories
reported only one of the two ganglioside-Abs, whilst four
reported additional ganglioside-Abs, possibly compatible with
the clinical syndrome (such as, GD1b-IgM), or unrelated (such
as, sulfatide IgM). Similarly, in sample P4 (from a patient
with MMN, sent as GM1-IgM-positive) 9/15 laboratories
reported additional reactivities including GM2 and GD1b-IgM.
The interpretation of this scheme thus needed the arbitrary
setting up the category of “partially concordant” results,
when antibody reactivities compatible with the established
clinical phenotypes were reported in addition to the reference
reactivities. However, the statistical analysis of this EQAS was
calculated including “partially concordant” results into the
category of “discordant” results.

Conclusions
This scheme was the most critical of our EQA program,
likely due to the relatively high heterogeneity of the tests
employed by the various laboratories, and the technical
drawbacks that intrinsically affect the current methods for
ganglioside-Abs testing (62). The poorest performances still
remain even if the category of “partially concordant” joins that
of “concordant” results.

MAG Antibodies
Background of the Assay
MAG neuropathy is a rare disease typically associated with
monoclonal IgM that recognize the glycoprotein (63). A
slowly progressing neuropathy characterizes the disease (Distal
acquired demyelinating symmetric neuropathy, DADS). MAG-
Abs detection is preferentially performed with ELISA, which
produces quantitative results useful for monitoring the disease.
Other tests, including Western or line blot, and TBAs are
available, but they show lower accuracy (63, 64).

Results of AINI EQAS
Despite the heterogeneity of the assays used (Table 2), all
laboratories correctly identified MAG-Abs in the three reference
samples, all from patients with DADS.

Conclusions
MAG scheme was not critical. However, among the laboratories
that used the Bühlmann ELISA, large differences in quantitative
values were detected, thus suggesting between-laboratory
difference in performing the test.
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AChR and MuSK Antibodies
Background of the Assay
MG is an autoimmune disorder of the neuromuscular junction
characterized by muscle fatigue and reduced endurance upon
repetitive use (65, 66). AChR-Abs are highly specific for MG,
and are found in 85–90% of patients with generalized MG and
in 40–70% with ocular MG (66, 67). More recently discovered,
MuSK-Abs are present in serum samples of about one third of
AChR-Abs-negative MG patients (68, 69).

LPA, and particularly RIA, either “in-house” or commercially
available, are considered the gold standard for both AChR- and
MuSK-Ab detection (69). Recently, novel tests using CBAs have
been implemented, showing high sensitivity in detecting AChR-
and MuSK-Abs in LPA antibody-negative patients (70, 71). This
advantage is likely linked to the antigen clustering at the cell
surface, thus improving the binding of divalent low-affinity
AChR-Abs. However, such tests are performed on live cells,
and thus they are necessarily “in-house” and non-standardized.
Alternatively, commercial ELISAs are available for the detection
of both AChR- and MuSK-Abs, but their performances are
inferior to those of RIAs (69).

Results of AINI EQAS
The number of laboratories participating to AChR- and MuSK-
Ab schemes was limited (8 and 5, respectively). Three laboratories
in the AChR-Ab scheme, and one in the MuSK-Ab scheme, used
a recently released commercial ELISAs, whilst the remaining
laboratories used the consolidated commercial RIAs. Accuracy
was high, but one laboratory using the ELISA identified MuSK-
Abs in a negative sample.

Conclusions
RIAs remain the gold standard for AChR- and MuSK-Ab
detection. CBAs for their detection are showing promising
preliminary results (38), and forthcoming EQA programs will
evaluate their performances.

GENERAL CONCLUSIONS

The Holy Grail of precision medicine requires endless
efforts toward the production of biomarker data for accurate
stratifications of patients, and, to determine the best approach to
prevent, diagnose, or treat diseases. These efforts are exploiting
the impressive technological advancements to identify new
biomarkers. On the other hand, the contribute of well-established
biomarkers should not be overlooked.

The here reported data from the 2018 AINI EQA
program depict a complex picture on how currently
used neuroimmunology biomarkers work in real life. The
evidence derives from a single EQA evaluation, but we found
similar performances in our previous AINI EQA programs
[personal communication].

Briefly, the neuroimmunology tests here evaluated can fall
into three categories:

(a) standardized and robust commercial tests with substantial
inter-laboratory agreement (MAG-Abs; AChR- and MuSK-Abs);
(b) commercial and “in-house” tests with partial inter-laboratory
agreement (AQP4-Abs, MOG-Abs, NS-Abs, ICN-Abs); (c)

commercial and in-house tests with large inter-laboratory
disagreement (OCBs, ganglioside-Abs).

The CBAs used for AQP4 and MOG-Ab detection are of
relatively recent introduction. Both in-house and commercial
tests seem to perform suboptimally in low-titer sample controls.
Accordingly, a large multicenter comparison of various tests for
AQP4-Abs suggests that technical accuracy improves when tests
are carried out in specialist laboratories (18).

As a whole, technical inaccuracy and shortcomings in results
interpretations are likely the main reasons underlying the
suboptimal performance put in evidence by our EQA program
for NS- and ICN-Abs too. However, there are two tests that
carry well-known “structural” limits, namely the IEF for OCB
detection (8), and ELISA, or dot/line blot tests for ganglioside-
Abs (60), which are very difficult to overcome. As for OCBs, such
limits were one of the main points supporting their exclusion
from MS diagnostic criteria (72). Exploiting the expertise of
specialized laboratory, with a centralization of OCB testing, could
minimize the above-mentioned shortcomings. The limits of the
available tests for ganglioside-Abs, once recognized, should lead
to a consensus including experts and the main manufacturers, to
find the best compromise on the best single method to use and
on interpretative rules for positive results.

The commercial fixed CBA for MOG-Abs seemed to perform
as well as the in-house live CBAs, but only three samples were
tested, not allowing the due statistical evaluations. The in-house
live CBA for MOG-Abs yielded better results than a fixed CBA in
a three-center comparison study (29).

The main limitation of this study is the low number (3 or
4) of samples sent for each assay. On the other hand, high
volumes of control samples from patients with a given disease,
that are necessary when many centers are involved in EQA
programs, are not easily obtainable, and evaluations on single
assay performances should better imply high numbers of samples
tested by a few selected centers.

In conclusion, our findings give clinicians a panorama of
what they can expect when they ask for neuroimmunology
tests. Although restricted to Italian and a few European
laboratories, the data of this EQA program are indeed in line
with other similar surveys promoted for single tests (18, 29,
50). It is conceivable that in countries where neuroimmunology
diagnostics is centralized in laboratories with specific expertise
the quality of the service could be higher. Further efforts for
standardizations are still needed, as well as the promotion of EQA
programs, which are fundamental even for expert laboratories.
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Over the last two decades, the discovery of antibodies directed against neuronal

surface antigens (NSA-Abs) in patients with different forms of encephalitis has

provided a basis for immunotherapies in previously undefined disorders. Nevertheless,

despite the circumstantial clinical evidence of the pathogenic role of these

antibodies in classical autoimmune encephalitis, specific criteria need to be applied

in order to establish the autoimmune nature of a disease. A growing number

of studies have begun to provide proof of the pathogenicity of NSA-Abs and

insights into their pathogenic mechanisms through passive transfer or, more rarely,

through active immunization animal models. Moreover, the increasing evidence

that NSA-Abs in the maternal circulation can reach the fetal brain parenchyma

during gestation, causing long-term effects, has led to models of antibody-induced

neurodevelopmental disorders. This review summarizes different methodological

approaches and the results of the animal models of N-methyl-d-aspartate receptor

(NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein

2 (CASPR2), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

(AMPAR) antibody-mediated disorders and discuss the results and the limitations.

We also summarize recent experiments that demonstrate that maternal antibodies to

NMDAR and CASPR2 can alter development in the offspring with potential lifelong

susceptibility to neurological or psychiatric disorders.

Keywords: animal models, neuronal surface antibodies, passive transfer, maternal transfer, active immunization

INTRODUCTION

Over the last two decades, it has become clear that antibodies against neuronal surface antigens,
particularly receptor-gated ion channels of ion-channel-associated proteins, can reach the brain
to cause a group of disorders referred to as antibody-mediated or autoimmune encephalitis (AE)
(1). These are immune disorders of the central nervous system (CNS) characterized by a wide
range of neurological and psychiatric clinical features and associated with antibodies against
different proteins expressed on the neuronal surface, mainly at excitatory, and inhibitory synapses
(Figure 1). Distinct from classical paraneoplastic syndromes that are associated with onconeural
antibodies (3), in AE, the neuronal surface antibodies (NSAbs) are considered to be pathogenic,
and patients respond substantially to immunotherapies that reduce antibody levels (4).
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FIGURE 1 | (A) Schematic representation of central excitatory and inhibitory synapses and main antibody targets. The proteins targeted by antibodies associated with

autoimmune encephalitis are proteins expressed on the neuronal surface, often at both presynaptic and postsynaptic levels on inhibitory (GABAergic) and/or

excitatory (glutamatergic) neurons in the central nervous system (CNS). (B) Schematic representation of CASPR2. CASPR2 localizes at the juxtaparanode of

myelinated axons. CASPR2 binds to contactin-2/TAG-1 via its extracellular domain and links to PDZ-binding proteins and to the cytoskeleton via protein 4.1B,

stabilizing Kv1 channels [adapted with permission from Giannoccaro et al. (2)].

Interestingly, these pathogenic antibodies can be either
predominantly immunoglobulin G1 (IgG1) or IgG4, depending
on the target antigen. In vitro studies have helped to decipher
the mechanisms by which they lead to neuronal dysfunction:
in many cases, divalent antibodies (IgG1 > IgG3, IgG2) cause
internalization of adjacent surface proteins, leading to their loss
from the membrane; complement activation by these antibodies
can be demonstrated in vitro but may not always occur in vivo.
By contrast, in some disorders, IgG4 antibodies predominate and
act principally or exclusively by direct inhibition of the function
of the target antigen [see (5) and Figure 2].

However, an effect of the antibodies in vitro does not
necessarily reflect a pathogenic role in vivo. For instance,
IgG, IgA, and IgM N-methyl-D-aspartate receptor (NMDAR)
antibodies (NMDAR-Abs) have been identified in a small
proportion of healthy humans and mammals (6–9) and
cause internalization of the NMDAR in cultured neurons
(9, 10), similar to the antibodies found in patients with
the IgG NMDAR-Ab encephalitis (NMDARE) (11). This
suggests that other factors are likely required to induce the
clinical syndrome, factors that may be difficult to model in
vitro alone.

Indeed, according to the modified Witebsky criteria (12),
direct and indirect evidence of pathogenicity requires the
reproduction of the disease in a recipient through direct
transfer of the antibodies (passive transfer) or through
active immunization, respectively. Animal models not
only provide evidence of pathogenicity but can also offer
insight into sites of action, pathogenic mechanisms, and
therapeutic approaches.

Accordingly, over the last few years, animal models, usually
in mice, have been established for the most commonly
encountered NSAbs in clinical practice. Below, we describe
the approaches used and the results of these models and
discuss their advantages and limitations. We also summarize
recent experiments that demonstrate that maternal antibodies
to these or other NSAbs can alter development in the
offspring with potential lifelong susceptibility to neurological or
psychiatric diseases.

DIFFERENT MODELS OF
ANTIBODY-MEDIATED DISORDERS

Animal models of autoimmune disorders can be divided into two
main categories: (1) spontaneous models where, comparably to
humans, animals develop an autoimmune disease spontaneously
and (2) induced models where an autoimmune disease is
artificially provoked. Spontaneous forms of AE have been
reported in different species, but they are uncommon (13, 14).
Most of the models of AE have been obtained through induction
by passive or active immunization. Passive immunization is
based on the reproduction of the disease in a healthy recipient
by transfer of serum, purified immunoglobulins, monoclonal
antibodies, or, more rarely, antibody-producing cells isolated
from an affected human or animal donor. Active immunization
is based on the exposure to an antigen, often in association
with adjuvants, to generate an adaptive immune response. The
antigen can be in the form of purified proteins, recombinant or
synthesized peptides (15).
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FIGURE 2 | Main mechanisms by which antibodies act to reduce the function of their targets. Immunoglobulin G1 (IgG1) and IgG3 can cross-link antigenic targets,

leading to internalization, and degradation of the antigen in lysosomes. Also, IgG1 and IgG3 can activate the complement cascade via their Fc domains, which interact

with complement proteins C1 and C1q. The complement cascade culminates in the formation of the membrane attack complex which disrupts the phospholipid

bilayer, resulting in cell damage. Finally, some autoantibodies can directly block receptors by binding to an essential transmitter or regulatory binding site, but

monovalent IgG4 can only act by disrupting the function of the target or the interaction between their target and partner proteins.

Work on myasthenia gravis (MG) provides examples of both
active and passive immunization and has helped to shape our
understanding of antibody-mediated diseases (Table 1). Passive
transfer is the best way to assess the acute effects of human
autoantibody-mediated diseases and has been used extensively to
study patients’ derived antibodies in MG [(16); see a brief review
by Phillips and Vincent (17). By contrast, active immunization
(see (18)] has been particularly useful to investigate more broadly
the immunological factors underlying the disease, though with
the limitations of possible differences between the function of
the human and rodent immune systems and between different
strains of mice. For instance, C57B1/6 mice were very susceptible
to active immunization with acetylcholine receptor (AChR),
whereas AKR/J mice were resistant (19, 20). Moreover, the use
of the target antigen as a whole protein often induces high titers
of antibodies, but if the protein is from a different species, not
all of the antibodies will necessarily cross-react with the mouse
antigen or be directed against the disease-causing epitope(s).
Therefore, active immunization models are not always relevant
to the human pathology but, when successful in producing
an appropriate clinical and physiological phenotype, provide
a long-term model of the disease that is suitable for testing
experimental therapies.

In contrast to conditions such as MG, where the target
antigens of the antibodies are peripheral and thereby easily
accessible from the systemic circulation, the blood–brain barrier
(BBB) limits the access of immune molecules to the brain.
One way to overcome this limitation, in models of CNS

antibody-mediated diseases, is to infuse the antibodies directly
into the cerebrospinal fluid (CSF) within the cerebral ventricle(s)
(intracerebroventricular, icv) or to inject them into the brain
parenchyma. However, in the majority of autoimmune forms of
encephalitis, the antibody levels are higher in the serum than in
the CSF, suggesting that the antibodies could initiate the disease
by diffusion through an incomplete or temporarily disrupted
BBB (32) or at sites of limited BBB protection such as the
choroid plexus. Therefore, another approach is to administer
the antibodies in the periphery, using the intravenous (iv) or
intraperitoneal (ip) route and if necessary to induce artificially
a breach in the BBB to allow the antibodies to reach their targets.
Classically, the latter is obtained by one or two ip injections of
lipopolysaccharide (LPS), which induces a transient disruption
of the BBB, particularly in the frontal cortex, thalamus, pons–
medulla, and cerebellum (33). It is not yet clear whether the icv or
ip route of administration is most appropriate and whether they
could lead to different CNS changes.

Finally, there is a possibility of transfer from a mouse
dam to developing embryos. Although the BBB interfaces are
formed early in development (34), maternal IgG antibodies
can cross into the fetal brain parenchyma during gestation
(32). It is long established that a neonatal form of MG
can result from the transfer of IgG antibodies from an
affected mother to her fetus in utero (27, 35). Human
MG AChR antibodies injected intraperitoneally into pregnant
mice were shown to cross efficiently from the mouse dam
to her fetuses and to cause neuromuscular changes in
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TABLE 1 | Example of antibody-mediated diseases: clinical and experimental evidence for MG.

IN HUMANS:

• Clinical features (weakness and fatigue) can be reversed by plasma exchange and other immunotherapies (21).

• IgG1 and IgG3 antibodies to the AChR are present in the majority of patients (22, 23).

• IgG and complement deposition are found at the neuromuscular junction (24).

• The thymus gland contains germinal centers and produces some of the AChR antibodies (25).

• Thymectomy leads to long-term clinical benefit, reducing the need for immunotherapies (26).

• Mothers can transfer pathogenic antibodies to the fetus or neonate, causing a transient form of MG (27) or rarely a severe neurodevelopmental disorder (arthrogryposis

multiplex congenital) (28).

GENETIC CONDITIONS:

• Genetic conditions caused by mutations in genes encoding AChRs cause similar clinical features but without evidence of autoimmunity.

• Genetic conditions can be modeled in transgenic mice [see (29)].

IN EXPERIMENTAL ANIMALS:

• Injection of patient IgG into mice or other species leads to short-term clinical or electrophysiological evidence of the disease (16).

• Active immunization against purified AChRs leads to a more severe and prolonged model (30).

For a brief review of the history of research into myasthenia gravis, see Vincent (31). MG, myasthenia gravis; IgG, immunoglobulin G; AChR, acetylcholine receptor.

utero (36); this model has since been used to study the
effects of human serum antibodies on brain development (as
described below).

MODELS OF NEURONAL
ANTIBODY-MEDIATED DISORDERS

The clinical and investigative features of the patients with
antibodies to neuronal surface proteins, and the results of the
existing models, are summarized in Table 2.

NMDAR-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
NMDARE, the classical syndrome associated with IgG1
NMDAR-Abs, is the most commonly recognized AE in
clinical practice. It is characterized by psychiatric symptoms,
such as confusion, abnormal behavior, paranoia, and
hallucinations, in addition to memory problems, seizures,
dyskinesia, autonomic instability, catatonia, hypoventilation,
lethargy, and language deficits (56). In vitro, pathogenic
NSAbs bind and cause clustering (57), cross-linking, and
internalization of NMDAR, leading to a loss of functional
receptors on the cell surface (NMDAR hypofunction), which
is reversible on removal of the NMDAR-Abs (11). Moreover,
NMDAR-Abs induce dispersal of GluN2A-NMDAR, through
the blockade of the interaction between the extracellular
domains of GluN1/GluN2 subunits and ephrin-B2 receptors
(EPHB2R) (58).

In a high proportion of younger women, the disease is
caused by the presence in an ovarian teratoma of neuronal
tissue expressing NMDARs and inducing an immune response
(59, 60). In others, particularly young children, the disease can
follow herpes simplex virus encephalitis (HSVE), probably as
a secondary response to the neuronal damage caused by the
virus (61).

Spontaneous or Genetic Disease
NMDAR-Abs have been described in other mammals (9) and are
present at a low percentage (around 1%) in healthy individuals.
In 2014, a retrospective study showed that Knut, the polar bear
of the Berlin Zoological Garden who drowned in 2011 following
seizures, had high levels of NMDAR-Abs in his serum and
CSF, making him the first non-human case of NMDARE and
reaffirming the epileptogenicity of these antibodies in mammals.
Pathological examination showed a patchy distribution of
infiltrating immune cells, with numerous plasma cells around
vessels and within the parenchymal infiltrates, in the absence of
marked neuronal abnormalities (14).

Mutations in GRIN1 [which encodes the GluN1 (NR1)
subunit of NMDAR] have been associated with a phenotype
consisting of severe intellectual disability, seizures, hyperkinetic
and stereotyped movement disorders, and dysmorphic features
(62–64). In mice, selective deletion of GluN1 in CA1 and CA3
pyramidal neurons abolished long-term potentiation (LTP) and
induced memory impairment (65, 66).

Passive Transfer Models
Animal models of NMDARE have been published recently with
results that recapitulate some of the specific features of the human
disease. In rats, stereotactic parenchymal injection of CSF or
purified IgGs from patients with NMDARE produced different
outcomes. Infusion in the CA1 and premotor cortex increased
the levels of extracellular glutamate and, consequently, neuronal
excitability (46). On the other hand, several studies showed that
a single injection of CSF from patients with NMDARE into
the hippocampus produced a reduction of LTP in the CA1,
CA3, and dentate gyrus (47–49). Behaviorally, effects ranging
from impaired Morris water maze memory performance (47)
to a lack of novel object recognition (49) were reported, in the
absence of significant changes in locomotor activity or anxiety-
like behavior (49).

Continuous icv infusions of CSFs pooled from individuals
with NMDARE into mice over 14 days reproduced some of the
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TABLE 2 | Summary of main features of NSAb diseases and the models.

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

NMDAR (IgG1 PREDOMINANTLY)

NMDAR

encephalitis:

psychiatric

syndrome,

seizures,

amnesia,

movement

disorders

catatonia,

autonomic

instability

EEG variable

MRI often normal

CSF cellular,

intrathecal

synthesis

Active C57BL/6 mice (12

months old) WT and

ApoE−/−; single injection

of a mixture of GluN1

extracellular peptides

and/or

chicken ovalbumin +

complete Freund’s

adjuvant

NMDAR1 peptides Hyperactivity only after

MK-801 in APOE−/−

mice 4 weeks after

immunization

No CD3 infiltrates, no

microglia activation

NA (9)

After 24-h incubation

with serum from

proteoliposome-treated

mice, cultured

hippocampal neurons

showed reduced

NMDAR-mediated

currents and a decrease

of >50% in GluN1

immunoreactivity

Active C57BL/6 adult mice;

subcutaneous injection

of NMDARs in

proteoliposomes (or

liposomes or saline)

followed by a booster 2

weeks later

Purified GluN1/GluN2B

NMDA fully assembled

tetrameric receptors

(holoreceptors)

embedded in liposomes

Hyperactivity,

stereotypied, and

anxiety-like behavior 4

weeks after

immunization; overt

seizures (21%), and

hunched back/lethargy

(11%)

Perivascular cuffing;

patchy areas of cell

death; microgliosis;

immune cell infiltrates

in the brain

Reduced

NMDAR-mediated

currents in cultured

hippocampal neurons

incubated with serum of

immunized mice

(37)

Internalization of

NMDARs

Loss of NMDARs

Disruption of

ephrin interaction

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

Pooled CSF Cognitive and

depressive-like

IgG bound, NMDAR

loss

NA (38)

(11)

PT icv, single bolus Purified serum IgG Increased seizure

susceptibility

IgG, no NMDAR loss Seizures after PTZ (39)

PT Male

C57BL/6 mice (age 8

weeks); icv infusion over

18 days

CSF from patients with

NMDARE

Impaired spatial

memory as detected

with the Morris water

maze test

Decreased content of

NMDAR in the

hippocampus; no

neuronal loss or

inflammatory cell

infiltrates; increased

CXCL10 expression in

the brain

NA (40)

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

CSF from patients with

NMDARE with or without

ephrin-B2

Memory deficit and

depressive-like behavior.

EphB2 prevented

antibody effects

Decrease of the density

of cell surface and

synaptic NMDAR and

EphB2

Impairment of long-term

synaptic plasticity

(41)

(Continued)

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

5
F
e
b
ru
a
ry

2
0
2
0
|V

o
lu
m
e
1
0
|A

rtic
le
1
3
9
4

69

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


G
ia
n
n
o
c
c
a
ro

e
t
a
l.

A
n
im

a
lM

o
d
e
ls
o
f
A
u
to
im

m
u
n
e
E
n
c
e
p
h
a
litis

TABLE 2 | Continued

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

PT Male C57BL/6 mice

(8–10w old); ICV

infusion over 14 days

CSF or IgGs

purified

from CSF of patients

with NMDARE

Absence of overt

changes in memory

(NOR), anxiety, and

locomotor activity (OF,

RT). However, reduced

preference for novel

object at NOR

No neuronal loss;

astrocytic hypertrophy

but not proliferation

in the hippocampus

Increased frequency of

seizures; reduced

excitability and

membrane resistance of

CA1

pyramidal neurons in

mice hippocampal slices

(42)

Patient-derived rhuMAb,

specifically synaptic

NMDAR clusters in

cultured hippocampal

neurons and

NMDAR-mediated

currents in NMDAR

transfected cells

PT Mice; icv infusion over

14 days

Recombinant human

antibodies from clonally

expanded intrathecal

plasma cells

Memory impairment at

NOR test

Human IgG bound;

NMDAR loss in the

hippocampus

NA (43)

mAb caused

internalization of NMDAR

PT Female Swiss Webster

mice, 6–8 weeks old;

single iv injection + LPS;

4 days’ observation after

3 days’ recovery

mAb from a patient with

NMDARE

increased spontaneous

locomotor activity

NA NA (44)

PT Female BALB/c mice

(8–10 weeks old)

Intranasal inoculation of

HSV-1 + ACV

NA 4/6 mice developed

serum NMDAR-Abs and

showed decreased brain

NMDAR expression

NA (45)

PT Males Wistar rats; single

stereotactic injection in

the hippocampus (CA1)

and premotor cortex

CSF or IgGs purified

from CSF of patients

with NMDARE

Increased

glutamate

NA NA (46)

PT Female Wistar rats (2

months old); single

stereotactic injection in

the hippocampus

(dentate gyrus)

CSF of patients with

NMDARE or commercial

anti-NMDAR1-Ab

Impaired memory at

Morris water maze

NA Reduced LTP in the

dentate gyrus; absence

of increased frequency of

recurrent epileptiform

discharges induced by

gabazine compared with

controls

(47)

PT Female Wistar rats

(60–90 days old); single

stereotactic injection in

the hippocampus (CA3)

CSF of patients with

NMDARE

NA NA Reduced LTP magnitude

at A/C fiber-CA3

synapses compared with

controls; increased

frequency of epileptiform

after potentials following

the fEPSP

(48)

(Continued)
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TABLE 2 | Continued

Clinical features Investigations Main mechanisms

identified in vitro

Active

or PT

Animals, route,

duration

Material Behavior and other

observations

Pathology Ex vivo physiological

studies

References to

in vitro and

in vivo models

PT Female Wistar rats

(8–10 weeks old); single

stereotactic injection in

the hippocampus (CA1)

CSF of patients with

NMDARE

Absence of overt

alteration at NOR,

locomotor activity, and

anxiety. However,

reduced preference for

NO at NOR

NA Schaffer collateral–CA1

LTP reduced in

hippocampal slices

(49)

CASPR2 IGg4 > IGg1

Peripheral (pain,

neuromyotonia,

autonomic

dysfunction)

EMG evidence of

peripheral nerve

hyperexcitability

Loss of Kv1 expression

on the surface

of cultured DRG neurons

incubated with

CASPR2-IgG

PT Male C57BL/6J mice

(8–10 weeks old);

ip daily injections for

14–18 days

Purified plasmapheresis

IgG

Evidence of lowered

thresholds for

mechanical pain

IgG bound in DRG,

small increase of

microglia in spinal cord

Decreased Kv currents

with increased excitability

of DRG neurons

(50)

Central: limbic

encephalitis,

Morvan’s

syndrome

MRI FLAIR

hippocampal

hyperintensity,

CSF bland, little

intrathecal

synthesis

Some internalization of

CASPR2 but no loss of

surface CASPR2

PT Male C57BL/6J mice

(8–10 weeks old);

ip daily injections for 8

days + 1 ip LPS injection

Purified plasmapheresis

IgG

Modest loss of working

memory, abnormal

behaviors in the

presence of novel

mouse

No loss of CASPR2 but

extensive microglial

activation and astrocyte

activation with

complement expression

NA (51)

CASPR2 internalization

with reduction of

CASPR2 surface

expression and

decreased intensity of

surface GluA1 total and

synaptic clusters

PT C57BL/6J mice; single

stereotactic injection;

primary visual cortex

(V1)

Purified IgG from PLEX NA NA Reduced amplitude of

AMPAR-mediated

mEPSCs in V1-layer 2/3

pyramidal neurons

incubated with patient

IgG

(52)

LGI1 IGg4 > IGg1

Central: LE with

or without FBDS

and or

hyponatremia

MRI FLAIR

hippocampal

hyperintensity,

usually normal

CSF, rare OBs;

Abs can be absent

Antibodies prevent the

binding of LGI1 with

ADAM22 and ADAM23

PT Male C57BL/6J mice

(8–10 weeks old); icv

infusion over 14 days

Purified IgG from serum IgG bound; reduced

Kv1.1 and AMPAR

Memory deficit at NOR Increased presynaptic

excitability and

glutamatergic synaptic

transmission and

impaired LTP in acute

hippocampal slices from

LGI1-IgG-injected mice

(53)

AMPAR

Central: LE Lymphocytosis;

OBs; Abs usually

present

Internalization of

AMPARs; depletion of

heteromeric synaptic

AMPARs containing

GluA2 most likely

followed by a synaptic

incorporation of GluA1

homomeric AMPARs;

decreased mEPSC

amplitudes and

frequency in neurons

treated with a-GluA2 IgG

PT C57BL/6 mice (WT and

GluA1-KO); icv infusion

over 14 days or single

stereotactic

intrahippocampal (CA1)

injection

IgG purified from serum Memory impairment at

NOR and anxiety-like

behavior (maximum

effect after 18 days

during pump infusion)

IgG bound to

hippocampus;

unchanged spine

density and morphology;

downregulation of

GluA2

Reduced mEPSC

amplitudes and

impairment of LTP in the

SC- CA1 pathway in

acute hippocampal slides

(54)

(Continued)
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neuropsychiatric features observed in patients such as memory
deficits, anhedonia, and depressive-like behaviors. Seizures or
movement disorders were not observed. IgG deposition and
a decrease in NMDAR clusters on hippocampal neurons was
observed in NMDAR-Ab-injected mice, which resolved within
days after discontinuing the infusion (38). Further studies have
also shown disruption of the normal interaction with other
synaptic proteins, in particular EphrinB2R. Administration of
ephrin-B2 (the ligand of the EphrinB2 receptor) in the 14-
day infusion animal model prevented the pathogenic effects
of NMDAR-Abs on memory and behavior, levels of cell-
surface NMDAR, and synaptic plasticity (41). Recently developed
human-derived monoclonal antibodies to the NMDAR have
produced similar pathogenic effects in vivo and in vitro and offer
a promising less-limited resource (compared to human CSF and
IgG) for future experimental studies (43).

In another mouse model, icv injection of purified
plasmapheresis IgG from individuals with NMDARE induced,
in association with a subthreshold dose of the chemo-convulsant
pentylenetetrazol (PTZ), more frequent and severe seizures
than a single injection of IgG from control individuals [(39);
see Figure 3]; cognitive and other features were not examined
in these mice. Continuous wireless electroencephalogram
(EEG) recording did not identify any spontaneous seizure
activity. However, there was IgG bound to the hippocampus
at 48 h post icv infusion, particularly to the CA3 region, and
it correlated with the number and severity of seizures seen
in the mice, but there was no apparent loss of NMDARs
(Figure 3). In a more recent study, EEG recordings of mice
infused intraventricularly for 14 days with CSF NMDAR-Abs
showed a higher frequency of seizures compared with control
mice, associated with variable behavior ranging from sleeping
or normal exploratory activity to freezing and myoclonic
jerks (42). Two main seizure patterns were observed, one,
more frequent, characterized by high-amplitude rhythmic
spikes that occurred at relatively constant rates or at irregular
intervals and another, less common, characterized by high-
amplitude fast rhythmic activity that fluctuated in amplitude
in a spindle-like fashion (42). Continuous EEG recordings may
be necessary to detect reliably spontaneous non-motor seizures
in models of antibody-mediated encephalitis. Neuropathology
showed absence of neuronal death and only mild astrocytic
activation (42).

In another study using continuous icv infusion, mice receiving
patients’ CSF showed memory impairment in the Morris water
maze, but not in the novel object recognition test, and a tendency
to a reduced expression of NMDAR in the mouse brains. No
overt inflammatory changes were observed, but an increase of
the chemokine CXCL10 was detected (40), a finding that has
been observed also in patients with NMDARE (67). Intravenous
infusion of monoclonal NMDAR-Abs followed by LPS increased
mouse voluntary locomotor activity at the mouse wheel-running
test, similarly to that observed in mice treated with low doses of
the NMDAR inhibitor MK-801 (44).

Overall, the passive-transfer animal models support the
proposed mechanisms of cross-linking and internalization as
well as the relevant role of altered NMDAR trafficking in the
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FIGURE 3 | Epileptogenic effects of a single intracerebroventricular (icv) injection of N-methyl-D-aspartate receptor antibody (NMDAR-Ab)-positive immunoglobulin G

(IgG). (A) The seizure score of mice injected with NMDAR-Ab IgG was higher than that of those injected with control IgG following exposure to a subthreshold dose of

PTZ. (B) Diagram showing placement of subcutaneous wireless electroencephalogram (EEG) transmitter that allows continuous EEG recording in injected mice with

no need for tethering (Open Source, Hashemi Instruments, USA). (C) A representative EEG of an NMDAR-Ab-injected mouse post-PTZ shows a number of “spikes”

corresponding to convulsive seizures (upper trace), compared with the EEG of a healthy control IgG-injected mouse, which has minimal spike activity (lower trace).

(D) When analyzed using the computer-based event detection program and blinded observer verification, the number of spikes seen in the hour following PTZ

injection was greater in the NMDAR-Ab (n = 7) compared with the healthy control IgG (n = 6) injected mice (P = 0.023, Mann–Whitney). Results are mean ± SEM.

(E) Human IgG injected in vivo was detected postmortem in NMDAR-Ab IgG-injected mice with antihuman IgG (green) merged with the nuclear stain

4
′
,6-diamidino-2-phenylindole (DAPI) (blue). The typical pattern of NMDAR-Ab in the molecular cell layer with sparing of the granule cell layer was found (left image).

Control IgG-injected mice had no detectable IgG (right image). (F) Bound human IgG in the hippocampi, as determined by the mean fluorescence intensity analysis of

brain sections, was higher in the NMDAR-Ab IgG-injected mice than in healthy control IgG-injected mice in the CA1, CA3, and dentate gyrus (DG). (G) For the

NMDAR-Ab animals (n = 5), there was a linear correlation between IgG binding and seizure score (R2 = 0.8; P = 0.04). The contents of this figure are taken from

Wright et al. (39) with permission from Oxford University Press.

pathogenesis. However, these models have not demonstrated
all the clinical features; for example, none have reproduced
the (often-striking) movement disorders or shown long-
term cognitive deficits and structural hippocampal damage
as seen in some patients (68). A possibility is that some
inflammatory changes are not reproduced by passive transfer.
The discrepancies observed between different models might also
relate to different protocols, to the use of different species and
strains, and to different effects of the antibodies in relation to
acute or chronic exposure.

Active Immunization
In a recent mice active immunization model, Pan et al. (9)
showed that mice immunized against NMDAR1 peptides did
not show behavioral changes at the open-field test. Even in
the presence of high titers of NMDAR-Ab, an increase of
locomotor activity, a psychosis-like behavior, was obtained only
upon MK-801 challenge in ApoE−/− mice, which present a
disrupted BBB. No lymphocyte (CD3) infiltrates nor microglial

activation was detected on immunopathology. On the contrary,
immunization with purified GluN1/GluN2B fully assembled
tetrameric NMDARs (holoreceptors) embedded in liposomes
induced a phenotype characterized by hyperactivity, stereotyped
motor features (tight curling), and seizures in association
with neuroinflammation and immune cell infiltrates (37).
Distinct from the passive-transfer models, these immunized mice
produced GluN1 and GluN2 antibodies that reacted with the
linear epitopes of the NMDAR protein, and not the amino-
terminal domain of GluN1 as seen in the human-derived
antibodies (69). Nevertheless, this model may prove useful for
testing novel treatments acting on the cellular inflammatory
component of the disease.

Finally, a recent small study investigated the mechanisms
involved in the pathogenesis of post-HSV-1 NMDARE (45).
Following intranasal inoculation of HSV-1, 67% (four out
of six) of mice developed serum NMDAR-Abs. The same
mice showed reduced hippocampal NMDAR compared with
mice without antibodies, inferring IgG-mediated loss, but the
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authors did not demonstrate IgG antibodies bound to the
hippocampus. This model could be a useful platform to
further explore the mechanisms of post-HSV encephalitis with
secondary NMDARE.

CASPR2-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
CASPR2 is a neurexin-related cell adhesion molecule expressed
in the CNS and peripheral nervous system, and CASPR2
antibodies (CASPR2-Abs) react with both the brain and
peripheral nerve tissues [(70); see Figure 1]. This expression
pattern well-explains why CASPR2-Abs have been associated
not only with peripheral nerve hyperexcitability (often called
neuromyotonia) but also with CNS symptoms including
cognitive impairment, memory loss, hallucinations, delusions,
cerebellar symptoms, and epilepsy. Some patients present with
Morvan syndrome (MoS), characterized by the combination
of neuromyotonia, neuropathic pain, encephalopathy with
hallucinations, and a sleep disorder, described as agrypnia
excitata (71, 72); the latter is characterized by severe insomnia,
dream-like stupor (hallucinations and enacted dreams),
sympathetic hyperactivity (hyperthermia, perspiration,
tachypnea, tachycardia, and hypertension), and motor agitation.
CASPR2-Abs are mainly IgG4, but most patients have IgG1
antibodies as well.

CASPR2 is essential for clustering Kv1.1 and Kv1.2 channels
at the juxtaparanodes of myelinated axons, where the channels
are important for repolarization of the nerve axon, avoiding
repetitive firing and helping to maintain the internodal resting
potential. Their functions at CNS synapses are not well-defined.

The in vitro effects of CASPR2-Abs are complex. In one study,
the antibodies inhibited CASPR2 interaction with contactin-2
but did not lead to CASPR2 internalization (73). However, in
two others, in vitro exposure induced CASPR2 internalization in
vitro (51, 52) with variable effects on CASPR2 expression, ranging
from absent (51) to significant (52) loss of surface expression.

Spontaneous or Genetic Disorders
Interestingly, mutations in the CNTNAP2 gene, encoding
CASPR2, are associated with focal epilepsy, schizophrenia, and
autism spectrum disorder (ASD) (74). CNTNAP2-knockout
(KO) mice were shown to have social deficits, abnormal motor
activity, cognitive deficits, and seizures (75).

Passive Transfer Models
Intraperitoneal injection of purified IgG from two CASPR2-Ab-
positive patients to mice over 14–18 days, without attempt to
breach the BBB, reduced the thresholds for mechanical stimuli,
a signature of pain (50). The effects induced by the antibodies on
pain sensitivity were also observed in KO mice lacking CASPR2
(CNTNAP2−/−). These mice demonstrated enhanced pain-
related hypersensitivity to noxious mechanical stimuli, although
more severe than that obtained with the antibodies, and also
to heat and algogens. Nevertheless, either immune or genetic-
mediated ablation of CASPR2 enhanced the excitability of dorsal
root ganglia (DRG) neurons through regulation of Kv1 channel

expression at the soma membrane (50). CASPR2-IgG did not
cause neuronal loss nor overt inflammation, although a modest
increase in microglial cell count was observed in the spinal
cord (50).

To explore the effects of CASPR2-Ab in the CNS, a similar
protocol was used with eight daily injections of IgG purified from
one patient with AE and from one healthy control (Figure 4).
A single dose of LPS was added at day 3 to disrupt the BBB
(51). Mice injected with CASPR2-IgG showed less alternation
in the continuous spontaneous alternation tests, suggestive
of memory impairment, and longer latency to interact and
increased immobility during the social interaction test (Figure 4).
These changes had not been seen during isolated open-field or
other tests, suggesting that the effects could be indicative of
anxiety in the context of a novel mouse, rather than an effect
on normal exploratory activity. At neuropathology, CASPR2-IgG
injected mice showed human IgG deposition, particularly in the
cortex, hippocampus, and thalamus; mild loss of Purkinje cells
and c-Fos activation as well as microglial and astrocyte activation
without B- or T-cell infiltration (Figure 4). Microglial activation
has been reported in neuropathological cases of patients with
CASPR2-Ab encephalitis (76, 77).

Although this model showed evidence of pathogenicity
of CASPR2-IgG, it failed to recapitulate the wide range of
defects found in the patients (e.g., autonomic, sleep disturbance,
and hormonal/neuropeptide abnormalities) who would require
substantial additional tests. Moreover, it does not explain how
CASPR2-Abs cause their effects. Indeed, IgG deposition was
not associated with a reduction of CASPR2 expression on
immunohistology. On the contrary, a trend toward higher levels
of mouse CASPR2 was seen in the brain extracts of CASPR2-IgG-
injected mice, suggesting some compensatory upregulation.

Injection of a mixture of CASPR2-Abs in mouse visual cortex
produced impaired localization of mouse Caspr2 to excitatory
synapses and significantly decreased AMPAR-mediated currents
in layer 2/3 pyramidal neurons; this implied a dysfunction of
glutamatergic transmission in the pathogenesis of CASPR2-Ab
encephalitis (52). Future studies should evaluate in parallel the
effects of CASPR2-Abs on its partner protein network and on
neuronal activity.

LGI1-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
Autoantibodies to LGI1 (LGI1-Abs) are the most common
autoantibody in patients with limbic encephalitis (LE), a clinical
syndrome characterized by the acute development of mood
changes, anxiety, short-term memory deficit, and seizures due
to an inflammatory process involving the limbic system that
includes the medial temporal lobes, hippocampus, amygdala, and
frontobasal and cingulate cortices (1). In patients with LGI1-
Abs, the onset of an overt limbic dysfunction can be preceded by
episodes of faciobrachial or crural seizures that last a few seconds
and occur many times during the day; these episodes have been
described as faciobrachial dystonic seizures (FBDS) (78).

LGI1 is a protein secreted by the presynaptic terminals of
neurons that bind to ADAM22 and ADAM23, two proteins
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FIGURE 4 | Intraperitoneal (ip) injection of CASPR2 immunoglobulin G (IgG) with lipopolysaccharide (LPS) causes behavioral and neuropathological changes in mice.

(A) Experimental design and selected behavioral tests. The behavioral tasks assessed locomotion (open field, OF), strength (inverted screen, IS), coordination

(accelerating rotarod, AR; and narrow beam, NB), working memory (continuous spontaneous alternation, CSA), short- (forced alternation, FA) and long-term memory

(novel object recognition, NOR—NORf, familiarization phase; NORt, test phase), anxiety (light-dark box, LDb), compulsive-like behavior (marble burying test, MB),

social behavior (reciprocal social interaction tests, RSI), and olfaction (olfaction test, OT). (B) Continuous spontaneous alternations were reduced in

CASPR2-IgG-injected mice compared with HC-IgG-injected mice (P = 0.044). In the RSI test, there was reduced latency to interact (P = 0.04; Mann–Whitney test)

but no differences in the interaction time or number of interactions. However, in the non-social aspects of the test, there was increased time spent immobile (U =

0.008), reduced rearing (U = 0.02), and reduced grooming (U = 0.018). (C) Bound human IgG in the hippocampi and cerebellum of CASPR2- and HC-IgG-injected

mice. CASPR2-IgG-injected animals had higher levels of IgG in the cortex (Cx) (P = 0.03), hippocampus (Hip) (P = 0.023), and thalamus (Th) (P = 0.0004) compared

with HC-IgG-injected mice. No differences were observed in the levels of CASPR2 expression in the same areas (n = 4 per group). (D) c-Fos expression in the

entorhinal–piriform cortex (P = 0.020), dorsomedial hypothalamus (DMH) (P = 0.037), and lateral hypothalamus (LH) (P = 0.031) was higher in the

CASPR2-IgG-injected mice than in the HC-IgG-injected mice (n = 4 per group). (E) Representative images of glial fibrillary acidic protein (GFAP) staining in the

molecular layer of the cerebellum and quantification of the mean fluorescence intensity in the same area showing higher GFAP expression in the CASPR2-IgG-injected

mice (P = 0.043) (n = 4 per group; 40X, 10µm). On the right, representative images of complement C3 expression on GFAP-positive cells. Percentage of C3/GFAP

area ratio per cell showed increased C3 expression of astrocytes in CASPR2-IgG-injected mice. (F) Representative images of the z-stack projected IBA1 staining

used for morphological analysis (40X, 10µm). Quantification of morphological data in the hippocampus and molecular layer of the cerebellum showed that microglia

from CASPR2-IgG-injected mice had a higher cell soma/cell total body size ratio [t(6) = 4.74, P = 0.0032] and shorter [t(6) = 3.68] ramifications than HC-IgG-injected

mice, compatible with an activated phenotype in both the hippocampus (P = 0.017 and P = 0.010, respectively) and the cerebellum (P = 0.0003 and P = 0.008,

respectively). ***The contents of this figure are taken from Giannoccaro et al. (51) with permission from Oxford University Press. * < 0.05, ** ≤ 0.01, *** ≤ 0.001.

involved in cell–cell adhesion and located presynaptically and
postsynaptically, respectively (Figure 1). Binding to ADAM22,
LGI1 regulates AMPAR-mediated synaptic currents in the
hippocampus (79). Binding to ADAM23, LGI1 selectively
prevents inactivation of the presynaptic voltage-gated potassium
channel Kv1.1 (80) mediated by a cytoplasmic regulatory protein,
Kvβ (81).

In cultured hippocampal neurons, LGI1-Abs disrupt the
ligand–receptor interaction of LGI1 with ADAM22, resulting in
reversible reduction in synaptic AMPARs [(82); see Figure 1];

these antibodies could be IgG4. However, in the few postmortem

studies on patients who have died unexpectedly, there appears
to be IgG deposition, some complement deposition, and loss of
neurons. These findings would be compatible with the presence

of IgG1 antibodies; although they are in the minority compared
with IgG4, they tend to be much higher in patients with cognitive
impairment (70, 83). IgG1-induced neuronal loss would explain
why, despite a good response to immunotherapy, many patients
are left with hippocampal atrophy (84), and only 35% of patients
return to their baseline cognitive function (85).

Spontaneous or Genetic Disorders
LGI1 mutations have been associated with an autosomal
dominant lateral temporal lobe epilepsy (ADLTLE) manifesting
with focal seizures often with auditory features (86). The
majority of mutations prevent LGI1 secretion, whereas others
alter its interactions with ADAM22/ADAM23 (87). Animal
models of LGI1 depletion all present spontaneous seizures
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(88–92), although the mechanisms behind this increased
epileptic susceptibility have not been fully elucidated and both
enhanced excitatory transmission (90, 91, 93) and reduced
AMPAR function (79, 80, 89) have been reported.

Intriguingly, a spontaneous model of LGI1-Ab encephalitis
has been observed in cats with feline complex partial seizures
with orofacial involvement (FEPSO) (13, 94–96). Clinically, they
presented with acute onset of complex partial seizures with
orofacial involvement (salivation, facial twitching, lip smacking,
chewing, licking, or swallowing), motor arrest (motionless
starring), and behavioral changes associated with bilateral
hyperintensities at brain MRI (13, 94, 95). Postmortem analysis
of three cases showed IgG and complement deposition associated
with neuronal loss, consistent with the findings in the few
available postmortem examinations from patients with LGI1-
related encephalitis (3, 95). Subsequent neuropathological studies
in cats showed also that, whereas T-cell infiltrates were present
brainwide, BBB leakage was more restricted to limbic areas (96).
This observation suggests that a local BBB vulnerability might be
responsible for the selective involvement of the limbic system,
even though LGI1 is expressed throughout the brain.

Passive Transfer Model
More recently, the pathogenicity of LGI1-Abs has been
confirmed by a passive transfer mouse model based on
cerebroventricular transfer of patient- or control-derived IgG
(53). LGI1-Ab-injected mice showed memory impairment
which slowly reversed after stopping the infusion. However,
in contrast to the spontaneous feline model and LGI1-KO
animals, no epileptic seizures were observed. Nevertheless, LGI1-
Ab caused a significant decrease of the density of total and
synaptic Kv1.1 and AMPAR clusters due to the disruption of
LGI1 interactions with presynaptic ADAM23 and postsynaptic
ADAM22. Consistent with decreased Kv1.1 expression and
previous in vitro studies (97), increased presynaptic excitability
and glutamatergic transmission were observed in acute brain
slice preparations, resulting in increased evoked excitatory
postsynaptic currents (eEPSCs) and reduced failure rate of
synaptic transmission after minimal-stimulation excitatory
postsynaptic currents (msEPSCs). Exposure to LGI1-Ab was also
associated with impaired LTP, which was however independent
of Kv1.1 blockade and possibly related to reduced availability of
AMPAR during LTP. However, these changes were not sufficient
to cause seizures in this model. It is likely that the changes
induced by the antibodies are not as severe as those induced by
genetic mutation or ablation of the LGI1 gene. On the other hand,
complement activation and neuronal loss may play a major role
in the human and feline diseases and mouse serum has a low
intrinsic complement activity (98). Further studies are needed to
investigate this aspect and its relevance to the clinical phenotype.

AMPAR-AB ENCEPHALITIS

Clinical Disease and in vitro Mechanisms
AMPAR antibodies (AMPAR-Abs) are usually associated
with a typical LE, sometimes associated with extra limbic

manifestations, although they can rarely present with rapidly
progressive dementia or psychosis (99, 100).

AMPAR is a heterotetrameric ionotropic glutamate receptor
thatmediatesmost of the fast-excitatory transmission in the brain
(101). AMPAR-Abs can be directed against the GluA1 or GluA2
subunits or both (100). Incubation of cultured rodent neurons
with patients’ IgG to GluA2 led to a decrease of synaptic AMPAR
clusters, resulting in reduced frequency and peak amplitude
of AMPAR-mediated miniature excitatory postsynaptic currents
(mEPSCs) (100, 102).

Spontaneous or Genetic Disorders
Mutations in the GluA1 or GluA2 subunits have been
associated with neurodevelopmental disorders (NDs)
including intellectual disability and autism (103, 104).
GluA1-KO mice present impaired hippocampal synaptic
plasticity (105, 106) and working memory (107–109),
whereas GluA2-KO mice are hypomorphs with poor
motor coordination and low explorative activity (110, 111).
Conditional ablation of GluA1 or GluA2 in mice causes
memory deficits and remodeling of AMPAR subunit
distribution (112–115).

Passive Transfer Models
In accordance with these findings, in vitro studies and in vivo
hippocampal injection of human antibodies against the GluA2
subunit in mice was associated with synaptic downregulation of
GluA2 and increased single-channel conductance in recordings
of the GluA2 IgG-injected mouse, suggestive of GluA2
endocytosis and compensatory synaptic incorporation of GluA1-
containing AMPARs, which have higher channel permeability
(54), as observed in conditional KO models (113–115).
Consistently, this compensatory increase in single-channel
conductance was abrogated in KO mice deficient for GluA1
stereotactically injected with GluA2 antibodies (GluA2-Abs).
Despite these compensatory mechanisms, injection of GluA2-
Abs was associated with impaired LTP in the region of GluA2-
IgG deposition. Both continuous icv infusion of GluA2-Abs
over a 2-week period and stereotactic bilateral injections of
patient IgG directly into the DG, CA1 and CA3 regions
of the hippocampus, were associated with impaired memory
and increased anxiety-like behavior in mice (54). Despite
the observed AMPAR subunit rearrangement, mice did not
show seizures. Therefore, future studies have to evaluate
if these changes are associated with neuronal hyperactivity
and how they are related to seizures in patients. Moreover,
the pathogenicity and mechanisms associated with antibodies
directed against the GluA1 subunit of AMPAR remain to
be established.

ANIMAL MODELS OF NDS INDUCED BY IN

UTERO EXPOSURE TO NSABS

There has been growing interest in the possibility that maternal
antibodies to neuronal antigens could cause neurodevelopmental
diseases, presenting neonatally or later in life. This sprung
initially from studies in mothers with MG whose babies
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developed arthrogryposis. The maternal antibodies were found
to inhibit the function of the fetal AChR and, when crossing
the placenta in the second trimester, paralyzed the babies in
utero; consecutive pregnancies were affected (28, 116). A mouse
model of maternal antibody transfer to the mouse fetus was
developed to show that the maternal serum antibodies were
pathogenic (36), and the model was then used to study a
mother who had two consecutive children with NDs (one
healthy, one with autism, and one with language disorder).
The serum contained antibodies that bound to fetal cerebellar
neurons in rat tissue sections and impaired motor behavior in
the adult mouse offspring of injected dams (117). Since then,
many studies looking for maternal antibodies in autism and
testing their effects in mouse or non-human primates have been
performed [see (118)], but until recently, none had defined a
specific neuronal antigen that was likely to be the target of
fetopathogenic antibodies.

As mentioned above, mutations in the gene encoding
CASPR2 are not common but can be associated with a
variety of neurological and psychiatric disorders, ranging from
ASD or mental retardation and epilepsy to learning disability,
schizophrenia, and Tourette syndrome (119). Mutations in the
GluN genes that encode the N-methyl-D-aspartate (NMDA)
subunits are found in children with a variety of NDs
and epileptic syndromes (120). Both these proteins could
be targets for antibodies that, during development, altered
neurodevelopment. Table 3 summarizes the most recent work in
this field.

EVIDENCE FOR ANTIBODIES TO NSABS IN
PREGNANCY

CASPR2-Abs
Only one study to our knowledge has looked for antibodies
to these proteins in gestational samples from women whose
children have subsequently been diagnosed with specific or
non-specific neurodevelopmental conditions, comparing with
mothers with no such history in their children. Coutinho et al.
(121) measured a range of neuronal antibodies in Danish cohorts
of early or mid-gestational sera. LGI1-Abs, AMPAR-Abs, and
GABAB receptor antibodies were not found. NMDAR-Abs were
not uncommon (overall 5.8%) and more common in mothers
who developed psychosis at some time after the pregnancy.
By contrast, CASPR2-Abs were present (4.9%) in mothers of
children with a diagnosis of mental retardation or other disorders
of psychological development in their children compared with
only 0.9% of coded age-matched mothers with no such history.
This supported the possibility that CASPR2-Abs could be a
cause or contributor to neurodevelopmental diseases in the
offspring. Surprisingly, CASPR2-Abs were low in mothers of
autistic children and not different from the appropriate controls.

A maternal-to-fetal transfer of disease was performed in mice.
The offspring of CASPR2-injected dams were normal postnatally
but as adults showed changes in social interaction tests, and after
termination, there was clear evidence of microglial activation
and reduced glutamatergic synapses, suggesting that microglia

activated by CASPR2-Abs induced changes that resulted in
persistent synaptic loss (122).

A similar model was undertaken using a monoclonal
CASPR2-Ab cloned from a mother of an autistic child (123). In
this study, malemice exposed in utero to CASPR2-Abs showed an
ASD-like phenotype, abnormal cortical development, and altered
hippocampal neurons. Postnatal samples from selected mothers
of autistic children were more often positive for CASPR2-Abs
than from mothers of children with typical development or
women of childbearing age. These sera were not gestational
and in many cases obtained from mothers years after the
affected birth.

NMDAR-Abs
In Coutinho et al. (121), NMDAR-Abs were relatively frequent
(5.8%) during pregnancy. Although NMDAR-Abs were more
frequent in mothers with NDs in their children (ND mothers)
than coded age- and gestation-matched mothers with no such
histories (HC mothers), this difference was not significant
(7.7 vs. 4.6%). Indeed, among the few reported cases of
NMDARE during pregnancy, the majority of newborns were
healthy, except for three cases with neurological sequelae,
including neurodevelopmental delay, movement disorders, and
seizures, and three cases of miscarriages and abortion (125–
127). Whether these complications are due to the antibodies or
to the mothers’ condition severity and related pharmacological
treatments during gestation is not yet clear.

Jurek et al. (124) showed a marginal increase in NMDAR-
Ab titers in postnatal sera from mothers of a mixed population
of neuropsychiatric disorders in a recent study, compared
with mothers of unaffected children. These authors preformed
a similar model of in utero exposure to human NMDAR-
Abs, but in this case using recombinant human monoclonal
NR1-reactive IgG antibodies (124). The placentally transferred
antibodies bound to synaptic structures in the fetal brain,
and the pups demonstrated increased mortality and transiently
reduced NMDAR brain density with impaired excitatory
neurotransmission. The animals displayed hyperactivity, lower
anxiety, and impaired sensorimotor gaiting during adolescence
and adulthood. In aged mice (10 months), the volumes of the
cerebellum, midbrain, and brain stem were all reduced (124).
This study suggests that prenatal exposure to NMDAR-Abs may
result in children’s lifelong neurodevelopmental changes that are
potentially treatable and preventable, if identified in the mothers
during pregnancy, although there is no evidence of that so far.
Such changes might predispose to specific NDs such as autism
or schizophrenia.

DISCUSSION AND CONCLUSIONS

Animal models have helped to elucidate pathogenic mechanisms
of several NSAbs. However, they often fail to recapitulate the
entire phenotypic spectrum associated with human diseases. In
particular, nomovement disorders have been found in themodels
of NMDARE, and no seizures were detected in mice injected
with LGI1-Abs. This could be related to several factors. Firstly,
the choice of the species and strains is relevant. Nowadays, mice
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TABLE 3 | Neurodevelopmental antigens and models.

Protein Presence of antibodies in mothers of

children

Antibodies injected and effects of

antibodies on offspring of

maternal-to-fetal transfer model:

behavior

Effects of antibodies on offspring

of maternal-to-fetal transfer

model: neuropathology

References

Acetylcholine

receptor

Rare mothers with antibodies that inhibit

fetal AChR, paralyze baby in utero, and

cause multiple fixed joints, with paralysis

and death ex utero

Maternal plasma antibodies injected

into dams during E13–18 of

pregnancy. Proportion of offspring

who died at birth or shortly after

probably due to lack of respiration

Antibodies present in mouse

offspring, offspring showed fixed

joints mirroring changes in human

babies

(36)

CASPR2 4.9% of mothers with children diagnosed

with range of motor and psychological

disorders, not autism. HC 0.9%

IgG purified from plasmapheresis

samples of two CASPR2-Ab-positive

patients. Mice showed changes in

cognition and impaired social

interactions

Long-term neuropathological

changes with activated microglia and

glutamatergic synaptic loss

(121, 122)

CASPR2 37% of selected (brain reactive Abs)

mothers of children with autism spectrum

disorder; 12% of unselected women of

childbearing age

MAb binding CASPR2 cloned from

the mother of an autistic child. Mice

showed impairments in sociability,

flexible learning, and repetitive

behaviors

Abnormal cortical development,

decreased dendritic complexity of

excitatory neurons, and reduced

numbers of inhibitory neurons in the

hippocampus

(123)

NMDAR (NR1

subunit)

Marginal evidence for NMDAR antibodies

in mothers of children with any

psychiatric/neuropsychiatric disorders

mAbs from NMDAR-Ab-positive

women. Mice showed early postnatal

mortality (27.2%), altered blood pH,

and impaired neurodevelopmental

reflexes. Ex vivo, NMDAR reduced in

brain, with altered spontaneous

excitatory postsynaptic currents.

When adult, persistent hyperactivity,

lower anxiety, and impaired

sensorimotor gating

NMDAR was reduced (up to 49.2%),

and electrophysiological properties

were altered, reflected by decreased

amplitudes of spontaneous excitatory

postsynaptic currents in young

neonates (−34.4%). Cerebellum,

midbrain, brain stem volumes

reduced

(124)

are the preferred animals for the majority of immune models;
however, certain strains used can be resistant to development of
diseases, as shown by MG models of active immunization. The
gender is another potentially relevant factor, as hormones can
significantly impact several immunological and neuronal aspects.

Different immunization models have different advantages
and disadvantages. Intraventricular or intraparenchymal
administration routes are useful in exposing the antibodies
to their targets, but they may be misleading when peripheral
antibodies play a major role as appears to be the case for
CASPR2-Abs and LGI1-Abs. On the other hand, peripheral
injection of the antibodies often requires “opening” the BBB by
some method, and these methods may bias the results, allowing
the antibodies to access certain brain areas and not others that
are more relevant to the human disease (128, 129).

Passive transfer of antibodies is ideal to investigate the
downstream mechanisms by which the patient antibodies affect
their targets with possible secondary effects, but by itself, it does
not appear to enlist cellular mechanisms that might be important
in the human condition. Thus, it does not provide insight
into the immunological mechanisms behind the generation of
the antibodies nor the immunological effectors. For instance,
the poor ability of human IgG to fix mouse complement is a
limitation if complement activation plays a relevant part in the
disease. Overall, the immune cells and the Fc receptors relevant
for the human immune response might be different in animal
models due to the use of alternative pathways, different effectors,

and different cellular receptor affinities (130–132). Future passive
transfer studies of patient-derived immune cells into humanized
models or studies in non-human primates might help define
the involvement of specific immune cells in the pathogenesis of
these disorders.

Active immunization models could be helpful in overcoming
some of these limitations and could also be more helpful in
studying the effector immune mechanisms, but few studies have
used this approach to date. Moreover, using peptide sequences
for immunization is unlikely to generate the most appropriate
pathogenic antibodies if the natural disease recognizes the native
membrane protein rather than peptide or polypeptide sequences.

It is also important to note that the failure to reproduce
some clinical features observed in patients might be related
to the experimental approach or timing of protocols. For
example, as shown for NMDAR-Ab, the presence of spontaneous
seizures could be overlooked in the absence of continuous
EEG monitoring (42). Similarly, antibodies may manifest their
maximum effects up to 18 days after CSF infusion (38).
Behavioral testing has to be carefully tailored and should take into
account the effects of habituation and test repetition.

Future research and refinement of these animal models
require a collaborative approach and sharing of optimal methods.
Effective and reliable preclinical testing of novel treatments
demands rigorous and reproducible protocols that not only
allow study of the underlying neurobiology but also facilitate
therapeutic studies with rapid translation to the clinic.
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Human autoantibodies targeting myelin oligodendrocyte glycoprotein (MOG Ab) have

become a useful clinical biomarker for the diagnosis of a spectrum of inflammatory

demyelinating disorders. Live cell-based assays that detect MOG Ab against

conformational MOG are currently the gold standard. Flow cytometry, in which serum

binding to MOG-expressing cells and control cells are quantitively evaluated, is a widely

used observer-independent, precise, and reliable detection method. However, there is

currently no consensus on data analysis; for example, seropositive thresholds have been

reported using varying standard deviations above a control cohort. Herein, we used a

large cohort of 482 sera including samples from patients with monophasic or relapsing

demyelination phenotypes consistent with MOG antibody-associated demyelination

and other neurological diseases, as well as healthy controls, and applied a series of

published analyses involving a background subtraction (delta) or a division (ratio). Loss of

seropositivity and reduced detection sensitivity were observed when MOG ratio analyses

or when 10 standard deviation (SD) or an arbitrary number was used to establish the

threshold. Background binding and MOG ratio value were negatively correlated, in which

patients seronegative by MOG ratio had high non-specific binding, a characteristic of

serum that must be acknowledged. Most MOG Ab serostatuses were similar across

analyses when optimal thresholds obtained by ROC analyses were used, demonstrating

the robust nature and high discriminatory power of flow cytometry cell-based assays.

With increased demand to identify MOG Ab-positive patients, a consensus on analysis

is vital to improve patient diagnosis and for cross-study comparisons to ultimately define

MOG Ab-associated disorders.

Keywords: demyelination, optic neuritis (ON), myelitis, MOG antibody, flow cytometry analysis, antibody detection,

patient diagnosis
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INTRODUCTION

Detection of human autoantibodies targeting myelin
oligodendrocyte glycoprotein (MOG Ab) is now a relevant and
important diagnostic biomarker in the field of central nervous
system (CNS) demyelination. MOG Ab-associated disorders
encompass a disease entity involving the brain, optic nerve,
and spinal cord that is distinct from multiple sclerosis (MS)
and aquaporin-4 Ab-positive neuromyelitis optica spectrum
disorder (NMOSD) (1–15). The reemergence of MOG Ab in
the field of autoimmune diagnostics has sparked wide interest,
and with ongoing advances in our understanding of MOG
Ab-associated disease, requests for MOG Ab testing have risen
dramatically, as treatment regimens and prognosis for MOG
Ab-positive patients are divergent from MS and aquaporin-4
Ab-positive NMOSD patients (11, 16, 17). Moreover, someMOG
Ab-positive patients, particularly those with relapsing disease
or delayed immunotherapy, may accrue residual disability
(11, 12, 15–19). As such, early and accurate identification of
MOG Ab-seropositivity is crucial.

Detection of human MOG Ab against full-length native
conformational MOG using live cell-based assays by flow
cytometry or microscopy has been established as the diagnostic
gold standard and is superior to assays utilizing fixatives
(20–22). Flow cytometry provides an investigator-independent
quantitative measure of MOG Ab titers and has been validated
and proven reliable, with high sensitivity and specificity (20,
21). Due to the data complexity and non-specific binding in
human sera, different analyses of flow cytometry data have
been reported. For example, when serum binding to MOG-
expressing cells is compared to control cells, quantification of
MOG Ab titers has been reported by subtraction (delta) or
division (binding ratio). Additionally, there are disparities in
calculating the positive threshold. A comparison of published
analyses using the same dataset is required to observe whether
these variations can influence the assessment of MOG Ab
serostatus and patient diagnosis.

Herein, we have used our extensive flow cytometry and clinical
published datasets (11, 15, 21) of 482 sera to address the influence
of data analysis on the interpretation of MOG Ab serostatus.
Furthermore, we make recommendations for the international
standardization of flow cytometry-based MOG Ab analysis.

MATERIALS AND METHODS

Patient and Control Samples
In the absence of consensus clinical diagnostic criteria for
MOG Ab-associated disorders, sensitivity and specificity were
determined from 482 sera divided into two groups: Group A,
sera from monophasic and relapsing disorders with reported
MOG Ab-association (ADEM, ON, BON, LETM, etc.), and
Group B, sera from healthy controls, general medicine, non-
inflammatory neurological disorders, demyelinating disorders
not associated with MOG Ab (MS, CIS other than ON), and
demyelinating disorders not yet associated with MOG Ab (21).
Overall, using our own analysis (Analysis 2, Table 1), the dataset
included 48 healthy or other neurological disorder patients (24

children and 24 adults, Group B), 47 MOG Ab-negative (MOG
Ab-) patients (24 children, 14 in Group A, 10 in Group B,
and 23 adults, 8 in Group A, 15 in Group B), 74 adult MS
patients (Group B), and 313 MOG Ab-positive (MOG Ab+)
sera (151 sera from 123 children, 150 in Group A, 1 in Group
B, and 162 sera from 125 adults, 161 in Group A, 1 in Group
B). All patient serostatuses have been published, and clinical
phenotypes were retrospectively obtained and detailed in (6, 15,
21, 35, 36). The phenotypes of the 25 MOG Ab- patients in
Group B (n = 10 children, n = 15 adults) were included in
Supplementary Table 1.

Detection of Human MOG Ab by Flow
Cytometry
A flow cytometry live cell-based assay was used to detect human
serum MOG Ab, as previously described (6, 21, 37). In brief,
patient serum (1:50) was incubated with a transduced cell line
expressing full-length human MOG, followed by fluorochrome-
conjugated anti-human IgG (H+L). Dilution of serum at 1:50
was standard and was most frequently used across studies (2, 3,
6, 8, 23, 24, 30, 32, 38) (Supplementary Table 2). Samples were
reported positive if they were above the positive threshold in
at least two of three quality-controlled experiments, a feature
that may not have been implemented in other studies but
ensures a reliable serostatus report and provides insight into
serostatus reproducibility (21). MOG-expressing (MOG+) and
empty vector control (MOG-) cells incubated with serum in two
independent wells were compared in the “separate wells” analysis,
and MOG+ cells (∼80% transduction rate) were compared to
the untransduced cells from the same single well in the “mixed”
analysis (Table 1).

Comparison of Analyses in Determining
MOG Ab Positivity
Assessment of a patient MOG Ab serostatus by flow cytometry
can be separated into four stages (Figure 1). (1) Gating of
empty vector or untransduced/untransfected MOG- control
cells, indicative of serum background binding, and MOG+
cells. Serum can be incubated with MOG- and MOG+ cells
seeded together (mixed) or in independent wells (separate). (2)
Quantification of sera binding to MOG- and MOG+ cells can be
quantified by the median, mean, or geometric mean fluorescence
intensity. (3) Determination of MOG Ab binding to MOG by
subtraction (1MOG, delta); [MOG = Fluorescence of MOG+
cells – Fluorescence of MOG- cells], or division (MOG ratio);
[

MOG ratio = Fluorescence of MOG+ cells
Fluorescence of MOG− cells

]

between MOG+ and

MOG- cells. (4) Establishing the positive threshold by 3, 4, 6,
or 10 standard deviations (SD) above the mean of a control
cohort or above an absolute value (Figure 1). Raw flow cytometry
datasets were obtained from all patients (n = 3 experiments
per patient) and reanalyzed using published analyses detailed
in Table 1. An age-matched control cohort (n = 24), which
included patients with general medical and non-inflammatory
neurological disorders (and healthy controls in adults), was run
concurrently with MOG Ab testing to generate the positive
threshold. Published analyses are detailed in Table 1 and were
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TABLE 1 | MOG Ab positivity status across different published flow cytometry analyses.

