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In recent years, mental illnesses have become recognized as a huge emotional and financial 
burden to the individual, their relatives and society at large. Stress-related and mood disorders 
as well as psychoactive substance abuse are among the disorders associated with most 
disability in high income countries.  Suicide, which is often attributed to some underlying 
mental disorders, is a leading cause of death among teenagers and young adults. At the same 
time, mental disorders pose some of the toughest challenges in neuroscience research.

There are many different categories of mental disorder as defined and classified by the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the International 
Statistical Classification of Diseases 10th Revision (ICD-10). Despite the ongoing 
improvements of those widely used manuals, the validity and reliability of their diagnoses 
remain a constant debate. However, it has now become accepted by the scientific community 
that mental disorders can arise from multiple sources. In that regard, both clinical and animal 
studies looking at gene-environment interactions have helped to better understand the 
mechanisms involved in the pathophysiology as well as the discovery of treatments for mental 
disorders.

This Research Topic aims to cover recent progress in research studying how genetic make-up 
and environmental factors (such as stress paradigm or pharmacological treatment) 
can contribute to the development of mental disorders such as anxiety, depression, and 
schizophrenia. This Research Topic also seeks to highlight studies looking at affective-like 
disorders following the intake of drugs of abuse.  We also welcome all research articles, 
review papers, brief communications, and commentary on topics related to the broad field of 
Neuropsychopharmacology.
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This Research Topic aims to cover recent progress in research
studying how genetic make-up and environmental factors can
contribute to the development of mental disorders such as
anxiety, depression, schizophrenia, and psychoactive substances
abuse. It has brought together leading experts in the field to
address these questions from different angles in eleven reviews,
seven original research articles and two theoretic/opinion papers.

The first three articles describe several techniques which are
valuable tools to study the role of neurotransmitters such as sero-
tonin (5-HT) in the pathophysiology and the treatment of psychi-
atric disorders. First, Prof. Gardier (2013) nicely summarizes the
main advantages as well as some limitations of using microdialy-
sis in wildtype (WT) and knockout (KO) mice. His team showed
that paroxetine-induced increased in cortical 5-HT extracellu-
lar level was enhanced in 5-HT1A receptor KO mice compared
to WT animals. Then, by performing loose-seal cell-attached
electrophysiological recordings in 5-HT transporter knockout
(Sert−/−) and tryptophan hydroxylase-2 knockout (Tph2−/−)
mice, Araragi et al. (2013) demonstrate that the sensitivity of
somatodendritic 5-HT1A receptors does not predict the mag-
nitude of 5-HT neuron auto-inhibition. Finally, Mendez-David
et al.’s (2013) results suggest that isolation of peripheral blood
mononuclear cells (PBMCs) from mice by submandibular bleed-
ing is a useful technique to screen putative biomarkers relevant to
the pathophysiology of mood disorders such as β-arrestin 1. They
found that the reduced β-arrestin 1 levels found in PBMCs from
anxious/depressed mice was restored to normal levels following
chronic treatment with fluoxetine.

The following eleven articles provide excellent insights into
the interaction between gene and environment in mental dis-
orders as well as the role of several transmitters/neuropeptides
and the different therapeutic strategies. El-Hage et al. (2013) ele-
gantly expose the potential predictors of response/non-response
to antidepressants and discuss their clinical and practical implica-
tions. Alongside with reviewing several markers that can be used
to predict response to pharmacotherapy, they also describe fac-
tors that might affect the expression of these markers, including
environmental or genetic factors and comorbidities. Then, focus-
ing mainly on the impact of polymorphisms on anxiety-like and
depression-like behavior in rodents, Armario and Nadal (2013)
discuss how individual differences can contribute to explain
differential susceptibility to develop behavioral alterations. They

also emphasize methodological problems that can lead to inap-
propriate or over-simplistic interpretations. Olivier et al. (2013)
review the role of the GABAA receptor and the serotonergic
system in drug discovery for anxiety disorders. They elegantly
highlight how genetic studies aiming to unravel the neurobi-
ology of anxiety have proven to be challenging, and describe
how the development of animal models (including genetically
modified rodents) has helped to clarify the complex interplay
between genes and environment in anxiety-like behaviors. In his
opinion article, Dr. Pinna (2014) illustrates the therapeutic strate-
gies to increase neurosteroidogenesis and improve posttraumatic
stress disorder by enhancing GABAergic neurotransmission. He
also discusses the several therapeutic advantages of targeting
allopregnanolone biosynthesis with selective neurosteroidogenic
agents. Browne and Lucki (2013) examine the preclinical lit-
erature on the antidepressant-like effects of ketamine. After
extensively reviewing animal studies which suggest that acute
ketamine produces antidepressant-like effect on many behavioral
tests, they discuss the potential molecular mechanisms involved.
Focusing on direct evidence in the human post-mortem brain
as well as rodent genetic and pharmacological studies, Lin and
Sibille (2013) summarize the current literature on deficits in
somatostatin in neuropsychiatric and neurodegenerative disor-
ders. They conclude that clarifying the role of somatostatin and
its regulation of GABA inhibition could provide new therapeu-
tic strategies. Smith et al. (2014) review recent preclinical data
on relaxin-3 a newly discovered neuropeptide that binds, and
activates the G-protein coupled receptor, RXFP3. They comment
on data which suggests that endogenous relaxin-3/RXFP3 sig-
naling promotes arousal and contributes to the central response
to stress. This could be relevant and/or potentially translatable
to the etiology and treatment of major depression and anxiety.
Schirmbeck and Zink (2013) review the contributions of phar-
macological and genetic factors in schizophrenia patients with
comorbid obsessive-compulsive symptoms (OCS). In this arti-
cle, they present an in-depth and very detailed coverage of the
concepts explaining the co-occurrence of OCS in schizophre-
nia. They highlight that the effects of environmental factors on
onset or symptom has been scarcely investigated and suggest
that besides pharmacological treatment as a relevant factor, fur-
ther environmental factors and gene polymorphisms could play
an important role in the development of OCS in schizophrenia.
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Sumiyoshi’s (2013) article aims to provide theoretical issues on
atypical antipsychotic drugs in relation to efficacy for treating
psychotic symptoms and cognition, as well as safety and tolerabil-
ity. Based on the fact that no treatments have yet been approved
for treating cognitive or negative symptoms in schizophrenia, the
author presents a hypothesis for future directions of therapeutics.
In that regard, Adams et al. (2013) report that rats with 5,7-
DHT-lesions targeting the dorsal hippocampus show potentiated
locomotor hyperactivity following treatment with phencyclidine.
Given the prominent role of the dorsal hippocampus in spa-
tial information processing, these findings have implications for
studies utilizing NMDA receptor antagonists in modeling glu-
tamatergic dysfunction in schizophrenia. Finally, using the tail
suspension test, Mitchell et al. (2013) show for the first time that
it is possible to detect antidepressant-like activity of drugs in mice
as young as P21. Their results suggest that juvenile mice (P21) are
less responsive to the antidepressant-like effects of escitalopram
than adolescent (P28).

The last five articles cover neuroscience research on drug of
abuse. In order to better understand the processes by which
peer influences take effect in prairie voles, Anacker and Ryabinin
(2013) measure alcohol intake during periods of isolation,
pair housing of high and low drinkers, and subsequent iso-
lation. By using a new method (“lickometer” apparatus) and
cross-correlation analyses, they managed to differentiate sub-
populations of high drinkers that were and were not responsive
to social influence to decrease ethanol intake. In another study,
Al-Hasani et al. (2013) investigate the interactions between var-
ious types of stress paradigms and how they influence kappa
opioid receptor (KOR)-dependent reinstatement of cocaine and
nicotine preference. They report that chronic mild stress prior to
reinstatement prevents a KOR-induced reinstatement response,
while acute exposure to stress induces potentiation of KOR-
reinstatement. These findings identify KOR as a potentially novel
therapeutic target system in drug relapse, anxiety, and depres-
sion. Assessing hypothalamic-pituitary-adrenal (HPA) axis activ-
ity during withdrawal from chronic ethanol, Pang et al. (2013)
found that mice undergoing 2 weeks of alcohol abstinence had
significantly greater corticosterone and ACTH levels following a
DEX-CRH challenge compared to water controls. Interestingly,
environmental enrichment was able to prevent the development
of abstinence-associated depression-related behaviors and correct
the pathological DEX-CRH corticosterone response. These find-
ings suggest potential for non-pharmacological interventions in
the treatment of addiction and depression. Bernheim et al. (2013)
summarize the biological factors relevant to adolescent driving
risks. The authors discuss the clinical observations in the light
of preclinical findings linking impulsivity and emotional reactiv-
ity to initiation of drug use and risks of abuse. They conclude
that rather than naive, immature and vulnerable, the adolescent
brain, particularly the prefrontal cortex, should be considered as
prewired for expecting novel experiences. Finally, highlighting the
importance of differentiating dopamine D3 from D2 receptors,
Le Foll et al. (2014) review the recent methods for measuring D3
receptor occupancy in vivo. They present novel methods using
[11C]-(+)-PHNO and PET which could provide insights into the
function of D3 receptors in addiction.

In summary, these studies illustrate how mental disorders can
arise from multiple sources. It even seems that the entire body
can impact on mental state and psychiatric health (Renoir et al.,
2013). We believe that this Frontier Research Topic will stimulate
the development of future collaborative and interdisciplinary
research.
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Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of
selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise
neurobiological mechanisms involved in their therapeutic action are poorly understood.
A better knowledge of molecular interactions between monoaminergic system, pre- and
post-synaptic partners, brain neuronal circuits and regions involved may help to overcome
limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo
microdialysis (ICM) already provided important information about the brain mechanism
of action of antidepressants first in anesthetized rats in the early 1990s, and since then
in conscious wild-type or knock-out mice. The principle of ICM is based on the balance
between release of neurotransmitters (e.g., monoamines) and reuptake by selective
transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Comple-
mentary to electrophysiology, this technique reflects pre-synaptic monoamines release and
intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory
role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal
5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-
types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on
results obtained in ICM experiments performed in naïve, non-stressed rodents.The present
review will first remind the principle and methodology of ICM performed in mice. The
crucial need of developing animal models that display anxiety and depression-like behaviors,
neurochemical and brain morphological phenotypes reminiscent of these mood disorders
in humans, will be underlined. Recently developed genetic mouse models have been
generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped
to clarify the role of the pre-synaptic component, i.e., by measuring extracellular levels
of neurotransmitters in serotonergic nerve terminal regions and raphe nuclei. Finally, we
will summarize main advantages of using ICM in mice through recent examples obtained
in knock-outs (drug infusion through the ICM probe allows the search of a correlation
between changes in extracellular neurotransmitter levels and antidepressant-like activity)
or alternatives (infusion of a small-interfering RNA suppressing receptor functions in the
mouse brain). We will also focus this review on post-synaptic components such as brain-
derived neurotrophic factor in adult hippocampus that plays a crucial role in the neurogenic
and anxiolytic/antidepressant-like activity of chronic SSRI treatment. Limitations of ICM
will also be considered.

Keywords: knock-out mice, antidepressants, autoreceptors, serotonin, BDNF, microdialysis

INTRODUCTION
Most of the antidepressants such as selective serotonin reuptake
inhibitors (SSRIs) act as indirect agonists of monoamine recep-
tors. While SSRI drugs produce relatively rapid blockade of
serotonin [5-hydroxytryptamine (5-HT)] transporters (SERTs) in
vitro, the onset of clinical benefits usually takes several (4–6) weeks
to occur (Blier et al., 1987). This gap in timing between SSRI
near-immediate effect on neurotransmitter systems and the slow
symptomatic recovery is a paradox that has not been completely
solved yet. At pre-synaptic level, SSRI-induced blockade of SERT

results in a rapid suppression of the firing activity of 5-HT neurons
in the brainstem (Blier, 2001): these results have been obtained by
using an electrophysiological technique in anesthetized animals.

MICRODIALYSIS: PRINCIPLE AND METHODOLOGY IN MICE
The principle of microdialysis technique is based on the balance
between the release of neurotransmitters (e.g., 5-HT) and its reup-
take (e.g., by SERT). Usually, male 3- to 4-month-old wild-type
(WT) or mutant mice (25–30 g in body weight) are used for
microdialysis experiments.
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Conventional intracerebral in vivo microdialysis
Whole brain tissue measurements represent a mixture of the
intracellular (≈20%) and extracellular (≈80%) content. To obtain
a measurement more directly related to synaptic transmission,
it is interesting to sample specifically the content of the extra-
cellular space, which is the site of exchanges between neurons,
glial cells, and blood vessels (Zetterström et al., 1983). It contains
various monoamines, excitatory and inhibitory amino acids, neu-
ropeptides and their metabolites as well as precursors of these
neurotransmitters. In the mid-1980s, the development of very
sensitive analytical techniques such as liquid chromatography and
electrochemical detection (LC-ED) had made possible to perform
in vivo microdialysis first in anesthetized rodents, then in awake,
freely moving animals.

In vivo microdialysis technique, in anesthetized or awake ani-
mals, was developed by the group of Delgado et al. (1972) in
monkeys and then improved in rats by the group of Unger-
stedt (Zetterström et al., 1983) in the early 1980s. It is based
on the law of passive diffusion of low molecular-weight com-
pounds through a porous membrane from the compartment
with the highest concentration of neurotransmitters (the synaptic
extracellular space) to the less concentrated compartment (i.e.,
the dialysis probe perfused with a buffer solution at physio-
logical pH that does not contain neurotransmitters; Figure 1).
This technique, now currently applied in our laboratory in
awake, freely moving WT control or knock-out (KO) adult mice,
allows the collection of samples (named “dialysates”) every 10
or 20 min with a flow rate from 0.5 to 1.5 μl/min depend-
ing on the experimental protocol and the brain region studied.
These samples contain, among other molecules, serotonin, its
major metabolite (5-HIAA) and norepinephrine (NE), dopamine
(DA), and their metabolites. These molecules are then quanti-
fied by using high-performance LC coupled to an amperometric
detector (e.g., 1049A, Hewlett-Packard, Les Ulis, France). The
limit of sensitivity for 5-HT is ∼0.5 fmol/sample (signal-to-noise
ratio = 2).

The concentrations of neurotransmitters reflect the physio-
logical balance between the calcium-dependent neurotransmitter
release and its reuptake by SERT located on the membrane of
pre-synaptic neurons. A comprehensive study of intracerebral
microdialysis has four phases: (1) surgical stereotaxic implanta-
tion of the probe under anesthesia, (2) the collection of dialysates
(first to measure baseline value of extracellular neurotransmitter
levels before and 2–3 h after drug treatment), (3) the collection of
brains for the accurate verification of the implantation site of the
microdialysis membrane, and (4) of chromatographic analysis of
dialysate samples (see Malagié et al., 2001; Guiard et al., 2004 for
details).

Drug administration by reverse microdialysis
A major advantage of the microdialysis technique is to infuse a
drug locally into the brain to confirm central effects on dialysates
first measured following a peripheral injection of the drug. Thus,
drugs with a high molecular weight can be dissolved in artificial
cerebrospinal fluid (aCSF) and administered locally, for example,
into the ventral hippocampus via a silica catheter glued to the
microdialysis probe (flow rate: 0.2 μl/min for 2 min), at the dose

FIGURE 1 | Principle of intracerebral microdialysis in awake, freely

moving mice.

of 10–100 ng (Guiard et al., 2007; Deltheil et al., 2008). For each
experiment, a control group must receive the appropriate vehicle.

Zero net flux method of quantitative* intracerebral microdialysis
The zero net flux method of quantitative microdialysis is used to
quantify basal extracellular neurotransmitter concentrations and
the extraction fraction (Ed) of this neurotransmitter, which pro-
vides an index of the functional status of the neurotransmitter
uptake in vivo. Usually, four samples are collected to determine
basal hippocampal 5-HT levels (as in David et al., 2004 in NK1
receptor KO mice), before local perfusion of increasing concen-
trations of 5-HT (0, 5, 10, and 20 nM). The dialysate 5-HT
concentrations (Cout) obtained during perfusion of the various
concentrations of 5-HT (Cin) are used to construct a linear regres-
sion curve for each animal (Guiard et al., 2008). The net change
in 5-HT (Cin-Cout) is plotted on the y-axis against Cin on the
x-axis. Extracellular 5-HT levels ([5-HT]ext) and the extraction
fraction of the probe (Ed) are determined as described by Parsons
et al. (1991). The concentration of 5-HT in the extracellular space
is estimated from the concentration at which Cin-Cout = 0 and
corresponds to a point at which there is no net diffusion of 5-HT
across the dialysis membrane. The extraction fraction (Ed) is the
slope of the linear regression curve and has been shown to pro-
vide an estimate of changes in transporter-mediated 5-HT uptake
(Parsons et al., 1991; Gardier et al., 2003).

As an example of the relevance of the zero net flux method
of quantitative microdialysis, we have recently shown the criti-
cal impact of a neuropeptide, brain-derived neurotrophic factor
(BDNF) on serotonergic neurotransmission under basal condi-
tions and following SSRI treatment. In a series of experiments,
we examined the consequences of either a constitutive decrease
(Guiard et al., 2008) or increase in brain BDNF protein levels
(Benmansour et al., 2008; Deltheil et al., 2008, 2009) on hippocam-
pal extracellular levels of 5-HT in conscious mice. The no net
flux method allows unveiling differences in basal extracellular
5-HT levels in heterozygous BDNF+/− mice (Guiard et al., 2008).
Indeed, this neurotrophic factor is known to play a role in mood
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disorders and the mechanism of action of antidepressant drugs.
However, the relationship between BDNF and serotonergic signal-
ing is poorly understood. BDNF+/− mice were used to investigate
the influence of BDNF on the 5-HT system and the activity of
SERT in the hippocampus. The zero net flux method revealed
that these mutants have increased basal extracellular 5-HT levels
in the hippocampus and decreased 5-HT reuptake capacity. These
results are coherent with the lack of effect of paroxetine to increase
hippocampal 5-HText levels in BDNF+/− mice, while it produced
robust effects in WT littermates. As expected, in vitro autoradio-
graphy and synaptosome techniques in BDNF+/− mice revealed
a significant decrease in [3H]citalopram-binding-site density in
the CA3 subregion of the ventral hippocampus and a significant
reduction in [3H]5-HT uptake in hippocampal synaptosomes.
Taken together, these results provide evidence that constitutive
reductions in BDNF modulate SERT function reuptake in the
hippocampus.

Statistical analysis and expression of results of microdialysis
experiments in KO mice
Usually, microdialysis data are reported as means ± SEM. For
conventional microdialysis experiments, we used to perform sta-
tistical analyses on areas under the curve (AUC) values for the
amount of 5-HT outflow collected during the 0–120 min post-
treatment period. To compare different AUC values in each group
of mice, a two-way ANOVA with genotype factor and treatment
factor is performed. We used to present microdialysis data as his-
tograms because statistical analysis on AUC values better reflects
the pharmacological properties of a compound than the kinetics.
We strongly believe that the interpretation of these data is more
appropriate when performed on AUC values in dialysate 5-HT
levels (Guilloux et al., 2011; Nguyen et al., 2013) as well as for DA
levels (Maskos et al., 2005; Reperant et al., 2010) when changes
induced by drugs are compared between WT versus KO mice.

Using intracerebral microdialysis in the hippocampus and cor-
tex in mice, measuring statistically significant changes in dialysate
5-HT levels induced, for example, by a given drug between t30 min
and t45 min offers little interest. We feel that these information
make the message more difficult to interpret and do not fun-
damentally improve the study. These time courses are strongly
dependent on the experimental conditions and consequently not
reproducible between laboratories. By contrast, our experience
reveals that comparable results from distinct laboratories can be
obtained from the analysis of AUC values. The inclusion of the data
showing the time course for the microdialysis is often superfluous.
Microdialysis is a neurochemical technique, not sensitive enough
to explore precisely (i.e., sample-by-sample) the time course of
drug effects.

However, in some cases, it is interesting to show the time course
analysis of the microdialysis data:

(1) when we need to express time course data in microdial-
ysis experiments as concentrations (in fmol/sample, not as %
changes) because the baseline dialysate levels of the neurotrans-
mitter are statistically different between two groups of mice,
i.e., in Table 1 and Figures 2 and 3 in Guiard et al. (2008):
heterozygous BDNF+/− mice had a higher basal 5-HText lev-
els in the hippocampus compared to WT mice. See also in

Table 1 and Figure 6 in Guilloux et al. (2011), in which dou-
ble 5-HT1A/1B−/− mice display a higher basal 5-HText levels in
the frontal cortex and dorsal raphe nucleus (DRN) compared to
WT mice.

(2) when it is sometimes important to collect some pharma-
cokinetic information about the short-term or long-lasting effect
of a new drug in rodents. The AUC analysis of microdialysis data
disregards information about differences in Cmax and duration of
the drug effects.

(3) when a gray line (Figure 3 in Guilloux et al., 2006; Figures 1
and 2 in Nguyen et al., 2013) indicates the duration time of the
forced swim test (FST, i.e., 6 min), which was performed, in a
separate group of animal, at the maximum effect of the antidepres-
sant on cortical extracellular 5-HT levels in mice. It emphasizes
that microdialysis and behavioral experiments were carried out by
using the same experimental protocol.

INTRACEREBRAL IN VIVO MICRODIALYSIS IN RODENTS
Another technique has provided complementary information
about the mechanism of action of SSRIs: intracerebral in vivo
microdialysis (ICM) performed in awake, freely moving animals
(first in rats, now in mice). Information included in this chap-
ter was drawn from our own experience in this field and relevant
publications from other investigators.

