About this Research Topic
At its heart, the push toward expanding both fundamental and application-based knowledge in this frontier of nanomaterials-based research relies on the availability of effective methods for the scalable fabrication, processing, transfer, and integration of controlled 2D crystalline nano(hetero)structures. The validation of these routes through an assessment of the underlying growth mechanisms, and of the impact of post-synthesis manipulations on the ultimate structure-property relationships in the as-derived 2D nanomaterials, is essential to enabling the deliberate exploitation of their functionalities for targeted applications.
This Research Topic aims to collect original research and review-type articles addressing development of rational synthetic approaches to 2D inorganic nanomaterials with programmable structural features and properties. We welcome submissions covering all experimental and theoretical aspects related to the fabrication (by both physical and chemical routes), growth mechanisms, post-synthesis manipulation (e.g. functionalization, phase transformation, etc.), assembly (e.g. into films, superstructures), and chemical-physical characterization (both by ensemble and local-probe investigative tools) of 2D crystalline nano(hetero)structures across the realms of both non-lamellar and lamellar van der Waals materials.
Keywords: two-dimensional inorganic materials, phase engineering, nano(hetero)structuring, chemical synthesis, growth mechanisms
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.