Flow cytometry MOG Ab analysis Pediatric serum,

n = 151a

n (% total)

Adult serum,

n = 162a

n (% total)

Quantification of MOG Ab

(Seeding of MOG+ and MOG-

cells for serum incubation)b

Positive threshold or

cut-offc

Standard deviations

above the mean of

controls

Controls

n (study)

Publicationsd MOG Ab- MOG Ab+ MOG Ab- MOG Ab+

Analysis 1 1MOG Mean

(Separate wells)

3 SD 24 HC/OND (6)

52 HC/OND (11)

(6, 11) 0 (0) 151 (100) 0 (0) 162 (100)

Analysis 2 1MOG Median (Separate wells) 3 SD 28 HC/OND (2)

24 HC/OND (21)

(2, 21) 0 (0) 151 (100) 0 (0) 162 (100)

Analysis 3 1MOG Median (Mixed) (a) 3 SD 8 OND (23, 24) 0 (0) 151 (100) 0 (0) 162 (100)

(b) 6 SD 5 HC (25) 5 (3) 146 (97) 4 (2) 158 (98)

(c) 10SD 8 OND (26, 27) 18 (12) 133 (88) 8 (5) 154 (95)

Analysis 4 Ratio median

(Mixed)

>2.5e – (28, 29) 43 (28) 108 (72) 23 (14) 139 (86)

Analysis 5 Ratio geometric mean

(Separate wells)

(a) 4 SD 39 HC (4) 4 (3) 147 (97) 5 (3) 157 (97)

(b) 6 SD 89 OND (30) 7 (5) 144 (95) 10 (6) 152 (94)

Analysis 6 Ratio Mean

(Separate wells)

(a) 3 SD 71 OND (3)

23 HC (8)

(3, 8) 10 (7) 141 (93) 25 (15) 137 (85)

(b) >3e – (31) 53 (35) 98 (65) 29 (18) 133 (82)

Analysis 7 Ratio Median

(Separate wells)

(a) 4 SD 14 HC, 19 OND (32) 14 (9) 137 (91) 20 (12) 142 (88)

(b) 10 SD 30 HC (33) 64 (42) 87 (58) 57 (35) 105 (65)

Analysis 8 1MOG Ratio Meanf >1 – (34) 17 (11) 134 (89) 7 (4) 155 (96)

Analysis 9 1MOG Median (Mixed) 4 SD 24 HC/OND Recommended 0 (0) 151 (100) 1 (1) 161 (99)

Analysis 10 Ratio Geometric mean (Separate

wells)

(a) >2.5 – 40 (26) 111 (74) 25 (15) 137 (85)

(b) >3 – 66 (44) 85 (56) 34 (21) 128 (79)

a151 pediatric and 162 adult sera with reported clinical phenotype were included from Tea et al. (21).
bSerum was incubated with MOG-expressing (MOG+) and control (MOG-) cells in independent wells (separate wells) or untransduced MOG+ cells were gated and compared to the

MOG+ cells from the same well (mixed).
cPositive threshold calculated using 24 age-matched controls according to published analysis. dAnalyses were only included if >10 MOG Ab+ patients were reported and detailed flow

cytometry analyses were provided.
ePositive threshold determined by an arbitrary number.
f
1MOG/MOG- cells. Seropositivity was reported if a patient is above threshold at least two times in three experiments.

HC, Healthy controls; 1MOG, MOG+ – MOG-; OND, other neurological diseases; Ratio, MOG+/MOG-; SD, standard deviation.

included if the study detailed selection of MOG+ and MOG–
cells, quantification of MOG Ab, and threshold calculation and
reported at least 10 MOG Ab-positive patients.

In the absence of diagnostic criteria for MOG Ab-associated
disorders, sensitivity and specificity analyses were determined
using Groups A and B described above (21). Receiver operating
characteristic (ROC) curves were generated to evaluate the
optimal diagnostic performance of each analysis between these
two groups of patients.

Statistics
Correlation analyses and R2 values were generated using a
linear regression model. Youden’s Index, which maximizes
sensitivity and specificity, was used to determine the optimal
threshold from each ROC curve analysis (39, 40). McNemar’s
Chi-squared test was used to compare the similarity of
the seropositive and seronegative results obtained in the

different analyses. McNemar’s test compared analyses from the
same flow cytometry live dataset. Flow cytometry data were
analyzed using FlowJo v10 (TreeStar) software and Microsoft
Excel. Figures and schematics were generated using Prism
v7.0a (GraphPad Software) and Adobe Illustrator CC 2015
(Adobe Systems).

RESULTS

Reduced MOG Ab Seropositivity and
Detection Sensitivity by MOG Ratio
Analysis
We first compared the serostatus across different published
analyses using a flow cytometry live dataset obtained from
our previous publications (6, 11, 15, 21) (Table 1). Using a
threshold obtained from the control cohort, all patients were
determined to be MOGAb+ whenMOG+ andMOG- cells were

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 11985

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tea et al. Comparing Flow Cytometry MOG-Antibody Analyses

FIGURE 1 | Assessment of patient MOG Ab serostatus by flow cytometry live cell-based assay. (1) MOG-expressing cells (MOG+) and empty vector or

untransduced/untransfected control cells (MOG-) were gated. MOG- cells can be either seeded together with or separate from MOG+ cells. (2) The mean, median, or

geometric mean fluorescence intensity of the MOG+ and MOG- cells can be determined. (3) MOG Ab binding to MOG is quantified by subtraction (1MOG) or division

(MOG ratio) of MOG+ and MOG- cells. (4) The threshold of seropositivity can be determined by an arbitrary number or calculated at 3–10 standard deviations (SD)

above a control cohort. A breakdown of the analyses is shown in Table 1. Recommended methods of analysis are indicated by green dots. Analyses that

demonstrated reduced seropositive outcomes and detection sensitivity are indicated by a red dot.

analyzed from two independent wells (Analyses 1 and 2) or in a
single well (Analysis 3a) (151 pediatric and 162 adult samples)
(Table 1). There was low intra-assay variability across repeated
experiments (Supplementary Table 3), and these analyses led
to similar seropositivity results, with high detection sensitivity
and specificity (Table 2, Supplementary Table 4). Furthermore,
using a1MOG and 3SD threshold,MOGAb positivity serostatus
was similar when MOG Ab titers were determined by the mean
(Analysis 1), median (Analysis 2), or geometric mean (data not
shown) of MOG+ and MOG- cell populations (Tables 1, 2).
These results suggest that quantification of MOG Ab binding
by flow cytometry is reliable and reproducible and that the
practicality of incubating serum with MOG+ and MOG- cells
in a single well, rather than two independent wells, could
be considered.

Among 1MOG analyses, the seropositivity by a control
cohort-based threshold using 3SD (Analysis 1–3a) was not
significantly different from 6SD (Analysis 3b) (Table 2). Across
analyses that utilized thresholds from 3 to 6 SD above a
control cohort-based threshold, MOG ratio analyses (Analysis
5a, 5b, 6a, 7a) showed reduced MOG Ab detection sensitivity
(average sensitivity, children 87% ± 2, and adults 87% ± 6)
compared to 1MOG analyses (Analysis 1, 2, 3a, 3b, average
sensitivity, children 91% ± 2 and adults 94% ± 1; Table 2,
Supplementary Table 4). There was an average seropositive loss
of 6% ± 3 in children (average n = 10 ± 5, range 5–15) and 11%
± 6 among adults (average n = 20 ± 12, range 7–29) across all
MOG ratio analyses, which increased with higher SD thresholds
(Table 1). When the ratio was determined between 1MOG and
MOG- cells (Analysis 8), detection sensitivity and specificity were
high (Table 2); however, the serostatus remained significantly

different from that in a 1MOG analysis (Tables 1, 2). Notably,
the MOG ratio determination by geometric mean (Analysis 5)
performed the best out of all MOG ratio analyses (Table 1) and
performed significantly better than the MOG ratio median with
the same 4SD threshold (Analysis 5a vs. 7a, children, P = 0.027,
adults P = 0.001, data not shown; Table 2).

An increasing loss of MOG Ab seropositivity was observed
with higher thresholds across all analyses (Table 1). Indeed,
when the positive threshold was set 10 SD above the control
cohort (Analysis 3c, 7b), there was a ∼29% reduced detection
sensitivity (Table 2, Supplementary Table 4), and significant loss
of seropositivity, which was more pronounced in the MOG
ratio (Analysis 7b, n = 64 children and n = 57 adults reported
negative) than 1MOG analysis (Analysis 3c, n = 18 children
and n = 8 adults reported negative; Table 1). Across all flow
analyses, seropositivity loss was the greatest and significantly
different from Analysis 2 when an arbitrary threshold was used
(MOG ratio > 2.5 or 3, Analysis 4 and 6b), even when a
geometric mean was used to quantify MOGAb binding (Analysis
10; Tables 1, 2). Although it may be hard to compare absolute
values directly due to variability in experimental conditions, this
suggests that an arbitrary threshold may be difficult to translate
across studies.

Overall in children and adults, when using a 3 or 4 SD
threshold, the confidence intervals were narrower (Table 2)
and sensitivity was higher in the 1MOG analyses (Analysis
1, 2, and 3a, average sensitivity; 93%) than in the MOG
ratio analysis (Analysis 5a, average sensitivity: 91%, 6a: 83%,
and 7a: 83%) (Table 2, Supplementary Table 4). Therefore, the
1MOG value, rather than the MOG ratio, may be a more
reliable measure to determine MOG Ab seropositivity. Although
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TABLE 2 | Comparison of sensitivity and specificity of MOG Ab detection across different published flow cytometry analyses.

Flow cytometry

live analysisa
Children, n = 199b Adults, n = 283c

Sensitivity

% (CI)

Specificity

% (CI)

P-valued Sensitivity

% (CI)

Specificity

% (CI)

P-valued

Analysis 1 91.5 (85.8–95.1) 97.1 (83.4–99.9) 1.0 95.3 (90.6–97.8) 95.6 (89.6–98.4) 1.0

Analysis 2 91.5 (85.8–95.1) 97.1 (83.4–99.9) – 95.3 (90.6–97.8) 95.6 (89.6–98.4) –

Analysis 3 (a) 91.5 (85.8–95.1) 97.1 (83.4–99.9) 1.0 95.3 (90.6–97.8) 94.7 (87.3–97.3) 1.0

(b) 88.4 (82.3–92.7) 97.1 (83.4–99.9) 0.073 92.9 (87.6–96.1) 98.2 (93.2–99.7) 1.0

(c) 80.5 (73.4–86.1) 97.1 (83.4–99.9) <0.001* 90.5 (84.8–94.3) 99.1 (94.5–100) 0.387

Analysis 4 65.9 (58–73) 100 (87.7–100) <0.001* 81.7 (74.8–87) 99.1 (94.5–100) <0.001*

Analysis 5 (a) 89 (83–93.2) 97.1 (83.4–99.9) 0.133 92.3 (86.9–95.7) 98.2 (93.2–99.7) 0.723

(b) 87.8 (81.6–92.2) 100 (87.7–100) 0.131 89.3 (83.5–93.4) 99.1 (94.5–100) 0.181

Analysis 6 (a) 86 (79.5–90.7) 97.1 (83.4–99.9) 0.03* 80.5 (73.5–86) 97.4 (91.9–99.3) <0.001*

(b) 59.8 (51.8–67.2) 100 (87.7–100) <0.001* 78.1 (71–83.9) 99.1 (94.5–100) <0.001*

Analysis 7 (a) 83.5 (76.8–88.7) 97.1 (83.4–99.9) 0.003* 83.4 (76.8–88.5) 99.1 (94.5–100) 0.002*

(b) 53 (45.1–60.8) 100 (87.7–100) <0.001* 58 (50.2–65.5) 99.1 (94.5–100) <0.001*

Analysis 8 81.7 (74.8–87.1) 100 (87.7–100) <0.001* 91.1 (85.5–94.8) 95.6 (89.6–1) 0.023*

Analysis 9 91.5 (85.8–95.1) 97.1 (83.4–99.9) 1.0 94.7 (89.8–97.4) 97.4 (91.9–99.3) 1.0

Analysis 10 (a) 67.7 (59.9–74.6) 100 (83.4–100) <0.001* 80.5 (73.5–86) 99.1 (94.5–100) <0.001*

(b) 51.8 (43.9–59.6) 100 (83.4–100) <0.001* 75.1 (67.8–81.3) 99.1 (94.5–100) <0.001*

aSeropositivity determined by the threshold using 24 age-matched controls according to analyses detailed in Table 1. Cohorts included 164 pediatricb and 169 adultc sera from

patients with monophasic and relapsing disorders with reported MOG Ab-association and 35 pediatricb and 114 adultc sera from disorders with no MOG Ab-association yet reported

and disorders not associated with MOG Ab (Supplementary Table 3). dP-values determined by McNemar’s Chi-squared test with Analysis 2 as the comparator (*P < 0.05). CI = 95%

confidence interval.

sensitivity can be compromised, specificity could be improved
by increasing the SDs used to calculate the threshold. Indeed,
a 1MOG median (mixed) analysis using a 4 SD threshold
(Analysis 9) showed the highest combined detection sensitivity
and specificity (Table 2) and the lowest intra-assay variability
(Supplementary Table 3). Furthermore, seropositive results in
Analysis 9 were not statistically different from those of Analysis
1 or 2 (Tables 1, 2), but specificity was increased by reducing
seropositivity in two MS patients (Supplementary Table 3).

High Background Binding in Patient Serum
Reduces MOG Ab Detection Sensitivity in a
Ratio Analysis
Non-specific background serum binding to MOG- cells varied
among patients. Analysis by 1MFI was superior to a ratio
analysis, as the MOG ratio was greatly influenced by background
binding (Figures 2A,B). Indeed, by MOG ratio analyses, the
background binding detected from seronegative samples was
significantly higher compared to seropositive samples (children
and adults, P < 0.0001, Figures 2A,B). There was a negative
correlation between background binding and MOG ratio mean,
1MOG ratio mean, MOG ratio median, and MOG ratio
geometric mean, i.e., sera with higher background had lower
MOG ratio (P < 0.001, Figures 2A–D), further supporting
the influence of background binding on reducing detection
sensitivity. MOG Ab-positive patients negative by MOG ratio
analysis exhibited a wide range of MOG Ab levels when
determined by 1MFI (Figure 2E, red and orange dots),
suggesting that MOG Ab titers might not be accurately

represented in a MOG ratio in patients with high background
binding. Furthermore, among patients of known phenotype,
most children and adults negative according to MOG ratio
analysis presented with typical MOG Ab-associated phenotypes
(Figure 2F). There was no clinical distinction between MOGAb-
positive patients reported to be negative or positive byMOG ratio
analyses. Interestingly, although seropositivity results between
1MOG (Analysis 2) and ratio analyses (Analysis 6–8, 10) were
significantly different (P < 0.05), Analysis 2 performed similarly
to MOG ratio analyses using the geometric mean (Analysis 5, P
= 0.133 and P = 0.723, Table 2).

Comparisons Against an Optimized
Threshold by ROC Analysis
A ROC curve was generated for each analysis, and an optimal
threshold with the highest sensitivity and specificity was
determined (Supplementary Figure 1, Supplementary Table 5).
When the performances of each analysis using the optimal
threshold were compared to one another, MOG Ab serostatuses
were similar for all analyses with the exception of the MOG
ratio Analysis 7 in children and Analysis 6 in adults (data not
shown). This demonstrates the high discriminatory power of the
flow cytometry dataset when an appropriate positive threshold
is used.

DISCUSSION

Within the expanding field ofMOGAb-associated demyelinating
disorders, there are variations in the analysis of flow cytometry
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FIGURE 2 | High serum background binding reduced seropositivity detection in MOG ratio analysis. Patients negative (filled red) by mean (A,B), median (C), and

geometric mean (D) MOG ratio analysis had high background binding. There was a negative correlation between background binding and mean or median MOG ratio

values (P < 0.0001). (E) 1MOG values of MOG Ab+ patients reported negative in MOG ratio analysis by 3 or 4 SD (red, Analysis 6a and 7a, respectively) or 10 SD

(orange, Analysis 7b). Children (left) and adults (right) negative by MOG ratio analysis had a broad range of MOG Ab titers and fell within the range of 1MOG values of

patients who were positive by MOG ratio analysis. Dotted lines represent the 1MOG positive threshold 3 SD above controls. Representative data from three

experiments are shown. (F) Patients reported negative by MOG ratio median analysis (4 SD, Analysis 7a) clinically presented with MOG Ab-associated phenotypes. P,

pediatric patients; A, adults; ADEM, acute disseminated encephalomyelitis; BON, bilateral optic neuritis; CIS, clinically isolated syndrome; LETM, longitudinally

extensive transverse myelitis; ON mixed, combination of BON and UON; ON/TM, simultaneous ON and transverse myelitis; relapsing ADEM, multiphasic ADEM (41);

TM, transverse myelitis; UON, unilateral optic neuritis.

data. Precise detection of disease-relevant MOG Ab is essential
to advance our understanding of human MOG Ab-associated
disorders and implement immunotherapies. Here, we examined
the differences across published analyses and demonstrated
that high serum background binding in ratio analysis and
seropositivity thresholds determined by high SD and arbitrary
values reduced detection sensitivity. Furthermore, we showed
that the flow cytometry cell-based assay is a robust method

with high discriminatory power once appropriate thresholds
are utilized.

The human relevance of MOG Ab has been controversial
for decades. Fortunately, with a better understanding of
the binding characteristics of human MOG Ab, methods of
detecting disease-relevant MOG Ab have improved immensely.
Microscopy live cell-based assays are widely used (12) but
are semi-quantitative and observer-dependent, whereas flow
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cytometry allows quantification of a broad range of MOG Ab
titers, permitting an in-depth comparison between MOG Ab
seropositivity analyses. Although other secondary antibodies
specific to IgG Fc or IgG1 have been used in the literature,
the secondary antibody utilized to generate the flow cytometry
dataset in the current study targeted heavy and light IgG chains.
However, most of the seropositive patients in our cohort had
MOG IgG1 Ab (21), and only a small proportion of patients
harbored MOG Ab of the IgM isotype (21, 42). ROC curve
analysis and generation of the optimal threshold was used to
evaluate the performance of the assay to distinguish disorders
with reported MOG Ab association from disorders for which
MOG Ab association is not yet reported and disorders not
associated with MOG Ab. Flow cytometry analysis demonstrated
high specificity and sensitivity among most published analyses
with similar seropositive and seronegative reports.

MOG Ab have been demonstrated to be highly sensitive
to conformational changes and therefore require the native
surface antigen. Once the protein is fixed, in the case of in-
house fixatives or commercial kits, assay sensitivity is reduced
(20, 21). It is recommended that cells remain live to ensure
that conformational MOG epitopes are available for binding.
As the assay performance was reliable when MOG-expressing
and control cells were incubated together rather than in
two independent wells, a pragmatic consideration would be
to combine both control and MOG-expressing lines into a
single well for acquisition and analysis. Furthermore, although
seropositivity between mean, median, and geometric mean was
similar, the median or geometric mean value, being more
resistant to outliers, represents a truer central value.

We demonstrated reduced MOG Ab seropositivity in a MOG
ratio analysis, when the signal from MOG-expressing cells was
divided by control cells. This was largely due to the high
level of background fluorescence detected on control cells after
incubation with some sera. Human serum contains a plethora
of proteins and exogenous antigens that could non-specifically
bind to cells. As flow cytometry is a highly sensitive method
of detection, a broad range of background binding levels can
be detected, which will affect the MOG ratio. Although these
observations were determined by flow cytometry, these insights
can be extended to microscopy, where serum background
binding should be critically considered before determining a
patient’s MOG Ab serostatus.

A common threshold determination across the field is
necessary to allow reliable study comparisons. The stringency
of the positive cut-off is important in optimizing the sensitivity
and specificity of an assay. We showed that an increase in
the number of SD values, for example, to 10 SD, changed the
performance of the assay, with a notable reduction in sensitivity.
Three SDs above a control mean representing the 99th percentile,
commonly used in a diagnostic setting, presented with high
detection sensitivity and specificity, but 4 SD demonstrated the
highest discriminatory power in a 1MOG median analysis.
Although there is a broad range of MOG Ab titers, the data are
not normally distributed (21) and are “bottom-heavy;” therefore,
the serostatus of patients with MOG Ab titers close to threshold
are more susceptible to threshold changes. If a control cohort was

tested alongside the patient samples, which was the case for many
flow cytometry analyses, a 1MOG analysis is recommended.
As arbitrary thresholds may not be accurately translated across
studies, an independent threshold should be generated for each
experiment to account for inter-assay variability. However, a
ratio analysis can be advantageous when a control cohort is
not available. The geometric mean normalizes skewed data and
is most appropriate in the quantification of ratios. We showed
that the geometric mean MOG ratio analysis was similar to
the 1MOG median analysis and demonstrated that ratio values
could discriminate disease from non-disease when an optimal
threshold by ROC analysis was used. Once this threshold is
validated in several cohorts, the geometric mean MOG ratio
could be an alternative if a control cohort is not available.

A limitation of this study was that the threshold for all
analyses was generated with 24 controls, although the number of
control samples used to establish the threshold in the published
analyses varied. However, the 24 controls in the current study
generated a stringent threshold for all analyses. Furthermore,
the most frequent dilution across studies was similar to the
one used to generate our dataset, but other studies have tested
a range of different dilutions. Although assessing the effect of
different serum dilutions was outside the scope of this study,
the influence of high serum background in flow cytometry
remains useful.

As MOG Ab are becoming a prevalent diagnostic biomarker,
these results highlight caveats in using a binding ratio and
prompt an international agreement on data analysis, which
will permit direct comparisons between studies and streamline
diagnosis of MOG Ab-associated disease.

Recommendations for MOG Ab Analysis by
Flow Cytometry
1. MOG-expressing cells can be incubated in the same well

as control cells. Fluorescence intensity of control or MOG-
expressing cells can be calculated by the mean, median, or
geometric mean.

2. A positive threshold determined by a control threshold
generated in each experimental run is ideal. MOG Ab binding
to MOG should be calculated using 1MOG instead of a MOG
ratio if a control cohort is available.

3. Ratio analysis using the geometric mean could be utilized if a
control cohort is unavailable. The optimal threshold by ROC
curve analysis should be validated before implementation.

4. Additional parameters may vary, such as serum dilution,
secondary antibody, and flow cytometry experimental
conditions. Although these recommendations are based on
a serum dilution of 1:50 and detection of IgG (H+L), these
concepts can be applicable to all flow cytometry analyses.
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Background: Autoimmune encephalitis (AE) is an important cause of refractory epilepsy,

rapidly progressive cognitive decline, and unexplained movement disorders in adults.

Whilst there is identification of an increasing number of associated autoantibodies,

patients remain with a high clinical probability of autoimmune encephalitis but no

associated characterized autoantibody. These patients represent a diagnostic and

treatment dilemma.

Objective: To evaluate routine and novel diagnostic tests of cerebrospinal fluid (CSF)

in patients with a high probability of AE to attempt to identify better biomarkers

of neuroinflammation.

Methods: Over 18 months (2016–2018), adult patients with a high clinical probability

of AE were recruited for a pilot cross-sectional explorative study. We also included

viral polymerase-chain-reaction (PCR) positive CSF samples and CSF from neurology

patients with “non-inflammatory” (NI) diagnoses for comparison. CSF was examined

with standard investigations for encephalitis and novel markers (CSF light chains,

and cytokines).

Results and Conclusions: Thirty-two AE patients were recruited over 18 months.

Twenty-one viral controls, 10 NI controls, and five other autoimmune neurological

disease controls (AOND) were also included in the analysis. Our study found that

conventional markers: presence of CSF monocytosis, oligoclonal bands, anti-neuronal

immunofluorescence, and magnetic resonance imaging (MRI) changes could be

suggestive of AE, but these investigations were neither sensitive nor specific. Promising

novel makers of autoimmune encephalitis were the CSF cytokines IL-21 and IP10 which

may provide better delineation between viral infections and autoimmune encephalitis than

conventional markers, potentially leading to more immediate diagnosis and management

of these patients.

Keywords: autoimmune encephalitis, cytokines, inflammation, surrogate markers, cerebrospinal fluid, CSF,

diagnostic investigations
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INTRODUCTION

Autoimmune encephalitis (AE) is an important cause of
unexplained movement disorders, rapidly progressive cognitive
decline and refractory epilepsy (1, 2).Whilst a proportion of these
patients have associated detectable anti-neuronal antibodies,
there is currently no gold standard investigation to confirm the
diagnosis (2).

A further clinical challenge are patients who clinically appear
to have AE, but no associated autoantibody is identified (3,
4). Supportive findings indicating AE include the following
conventional surrogate markers of neuroinflammation on CSF:
oligoclonal bands, raised protein level, and monocytosis (2,
5). Patients with antibody-negative or positive AE may not
have elevations of these markers but still respond to a trial
of immunomodulatory treatment (2, 6). Earlier initiation of
treatment may result in better outcomes (3, 4). However,
treatment of AE often involves significant immunosuppression
(1, 6) and the decision to subject an individual to therapy is
challenging if convincing objective evidence of an autoimmune
etiology is lacking (1).

Novel surrogate markers including CSF light chains and
CSF cytokines have been associated with CNS inflammation
(7–13). Indirect immunofluorescence (IIF) on primate brain
using CSF for anti-neuronal antibodies often reveals staining
patterns not associated with a known antigen (non-specific
IIF) and it is unclear whether these patterns are indicative of
CNS autoimmunity.

A superior biomarker which more reliably differentiates
CNS autoinflammation from other causes will assist clinicians
commence treatment earlier. Our study examines a cohort of
patients with high clinical suspicion of AE to identify biomarkers
that might indicate this disease.

MATERIALS AND METHODS

Recruitment of Patients
This is an exploratory study aiming to identify conventional
or novel surrogate biomarkers of neurological inflammation
associated with AE which provides class III evidence for the
potential of the CSF cytokines IL21 and IP10 as biomarkers
for AE. This study was approved by the Ethics Committee of
WestmeadHospital (LNR/16/WMED/192) andwritten informed
consent was obtained by all participants.

Patients at a single quaternary referral center in Western
Sydney, Australia were prospectively recruited over 18 months
between 2016 and 2018 (Figure e-1). Previously proposed
diagnostic criteria for antibody negative AE (2) includes subacute
onset of working memory deficits; altered memory status or
psychiatric symptoms with new focal CNS findings; and seizures
not explained by previous known seizure disorder paired with
investigation findings of CSF pleocytosis (2); magnetic resonance
imaging (MRI) features suggestive of encephalitis; and exclusion
of alternative causes. Therefore, our inclusion criteria was
based on the clinical grounds for suspicion of AE: refractory
or multiregional seizures/epilepsy; rapidly progressive cognitive
decline and unexplained movement disorders (1–6). Adult

patients (16 years or older) with a high clinical suspicion of AE,
as assessed by a neurologist, were enrolled in the study.

The decision for recruitment was based on clinical grounds,
prior to lumbar puncture and before knowledge of subsequent
results of investigations. If investigations results revealed an
alternative diagnosis, patients were reclassified to the appropriate
group i.e., infectious. Patients with an identified autoantibody
associated with AE were classified as antibody positive (AbPAE)
while those without antibodies were classified as antibody
negative (AbNAE). To prevent information bias, negative results
from CSF analysis did not exclude enrolled patients.

Recruitment of Controls
Any enrolled patients diagnosed with a CNS viral infection
through polymerase-chain-reaction (PCR) were included in the
infectious control cohort. In addition, stored CSF samples
classified as viral infection based on positive PCR results were
included as viral controls. These samples were supplied as
deidentified aliquots.

Non-inflammatory (NI) control CSF samples were obtained
from patients undergoing large-volume lumbar puncture for
“non-inflammatory” neurological disease (NIND) and from
patients undergoing routine spinal anesthesia. Patients in
the NIND group had a diagnoses of simple headache,
idiopathic intracranial hypertension (IIH), or normal pressure
hydrocephalus (NPH).

A disease control group consisting of patients with
neuropsychiatric lupus, cerebral vasculitis, and multiple
sclerosis were also included (OAND group).

Sample Collection and Storage
CSF samples for AE and NI controls were collected in standard
10mL CSF tubes. CSF for light chains and cytokine analysis were
aliquoted from these samples and frozen at −80 degrees Celsius.
Assays for CSF light chains and CSF cytokines were batched for
analysis to minimize analytical variation.

Assays
All investigations unless otherwise stated, were performed at
ICPMR (NSWHealth Pathology, Australia).

Patients underwent conventional investigations for AE
including blood tests and lumbar puncture for collection of
CSF (Figure e-1). Conventional serum and CSF studies were:
isoelectric focussing for oligoclonal bands (Sebia Paris, France),
indirect immunofluorescence (IIF) on primate brain (Inova San
Diego, USA) and line blot (PCA-1, PCA-2, ANNA-1, ANNA-2,
Ma-1, Ma2, Amphiphysin, CV2, CRMP5) for onconeural
antibodies (Ravo Bettlach Switzerland) and a limbic encephalitis
panel [NMDAR, LGI-1, CASPR2, GABA (B), AMPA1 and
AMPA2] on HEK2 transfected cells (Euroimmun Lubeck,
Germany), as well as voltage-gated potassium antibodies
(VGKC) (performed by radioimmunoassay; Queensland
Pathology, Royal Brisbane Hospital, Australia; kits from RSR
Cardiff, United Kingdom). Confirmation of IgLON5 antibody
was performed at Euroimmun, Lubeck Germany based on
staining pattern on primate brain IIF in our laboratory.
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The following tests were also performed on serum:
anti-thyroid antibody (Siemens Munich, Germany) and
thyroglobulin antibody (Siemens Munich, Germany); and
CSF: microscopy and culture; protein (Siemens Vista
Erlangen, Germany), anti-glutamic acid decarboxylase
(GAD) antibodies (ELISA, SEALS Pathology, Prince of
Wales Hospital, NSW Australia; RSR Cardiff, UK), and
polymerase chain reaction (PCR) for viral infections: HSV
(Artus Hamburg, Germany), VZV (in-house PCR assay),
ENTV (in house PCR assay), and EBV by PCR (Ellitech
Paris, France).

All conventional investigations were collected
according to current practice and performed according
to the usual procedures available at the receiving
diagnostic laboratory.

CSF studies performed purely on a research basis were:
CSF light chains (Freelite assay; Binding Site, Birmingham
United Kingdom) and a broad panel of CSF cytokines (Milliplex;
Merk Millipore Darmstadt Germany) using the magnetic multi
bead array kits (MPHSCTMAG28SK17; MPHCYP3MAG63K01;
MPHCYTOMAG60K03; MPHCYTP2MAG62K02. Cytokines
tested were: IFN-γ, ITAC/CXCL11, IL-12p70, TNFα, CXCL9,
IP-10/CXCL10 (Th1 cytokines); IL-13, IL4, IL5, TARC/CCL17,
Eotaxin/CCL11 (Th2 cytokines); IL17a, IL-6, IL-8 (Th17
cytokines); and IL-1β, IL-21, IL-2, IL-23, IL-7, IL-10, BCA-
1/CXCL13, GMCSF, GCSF (other cytokines). Kits were chosen
based on maximum sensitivity for cytokine detection. Lower
limits of detection of the cytokine assay are detailed in
Table e-3. Samples for CSF light chains and cytokines were
run as per assay kit instructions. CSF cytokines were run
by two operators and in duplicate except when the sample
amount was insufficient when it was run in singlicate (six
AE patients).

Any additional clinically necessary investigations for
diagnosis or management including MRI was performed. MRI
reports included in our data as suggestive of neuroinflammation
had features of hyperintensity, hippocampal swelling, or
other signs of oedema. Reports including cortical dysplasia,
mild involutional change or atrophy, and bleeding were not
considered positive. MRI results were not available for NI and
viral controls.

TABLE 1 | Patient Demographic Details.

NI

controls

OAND

controls

AbPAE AbNAE

P

(vs. NI)

P

(vs. NI)

P (vs.

antibody

positive)

Number of

patients

10 4 9 n/a 23 n/a n/a

Median

age

54 46.5 37 0.98 44 0.4 0.2

Age range 17–81 19–60 15–58 n/a 18–73 n/a n/a

Gender

(M:F)

4:6 1:3 3:6 0.4 16:7 0.1 0.02

Clinical Details
Clinical details for AE patients, NI, and OAND cohorts were
collected by interviewing treating clinicians and verified through
medical records. Clinical data for viral samples were not available.

Statistical Analysis
Analysis of the surrogate markers examined in this study was
performed using StataMP 13 and scatterplot figures of results
were prepared using GraphPad Prism.

For continuous independent variables, univariate analysis
using the Mann-Whitney U-test or Kruskal-Wallis test were
performed to compare the various disease groups. Univariate
logistic regression was performed for binomial and categorical
variables. Heat map analysis of cytokines was performed using
Morpheus (Broad Institute) to find cytokines of potential interest.

Significant findings were then combined in a multivariate
logistic model to determine markers that were significantly and
independently associated with disease group classification (AE vs.
viral, NI, and OAND groups). These markers were then fitted to
a predictive model and a receiver operating characteristic (ROC)
curve created.

RESULTS

A total of 32 patients with a high clinical probability of
AE were recruited. These were subdivided into nine AbPAE
patients and 23 AbNAE patients. Ten NI controls, 24 viral
controls, and five OAND were also included in the analysis
(Figure e-1). Demographic details of recruited patients are
described in Table 1. Demographic details of the viral controls
were unavailable. Clinical and diagnostic details for the AbPAE
and AbNAE groups are summarized in Table e-1. The antibodies
detected in the AbPAE group were NMDA-R (3), GFAP (1),
IgLon5 (1), LGI-1 (1), CASPR2 (1), Anti-ANNA1(Hu) (1), and
Anti-GAD (1).

Most investigations were analyzed in over 90% of samples
from the AE groups. Exceptions were CSFGAD (78%) and serum
VGKC (59%).

TABLE 2 | Conventional Markers of CNS inflammation.

NI

(N = 5)

OAND

(N = 5)

AbPAE

(N = 9)

AbNAE

N = 23

n (%) n (%) n (%) p n (%) P

CSF monocytosis

> 5 (2)

0 (0%) 1 (20%) 2 (22%) n/a 4 (17%) n/a

CSF oligoclonal

bands

0 (0%) 3 (60%) 6 (67%) n/a 5 (22%) n/a

CSF protein

> 0.45 g/L

3 (60%) 2 (40%) 4 (44%) 0.5 9 (32%) 0.6

Neuronal IIF (any

staining)

1 (20%) 2 (40%) n/a n/a 8 (35%) 0.4

MRI changes n/a 4 (80%) 3 (33%) n/a 5 (22%) n/a

P-values are calculated as AbAE or AbNAE vs. all other control groups (NI, viral and

OAND).
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FIGURE 1 | CSF cytokines. (A) Heat map cluster distinguishes viral from AbPAE and AbNAE encephalitis. Each column represents a participant. The X-axis identifies

the cohort each participant belongs to, while the right-handed Y axis describes the corresponding cytokine. Increasing expression is depicted as increasing shades of

(Continued)
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FIGURE 1 | red. Th1 and proinflammatory cytokines appear to be associated with viral infections, with the addition of IL7a, IL1b, and IL4 associated with enterovirus

infections in this group. (B) Cytokines where a significant difference was found in univariate analysis of the autoimmune encephalitis group compared with a combined

pool of NI, viral, and other autoimmune disease controls. Cytokines where the statistical significance was also seen in a univariate analysis are indicated with asterisks

(* < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001). Statistical significance seen in multivariate analysis are indicated with hatches (# < 0.05, ## < 0.01,

### < 0.001, #### < 0.0001). Lines indicate medians. Table e-2 details the p-values of individual group comparisons. AbPAE, patients clinically high risk for

autoimmune encephalitis who had identified associated antibodies; AbNAE, patients clinically high risk for autoimmune encephalitis without identified associated

antibodies; NI, samples from patients either undergoing perioperative anesthesia or diagnosed with non-inflammatory neurological diseases; OAND, patients with

other inflammatory neurological disease; EBV, Epstein Barr virus; VZV, varicella zoster virus; HSV, herpes simplex virus; ENT, enterovirus.

Of the 10 NI controls, five were perioperative patients where
only 1mL of CSF was able to be collected. These samples were
reserved for assessment of novel markers.

Two of the OAND controls had commenced
immunosuppression at time of lumbar puncture: one cerebral
lupus (methotrexate and mycophenolate) and one with cerebral
vasculitis (pulsed methylprednisolone). However, both these
patients required intensification of immunosuppression prior
to remission.

Twenty-five PCR positive viral controls were included in this
study. One was a recruited patient diagnosed with herpes simplex
virus (HSV) positive on PCR. Twenty-four others were obtained
from aliquoted stored samples and consisted of nine enterovirus
(ENTV) positive samples, four HSV positive, three Epstein-
Barr virus (EBV) positive, and eight varicella-zoster virus (VZV)
positive samples. All ENTV samples were 500 µL in volume and
were used for both CSF cytokine and CSF light chain analysis.
There were only 200 µL of CSF for VZV, EBV, and HSV samples.
Therefore, 5 HSV, 3 EBV, and 4 VZV samples were used for
cytokine analysis and a further 4 VZV samples were used CSF
light chain analysis. Thirteen viral samples also underwent IIF on
primate brain.

Conventional Markers
There was a trend for increased proportions of positive results in
some conventional CSFmarkers of CNS inflammation in patients
with AE and OAND compared to NI controls (Table 2) but this
was not seen in all patients. Comparison of these markers with
viral controls was not available.

Two of 9 (22%) of AbPAE and 4/23 (17%) of AbNAE patients
had evidence of CSF monocytosis >5 monocytes. Six of 9 (67%)
of the APAE and 4/23 (17%) of AbNAE high-risk patients had
evidence of CSF oligoclonal bands. None of theNI group hadCSF
monocytosis>5 or oligoclonal bands and these markers were not
able to be statistically analyzed.

Raised CSF protein (>0.45 g/L) was seen in 4/9 (44%) of the
AbPAE and 9/23 (32%) of AbNAE groups but also in 3/5 (60%)
of the NI group.

CSF neuronal IIF staining was observed in 8/23 (35%) of the
AbNAE group but was also observed in 1/5 of the NI group,
1/13 (8%) of the viral controls with sufficient sample for testing
(enterovirus only) and 2/5 (40%) of OAND controls. The viral
sample with non-specific IIF staining was EBV positive on PCR
however this was supplied as a deidentified aliquot and further
clinical details could not be verified.

Three of 9 (33%) of the AbPAE group and 5/23 (22%) of the
AbNAE group had non-specific changes on MRI indicative of

neuroinflammation. No MRI results were available for viral or
NI controls.

Therefore, whilst markers such as CSF oligoclonal bands,
monocytosis or presence of MRI changes may indicate an
autoimmune process, these are not sensitive or specific (14, 15)
enough for a reliable diagnosis.

CSF Cytokines
Heatmap cluster analysis revealed differential profiles of cytokine
concentrations in patients with viral infections and NI controls
compared to the combined AbPAE, AbNAE group, and OAND
groups (Figure 1A).

There were no significant differences in cytokine levels
between the AbPAE and AbNAE groups. Therefore, for statistical
analysis, the AE patients were analyzed as one group when
compared to NI and viral controls. The cytokines IL1b and
IL12p70 were raised in the AE group when compared to the
OAND group. Results of univariate analysis between individual
groups are detailed in Table e-2.

Univariate analysis found that levels of IL21 (p = 0.0001),
IL13 (p = 0.0002), IL12p70 (p = 0.0008) and IL7 (p = 0.009)
were increased in the AE patients (Figure 1b) when compared
to a combined cohort of normal, viral and OAND controls.
As expected, Th1 related cytokines and other proinflammatory
cytokines were elevated in viral controls.

A multivariate logistic regression model was used to compare
the combined cohort with a combined group of normal, viral, and
OAND controls. Only IL-21 (p = 0.002) and CXCL10/IP-10 (p
= 0.003) independently contributed to the model. A ROC curve
constructed using this multivariate logistic regression model had
an area under the curve (AUC) of 0.90 (Figure 2A). A ratio
of IL21/IP10, in a univariate logistic regression model was also
significant when compared a combined group of normal and viral
controls (p= 0.01) with a ROC curve of 0.84 (Figure 1B).

Other Novel CSF Markers
Only CSF lambda light chains were higher in both AE (p =

0.03) and viral control (p = 0.03) groups compared to NI
controls. Kappa and lambda were both significant raised in
OAND controls (p = 0.03 and 0.003, respectively). However,
when the AE groups were compared to viral controls there was
no statistical difference in CSF (kappa or lambda) light chains.
Therefore, whilst CSF lambda may be a non-specific marker
of neuroinflammation, it cannot be relied on to differentiate
between AE from other differentials, such as viral infection.
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FIGURE 2 | (A) IP10 and IL21 has a high sensitivity and specificity in

discriminating AE from a combined control cohort. ROC curve analysis using a

multivariate model with CXCL10/IP10 and IL21 in comparing a pooled AE

cohort (compromising of both antibody positive and antibody negative groups)

vs. a pooled viral control, NI cohorts, and OAND controls. AUC 0.90. (B) An

IP10/IL21 ratio is a reasonably sensitive and specific single result that may

differentiate the autoimmune encephalitis group from normal and viral controls.

This ROC curve analysis uses a univariate logistic model with IL21/IP10 in

comparing a pooled high risk for autoimmune encephalitis cohort

(compromising of both antibody positive and antibody negative groups) vs. a

pooled viral control and NI cohorts. AUC 0.84 AE, autoimmune encephalitis;

NI, non-inflammatory controls; OAND, patients with other inflammatory

neurological disease.

DISCUSSION

The diagnosis of antibody-negative AE remains largely one of
exclusion (2) and better biomarkers are required to assist with
diagnosis to limit the potentially severe sequelae associated with
treatment delays. Our study has demonstrated that selected CSF
cytokines are promising biomarkers of AE, with or without
characterized antibodies being present.

The most promising surrogate marker for AE is IL21 which
was raised in both AbPAE and AbNAE groups. While the
detected levels of IL-21 in the CSF were in the low range of the
assay (0–6 pg/ml) they were significantly increased compared
to viral and normal controls. Considering the short serum half-
life of IL-21 (1–3 h) (16), this may represent sustained IL-
21 production.

IL21 has many roles in B, CD8T, and NK cell activation.
In B cells, IL-21 acts as both an inhibitor and activator (17,
18). It stimulates apoptosis of B cells that become activated in
the absence of T cell help (17, 18) but also stimulates B cell
proliferation in the setting of T cell help. In combination with IL-
4, IL21 has a significant role in switching B cells to IgG1 and IgG3
production (17–19). IL-21 also stimulates B lymphocyte-induced
maturation protein transcription 6 (BLIMP6), which induces
differentiation of B cells into long-lived plasma cells (17, 18).
Therefore, IL-21, may contribute to autoantibody production
in AE.

Antibodies associated with AE are continually being
described. It is possible that patients diagnosed with
antibody-negative AE may have an antibody that is yet to
be discovered. Another consideration is that the finding
of higher IL21 indicates a role in non-antibody mediated
inflammation. IL21 down regulates FOXP3+ regulatory T cells
leading to enhanced autoimmunity (17–19). In addition
to being a T and NK cell activator, IL21 also critically
regulates Th17 cell development, expansion, and function.
With IL-7 or IL-15, IL-21 further enhances CD8+ T cell
proliferation (17–19). It stimulates the proliferation of NK
and NKT cells and enhances NK cytolytic function. These
effects are demonstrated in anti-tumor models (17, 18)
and may contribute to a predominantly cell-mediated
autoinflammatory encephalitis.

The main mimic of AE is viral encephalitis which is
an important consideration in the context of potential
immunosuppression. The main cytokine indicative of viral
infection in our study was IP10/CXCL10. IP10/CXCL10
is secreted in response to interferon gamma (20) which is
produced as part of the Th1 response to viral infection. It is
a chemoattractant for T cells, monocytes, natural killer (NK)
cells and dendritic cells (20, 21). IP10/CXCL10 was raised in
all viral infections included in our study. Other reports have
associated IP10/CXCL10 with herpes and flaviviruses (22).
However, this needs to be validated across a greater range of
infections before it can be definitively used as a surrogate marker
of infection.

Translating these findings into routine clinical practice, IL-21
and IP10 may contribute to the diagnostic armamentarium in
the investigation of encephalitis, possibly helping to differentiate
AE from conditions presenting in a similar fashion where
immunosuppression may be harmful. A pragmatic way of
comparing these values may be through an IL-21/IP10 ratio.
In our cohort, this ratio had an excellent AUC on ROC curve
analysis when AE was compared to NIND and viral controls, but
this needs to be further validated.

Data available on CSF cytokines in this disease setting are
limited and comparisons between studies are difficult because
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of heterogeneity in disease definitions and differences between
cytokine detection platforms and their lower limit of detection,
as well as kit manufacturers.

There is only one other study to our knowledge that examines
CSF cytokine profiles in adults. This study examined CSF
cytokines in 78 patients using a different platform manufacturer
(Bio-Rad), including 20 with an autoimmune neurological
disease (10). This study differed to ours in cohort with a
significant proportion of patients with demyelinating disease
(9/20) in autoimmune cohorts (excluded from our AE group)
and patients with bacterial or tuberculosis CNS infections in
their infectious cohort (9/38). They observed that MPO and IL8
was increased in cohorts with infectious and unknown etiology
but did not find CXCL10/IP10 a significant marker of infection.
They found IL-4, IL-10, IL-1R α, and IL1- β were higher in CSF
of patients with immune-mediated disease (10). They did not
examine IL21.

There is more literature available about CSF cytokines
associated with AE in children, but it is unclear if these data are
applicable to an adult population. One study (of children aged 28
days-14 years old) examined CSF cytokines (Bio-Rad kit) in viral
encephalitis compared with NMDAR (four patients) encephalitis
and found significant elevations in IL-6, IL7, and IL13 in the
viral encephalitis group compared to the NMDAR encephalitis
group (13), but did not examine IP10/CXCL10 or IL21. A second
study examined the CSF of children (aged 2–14 years) with
enterovirus encephalitis or NMDAR encephalitis and ADEM
but found no significant differences in cytokine concentrations
between these groups of patients. This study used cytokine kits
from the same manufacturer as our study (Milliplex) but used
kits under different catalog numbers to what we have used.
Therefore, differences in findings for cytokine levels between this
study and ours may reflect differences in children vs. adults or
varying analytical sensitivities across different cytokine detection
kits (11). A published review of CSF cytokines in children also
found Th1 cytokines to be associated with viral encephalitis
and CXCL13 and IL6 to be associated with NMDAR-antibody
associated encephalitis and non-herpetic limbic encephalitis,
respectively (12).

Our study did not find other novel potential novel markers
useful in differentiating AE from NI or viral controls. In
examining the literature, raised CSF free light chains (FLC) levels
have been associated with neuroinflammation, however, the
normal range is not well-established (7–9). Our results suggest it
may be a better indication of general neuroinflammation rather
than identifying a specific cause.

Currently utilized conventional markers are neither sensitive
(1, 2, 23) nor specific (14, 15, 24, 25) enough for the diagnosis
of AE (26). Whilst there were increased proportions of positive
results in CSF monocytosis and oligoclonal bands in our study
in some AE patients, the presence of these markers have been
described in infectious and/or neuroinflammatory states (14,
15, 24, 25). Similarly, the majority of cases of AE did not
have detectable abnormalities on MRI (2). Elevated CSF protein
was not a good indicator of neuroinflammation. There was
a trend for an increased proportion of patients (35%) with
any positive staining in IIF in the AbNAE group compared

to one patient in the viral and NI groups, respectively. This
may indicate that this finding may be useful but need to be
examined further.

This study was limited by small patient numbers and limited
CSF volumes, reflecting the rarity of this disease. There was
difficulty in obtaining sufficient normal and viral control samples
of CSF and there were pre-analytical collection issues in this
study. The use of deidentified viral PCR positive CSF aliquots for
controls meant clinical correlation was not possible. We did not
check serum cytokines for patients in our cohort and comparison
between CSF and serum cytokine levels in these patients should
be a focus of further study.

Nevertheless, this is the first study, to our knowledge, to
prospectively examine both conventional and novel markers
of neuroinflammation in these groups of adult patients
prior to immunosuppression. We have demonstrated the CSF
cytokines CXCL10/IP-10 and IL-21 are potential differentiators
of AE from viral encephalitis, particularly when there is
no CNS specific autoantibody detected. These novel markers
could have a future role to help expediate the decision
to commence immunosuppression in this group of patients
warranting their prospective validation in separate cohorts of
AE patients.
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Myeloid cells that infiltrate into brain tumors are deactivated or exploited by the

tumor cells. We previously demonstrated that compromised microglia, monocytes, and

macrophages in malignant gliomas could be reactivated by amphotericin-B to contain

the growth of brain tumorinitiating cells (BTICs). We identified meclocycline as another

activator of microglia, so we sought to test whether its better-tolerated derivative,

demeclocycline, also stimulates monocytes to restrict BTIC growth. Monocytes

were selected for study as they would be exposed to demeclocycline in the

circulation prior to entry into brain tumors to become macrophages. We found that

demeclocycline increased the activity of monocytes in culture, as determined by tumor

necrosis factor-α production and chemotactic capacity. The conditioned medium of

demeclocycline-stimulated monocytes attenuated the growth of BTICs generated from

human glioblastoma resections, as evaluated using neurosphere and alamarBlue assays,

and cell counts. Demeclocycline also had direct effects in reducing BTIC growth.

A global gene expression screen identified several genes, such as DNA damage

inducible transcript 4, frizzled class receptor 5 and reactive oxygen species modulator

1, as potential regulators of demeclocycline-mediated BTIC growth reduction. Amongst

several tetracycline derivatives, only demeclocycline directly reduced BTIC growth. In

summary, we have identified demeclocycline as a novel inhibitor of the growth of BTICs,

through direct effect and through indirect stimulation of monocytes. Demeclocycline is a

candidate to reactivate compromised immune cells to improve the prognosis of patients

with gliomas.
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INTRODUCTION

Malignant gliomas are brain tumors that arise from within
the central nervous system (CNS). The most aggressive form,
glioblastoma multiforme, has a dismal prognosis with a median
survival of 15 months; <10% of patients survive beyond 5 years
(1–3). The poor prognosis of malignant gliomas is attributed in
part to the existence of glioma stem cells, also called brain tumor-
initiating cells (BTICs) (4–9). BTICs are resistant to therapies
as they continue to seed and form new tumor foci in the brain.
BTICs have been shown to contribute to the tumourigenesis and
recurrence of gliomas (10), particularly due to their high chemo-
and radio-resistance (11, 12).

Surrounding BTICs in situ are microglia, which are
innate immune cells of the CNS and macrophages that
have infiltrated as monocytes from the circulation (13–16).
These cells are thought to be initially recruited to eradicate
the tumor by stimulating apoptosis of glioma cells (17) and by
secreting inflammatory factors that prevent glioma growth and
invasiveness (18). However, glioma cells have been shown to
induce an immunosuppressive phenotype that in turn enhances
tumor growth. For example, glioma cells have been shown to
secrete periostin, which selectively recruits macrophages with
an immunosuppressive profile (19). Furthermore, interactions
between glioma and macrophages/microglia can lead to
promotion of tumor growth (20–22). These immune cells
have been shown to enhance tumor CCL21 expression,
which facilitates tumor immune escape (23). Notably, BTICs
also interact with macrophages and microglia within the
tumor microenvironment, inducing an immunosuppressive
macrophage/microglia cell profile that leads to promotion of
tumor invasion (24, 25). We made the discovery that microglia,
monocytes, and macrophages derived from glioma patients are
deficient in their capacity to reduce the growth of BTICs (26).

Based on the above discussion, activating or reprogramming
immune cells may represent an approach to curb BTIC growth
(27–29). Kees et al. (30) demonstrated that stimulation of
microglia with toll-like receptor-3 agonist, poly(I:C), prior to
co-culture with tumor cells promotes microglia tumouricidal
activity in vitro. However, direct poly (I:C) treatment was
ineffective in glioma patients (30).

A recent study has shown that manipulation of RNA regulator
in tumor-associated microglia and macrophages stimulates anti-
tumor immunity and reduces glioma growth (31). More recently,
we found that the compromised monocyte, macrophages and
microglia from patients with glioma could be reactivated by
amphotericin B to reduce BTIC growth in culture and to prolong
the lifespan of mice with intracranial patient-derived BTIC
xenografts (26). Despite these promising results, amphotericin
B may not find clinical utility in gliomas as it has significant
acute and chronic toxic side effects ranging from hypoxia to
nephrotoxicity (32).

We discovered the pro-activation capacity of amphotericin

B on microglia during a screen of a 1,040-drug library

(33). During that screen, we discovered another stimulator of
the activity of microglia in culture, as measured by TNF-α

production: meclocycline, a tetracycline antibiotic. Meclocycline

has significant toxicity and is limited to topical use, but a
derivative, demeclocycline, can be administered systemically
(34) (www.drugs.com). Demeclocycline is used clinically as a
prescription medication to treat susceptible bacterial infections,
as well as off-label to manage chronic syndrome of inappropriate
secretion of anti-diuretic hormone (SIADH).

Here, we have evaluated the effects of demeclocycline on BTIC
growth either through direct mechanisms or indirectly through
the stimulation of monocytes. We chose monocytes for study as
systemic monocytes would be exposed to demeclocycline prior to
their infiltration into brain tumors as macrophages to influence
BTIC properties. Our results suggest the potential utility of
demeclocycline in glioblastoma.

MATERIALS AND METHODS

Isolation and Culture of Monocytes and

Macrophages
Human monocytes were isolated from the venous blood of
adult healthy individuals as described elsewhere (26). Briefly,
monocytes (100,000 cells/well/100µl) following isolation were
plated in RPMI medium supplemented with 20% human serum
in 96 well plates. After 24 h, cells were switched to BTIC
medium. Cells were transferred to BTIC medium an hour
prior to treatment. Treatment involved administering each drug
at different concentrations with or without LPS (100 ng/ml).
Briefly, monocytes were treated with demeclocycline (10 or
1µM) for 48 h in BTIC medium and conditioned media were
collected. Bone marrow-derived macrophages (BMDM) were
isolated from mice as described elsewhere (35). Unless otherwise
stated, BMDM cells were plated at 30,000 cells in AIMVmedium
for collection of conditionedmedia (see below), or for assessment
of their activity.

Evaluation of Activity of Monocytes and

Macrophages in Response to

Demeclocycline Treatment
We utilized the level of tumor necrosis factor-α (TNF-
α) as a first indicator of cellular activity. Following 24 h
treatment with demeclocycline (10µM, Sigma) with or
without IFNγ (100 ng/ml)/IL-1β (100 ng/ml) (Peprotech) or
LPS (100 ng/ml), the conditioned medium was collected for
TNF-α ELISA following manufacturer’s instructions (Life
Technologies Invitrogen).

Chemotaxis Assay
Human monocytes were treated with demeclocycline
(10µM). After 1 h of incubation at 37◦C with 5% CO2,
IFNγ (100 ng/ml)/IL-1β (100 ng/ml) was added. After 24 h,
human monocytes were harvested and resuspended in RPMI
1640 media supplemented with 2% penicillin/streptomycin, 10%
fetal bovine serum, L-glutamine, and 1mM sodium pyruvate.
Two hundred thousand cells were plated onto the filters of 5µm
pore size ChemoTx plates (NeuroProbe). Recombinant human
CCL2 (Peprotech) (10 ng/ml) was diluted in supplemented
RPMI 1640 media and 300µl/well was added into wells below
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the filter so as to provide a chemotactic stimulus. Two controls
were used in this assay. The first control was medium only. The
second one was chemokinetic control where the cells plated onto
the filter contained the 10 ng/ml of CCL2 as in the underlying
well. To obtain a standard curve, halving numbers of cells were
plated ranging from 0 to 200,000. Cells were incubated at 37◦C
in humidified air with 5% CO2 for 16 h. They were then washed
off the top of the filter and the plate spun at 1,400 rpm for 10min
at room temperature. One hundred and fifty microliter of the
media was discarded in the microplate and replaced with 15µl
of alamarBlue R© (Invitrogen). The plate was then placed at 37◦C
in humidified air with 5% CO2 for 4 h and signal was read at
570 nm. This assay was also conducted with mouse BMDM.

Human Neuron Toxicity Assay
Brain tissue from fetuses legally aborted at 15–20 weeks was
used to isolate human neurons. The use of the brain cells
was conducted with ethics approval from the University of
Calgary human ethics committee. The neurons were isolated by
removal of the meninges followed by mechanical dissociation
of the tissue. Tissue was then digested in DNase (6–8mL of
1mg/mL; Roche), 4mL 2.5% trypsin and 40mL PBS (37◦C,
25min). Digestion was quenched by the addition of 4mL of
fetal bovine serum (FBS) after which the solution was filtered
through a 132µm filter. The solution was then centrifuged
three times at 1,200 rpm for 10 minutes. Cells were then
cultured in medium supplemented with 10% FBS, 1µM sodium
pyruvate, 10µM glutamine, 1x non-essential amino acids, 0.1%
dextrose, and 1% penicillin/streptomycin (Invitrogen). Cells were
plated in poly-L-ornithine-coated T75 flasks and cultured for
two cycles in medium consisting of 25µM cytosine arabinoside
(Sigma-Aldrich). The inclusion of cytosine arabinoside inhibits
astrocyte proliferation. To complete experiments, cultures
enriched (∼80%) for neurons were re-trypsinized and plated in
poly-L-ornithine coated 96-well plates at a density of 100,000
cells/well. After 24 h, medium was changed to serum-free AIM
V medium. After another 24 h, demeclocycline (10µM) was
added to the neurons. Cells were fixed 24 h after with 4%
paraformaldehyde and stained for MAP-2 (mouse anti-MAP-2
antibody; clone HM-2; Sigma; M4403; 1:1,000) and Hoeschst
S769121. Cells were imaged with an ImageXpress R© imaging
system (Molecular Devices) and quantified using MetaXpress R©

(Molecular Devices).

Culture of Human BTICs
BTICs were isolated from resected specimens of patients with
glioblastoma (7, 9, 26, 36). We used three BTIC lines derived
from glioma patients designated BT012, BT025, and BT048.
These lines had different genetic mutations (26) including BT012:
EGFR wildtype (wt), p53 wt, PTEN mutant (mt, frameshift
in codon 328); BT025: EGFR wt, p53 mt (T125R), PTEN
mt (G129R); and BT048: EGFR mt (K294R, G598V), p53 wt,
PTEN wt. BT025 and BT048 were employed in the majority
of experiments since they were characterized extensively in
our previous study (6–9, 26). To propagate the lines, BTICs
were dissociated and plated into T25 flasks at regular intervals
and grown in serum free culture medium supplemented with

epidermal growth factor and fibroblast growth factor-2 in 5%
CO2 as described elsewhere (36, 37); we refer to this as BTIC
medium. The lines with higher passage numbers were checked
for stemness and self-renewal property (data not shown). All
experiments with human cells or resected brain specimens were
conducted with approval from the Conjoint Health Research
Ethics Board, University of Calgary, with informed consent from
the human subjects.

We documented passage number (denoted by P) after thawing
a new vial of cells from liquid nitrogen and kept a record of
the number of subsequent passaging. Frozen stocks of BTIC
cells were made as soon as possible from previously thawed
BTIC lines, to avoid cell changes, contamination, etc. for the
next set of experiments. Every time a vial (of BTIC line) was
thawed, new stocks were made within a week or two of the
growing culture. Thus, the BTICs were usually frozen between
P2-P3 of a newly thawed culture. We used BTICs (after thawing)
from the expanding and/or growing cultures for experiments
between P2 and P10. The lines with higher passage numbers (P8–
P10) were checked for stemness using stemness markers such as
nestin, SOX-2 andMusashi-1 by FACS analysis, and by the ability
of dissociated single cells to form spheres. Importantly, BTICs
were also sent for sequencing at regular intervals to verify the
identity of lines (to ascertain their genetic background with the
parental line).

Evaluation of BTIC Growth
For neurosphere assay, BTIC cells (10,000 cells/well/100µl of
serum free BTIC medium) were plated into 96-well plates (7, 26,
36). The resultant number of spheres above the 60µm diameter
cutoff, a convenient parameter to describe growth characteristics,
was monitored after 72 h by photographing multiple fields per
well with subsequent image analyses. Where total cell number
was documented, the medium containing the BTIC spheres
was collected, centrifuged, resuspended in 25µL of AccumaxTM,
mixed with Trypan Blue (1:1) and counted using a TC20TM

automated cell counter (Bio-Rad).
An alamarBlue R© assay was also used to evaluate growth. At

predetermined times, alamarBlue R© dye (1:10, Life Technologies)
was added to each well of cells for 4–6 h after which readings
were taken with a Spectra Max Gemini XS (emission wavelength
= 590 nm, excitation wavelength = 544 nm; Molecular Devices).
Finally, annexin V–propidium iodide staining was carried out
and analyzed using FACS as described before (26).

Drugs Used
Demeclocycline hydrochloride, tetracycline hydrochloride, and
oxytetracycline hydrochloride stock solutions were prepared
(10mM in DMSO; all chemicals from SigmaAldrich) and diluted
immediately prior to treatment of cells. While, demeclocycline
was used at 1, 5, and 10µMfinal concentrations, tetracycline and
oxytetracycline were used at 10µMonly. All dilutions from stock
were done in BTIC medium.

Microarray and Bioinformatics
BTICs (BT012, BT025, and BT048) were treated with 10µM
demeclocycline for 6 h. RNA was then extracted using a mirVana
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miRNA Isolation Kit (Ambion, Austin, USA) according to
the manufacturer’s protocol. Total RNA was purified with
RNeasy Plus Micro Kit (Qiagen, Valencia, USA) to remove
genomic DNA. The RNA quality of integrity number (RIN)
was measured with Agilent RNA Nano Chips on 2,100
Bioanalyzer (Agilent Technologies, Santa Clara, USA). The
total of 250 ng of RNA for each sample with RIN higher
than 9 was labeled with WT Express Kit (Ambion) and
hybridized to Affymetrix GeneChip Human Gene 2.0 ST
Array at 45◦C for 16 h. Arrays were stained and washed
on Affymetrix GeneChip Fluidics_450 following manufacturer’s
protocol and scanned with Affymetrix GeneChip Scanner 3,000
7G System.

For data analysis, array data files were generated with
GeneChip R© Command Console R© Software (AGCC) and
statistical analyses were carried out in GeneSpringTM (Agilent
Technologies). The fold change between treatment and control
was based on the p < 0.05 from Ttest of unpaired samples.

Statistical Analyses
The one-way ANOVA with post-hoc Tukey’s comparisons
was used for multiple group comparisons unless otherwise
mentioned, while the t-test was used for comparisons of two
groups.We used GraphPad Prism software for statistical analysis.

RESULTS

Demeclocycline Promotes the Activity of

Monocytes and Macrophages and Is Not

Toxic to Neurons
While we identified meclocycline as an activator of microglia
(33), it was necessary to confirm that its better tolerated
derivative, demeclocycline, also has such activity. We
first carried out some preliminary studies with mouse
bone marrow derived macrophages (BMDM). Notably,
demeclocycline alone did not induce mouse macrophages
to increase TNF-α production; however, when combined
with LPS, demeclocycline further promoted the production
of TNF-α (Figure 1A). Moreover, as another index
of activity, demeclocycline promoted the chemotaxis
(Figure 1B) of stimulated macrophages when combined
with LPS.

To corroborate the above findings of mouse cells, we evaluated
whether human cells were responsive to demeclocycline. We
investigated monocytes isolated from healthy human donors,
as these cells would be exposed to demeclocycline in the
circulation after systemic administration and could then
traffic into the glioma microenvironment as macrophages.
We found that human monocytes under basal conditions
did not elevate their production of TNF-α, an index of

FIGURE 1 | Demeclocycline enhances TNF-α production and modulates monocyte functions. (A,B) For mouse BMDM, demeclocycline increases TNF-α level and

CCL2-directed chemotaxis in LPS-stimulated condition. (C,D) ELISA for TNF-α in human cells shows a further elevation of cytokine in IL-1β/IFN-γ (C) or LPS

(D) stimulated monocytes by demeclocycline. (E) The chemotaxis of human monocytes toward a CCL2 gradient is promoted by demeclocycline in

IL-1β/IFN-γ-stimulated condition. In all cases, demeclocycline was used at 10µM. *p < 0.05, ***p < 0.001 compared to control; asignificantly different from

IL-1β/IFN-γ or LPS in their respective panels (1-way ANOVA with Tukey’s multiple comparisons test). Error bars represent s.e.m.
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activity, in the presence of demeclocycline alone. However,
when human monocytes were exposed to IL1β/IFN-γ
(Figure 1C), cytokines that are elevated in glioma subjects
(38), or to the toll-like receptor-4 ligand LPS (Figure 1D),
demeclocycline elicited a further increase in TNF-α levels in
activated cells.

The migration of monocytes to a chemokine source,
chemotaxis, constitutes another index of cellular activity. In IL-

1β/IFN-γ-primed conditions, we noted that demeclocycline

promoted the chemotaxis of human monocytes to

CCL2 (Figure 1E); alone, demeclocycline had some
enhancing activity.

Demeclocycline-Treated Monocytes

Reduce BTIC Growth
Our previous study (26) found that the capacity of microglia,
monocytes and macrophages to reduce BTIC growth could be
elicited through the conditioned medium of these cells. Thus,
monocytes were isolated from the peripheral venous blood
of healthy volunteers and conditioned media were generated
(Figure 2A). To determine the capacity of demeclocycline as a
novel stimulator of innate immunity to reduce BTIC growth,
BTIC lines plated at 10,000 cells per well in 96-well plates
were exposed to conditioned medium from untreated monocytes
(MonoCM) or to the conditioned medium of monocytes

FIGURE 2 | Demeclocycline activated monocytes reduces BTIC growth in culture. (A) Generation of monocyte-conditioned media. (B,C) Untreated human

monocytes (MonoCM) or monocytes exposed to demeclocycline (Demec/MonoCM) attenuate BTIC growth compared to basal control after 72 h as measured through

neurosphere assay. Although demeclocycline alone reduced the BTIC growth at 10µM, it was ineffective at 1µM in both lines. Notably, Demec/MonoCM had robust

effect on BT025 and BT048 cells, and was significantly greater than that of either MonoCM or demeclocycline alone. (D) Demec/MonoCM also reduced the total cell

counts in BT048 line, and this BTIC growth inhibitory effect was promoted in IL-1β/IFN-γ treated monocyte cultures. ***p < 0.001 compared to control (1-way ANOVA

with Tukey’s multiple comparisons); n = 4 for all groups. Error bars represent s.e.m.
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exposed for 48 h to 10µM demeclocycline (Demec/MonoCM).
Reproducing previous results (26), MonoCM reduced the growth
of the BT025 and BT048 lines (Figures 2B,C) in sphere-forming
assays; importantly, Demec/MonoCM decreased the growth of
BTICs further (Figures 2B,C) and there was an additional effect
on reducing BTIC growth when conditioned medium from
monocytes exposed to both demeclocycline and IL-1β/IFN-γ
(Demec+ IL-1β/IFN-γ/MonoCM) was used (Figure 2D).