FIRST IN RATS
When it was first used in rat brain in the mid-1980s, this tech-
nique measured, for example, extracellular concentrations of
monoamines such as serotonin (5-HText), which reflect pre-
synaptic release of 5-HT and intrasynaptic events. With its
coupling to very sensitive analytical techniques, it has provided
much information regarding changes in the local pre-synaptic
release of monoamines following acute drug administration. Thus,
it has been possible to obtain two major arguments supporting the
hypothesis that somatodendritic 5-HT1A autoreceptors located in
the raphe nuclei play an important role in the mechanism of action
of SSRIs in rats (Gardier et al., 1996). At first, we have learned that
a single administration of SSRIs at low doses comparable to those
used therapeutically increased 5-HText in the vicinity of the cell
body and the dendrites of serotoninergic neurones of the DRN
(Malagié et al., 1995). This effect was more pronounced than that
observed in regions rich in nerve endings (frontal cortex, ventral
hippocampus; Malagié et al., 1996), probably due to a higher SERT
density (Hrdina et al., 1990). Hence, the magnitude of the activa-
tion of the serotonergic neurotransmission depends on the brain
area studied and the dose of the SSRIs administered to rats. This
difference has been attributed to the activation of somatodendritic
5-HT1A autoreceptors by endogenous 5-HT in the raphe nuclei,
thereby limiting the corticofrontal effects of the antidepressant.
Microdialysis technique demonstrated that despite SSRI-induced
5-HT reuptake inhibition also taking place at nerve terminals,
there is a decrease in 5-HT release via activation of 5-HT1A (soma-
todendritic) or 5-HT1B (nerve terminal) autoreceptors (Rutter
et al., 1995). Thus, depending on the terminal 5-HT brain area,
only a small increase or no change at all in the synaptic availability
of 5-HT occurs (Malagié et al., 1996; Romero et al., 1996). These
microdialysis results obtained in rats have then been extended to
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measure SSRI-induced changes in DRN 5-HText in awake, freely
moving KO mice (Bortolozzi et al., 2004; Guiard et al., 2004).

Next, we have learned from microdialysis performed in rats
that SSRIs cause a larger increase in 5-HText at nerve endings fol-
lowing an acute treatment versus a chronic one. As the treatment is
prolonged, a robust and time-dependent downregulation of SERT
was observed (Pineyro et al., 1994; Benmansour et al., 2002), while
5-HT1A autoreceptors gradually desensitize leading to a progres-
sive recovery to normal of the firing rate of 5-HT neurons (Blier
et al., 1986; Chaput et al., 1986; El Mansari et al., 2005). However,
these molecular events seem to depend on 5-HT1A autoreceptor
internalization (Popa et al., 2010). Indeed, we studied the func-
tion of the 5-HT system in the raphe nuclei and hippocampus
by using repeated in vivo microdialysis sessions in awake, freely
moving mice. We assessed the degree of 5-HT1A autoreceptor
desensitization by using a local infusion of the 5-HT1A receptor
antagonist, WAY 100635, in the raphe via reverse microdialysis.
We found that the anxiolytic-like effects of fluoxetine correlate
in time and amplitude with 5-HT1A autoreceptor desensitization,
but neither with the basal extracellular levels of 5-HT in the raphe
nuclei, nor in the hippocampus. These results suggests that the
beneficial anxiolytic/antidepressant-like effects of chronic SSRI
treatment depend on 5-HT1A autoreceptor internalization, but
do not require a sustained increase in extracellular 5-HT levels
in a territory of 5-HT projection such as hippocampus. Several
studies of patients with depression appear to confirm these exper-
imental results, suggesting that co-administration of a 5-HT1A

autoreceptor antagonist (pindolol) and an SSRI accelerated the
onset of the antidepressant effect (Portella et al., 2011). How-
ever, given the complex pharmacology of pindolol, new drug
developments may help to discover either selective and silent
5-HT1A receptor antagonists to be prescribed in combination with
SSRIs, or dual action agents (SSRI + 5-HT1A receptor antagonists;
Artigas et al., 2006).

NEXT IN WILD-TYPE AND KNOCK-OUT MICE
The use of pharmacological tools in mice
Changes in the amount of neurotransmitters (mainly monoamines
such as 5-HT, NE, and DA) in synapses can be viewed as near-
immediate effects of SSRI on brain neurotransmitter systems.
In vivo brain microdialysis allows to measure basal extracellular
levels of these neurotransmitters giving an idea of neurochemi-
cal events occurring at nerve terminals in brain regions of awake,
freely moving rodents. In our laboratory, we extensively applied
this technique in genetic and pharmacological studies aimed
at investigating the relationship between neurotransmitters and
brain regions, or between neurochemical changes and animal
behaviors (see examples below). Among the main interests of
microdialysis application is the infusion of drugs through the
microdialysis probe (reverse dialysis) in conscious KO mice as well
as in WT mice used as controls in these pharmacological experi-
ments (e.g., intra-raphe perfusion of substance P in Guiard et al.,
2007; BDNF in Deltheil et al., 2009).

As already mentioned, most prescribed serotonergic antide-
pressants show limited efficacy and delayed onset of action, partly
due to the activation of somatodendritic 5-HT1A autoreceptors
by the excess extracellular 5-HT produced by SSRI in the raphe

nuclei. A group of scientists in Spain recently addressed this
problem using an original strategy. Bortolozzi et al. (2012)
administered a small-interfering RNA (siRNA) to suppress acutely
5-HT1A autoreceptor-mediated negative feedback mechanisms in
the mouse brain. They developed a conjugated siRNA (C-1A-
siRNA) by covalently binding siRNA targeting 5-HT1A receptor
mRNA with the SSRI sertraline in order to concentrate it in
serotonin axons, rich in SERT sites. The intracerebroventricular
(I.C.V.) infusion of C-1A-siRNA to mice resulted in its selec-
tive accumulation in serotonin neurons. This was associated with
antidepressant-like effects in the forced swim and tail suspension
tests, but did not affect anxiety-like behaviors in the elevated
plus-maze. In addition, C-1A-siRNA administration markedly
decreased 5-HT1A autoreceptor expression and suppressed 8-
OH-DPAT [7-(dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-
ol]-induced hypothermia (a pre-synaptic 5-HT1A receptor effect
in mice) without affecting post-synaptic 5-HT1A receptor expres-
sion in the hippocampus and prefrontal cortex. Moreover, I.C.V.
C-1A-siRNA infusion augmented the increase in cortical dialysate
5-HT levels induced by fluoxetine to the level measured in 5-HT1A

receptor KO mice. Hence, C-1A-siRNA represents a new approach
to treat mood disorders as monotherapy or in combination with
SSRI.

To learn whether or not the in vitro affinity of SSRIs toward
monoamine transporters can predict in vivo microdialysis data,
we studied whether a single administration of a range of doses
[1, 4, and 8 mg/kg, given intraperitoneally (i.p.)] of parox-
etine, citalopram, or venlafaxine may simultaneously increase
dialysate 5-HText and norepinephrine (NEext) by using in vivo
microdialysis in the frontal cortex of awake, freely moving mice
(David et al., 2003). We found that citalopram and paroxetine
have the highest potency to increase cortical 5-HText and NEext,
respectively. In addition, the rank of order of efficacy of these
antidepressant drugs to increase cortical 5-HText in vivo in mice
was as follows: venlafaxine > citalopram > paroxetine, while
the efficacy to increase cortical NEext in mice of paroxetine
and citalopram is similar, and greater than that of venlafaxine.
Thus, the highest doses of the very selective SSRI citalopram
and the very potent SSRI paroxetine were able to increase cor-
tical NEext. Surprisingly, the serotonin-norepinephrine reuptake
inhibitor (SNRI) venlafaxine increased cortical 5-HText to a
greater extent rather than NEext in the range of doses studied in
mice.

We recently confirmed these data with escitalopram, the S(+)-
enantiomer of citalopram. To analyze the mechanisms by which
SSRIs activate noradrenergic transmission in the brain, we com-
pared the effects of escitalopram on both 5-HText and NEext
in the frontal cortex of WT versus mutant mice lacking the 5-
HT transporter (SERT−/−; Nguyen et al., 2013). In particular,
the possibilities that escitalopram enhances NEext either by a
direct mechanism involving the inhibition of the low- or high-
affinity NE transporters or by an indirect mechanism promoted
by 5-HText elevation were explored. The FST was used to inves-
tigate whether enhancing cortical 5-HText and/or NEext affected
the antidepressant-like activity of escitalopram. As expected, a
single systemic administration of escitalopram increased cortical
5-HText and NEext in WT mice. However, escitalopram failed to
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increase cortical 5-HText in SERT−/− mice, whereas its neuro-
chemical effects on NEext persisted in these mutants. In WT mice,
these neurochemical changes induced by escitalopram were asso-
ciated with increased swimming parameter in the FST. Finally,
escitalopram, at relevant concentrations, failed to inhibit corti-
cal NE and 5-HT uptake mediated by low-affinity monoamine
transporters (i.e., organic cation transporters such as OCT1, 2,
or 3). These experiments suggest that escitalopram enhances,
although moderately, cortical NEext in vivo by a direct mecha-
nism involving the inhibition of the high-affinity NE transporter
(NET). Such in vivo effects of SSRIs could not be predicted by
measuring the in vitro affinity of SSRIs toward SERT and NET in
brain synaptosomes.

These results are not surprising. Indeed, experimental condi-
tions (rat versus mice; whole brain versus cortical membranes;
cell bodies versus nerve terminal regions; etc.) highly influence
the values of binding parameters of ligands to neurotransmitter
receptors or transporters measured in vitro (Bmax, KD, GTP-
gammaS binding, etc.). The potency and selectivity of SSRIs
as determined in vitro do not take into account noradrenergic
projections and others, which obviously interfere in vivo, but
not in vitro. Thus, function of monoamines transporters are
much more complex than previously thought. In vivo experiments
help to depict this complexity when it is possible to mea-
sure correlation between neurochemical parameters and behavior
paradigms.

The use of mutated mice
The mouse genome can be specifically manipulated to produce the
targeted deletion, replacement of genes, or down-/over-expression
of related proteins in the brain (Sotnikova and Gainetdinov, 2007).
This was first obtained in embryonic stem (ES) cells, but more
recently, temporal and spatial controls of gene expression were
possible in adult mice. In the field of anxiety and depression, pre-
clinical studies such as those described above, have been mostly
performed in healthy, “not depressed” animals. In the mid-1990s,
genetically manipulated mice became available. It complicated the
experimental protocol because it was necessary to include litter-
mates as WT control mice. Great hopes were placed in mutant
lines, some of them being considered as putative animal models of
anxiety or depression. Several lines of transgenic (Tg) mice (carry-
ing a human gene) or KO mice (i.e., homozygous mice lacking the
two copies of a gene coding for a receptor or transporter of neu-
rotransmitter or neuropeptide) were generated between 1994 and
1998. The first KO mice were generated by homologous recom-
bination in the laboratory of S. Tonegawa at MIT (Silva et al.,
1992).

The mouse is a model organism of choice in the field of neu-
rosciences because (i) numerous genes have a human equivalent,
(ii) many biological and biochemical functions of the mouse are
similar to those of humans, and (iii) the genome mouse is eas-
ily manipulated by homologous recombination. This technique
allowed the creation of animal-related patterns of human brain
pathologies. The genetic background is a fundamental parameter
for analyzing the phenotype of KO mice. Historically, the mutant
mice were established using ES line 129/Sv. However, creating new
lines of mutant mice on a genetic background C57BL/6 is now

preferred, although there are limits on the use of this strain in
some behavioral tests (see Gardier, 2009 for a review).

At that time, the procedure of ICM needed to be quickly
adapted to perform experiments in an animal model having a
smaller brain size than rats. Microdialysis experiments were first
performed in tyrosine hydroxylase Tg mice by Nakahara et al.
(1993). Then, it was applied to 5-HT1B receptor KO mice (Saudou
et al., 1994; Trillat et al., 1997), to DA transporter (DAT) KO mice
(Gainetdinov et al., 1997), and so on. Of course, at the end of
the experiments, the precise location of the microdialysis probe
must be macroscopically verified according to the stereotaxic coor-
dinates given by the mouse brain atlas (Paxinos and Franklin,
2001).

Regarding the pharmacological knowledge of antidepressants,
the choice of KO mice as experimental models of anxiety–
depression was remarkably appropriate because it is now well
recognized that major depressive disorders result from a combina-
tion of genetic and environmental factors. In addition, knowing
that anxiety and depression have a high co-morbidity (Gorman
and Coplan, 1996; Leonardo and Hen, 2006), it is critical for
basic research to develop animal models that present behavioral,
neurochemical, and brain morphological phenotypes reminiscent
of depression and anxiety. Some “serotonergic” KO mice display
important changes in their basal phenotype. For example, consti-
tutive 5-HT1A receptor KO mice were simultaneously described by
three different laboratories as an animal model of anxiety-related
disorder (Heisler et al., 1998; Parks et al., 1998; Ramboz et al.,
1998). They display decreased exploratory activity and increased
fear of aversive environments and exhibited a decreased immobil-
ity in the FST, an effect commonly associated with antidepressant
treatment. Brain microdialysis performed in 5-HT1A receptor
KO mice have proven to be a valuable technique to address key
questions regarding the mechanism of action of antidepressants.
One of the most interesting applications of microdialysis is to
allow the study of basal extracellular levels of neurotransmitters,
for example, in 5-HT1A receptor KO mice. While conventional
microdialysis does not allow reliable measurements of these basal
levels (see Conventional Intracerebral In Vivo Microdialysis) the
no net flux (or zero net flux) method of quantitative microdial-
ysis in mutants allows the direct and accurate determination of
basal extracellular levels of neurotransmitters (see Zero Net Flux
Method of Quantitative* Intracerebral Microdialysis) The DRN
is a brain region where 5-HText is known to regulate seroton-
ergic transmission through activation of 5-HT1A autoreceptors.
When microdialysis was performed in the DRN, it was found that
baseline DRN 5-HText did not differ between WT control and KO
mice. This result suggests a lack of tonic control of 5-HT1A autore-
ceptors on DR 5-HT release (Bortolozzi et al., 2004; Guilloux et al.,
2006).

Furthermore, microdialysis helped to decipher the brain
region-dependent effects of antidepressants. Both a saline injec-
tion and handling for 3 min increased DRN 5-HText in 5-HT1A

receptor KO mice, but not in control mice. Fluoxetine, a sero-
tonergic antidepressant, induced a dose-dependent increase in
DRN 5-HText in both genotypes, but this effect was markedly
more pronounced in 5-HT1A KO mice. These results suggest that
the increased responsiveness of dialysate 5-HText in the DRN of
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5-HT1A receptor KO mice at least in part explain the anxious phe-
notype of these mutants. Such information can help to define a
better treatment of anxiety-related disorders.

The inhibitory 5-HT1A receptor exists in two separate pop-
ulations with distinct effects on serotonergic signaling, i.e., an
autoreceptor that limits 5-HT release throughout the brain and
a heteroreceptor that mediates inhibitory responses to release
5-HT. Traditional pharmacologic and Tg strategies have tried
to separate the distinct roles of these two receptor populations.
Recently, Richardson-Jones et al. (2010) developed a new strategy
to manipulate pre-synaptic 5-HT1A autoreceptors in serotonergic
raphe neurons without affecting 5-HT1A heteroreceptors, gener-
ating mice with higher (1A-High) or lower (1A-Low) autoreceptor
levels. In this latter line, it was thus possible to examine the brain
5-HT system by partially turning off 5-HT1A autoreceptors at a
specific time point and to study correlations between changes in
5-HT transmission and antidepressant-like activity of SSRIs in
various behavioral tests. This strategy robustly affects raphe firing
rates, but has no effect on either basal extracellular 5-HT levels
as measured by in vivo microdialysis in the frontal cortex and
ventral hippocampus. Interestingly, following 8 days of fluoxetine
treatment, a difference in 5-HT levels was found in the hippocam-
pus, with higher levels in the 1A-Low mice. In addition, 1A-Low
mice displayed a larger increase in 5-HT in response to an acute
challenge of fluoxetine in both brain regions. Together with elec-
trophysiology data showing an increased spontaneous neuronal
activity in the dorsal raphe of 1A-Low mice under stressful condi-
tions, the microdialysis results were consistent with an increased
serotonergic tone in these animals in response to an SSRI. Com-
pared to 1A-Low mice, 1A-High mice show a blunted physiological
response to acute stress, increased behavioral despair, and no
behavioral response to antidepressant, thus modeling what we can
find in patients with the 5-HT1A risk allele. Indeed, human studies
implicate a polymorphism in the promoter of the 5-HT1A receptor
gene in increased susceptibility to depression and decreased treat-
ment response (Lemonde et al., 2003). These mice may thus, be
conceived as a human equivalent to SSRI response (1A-Low) and
resistance (1A-High; Blier, 2010). These results establish a causal
relationship between 5-HT1A autoreceptor levels and response to
antidepressants.

The same group of researchers used a recently developed
genetic mouse system to independently manipulate 5-HT1A

autoreceptor and heteroreceptor populations. They found that
5-HT1A autoreceptors affect anxiety-like behavior, while 5-HT1A

heteroreceptors affect responses to forced swim stress, with-
out effects on anxiety-like behavior (Richardson-Jones et al.,
2011). These results establish distinct roles for the two receptors’
populations, providing evidence that signaling through endoge-
nous 5-HT1A autoreceptors is necessary and sufficient for the
establishment of normal anxiety-like behavior.

Taken together, these data obtained in KO mice brought a lot
of information about the pathophysiology of psychiatric disorders
and their treatments.

Thus, in 2012, we have at our disposal a large number of genet-
ically engineered mice, some of them being interesting animal
models of anxiety and depression. These mice are very helpful to
discover the underlying pathological mechanisms that limit the

effects of current treatments of major depressive episodes and to
identify the nature of the molecular cascades leading to the instal-
lation of disorders such as anxiety and depression. In addition, KO
mice help to study the effects of acute and chronic treatment with
antidepressants.

Recent advances in experimental approaches using genetically
manipulated mice have already been summarized in the literature
(Sotnikova and Gainetdinov, 2007). Knowing the large number of
KO mice generated to date, it is not possible to detail the findings
of each putative model interesting in the anxiety and depression
field of research (SERT−/− mice, Bengel et al., 1998; NK1 recep-
tor KO mice, Froger et al., 2001; Guiard et al., 2004; β-arrestin 2
KO mice, Beaulieu et al., 2008). Therefore, the remainder of the
present chapter will only describe some examples, which explain
these statements.

ADVANTAGES AND LIMITATIONS OF USING
MICRODIALYSIS IN KO MICE
Depressive disorders result from a combination of genetic and
environmental factors. To date, several genes appear to have in
humans and animals, a greater influence than the other and
emerge from the literature. Among them, the presence of a poly-
morphism of either SERT (Bengel et al., 1998; Kuzelova et al.,
2010), 5-HT1A receptor (Lemonde et al., 2003), the tryptophan
hydroxylase type 2 (TPH-2; Invernizzi, 2007), or BDNF (Chen
et al., 2006) is associated with the occurrence of depression related
to stress, or to a response to behavioral tests predictive of the
antidepressant-like activity of a molecule (Porsolt et al., 1977;
Steru et al., 1985).

ADVANTAGES
In these KO mice, we can measure, for example, the paradigms
of stress to predict the antidepressant potential of a molecule and
the selectivity of behavioral responses in comparison with non-
mutated control animals: if these responses are diminished or
absent in KO mice deprived of a gene encoding a neurotrans-
mitter receptor, we may conclude that this receptor plays a major
part either in the antidepressant-like effect and/or of the molecule.
Regarding microdialysis, changes in dialysate levels of neurotrans-
mitters following acute (Malagié et al., 2001) or chronic (Gardier
et al., 2003) SSRI treatment can highlight the mechanism of action
of these drugs.

Thus, we combined KO mice and receptor antagonist strategies
to investigate the contribution of the 5-HT1B receptor subtype
in mediating the effects of an SSRI, paroxetine in mice (Malagié
et al., 2001). Using microdialysis, we found that a single systemic
administration of paroxetine (1 or 5 mg/kg by the i.p. route)
increased 5-HText in the ventral hippocampus and frontal cortex
of WT control and mutant mice. However, in the ventral hip-
pocampus, the SSRI induced a larger increase in dialysate 5-HT
levels in KO 5-HT1B mice than in control mice. In addition, either
the absence of the 5-HT1B receptor (in KO 5-HT1B mice) or its
pharmacological blockade with the mixed 5-HT1B/1D receptor
antagonist, GR 127935 (in WT mice) potentiated the effect of a
single administration of paroxetine on extracellular 5-HT levels
in the ventral hippocampus. Thus, these data underline several
points:
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(a) complementary results were obtained by combining KO mice
and receptor antagonist strategies.

(b) there were already in vitro studies showing the role of ter-
minal 5-HT1B autoreceptors in vivo to control 5-HT release
and reuptake (in slices; Pineyro et al., 1995). Our microdial-
ysis data in KO 5-HT1B mice brought additional information
by suggesting that 5-HT1B autoreceptors limit the effects of
SSRIs on dialysate 5-HT levels at serotonergic nerve terminals
and revealed the importance of a particular brain region, the
ventral hippocampus. It is interesting to notice that recently,
many experimental arguments have accumulated to suggest
that antidepressants exert their behavioral activity in adult
rodents, at least in part, by inducing of cellular and molecular
changes in the adult hippocampus (David et al., 2010).

By using microdialysis, we can also study changes in dialysate
5-HT levels in the DRN (see Introduction). Data described above
in 5-HT1A receptor KO mice illustrated this important con-
tribution. This experiment can give further information when
combined with measurements of the electrical activity of 5-HT
neurons. Again, the comparison of results between a KO mice
model and WT mice is very informative.

Neurochemical changes as measured by using microdialysis can
have functional consequences since they correlated with behav-
ioral data obtained, for example, in the FST. Three examples can
illustrate these benefits.

Example 1, in WT mice: intra-hippocampal BDNF infusion
can potentiate paroxetine-induced increase in 5-HText in the
hippocampus (Figure 2A). The antidepressant-like activity of
paroxetine as measured on swimming behavior was potentiated
by BDNF (Figure 2B). These data suggest an interesting synergy

between BDNF and SSRI on 5-HT neurotransmission; thus, such
a co-administration improved the antidepressant-like activity of
the SSRI (Deltheil et al., 2008, 2009).

Example 2, in 5-HT1A receptor KO mice: as described in Guil-
loux et al. (2006), paroxetine (1 and 4 mg/kg) dose-dependently
increased cortical 5-HText in both WT and KO genotypes, but the
effects were greater in mutants (Figure 3A). Paroxetine admin-
istration also dose-dependently decreased the immobility time
in both strains of mice, but the response was much greater in
5HT1A

−/− mice (Figure 3B). Overall these results suggest that the
genetic inactivation of 5-HT1A receptors, abolished the inhibitory
feedback control exerted by somatodendritic 5-HT1A autorecep-
tors, thus enhancing the response of mutant mice to stressful
conditions such as the FST. Thus, following SSRI administration,
an indirect activation of pre-synaptic 5-HT1A receptors by endoge-
nous 5-HT may limit its antidepressant-like effects in the FST in
WT mice.

Example 3, in SERT−/− mice: another interest of brain micro-
dialysis is to allow the measurement of several neurotransmitters
in the same sample. Thus, we recently examined the effects of
the S(+)-enantiomer of citalopram, escitalopram (ESC) on both
[5-HT]ext and extracellular levels of [NE]ext in the frontal cortex
(FCx) of freely moving WT and mutant mice lacking SERT−/− by
using ICM (Nguyen et al., 2013). In WT mice, a single systemic
administration of escitalopram produced a significant increase
in cortical [5-HT]ext and [NE]ext (Figure 4). As expected, esc-
italopram failed to increase cortical [5-HT]ext in SERT−/− mice,
whereas its neurochemical effects on [NE]ext persisted in these
mutants. In addition, in WT mice submitted to the FST, escitalo-
pram increased swimming parameter without affecting climbing
behavior (Nguyen et al., 2013).

FIGURE 2 | (A) Microdialysis data showing that an acute intra-hippocampal
injection of BDNF (100 ng) potentiated the effects of the systemic
administration of an SSRI, paroxetine (4 mg/kg; i.p.) on dialysate 5-HText
in the hippocampus of freely moving wild-type mice. Results are expressed
as AUC values (means ± SEM) calculated for the amount of 5-HText
collected during the 0–120 min post-treatment period. (B) Antidepressant-like
activity of paroxetine as measured on swimming behavior in the forced
swim test (FST) was potentiated by BDNF. Thus, neurochemical changes

correlated with behavioral data in this protocol, suggesting that a
BDNF + SSRI combination may offer new alternatives to treat mood
disorders (from Deltheil et al., 2009). *p < 0.05, ***p < 0.001 when
compared to the vehicle-treated group; §p < 0.05 when compared to the
paroxetine/vehicle-treated group and paroxetine/BDNF-treated group;
@@p < 0.01 when compared to the BDNF/vehicle-treated group and
BDNF/paroxetine-treated group (two-way ANOVA, Fisher’s PLSD post hoc
test).
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FIGURE 3 | (A) Microdialysis data showing the effects of paroxetine on
cortical 5-HText in 5-HT1A

+/+ wild-type and 5-HT1A
−/− mice. Results

are expressed as AUC values (means ± SEM) calculated for the amount
of 5-HText collected during the 0–60 min post-treatment period.
(B) Antidepressant-like effects of paroxetine on the immobility time in the
mouse forced swimming test (FST) in 5-HT1A

+/+ and 5-HT1A
−/− mice. FST

and microdialysis experiments have been performed separately. Microdialysis
and behavioral experiments were carried out by using the same experimental
protocol. The duration time of the FST was 6 min, performed at the maximum

effect of paroxetine on dialysate 5-HText, i.e., 30 min after its administration
(from Guilloux et al., 2006). (A) *p < 0.05; ***p < 0.001 when compared to
the appropriate vehicle-treated group; §p < 0.05; §§p < 0.01 when compared
to 5-HT1A

+/+ control mice; ψp < 0.05 when compared to the paroxetine
1 mg/kg-treated group (two-way ANOVA followed by a PLSD post hoc t -test).
(B) *p < 0.05; ***p < 0.001 when compared to the appropriate control
group; §p < 0.05; §§p < 0.01; §§§p < 0.001 when compared to 5-HT1A

+/+
mice. Statistical analysis was carried out using a two-way ANOVA followed by
Fisher’s PLSD post hoc t -test.

FIGURE 4 | Effect of systemic administration of escitalopram (ESC) on

extracellular levels of 5-HT and noradrenaline (NE) in the frontal cortex

in WT (SERT+/+) and KO (SERT–/–) mice. AUC values (means ± SEM)
were calculated for the amount of 5-HT and NE outflows collected during
the 0–120 min post-treatment period (from Nguyen et al., 2013).
***p < 0.001 significantly different between controls and
escitalopram-treated mice. &&&p < 0.001 significantly different from
SERT−/− mice. NS, not statistically significant.

LIMITATIONS
There are also limits regarding the use of constitutive KO mice.
Compensatory events may occur when mice are generated by
homologous recombination (Gardier,2009). For example, 5-HT1B

receptor KO mice exhibit a higher efficacy of 8-OH-DPAT-induced
hypothermia suggesting that an adaptive thermoregulatory pro-
cess involving the functional activity of somatodendritic 5-HT1A

receptors is altered in 5-HT1B receptor KO mice (Gardier et al.,
2001). By contrast, Bouwknecht et al. (2002) found no indications
for adaptive changes in pre-synaptic 5-HT1A receptor function
in 5-HT1B receptor KO mice as measured telemetrically on body
temperature and heart rate responses.

Indeed, to study the direct consequences of alterations in the
targeted gene, constitutive KO mice are very valuable tools because
of compensatory processes that have taken place in reaction to
life-long changes in gene expression (Groenink et al., 2003). The
constitutive deletion of the NET, for example, induced an up-
regulation of two other monoamine transporters DAT and SERT
(Solich et al., 2011). An increase in the binding of [3H]paroxetine
to the SERT and [3H]GBR-12935 to the DAT was observed in var-
ious brain regions of NET-KO mice, without alterations of mRNA
encoding these transporters, as measured by in situ hybridiza-
tion. This important finding obviously impacts the interpretation
of previous data. Similarly, in SERT−/− mice, Zhou et al. (2002)
reported that 5-HT was found in DA neurons of homozygous
(−/−), but not of heterozygous (+/−) mutant mice. DA neu-
rons containing 5-HT have been observed in the substantia nigra
and ventral tegmental area (VTA), but not in other brain areas
of SERT−/− mice. To verify the role of the DA transporter in
such ectopic uptake, SERT−/− mice were treated with DA uptake
blocker GBR-12935: ectopic 5-HT in DA neurons was disappeared.
These data indicate that 5-HT can be taken into DA neurons in
rodents when SERT is not functionally adequate to remove extra-
cellular 5-HT levels, and (c) the DA transporter is responsible
for the 5-HT uptake into DA neurons. Thus, cross neuronal type
uptake exists and serves as a compensatory backup when a specific
transporter is dysfunctional. Thus, when using mice lacking an
important protein from the earliest period of their existence, one
has to be aware that compensatory alterations may occur in the
brain as well as at the periphery. This point must be considered
when it comes to interpretation of the experimental results.

Table 1 summarizes the main advantages as well as some critical
points of the intracerebral microdialysis technique.

CONCLUSION
These past 25 years, different strains of KO mice became extremely
valuable tools in Neuropharmacology. They help to identify in
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Table 1 | Summary of the main advantages and some critical points of the intracerebral microdialysis technique in freely moving mice.

Main advantages of using microdialysis in WT and KO mice* Some limitations of using microdialysis in WT and KO mice

– In vivo pre-synaptic test to study consequences of autoreceptor of

transporter blockade on release and reuptake of neurotransmitters.

– Direct access of exogenous molecules into the brain tissue, with

minimal damage: an ideal approach to confirm brain effects observed

following a systemic administration. Even more interesting when the

drug does not cross easily the blood brain barrier [such as molecules

with a high molecular weight: neurotrophic factors, e.g., BDNF

(Benmansour et al., 2008; Deltheil et al., 2009); substance P (Guiard

et al., 2007)]

– *To validate the KO animal model:

– *Possibility to implant two probes in the same mouse: a probe at the

vicinity of cell bodies (e.g., raphe nuclei when studying the neuronal

5-HT system), and a probe at serotonergic nerve terminals

(hippocampus, frontal cortex), thus evaluating a neural circuit

– *Possibility of measuring several neurotransmitters in the same

dialysate sample of WT and KO mice (Nguyen et al., 2013).

– *The same of WT or KO mouse can be studied for two consecutive

days, e.g., on day 1 following administration of the vehicle in the

control group, and on day 2 following the novel pharmacological

treatment

– *Chronic microdialysis: when using a guide cannula, it is possible to

collect samples once a week for several weeks in the same WT or

KO mouse (Popa et al., 2010)

– When applied in awake, freely moving animals, functional

consequences of SSRI-induced increases in extracellular

neurotransmitter levels can be studied, e.g., correlation between

changes in brain 5-HText and behavioral data (the swimming time in

the FST, for example (Deltheil et al., 2009; Nguyen et al., 2013)

– Compared to electrophysiology, technique of reference:

◦ Large outer diameter of microdialysis probe (0.2 mm)

◦ During microdialysis experiments, the samples are collected every 15–

20 min (in the hippocampus and frontal cortex), every 10 min in raphe

nuclei. This is due to the slow flow rate of the perfusion medium

(≈1 μl/min), which leads to a poor temporal resolution compared to

electrophysiology (400 ms)

– Time consuming:

◦ One experimenter, two mice, 1 day; 10–12 animals per group; delayed

results (HPLC). Possible improvement with more sensitive analytical

methods such as capillary electrophoresis coupled to a laser-induced

fluorescence detection (Parrot et al., 2007; Denoroy et al., 2008), but it

remains a very complex technique.

◦ 3–6 months to complete an experiment, i.e., to evaluate the effects of

several doses of an agonist-antagonist compared to mice treated with

the vehicle or in WT controls. Even longer when using Tg or KO mice

(breeding, genotyping, selection of age, sex, and so on. . .).

– Delicate animal handling, to avoid effects of stress, thus requiring an expe-

rienced experimenter to perform in vivo microdialysis in freely moving

mice.

– Absolute need to check the exact location of the probe, macroscopically

on brain coronal sections at the end of the experiment. Especially in mice

(Bert et al., 2004)

– Poor prognostic value of basal extracellular concentrations of 5-HT, DA, and

NA.

– Extracellular concentrations of metabolites in dialysates (e.g., 5-HIAA, the

main metabolite of 5-HT):

◦ Under basal conditions: it reflects intracellular metabolism of 5-HT

(MAO A activity), and not its release or utilization (Wolf et al., 1985;

Bel and Artigas, 1996)

◦ Following pharmacological treatment: it has little interest because

dialysate 5-HIAA levels decrease, independently of the dose of the indi-

rect 5-HT receptor agonist administered.These changes are not related

to the neuronal activity (Malagié et al., 1995; Rocher et al., 1996).

*Some advantages of this technique are very interesting in KO mice knowing the difficulties to breed most of them.

animals susceptibility genes and proteins involved in the patholog-
ical processes leading to anxiety and depression. These biological
markers could then be helpful to pose the diagnosis of the dis-
ease in human. They also give information on their functional
role, thus offering opportunities to develop new drug treatments.
When performed in KO mice, and together with other techniques,
brain microdialysis was very useful to define central monoaminer-
gic dysfunctions having behavioral consequences similar to those
associated with endogenous depression in humans. Some KO mice
with mutations of serotonin targets (e.g., the 5-HT transporter
SERT, 5-HT1B, 5-HT1A, and 5-HT4 receptors) display changes in

phenotypes similar to those induced by chronic treatment with
antidepressants in WT control mice.

Chronic antidepressant treatment may regulate the expres-
sion of neurotrophic factors such as BDNF and stimulate the
process of adult neurogenesis in the dentate gyrus of the hip-
pocampus in rats (Malberg et al., 2000) and adult mice (Santarelli
et al., 2003; David et al., 2009). Changes in adult neurogene-
sis are only seen after chronic, but not acute, antidepressant
treatment. Microdialysis studies in heterozygous mice for BDNF
(Szapacs et al., 2004; Deltheil et al., 2008, 2009; Guiard et al.,
2008) contributed to this knowledge by exploring the relationship
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between the hippocampal 5-HT system (i.e., the function of its
transporter, one of the main targets of antidepressants) and brain
BDNF levels.

In the future, our efforts to understand the pathophysiology of
mood disorders, especially anxiety/depression, will focus on the
antidepressant responses, especially in non-stressed and stressed
rodents. Microdialysis technique in young or adult KO mice
will continue to decipher region-dependent relationships between
brain neurotransmitters and circuits involved in the mechanism
of action of an antidepressant drugs’ polytherapy, soon available
on the market. Furthermore, original strategies are now avail-
able to rescue the expression of a particular receptor subtype in
a tissue-specific and temporally controlled manner in mice. For
example, it is well known that agonists of the 5-HT1A recep-
tor such as buspirone have anxiolytic properties, and KO mice
lacking this receptor show increased anxiety-like behavior (as
indicated above). However, the relevant brain regions involved
in anxious phenotype have not been delineated. Using such a
tissue-specific, conditional rescue strategy for the 5-HT1A recep-
tor, Gross et al. (2002) engineered mice in which the expression
of the 5-HT1A receptor gene was under the control of the antibi-
otic doxycycline. The gene of interest was switched off when the
mice were fed with the antibiotic. They used autoradiography
to demonstrate that high levels of post-synaptic 5-HT1A recep-
tor expression in the hippocampus and cortex of the rescue mice,
but the pre-synaptic 5-HT1A autoreceptor, was undetectable in
the raphe nuclei. By using mice in which the 5-HT1A recep-
tor can be knocked out at will, they show that the absence of
the receptor in newborns lead to anxiety-like behavior, whereas

its knock-out during adult life has no effect. In addition, they
found that postnatal developmental processes help to establish
adult anxiety-like behavior. Generating such a rescue mice is a
long-lasting process, but each animal can be used as its own
control.

Another strategy can be used to rescue a gene of interest, in
which the KO mice line previously generated was used as the con-
trol group. A gene of interest is re-expressed into the midbrain
of KO mice by stereotaxically injecting a lentiviral vector carrying
this gene coding for a receptor to test for the selectivity of behav-
ioral effects. This strategy was recently applied to study the role
of beta2-subunit of the nicotinic acetylcholine receptor (nAChR;
Maskos et al., 2005) in mediating the reinforcement properties of
nicotine. In this example, microdialysis experiments were per-
formed to confirm the rescue of nicotine effects in the vectorized
line of mice compared to WT and KO lines. Regarding the sero-
tonin field of research, global disruption of 5-HT2A receptor
signaling in mice reduces inhibition in conflict anxiety paradigms
without affecting depression-related behaviors. Selective rescue of
5-HT2A receptor in the cortex normalized conflict anxiety behav-
iors (Weisstaub et al., 2006). These findings indicate a specific role
for cortical 5-HT2A receptors in the modulation of anxiety. These
techniques allow greater precision and flexibility to generate KO
rodents for understanding neurotransmitter function. No doubt
that such novel and powerful tools, together with techniques of
knock-in or SiRNA recently applied to the field of 5-HT recep-
tors, will continue to give unexpected information on molecular
and cellular mechanisms involved in mood disorders and their
treatments.
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Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled
by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is
implicated in the etiology of disorders of emotion regulation, such as anxiety disorders
and depression, as well as in the mechanism of antidepressant action. Here, we
investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two
genetically modified mouse models lacking critical mediators of serotonergic transmission:
5-HT transporter knockout (Sert−/−) and tryptophan hydroxylase-2 knockout (Tph2−/−)
mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording
in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-
n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A
receptors in Tph2−/− mice and Sert−/− mice, respectively. While 5-HT neurons from
Tph2−/− mice did not display autoinhibition in response to L-tryptophan, autoinhibition
of these neurons was unaltered in Sert−/− mice despite marked desensitization of their
5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by
application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2−/− and Sert−/−
mice decreased their firing rates at significantly lower concentrations of 5-HTP compared
to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view,
sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT
neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an
adaptive mechanism to keep autoinhibition functioning in response to extremely altered
levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic
signaling.

Keywords: serotonin transporter, tryptophan hydroxylase-2, knockout, dorsal raphe nucleus, autoinhibition,

5-HT1A receptor

INTRODUCTION
The brain serotonin (5-HT) system has been implicated in emo-
tion regulation and related psychopathological states, including
anxiety, depression, impulsivity, and aggression (reviewed in
Lesch et al., 2012). The 5-HT system originates from specified
neurons located in distinct nuclei of the brainstem raphe com-
plex. Among them, the dorsal raphe nucleus (DRN) contains the
majority of 5-HT neurons and sends projections to various tar-
gets in the forebrain. 5-HT neurons in the DRN are known to
exhibit spontaneous regular firing activities (Trulson and Jacobs,
1979; Vandermaelen and Aghajanian, 1983). The firing rate of 5-
HT neurons is a determinant of 5-HT concentration and thus

Abbreviations: DRN, dorsal raphe nucleus; 5-HT, serotonin; 5-HTP, 5-hydroxy-
L-tryptophan; R(+)-8-OH-DPAT, R(+)-8-hydroxy-2-(di-n-propylamino)tetralin;
Sert, serotonin transporter; Tph2, tryptophan hydroxylase-2; Trp, L-tryptophan.

function in terminal regions, together with local mechanisms
(Jacobs and Azmitia, 1992). In waking states, firing of 5-HT
neurons is facilitated by noradrenergic input (Levine and Jacobs,
1992). Activity of 5-HT neurons is, in turn, limited by home-
ostatic negative feedback control exerted by extracellular 5-HT
via somatodendritic inhibitory 5-HT1A autoreceptors (Audero
et al., 2008 and references therein). The role of 5-HT1A recep-
tors in suppression/regulation of 5-HT neuron firing activity is
considered to be relevant to the pathophysiology of disorders of
emotion regulation (Pineyro and Blier, 1999; Sharp et al., 2007).
The importance of 5-HT1A receptor function is further sup-
ported by the presumed mechanism of selective 5-HT reuptake
inhibitor (SSRI) antidepressant action (Artigas et al.,1996; Pineyro
and Blier, 1999). After acute administration of SSRI, extracellu-
lar 5-HT concentrations transiently increase and activate 5-HT1A

autoreceptors, inhibiting firing of 5-HT neurons. One criterion
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of antidepressants’ therapeutic effects is desensitization of these
5-HT1A receptors, leading to a net increase of 5-HT levels. In
this context, dysfunction of autoinhibitory 5-HT1A receptors has
been proposed as a potential factor contributing to the pathogen-
esis of emotional disorders. However, studies on 5-HT1A receptor
expression in the raphe nuclei of patients with depression mea-
sured in vivo using positron emission tomography (PET) or in
post-mortem brains have yielded contradictory findings: some
investigators reported decreased expression (Drevets et al., 1999;
Sargent et al., 2000; Arango et al., 2001; Meltzer et al., 2004), while
others found enhanced expression (Stockmeier et al., 1998) or no
difference compared to controls (Parsey et al., 2006). Moreover,
PET imaging data revealed reduced 5-HT1A binding in several
brain regions including the raphe complex in panic disorder
patients either with or without comorbid depression (Neumeis-
ter et al., 2004). To date, most studies concentrated on associations
between expression levels of 5-HT1A receptors with depressive dis-
orders and there has been no direct evidence demonstrating how
altered 5-HT1A receptor availability translates into the extent of
5-HT neuron autoinhibition. The discrepancies among reports
describing a relationship between 5-HT1A receptor expression
and depression indicate a need for better understanding of the
precise mechanisms linking autoinhibition to 5-HT1A receptor
function.

Among various mediators of the brain 5-HT signaling, the
5-HT transporter (SERT, 5-HTT, SLC6A4) plays a central role
because (i) it mediates the re-uptake of 5-HT from the extracellu-
lar space/synapse and thus terminates the 5-HT signaling and (ii) it
is the target of numerous antidepressant drugs which inhibit its
action. Carriers of the short variant (s-allele) of the transcriptional
control region of the gene encoding SERT (5-HTT gene-linked
polymorphic region, 5-HTTLPR), which leads to lower expression
and thus a lower amount of SERT protein, are known to convey
increased risk for emotional disorders in interaction with envi-
ronmental factors (reviewed in Canli and Lesch, 2007). On the
other hand, tryptophan hydroxylase (TPH) is the rate-limiting
enzyme of 5-HT synthesis by converting the essential amino acid
L-tryptophan (Trp) into 5-hydroxy-L-tryptophan (5-HTP). 5-
HTP is then transformed into 5-HT by aromatic L-amino acid
decarboxylase (AADC; Carlsson et al., 1972). While the first iso-
form TPH1 produces 5-HT in peripheral tissues and the pineal
gland, the recently discovered TPH2 isoform is responsible for 5-
HT synthesis in the brain (Gutknecht et al., 2009). Variation of the
gene coding for TPH2 has been associated with personality traits
related to emotional regulation (Gutknecht et al., 2007). More-
over, several polymorphisms in TPH2, which had previously been
linked to mood disorders, were shown to lead to reduced expres-
sion of TPH2 (reviewed in Jacobsen et al., 2012a). Contribution
of 5-HT to the regulation of emotion has been further verified
by studies on mice with targeted inactivation of either Sert or
Tph2. Indeed, Sert knockout (−/−) mice have been shown to dis-
play anxiety- and depression-like behaviors (reviewed in Murphy
and Lesch, 2008). Tph2−/− mice have also been reported to have
altered behaviors such as increased conditioned fear responses,
aggression, depression-like behaviors, and impairment of mater-
nal care (Savelieva et al., 2008; Alenina et al., 2009; Mosienko et al.,
2012; for review, see Lesch et al., 2012).