In these experiments, we noted that demeclocycline (10µM)
added directly to BTICs in the absence of monocyte intermediary
was sufficient to reduce BTIC growth, suggesting that the
medication may affect BTICs in 2 ways: through monocyte
intermediary and directly on BTICs.

Demeclocycline Directly Affects the

Growth of BTICs
Because the above results suggest that demeclocycline alone
reduced BTIC growth, we sought to investigate its direct
role further. We subjected BTICs to different concentrations
of demeclocycline and found that 5 and 10µM decreased

sphere formation and cell number (Figures 3A,B); an effect
on BTIC could be documented for 1µM demeclocycline using
the alamarBlue R© assay (Figure 3C). Notably, demeclocycline at
10µM concentration had selective efficacy on BTICs as it was
without obvious toxicity to non-transformed CNS cells such
as microtubule associated protein-2 (MAP-2) labeled neurons
(Figures 3D,E).

As the above experiments involved the treatment of freshly
dissociated BTIC lines with demeclocycline to determine whether
the medication reduced sphere formation and other indices of
BTIC growth, we next addressed whether demeclocycline affected
BTIC spheres that were already well-formed.We found that when
demeclocycline (10µM) was added to growing spheres 3 days
after their formation from singly dissociated cells, the drug still
reduced the further growth of spheres of the BT025 and BT048
lines (Figures 3F–H).

Overall, our results suggest that demeclocycline can control

BTIC growth in two ways: using monocytes as an intermediary,
and directly by affecting the proliferation and sphere-forming
capacity of BTICs.

FIGURE 3 | Demeclocycline has a direct impact on BTIC growth reduction. (A–C) Treatment of BT025 with varying concentrations of demeclocycline reduced BTIC

growth in culture as evident by reduced sphere formation (A), total number of cells (B), and alamarBlue® assay (C). Results are reproduced with BT048 (data not

shown). Error bars represent s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001 compared to controls (1-way ANOVA with Tukey’s multiple comparisons test).

(D,E) Representative images of MAP2-positive neurons untreated or treated with demeclocycline, and quantification of MAP2-positive neurons demonstrates that

demeclocycline was not toxic to human neurons. (F,G) Demeclocycline reduced the number of spheres above the 60µm cutoff when applied to growing spheres 3

days after their formation from singly dissociated cells. Error bars represent s.e.m (n of 4). ***p < 0.001 (two-tailed Student’s t-test). (H) Representative images

showing reduced sphere size in demeclocycline-treated BTICs (BT048) compared to control at 5 days.
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Mechanisms of Demeclocycline-Mediated

BTIC Growth Reduction
We sought to obtain insights into the mechanisms by which
demeclocycline directly reduces BTIC growth. We subjected
3 BTIC lines to microarray analyses and identified 301 genes
(with a cutoff fold change = 1.3) amongst the three lines
that were commonly affected by demeclocycline treatment
compared to controls (Figure 4A and Supplementary Table 1)
(GEO accession number GSE81515). Analysis of the array
data using gene-ontology criteria with Panther Classification
System bioinformatics software identified several genes that
were up or down regulated with demeclocycline treatment
(Figure 4B and Supplementary Figure 1). Notably, we found a
number of genes known to be involved in glioma progression,
invasiveness, signaling or cancer progression that were down
regulated by demeclocycline. These include transforming growth
factor β1 induced transcript 1 protein (TGFB1I1) (39), frizzled
class receptor 5 (FZD5) (40), epidermal growth factor module-
containing mucin-like receptor 2 (EMR2) (41), reactive oxygen
species modulator 1 (ROMO1) (42) and B cell lymphoma

3 protein (BCL3) (43) (Figure 4C). In contrast, genes that
negatively regulate notch signaling, mTOR activity or AKT such
as ChaC Glutathione Specific Gamma-Glutamylcyclotransferase
1 (CHAC1), DNA Damage Inducible Transcript 4 (DDIT4)
and C-Type Lectin Domain Family 2 Member A (CLEC2A)
were up regulated. With demeclocycline treatment in three
BTIC lines (Figure 4C). Notably, a recent study has identified
that temozolomide and radiotherapy could induce DDIT4 and
repressed mTORC1 activity in some glioblastoma cell lines (44).
Thus, overexpression of DDIT4 by demeclocycline in BTIC could
be beneficial for glioblastoma patients. Interestingly, when we
interrogated glioblastoma databases we found that elevated level
of DDIT4 expression was associated with the longevity of glioma
patients (Figure 5).

Comparisons of Demeclocycline With

Other Tetracyclines on BTIC Growth in vitro
We compared two other tetracyclines (tetracycline and
oxytetracycline) to demeclocycline. We subjected three BTIC
lines generated from glioblastoma patients with divergent genetic

FIGURE 4 | Microarray analyses of BTICs exposed to demeclocycline. (A) Heat map depicting patterns of changing gene expression in three genetically divergent

glioblastoma patient-derived BTIC lines after 6 h of demeclocycline treatment, compared to respective controls; red represents elevation while green displays genes

that are reduced by demeclocycline (GEO accession number GSE81515). (B) Venn diagrams comparing up-regulated (fold change, FC ≥ 1.3) and downregulated

(FC≤ −1.3) genes in the three BTIC lines following treatment with demeclocycline. Genes intersecting in all 3 sets are noted in box; genes which may be involved in

tumor progression are represented in red. Diagrams are generated by Bioinformatics.lu software. (C) Genes with possible role in tumor progression are shown.

Up-regulated genes (relative to untreated cells) are represented in red; down-regulated genes (relative to untreated cells) are represented in green. Mean fold change

(FC) is calculated for the three BTIC lines following treatment with demeclocycline vs. no treatment. The intensity of the colors represents the strength of the gene

deregulation.

Frontiers in Immunology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 272106

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sarkar et al. Demeclocycline and Brain Tumors

mutations, using demeclocycline as a positive control. Growth
was assessed at 72 h after plating 10,000 cells/well in 96-well
plate, using 10µM of each drug. Figure 6A shows that while
tetracycline and oxytetracycline reduced the sphere-forming
capacity of BTICs to varying extents across different lines,
demeclocycline inhibited the sphere-forming capacity of BTICs

consistently across all lines. These results were corroborated

by alamarBlue R© assays (Figure 6B) and cell counts (data
not shown).

DISCUSSION

Tumorigenesis not only alters the surrounding

microenvironment, but is regulated by it (45, 46). Unfortunately,

immune cells in the high grade glioblastoma (GBM)
microenvironment generally assume tumor-promoting roles

(47–51). Under the influence of GBM, microglia/macrophages
are immunosuppressed and may even contribute to GBM
invasion (52–54). BTICs are thought to help enforce
immunosuppression (11, 12, 55–58). Thus, we have sought to
sway the microglia/macrophage interaction with BTICs toward
an anti-tumor phenotype. Via a drug screen of currently available
medications, we discovered that amphotericin B could activate

blood-derived monocytes to suppress BTIC proliferation and
induce differentiation (26). However, amphotericin B is unlikely
to be used as an immunostimulator for intracranial disease
because of its substantial toxicity at high doses (59). Our attention
turned to another drug found on the screen, meclocycline, and
its more clinically attractive derivative, demeclocycline.

Demeclocycline is clinically attractive for several reasons. It
has already been used for the treatment of bacterial infections
and as a treatment for the syndrome of inappropriate antidiuretic
hormone (SIADH) in humans (60, 61). A recent study showed
that demeclocycline was also a promising contrast agent for the
intraoperative detection of brain tumors (62). Moreover, when
we exposed neural cells to demeclocycline, no significant toxicity
was noted. Hence, its application as a drug to treat intracranial
disease such as glioblastoma is more conceivable than with
amphotericin B or meclocycline.

We first characterized the in vitro ability of demeclocycline to
activate monocytes as these cells in the circulation could enter
a glioma tumor to become macrophages (63). Thus, exposure
of monocytes to an immunostimulator could theoretically result
from systemic administration of a drug such as demeclocycline.
Alone, demeclocycline did not increase TNF-α secretion by
monocytes, a measure of monocyte activity. However, in the
presence of primers such as IL-1β and IFN-γ, cytokines that are

FIGURE 5 | Increased DDIT4 expression is associated with improved survival in gliomas. (A,B) Kaplan–Meier curves showing the association between DDIT4 mRNA

expression and overall survival in TCGA (A) low-grade glioma and (B) glioblastoma patients. (C) DDIT4 mRNA expression was plotted across 20 major solid tumor

types in TCGA database arranged by increasing median expression (pRCC, Papillary Renal Cell Carcinoma; ccRCC, clear cell renal cell carcinoma; Lung squ, lung

squamous cell carcinoma; GBM, glioblastoma).
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FIGURE 6 | Effects of various tetracyclines on BTIC growth in culture. (A) Three glioblastoma patient-derived BTIC lines were exposed to 10µM each of

demeclocycline (demec), tetracycline (tetra) or oxytetracycline (oxytetra). (B) AlamarBlue® assay shows effect of demeclocycline, tetracycline and oxytetracycline on

different BTIC lines with divergent genetic mutations, corroborating the reduced sphere-forming capacity of BTICs to varying extents across different lines. **p < 0.01,

***p < 0.001 compared to control (1-way ANOVA with Tukey’s multiple comparisons). Error bars represent s.e.m. (n of 4).

commonly elevated in glioma patients (38, 64), demeclocycline
had stimulatory properties beyond that of when either IL1β
or IFN-γ were administered alone. As confirmation of the
immune-stimulatory effect of demeclocycline in the presence of a
priming condition, similar results were seen when a conventional
stimulator, LPS, was added. Also, the promotion of migration
in demeclocyclineexposed monocytes supported the notion that
this drug was an activator. To verify these results, the experiments
were recapitulated withmousemacrophages. As anothermeasure
of the immunestimulatory capacity of demeclocycline, it was
shown that conditioned medium collected from monocytes
exposed to demeclocycline even in the absence of stimulators
could decrease BTIC sphere formation. Given that temozolomide
is the frontline chemotherapy for glioblastoma, this adds to the
promise of demeclocycline as an additional treatment modality
in glioblastoma.

Importantly, demeclocycline is not only an immune-
stimulator, but can independently decrease BTIC viability, as
indicated by alamarBlue and sphere formation assays. As with
present treatments, subgroups of glioblastoma patients will be
more sensitive to certain treatments based on factors such as
genetics and previous treatments (65, 66), which may be true of
the cell lines derived from those tumors.

To elucidate the mechanisms behind BTIC inhibition by

demeclocycline, we employed amicroarray analysis. This analysis

has implicated several genes known to be involved in glioma
or cancer progression (i.e., proliferation, invasion, metastasis)
such as TGFB1II (39), FZD5 (40), EMR2 (41), ROMO1 (42),
and BCL3 (43) which were significantly down-regulated with
demeclocycline treatment in three BTIC lines (Figure 4). On the
contrary, genes that negatively regulate Notch signaling, ATK
signaling or mTOR activity, such as CHAC1, DDIT4, CLEC2A,
were up regulated with demeclocycline treatment across all three
BTIC lines (Figure 4). Taken together, these results support

the use of demeclocycline as an anti-GBM treatment alone,
or as an immunostimulatory agent acting on monocytes and
macrophages, and potentially microglia if demeclocycline gains
entry into the CNS.

In summary, we have identified a novel, potentially clinically
compatible stimulator of monocytes that also has direct
inhibitory actions on BTICs. This study has served as the basis
for future work in which we will determine the safety and efficacy
of demeclocycline in preclinical investigations, with the hopes to
expand its use into humans.
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generated by the PANTHER classification system based on their functions.
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The human body has a large, diverse community of microorganisms which not

only coexist with us, but also perform many important physiological functions,

including metabolism of dietary compounds that we are unable to process ourselves.

Furthermore, these bacterial derived/induced metabolites have the potential to interact

and influence not only the local gut environment, but the periphery via interaction

with and modulation of cells of the immune and nervous system. This relationship

is being further appreciated every day as the gut microbiome is researched as

a potential target for immunomodulation. A common feature among inflammatory

diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut

microbiota dysbiosis when compared to healthy controls. However, the specifics of these

microbiota-neuro-immune system interactions remain unclear. Among all factors, diet

has emerged as a strongest factor regulating structure and function of gut microbial

community. Phytoestrogens are one class of dietary compounds emerging as potentially

being of interest in this interaction as numerous studies have identified depletion

of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and

Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been

reported to show protective effects when compounds are administered in the animal

model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will

illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize

the importance of gut bacteria and their mechanisms of action in the production of

phytoestrogen metabolites, and discuss what is known about the interactions of specific

compounds with cells immune and nervous system. A better understanding of gut

bacteria-mediated phytoestrogen metabolism and mechanisms through which these

metabolites facilitate their biological actions will help in development of novel therapeutic

options for MS as well as other inflammatory diseases.

Keywords: multiple sclerosis and neuroimmunology, phytoestrogen, gut microbiome, immune system, nervous

system, diet
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MULTIPLE SCLEROSIS AND GUT
MICROBIOTA

Relapsing-remitting multiple sclerosis (RRMS) is a chronic
inflammatory disease of the central nervous system (CNS),
affecting ∼1 million people in the US and over 2.3 million
worldwide (1). Collective evidence suggests that disease results
from an aberrant T-cell mediated response to myelin-derived
antigens in genetically susceptible individuals. Multiple genetic
and environmental factors have been implicated in the
predisposition to RRMS (2). Among a number of environmental
risk factors linked with MS, the gut microbiota appear to be
particularly important, as highlighted by a number of recent
studies reporting gut dysbiosis in RRMS patients (3–8). Although
the mechanism through which the gut microbiota influences
RRMS pathogenesis is unknown, diet has emerged as the
strongest factor influencing the gut microbiome.

The adult human gut is colonized by a large number
of microorganisms (∼1013 bacteria). The majority of which
(∼90%) belong to the Firmicutes and Bacteroidetes phyla.
The remainder represent Actinobacteria, Proteobacteria, and
few other phyla present at very low abundance (9). The fact
that only a few bacterial phyla are present in the human gut
suggests that they were actively selected during human evolution.
As human evolution is nutrition centric, it is hypothesized
that gut bacteria capable of efficiently extracting energy from
ingested plants and animal meat would provide a survival
advantage. Gut microbiota composition is heavily influenced by
dietary habits, with unindustrialized rural communities showing
higher abundance of bacteria enriched in enzymes capable of
digesting plant-based complex polysaccharides. At the same time,
individuals from industrialized nations and eating a western
diet rich in animal protein, fats, and simple sugars are enriched
in gut bacteria containing enzymes responsible for metabolism
of simple sugars, amino acids and bile acids (10). Even within
a population, gut microbiota composition can be altered due
to seasonal change in the food source (11). A study of Hadza
hunter-gatherers of Tanzania showed this seasonal change in gut
microbiome based on dietary sources, as this population rely
mostly on plant based foods during rainy season but shift to
plant plus meat-based diet during dry season (11). These seasonal
changes in gut microbiota confirm an important role of diet
(plant and meat both) in influencing the bacterial community;
however, it is unclear whether one diet has advantage over other.
Specifically it is unknown whether proposed pathogenic effect
of meat based and/or Western diet (12) is due to meat itself or
due to factors associated with industrialization/modernization
such as processing of foods, increased use of antibiotics etc.
(13). However, evaluation of the microbiome-mediated benefits
or drawbacks of plant- vs. meat-based diets, western diet, or any
other dietary interventions of interest in the scientific community
are beyond the scope of this review.

Breakdown of these foods might generate key metabolites
necessary for various physiologic functions of the host including
development and regulation of nervous and immune systems
(14). It has been clearly established that change in diet
changes the composition of the gut microbiota; however the

mechanisms by which this affects host physiology are slowly
being understood. Non-redundant bacterial metabolites which
are dependent on ingestion of certain dietary components, such
as the phytoestrogens and their metabolites discussed here,
are of increasing interest. As the gut microbiome plays an
important role in the energy harvesting for the host, therefore
any changes in the composition of the gut microbiota could
have widespread effects on physiologic homeostasis and overall
human health (15–18).

Our recent summary of RRMS microbiome studies across
different geographical regions (USA, Japan, UK and Italy)
shows enrichment or depletion of specific bacterial genera when
compared to healthy controls (HC) (19, 20). One observation
was loss of Bacteroidetes species, especially those of the genera
Prevotella and Parabacteroides suggesting a role of these bacteria
in RRMS [Table 1; (3–8)]. Our group (19) and others (3–5)
reported a lower abundance of Prevotella in fecal samples of
RRMS patients compared to HC. Additionally, treatment with
disease modifying therapies (DMT) led to a higher abundance of
Prevotella in RRMS patients than in untreated patients (5, 20).
Further, Cosorich et al. also reported lower level of Prevotella
when analyzing duodenal biopsies from RRMS patients with
active disease compared to HC (7). Another Bacteroidetes genus,
Parabacteroides has been reported to be at lower abundance in
adult RRMS patients when compared to HC (4, 8). We observed
reduced abundance of Parabacteroides in RRMS patients vs. HC
from the Midwestern United States (4). Similarly, Cekanaviciute
et al. reported that Parabacteroides distasonis is at lower

TABLE 1 | Comparison of adult MS microbiome studies.

MS Microbiome Study

# samples

Tissue (Country)

[Reference]

Lower abundance in MS

patients vs. HC

Increased abundance

in MS patients after

treatment

RRMS (n = 31)

HC (n = 36)

Fecal (USA)

Chen et al. (4)

Prevotella, Parabacteroides,

Adlercreutzia, Collinsella,

Lactobacillus

RRMS (n = 60)

HC (n = 43)

Fecal (USA)

Jangi et al. (5)

Butyricimona, Prevotella,

Parabacteroides

Prevotella Sutterella

RRMS (n = 20)

HC (n = 40)

Fecal (Japan)

Miyake et al. (3)

Bacteroides, Fecalibacterium,

Prevotella, Anaerostipes,

Clostridium, Sutterella

RRMS (n = 30)

HC (n = 14)

Fecal (UK)

Castillo-Alvarez et al. (20)

Prevotella

RRMS (n = 71)

Fecal (USA)

Cekanaviciute et al. (8)

Parabacteroides distasonis

RRMS (n = 19)

HC (n = 17)

Mucosa (Italy)

Cosorich et al. (7)

Prevotella

Bolded microbes are phytoestrogen metabolizing bacteria.
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abundance in treatment naive RRMS patients from the US west
coast than HC, suggesting that higher level of P. distasonis
may protect against RRMS (8). Further, we also observed a
lower abundance of the phytoestrogen metabolizing bacteria
Adlercreutzia (equolifaciens) in RRMS patients compared to
HC (4) and Adlercreutzia was also reported to be increased
in germ-free (GF) mice transplanted with fecal matters from
HC compared to mice receiving fecal transplant from RRMS
patients (21).

Thus, these studies indicate that loss of Bacteroidetes
genera Prevotella and Parabacteroides might play a role in
the predisposition and/or exacerbation in RRMS. As MS is
an inflammatory disease where balance between pro- and
anti-inflammatory responses are shifted toward inflammatory
responses, it is reasonable to hypothesize that bacteria depleted
in MS were involved in induction/maintenance of anti-
inflammatory responses. More discussion relating to the possible
mechanism of this protective role through induction of
immunoregulatory cells will be discussed in this review under
Phytoestrogens and Immune Cells.

Conversely, Firmicutes such as Akkermansia, Dorea, and
Archaea-Methanobrevibacter were more abundant in stool from
RRMS patients (4, 5, 8), suggesting that these gut microbes
might have pro-inflammatory effects. This increased abundance
could reasonably contribute to the induction and/ormaintenance
of pro-inflammatory cells in the gut, thus influencing or

contributing to a systemic inflammatory state consistent with
RRMS. However, Akkermansia had been shown to have
anti-inflammatory effects in obesity and diabetes due to
their ability to produce short-chain fatty acids (SCFA) (22).
Similarly, Dorea has been suggested to be anti-inflammatory
based on the observation that patients with pouchitis and
Crohn’s disease-like have lower abundance of Dorea (23)
Overall, the mechanisms through which these bacteria might
induce inflammation and the factors which may influence
this are not well-understood and beyond the scope of
this review.

Phytoestrogens are compounds produced naturally in plant
foods such as legumes, soybeans, beans, nuts, flax seeds,
sesame seeds, hops, and other plants (Figure 1). They are
known to have estrogenic/antiestrogenic, antioxidant, and anti-
inflammatory effects, among others (24). It is important
to highlight that the role of phytoestrogens in the cancer
field has been studied extensively; however, their significance
in inflammatory autoimmune diseases is less understood.
Prevotella, Parabacteroides, and Adlercreutzia are known to
metabolize phytoestrogens and produce secondary molecules
such as equol, enterolactone, and secoisolariciresinol (Table 2).
These bacteria can also metabolize fibers to produce SCFAs(as
reviewed in Freedman et al. (62). Importance of the gut
microbiota in MS has been studied extensively in its animal
model experimental autoimmune encephalomyelitis (EAE). The

FIGURE 1 | Phytoestrogens and their metabolites generated with the help of gut bacteria. Copyright © 2019 American Chemical Society. All Rights Reserved.
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TABLE 2 | Phytoestrogen metabolizing gut bacteria.

Metabolite Strain Reference

Daidzein Eubacterium limosum (25)

E. coli strain HGH21 (26)

Bifidobacterium animalis (27)

Bifidobacterium longum-a (27)

Bifidobacterium pseudolongum (27)

Strain HGH6 (26)

Genistein Eubacterium limosum (25)

HGH21 (26)

Strain HGH6 (26)

DHD Asaccharobacter celatus (28)

Coprobacillus sp. MRG-1 (29)

Lactococcus garvieae (Lactococcus sp. 20–92) (30)

Strain HGH6 (31)

Strain TM-40 (32)

Equol Adlercreutzia equolifaciens FJC-B9T (33)

Asaccharobacter celatus (28)

Asaccharobacter celatus AHU1763 (34)

Bacteroides (parabacteroides) distasonis# (35)

Bacteroide ovatus spp. (36)

Bifidobacterium spp. (37)

Bifidobacterium spp. (27)

Coriobacteriaceae sp MT1B9 (38)

Eggerthella sp. YY7918 (39)

Enterococcus faecium EPI1 (40)

Finegoldia magna EPI3 (41)

Lactobacillus mucosae EPI2 (34)

Lactobacillus sp. Niu-O16 (42)

Lactobacillus rhamnosus JCM 2771 (43)

Prevotella veroralis (35)

Ruminococcus productus (44)

Ruminococcus productus spp. (36)

Slackia equolifaciens DEZ (45)

Slackia isoflavoniconvertens HE8 (46)

Slackia sp. NATTS (47)

Strain Julong 732 (41)

Streptococcus intermedius spp. (36)

Veillonella spp. EP (31)

Veillonella spp. EP (48)

5-hydroxy-equol Coriobacteriaceae sp MT1B9 (38)

Slackia sp HE9 (46)

ODMA Clostridium spp. HGHA136 (31)

Eubacterium ramulus (48)

Eubacterium ramulus wK1 (48)

Strain SY8519 (39)

Secoisolariciresinol Bacteroides fragilis (49)

Bacteroides (Parabacteroides) distasonis# (49)

Bacteroides ovatus (49)

Bifidobacterium bifidum WC 418 and WC 421 (50)

Bifidobacterium catenulatum ATCC 27539 (50)

Bifidobacterium longum subsp. infantis ATCC

15697

(50)

(Continued)

TABLE 2 | Continued

Metabolite Strain Reference

Bifidobacterium longum subsp. longum WC 436

and WC 439

(50)

Bifidobacterium pseudocatenulatum WC 401,

WC402, WC402 and WC 407

(50)

Butyrivibrio fibrosolvens (51)

Butyrivibrio proteoclasticus (51)

Clostridium ramosum (50)

Clostridium cocleatum (49)

Clostridium sp. SDG-Mt85-3Db (49)

Eggerthella lenta (52)

Prevotella albensi (51)

Prevotella brevis (51)

Prevotella breyantii (51)

Prevotella ruminicola (51)

Dihydroxyenterodiol Butyribacterium methylotrophicum (49)

Eubacterium callanderi (49)

Eubacterium limosum (49)

Peptostreptococcus productus (49)

Clostridiaceae bacterium END-2 (53)

Enterodiol Clostridium scindens (49)

Eggerthella lenta (49)

Eubacterium sp. ARC-1 (54)

Enterococcus faecalis (55)

Enterolactone Strain ED-Mt61/PYG-s6 (49)

Eubacterium sp. ARC-1 (54)

Eggerthella sp. SDG-2 (54)

Enterococcus faecalis (55)

Ruminococcus sp. END-1 (54)

Clostridiaceae bacteriumEND-2 (54)

8-prenylnaringenin Eubacterium limosum (56)

Adapted from Lopes et al. (57), Yoder et al. (58), Sánchez-Calvo et al. (59), Setchell et al.

(60), Rafii et al. (61) #Parabacteroides was classified as Bacteroides in old nomenclature.

suppression of EAE disease in GF mice on fecal transfer
from HC and exacerbation of disease on fecal transfer from
MS patients supports a critical role of gut microbiota in
MS (8, 21). Gut bacteria have been shown to influence
disease through modulation of multiple metabolic pathways
such as short-chain fatty acid (63–65), tryptophan (62, 66),
and phytoestrogen metabolism (66). As discussed before,
we and others have reported the loss of bacteria involved
in phytoestrogen metabolism (62). Through metabolism of
phytoestrogens, these microbes may play an important role
in the regulation of inflammation; thus, we hypothesize that
reduced abundance of phytoestrogen metabolizing bacteria in
the gut would influence the inflammation and demyelination
in RRMS (4). Therefore, in this review we will focus on
the importance of phytoestrogen metabolism by the gut
microbiota, as well as on the effect of this phenomenon
on the host physiology. We will discuss in detail: the
mechanisms whereby gut bacteria metabolize phytoestrogens
into structurally and functionally distinct metabolites; the
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ability of such metabolites to modulate various physiological
processes, such as immune and neuronal/glial cell activity; and
the ability of the metabolites to modulate disease in animal
models of MS.

PHYTOESTROGEN METABOLITES IN THE
GUT

Phytoestrogens can be categorized, based on their structures, as
flavonoids or nonflavonoids (Figure 1). Flavonoids are phenolic
compounds with a basic structure consisting of 3 rings (denoted
A, B, and C) comprised of 15 carbon atoms arranged in two
aromatic rings connected by a 3-carbon bridge (67). These rings
give them structural similarity to estradiol and the ability to
mimic the function of estrogen. Further subclassification such as
those discussed in this review (coumestans, prenylflavonoids, and
isoflavones) are distinguished according to structural differences
in the connection between the B and C rings, as well as
the degrees of saturation, oxidation, and hydroxylation of the
C ring [Figure 2; (67)]. Non-flavonoids consist of phenolic
acids in either C6-C1 (benzoic acid) or C6-C3 (cinnamic
acid) conformations, stilbenes, and lignans, the latter being the
primary class implicated in microbiota-induced influence of
human health (68).

Coumestans
The primary molecule studied in the coumestan family is
coumestrol. In addition to the classical flavonoid structure,
coumestrol has a furan ring in the junction between the C
and B rings (69) and one hydroxyl group each at the C4 and
C7 carbons, similar to the structure of estradiol (57). These
moieties confer the ability to bindmammalian estrogen receptors
(70) and provide free radical scavenging properties (69, 71),
thus suggesting that coumestans may provide protection against
breast, prostate, and ovarian cancers (72–74).

In vitro treatment of MCF7:WS8 (estrogen sensitive) and
MCF7:5C (estrogen deprived) breast cancer cells with coumestrol
had anti-proliferative and pro-apoptotic effects, respectively,
which depended on estrogen receptor alpha (ERα) signaling
(75). Similar observations were made in triple-negative breast
cancer cells, but through the estrogen receptor (ER)-independent
Bax/Bcl-2 pathway (76). Other coumestans have not been well-
characterized in relation to their estrogenic activity. Furthermore,
as coumestrol has an affinity for mammalian estrogen receptors
reportedly only 10–20 times lower than 17β-estradiol (77), it
is one of the more potent phytoestrogen compounds. Taken
together, coumestrol and potentially novel coumestans or
coumestan metabolites may prove to be an interesting target for
study in neurological diseases such as MS.

FIGURE 2 | Phytoestrogen structure and classification. Chemical Structures Copyright © 2019 American Chemical Society. All Rights Reserved.
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Prenylflavonoids
Prenylflavonoids are characterized by prenylated side chains
on the flavonoid backbone, generally at the 6, 8, 3, and/or 5
positions (78). Prenyl chains come in numerous forms, notably
3,3-dimethylallyl substituent, geranyl, 1,1-dimethylallyl, and is
moieties (79). The most common prenylflavonoids in the human
diet are xanthohumol and isoxanthohumol, both of which are
found in hops, beer, and an increasing number of dietary
supplements (80, 81). A systematic review of the prenylflavonoid
literature in 2014 revealed an association of these molecules
with a variety of biological effects (including cytotoxicity,
particularly against tumor cells), as well as antibacterial effects
(their primary function in the plant species in which they were
originally identified) (79). Prenylflavonoids also modulate the
functions of many enzymes; e.g., they inhibit the activities of
cholinesterase and aldose reductase (AR), and they enhance
those of alcohol- and aldehyde dehydrogenases (79). Like
coumestans, they have also been shown to have anti-oxidant
activity, including strong radical scavenging properties. Finally,
xanthohumol metabolite 8-prenylnaringenin’s (8PN) in vitro
estrogenic activity was shown to be stronger than that of other
phytoestrogens, including coumestrol, genistein, daidzein; as well
as its precursors xanthohumol, isoxanthohumol, naringenin, and
related compounds 6-prenylnaringenin, 6,8-diprenylnaringenin
and 8-geranylnaringenin (82–85).

Numerous studies have described the processing of
prenylflavonoid compounds, xanthohumol and isoxanthohumol,
by human liver microsomes (81, 86–88). Nikolic et al. also
characterized the processing of 8PN in human liver microsomes
(80), which is thought to be more potent ligands of ER than
original plant compounds. Recently, however, Eubacterium
limosum was also shown to convert isoxanthohumol into 8PN
and to demethylate some isoflavonoids (89). Furthermore, both
the yeast species Pichia membranifaciens (ATCC 2254) and the
fungal species Cunninghamella echinulata (NRRL 3655) were
found to metabolize 8PN (90, 91). The additional metabolism by
gut microbiota gives potential for more estrogenic compounds to
be bioavailable. Thus, biological relevance of this metabolite may
be greatly altered when considering the actions of commensal
species, especially if prenylflavonoids follow similar patterns
of absorption to other dietary polyphenols and 80–90% of
consumed compound is potentially available to colonic bacteria
(92). Furthermore, additional metabolites of 8PN produced with
the help of gut bacteria, could exist and have various biological
effects (80).

Lignans
Although isoflavones are the best studied phytoestrogens,
lignans are significantly more prominent in the Western
diet (93–95). Dietary lignans are found at high levels in
seeds such as flax and sesame seeds, and more broadly
in cereals, fruits, and vegetables at moderate to high levels
(58, 96). These non-flavonoid compounds are distinguished
by a unique coupling of phenylpropanoid units at their 8’
positions. The two major dietary lignans, secoisolariciresinol
(or secoisolariciresinol-diglycoside) and matairesinol, give rise
to the metabolites enterodiol and enterolactone. When first

discovered, these metabolites were thought to originate from
the ovaries, but further study in antibiotic-treated and germ-
free rats indicated that intestinal bacteria are required for the
production of both enterodiol and enterolactone (97). This was
later confirmed in humans as well (98). The mechanism by which
gut microbiota enzymes metabolize lignans is well-established
(52, 99–101). From secoisolariciresinol-diglycoside, hydrolysis
of the sugar moiety takes place first, followed by subsequent
dehydroxylation, and demethylation to produce enterodiol (99,
102). Enterodiol can be further oxidized to enterolactone (99,
102). Similarly, matairesinol is dehydroxylated and demethylated
to form enterolactone directly (102).

Both of these lignan metabolites have far greater biological
effects than their precursors. The identification of both
compounds during pregnancy and the cyclic pattern of excretion
in females during menstrual cycle (established in both humans
and monkeys) have physiological implications possibly related
to interactions with ER, though whether these are estrogenic or
antiestrogenic is unclear (103). Furthermore, both compounds
are inhibitors of enzymes involved in steroid metabolism such as
aromatase, 5 α-reductase, and 7β-hydroxysteroid dehydrogenase
(103–106). Potential anticancer activity via antiestrogenic or
antioxidant activity has been long proposed and well-studied
(107–112). While parent compounds certainly have some
physiological effects (113–117), the metabolism by microbiota
serves to greatly alter and/or enhance the function of lignans.

Isoflavones
Isoflavones are low molecular-weight compounds derived from
plants with hydroxyl groups in the C4 and C7 positions,
similar to coumestans discussed above, and estradiol (57).
Isoflavones are among the most studied dietary phytoestrogens,
and they are abundant in soybeans and soybean products, as
well as in several other legumes (96, 118). Formononetin and
biochanin A are processed, via either intestinal glucosidases
(96) or enzymes in hepatic microsomes (118), to the more
estrogenic compounds daidzein and genistein. Furthermore,
daidzein, and genistein can be found directly in foods, generally
in their glycoside forms bound to a sugar moiety. For gut
absorption, isoflavone glycosides (e.g., daidzin and genistin),
must be further processed into the aglycone form which lacks
this sugar moiety (119, 120). Once hydrolyzed, they are readily
absorbed and are detectable in plasma, urine, and feces (120).
In rats, the aglycone forms of genistein and daidzein were
detectable in plasma as soon as 3min after an oral dose was
administered (121). In a separate experiment in which glycoside
forms of the same isoflavones were administered, detection was
much slower because processing by intestinal β-glucosidases
(expressed at highest levels in the duodenum) was required for
absorption (121).

Isoflavones genistein, dihydrogenistein, and equol are
proposed to bind ERβ with nearly the same, or slightly lower,
affinity as 17β-estradiol, while affinity for ERα is generally
weaker (122, 123). Isoflavones provide several benefits,
including: antioxidant and antiangiogenic effects (57, 124–
126); protection against breast cancer (127); and prevention
of several menopause-related conditions (128–131). These
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effects are all thought to be mediated through the activation of
ERα and/or ERβ, though in many cases the exact mechanisms
are unknown.

The metabolism of daidzein to equol or O-
desmethylangolensin (O-DMA) is entirely dependent on
one or more bacterial strains in the gut, including but not
limited to Adlercreutzia equolifaciens, Eggerthella sp., and
Slackia isoflavoniconvertens (33, 132) isolated from humans,
Asaccharobacter calatus and Enterorhabdus musicola identified
in mice [Table 2; (133)]. These bacteria contain a specific set
of enzymes, including daidzein reductase, dihydrodaidzein
reductase, and tetrahydrodaidzein reductase required to
metabolize daidzein into equol and/or O-desmethylangolensin
(ODMA) (134). Biologically, it is S-equol (S-EQL) that is found
in mammals and therefore has been the target of most research,
whereas R-equol (R-EQL) could only be synthetically produced.
However, more recently racemic mixture has been detected
following synthesis by Lactococcus strain 20–92 and Eggerthella
strain Julong 732 (135). The importance of O-DMA in human
physiology is not well-understood and further research is needed
to determine its significance to human health.

PHYTOESTROGENS AND PROCESSING IN
THE GUT

Gut microbes are thought to play an essential, non-redundant
role in the metabolism of phytoestrogens in humans. This notion
is supported by the fact that both GFmice on a soy-based diet and
newborn infants up to 4months of age (both of which lack diverse
microbiota) lack equol (97, 136, 137). Additionally, culturing
of human fecal matter from equol-producing individuals with
soy or daidzein resulted in the formation of S-EQL (138, 139),
and the inclusion of antibiotics in these cultures resulted in
inhibition of equol production (139). Although the importance
of intestinal bacteria in S-EQL production is well-established, the
bacterial enzymes required and the microbes which contain them
are slowly being characterized. Further research in this area and
characterization of these bacteria in diseases vs. healthy states
may provide important insight into mechanisms behind negative
correlations observed with numerous diseases (e.g., obesity,
breast cancer) in populations which consume high amounts
of soy.

The majority of S-EQL is produced by conversion of daidzein,
via enzymes derived from gut bacteria. However, daidzin, which
is present in plant-based foods, must first be hydrolyzed into
the bioactive aglycon form, daidzein. This hydrolysis step is
catalyzed by β-glucosidase in the brush border membrane of
the proximal intestine (140). As conjugated forms (glucosides)
cannot cross intestinal epithelial cells, hydrolysis is a critical
step in the formation of bioactive isoflavone metabolites.
Three enzymes are required to metabolize daidzein into S-
EQL and ODMA: daidzein reductase (DHNR), dihydrodaidzein
reductase (DHDR), and tetrahydrodaidzein reductase (THDR)
(46). Similar mechanisms might be involved in the digestion
of other phytoestrogenic compounds and in the production of
small metabolites.

PHYTOESTROGEN RECEPTORS

The downstream effects of phytoestrogens are thought to
be mediated, in part, through estrogen receptors, which are
expressed widely, including in the cells of the immune and
nervous systems (141, 142). Phytoestrogens and their metabolites
can interact with the prototypic estrogen receptors, ERα and
ERβ, effecting changes in cell physiology through modulation
of transcription and gene expression (Table 3). Alternatively,
phytoestrogen can also signal through the G-protein coupled
estrogen receptor (GPER), which allows for more rapid and
dynamic regulation of cell processes because the mechanisms are
predominantly non-genomic (143–145). However, the majority
of research in phytoestrogen signaling has focused on signaling
through ER receptors and their ability to activate ER receptors
compared to the natural ligand 17β- estradiol. Individual
phytoestrogen metabolites have been proposed to have higher
affinity for one ER over the other. For example, genistein and
daidzein have significantly higher affinity for ERβ than for ERα

(141). As ERα is the predominant estrogen receptor on the
cells of the immune system (142) either the signaling pathways
used by internal estrogens and phytoestrogens/phytoestrogen
metabolites differ slightly; or ER-independent pathways such as
GPER signaling might play a significant role in phytoestrogen-
mediated modulation of immune cells. This may mean that
greater shifts in phytoestrogen availability are needed to
potentiate a change in signaling; however, additional research
is needed to better understand the mechanisms of action of
phytoestrogens and their metabolites in regard to receptor
binding and the signaling pathways required for their biological
activities, especially in the context of cells of immune and
nervous systems.

PHYTOESTROGENS AND NEURONS

After phytoestrogens are metabolized in the gut and transported
to the liver, they may have systemic effects (52). With regard
to the CNS, an organ system in which ERs are widely
expressed, phytoestrogen metabolites have been found to have
direct neuroprotective effects, based on both in vitro and

TABLE 3 | Estrogen Receptor Expression on Immune Cells.

Cell Type Human Mouse

ERα ERβ ERα ERβ GPER Reference

CD4+ T-cell Yes Yes Yes Yes (142, 143)

CD8+ T-cell Yes Yes Yes (142, 143)

B-cell Yes Yes Yes Yes Yes (142, 143)

NK Cell Yes Yes Yes Yes (142)

Macrophages Yes No Yes (142, 143)

Monocyte-derived DC Yes Yes (142)

Bone marrow-derived DC Yes Yes (142)

Splenic DC Yes No (142)

Plasmacytoid DC Yes Yes Yes (142)

CNS inflammatory DC Yes (142)
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in vivo studies (in animal models). Phytoestrogens can exert
neuroprotective effects by attenuating toxic insults to neurons.
For example, several studies showed that toxin-induced plasma-
membrane damage was reduced in neurons treated in vitro
with genistein and daidzein (146). In another study, such
treatment resulted in neural-cell proliferation and improved
cell viability (147). Furthermore, quercetin and kaempferol
(phytoestrogen flavonoids) prevented neuronal cell death in
the context of oxidative stress (148). Phytoestrogens can
also exert neuroprotective effects by attenuating microglial
mediated inflammatory responses; one study found that
formononetin, daidzein, pratensein, calycosin, and irilone
attenuated LPS-induced proinflammatory cytokine production
by microglia (149).

Several in vivo studies have documented neuroprotective
effects of phytoestrogens in the diet. The synaptic density was
much greater in rats fed either a daidzein- plus genistein-
based diet or a soy-enriched diet, compared to rats on either a
standard chow or diet lacking soy (150). Furthermore, rats fed a
diet containing soy-derived phytoestrogens exhibited improved
learning and memory compared to rats on a control diet (151).
Additionally, pretreatment with phytoestrogens protected mice
from neurotoxicity in the CNS following 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s Disease
(PD) (152). These studies suggest that phytoestrogens might
alter the structure and/or the function of both healthy and
diseased neurons.

The mechanism underlying phytoestrogen-induced
neuroprotective effects might be related to estrogen receptor
agonistic activity. Estrogen replacement therapy (ERT) has
been shown to improve CNS function, especially in Alzheimer’s
disease, by preventing oxidative stress and the formation
of amyloid plaques (153). Indeed, genistein, daidzein, and
zearalenone stimulate ERα- and ERβ-dependent transcription of
genes that contain estrogen response elements (EREs) in their
promoters (154). However, phytoestrogens have been shown to
be 100–1,000 × less potent than 17β-estradiol, but they can also
target GPR-30, a GPER on the plasma membrane of number of
cells in a variety of tissues (155). However, further research is
needed to determine the significance of the GPER receptor in
phytoestrogen mediated signaling.

PHYTOESTROGENS AND IMMUNE CELLS

Phytoestrogens have varied effects on immune system function
which have been summarized in Table 4. These effects are most
often anti-inflammatory and protective in nature. In the case of
the adaptive immune system, studies have shown that genistein
and other isoflavones can suppress lymphocyte proliferation,
allergic responses, and antigen-specific immune responses in
both T- and B-cells (156, 158, 162–165). However, genistein
has also been shown to enhance both the cytotoxic activity of
CD8 T-cells, and the production of cytokines by T-cells more
generally (156–161). Notably, this largely mirrors the effects of
estrogens on these cells. One study by Kojima et al. showed
that various phytoestrogens enhance gene expression mediated
by retinoic-acid-receptor-related orphan receptor (ROR) γ and

α in T-lymphoma cells, leading to increased expression of
IL-17. Others have shown that when activated T-cells are
treated with formononetin, daidzein, or equol, the levels of IL-
4 expression increase (159). Collectively these studies suggest
that phytoestrogens can interact with the T-cell compartment to
induce various responses that may improve disease outcomes.
Although the mechanisms leading to these actions are not well-
understood, it has been suggested that either enhancement or
inhibition of the NF-kB pathway could contribute, especially to
cytokine responses.

Interactions of the B-cell compartment with phytoestrogens
are less well-characterized, but limited studies have reported that
phytoestrogens can induce an anti-inflammatory, anti-allergic
phenotype that could be beneficial for the host. Specifically,
multiple studies have shown that isoflavones and coumestrol can
lower serum titers of immunoglobulin G2a (IgG2a) antibodies
(162–165). One such study also showed that low-dose coumestrol
can decrease the titers of antigen-specific IgG1 and IgG3 during
experimental autoimmune thyroiditis (165). Further isoflavones
can suppress the expression of IgE, possibly thereby contributing
to the overall anti-allergic phenotype that has been reported
in response to phytoestrogen treatment in several animal
models, including but not limited to airway allergy and peanut-
sensitization models (162).

Phytoestrogens have also been shown to modulate the innate
immune system and the majority of studies suggest an anti-
inflammatory role in this context. Combination of isoflavones
genistein and daidzein alone, or these plus glycitein have been
shown to inhibit the ability of dendritic cells (DCs) to induce
the production of IFN-γ, TNF-α, IL-9, and IL-13 from CD4+
T-cells (162, 163). These phytoestrogens have also been shown
to inhibit direct cytokine secretion from activated DCs (163).
Phytoestrogens also suppress DC maturation and the expression
of MHCI, but not MHCII, in an intra-nasal allergic response
model. These data suggest that phytoestrogens might slow
the inflammatory immune response by inhibiting the antigen-
presentation and effector-cell priming functions of DCs (162,
163). Genistein and daidzein, in particular, can suppress allergic
inflammation by significantly reducing (by 25–30%) mast cell
degranulation (162, 164). However, treatment of activated DCs
with genistein or daidzein led to increased NK-cell degranulation
and cytotoxicity, outcomes that have not been studied in a
disease (163). Phytoestrogens can also modulate NK cell activity
by specifically reducing expression of IL-18 receptor α (IL-
18Rα), and inhibiting IFN-γ production in response to IL-
12 and IL-18 (167). These actions of phytoestrogens have not
been found to reduce NK cell cytotoxicity (156, 157, 163, 166).
Thus, it remains unclear why phytoestrogens might have anti-
inflammatory functions inDC populations, but potentiallymixed
effects in NK cell populations.

In macrophages, phytoestrogens have been shown to induce
overall anti-inflammatory responses. Dia et al. showed that
genistein and daidzein can decrease the production of nitric oxide
and the expression of iNOS (inducible nitric oxide synthase),
as well as inducing the activities of super oxide dismutase and
catalase (168). Another study found that genistein treatment can
skew macrophage polarization toward an M2, anti-inflammatory
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TABLE 4 | Summary of effects of phytoestrogen compounds on various cell types.

Cell Type Results Compound Model References

T-cell Enhanced CD8+ T-cell cytotoxicity Genistein Genistein treatment of mice with B16 melanoma (156, 157)

Increased cytokine expression and

production

Genistein, formononetin,

daidzein, equol

Ex vivo stimulation of cells from treated mice; In vitro

gene expression studies

(158–161)

Enhanced RORγ and RORα expression Genistein, formononetin,

daidzein, biochanin A

In vitro gene expression in Jurkat and CHO-K1 cells (160)

Suppressed proliferation Genistein Ex vivo stimulation of cells from genistein treated mice (156, 158)

Suppressed antigen-specific responses Genistein In vivo in immunized/sensitized mice (158, 162–164)

B-cell Decreased antigen specific IgE, IgG2a,

IgG3, and IgG1

Isoflavones, coumestrol In vivo in peanut antigen sensitization model and

experimental autoimmune thryoiditis

(162–165)

NK cell Enhanced cytotoxicity Genistein Ex vivo stimulation of NK cells from treated mice or rats (156, 157, 163, 166)

Increased degranulation Genistein, daidzein In vitro co-culture with treated, activated DCs (163)

Reduced IL-18Rα expression Genistein In vitro human NK cell treatment/analysis (167)

Reduced IL-12/IL-18 dependent IFN-γ

production

Genistein, daidzein,

equol

In vitro pretreatment of cells, in vivo plasma cytokine

measurement after treatment of mice

(167)

Macrophage Decreased nitric oxide production Genistein, daidzein In vitro treatment of LPS-activated RAW 264.7

macrophages

(164, 168)

Decreased iNOS expression Genistein, diadzein In vitro treatment of LPS-activated RAW 264.7

macrophages

(164, 168)

Increased superoxide dismutase and

catalase production

Genistein, daidzein In vitro treatment of LPS-activated RAW 264.7

macrophages

(164, 169)

Increased M2 polarization Genistein In vivo counting in various tissue after DSS-induced

colitis and treatment in mice

(161)

Increased ARG-1 and IL-10 expression

in M2 macrophages

Genistein In vivo characterization of mouse splenic M2

macrophages after DSS-induced colitis and treatment

(161)

Dendritic Cell Inhibited cytokine secretion Genistein, daidzein In vitro treated LPS-activated monocyte-derived DCs (163)

Decreased TLR-dependent maturation

marker expression

Genistein, daidzein In vitro treated LPS-activated monocyte-derived DCs (163)

Decreased MHC class 1 expression Genistein, daidzein In vitro treated LPS-activated monocyte-derived DCs (163)

Inhibited CD4+ T-cell priming Genistein, daidzein In vitro co-culture of treated, activated monocyte

derived DCs and naïve CD4 T-cells

(163)

Increased ability to activate NK cells Genistein, daidzein In vitro co-cultures of treated, activated

monocyte-derived DCs and autologous NK cells

(163)

Other

granulocytes

Inhibited mast cell degranulation Genistein, daidzein (162, 164)

phenotype, while also reducing systemic concentrations of
inflammatory cytokines (161). The same study also found that
macrophages induced to take on the M2 phenotype when treated
with genistein express ARG-1 and IL-10 at higher levels than
those induced to take on this phenotype by other agents (161).
Thus, genistein appears to push macrophages toward an actively
anti-inflammatory phenotype, i.e., its actions are not solely non-
inflammatory. The collective activities of the phytoestrogens in
regard to the innate immune compartment may explain some
of the systemic anti-inflammatory effects of phytoestrogens that
have been described in the literature (e.g., decreased allergic
responses and decreased autoreactive immune responses).

PHYTOESTROGENS AND THE
EXPERIMENTAL AUTOIMMUNE
ENCEPHALOMYELITIS (EAE)

EAE is a very well-studied model of MS in which myelin
antigen in combination with pertussis toxin and complete

Freud’s adjuvant is used to induce an autoimmune response.
It is characterized by spinal cord pathology, manifesting in
ascending paralysis that can be scored on a standard 6 point scale
(0–5) (170). Several groups have documented the therapeutic
and disease-preventative potential of phytoestrogens using the
murine EAE model of MS. These studies indicate that common
phytoestrogens, especially isoflavones genistein and daidzein,
have potential as therapeutics for autoimmunity affecting
CNS components. One group showed that sub-cutaneous
(s.c.) treatment with genistein post-EAE induction resulted in
significantly ameliorated EAE (171). The genistein treatment
group showed reduced production of pro-inflammatory
cytokines (including TNFα, IFNγ, and IL-12p40) by splenocytes
and/or CNS lymphocytes (171). Similarly, 7-O-tetradecanoyl
(TDG), a lipophilic genistein analog, suppressed disease when
administered s.c. 14-days post-EAE induction. In these studies,
disease amelioration correlated with a decrease in the number of
IL-17 producing CD4+ T cells, and an increase in the number
of FoxP3+CD4+ T cells, in the brain (172). Another study
reported that daily oral treatment with high-dose daidzein
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starting 10 days after EAE induction ameliorated disease and
simultaneously reduced IFNγ levels in the brain and splenocytes
compared to controls with induced disease (173). These studies
suggest that phytoestrogenic compounds or their analogs might
have therapeutic potential in an animal model of MS.

Besides isoflavones, other phytoestrogens have also been
shown to exert a protective effect in EAE. Wei et al. showed
that therapeutic oral administration of high-dose Icariin (ICA),
a phytoestrogen from flowering plants of the Epimedium genus,
ameliorated EAE (comparison was to vehicle control). The
effectiveness of ICA was similar to that of estrogen, and high-
dose ICA or estrogen treatment increased expression of both
ERα and ERβ in the white matter of the CNS (174). In
a separate study, these researchers reported that therapeutic
oral administration of high-dose ICA in combination with
methylprednisolone (MP), a corticosteroid used therapeutically
in MS, had a greater disease-ameliorating effect than either
treatment alone. This combination treatment (ICA+MP) also
had a synergistic effect, enhancing both the reduction of
serum IL-17 and apoptotic cell death (Annexin V+ cells) in
the spinal cord (175). Taken together, these studies show the
therapeutic potential of phytoestrogen compounds, both alone
and in combination therapies, as a promising complementary
and alternative therapy for further study.

Quercetin is a phytoestrogen flavonoid that is abundant in
soybeans, vegetables, and fruits and has also been evaluated
for its efficacy in the EAE model. Quercetin protects against
EAE when injected intra-peritoneally (i.p.; comparison was
to a vehicle control). Additionally, quercetin caused a dose
dependent suppression of antigen specific proliferation and
IL-12 in splenocytes in ex-vivo antigen-recall response (176).
Thus, quercetin might be able to influence encephalitogenic
T cells directly. Resveratrol, a phytoestrogen found in the
skins of red grapes and berries, had been shown to ameliorate
EAE by interfering with the miR-124/sphingosine kinase 1
(SK1) axis in encephalitogenic T cells, thereby resulting in
cell-cycle arrest and apoptosis (177). These studies clearly
indicate that phytoestrogen compounds protect against EAE
and may have implications/therapeutic potential in MS
as well.

However, several knowledge gaps remain to be addressed.
For example, most of the studies described above introduced
phytoestrogen compounds via a non-physiological route (s.c. or
i.p.). Given that humans obtain phytoestrogens through diet,
study of the effectiveness of oral delivery or consumption of these
compounds would better reflect the mechanisms involved in a
more physiological context. Furthermore, the studies using s.c. or
i.p. routes of administration do not account for the importance
of phytoestrogen-metabolizing gut bacteria, which humans rely
on for proper breakdown of dietary phytoestrogens. This may
explain why the studies that did provide oral phytoestrogens
required a very high dose for protection.

Although the exact mechanism through which
phytoestrogenic compounds suppress EAE is unknown,
studies have suggested that their neuroprotective and

immunomodulatory effects might play an important role in
their ability to suppress disease as described above.

CONCLUDING REMARKS

In RRMS patients, the presence of gut dysbiosis and the depletion
of bacteria with the ability to metabolize phytoestrogens
highlights the importance of these compounds in maintaining
a disease free-state of the host. As stated above, various
phytoestrogen metabolites play important roles in a number of
biological processes including neuroprotection and regulation
of the immune system. However, further research is certainly
needed to better understand the pathways through which gut
bacteria induced phytoestrogens metabolites regulate the balance
between pro- and anti-inflammatory responses and provide
neuroprotection. For example, future studies determining the
relationship between levels of phytoestrogen metabolites and
the severity of RRMS disease are expected to shed light on
the extent to which phytoestrogen metabolism correlates with
the etiopathogenesis of RRMS. Also, dissection of the role of
phytoestrogen metabolism in the development and regulation
of the immune system in germ-free mice is expected to
reveal the significance of specific phytoestrogen metabolites
in regulating the function of various immune subsets. In the
meantime, however, the existing literature provides a solid
rationale for the selection and testing of the therapeutic potential
of various phytoestrogen metabolizing bacteria, including
Prevotella, Parabacteroides, and Adlercreutzia in a preclinical
model ofMS. A successful outcome from these studies will help in
development of bacteria as drug (BRUG) based treatment options
for MS patients.
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Neural stem cells (NSCs) have garnered significant scientific and commercial interest

in the last 15 years. Given their plasticity, defined as the ability to develop into different

phenotypes inside and outside of the nervous system, with a capacity of almost unlimited

self-renewal, of releasing trophic and immunomodulatory factors, and of exploiting

temporal and spatial dynamics, NSCs have been proposed for (i) neurotoxicity testing;

(ii) cellular therapies to treat CNS diseases; (iii) neural tissue engineering and repair; (iv)

drug target validation and testing; (v) personalized medicine. Moreover, given the growing

interest in developing cell-based therapies to target neurodegenerative diseases, recent

progress in developing NSCs from human-induced pluripotent stem cells has produced

an analog of endogenous NSCs. Herein, we will review the current understanding on

emerging conceptual and technological topics in the neural stem cell field, such as

deep characterization of the human compartment, single-cell spatial-temporal dynamics,

reprogramming from somatic cells, and NSC manipulation and monitoring. Together,

these aspects contribute to further disentangling NSC plasticity to better exploit the

potential of those cells, which, in the future, might offer new strategies for brain therapies.

Keywords: neural stem cell, transplant, repair, plasticity, cell engineering

INTRODUCTION

The concept of the stem cell niche was officially used for the first time by Schofield (1) in
1978 to define local environments with specific molecular and cellular characteristics that are
required for the maintenance of hematopoietic stem cells. Ten years previously, Smart (2)
and Altman (3) identified tissue in the brain that was thought to be capable of self renewal,
namely two specific regions with proliferative capacity one localized in the subventricular zone
(SVZ) of the lateral ventricle and one in the subgranular zone (SGZ) of the dentate gyrus
of the hippocampus. The assay to test in vitro neural stem/progenitor cell (NPC)-self-renewal
and multi-potency consisted of assessing their ability to give rise to neurospheres (4). In vivo,
in mice, their self-renewal capacity was proved using targeted ablation of dividing GFAP-
positive cells and by genetic lineage tracing (5, 6). Similarly to the hematopoietic niche and
obviously in addition to the intrinsic and specific characteristics of neural stem cells (i.e.,
their ability to originate neuro-glia cells), the fate of NPCs and their (lifelong) self-renewal
and differentiation capacity are tightly regulated by complex interactions between intrinsic and
extrinsic signals provided by surrounding cells in the niche and by distant sources (7). The
microenvironment of the neurogenic niche includes multiple cell populations whose interplay,
including that between stem cells themselves, is still largely unknown and under active exploration.
Moreover, physical activity, stress, environmental enrichment, aging, and intrinsic factors, such as
cytokines, growth factors, hormones, or neurotrophins, finely regulate the fate of neural stem cells.
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These features are shared with all other stem niches, such as
the originally identified hematopoietic niche (8). A thorough
characterization of other niche components has recently been
provided in Andreotti et al. (9) and in Bacigaluppi et al. (10).

Understanding the potential of endogenous or administered
NPCs as well as the cross-talk between neural stem cells and
their niche components is essential for identifying what can be
modulated and how for the development of therapies against
neurological disorders in which neural stem cell function is
altered or in which its improvement might be of help.

In this review, we would like to focus on the intrinsic and
comprehensive added value of neural stem cell plasticity. NSC
plasticity indeed is per se fundamental for development but
represents an important asset in a therapeutic perspective since
the neurogenic niche remains an exception in the “static” brain
and represents a possible unique source of new neurons useful
for substantially incurable neurological disorders and brain aging
problems which are a heavy social and economic burden.

We will first frame NSCs in the stem cell context and
then illustrate their plasticity in a developmental perspective,
summarizing the current understanding of NSC modes of
division and their mechanisms of persistence in the adult.
We will compare NSCs in the two neurogenic regions of the
adult mammalian mouse and human brain and discuss recent
controversies on neurogenesis in the adult human brain. Last,
we will discuss the current therapeutic exploitation of NSC
plasticity along with the technological advancements that are
being implemented, to conclude with the pros and cons, the
benefits and hurdles, linked to taking advantage of these assets.

STEM CELLS

Stem cells (SC) are unspecialized, immature cells with self-
renewing capacity, namely the ability to produce nearly identical
copies of themselves for a long period of time without
differentiating and with the possibility to differentiate into
various cell lineages (11).

Totipotent stem cells, such as zygote cells and the first few
cells from their division, can differentiate into all possible cell
types. Pluripotent stem cells can instead differentiate into cells
of the three embryonic layers, i.e., mesoderm, endoderm, and
ectoderm, and can give rise to tissue and organ specialized cells.
Multipotent stem cells, such as adult hematopoietic or neural
stem cells, can differentiate into closely related families of cells
to renew tissue-specific cell populations in organs, such as liver,
intestinal tract, and skin. Exceptionally, this does not occur by
default for the brain. Last, unipotent stem cells can differentiate
only into a single cell type, usually of a single specialized tissue
or organ.

SCs can also be classified according to their source of
origin. Embryonic Stem Cells (ESCs) are totipotent, derive from
the inner cell mass of human blastocysts, and can potentially
proliferate indefinitely, giving rise to all types of cells in the
human body. Adult StemCells are undifferentiated, totipotent, or
multipotent cells able to replenish dying cells and to regenerate
damaged tissues (if possible). Induced Pluripotent Stem Cells

(iPSCs), recently developed by genetic reprogramming of adult,
non-pluripotent somatic cells, are comparable to human ES
cells, having differentiation potential in vitro and a capability
to generate in vivo teratomas. iPSCs can be generated by over-
expression through retro- or lenti-viral vector transduction of
four transcription factors: Oct3/4, Sox2, c-Myc, and Klf4 [c-Myc
is dispensable (12)]. These cells express human ES markers (such
as OCT3/4, SOX2, and NANOG) at the same or higher level than
ESCs and stain positive for markers of the three germ layers,
confirming their pluripotency and differentiation potential (13).
They can also be generated using small molecules that mimic
the effect of transcription factors (14) or by miRNAs (15). Last,
Cancer Stem Cells emerge from malignant transformation of
adult stem cells or from somatic cells that acquire self-renewing
potential. They have been proposed as the source of tumors
and of metastases and have been isolated from various tissue
types (16).

Stem cells gained value in the last 15 years for the development
of cell-based therapies for many serious diseases and injuries. For,
example, hematopoietic stem cell transplants became established
therapeutics for leukemia and for burns and corneal disorders
(11). For complex neurological diseases, unfortunately not all
stem cells can be exploited. In principle, ESCs would be
perfect for cell replacement therapy because they can proliferate
indefinitely (17), but there is also a risk of tumor formation and
immune rejection along with ethical, religious, and philosophical
problems. To reduce the tumor-forming potential, human ESCs
could be pre-differentiated in vitro in committed precursor cells
or neural precursor cells (NPCs) (18), which maintain self-
renewal capacity and at the same time are restricted to generate
only neural cells (neurons and glia) in vivo upon transplant, but
these still raise ethical concerns. ESCs might, in principle, be
directed to differentiate into specialized neuronal subtypes (19)
to further reduce the risk of tumorigenicity. But more than 200
distinct neuronal subtypes with regional specificity exist, and
the applicability of transplanted differentiated cells is still far
from realization.

An alternative strategy is to use neural stem/precursor cells
from aborted human fetuses at the gestational age of 6–20 weeks.
They can be maintained, expanded, and split without losing their
self-renewing and neurogenic capacity for a long period of time
in vitro. Their main drawback, however, is the limited availability
and the unpredictability of when, where, or in what conditions
the material will be obtained.

It is also possible to obtain NPCs from reprogrammed somatic
cells, hiPSCs, differentiated to generate NPCs with very high
neurogenic potential and virtually devoid of tumorigenicity if
intracerebrally transplanted (20). Moreover, iPSC-derived NSCs,
unlike adult fetal NPCs, which cannot be used as an autologous
cell source, offer the possibility of autologous transplantation.

Further, NPCs could also be generated via transdifferentiation
(iNPCs) of a cell type into another not following the “normal”
re-programmed differentiation path, because transdifferentiated
cells do not become pluripotent at any time (21–26). iNPCs,
similarly to NPC-derived iPSCs, are useful for transplantation
therapy, for establishing disease models, and for drug screening.
In principle, they hold a low risk of tumorigenesis, maintain
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the capacity of self-renewal, and give rise to multiple neuronal
subtypes in vitro and in vivo. Indeed, specifically for the
in vivo applicability, murine iNPCs transplanted into healthy
adult mouse brain survived for 6 months without overgrowths,
achieved functional integration (27), and could differentiate
into neuronal cells, although they retained a mixed neuro-
glia phenotype (M2+ and GFAP+) (28). In the context of
spinal cord injury, iNPCs generated by transfection with four
reprogramming factors and transplanted in rat spinal cord,
differentiate into all neuronal lineages (29). Direct cell conversion
has also been tested in vivo by transplanting human fibroblasts
and human astrocytes engineered to express inducible neural
reprogramming genes that converted fibroblasts and astrocyte
cells into neurons directly in the adult rodent brain (30).

This field is still in its infancy, and before considering
the development of personalized regenerative therapies
with iNPCs (31), further investigation is required to better
understand the detailed mechanisms occurring in the
transdifferentiation processes to improve the efficiency and
the maturation into desirable cells with neurotransmitter and
region-specific phenotypes.

Lastly, glial-restricted progenitor cells (GRPs) represent
another therapeutic alternative. They are self-renewing cells
derived from CNS tissue of 19–22 gestational weeks that have
a limited differentiation potential and are able to give rise to
oligodendrocytes and astrocytes but not neurons, as assessed in
the demyelinated shiver mouse model (32) and in transverse
myelitis, an inflammatory condition of the spinal cord that
leads to demyelination (33). GRPs have also been proposed for
multiple sclerosis (MS) because endogenous OPCs in the lesions
initially engage in remyelination (34), but with time, the number
of OPCs declines and remyelination becomes inefficient (35).
Isolation and expansion of GRPs were recently implemented by
Q Company (36), which started a phase I clinical trial (37).

NEURAL STEM CELLS IN THE
MAMMALIAN BRAIN: FETAL VS. ADULT
COMPARTMENT, MOUSE VS. HUMAN

A detailed characterization of the neural niches for both mouse
and human is now available (38). In the mouse, the central
nervous system (CNS) originates at E7.5–E8 with the neural plate
that folds into the neural tube and then divides along the rostro-
caudal axis into the rostral forebrain, midbrain, and hindbrain
vesicles, while the caudal vesicle gives rise to the spinal cord. The
cortical layer, adjacent to the lateral ventricles (LV) and known
as the ventricular zone (VZ) is made of highly proliferating
progenitors with apical basal polarity (neuroepithelial cells,
NECs) (38) that, before neurogenesis (E10.5–E12.5), undergo
extensive symmetric divisions to expand (Figures 1, 2). When
neurogenesis starts (E12.5 onwards), NECs become radial
glial cells (RGCs), express glial markers, assume an elongated
morphology, and divide asymmetrically, originating one RGC
and one neuron or one RGC and one intermediate progenitor (IP,
Tbr2+) (43). IPs themselves migrate radially to give rise to two
pyramidal neurons that establish connection and form synapses

(44). The CNS builds up in∼1 week during gestation, and NPCs
(RGC/IPs) are retained in the two distinct and small proliferative
areas of the SVZ and the SGZ (44, 45). During neurogenesis,
first-born neurons populate the deeper cortical layers (V–
VI), while later-born neurons progressively populate the more
superficial layers (II–IV). These layers contain neuronal subtypes
that are different in morphology, electrophysiological activity,
axonal connectivity, and gene expression. During embryonic
and late neurogenesis, RGCs, because of their elongated radial
morphology, sense extrinsic cues from meninges, vasculature,
newborn neurons, and cerebrospinal fluid, which regulate their
cell fate decision. During late embryonic development and
the first weeks after birth, radial glia also differentiate into
astrocytes and oligodendrocytes, which populate the different
brain structures, and ependymal cells will line on the ventricle
surface. Thus, adult SVZ NSCs are regionally specified during
the early embryonic stage and remain largely quiescent until,
post-natally, they are re-activated (46, 47); they have intrinsic
temporal programs linked to their positional characteristics
(dorsal-ventral, rostral-caudal) (48) that guide differentiation in
a cell-autonomous manner and cycle independently, but they
also sense extrinsic cues that tune temporal programs and help
indicate the ‘right’ time to progress (49, 50).

The functional integrity and behavior of the niche are
maintained by the extracellular membranes (ECMs) (51) of
both the basal and apical sides. They are rich in laminin, αβ

integrin glycoproteins, and tenascin C. Similarly, a fundamental
functional role for the VZ/SVZ is played by the CSF and by the
blood vessels that form in early stages of CNS development (E9)
(52, 53). Of note, neurogenesis and angiogenesis are regulated by
the same molecules, such as vascular endothelial growth factor
(VEGF), Notch, and Shh (54).