Here, we investigated firing activity of DRN 5-HT neurons
in brain slices obtained from Sert−/− mice and Tph2−/− mice
using loose-seal cell-attached recording configuration. Compared
to wildtype (wt) controls, Sert−/− mice were shown to have
∼6- to 10-fold elevated extracellular 5-HT concentrations at
baseline in several brain regions including the striatum and the
frontal cortex, while heterozygous Sert+/− mice were shown
to have milder increase, e.g., ∼3-fold in the striatum (Fabre
et al., 2000; Mathews et al., 2004; Shen et al., 2004). In contrast,
Tph2−/− mice were reported to display an almost complete
depletion of brain 5-HT, while Tph2+/− mice showed lower
reduction in brain 5-HT, reaching 20–25% in the rostral raphe
(Gutknecht et al., 2012). Both knockout mice therefore provide
useful models to investigate potential modulation of autoinhibi-
tion of 5-HT neuron firing as a function of varying degrees of
5-HT availability in the cellular environment. Moreover, since
both mouse lines have extensively been investigated as models for
emotional disorders, investigating 5-HT neuron autoinhibitory
functions in these mice will facilitate detection of potential
alterations in autoinhibition related to disorders of emotion
regulation.

In order to mimic in vivo 5-HT synthesis in in vitro experimen-
tal conditions, we applied 5-HT precursors through superfusion of
brain slices under recording. Prior to this, we assessed the function
of autoinhibitory 5-HT1A receptors by applying their direct ago-
nist. Feasibility of assessing autoinhibition in in vitro conditions
had been established in previous studies (Liu et al., 2005; Mlinar
et al., 2005; Evans et al., 2008; Gutknecht et al., 2012).

MATERIALS AND METHODS
ANIMALS
Animal handling followed the European Community guidelines
for animal care (DL 116/92, application of the European Com-
munities Council Directive 86/609/EEC) and approved by the
local committees. The generation and genotyping procedure
of Tph2−/− and Sert−/− animals were described previously
(Bengel et al., 1998; Gutknecht et al., 2008). Animals were housed
under a 12 h light/dark cycle (lights on: 08:00–20:00) at ambi-
ent temperature of 22 ± 1◦C and a relative humidity of 40–50%.
Data from Tph2 wt and Sert wt mice were treated together, since
both mouse lines were backcrossed more than 10 generations
into a C57BL/6J background and thus considered to have the
same genetic background. Data from male and female mice were
pooled.

DRUGS
SR-95531 (gabazine; GABAA receptor antagonist), D-AP5
(NMDA glutamate receptor antagonist), DNQX (AMPA/kainate
receptor antagonist) were purchased from Ascent Scientific Ltd
(Bristol, UK). N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-
N-2-pyridinylcyclohexanecarboxamide maleate (WAY-100635
maleate; selective 5-HT1A receptor antagonist), CGP-55845
hydrochloride (selective GABAB receptor antagonist), and R(+)-
8-hydroxy-2-(di-n-propylamino)tetralin (R(+)-8-OH-DPAT) were
purchased from Tocris Bioscience (Bristol, UK). Strychnine
(glycine receptor antagonist), Trp, 5-HTP, and L-phenylephrine
were obtained from Sigma-Aldrich S.r.l. (Milan, Italy).
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ELECTROPHYSIOLOGICAL RECORDING
Methods used follow those reported previously (Gutknecht et al.,
2012). Mice (28–80 days old) were anesthetized with isoflu-
rane and decapitated. The brain was immediately removed,
dissected in ice-cold gassed (95% O2,5% CO2) artificial cere-
brospinal fluid (ACSF) containing (in mM): 124 NaCl, 2.75
KCl, 1.25 NaH2PO4, 1.3 MgCl2, 2 CaCl2, 26 NaHCO3,
11 D-glucose (pH 7.4), and the brainstem was sliced coronally
into 200 μm thick slices with a vibratome (DSK-1000; Dosaka
Co. Ltd, Kyoto, Japan) and transferred to a multi-well incubation
chamber filled with bubbled ACSF at room temperature. After
at least 90 min of recovery, the slices were individually trans-
ferred into the recording chamber and superfused continuously
with gassed, warmed ACSF (34–35◦C) at a rate of 2 ml min−1.
Superfusing ACSF was supplemented with 10 μM phenylephrine
to facilitate firing (Vandermaelen and Aghajanian, 1983) and with
a mixture of neurotransmitter blockers for glutamate, glycine,
and GABA receptors (in μM: 10 DNQX; 20 D-AP5; 10 strych-
nine; 1 CGP-55845; 10 SR-95531) to functionally isolate the
recorded neuron from synaptic input. Neurons were visualized
by infrared differential interference contrast video microscopy
with a Newicon C2400-07 camera (Hamamatsu, Hamamatsu City,
Japan) mounted to an Axioskop microscope (Zeiss, Göttingen,
Germany). Recordings were made using an EPC-10 amplifier
(HEKA Elektronik, Lambrecht, Germany). Patch pipettes were
prepared from thick-walled borosilicate glass on a P-97 Brown-
Flaming electrode puller (Sutter Instruments, Novato, CA, USA)
and had resistance of 3–6 M� when filled with solution con-
taining (in mM): 125 NaCl, 10 HEPES, 2.75 KCl, 2 CaCl2, 1.3
MgCl2 (pH 7.4 with NaOH). Loose-seal cell-attached record-
ings (5–20 M� seal resistance) were acquired continuously in the
voltage-clamp mode. Signals were filtered at 3 kHz and digitized
at 10 kHz. Pipette potential was maintained at 0 mV. Record-
ings were aborted if firing rate was sensitive to changes in pipette
holding potential or if shapes of action current changed. Data
were analyzed using Clampfit 9.2 (Molecular Devices, Sunnyvale,
CA, USA).

Neurons with likely serotonergic specification were first
targeted according to morphological criteria (Brown et al., 2008):
5-HT neurons are clustered along the midline of the DRN and they
have a larger soma (∼20–25 μm long-axis diameter) than non-
serotonergic neurons (∼10–15 μm). Once loose-seal cell-attached
recording configuration was established, 5-HT neurons were iden-
tified according to electrophysiological criteria (Vandermaelen and
Aghajanian, 1983; Allers and Sharp, 2003). Neurons were consid-
ered serotonergic if, during at least 5 min-long baseline period at
the beginning of the recording displayed slow and steady firing rate
(<5 Hz); asymmetric action current with long upstroke to down-
stroke interval (proportional to action potential half-height width,
>0.85 ms). According to these criteria, 250 out of 277 recorded
neurons were identified as being serotonergic. Pharmacological
experiments were done on 176 presumed serotonergic neurons,
whose identity was pharmacologically confirmed based on 5-HT1A

receptor-mediated suppression of their firing rate. For all groups
of neurons used in pharmacological experiments (Figures 2–4),
the basal firing rate was matched and proved to be not different
after post hoc statistical analysis (Kruskal–Wallis test, p > 0.7).

Since experiments to assess autoinhibition depend on endogenous
5-HT, recordings were made from neurons located at least 50 μm
below the slice surface (Mlinar et al., 2005). A single experiment
was done in each slice.

For creating concentration–response curves for R(+)-8-OH-
DPAT and 5-HTP application, drugs were applied for 10 min and
mean firing rates were calculated from the last 1-min segment
of each experimental epoch [e.g., baseline, R(+)-8-OH-DPAT
0.1 nM, 0.3 nM, etc.]. Trp was applied for 15 min and mean firing
rates were obtained from the last 3-min segment of baseline and
Trp application.

STATISTICAL ANALYSIS
All the statistical tests were performed by GraphPad Prism version
5.04 (GraphPad Software, San Diego, CA, USA). First, normality
of data distribution was tested by D’Agostino–Pearson omnibus
normality test. When the data were normally distributed, genotype
effects were tested by one-way ANOVA [expressed as F(df1,df2) val-
ues] followed by Tukey’s post hoc test. If not, data were analyzed
by Kruskal–Wallis test [expressed as H(df ) values] with Dunn’s
post hoc test. For testing effects of Trp in comparison to respective
baseline, data (% change in firing rates) were analyzed by Wilcoxon
signed rank test (two-tailed). In all cases, p< 0.05 was considered
statistically significant.

RESULTS
COMPARISON OF BASAL FIRING RATES ACROSS GENOTYPES
In the absence of precursor supplementation (Trp or 5-HTP),
and in the presence of receptor blockers for glutamate, GABA,
and glycine receptors, the basal firing of 5-HT neurons in slices
is relieved from the autoinhibitory control of endogenous 5-HT
(Mlinar et al., 2005) and local action of major neurotransmitters.
In these conditions of pharmacological isolation, the basal firing
activity of 5-HT neurons reflects their intrinsic pacemaker activ-
ity, a characteristic that is difficult to study in vivo, where the
firing activity is under control of both autoinhibition and synaptic
input.

We compared the basal firing rates recorded before 5-HT
precursor or 5-HT1A receptor agonist application, across geno-
types (Figure 1). Overall, 5-HT neurons showed typical regular
pacemaker activity and firing rates similar to wt controls [in
Hz: Tph2−/−, 1.61 ± 0.82 (n = 54); Tph2+/−, 1.90 ± 0.66
(n = 45); wt, 1.97 ± 0.69 (n = 54); Sert+/−, 1.85 ± 0.74
(n = 47); Sert−/−, 2.12 ± 0.75 (n = 50); mean ± SD; n = num-
ber of recorded neurons], except for Tph2−/− in which the
firing rate was slightly, but significantly slower than in wt con-
trols (p < 0.05, Kruskal–Wallis test followed by Dunn’s multiple
comparison test). These data show that basic electrophysiological
properties underlying the typical pacemaker activity of 5-HT neu-
rons are maintained regardless of genetic inactivation of Tph2 or
Sert.

COMPARISON OF 5-HT1A RECEPTOR SENSITIVITY ACROSS GENOTYPES
Since 5-HT neuron autoinhibition is mediated by 5-HT1A recep-
tors, we investigated the functional response of 5-HT neurons to
the 5-HT1A receptor agonist R(+)-8-OH-DPAT in different geno-
types. Figure 2 illustrates typical experiments in which increasing

www.frontiersin.org August 2013 | Volume 4 | Article 97 | 22

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


“fphar-04-00097” — 2013/8/1 — 15:40 — page 4 — #4

Araragi et al. Autoinhibition in 5-HT system-deficient mice

FIGURE 1 | Comparison of 5-HT neuron basal firing rates across

genotypes. Data are shown as mean ± SD (number of cells shown in
parentheses). Analysis of data using Kruskal–Wallis test revealed
statistically significant differences among groups [H(4) = 16.67, p = 0.002].
Dunn’s multiple comparison post hoc test resulted in being significant for
Sert−/− vs. Tph2−/− (**p < 0.01) and wt vs. Tph2−/− (*p < 0.05).

concentrations of R(+)-8-OH-DPAT were applied in slices from
wt controls (Figures 2A,B), Tph2−/− (Figures 2C,D), and
Sert−/− mice (Figures 2E,F). Application of R(+)-8-OH-DPAT
reduced the firing rate of 5-HT neurons in a concentration-
dependent manner, but with different effectiveness across geno-
types, as shown by the comparison of log EC50 values obtained
for each single neuron tested (log EC50 mean ± SD): Tph2−/−,
−8.82 ± 0.29 (n = 16); Tph2+/−, −8.52 ± 0.19 (n = 11); wt,
−8.52 ± 0.25 (n = 12); Sert+/−, −8.22 ± 0.27 (n = 11); Sert−/−,
−7.17 ± 0.42 (n = 8; Figure 2G). Differences across genotypes
were statistically significant [F(4,53) = 48.38, p < 0.0001, one-way
ANOVA]. Compared to wt controls, the response to application of
R(+)-8-OH-DPAT resulted in slightly higher effectiveness of the
agonist in Tph2−/− mice (p < 0.05) and very weak effectiveness
in Sert−/− mice (p < 0.001). Although a small decrease in the
sensitivity of 5-HT neurons was present also in Sert+/− mice, no
statistically significant differences in log EC50 values were found
for both Tph2+/− and Sert+/− vs. wt control mice, indicat-
ing that limited impairment of 5-HT synthesis and re-uptake did
not result in relevant changes of 5-HT1A autoreceptor sensitivity
to R(+)-8-OH-DPAT. Figure 2H shows concentration–response
curves fitted for each group on mean data obtained from the indi-
vidual experiments shown in Figure 2G. It should be noted that
in Sert−/− neurons, R(+)-8-OH-DPAT did not produce maxi-
mal inhibition of firing (see Figure 2E). Nevertheless, the average
maximal inhibition was 60% compared to the other genotypes
and the mean log value of concentrations producing an actual
50% decrease in firing of Sert−/− neurons was −6.91 ± 0.08
(n = 8), which did not affect the level of significance for decreased
sensitivity of 5-HT1A receptors shown in Figure 2G. Collectively,
these data show that the sensitivity of 5-HT1A receptors to agonist
activation is markedly affected in Sert−/−.

ESTIMATION OF AUTOINHIBITION EXERTED BY ENDOGENOUS 5-HT
ACROSS GENOTYPES
After assessing responsiveness to direct activation by the 5-HT1A

receptor agonist R(+)-8-OH-DPAT in the different genotypes, we
investigated how specific genetic alterations translate into inhibi-
tion of 5-HT neuron activity by endogenous 5-HT. Once synthesis
of 5-HT is restored in slices by supplementation of 5-HT precur-
sors, the extent of autoinhibition in the different genotypes will
depend on the balance between the level of extracellular 5-HT
determined by the alteration of homeostatic mechanisms intro-
duced by genetic manipulation and 5-HT1A receptor sensitivity
characteristic of each genotype.

Thus, we studied autoinhibition exerted by endogenous 5-HT,
when de novo synthesis was restored in slices by supplementa-
tion of Trp or 5-HTP. Trp was used to estimate the extent of
autoinhibition in respect to bioavailability of the natural precur-
sor (Mlinar et al., 2005). 5-HTP was used to bypass the constraint
in 5-HT synthesis produced by the rate-limiting enzyme Tph2.
This allows reaching extracellular 5-HT concentrations greater
than with Trp and permits quantification of the overall capacity
of 5-HT neuron autoinhibition in different genotypes, including
Tph2−/− mice.

Figure 3A shows that supplementation of Trp (30 μM) pro-
duced a decrease in firing rates of Sert−/− 5-HT neurons, an effect
fully antagonized by WAY-100635, a selective 5-HT1A receptor
neutral antagonist (Corradetti et al., 1998). This demonstrates that
5-HT1A receptor-mediated autoinhibition is present in Sert−/−
mice. As shown in Figure 3B, 30 μM Trp significantly decreased
firing rates of 5-HT neurons to a similar extent in all the geno-
types tested (in % ± SD): Tph2+/−, 25.62 ± 15.37 (n = 10);
wt, 25.55 ± 19.87 (n = 7); Sert+/−, 17.51 ± 12.99 (n = 11);
Sert−/−, 22.03 ± 17.00 (n = 14). In all cases, the decrease in fir-
ing rates was significantly different from zero (p< 0.05; Wilcoxon
signed rank test). Furthermore, responses to application of Trp
were not statistically different across four genotypes [H(3) = 3.336,
p = 0.3427; Kruskal–Wallis test]. These data show that autoinhi-
bition of DRN 5-HT neurons by endogenous 5-HT is conserved
in all the genotypes to a similar level, irrespective of the genetic
alteration.

To quantify the extent to which each genotype conserved
the capacity to (auto)inhibit 5-HT neuron firing in response to
different extracellular concentrations of endogenous 5-HT, we
investigated the functional response of 5-HT neurons to 5-HTP in
different genotypes.

Figure 4 illustrates firing rate changes of 5-HT neurons
in response to increasing concentrations of 5-HTP in brain
slices obtained from wt controls (Figures 4A,B), Tph2−/−
(Figures 4C,D), and Sert−/− mice (Figures 4E–H). Applica-
tion of 5-HTP reduced the firing rate of 5-HT neurons in a
concentration-dependent manner, but with different effectiveness
across genotypes [one-way ANOVA, F(4,58) = 6.723, p = 0.0002],
as shown by the comparison of log EC50 values obtained for
each single neuron tested (log EC50 mean ± SD): Tph2−/−,
−5.51 ± 0.41 (n = 15); Tph2+/−, −5.29 ± 0.30 (n = 10);
wt, −5.17 ± 0.20 (n = 14); Sert+/−, −5.48 ± 0.36 (n = 13);
Sert−/−, −5.76 ± 0.12 (n = 11; Figure 4I). Interestingly,
the sensitivity to the effects of endogenous 5-HT synthesized
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FIGURE 2 | Sensitivity of 5-HT neurons to R(+)-8-OH-DPAT differs

across genotypes. Time courses of firing rate changes in response to
increasing concentrations of R(+)-8-OH-DPAT of individual 5-HT neurons
in brain slices obtained from wt (A,B), Tph2−/− (C,D), and Sert−/− mice
(E,F). Traces show action current of corresponding neurons recorded.
(G) Dots represent log EC50 of concentration–responses from individual
experiments. Red lines report mean ± SD of values. One-way ANOVA
followed by Tukey’s multiple comparison test showed statistically
significant differences across genotypes [F (4,53) = 48.38, p < 0.0001].

Asterisks indicate level of statistical significance between the indicated
genotypes (for Sert−/−, vs. all the other four genotypes): ***p < 0.001,
*p < 0.05. (H) Average concentration–response curves obtained from all the
experiments. Each data point corresponds to the mean from several neurons
(numbers in parentheses). For the sake of clarity, error bars are shown only
for Sert−/− mice and Tph2−/− mice in a single direction. Data are normalized
on average baseline firing rates recorded before R(+)-8-OH-DPAT application.
Note that, curves for Sert−/− mice did not achieve full inhibition of firing
(see E).
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FIGURE 3 | Autoinhibition by endogenous 5-HT synthesized from

Trp is conserved across genotypes. (A) Trp (30 μM) produced a 5-HT1A
receptor-mediated decrease in the firing rate of a 5-HT neuron from
Sert−/− mice. Application of a selective 5-HT1A receptor antagonist,
WAY-100635 (50 nM; representative of three experiments) fully antagonized
Trp effect, confirming that autoinhibition was mediated by 5-HT1A
autoreceptors. (B) Application of 30 μM Trp significantly suppressed firing
activity of DRN serotonergic neurons in all the genotypes tested (p < 0.05;
Wilcoxon signed rank test). Comparison of the effect of Trp among
genotypes revealed no statistically significant differences among
genotypes [H(3) = 3.336, p = 0.3427; Kruskal–Wallis test]. Data are shown
as mean ± SD. The number of neurons recorded for each genotype is
shown at the bottom of the histograms.

from 5-HTP was increased both in Tph2−/− (p < 0.05) and
Sert−/− (p < 0.001) mice compared to wt controls. Figure 4J
shows concentration–response curves fitted for each group on
mean data obtained from the individual experiments depicted in
Figure 4I.

Whereas a stronger autoinhibitory response to 5-HTP in
Tph2−/− mice is consistent with the observed increase in sensi-
tivity of 5-HT1A receptors to agonist activation, a similar increase
in Sert−/− mice is unexpected in the presence of decreased
sensitivity to R(+)-8-OH-DPAT. We suggest that, due to the
absence of 5-HT re-uptake, in Sert−/− mice the extracellular
5-HT neosynthesized from 5-HTP attains higher levels than in
wt control mice, leading to this apparent increase in response.
Collectively, these results demonstrate that the changes in sensi-
tivity to direct activation of 5-HT1A receptors cannot directly be
translated into the expected changes in autoinhibition exerted by
endogenous 5-HT.

DISCUSSION
In the present study, we have investigated the relationship between
the sensitivity of 5-HT1A receptors and the concomitant degree
of autoinhibition of 5-HT neurons in a panel of genetically mod-
ified mice characterized by impairment of cellular mechanisms
crucial for homeostatic control of extracellular 5-HT levels (i.e.,
5-HT synthesis and 5-HT re-uptake). In vivo, these genetic manip-
ulations are likely to produce lifelong persistent modifications
of 5-HT levels ranging from the absence of 5-HT in Tph2−/−
mice (Savelieva et al., 2008; Alenina et al., 2009; Gutknecht et al.,
2012) to a substantial increase in extracellular 5-HT levels in
Sert−/− mice (Fabre et al., 2000; Mathews et al., 2004; Shen et al.,
2004). The consequences of genetic alterations are maintained in
vitro. This provides a set of conditions in which the relationship
between the sensitivity of 5-HT1A receptors and the autoinhibitory

response of 5-HT neurons exerted by endogenous 5-HT could be
quantitatively compared.

The major finding of the present study is that substantial and
persistent alterations in 5-HT homeostasis produced changes in
the sensitivity of 5-HT1A receptors that did not translate in mea-
surable changes of autoinhibitory regulation of 5-HT neuron
firing. In particular, Sert−/− mice showed a marked subsensi-
tivity of 5-HT1A receptors, but displayed a normal capacity of
autoinhibition. Interestingly, the sensitivity of 5-HT1A receptors
of both Sert+/− and Tph2+/− mice proved to be similar to
that of wt control mice, showing that mild change in extracel-
lular 5-HT levels is neither a strong stimulus for 5-HT1A receptor
adaptive changes in sensitivity, nor does it detectably affect
autoinhibition.

In previous studies under similar recording conditions as
used in this work, raphe slices showed substantial depletion
of 5-HT in the absence of 5-HT precursors (Liu et al., 2005;
Mlinar et al., 2005). In vitro, 5-HT content, together with
5-HT1A receptor-mediated autoinhibition, can be restored by
supplementation of Trp (Liu et al., 2005; Mlinar et al., 2005;
Evans et al., 2008; Gutknecht et al., 2012). This allowed elec-
trophysiological, quantitative, assessment of the modifications
in sensitivity of 5-HT1A receptors produced by altered 5-HT
homeostasis in vivo and estimation of the functional state of
autoinhibition when de novo synthesis of 5-HT was restored in
slices.

GENETIC MANIPULATIONS DO NOT AFFECT PACEMAKER
CHARACTERISTICS OF 5-HT NEURONS
The pacemaker properties of serotonergic neurons measured in
slices in the virtual absence of endogenous 5-HT neosynthesis,
hence of autoinhibition, were not substantially altered by genetic
manipulation itself, as we observed similar baseline firing rates
among genotypes, except for Tph2−/− mice, which had slightly
lower baseline firing rates compared to the other genotypes. This
shows that the basic characteristics of intrinsic pacemaker fir-
ing activity of 5-HT neurons are preserved independently from
genetic manipulations that altered 5-HT homeostatic regulation.
The small decrease in baseline firing rates observed in Tph2−/−
mice may indicate that, in the chronic absence of 5-HT, neurons
adapt their membrane properties, e.g., conductance, to compen-
sate for absent autoinhibition and homeostatically keep pacemaker
firing activity constant. The mechanism(s) underlying this adap-
tation is currently under investigation. It should be noted that the
basal firing rate recorded under our experimental conditions, i.e.,
in vitro, results from the interplay of ion conductances responsible
for pacemaking activity and likely do not correspond to the“basal”
firing rate recorded in vivo (e.g., Gobbi et al., 2001; Bouali et al.,
2003; see below) which is under the control of 5-HT1A receptor-
mediated autoinhibition in all genotypes (see Figure 3), except in
Tph2−/− mice (Gutknecht et al., 2012).

LIFELONG EXPOSURE OF 5-HT NEURONS TO VARYING 5-HT LEVELS
RESULTS IN CHANGES IN THE SENSITIVITY OF SOMATODENDRITIC
5-HT1A RECEPTORS
Previous studies showed adaptive decrease in sensitivity of 5-HT1A

receptors in Sert−/− mice (Lanfumey et al., 2000; Mannoury
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FIGURE 4 | Quantification of autoinhibition capacity of 5-HT

neurons across genotypes by concentration–response curves

for 5-HTP. Time courses of 5-HT neuron firing rate changes in response
to increasing concentrations of 5-HTP in brain slices obtained from wt
controls (A,B), Tph2−/− (C,D), and Sert−/− mice (E–H). Traces show action
current of corresponding neurons recorded. (I) Dots represent log EC50 of
concentration–responses from individual experiments. Red lines report
mean ± SD of values. One-way ANOVA followed by Tukey’s multiple

comparison test showed statistically significant differences [F (4,58) = 6.723,
p = 0.0002] Asterisks indicate level of statistical significance between the
indicated genotypes: ***p < 0.001, **p < 0.01, *p < 0.05. (J) Average
concentration–response curves obtained from all the experiments. Each data
point corresponds to the mean from several neurons (numbers shown in
parentheses). For the sake of clarity, error bars are omitted. Data are
normalized on average baseline firing rates recorded before 5-HTP
application.
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la Cour et al., 2001; Bouali et al., 2003). Our study extends the
investigation to the opposite extreme, i.e., Tph2−/− mice, which
are devoid of 5-HT and show a small, but significant increase in
5-HT1A receptor sensitivity. This is consistent with neurochemical
data showing an increase in 5-HT1A receptor density in the raphe
(Gutknecht et al., 2012).

In Sert−/− mice, we found a decrease in the maximal response
to R(+)-8-OH-DPAT (∼40%) and a similar reduction of autoin-
hibitory capacity as revealed by concentration–response curves
with 5-HTP. This may reflect a downregulation of 5-HT1A recep-
tors due to lifelong exposure to increased stimulation by 5-HT or
the emergence of a still-unknown adaptive mechanism directed
to counteract increased autoinhibition exerted by high levels
of extracellular 5-HT in vivo. In spite of the decrease, how-
ever, the remaining autoinhibition capacity of 5-HT neurons
largely exceeded the magnitude of physiological autoinhibition
produced by 5-HT when its synthesis was restored by Trp
(see below).

Taken together, our data indicate that the level of 5-HT1A

receptor sensitivity of 5-HT neurons is inversely correlated with
extracellular levels of 5-HT in vivo, at least in extreme conditions
as represented by Tph2−/− and Sert−/− mice.

AUTOINHIBITION OF 5-HT NEURONS BY ENDOGENOUS 5-HT IS
CONSERVED IN THE PHYSIOLOGICAL RANGE, REGARDLESS OF THE
SENSITIVITY OF 5-HT1A RECEPTORS
When the level of autoinhibition restored by Trp supplemen-
tation in slices from all the genotypes (except Tph2−/−) was
measured, this resulted in being similar, irrespective of the sen-
sitivity of 5-HT1A receptors measured in each genotype. Notably,
Sert−/− showed greatly decreased sensitivity to the agonist but
normal autoinhibition, as estimated by Trp challenge. Accord-
ingly, the autoinhibitory effect of endogenous 5-HT synthesized
de novo from 5-HTP proved to be not decreased in all the
mutants compared with wt controls, including Tph2−/− in
which the absence of Tph2 was bypassed by 5-HTP. It should
be noted that in Sert−/− mice the maximal inhibitory response
was slightly decreased (∼20%) in agreement with the reduced
maximal response to the agonist, but the substantial residual
inhibition capacity is apparently sufficient to produce a phys-
iological level of autoinhibition as shown by Trp experiments.
In conclusion, these data indicate that the marked subsen-
sitivity of 5-HT1A receptors observed in Sert−/− does not
translate in the loss of normal autoinhibition capacity of 5-HT
neurons.

Although counterintuitive, this notion is consistent with the
observation that, in vivo, the firing rate of 5-HT neurons is not
increased in Sert−/−, but similar to or even lower (Gobbi et al.,
2001; Bouali et al., 2003) than that of wt controls, thus indicating
that in vivo subsensitivity of 5-HT1A receptors in Sert−/− mice
does not relieve 5-HT neurons from autoinhibition. Furthermore,
Fox et al. (2010) reported that in these mice antagonism of 5-HT1A

receptors by WAY-100635 resulted in the appearance of greater
frequency of 5-HT2A receptor-mediated head twitches than in wt
controls. This suggests that the relief from autoinhibition, hence
the increase in 5-HT neuron firing, produces an increase in 5-
HT release sufficient to produce this 5-HT2A-mediated behavioral

effect (Willins and Meltzer, 1997), even in the presence of partial
desensitization of 5-HT2A receptors (Rioux et al., 1999; Li et al.,
2003; Qu et al., 2005).

IMPLICATIONS OF THE DIVERGENCE BETWEEN SENSITIVITY TO
R(+)-8-OH-DPAT AND 5-HT NEURON AUTOINHIBITION
The crucial role of somatodendritic 5-HT1A receptors in regulat-
ing the firing rate of 5-HT neurons, hence the functional state
of 5-HT system, has attracted interest in the attempt to infer
the degree of activity of these neurons in pathological condi-
tions of humans and in behavioral experiments of rodents. The
present work may help to better understand the limits in the
interpretation of the functional state of 5-HT system based on
measurements of density/sensitivity of 5-HT1A receptors of 5-HT
neurons. Furthermore, since the knockout mice used in this inves-
tigation may model different risk factors (i.e., TPH2 and SERT
polymorphisms) for anxiety disorders and depression, our data
showing that autoinhibition is not impaired in these mutants
may provide a reference background for the interpretation of
behavioral responses in these mice in the context of human psy-
chopathology. For instance, functional autoinhibition in patients
with depression were indirectly inferred from 5-HT1A receptor
imaging studies in the raphe (Drevets et al., 2007; Savitz et al.,
2009). Overall, however, these studies failed to clarify whether
the depression-related changes in 5-HT1A receptor binding are
genetically or environmentally driven during development, thus
causative of the disorder, or whether they are simply an adapta-
tion to acutely increased or decreased serotonergic transmission
(Savitz et al., 2009).

Contradicting results were also gathered in the attempt to asso-
ciate SERT polymorphisms with changes in the level of 5-HT1A

receptor expression/density. David et al. (2005) reported that car-
riers of the 5-HTTLPR s-allele had lower 5-HT1A receptor binding
potential in all the brain regions investigated compared to indi-
viduals homozygous for the l-allele. On the contrary, Lee et al.
(2005) found that s-carriers had higher 5-HT1A binding than ll-
individuals in pregenual and subgenual cingulate cortex regions
while in other regions, including the DRN, no difference was
detected. More recently, Borg et al. (2009) could not reveal any
differences in 5-HT1A receptor density between carriers and non-
carriers of the 5-HTTLPR s-allele and concluded that functional
consequences of 5-HTTLPR are not likely to be mediated by differ-
ences in 5-HT1A expression. Our results showing that 5-HT system
autoinhibition is not reduced in mice with impaired Sert function
even in the presence of altered 5-HT1A receptor sensitivity would
support this conclusion.

A second implication of our results involves the possibility to
infer the degree of 5-HT system autoinhibition from functional
assays using activation of 5-HT1A receptors with direct agonists,
in patients or in animal models. For example, one of the most
consistent findings among depressed patients is their blunted
hypothermia in response to 5-HT1A receptor direct agonists (Lesch
et al., 1990; Lesch, 1991; Jacobsen et al., 2012b and references
therein). Such responses are usually ascribed to desensitization
of somatodendritic 5-HT1A receptors (reviewed in Jacobsen et al.,
2012a). Our data suggest that, whereas blunted hypothermic
response to direct agonists is likely to reflect subsensitivity of
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5-HT1A receptors in these patients, this decrease in response
cannot directly be correlated to functional consequences that entail
reduced autoinhibition and increase in the basal firing rate of 5-HT
neurons.

On the other hand, the finding that 5-HT neurons in Tph2-
and Sert-deficient mice display normal responsiveness to Trp
and/or 5-HTP regarding autoinhibition of 5-HT neuron firing
would support the use of Trp (or 5-HTP) as an appropriate
challenge to test the functional state of 5-HT system in clinical
settings and to reveal the involvement of altered autoinhibition in
human psychopathology. Indeed, 5-HTP challenge has been suc-
cessfully applied to reveal functional consequences dependent on
5-HTTLPR variation in humans (Maron et al., 2004).

Finally, the striking divergence between sensitivity to R(+)-8-
OH-DPAT and 5-HT neuron autoinhibition in Sert−/− suggests
the possibility that sustained increase in 5-HT levels by stressors
or pharmacological treatments (e.g., SSRIs) may result in 5-HT1A

receptor subsensitivity, not accompanied by functional impair-
ment of 5-HT neuron firing autoregulation. For instance, the
rapid decrease in 5-HT1A receptor sensitivity found in DRN 5-HT
neurons following chronic ultramild stress and stressful uncon-
trolled environmental conditions is apparently not correlated with
an increase in 5-HT system activity and has been suggested to be
an adaptive mechanism to compensate for 5-HT fluctuations pro-
duced by stressful events (Laaris et al., 1999; Lanfumey et al., 1999).
Interestingly, in vivo recording after chronic unpredictable stress
in rats showed that the reduced ability of 8-OH-DPAT to inhibit
5-HT neuron firing was accompanied by a decrease in firing rate of
DRN 5-HT neurons (Bambico et al., 2009), indicating that func-
tional autoinhibition may be preserved in spite of 5-HT1A receptor
desensitization. Furthermore, desensitization of autoinhibitory 5-
HT1A receptors occurring with chronic SSRI administration (Le
Poul et al., 2000; Hensler, 2002; Castro et al., 2003) has been pro-
posed as a mechanism for 5-HT neurons to escape the sustained
autoinhibition produced by the increase in 5-HT in raphe nuclei
by blockade of Sert and to represent an important step to achieve
enhanced therapeutic effects of SSRIs (Artigas et al., 1996). On the
other hand, Richardson-Jones et al. (2010) showed that desensiti-
zation of 5-HT1A autoreceptors is not sufficient for antidepressants
to convey their efficacy, indicating dissociation between desensiti-
zation of 5-HT1A autoreceptors and behavioral effects of chronic
SSRI treatment. Thus, desensitization of 5-HT1A autoreceptors

appears rather to be an adaptive mechanism to neutralize ele-
vated extracellular 5-HT levels, and not a primary factor leading
to behavioral alteration.

Under a functional perspective, however, dynamic changes
in the sensitivity/expression of 5-HT1A receptors appear to be
crucial to fulfill the requirements for physiological homeosta-
sis of 5-HT system functioning. Thus, any impairment of
adaptive mechanisms of 5-HT1A receptors in response to sus-
tained changes in 5-HT levels, or constitutive alteration of
their expression even in the absence of altered 5-HT levels in
vivo, becomes a potential source of pathological consequences.
In fact, genetically induced overexpression of somatodendritic
5-HT1A receptors in mice has been shown to produce auto-
nomic dysregulation (Audero et al., 2008), behavioral alterations,
and decreased response to antidepressant drugs (Richardson-
Jones et al., 2010). In humans, the C(-1019)G 5-HT1A promoter
polymorphism leading to 5-HT1A receptor overexpression is
proposed to represent a risk factor for depression (Lemonde
et al., 2003; Strobel et al., 2003; Rothe et al., 2004; reviewed in
Albert and Francois, 2010) and response to antidepressant drugs
(reviewed in Albert, 2012).

In conclusion, our data reveal that 5-HT neuron autoinhibition
is similar in all Tph2 and Sert genotypes studied, regardless of the
different sensitivity of their somatodendritic 5-HT1A receptors to
R(+)-8-OH-DPAT. This suggests that adaptive changes in recep-
tor sensitivity occur to compensate for variable extracellular 5-HT
levels in different genotypes to homeostatically conserve autoin-
hibition in a physiological range. Thus, it appears that response to
5-HT1A agonists per se is not always sufficient for evaluating the
functional state of the 5-HT system, for which Trp and/or 5-HTP
challenges may provide more informative data, both in clinical
and animal experimental settings.
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A limited number of biomarkers in the central and peripheral systems which are known
may be useful for diagnosing major depressive disorders and predicting the effectiveness
of antidepressant (AD) treatments. Since 60% of depressed patients do not respond
adequately to medication or are resistant to ADs, it is imperative to delineate more
accurate biomarkers. Recent clinical studies suggest that β-arrestin 1 levels in human
mononuclear leukocytes may be an efficient biomarker. If potential biomarkers such
as β-arrestin 1 could be assessed from a source such as peripheral blood cells, then
they could be easily monitored and used to predict therapeutic responses. However,
no previous studies have measured β-arrestin 1 levels in peripheral blood mononuclear
cells (PBMCs) in anxious/depressive rodents. This study aimed to develop a method to
detect β-arrestin protein levels through immunoblot analyses of mouse PBMCs isolated
from whole blood. In order to validate the approach, β-arrestin levels were then compared
in naïve, anxious/depressed mice, and anxious/depressed mice treated with a selective
serotonin reuptake inhibitor (fluoxetine, 18 mg/kg/day in the drinking water). The results
demonstrated that mouse whole blood collected by submandibular bleeding permitted
isolation of enough PBMCs to assess circulating proteins such as β-arrestin 1. β-Arrestin 1
levels were successfully measured in healthy human subject and naïve mouse PBMCs.
Interestingly, PBMCs from anxious/depressed mice showed significantly reduced β-
arrestin 1 levels. These decreased β-arrestin 1 expression levels were restored to normal
levels with chronic fluoxetine treatment. The results suggest that isolation of PBMCs from
mice by submandibular bleeding is a useful technique to screen putative biomarkers of the
pathophysiology of mood disorders and the response to ADs. In addition, these results
confirm that β-arrestin 1 is a potential biomarker for depression.

Keywords: peripheral blood mononuclear cells, β-arrestin 1, anxiety, depression, mouse models, fluoxetine,

biomarkers

INTRODUCTION
Elucidation of the neurobiological bases of depression and anx-
iety are significant challenges for today’s society. Mood dis-
orders impact 7% of the world’s population and rank among
the top 10 causes of disability (Kessler et al., 2005). Selective
serotonin reuptake inhibitors (SSRIs) and serotonin and nora-
drenaline reuptake inhibitors (SNRIs) are the most commonly
prescribed antidepressant (AD) drugs for major depressive disor-
ders (MDD; Samuels et al., 2011). However, key questions about
the molecular and cellular mechanisms underlying the effects
of ADs remain unanswered. Approximately 60% of depression
patients do not respond adequately or are resistant to these drugs
(Samuels et al., 2011). Therefore, there are clear benefits of hav-
ing valid, reliable, selective, and feasible biomarkers for MDD.
Several studies have reported genome-wide expression changes

associated with AD responses in MDD (Iga et al., 2007a,b; Belzeaux
et al., 2010; Lakhan et al., 2010; Mamdani et al., 2011). However,
candidate biomarkers that can accurately predict AD responses
must be identified. While there are currently no specific mark-
ers that are considered “gold standards,” a few candidates have
emerged. Peripheral/serum brain-derived neurotrophic factor
(BDNF), insulin-like growth factor 1 (IGF-1), and cytokines may
serve as biomarkers of MDD and treatment response (for review,
see Schmidt et al., 2011).

Recently, a substantial body of evidence indicates that β-
arrestins (β-arrestin 1 and 2), proteins that regulate G protein
receptor coupling, play major roles in the pathophysiology of
mood disorders and in the mechanisms underlying AD actions
(Avissar et al., 2004; Schreiber and Avissar, 2004; Matuzany-Ruban
et al., 2005; Beaulieu et al., 2008; David et al., 2009; Schreiber
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et al., 2009; Golan et al., 2010). The β-arrestin-signaling cascade
has recently gained attention as a potential pre-clinical/clinical
bridging biomarker for depressive states and treatment effects.
In naïve rats, SSRI, SNRI, and non-selective reuptake inhibitor
ADs significantly elevate β-arrestin 1 levels in the cortex and
the hippocampus (Avissar et al., 2004; Beaulieu and Caron, 2008;
Beaulieu et al., 2008; David et al., 2009). Similarly, β-arrestin 1
expression is decreased in the hypothalamus and hippocampus in
anxious/depressed mice exposed to glucocorticoid elevation, and
is restored by chronic fluoxetine treatment (David et al., 2009).
Moreover, β-arrestin 1 and 2 signaling is involved in mediating the
response to fluoxetine and lithium (Beaulieu et al., 2008; David
et al., 2009).

Clinical data from Avissar et al. (2004) suggest that β-arrestin
1 mRNA and protein levels are highest in peripheral blood leuko-
cytes of MDD patients. Therefore, β-arrestin 1 may be a putative
candidate biochemical marker in clinical practice for depressive
pathophysiology and the response to ADs (for review, see Schreiber
et al., 2009). β-Arrestin mRNA levels and β-arrestin 1 protein lev-
els in mononuclear leukocytes of untreated patients with MDD
are lower than the levels found in healthy subjects. Furthermore,
reduced levels of β-arrestin 1 protein and mRNA are significantly
correlated with the severity of depressive symptoms (Avissar et al.,
2004; Schreiber et al., 2009). However, the low β-arrestin 1 protein
and mRNA levels are alleviated by AD treatment. Therefore, these
low levels can predict clinical improvement (Avissar et al., 2004;
Golan et al., 2010).

These clinical data suggest that assessment of β-arrestin 1 levels
may prove useful for diagnosing depression with high sensitiv-
ity and specificity (Golan et al., 2013). This hypothesis must first
be validated in animal models of anxiety–depression. Most of
the current understandings of mood disorders and AD activities
are based on studies performed on animal models of anxiety–
depression (Belzung and Lemoine, 2011). No animal studies have
investigated whether β-arrestin 1 protein levels in peripheral blood
mononuclear cells (PBMCs) area marker of the pathophysiology
of depression and the AD response. However, if PBMCs can be
successfully used to define biomarkers, they provide a system of
circulating cells that can be easily collected from patients and
monitored to predict therapeutic responses.

In this study, we developed a method to measure and assess cir-
culating proteins (such as β-arrestin 1 in PBMCs) that are collected
through submandibular bleeding from unanesthetized animals.
Furthermore, we examined whether changes in β-arrestin 1 levels
in mouse PBMCs were observed in a model of anxiety/depression
(David et al., 2009; Guilloux et al., 2011; Rainer et al., 2012b), and
whether these levels could be corrected by chronic treatment with
the SSRI fluoxetine.

EXPERIMENTAL PROCEDURES
SUBJECTS
Adult male C57BL/6Ntac mice were purchased from Taconic
Farms (Lille Skensved, Denmark). All mice were 7–8 weeks old,
weighed 23–25 g at the beginning of the treatment and were main-
tained on a 12L:12D schedule (lights on at 0600 hours). The mice
were group-housed with each cage containing five animals. Food
and water were provided ad libitum. All testing were conducted

in compliance with the laboratory animal care guidelines and
with protocols approved by the Institutional Animal Care and
Use Committee (Council directive # 87-848, October 19, 1987,
Ministère de l’Agriculture et de la Forêt, Service Vétérinaire de la
Santé et de la Protection Animale, permissions # 92-256B to Denis
J. David).

DRUGS
Corticosterone (4-pregnen-11b-DIOL-3 20-DIONE 21-hemi-
succinate from Sigma (Sigma-Aldrich, Saint-Quentin-Fallavier,
France) was dissolved in 0.45% hydroxypropyl-β-cyclodextrin
(Sigma-Aldrich, Saint-Quentin-Fallavier, France). Fluoxetine
hydrochloride (18 mg/kg/day in the drinking water) was purchased
from Anawa Trading (Zurich, Switzerland).

ISOLATION OF HUMAN AND MOUSE PERIPHERAL BLOOD
MONONUCLEAR CELLS
Collection of human blood and isolation of peripheral blood
mononuclear cells
Peripheral blood mononuclear cells were purified from 7.5 ml
of human whole circulating blood obtained from Etablissement
Français du Sang (Ivry-Sur-Seine, France) through density cen-
trifugation (850 g at 20◦C for 20 min) using a Ficoll gradient
(PAA Laboratories GmbH, Pashing, Austria; Figure 1A). This cen-
trifugation separated lymphocytes, monocytes, and plasma. The
PBMC layers were carefully removed from the tube and transferred
to a new 50 ml conical tube. The PBMCs were then washed twice
(1 min each) with 1× phosphate-buffered saline (PBS)/fetal calf
serum (FCS, 2%). After centrifugations (150 g at 20◦C for 7 min),
the cells were resuspended in the appropriate volume of 1× PBS.
The human PBMCs were then recovered with a final centrifugation
(1,000 g at 4◦C for 5 min) and were stored at −80◦C.