In humans, similarly to rodents, during early brain
development, the inner part of the neural tube that then
becomes the cerebrospinal fluid (CSF)-filled ventricular
structure consists of a layer of proliferative cells that originally
contributes to the expansion of the cerebral cortex along with
their descendant radial glia (GFAP+) and their intermediate
progenitor cells (Figures 3, 4). Radial glia bodies are in tight
contact with the monolayer of ependymal cells that covers the
ventricles (57), which serves both as barrier and transport system
between the interstitial fluid of the parenchyma and the CSF
(58, 59). Studying the behavior of human NPCs is difficult;
thus, to evaluate their properties, cells from 6.5- to 9-weeks-
old aborted embryonic human forebrains were expanded in
culture for up to 21 passages and were transplanted into the
dentate gyrus, the rostral migratory stream (RMS), the striatum,
or the SVZ of adult immunosuppressed rats. Migration was
modest in the dentate gyrus or in the striatum if compared
to rodent-in-rodent transplant and was considered a random
dispersion process during the implantation. Larger migration
was observed if transplant was into the SVZ or RMS. Cells did
not show tumor formation 6 weeks post-transplantation and
interestingly exclusively adopted a neuronal fate when in the
olfactory bulb or in the SGZ of the hippocampus (60). It is worth
mentioning also that both fetal/embryonic rodent and human
NPCs display regional differences in terms of proliferation and
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FIGURE 1 | Mouse developmental SVZ structure. Neurogenesis in humans begins with the expansion of the neuroepithelium and apical radial glia (aRG). Excitatory

neurons are directly generated from apical radial glia (aRG) in the dorsal VZ or are derived from multipolar basal intermediate progenitors (bIPs) that have delaminated

from the apical and basal surface and reside in the SVZ. At early stages of neurogenesis in mice, newborn deep-layer excitatory neurons move basally toward the

marginal zone (MZ) by somal translocation. Once the developing cortex becomes thicker, newborn neurons reach the intermediate zone (IZ), where they undergo a

multipolar-to-bipolar transition and pass through the IZ and CP. Neurons then migrate basally toward the pia, passing by earlier-born neurons; they then terminate their

migration in the MZ. Inhibitory GABAergic interneurons are specified in the distant medial and caudal ganglionic eminences, where RGs, intermediate progenitors (IPs),

and numerous subapical progenitors (SAPs) proliferate and migrate tangentially in two streams to integrate into the various cortical layers of the cerebral cortex (not

depicted in the figure). CSF, cerebrospinal fluid; SP, subplate (39–41).

differentiation potential according to the region of the brain
where they originate (cortex or striatum) (61, 62).

In comparison to the spatially and temporally regulated niches
of the developing brain, in the post-natal and adult rodent brain,
neurogenesis occurs and neural stem cells (NSCs) persist in the
ventricular-subventricular zone (V-SVZ) of the lateral ventricle
and in the SGZ of the dentate gyrus in the hippocampus.

Regarding the SVZ (Figure 5), the population of adult NSCs
is quite complex and heterogeneous, as demonstrated by single-
cell sequencing data (67) and by marker-specific analysis (GFAP,
EGFR, CD133, Nestin, CD9, CD81, CD24, and VEGF). NSCs of
embryonic origin are called B1 cells (68), and there are roughly
7,000 in each young lateral wall of lateral ventricle. Most of the
B1 cells generated between days E13.5 and E15.5 remain almost
quiescent until soon after birth, when they become reactivated
and start proliferating (46) or dividing very slowly (63, 69). NSCs

divide symmetrically to self-renew or to differentiate, which leads
to a decline in NSC number over time (69). B1 that face the
ventricle side give rise to B2 cells, a population of fusiform-
stellate proliferating V-SVZ astrocytes, that are non-neurogenic
and whose function is still unknown (70). They share many
astroglial characteristics with B1 cells, including contacts with
blood vessels (BV), but lack contact with the apical membrane.
B1 cells also generate transient-amplifying cells (type C cells) that
divide symmetrically three to four times (71) and ultimately give
rise to migrating neuroblasts that become young neurons (type A
cells) (72). In young adult mice, B1 cells produce around 10,000
young interneurons every day that migrate for 3–8mm along the
rostral migratory stream to the olfactory bulb (73). Ventral NSCs
produce deep granule cells and calbindin-positive periglomerular
cells, while dorsal NSCs produce superficial granule cells and
tyrosine hydroxylase-expressing periglomerular cells (74). They
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FIGURE 2 | Mouse developmental SGZ structure. At E14.5, in the VZ of the hippocampal neural epithelium (hNE), radial glial precursors give rise to hippocampal

pyramidal neurons. The DG originates from the dentate neuroepithelium (dNE), called the primary matrix, a part of the ventricular zone (VZ). At late gestational stages,

a heterogeneous mixture of stem cells and neuronal precursors at different stages of differentiation migrate from the VZ to the hippocampal fissure, constituting a new

migratory progenitor population called the secondary matrix. The process is guided by hem-derived Cajal-Retzius cells. Neural progenitors reach the hippocampal

fissure, where they accumulate and form a hub of proliferating cells called the tertiary matrix (SGZ). Granule cells generated during DG development from precursors of

all three matrices form the GCL. By early post-natal stages, the tertiary matrix becomes the only source of dentate progenitors and granule cells (39, 40, 42).

integrate into the existing olfactory bulb network and influence
the plasticity of olfactory-related behaviors (75). B1 cells on the
apical ends, which are completely surrounded by multiciliated
and biciliated ependymal cells (E1 and E2 cells, respectively),
which form pinwheel-like structures around them, sense the
cerebrospinal fluid of the ventricle through the apical primary
cilium. The choroid plexus is also considered part of the niche,
and its secreted factors into the CSF regulate B1 cells. Supra-
ependymal axons on the surface of the ventricular wall contact
both E and B1 cells. Mature neurons and astrocytes are found
below the V-SVZ (63).

The number of B1 cells drastically decreases in the first year of
life in mice, but the number of newborn neurons in the olfactory
bulb (OB) is not significantly affected by age, suggesting that
another population of NSCs that lack apical contact and that
can differentiate might exist in the adult rodent brain (69). B1
cells primarily give rise to neuro-glia cells. As regards astrocytes,
B1-cell ability to differentiate into astrocytes was, for example,
demonstrated upon photothrombotic ischemic cortical injury
(76) and upon chemical demyelination (77). Nonetheless, it has
been reported that B1 cells can also give rise to oligodendrocytes
(78) destined for the corpus callosum, where they myelinate
axons in both healthy (77) and demyelinating conditions (77,
79). Although dispensable in this latter condition, they protect
neurons from increased axonal loss (79). Notably, post-natal
and adult neurogenesis in the SVZ is carefully controlled by
microglial cells (80–82).

As regards the neural niche in the dentate gyrus (Figure 6),
neurogenesis occurs on the side of the granule cell (GC) layer
facing the hilum, in two or three-thin strata of the SGZ. NSCs

originate in the ventral hippocampus during late gestation and
then re-locate to the dorsal hippocampus. Here, quiescent NSCs,
called radial glia-like (rRGL, or Type 1) cells become activated
(aRGL) and divide to self-renew and to make intermediate
proliferating progenitors (IPCs) that then differentiate into
neuroblasts. About 25% of them survive and mature into granule
neurons of the DG (85) or into mature astrocytes (86, 87) with a
strategy that still needs to be fully elucidated (88–90).

While in the SVZ NSCs mainly give rise to inhibitory
interneurons, in the DG, they generate new excitatory neurons
that are involved in learning, memory, and pattern separation
(91). New-born neurons of the SGZ are mainly located in
the GC layer and do not migrate. Further, while in the
SVZ, depending on the position, progenitors develop toward
a different fate, the neural progenitors of the SGZ present
only a bipotential fate (6). The two neurogenic niches face
a 50–70% death rate during the first few days of birth, and
short-living new-born neurons not only have different electrical
properties than mature ones but may have their own functional
role (39).

In both adult mouse neurogenic niches, it has also been
reported that stem cells and differentiated daughter cells
act to regulate their respective maintenance. For example,
differentiated neurons release diffusible or contact-mediated
signals, such as the neurotransmitter GABA and the Notch ligand
Delta-like 1 (Dll1), which help to maintain NSC quiescence
(92, 93). On the other hand, Tang C. and coworkers recently
demonstrated a feed-forward mechanism between NSCs and
newly generated neurons through pleiotrophin (PTN) ligand,
whose release by NSCs supports the development of the
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FIGURE 3 | Human fetal SVZ structure. In the developing human gyrencephalic cerebral cortex, the SVZ is subdivided by the inner fiber layer (iFL) into the inner SVZ

(iSVZ) and the outer SVZ (oSVZ). Neurogenesis begins with expansion of the neuroepithelium and apical radial glia (aRG) via asymmetrical cell cycling. Human aRGs

divide to give rise to basal RG (bRGs), which delaminate from the apical surface (retaining their basal process and attachment to the pial surface), migrate basally, and

populate the oSVZ. The oSVZ is also populated by basal intermediate progenitors (bIPs) that proliferate and generate neurons. The oSVZ is the predominant germinal

region in the human neocortex. The basal processes of bRG act as guides for migrating newborn neurons that disperse in the tangential axis to expand the surface

area of the cerebral cortex (40, 41).

newly differentiated neurons (94). Down the line, this cross-
talk might impact the important role of striatal neurons in
cognitive functions and goal-directed behavior (the dorsomedial
striatum, DMS) (95), as well the sensorimotor territory and habit
formation [the dorsolateral striatum (DLS)] (96).

In humans, post-natal SVZ (Figure 7) is different from in
other mammals because it consists of a smaller inner and
expanded outer SVZ (iSVZ and oSVZ, respectively). The oSVZ
contains radial glia that support neurogenesis and cortical
expansion during fetal development (98). After corticogenesis,
the neurogenic niche of the iSVZ and oSVZ remains proliferative
in neonates along the wall of the lateral ventricle in the site of
former lateral ganglionic eminence, generating new neurons that
populate the pre-frontal cortex and, partially, the olfactory bulb
(81, 99) for a few months after birth. Subsequently, however,
this activity declines dramatically, and, within 2 years, there
is almost no detectable neurogenesis or migration (100–103).
Perinatally, SVZ stem cells differentiate and migrate along

three specific pathways toward the anterior forebrain: (i) to
the frontal lobe where they become interneurons (arc pathway)
(103); (ii) to the medial pre-frontal cortex along the medial
migratory stream (MMS); (iii) to the olfactory bulb along the
RMS (104). Moreover, while in many mammals newly SVZ-
generated neurons migrate specifically to the olfactory bulb
to guarantee olfaction throughout life (105), in the human
frontal cortex, only inhibitory neurons are born post-natally with
unclear function or contribute to neurocognitive maturation and
plasticity, important in infancy (103, 106).

Mature, adult human SVZ consists of four layers. Moving
from the ventricle side, Layer I consists of ependymal cells
in contact with the lumen, and this is followed by an almost
acellular layer (Layer II), which originates post-natally as a
consequence of neuroblast depletion. This layer includes a
dense network of astrocytes and ependymal cell processes,
where astrocytes and ependymal cells exchange signaling, and
the few microglial cells influence communication among the
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FIGURE 4 | Human fetal SGZ structure. Fetal development of the SGZ starts from the dentate neuroepithelium (dNE), which is located at the edge of the ammonic

neuroepithelium (aNE) close to the fimbria. SOX1+/SOX2+ precursors are organized in ribbons between dNE and GCL (granule cell layer) already at 14 gestational

weeks (GW) with PSA-NCAM and DCX positive cells. SOX1 and SOX2 cells are present in the GCL and hilus and between the GCL and the dNE. A coalesced

proliferative SGZ does not form in the human DG. NeuN-positive cells are seen along with SOX1 and SOX2 at 22 GW. The cellular network reported in the illustration

remains until soon after birth, when either hippocampal neurogenesis continues with aging (55) or completely disappears (9, 39, 40, 55, 56).

cell types (107). Adjacent to Layer II, there is a dense rim
of astrocytic cell bodies (Layer III) with variable morphology.
Finally, Layer IV consists of a transitional region with few cells,
similar to the brain parenchyma. Although some astrocytes can
proliferate (99, 108), neuroblasts are absent in the adult human
SVZ niche and in the rostral migratory stream toward the
olfactory bulb (101). Interestingly, in the adult human brain,
newly generated cells are mainly oligodendrocytes, not neurons
(109), suggesting that the oligodendrogenic process and myelin
maintenance is more important in the human brain compared to
other mammals.

Of note, comparing mouse and human adult SVZ, the
proportion of type A:B:C cells in the mouse brain is 3:2:1, while
in human, it is estimated at 1:3:1 (110).

Besides the differences between embryonic and adult niches,
we have already anticipated that the niche changes during
development. Indeed, a general comprehensive analysis of
NPCs in mice from post-natal age P7 and P28 revealed not
only that the number of NPCs decreases over the course of
development but also that the genetic profile of the NPCs at the
two ages was significantly different, suggesting early adulthood
senescence (111).

Interestingly, it has been shown that neurons born during
embryonic development (E19) and early adolescence (P21) (in
mice) survived throughout adulthood (up to 2–6 months),
while the cells generated at P6 displayed 15% cell death during
adulthood, suggesting that early post-natal granule cells have an
important unique function in terms of hippocampal plasticity
(112). Early-life post-natal hippocampal neurogenesis is crucial
to strengthen the ability to learn and to acquire new information

via a rapid and continuous generation of new granule cells at the
expense of existing memories and information storage.

Moreover, a recent report in mice showed that a population
of NSCs exists in the DG that contributes to neurogenesis
throughout development and adulthood and that the NSCs shift
from a quiescent to an active state at different time points
(84), suggesting that hippocampal neurogenesis is crucial for
maintaining tissue plasticity. Indeed, the technology of single-
cell RNA sequencing demonstrated that while there is an early
post-natal transformation of radial glia cells from embryonic
progenitors to adult quiescent stem cells maintained as such
through adulthood, intermediate progenitor cells, neuroblasts,
and immature granule cells are very similar at all ages (113).

Although the evidence that progenitor cells exist in the
human brain is robust (114, 115) (Figure 8), controversies still
persist about in vivo evidence that neurogenesis occurs in the
adult hippocampus and about its functional relevance. A first
landmark study on autoptic human brain tissue measured the
concentration of 14C in genomic deoxyribonucleic acid (DNA)
and estimated that 700 new neurons are generated each day
in the adult human hippocampus corresponding to an annual
turnover of 1.75% (118), comparable to what is seen in middle-
aged rodents.

In this process, aging, an altered immune-related molecular
and cellular status, is the most critical environmental driver that
can impair neurogenesis and contribute to its decline. Indeed,
when heterochronic parabiosis was attempted by exposing aged
animals to a young systemic environment, adult neurogenesis
increased through a-yet unknown precise mechanisms (119,
120). Moreover, Spalding et al. showed that neurogenesis also
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FIGURE 5 | Mouse adult SVZ structure. Adult NSCs (also called radial glia-like, RGL, pre-B1 cells) of SVZ derived from embryonic radial glial (RG) cells that make

neurons of the embryonic brain. The adult SVZ NSCs at embryonic day 14 (E14) upregulate p57kip2 to enter quiescence (qRGL, B1 cells). The qRGLs become

activated after birth to participate in adult neurogenesis in the SVZ. In the SVZ, the RGLs mostly undergo symmetric cell division. The SVZ RGL symmetric self-renewal

could occasionally also result in another type of RGL cell that lacks the apical process, named non-apical B1 cells or B2 cells. Type B1 cells give rise to neuroblast

type A cells (transient amplifying cells). These young neurons are surrounded by a glial sheet and migrate anteriorly toward the olfactory bulb (OB) and differentiate in

granular and periglomerular GABAergic interneurons. The adult SVZ also generates oligodendrocytes, although in much lower numbers. CSF, cerebrospinal fluid

(39, 40, 63–66).

occurs in the human hippocampus in older age, in contrast
to the age-related decline previously described in rodents
(121). Similarly, another group observed immature and mature
adult-born neurons in hippocampal post-mortem samples of
healthy adult individuals (55). This evidence has recently
been replicated by Moreno-Jiménez et al. who described the
presence of immature neurons in the DG of 90-years-old human
subjects (122) and by Tobin et al. who demonstrated that
hippocampal neurogenesis occurs in the tenth decade of life
(123). In contrast, a study on peri- and post-natal human
samples from subjects with a wide range of diseases reported
few young neurons in young individuals (7–13 years of age)
and no newborn neurons in the DG of adults. Immature
neurons were found only in specimens of 1-year-old subjects
(56). Divergences between mouse and human are likely due

to differences in the rate of generation and maturation of
newborn neurons (124), while divergences among human studies
might depend on limitations when using human post-mortem
tissues to study neurogenesis with variable time from death
to fixation.

FEATURES OF PLASTICITY IN NEURAL
STEM CELLS

NPCs, because of their intrinsic stem nature, exploit several
plastic features. We have already mentioned their dual cell
division capacity, symmetric and asymmetric, their capacity
to stay quiescent in the niche for a long time and then
to be activated/proliferate and to differentiate, and their
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FIGURE 6 | Mouse adult SGZ structure. During the second post-natal week, proliferation in the DG becomes confined to the SGZ, where NSCs reside throughout

adulthood. Genetic cell lineage tracing of Sonic Hedgehog (SHH)-responsive cells has revealed that adult NSCs are induced at peri-natal stages in a restricted region

next to the most ventral side of the hippocampus in close proximity to the lateral ventricle. From there, they migrate to populate all regions of the DG. Thus, embryonic

and adult NSCs in the DG have different origins. Indeed, the generation of new neurons in the DG starts from radial glia-like progenitor (type I). Type I cells become

activated. Activated type I cells generate intermediate progenitors (type IIa, ab, and b and type III). Type III converts into immature granule cells and finally into mature

long-lasting calbindin/calretinin-positive granule cells. IML, inner molecular layer; GCL, granule cell layer. Nicola et al. showed that a condensed germinal zone in SGZ

only appears during post-natal days 7–14, likely because it depends on neural activity for adult neurogenesis established by the SVZ (83). A recent report suggests

that a dentate-specific neural progenitor, arising in mice at ∼E11.5 and marked by Hopx positivity, persists from embryonic development to adulthood. These

progenitors give rise at E18.5 and P7 to the dentate region and then transition to quiescence early post-natally, to contribute to neurogenesis only during the adult

lifespan. Those RGLs might have limited capacity for self-renewal, are skewed toward neurogenic differentiation, and rarely make astrocytes (40, 42, 65, 84).

FIGURE 7 | Human adult SVZ structure. The human adult SVZ consists, from the ventricle side to the parenchima, of Layer I of multicyliated ependymal cells, with

radial and tangential processes, followed by a hypocellular layer (Layer II) of astrocytic and neuronal cell bodies with a number of cytoplasmic expansions of

ependymal cells inserted by astrocytic ramifications. Layer III consists of a ribbon of proliferative astrocytes (type B cells). Some oligodendrocyte-like precursors and

misplaced ependymal cells are found. The inner layer (Layer IV) consists primarily of myelin tracts and neuronal bodies. SEZ, sub-ependymal zone; CSF, cerebrospinal

fluid (39, 40, 97).
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FIGURE 8 | Human adult SGZ structure. Based on the report by Boldrini et al. neurogenesis persists during adulthood. The generation of new neurons starts from

quiescent radial glia-like progenitor cells (type I). Type I cells become activated and then, by asymmetric division, generate intermediate progenitors (type II). Type II

become neuroblasts or intermediate neural progenitors (INP type III) that convert into immature granule cells and finally mature into long-lasting granule cells that send

their apical processes to the CA3 part of the hippocampus. On the other hand, according to Sorrells et al. neurogenesis is not detected in adult. In the dentate gyrus,

a proliferative subgranular zone (SGZ) is not formed near the granular cell layer, and proliferative progenitor stem cells are scattered in the hilus only. They disappear

anyway after 7 years from birth, and young neurons are not found in adult individuals. Curly brackets define the condition described in Sorrells et al.

(9, 39, 40, 55, 56, 64, 116, 117).

regional differences, as well as their capacity to sense the
environment (125) and promote neuro-biochemical changes
(94). The brain is substantially a “non-renewable organ,” and
brain cells slowly die with age, but neural stem cells guarantee
to the CNS a certain ability to reorganize structurally and
function according to intrinsic and environmental demands
(126). Although proliferation and differentiation occur, it is still
debated whether endogenous adult NSCs really exhibit long-term
self-renewal capacity.

Encinas and collaborators reported that in the SGZ, NPCs
can proliferate and then differentiate into astrocytes but that this
causes progressive pauperization of the niche without returning
to quiescence (127). Bonaguidi et al. instead showed, via clonal
analysis, that NPCs face repetitive rounds of activation followed
by astrocyte differentiation and quiescence (6). Unfortunately,
different genetic labeling strategies target different populations
of NSCs and different activation states of the same population,
providing still complex and partial results.

Another plasticity feature for NPCs is related to the
intrinsic tri-lineage potential of endogenous NSCs in the adult
mammalian brain. However, although in vitro in culturing
conditions, NSCs, both human and mouse, give rise to three
different cell types, time-lapse analysis revealed generation
of either neurons or oligodendrocytes, not both (128). Vice-
versa, in vivo, different reports are available: population fate
mapping has described that SVZ-NSCs generate neurons and
astrocytes, not oligodendrocytes (6), while clonal analysis has

recently indicated that only neuronal lineages are generated
from individual NSCs (129). Cell commitment could derive
from a progressive restricted lineage profile occurring in
the adult (130). According to an alternative hypothesis, the
trilineage potential is shaped and maintained by the niche
environment (131).

The possibility that precursor cells can make new neurons is
important for their therapeutic potential in neurodegenerative
conditions. This potentiality has been exploited in preclinical
models for stroke (132, 133). Unfortunately, after stroke, only
few neuroblasts survive and differentiate, migrating from the
SGZ into the granule cell layer to form novel neural circuits
(134); these are not numerous enough to recover neurologic
functions under ischemic conditions, and only 0.2% of lost
neurons are replaced (135). Therefore, enhancing proliferation,
survival, and neuronal maturation of endogenous or transplanted
NSCs is important for brain disorders. Of note, while in animal
models of neurodegenerative diseases like stroke, depression,
epilepsy, Alzheimer’s, Huntington’s, and Parkinson’s diseases, as
well as in affected humans, progenitor cell proliferation and
neurogenesis occur in the SGZ (at a lower rate in the latter and
depending on the disease), in human, the SVZ is particularly
sensitive to neurodegeneration and more responsive than SGZ
via proliferation (136).

Under physiological conditions, the plasticity of NPCs is
exploited for brain development, learning, and memory (137,
138) and is mediated by the release of trophic factors. This feature
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is fundamental during neurogenesis; it is important to tune
synapse connections and to modulate neuronal networks during
healing processes after brain injuries. Synaptic connectivity
is indeed mediated by released neurotrophins (NTs), such as
brain-derived neurotrophic factor (BDNF), NT-3, and NT-4
(139, 140). Depending on the type and concentration, they
strengthen or weaken synaptic morphology (141) and synaptic
responses (142), leading to long-term potentiation (LTP) or
long-term depression (LTD). Moreover, they can form new
connections and pathways and can change the wiring of the
circuits (143). In severe pathological conditions, physiological
trophic effects will not provide sufficient tissue regeneration.
However, engraftment of exogenous stem cells, via the release
of neuroprotective, trophic, or immunomodulatory factors,
may stimulate endogenous neurogenesis, angiogenesis, and
neovascularization, helping in the healing processes (144) and
promoting the formation of new pathways around damaged
tissue. The mechanism is active in the perinatal period and early-
childhood, but it is progressively reduced in the brains of older
children and adult individuals (145).

Cell therapy could be more beneficial when stem cells are
engineered (146, 147). For example, elevated NT-3 expression
can provide a microenvironment favorable to the survival and
differentiation of transplanted neural stem cells (148).

For many (if not all) of the features above mentioned,
epigenetic regulation plays an important role in shaping the
response to the environmental cues of NPCs, depending on their
developmental stage (149, 150).

The plasticity of NPCs is also exploited by their capacity to
interact with scaffolds, as detailed below in the Spinal Cord Injury
(SCI) section.

THERAPEUTIC APPLICATIONS

Leveraging their plasticity, NPCs have been proposed for
(i) neurotoxicity testing, (ii) cellular therapies to treat CNS
conditions, (iii) neural tissue engineering and repair, (iv) drug
target validation and testing, and (v) personalized medicine, as
detailed below.

Since the developing CNS is more vulnerable to chemical
exposure, ad hoc pharmacological testing is required (151). To
address this goal, NSCs turned out to be useful for neurotoxicity
testing. Developmental Neurotoxicity (DNT) is indeed a function
not only of the type of exposure (dose, duration) but also of
the developmental stage of the brain at the time of exposure
(152). The blood–brain barrier (BBB) is not completely formed
until at least 6 months after birth, facilitating the entrance
of a chemical into the fetal/neonatal brain (153). Considering
the increase of children’s neurodevelopmental impairments
[e.g., learning disabilities, autism, attention deficit hyperactivity
disorder (ADHD)], likely due to exposures to chemicals with
DNT potential, concerns have been raised about the need
to identify suitable tools to properly ascertain drug toxicity.
Assessment has been primarily based on animal studies, but
the tests are very resource-intensive in terms of animals,
time, and costs (154, 155), underlining the need to develop

alternative approaches to identify DNT. In vitro work has been
performed using rodent and human neuronal and glial cellular
models (neuroblastoma cell lines) to evaluate (via dose-response
relationships) the impact of a compound on various stages
of brain development. Unfortunately, transformed/immortalized
cell lines present limitations, such as the expression of
proliferating genes that impact cellular response to chemical
exposure (156, 157). On the other side, human in vitro
neuronal cultures derived from neural progenitor cells (NPCs)
or brain fetal NPCs grown as neurospheres can better mimic
critical brain developmental processes, including proliferation,
apoptosis, migration, and differentiation (158). However, as
already mentioned, the ethical issues regulating the generation
and use of human embryonic or fetal-derived tissues have been a
matter of intense debate. Therefore, hiPSC-derived neuronal and
glial models have been proposed for their applicability in in vitro
pharmacological and toxicological studies. Indeed, human iPSC-
derived cultures of mixed neuronal and glial cells are suitable
for DNT, actually more so than for adult neurotoxic evaluation
(159) because hiPSC-derived cells (and hESCs) reproduce in
a more difficult way the terminal differentiation and the
functional characteristics of adult brain physiology even after
long term culture (160). Moreover, hiPSC-derived NPCs have
an earlier neurodevelopmental phenotype because, instead of
differentiating in culture into Nestin and GFAP+ like primary
human NPCs, they express TubβIII (161).

Current efforts in the context of hiPSCs to optimize culturing
and differentiation protocols are on-going to better mimic the
brain context using defined factors and co-culture conditions.
The generation of microglia-like cells from hiPSCs has helped to
introduce the immune component into neuroglia culture (162–
166). Further, hiPSCs have also been differentiated into brain
endothelial cells that mimic the functionality of the BBB in vitro,
adding further value to their use in DNT tests (167). Additionally,
three dimensional (3D) culture and cerebral organoids have
been developed and can recapitulate brain region connections
occurring in vivo in the cerebral cortex (168). Assessing
endpoints in 3D systems will be critical for guaranteeing the
applicability of hiPSCs for DNT in complex assays. Combining
in vitro DNT tests with in vivo epidemiological human data
is crucial for developing Integrated Approaches to Testing and
Assessment (IATA) for regulatory purposes (chemical screening,
hazard identification/characterization, or risk assessment) (169).

NPCs surely play a crucial role in CNS tissue repair, and
their intrinsic plastic nature gives them therapeutic potential
in neurological diseases via two Modes of Action (MoA)L cell
replacement and the bystander effect.

As regards cell replacement, NPCs are, in principle, a
suitable therapeutic strategy for those diseases in which
neurodegeneration and cellular loss are prevalent, not only
because they mediate cell replacement but also because they can
re-establish and/or support neuro-glial functional connections
lost during the pathological process. This approach was tested
decades ago, for example with fetal NSCs (170) transplanted
into subjects with Parkinson’s disease, and recently with hiPSC-
derived cortical precursors transplanted into an Alzheimer’s
mouse model (171). However, in the first case, transplanted
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stem cells or progenitors could not survive for long or form the
desired cell types. In the second case, human cells reproduced
the pathological phenotype of AD neurons, influenced by the
genetic background they had been transplanted into, suggesting
that the NPC cell replacement strategy is promising only when
extrinsic inflammatory neurodegenerative factors have faded in
the CNS site where transplant occurs or for cell-autonomous
neurological disorders. In general, transplanted NPCs give rise
to the atypical ectopic perivascular niche with intense cell-to-cell
cross-talk between transplanted NPCs and resident cells. NPCs
may either remain in the niche in an undifferentiated state or
move to acquire a terminally differentiated phenotype (172, 173)
and adapt their fate according to the region of engraftment,
developing neuronal or glial markers (174–176). For example,
transplanted NPCs have been shown to form functional gap
junctions to rescue host neurons and their projections in an
animal model of Purkinje neurodegeneration (177). Moreover,
human iPSC-derived NPCs have been shown to engraft and
establish long-distance connections in animal models (178, 179),
although concerns on the approach are still under evaluation (see
below). It is crucial to mention the importance of homotopic
rather than heterotopic transplantation to avoid tumorigenic
risk, since region-specific cues instruct the grafts of NSCs (180).
So far, this has been the predominant strategy.

Besides this evidence, NPCs might protect the CNS through
mechanisms alternative to direct cell replacement, which
implies the interaction of NPCs with both resident neural
and immune cells. Indeed, transplanted NPCs rather exert
immunomodulatory or neuroprotective functions modulating
the response of the pathological processes of astrocytes,
microglia, and inflammatory blood-born cells through paracrine
and endocrine mechanisms (bystander effects). NPCs, upon
interaction with CNS-resident cells, start releasing neurotrophic
factors, such as Nerve Growth Factor-NGF, BDNF, and Glial
Derived Neurotrophic Factor-GDNF, along with reactive species,
binding proteins, purines, or cytokines that might significantly
reduce scar formation and/or increase the survival and function
of endogenous glial and neuronal progenitors. This was originally
demonstrated in mice with primary inflammatory disorders,
including the animal model of MS (173, 181) or stroke (182,
183) and in mice with neurodegenerative diseases mediated
by reactive inflammation, such as Parkinson’s Disease (184).
Those properties have been then described for other stem
cells, such as mesenchymal stem cells (185). The concept that
therapeutic effect derives from released molecules opened the
possibility of using the “secretome” of stem cells, which implies
a cell-free therapeutic approach (186–191). The cross-talk with
the environment is fundamental for promoting the release by
NPCs of a context-specific arsenal of biological weapons, and
the impact of external cues on paracrine signaling has been
widely described recently (186, 192–197). However, most of
the environmental cues that trigger the production of bioactive
and restorative factors and the mechanisms they elicit in a
specific disease are still unknown. Therefore, triggering in
vitro the production of biologics and collecting and using the
secreted factors, although promising, remains a reductionist
approach, and efforts to efficiently transplant cells that sense

and respond in situ, ad hoc to the environment are still
most appropriate.

The immunomodulatory function is a feature of human
NPCs (198, 199) that enables them to inhibit T-lymphocyte
proliferation as well as dendritic cell maturation in vitro, to
ameliorate disease severity when transplanted systemically in
non-human primates with EAE, and to persist long-term, not
only in the host CNS but also in peripheral lymph nodes (200).
NPCs show pathotropism for the pathological sites, thanks to the
expression of chemokine receptors, cell adhesion molecules, and
integrins. Once transplanted (intravenously, i.v., or intrathecally,
i.t.) and after migration into inflamed CNS areas, NPCs do
no significantly differentiate but survive in close proximity to
blood vessels, where they interact with CNS-infiltrating blood-
derived inflammatory cells, endothelial cells, and CNS-resident
astrocytes and microglia, releasing therapeutic molecules (201).
In diseases characterized by primary inflammation, such as MS,
stroke, or spinal cord injury, a precise control of time and
route of cell administration is important to gain the therapeutic
effect because NPCs transplanted in immunocompetent mice
can be rejected in animals with ongoing neuroinflammation
(202), and the immunomodulatory and trophic support might
have a limited effect. Nonetheless, early NPC transplantation
is important because, immediately after CNS damage, genes
supporting tissue growth predominate over genes promoting
anti-plasticity and differentiation (203).

Examples of NPC cell replacement and bystander effects for
some diseases are detailed below.

Ischemic Stroke
Stem cell transplantation for stroke has represented a valuable
therapeutic strategy using various sources of NSCs. Human ESC-
derived NPCs have been implanted in rodents after cerebral
ischemia, and they have shown neural differentiation and
improved functional recovery (204, 205). Moreover, transplanted
and engrafted NSCs (i) reduced cell death and inflammation near
the graft (182) and promoted angiogenesis (206); (ii) promoted
proliferation and neuronal differentiation of endogenousNSCs of
the subventricular and hippocampal subgranular zone in rodents
(135), primates (207), and humans (208, 209); (iii) survived to
intracerebral transplantation in lesioned brain and differentiated
into mature neurons (178), integrating in host neuronal circuitry
to promote post-stroke morphological and electrophysiological
recovery (20), although several months later.

A key aspect for clinical applications of exogenous NPCs is
the route of administration, which can be: (i) intraparenchymal,
implying direct injection of the cell suspension close to the site of
injury; this strategy achieved motor and cognitive improvements
in grafted patients (210, 211), or (ii) intravascular, which is used
in a limited number of trials because it is more suitable for
mesenchymal stem cells. Although a greater number of cells can
be administered, unfortunately, the majority does not migrate
to the brain (212). Moreover, this approach retains a risk of
tumorigenicity due to the possibility of heterotopic graft (180).

Since NSC transplantation in preclinical stroke models
was able to promote the proliferation of endogenous NSCs
and the migration of endogenous neuroblasts to the damaged
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brain region where they differentiate into mature neurons (213),
activation of endogenous NPCs for remodeling neural tissue after
ischemic injury has also been considered as a therapeutic strategy
because it would not require transplantation of exogenous
cells and would avoid annexed risks of introducing exogenous
pathogens and of enhancing CNS immune surveillance,
inflammatory reactions, and tissue rejection, as well as bypassing
political and ethical concerns. In this perspective, treatment of
stroke conditions with growth factors, such as epidermal growth
factor (EGF) and fibroblast growth factor (FGF) promoted the
recruitment of endogenous NPCs and regenerated hippocampal
circuitry, restoring synaptic function after ischemia (214).

The option of using NSCs from iPSC in stroke in human
is a bit more complicated to implement, due to the advanced
age of most stroke patients, making it very difficult to efficiently
generate iPSCs from aged subjects that can be used to perform
autologous transplant. Moreover, although in some stroke
models they have shown efficacy (215), it remains questionable
whether iPSCs derived from aged patients are beneficial for
post-stroke functional recovery (216, 217).

A phase 1 study on stroke subjects using the CTX0E03 or
ReN001 cell line (ReNeuron) derived from genetically modified
human fetal neuroepithelium has been conducted (211).
c-mycERT AM technology was used to drive the expression
of an estrogen receptor under tamoxifen (4-OHT) (in culture
conditions) to control cell proliferation. Cell division was indeed
arrested, and differentiation into neuronal and glial lineages
was induced by removal of tamoxifen and of growth factors
from the medium. Eleven men were enrolled; they did not
receive any immunosuppressive therapy and were followed for
2 years. While immunological or severe adverse effects were not
recorded, modest improvements on the different motor scales
were observed [NIHSS, Barthel index, Ashworth Spasticity Scale
for the arm and leg, and a quality-of-life and health status
questionnaire, EuroQoL Five Dimensions (EQ-5D)].

Spinal Cord Injury (SCI)
NPCs have also been intensively studied and their use proposed
as a therapeutic strategy for traumatic spinal cord injury, despite
the complexity of the pathology (218).

NPCs have the potential to repopulate severely injured
spinal cord (197, 219), but their ability to survive and
reconstitute neural tissue and neural connections remains limited
by parenchyma loss and by the very toxic milieu (220).
Moreover, the epicenter of the primary lesion site rapidly
become necrotic, so NPCs may need an extracellular skeleton
to support survival and guide tissue reorganization. Biomaterials
represent a suitable support for cells, replacing the extracellular
matrix to favor cell survival, differentiation, re-vascularization,
and re-colonization of the tissue by glial and endothelial cells.
Moreover, complex biomimetic materials that can be produced
may guide axonal growth, restoring long-distance connections.
More preclinical research in this innovative field is definitely
required. Regenerative compounds, biomaterials, and tissue,
along with cellular transplants, have been used for SCI to
enhance neurite outgrowth and facilitate tissue regeneration
(221). Indeed, three-dimensional highly porous “scaffolds” made

of biodegradable copolymers have been tested and seeded with
NPCs into the lesion to facilitate donor cell survival, migration,
differentiation, functional structural repair, and neural circuit
activation (222). Recently it has been reported that NPC-
mediated functional recovery could depend on oligodendrocyte
differentiation (223). Although NPCs have been quite extensively
tested in SCI preclinical models, improvement for patients is
still limited. Okano’s team in Japan started a human clinical
study using allogenic iPSC-derived NPCs because costs, quality
testing, safety concerns, and time were not compatible with
autologous transplants. Nonetheless, when immunosuppression
was stopped, complications arose. Thus, so far, only autologous
iPSC-derived NPCs hold promise for repair of the injured spinal
cord (224).

Neurodegenerative Diseases
NSCs may be delivered by three different routes: intravenous,
intraparenchymal, or intra-cerebroventricular via lumbar
puncture injection. Preclinical data have shown that via
intraparenchymal delivery, NSCs migrate and spread along
the corpus callosum, driven by tissue-specific disease factors
(225). Via intravenous injection, NPCs cross the inflamed
BBB, reaching the demyelinating areas of the CNS in animal
models of multiple sclerosis (EAE) and eliciting therapeutic
actions (172, 200), although NPCs could exert their bystander
immunomodulatory effect also systemically. NPCs represent an
effective therapeutic tool in multifocal, primary inflammatory
diseases, such as multiple sclerosis, being able to migrate and
exploit their bystander effect. Currently, the preclinical results
in the MS context have been translated to the clinic using fetal
NPCs (NCT03269071) in primary progressive MS subjects.
fNPCs are currently used as a therapeutic choice also for
other neurodegenerative diseases (225), and several clinical
trials are in progress for neurodegenerative diseases, such as
Parkinson’s disease, ALS, tumors, and various pediatric diseases
(not reported).

Table 1 summarizes the ongoing non-pediatric clinical trials
selected on clinicaltrials.gov by using the key terms “neural
stem cells,” and “neural progenitor cells.” Around 30 clinical
trials reporting on transplant of NSCs have been registered on
clinicaltrial.gov.

The therapeutic plasticity of NSCs has been exploited in the
specific context of neural tissue engineering and repair. The
development of safe techniques to generate autologous NPCs
(iPSC technology and direct reprogramming of somatic cells)
opened up novel therapeutic opportunities in the regenerative
field. In particular, directly reprogrammedNeural Precursor Cells
(drNPCs) (226) are non-immunogenic and have a stable genome
and minimal risk of malignant transformation, if compared to
induced-pluripotent and embryonic stem cells, while exhibiting
self-renewal and multipotency.

To increase the therapeutic potential of NSCs and analogs,
combination therapy of cells with engineered and miniaturized
scaffolds improved spinal motor functions, as reported in a
meta-analysis of more than 70 preclinical studies (227), and
transplantation with tissue-engineered constructs outperformed
the efficiency of suspended cells alone (228). Similarly, there
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TABLE 1 | List of clinical trials using NPC/NSC in adult subjects.

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Age-Related

Macular

Degeneration

Study of Human Central

Nervous System Stem Cells

(HuCNS-SC) in Age-Related

Macular Degeneration

(AMD)

Phase 1

Phase 2

15 >50 12 Human neural

stem cell

Subretinal

space

(injection)

StemCells, Inc. NCT01632527 Completed

Amyotrophic

Lateral Sclerosis

Human Neural Stem Cell

Transplantation in

Amyotrophic Lateral

Sclerosis (hNSCALS)

Phase 1 18 20–75 36 Human fetal neural

stem cell

Lumbar spinal

cord (surgical

device)

Azienda

Ospedaliera Santa

Maria, Terni, Italy

NCT01640067 Completed

Amyotrophic

Lateral Sclerosis

CNS10-NPC-GDNF for the

Treatment of ALS

Phase 1 18 >18 12 Human neural

stem cell

Lumbar spinal

cord

(stereotactic

device)

Cedars-Sinai

Medical Center

NCT02943850 Active, not

recruiting

Amyotrophic

Lateral Sclerosis

Dose Escalation and Safety

Study of Human Spinal

Cord Derived Neural Stem

Cell Transplantation for the

Treatment of Amyotrophic

Lateral Sclerosis

Phase 2 18 >18 24 Human neural

stem cell

Spinal cord

(injection)

Neuralstem Inc. NCT01730716 Unknown

status

Amyotrophic

Lateral Sclerosis

Human Spinal Cord Derived

Neural Stem Cell

Transplantation for the

Treatment of Amyotrophic

Lateral Sclerosis (ALS)

Phase 1 18 >18 48 Human neural

stem cell

Lumbar spinal

cord (surgical

implant)

Neuralstem Inc. NCT01348451 Unknown

status

Brain Tumors Genetically Modified Neural

Stem Cells, Flucytosine, and

Leucovorin for Treating

Patients with Recurrent

High-Grade Gliomas

Phase 1 18 >18 always Human neural

stem cell

Intracranial City of Hope

Medical Center

NCT02015819 Active, not

recruiting

Brain Tumors A Pilot Feasibility Study of

Oral 5-Fluorocytosine and

Genetically-Modified Neural

Stem Cells Expressing E.

coli Cytosine Deaminase for

Treatment of Recurrent High

Grade Gliomas

Phase 1 15 >13 always Human neural

stem cell

Debulking

craniotomy

City of Hope

Medical Center

NCT01172964 Completed

Brain Tumors Neural Stem Cell Based

Virotherapy of Newly

Diagnosed Malignant

Glioma

Phase 1 36 >18 NA Induced neural

stem cells

Intracranially Northwestern

University

NCT03072134 Recruiting

(Continued)
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TABLE 1 | Continued

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Brain Tumors Carboxylesterase-

Expressing Allogeneic

Neural Stem Cells and

Irinotecan Hydrochloride in

Treating Patients with

Recurrent High-Grade

Gliomas

Phase 1 53 18–69 180 Human neural

stem cell

Intracranial City of Hope

Medical Center

NCT02192359 Recruiting

Ischemic Stroke Pilot Investigation of Stem

Cells in Stroke Phase II

Efficacy (PISCES-II)

Phase 2 23 >40 12 Human neural

stem cell

Intracerebral ReNeuron Limited NCT02117635 Completed

Ischemic Stroke Intracerebral Transplantation

of Neural Stem Cells for the

Treatment of Ischemic

Stroke

Phase 1 18 30–65 24 Human neural

stem cell

Intracranial

injection

Suzhou

Neuralstem

Biopharmaceuticals

NCT03296618 Active, not

recruiting

Ischemic Stroke Investigation of Neural Stem

Cells in Ischemic Stroke

(PISCES III)

Phase 2 110 35–75 12 Human neural

stem cell

Stereotactic

injection

ReNeuron Limited NCT03629275 Recruiting

Ischemic Stroke A Clinical Study of iNSC

Intervent Cerebral

Hemorrhagic Stroke

Early

Phase 1

12 30–65 12 Induced neural

stem cells

Intracerebral

Transplantation

Allife Medical

Science and

Technology Co.,

Ltd.

NCT03725865 Not yet

recruiting

Parkinson’s

Disease

A Study to Evaluate the

Safety and Efficacy of

Human Neural Stem Cells

for Parkinson’s Disease

Patient (hNSCPD)

Phase 2

Phase 3

12 35–70 6 Human fetal stem

cell

Nasal

injection

Second Affiliated

Hospital of

Soochow

University

NCT03128450 Unknown

status

Parkinson’s

Disease

A Study to Evaluate the

Safety of Neural Stem Cells

in Patients with Parkinson’s

Disease

Phase 1 12 30–70 12 Induced neural

stem cells

Intracerebrally

to the

striatum and

substantia

nigra

Cyto Therapeutics

Pty Limited

NCT02452723 Active, not

recruiting

Parkinson’s

Disease

A Study on the Treatment of

Parkinson’s Disease with

Autologous Neural Stem

Cells

Early

Phase 1

10 18–60 12 Induced neural

stem cells

NA Allife Medical

Science and

Technology Co.,

Ltd

NCT03815071 Not yet

recruiting

Parkinson’s

Disease

Transplantation of Neural

Stem Cell-Derived Neurons

for Parkinson’s Disease

Phase 1

Phase 2

12 35–85 6 Human neural

stem cell

Basal ganglia NeuroGeneration NCT03309514 Not yet

recruiting

Parkinson’s

Disease

Safety and Efficacy Study of

Human ESC-derived Neural

Precursor Cells in the

Treatment of Parkinson’s

Disease

Phase 1

Phase 2

50 50–80 12 Human embryonic

stem cell-derived

neural precursor

cells

Intra-striatal

injection

Chinese Academy

of Sciences

NCT03119636 Recruiting

(Continued)
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TABLE 1 | Continued

Disease Title Trial

phase

N◦

patients

Age Follow-up

(months)

Cell type Site and

mode of

administration

Sponsor NCT

Number

Status

Pelizaeus-

Merzbacher

Disease (PMD)

Long-Term Follow-Up Study

of Human Stem Cells

Transplanted in Subjects

with Connatal

Pelizaeus-Merzbacher

Disease (PMD)

Phase 1 4 Child,

Adult,

Older

Adult

4 Human neural

stem cell

Brain StemCells, Inc. NCT01391637 Completed

Peripheral Arterial

Disease

Safety Trial of CTX Cells In

Patients With Lower Limb

Ischemia

Phase 1 5 >50 12 Human neural

stem cell

Gastrocnemius

muscle

ReNeuron Limited NCT01916369 Completed

Progressive

Multiple Sclerosis

Neural Stem Cell

Transplantation in Multiple

Sclerosis Patients (STEMS)

Phase 1 12 18–55 24 Human

fetal-derived

Neural Stem Cells

Intrathecal IRCCS San

Raffaele

NCT03269071 Enrolling by

invitation

Secondary

Progressive

Multiple Sclerosis

Safety Study of Human

Neural Stem Cells Injections

for Secondary Progressive

Multiple Sclerosis Patients

(NSC-SPMS)

Phase 1 24 18–60 12 Human neural

stem cell

Intraventricular Casa Sollievo della

Sofferenza IRCCS

NCT03282760 Active, not

recruiting

Spinal Cord Injury NeuroRegen Scaffold,

Combined with Stem Cells

for Chronic Spinal Cord

Injury Repair

Phase 1

Phase 2

30 18–65 24 Human neural

stem cell

Spinal cord

(injection)

Chinese Academy

of Sciences

NCT02688049 Enrolling by

invitation

Spinal Cord Injury Long-Term Follow-Up of

Transplanted Human

Central Nervous System

Stem Cells (HuCNS-SC) in

Spinal Cord Trauma

Subjects

NA 12 18–65 NA Human neural

stem cell

Intramedullary

spinal cord

transplantation

StemCells, Inc. NCT01725880 Terminated

Spinal Cord Injury Safety Study of Human

Spinal Cord-derived Neural

Stem Cell Transplantation

for the Treatment of Chronic

SCI (SCI)

Phase 1 8 18–65 54 Human neural

stem cell, spinal

cord derived

N/A Neuralstem Inc. NCT01772810 Recruiting

Spinal Cord Injury Study of Human Central

Nervous System Stem Cells

(HuCNS-SC) in Patients with

Thoracic Spinal Cord Injury

Phase 1

Phase 2

12 18–60 48 Human neural

stem cell

Intramedullary

transplantation

StemCells, Inc. NCT01321333 Completed
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has been recent testing of a “liquid matrix” strategy, which
is based on platelet-rich plasma (PRP)-derived hydrogel on a
solid anisotropic complex scaffold prepared using a mixture
of recombinant analogs of the spider dragline silk proteins
which significantly stimulated proliferation and neuronal
differentiation (229). Moreover, self-assembling peptides (SAPs)

have been used to generate hydrogel to support human NSC

differentiation into neurons, in vitro, in 3D, and to test the

neuroregenerative potential in rat spinal cord injuries (230).

Further, graphene composites have been optimized to promote
human NSC differentiation and to increase conductivity and
electroactivity (231, 232), a useful strategy for peripheral nerve
recovery (233).

Lastly, the therapeutic plasticity of NSCs can also be exploited

in drug target validation and testing. Indeed, primary cells

have the best physiological relevance, but they are limited

in availability, expansion, and reproducibility, and for some

diseases, they are not accessible at all. In contrast, stem cells can

be propagated for a long period of time, can be cryopreserved,
and can be differentiated in vitro into a particular lineage to

model a specific disease. Moreover, research and developmental

efforts have been put in place in biotech and pharmaceutical

companies to generate cells for high-throughput screening (234,

235). Further, since iPSCs from patients can be differentiated

into specific lineages, patient-specific derived cells have been

proposed for personalized medicine. The technology is surely
going to translate to the clinic for monogenic rare hereditary
diseases, where iPSCs provide a model to compensate for the lack
of predictive human samples or for in-vivo preclinical models,
since CRISPR/Cas9 technology or genome manipulation can
help to introduce mutations of interest (179, 236).

Moreover, the possibility of assessing the molecular
consequences of drug testing at specific stages of differentiation
will help to identify active pathways and possible mechanisms
for target identification (237). Bioinformatics, machine-learning
algorithms, and big data tools for pattern recognition can be
efficiently used for data analysis, orthogonal target validation,
and biomarker discovery.

TECHNOLOGICAL ADVANCES IN THE
FIELD OF NSCs THAT LEVERAGE THEIR
THERAPEUTIC PLASTICITY

Recent technological advances in the field of stem cells and
molecular biology have helped to potentiate their therapeutic
efficacy. For example, gene therapy through the over-expression
of key genes that encode for proteins with bystander potential
has recently been proposed (gene therapy). This strategy
has been applied to exogenous NSCs for important growth
factors like NGF and BDNF. Indeed, adult human olfactory
bulb neural stem/progenitor cells expressing NGF increased
their proliferation and oligodendrocytic differentiation potential
(238), while ESC-derived NPC expressing BDNF presented
enhanced neuronal and striatal in vivo differentiation and
turned out to be useful in Huntington’s disease (239). Similarly,

transplant of PSA-NCAM neural progenitors expressing BDNF
was therapeutically useful in a mouse model of spinal cord injury
(240), while embryonic rat NSCs expressing BDNF stimulated
synaptic protein expression and promoted functional recovery
in a rat model of traumatic brain injury (241). Of note, tumor
formation was completely absent (242). Overexpression of GDNF
was instead effective in stroke (243). The strategy has been
applied not only to growth factors but also to transcription
factors, such as Nurr1 (244), a critical gene in the embryonic
differentiation of dopaminergic neurons (245).

Similarly, recombinant adeno-associated virus rAAVr3.45-
IL10-infected human NSCs (HFT13) have been transplanted to
evaluate their potential in ischemic injuries. Overexpressed IL10
had immunomodulatory effects and accelerated the recovery
of neurological deficits and the reduction of brain infarction
volume (246).

Engineering strategies using genome editing via CRISPR/Cas9
are being deployed on NSCs to precisely insert a gene
of interest in the safe harbor human and mouse loci of
AAVS1 and Rosa26, to perform a biallelic knockout of
neurodevelopmental transcription factor genes, and to knock-
in tags and fluorescent reporters (247). More recently, gene
targeting at multiple loci using Cas9 showed great promise for
a wide range of neurodegenerative disorders and injuries of
the CNS, including lysosomal storage disorders (248). More
sophisticated technological advances in the genome-editing field
are being developed (249). Leveraging CRISPR/Cas9 for genes
with ascertained therapeutic potential and with a spatio-temporal
control might be possible to further harness the therapeutic
plasticity of NPCs (Figure 9).

The discovery of induced pluripotency, which forces
terminally differentiated adult somatic (i.e., blood or fibroblasts)
cells into the pluripotent state, has provided the possibility of
modeling complex neurological disorders (250). Differentiated
cells are useful for screening drug candidates that can rescue
molecular, cellular, and functional abnormalities in disease-
specific hiPSC-derived cell types and offer the possibility of
performing personalized medicine (251). In this same context,
reprogramming or direct conversion of somatic cells using a
non-viral system (liposome or cationic polymers) represent an
interesting alternative in the perspective of clinical applicability
(due to the reduced risk of tumor formation). Similarly,
several types of nanoparticles useful for reprogramming have
been developed. Graphene oxide-polyethylenimine complexes
represent an efficient and safe system for mRNA delivery
for direct reprogramming of somatic cells to induce neurons
(252). Overall, on one side, the possibility of expanding
in vitro hiPSC-derived NPCs opens up the perspective of
autologous transplant and, on the other, NPCs derived from
cells obtained with the new reprogramming strategy might
overcome current hurdles associated with NPCs of conventional
origin (both primary and from reprogrammed somatic
cells) (253, 254).

It is becoming more and more important to be able to
image the behavior of adult NSCs in vivo to explore how
and where activation and division occur (255). This might be
achieved with powerful microscopic and technological advances.
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FIGURE 9 | Engineering strategy to potentiate the therapeutic plasticity of neural stem cells. Transplant of NPCs in suitable preclinical neurodegenerative inflammatory

and demyelinating disease models [stroke, Pelizaeus-Merzbacher disease (PMD), or multiple sclerosis], cell recovery from the pathological tissue, and then

sequencing allow the identification of key molecules that exert the therapeutic effects. Further, NPCs can be engineered to potentiate ad hoc the expression of

therapeutic targets and rescue the brain-healthy phenotype.

With this aim, novel imaging sensors and tools have been
developed for MRI technology, which provides excellent image
quality, sensitivity, and 3D spatial resolution. Gadolinium (III)
(Gd3+) is the heavy metal contrast agent conventionally used
in clinical and animal experimental MRI. Manganese (Mn2+)
is another useful positive T1 contrast agent that is widely
used (256), similarly to iron oxide particles (SPIO), which
have even higher sensitivity, better biocompatibility (function
and phenotype), and increased paramagnetic power (257).
Nonetheless, there are limitations in labeling stem cells with
magnetic contrast agents because the label could be diluted due
to stem cell proliferation after transplant. Moreover, particle
loading allows stem cell tracing, but it is not informative
regarding the survival state of stem cells and of possible
changes induced in and by the microenvironment. Indeed,
the signal could come from dead transplanted cells or cells
phagocytized by microglia (258). MRI has also been improved
using super-paramagnetic nanoparticles (MPI) (259) not present
in biological samples, such as fluorine-19 (19F), a strategy that
is suitable for quantification and is devoid of the ambiguity
of contrast tracking (260). In addition, the resolution has
been augmented by increasing the number of coil receiver
channels, the strength of the magnetic field, and the number of
image acquisitions.

Nuclear medicine imaging techniques, such as positron
emission tomography (PET) and Single-Photon Emission
Computed Tomography (SPECT), represent other promising

imaging modalities for tracking stem cells. SPECT has gamma
camera detectors for gamma-ray emissions from the tracers (up
to two different radioisotopes at the same time) injected into
the patient. PET instead measures the decay effect of different
radioisotopes that emit positrons, which interact with electrons
from the body, are annihilated, and generate two gamma photons
emitted in opposite directions.

111In-oxyquinoline, 99mTc-HMPAO, and, mainly for the CNS,
18F-FDG or 2-deoxy-18F-FDG, 3′-deoxy-3′18F-FDG have been
used for non-invasive imaging of NSC proliferation with PET
(261, 262). It is still crucial to identify the safe dose of
a radiotracer.

As an alternative to isotope cell loading and to overcome
problems associated with particle loading, MRI reporter genes
have been introduced for stable and robust tracking of implanted
stem cells (263). The “imaging reporter genes” strategy consists
of the production of a particular protein that interacts with a
radioactive probe whose signal can be detected by PET/SPECT
for a long time without being limited to the half-life of the
tracer. With this approach, only living cells will be detected,
excluding false signals (264). Cell labeling has been performed
with green fluorescent protein (GFP) and red fluorescent protein
(RFP), as well as with some fluorescent dyes, such as DiD, Dil,
and indocyanine Green or semiconductor nanocrystals called
quantum dots (QD). QDs emitting in the Near-infrared-(NIR)
have been already used to track transplanted cells in the human
brain (265).
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Moreover, the introduction of a reporter gene that encodes for
a special luciferase protein (bioluminescence imaging, BLI) has
been widely applied in preclinical studies of stem cell imaging
in the brain (266). Combining the high anatomical spatial
resolution of MRI and the high sensitivity of PET with BLI was
very useful for sensitivity and precise localization. Multimodality
imaging can also be used, combining fluorescent QDs with
magnetic nanoparticles (267).

Single-cell sequencing represents another fundamental
technological advancement that enables the temporal and
spatial dynamics of stem cells to be exploited. Since NPCs
are significantly heterogeneous, each line maintained in vitro
would need to be deeply characterized to assess the level
of heterogeneity. Further, single-cell sequencing ex vivo on
recovered transplanted cells will help develop an understanding
of the therapeutic profile exploited in specific pathological
conditions (Figure 9).

Obtaining data at the single-cell level helps with
understanding how different types of brain cells develop
and with identifying key genes to be used for cell engineering.
Studies in drosophila represent an excellent model system
with which to investigate how spatial and temporal factors are
integrated during neurogenesis and can be translated to deep
characterization in mammals (268).

PROS AND CONS OF HARNESSING
THERAPEUTIC PLASTICITY

Harnessing neural plasticity is important due to its potential
to support brain healing and rewiring to fight neurological
and neurodegenerative diseases and, given the physical-chemical
interaction between the SVZ and the striatum, to tune
neuropsychological behavior that is often associated with
neurodegenerative disorders. Indeed, the neural niche represents
a reservoir of cues that influence proper brain cognitive
functions and decisions. An altered concentration of released
soluble factors by the stem niche may be responsible for
unhealthy maintenance of striatal interneurons and for modified
behavioral adaptation and striatum functions, ultimately leading,
in extreme conditions, to obsessive–compulsive disorders. Of
note, alterations in adult neurogenesis have been linked to
psychiatric disease in humans (269, 270). According to the
neurogenic hypothesis, major depressive disorder (MDD) is
linked to impairments of adult neurogenesis in the hippocampal
DG, and antidepressants are efficacious because they increase
neurogenesis (271).

Harnessing therapeutic plasticity is tantalizing, not only to
balance neuronal or neurodegenerative disorders but also to open
up new learning opportunities in adulthood when conventional

FIGURE 10 | NSC plasticity as a function of origin (x-axis) and therapeutic use (y-axis). NSCs originate both from physiological niches and from in vitro manipulation.

Their therapeutic potential is exploited with different strategies, as depicted in the lower part of the illustration.
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pruning, mediated by the environmental inputs in the early phase
of brain development, has already occurred and connections have
already been established, through a “use it or lose it” principle.
Further, this approach can be translated to aging conditions and
might be useful for preserving neuronal integrity.

Plasticity is important, but the brain also needs stability.
Pharmacological or genetic modification can indeed increase
plasticity, but a targeted and balanced (in time and amount)
intervention is fundamental because excessive release
of trophic factors might be detrimental. For example,
brain overexposure to TGFβ2 as an anti-inflammatory
approach (272) might cause a malignant TGFβ2 autocrine
loop that leads to glioblastoma (273). Excessive plasticity
could also be detrimental because massive memory
capabilities [Savant abilities (274)], a reflection of over-
plasticity, are linked to autistic profiles, because plasticity
degenerates in chaos (275). For those reasons, engineered
molecular tools should be responsive to and controlled by
environmental signals.

Adult NSCs reside in restricted areas of the adult CNS
and have limited capacity to proliferate (276). Thus, in vitro
expansion is a limiting factor, and growth in suspension can be
troublesome. Therefore, culture in adhesion has been developed
using different coatings with the ultimate goal of maintaining
stable expression of stem markers, such as Nestin and Sox2.
Moreover, it is always important to consider that neurospheres
may be heterogeneous because they are not derived from a single
NSC. On the other hand, a limited proliferation capacitymight be
advantageous for ensuring that NSCs do not present tumorigenic
potential, and genetic stability from one passage to another is
likely to be maintained.

From the perspective of expanding neural precursors in
culture at large scale, the iPSC technology has helped with
the generation in vitro of expandable and freezable samples.
However, although iPSCs are an important source of NPCs,
caution is necessary because of the potential risks at the
genomic and epigenomic level (277). Further, NSCs derived

from iPSCs could cause rejection, so they might need to be
combined with an immunosuppressant. The development of
non-immunogenic iPSC-based therapies is very important to
minimize the probabilities of patient rejection. Nonetheless,
NSCs remain the best solution for neurological diseases,
compared with other stem cell types, since recovery can be
promoted not only by indirect paracrine effects but also by
direct neural cell replacement, which is not supported by
other sources of stem cells of another developmental origin,
making the latter unable to properly differentiate in the
CNS (Figure 10).

CONCLUSIONS

The discovery of neural stem cells and their potential has
revived the field in terms of functional cell replacement,
and concerns related to the risk of tumor formation have
been dampened because the majority of NSC transplantation
studies revealed no tumor formation. NSCs are a promising
therapeutic approach for neurodegenerative disease. They can
differentiate and replace the lost neural tissue as well as secreting
neurotrophic factors that can protect or regenerate. Nonetheless,
further studies are needed to quantify doses and administration
periods and to define the most promising cellular NSC source
considering also combined therapies to take NSCs/NPCs close to
pharmacological prescription.
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Microglial heterogeneity has been the topic of much discussion in the scientific

community. Elucidation of their plasticity and adaptability to disease states triggered

early efforts to characterize microglial subsets. Over time, their phenotypes, and

later on their homeostatic signature, were revealed, through the use of increasingly

advanced transcriptomic techniques. Recently, an increasing number of these “microglial

signatures” have been reported in various homeostatic and disease contexts.

Remarkably, many of these states show similar overlapping microglial gene expression

patterns, both in homeostasis and in disease or injury. In this review, we integrate

information from these studies, and we propose a unique subset, for which we introduce

a core signature, based on our own research and reports from the literature. We describe

that this subset is found in development and in normal aging as well as in diverse

diseases. We discuss the functions of this subset as well as how it is induced.

Keywords: microglia, CD11c microglia, heterogeneity, CD11c, transcriptomics, subset, DAM, single cell

INTRODUCTION

The term “microglia” was brought to the scientific community’s attention a century ago with its first
use by Pio del Rio-Hortega (1), who strived to distinguish them from oligodendrocytes. His early
work also highlighted their phagocytic ability, as well as their potential to undergo morphological
changes. This early description led the community to consider microglial cells as a homogeneous
population, even though the first description of a microglial subset (“satellite microglia”) appeared
as early as 1919 (1).

Microglia originate from yolk-sac progenitors that start migrating toward the fetus around mid-
pregnancy. These progenitors reach the embryonic brain around embryonic day (E) 9.5–E10.5
(2, 3) until the formation of the blood–brain barrier around E13.5–E14.5 in themouse, and between
the 4th gestational week to the 24th gestational week in the human (4, 5). As such, they are among
the first cells to colonize the developing brain, and they participate in central nervous system (CNS)
development. For instance, they contribute to refine brain wiring through enhancing both synapse
formation (6, 7) and elimination (8, 9), they modulate axonal growth (10, 11), they secrete factors
promoting neuronal progenitors survival (12) helping with neuronal positioning (11, 13), and they
participate in the clearance of live and apoptotic cells during development (14). Microglia also take
on physiological functions in the adult CNS, as they constantly sense their immediate environment,
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in a so-called “never-resting state” (15, 16). Our knowledge
of microglial physiology and process motility relies heavily on
studies in anesthetized animals. Understanding of microglial
functions in the steady state is challenged by a recent study
showing that microglial process motility and morphology are
affected by the wakefulness state of mice (17). Aside from
this surveillance immune function, they are also fundamental
for regulation of social behavior, learning, and memory, as
these functions are impaired upon their depletion and restored
after repopulation (18). Microglial roles in injury and disease
contexts have been investigated extensively, with new advances
contributing to deepen our understanding of Microglia and their
effect on other glial cells [reviewed in Greenhalgh et al. (19)].

These physiological functions advanced our view of microglia,
from being initially thought of as exclusively sentinel cells
reacting in the context of injury. This dated view on microglia
led to the superposition of macrophage M1/M2 phenotypes
onto them (20), which was an early attempt to grasp the
extent of microglial diversity. This classification is however
mostly obsolete nowadays, as it was proved to be simplistic and
disconnected from in vivo reality (21).

Indeed, the variety of functions microglia take on in space,
time, and health states along with reports of sex differences in
microglial function have led the community to infer a greater
microglial heterogeneity than initially thought. With the progress
of technology, investigating such diversity has become possible,
notably through the development of high-throughput techniques
such as mass cytometry and with the recent advances in
transcriptomic studies with single-cell RNA-sequencing (RNA-
seq). These technologies allowed the identification of microglial
signatures linked to their “activation state.” In 2014, Butovsky
et al. described a “homeostatic” microglial signature, comparing
microglia with monocytic populations and other CNS cells
(22). This signature includes genes such as P2ry12, Fclrs,
Tmem119, Hexb, Mertk, Cx3cr1, Csf1r, etc. that have been
used in numerous studies thereafter to identify microglial
cells. This was a fundamental step in distinguishing resident
microglia from other tissue-resident macrophages and infiltrates
in disease context. This “homeostatic” signature was more
recently revised and extended to developmental stages in
addition to adulthood by Matcovitch-Natan et al. (23). In
this study, single-cell RNA-seq helped associate the microglial
signature identified at each different age to the potential functions
these cells take on during life. They pinpointed three different
temporal stages of development, each linked to a particular
signature: early microglia associated with proliferation and
differentiation, pre-microglia related to neuronal development,
and adult microglia.

It has recently been suggested that microglial heterogeneity
peaks early during development and then reaches a minimum
in the homeostatic adult brain, only to regain diversity in
old age (24). In addition, some microglial subtypes have been
based on surface markers and sometimes function [discussed in
Stratoulias et al. (25)]. This has been mostly achieved through
systematic transcriptional investigation of microglia in different
contexts. However, because every study is done with different
techniques (microarrays, bulk RNA-seq, single-cell RNA-seq,
etc.), on different kinds of samples (whole brain, sorted microglia

based on different gating strategies, microdissected microglia,
sorted nuclei, etc.), and in different animal models, there is a
risk for confusion of data. We believe that there is a need for
an overview—by looking at the big picture, common patterns
can be identified between studies that might otherwise have
been overlooked.

In this review, we summarize and interpret transcriptomic
studies on microglia from development, homeostasis, and
disease states to bring to light a subpopulation common to
all these different states. We discuss the factors inducing this
subpopulation and its functional importance in all of the
studied conditions. Finally, we provide a core signature for this
subset and propose to systematize and unify the naming of
this microglial subpopulation to clarify the literature and avoid
redundancy in future studies. We propose to use a name already
used in numerous studies and that accounts for these cells’
expression signature: CD11c+microglia.

CD11c+ MICROGLIA HISTORY,
DISCOVERY, AND IDENTIFICATION

For long, microglia have been considered simply as macrophages,
due to the belief that all macrophages emerged from the bone
marrow. Consensus that a subset of microglia expressed CD11c
was therefore at first difficult to achieve. CD11c was widely
accepted as a marker for dendritic cells (DCs), to the extent
that some studies have used it as the sole identifier for DCs.
Added to this was the constant difficulty of discriminating CNS-
resident parenchymal microglia from blood-derived myeloid
cells, with which they share many markers [reviewed in Amici
et al. (26)]. Until recently, it was indeed not possible to reliably
discriminate microglia, especially activated microglia, from
blood-derived monocytic myeloid cells, using morphology or
routine myeloid markers. Panels of differentially expressed genes
that can be used to distinguish microglia including TMEM119
(27) and the homeostatic marker P2RY12 (22) were however
recently identified and validated in both homeostatic and disease
conditions (28).

To our knowledge, the first observation of microglia
expressing CD11c was made in human multiple sclerosis (MS)
tissue by immunohistochemical analysis (29). One, however,
cannot be completely certain of the exclusive microglial nature
of the cells identified in this study based on the markers used
and our current knowledge of myeloid cell marker expression
patterns. The first report to explicitly identify CD11c+ cells in
the CNS as microglia came from Butovsky et al. in 2006 (30).
They identified populations of CD11c+ cells in a mouse model
for Alzheimer’s disease (AD) as microglia, based on their location
and co-expression of isolectin B4 and CD11b, although these
cells showed a dendritic morphology. The major point of interest
in that study was the observation that all MHC-II+ microglia
that engulfed amyloid β in the brain of glatiramer acetate (GA)-
vaccinated transgenic (Tg)-AD mice co-expressed CD11c. Also,
relevant to our subsequent studies, these cells could be stained
with an antibody specific for insulin-like growth factor 1 (IGF1).

A “gold standard” for microglial identification remains their
relatively low level of expression of CD45 in flow cytometry
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analyses (31). In the course of study of glial responses in the
dentate gyrus to axonal transection in the entorhinal cortex
(the Perforant Path lesion model), we noted a subpopulation of
CD45low CD11b+ CD11c+ cells in flow-cytometry profiles of
cells isolated from lesion-reactive hippocampus. Their functional
significance and whether they derived intraparenchymally or by
immigration from bone marrow were not determined (Babcock
and Owens, unpublished). Exactly similar cells were then
observed in cuprizone-demyelinated corpus callosum (32, 33).
These were described to express slightly higher levels of CD45
than their CD11c− counterparts, while remaining within the
CD45low gate (33, 34). In addition, they did not express CCR2
characteristic for infiltrating leukocytes and expressed high levels
of CX3CR1 supporting their microglial status (33). Further
analysis showed that CD11c+ microglia were also induced in
experimental autoimmune encephalomyelitis (EAE) (33–35) and
a mouse model for neuromyelitis optica (NMO) (33), as well as
during postnatal development (24, 35–37).

In older studies, ambiguity in assigning CD45 levels resulted
in CD11b+ CD11c+ populations in CNS of mice with EAE or
infected with Toxoplasma gondii being identified as DCs (38),
although, with hindsight, consideration of bimodal CD45 profiles
allows that at least some of them may have been microglia.
The fact that CD11c+ microglia express slightly higher CD45
levels than restingmicrogliamay have contributed to uncertainty,
and claims that DCs derived from microglia (38, 39) may
need re-evaluation.

Relative CD45 levels as detected by flow cytometry are
not as useful for histological discrimination. Depending on
the antibodies and staining protocols used, microglia may
even not be detected as CD45+ cells, or else cannot be
distinguished from other CD45hi cells. Similarly, CD11c
promoter-driven fluorescent reporter transgenic mice cannot
discriminate between the many cell types that can express
or upregulate CD11c without co-staining for lineage-specific
markers. Identification of CD11c+ microglia in such mice relies
on interpretation of sometimes fortuitous observations that
include consideration of a cell’s morphology and location. Using
an EYFP-CD11c transgenic strain, Bulloch et al. identified a
small fraction of CD11c+ microglia that were immunoreactive
for Mac-1, IBA1, CD45, and F4/80 (40). The parenchymal
juxtavascular IBA1+ CD11b+ GFP-CD11c+ cells described by
Prodinger et al. in a CD11c-GFP reporter mouse likely included
microglia, although in a non-diseased mouse, they would only
account for around 2% of them (41). Flow-cytometric analysis
confirmed CD45low GFP-CD11c+ cells in the CNS of these mice
(42). The fact that they were MHC II-negative likely reflects that
they derived from non-diseased tissue, unlike the EAE-derived
cells that we described (34). Typical microglia markers and their
functions are listed in Table 1.

CD11c+ MICROGLIA IN HOMEOSTATIC
CONDITIONS

In Development
Even before microglia were formally identified, the presence of
fat-laden cells had been reported and suggested to be a part of

TABLE 1 | Microglia markers and their function.

Marker Main functions References

Common in

microglia

CD45 Pan-leukocyte protein with

tyrosine phosphatase

activity

Controls adhesion

in macrophages

(43)

CD11b Integrin family member

Pairs with CD18 to form

CR3, a receptor for

complement C3bi,

mediating

complement-coated particle

uptake

Plays a role in

synaptic pruning

(44)

CX3CR1 Fractalkine receptor

Controls microglia activation

Mediates microglia–neuron

interaction

Participates in chemotaxis

(45)

IBA1 Calcium-binding protein

Key molecule in membrane

ruffling and phagocytosis

(46)

TMEM119 Surface protein

Unknown function in

the CNS

(27)

FCRLS Scavenger receptor

Unknown function in

the CNS

(22)

Specific to

CD11c+

microglia

CD11c Integrin family member

Pairs with CD18 to form

CR4, a receptor for

complement C3bi,

mediating

complement-coated particle

uptake

Regulates the activation and

proliferation of leucocytes

(47)

CLEC7A Pattern recognition receptor

Regulates autophagy,

phagocytosis, and the

respiratory burst

(48)

SPP1 Secreted

glycophosphoprotein

Plays a role in in cellular

motility, adhesion and

survival

(49)

the normal developing CNS (50–52), and to participate in either
cell death processes (53) or myelin formation (54–56). Early after
the initial description of microglial cells, neuroanatomists began
to track and map microglia in the CNS. Del Rio-Hortega was
the first to describe “fountains of microglia” in the developing
brain, having amoeboid morphology and being preferentially
located in the white matter (57). Already in 1925, Penfield
reported that what he describes as “neuroglia of mesodermal
origin” “were variously considered to be normal and having to
do with myelination or to indicate an abnormal inflammatory
process” (58).

In the mid- to late 1970s, with del Rio-Hortega’s “fountains
of microglia” in mind, these cells were investigated again using
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light and electron microscopy. Most studies describe round,
amoeboid, highly vacuolated cells with fat-containing granules,
which are found in developing white matter, particularly along
unmyelinated axonal tracts in the corpus callosum of rabbits
(59), rats (60), mice (61), birds (62), fish (63), and humans
(64), as opposed to more highly ramified cells present in the
gray matter. In all these studies, amoeboid or ovoid-shaped
microglia invade the white matter before disappearing when
increasing numbers of ramified microglia colonize the gray
matter (peaking around postanatal day (P) 5 and disappearing
around P10 to P15 in rodents). Multiple studies support this
finding and extrapolate their potential function, stating either
that they have enhanced phagocytic abilities for the elimination
of apoptotic material coming from normal developmental cell
death or that they participate in myelination (59, 60, 65–68).
This involvement in myelination was reinforced by a study by
Pont-Lezica et al. showing that microglial alteration early in
development leads to impaired corpus callosum fasciculation
(11). Their phagocytic abilities along with their morphology
provoked debates regarding their origin (68), their fate (66),
and even their microglia status with some studies modifying the
nomenclature by referring to them as “brainmacrophages” rather
than “amoeboid microglia” (67, 68).

With the new notion of microglial phenotypes emerging,
these early amoeboid microglia were hypothesized to have
higher “activation” levels before becoming “deactivated” in a
controlled manner, as this was believed to be temporarily helpful
to scavenge debris coming from developmental cellular death.
To corroborate this hypothesis, Hristova et al. attempted the
first phenotypic analysis of these cells, and reported expression
of high levels of integrins alpha X (Itgax, CD11c), alpha 4
(Itga4), alpha 5 (Itga5), and beta 2 (Itgb2) in microglia from
periventricular white matter in comparison to cortical microglia
at P7 by staining quantification in IBA1+ cells (37). In addition,
in situ hybridization clearly showed transient Igf1 and colony-
stimulating factor 1 (Csf1) mRNA expression within microglial
cells in the corpus callosum and periventricular white matter
until approximately two postnatal weeks (37). In this study,
expression of Igf1 and Csf1 by microglia were hypothesized to
play a protective role, preventing axonal damage for instance,
which has since then been confirmed in a study by Ueno
et al. (12).

This finding was reinforced by our own study showing that
microglial cells expressing high levels of Itgax and Igf1 are
present in the white matter (cerebellum and corpus callosum)
of developing mouse brains particularly between P3 and P5
where they make up almost 20% of all microglia and decrease
in numbers already at P7 before being almost completely
undetectable by P28 (35). Presence of Igf1-expressing microglia
in these locations in P5 brains was further confirmed by in
situ hybridization (69). We performed RNA-seq on these cells
between P3 and P5 after FACS-sorting based on CD45dim

CD11b+ CD11c+ gating comparing them to their CD11c−
counterparts. We identified a robust neurodevelopmental gene
signature for developmental CD11c+ microglia, including
factors involved in astrocyte and neuronal differentiation,
tissue remodeling, and myelinogenesis accompanied by

downregulation of immune function-related genes. Of note,
Itgax, Itga4, Csf1, and Igf1, which were highlighted in the
Hristova study, were also part of this signature. Importantly,
we demonstrated that Igf1 expression by CD11c+ microglia
during development is crucial for primary myelination. Indeed,
selective deletion of Igf1 specifically from CD11c+ cells led to
myelination defects in P21 brains (35). Interestingly, all neonatal
microglia expressed neuroectodermal genes including Nestin.

A concomitant study by Hagemeyer et al. similarly identified
amoeboid microglia in the developing white matter of the corpus
callosum and cerebellum particularly between P1 and P8 before
being almost undetectable by P14 (70). Interestingly, they used a
Mac-3 staining to identify these cells, reminiscent of a study by
Valentino and Jones who reported Mac-3 expression in “fountain
microglia” in a footnote (68). They identified a signature akin to
the one we found (38 genes in common out of 61 upregulated
genes including Itgax, Csf1, and Igf1) by comparing “fountain
microglia” from corpus callosum at P7 with cortical microglia
at the same age by whole-genome microarray (70). Of note, the
study underscores that many of the most upregulated genes were
related to a primed or activated microglial phenotype and they
confirmed CD11c expression in the “fountain of microglia” cells
with a reporter mouse. In addition, by depleting all microglia
during the critical period of the first postnatal week, they
showed that the number of oligodendrocyte progenitor cells was
reduced and a long-lasting effect on myelination was induced
into adulthood (70), in line with our own results.

Two recent studies used single-cell RNA-seq to elucidate
microglial heterogeneity during development (24, 36). The Barres
lab study used deep single-cell RNA-seq on microglial cells
sorted based on CD11b+ gating and CD45 levels from six
different brain regions at E14.5, P7, and P60 (24). They found
a cluster of cells they named “proliferative region-associated
microglia” (PAM), mainly found at P7 in the white matter, that
have an amoeboid morphology and phagocytose newly formed
oligodendrocytes (24). In addition, they reported enhanced
expression of Igf1 and Itgax in this cluster compared to any other
at P7 or other time points. These cells were observed as early as
E17.5 in the embryonic brain, their numbers peaking around P7
and were almost absent from P14 brains (24). All these features
fit with CD11c+ microglia from our study and the historical
“fountain of microglia” cells.

The Stevens lab used high-throughput RNA-seq on microglial
cells from the whole brain sorted based on a CD45dim

CD11bhi CX3CR1hi gating at E14.5, P4–5, P30, P100, and
P540 and in injury contexts, prioritizing high numbers of
cells over depth of sequencing (36). They identified a cluster
of cells exclusive for the P4–5 time point, which have an
amoeboid morphology, express phagocytosis-related genes, and
are restricted to the corpus callosum and cerebellum, associating
closely with axonal tracts, which they named “axon tract-
associated microglia” (ATM) (36). Again, the features of this
subset resembled closely the features of CD11c+ microglia and
“fountain of microglia” cells described above. Interestingly, their
study showed no evidence for a sex bias, the number of cells
associated to this cluster being similar for neonatal female and
male pups (36).
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In addition, Anderson et al. (71) described gene signatures
of retinal microglia in P7 mice, 60% of which were found to
express CD11c. The microglial signature in the P7 retina fit
the signature associated to developmental CD11c+ microglia as
Itgax, Lpl, Clec7a, and Igf1 were enriched in sorted CD11chi

vs. CD11clow cells at P7, whereas P2ry12 and Tmem119 were
downregulated (71).

We therefore hypothesize that CD11c+ microglia, fountains
of microglia, PAMs, and ATMs, although described in different
studies by different methods under different names, actually
represent the same population of cells. Comparison of the
transcriptomic signature found in each of these studies leads
to a core signature of 11 genes found in all four studies
(Gpnmb, Itgax, Spp1, Fam20c, Fabp5, Hpse, Igf1, Folr2, Csf1,
and Anxa5) and 28 additional genes found in at least three of
these studies (Atp6v0d2, Slpi, Cd28, Crip1, Lgals1, Anxa2, Vat1,
Ifitm2, Gm1673, Plaur, S100a1, Colec12, Clec7a, Atf3, Atp1a3,
Ephx1, Nceh1, Lpl, Pld3, Plin2, Aplp2, Ccl3, Bnip3, Ccl9, Gpx3,
Slc16a3, Lag3, and Lilrb4) (Figure 1). Interestingly, Csf1, one of
the genes of the core signature, has been identified as one of the
prominent genes characteristic of the pre-microglia homeostatic
signature (23). These 39 genes constitute the “developmental
signature” of the microglial population described in this section.
Of note, homeostatic microglia markers, such as Tmem119,
P2ry12, Sall1, Tgfbr1, Fcrls, and Cx3cr1, have been shown to be
expressed by this subset, although in most reports at slightly
lower levels than in adult microglia or other neonatal microglia
(24, 35, 36, 70). Later in this review, we will refer to this
population as “developmental CD11c+ microglia”. Features of
this population include peak numbers between P3 and P7,
amoeboidmorphology, phagocytic abilities, and location in white
matter (Figure 1). In addition, studies mentioned in this section
clearly reveal a critical functional role of developmental CD11c+
microglia in the myelination process. Their presence in high
numbers in the white matter makes them strategically placed in
both space and time to take on that role. The aforementioned
data support their involvement in phagocytosis of newly formed
oligodendrocytes, probably linked to the proper establishment of
primary myelination (24, 35, 36, 70). Two of the studies show
the long-term importance of these cells on oligodendrocytes and
myelination later in life (35, 70).

Although the number of common genes in the developmental
signature might appear low, we would argue that this is
probably due to discrepancies in the transcriptomic techniques
used (microarray, bulk RNA-seq, high-throughput single-cell
RNA-seq, deep single-cell RNA-seq), as well as the isolation
techniques used (FACS-sorting based on various gatings,
presence or absence of perfusion, whole brain dissection,
or region microdissection) (see Table 2) [discussed in (76)].
However, similarities in the localization, colonization kinetics,
morphology, and functional role leave little room for doubt
regarding the uniqueness of the population described.

In Adulthood
Recent studies have described the homeostatic adult brain as
the state with lowest microglial heterogeneity (24). In addition,
most high-throughput studies investigating adult microglia in

steady state generally report very homogeneous populations in
the homeostatic clusters, whether by mass cytometry (77) or
single-cell RNA-seq (36), characterized by robust expression of
classical microglial homeostatic markers.

However, in a CD11c-eYFP reporter mouse, YFP-expressing
cells have been found throughout the brain and retina in
adulthood. Although initially thought to be DCs (40), they
have since then been shown to exhibit a phenotype resembling
microglia (41, 78). Interestingly, a particular abundance of these
cells is found in ventral areas of the brain, white matter tracts,
and areas of adult neurogenesis (78). This is in line with a
report that CLEC7A+ microglia are found in neurogenic niches
in the adult mouse (24), showing that in the homeostatic adult
brain, microglia with a phenotype similar to developmental
CD11c+ microglia could remain in low number in selected
areas. Consistent with this, a subset of microglia (also positive
for TMEM119 and P2RY12) expressing higher levels of CD11c
was found in the human subventricular zone and thalamus
(79). In reporter mice, expression of CD11c has been shown
to not always follow the expression of the YFP reporter and
should therefore be taken cautiously (78). The existence of
CD11c-expressing microglia has however been confirmed in the
adult homeostatic brain (around 2% of total microglia) (33–
35, 42, 80, 81). Similarly, a small population of cells from the
choroid plexus of adult mice was shown to be transcriptionally
distinct from other choroid plexus cells and border-associated
brain macrophages. This population named “Kolmer’s epiplexus
cells” closely resembles microglial cells and was associated with
enriched expression of Spp1, Apoe, and Igf1 (82). Although Itgax
was not among the significantly upregulated genes in this study,
CD11c+ cells expressing low levels of CD45 have previously been
described in the choroid plexus of adult mice (78).

In Aging
Change in microglial gene expression and phenotype in steady-
state aging has been studied extensively. Although reports
agree on the changes in morphology and general phenotype
of microglia toward dystrophic microglia (deramification,
cytorrhexis, and fragmentation) in aging [reviewed in (83)],
genomic studies have given discrepant results, with some arguing
for shift toward neuroprotection (84) and others highlighting a
“primed phenotype” with higher immune activation (85). That
said, having a second look at datasets from various studies
brings to light common highly expressed genes in aged microglia
compared to young microglia: Spp1, Clec7a, Igf1, Lpl, Axl, Apoe,
Lgals3, Itgax, Cst7, etc. are indeed found across several studies
(84–86), although not all and not always in the same range of
upregulation (87). In a later study, Holtman et al. related the
“primed” microglial signature they found from two aging models
(one physiological aging model and one accelerated aging model)
to the study by Hickman et al. and found a high correlation
between the datasets (88).

High-throughput single-cell methods are a good way to
decipher complex populations with mixed subsets. A mass-
cytometry study revealed that a specific subset of microglia
emerges during aging that overexpresses surface CD11c and
CD14, CLEC7A, and CD68 as compared to other microglia
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FIGURE 1 | CD11c+ microglia signature in developmental stages. During development, CD11c+ microglia have an amoeboid morphology and localize close to white

matter tracts, essentially in the corpus callous and cerebellum. They are present early during embryonic development and their numbers peak between P3 and P7.

Comparison of genes upregulated in four studies (24, 35, 36, 70) reveals a common signature for developmental CD11c+ microglia of 39 genes upregulated in at

least three of the studies (bold dark outline). Genes shared with the disease signature in Figure 2 are in bold. The Venn diagram was generated using the online tool

Venny (72).

at the same age, although they downregulate CX3CR1 and
MERTK (77, 89). CD11c expression of microglia in the white
matter and caudal areas of the CNS of aged mice was also
shown using immunohistochemistry (90). This study also reports
expression of CLEC7A in white matter tracts of aged animals and
reports numerous changes in white matter microglia associated

with aging. Similarly, single-cell RNA-seq revealed that several
populations of microglia that were present in younger age at
very low numbers become increasingly prevalent with aging. One
of these populations (referred to as OA2) is characterized by
genes from the developmental signature and genes classically
associated with neurodegeneration (Spp1, Lpl, Lgals3, Lilrb4,
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TABLE 2 | Specification of studies used to establish the signatures.

References Condition Tissue Isolation technique Transcriptomic technique

Development (35) P4–6 Whole brain FACS

CD45dimCD11b+CD11c+

compared to

CD45 dimCD11b+CD11c−

RNA-seq

Illumina HiSeq 2500

(70) P7 Cortex compared to

Corpus callosum

FACS

CD45 dimCD11b+Gr1−
Microarray

Affymetrix

Mouse Gene 2.0 ST Arrays

(24) P7 Cortex

Cerebellum

Hippocampus

Striatum

Olfactory bulb

Choroid plexus

FACS

CD45+CD11b+

Single cell RNA-seq

Smart-seq 2

Illumina NextSeq

(36) P4–5 Whole brain FACS

CD45 dimCD11b+CX3CR1+
Single-cell RNA-seq

Chromium (10× genomics)

Illumina NextSeq 500

Diseases (73) APP/PS1

18 months

Cortex MACS

CD11c+ sorted fraction

compared to

CD11c− eluted CD11b+ sorted

Microarray

Agilent Technologies

Mouse GE 4x44k V2 microarrays

(74) 5XFAD

6 months

Whole brain FACS

CD45+
MARS-seq

Illumina NextSeq 500

(75) APP/PS1

9 months

Whole brain FACS

FCRLS+CLEC7A+

compared to

FCRLS+CLEC7A−

RNA-seq

Illumina NextSeq 500

(35) Symptomatic EAE Whole brain FACS

CD45dimCD11b+CD11c+

compared to

CD45 dimCD11b+CD11c−

RNA-seq

Illumina HiSeq 2500

Cst7, Apoe, Fam20c, Anxa5, Plaur, Aplp2, etc.) among others
(36). By showing the existence of a mix of different microglial
subsets in the context of aging, this study helps us understand
the seemingly discrepant results obtained by bulk RNA-seq
performed on whole brain microglia during aging.

EVIDENCE FOR CD11c+ MICROGLIA
SIGNATURE IN REPOPULATION STUDIES

Under homeostatic conditions, microglia are long-lived, self-
renewing cells. Although some studies suggest that microglia
persist throughout the life of an individual (91), others show
that their turnover rate is quite fast, at around 1% per day
in the mouse (92, 93) and 28% per year in the human (94).
Regardless, their relatively long lifespan has been proposed to
be crucial in microglial priming and ultimately contributing
to neurodegeneration (91). Similarly, microglia have been
found to be detrimental in some disease contexts [reviewed
in Wolf et al. (95)], leading researchers to entertain the idea
of transient microglial depletion as a therapeutic strategy (96,
97). Indeed, the depleted microglial niche gets repopulated
within a couple of weeks post-depletion (98, 99). It is not
yet resolved whether this repopulation occurs from peripheral

cells or from a local microglial progenitor, and whether this
progenitor is Nestin-positive. Such depletion strategies have had
either beneficial or detrimental outcomes, depending on the
pathology and the depletion method [reviewed in Han et al.
(100)]. More recently, studies have characterized repopulating
microglia, to assess whether and how they differ from the
original microglia and whether these differences could account
for the positive outcomes of microglial depletion strategies.
Although morphological differences have been reported (101),
most studies focused on gene expression analysis (98, 101–
104). Two of the early studies advocated for repopulating
microglia being functionally similar to resident control microglia
(98, 101). However, closer examination and more recent
studies, including single-cell RNA-seq, suggest that these cells
differ transcriptionally (98, 102–104). Interestingly, Zhan et al.
compared the repopulating microglial signature to the neonatal
microglial signature (104), putting forward the idea that newly
formed microglia resemble developmental microglia, before
adopting a more mature phenotype. When comparing their
transcriptomic data to the CD11c+ neonatal microglia signature
we describe above, we found nine overlapping genes (Atp6v0d2,
Clec7a, Spp1, Lgals1, Gm1673, Gpnmb, Atp1a3, Itgax, and Ank).
Similarly, seven genes (Atp6v0d2, Spp1, Igf1, Gpx3, Gpnmb,
Ccl3, and Lpl) overlapped with the repopulating microglial
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signature from Bruttger et al. (98), possibly indicating the
presence of CD11c+-microglia-like cells in the repopulating
clusters they described. This is reinforced by our study in which
CD11c+ microglia could be found in repopulating microglia
clusters after genetic microglial depletion (35). However, in
contrast to Zhan et al. our analysis did not show neonatal-like,
neurodevelopmental gene signature in repopulated microglia
(35). The low extent of overlap between these studies and our
newly defined neonatal CD11c+microglia could be explained by
heterogeneity of repopulating microglia, diluting the signal from
CD11c+microglia in bulk RNA-seq studies.

CD11c+ MICROGLIA IN DISEASE STATES

Microglia activation is a common feature in many neurological
disorders including inflammatory, demyelinating, and
degenerative diseases, as well as glioma and injury. Although
microglia activation may have deleterious consequences, it has
also been shown in many instances to exert protective and
regenerative effects. It is now becoming clear that there is an
emergence of CD11c+ microglia population in pathological
conditions. In this section, we will discuss the importance and
the role of this cell subset in several neurological diseases.

Alzheimer’s Disease
For decades, it has been known that microglia localize around
Aβ plaques, and engulf Aβ in AD, showing their importance in
the disease. In recent years, interest in these cells has increased,
largely due to a wave of transcriptomic and genome-wide
association (GWAS) studies. In addition, a majority of AD risk
genes are related to microglia, including triggering receptor
induced on myeloid cells 2 (TREM2) [reviewed in McQuade
and Blurton-Jones (105)]. Despite the enormous amount of
data generated, no consensus has yet been reached on whether
microglia are protective or detrimental in neurodegeneration.
Some of the attempts to resolve this issue involved comparing
transcriptomes of microglia sorted from healthy, aged, and
diseased brains. The study by Holtman et al. cited above
identified a microglial signature found not only in aging models
but also in disease models including the APP/PS1 AD model
and the SOD1 model for amyotrophic lateral sclerosis (ALS)
(88). The common genes included Itgax, Clec7a, Axl, Lgals3, and
Apoe, indicating the presence of a CD11c-expressing microglial
population in these models. The gene module described in this
study mostly contained genes related to phagocytosis and cell
proliferation, with tissue protective elements (88). With a similar
strategy, other studies demonstrated that microglia from aging
brains and from amyloidosis (APP/PS1) and tauopathy (AAV-
Tau P301L) shared a common gene signature including Cst7,
Itgax, Gpnmb, Clec7a, Lpl, Lgals3, Apoe, and Spp1 (86). Similar
results were also obtained by Krasemann et al. in the APP/PS1
model. Such shared microglial characteristics led to the term
“microglial neurodegenerative phenotype (MGnD) signature”
(75). This is also in line with the presence of CD11c-expressing
microglia in these models, with a phenotype similar to the one
found in physiological aging.

The presence of CD11c+ microglia around Aβ plaques has
been shown in several studies (30, 73, 74, 106, 107). A recent
study by Kamphuis et al. extensively investigated the localization,
proliferation status, and transcriptome of CD11c+ vs. CD11c−
microglia in APP/PS1 mice (73). Importantly, this study also
highlighted a steady increase in CD11c transcripts in brains of
APP/PS1 and 3xTg-AD mice with aging as plaques appear, as
well as in hippocampal samples from AD patients, although it
declines in the later stages of the disease (73). The transcriptomic
signature of CD11c+ microglia, when compared to their
CD11c− counterparts, showed increased expression of Gpnmb,
Fabp5, Spp1, Igf1, Itgax, Gm1673, Cst7, Cox6a2, Apoe, Ch25h,
Clec7a, Lilrb4, Csf1, Axl, Lpl, Sulf2, Egr2, Anxa5, Cd68, Timp2,
and Ctsb among others. Many of these genes are common with
the developmental signature of CD11c+ microglia described
above or with the signatures found in whole brain “primed”
microglial signatures (73). These findings further support that
the “primed” microglia phenotype described in many studies
recapitulates the CD11c+ microglia signature diluted among
CD11c− counterparts. The robustness of the signature is hardly
surprising, considering that CD11c+microglia make up for 23%
of all Iba1+ cells in the aged APP/PS1 brain (73). Of note,
strong upregulation of some CD11c+microglia signature genes,
including Itgax, Clec7a, and Cst7, was even detectable in whole
tissue samples from cortex and hippocampus in AD models
(73, 108).

High-throughput single-cell studies also contributed to our
understanding of microglial populations in AD rodent models.
The same study that identified CD11c and CD14 surface
expression by mass cytometry on a microglia population
emerging in aging also identified a similar population in
APP/PS1 brains (77). Single-cell RNA-seq studies identified
three microglial signatures in neurodegeneration models: the
disease-associated microglia (DAM) signature (74), the late
response microglia signature (109), and the activated response
microglia (ARM) signature (80) that emerge in the 5xFAD, CK-
p25, and APPNL−G−F models for AD, respectively. All three
studies described cell clusters showing nearly identical microglia
populations, similar to the CD11c+microglia signature observed
in the Kamphuis study. Importantly, all of the DAM cells were
CD11c+ (74) with highly overlapping gene signatures uncovered
by bulk sequencing of sorted CD11c+ microglia (73). Microglia
with characteristics from the ARM cluster are present in low
numbers (ca. 2%) even in wild-type mice at young age, increasing
as part of normal aging to reach up to about 12% of all microglia
(80), consistent with observations discussed above of CD11c+
microglia in the steady state in adult and aging mice. ARM
microglia are however most evident in APPNL−G−F mice where
they outnumber all other microglial clusters reaching 52% of all
microglia at 21 months of age (80). This is in line with increases
in CD11c+microglia reported in other studies. Importantly, the
signature observed in CD11c+/DAM/MGnD/ARM microglia
is enriched for known AD risk genes (80). Of note, this
transcriptomic signature is similar to that induced by retinal
degeneration (110).

CD11c+ microglia have been demonstrated to be beneficial
for and to correlate with increased Aβ uptake and induction of
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IGF1-mediated neurogenesis in an animal model of AD (30).
In addition, abundance of Igf1-expressing microglia around Aβ

plaques was recently confirmed by in situ hybridization in an
AD model (69). Functional analyses led to discrepant results
suggesting either protective, immunosuppressive function as well
as enhanced capacity for uptake and lysosomal degradation of Aβ

(73), or pathogenicity via possible contribution to local arginine
deprivation and subsequent neurodegeneration (111). Butovsky’s
group also proposed a detrimental role for these cells due to
ameliorated Aβ deposition in 4-month-old TREM2-deficient
mice that lack CD11c+ microglia (75). However, the role of
TREM2 is not clear, since other data show either protective
or detrimental roles for this protein depending on the age
of the animals (75, 112–114). Nonetheless, all these studies
demonstrate lack of microglial proliferation and clustering
around plaques in TREM2-deficient animals, thus allowing
for more dispersed Aβ localization in AD models (75, 112–
116). This can be detrimental due to Aβ spreading that is
not limited by microglia clusters, ultimately leading to severe
axonal dystrophy (114). Moreover, it has been demonstrated
that in TREM2-deficient animals older than 8 months, the
Aβ burden is enhanced as compared to 4-month-old animals,
suggesting that TREM2 signaling is necessary for limiting
advanced stage pathology (117). Thus, CD11c+ microglia may
actually be beneficial and protective in later stages of the
disease as proposed by Keren-Shaul et al. (74). Human data
further support this hypothesis since loss-of-function mutations
in TREM2 have been identified as a strong risk factor for
the development of AD and other neurodegenerative diseases
[reviewed in McQuade and Blurton-Jones and Ulland and
Colonna (105, 118)].

Collectively, CD11c+ microglia (also referred to as primed
microglia, late response microglia, DAM, ARM, or MGnD)
are a well-defined population of cells that show adaptation
predominantly for phagocytic clearance of apoptotic/necrotic
neurons and limiting Aβ spreading. Given that AD risk genes are
enriched in this population (80), mutations in such genes may
have an impact on the ability of CD11c+ microglia to cope with
Aβ plaque burden, either promoting or limiting AD pathology.

Amyotrophic Lateral Sclerosis
ALS is a disease affecting motor neurons leading to their
degeneration. Microglial contribution to the disease has been
established since a robust microglial activation has been found
in both patient and transgenic mouse tissue (119, 120). In
addition, many risk factors for the disease have been shown to
be expressed by microglia in the CNS, reinforcing the idea of
an involvement of these cells in the disease (121). Microglial
activation in the disease arises from accumulation of misfolded
protein, and, similarly to observations made in other disease
contexts, microglia have been reported to play a beneficial role
in the pre-symptomatic phase of the disease before shifting to
detrimental roles in the advanced disease state (122). However,
microglial depletion in the context of ALS has not been found to
increase survival (123), leading to the idea that both functions
might be concomitant, constantly counteracting each other.
Interestingly, a study from 2013 analyzed the transcriptome of

microglia sorted frommice carrying an ALS-associated mutation
and found a particular signature for these cells at the end stage
of the disease compared to microglia from healthy brains (124).
Once again, among the top regulated genes were genes related to
Huntington’s disease, AD, and Parkinson’s disease (Mapt, Psen2,
Apoe, etc.). The signature found in this study includes both
factors reported to be beneficial in the context of ALS (Igf1,
Grn, Trem2, Tyrobp, etc.), and factors known to be detrimental
(Mmp12,Optn, Cybb, etc.), as well as some like Spp1,Gpnmb, and
Itgax recurrently found in neurodegenerative diseases. Microglia
were also found to upregulate surface CD11c. Microglia from
SOD1 mice were also found to fit the abovementioned MGnD
signature, in addition to expressing Clec7a levels increasingly
during disease progression (75).

Stroke, Ischemia, and Injury
Neuron degeneration and nerve injury have been linked to
microglia in various models for traumatic brain injury (TBI)
(125), spinal cord injury (SCI) (126), nerve injury (93), and
ischemic stroke (127). Much like in inflammation models,
microglial contribution in all of these models is still rather
unclear and they may play a double role considering their
association with both beneficial and detrimental effects. Studying
microglia in context of inflammation can get quite complicated
due to massive infiltration of peripheral immune cells, notably
monocytes and macrophages, occurring subsequently to TBI
(128), SCI (129), and stroke (127, 130, 131). In a study
comparing the transcriptomics of microglia and macrophages
after ischemia in rats, it was reported that microglia played
a detrimental role and macrophages played a beneficial role
with regard to recovery, based on their expression of classical
inflammation markers (132). Investigation of the genes enriched
in microglia three days after middle cerebral artery occlusion
compared to sham controls, however, revealed Spp1, Gpnmb,
Lgals3, Fabp5, and Axl among others, fitting with the potential
presence of CD11c+ microglia-like cells in this context, diluted
among other microglia. Consistent with this, Ccl2 mRNA was
found to be increased in microglia and macrophages at this
time point (132), an aspect that has been associated with
the emergence of CD11c+ microglia (81). Another study,
conducted in a model of phototrombic stroke on whole tissue,
actually showed upregulation of Gpnmb, Itgax, and Clec7a
in a cluster associated with early response (133), which the
authors related to the DAM phenotype (74). In a study of
facial nucleus axotomy, the authors also related the observed
microglial phenotype (134) to the DAM phenotype, as well as
to a phenotype found in the Ck-p25 model (109): 72 genes
were regulated in common between all three studies representing
almost 75% of all genes upregulated in the facial nucleus
axotomy model. Interestingly, in an SCI transcriptomic study,
a profile of microglia reminiscent of the CD11c+ phenotype
was identified (with upregulation of Gpnmb, Spp1, Lpl, Apoe,
Igf1, Lgals3, and Itgax among others) and persisted in a
full transection model, whereas it contracted concomitantly
to recovery in a hemisection model (135), indicative of the
transitory nature of this subset. Conversely, in TBI, the microglial
signature was further from the CD11c+ microglia signature,
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although Itgax was among the upregulated genes 14 and 60
days post-injury, possibly indicating once again a dilution of
the signature in all microglia (136). In addition, considering
the difficulty associated with gating out macrophages from
microglia in a context of extensive infiltration, macrophage
contamination of the sorted samples cannot be excluded in
these studies, potentially complicating interpretation of the
observed transcriptomes.

Multiple Sclerosis
MS is an inflammatory, demyelinating disease of the CNS that
can be modeled by EAE or toxin-induced demyelinating models.
Recent advancement in our understanding of the disease points
toward important roles for microglia in the pathomechanism.
Although the evidence supporting their implication in initiation
and facilitation of the disease is strong (95), there is a growing
body of evidence for their protective functions including
involvement in remyelination (137).

We have identified CD11c+microglia during EAE accounting
for around 10% of total microglia in whole CNS (33, 34). Of note,
this subset is evenmore abundant in the spinal cord at the peak of
the diseases reaching up to 60% of total microglia (Wlodarczyk,
unpublished). The emergence of the CD11c+ microglia is a
dynamic process starting at the onset, reaching a maximum at
the peak and contracting in the chronic phase of EAE (77, 138).
These cells are localized in the demyelinated spinal cord lesions
(33). CD11c+ microglia from EAE again showed upregulation
of similar genes as in neurodegenerative models including Itgax,
Gpnmb, Spp1, etc. (35). A similar signature was confirmed by
Krasemann et al. (75). In addition, deep analysis of genes that
were upregulated in CD11c+ microglia population pointed to
their involvement in immune responses (35).

A key aspect of neuroinflammation in EAE is the recruitment
and reactivation of encephalitogenic T cells to express their
effector functions. Many cell types are implicated in this process,
including blood-derived DCs and monocytes/macrophages
but also parenchymal microglia (139). In EAE, CD11c+
microglia express MHCI, MHCII, and costimulatory molecules
CD80/CD86 (34, 140), which is in line with recent high-
throughput mass-cytometry reports (77, 138). We have provided
evidence that CD11c+ microglia are able to induce similar
proliferative response of encephalitogenic CD4+ T cells as
blood-derived professional antigen-presenting cells (32, 34).
Interestingly, in contrast to CD11c+ blood-derived cells and
CD11c− microglia, CD11c+ microglia completely lacked
mRNA expression for IL-23 (34) that is known to induce
GM-CSF-producing CD4+ T cells, critical for EAE pathology
(141). This indicates that although CD11c+ microglia alone
might contribute to T cell expansion, they are unlikely to
induce pathogenic T cell responses. Importantly, a subsequent
study showed that they were a major source of message for
myelinogenic IGF1, suggesting that they might exert protective
roles in EAE (33). This is supported by our recent study showing
that stimulation of CSF1R with its ligands during symptomatic
EAE significantly reduced demyelination and ameliorated disease
progression most likely through induction of CD11c+microglia
(81). Moreover, decreasing CD11c+ microglia by blocking of

TREM2 signaling (as discussed below) led to increased severity
of EAE and exacerbated demyelinating lesions in the spinal cord
(142), further supporting protective roles of CD11c+microglia.

Microglia are known to contribute to remyelination by
creating an environment supporting OPC recruitment and
differentiation by phagocytosing myelin debris, secreting growth
factors and modulating extracellular matrix [reviewed in Lloyd
and Miron (137)]. Circumstantial evidence for remyelinating
properties of CD11c+microglia includes our first demonstration
of the expansion of these cells in cuprizone-demyelinated corpus
callosum (32). A microarray study by Olah et al. identified
a pro-remyelinating microglial signature that includes several
genes reminiscent of the CD11c+ microglia characteristics
described above (Itgax Igf1, Clec7a, Apoe, Spp1) (143). Moreover,
CD11c immunoreactive microglia were present in remyelinating
corpus callosum (32). A similar microglial signature was later
confirmed in both demyelination and remyelination phases
(144). Conversely, microglia expressing the CD11c+ microglia
signature including Apoe, Axl, Igf1, Lyz2, Itgax, and Gpnmb
were identified by single-cell transcriptomics in both de-
and remyelinated lesions (145). Recently, cuprizone-mediated
demyelination was shown to be alleviated in mice lacking
microglial SIRPα that have increased numbers of CD11c+
microglia, pointing to their protective role (89). In line with
the induction of CD11c+ microglia (81), stimulation of CSF1R
ameliorated cuprizone-induced demyelination (146).

Another line of evidence comes from the influence of
TREM2 deficiency, which leads to absence of CD11c+microglia
in adult mice (74, 75), on remyelination after cuprizone
demyelination. The data indicate that TREM2 deficiency
had no impact on the initial demyelination, but affected
subsequent remyelination when the cuprizone treatment was
prolonged, most likely by impairing myelin removal as well
as myelin regeneration, which further supports a protective
role for CD11c+ microglia in this paradigm (144, 147).
Additionally, it was reported that microglial necroptosis in
circumstances of lysophosphatidylcholine demyelination leads to
repopulation by pro-regenerative CD11c+microglia, as blocking
of this mechanism prevented remyelination (148). Of note,
demyelination induced by mouse hepatitis virus also led to
enrichment of CD11c+ microglial gene signature in the spinal
cord (149).

Taken together, association of CD11c+ microglia to white
matter (89) as well as their role in primary myelination
strongly support their importance in induction and facilitation of
remyelination. This opens the possibility for induction of innate
repair programs in diseased CNS via promotion of the emergence
of CD11c+microglia.

Glioma
Very early studies identified microglial cells close to gliomas
to resemble the amoeboid form described during development
and to take on phagocytic functions (58). More recent studies
have shown that parenchymal microglia are attracted to the
tumor in glioma-affected brains, representing up to 30% of the
tumor mass (150). Microglia associated to the tumor have been
termed glioma-associated microglia/macrophages (GAM). These
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cells initially exhibit beneficial anti-tumor abilities but have been
found to be hijacked by the tumor to exert tumor-promoting
functions [reviewed in Li and Graeber (151)]. A study from
2015 identified a signature for GAMs, and emphasized their
high expression of SPP1 and GPNMB (152). They compared this
signature to classical macrophage activation markers (M1/M2)
and concluded a lack of overlap between the GAM signature and
these classical phenotypes. Of note, the signature also includes
genes such as Itgax, Fabp5, and Clec7a among others recurrently
found in disease signatures (152).

Microglial Disease Signature
Considering the similarities observed in gene expression
from the different studies aforementioned, we compared
the transcriptomic signatures obtained in studies comparing
specifically microglia sorted based on a typical marker for this
specific subset of microglia or from single-cell RNA-seq (three
of the AD studies and one EAE study, Figure 2). We found
a core disease signature for microglia consisting of 89 genes
shared between all four studies (Figure 2). Itgax being once
again a part of this signature and with clarity in mind, we
will refer to this signature as the “CD11c+ microglia disease
signature” henceforth. Once again, the microglial nature of this
subset is supported by expression, although slightly lower than in
homeostatic microglia, of Tmem119, Cx3cr1, P2ry12, Sall1, and
Tgfbr1 among other homeostatic genes (35, 73–75).

CD11c+ MICROGLIA SIGNATURE

Over the years, advancements in technology have allowed the
scientific community to investigate cells and cell populations
in increasingly detailed ways, particularly at the molecular
level. This investigation has been done using a multiplicity of
different conditions and models, leading to increasing amounts
of data generated. Although invaluable, this work has also led to
redundancy in the microglial profiles that were identified (154).

Our investigation led us to define two particularly strong
signatures for CD11c+ microglia in development (Figure 1)
and in disease (Figure 2). Interestingly, Li et al. (24) as well
as Anderson et al. (71) related the developmental microglia
signature observed in their studies to the DAM microglial
signature. These similarities prompted us to compare the
signatures we identified from the literature.

Comparison of the developmental signature and the disease
signature resulted in defining of a “core” signature common
to CD11c+ microglia across all contexts, which consists of
22 genes: Ank, Anxa5, Aplp2, Atp1a3, Clec7a, Colec12, Csf1,
Ephx1, Fabp5, Fam20c, Gm1673, Gpnmb, Hpse, Igf1, Itgax,
Lilrb4, Lpl, Nceh1, Plaur, Pld3, Plin2, and Spp1 (Figure 3
and Supplementary Table 1). Interestingly, the protein network
linked to these genes had significantly more links than what can
be expected, indicating at least a partial biological connection
between these genes (Figure 3). Further investigation of the
physiological function of the proteins related to the genes
present in the core signature revealed their involvement in
lipid metabolism, cell migration and proliferation, and, to a
lesser extent, immune function (Supplementary Table 1). As

expected, all of these proteins had been associated with various
brain diseases (Supplementary Table 1). Of note, many of these
proteins assume similar function or have been found to interact
directly or indirectly with each other (Supplementary Table 1).
Further investigation of these genes and proteins in link with
one another would most likely unveil interesting mechanisms
underlying CD11c+microglia function.

Although described previously as different microglial subsets,
we argue that the robust core signature we have identified can
be found for this subset across all these different stages. We
suggest that the differences in this subset observed between
conditions reflect methodological discrepancies (Table 2) or
microenvironment-linked context-specific changes and the
subset’s own phenotypic plasticity in coping with these variations,
rather than fundamental differences in cell lineage.

EMERGENCE OF CD11c+ MICROGLIA

The dynamics of CD11c+ microglia seem tightly spatio-
temporally regulated. They first emerge during the first postnatal
week, peaking at P5 and gradually decreasing as animals age,
being barely detectable in the healthy adult CNS (33–35, 42,
80, 81) to increase again in aging or disease (33, 73, 81, 85,
89). Importantly, none of the studies that have investigated
induction of inflammation by means of lipopolysaccharide,
poly(I:C), or other immune challenges could recapitulate the
robust CD11c+ signature found in steady state and disease and
injury contexts (86, 88, 90, 124, 155, 156). Below, we present
factors that participate in controlling the induction of this
population (Figure 4).

Activation of the TREM2–APOE Pathway
One candidate that has been extensively studied with regard
to CD11c+ microglia is the TREM2 pathway. TREM2-deficient

animals were shown to downregulate the CD11c+ microglia
signature in cuprizone-induced demyelination (144) and in an

AD model (113). In addition, in the study from the Amit lab,

TREM2 deficiency in an AD mouse model led to an arrest
of microglia in an intermediate state between the homeostatic
state and the CD11c+ microglia stage. Barely any microglia
in these mice exhibited the CD11c+ microglial signature (74).
This suggests that CD11c+ microglia induction is a two-step
process, where the first step, to leave the homeostatic state,
is TREM2-independent and the second step, to reach the
complete CD11c+ microglia phenotype, is TREM2-dependent.
These observations were confirmed by Krasemann et al. in
another TREM2-deficient AD model (75). Similarly, APOE-
deficient mice exhibit lower numbers of CD11c+ microglia
in AD, ALS, and MS mouse models (75, 80). This is
suggestive of a positive feedback loop, as this population
itself strongly upregulates APOE (75). Surprisingly, the Barres
lab showed that induction of CD11c+ microglia during
postnatal development in contrast to adulthood is TREM2–
APOE-independent (24). A similar TREM2 independence of
CD11c+ microglia induction was shown in the developing
retina (71).
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FIGURE 2 | CD11c+ microglia signature in disease states. In diseased CNS, CD11c+ microglia adopt an amoeboid, reactive morphology. In AD, they are found

surrounding Aβ plaques. Similarly, in MS and ALS models and in injury, they are found around and in the lesions. In glioma, they are found mixed with tumor cells.

CD11c+ microglia numbers in diseased CNS vary considerably, ranging from 10 to 50% of all microglia. Comparison of genes upregulated in four studies (35, 73–75)

reveals a common signature for CD11c+ disease microglia of 89 genes upregulated in at least three of the studies (bold dark outline). Genes shared with the

developmental signature in Figure 1 are in bold. Raw data for the Krasemann study were obtained using the Gene Expression Omnibus Database and the differential

gene expression analysis was performed using the DEBrowser package in R (153). The Venn diagram was generated using the online tool Venny (72).

Cell Death
Krasemann et al. highlighted phagocytosis of apoptotic neurons
and monocytes as a trigger for the induction of the CD11c+
microglia phenotype (75). Of note, induction of this phenotype
was not observed upon microglia exposure to Escherichia
coli, zymosan particles (75), or microparticles (Marczynska
et al., unpublished), suggesting that induction of CD11c+
microglia is a tightly controlled reaction to local cell damage
or apoptosis, rather than to phagocytosis itself. Interestingly,
microglial necroptosis in demyelination models leads to brain
repopulation with CD11c+ microglia from nestin+ resident
microglia (148). Similarly, nestin+microglia colonizing the brain
after microglia ablation expressed surface CD11c (98). The gene

expression in repopulating microglia highly overlapped with
the CD11c+ microglia signature. We showed that genetic or
toxin-induced ablation of neonatal CD11c+ cells led to their
instant repopulation (35). Whether the observed concomitant
decrease of CD11c−microglia (35) reflects induction of CD11c+
phenotype in CD11c− cells by phagocytosis of dying microglia
has not been determined. Interestingly, a dramatic decrease
in CD11c+ microglia was observed in the postnatal retina of
mice deficient in Bax, a pro-apoptotic gene that is essential
for developmental death of neurons (71). This emphasizes that
apoptotic cells are a strong and common inducer of CD11c+
microglia regardless of age and condition. This is also in line with
several studies where developmental cell death has been linked
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FIGURE 3 | Core CD11c+ microglia signature. Considering similarities between the transcriptomic signatures and functions in the CD11c+ microglia subset in

development and in disease, we compared both signatures to obtain a core of genes upregulated in this subset across all conditions. We observe overlap of 20% of

the genes between both signatures, corresponding to 22 shared genes. Upon interrogating the STRING database (Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder

S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased

coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Nov; 47:D607–613.), we observed that the network

formed by the proteins corresponding to the genes in the core signature had significantly more interactions than expected from a similar set of random proteins,

indicating that these proteins related to the genes in the core signature are at least partially biologically connected. The thickness of the edges linking the different

genes is proportional to the strength of the evidence linking the two proteins. The Venn diagram was generated using the online tool Venny (72).

to microglial entry in the developing CNS (61). In addition,
retinal CD11c+microglia were resistant to depletion induced by
either CSF1R deficiency or blocking, contrary to their CD11c−
counterparts. In line with this, our own data showed that despite
using several depletion regimens, CD11c+ microglia could not
be depleted from postnatal brain as they were immediately
repopulated (35).

Cytokines
We have shown that both populations of adult microglia
(CD11c+ and CD11c−) express equal levels of CSF1R (33).
Importantly, stimulation of this receptor by its ligands,
interleukin (IL)-34 and CSF1, induced a significant increase
in CD11c+ microglia numbers, with faster kinetics for IL-
34 (81). Moreover, such stimulation induced CCL2 in the
brain, and we showed that overexpression of CCL2 leads
to a dramatic expansion of CD11c+ microglia in a CCR2-
independent manner (81).

Butovsky et al., on the other hand, showed that another
cytokine, IL-4, can induce CD11c+ expression on Aβ pretreated
microglia (30, 157). Moreover, they demonstrated that
GA vaccination leads to an increase of CD11c+ microglia
surrounding Aβ plaques and suggested that this was induced by
T-cell-derived IL-4 (30).

Inhibition of SIRPα/CD47 Signaling
Recently, the emergence of CD11c+microglia in the adult brain
has been shown to be homeostatically controlled by SIRPα/CD47
interaction. Genetic ablation of SIRPα in microglia or global
lack of CD47 equally resulted in increased numbers of CD11c+
microglia, suggesting that microglial SIRPα suppresses CD11c
expression in the same cells (89).

CONCLUSION

Here, we have demonstrated that the subpopulation of microglia
described in many recent studies (and named PAM, ATM,
fountain of microglia, DAM, ARM, MGnD, and late response
microglia) indeed reflects the characteristics of CD11c+
microglia, originally identified over a decade ago. Thus, we
believe that a unification of the nomenclature by referring to
the microglial subset expressing the described signature, from
development to old age, as CD11c+ microglia is a necessary
step to progress our understanding of microglia biology. This
subset emerges in development before contracting during
adulthood but is triggered to re-emerge in aging as well as
in the context of disease or tissue injury (Figure 4). The
summary of the data that mentioned microglia showing the
aforementioned signature strongly points to the importance
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FIGURE 4 | CD11c+ microglia as a subset of microglia present through life and across conditions. Our investigation leads us to believe that CD11c+ microglia

represent a subset of microglia characterized by a robust signature of 22 genes expressed by this subset at any age and in various disease states. Emergence of this

subset is induced by various factors including signaling through the TREM2–APOE pathway, cell death, IL-4 signaling, and cytokine signaling through CSF1R inducing

CCL2, and is inhibited by CD47/SIRPα signaling. In physiological conditions, CD11c+ microglia account for around 15% of all microglia, before contracting to 2% in

adulthood and being re-induced by aging at levels similar to development. In disease states, their numbers oscillate between 10 and 50%. We argue that despite the

numerous names given to this subset across conditions, it is unique and should be referred to as “CD11c+ microglia”.
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of CD11c+ microglia in primary myelination during CNS
development as well as their protective, remyelinative,
and regenerative capacities in CNS pathology. This opens
new perspectives for therapeutic targeting of microglia in
neurological conditions.
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Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that is defined

by loss of upper and lower motor neurons, associated with accumulation of protein

aggregates in cells. There is also pathology in extra-motor areas of the brain, Possible

causes of cell death include failure to deal with the aggregated proteins, glutamate toxicity

and mitochondrial failure. ALS also involves abnormalities of metabolism and the immune

system, including neuroinflammation in the brain and spinal cord. Strikingly, there are

also abnormalities of the peripheral immune system, with alterations of T lymphocytes,

monocytes, complement and cytokines in the peripheral blood of patients with ALS. The

precise contribution of the peripheral immune system in ALS pathogenesis is an active

area of research. Although some trials of immunomodulatory agents have been negative,

there is strong preclinical evidence of benefit from immune modulation and further trials

are currently underway. Here, we review the emerging evidence implicating peripheral

immune alterations contributing to ALS, and their potential as future therapeutic targets

for clinical intervention.

Keywords: amyotrophic lateral sclerosis (ALS), T lymphocytes, monocyte, cytokine, inflammation, immunity

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, defined by the presence
of muscle weakness and the progressive death of upper and lower motor neurons (1). ALS leads
to respiratory failure with the length of survival being predicted by respiratory muscle weakness
(2). However, ALS is more than just a motor neurone disease. ALS also has extra-motor features,
including cognitive and behavioral disturbance (3–5). ALS is markedly heterogeneous in clinical
features, such as site of onset of weakness and rate of progression (6, 7), and is more common in
men than in women (8).

ALS can be sporadic (SALS) or familial (FALS), although the distinction can be difficult to assign
(9). Genetic susceptibility (10, 11) and environmental exposure (12) contribute to the pathogenesis
of ALS, possibly through a multi-stage process (13, 14). Causative genes exist in patients with FALS,
and mutations in these genes occur in some patients with SALS (15). Calculations suggest that
61% of the variance in risk of developing ALS is due to genetic factors (16), which means that
∼40% of the variance in risk is due to non-genetic factors, which could include environmental
exposures. The pathological features of ALS include aggregation of insoluble protein within cells
(17), but the type of protein aggregate varies among patients. It has been thought that the majority
of patients have accumulation of tar DNA binding protein 43 (TDP-43), (as well as others), with a
small group of patients having accumulations of superoxide dismutase 1 (SOD1) (18–20). However,
recent evidence suggests that SOD1 may aggregate in the spinal cord in a majority of ALS patients
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(21, 22). The genes that cause ALS usually encode for proteins or
polypeptides that accumulate within cells or are involved in the
metabolism of protein aggregates (19, 23). There is evidence that
some of the aggregated proteins can transfer from cell to cell in a
prion-like fashion (24, 25) which could explain the characteristic
spread of weakness from the site of onset to other regions.

A number of possible pathways of disease have been described,
including mitochondrial dysfunction, glutamate excitotoxicity
(26, 27), problems with autophagy (28) and altered RNA
metabolism (29). Furthermore, the death of motor neurons can
be “non-cell autonomous,” meaning that other types of cells
such as astrocytes, microglia and possibly oligodendrocytes can
drive motor neuron death (30, 31). There has been considerable
research on the type of cell death that occurs in ALS. It has been
previously thought that neuronal cell death in ALS is due to
apoptosis (32–35) which is mediated through caspases. Evidence
for apoptosis in ALS has been found with TUNEL staining of
human tissues (36) and with measurements of bcl-2 (37). Others
found increased p53 in ALS (38). In ALS there is also evidence of
caspase activation (35). However, more recently there has been a
suggestion that necroptosis, an inflammatory form of cell death
which is caspase independent and involves RIP kinase activation,
is a common form of cell death in neurodegenerative disease
(39). Necroptosis is the mechanism of cell death from glutamate
toxicity (40), which is one of the most important mechanisms
proposed for the pathogenesis of ALS. There is evidence that
necroptosis occurs in a cell culture model of ALS (41). Mutations
in optineurin, a rare genetic cause of ALS, allow the activation
of RIP kinases to promote necroptosis (42). More recently still,
ferroptosis, an oxidative form of cell death (43), has been reported
to occur in ALS (44).

The death of motor neurons, possibly stimulated by the
pathways described above, and occurring through one of the
types of cell death described above, is the cardinal feature of
ALS. However, the pathology of ALS in the brain and spinal
cord also involves more than death of motor neurons, with
evidence of involvement of the immune system (45). There is
neuroinflammation with microglial activation and a modest level
of T lymphocyte infiltration (46–48). In ALS patients, microglial
activation is visible with PET imaging suggestive of an ongoing
neuroinflammatory process (49). Such inflammatory pathology
could be a reaction to cellular damage. Once established, such
inflammation could aggravate disease. However, it must be also
noted that the immune system can also be protective, particularly
after injury (50, 51). Thus, the role of the immune system in
pathogenesis could be either harmful or helpful, and work is
required to delineate the precise role of each immune pathway
to ALS pathology.

There is also evidence of abnormality of the peripheral
immune system in ALS, and this is the topic of the present review.
As with inflammation in the CNS, peripheral immune activation
could be a reaction to tissue damage, but once established, could
exacerbate disease. This review will focus on describing the
abnormalities of circulating blood cells, different immune system
proteins, and their key inflammatory mediators, cytokines. These
are summarized in Tables 1, 2. To consider whether the immune
abnormalities contribute to disease pathogenesis, we list some

evidence that these abnormalities are correlated with human
disease or are pathogenic in animal models of ALS. If immune
abnormalities contribute to pathogenesis, then modification of
the immune response could be beneficial to patients, so we also
highlight the results of forthcoming and completed clinical trials
of immune interventions in ALS.

ABNORMALITIES OF PERIPHERAL BLOOD
CELLS

Total Leukocyte Count/Granulocytes
Several studies have provided evidence of immune activation in
the peripheral blood in ALS. The total leukocyte count is elevated
in patients with ALS, and correlates with progression of disease
(52). The ratio of neutrophils to monocytes was also shown
to be increased (53), as was the total number of granulocytes
(54). A micro-array study further confirmed evidence for mild
neutrophilia in ALS patients (55). In the SOD1G93A transgenic
mouse ALSmodel, circulating neutrophils are increased (73), and
neutrophils and mast cells are present along peripheral motor
axons, with masitinib treatment leading to reduction of axonal
damage (56). This suggests these cells are harmful and contribute
to disease progression.

Lymphocytes
CD4+ T Cells
Some studies demonstrate increased levels of CD4+ helper T
lymphocytes in patients with ALS (54, 57, 58), but others have
found reduced numbers of these cells (59). It is possible that this
variation is related to the variation in immune responsiveness
of individuals. CD4+ T cells in the CNS are thought to be
neuroprotective in an animal model of ALS (60), and a lack of
CD4+ T cell mediated neuroprotection could be detrimental,
in patients with reduced numbers. This protection is mediated
through Treg cells that are discussed below.

CD8+ T Cells
There are reports of reduced levels of CD8+ cytotoxic T
lymphocytes in ALS (57), reports of increased levels of CD8+

cytotoxic T lymphocytes (54, 61), and reports of no alterations
in these cells (59). Once again this could be related in part
to individual variability. In the SOD1G93A mouse ALS model,
cytotoxic lymphocytes cause death of motor neurons (62), so
increased numbers could be detrimental.

NKT Cells
NK T cells recognize lipid antigens through CD1,and secrete
an array of cytokines (95). A study in people with ALS found
increased levels of natural killer T (NKT) cells (61). In the
SOD1G93A mouse model, there are also increased NKT cells,
especially in the liver (63); furthermore treatment that reduced
the numbers of peripheral NKT cells led to prolongation of
life-span, suggesting that these cells are harmful in ALS.

Th 17 Cells
The co-stimulatory pathway activated through CD40 ligand is
upregulated in some human subjects with ALS (96), and there
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TABLE 1 | Changes in peripheral blood cells in ALS.

Cell Change in ALS Evidence of disease association Reference(s)

Total leukocytes Increased Level correlates with rapidity of progression (52)

Granulocytes/neutrophils Increased granulocytes,

increased neutrophils, increased

ratio of neutrophils to monocytes

Treatment with mastinib reduces axonal degeneration in animal

model

(53–56)

CD4+T cells Conflicting reports, most suggest

an increase

CD4+ T cells are protective in animal model (54, 57–60)

CD8+ T cells Conflicting reports Cytotoxic cell cause death of motor neurones in animal model (54, 57, 59, 61, 62)

NK T cells Increased Reduction in numbers led to prolonged survival in animal model (61, 63)

Treg cells Reduced and dysfunctional Inverse correlation with rate of progression (57, 61, 64–66)

CD14+ monocytes Variable reports of numbers, but

evidence of activation, increased

ratio of classical to non-classical

monocytes

Monocyte activation correlates with disease progression (52, 57, 58, 67–69)

TABLE 2 | Changes in peripheral blood proteins in ALS.

Protein Changes in ALS Evidence for role in pathogenesis References

IgG Increased Passive transfer leads to motor neurone degeneration (70–72)

Complement Increased complement in ALS Lack of C5a is protective in animal model (59, 73–75)

Tumor necrosis factor Increased Mixed effects on motor neuron survival, depending on receptor (76–82)

Interleukin 1β Increased Blocking IL-1 led to prolonged survival in animal model of ALS (77, 79, 83)

Interleukin 33 Reduced Treatment with IL33 reduced disease in animal model of ALS (84, 85)

Interleukin 6 Increased Genetic variation of IL-6 receptor influences the severity of ALS.

However, IL6 deficiency has no effect of animal model

(79, 86–90)

Interleukin 17 Increased Unknown- but usually pro-inflammatory (91)

C reactive protein Increased Unlikely—this is evidence of inflammation (89, 92–94)

is thought to be a particular activation of Th-17 T lymphocytes
(97). Th17 lymphocytes are pro-inflammatory and thought to
be harmful, but can exhibit plasticity and change to other less
harmful functions (98).

Treg Cells
Much work has focused on regulatory T cells (Tregs) in ALS
(99). There are reduced levels of Tregs in ALS patients (57,
61, 64), and these cells are also found to be dysfunctional
(65). The level of Tregs correlates inversely with progression
of disease (64). Another study also found that there was
an inverse correlation between Treg numbers and the rate
of disease progression (66). In a human trial, three patients
were given autologous expanded Tregs (100), which showed a
possible reduction in the rates of disease progression during
infusion periods. A trial has been commenced to determine
whether rapamycin, which increases levels of Tregs through
the mToR pathway, can lead to increased levels of Tregs in
ALS (101).

In SOD1G93A mice, there is evidence of dysfunction of Tregs
and transfer of wild-type Tregs delays onset of disease (102).
Another study in SOD1 transgenic mice showed that transfer
of Tregs slowed disease progression (66). These studies are a
promising area of research because of the suggestion that Tregs
are able to control or reduce disease activity, but clearly requires

larger, controlled and blinded human studies to validate their
therapeutic potential.

NK Cells
NK cells are cells of the innate immune system, that mediate
cytotoxicity. There is an increase in NK cells in patients with ALS
compared to controls (52, 54). NK cells are found in the CNS of
SOD1 G93A mutant mice where they are thought to be harmful.
Thus, NK cells could possibly be pathogenic and a trial of anti-NK
therapy has been proposed in ALS (http://grantome.com/grant/
NIH/R21-NS102960-01A1).

Monocytes
Monocyte Classification
With measurements of expression of CD14 (the
lipopolysaccharide receptor) and CD16 (the FcγIII receptor),
monocytes can be separated into three groups; these are classical
(CD14++ CD16−), intermediate (CD14++CD16+) and non-
classical (CD14+CD16++) (103, 104). HLA DR is expressed in
CD16+ monocytes, while CD14+ monocytes reduce HLADR
expression when activated (105). Other markers can also be used
to distinguish monocyte subsets (106).

Monocyte Numbers and Proportions
There is a report of a mild increase in CD14+ monocyte numbers
in ALS (52). However, another study reported reduced levels
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of CD14+ cells in the early stage of disease (57). There is also
a report that there is no difference on the numbers of CD14+

monocytes between patients and controls (58). In addition, it
has been reported there is a reduction in CD16− monocytes in
ALS (53). These variations could be explained by differences in
methodology and the lack of clear demarcation between these
monocyte populations in flow cytometry gating strategies. There
are also reports of alterations in the proportions of monocytes
in ALS, with an increase in the ratio of classical to non-classical
monocytes (67, 107).

In addition to population shifts, there have been reports
of alterations in monocyte activation in ALS. CD14+CD16−

classical monocytes in ALS show an inflammatory microRNA
profile (68). Another study reported increased production
of neurotoxic cytokines by monocytes from twins with ALS
compared to the unaffected twin (108). Increased peripheral
monocyte expression of inflammatory genes correlates with
disease progression (69). Another study reported expression of
activation markers on monocytes but reduced expression of
HLA-DR (57). In another study, patients with ALS could be
separated into groups, with one group showing increased HLA-
DR expression on monocytes (54). Another study found that
there was increased expression of HLA-DR onCD14+ monocytes
in ALS and this correlated with the rate of disease progression
(58). Another study used exosomes to activate monocytes, and
found that monocytes from ALS patients were less responsive
than those from healthy individuals (109). ALS monocytes
are less responsive to purinergic stimulation than those from
controls (110).

As outlined above, the pathology of ALS is characterized by the
accumulation of aggregates of proteins in neurons. There is now
evidence of abnormal accumulation/location of these proteins in
monocytes. For example, altered location of TDP43 inmonocytes
of patients with genetic mutations in TARDBP, the gene encoding
TDP-43 has been demonstrated (111). There is also a report
that C9orf72 is expressed in myeloid cells and that expression
in monocytes increases after activation (112). Ablation of the
mouse homologue of C9orf72 led to macrophage dysfunction
and microglial activation (113).

There is evidence that peripheral monocytes enter the CNS
in ALS (107), although this is controversial. In SOD1G93A mice,
numbers of inflammatory monocytes correlated with disease
progression (114). Activated macrophages are found around
degenerating nerve (115) and at the neuro-muscular junction
in mouse models of ALS (116). These experimental studies
suggest that a shift toward activated monocytes in ALS could
contribute to ALS progression through secretion of inflammatory
and potentially neurotoxic mediators. Further research is needed
to precisely define the role of the monocyte in ALS.

ABNORMALITIES OF IMMUNE PROTEINS
IN PERIPHERAL BLOOD

Immunoglobulin Levels
Some of the first studies of the role of the immune system
in ALS were concerned with the presence of antibodies in the

blood of subject with ALS, particularly reports of antibodies to
voltage gated calcium channels (117, 118). In addition, there
have been studies of non-specific changes in antibodies, as a
recent study has shown an increase in IgG levels in subjects
with ALS compared to controls (70). In mice, an experimental
study showed that prolonged intra-peritoneal injection of
immunoglobulin from human subjects with ALS led to loss of
spinal motor neurons and loss of muscle strength (71). An earlier
study showed that passive transfer of purified immunoglobulin
from ALS patients led to motor neuron degeneration and
accumulation of calcium containing organelles (72).

Complement System
There is clear evidence of activation of innate immune
complement system in human subjects with ALS, with raised
C5a levels and increased expression of C5a on human leukocytes
(74). A two dimensional gel electrophoresis was used to study
serum proteins in ALS subjects and found that components
of complement C3 were increased compared to controls (75)
and another study using nephelometry showed increased levels
of complement C3 in the blood of ALS patients (59). Animal
studies also indicate a role for terminal complement activation
in motor neuron degeneration. In SOD1 and TDP43 animal
models of ALS there is evidence of complement activation (119,
120), and genetic deficiency or pharmacological inhibition of the
C5a receptor, C5aR1, is protective in rodent SOD1G93A models
(73, 121–123). A comprehensive review of the involvement of
complement in ALS has recently been written (124).

Cytokines
Tumor Necrosis Factor (TNF)
There are increased levels of TNF and soluble TNF receptor in
the blood of patients with ALS (76–78). A meta-analysis found
that TNF levels were significantly increased in ALS (79). RNA-
seq analysis has identified TNF as a contributor to inflammation
in the spinal cord of ALS patients (125). It is unknown whether
this inflammation is harmful or beneficial. It has been suggested
that TNF is harmful and that reduction would be beneficial (80).
On the other hand, TNF stimulates a survival pathway in motor
neurons and could be beneficial (81, 82).

In SOD1 mutant mice, signaling through the TNF receptor 2
lead to motor neurone death (126), whereas signaling through
TNF receptor 1 was harmful (127). The recent suggestions that
TNF inhibitors could be a risk factor for ALS (128) could indicate
that TNF is beneficial in some way.

Interleukin 1 (IL-1)
Interleukin 1 exists as a family of proteins (129). One study found
that interleukin 1 β (IL-1β) was undetectable in ALS patients
(130) but other studies have found increased levels (77). A meta-
analysis found that IL-1β was significantly increased in ALS
(79). Pathways involving IL-1 are thought to be involved in ALS
pathogenesis as shown in SOD1 and TDP-43 animal models
(83, 131, 132). A proteomic study of plasma from ALS patients
showed activation of pathways associated with inflammation and
activation of two networks centered on NF B and IL-1 (133). In
animal studies, blocking IL-1 led to prolonged survival (83). In
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humans, there has been a pilot study that showed that blocking
IL-1 with Anakinra was safe in ALS, although there was no
prolongation of survival (134).