Collection of mouse blood and isolation of peripheral blood
mononuclear cells
Blood was collected from unanesthetized mice as previously
described (Golde et al., 2005; Joslin, 2009). In compliance with
the laboratory animal care guidelines, approximately 0.4 ml of
blood per mouse was collected in K3EDTA tubes with a sub-
mandibular bleeding procedure. Five millimeters point size sterile
lancets (MediPoint, Mineola, NY, USA; Figure 1B) were used
to puncture the location where the orbital vein and the sub-
mandibular vein join to form the jugular vein (Joslin, 2009). A
light pressure with dry gauze was applied to the punctured area
for hemostasis. Separation and extraction of PBMCs were per-
formed using an iodixanol mixer technique (Ford and Rickwood,
1990). Mouse PBMCs were purified from whole blood by den-
sity centrifugation (300 g at 20◦C for 30 min) using solution B
(see Table 1 for preparation) of the OptiPrepTM gradient solution
(Sigma-Aldrich, Saint-Quentin-Fallavier, France). Specifically, the
OptiPrepTM gradient solution was used to separate blood into
PBMC and plasma layers with centrifugation. The PBMC lay-
ers were then carefully removed from the tube and transferred to
a new 50 ml conical tube. The PBMCs were then washed twice
with solution B (1 min each). After another centrifugation (150 g
at 20◦C for 7 min) and two washing steps (1 min each), mouse
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FIGURE 1 | Experimental protocol for isolating human and mouse

peripheral blood mononuclear cells from whole blood. (A) Cartoon
representing the different steps for isolating human PBMC from whole
circulating blood (for full details of the method, see Blood collection and
Peripheral blood mononuclear cells Isolation in human from the Section
“Experimental Procedures”). Some elements of this figure were produced

using Servier Medical Art image bank (www.servier.com). (B) Cartoon
representing the different steps for isolating mouse PBMC from whole
circulating blood (for full details of the method, see Blood collection and
Peripheral blood mononuclear cells Isolation in mouse from the Section
“Experimental Procedures”). Some elements of this figure were produced
using Servier Medical Art image bank (www.servier.com).
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Table 1 | Solution used to prepare peripheral blood mononuclear cells from mouse whole blood.

OptiPrepTM density

gradient medium

Tricine-buffered saline (TBS) Solution B

Solutions D1556-250ML

(Sigma-Aldrich, France)

0.85% NaCl, 10 mM; Tricine-NaOH, pH 7.4

(Tricine as 100 mM stock solution at 4◦C;

1.79 g/100 ml water )

Dissolve 0.85 g NaCl in 50 ml water; add 10 ml of

Tricine stock; adjust to pH 7.4 with 1 M NaOH and

make up to 100 ml

PBMCs were recovered with a final centrifugation (1,000 g at 4◦C
for 5 min) and were stored at −80◦C.

β-ARRESTIN 1 LEVELS IN HUMAN AND MOUSE PERIPHERAL BLOOD
MONONUCLEAR CELLS
Protein extraction from peripheral blood mononuclear cells and
immunoblots
Peripheral blood mononuclear cells were thawed and homoge-
nized with cell lysis buffer containing [20 mM Tris pH 7.4, 137 mM
NaCl, 2 mM ethylenediaminetetraacetic acid (EDTA) pH 7.4,
1% Triton X-100, 25 mM β-glycerophosphate, 1 mM phenyl-
methylsulfonyl fluoride (PMSF), 10 μg/ml aprotinin, 10 μg/ml
leupeptin, and 10 μg/ml pepstatin and 100 mM orthovanadate],
were incubated on ice for 20 min, were then subjected to cen-
trifugation at 21,130 g at 4◦C for 20 min. Protein concentrations
were quantified using a BCA Protein Assay Kit (Pierce Biotech-
nology).

β-Arrestin 1 level measurements with immunoblot analyses
Equal amounts of proteins were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred to polyvinylidene difluoride (PVDF) membranes (Amer-
sham Biosciences, Les Ulis, France). The membranes were then
incubated overnight with a primary mouse monoclonal anti-β-
arrestin 1 antibody (#610551, BD Biosciences Pharmingen, France;
1:100). In order to ensure that equal amounts of total protein
(30 μg) were loaded in each lane, β-actin protein levels were also
assessed [β-actin (C4) horseradish peroxidase (HRP), Santa Cruz
Biotechnology, Germany, 1:10,000]. Immune complexes were
detected using appropriate peroxide-conjugated secondary anti-
bodies and a chemiluminescent reagent kit (Pierce Biotechnology).
Immunoblot quantifications were performed by densitometric
scanning with Image Lab Software (Bio-Rad). Signals were in the
linear range. The densitometry values were normalized against the
β-actin values (Figures 2 and 3).

CORTICOSTERONE MODEL AND TREATMENT
The dose and duration of corticosterone treatment (CORT
model) were selected based on previous studies (David et al.,
2009; Guilloux et al., 2011; Hache et al., 2012; Rainer et al.,
2012a,b). Exposure to chronic corticosterone results in a phe-
notype that is similar to a chronic stress phenotype, including
a deterioration of the coat state and anxiety/depression-related
behaviors. At the end, a higher emotionality score is observed
(Guilloux et al., 2011). Corticosterone (35 μg/ml/day, equiva-
lent to about 5 mg/kg/day) or vehicle (0.45% β-cyclodextrin,
β-CD) were available to mice ad libitum in the drinking water in

FIGURE 2 | β-Arrestin 1 is measurable in both human and mouse

peripheral blood mononuclear cells obtained from a low collection

volume of fresh blood. Representative western blot of β-arrestin 1 levels
in PBMCs isolated either from CD14− human cells, human or naïve mouse
whole blood. In each blot, 30 μg of total protein were run. β-Actin was used
as a control.

opaque bottles. Corticosterone-treated water was changed every
3 days to prevent degradation. Group-housed mice were also
treated with the SSRI fluoxetine (18 mg/kg/day) for the last
4 weeks of the experiment (see the experimental protocol on
Figure 3A).

STATISTICAL ANALYSIS
β-Arrestin 1 levels were quantified and then expressed with a scat-
terplot or as mean ± SEM normalized to vehicle levels. Data were
analyzed using Prism 6.0 software (GraphPad, La Jolla, USA).
One-way ANOVAs were used to evaluate data when appropriate.
Significant main effects were further analyzed by Fisher’s post hoc
test. Statistical significance was set at p < 0.05.

RESULTS
β-ARRESTIN 1 IS DETECTED IN HUMAN AND MOUSE PBMC
We first collected blood in order to assess whether β-arrestin 1
could be detected. Single-use lancets were used for submandibu-
lar bleeding and permitted drawing of ∼0.4 ml of blood without
the use of anesthesia (Golde et al., 2005). The mouse PBMCs
were lysed and subjected to immunoblotting. A ∼55 kDa band
that corresponded to the molecular weight of β-arrestin 1 protein
was detected with a monoclonal antibody against mouse anti-β-
arrestin 1 that is known to detect human β-arrestin 1 (Avissar et al.,
2004; Matuzany-Ruban et al., 2005; Golan et al., 2013; Figure 2).
Therefore, this method of PBMC isolation from fresh mouse
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FIGURE 3 | Chronic fluoxetine treatment (18 mg/kg/day for 28

days) restored β-arrestin 1 levels in the peripheral blood mononuclear

cells from anxio/depressive mice treated with chronic corticosterone

treatment. (A) Experimental timeline used to measure β-arrestin 1 levels in
peripheral blood mononuclear cells from naïve or anxio-depressive mouse
submandibular bleeding chronically treated or not with fluoxetine during 28
days (18 mg/kg/day in the drinking water). (B) Representative western blot
of β-arrestin 1 levels in peripheral blood mononuclear cells isolated from
naïve (vehicle/vehicle, V/V), corticosterone (35 μg/ml/day; corticosterone/
vehicle, C/V) or corticosterone/fluoxetine (18 mg/kg/day; corticosterone/

fluoxetine, C/F) mouse whole blood. In each blot, 30 μg of protein
from mouse PBMC were run. The densitometry values for each band
allowed the calculation of a ratio: optical density for β-arrestin 1/optical
density β-actin value. (C,D) Scatterplot of the individual effects (C) or bar
charts of mean ± SEM of the effects (D) of a chronic administration (28
days) treatment with fluoxetine on β-arrestin 1 levels in the peripheral blood
mononuclear cells from mice treated with chronic corticosterone in com-
parison to untreated animals. Data are expressed in percentage normalized
to vehicle/vehicle expression; n = 9–10). *p < 0.05, versus control vehicle/
vehicle group.
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blood successfully permitted measurements of β-arrestin 1 lev-
els. This method can potentially be used to investigate levels of
other proteins as well. Lysates of human total PBMCs and CD14
negative PBMC fraction cells (CD14−) were used as positive con-
trols. In addition, we were also able to detect β-arrestin 1 in human
PBMCs isolated from low fresh circulating blood volume (7.5 ml)
of healthy adult donors obtained from Etablissement Français du
Sang (Figure 2). To our knowledge, this is the first study to detect
β-arrestin 1 in this fashion.

Next, we decided to quantify β-arrestin 1 levels in PBMCs iso-
lated from C57BL/6Ntac mice exposed to chronic corticosterone
(David et al., 2009; Rainer et al., 2012b) that was given either
alone or in combination with the SSRI fluoxetine (18 mg/kg/day;
Figure 3A).

CHRONIC FLUOXETINE TREATMENT NORMALIZES β-ARRESTIN 1
EXPRESSION IN PBMC ISOLATED FROM ANXIOUS/DEPRESSIVE-LIKE
MICE
In mouse PBMCs isolated from blood of mice treated chronically
with corticosterone (35 μg/ml/day), we found that β-arrestin 1 lev-
els were significantly lower (−41%; 59% of expression compared
to 100% in the control group) than the levels in naïve animals
[one-way ANOVA, F(2,25) = 3.81; *p < 0.05; Figures 3C,D].
Interestingly, a 4-week treatment with the SSRI fluoxetine nor-
malized these β-arrestin 1 expression levels so that they were not
significantly different than the levels observed in naïve animals
(Figures 3C,D).

DISCUSSION
We developed a new method to assess circulating proteins such
as β-arrestin 1 through immunoblot analyses of mouse PBMCs
isolated from whole blood. We showed significantly reduced β-
arrestin 1 levels in PBMCs from anxious/depressed mice. These
decreased β-arrestin 1 expression levels were restored to normal
levels with chronic fluoxetine treatment.

PBMCs WERE ISOLATED FROM UNANESTHETIZED MICE
A recent review from Duman’s group highlighted the need to
develop a biomarker panel for depression. This biomarker panel
should profile diverse peripheral factors that together will provide
a biological signature of MDD subtypes and predict treatment
response (Schmidt et al., 2011). Assessing peripheral protein levels
in PBMCs is an attractive method because PBMCs are circulating
cells that can be easily collected and monitored. Previous stud-
ies demonstrated that PBMCs can be isolated from mouse blood
to assess immunological responses (Fuss et al., 2009). However,
to our knowledge this is the first study to collect PBMCs from
circulating blood of unanesthetized animals. Single-use lancets
were used for submandibular bleeding. This method permit-
ted PBMCs to be collected from peripheral blood circulation
in living and unanesthetized mice. Thus, submandibular bleed-
ing is a useful method to screen putative biomarkers of the
pathophysiology of mood disorders and the response to ADs.
This technique can be easily performed multiple times in the
same animals and can be used with other rodent species such
as rats.

β-ARRESTIN 1 PROTEIN LEVELS CAN BE MEASURED IN MOUSE AND
HUMAN PBMCs
We measured β-arrestin 1 protein levels to determine whether
mouse PBMCs are useful biological materials to screen biomark-
ers for MDD pathophysiology and the AD response. Over the last
decade, several G protein receptor-related genes such as β-arrestins
were found to be involved in the pathophysiology of mood disor-
ders (Schreiber and Avissar, 2004; Beaulieu et al., 2008; David et al.,
2009). Numerous data from clinical studies support the impor-
tance of measuring β-arrestin 1 levels as a peripheral biomarker
of the pathophysiology of mood disorders and predicting the AD
response (Avissar et al., 2004; Schreiber et al., 2009; Golan et al.,
2013). However, no previous study demonstrated ex vivo measure-
ments of β-arrestin 1 levels in leukocytes isolated from whole blood
to compare levels between naïve and anxious/depressed rodents. In
addition, this is the first study to assess β-arrestin 1 by immunoblot
in human and in mouse leukocytes simultaneously by using the
same monoclonal antibody.

In the human experiments, we were able to recover PBMCs
from 7.5 ml of whole circulating blood from healthy volun-
teers. Previous studies showed that larger amounts of blood were
needed for the detection of β-arrestin 1 in human leucocytes (Avis-
sar et al., 2004; Matuzany-Ruban et al., 2005; Golan et al., 2013).
Here, 7.5 ml was sufficient to acquire 30 μg of PBMC lysate for
immunoblotting (Figure 2).

Avissar et al. (2004) demonstrated that β-arrestin 1 levels were
elevated by chronic ADs in rat cortex and hippocampus. How-
ever, by contrast with their human study, they did not provide
data showing that β-arrestin 1 levels in rat PBMCs are affected
by chronic AD treatment (Avissar et al., 2004). Therefore, we also
compared β-arrestin 1 levels in PBMCs of anxious/depressed mice
before and after chronic AD treatment (Figure 3).

β-ARRESTIN 1 IS A PREDICTIVE MARKER OF THE PATHOPHYSIOLOGY
OF DEPRESSION AND THE ANTIDEPRESSANT RESPONSE
To induce an anxious/depression-related phenotype, we utilized
a chronic corticosterone treatment that results in hallmark char-
acteristics of anxiety and depression (for review, see David et al.,
2009; Mendez-David et al., 2013). In order to delineate a panel of
biomarkers of the pathophysiology and the treatment of depres-
sion, it is first essential to screen putative candidates in a model of
anxiety/depression. β-Arrestin 1 protein levels in leukocytes were
reduced when mice were exposed to chronic corticosterone. As
found in previous human studies (Matuzany-Ruban et al., 2005;
Golan et al., 2013), these reduced β-arrestin 1 levels were alleviated
by AD treatment.

LIMITATIONS OF THE STUDY
Measuring protein levels in mouse PBMCs at several time points is
a powerful technique that can be used to reveal potential biomark-
ers for the pathophysiology of depression and the AD response.
However, this study has some limitations that must be consid-
ered when interpreting the current findings. For example, it is
important to distinguish diagnostic biomarkers from treatment
biomarkers (Schmidt et al., 2011). This study does not address
this difference. Further studies are required to assess whether
β-arrestin 1 is a reasonable biomarker for diagnostic and/or drug
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treatments. A study that compares peripheral levels of β-arrestin
1 in stressed animals before and after AD treatment could defini-
tively address this question. It also may be interesting to study
whether there is a correlation between β-arrestin 1 levels and
the severity of the anxio/depressive state (Guilloux et al., 2011).
Moreover, disease conditions are most often signified by the dys-
regulation of complex biological pathways involving multiple key
factors (Dudley and Butte, 2009). Thus, it is unlikely that β-arrestin
1 alone will be a sufficient diagnostic and treatment biomarker.
However, mouse PBMCs might provide useful material to screen
a panel of biomarkers and to provide biological signatures of
MDD and AD treatments. Finally, in our study, β-arrestin 1 levels
were measured using western blots, which is a semi-quantitative
method of evaluating protein levels. The development of an
enzyme-linked immunosorbent assay (ELISA) to assess β-arrestin
1 levels would provide a more quantitative method.

CONCLUSION
In this study, we demonstrated that PBMCs isolated from a small
volume of whole blood in unanesthetized mice using a sub-
mandibular bleeding method may provide a useful biological tool
to assess circulating proteins. This method will permit future
studies to screen potential biomarkers for the pathophysiology
of depression and AD responses. We also confirmed that measure-
ments of β-arrestin 1 levels in PBMCs may serve as a biochemical
marker of depression in humans (Avissar et al., 2004). Overall,
we developed a powerful tool for translational studies that can

easily be used to assess proteins measurements and to provide a
biological signature of treatment response. Identification of a bio-
logical signature could predict the effectiveness of ADs (Fuss et al.,
2009).
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Depression is one of the most frequent and severe mental disorder. Since the discovery
of antidepressant (AD) properties of the imipramine and then after of other tricyclic
compounds, several classes of psychotropic drugs have shown be effective in treating
major depressive disorder (MDD). However, there is a wide range of variability in response
to ADs that might lead to non response or partial response or in increased rate of relapse
or recurrence. The mechanisms of response to AD therapy are poorly understood, and few
biomarkers are available than can predict response to pharmacotherapy. Here, we will first
review markers that can be used to predict response to pharmacotherapy, such as markers
of drug metabolism or blood-brain barrier (BBB) function, the activity of specific brain areas
or neurotransmitter systems, hormonal dysregulations or plasticity, and related molecular
targets. We will describe both clinical and preclinical studies and describe factors that
might affect the expression of these markers, including environmental or genetic factors
and comorbidities. This information will permit us to suggest practical recommendations
and innovative treatment strategies to improve therapeutic outcomes.

Keywords: major depression, resistance, antidepressants, treatment-resistant depression, monoamine

INTRODUCTION
Major depressive disorder (MDD) is among the most frequent
mental disorders, with an estimated lifetime prevalence of 1–16%,
depending on the country (Andrade et al., 2003; Kessler and
Ustun, 2004; Kessler et al., 2010). Recovering from MDD is
a major challenge because the disease dramatically increases
the risk of suicide (Cheng et al., 2000) and non-suicide mor-
tality (Schulz et al., 2002). Practical guidelines recommend
treating MDD with antidepressant (AD) therapy (NICE, 2004;
Bauer et al., 2007; Ramasubbu et al., 2012). Since the initial
serendipitous discovery of the AD effect of monoamine oxi-
dase inhibitors (MAOIs) and tricyclics (TCAs), most ADs have
been pharmacological agents that act on monoamine func-
tion, including serotonin (selective serotonin reuptake inhibitors,
SSRIs), noradrenaline (noradrenaline reuptake inhibitors, NRIs),
dopamine (such as bupropion), and melatonin (agomelatine).
Some drugs act on several of these targets (serotonin and nora-
drenaline reuptake inhibitors, SNRIs) (Krishnan and Nestler,
2008). The main goals of treating MDD are to achieve remis-
sion and to maintain these therapeutic effects over time. In
the absence of any reliable biomarker of MDD, the response to
treatment is still based on clinical assessment as evidenced by
changes on scores on standardized rating instruments, such as the
Hamilton Depression Rating Scale (HDRS) (Hamilton, 1960) or
the Montgomery Asberg Depression Rating Scale (Montgomery
and Asberg, 1979). The response to ADs is typically character-
ized as “non-response” when only minimum improvement is
achieved, “partial response” when the score on the standardized
instrument decreases by 25–50%, “response” when a decrease
of at least 50% is obtained, and “remission” when only residual
clinical symptoms are reported, with a level of psychopathology
under the typical threshold score currently correlated to MDD

diagnosis (Nierenberg and DeCecco, 2001). Using these crite-
ria, several studies, including the naturalistic STAR∗D study, have
shown that only one third of MDD patients receiving ADs achieve
complete remission after a single AD trial (Trivedi et al., 2006).
The remission rate reaches up to 60% after four trials, but the
probability of remission drops significantly after the failure of
two consecutive AD trials (Rush et al., 2006). Moreover, early
improvement predicts sustained response and remission (Lam,
2012). Consequently, the concept of treatment-resistant depres-
sion (TRD) was proposed to describe depressive conditions that
did not reach sufficient remission after treatment (Lehmann,
1974; Sartorius, 1974). Even several criteria have been proposed
to define TRD-including non-response to one AD for at least 4
weeks or failure to respond to multiple trials of different classes
of ADs-there is now an emerging consensus to consider any
MDD patient that did not respond to two or more adequate (in
terms of duration and dosage) AD trials of different classes as
TRD (Berlim and Turecki, 2007). The characterization of TRD
has been improved by considering the level of resistance (sever-
ity and duration) through staging classifications, such as the
Antidepressant Treatment History Form (ATHF) (Sackeim et al.,
1990), the Thase and Rush Model (Thase and Rush, 1997), the
European Staging Model (Souery et al., 1999), the Massachusetts
General Hospital Staging Model (MGH-s) (Fava, 2003), and the
Maudsley Staging Model (MSM) (Fekadu et al., 2009) (for a
review, see Ruhé et al., 2012).

Translational research enables to study the mechanisms of non
response to ADs in animal models. Indeed, this involves invasive
protocols, as particular proteins, brain areas or process have to
be suppressed to elucidate their causal involvement in response
to AD. Therefore, bioassays (forced swim test, tail suspension
tests. . .) and more generally animal models have been designed
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that enable to induce a behavioral deficit after experimental
manipulations (stressors during the developmental period, social
defeat or unpredictable chronic stress during adulthood, chronic
corticosterone). The induced modifications are then assessed via
behavioral testing such as scoring of sucrose preference, of coat
state, of grooming behavior, of anxiety-related behavior. It is usu-
ally observed that chronic ADs reverse the behavioral alterations
that have been induced by the experimental manipulations and
this enables to assess AD response (depending on the magnitude
of the reversal that has been observed, and on the number of
behavioral dimensions that have been counteracted). It is pivotal
here to assess several different behaviors, as it can succeed that
only a specific phenotype is reversed, and not the others as seen
for example in David et al. (2009).

The main aim of this paper is to review the different poten-
tial predictors of response/non response to AD and discuss their
clinical and practical implications. We will successively discuss
the potential mechanisms and correlates of response to ADs with
regard to some general clinical and pharmacological considera-
tions and at the different levels of neurobiological understanding
of AD mechanisms of action (Kupfer et al., 2012), with a par-
ticular consideration of the neuroanatomical, neurotransmission,
molecular, and genetic levels, as well as to potential hormonal and
neuroplasticity aspects (Table 1).

POOR RESPONSE TO ANTIDEPRESSANT THERAPY:
CLINICAL CORRELATES
The efficacy of ADs has been strongly debated recently because
of negative randomized controlled studies in which the response
rates in the placebo control group were as high as 30–40%
(Iovieno and Papakostas, 2012). Rather than arguing against the
efficacy of ADs in MDD, these results indicated some method-
ological limitations of studies recently submitted to the European
or US authorities (Khin et al., 2011). In particular, an inappropri-
ately low baseline disease severity is likely the most problematic
methodological flaw that eliminates the statistical significance of
the difference in the response rate between the active and placebo
groups (Kirsch et al., 2008; Fournier et al., 2010).