Interleukin 33 (IL-33)
IL-33, a cytokine related to IL-1, has a role both in inflammation,
and in metabolism (135, 136). IL-33 binds to receptor, ST2.
Levels of IL-33 are reduced in ALS, and levels of soluble ST2 are
increased in ALS (84). In a study in SOD1G93A transgenic mice,
IL-33 treatment ameliorated disease (85), suggesting this is a key
downstream mediator of ALS progression.

Interleukin 6 (IL-6)
IL-6 is considered to be a pro-inflammatory cytokine, and is
part of an acute phase response, however, it also has some
documented anti-inflammatory effects. Plasma levels of IL-6 are
increased in ALS (79, 86, 87), and this was supported by a meta-
analysis (79). One study suggested that this was a response to
hypoxia rather than to the disease itself (137) (see below). IL-6
has been suggested to have a role in endothelial damage in ALS
(138). Genetic variation in the IL-6 receptor has been shown to
modify the severity of ALS (88). Treatment with the IL-6 blocking
antibody toclizumab reduced levels of IL-6 and other cytokines
in cells from some ALS patients (89); this study did not look for
effects on clinical signs. In SOD1 mutant mice, IL-6 deficiency
did not affect the severity of disease (90).

Interleukin 17 (IL-17)
IL-17 is a pro-inflammatory cytokine that also responds to stress
(139, 140). Increased levels of IL-17 are reported in the serum
of subjects with ALS (91, 141), but to date IL-17 has not been
explored clinically as a therapeutic target.

Interleukin 13 (IL-13)
IL-13 regulates T lymphocytes and has been implicated in
autoimmune disease (142). IL-13 levels are elevated in the blood
of patients with ALS (77). IL-13 producing T lymphocytes have
been found in the blood of subjects with ALS and correlate with
the rate of disease progression (91, 143).

Interleukin 18 (IL-18)
IL-18 is another member of the IL-1 family of cytokines and
stimulates many lymphoid cells (144). Although levels of IL-18
are increased in patients with ALS (130), there is no information
about relation of IL-18 to disease activity to date.

Chemokines
Chemokines are small proteins that are involved in chemotaxis
and activation of granulocytes and lymphocytes. In the CNS,
chemokines also have a role in signaling between cells (145). The
expression of MCP-1 receptor (CCR2) is reduced on circulating
monocytes in ALS (146). Another study showed significantly
increased expression of CXCR3, CXCR4, CCL2, and CCL5 on T
lymphocytes in ALS patients compared to healthy controls (147).
There are higher levels of the chemokine MCP-1 in patients with
a shorter diagnostic delay, which is a marker of more severe
rapidly progressing disease (148).

Other Evidence of Systemic Inflammation
There is also evidence of increased levels of C reactive protein
and erythrocyte sedimentation rate (ESR) in subjects with ALS
compared to controls, and evidence that levels correlate with the
levels of disability as measured by the ALS functional rating scale
(89, 92–94). Levels of lipopolysaccharide are elevated in patients
with ALS, (149), as have levels of nitric oxide, suggesting systemic
inflammation (78).

Evidence of Hypoxia
In ALS, there is evidence of hypoxia in neurons, and this is
thought to contribute to pathogenesis. This can be seen as
increased levels of hypoxia inducible factor−1α (150). There is
also thought to be dysregulation of the pathways that protect
from hypoxia (151, 152). In the peripheral blood monocytes of
ALS patients there is also dysregulation of hypoxia pathways
(153). A gene expression study found evidence of hypoxia related
genes in peripheral blood of ALS patients (55). In an animal
model of ALS, hypoxia aggravates the loss of motor neurons
(154). The significance of these findings is presently unclear, but
this is further evidence of peripheral immune changes in ALS.

NF-κ B Pathways
Nuclear factor κB (NF-κ B) is a protein complex that regulates the
transcription of DNA. Evidence that NF-κ B is important in ALS
comes from studies showing genetic abnormalities in optineurin
(155). Analysis of cell transfection showed that the nonsense
and missense mutations of OPTN abolished the inhibition of
activation of NF-κ B. The authors proposed that NF-κ B is the
final common pathway in ALS pathogenesis, and that inhibitors
of NF-κ B could be used to treat ALS. Further, in animal studies
it has also been found that the NF-κ B p65 subunit is a binding
partner for TDP-43 and that dysregulation of TDP-43 leads to
activation of NF-κ B (156). NF-κ B is expressed in astrocytes
(157), and in activated microglia in ALS spinal cord (158).

Other evidence of a possible role of NF-κ B in ALS comes
from a role for hypoxia in ALS. (153, 159) (see above). NF-
κ B is activated during acute hypoxia and acts to up-regulate
inflammatory factors such as IL-6, cyclo-oxygenase (COX 2),
TNF-α, and prostaglandin E-2 (PGE-2) (159). Reactive oxygen
species lead to induction of NF-κ B. This is mainly in lymphoid
cells but also in neurones. It has been suggested that NF- B is a
transcription factor controlled by hypoxia and may contribute to
neurological disorders (160).

In neurodegenerative disease it is thought that NF-κ B can
augment cell death (161). There is some evidence about the
role of NF-κ B from animal models of ALS. In SOD1G93A

mutant mice, treatment with a PPAR inhibitor led to clinical
improvement and reduced expression of iNOS and NF-κ B
reactivity (162). Phenylbutyrate induced NF-κ B translocation to
the nucleus in ALS mice, and this led to reduced motor neuron
death (163). Intrathecal injection of an adenovirus containing
insulin like growth factor led to slowing of disease through
inhibition of NF-κ B in an animal model of ALS (164). However,
inhibition of NF-κ B in astrocytes did not reduce disease in ALS
mice (165).
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The above-mentioned studies focus predominantly on the role
of NF-κ B within the CNS in ALS. Little is known about NF-κ B
in the peripheral immune system in ALS, but given the central
role of NF-κ B in the biology of the immune system (166), this
warrants further study.

Immunometabolic Changes
There is considerable interaction between the immune system
and metabolic pathways, which is a rapidly growing research
field being known as “immunometabolism” (167, 168). For
survival, metabolism and the immune system need to be linked,
because there needs to be a mechanism for balancing the energy
needed for basal and defensive processes (169). In ALS, there is
evidence of alterations in metabolism (170). There are reports of
alteration in the levels of metabolic proteins such as adipokines.
This includes IL-6 but also other proteins such as leptin and
adiponectin (86, 171). A proteomic study found dysregulation of
pathways involved in lipid metabolism (133). In particular, there
was dysregulation of the Liver X receptor/Retinoid X receptor
(LXR/RXR) and the Farnesoid X receptor/Retinoid X receptor
(FXR/RXR) pathways that are at the intersection of immunology
and metabolism.

EVIDENCE FROM COMPLETED CLINICAL
TRIALS

It is attractive to consider that modulation of the immune
response will be a useful therapy in ALS. If neuroinflammation
enhances disease activity, then control of neuroinflammation
should be helpful (172), possibly by enhancing the protective
immunity (173).

Overall, clinical trials of new disease-modifying therapies
in ALS have been disappointing (174). Several of these trials
have used medications that act on the peripheral immune
system. Total body irradiation and stem cell therapy were
of no benefit in ALS (175). Earlier attempts at immune
therapy included treatment with intravenous immunoglobulin,
(176), with cyclophosphamide, (177) and with azathioprine and
prednisone which were also of no benefit (178). Glatiramer
acetate, a synthetic polypeptide with immune effects that is
used in multiple sclerosis, further demonstrated no benefit in
ALS (179).

Minocycline, an anti-inflammatory agent, also failed in a trial
in ALS, and in fact, patients on this treatment had a worse
outcome (180). Celecoxib, another anti-inflammatory agent, also
failed its clinical end-point (181). Sodium chlorite (NP001) which
was proposed to deactivate macrophages, was also more recently
shown to be unsuccessful (182, 183).

Masitinib, a tyrosine kinase inhibitor that targets mast cells,
microglia, and macrophages despite showing positive results in
SOD1 transgenic mice (184), failed in its phase II study in
humans (185). Finally, a trial of granulocyte colony stimulating
factor led to a decrease in levels of MCP-1 and IL-17 in subjects
with ALS (186).

IS THERE AN INFLAMMATORY
SUBGROUP?

One of the challenging features of ALS is its heterogeneity- of
clinical features, of rate of progression and also in the underlying
pathological aggregation of proteins. This heterogeneity could
indicate that the pathogenesis of disease varies among patients,
and there could be sub- groups of patients in whom immune
processes are more or less important.

A study of gene expression indicated that patients can
be grouped into patients with higher expression of IL-6R
and myeloid lineage-specific genes, and patients with higher
expression of IL-23A and lymphoid-specific genes (55). The
results from a clinical trial of Toclizumab also led the authors to
note that Toclizumab reduced IL-6 and other cytokines in cells
from some ALS patients (i.e., an “inflammatory group”) but not
others (89).

INTERACTION AMONG THE NERVOUS
SYSTEM, THE IMMUNE SYSTEM AND THE
GUT MICROBIOTA

The gut microbiota has been increasingly recognized as playing
an important role in human health, and has been implicated in
neurodegenerative disease including ALS, as we have recently
reviewed (187). One of the many functions of the gut microbiota
is to regulate the immune system. It is therefore possible that
some of the immune abnormalities in ALS are linked to the gut
microbiota. However, this field is complex and analysis requires
large numbers of subjects so more remains to be discovered
regarding this possible interaction.

IMMUNOGENETICS OF ALS

If immune genes played a role in the susceptibility to ALS
or modified the course of ALS, this would be evidence of
involvement of the immune system in disease. In autoimmune
diseases, there is an association of disease with HLA loci (188).
This is not the case in ALS, except for a possible association with
HLA class I antigens (189, 190).

The association with HLA class I antigens could be due to
linkage with the haemochromatosis locus (HFE), which is found
in the HLA region. Some years ago, an association with the
H63D polymorphism was reported (191). More recently, a meta-
analysis has discounted this association but instead suggested an
association with the C282Y polymorphism (192).

There are numerous polymorphisms that affect the immune
system. These have been linked to autoimmune diseases such
as multiple sclerosis and type I diabetes (193) but not to ALS
(194). However, it would seem likely that genetic variation
in immune genes could influence the immune abnormalities
described above, For example, polymorphisms in cytokine genes
can influence the levels of cytokines such as IL-6, (195) and TNFα
(196) and the IL33/ST2 pathway (197).

The field of immunogenetics of ALS would appear to be a
fruitful topic for further exploration, and possibly could explain
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why some patients have a stronger immune response than others,
and why some patients show an “inflammatory” phenotype.
Immunogenetics, and variation in the immune response to
disease could therefore contribute to the known heterogeneity
of ALS.

CONCLUSION

There is clear evidence of immune activation in some patients
with ALS and in animal models of disease. It is possible that
there is a subgroup of patients in whom inflammatory pathways
are important in pathogenesis. In some cases, the immune
abnormalities are correlated with disease severity, but it is not
clear whether this is cause or effect. The immune system has both
harmful and beneficial effects and there is a need to focus research
efforts on enhancing the beneficial effects of protective immunity.

Clinical trials so far have been disappointing, but there is still
scope for further attempts at immune intervention to ameliorate
this disease.
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Historically, multiple sclerosis (MS) has been viewed as being primarily driven by T cells.
However, the effective use of anti-CD20 treatment now also reveals an important role for
B cells in MS patients. The results from this treatment put forward T-cell activation rather
than antibody production by B cells as a driving force behind MS. The main question of
how their interaction provokes both B and T cells to infiltrate the CNS and cause local
pathology remains to be answered. In this review, we highlight key pathogenic events
involving B and T cells that most likely contribute to the pathogenesis of MS. These
include (1) peripheral escape of B cells from T cell-mediated control, (2) interaction of
pathogenic B and T cells in secondary lymph nodes, and (3) reactivation of B and T cells
accumulating in the CNS. We will focus on the functional programs of CNS-infiltrating
lymphocyte subsets in MS patients and discuss how these are defined by mechanisms
such as antigen presentation, co-stimulation and cytokine production in the periphery.
Furthermore, the potential impact of genetic variants and viral triggers on candidate
subsets will be debated in the context of MS.

Keywords: Th1/Th17, T-bet+ B cells, CD8+ T cells, Epstein-Barr virus, genetic risk, transmigration, germinal
center, IFN-γ

INTRODUCTION

In multiple sclerosis (MS) patients, pathogenic lymphocytes are triggered in the periphery to
infiltrate the central nervous system (CNS) and cause local inflammation and demyelination. Anti-
CD20 therapy has recently been approved as a novel treatment modality for MS (1–3). Although
this underscores the fact that B cells play a key role in MS, the exact triggers, subsets and effector
mechanisms contributing to the disease course are incompletely understood. The impact of this
therapy on the antigen-presenting rather than the antibody-producing function of B cells in MS
indicates that their interaction with T cells is an important driver of the pathogenesis (1, 4).
Alterations in cytokine production, co-stimulation and antigen presentation most likely contribute
to the development of pathogenic B and T cells that are prone to enter the CNS (4, 5). Such
mechanisms might be influenced by the interplay between genetic and environmental risk factors
(6). The major HLA-DRB1∗1501 locus accounts for 30% of the overall risk (6) and has been shown
to promote B cell-mediated induction of brain-infiltrating T helper (Th) cells in MS patients (4).
Besides for HLA-DRB1∗1501, other genetic risk variants that have been identified in the past
decades also appear to potentiate B and Th cell activation, a feature that is shared amongst several
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autoimmune disorders (7). Furthermore, infectious triggers such
as the Epstein-Barr virus (EBV) alter their function and reactivity
in MS (5, 6, 8, 9). The current view is that transmigration of
lymphocyte subsets into the CNS signifies relapsing disease, while
compartmentalized CNS inflammation, as seen during disease
progression, seems to be driven by tissue-resident populations
(10, 11). Since there is a clear association of relapse occurrence
and radiological disease activity early in MS with the severity of
disability progression later in MS (12), it is crucial to understand
what motivates these cells to invade the CNS and why these cells
instigate local pathology in MS patients.

In this review, we will discuss which and how brain-infiltrating
lymphocyte subsets can contribute to MS pathogenesis. These
pathogenic events are characterized by: (1) peripheral escape
of pathogenic B cells from T cell-mediated control, (2) mutual
activation of pathogenic B and T cells within peripheral germinal
centers, and (3) re-activation of infiltrating B and T cells
within the CNS. We will use current knowledge to consider
the extent to which genetic and viral triggers may drive these
pathogenic events in MS.

IMPAIRED T CELL-MEDIATED CONTROL
OF PATHOGENIC B CELLS IN MS

B and T cells closely interact in secondary lymphoid organs
to generate an optimal immune response against invading
pathogens. Within follicles, B cells recognize antigens via the
highly specific B-cell receptor (BCR), resulting in internalization,
processing and presentation to T cells. This mechanism is
unique and tightly coordinated involving five consecutive and
interdependent steps: (1) B-cell receptor signaling, (2) actin
remodeling, (3) endosomal formation and transport, (4) HLA
class II synthesis and trafficking to specialized late endosomes
(i.e., MIICs), and (5) antigen processing and loading onto HLA
class II molecules for presentation to CD4+ Th cells (13, 14).
Through their interaction with Th cells, germinal center (GC)-
dependent and -independent memory B cells are formed, a
process that is governed by the strength of the HLA/peptide
signal (15). GC B cells respond to interleukin (IL)-21-producing
follicular Th (Tfh) cells to develop into class-switched (IgG+)
subsets or antibody-producing plasmablasts/plasma cells (15, 16).
Memory B cells, in return, specifically trigger Th effector subsets
that help CD8+ cytotoxic T cells (CTLs) to kill the infected
cell (17). In MS, this crosstalk between B and T cells is likely
disturbed, eventually causing pathogenic instead of protective
immunity. This may already start during selection of naive
autoreactive B cells in the periphery.

Normally, after removal of the majority of B-cell clones
expressing polyreactive antibodies in the bone marrow (central
tolerance), surviving autoreactive B cells are kept in check by
peripheral tolerance checkpoints (18). In contrast to most other
autoimmune diseases, only peripheral and not central B-cell
tolerance checkpoints are defective in MS, which coincides with
increased frequencies of naive polyreactive populations in the
blood (18–21). Although the exact cause is currently unknown,
the escape of pathogenic B cells from peripheral control may be

related to (1) chronic T-cell stimulation and (2) T cell-intrinsic
defects (see Figure 1).

Epstein-Barr virus is one of the most thoroughly investigated
pathogens regarding T-cell responses in MS. Many theories
have been proposed how EBV can influence MS pathogenesis
(9). One hypothesis is that, due to the chronic nature of this
infection, continuous antigen presentation by B cells leads to
functionally impaired, so-called “exhausted” T cells (8, 22). This,
together with the impact of HLA and other risk alleles (23),
may result in inappropriate T cell-mediated control of EBV-
infected (pathogenic) B cells. Consistent with this, peripheral
CD8+ CTLs show decreased responses to EBV and not to
cytomegalovirus antigens during the MS course (8). EBV
antigens can also induce IL-10-producing CD4+ T regulatory
cells (Tregs) capable of suppressing effector T-cell responses to
recall antigens (24), as seen for other persistent viral infections
such as lymphocytic choriomeningitis virus (25, 26). However,
forkhead box P3 (FOXP3+) Tregs have also been described
to control infections (27), suggesting that additional T cell-
intrinsic defects are involved. For example, Treg populations
that are enriched in MS patients produce increased levels of
interferon gamma (IFN-γ), express reduced levels of FOXP3
and have defective suppressive activity in vitro (28). This is not
only accompanied with less suppression of effector T cells (29,
30), but possibly also with impaired removal of pathogenic B
cells, as described for other autoimmune diseases (18, 31, 32).
The direct impact of Tregs on B cells in MS patients is still
unknown. Treg function may be altered by variation in IL2RA
and IL7RA, two known MS risk loci (33, 34). FOXP3 correlates
with IL-2 receptor (IL-2R) as well as IL-7 receptor (IL-7R)
expression in Tregs (35). It can thus be expected that IL2RA
and IL7RA (33, 34), but also BACH2 (36) variants impair Treg
development in MS. This may even influence FOXP3- and IL-2R-
expressing CD8+ T cells, which can suppress pro-inflammatory
CD4+ Th cells (37) and are reduced in the blood during MS
relapses (38–40).

THE GERMINAL CENTER AS A
POWERHOUSE OF PATHOGENIC B- AND
TH-CELL INTERACTION IN MS

Th Cells as Inducers of Pathogenic
Memory B Cells
After their escape from peripheral tolerance checkpoints, naive B
cells likely interact with Th cells in GCs to eventually develop into
memory populations potentially capable of infiltrating the MS
brain (Figure 1). Little is known about how peripheral effector
Th cells mediate the development of such pathogenic B cells
in MS patients. In GCs of autoimmune mice, autoreactive B
cells are triggered by Tfh cells producing high levels of IFN-γ
(16). IFN-γ induces the expression of the T-box transcription
factor T-bet, which upregulates CXC chemokine receptor 3
(CXCR3), elicits IgG class switching and enhanced antiviral
responsiveness of murine B cells (41–43). Recently, we found that
B cells from MS patients preferentially develop into CXCR3+
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FIGURE 1 | Model of the key pathogenic events involving human B- and T-cell subsets driving MS disease activity. In MS patients, B- and T-cells interact in the
periphery and central nervous system (CNS) to contribute to disease pathogenesis. In this model, we put forward three important meeting points of pathogenic B
and T cells that drive the disease course of MS. In secondary lymphoid organs, B-cell tolerance defects in MS patients allow EBV-infected B cells to escape from
suppression by CD8+ and T regulatory (Treg) cells (1). Subsequently, these activated B cells enter germinal centers (GCs) and interact with follicular Th cells to
further differentiate into pathogenic memory B cells. Under the influence of IFN-γ and IL-21, B cells develop into T-bet-expressing memory cells, which in turn
activate Th effector cells such as Th17.1 (2). These subsets are prone for infiltrating the CNS of MS patients by distinct expression of chemokine receptors (CXCR3,
CCR6), adhesion molecules (VLA-4) as well as pro-inflammatory cytokines. (3) Within the CNS, IFN-γ-, and GM-CSF-producing T cells and T-bet+ memory B cells
probably come into contact in follicle-like structures, resulting in clonal expansion inflammation and demyelination. T-bet+ memory B cells further differentiate into
plasmablasts/plasma cells to secrete high numbers of potentially harmful antibodies (oligoclonal bands).
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populations that transmigrate into the CNS (44). The IFN-γ
receptor (IFNGR) and downstream molecule signal transducer
and activator of transcription (STAT)1 in B cells are major
determinants of autoimmune GC formation in mice (45, 46).
After ligation of the IFNGR, STAT1 is phosphorylated, dimerizes
and translocates into the nucleus to induce genes involved in
GC responses, such as T-bet and B-cell lymphoma 6 (BCL-
6) (16, 47). Although IFN-γ-stimulated B cells of MS patients
show enhanced pro-inflammatory capacity (44, 48), it is unclear
whether alterations in the IFN-γ signaling pathway contribute
to the development of T-bet+ B cells infiltrating the CNS.
Interestingly, a missense SNP in IFNGR2 has been found in MS,
which may alter their development (49, 50). Another target gene
of the IFN-γ pathway is IFI30, which encodes for the IFN-γ-
inducible lysosomal thiol reductase (GILT) and is considered one
of the causal risk variants in MS (7). GILT is a critical regulator
of antigen processing for presentation by HLA class II molecules
(51–53). Together, these findings point to T-bet-expressing B cells
as potent antigen-presenting cells that are highly susceptible to
triggering by IFN-γ-producing Th effector subsets in MS (44,
54) (Figure 2).

Epstein-Barr virus may be an additional player in the
formation of T-bet-expressing B cells. In mice, persistent viral
infections sustain the development of these types of B cells,
in which T-bet enhances their ability to recognize viral and
self-antigens (41, 55). EBV is hypothesized to persist latently
in pathogenic B cells and mimic T-cell help for further
differentiation in GCs (5, 22, 56, 57). During acute infection,
EBV uses a series of latency programs that drive B cells
toward a GC response in an antigen-independent manner.
Latent membrane protein (LMP)2A and LMP1 resemble signals
coming from the BCR and CD40 receptor (56, 57). In addition
to their regulation of GC responses independently of T-cell
help (58), recent evidence implicates that LMP2A and LMP1
can synergize with BCR and CD40 signaling as well (59).
Interestingly, downstream molecules of the BCR (e.g., Syk, CBL-
B) and CD40 receptor (e.g., TRAF3) are genetic risk factors for
MS (23, 60), therefore potentially cooperating with these latent
proteins to enhance pathogenic B-cell development (Figure 2).
This is supported by the binding of LMP2A to Syk in B cells
and their escape from deletion in GCs of transgenic mice (61).
Alternatively, pathogenic B cells can be induced via pathogen-
associated TLR9, which binds to unmethylated CpG DNA and
further integrate with BCR, CD40, and cytokine signals (62–65).
Moreover, pathogenic B-cell responses in systemic autoimmune
diseases such as systemic lupus erythematosus are enhanced
after IFN-γ and virus-mediated induction of the T-bet (45,
55, 64, 65). In MS patients, TLR9 ligation is also a major
trigger of pro-inflammatory B cells (48) and crucial for the
differentiation of T-bet-expressing IgG1+ B cells during IFN-
γ- and CD40-dependent GC-like cultures in vitro. Thus, under
influence of specific genetic factors, EBV might join forces
with IFN-γ-producing Th cells to stimulate pathogenic (T-
bet+) GC B cells both in a direct (via infection and persistence
in pathogenic subsets) and indirect (via TLR7/9) fashion in
MS (Figure 2).

B Cells as Inducers of Pathogenic
Memory Th Cells
Synchronously, within peripheral GCs, T-bet-expressing memory
B cells are ideal candidates to trigger IFN-γ-producing, CNS-
infiltrating Th cells in MS (Figure 1). In both mice and humans,
T-bet promotes the antigen-presenting cell function of B cells.
This may be related to the impact of EBV infection on B
cell-intrinsic processing and presentation of antigens such as
myelin oligodendrocyte glycoprotein (MOG) (5). The potent
antigen-presenting cell function of B cells in MS patients is
further reflected by the effective use of anti-CD20 therapy. This
therapy does not affect antibody serum levels, but significantly
reduces pro-inflammatory Th-cell responses in MS, both ex vivo
and in vivo (1). CD20 was found to be enriched on IFN-
γ-inducible T-bet-expressing IgG+ B cells in MS blood (44),
pointing to this pathogenic subset as an important therapeutic
target. Furthermore, genetic changes in HLA class II molecules,
as well as costimulatory molecules [e.g., CD80 (66, 67) and
CD86 (68)], may additionally enhance Th cell activation by such
memory B cells (Figure 2). HLA class II expression on murine
B cells was reported to be indispensable for EAE disease onset
(69, 70). The in silico evidence that autoimmunity-associated
HLA class II molecules have an altered peptide-binding groove
(71, 72), together with the potential role of several minor risk
variants in the HLA class II pathway [e.g., CIITA, CLEC16A, IFI30
(Figure 2)], insinuates that antigens are differently processed
and presented by B cells (4, 5). This is supported by the
increased ability of memory B cells to trigger CNS-infiltrating Th
cells in MS patients carrying HLA-DRB1∗1501 (4). These CNS-
infiltrating T cells induced by B cells showed features of both Th1
and Th17, therefore representing highly pathogenic subsets. Such
subsets are characterized by master transcription factors T-bet
and RORγt (73, 74), of which the latter is involved in the co-
expression of IL-17 and GM-CSF in mice but not in humans
(75, 76). GM-CSF is an emerging pro-inflammatory cytokine
produced by Th cells in MS (33, 75, 77). Our group recently
revealed that a Th subset producing high levels of IFN-γ and
GM-CSF, but low levels of IL-17, termed Th17.1, plays a key role
in driving early disease activity in MS patients (78). Proportions
of Th17.1 cells were reduced in the blood and highly enriched
in the CSF of rapid-onset MS patients. In addition, Th17.1 cells
and not classical Th1 and Th17 cells accumulated in the blood
of MS patients who clinically responded to natalizumab (anti-
VLA-4 mAb). The increased pathogenicity of Th17.1 is further
exemplified by their high levels of multidrug resistance, anti-
apoptotic and cytotoxicity-associated genes ABCB1 (MDR1),
FCMR (TOSO) and GZMB (granzyme B), respectively (78–81).
Th17.1 cells also show pronounced expression of the IL-23
receptor (IL-23R) (78), which is essential for maintaining the
pathogenicity of Th17 cells during CNS autoimmunity (82). IL-23
signals through the IL-23R and IL-12 receptor beta chain (IL-
12Rβ1), resulting in JAK2-mediated STAT3 and TYK2-mediated
STAT4 phosphorylation, and thereby inducing RORγt and T-bet,
respectively (83). IL-12RB1, TYK2, STAT3, and STAT4 are known
genetic risk variants and thus may directly induce Th effector
cells in MS (Figure 2). In addition to its potential effect on Tregs

Frontiers in Immunology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 760187

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00760 May 7, 2020 Time: 11:29 # 5

van Langelaar et al. B and T Cells Driving MS

FIGURE 2 | Potential contribution of EBV and genetic risk factors to pathogenic B- and Th-cell development in MS patients. IFN-γ is a key player in autoreactive
B- and Th-cell interaction and autoimmune germinal center (GC) formation in mice. In MS, we propose that EBV infection together with specific genetic risk variants
promote the IFN-γ-mediated interplay between B and T cells within GCs. EBV directly infects naive B cells and mimic GC responses. EBV DNA can also bind to
TLR7/9, and together with IFN-γ, induces T-bet+ memory B cells. Their interplay may be additionally stimulated by both B cell-intrinsic (IFN-γ sensitivity: IFNGR2;
B cell receptor-antigen uptake: CBLB, SYK, CLEC16A; HLA class II pathway: CLEC16A, CIITA, IFI30; co-stimulation: CD80, CD86) and Th cell-intrinsic (surface
receptors: IL2RA, IL7RA, IL12RB1; downstream molecules: TYK2, STAT3, STAT4) genetic risk variants. IL12R/IL-23R complexes trigger JAK2/STAT3-dependent
RORγt and TYK2/STAT4-dependent T-bet expression in Th effector cells.

(see above), MS-associated risk variant IL-2RA enhances GM-
CSF production by human Th effector cells (33). To confirm the
influence of these and other risk loci (84) on the induction of
pathogenic Th cells such as Th17.1 in MS, functional studies need
to be performed in the near future.

The increased pathogenicity of Th effector cells may
additionally be skewed by IL-6-producing B cells (85, 86),
which have been shown to trigger autoimmune GC formation
and EAE in mice (87, 88). Blocking of IL-6 prevents the
development of myelin-specific Th1 and Th17 cells in EAE
(89). The IL-6-mediated resistance of pathogenic Th cells to
Treg mediated suppression in MS (90, 91) further links to the
abundant expression of anti-apoptotic gene FCMR in Th17.1 (78,
92). Intriguingly, B cell-derived GM-CSF can be an additional
cytokine driving pathogenic Th cells in MS patients by inducing
pro-inflammatory myeloid cells (93). Although the causal MS
autoantigen is still unknown, previous work implies that B
cell-mediated presentation of EBV antigens at least contributes
to pathogenic Th-cell induction (5, 94). As mentioned above,
antiviral CD8+ CTLs can become exhausted during persistent
viral infections. Normally, this mechanism is compensated by the

presence of cytotoxic CD4+ Th cells, which keep these types of
infections under control (95). Such Th populations have been
associated with MS progression (96) and are also formed after
EBV infection, producing high levels of IFN-γ, IL-2, granzyme
B, and perforin (97, 98). Similarly, EBV- and myelin-reactive
Th cells from MS patients produce high levels of IFN-γ and
IL-2 (6) and strongly respond to memory B cells presenting
myelin peptides (99). These studies indicate that the involvement
of EBV-infected B cells, especially those expressing T-bet (see
section “Th Cells as Inducers of Pathogenic Memory B Cells”),
in activating Th effector cells with cytotoxic potential (78, 100,
101) deserves further attention in MS.

REACTIVATION OF CNS-INFILTRATING
B AND T CELLS IN MS

Mechanisms of Infiltration
Under normal physiological conditions, the CNS has been
considered an immune privileged environment and consists of a
limited number of lymphocytes that cross the blood brain barrier

Frontiers in Immunology | www.frontiersin.org 5 May 2020 | Volume 11 | Article 760188

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-00760 May 7, 2020 Time: 11:29 # 6

van Langelaar et al. B and T Cells Driving MS

(BBB) (102). However, the revelation of meningeal lymphatic
structures emphasized the cross-talk between CNS and peripheral
lymphocytes in secondary lymphoid organs (103). The choroid
plexus has been identified as the main entry of memory cells
into the CNS, which is in the case of T cells mostly mediated
by CCR6 (104, 105). The normal human CSF, as is acquired
from the arachnoid space by lumbar spinal taps, contains more
CD4+ Th cells compared to CD8+ T cells with central memory
characteristics (106–108). The arachnoid space is a continuum
with the perivascular space surrounding penetrating arterial and
venous structures into the parenchyma (109). Within the brain
parenchyma, more CD8+ T cells than CD4+ Th cells are found,
however, their numbers remain low and can be found virtually
restricted to the perivascular space (11, 110). These T cells
display a phenotype mostly associated with non-circulating tissue
resident memory T cells. The perivenular perivascular space
has been argued to be the common drainage site of antigens
mobilized with the glymphatics flow (111). The exact relationship
between memory T cells in the subarachnoid and perivascular
space has been poorly identified in terms of replenishment and
clonal association.

The BBB is dysfunctional during the early phase of MS,
resulting in or is due to local recruitment of pathogenic T
and B cells (112). Differential expression of pro-inflammatory
cytokines, chemokine receptors and integrins by infiltrating
lymphocytes have been argued to mediate disruption of the
BBB in MS (104, 113). Myelin-reactive CCR6+ and not CCR6−
memory Th cells from MS patients not only produce high levels
of IL-17, but also IFN-γ and GM-CSF (80). Previous studies
mainly focused on the migration of IL-17-producing CCR6+ Th
cells through the choroid plexus in EAE and in vitro human
brain endothelial cell layers in MS brain tissues (104, 114).
In our recent study, we subdivided these CCR6+ memory Th
cells into distinct Th17 subsets and found that especially IFN-γ
producing Th17.1 (CCR6+CXCR3+CCR4−) cells were capable
of infiltrating the CNS, both in ex vivo autopsied brain tissues
and in in vitro transmigration assays (78). The fact that Th17.1
cells have cytotoxic potential and strongly co-express IFN-γ with
GM-CSF (78) suggests that these cells are involved in disrupting
the permeability of the BBB in MS (115, 116). The impact of
CXCR3 on their transmigration capacity is likely the result of
binding to the chemokine ligand CXCL10, which is produced
by brain endothelial cells and is abundant in the CSF of MS
patients (117, 118). Similar observations were made for CXCR3
(T-bet)+ B cells (44). CCR6 is also highly expressed on memory
B-cell precursors within the Th cell-containing light zone of GCs
(119), and on IFN-γ-producing CD8+ T cells infiltrating the MS
brain (120). This implies that both populations are susceptible
to enter the CNS of MS patients. In addition to chemokine
receptors and pro-inflammatory cytokines, adhesion molecules
such as activated leukocyte cell adhesion molecule (ALCAM)
enhance transmigration of pathogenic B and T cell subsets (115,
121, 122). Furthermore, CXCR3 is co-expressed with integrin
α4β1 (VLA-4), which allows both B- and T-cell populations to
bind to vascular cell adhesion protein 1 (VCAM-1) on brain
endothelial cells (123). This is supported by the reducing effects
of VLA-4 inhibition on B- and Th17-cell infiltration into the

CNS and disease susceptibility in EAE (124). Natalizumab, a
monoclonal antibody against VLA-4, is used as an effective
second-line treatment for MS (125). Discontinuation of this
treatment often results in severe MS rebound effects (126).
Hence, the peripheral entrapment of populations like Th17.1 and
T-bet+ B cells in natalizumab-treated patients (44, 78) probably
underlies the massive influx of blood cells causing these effects.
The same is true for EBV-reactivated B cells, which are enriched
in lesions from MS patients after natalizumab withdrawal (127).
A previous gene network approach using several GWAS datasets
further highlights the relevance of adhesion molecules on the BBB
endothelium for the crossing of T and B cells (128), especially
those affected by IFN-γ (115).

Local Organization and Impact
Both B and T cells accumulate in active white matter lesions of the
MS brain (10, 129). In diagnostic biopsy studies, T cell-dominated
inflammation is a characteristic of all lesion-types observed (130).
Also in post-mortem MS lesions, white matter MS lesions with
active demyelination associate with an increase in T cell numbers
(10, 129). Although CD4+ Th cells are in general outnumbered
by CD8+ CTLs in brain lesions as investigated in autopsy studies
(10), their role as triggers of local pathology should not be
overlooked in MS. This is consistent with the enrichment of
CD4+ Th cells in white matter lesions with active demyelination
(10). An abundant number of CD4+ Th cells were also visible in
pre-active lesion sites, suggesting an involvement of these cells
in the early stages of lesion formation (131). Additionally, it was
demonstrated that in contrast to CD8+ CTLs, brain-associated
CD4+ Th-cell clonotypes are reduced in MS blood, indicating
specific recruitment (as described above) or, alternatively, clonal
expansion in the CNS (132). Furthermore, dominant Th-
cell clones were undetectable following reconstitution after
autologous hematopoietic stem cell transplantation in MS
patients, which was not seen for CD8+ T cells (133). Interestingly,
T-cell clones are shared between CNS compartments within a
patient, including CSF and anatomically separated brain lesions
(132, 134–137). This suggests that brain-infiltrating T cells bear
similar reactivity against local (auto)antigens.

In subsets of MS autopsy cases with acute and relapsing
remitting MS, B cells can also be found predominantly in
the perivascular space in association with active white matter
lesions (10). The role of these perivascular B cells, including
T-bet+ B cells (44), could be to re-activate (infiltrating) pro-
inflammatory CD4+ and CD8+ T cells to cause MS pathology
(Figure 1). Identical B-cell clones have been found in different
CNS compartments of MS patients, including the meninges
(138, 139). Within the meninges, B- and T cell-rich follicle-like
structures have been found that localize next to cortical lesions,
presumably mediating progressive loss of neurological function
in MS (140, 141). Interestingly, MS brain-infiltrating lymphocytes
express and respond to IL-21 (142), the cytokine that drives
follicular T- and B-cell responses. Additionally, IFN-γ triggering
of B cells promotes ectopic follicle formation in autoimmune
mice (16, 45), suggesting that the structures observed in the MS
CNS are induced by B cells interacting with IFN-γ-producing
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T cells. However, the role of IL-17 in this process should not be
ruled out, as shown in EAE (143).

Besides mediating migration and organization of pathogenic
lymphocytes in the MS brain, cytokines are likely relevant effector
molecules. IFN-γ production by Th cells also associates with
the presence of demyelinating lesions in the CNS (144–146).
IFN-γ, and possibly also GM-CSF, can activate microglia or
infiltrated macrophages to cause damage to oligodendrocytes
(93, 147, 148). As for B cells, increased production of TNF-
α, IL-6, and GM-CSF has been found (48, 87) and we have
recently shown that during Tfh-like cultures, IFN-γ drives IgG-
producing plasmablasts in MS (44). One could speculate that
after their re-activation by IFN-γ-producing Th cells within
the meningeal follicles, T-bet+ memory B cells rapidly develop
into antibody-producing plasmablasts/plasma cells (Figure 1).
IFN-γ-induced GC formation promotes the generation of
autoantibodies in lupus mice (16, 45). The targeting of B cells
and not plasmablasts/plasma cells by clinically effective anti-
CD20 therapies in MS, as well as the abundance of oligoclonal
bands in MS CSF, at least support the local differentiation of
B cells into antibody-secreting cells (48, 149). We argue that
IgG secreted by local T-bet-expressing plasmablasts/plasma cells
are highly reactive in the MS brain (43, 44, 55), although the
(auto)antigen specificity and pathogenicity of such antibodies
remain unclear in MS, as well as their contribution as effector
molecules to MS pathology.

Several antigenic targets have been proposed to contribute
to MS pathology. Next to myelin, which is one of the most
intensively studied antigens (150), also EBV antigens are
considered as major candidates. EBNA-1 specific IgG antibodies
are predictive for early disease activity (151) and are present
in CSF from MS patients (152, 153). Some studies imply that
reactivated B cells in ectopic meningeal follicles (154, 155) cross-
present EBV peptides to activate myelin- and EBNA-1 specific Th
cells (6, 156, 157). Whether EBV is detected in the brain or solely
recognized in the periphery and how this contributes to local
pathology is still a matter of intense debate in the field (127, 158–
162). In addition to myelin (150) and EBV (6), other antigenic
targets of locally produced IgG and infiltrating T cells have been
suggested, such as sperm-associated antigen 16 [SPAG16 (163)],

neurofilament light, RAS guanyl-releasing protein 2 [RASGRP2
(4)], αB-crystallin and GDP-l-fucose synthase (135).

CONCLUDING REMARKS

In this review, we have discussed potential triggers and
mechanisms through which interacting B and T cells drive the
pathogenesis of MS. In our presented model, peripheral B cells
escape from tolerance checkpoints as the result of impaired
control by chronically exhausted or genetically altered regulatory
T cells. Subsequently, B cells interact with IFN-γ-producing
effector Th cells in germinal centers of lymphoid organs to create
a feedforward loop, after which highly pathogenic subsets break
through blood-CNS barriers and, together with infiltrating CD8+
CTLs are locally reactivated to cause MS pathology. Although
definite proof is still lacking, these pathogenic events are likely
mediated by an interplay between persistent infections such
as EBV and genetic risk variants. Together, these factors may
alter the selection, differentiation and pathogenic features of
B- and T-cell subsets. In our view, more in-depth insights into
how infections and genetic burden define the CNS-infiltrating
potential and antigen specificity of such subsets should be the
next step to take in the near future. The development of small
molecule therapeutics against subsets driving the disease course
would be an effective way of generating clinically relevant benefits
without harmful effects in MS patients.
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Individuals with traumatic spinal cord injury (SCI) suffer from numerous peripheral

complications in addition to the long-term paralysis that results from disrupted neural

signaling pathways. Those living with SCI have consistently reported gastrointestinal

dysfunction as a significant issue for overall quality of life, but most research has focused

bowel management rather than how altered or impaired gut function impacts on the

overall health and well-being of the affected individual. The gut-brain axis has now been

quite extensively investigated in other neurological conditions but the gastrointestinal

compartment, and more specifically the gut microbiota, have only recently garnered

attention in the context of SCI because of their vast immunomodulatory capacity and

putative links to infection susceptibility. Most studies to date investigating the gut

microbiota following SCI have employed 16S rRNA genomic sequencing to identify

bacterial taxa that may be pertinent to neurological outcome and common sequalae

associated with SCI. This review provides a concise overview of the relevant data that has

been generated to date, discussing current understanding of how the microbial content

of the gut after SCI appears linked to both functional and immunological outcomes, whilst

also emphasizing the highly complex nature of microbiome research and the need for

careful evaluation of correlative findings. How the gut microbiota may be involved in the

increased infection susceptibility that is often observed in this condition is also discussed,

as are the challenges ahead to strategically probe the functional significance of changes

in the gut microbiota following SCI in order to take advantage of these therapeutically.

Keywords: spinal cord injury, neurotrauma, gut dysbiosis, gastrointestinal dysfunction, inflammation, infection

INTRODUCTION

It is well-recognized that traumatic spinal cord injury (SCI) leads to permanent sensorimotor
impairments, but perhaps less appreciated is the fact that individuals with SCI also suffer from
debilitating multi-system physiological dysfunction (1, 2). For example, autonomic dysreflexia,
SCI-induced immune depression syndrome (SCI-IDS) and bladder/bowel dysfunction can all
develop after SCI due to a disruption of autonomic pathways between the brain and the spinal cord
(3–6). In the context of inflammation and immune function after SCI, the majority of neurotrauma
research has focused on defining the activity of specific immune effectors, placing particular
emphasis on how these impact on lesion site development. What is much less understood, however,
is why the immune response to SCI is aberrant and involves co-existing pro-inflammatory and
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immunosuppressive elements, both of which are notably not
contained to the lesion itself. The overall picture of an obviously
multi-faceted and paradoxically-acting immune system therefore
remains blurred, including much of its relationship to the
secondary sequalae of SCI. Whilst overall mortality has reduced
considerably, current treatments do little to combat the
more chronic consequences of SCI, including serious visceral
comorbidities, and there has been no discernible progress in
improving life expectancy and overall quality of life for affected
individuals (7–9).

With the increasing recognition of an impaired and/or
aberrantly acting immune system, more recent work in the
field has shifted its focus toward investigating the possibility
of extraneous stimuli or signals that may be influencing the
immunological changes that occur after SCI. One logical
candidate here may be the gut. The vast microbial communities
that reside in the gut (and indeed in other niches in the
body) coordinate critical functions for host survival and they
have many complex interrelationships with other organs in
the body, to the extent that the microbiota is now regarded
an organ in its own right. The gut’s microbial ecology
and intrinsic immune compartment are known to exert
considerable influence over basal immunological activity,
any perturbations to homeostatic conditions in the gut can
therefore have a robust impact on immune function (10–13).
How SCI affects this aspect of the gut is only just beginning
to be understood. Surveys amongst SCI patients typically
reveal gut dysfunction and neurogenic bowel conditions
that culminate in reduced intestinal motility, impaired
defecation, abdominal pain and associated infection risk
as major issues that undermine their overall quality of life,
arguably more so than physical paralysis (1, 2, 14, 15). A better
fundamental understanding of how the gut contributes to the
pathophysiological changes and chronic consequences of SCI is
therefore of paramount importance.

THE GUT MICROBIOTA

The pivotal influence and contribution of the gut microbiota to
overall health is due in part to the presence of 1014 microbes
with a taxonomic diversity encompassing bacterial, archaeal and
eukaryotic species (10, 12). The microbial inhabitants of the gut
are diverse between individuals and while a core microbiota
of defined microorganisms does not exist, high-throughput
metagenomic sequencing has revealed the reliable presence
of 12 bacterial phyla, chiefly Firmicutes and Bacteroidetes,
archaeal phyla, as well as rich fungal communities (10, 16–18).
Together, they share a high degree of functional redundancy
through a genomic content ∼150 times larger than the human
genome (19, 20). Diet changes, host behavior and antibiotic
treatment throughout life significantly impact on both the gut
microbiota and disease susceptibility. At an extreme, work with
gnotobiotic mice allude to a compromised ability of the body to
effectively manage immunity; this seminal discovery already has
wider implications for the use of laboratory animals that have
fundamentally misrepresented (or even absent) gut microbiota,

in particular when considering the translational value of these
experiments (21).

The immune-modulatory capacity of the gut microbiota
spans between the production of stimulatory metabolites, and
the priming of immune cells that are critical for maintaining the
health of the host; however, these influences can become
detrimental if the microbial balance is lost. To avoid
inappropriate immune activation by “non-self ” material,
the microbiota is largely kept separate from surveilling host
immune cells via physical, biochemical and immunological
means (10, 22). There are however certain commensal
bacteria that actively interact with immune effectors such
as Bacteroides fragilis, a member of the Bacteroidetes phylum,
which directly stimulate regulatory CD4+ T cells to enable
its own colonization into the epithelium and simultaneously
induce beneficial immunosuppression (23, 24). The secretion
of immunoglobulin A stimulated by segmented filamentous
bacteria (SFB) goes toward limiting the exposure of the
epithelium to other pathogenic microbes (10, 25, 26). On
the other hand, the pathobiont (i.e., a commensal microbe
with the potential to become a pathogenic) Escherichia
coli similarly adheres to the epithelium, but can trigger
the recruitment of Th17 rather than regulatory CD4+ T
cells, which effectively enhances inflammation in the gut
(18, 27). In considering the immunomodulatory potential
of metabolites, microbial short-chain fatty acids (SCFAs)
derived via anaerobic fermentation have the capacity to
exert widespread influence over host cellular function,
including epigenetic regulation, stem cell proliferation and
gut barrier modulation and, importantly, they also act
as potent anti-inflammatory mediators (18, 28). Microbe-
directed immune cell manipulation is thought to be necessary
for homeostatic immune control, though a push toward
pro-inflammatory conditions in disease contexts such as
inflammatory bowel disease implicate the pathological potential
of these microorganisms if the delicate balance they maintain
with the host becomes disturbed.

INTERACTIONS BETWEEN THE GUT
MICROBIOTA AND THE CENTRAL
NERVOUS SYSTEM

The activity and influence of the gut microbiota is not
contained to local immune-gut interactions but extends via
critical communication axes to distant organs including the
brain. This relationship was made apparent in the association
of gastrointestinal disorders with psychiatric conditions, as well
as in multiple cases where antibiotic treatment modulated
disease outcomes in the central nervous system (CNS) in sterile
contexts (18, 29–31). Specific routes of direct communication
include afferent fibers from the enteric nervous system (ENS;
the intrinsic neural network of the gut), autonomic signaling
and humoral pathways such as the hypothalamic-pituitary-
adrenal axis and enteroendocrine/mucosal immune system
communications (32). Observations that diet-induced changes
in the intestinal microbiota were accompanied by increased
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exploratory behavior in mice suggest that there may be additional
pathways for communication with the brain that are independent
of the aforementioned routes and instead rely on microbial-
derived factors interacting with the CNS (29).

Effects of the microbiota-gut-brain axis have also been
implicated in CNS injury and diseases. Investigations of
blood-brain-barrier (BBB) development revealed that germ-
free mice have increased BBB permeability, which renders the
CNS vulnerable; this phenotype was only rescued with the
introduction of normal microflora (33). In autism spectrum
disorders, a reduced integrity of the BBB, in addition to
abnormal neural development and altered gene expression,
has also been linked to the gut microbiota (34). The use
of germ-free mice has increased appreciation of how the
microbiota shapes neuroinflammation, including in the context
of experimental autoimmune encephalomyelitis (EAE—the
animal model of multiple sclerosis), with both pro- and anti-
inflammatory effects (29, 35). Here, germ-free and antibiotic-
treated mice show reduced EAE severity compared to normal
mice (36), whilst the introduction of segmented filamentous
bacteria (SFB) into the gut of these germ-free mice was
sufficient to instigate EAE, reinstating the ability of these
mice induce Th17 cells (35, 37). Colonization of the gut
with B. fragilis provided greater protection, however, from
EAE symptoms through increased regulatory T cell activity
(36, 38). The critical involvement of the microbiota in CNS
disease appears recapitulated in humans, as alterations in
the microbiome of multiple sclerosis patients correlated with
specific gene expression patterns that direct host immune
activity (39).

In the context of traumatic CNS injuries, pivotal work by
Houlden et al. (30) showed that the gut microbiota undergoes
significant change (i.e., gut dysbiosis) after experimental
stroke and traumatic brain injury (TBI). A disturbance of
the microbiota-gut-brain axis is thought to underpin the
symptoms of abdominal pain, intestinal immobility and gastric
ulcer formation that occur in these patients following injury
(31). After an insult to the brain, a significant loss of
cholinergic neurons in the gut submucosa, accompanied by
an upregulation of noradrenaline from sympathetic terminals
in the gastrointestinal tract, dysregulate the gut microbial
content (30, 40). Changes in the gut microbiota that favor
pathogenic bacteria (gram-negative species of Bacteroidetes and
Proteobacteria) over beneficial species (from the Firmicutes
phylum) can be observed as early as 2 h post-injury and
persist for a week; interestingly, these alterations in microbial
abundance are predictive of the lesion volume and associated
behavior deficits in an almost dose-dependent manner (41). To
counter gut dysbiosis after TBI, antibiotic treatment targeting
pathobionts as well as probiotic interventions that support
anti-inflammatory activity have been successful in decreasing
pathology in the gut, thereby conferring neuroprotection.
Whilst these findings emphasize the role of the microbiota-gut-
brain axis in CNS injury, the exact mechanisms behind these
observations and the associated clinical implications have not
been addressed.

CURRENT RESEARCH INTO SCI AND THE
GUT MICROBIOTA

The gut microbiota has also been rapidly gaining interest for
potential “disease-modifying” effects in SCI (42). Whilst this is
unsurprising given the obvious parallels between TBI and SCI,
it is important to consider the direct innervation of the gut
from the spinal cord, and how this may be differentially affected
between these conditions as well as within SCI itself based on
the neurological level of the lesion. Sympathetic nerve fibers
providing autonomic input into the ENS originate from the
thoracic region of the spinal cord, whilst visceral sensory afferents
carrying feedback from the gut synapse with spinal cord neurons
that eventually transit to the brain (43). Afferent vagal fibers also
report to the brain, specifically informing it of the conditions of
the intestinal environment (18). Interruption or loss of control
over these various pathways and feedback loops push the intrinsic
ENS circuits away from homeostasis, and this autonomic
imbalance in part explains why SCI patients also suffer from
severe gut immobility, fecal retention and increased risk of
infections, all of which culminate in a considerably reduced
quality of life (1). The impact of SCI on the gut microbiota
and the subsequent consequences on inflammation and immune
function are only now beginning to be systematically interrogated
(see Table 1 for a summary overview).

The first report of changes in the gut microbiome of SCI
patients identified a specific reduction of beneficial butyrate-
producing microbes of the Firmicutes phylum at 12 months or
more post-injury compared to healthy controls (44). Although
this work was primarily descriptive via the use of 16S ribosomal
RNA (rRNA) genomic sequencing, it was suggested that
this microbiome profile may be pointing toward a reduced
immunomodulatory metabolite content of the gut. Later pre-
clinical work in a thoracic level 9 (T9) contusion SCI mouse
model by Kigerl et al. (54) reported that SCI increases gut
permeability 1 week after injury, and it was postulated that,
similar to stroke (40), this may allow for bacterial translocation
to distant organs (45). This landmark study also sequenced 16S
rRNA, which was extracted from fecal samples of mice with a
moderate-severe T9 contusive SCI up to 28 days post-injury.
Their results showed that the bacterial orders Bacteroidales
decreased while Clostridiales significantly increased over time
post-SCI. Although there is no doubt that profound changes to
the gut microbiota did occur in these SCI mice, a consideration
around this study is that the experimental design did not include
fecal samples from sham-operated controls beyond the sub-acute
phase (>7 days post-SCI). The 16S rRNA sequencing results
for these mice were further presented as pooled data rather
than being split between the acute (0–3 days) and sub-acute (5–
7 days) phases post-surgery. A more recent study by Schmidt
et al. (45) showed acute effects of surgery (i.e., laminectomy)
and/or anesthesia on the gut microbiome, albeit in rats, and
others have reported rapid and profound shifts in the gut
microbiome profile of poly-traumatized human patients with no
documented history of neurological injury (46). Going forward,
the impact of trauma itself, SCI severity, lesion level and possible
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TABLE 1 | A summary of gut microbial changes after SCI in pre-clinical and human investigations.

Study details PCR gene primers Microbial changes (vs. control)

Phyla + lower taxonomic ranks

Intervention/

Treatment

References

Pre-clinical

studies

Animal: Female C57BL/6 mice

SCI: 75 kdyn T9 contusion (cont.) SCI

Controls: T9 Laminectomy + naïve

Timepoints: ≤28 days hard enter

Separately housed, no antibiotics. Food

intake equilibrated across all animals.

16s rRNA V4–V5

515F

806R

↑ Firmicutes

↑ (o) Clostridiales

↓ Bacteroidetes

↓ (o) Bacteroidales

VSL #3 probiotic

↓ Gut dysbiosis

↑ Functional

recovery

(54)

Animal: Adult female Fischer rats

SCI: moderate-severe T9 cont. SCI (weight

drop: 10 g rod from 25.0mm)

Controls: T9 Laminectomy

Timepoints: 8 weeks (wks)

Co-housed in injured + non-injured pairs,

7-day gentamicin treatment. Ad libitum

access to food and water.

16s rRNA V4

Unknown primers

= α diversity

Actinobacteria

↑ (f) Bifidobacteriaceae

↑ (s) B. choerinum

Firmicutes

↑ (f) Clostridiaceae

↑ (s) C. disporcum

↓ (s) C. saccharogumia

(f) Lactobacillaceae

↑ (s) L. intestinalis

– (50)

Animal: Adult female C57BL/6 mice

SCI: 50 kdyn T9 cont. SCI

Controls: T9 Laminectomy

Timepoints: ≤6 weeks

Co-housed in exp. group, no antibiotics

16s rRNA V3–V5

(V4)

Unknown primers

↑ Increased bacterial load

↓ Firmicutes

↑ Bacteroidetes

↑ Proteobacteria

PDE4B−/− KO mice

↓ Gut dysbiosis

↓ Neuroinflammation

↑ Functional

recovery

(53)

Animal: Adult female C57BL/6 mice

SCI: 70 kdyn T10 cont. SCI

Controls: T10 Laminectomy

Timepoints: 28 days

No antibiotics. Ad libitum access to food

and water.

16s rRNA V3–V4

338F

806R

↑ α diversity

Firmicutes

↓ (o) Lactobacillales

↓ (g) Lactobacillus

↑ (o) Clostridiales

↑ (f) Lachnospiraceae

Actinobacteria

↓ (o) Bifidobacterialis

Melatonin

↓ Gut dysbiosis

↓ Leaky gut

↑ Functional

recovery

(55)

Animal: Adult female Lewis rats

SCI: 125 kdyn unilateral C5 cont. SCI

Controls: C5 Laminectomy and naïve

Timepoints: preinjury, 3 days, 4 weeks

Co-housed in exp. group; no antibiotics. Ad

libitum access to food and water.

16s rRNA V4

Unknown primers

↑ α diversity in all groups at 3 dpi

Significantly different OTUs (g/s level):

155 = SCI vs. healthy

40 = SCI vs. sham

Analysis of phylogenetic

differences in supplementary data

Fecal Transplant

↓ Gut dysbiosis

↓ Anxiety-like

behavior

(45)

Human

studies

SCI: AIS grade A Cont. SCI

Control: Healthy individuals

Further comparisons:

Upper motor neuron (UMN) + lower motor

neuron (LMN) bowel syndrome

Timepoints: ≥1 year post-injury

1–3 weeks standard diet, 3 weeks

no antibiotics

16s rRNA V4

515F

806R

Firmicutes

↓ (g) Pseudobutyrivibrio

↓ (g) Dialister (UMN)

↓ (g) Megamonas

↓ (g) Marvinbryantia (UMN vs. LMN)

↓ (g) Roseburia (LMN)

– (44)

SCI: AIS grade A SCI

Control: Healthy males

Further comparisons: Quadriplegia (quad)

vs. paraplegia (para)

Timepoints: ≥ 6 months post-injury

2 weeks standard diet, 1 month no antibiotics

16s rRNA V3–V4

338F

806R

↓ α diversity

↓ Firmicutes (Quad vs. Healthy

and Para)

↓ (g) Dialister

↓ (g) Megamonas

↓ (g) Eubacterium

↓ (g) Subdoligranium

↓ (g) Faecalibacteria (Quad)

↑ (g) Blautia

↑ (g) Lachnoclostridium

↑ (g) Phascolarctobacterium

(Para)

Bacteroidetes

↓ (g) Prevotella

↑ (g) Bacteroides

↑ (g) Parabacteroides (Para)

↑ Proteobacteria

↑ (g) Escheria/Shigella

↑ Verrucomicrobia

– (14, 52)*

*Same

quadriplegic

patient

cohort
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interspecies differences therefore all require careful investigation
as to how they impact on the gut microbiota and, if so, for how
long these changes persist or perhaps even diverge with time
(46–49). This becomes particularly important when exploring
correlations between select changes in the gut microbiota and the
neurological outcome.

A separate study by O’Connor et al. also examined differences
in microbial content of the gut following T9 contusion SCI
in rats (50). They detected significant modifications in the
gut microbiome after SCI during the intermediate/chronic
phase of SCI (8 weeks post-injury) as compared to the sham-
operated control group. Somewhat counterintuitively perhaps
is that this study found a greater prevalence of Lactobacillus
intestinalis, a lactic acid-producing probiotic bacterial species
generally considered to be beneficial. By the same token, the
microbiota of SCI animals also showed unexpected post-SCI rises
in certain Clostridaiceae and Bifidobacterium species that are
primarily thought to be beneficial. It may be that the activity of
these commensal bacteria becomes pathogenic (and/or of lesser
influence) within an inflammatory environment (51). Certainly,
pro-inflammatory cytokines such as IL-1β, IL-12 and MIP-2
were significantly elevated in intestinal tissue 4 weeks after SCI,
the extent of which was also correlated with a reduction of
beneficial butyrate-producing bacteria in the gut, which falls in
line with previous human SCI work (44). It is important to note,
however, that all animals in this study received a 7-day course
of gentamicin treatment following surgery. How this and also
the use of general anesthesia in experimental studies impacts on
the gut microbiota, including the shaping of any SCI-associated
changes therein, remains unclear. Whilst the study by Kigerl
et al. (54) therefore may provide more specific insights how
traumatic SCI itself impacts on the gut microbiota, the findings
of O’Connor et al. (50) are still of significant translational value
given that most human patients undergo surgery and typically
receive prophylactic antibiotic as well as probiotic treatment after
their injury.

Several more recent reports have attempted to better define
the consequences of SCI-induced changes in the gut microbiota,
linking these directly to specific bacterial types that could be
directly therapeutically targeted. For instance, in a Chinese
cohort of male SCI patients, Zhang et al. (14) reported that the
overall diversity of the gut microbiota was significantly reduced
6 months after SCI compared to healthy controls. Amongst a
spectrum of changes in bacterial phyla and genera and an overall
decrease in microbial diversity after SCI, these authors found that
Bacteroides, a genus of the Bacteriodales order, increased with SCI
(14); they also observed an increase in the abundance of bacteria
from the Proteobacteria and Verrucomicrobia phylum. These
changes were directly comparedwith aspects of neurogenic bowel
dysfunction as well as the extent of physical paralysis, which
again revealed more specific microbial alterations. A more recent
follow-up investigation by this group correlated these established
changes in the microbial profile to the serum lipid profiles of
this patient cohort (52). Another investigation in mice by Myers
et al. also characterized SCI-induced gut dysbiosis, noting a
significant increase of the Proteobacteria phylum at 6 weeks
after injury compared to an uninjured control group, which is

in agreement with human SCI findings and perhaps suggests
a bias toward gram-negative endotoxin-containing bacteria as
drivers gut pathogenesis in this condition (53). The findings
of this study also pointed toward a reduction in Firmicutes,
along with an increase in Bacteroidetes phyla. Genetic ablation
of the phosphodiesterase PDE4B prevented these changes in
bacterial phyla, which coincided with improved functional
recovery via inflammatory modulation. An investigation by Jing
et al. (55) measured an overall increase in bacterial diversity
in SCI mice [which goes against some human SCI microbiome
analysis (14)], in particular a relative increase in the abundance
of Clostridiales, as was found in previous work (54), and a
decrease in Lactobacillales and Bifidobacteriales. Daily melatonin
treatment post-injury appeared to reverse some of these changes,
and this was correlated with amore favorable cytokine profile and
improvements in gut barrier integrity and functional recovery
(55). Lastly, the study by Schmidt et al. that was alluded to
earlier documented transient changes in the gut microbiota of
rats with a unilateral mild cervical contusion SCI, which occurred
as early as 3 dpi before resolving by 4 weeks, and correlated
these changes with anxiety-like behaviors (45). Treatment of
these rats with fecal transplants from naïve animals resulted
in a normalization of the gut microbiota based on 16S rRNA
sequencing results, and also prevented the onset or development
of anxiety-like behaviors. No improvements in lesion pathology
and locomotor recovery were observed in association with this
intervention (45). Interestingly, the study by Kigerl et al. (54)
showed that the extent of neuroinflammation at the site of SCI
could, at least partly, be ameliorated with the therapeutic use
of the probiotic VSL #3, which contains lactic acid-producing
bacteria from the Lactobacillus and Bifidobacterium genera.
Whilst the root causes that drive SCI-induced gut dysbiosis
remain unknown, and also howVSL #3 provides neuroprotection
at the lesion site, this finding clearly holds promise for clinical
translation. It also emphasizes the point that either preventing
gut dysbiosis or, alternatively, restoring the composition of the
gut microbiota to a pre-injury state may not necessarily lead
to beneficial outcomes, but rather that introduction and/or
boosting of beneficial microbial communities may be required to
skew the inflammatory response toward one that improves the
neurological outcome.

Integrating all these specific microbial alterations at various
taxonomic ranks and the functional significances of these will
now form the next challenge, especially given the vast amount
of data that is typically acquired from sequencing studies. On the
whole, most investigations have reported a decrease of bacterial
taxa in the Firmicutes phylum that occasionally coincides
with an increase of the Bacteroidetes phylum. In combination,
this may be indicative of a SCI-associated adjustment in the
“Firmicutes:Bacteroidetes-ratio.” It should be noted that the
studies of Kigerl et al. (54) and O’Connor et al. (50) seemingly
reported opposing results here, but these are likely attributable
to experimental deviations. Specifically, Kigerl et al. (54) housed
their mice individually to avoid coprophagia whilst animals were
co-housed in the study by O’Connor et al. (50). As mentioned
earlier, O’Connor et al. (50) also prophylactically gave their
SCI rats 7 days of gentamicin treatment whereas the study
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by Kigerl et al. (54) avoided the use of antibiotics altogether.
More broadly speaking, recent pivotal work by The Human
Microbiome Project showed that the Firmicutes:Bacteroidetes-
ratio may be more reflective of an organism’s “microbial
equilibrium” and therefore not necessarily as suitable a measure
of dysbiosis between individuals as previously thought (56). The
Proteobacteria phylum also appears to increase in abundance in
both a pre-clinical and SCI patient setting. Given that certain
Proteobacteria genera have been implicated in driving peripheral
inflammation (57), future studies should therefore derive a
clearer putative mechanism for this phylum in the context of
SCI-associated pathology.

Taken together, the above-listed exploratory studies have been
instrumental in substantiating the association between the gut
microbiome and SCI-associated pathology, although the findings
remain correlative for the most part and the drivers of dysbiosis
are still currently unknown. All of these investigations employed
16S rRNA gene sequencing to map out bacterial diversity of the
gut via the generation of big genomic datasets. It is important
to recognize that, when used in isolation, this technique has
some major caveats: (1) archaeal and fungal communities are
omitted from these analyses and, perhaps more importantly, (2)
the identification of specific organisms may not necessarily be
conducive to defining the causes of dysbiosis, altered gut function
and its wider peripheral consequences. This may run the risk
of potentially convoluting our understanding of how certain
microorganisms drive and/or link to pathophysiological changes.
The reliance that this type of analysis places on designating
operational taxonomic units of interest overlooks the global
metabolic/physiological potential of the gut microbiota as a
whole, which ultimately may provide a more informative and
complete perspective on gastrointestinal activity after SCI. It
should also be noted that examining both the murine and human
microbiomes at a genus/species level may not be appropriate at
times, and interrogating the broader functional perspective of the
microbiota instead, perhaps via the use of enterotypes, may be a
more applicable and translatable approach in this field (58).

ENTEROTYPES AS A WAY FORWARD TO
INTERPRET THE SIGNIFICANCE OF
CHANGES IN MICROBIOTA BETWEEN
CONDITIONS AND SPECIES?

A multitude of techniques, experimental design options and
analysis strategies have been recommended to better resolve
the functional profile of the gut microbiota in SCI and the
putative implications thereof [reviewed in Kigerl et al. (59)].
One additional approach may, however, be to consider the
entire microbiota of an organism as a whole via the use of
global classifications, also known as enterotypes (58). This
stratification strategy aids in removing bias that researchers
often place on changes in specific microbial genera/species,
which may be overstating the functional relevance of these
(60, 61). The human gut microbiome was the first to be
stratified into three enterotypes based on bacterial compositional
clustering around a central/driver taxon, with profiles aligned

around particular functional characteristics, such as the synthesis
of different vitamins and various metabolic activities (60).
Enterotypes have been claimed to represent the majority
of inter-individual diversity in humans as opposed to a
continuum of microbial differences and, notably, certain
abundant physiological functions were associated with relatively
rarer bacteria genera (60). The delineation of specific enterotypes
continues to receive much scrutiny, however, with some recent
work proposing a gradient of microbial variation, and others
being concerned by the inherent risk of oversimplification with
a stratification model (61–63). It is nonetheless evident that
analyzing global microbial patterns is likely to prove quite
informative given the overlap in enterotypes observed in humans
and model organisms (58, 64). Hildebrand et al. (64) indeed
revealed the presence of such enterotypes in various strains of
laboratory mice, with a low-richness cluster that was dominated
by Bacteriodetes (similar to the human equivalent “enterotype 1”)
and a high-richness cluster was populated with Ruminococcaceae
(similar to the human equivalent “enterotype 3”). The microbial
richness of these murine clusters was also found to be associated
with varying levels of the calprotectin protein, a marker of
intestinal inflammation, suggesting that certain mice may more
readily induce inflammation depending on their gut enterotype
(64). The presence of similar enterotypes in humans and
laboratory mouse strains therefore demands a greater awareness
to be given to enterotypes during experimental design in pre-
clinical research, particularly from a translational perspective,
as they may not necessarily be reflected in genera/species-
specific compositional differences (58). To date, trauma-related
perturbations of enterotypes have not been studied in humans or
mice. Future work may therefore benefit from profiling potential
enterotype-like clustering in animals prior to and after injury, in
order to examine the possible impact of identified gut patterns or
changes therein, and to also ascertain the impact of an “injury-
state” enterotype on whole organism physiology (61).

THE ROLE OF THE GUT MICROBIOTA IN
INFECTION SUSCEPTIBILITY

SCI patients are highly susceptible to life-threatening infections,
and this is often attributed to the peripheral immune depression
that many patients experience following their injury, a
phenomenon known as SCI-IDS. SCI-IDS manifests as a
reduction of circulating leukocytes, acute lymphoid organ
atrophy and, in animal models, an increase in bacterial colony-
forming units (CFUs) that can be cultured from e.g., the lungs
(65, 66). Seminal work by Prüss et al. (65) showed that an
adrenal gland removal/transplantation paradigm (which restores
only cortical function of the adrenal glands), could achieve a
“homeostatic” re-balancing of noradrenaline and glucocorticoid
levels. This was found to alleviate the consequences of SCI-IDS
after high-level (T1) SCI, with reductions noted in the number
of CFUs that could be cultured from the lungs. This study did
not establish, however, the critical mechanisms that allow for this
“spontaneous pneumonia” to develop, leaving the question of
how an imbalance in the aforementioned stress factors leads to
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an increased presence and/or growth of microbes in the lungs as
of yet unanswered. Kigerl et al. (54) suggested that the gut may
perhaps “leak” infectious microbes after SCI, and that this may
lead abnormal bacterial presence in extraneous tissues such as
the lungs; however, the capacity of the gut microbiota to instigate
infection through translocation is yet to be proven.

Support for a role of the gut microbiota as a source of
disseminating bacteria comes from prior investigations into
infection susceptibility following ischemic stroke (40). Here,
Stanley et al. (40) demonstrated that airway infections after stroke
are only observed in specific-pathogen-free mice (i.e., mice with
microbiota but devoid of known pathogens), and not germ-free
mice (i.e., mice with no microbiota). Sequencing of the lung
microbiome after injury and bacterial tracking experiments led
to the conclusion that the microbial source of infection was
derived from the gut content. These findings are consistent
with observations in other conditions where a translocation of
bacteria to the lungs has been described, including sepsis and
acute respiratory distress syndrome (67). In their exploration

of potential mechanisms driving gut dysregulation after stroke,
Stanley et al. (40) showed that the intestinal barrier was
“leaky” as a result of increased gut permeability and altered
epithelial tight junction distribution. These researchers also
suggested that disrupted sympathetic innervation of the gut
triggers the movement of commensal bacterial from the gut,
which they verified via a reduced post-stroke infection incidence
with adrenergic receptor inhibition (40). Taken together, this
investigation offered a highly novel concept for the occurrence
of airway infections after an acquired CNS insult, which may
rationalize the theoretically-coupled incidences of SCI-induced
gut dysfunction and dysbiosis with the heightened infection
susceptibility in this patient population.

It is interesting to note, however, that although Stanley
et al. (40) provided evidence in support of the premise that
a disrupted neuronal circuitry instigated gut permeability and
dysregulation after experimental stroke, blocking adrenergic
signaling only resulted in a decreased bacterial load as opposed
to a complete elimination of microbes from the lungs, suggesting

FIGURE 1 | Pathogenic changes in the gut microbiota after traumatic spinal cord injury. As part of the wider systemic response to SCI, inflammatory changes in the

gut are likely to contribute to reduced intestinal function and barrier integrity (1). Leakiness of the gut epithelium can dysregulate the microbial community in the gut

lumen and allow for bacterial translocation. Release of noradrenaline from post-ganglionic sympathetic terminals is thought to further contribute to gut dysbiosis (2). A

greater abundance and/or expansion of specific pathobionts after SCI can induce a Th17 response, which propagates further inflammation (3). Afferent sensory

feedback signals report perturbations in the intestinal environment to the brain via the vagus nerve, thereby completing the bidirectional loop between the gut and the

central nervous system, while gut microbes release metabolites and signaling molecules such as short-chain fatty acids (SCFAs) that shape peripheral

immunomodulatory processes (4). These changes may modulate the immune response to e.g., airway infections. Commensal microbes from the gut may also be able

to take up inappropriate residence in the lungs (5). Local inflammatory changes in the lungs in response to SCI may compromise the respiratory epithelium (6), and

interfere with local defense mechanisms against extraneous pathogens (7).
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the putative existence of other/concurrent mechanisms that add
to infection susceptibility. Intestinal damage resulting in the
“leaky gut” phenotype may additionally be explained by excessive
inflammatory processes that already exist in the context of the
original disease/injury occurring in the host. For instance, in
graft-vs.-host disease, neutrophils are recruited to the intestinal
wall and are responsible for tissue damage via the induction
of reactive oxidative species. Their destructive activity appeared
dependent on the presence of translocating microbes into
the peri-intestinal tissue, as neutrophils were not recruited in
germ-free mice (68). Thus, displaced microbes may act as a
chemotactic stimulus for inflammatory immune cells, whereby
their movement could dictate the site of inflammation. When
considering SCI, it is well-established that neutrophils do not just
accumulate at the lesion site itself (69), but also in peripheral
tissues. Here, systemically circulating neutrophils can cause
widespread tissue damage in other organs such as the liver,
spleen, lung and kidneys, a phenomenon more generally known
as Systemic Inflammatory Response Syndrome (SIRS) (70, 71).
It has already been noted that patients with severe SIRS also
endure gut dysbiosis (72), so it is tempting to speculate that
the early mobilization and priming of neutrophils by a CNS
insult like SCI may also deleteriously affect the gut. Alternatively,
the immunomodulatory activity of commensal gut microbes
and/or the changes therein, as described earlier, may also add
to altered systemic immune function. These possibilities are not
mutually exclusive.

Perturbations to normal crosstalk between the gut microbiota
and the immune system may disrupt this delicate homeostatic
balance and provoke the unwanted residence and/or growth
of extraneous pathogens in the airways of the host (11). For
example, protection against pneumonia instigated by S. aureus is
conferred in part by the activity of SFB in the gut which again
promote pulmonary Th17 immunity (73). The gut microbiota
normally positively regulates host defense against pneumococcal
pneumonia by limiting bacterial dissemination, controlling
inflammation, and by enhancing the phagocytic function of
resident alveolar macrophages; these protective influences of the
gut microbiota are dysregulated in germ-free mice (11, 74). These
results are also corroborated by experiments in Rag−/− mice
(which are deficient in T and B cells), as gut SFB can still instruct
innate immune effectors here to resolve infections via the gut-
lung axis (75). Lastly, unregulated secretion of anti-inflammatory
SCFAs may also negatively interfere with host immunity and
play into the pathophysiology of respiratory diseases, as has been

documented in a cohort of tuberculosis-suffering patients (76).

Studies into the intestinal microbiota of human patients already
indicate changes in beneficial butyrate-producing microbes after
SCI, warranting further investigations as to how this may play
into impaired host immunity (44). Given the high prevalence
of airway infections after SCI, a better understanding of how
disruption in critical feedback circuits with the gut microbiota
can work together with SIRS as a possible propagator of tissue
damage may further rationalize the degree of vulnerability
patients have toward extraneous sources of infection (i.e., of
nosocomial origin) after injury (77, 78) (see Figure 1).

CONCLUSION

It is clear that individuals with SCI suffer from severe
gastrointestinal dysfunction, the extent of which significantly
impacts on their overall quality of life. As the importance of the
gut microbiome for overall health and well-being is increasingly
recognized, the significance of investigating the impact of SCI
thereon is without question. Recent investigations all corroborate
evidence that SCI undeniably changes the gut microbiota, and
future studies can now aim to more specifically address how
altered signaling via the CNS-gut axis may influence outcomes.
Moving forward, future studies should aim to engage advanced
metagenomic techniques so that the overall immunological and
functional influence of the gut microbiota can be evaluated
more thoroughly. As gut dysfunction may play a role in the
increased infection susceptibility of this patient population,
the net influence of changes in the gut microbiota over host
immune function after SCI need to be better understood.
It will be imperative, however, that all aspects of the gut
microbiota are considered here to generate wholistic perspective
of immunological dysfunction and microbial alterations after
SCI, in order for these to be successfully translated into effective
intervention strategies for SCI patients.
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Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are

autoimmune central nervous system conditions with increasing incidence and

prevalence. While MS is the most frequent inflammatory CNS disorder in young adults,

NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts

for approximately 1% of demyelinating disorders, with the relative proportion within

the demyelinating CNS diseases varying widely among different races and regions.

Most immunomodulatory drugs used in MS are inefficacious or even harmful in

NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction

from MS. Despite distinct immunopathology and differences in disease course and

severity there might be considerable overlap in clinical and imaging findings, posing

a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated

by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be

difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal

cord is of paramount importance when managing patients with autoimmune CNS

conditions. Once a diagnosis has been established, imaging techniques are often

deployed at regular intervals over the disease course as surrogate measures for

disease activity and progression and to surveil treatment effects. While the application

of some imaging modalities for monitoring of disease course was established

decades ago in MS, the situation is unclear in NMOSD where work on longitudinal

imaging findings and their association with clinical disability is scant. Moreover, as

long-term disability is mostly attack-related in NMOSD and does not stem from

insidious progression as in MS, regular follow-up imaging might not be useful in the

absence of clinical events. However, with accumulating evidence for covert tissue

alteration in NMOSD and with the advent of approved immunotherapies the role

of imaging in the management of NMOSD may be reconsidered. By contrast, MS

management still faces the challenge of implementing imaging techniques that are
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capable of monitoring progressive tissue loss in clinical trials and cohort studies into

treatment algorithms for individual patients. This article reviews the current status of

imaging research in MS and NMOSD with an emphasis on emerging modalities that

have the potential to be implemented in clinical practice.

Keywords: multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD), magnetic resonance imaging,

optical coherence tomography, neuroimaging

INTRODUCTION

Multiple sclerosis (MS) and neuromyelitis optica spectrum
disorders (NMOSD) are inflammatory, autoimmune central
nervous system conditions that have shown increasing incidence
and prevalence over the past decades (1–5). While MS is the most
frequent inflammatory CNS disorder in young adults, NMOSD is
a rare disease. Relative frequency within the demyelinating CNS
diseases varies widely among different ethnicities and regions,
accounting for ∼1% of demyelinating disorders (6, 7). Based
on results from population-based studies, NMOSD prevalence
broadly ranges from 0.52 to 7.7 per 100,000 (7). Although
NMOSD frequency in Asian and White/Caucasian ethnicities
seems to be comparably similar (4, 8), Blacks seem to have highest
NMOSD prevalence of up to 13/100,000 as inferred from mixed
Northern American populations (9, 10).

For a long time, NMOSD had been seen as a rare variant of
MS; however, the seminal discovery of a highly specific serum
IgG autoantibody to the astrocyte water channel aquaporin-
4 (AQP4) in up to 80% of NMOSD patients and subsequent
research into the role of these antibodies in disease pathogenesis
and lesion formation has made clear that this is a condition
distinct from MS (11–17). Clinical experience has then shown
that most immunomodulatory drugs used inMS are inefficacious
or even harmful in NMOSD, emphasizing the need for a timely
and accurate diagnosis and distinction fromMS (18–21). Despite
distinct immunopathology and differences in disease course and
severity, there might be considerable overlap in clinical and
imaging findings, posing a diagnostic challenge for managing
neurologists. Differential diagnosis is facilitated in case of a
positive serology for AQP4-abs obtained with a highly specific
cell-based assay but might be difficult in seronegative cases or
when less specific assays for AQP4-abs are used (22, 23).

Imaging of the brain, optic nerve, retina, and spinal cord is
a procedure of paramount importance when managing patients
with inflammatory CNS conditions at first presentation to enable
diagnosis and differential diagnosis (24–28). Once a diagnosis
has been established, imaging techniques are often deployed at
regular intervals over the disease course as surrogate measures
for disease activity and progression and to surveil treatment
effects (29, 30). Although the application of some imaging
modalities for monitoring of disease course was established
decades ago in MS, the situation is less clear in NMOSD in which
work on longitudinal imaging findings and their association
with clinical disability is scant (26). Moreover, as long-term
disability is mostly attack-related in NMOSD and does not
stem from insidious progression as in MS, regular follow-up
imaging might not be useful in the absence of clinical events.

However, with accumulating evidence for covert tissue alteration
in NMOSD and with the advent of approved immunotherapies,
the role of imaging in the management of NMOSD might have
to be reconsidered in the near future (31–37). In addition,
imaging markers indicating impending relapses are an unmet
need in NMOSD. On the contrary, MS management still
faces the challenge of implementing imaging techniques that
are capable of monitoring progressive tissue loss (for example
brain or spinal cord atrophy) in clinical trials and cohort
studies into treatment algorithms for individual patients (38–
40).

This article reviews the current status of imaging research
in MS and NMOSD with an emphasis on emerging modalities
that have the potential to be implemented in clinical practice
for diagnosis, differential diagnosis, and monitoring of disease
course and immunotherapies.

MULTIPLE SCLEROSIS

As in previous versions of the MS diagnostic criteria,
conventional MRI of the brain and spinal cord (T2/Flair/T1 post
gadolinium sequences) is a cornerstone for an MS diagnosis
within the 2017 revision of the McDonald criteria (41, 42),
taking potential “red flags” and “MS mimics” into consideration
that may point to an alternative diagnosis (24, 25). However,
sensitivity of the 2017 criteria might have improved, and time
to diagnosis appears to be shorter at the expense of specificity
(43–45). Thus, frequent misdiagnosis of MS based upon
misinterpretation of imaging findings on conventional MRI
in conjunction with atypical clinical presentations even by MS
experts has remained an alarming issue (46–49).

Recently the so-called “central vein sign” (CVS) was proposed
as a potential new biomarker for a more specific MS diagnosis,
emerging from observations, mostly at ultra-high field MRI
studies, that MS lesions are frequently characterized by a small
intralesional vein in contrast to relevant imaging differential
diagnoses, such as NMOSD, small vessel disease, inflammatory
CNS vasculopathies, Susac syndrome, and others (50–56).

CVS is now reliably assessable at 3T, for example, using
T2∗/FLAIR and co-registered SWI images, and might, therefore,
become a clinically applicable imaging feature to discriminateMS
from classical mimics at a high specificity (56–58) (Figure 1). In
one study, a threshold of 50% perivenular lesions discriminated
MS from inflammatory vasculopathies, such as Behcet disease,
primary angiitis of the CNS, antiphospholipid syndrome, Sjögren
syndrome, and systemic lupus erythematosus (SLE), with 100%
accuracy (56), and another multicenter study conducted by
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FIGURE 1 | Representative axial 3 T FLAIR-SWI images from individuals with (A) relapsing–remitting multiple sclerosis (RRMS; 28-year-old woman) and (B)

AQP4-antibody-positive neuromyelitis optica spectrum disorder (AQP4+-NMOSD; 76-year-old woman). The central vein sign (red arrows) is present in the majority of

MS lesions but not in white matter lesions in NMOSD. White boxes show magnified views of lesions in axial and sagittal plane. T, Tesla; FLAIR, fluid-attenuated

inversion recovery; SWI, susceptibility-weighted imaging; RRMS, relapsing-remitting multiple sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis

optica spectrum disorder.

the MAGNIMS consortium reported a specificity of 83% for
a 35% CVS proportion threshold for discriminating MS from
mimics such as NMOSD, SLE, migraine, cluster headache,
diabetes, and other types of small vessel disease (58). Perhaps less
onerous in the clinical situation is the three-lesion CVS criterion,
which yielded a specificity of 89% for discriminating MS from
other conditions. In this study, sensitivity was better with
an optimized T2∗-weighted sequence. These findings require
replication in prospective studies enrolling patients with various
ethnic backgrounds and from different regions of the world
and will hopefully lead to a novel imaging biomarker with high
specificity for MS that might find its way into a future revision of
the McDonald criteria.

Although MRI T2 hyperintense lesions represent one of
the major diagnostic hallmarks of MS, macroscopic MRI-
visible lesions are commonly termed as “tip of the iceberg”
because many more lesions are detected by histopathology at a
microscopic level (59). Particularly, cortical lesions are widely
elusive to conventional MRI at 3 Tesla although introduction
of ultra-high field 7 T MRI more than doubles detection of
cortical MS lesions (60) (Figure 2). Of note, post mortem studies
showed that sensitivity to detect cortical lesions at 7 T is strongly
influenced by their histopathological subtype, ranging from 11 to
100% (61). Hence, cortical pathology still remains more extensive
than even 7 T MRI can reveal.

Cortical lesions are considered a distinctive feature of MS
and are rarely present or even totally absent in other conditions
mimicking multiple sclerosis, such as migraine or NMOSD
(60). Intriguingly, presence and number of cortical pathology
appears to correlate with clinical outcomes, most notably
cognitive impairment in MS (62). However, clinical significance
of cortical lesions is controversially discussed throughout the
literature, and further 7 T MR studies, including investigations
with improved visualization at magnetization-prepared 2 rapid

acquisition gradient echoes (MP2RAGE), are highly warranted
to clarify potential diagnostic and prognostic value of MS cortical
pathology (63).

Brain and spinal cord volumetric imaging is another MR-
based measure that might have the potential to be used in
clinical practice to monitor disease progression and treatment
response. Both neuropathology and imaging studies have shown
that atrophy of the entire brain, including cortical and deep gray
matter (DGM) as well as the spinal cord, are typical hallmarks
of MS from earliest disease stages (64–68) and that, particularly,
cerebral gray matter volume loss (above all, the deep gray
matter) and spinal cord atrophy correlate with clinical disability
and cognitive impairment and are predictive of further disease
progression in longitudinal studies (69–78). In clinically stable
and untreatedMS patients, annual brain volume loss ranges from
∼0.5 to 1.0% in comparison to 0.1–0.3% for healthy subjects
(73, 79). In a recent large Europeanmulticenter study comprising
more than 1,200 patients with MS and more than 200 healthy
subjects, volumes of deep and cortical gray and white matter
were obtained, and participants followed over an average of
2.41 years (69). Deep gray matter showed the fastest annual
atrophy rates, which ranged from −1.34 to −1.66% in various
MS forms and was −0.88% in CIS and −0.94% in HC. Of all
regional volumes quantified at baseline, only deep gray matter
volume predicted time to EDSS progression, which underscores
the relevance of DGM loss for disability accumulation. A 7.5-
year longitudinal study (range 1–12 years), 206MS patients and
35 healthy controls reported a cutoff of −0.4% annualized brain
volume change to have a sensitivity of 65% and a specificity
of 80% for discriminating physiological from pathological brain
volume loss (80). The clinical relevance of this cutoff remains
to be demonstrated. Various immunotherapies have been shown
to decelerate brain volume loss; however, it is currently unclear
how this observation would inform treatment decisions in
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FIGURE 2 | MS-specific 7 T MR imaging markers displayed by T2*-weighted sequence. (A1) Lesions in relapsing-remitting MS commonly exhibit a central vein (red

arrows). (A2) Hypointense rim structures (red arrow-heads) are prevalent in a subset of MS lesions. (A3) 7 T MRI allows for the delineation of gray matter lesions in

great detail. (B1,B2) Central vein sign and hypointense rim structures are absent in lesions of AQP4+-NMOSD patients. (B3) Gray matter lesions are commonly absent

in AQP4+-NMOSD. MS, multiple sclerosis; T, Tesla; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging; RRMS, relapsing-remitting

multiple sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis optica spectrum disorder. LGN, lateral geniculate nucleus; V1, primary visual cortex.

individual patients (81–85). Brain volumetric measurements
for use in individual patients are still hampered by numerous
technical challenges, such as inter-session variability, influence
of physiological factors (for example, hydration status), normal
aging and comorbidities on brain volumes, time of day of MR
scan, effect of lesion filling on post-acquisition quantitation
procedures, and systematic differences pertaining to scanners
and sequences parameters (38, 86). Therefore, despite sufficient
accuracy of brain volume measurements in observational and
interventional cohort studies, the technology is not yet apt to
reliably investigate changes in individual patients within periods
of less than a few years and therefore—also in light of the
various physiological sources of error—atrophy measurements
are currently not usable to monitor therapy in MS (30, 73, 87).
Besides technical advances to reduce measurement variability, a
better understanding into the neuropathological correlates and
drivers of deep and cortical gray matter atrophy and whole brain
volume loss is urgently required (38). The same applies to spinal
cord atrophy, which is relatively easy to measure at the cervical
level (mean upper cervical cord area or MUCCA) even on brain
scans that cover the superior part of the spinal cord down to the
C2/C3 level (88). However, physiological fluctuations and change
over time of this measure in healthy subjects are unknown, and
although some studies have reported spinal cord atrophy rates of
between <0.5% and more than 2% per year, with progressive and
clinically deteriorating patients exhibiting faster atrophy rates,

it is not established how MUCCA could be used to monitor
individual patients (88–93). However, a recent study suggests that
conventional measures of spinal cord involvement, such as focal
lesions and emergence of new lesions, can be used to estimate
risk of secondary progressiveMS and EDSS at 15 years in patients
with clinically isolated syndrome (94).

Other advanced MRI techniques have been recently
applied to investigate pathogenetic processes associated
with neurodegeneration and disease progression. Amid other
emerging quantitative MRI approaches, diffusion tensor imaging
(DTI), which relies on the detection of changes in the random
translational motion of water molecules and thereby estimates
the level of tissue degradation in the normal-appearing white
matter, provides promising imaging markers to detect neuronal
damage (83). Post mortem investigations showed fractional
anisotropy (FA) decrease to be to associated with axonal loss
and myelin density, thereby suggesting DTI FA to be a useful
indicator of both neurodegeneration and demyelination in
MS (95) (Figure 3). However, future histopathological and
clinical studies on quantitative MRmarkers are highly warranted
to validate the capacity of modern MRI in detecting and
monitoring neurodegenerative MS pathology that remains
elusive to conventional structural MRI.

In clinical management, the use of MRI to monitor treatment
response still relies on conventional parameters, such as new
or enlarging T2 lesions and gadolinium-enhancing lesions
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FIGURE 3 | Diffusion-weighted imaging based probabilistic tractography allows for the delineation of the optic radiations displayed in (A1) sagittal and (A2) axial view.

(B1) Diffusion tensor imaging (DTI) values along the optic radiation of an exemplary ON patient 3 years after attack (red) show decreased FA values compared to a

healthy control (black) indicating trans-synaptic neurodegeneration after ON. (B2) MD values are pathologically increased in an exemplary ON patient almost

throughout the entire course of the optic radiations compared to the exemplary healthy control. ON, optic neuritis; FA, fractional anisotropy; MD, mean diffusivity.

in conjunction with clinical measures (relapses, disability
progression), measures summarized under the term “NEDA”
(no evidence of disease activity) (30). However, NEDA seems
to be a questionable treatment goal given that, in real-
world observational studies, <10% of patients retain a NEDA
status after more than 5 years (96), and even with highly
effective immunotherapies, NEDA rates hardly exceed 50%
(97). Moreover, the clinical relevance of this composite score
has been called into question, for example, by data from a
large prospective observational study with more than 500MS
patients from California showing that meeting the NEDA status
at 2 years was not predictive of long-term stability (98). In
addition, the NEDA concept has been heavily criticized because
of ignoring other relevant and disabling symptoms of the disease,
such as fatigue, cognitive problems, sleep disorders, depression,
etc. (71, 99–109). Moreover, recent safety concerns as to the
deposition of gadolinium-based contrast agents (predominantly
linear compounds) in the dentate nucleus and other brain regions

provide arguments against their frequent use in monitoring
radiographic disease activity in otherwise stable patients (110–
113). For detection of new brain lesions, a T2/FLAIR sequence is
sufficient as long as rigorous standardization of image acquisition
to ensure maximum comparability is guaranteed (29). To
overcome the shortcomings and downsides of the current NEDA
concept, a new term (“minimal evidence of disease activity”
or MEDA) has been proposed as well as a more sophisticated
approach to monitor MS therapy taking also patient-reported
outcomes into consideration (“multiple sclerosis decisionmodel”
or MDSM) (114, 115). However, both concepts lack prospective
validation, so their use in clinical management cannot be
unambiguously recommended. The same applies to the upgraded
NEDA concept that includes brain atrophy into the composite
measure (NEDA-4) (116, 117).

Numerous non-conventional and advanced imaging
modalities are currently under investigation that may help
improve visualization and quantification of (covert) tissue
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damage in the gray and white matter of the brain and the spinal
cord and could be used as an imaging surrogate of remyelination
and repair; among them are magnetization transfer imaging,
diffusion tensor imaging, myelin water imaging, susceptibility
weighted imaging, magnetic resonance spectroscopy, sodium
imaging, PET imaging, ultra-high field imaging at 7 Tesla,
functional imaging with resting state fMRI, T1/T2-weighted
ratio calculable from conventional T1- and T2-weighted
images, machine-learning based imaging, magnetic resonance
elastography, and several others, none of which will probably be
used in clinical practice in the near future (27, 52, 83, 88, 118–
135). Nonetheless, these endeavors are important to deepen our
understanding of mechanisms of tissue damage in MS and to
devise better imaging endpoints for clinical trials and routine
care than those currently in use.

A recent emerging imaging tool in neuroinflammation is
retinal optical coherence tomography (OCT), a technique that
takes advantage of the retinal backscatter and reflection of low
coherent light and enables the reconstruction of structural images
of the various retinal layers with a resolution of a fewmicrons and
a very time-efficient image acquisition of only a few minutes in a
cooperative patient (136).

OCT has been used for more than a decade in clinical
neuroimmunology, mostly in cohort studies and occasionally as
an endpoint in acute optic neuritis trials (137–139), and it is at the
verge of entering clinical management of patients with MS and
related disorders. Most widely used retinal measures of neuro-
axonal damage are the (peripapillary) retinal nerve fiber layer
(pRNFL) and the ganglion cell layer (GCL) that is often reported
together with the inner plexiform layer (IPL) due to inaccuracy of
segmentation and then displayed as ganglion cell/inner plexiform
layer (GCIPL) (39, 136). In MS, OCT has been shown to
be reliably applicable in a multicenter setting (140). Certain
standards for quality control of OCT scans and reporting of
data have been proposed, and confounders, for example, the
influence of retinal vessels on neuroaxonal measures, have to be
taken into consideration (141–143). Thinning of the RNFL or
the GCL/GCIPL are consistently reduced according to a high
number of studies both in MS eyes with a history of prior optic
neuritis as well as to a lesser extent in MS eyes without prior
ON (144–146). Retinal thinning in MS is detectable from the
earliest disease stages (147, 148) and is associated with altered
visual function, visual quality of life, VEP latencies, overall
disability, cognitive performance, inflammatory brain lesions,
and both spinal cord and brain atrophy, and has been shown to
reflect clinical and radiographic disease activity in longitudinal
studies (149–162). A recent meta-analysis comprising more than
1,000 eyes calculated an average pRNFL loss of 20µm in eyes
with prior ON and of 7µm in eyes without history of ON
(NON), and average GCIPL thinning was 16µm in ON eyes
and 6µm in NON eyes (144). Annual rates of RNFL thinning
in longitudinal studies range from ∼0.2 to 2.0µm per year and
depend on disease stage and treatment status. In general, patients
with progressive MS tend to show more severe retinal thinning
than RRMS patients (145). A retrospective, non-randomized
“real-world” study suggested that MS immunotherapies may
differentially affect the rate of annual ganglion cell loss with faster

thinning in patients treated with interferon beta or glatiramer
acetate and slower thinning in patients on natalizumab (163). In
a longitudinal monocenter study in 72 patients with MS from
Italy, NEDA status was associated with relatively preserved RNFL
over 2 years; patients with NEDA (32% of the cohort) had an
average RNFL loss of −0.93µm as compared to −2.83µm in
the evidence of disease activity (EDA) group (164). Patients with
stable EDSS over the course of the study had on average a RNFL
loss of −1.33µm as in contrast to −3.23µm in patients with an
EDSS worsening of ≥0.5 points. A cutoff of −1.25µm RNFL
loss was able to classify the NEDA status with a sensitivity of
80% and a specificity of 81.4%. A large retrospective multicenter
study conducted by the International Multiple Sclerosis Visual
System Consortium (www.imsvisual.org) in 879 patients with
various stages of MS suggests that pRNFL may be used to
predict disability worsening (165). Patients with a pRNFL below
92/93µm (different OCT machines used) had a 60% increased
risk of disability progression after 1 year, and those with a pRNFL
<87/88µm had a 4-fold increased risk of progression on the
EDSS after 4–5 years.

Another retrospective study in 305MS patients in different
stages of the disease and with a median interval of 7.9 years
from the acquisition of an OCT scan (using the older time
domain technology tomeasure the pRNFL) (166) to the last EDSS
assessment evaluated the relationship between both parameters
(167). Each 1µm decrease in the baseline pRNFL was associated
with an increase in EDSS of 0.024 points, suggesting that a pRNFL
measurement may help to prognosticate disability within 6–9
years later. Similar results were obtained when adjusting for the
presence of previous optic neuritis episodes.

Also in a clinically isolated syndrome (CIS) scenario OCT
may be helpful to assess the risk of further disease activity. A
bicenter study from Germany grouped 89 patients with a CIS as
a qualifying event into three groups according to their baseline
GCIPL values in NON eyes (168). Patients in the lowest tertile
(ranging from 58.7 to 69.2µm) had a hazard ratio of 3.43 for
not meeting NEDA status within the follow-up period (max
2.5 years) as compared to patients in the highest GCIPL tertile
(ranging from 74.2 to 84.8µm). In contrast, other established
predictors of further disease activity in CIS patients, such as
MRI T2 lesion load, sex, or ON as a qualifying symptom, were
not predictive of a subsequent NEDA status. For the most
recent revision of the McDonald criteria it was controversially
discussed whether affection of the visual system should be used to
demonstrate dissemination in space or time. However, “the panel
felt the data . . . were insufficient to support incorporation into the
McDonald criteria” but “studies to validate MRI, visual evoked
potentials, or optical coherence tomography in fulfilling DIS or
DIT in support of a multiple sclerosis diagnosis were identified
as a high priority.” (41). A first step toward this direction has
been undertaken by the IMSVISUAL Consortium that recently
pooled data frommore than 1,500 patients with MS to determine
the optimal intereye differences in RNFL and GCIPL thicknesses
for identifying unilateral optic nerve lesions defined as history
of acute unilateral optic neuritis (169). Using receiver-operating
characteristic curve analysis, an intereye difference of 5µm for
RNFL and of 4µm for GCIPL was demonstrated as an optimal

Frontiers in Neurology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 450211

www.imsvisual.org
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kuchling and Paul Visualizing the Central Nervous System

threshold for identifying unilateral optic nerve lesions. Eighteen
percent of patients in the entire cohort had intereye differences
of >5µm for RNFL and 12% of >4µm for GCIPL without
history of acute ON. In line with another recent study (170), these
findings suggest that these measures may complement MRI to
demonstrate dissemination in space and time.

NEUROMYELITIS OPTICA SPECTRUM

DISORDERS (NMOSD)

In 2015, new diagnostic criteria for NMOSD with and without
(or with unknown) AQP4 antibodies have been proposed
against the background of a broadening clinical spectrum
that was recognized with the increasing number of patients
tested for AQP4 antibodies (171). Imaging features regarded as
characteristic yet not pathognomonic for NMOSD are a core
element of the 2015 IPND criteria, in particular in seronegative
patients or in subjects with unknown AQP4 ab status. The
main goal of listing these imaging findings is to help clinicians
discriminate NMOSD from other conditions, namely MS, and
thus reduce the chance of misdiagnosis. Imaging abnormalities
in NMOSD are described according to the anatomical location in
the brain, optic nerve, and spinal cord. The establishment of the
2015 IPND criteria have led to a rise in the number of diagnosed
NMOSD cases by up to 76%, and fortunately, diagnostic delay
was considerably decreased from 53 months by the 2006 criteria
to 11 months by the 2015 criteria (172, 173).

Over the past 15 years, an impressive number of imaging
studies have made clear that—in contrast to earlier views—most
NMOSD patients exhibit some kind of brain lesions. Lesions
are not always located in areas of high AQP4 expression, and a
considerable proportion (42%) may even meet Barkhof criteria
for multiple sclerosis (24, 26, 174, 175). Most studies in NMOSD
have used conventional MR sequences; non-conventional and
advanced imaging studies are scant and have mostly yielded
inconsistent results (176).

According to newer studies, the majority of NMOSD patients
show some kind of brain lesions although findings considered
highly suggestive and suspicious of an NMOSD diagnosis are
less prevalent. Between 43 and 70% of NMOSD patients have
brain lesions at onset, and up to 85% of patients meeting
the 2006 Wingerchuk criteria for NMO and up to 89% of
seropositive patients were reported to have brain abnormalities
(12, 26, 177–180). Brain lesions considered highly suggestive
of NMOSD are diencephalic lesions surrounding the third
ventricle and cerebral aqueduct, which are often asymptomatic
but may occasionally present with inappropriate antidiuretic
hormone secretion, narcolepsy, hypothermia, hypotension, or
hyperprolactinemia. Another very characteristic predilection site
is the dorsal brainstem: Lesions adjacent to the fourth ventricle,
including the area postrema and the nucleus tractus solitarii,
are highly specific for NMOSD, reported in 7–46% of patients
with NMO (26, 181). The typical clinical manifestation is with
intractable hiccups, nausea, and vomiting (171). Lesions in
the corpus callosum (CC) have been described in 12–40% of
patients with NMOSD. Although the location in the CC is not

a unique finding that differentiates NMOSD from MS, NMOSD
callosal lesions are in contrast to MS located immediately
next to the ventricles and follow the ependymal lining (26).
CC lesions may extend into the cerebral hemisphere, forming
an extensive and confluent white matter lesion. Acute CC
lesions are often edematous and heterogeneous with a “marbled
pattern” (182). Hemispheric white matter lesions may appear
extensive and confluent, are often tumefactive (>3 cm in longest
diameter), or have a long spindle-like or radial shape following
white matter tracts; they usually have no mass effect. They
may occasionally mimic posterior reversible encephalopathy
syndrome (PRES) or Baló-like lesions or may resemble acute
disseminated encephalomyelitis (ADEM) or CNS malignancies
and were reported to be more frequent in AQP4 ab seropositive
than seronegative patients (26). Hemispheric whitematter lesions
may disappear but may also remain as cyst-like or cavitary
changes. Also corticospinal tracts may be involved in NMOSD
with either unilateral or bilateral involvement and were reported
in up to 44% of patients. These lesions may extend from the deep
white matter in the cerebral hemisphere through the posterior
limb of the internal capsule to the cerebral peduncles of the
midbrain or pons. They are often contiguous, longitudinally
extensive, and may follow pyramidal tracts. The reason for
involvement in NMOSD is unclear as corticospinal tracts are not
areas of high AQP4 expression. The probably most frequent type
of brain lesions in NMOSD reported in up to 84% of patients are
“non-specific” lesions: punctate or small (<3mm) dots or patches
of hyperintensities on T2-weighted or FLAIR sequences in the
subcortical or deep white matter that are usually asymptomatic
and tend to increase with age, presumably owing to age-
related vascular comorbidities. These lesions may nonetheless
pose diagnostic challenges vs. MS and other conditions. Few
studies have looked into gadolinium-enhancing brain lesions in
NMOSD; up to 36% of patients have shown enhancing lesions
that are often poorlymarginated, subtle, or show a patchy pattern.
One study from Japan suggested “cloud-like enhancement” to
be a characteristic enhancement pattern in NMOSD (178).
Nodular enhancement ormeningeal enhancement have also been
described, and linear enhancement of the ependymal surface
of the lateral ventricles (“pencil-thin lesion”) was proposed as
another imaging feature characteristic of NMOSD (183, 184).

In contrast to MS, cortical lesions are usually absent in
NMOSD, which is supported by 3 T double inversion recovery
and ultra-high field MR studies that investigated the cortex in
NMO as well as by several histopathologic studies (54, 185,
186) (Figure 2). Additionally, a lower proportion of NMOSD
lesions show the CVS or display hypointense rims compared to
lesions in MS (54, 57) (Figure 2). The challenging overlap of
brain lesion occurrence and numbers between NMOSD and MS
have prompted the use of algorithmic approaches to improve
differential diagnosis. For example, one study from the UK in
26 AQP4 ab seropositive NMOSD (63% of whom had brain T2
lesions and 16% met Barkhof criteria) and 50 RRMS patients
replicated a few key features in both conditions that appeared to
be discriminative, among them a smaller lesion size and fewer
numbers in NMOSD as compared to MS, and MS exhibited a
greater coherence of lesion location (most likely to occur adjacent
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to the posterior of the body of the lateral ventricle in the parietal
white matter) (187). In contrast, the lesional region with the
greatest likelihood to be within the NMOSD group and not
the MS group was adjacent to the fourth ventricle in the pons.
Both groups had callosal lesions, but NMOSD patients showed
no U fiber lesions and no Dawson’s fingers. A combination of
morphologic and locational criteria (at least one lesion adjacent
to the body of the lateral ventricle and in the inferior temporal
lobe or the presence of a subcortical U fiber lesion or a Dawson’s
finger–type lesion) could distinguish patients withMS from those
with NMOSD with 92% sensitivity, 96% specificity, 98% positive
predictive value, and 86% negative predictive value (187).

Of note, previous research shows that non-lesional tissue
damage as measured by non-conventional imaging, such as
DTI, may not occur in NMOSD except in the connecting
tracts upstream and downstream of lesions (26). Although
these findings lend support to the notion that NMOSD,
in contrast to MS, may be a lesion-dependent disease that
produces relapses without more generalized neurodegenerative
pathology, the presence of potential subclinical tissue alterations
in NMOSD affecting the afferent visual system has been
controversially discussed. Recent DTI investigations in NMOSD
patients without a clinical history of visual pathway affection
showed structural retinal damage and pathological optic
radiation DTI FA decrease outside attack-related lesions,
suggesting a presumptive AQP4-ab–related astrocytopathy
(188). These findings are in accordance with histopathological
studies reporting on astrocytic end feet changes within LETM
lesions and spinal cord atrophy in AQP4-ab–positive patients
without previous myelitis attacks (189). Yet the question
as to whether neurodegenerative non-lesion-related pathology
exists in NMOSD is still under debate and needs to be
further elucidated by future combined in vivo and ex vivo
MRI investigations.

Longitudinally extensive myelitis lesions (LETM) spanning
three or more contiguous vertebral segments have long been
regarded as an imaging feature highly suggestive of NMOSD
(Figure 4). Sensitivity and specificity for this criterion were
98 and 83%, respectively, in the patient cohort underlying
the 2006 Wingerchuk criteria (177). Long cord lesions occur
more frequently in the cervical cord from which they may
extend into the brainstem and the upper thoracic spinal cord
than in lower cord regions. Moreover, NMOSD spinal cord
lesions occupy more than half of the cord area and show
preferential involvement in the spinal central gray matter during
the acute and chronic stages of spinal cord inflammation. By
contrast, the majority of MS spinal cord lesions are localized
in the lateral and posterior white matter regions of the cord
(190, 191). In the acute stage, spinal cord lesions often appear
hypointense on T1 weighted scans (in contrast to MS); the
inflamed cord is often swollen and may show patchy contrast
enhancement. In the chronic stage, extensive cord atrophy
with or without T2 signal changes may develop in NMOSD
(Figure 4). It is important to bear in mind that the timing of
the spinal MRI in relation to the onset of clinical symptoms
may be crucial for the detection of longitudinally extensive
cord lesions (192) and that ∼15–20% of myelitis attacks in

FIGURE 4 | Representative T2-weighted spinal cord images from individuals.

(A) Patient with relapsing–remitting multiple sclerosis (30-year-old woman) and

MS-related myelitis and spinal cord imaging at (A1) 1 months, (A2) 2 months,

(A3) 24 months, and (A4) 72 months after attack. Short extent (<3 segments)

spinal cord lesion (red arrow) at C3 with typical morphology of MS-related

myelitis. (B) Patient with AQP4-antibody-positive neuromyelitis optica

spectrum disorder (36-year-old woman) and NMOSD-related LETM and spinal

cord imaging at (B1) 2 months, (B2) 5 months, (B3) 12 months, and (B4) 60

months after attack. Spinal cord lesion (red arrows) with longitudinal

morphology (C2-Th1; >3 segments) and subsequent atrophy (red

arrow-heads) typical of NMOSD-related LETM. (C) Patient with MOG antibody

associated disease (41-year-old woman) and MOGAD-related LETM and

spinal cord imaging at (C1) 7 months, (C2) 8 months, (C3) 24 months, and

(C4) 48 months after attack. Initial LETM (C3-C7; red arrows) with remarkable

increase in length after relapse at month 8 (C2) (yellow arrows) and

subsequent atrophy (red arrow-heads). RRMS, relapsing-remitting multiple

sclerosis; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis optica

spectrum disorder; LETM, longitudinally-extensive transverse myelitis;

MOGAD, myelin-oligodendrocyte-glycoprotein associated disease.

Frontiers in Neurology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 450213

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Kuchling and Paul Visualizing the Central Nervous System

FIGURE 5 | Representative OCT images from individuals with (A) relapsing–remitting multiple sclerosis with unilateral right-sided ON (RRMS; 41-year-old woman), (B)

AQP4-antibody-positive neuromyelitis optica spectrum disorder with recurrent bilateral ON episodes (AQP4+-NMOSD; 25-year-old woman), and (C) MOG antibody

associated disease with left-sided unilateral ON (MOGAD; 46-year-old man). OCT, optical coherence tomography; RRMS, relapsing-remitting multiple sclerosis; ON,

optic neuritis; OD, right eye; OS, left eye; ILM, inner limiting membrane; RNFL, retinal nerve fiber layer; AQP4-ab+, AQP4-antibody positive; NMOSD, neuromyelitis

optica spectrum disorder; MOGAD, myelin-oligodendrocyte-glycoprotein associated disease.

NMOSD may show short transverse myelitis lesions, spanning
2.5 vertebral segments or less (193, 194). This means that a
spinal cord lesion shorter than three vertebral segments does
not rule out an NMOSD diagnosis. Interestingly, a recent
study on 91 Chinese NMOSD patients compared patients
with LETM and patients with short transverse myelitis and
showed that the latter suffered less motor and bowel or bladder
disability and had minor EDSS at clinical onset but exhibited
shorter time to relapse (195). Moreover, although extensive
spinal cord lesions are highly suggestive of NMOSD, numerous
other conditions have to be taken into consideration, such
as sarcoidosis, spondylotic myelopathy, autoimmune GFAP
astrocytopathy, neoplasms, lymphoma, spinal cord infarction,
and many others (196–201). Recently, “bright spotty lesions”

on T2 weighted sequences were reported to be a discriminative
feature of NMOSD myelitis with specificity values up to 100%
(202, 203).

Recently, a study in 48 NMOSD (all AQP4 ab positive),
22MS patients, and 24 patients with other causes of LETM
from the United States assessed spinal cord imaging features that
may help discriminate NMOSD from MS. Four findings were
found to be most distinctive of NMOSD vs. other etiologies:
bright spotty lesions, T1 dark lesions, centrally located lesions,
and lesions involving more than 50% of the cord area on axial
sequences (190).

Another study in 116 NMOSD patients (98 AQP4 ab positive)
found a high proportion of patients (49%) without typical
NMOSD brain and spinal cord lesions and 37% meeting the
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2010 McDonald criteria. Nonetheless, a combination of easily
applicable criteria for brain and spinal cord images enabled
distinction from matched MS patients with good sensitivity and
specificity regardless of serostatus (204).

Although the optic nerve is frequently involved in NMOSD,
few studies with orbital MRI have been conducted. AQP4
ab–positive NMOSD tends to show more often posterior
involvement of the optic nerve(s) including the chiasm and a
more frequent intracranial and bilateral affection of the optic
nerve as compared to MS (205). In AQP4 ab–positive patients
with ON, lesion length on orbital MRI in the acute phase was a
strong predictor of visual outcome (206). Another study reported
a longitudinally extensive optic nerve lesion exceeding 17.6mm
to have a sensitivity of 81% and a specificity of 77% for NMOSD
vs. RRMS (207).

Advanced imaging with volumetric analyses, DTI,
spectroscopy, and others have increasingly been performed
over the past 10 years (176), albeit with many inconsistent
results, presumably owing to small sample sizes, ethnic
differences of the cohorts investigated, heterogeneity of the
samples with regard to AQP4 ab serostatus, and others.
It is, for example, still a matter of debate as to whether
progressive brain volume loss occurs in NMOSD over time
as is the case in MS and how different compartments, such
as white matter, cortex, or deep gray matter, are differentially
affected (208–218) and how this might be associated with
often-overlooked and insufficiently treated symptoms, such
as cognitive impairment and pain (219–222). Presence of
occult white matter damage as measured, for example, by DTI,
MTR, or T1 relaxation time, has also remained contentious,
presumably again owing to differences in inclusion criteria and
different approaches to the correction for multiple comparisons
problem (223–228). Few functional imaging studies with
resting state fMRI (rs-fMRI) in NMOSD suggest that visual
impairment due to severe optic neuritis causes brain network
connectivity changes, in particular in visual networks (229–
232). The vast majority of MR spectroscopy studies of the
brain has found no clear indication for covert white matter
damage (233–237), and low myoinositol/creatine values in the
lesional cervical cord of NMOSD patients suggest astrocytic
damage (238).

Spinal cord atrophy and reductions of MUCCA are a
consistent feature of AQP4 ab–positive NMOSD even in the
absence of myelitis attacks/spinal cord lesions (209, 239, 240)
(Figure 4). In one study in 27 NMOSD patients with a history
of myelitis and six NMOSD without history of myelitis and
without spinal cord lesions (all participants AQP4 ab positive),
MUCCA was reduced in both groups vs. healthy controls and
correlated with clinical disability (241). The clinical relevance
of MUCCA to monitor disease activity and covert progression
requires further studies.

With the introduction of retinal OCT into clinical
neuroimmunology, an increasing number of studies measuring
retinal damage in NMOSD have been conducted over the past 10
years (242). Most studies have consistently shown that thinning
of the RNFL and the GCIPL after an ON attack is on average
more severe in AQP4 ab–positive NMOSD as compared to MS,

a finding that aligns with the clinical experience of more severe
vision loss in NMOSD (243–246). Impairment of visual quality
of life caused by ON in NMOSD correlates with the extent
of retinal damage measured by OCT, which underscores the
potential clinical relevance of this technique (247) (Figure 5).
Furthermore, this finding supports the strong recommendation
for clinicians to treat ON as a neuroimmunological emergency as
quickly and consequentially as possible because retinal ganglion
cell loss starts early after clinical onset of symptoms, so timely
administration of steroids or plasma exchange might help
preserve retinal tissue and improve visual outcome (248–252).
In NMOSD, ∼25% of patients show so-called microcystic
macular edema (MME) in the inner nuclear layer (INL)
following ON, a frequency that is higher than in MS (5–10%)
(242, 253–255). MME is not specific to NMOSD as it was
described in a wide range of optic neuropathies. MME may
be dynamic over time and seems to be associated with a less
favorable visual outcome although neither its clinical relevance
nor its pathophysiological underpinnings are entirely clear.
Presumed mechanisms causing MME are vascular damage
with extracellular fluid accumulation, Mueller cell pathology,
and vitreous traction (242, 256, 257). A contentious issue in
vision research in NMOSD is the occurrence of subclinical and
progressive retinal thinning in NMOSD. In line with the clinical
experience that disability is almost exclusively attack-related
in NMOSD, some studies did not find progressive retinal
thinning independent of ON (258). However, recent work has
suggested that there is attack-independent ganglion cell loss
in NMOSD—a finding whose clinical relevance needs to be
further investigated (259). In addition, foveal changes have
been detected in NMOSD patients without clinical evidence of
optic neuritis of affection of the visual system, which suggests
that AQP4 ab may directly target astrocytic Mueller cells
in the retina, thus causing a primary retinal astrocytopathy
(188, 260, 261). This finding is backed by animal work and
human neuropathology data, both providing evidence for
complement-independent AQP4 loss in Mueller cells and a
retinal astrocytopathy (262, 263). Mathematical models to
investigate the foveal shape will help investigate whether fovea
changes may be used as a differential diagnostic feature for
NMOSD and how these change over time in conjunction with
functional visual outcomes (264).

In the past few years, a plethora of publications has
reported on serum antibodies to myelin oligodendrocyte
glycoprotein (MOG) in a subset of adult patients with an
NMOSD phenotype (with optic neuritis being the most frequent
clinical manifestation) and beyond (involvement of cranial and
peripheral nerves and encephalopathy with seizures have been
reported) using highly specific immunoassays (265–275). The
current discussion evolves toward recognizing this condition
as a disease entity distinct from AQP4 ab positive NMOSD
and MS for which the acronyms “MOGAD” (MOG antibody
associated disease) or “MOG-EM” (MOG antibody associated
encephalomyelitis) were proposed (15, 276–279).

Neuroimaging studies with MRI in MOGAD are scant, and
the few reports suggest that there is a broad overlap with AQP4
ab–positive NMOSD as to the presentation on conventional
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brain and spinal cord MRIs (279–284) although MOG patients
were reported to show a more frequent involvement of the
conus/lumbar spinal cord (285). From a clinical standpoint,
it is important to bear in mind that up to 27% of patients
with MOGAD may meet Barkhof criteria for MS (24). As in
AQP4 ab–positive NMOSD, an algorithmic approach combining
several criteria assessable on conventional brain MRIs (lesion
adjacent to the body of a lateral ventricle and inferior temporal
lobe lesion, U fiber lesion and Dawson’s fingers) was able to
discriminate between RRMS and MOGAD with good sensitivity
and specificity but failed to distinguish MOGAD from AQP4
ab–positive NMOSD (286). These findings were replicated in
Korean and Chinese populations in whom a distinction of MS
from AQP4 ab–positive NMOSD and MOGAD was achievable
with good sensitivity and specificity (287, 288); data on a
distinction between MOGAD and AQP4 ab–positive NMOSD
were not provided. Using principal component analysis on
conventional brain images, another study was also not successful
in accurately discriminating MOGAD from AQP ab–positive
NMOSD (289).

In contrast, orbital MRI seems to exhibit distinctive features.
A combined brain and optic nerve MRI study from Australia
in 11 AQP4 ab–positive, 19 MOGAD, and 13MS patients with
a first ON in the investigated eye found more frequent optic
nerve swelling inMOGAD andmore frequent bilateral optic tract
and chiasmal involvement in AQP4 ab–positive NMOSD (205).
A predominant affection of the anterior structures of the optic
nerve and bilateral involvement were also reported in MOGAD
patients from the United States (281).

Retinal OCT findings in MOGAD have been inconclusive.
Although some studies suggest that ON in MOGAD causes
less severe retinal damage in comparison to AQP4 ab–positive
NMOSD (206, 290, 291), others have found comparable thinning
of the RNFL and the GCIPL in MOGAD and AQP4 ab–positive
NMOSD, probably resulting from the higher ON attack rate
in MOGAD (292) (Figure 5). These studies are consistent in
suggesting that a single ON episode in MOGAD probably is
more benign regarding its effect on the retina than a single
ON attack in AQP4 ab–positive NMOSD. This is in line with
several other studies reporting a generally favorable outcome
from ON in MOGAD; however, exceptions to this rule with
poor outcome have also been published (293–296). Interestingly,
MOGAD patients seem to have better visual outcomes after
ON than AQP4 ab–positive NMOSD despite similar severity of
macular GCIPL thinning (297). The issue of subclinical retinal
involvement in MOGAD in the absence of ON has not been well-
explored. One cross-sectional study found pRNFL thinning in
MOGAD NON eyes and an MME prevalence of 26% (298), and
one longitudinal study with 38 eyes (18 without ON history, 20
with ON) from 24 MOGAD patients detected a higher rate of
annual RNFL thinning than in healthy subjects (299). However,
this was not accompanied by progressive GCIPL thinning and
the reduction of RNFL over time was driven by a subgroup of
patients with thicker RNFL at baseline so the question as to
whether progressive retinal thinning occurs in MOGAD requires
further investigation.

FUTURE DIRECTIONS

Although previous research in advanced neuroimaging led
to a tremendous amount of new methods, parameters, and
insights into MS and NMOSD diagnostic approaches and
pathophysiological processes, further efforts are highly required
to make these advances applicable to the clinical setting.
Main short- to mid-term aims are (1) standardization of
MRI and OCT parameters related to image acquisition
and post-processing, (2) transfer and integration of non-
conventional techniques into clinically usable procedures,
and (3) validation by comparing these readily accessible
techniques with current standards within the framework of
large patient cohort studies and real-world research. The
ultimate goal is to provide the most accurate and most cost-
and time-effective markers for clinical diagnostics, therapeutic
monitoring, and prognostic forecasting in individual MS and
NMOSD patients.

Among the multitude of potential candidates, a selection of
promising markers to be introduced into the clinical setting in
the near future are the central vein sign at 3 Tesla MRI that has
proven to substantially increase specificity of current McDonald
2017 diagnostic criteria in the detection of MS (58), global
cerebral and specific regional cortical and deep-gray matter
atrophy for monitoring and predicting disease progression and
cognitive dysfunction in MS (73), OCT retinal ganglion cell
layer thickness as a prognostic marker for future disease activity
in patients with clinically isolated syndrome (168), and spinal
cord atrophy markers for diagnostic discrimination between
AQP4 ab-positive NMOSD andMOGAD and to monitor disease
activity in these entities (239). However, strong efforts in terms of
observational studies and testing of these markers in clinical trials
are necessary to foster their establishment in clinical research
and routine.

Because availability of ultra-high field (7 T) scanners has
gradually increased during recent years, a noticeable shift of
neuroimaging research to higher field strengths will take place
in the future. By use of its higher spatial resolution and
benefits to imaging contrasts inherent to higher field strengths,
7 T MRI may be used to advance quantitative neuroimaging
that may have reached its technical limits at 3 T (131, 300).
Moreover, readily accessible 7 T MRI markers, i.e., central
vein sign, lesional hypointense rim structures, and gray matter
lesion detection might aid to establish accurate diagnoses of
MS, especially in patients with conflicting neuroinflammatory
disease presentation, when introduced into clinical work-up
(52). However, thorough research efforts are necessary to
prove potential benefits of ultra-high field MRI compared to
conventional MRI in the clinical setting.

Another steadily expanding field of research in MS and

NMOSD that will be of interest in the long-term future of

neuroimaging, is the emerging application of MRI functional

and structural connectome analyses. These techniques provide

novel measures by assessing the integrity and functionality
of the entire CNS system rather than evaluating separate
regional or qualitative alterations in isolation (301). Pathological
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changes in the functional network integrity in terms of network
disruption or even “network collapse” show close correlations
to higher order dysfunctions, i.e., predominantly cognitive
deficits, in patients with MS (302). Analogously, ON status
of CIS and NMOSD patients is associated with decreased
connectivity in visual network density as revealed by recent
application of graph theory–based tools to analyze functional
imaging data (303). These findings are complemented by similar
evidence in structural connectome disruption with associations
to disease burden in CIS and MS (304). In addition, recent
graph theory–based investigations that showed associations
between decreased nucleus accumbens and caudate nucleus
volumes with higher combined attack type count and longer
disease duration in NMOSD lend support to the notion
that multimodal network analyses including OCT and MRI
parameters may help to identify subsets of promising useful
imaging markers (305). However, because validity and potential
clinical usefulness of these methods are still unclear, future
studies will be undertaken to assess the true capacity of modern
neuroimaging connectomics and graph theory–basedmethods to
explain pathological mechanisms and to aid in monitoring and
predicting specific disease activity in MS and NMOSD patients.

CONCLUSIONS

Imaging research in autoimmune inflammatory CNS disease
has made impressive progress over the past 20 years. Yet,
although we are able to deploy structural and functional imaging

techniques even in patients at almost subcellular resolution
that have significantly contributed to our understanding of
mechanisms of tissue damage in these conditions, most of
these technologies still await a validated implementation in
clinical practice. This, however, is an indispensable prerequisite
to make use of these advances to inform treatment decisions
and monitor disease activity in individual patients. Because this
has remained an unmet need from our patients’ perspective,
this task will hopefully be tackled despite further thrilling
developments in the field of neuroimaging in autoimmune
neuroinflammation, for example, OCT angiography, improved
post-processing and segmentation techniques, and the use of
deep learning and artificial intelligence algorithms (264, 306,
307). Similar endeavors are underway in magnetic resonance
imaging that will likely revolutionize our approaches to visualize
the brain (128).
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N-methyl-D-aspartate receptors (NMDAR) play a key role in brain development and

function, including contributing to the pathogenesis of many neurological disorders.

Immunization against the GluN1 subunit of the NMDAR and the production of GluN1

antibodies is associated with neuroprotective and seizure-protective effects in rodent

models of stroke and epilepsy, respectively. Whilst these data suggest the potential for the

development of GluN1 antibody therapy, paradoxically GluN1 autoantibodies in humans

are associated with the pathogenesis of the autoimmune disease anti-NMDA receptor

encephalitis. This review discusses possible reasons for the differential effects of GluN1

antibodies on NMDAR physiology that could contribute to these phenotypes.

Keywords: GluN1, immunotherapy, NMDA receptor, neuroprotection, stroke, epilepsy

INTRODUCTION

Antibody-based immunotherapies form a key component of the pharmacological arsenal for
treatment of cancer (1), and inflammatory diseases (2), with profound clinical success achieved for
these conditions. Monoclonal antibody therapies have several desirable attributes over traditional
small molecule drugs including long half-lives and high specificity for the target molecular disease
driver leading to reduced off-target toxicity and a lower adverse effect profile. The pipeline of
immunotherapies for central nervous system disorders is not as extensive and has largely been
dominated by active or passive immunization approaches for Alzheimer’s disease and Parkinson’s
disease that aim to modify disease progression by targeting proteins implicated in disease
pathogenesis (3). Different strategies have been employed including using antibodies to neutralize
the actions of putative neurotoxic protein species or to promote clearance of the offending disease
protein. Clinical trials have shown some promise (4), but much work is still required to improve
the therapeutic efficacy of these approaches.

The potential of antibodies to modulate the function of other molecular targets in the
central nervous system (CNS) for therapeutic benefit has not been extensively investigated.
In this review, I will provide an overview of our studies and those of others exploring the
possibility of an immunoprotective approach for neurological diseases including stroke and
epilepsy involving antibody-mediated targeting of the N-methyl-D-aspartate (NMDAR) subclass
of glutamate receptor.
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THE NMDA RECEPTOR

The NMDAR plays a pivotal role in brain development, neuronal
survival, and synaptic plasticity associated with learning and
memory. The receptor is a hetero-tetramer composed of two
obligatory GluN1 subunits of which there are eight distinct splice
variants, and two variable subunits from the GluN2 (GluN2A-
2D) or GluN3 (GluN3A-3B) subunit families. The combination
of GluN1 with different GluN2/3 family members provides for
the creation of diverse NMDAR subtypes varying in their regional
distribution and functional properties. The majority of native
NMDAR are triheteromeric, with GluN1/GluN2A/GluN2B
receptors being themost common subtype in forebrain excitatory
neurons (5).

The subunits are transmembrane-spanning and arranged
to form an ion channel pore that is gated in a ligand- and
voltage-dependent manner. The extracellular regions of the
receptor resembling two clamshell structures with binding sites
for glutamate on the GluN2 subunit and sites for glycine
binding on the GluN1 subunit. The interaction between the
distal amino terminal domain (ATD) of the receptor and other
proteins regulate subtype-specific receptor assembly and receptor
trafficking and sites for allosteric modulation of NMDAR
function are also found in the ATD. The cytoplasmic C-
terminus domain engages in interactions with scaffold proteins
and intracellular messenger systems in the postsynaptic density.

The importance of NMDAR in the maintenance of
physiological brain function is underpinned by observations
that NMDAR-mediated hypofunction caused by either receptor
loss, or altered distribution at synapses, is implicated in
neurodevelopmental (autism spectrum disorders) (6) and
neuropsychiatric disorders (schizophrenia) (7). Moreover,
excessive glutamate release that leads to NMDAR overactivation
contributes to neurodegeneration in acute or chronic
neurodegenerative diseases including Alzheimer’s disease
(8, 9). The centrality of the NMDAR in the pathophysiology of
a broad range of conditions makes these receptors an attractive
drug target but human trials of NMDAR antagonists of different
compound classes and at different sites of receptor action
have been disappointing and are associated with a narrow
therapeutic index and an unacceptable adverse effect profile
(10). Greater insight into NMDAR function, and the discovery
that synaptic and extrasynaptic NMDAR may be differentially
linked to cell survival vs. cell death pathways, respectively has
contributed to ongoing efforts to develop subunit-selective
NMDAR antagonists. Weaker GluN2B-selective blockers
that may preferentially target extrasynaptic NMDAR have
a much-improved side-effect profile in humans than early
generation broad spectrum antagonists (11). Other approaches
to amplify the NMDAR-mediated cell survival signaling
warrant investigation.

The NMDA Receptor as an

Immunotherapeutic Target
We previously described an immunotherapeutic approach for
stroke and epilepsy involving targeted vaccination against the
GluN1 subunit of the NMDAR (12). Rats genetically immunized

to express a full-length GluN1 subunit protein developed high-
titer serumGluN1 autoantibodies and were more protected in rat
models of temporal lobe epilepsy and stroke. Systemic injection
of the neurotoxin kainate has been used extensively to induce
seizure activity and a pattern of selective neuronal cell loss in the
hippocampus that recapitulates the neuropathological features
observed in human temporal lobe epilepsy (13). We found
that following a challenge with kainate, fewer GluN1-vaccinated
rats (22 vs. 68% control-vaccinated rats) developed seizures
and of the two animals that experienced 45min of prolonged
status epilepticus, only one showed evidence of neuronal cell
death in the hippocampus. Moreover, in a middle cerebral
artery occlusion model of ischaemic stroke, infarct lesion sizes
for the GluN1-vaccinated animals were significantly smaller
compared to the control-vaccinated animals following infusion
of endothelin-1 (12). We did not detect any evidence of cell-
mediated immune responses suggesting the protective phenotype
is likely to be GluN1 antibody-mediated. Moreover, GluN1 IgG
was detected at low levels in the cerebrospinal fluid (CSF) of
GluN1-vaccinated rats under basal conditions prior to any insult
and GluN1 antibodies are bound to antigen suggesting low-
level passage across an intact blood brain barrier (BBB) (12).
It has been estimated that 0.1% of systemic IgG are able to
traffic through the BBB into the brain parenchyma (14). In
individual animals, we found that GluN1 antibodies reacted
preferentially with a few specific extracellular epitopes rather
than a broad range of epitopes. To identify regions of importance,
we immunized rats with recombinant GluN1 peptides that
contribute to various functional domains of the NMDAR (15).
Differential effects on seizure expression and injury between the
different GluN1 peptide treatments were observed. These results
also confirmed the protective phenotype is not a unique feature
of the immunization approach used. Almost no hippocampal
cell death was observed in rats immunized with a peptide
consisting of amino acids 654–800 of GluN1 (GluN1[654–800])
despite extensive kainate-induced seizures sufficient in duration
and intensity to induce neuronal cell death. In contrast, rats
immunized with a GluN1 peptide covering amino acids 21–375
(GluN1 21–375) was associated with reduced seizure severity
as assessed by a 5-point seizure rating scale following kainate
challenge but hippocampal cell death was clearly evident in
these rats. Expression of heat shock protein 70 (HSP70) and
brain-derived neurotrophic factor (BDNF) protein were elevated
by ∼1.5-fold in the brains of the GluN1[654–800]-vaccinated
animals that were protected against neuronal cell death compared
to the control animals (naïve and Homer 1a immunized)
suggesting that GluN1 antibody-mediated effects at NMDAR
leads to downstream upregulation of signaling pathways linked
to cell survival. These results indicate that GluN1 antibodies
to specific functional domains of the NMDAR are able to
induce a state of tolerance to insult akin to preconditioning
whereby short-term exposure to NMDAR antagonists (16, 17)
or NMDAR activation (18) can induce a state of resistance to
subsequent insult.

Our studies suggest that a GluN1 immunotherapy could have
broad utility for a range of neurodegenerative disorders but
further mechanistic characterization is required to assess the
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feasibility and safety of such an approach. This is of critical
importance as within the last decade, NMDAR autoantibodies
targeting the GluN1 subunit have been linked to the pathogenesis
of the autoimmune disease NMDAR encephalitis.

Autoimmune Diseases Associated With

NMDAR Antibodies
Anti-NMDAR encephalitis is a devastating autoimmune
condition characterized by the onset of psychiatric
manifestations including psychosis, rapid memory loss and
seizures and the presence of high-titer CSF autoantibodies of
the IgG class against the GluN1 subunit (19–21). The condition
is more prevalent in women, and associated with the ectopic
expression of NMDAR proteins in ovarian teratoma although
there are also affected individuals who do not have detectable
tumors (21, 22). The clinical features in patients and animal
models resemble those caused by genetic or pharmacological
attenuation of NMDAR function. Indeed, evidence from studies
examining the effect of patient antibodies in cell and animal
models have led to the hypothesis that the clinical syndrome is
as a result of NMDAR hypofunction at a network level. Patient
GluN1 autoantibodies cross-link NMDAR expressed on cultured
neurons that triggers their loss at the synapse by internalization
at extrasynaptic sites. Similarly, cerebroventricular infusion of
patient NMDAR antibodies into rodent brain decreases NMDAR
expression levels leading to impaired synaptic plasticity that is
associated with memory deficits, anhedonia, depression-like
behavior, and a low seizure threshold (23–26). Depleted NMDAR
expression is consistent with observations in post-mortem brain
from humans with anti-NMDAR encephalitis (23, 24, 27). The
effects of patient antibodies are specific to NMDAR as no effect
on expression of AMPA receptors or other synaptic proteins are
found (27, 28).

Whilst the role of GluN1 autoantibodies in disease
pathogenesis has been the key focus, more recently a mouse
model of NMDAR encephalitis involving active immunization
with intact native-like NMDAR GluN1/GluN2B tetramers
embedded in a liposome scaffold has been described that
recapitulates a broader range of features reminiscent of that
found in the human disease (29). Immunized mice developed
overt neurological signs include marked hyperactivity and
stereotypic motor features including tight circling, seizures,
and a hunched posture, or lethargy as early as 4 weeks, with
nearly all animals showing abnormal behaviors by 6 weeks.
This was associated with infiltration of peripheral immune cells
and neuroinflammation by 6 weeks as supported by increased
immunoreactivity to markers of plasma cells, CD4-positive
T cells, and CD20-positive B cells, activated microglia, and
astrocytes gliosis. Neuronal loss was rare. Serum autoantibodies
that target epitopes on GluN1 was predominant but reactivity
to GluN2 subunits as well as a peptide that lacked the amino-
terminal domain of GluN1 was also observed by Western blot
in the mice tested suggesting a polyclonal response by the time
fulminant symptoms were present at 6 weeks after immunization.
Chronic exposure of cultured hippocampal neurons to serum
autoantibodies reduced NMDAR protein expression and

associated NMDAR-mediated currents without an effect on
synapse numbers (29). Studies of NMDAR encephalitis in
humans has focused on the role of the autoantibodies, but this
study suggests that mature T cells are also involved in causing a
more complex disease pathogenesis leading to broader repertoire
of symptoms by promoting neuroinflammation and potentiating
B cell- and plasma cell–mediated antibody responses. The
use of conformationally stable NMDAR holoproteins may be
a critical component in initiating a more complex pattern
of immunogenicity.

The NMDAR Autoantibody Paradox
The pathogenic effects induced by patient antibodies contrast
sharply to the protective benefit achieved in our studies in rodent
models. Single amino acid substitutions at key residues within the
extracellular regions of the GluN1 subunit can significantly affect
channel permeability (30), so it is entirely plausible that site-
specific targeting by GluN1 antibodies to different extracellular
regions on the NMDAR could have differential effects on
receptor function or distribution. Our observations showing
distinct differences between effects on seizure expression and
neuroprotective effects following immunization with different
GluN1 peptide fragment provide support for this hypothesis
(15). Using a library of peptides that span the entire 938 amino
acids of the native GluN1 subunit as a screening platform,
we found that GluN1 IgG antibodies from individual rats
genetically vaccinated with GluN1 cDNA react most commonly
with peptides that correspond to domains that form part of
the extracellular vestibule of the NMDA receptor channel,
including regions important for glycine binding (12). Similarly,
we found neuroprotection was associated with GluN1 antibodies
targeting the GluN1 [654–800] region that contributes to the
S2 loop of the glycine binding domain (15). We developed a
recombinant protein consisting of the extracellular pre-TM1
region that includes the amino-terminal domain (ATD) linked
to the extracellular loop between TM3-4 domains of GluN1
and immunized groups of rats with this recombinant protein
(recGluN1). We found that the humoral response following
immunization with this protein generated GluN1 antibodies that
preferentially reacted with peptides that correspond to domains
important for glycine binding when we screened an IgG fraction
purified from pooled rat serum against our GluN1 peptide
library. Structural modeling predicts that the binding of GluN1
antibody to this target region would promote closure of the
NMDAR ion channel (31).