Another important methodological consideration is that even
if the rating scales (such as the HDRS) on which the treatment
response is assessed are robust and reliable, not all items of the
scale (e.g., anxiety, somatic, early insomnia, hypochondriasis, and
somatic symptoms) represent equal proportions of the observed
change in the global score (Nelson et al., 2005). This could explain
why a high level of anxiety symptoms could result in an underesti-
mation of the response to treatment and why anxiety disorders are
frequently associated with TRD (Souery et al., 2007). Other clini-
cal characteristics are associated with a higher risk of low response
to ADs. In particular, some MDD patients who meet the criteria
for TRD are later revealed to suffer from bipolar disorder (Fekadu
et al., 2012). Bipolar depression is less prone to respond to ADs
than MDD (Gijsman et al., 2004), even though recent findings
suggest that ADs may be as effective against bipolar depression as
against MDD (Tondo et al., 2013; Vázquez et al., 2013).

Among clinical characteristics, older age has also been shown
to be associated with a lower response rate to ADs. In a meta-
analysis conducted on 15 late life MMD trials and 59 adult MDD
trials, it was found that the response rate drops from 53.9% in

Table 1 | Mechanisms predicting response to antidepressants.

Main predictors of poor response to antidepressant treatment

CLINICAL CORRELATES

• Bipolar depression

• Older age in relation to age or somatic
comorbidities (cardiac, cerebrovascular,
neurodegenerative disorders)

• Poor compliance to antidepressants in relation
to low income, health insurance status,
race/ethnicity

PHARMACOLOGICAL CORRELATES

Drug metabolism • Younger age, sex, smoking status, pregnancy,
drug dose, diet, grapefruit, genetics, enzyme
induction/inhibition

• Ultra-rapid metabolizers in relation to hepatic
metabolism: genetic differences in
drug-metabolizing enzymes (cytochromes
P450; e.g. CYP2D62, CYP2C19)

• Alteration of hepatic, renal or cardiovascular
functions

• Polypharmacy enhances drug interactions,
particularly fluvoxamine, fluoxetine, paroxetine,
nefazodone

Blood-brain barrier • Polymorphisms in genes coding for ABC
transporter proteins, particularly the
P-glycoprotein (P-gp)

• Drugs that are substrates of P-gp have
decreased penetration into the brain

NEUROBIOLOGICAL CORRELATES

Brain structures EEG (alpha and theta activities)

• Lower alpha rhythmic activity in posterior
regions (among amitriptyline non-responders)
and in left hemisphere (SSRIs)

• Higher theta rhythmic activity among
imipramine non-responders

• Decreased pre-treatment theta activity in the
ACC

Neuroimaging (fMRI, PET)

• Lower baseline rostral ACC activity

• Low ACC activity during functional tasks

• Reduction in frontolimbic gray matter volumes
(medial and orbital PFC)

• Smaller baseline hippocampal volume

• Abnormalities in corticolimbic connectivity

• Higher right- over left hemisphere processing

• Higher baseline metabolism in the amygdala
and thalamus, and lower pretreatment
metabolism in the medial PFC

• Insula hypometabolism

Neurotransmission Serotoninergic system

• Alteration of the 5-HT1A pre- and postsynaptic
receptors dynamic

• Polymorphism of the 5-HT transporter gene
(short allele carriers)

• SNPs of tryptophan hydroxylase genes (TPH1
and TPH2)

(Continued)
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Table 1 | Continued

Main predictors of poor response to antidepressant treatment

• SNPs of the 5-HT1A receptor gene (1019C/G;
102T/C; 1438A/G)

• Interaction between stressful life events and
polymorphisms in 5-HT related genes

Noradrenergic system

• Alteration of the dopamine beta-hydroxylase
enzyme/gene

• Deficiency in organic cation transporter 2

• Polymorphisms of the noradrenaline
transporter gene (-182T/C; 1287G/A)

• Polymorphism of the
catechol-O-methyltransferase gene (Val
homozygous)

• Early life stress events (via gene methylation or
acetylation)

Other systems
• Decreased substance P in the cerebrospinal

fluid
• SNPs of the dystrobrevin-binding protein 1

gene (glutamatergic neurotransmission)
• SNPs of the glutamate receptor ionotropic

kainite 4 gene (rs1954787; rs12800734)
• Deletion of the gene encoding the GABA

transporter subtype 1
• Genetic variability in endocannabinoid

receptors (CNR1; G allele of rs1049353 in
females)

• Deficit in the leptin system (decreased leptin
serum levels, reduced leptin mRNA
expression)

Neural plasticity Molecular aspects
• Polymorphism in the BDNF gene (Val allele

carriers)
• Alteration of BDNF in the dentate gyrus

(hippocampus)
• Alteration of protein p11, mediating the

antidepressant activity of BDNF
• Interaction between ongoing stress and the

levels of BDNF
• Zinc deficiency
• Macrophage migration inhibitory factor

deficiency
Cellular targets

• Alteration in adult hippocampal neurogenesis
• Alteration of the generation of new functional

neurons

Hormonal targets HPA axis
• Defect in the HPA axis regulation (defect in

normalization of its overactivity)
• No reduction of the cortisol response to a

dexamethasone/CRH test after 2–3 weeks of
treatment

• Polymorphisms of genes coding for FKBP5,
BclI, ER22/23EK, CRHR1 (rs242941), CRHR2
(rs2270007), CRH-BP, and hsp70 protein

(Continued)

Table 1 | Continued

Main predictors of poor response to antidepressant treatment

• Somatic condition: Cushing’s disease

• Interaction between stressors and genes
(SERT, FKBP5, CRHR1) to predict response to
treatment

Thyrotropin releasing hormone

• Hypothyroidism; Polymorphism of the
deiodinase type 1 gene

ACC, Anterior cingulate cortex; BclI, ER22/23EK, Polymorphisms of glucocorti-

coid receptor gene; BDNF, Brain-derived neurotrophic factor; CRH, Corticotropin-

releasing hormone; CRHR-BP, CRH binding protein; CRHR1, CRH receptor 1;

CRHR2, CRH receptor 2; EEG, Electroencephalography; FKBP5, FK506 binding

protein 5; fMRI, Functional magnetic resonance imaging; HPA, Hypothalamic-

pituitary-adrenal; PET, Positron emission tomography; PFC, Prefrontal cortex;

SERT, serotonin transporter; SNPs, Single-nucleotide polymorphisms; SSRIs,

Selective serotonin reuptake inhibitors; 5-HT, Serotonin.

adults to 45.2% in older patients (Tedeschini et al., 2011). In
adolescents, response rate has been shown to be much higher,
several studies reporting response rate at week 36 from 65 (Tao
et al., 2009) to 80% (March et al., 2006), with a mean remis-
sion rate of 67% (Cox et al., 2012). Whether age itself may
explain the difference remains unclear because somatic comor-
bidities may have a role in increasing the risk of non-response
or partial response to ADs in older patients, particularly cardiac
(Scherrer et al., 2012), cerebrovascular (Miller et al., 2002), and
neurodegenerative disorders (Price et al., 2011).

Sex also constitutes a clinical characteristic associated with dif-
ference in AD treatment response. Indeed, a study suggested that
men respond more favorably to imipramine than women, and
premenopausal women more frequently to fluvoxamine than men
(Vermeiden et al., 2010). In animal studies, Goel et al. (2011)
showed that acute citalopram induced higher neuronal activa-
tion in male brain than in females or gonadectomized males.
This suggests a gonadal hormone influence on complex interac-
tions between serotonin and neural circuits that mediate the stress
axis (see section HPA Axis Regulation below) and could therefore
explain some of the sex differences in the response to AD.

The lack of response to ADs may also be the consequence
of non-adherence to the treatment as the rate of adherence to
ADs has been estimated to be particularly low, varying over
a period of six months from 12.4% for patients taking older
MAOIs and TCAs to 29.3% for those taking SSRIs and 33.6% for
those taking SNRIs (Sheehan et al., 2008). In a 9-week follow-
up period, up to 20% of patients missed taking their treatment
for at least four consecutive days (Demyttenaere et al., 2001).
This poor compliance has been shown to alter the estimation of
response and remission rates (Akerblad et al., 2006). According
to Jin et al. (2008), various factors contribute to non-compliance.
Jeon-Slaughter (2012) found that low income level, combined
with health insurance status and race/ethnicity, predicted non-
adherence to ADs. This was confirmed in a recent review (Rivero-
Santana et al., 2013) that demonstrated that younger people were
less compliant than older patients and minority ethnic patients
were less compliant than white patients. Non-pharmacological
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interventions can improve the adherence to AD treatments.
Vergouwen et al. (2003) found that collaborative interventions
in primary care were associated with clinical benefit, particularly
in patients suffering from MDD who were prescribed adequate
dosages of ADs.

PREDICTORS OF POOR RESPONSE TO ANTIDEPRESSANT
THERAPY: PHARMACOLOGICAL COMPONENT
DRUG METABOLISM
Availability of the drug to its brain targets is one of the first
requisite conditions of its effect and clinical impact. However,
various conditions affect drug delivery such as its metabolism.
Drug metabolism is altered by a wide range of factors such as
age, rate of expression of drug metabolism systems, comorbid
disease, sex, pregnancy, environment, drug dose, enzyme induc-
tion/inhibition, diet, genetics. . . For instance, younger people
metabolize drugs faster than elderly people, men faster than
women, and smokers faster than non-smokers. AD medications
are metabolized mainly in the liver into compounds that are
typically pharmacologically active but with different properties
than the parent drug. Drug metabolism may result in poor
response. Hepatic metabolism mainly occurs via cytochrome
P450 (CYP) enzymes, which comprise more than 200 isoen-
zymes (mainly CYP1A2, CYP2B6, CYP2D6, CYP2C9, CYP2C19,
and CYP3A4/5): they account for 75% of drug metabolism
(Guengerich, 2008), particularly oxidative metabolism.

Variations in CYP genes have been shown to be associated
with modified pharmacokinetic clearance of ADs. In humans,
CYP is encoded by 18 families and 43 subfamilies of genes, cor-
responding to 57 genes and more than 59 pseudogenes. Thus,
many different genes may alter CYP, some patients being poor
and others ultrarapid metabolizers. When ultrarapid metaboliz-
ers are treated with typical doses of ADs, they have low plasma
concentrations and do not respond. Polymorphisms in genes for
crucial CYP enzymes, such as CYP2D6 or CYP2C19, alter the
metabolism of ADs and thus their plasma concentrations (Brosen,
2004). Carriers of the non-functional allele of CYP2C19 exhibit
a 42% decrease in clearance of the SSRI citalopram compared
to carriers of the functional allele (Yin et al., 2006). Bondolfi
et al. (1996) investigated seven non-responders to citalopram; six
were extensive CYP2D6 metabolizers, and all seven were exten-
sive CYP2C19 metabolizers. Furthermore, when administered an
inhibitor of these two enzymes, citalopram serum levels rose in all
subjects, as well as the therapeutic response. However, Grasmäder
et al. (2004) found that plasma concentrations of several ADs
were altered depending on the CYP2D6 and CYP2C19 geno-
type, even if this genotype was unrelated to clinical response.
Peters et al. (2008) using subjects from the STAR∗D study found
no association between 15 polymorphisms of four P450 genes
(CYP2D6, CYP2C19, CYP3A4, and CYP3A5) and citalopram
response. More recently, Mrazek et al. (2011) examined data
from the white non-Hispanic subjects who were treated with
citalopram in the same STAR∗D sample. They found a modest
association between CYP2C19 variation and remission following
citalopram, particularly in a subset of patients able to tolerate the
medication. Thus, evidence on the association between genetic
variations in CYP and AD response is inconsistent and likely
depends on the patients and drug used.

Among the environmental factors that influence pharmacoki-
netics, smoking, treatment adherence, and concurrent medi-
cations are particularly important. There are numerous drug
interactions with cigarette smoking. Suzuki et al. (2011) found
that smoking status significantly affected fluvoxamine concentra-
tion (only in the low 50 mg/d dose group). Together, CYP2D6
genotype and smoking status explained 23% of the variance in
fluvoxamine concentration in this group.

Failure to respond to or tolerate a drug may be related to
comorbid medical conditions (hepatic or renal insufficiency,
cardiovascular disease) and/or to its related polypharmacy.
Comorbid medical conditions that alter hepatic function are
likely to decrease the rate of drug metabolism. In addition, co-
prescriptions increase the risk of drug-drug interactions with ADs
in the treatment of comorbid illness. Drug interactions are more
likely to occur with high-risk drugs, such as fluvoxamine, fluox-
etine, paroxetine, and nefazodone (Richelson, 1998). Coelho and
Brum Cde (2009) investigated the interactions between ADs and
antihypertensive and glucose-lowering drugs at two primary care
units and found that 19 of 29 patients were exposed to 47 inter-
actions involving pharmacokinetic and pharmacodynamic mech-
anisms. When initiating a new prescription, the physician should
select an AD while considering comorbid medical conditions,
including dosage adjustment, possible drug interactions, adverse
effects, and tolerability issues. The physician should also inform
the patient about the influence of co-administered drugs and
simultaneous intake of beverages and food on the bioavailabil-
ity of drugs. For instance, grapefruit juice consumption increases
the mean peak plasma concentrations and the concentration-time
curve of sertraline (Ueda et al., 2009) and fluvoxamine (Hori
et al., 2003).

In case of TRD, therapeutic drug monitoring is a valuable
tool for tailoring the dosage of the prescribed medication to
the individual characteristics. Dose titration is strongly recom-
mended to achieve therapeutic plasma concentrations that allow
for the highest probability of response or remission. In addi-
tion to drug concentration measurements, symptom rating by
the treating physician at baseline and at week 2 is recommended
(Hiemke et al., 2011). In certain situations, AD monitoring could
be combined with pharmacogenetic metabolism tests (Hiemke
et al., 2011). For instance, when the concentrations are out-
side the reference range, pharmacogenetic tests could be recom-
mended to detect polymorphisms that give rise to slow/rapid
metabolizers. Winner et al. (2013) recently demonstrated that
pharmacogenomic-directed prescribing reduced the incidence of
adverse drug reactions and improved the efficacy of AD medi-
cation regimens. Thus, pharmacogenomic testing to determine
metabolic capacity may be a valuable strategy to recognize indi-
viduals who will obtain a therapeutic benefit from a drug.

BLOOD-BRAIN BARRIER
Among the mechanisms of poor response to ADs, the drug
efflux transporters that are expressed at the blood-brain bar-
rier (BBB) and enable drugs to access the brain play a major
role. The BBB is composed of brain capillary endothelial cells in
association with pericytes and smooth muscle cells that delin-
eate the circulating blood from glial cells and the neuronal
terminals of the central nervous system. The BBB limits the
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traffic of substances to trans-cellular transport rather through
the intercellular spaces because the tight junction system of the
trans-membrane proteins acts as a physical barrier. Consequently,
only lipophilic compounds of low molecular weight are able
to cross the BBB. However, various transport systems ensure
wider exchanges through the BBB, including the ATP-binding
cassette (ABC transporters) system (for lipid-soluble molecules)
(Benarroch, 2012). The human genome encodes 49 different ABC
transporter proteins classified into seven subfamilies (ABCA to
ABCG) (Dean et al., 2001). The P-glycoprotein (P-gp) encoded
by the multi-drug resistance 1 (MDR1/ABCB1) gene, the breast
cancer resistance protein encoded by the ABCG2 gene, and the
multidrug resistance-associated proteins 4 and 5 are expressed
by the brain endothelial cells and ensure active efflux of lipid-
soluble molecules from the brain, reducing penetration of drugs
into the brain. Compounds that interact with ABC transporters
can be classified as substrates, modulators, or inhibitors. AD
drugs interact mainly with P-gp. Thus, ADs that are substrates
of P-gp are subject to greater efflux from brain endothelial cells
and decreased penetration into the brain. Moreover, drug-drug
interactions can also be the consequence of competing/synergic
effects on P-gp. Several drugs, including cyclosporine, nifedip-
ine, quinidine, and verapamil, are P-gp inhibitors (O’Brien et al.,
2012). In vivo preclinical studies, particularly in P-gp knock-
out mice, have demonstrated that not all ADs are subject to
the same level of limitation to brain penetration by P-gp (Uhr
et al., 2000, 2003; Uhr and Grauer, 2003; Karlsson et al., 2013).
Moreover, metabolites of some ADs may not be substrates of
P-gp, in contrast to their parent molecules (Weiss et al., 2003;
Grauer and Uhr, 2004; Wang et al., 2008a). Clinical evidence of
the role of P-gp in the response to ADs has been provided by
studies of variants of the ABCB1 gene. Several single nucleotide
polymorphisms (SNPs) of the ABCB1 gene have been identified
and associated with a decreased clinical response to AD (Kato
et al., 2008; Uhr et al., 2008; Sarginson et al., 2010; Lin et al.,
2011; Singh et al., 2012) as well as a poorer tolerance profile
(Roberts et al., 2002; Jensen et al., 2012; de Klerk et al., 2012),
although several studies failed to replicate these results (Laika
et al., 2006; Mihaljevic Peles et al., 2008; Menu et al., 2010).
Furthermore, endogenous and synthetic glucocorticoids also act
as P-gp substrates (Ueda et al., 1992; Schinkel et al., 1995; Uhr
et al., 2002). Hyperactivity of the hypothalamus-pituitary-adrenal
(HPA) axis is one of the most consistent biological hallmarks of
MDD, and it has been suggested that increased penetration of
glucocorticoids into the brain as a result of P-gp inhibition may
contribute to normalization of HPA axis hyperactivity in MDD
(O’Brien et al., 2012). These data suggest evaluation of P-gp inhi-
bition as an augmentation strategy for improving response to AD
therapy.

PREDICTORS OF POOR RESPONSE TO ANTIDEPRESSANT
THERAPY: NEUROBIOLOGICAL COMPONENTS
Based on the understanding we have of the neurobiological mech-
anisms of action of ADs, the response to ADs can be explored
at the following levels: brain structures, neurotransmission, and
molecular targets. We will now describe each of these mechanisms
(Table 1).

BRAIN STRUCTURES AND RESPONSE TO ANTIDEPRESSANTS
Various studies have explored brain changes associated with
response to ADs by using electroencephalography (EEG) (alpha
and theta activities) or neuroimaging (Functional magnetic reso-
nance imaging: fMRI, Positron emission tomography: PET) that
allow deducing potential mechanisms and markers of response
to ADs.

Brain activity measurements by quantitative EEG in the rest-
ing state or during simple tasks have been used to predict
response to ADs. Ulrich et al. (1986) observed increased alpha
rhythmic activity (8–12 Hz) in the posterior regions of the
head on both sides that was higher in amplitude on the domi-
nant side in patients responding to amitriptyline. Subsequently,
Knott et al. (1996) observed higher alpha and less theta rhyth-
mic activity (4–7 Hz) among imipramine-responders than non-
responders. Bruder et al. (2001) observed a difference in alpha
asymmetry between fluoxetine responders and non-responders;
non-responders displayed reduced alpha activity over the left
hemisphere than the right, whereas responders tended to have
the opposite asymmetry. Other studies focused on the brain
regions associated with this altered alpha activity. Bruder et al.
(2008) demonstrated that the difference between SSRI responders
and non-responders involved occipital areas, where differences
in alpha asymmetry were also observed. Theta activity was also
investigated. EEG theta frequencies are generated in various brain
areas, such as the medial prefrontal cortex (PFC), anterior cingu-
late cortex (ACC), hippocampus, amygdala, and ventral striatum.
In the ACC, Pizzagalli et al. (2001) found an association between
pre-treatment theta increases in rostral ACC and responses to
nortriptyline. Mulert et al. (2007) reported similar findings with
citalopram or reboxetine. This pre-treatment change in theta
power in relationship to AD outcome has not been consistently
observed (Cook et al., 2002). However, they demonstrated that
the decrease in prefrontal cordance (i.e., the measure of quan-
titative EEG power that characterizes PFC function) that occurs
after 1 week of treatment only in responders is also predictive of
a better final outcome (Cook et al., 2002, 2009). In another study,
Bares et al. (2008) found that reduction in the PFC theta quan-
titative EEG cordance value after the first week of treatment can
predict the response to venlafaxine. Quantitative EEG measure-
ments are now considered a promising clinical tool for predicting
conventional AD treatment response (Leuchter et al., 2009, 2010).
Interestingly, brain electrical activity has also been used to predict
outcomes of non-conventional ADs, such as the NMDA receptor
antagonist ketamine or non-pharmacological AD therapy, such as
deep brain stimulation (DBS). For example, Duncan et al. (2013)
recently demonstrated that measuring sleep slow wave activity
(0.6–4 Hz) could predict ketamine response in individuals with
TRD, whereas frontal theta quantitative EEG cordance has been
shown to predict long-term AD response to subcallosal cingulate
DBS in TRD patients (Broadway et al., 2012).

The involvement of the rostral ACC in TRD or treatment non-
response is also supported by neuroimaging studies. Indeed, PET
studies have observed increased baseline rostral ACC activity in
MDD patients who subsequently responded to ADs (Mayberg
et al., 1997; Saxena et al., 2003) while an fMRI study demon-
strated that higher ACC activity during precise tasks, such as
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processing negative stimuli, was associated with the most robust
treatment response (Davidson et al., 2003). Moreover, ACC acti-
vation during unsuccessful motor inhibition predicted response
to escitalopram (Langenecker et al., 2007). Interestingly, a recent
study showed that increased activity in the rostral ACC is a predic-
tor not only of treatment outcome to conventional ADs but also to
putative ADs, such as ketamine (Salvadore et al., 2009), or to non-
pharmacological therapy, such as sleep deprivation (Wu et al.,
1999). Non-response to ADs is correlated with low pre-treatment
activity in the rostral ACC (Mayberg et al., 1997; Pizzagalli,
2011), which is one of the most reliable markers for predict-
ing treatment outcome for conventional monoaminergic-acting
ADs, intravenous ketamine treatment, and non-pharmacological
treatments, such as electroconvulsive therapy (ECT) or repeti-
tive transcranial magnetic stimulation (rTMS) (Pizzagalli, 2011).
However, a low level of activity in the rostral ACC predicts a better
outcome for cognitive behavioral therapy (CBT) (Fu et al., 2008;
Pizzagalli, 2011; Roiser et al., 2012).