In contrast, NMDAR patient autoantibodies recognize
conformational epitopes at the GluN-ATD (28). Screening
of patient autoantibodies against a series of GluN1 protein
deletion mutants showed amino acid residues N368/G369 at
the GluN1-ATD were crucial for the creation of reactivity
of patient antibodies. Moreover, patient antibodies did not
immunostain a GluN1 protein lacking the ATD, suggesting that
these antibodies do not target regions important in glycine
binding (28). The GluN1-ATD is a major locus for interactions
between the NMDAR and various synaptic proteins that regulate
the trafficking, surface distribution, and function of NMDAR
(32, 33). Any biologic agent or drug compound capable of
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modifying these interactions could have significant effects
on NMDAR signaling. Mechanistically, NMDAR encephalitis
patient antibodies block the ability of Ephrin B receptors
to regulate synaptic NMDAR numbers (33), leading to their
depletion and a state of NMDAR hypofunction (20, 27, 34).

Conversely, neuroprotection in mouse models of stroke and
experimental autoimmune encephalitis can be produced using
GluN1 antibodies that target the interaction site of the serine
protease tissue plasminogen activator (tPA) at the ATD (35–
37). GluN1 antibodies directed against an epitope at amino
acids 163–192 as well as Glunomab, a monoclonal antibody
that interacts with the lysine residue at position 178, blocks the
tPA-mediated potentiation of NMDAR-mediated signaling and
excitotoxicity in neurons by reducing the surface dynamics and
clustering of extrasynaptic NMDAR (36–39). The therapeutic
beneficit engendered by these GluN1 antibodies are not restricted
to actions at neuronal NMDAR, with Glunomab shown to
promote the maintenance of blood brain barrier integrity via
actions on NMDAR expressed on endothelial cells (36, 37). Of
note, in our own work we found GluN1 antibodies that interact
with the glycine site on NMDAR expressed on platelets can
inhibit platelet function and thrombus formation that could
also contribute to limiting stroke-induced neuronal damage
(31) suggesting any therapeutic benefit could occur through
additive effects at multiple cell sites. Further investigation is
required to understand the full spectrum of effects on therapeutic
GluN1 antibodies including the impact on NMDAR-dependent
processes such as learning and memory. GluN1-ATD antibodies
have been reported to impair hippocampal-dependent spatial
memory in rodents (35, 39, 40) although a later study suggested
that the GluN1-ATD antibodies are not associated with cognitive
or behavioral deficits (36).

Altogether, these data suggest that NMDA receptor
location, and function, can be differentially modulated by
GluN1 antibodies in a target-dependent manner with GluN1
immunotherapeutic benefit made feasible through strategic
targeting to defined sites. What are the challenges for applying
such an approach, for example, as a preventative treatment
against stroke-induced damage in humans?

Challenges for a GluN1

Immunotherapy—the Role of GluN1

Autoantibodies in Health and Disease
In preclinical studies, GluN1 antibodies generated following
immunization of naïve animals are presumed to be able to
freely interact with their target site following passage into
the brain. How the therapies would perform in humans with
preexisting serum antibodies directed against the NMDAR that
could directly compete for the same epitope targets (if present in
sufficient quantities), is unknown. Serum GluN1 autoantibodies
are found in healthy older adults and there is increased
seroprevalence (>20%) in individuals affected by a wide-
range of diseases including stroke, neuropsychiatric illnesses,
and dementia (41–45), with a recent study suggesting GluN1
autoantibodies may be part of the normal autoimmune repertoire
(46). The significance of these antibodies in contributing to

functional outcomes in these conditions is an area of current
investigation. Unlike NMDAR encephalitis that is primarily
associated with the occurrence of IgG GluN1 antibodies, GluN1
IgA, and IgM antibodies are mainly found in non-specifically in
healthy older adults and in disease conditions (44, 47). There are
contradictory reports that GluN1 antibodies promote NMDAR
internalization irrespective of immunoglobulin class and epitope,
whereas other groups find these effects are only produced by
NMDAR encephalitis-associated GluN1 IgG antibodies (44, 46,
48), suggesting further investigation into any possible pathogenic
effects is required.

GluN1 autoantibodies in stroke have been associated with
larger (45) as well as reduced lesion sizes after acute ischemic
stroke (47). The discrepancy between these findings could
depend antibody titer as well as the health of the BBB. Using
apolipoprotein E4 (APOE4) carrier status as a marker for a leaky
BBB, the presence of preexisting serum GluN1 autoantibodies at
the time of acute ischemic stroke was associated with reduced
infarct sizes in individuals with an intact BBB (APOE4 +/+),
however lesion sizes appeared to be the largest in APOE4 carriers
with a compromised BBB (47). We speculate these findings are in
line with the neuroprotection observed in rodent stroke models
with an intact BBB at the time of insult (12, 36). Whether
our glycine binding site targeting GluN1 antibodies promote
maintenance of BBB integrity like GluN1-ATD antibodies is
unknown (37). Recent data has indicated GluN1 antibody
seropositivity was not associated with any long-term functional
benefit at 1 year following stroke (49) but further studies are
required to examine whether therapeutic benefits might be found
in specific patient subgroups such as APOE4 non-carriers.

There are many outstanding questions. Whether a GluN1
immunotherapy could counteract or override any possible
pathogenic effects produced by GluN1 autoantibodies or help
boost the neuroprotective capability of endogenous antibodies
at multiple levels including modulating NMDAR signaling at
neurons, maintaining BBB health, and function remains to
be determined.

Delivery Challenges for CNS

Immunotherapeutics
Another key challenge is whether sufficient amounts of antibody
as one of the key drawbacks of immunotherapies for CNS
disorders is the low efficiency of delivery into the brain.
The BBB strictly regulates the entry of molecules including
therapeutics, immune cells, and immune mediators from the
systemic circulation into and out of the brain. Osmotic or
chemical disruption of BBB integrity can facilitate delivery
of therapeutics into the brain but the lack of specificity
for the therapeutic biologic agent is problematic. Alternative
methodologies have exploited the properties of endogenous BBB
receptor-mediated transporters responsible for the passage of
endogenous large molecules such as insulin, transferrin, insulin-
like growth factor, and leptin into the brain. These circulating
proteins bind to their cognate receptors on the luminal surface
of the endothelial cells lining the BBB. Upon binding, the
receptor–ligand complex is internalized into the endothelial cell
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by receptor-mediated endocytosis where the ligand molecule is
transported across the abluminal membrane of the endothelial
cell into the brain. Molecular Trojan horses that are engineered
to carry peptides or proteins ligands that target receptormediated
transport systems (e.g., receptor-binding sequences of insulin)
or monoclonal antibodies that specifically target transferrin
and insulin receptors have been shown to be effective in
facilitating delivery of various therapeutic proteins into the
brain (50, 51). Progress in antibody engineering has led to
the generation of different antibody configurations including
the artificial bispecific antibody that combine two antigen-
recognizing components into a single construct. Bispecific
antibodies could also act as scaffolds to deliver therapeutic
antibodies into the brain by incorporating one arm with

specificity against a BBB receptor-mediated transport receptor
that facilitates passage across the BBB and the therapeutic arm
that produces the pharmacological effect (52). Use of these
technologies coupled with site-specific targeting of the GluN1
could be explored in future studies if required.
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MicroRNAs (miRNAs) are single-stranded RNA that have key roles in the development

of the immune system and are involved in the pathogenesis of various autoimmune

diseases. We previously demonstrated that two members of the miR106b-25 cluster

and the miR17-92 paralog cluster were upregulated in T regulatory cells from multiple

sclerosis (MS) patients. The aim of the present work was to clarify the impact of

miR106b-25 and miR17-92 clusters in MS pathogenesis. Here, we show that the mice

lacking miR17-92 specifically in CD4+ T cells or both total miR106b-25 and miR17-92

in CD4+ T cells (double knockout) are protected from Experimental Autoimmune

Encephalomyelitis (EAE) development while depletion of miR106b-25 only does not

influence EAE susceptibility. We suggest that the absence of miR106b does not protect

mice because of a mechanism of compensation of miR17-92 clusters. Moreover,

the decrease of neuroinflammation was found to be associated with a significant

downregulation of pro-inflammatory cytokines (GM-CSF, IFNγ, and IL-17) in the spinal

cord of double knockout EAE mice and a reduction of Th17 inflammatory cells. These

results elucidate the effect of miR106b-25 and miR17-92 deletion in MS pathogenesis

and suggest that their targeted inhibition may have therapeutic effect on disease course.

Keywords: MicroRNAs, experimental autoimmune encephalomyelitis, multiple sclerosis, IL-17, Th17, miR106b-25,
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INTRODUCTION

miRNAs take part in the regulation of immune processes not only during innate and adaptive
immune system development but also in its homeostasis, as well as in disease, regulating immune
cell functions (1–3) and cytokine expression (4, 5). We analyzed in the past, the miRNA expression
profile in regulatory T cells (Tregs) from relapsing-remitting multiple sclerosis patients (RR-MS)
(6). We identified 23 microRNAs differentially expressed in MS Tregs as compared to Tregs
from healthy controls. In particular, we found two members of the miR106b-25 cluster (miR93,
miR106b) and two members of the miR17-92 paralog cluster (miR-19a and miR-19b) upregulated

233

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.00912
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.00912&domain=pdf&date_stamp=2020-08-21
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:furlan.roberto@hsr.it
https://doi.org/10.3389/fneur.2020.00912
https://www.frontiersin.org/articles/10.3389/fneur.2020.00912/full
http://loop.frontiersin.org/people/953022/overview
http://loop.frontiersin.org/people/953013/overview
http://loop.frontiersin.org/people/907488/overview
http://loop.frontiersin.org/people/236942/overview
http://loop.frontiersin.org/people/194267/overview
http://loop.frontiersin.org/people/48524/overview


Finardi et al. Mir106b-25 and Mir17-92 in Neuroinflammation

in Treg cells from MS patients (6). Further, the over-expression
of miR17-92 in lymphocytes induces lymphoproliferative disease
and autoimmunity in mice (7).

The miR106b-25 cluster (in particular miR-25 and miR-
106b) over-expression can silence two important effectors
of the TGF-β signaling pathway: the cell cycle inhibitor
CDKN1A (p21) and the pro-apoptotic gene BCL2L11 (BIM)
(8). Several results suggest that miR 106b-25 and miR17-92
clusters cooperate in inactivating the TGF-β pathway (8). TGF-
β is an important immunomodulatory cytokine involved in
the maintenance of self-tolerance and T cell homeostasis (9).
miR17-92 and miR106b-25 clusters are ubiquitously expressed
(10). During lymphocyte development, miR17-92 miRNAs are
highly expressed in progenitor cells, expression levels decreasing
2- to 3-fold upon lymphocyte maturation (10, 11). miR17-92
regulates B- and T-cell development and its absence results
in enhanced proliferation and survival of B- and T-cells. This
is apparently due to increased expression of two target genes,
namely the apoptosis facilitator BCL2L11 (BIM) and the tumor
enhancer phosphatase and tensin homology (PTEN). PTEN
is an inhibitor of the PI3K pathway promoting cell cycle
progression and inhibiting apoptosis by negatively regulating
the transcription of BIM (11). Members of this cluster clearly
cooperate in the context of TGF-β signaling. miR-17 and
miR-20a, for example, target directly the TGF-β receptor II
(TGFBRII), while miR-18a targets other two members of the
TGF-β signaling pathway, namely Smad2 and Smad4 (12–14).
BIM and p21 are two mediators of the effects downstream to
TGF-β activation. The host gene for the miR-106a/25 cluster,
Mcm7, is down regulated during endoplasmic reticulum related
stress, by the activation of transcription factor 4 (Atf4) and
nuclear factor-erythroid-2-related factor 2 (Nrf2). This causes
down-regulation of miR-106b/25 and repression of BCL2L11,
and consequently apoptosis (7). Functional redundancy of
homologous miRNAs having similar expression patterns may
explain the lack of an obvious phenotype in mice deficient for
miR106b-25, whose function is apparently largely compensated
by miR17-92. Constitutive deletion of the two clusters, on
the other hand, is embryonically lethal (10). We induced
experimental autoimmune encephalomyelitis (EAE) in mice
constitutively deleted for the miR106b-25 cluster, in mice lacking
the miR17-92 in CD4+ T cells, and in mice with both mutations,
to try to dissect the contribution of these miRNA families
to neuroinflammation.

RESULTS

Mice Lacking Mir17-92 or Both Mir17-92
and Mir106b Are Protected From Clinical
Signs of Eae
We used the mutant strains depicted in Figure 1. Since
mutant mice colonies have been maintained in heterozygosity,
littermates have been used as appropriate WT controls. All
mice were on the C57BL/6 background and we therefore
induced EAE by MOG35−55 immunization. As shown in
Figure 2, the absence of both miR106b and miR17-92,

FIGURE 1 | Graphic representation of the three mutant strains used for the

EAE experiments. Experimental Autoimmune Encephalomyelitis (EAE) was

induced in mice constitutively deleted for (A) miR106b-25 cluster (106b−/−

mouse), (B) miR17-92 in CD4+ T cells (17-92−/− mouse), or in mice with (C)

both mutations (106b−/−17-92−/− mouse). miR17-92 was conditionally

deleted only in CD4+ T cells because mice deficient for miR-17-92 die shortly

after birth (10).

almost abolished susceptibility to EAE, with 90% of mice
remaining disease free, and 10% displaying very mild
and transient clinical signs (Figures 2A–D). The absence
of miR17-92 only resulted in a mild disease with 50%
incidence, while mice lacking only miR106b did not differ
from wild type control mice, displaying full-blown EAE
(Figures 2A–D).

Mice Lacking Mir17-92 or Both Mir17-92
and Mir106b Are Protected From
Pathological Signs of Eae
Clinical findings in mice lacking miR17-92, or miR17-92 and
miR106b, are paralleled by neuropathological findings. Indeed,
the number of inflammatory infiltrates (Figures 3A,D,G,J),
demyelination (Figures 3B,E,H,K) and axonal damage
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FIGURE 2 | Mice lacking miR17-92 or both miR17-92 and miR106b are protected from clinical signs of EAE. WT (n = 41), 106b−/− (n = 29), 17-92−/− (n = 8), and

106b−/−17-92−/− (n = 25) mice were immunized to induce EAE. Clinical signs of EAE were monitored daily until day 37 post-immunization. Mean (A) and median (B)

clinical score and disease incidence (C) were assessed for each group. The Log-Rank (Mantel Cox test) was used for the comparison of EAE incidence rates between

the different groups. EAE was evaluated as cumulative score using Mann Whitney test (D). Error bars indicate mean ± SEM. ***P ≤ 0.001 and ****P ≤ 0.0001.

(Figures 3C,F,I,L) in the spinal cord were significantly decreased
(Figures 3M–O) in mice lacking miR17-92 or both miR17-92
and miR106b, while in mice lacking only miR106b tissue damage
was similar to that in control mice (Figures 3D–F,M–O and
Figure S1).

Absence of Mir106b Is Compensated by
Mir17-92 Overexpression but Not Viceversa
We hypothesized that the absence of any alteration of the disease
phenotype in miR106b−/− mice might be due to compensation
by the miR17-92 cluster. This may occur functionally or
also due to overexpression. We therefore analyzed, by RT-
PCR, the expression of the miRNAs from the two clusters
in CD4+ T cells purified from the spleen of naïve mice.
We found that miRNAs from the miR17-92 cluster were up-
regulated in mice lacking the miR106b cluster (Figure 4A),
while the opposite did not occur (Figure 4B). miRNAs levels
in double deletion mutant mice are shown for comparison
(Figure 4C). When we measured mRNA levels of classical
targets for miR17-92 and miR106b however, namely p21,
BIM, and STAT3, in brain, spinal cord, lymph nodes, and

spleen, we did not find any significant difference, with the
exception of a slight decrease of BIM and STAT3 in the
spinal cord of EAE mice deleted for miR17-92 and miR106b
(Figure S2).

Pro-inflammatory Cytokine Expression Is
Decreased in Eae Mice Lacking Mir17-92
and Mir106b
We next examined the expression of cytokines known to
drive neuroinflammation in the spinal cord of EAE mice.
We found that GM-CSF (Figure 5A), IFNγ (Figure 5B), and
IL17 (Figure 5C) mRNA levels are significantly reduced in
mice deleted for miR17-92 and miR106b as compared to mice
lacking only miR106b or WT EAE mice. Mice lacking only
miR17-92 display a non-significant decrease of these mRNAs,
coherent with the disease phenotype which is in between
the double deletion mutants and the miR106b and the WT
EAE mice.
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FIGURE 3 | Lack of miR17-92 or both miR17-92 and miR106b protects mice from pathological signs of EAE. Neuropathological analysis of infiltrates (Hematoxylin

and Eosin; A,D,G,J), demyelination (Kluver Barrera; B,E,H,K), and axonal loss (Bielschowsky; C,F,I,L) in the spinal cord. Scale bar = 100µm. Deletion of miR17-92 or

both miR17-92 and miR106b is associated to a significant decrease of number of infiltrates (M), demyelination (N), and axonal damage (O). Data are shown as mean

± SEM. Statistical significance was determined by Mann Whitney test. *P ≤ 0.05 and **P ≤ 0.01.
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FIGURE 4 | Compensation between miR106b and miR17-92 family clusters. Relative expression (log2 fold change vs. WT mice) of the 17-92 and 106b family clusters

was measured by real time RT-PCR in CD4+ T cells isolated from the spleen of naive 106b−/− (A), 17-92−/− (B), and 106b−/−17-92−/− (C) mice. Data are shown as

mean ± SEM. miRNA of the two different clusters (miR 106b-25 and miR 17-92 clusters) are divided by a dotted line. * <0.05; ** <0.01; *** <0.001 Mann-Whitney.

Th17 Cells Are Decreased in Mir17-92
Knock Out Mice
The reduction of pro-inflammatory cytokines may merely reflect
the decrease of inflammatory cell infiltration in the CNS and
the consequent decrease of neuroinflammation. To investigate
what cell type is more affected in its development by the absence
of miR17-92 and miR106b we therefore induced EAE in mice
lacking miR106b, or miR106b and miR17-92, and WT mice and
harvested spleens 37 days later. We isolated total splenocytes

and re-stimulated them with the nominal antigen at escalating

doses, and by intracellular staining followed by flow cytometry
we measured the absolute numbers of Tregs, Th1, and Th17

cells. We found no differences in Tregs (Figure 5D), a significant

decrease of Th1 cells in both single miR106b and miR106b
and miR17-92 double deletion mutant mice as compared to
WT mice (Figure 5E), but a significant decrease in Th17 cells
specifically in miR106b and miR17-92 double deletion mutant
mice (Figure 5E).
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FIGURE 5 | Reduction of pro-inflammatory cytokines in mice lacking miR17-92 and miR106b. (A–C) mRNA levels of GM-CSF, IFNγ, and IL17 were measured in the

spinal cord by real time RT-PCR. Data are shown as arbitrary units (AU). (D–F) Total splenocytes were isolated from mice spleen (n = 5 for each group) 37 days after

EAE induction. Cells were re-stimulated for 3 days with increasing amounts of MOG35−55 and the absolute count of Treg, Th1, and Th17 cells (% singlets on 20,000

cells X % Treg or Th1 or Th17 on singlets/100) was measured by flow cytometry. Statistical significance was determined by Mann Whitney test. *P ≤ 0.05, **P ≤ 0.01,

and ***P ≤ 0.001.

DISCUSSION

miRNAs have been demonstrated to regulate several processes

in the development and function of the immune system and
the alteration of miRNA homeostasis was shown to lead to the
dysfunction of immune responses causing autoimmune diseases
such as MS.

In our previous studies, we analyzed miRNA expression

profile in Tregs from relapsing remitting MS patients and we
identified two members of the miR 106b-25 cluster (miR93, miR
106b) and two members of the miR17-92 paralog cluster (miR
19a and miR 19b) as increased in Tregs from relapsing remitting
MS patients compared to healthy controls (6).

The influence of miR 17-92 cluster in Treg cell differentiation
was demonstrated in MS also in a study of miRNA profiling.
Nineteen miRNAs (including miR18a that belongs to miR 17-
92 cluster) were found differentially expressed in naive CD4T
cells multiple sclerosis patients and predicted to target TGFβ.
These miRNAs negatively regulated the TGFβ pathway (TGFBR1
and SMAD4 were significantly reduced in patients with multiple
sclerosis), resulting in a decreased capacity of naive CD4T cells
to generate regulatory T cells (15).

Moreover, in a mouse model for Alzheimer’s disease, miR
106b was demonstrated to influence TGF-β signaling through
the direct inhibition of the TGF-β type II receptor (TβR II)
translation indicating TβR II as a functional target of miR-106b

(16). Starting from these evidences we investigated the role of
miR17-92 and miR 106b-25 clusters in neuroinflammation in
a mouse model of multiple sclerosis, EAE, and found that the
absence of 17-92 inhibits EAE development. We can hypothesize
that single (17-92−/−) and double (miR-106b-25−/−miR-17-
92−/−) knockout mice were protected from clinical signs of
EAE due to the alterations of immune responses already
described in literature, such as lymphoproliferation (10), antigen
presentation (17), and Th17 differentiation (18), potentially
affecting the induction of the experimental autoimmune
disease per sé.

As expected, we found a significant decrease of GM-CSF level
in the spinal cord of double knock out mice. GM-CSF is a well-
known pro-inflammatory cytokine essential for development and
progression of EAE (19, 20). GM-CSF reduction in double knock
out mice, which are protected from EAE development, is in line
with previous findings. Indeed, GM-CSF is required by CCR2+

monocytes to initiate tissue inflammation and the deletion of
GM-CSF receptor in this cell subset induces EAE resistance (21).
Moreover, overexpression of GM-CSF leads to the invasion and
expansion of inflammatory myeloid cells into the brain and is
sufficient to induce spontaneous CNS inflammatory disease (22).
We found GM-CSF mRNA significantly upregulated in spinal
cords of 106b-25−/− EAE mice. GM-CSF is not an obvious
target of miR 106b-25, thus this finding may be secondary to the
immune dysregulation in these mice.

Frontiers in Neurology | www.frontiersin.org 6 August 2020 | Volume 11 | Article 912238

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Finardi et al. Mir106b-25 and Mir17-92 in Neuroinflammation

We show here, however, that also IL-17 and Th17 cells, which
are known to drive neuroinflammation, are importantly reduced
in mice lacking both miR17-92 and miR106b as compared to
mice deleted only for miR106b or WT EAE mice. We therefore
hypothesized that this reduction may inhibit effector functions
in the target tissue, and constitute a more specific inhibition
of neuroinflammation.

Pathological evaluation of spinal cord from EAE mice
confirmed our clinical findings. We found that deletion of
miR17-92 or both miR17-92 and miR106b was associated to a
significant decrease of inflammatory infiltrates, demyelination,
and axonal damage. Clinical and pathological analysis of EAE
mice showed that there were no differences in miR 106b−/−

compared to wild type mice. Our RT-PCR data may suggest
that this was due to function redundancy among miRNAs family
clusters since miR17-92 and miR 106b-25 share the same set of
target genes (10). While miR17-92 compensates for the absence
of miR106b-25 in terms of increased expression, the opposite is
not true.

Although we demonstrated a protective role for miR17-92
deletion we did not find the plausible targets of 17-92 that
mediate this process. Quantification of the three major miR17-
92 and miR 106b 25 targets (STAT 3, BIM, and P21) did not
show any significant statistical difference in their levels among
the different mice strains.

The study of Liu et al. (18) suggests a possible mechanism for
miR17-92 cluster in Th17 differentiation. Indeed miR-19b and
miR-17 enhances Th17 polarization by repressing the expression
of Phosphatase and Tensin Homology (PTEN) and inhibiting
Ikaros Family Zinc Finger 4 (IKZF4), respectively.

Our work underlines the relevance of the miR17-92
cluster for the development of experimental neuroinflammation,
possibly for the inhibition of specific pathways, such as
Th17 cells, crucial for EAE initiation. Indeed, we had found
an imbalance of miR106b-25 and miR17-92 clusters also
in human MS, suggesting that miR106b-25 and miR17-92
clusters may represent a plausible therapeutic target in human
neuroinflammatory diseases.

MATERIALS AND METHODS

Mice
All animal experiments were done with permission from the
Institutional Animal Care and Use Committee (IACUC). All
mice were maintained under specific pathogen-free conditions in
the animal facility at San Raffaele Scientific Institute.

miR-106b-25, miR-17-92 KO, and miR-106b-25/miR-17-92
DKO mice were kindly provided by Dr. Paolo Dellabona (San
Raffaele Scientific Institute, Italy) and generated as described by
Ventura et al. (10) using 6- to 8-weeks-old C57BL/6 female mice
purchased from Charles River Laboratories (Calco, Italy).

Induction of Eae
C57BL/6 WT and mutant mice (8–10 weeks old) were
immunized subcutaneously with 200 µg of MOG35−55 in
Freund’s Adjuvant (Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 4 mg/mL heat-killed Mycobacterium

tuberculosis (strain H37Ra; Difco, Florence, Italy). Each
mouse was injected i.v. with Pertussis toxin (500 ng, List
Biological Laboratories, Campbell, CA, USA) on the day of the
immunization and 48 h later. Mice were weighed and scored for
clinical signs daily. Clinical symptoms of EAE were classified
as follow: 0 = no signs; 1 = tail paralysis; 2 = ataxia and/or
paresis of hindlimbs; 3 = paralysis of hindlimbs and/or paresis
of forelimbs; 4 = tetraparalysis; and 5 = moribund or dead.
EAE mice were killed at 37 d.p.i for real-time PCR, histological
evaluation and flow cytometer analysis.

Histological Evaluation
Pathological evaluation of spinal cord from EAE mice was
performed 37 days post-EAE induction. Three mice per
group were perfused through the left cardiac ventricle
with saline plus EDTA 0.5mM for 10min followed by
fixation with cold 4% paraformaldehyde, PFA (Sigma).
Spinal cords from EAE mice were dissected out and post-
fixed in 4% PFA overnight. Tissues were embedded in
paraffin, sectioned and stained with Hematoxylin and Eosin,
Kluver Barrera, and Bielschowsky to reveal perivascular
inflammatory infiltrates, demyelinated areas, and axonal
loss, respectively. Parameters were quantified on an average
of 9 complete cross-sections of spinal cord per mouse
taken at eight different levels. The number of inflammatory
infiltrates were expressed as the number of infiltrates per mm2,
demyelinated areas and axonal loss were expressed as percentage
per mm2.

RNA Extraction
Total RNA from splenic CD4+ T (isolated from mouse spleen
with CD4+T cell isolation kit, Miltenyi Biotec GmbH) was
isolated with the miRvana kit (Life Technologies). For mRNA
extraction from brain, spinal cord, lymph nodes, and spleen
tissues were homogenized with 1ml of TRIzol (Life Technologies,
Paysley, UK) every 50–100mg using an IKA Ultra Turrax rotor
homogenizer (Sigma Aldrich, St. Louis, MO, USA). RNA was
quantified by Nanodrop ND 1000 spectrophotometer (Nanodrop
Technologies Inc., Wilmington, DE, USA).

Quantitative Real-Time Rt-Pcr
Reverse transcription of miRNA was performed using TaqMan
MicroRNA Reverse Transcription kit (Applied Biosystems).
qRT-PCR was performed with TaqMan MicroRNA Assay
Mix containing PCR primers and TaqMan probes (Applied
Biosystems). Values were normalized to snoRNA-202. The
primers used in real-time RT-PCR experiments were as follows:
miR 106b (Taqman Assay Applied Biosystems name: has-
miR-106b; miRBase/Exiqon name: mmu-miR-106b; assay ID:
000442), miR 17 (has-miR-17; mmu-miR-17; 002308), miR
18a (has-miR-18a; mmu-miR-18a; 002422), miR 19a (has-
miR-19a; mmu-miR-19a; 000395), miR 19b (has-miR-19b;
mmu-miR-19b; 000396), miR 20a (has-miR-20a; mmu-miR-
20; 000580), miR 25 (has-miR-25; mmu-miR-25; 000403),
miR 92 (has-miR-92; mmu-miR-92a-3p; 000430), miR 93
(has-miR-93; mmu-miR-93; 001090), snoRNA-202 (assay
ID: 001232).
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For mRNA expression, RNA reverse transcription was
performed with the High-Capacity cDNA Reverse Transcription
kit (Applied Biosystems). STAT3 (Mm01219775 m1),
BIM (Mm00437796 m1), p21 (Mm00432448 m1), GM-
CSF (Mm00438328 m1), IFNγ (Mm01168134 m1), IL-17
(Mm00439618 m1) mRNA levels were measured by real-time
RT-PCR using Taqman technology (Applied Biosystems,
Invitrogen). PCR reactions were run on an ABI Prism 7500
Sequence Detection System. GADPH (4352339E) was used as
a housekeeping gene. Relative changes in gene expression were
determined using the 2−11CT method.

Flow Cytometry
Mouse-specific anti-CD3 (Pacific Blue conjugated, clone 500A2,
catalog no. 558214), anti-CD4 (PerCP conjugated, clone
RM4-5, catalog no. 553052), anti-CD25 (Phycoerythrin/Cy7,
clone PC61, catalog no. 561780), anti-FoxP3 (Alexa Fluor
488 conjugated, clone MF23, catalog no. 560403), anti-
IL17A (Alexa Fluor 647 conjugated, clone TC11-18H10,
catalog no. 560184), and IFNγ (PE conjugated, clone
XMG1.2, catalog no. 554412) mAbs were all purchased
from BD Biosciences.

For intracellular staining total splenocytes were isolated
37 days after EAE induction and cells were re-stimulated
for 3 days with increasing amounts of MOG35-55. After
that cells were stimulated for 4 h with PMA (50 ng/ml) and
ionomycin (500 ng/ml) in the presence of GolgiPlug (1:1,000,
BD Pharmingen). Cell were stained with surface markers
(CD3, CD4, CD25), permeabilized using the eBioscienceTM

Foxp3/Transcription Factor Staining Buffer Set and stained for
IL-17, IFNg, and FoxP3.

Samples were acquired on BD FACS Canto II flow cytometer
and analyzed with FlowJo software.

The absolute count of Treg, Th1, and Th17 cells was measured
as % singlets on 20,000 cells X % Treg or Th1 or Th17
on singlets/100.

Statistical Analyses
Differences between survival curves were calculated by Log-
rank test (Mantel-Cox) while Mann-Whitney tests were used
to evaluate differences between groups for non-parametric data.
The results are expressed as means ± SEM. Differences are
considered statistically significant when p < 0.05.

Statistical analyses were performed using GraphPad Prism
version X (GraphPad Software, San Diego, CA, USA).
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Figure S1 | One representative image of the whole section of spinal cord

presented in Figure 3. Spinal cord sections were stained with Hematoxylin and

Eosin, Kluver Barrera, and Bielschowsky to asses number of infiltrates,

demyelination, and axonal loss.

Figure S2 | mRNA levels of classical targets for miR17-92 and miR106b. mRNA

levels of p21, BIM, and STAT3 were measured in the brain, spinal cord, lymph

nodes and spleen by real time RT-PCR. Data are shown as arbitrary units (AU). ∗P

< 0.05 (Mann Whitney test).
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The most prominent pathological features of multiple sclerosis (MS) are demyelination

and neurodegeneration. The exact pathogenesis of MS is unknown, but it is generally

regarded as a T cell-mediated autoimmune disease. Increasing evidence, however,

suggests that other components of the immune system, particularly B cells and

antibodies, contribute to the cumulative CNS damage and worsening disability that

characterize the disease course in many patients. We have previously described strongly

elevated T cell reactivity to an extracellular domain of the most abundant CNS myelin

protein, myelin proteolipid protein (PLP) in people with MS. The current paper addresses

the question of whether this region of PLP is also a target of autoantibodies in MS. Here

we show that serum levels of isotype-switched anti-PLP181−230 specific antibodies are

significantly elevated in patients with MS compared to healthy individuals and patients

with other neurological diseases. These anti-PLP181−230 antibodies can also live-label

PLP-transfected cells, confirming that they can recognize native PLP expressed at the

cell surface. Importantly, the antibodies are only elevated in patients who carry HLA

molecules that allow strong T cell responses to PLP. In that subgroup of patients, there is

a positive correlation between the levels of anti-PLP181−230 antibodies and the severity of

MS. These results demonstrate that anti-PLP antibodies have potentially important roles

to play in the pathogenesis of MS.

Keywords: antibody, myelin proteolipid protein, multiple sclerosis, disease severity, HLA type

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous
system (CNS), which affects about 2.5 million people worldwide. Although the exact pathogenesis
of MS is unknown, it is predominantly regarded as a T cell-mediated autoimmune disease directed
against myelin antigens. However, increasing evidence suggests that other components of the
immune system, in particular B cells and antibodies, may contribute to the cumulative CNS damage
and disability that characterize the disease course.
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The single most consistent laboratory finding in MS is the
presence of oligoclonal immunoglobulin G (IgG) bands in the
cerebrospinal fluid (CSF) but not in the serum; these signify
intrathecal antibody production, persist for the lifetime of the
patient (1), and strongly suggest involvement of antibodies in
the immunopathology of MS. Because CSF drains into the blood,
and activated B cells can freely enter and exit the CNS, such
antibodies could also enter the circulation. Numerous published
studies have reported antibodies directed against myelin proteins
(2–12) or other CNS antigens (13–18) in CSF or serum of MS
patients, but only a small number of these studies have attempted
to determine whether these antibodies are potentially pathogenic
(3, 7, 15, 18). In some cases, antibodies in MS patients may be
merely an epiphenomenon; however, there are multiple examples
in the non-MS literature of how antibodies targeting CNS tissues
can be directly pathogenic (reviewed in (19)), and the chance
that antibodies present in at least some patients with MS are
pathogenic is relatively high.

One question that is often raised is that of the relevance of
serum antibodies to pathology in the CNS, since antibodies and
complement are normally excluded from the CNS by the blood-
brain barrier (BBB). However, activated B cells can easily cross
the intact BBB (20) and differentiate into plasma cells which
secrete antibody intrathecally, and during acute inflammatory
episodes of MS there is increased permeability of the BBB,
allowing entry of antibodies and complement components from
the blood (21, 22). Thus, antibodies in both the serum and the
CSF are of potential relevance in MS.

We have had a long-term interest in the role of immune T cell
reactivity directed against the most abundant component of CNS
myelin, myelin proteolipid protein (PLP), and have previously
shown that T cell reactivity to PLP in MS is restricted by certain
HLA types (23). Patients carrying these HLA types make stronger
T cell responses to PLP peptides, especially those within the
second extracellular loop of PLP (residues 181-230), and aremore
likely to develop lesions in the brainstem and cerebellum (23).
Interestingly, we also found in a mouse model of MS that the
sites in which lesions developed depended not only on T cells, but
also on the presence or absence of anti-PLP antibodies against the
same region of PLP (24, 25). PLP is present right throughout the
lamellae of compact myelin, including the outermost loop (26),
and monoclonal antibodies directed against epitopes within the
two extracellular domains of PLP (encompassing residues 30–
60 and 181–230) can live-label cultured oligodendrocytes (27),
confirming that these PLP epitopes are exposed on the surface
of oligodendrocytes, which makes them potential targets of
demyelinating antibodies. Furthermore, a recent study has shown
that monoclonal anti-PLP antibodies directed against these same
extracellular epitopes of PLP can also label neurons (28), most
likely through cross-reactivity between PLP and the related
M6 family of molecules that are expressed on both neurons
and oligodendrocytes. Since the most prominent pathological
features of MS are demyelination and neurodegeneration, anti-
PLP antibodies therefore have the potential to play a role in both
of these aspects of MS.

Since strong antibody responses are reliant on T cell help, the
work presented in this paper set out to determine if patients who

carry HLA types that allow a strong T cell response to PLP also
allow elevated antibody responses to PLP, and to determine if
there is any relationship between levels of anti-PLP antibodies
and disease severity in MS.

MATERIALS AND METHODS

Patients and Controls
This study was approved by the Royal Brisbane and Women’s
Hospital Human Research Ethics Committee, and TheUniversity
of Queensland Medical Research Ethics Committee. Up to 10ml
of blood was obtained from patients with MS [n = 146; 81 with
relapsing-remitting MS (RR-MS), 38 with secondary progressive
MS (SP-MS) and 27 with primary progressive MS (PP-MS)], a
first demyelinating event suggestive of MS (clinically isolated
syndrome (CIS); n = 40), patients with other CNS neurological
disorders (OND; n = 42) and healthy individuals (n = 54).
All patients with MS, apart from 4 PP-MS patients, met the
2010 revised McDonald criteria (29). None of the MS patients
had received any immunosuppressant, immunomodulatory, or
corticosteroid therapy in the 3 months prior to blood collection.
Informed consent was obtained prior to blood collection. Five
ml of the blood was allowed to clot at room temperature for 1–
2 h, after which serum was collected. The other 5ml of blood was
used to extract genomic DNA for HLA typing. Demographics for
individuals fromwhom blood was collected are shown inTable 1.

HLA Typing
Genomic DNA was prepared using NucleoSpin Blood DNA
extraction kits (Macherey-Nagel, Düren, Germany) as previously
described (23). Dynal low and high resolution SSP kits (Dynal
Biotech, Thermo Fisher, Australia) were used to type for HLA-
DR, -DQA, and -DQB alleles, following the manufacturer’s
recommended protocols. Results for MS patients were reported
to the 4 digit level, when it was able to be determined; however,
alleles are grouped at the 2 digit level for the analyses.

Human PLP and 50-mer PLP Peptide
Human brain tissue was obtained from the Queensland Brain
Bank (part of the National Brain Bank Consortium) at the
University of Queensland, and a total lipid extract was prepared
using the method of Folch et al. (30). To prepare PLP, the total
lipid extract was concentrated on a flash evaporator, precipitated
with acetone, and the precipitate dried under nitrogen until all
trace of the acetone was removed. The dried precipitate was
then dissolved in a small volume of chloroform:methanol:acetic
acid (2:0:0.03 v/v) and left at 4◦C until the lipids (mainly
cerebroside) rose to the top of the tube. The clear lower fraction
was then subjected to gel chromatography through a 100 ×

2.5 cm lipophilic LH-60 column at 1 atmosphere pressure, using
chloroform:methanol (2:1) as the buffer. Elution of PLP from
the column was monitored by measuring the absorbance at
280 nm. Fractions containing PLP were pooled and stored at
4◦C in the dark until required. To convert PLP to a water
soluble form, a small volume of PLP in chloroform:methanol
in a shallow watch glass was diluted with an equal volume of
chloroform:methanol:acetic acid (2:0:0.03 v/v), and then distilled
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TABLE 1 | Demographics of patients and controls.

Group n % Female Age median (range) MS duration in years median (range) MS severity score median (range)

Healthy control 54 84.3% 38 (22–57) n/a n/a

MS (All) 146 80.1% 45 (19–72) 9 (0.25–31) 5.39 (0–9.88)

RR-MS 81 83.7% 37 (19–57) 5 (0.25–23) 4.44 (0–9.81)

SP-MS 38 89.5% 50.5 (27–72) 20 (3–31) 5.74 (1.29–9.63)

PP-MS 27 59.3% 52 (37–64) 11 (1–28) 8.04 (2.65–9.88)

OND 42 42.9% 46.5 (18–65) n/a n/a

CIS 40 75.0% 38 (20–56) n/a n/a

n/a, not applicable.

deionized water (dH2O) was added, one drop at a time, under a
constant stream of nitrogen gas. Once the liquid no longer turned
cloudy when each drop of dH2O was added, 0.5mL of dH2O
was added, and the PLP was dialyzed against 3 changes of dH2O
in 10,000 MW cutoff dialysis tubing. The protein concentration
was determined using a bicinchoninic acid (BCA) assay (Pierce)
and the sample was diluted to 1 mg/mL with dH2O. This water
soluble form was kept at 4◦C for no longer than 1 week.

The 50 mer PLP181−230 peptide containing 2 disulphide bonds
(between cysteines residues at 200 and 219, and at 183 and 227),
as occurs in the second extracellular loop of the native protein,
was synthesized and checked for the presence of the correct two
disulphide bonds as previously described (31). As this peptide
has been shown to oxidize relatively rapidly, it was stored under
nitrogen gas, and was prepared just prior to use by dissolving
peptide in 0.2M acetic acid to a concentration of 5 mg/mL.

ELISA for Anti-PLP Antibodies
Since PLP precipitates out of solution in the presence of salts, it
was diluted to 10µg/mL in dH2O containing 25µg/mL bovine
serum albumin (BSA) and coated onto high protein binding
Nunclon ELISA plates. Control wells were coated with 25µg/mL
BSA in dH2O. For the 50 mer PLP181−230 peptide, the 5 mg/mL
stock solution was diluted to 5µg/mL in bicarbonate buffer (pH
9.6) containing 25µg/mL BSA for coating onto the ELISA plates.
As negative control for the peptide-containing wells, ELISA
plate wells were coated with the bicarbonate buffer containing
25µg/mL BSA alone. Plates were blocked with 1% skimmed
milk powder in PBS containing 0.05% Tween 20 (PBS-T-SM).
Four dilutions (1/25, 1/50, 1/100 and 1/200) of a control serum
sample (which was a pool of 5MS sera with moderate to high
reactivity in preliminary assays) diluted in PBS-T-SM were used
on each plate to serve as a positive control to ensure consistency
of peptide coating and to normalize results from one plate to
another (see below). Each test serum sample was tested at a
dilution of 1:40 in PBS-T-SM on three wells coated with the BSA
alone, and three wells coated with the BSA+ PLP181−230 peptide.
After 2 h at room temperature, plates were washed with PBS-T,
and an alkaline phosphatase-conjugated anti-human polyvalent
Ig secondary antibody was added to all wells of the plate for
2 h at room temperature. After washing 5 times with PBS-T and
once with dH2O, the substrate p-nitrophenyl phosphate (pNPP;
Sigma) was added to each well, incubated for 15min, and the

reaction was then stopped with 3N NaOH. The absorbance
at 405 nm was read on a Tecan Spark 10M Multimode plate
reader. The absorbance of the wells containing BSA alone was
subtracted from the absorbance of the wells containing BSA +

PLP181−230 for each sample, to give the PLP-specific absorbance.
A semi-log XY standard curve was drawn using the 4 dilutions
of the positive control serum sample on the x axis (log scale)
and their absorbance values on the y axis, and the equation of
the curve determined (Y = slope x log10(X) + Y intercept).
From that equation, X values for each test serum sample were
calculated. The absorbance of the 1/100 dilution was normalized
to 1 absorbance unit, which changes the Y intercept, but not the
slope of the curve. From the equation of this normalized curve,
the normalized Y values of the test samples were obtained (i.e.,
normalized PLP181−230-specific absorbance values).

Isotyping
For isotyping of samples, the ELISA was repeated on serum
samples that showed a detectable level of PLP181−230 specific
antibodies above the level of the 75% percentile of the healthy
individuals. In this case, however, the secondary antibodies
used were horse radish peroxidase (HRP) conjugated mouse
antibodies specific for human IgG1, IgG2, IgG3, IgG4, or IgM
antibodies (clones HP6070, HP6014, HP6047, HP6023 and
HP6083, respectively, all from Invitrogen), which were used
instead of the alkaline phosphatase-conjugated polyvalent human
Ig antibody above. To detect the HRP-conjugated secondary
antibodies, plates were incubated with o-phenylenediamine
dihydrochloride (OPD) substrate (Sigma) for 15min at room
temperature, stopped with 2.5M sulphuric acid, and the
absorbance was read at 490 nm. Each sample was tested in
triplicate on wells coated just with BSA and on wells coated with
BSA + PLP181−230 for the presence of each different IgG or IgM
isotype. Data were reported as the isotype of antibody that gave
the strongest PLP181−230 specific response.

Immunolabelling of PLP-Expressing CHO
Cells
A plasmid encoding wild-type human PLP1 coupled to an
mCherry tag was constructed as previously described (32).
Dissociated CHO-K1 cells (106 cells in PBS) were transiently
transfected via electroporation with 2 ng of the plasmid using
the Amaxa II transfection device (Lonza, Basel, Switzerland),

Frontiers in Immunology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 1891244

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Greer et al. Anti-PLP Antibodies and MS Disease Severity

following the manufacturer’s recommended protocol. The
transfected cells were plated in 8 well-chamber slides at a
concentration of 105 cells/well. Two days following transfection,
the cells were live-labeled with 1/20 dilution of patient serum at
room temperature for 1 h. After 3 washes with PBS containing
2% fetal calf serum and 0.05% azide (PBS azide wash), cells
were labeled with FITC-conjugated rabbit anti-human Igs (Dako,
Agilent, Santa Clara, USA) at room temperature for 1 h. Slides
were washed 3 times in PBS azide wash, and the chambers
were removed. Finally, the slides were incubated for 15min with
PBS azide wash containing 1/30,000 dilution of DAPI, and then
coverslips were mounted on the slides. Slides were viewed using
a Zeiss Axio Imager M1 microscope fitted with an Axiocam 503
camera, and images acquired using Zen software (Zeiss).

Statistical Analysis
Statistical analyses were done using GraphPad Prism v 8.2.1.
Data were first checked to determine if they were normally
distributed. If so, 3 or more groups were compared using
ANOVA, with Bonferroni correction for multiple comparisons.
Data in this case are presented as mean ± SE of the mean. If
data were not normally distributed, then the Kruskal-Wallis test
with Dunn’s multiple comparison test was used to determine
statistical significance. In that case, data are presented as median
and interquartile range. For correlations, since the data were
from a non-parametric distribution, the Spearman correlation
coefficient (ρ) was determined.

RESULTS

Comparing the Reproducibility of ELISA
Results Using Human PLP or the
PLP181−230 Peptide
Whole PLP has been used as an antigen in various T cell
and antibody studies, with varying levels of reproducibility
and success, as previously discussed (33). One reason for this
variability is the extreme hydrophobicity of PLP. It is difficult
to get PLP into a water-soluble form, and, even then, the
presence of salts tends to make it precipitate out of solution. We
have previously shown that the major T cell response against
PLP is directed against two overlapping peptides, PLP184−199

and PLP190−209, within the second extracellular loop of PLP
(PLP181−210), and that there is also an elevated antibody response
to these peptides (23). However, the second extracellular loop
of PLP normally contains 2 disulphide bonds, which would
potentially produce conformational epitopes for antibodies that
would not be able to be detected using the 2 overlapping peptides
above. Therefore, we decided first to compare the reproducibility
of antibody assays utilizing whole human PLP or a 50-mer PLP
peptide covering this second extracellular loop, and synthesized
with 2 disulphide bonds, to mimic the structure of PLP in the
myelin membrane. Initially, serum samples from 82MS patients
were tested for reactivity against whole human PLP or the 50-
mer peptide, with each sample tested in 3 independent assays.
Each sample was scored as a positive (absorbance > 0.2 units) or
negative (absorbance≤ 0.2 units) response to human PLP and to

PLP181−230, and the proportion of samples that scored all positive
or all negative in the 3 independent assays was determined. For
whole human PLP, the same result was obtained in all 3 replicate
assays only 48.8% of the time. In contrast, using the PLP181−230

peptide, the same result was obtained in all 3 replicates 87.8%
of the time, which was a marked improvement over the result
with whole human PLP. In cases where a sample showed a
positive response to the whole PLP protein, it also gave a positive
result to the PLP181−230 peptide in 92.9% of cases. In contrast,
if the response to the whole protein was negative, the response
to the peptide was negative in only 70% of cases. Thus, we
believe that the peptide has better sensitivity for detection of the
anti-PLP antibodies.

Antibodies That Bind to the PLP181−230

Peptide in ELISA Can Also Live-Label
PLP-Transfected Cells
To confirm that the anti-PLP181−230 antibodies detected in the
ELISA are also able to recognize whole PLP expressed in the
cell membrane, CHO cells were transiently transfected with a
mCherry-tagged PLP-expressing plasmid, and live-labeled 2 days
later with sera from patients who showed strong, moderate, or
no reactivity in the ELISA. There was a good correlation between
the anti-PLP181−230 reactivity of the serum samples in the ELISA
and their ability to live-label PLP-transfected cells (Figure 1).
The antibodies from patients with high or moderate antibody
levels measured by ELISA showed strong membrane staining
of the PLP-transfected cells, but not of non-transfected cells in
the same slide, whereas sera that showed no anti-PLP181−230

binding by ELISA did not label the PLP-transfected CHO cells.
Therefore, the remainder of the assays in this paper were done
using the PLP181−230 peptide in ELISA for determining levels of
anti-PLP antibodies.

Levels of Isotype-Switched Autoantibodies
Specific for PLP181−230 Are Increased in
Patients With MS
Initial studies investigated the levels of antibodies specific for
PLP181−230 in patients with MS, OND patients and healthy
individuals. There was a significant increase in the levels of
anti-PLP181−230 antibodies in MS patients, compared to the
OND patients and healthy individuals (Figure 2A). Some OND
patients did show elevated levels of anti-PLP181−230 antibodies.
The OND patients with an elevated antibody response to PLP in
the top quartile of the OND group had a variety of CNS disorders,
including epilepsy (3 patients), stroke (3 patients), and one each
of CNS tumor and idiopathic intracranial hypertension.

Next, we looked at the isotype of the anti-PLP181−230

antibodies. Sera from individuals who showed levels of antibodies
at or higher than the 75th percentile of the healthy individual
group were tested to determine the primary isotype of antibodies
reacting with the PLP peptide. This included samples from
18 healthy individuals, 93 patients with MS, and 16 OND
patients. Of interest, almost all of the positive samples from
OND patients (13/16) and healthy individuals (16/18) contained
IgM anti-PLP181−230 antibodies only (Figure 2B). In contrast,
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FIGURE 1 | CHO cells transiently transfected with an mCherry-PLP construct (so that cells expressing PLP fluoresce red) were live-labeled using MS patient sera that

showed high (MS467 and MS471), moderate (MS275 and MS370) or no (MS374 and MS438) binding to the PLP181−230 peptide in ELISA assays. Binding of patient

sera to the transfected CHO cells was revealed by addition of a FITC-labeled anti-human Ig secondary antibody (green). Controls included wells with no MS sera

added (top left image) and non-transfected cells in the wells to which MS sera were added (bottom left image showing non-transfected cells in the well in which

MS467 serum was added). MS sera that showed high or moderate binding to the PLP181−230 peptide in ELISA assays labeled the membranes of PLP-transfected

CHO, whereas sera that showed no anti-PLP181−230 binding by ELISA did not label the PLP-transfected CHO cells.

FIGURE 2 | Significantly elevated levels of isotype-switched anti-PLP antibodies are present in MS patients. (A) Reactivity in ELISA of healthy individuals’ (HC), MS

and OND patients’ sera (all tested at 1/40 dilution) to PLP181−230, synthesized with 2 disulphide bonds to mimic the structure of the second extracellular loop of PLP.

Results are presented as the normalized PLP181−230-specific absorbance values. Analyzed using Kruskal–Wallis test with Dunn’s multiple comparison test. (B)

Percentage of samples of each isotype from individuals with elevated (at or above the 75th percentile of the HC group) antibodies reactive to PLP. n.s., not significant.

the majority of the positive samples from MS patients contained
isotype-switched anti-PLP181−230 antibodies. IgG1 was the most
common isotype for anti-PLP181−230 antibodies from MS
patients; however, several patients had high levels of IgG2, IgG3,

or IgG4 antibodies, suggesting that the microenvironment in
which the anti-PLP antibody producing B cells mature and class-
switch can vary from patient to patient. The percentage of MS
patients who had isotype-switched anti-PLP antibodies to any
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FIGURE 3 | (A) Comparison of anti-PLP181−230 antibody levels in the different MS subgroups and in patients with CIS. PP-MS patients have lower levels of

anti-PLP181−230 antibodies than do other groups of MS patients or individuals with CIS. (B) Chart showing the P-values for comparison of all groups shown in (A)

Significant differences are highlighted in bold. Analyzed using Kruskal-Wallis test with Dunn’s multiple comparison test.

IgG subtype (83.9%) was highly significantly different from that
of healthy controls (11.1%; P = 1.8 × 10−9) and that of OND
patients (18.8%; P = 2.0× 10−7) by χ

2 with Yates’ correction.

Anti-PLP Antibodies Are Produced
Throughout the Course of MS
Next, we investigated if there were differences between patients
with different disease courses, and also if CIS patients had
elevated levels of anti-PLP181−230 antibodies. As shown in
Figure 3, the levels of antibodies were elevated more in patients
with RR-MS and SP-MS than in PP-MS, although this was
not statistically significance. Most interestingly, approximately
half of the CIS patients showed elevated antibody responses to
PLP181−230, suggesting that these antibodies are present from
the early stages of disease. The anti-PLP181−230 antibody levels
were significantly different in RR-MS patients and CIS patients
compared to both healthy individuals andONDpatients, whereas
the SP-MS patient antibody levels were only significantly different
to healthy individuals, and PP-MS patient antibody levels were
not significantly different to either the healthy individuals or
OND patients.

Patients Carrying Certain HLA Types Are
Much More Likely to Produce Elevated
Levels of Anti-PLP Antibodies
Previously we have described that certain HLA class II alleles
in particular alleles within the HLA-DRB1∗04, DRB1∗07 or
DRB1∗13 families, and the DQ8 serotype (which is in strong
linkage disequilibrium with HLA-DRB1∗04 alleles) correlate
strongly with elevated T cell reactivity to peptides from the
184-209 region of PLP (23). The same PLP peptides appear to
bind minimally to the MS-related HLA molecule DRB1∗15:01
and to DRB1∗03, which is also found commonly in Caucasian
MS patients. Furthermore, they cannot induce disease in HLA
transgenic mice expressing these alleles. However, PLP175−194

can induce demyelinating disease in mice transgenic for HLA-
DQB1∗06:02, which forms the β chain of the DQ6 type that

TABLE 2 | Relationship between HLA genotype of MS patients and antibody

response to PLP181−230.

HLA-DRB1

genotype

n Response to PLP181−230 median

(IQR)¶
P vs. “other,

other” genotype*

03, 15:01

03, other

13

13

0.027 (0–0.296)

0.076 (0–0.323)

P(03,15 :01 vs. 03,other) = 0.930

0.608

0.550

04, 15:01

04, other

14

29

0.467 (0.050–1.945)

0.181 (0.064–1.467)

P(04,15 :01 vs. 04,other) = 0.528

0.007

0.013

07, 15:01

07, other

12

14

0.709 (0.109–1.271)

0.640 (0.060-2.834)

P(07,15 :01 vs. 07,other) = 0.981

0.011

0.020

13, 15:01

13, other

11

18

0.835 (0.104–1.951)

0.752 (0.087–1.480)

P(13,15 :01 vs. 13,other) = 0.811

0.006

0.009

15:01, 15:01

15:01, other

19

18

0.884 (0.121–1.224)

0.108 (0.025–0.379)

P(15 : 01,15 :01 vs. 15 :01,other) = 0.026

0.006

0.281

Other, other 10 0.003 (0–0.243) –

“Other” indicates alleles other than DRB1*03, DRB1*04, DRB1*07, DRB1*13 or

DRB1*15:01.
¶The P-value shown below the median and IQR for each pair of genotypes shows the

significance of the comparison between those two groups.

*Significant P-values are indicated by bold type.

is in strong linkage disequilibrium with DRB1∗15:01 (34). We
reasoned that patients showing isotype-switched anti-PLP181−230

antibodies might be more likely to also be able to make a strong
T cell response to peptides in this region of PLP, as T cell help is
likely required for the isotype switching to occur.

Levels of anti-PLP181−230 antibodies were assessed on the basis
of whether patient had HLA genotypes containing DRB1∗03,
DRB1∗04, DRB1∗07, DRB1∗13, or DRB1∗15:01, either in the
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FIGURE 4 | Comparison of anti-PLP181−230 antibody reactivity in individuals

carrying PLP response-permissive HLA types vs. other HLA types. There were

no significant differences between HC, MS, and OND groups in the patients

carrying other HLA types.

presence or absence of DRB1∗15:01 as the second allele (in
order to assess whether the DRB1∗15:01 was contributing to the
response). Patients who carried none of these alleles are listed as
“other, other” genotype. As shown in Table 2, the responses of
samples from 146MS patients and 20 CIS patients from whom
HLA typing was available showed that patients carrying HLA-
DRB1∗04, DRB1∗07, or DRB1∗13 were significantly elevated
compared to the “other, other” genotype, and that this was
not dependent on the presence of DRB1∗15:01, as there were
no significant differences between (e.g.,) people with DRB1∗04,
DRB1∗15:01 vs. DRB1∗04, other genotype. Interestingly, the only
patients who showed a difference between the presence and
absence of DRB1∗15:01 as the second allele were individuals
who were homozygous for DRB1∗15:01, who had elevated
levels of anti-PLP181−230 antibodies compared to those who
had DRB1∗15:01 and an allele other than DRB1∗03, DRB1∗04,
DRB1∗07, DRB1∗13, or DRB1∗15:01. It is likely that the elevated
response in DRB1∗15:01 homozygous individuals is due to
increased expression of HLA-DQ6 in these patients, as studies
in patients with narcolepsy have shown that allelic dosage of
DQB1∗06:02 is transmitted into significant changes in HLA-
DQ6 heterodimer availability (35). Thus, these results show that
PLP response permissive HLA types include DRB1∗04, DRB1∗07,
DRB1∗13, and homozygosity for DRB1∗15:01. When the ELISA
data from MS patients and controls shown in Figure 2A was
assessed on the basis of carriage of these PLP response-permissive
HLA types, there was still a highly significant difference between
MS patients and controls for the PLP response-permissive HLA
types, but not for those individuals who do not carry these
HLA types (Figure 4). Most of the MS patients who did not
carry the typical PLP response-permissive HLA types, but who
showed higher levels of reactivity to PLP, carried DRB1∗11
alleles. DRB1∗11 is usually in linkage disequilibrium with DQ7
(DQB1∗03), which is also expressed by many patients who carry
DR4 or DR13 alleles. It may be that in someMS patients, the HLA
restriction is actually through the HLA-DQ rather than HLA-
DR molecules. It is notable that 2 OND patients who had high

levels of anti-PLP antibodies but who did not carry typical PLP
response-permissive HLA types both carried DRB1∗10 alleles
(which occur very infrequently in MS patients – only one MS
patient in this study carried DRB1∗10). Therefore, certain DQ
and DRB1∗10 alleles may represent additional PLP response-
permissive HLA molecules, but that remains to be proven.

Levels of Antibody Responses to
PLP181−230 Correlate With Disease Severity
in RR-MS and SP-MS Patients Carrying
PLP Response-Permissive HLA Types
The levels of anti-PLP antibodies were also correlated with the
MS Severity Score (MSSS) (36), which uses disability and disease
duration to rate disease severity. When all patients were included
in the analysis, there was no significant correlation between
the levels of anti-PLP antibodies and the MSSS (Figure 5A).
However, as shown above, certain HLA types correlate with
elevated levels of anti-PLP181−230 antibodies. We therefore also
analyzed the correlation between anti-PLP antibody levels in
patients carrying the PLP response-permissive HLA types and
the MSSS: in this group there was a significant correlation
between the level of anti-PLP antibody and the MSSS (P = 0.04;
Figure 5B). Interestingly, the majority of patients with low levels
of anti-PLP antibody but high MSSS in this group had PP-MS
(indicated by the red triangles in Figure 5B). When only RR-MS
and SP-MS patients were included in the analysis, the correlation
was much stronger (P < 0.0001; Figure 5C). The ρ value is
relatively low (0.46); however, this may reflect differences in the
disease state at the time of testing, with patients who were tested
while in remission typically showing lower levels of antibody
than those tested during an attack of MS. This data demonstrates
that, in RR-MS and SP-MS patients who carry HLA types that
allow autoreactivity to PLP to occur, anti-PLP antibodies show a
correlation with disease severity. Furthermore, the finding that
anti-PLP antibodies do not correlate with disease severity in
patients with PP-MS would support the idea that the disease
process in PP-MS is different from that seen in RR-MS/SP-MS.

DISCUSSION

In this paper, we have demonstrated that isotype-switched
antibodies targeting PLP181−230 are significantly elevated in the
serum of patients with RR-MS and SP-MS, particularly in those
carrying PLP response-permissive HLA types, and that there is
a positive correlation between the levels of antibody and disease
severity in these patients.

The use of the PLP181−230 peptide, synthesized so as to
fold with 2 disulphide bonds as occurs in PLP expressed at
the oligodendrocyte cell membrane, significantly improved the
reproducibility of the anti-PLP antibody results, compared to
assays done using whole human PLP. A rabbit serum, raised
against this 50-mer peptide, has been shown to be able to
live label rat oligodendrocytes (37), in a pattern reminiscent
of that seen when cells were labeled with the O10 monoclonal
antibody, which recognizes a conformation-dependent epitope
of the second extracellular loop of PLP (38). The PLP amino
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FIGURE 5 | Spearman rank correlation between levels of anti-PLP antibodies (as determined in Figure 1) and MSSS in: (A) all MS patients, irrespective of their HLA

type; (B) all MS patients who carry PLP response-permissive HLA types (red triangles indicate PP-MS patients); and (C) RR-MS and SP-MS patients who carry PLP

response-permissive HLA types. The P-value for each correlation and the Spearman ρ (rho) value are shown in each graph.

acid sequence is identical between human, mouse and rats, and
therefore the fact that antiserum raised against the PLP181−230

epitope could recognize rat oligodendrocytes suggested that
antibodies of this specificity could also recognize human PLP.
We have now shown in this paper than CHO cells, transfected
to express human PLP, can be live labeled with antibodies that
show elevated levels of reactivity to PLP181−230 in the ELISA
assays, suggesting that the antibodies of this specificity could be
of potential functional relevance in humans.

Importantly for the synthesis of the PLP181−230 peptide
for testing of human antibody responses, this region of PLP
contains two residues that differ between the human and
bovine sequences, namely at residues 188 and 198. Many early
studies on immune reactivity to PLP used bovine PLP as the
antigen, and results from those studies were not particularly
reproducible (33). However, it is not unexpected that difficulties
arise when using whole PLP as an antigen in an ELISA or in
other immunological assays, as, owing to its hydrophobicity and
intolerance for solutions containing salt, the whole PLP molecule
is not a suitable molecule for most of these assays. We have
previously shown that there are elevated levels of antibodies
against PLP184−199 and PLP190−209 in patients withMS compared
to healthy individuals and OND patients (23), although the
levels of antibodies were generally lower than those seen using
the PLP181−230 peptide. We suggest that this is due to the
improved ability to detect antibodies against conformationally
relevant epitopes of the second extracellular loop when using the
PLP181−230 peptide.

The finding that most MS patients had isotype-switched
anti-PLP181−230 antibodies, whereas those healthy individuals
or OND patients with detectable levels of anti-PLP181−230

antibodies generally had antibodies of the IgM isotype, suggests
the presence of a PLP-driven immune process occurring in the
MS patients. Testing of CSF for the presence of PLP-specific
antibodies was not done in the current study, but will be a focus
of future investigations.

In previous work, we have identified that ∼40–50% of MS
patients can show elevated T cell proliferative responses to
various epitopes of PLP, but that the response is directed against
the second extracellular loop of PLP in most patients (23, 39,
40). Similarly in experimental animals, overlapping epitopes
within the second extracellular loop of PLP form a cluster of
immunogenic and encephalitogenic peptides formice frommany
genetic backgrounds (41). We would therefore suggest that this
second extracellular loop of PLP is the most likely target of
disease-relevant autoreactivity in MS.

It is of interest to note that nearly half of the patients with
a CIS suggestive of MS had elevated levels of anti-PLP181−230

antibodies. There may therefore be some predictive power in
studying these antibodies in early MS. However, as shown in this
paper, the HLA type of the patients (and therefore the potential
to develop strong T cell responses to PLP) also plays a role in
whether or not antibodies develop. Previously we have shown
that in a patient who carries a PLP response-permissive HLA
type, highly increased numbers of PLP-specific T cells could be
detected in both the blood and the cerebrospinal fluid (CSF) right
from the earliest stage of disease (23). Therefore, it is likely that
any predictivemodeling of disease severity from early timepoints,
based on the presence of anti-PLP antibodies, would need to take
into account the HLA type of the patients.

There are many ways in which anti-PLP antibodies,
particularly those targeting epitopes on the extracellular surfaces
of oligodendrocytes or myelin, could potentially have an impact
in MS, including mechanisms such as complement-mediated
lysis, antibody mediated cell cytotoxicity, modulation of cell
architecture, opsonization of myelin or myelin debris leading
to increased activation of phagocytic cells (19). In a C3H/HeJ
mouse model in which demyelinating disease can be induced
by immunization with PLP190−209, we have previously reported
that mice that can make a T cell response, but not an antibody
response, develop lesions in the brainstem, but not in the
cerebellum, whereas in the presence of both T cells and antibodies
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specific for PLP190−209 there is development of lesions in both
the brainstem and the cerebellum (23, 25). This suggests either
that the anti-PLP antibodies can shift the sites of lesions, or
alternatively that there is more severe disease when both the T
cells and antibodies are present.

A recent study using several monoclonal antibodies specific
for the first and second extracellular domains of PLP also suggests
that antibodies against these regions of PLP might be able to
cause damage to neurons (28). This study showed that the
antibodies, specific for either PLP50−69 or PLP178−191, could bind
to cell surface proteins on neurons in human brain, and that, in
vitro, the antibodies could inhibit neuronal differentiation and
outgrowth of neurites. Preliminary findings suggested that the
cross-reactivity between the anti-PLP antibodies and the neurons
could be via the M6 proteins. M6a and M6b are glycoproteins
belonging to the same gene family as PLP. They are involved
in neuronal and axonal guidance, in an integrin-dependent
fashion (42, 43). M6a is only expressed on neurons, but some
M6b isoforms are also expressed by oligodendrocytes (44). The
PLP181−230 region has 50% sequence similarity to that of M6a
and 72% similarity to M6b. Therefore, there is the potential
that anti-PLP181−230 specific antibodies produced by MS patients
could bind to neurons and cause damage to them. Such effects
could contribute to the apparent correlation between disease
severity and the levels of anti-PLP181−230 specific antibodies, as
disease severity is, in large part, caused by underlying irreversible
damage to neurons. Interestingly, PP-MS is usually thought to
involve a greater degree of irreversible axonal damage and brain
atrophy than are other forms of MS. However, we did not find
any relationship between severity of PP-MS and levels of anti-
PLP181−230 antibodies. We have previously reported that patients
with PP-MS carry a different complement of HLA alleles to
those found in patients with RR-MS or SP-MS, in particular
they are more likely to carry alleles with a negatively charged
glutamic acid residue in pocket 4 of the antigen-binding site of
the HLA-DR molecules (45). In addition, PP-MS patients show
significantly lower T cell proliferation in response to PLP184−199

or PLP190−209 peptides compared to RR-MS and SP-MS patients
(39). It is likely that these differences in the HLA molecules
carried by PP-MS patients affects their ability to make effective
antibody responses to PLP181−230.

Overall, the results of this study suggest that anti-PLP181−230

antibodies have potentially important roles to play in the
pathogenesis of MS, particularly in patients with RR-MS
and SP-MS.
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