Gray matter brain volumes and, more recently, forebrain
white matter integrity have also been measured in patients with
MDD (first episode, remittent, or TRD). Frontolimbic gray mat-
ter areas (medial and orbital PFC) were reduced in the most
severely depressed individuals (i.e., treatment-resistant/chronic
group) (Serra-Blasco et al., 2013). Moreover, patients that did
not respond to escitalopram exhibited microstructural abnormal-
ities in fiber tracts connecting the cortex with limbic structures,
such as the ACC (Alexopoulos et al., 2008). In addition, patients
with TRD displayed abnormalities of both internal and exter-
nal capsule integrity connecting cortical to subcortical nuclei and
of the corpus callosum (Guo et al., 2012). Interestingly, these
corticolimbic pathways are negatively impacted by adverse life
events or by genetic polymorphism of the serotonin transporter
(Alexopoulos et al., 2009; Choi et al., 2009), and corticolimbic
connectivity increased as scores on the HDRS decreased during
treatment (Anand et al., 2005). This suggests that assessing cor-
ticolimbic connectivity could be used to predict AD outcome.
Further, the PFC region is one of the favorite targets for DBS
in patients with TRD (Mayberg et al., 2005; Lozano et al., 2008;
Malone et al., 2009). In addition, Dunkin et al. (2000) reported
pre-treatment difference between fluoxetine responders and non-
responders on PFC-related tasks reflecting executive dysfunction.
Recently, Gupta et al. (2013) demonstrated that patients with
TRD exhibited mildly reduced performance across all neurocog-
nitive domains with a superimposed moderate impairment in
verbal working memory. Finally, Bruder et al. (2004) investigated
dichotic listening and demonstrated that patients who respond to
SSRIs differed from non-responders in favoring left- over right-
hemisphere processing of dichotic stimuli. Fluoxetine responders
displayed greater left-hemisphere advantage for words and less
right-hemisphere advantage for complex tones compared to non-
responders. The cognitive, sensorial, or behavioral alterations
shown in AD responders vs. non-responders are likely related to
differences in the functioning of the brain areas underlying these
functions, and thus, this suggests that brain alterations may also
be valuable predictors of AD outcome.

The ACC is not the sole brain region whose activity can pre-
dict AD response. Indeed, improvement of MDD symptoms after

AD has also been associated with lower pre-treatment metabolism
(detected by PET) in the amygdala and thalamus and with higher
pre-treatment metabolism in the medial PFC (Saxena et al.,
2003). The hippocampus has also received some interest, and
a recent study showed that MDD patients who met criteria for
clinical remission at 8 weeks of AD treatment had larger pre-
treatment hippocampal volumes than non-remitters, suggesting
involvement of the hippocampus not only in the pathophys-
iology of MDD but also in treatment outcome (MacQueen
et al., 2008; McKinnon et al., 2009). Larger hippocampal vol-
ume was also associated with a lower probability of relapse
(Kronmüller et al., 2008). Microstructural abnormalities in the
hippocampus have been suggested to indicate the vulnerabil-
ity to treatment resistance (Ruhé et al., 2012). Further, a recent
study pointed to a crucial role of the right insula: indeed, insula
hypometabolism (detected via PET) was associated with poor
response to escitalopram while the opposite was observed con-
cerning cognitive behavior therapy, as insula hypometabolism
was associated with good response to this cognitive therapeutic
approach (McGrath et al., 2013). This indicates that neuroimag-
ing can also help in selecting the appropriate treatment, and
that brain activity does not predict poor response to treatment
in a general way, but poor response to a particular therapeutic
approach.

The crucial role of corticolimbic areas in the response to AD
therapy has also been highlighted by recent impressive preclinical
studies. These studies highlight the mechanisms underlying AD
action in a given region. For example, Vialou et al. (2010) demon-
strated that DeltaFosB induction in the nucleus accumbens was
required for the effects of fluoxetine in the social defeat test,
whereas Li et al. (2010) demonstrated that the effects of ketamine
require synapse formation (particularly mTor-dependent synapse
formation) in the PFC. Further, a recent paper showed that neural
activity in the visual cortex during emotional processing predicts
the response to scopolamine in depression (Furey et al., 2013).

Finally, TRD and/or treatment non-response can also be
indirectly approached by studying the mechanism of non-
pharmacological treatments, including vagus nerve stimulation
therapy (VNS), ECT, and DBS. VNS is approved for the treat-
ment of TRD. In VNS, a battery-powered generator is implanted
in the chest wall and connected to a wire wrapped around the
left vagus nerve in the neck. This wire sends intermittent elec-
trical pulses through the vagal afferent connections to the brain-
stem, which may alter information processing in brain regions
to which it projects, including the noradrenergic locus cœruleus
and serotonergic nuclei as well as the thalamus, hypothalamus,
central amygdala nucleus, bed nucleus of the stria terminalis,
and nucleus accumbens, which are all disrupted during MDD.
Functional imaging suggests that VNS leads to activity changes
in the hypothalamus, orbitofrontal cortex, amygdala, hippocam-
pus, insula, medial PFC, and cingulate (Bohning et al., 2001;
Zobel et al., 2005), suggesting that VNS might aid in the recovery
of MDD patients by reversing the pathophysiological alterations
observed in MDD. ECT is based on the administration of brief
electrical pulses to the scalp to induce depolarization of cortical
neurons and thus brain seizures. It is among the most effec-
tive treatments for TRD and AD non-response. The mechanism
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of action of ECT remains a mystery, but the recent observation
that electroconvulsive shock, the animal analogue of ECT, stimu-
lates precursor cell proliferation in the subgranular zone of the
dentate gyrus as well as hippocampal neurogenesis in the rat
(Madsen et al., 2000) and monkey (Perera et al., 2007) suggests
that pharmacological treatments and ECT may target a common
endpoint, such as neuronal plasticity. Finally, because a number
of clinical studies have demonstrated long-term effects of DBS in
terms of improving symptoms of MDD (Bewernick et al., 2012;
Lozano et al., 2012), the study of the neurobiological mechanisms
underlying the beneficial effects of DBS will contribute to the
understanding of TRD and of the mechanisms underlying poor
response to AD. For example, a recent study by Schmuckermair
et al. (2013) in a mouse model of TRD demonstrated that
repeated nucleus accumbens DBS reversed depression-related
behavior and coincided with changes in stress-induced neuronal
activation of prelimbic, infralimbic, and cingulate areas in the lat-
eral habenula and in the dentate gyrus of the hippocampus, where
neurogenesis was also increased. In addition, Hamani et al. (2010)
demonstrated that DBS in the rat ventromedial PFC induced a
clear AD-like effect that was dependent on the integrity of the
serotoninergic system.

NEUROTRANSMISSION AND RESPONSE TO ANTIDEPRESSANTS
Serotoninergic system
Because TCAs and SSRIs increase serotonin (5-HT: 5-
hydroxytriptamine) availability in the synaptic cleft, the
level of involvement of 5-HT in predicting AD response has
been a focus of research. Consistent with predictions, tryptophan
depletion (which is a precursor of the 5-HT synthesis) in subjects
successfully treated with SSRI prevents AD effects (Delgado
et al., 1999), indicating that 5-HT is essential for the action of
SSRIs. More recently, the utilization of PET permitted the precise
localization of this 5-HT action. SSRI treatment outcome was
related to serotonin transporter (SERT) ratios between the raphe
nuclei and serotonergic projection areas (habenula, amygdala,
hippocampus, and subgenual cingulate cortex) before treatment
(Lanzenberger et al., 2012). In animal models, depletion of
5-HT tissue content by para-chlorophenylalanine, an inhibitor
of tryptophan hydroxylase (TPH), prevented the acute effects of
SSRIs in a bioassay (O’Leary et al., 2007). Rodent studies also
permitted the determination of the precise molecular target of
AD action, particularly through the use of knockout mice for
SERT and several 5-HT receptors. As expected, in a bioassay
assessing effects of sub-acute injections of AD, the action of
fluoxetine was abolished in SERT knockout mice, whereas
the effect of a noradrenaline-preferring AD, desipramine, was
conserved (Holmes et al., 2002). Once the blockade of the SERT
has been achieved, the increased 5-HT in the synaptic cleft will
bind to several 5-HT receptors. One of the most studied is the
5-HT1A postsynaptic receptor. In initial studies, SSRIs failed to
alter immobility in 5-HT1A mutant mice, suggesting that 5HT1A

receptors are critical for the expression of AD-like responses to
SSRIs (Mayorga et al., 2001; Santarelli et al., 2003). However,
a more complex picture later emerged as other studies showed
that the effects of SSRIs were still present in 5-HT1A mutant
mice (Guilloux et al., 2006; Holick et al., 2008). In fact, the use

of 5-HT1A mutants did not allow to distinguish the pre- and
the post-synaptic 5-HT1A receptors, and it is probable that the
involvement of these receptors during chronic SSRIs is dynamic,
as in the initial phase of the treatment the action of 5-HT on
the 5-HT1A somatodendritic receptors may oppose the action
on the post-synaptic receptors, while during the second phase,
the presynaptic receptors get desensitized (see below). It has
also been shown that desipramine, a NRI, still exerts an AD-like
effect in 5HT1A receptor knockout mice despite reduced baseline
immobility in the tail suspension test (Mayorga et al., 2001).
However, the action on the postsynaptic 5-HT1A receptors is
compromised by a concomitant action on 5-HT1A autoreceptors
located in the raphe, which reduces the clinical efficacy of SSRIs
and partly explains their delayed onset of action. Using condi-
tional knockout mice for pre-synaptic 5-HT1A receptors, it was
observed that reduction of 5-HT1A-autoreceptor expression with
unchanged post-synaptic 5-HT1A receptor expression induced
AD-like behavior and augmented SSRI effects (Richardson-
Jones et al., 2010). These observations were recently confirmed
using another experimental strategy, intra-raphe infusion of
small-interfering RNA (siRNA) sequences directed toward the
5-HT1A autoreceptors. The siRNA decreased the expression of
these receptors without affecting post-synaptic 5-HT1A receptors,
concomitant with a robust and rapid AD-like effect (Bortolozzi,
Castañé, Semakova, Santana, Alvarado and Cortés, 2012).

The involvement of 5-HT1B receptors is complex and depends
upon the class of AD used, as well as on the methodology used
to study their contribution (knockouts or pharmacological stud-
ies). Indeed, in 5HT1B receptor knockout mice, desipramine still
has AD-like effects (Mayorga et al., 2001) while pharmacological
blockade of the 5-HT1B receptors with GR 127935 or SB216641
(5-HT1B receptor antagonists) potentiated the effects of the drug
(Tatarczyñska et al., 2004). Concerning SSRIs, an increased sen-
sitivity to these compounds has been observed in mutants (single
mutants for the 5-HT1B receptors) or after 5-HT1B receptors
antagonists (Mayorga et al., 2001), whereas other studies reported
SSRI resistance in the mutants (Trillat et al., 1998). Finally, in dou-
ble knockout for 5-HT1A and the 5-HT1B receptors the response
to acute SSRI was impacted, but not the one to chronic SSRIs
(Guilloux et al., 2011). Other 5-HT receptors are required for AD
action, including the 5-HT2B (Diaz et al., 2012), 5-HT2C (Cryan
and Lucki, 2000a) and 5-HT4 receptors (Cryan and Lucki, 2000b;
Lucas et al., 2007).

Genetic studies confirmed the involvement of 5-HT-related
targets in the outcome of 5-HT therapy. For example, different
studies indicated a polymorphism in the human gene encod-
ing SERT (SLC6A4) as a predictor of response to AD. Heils
et al. (1996) identified a functional polymorphism in the tran-
scriptional region upstream of the SLC6A4-coding sequence
(5-HTTLPR) that affects SLC6A4 expression, in which the l
allele yields twofold higher SLC6A4 expression in the basal state
than the s form. In a meta-analysis of the literature, Kato and
Serretti (2010) demonstrated that the l variant is associated
with a better response rate to AD than the s allele. Nakamura
et al. (2000) further examined the polymorphic region and con-
cluded that the alleles previously reported as s and l should be
respectively divided into four (14A, 14B, 14C, and 14D) and
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six allelic variants (16A–16F). Smeraldi et al. (2006) demon-
strated that among carriers of the l variant, 16F l carriers
exhibited only a partial response to AD and 16D l carriers
exhibited a marginally better response than 16A l allele carri-
ers. Another polymorphism of SLC6A4 has been associated with
an increased response to ADs; carriers with the 12 allele dis-
played a greater response to ADs, particularly when this allele
was also associated with the l variant of the SERT-linked poly-
morphic region (5-HTTLPR) gene (see (Kato and Serretti, 2010)
for a review). However, these findings have not been consistently
replicated.

Serotonin biosynthesis involves TPH. This enzyme has two iso-
forms encoded by TPH1 and TPH2 genes, and SNPs of both genes
have been reported. A significant association of TPH1 218A/C
with response to ADs has been reported (Serretti et al., 2001) but
these findings were not replicated (Kato et al., 2007).

A total of 50 SNPs of the 5-HT1A receptor gene have been
described. Of particular interest is the 1019C/G (rs6295) SNP,
which is related to the altered expression and function of 5-HT1A

receptors. Indeed, the G allele is associated with an increase in
5-HT1A autoreceptors and thus a decrease in 5-HT neurotrans-
mission. An association of this polymorphism with AD response
was found only in Asian and not in Caucasian populations (Kato
and Serretti, 2010). Two important common SNPs of the gene
encoding the 5-HT2A receptor, 102T/C and 1438A/G, have been
described: the C variant of the 102T/C SNP is associated with
lower 5-HT2A receptor expression compared to the T variant,
whereas the A variant of the 1438A/G SNP increases promoter
activity compared to the G variant. Interestingly, the AD response
was higher among the G/G genotype carriers than among the A/G
or A/A carriers, although only in the Asian population (Kato and
Serretti, 2010).

Polymorphisms combine with environmental factors in the
etiology of MDD (El-Hage et al., 2009). For example, stressful
life events predict a better response to escitalopram, but poly-
morphisms in 5-HT related genes, such as 5-HTTLPR, alter these
effects (Keers et al., 2011). Assessment of 5-HT-related polymor-
phisms or pre-treatment PET of 5-HT molecular targets would
improve the prediction of treatment response. Specifically, tar-
geting 5-HT1A autoreceptors to eliminate their initial negative
contribution during AD therapy would accelerate the onset of the
beneficial effects of AD therapy.

Noradrenergic system
Drugs such as the TCA desipramine, and other TCAs that
increase noradrenaline and serotonine neurotransmission, as well
as the NRI reboxetine act by binding to the noradrenaline trans-
porter which increases noradrenaline levels in the synaptic cleft,
activating noradrenergic receptors. The enzyme dopamine beta-
hydroxylase (Dbh) is responsible for the synthesis of epinephrine
and noradrenaline. Mice unable to synthesize noradrenaline and
epinephrine due to targeted disruption of the Dbh gene did not
exhibit altered behavior in bioassays for depressive-like behav-
ior, but ADs with a noradrenergic-preferring action such as
desipramine or reboxetine failed to exert AD-like effects (Cryan
et al., 2001). The same results were obtained with the MAOI
pargyline and the atypical AD bupropion (Cryan et al., 2004).

Surprisingly, the effects of the SSRIs fluoxetine, sertraline, and
paroxetine were also absent or severely attenuated in Dbh knock-
out mice while the effects of another SSRI, citalopram, were not
altered. Restoration of a normal noradrenergic level by L-threo-
3,4-dihydroxyphenylserine restored the behavioral effects of both
desipramine and paroxetine in the knockout mice, demonstrat-
ing that the AD non-response was due to altered noradrener-
gic function rather than developmental abnormalities resulting
from chronic noradrenaline deficiency. Thus, noradrenaline may
be involved in the effects of not only noradrenaline-acting AD
drugs but also 5-HT-acting compounds. The beneficial action
of noradrenergic-acting compounds in the treatment of MDD
may be related to the α2-adrenergic receptor because the AD-
like effects of desipramine are reversed by α2-adrenergic recep-
tor antagonists, such as yohimbine or idazoxan (Yalcin et al.,
2005; Zhang et al., 2009). Other adrenergic receptors are also
involved: the cognitive effects of these treatments are mediated by
post-synaptic α1-adrenergic receptors in the mPFC (Bondi et al.,
2010). However, β2 or β3 adrenergic receptors do not appear to
play a pivotal role in AD effects (Zhang et al., 2009; Stemmelin
et al., 2010).

Finally, the involvement of organic cation transporter 2
(OCT2) in non-response to AD is also of note. OCT2 is involved
in monoamine clearance, and mice deficient in this protein exhib-
ited an altered response to AD (Bacq et al., 2012).

The contribution of the noradrenergic system to AD effects
is largely confirmed by genetic data. Several polymorphisms of
the gene encoding the noradrenalin transporter (SLC6A4) have
been associated with AD response, particularly the rs2242466
(–182T/C) and rs5569 (1287G/A) polymorphisms (Shiroma
et al., 2010). Catechol-O-methyltransferase (COMT) plays a piv-
otal role in the degradation of noradrenalin and dopamine.
Interestingly, the Val158Met (rs4680) polymorphism of the
COMT gene is associated with AD response (Benedetti et al.,
2009; Tsai et al., 2009). Baune et al. (2008) demonstrated a
negative influence of the higher activity COMT 158Val/Val geno-
type on AD response during the first 6 weeks of treatment,
possibly due to the consequent decrease in dopamine availabil-
ity. MAOA is involved in the degradation of monoamines, and
polymorphisms of MAOA have been associated with fluoxetine,
paroxetine, or mirtazapine response (Yu et al., 2005; Tadić et al.,
2007; Domschke et al., 2008b).

Xu et al. (2011) found that early life stress may interact with
the SLC6A2 polymorphism to alter AD response. Such effects
might occur via epigenetic mechanisms, such as methylation or
acetylation.

The assessment of polymorphisms of noradrenergic-related
genes would improve the prediction of AD response. Combining
ADs with α2-adrenergic receptor agonists could also improve the
response rate or accelerate the onset of therapeutic action.

Other neurotransmission systems
One reason for non-response to ADs targeting monoaminer-
gic neurotransmission is that these drugs may be ineffective in
patients with alterations of other neurotransmission systems. For
example, psychomotor retardation, a symptom exhibited by a
subgroup of patients with MDD, has been related to a deficit in
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dopaminergic neurotransmission, particularly in the dorsolateral
PFC. Consequently, these patients may preferentially benefit from
treatment directly targeting dopaminergic neurotransmission.
This has been explored by Taylor et al. (2006), who demonstrated
that MDD patients with reduced pre-treatment performance on
neuropsychological tests had a poor outcome after 12 weeks of
fluoxetine treatment.

Substance P has also been suggested to have a key role in AD
response. For example, decreased substance P in the cerebrospinal
fluid has been associated with poor response to ADs (Carpenter
et al., 2008). This conclusion is supported by convincing genetic
data because the D allele of the angiotensin-converting enzyme
(ACE) gene, which is related to higher ACE plasma levels, is asso-
ciated with higher substance P levels and a more rapid onset of
AD response (Baghai et al., 2004; Bondy et al., 2005; Narasimhan
and Lohoff, 2012).

There is increasing evidence for the involvement of glutamate
neurotransmission in MDD, and glutamate receptors are now
being explored as targets for the treatment of MDD. For example,
a clinical effect was observed when riluzole, a glutamatergic-
acting compound, was added to ongoing AD therapy in TRD
patients (Sanacora et al., 2007, 2008). Ketamine has a rapid AD
effect and improves symptoms in TRD patients or in patients not
responding to ECT (Ibrahim et al., 2011).

This is confirmed by genetic studies. For example, studies
have found an association between a SNP of the dystrobrevin-
binding-protein 1 gene, which is involved in glutamatergic neu-
rotransmission, and AD response (Pae et al., 2007b; Kim et al.,
2008). Furthermore, according to the STAR*D study, a SNP
(rs1954787) of the GRIK4 (glutamate receptor ionotropic kainate
4) gene encoding kainate receptor subunit 1 is associated with
response to citalopram (Mayer, 2007; Horstmann and Binder,
2009; Stawski et al., 2010; Narasimhan and Lohoff, 2012). This
was confirmed in another cohort, the “Munich Antidepressant
Response Signature” (MARS) project (Horstmann et al., 2008,
2010; Porcelli et al., 2011). Horstmann et al. (2010) identi-
fied another SNP (rs12800734) in the GRIK4 gene that is more
strongly associated with response to treatment.

Data to support the involvement of GABA (gamma-
aminobutyric acid) in the response to ADs are sparse, and this
neurotransmitter does not appear to have a pivotal role in AD
effects. However, mice with a deletion of the gene encoding the
GABA transporter subtype 1 (GAT1), which transports extracel-
lular GABA into presynaptic neurons, exhibited non-response to
fluoxetine and amitriptyline (Liu et al., 2007a).

The endocannabinoid system is a modulatory system with
both central and peripheral actions. Two cannabinoid receptors
have been characterized: CNR1 located predominantly in the
brain, and CNR2 in peripheral immune tissue and in glial cells
in the central nervous system. Interestingly, knockout mice for
the CNR1 receptor displayed attenuated response to desipramine
and paroxetine (Steiner et al., 2008). Mitjans et al. (2012, 2013)
demonstrated that genetic variability in endocannabinoid recep-
tors could play a role in clinical response. Specifically, molecular
variations in the CNR1 gene appear to differentiate the response
to citalopram according to sex. In an analysis of SNP vari-
ability in the CNR1 gene, Domschke et al. (2008a) reported

that the G allele of rs1049353 leads to increased risk of non-
response to in female patients. These results suggest a role of
the CNR1 gene in the etiology of MDD and clinical response to
citalopram.

Leptin signaling may be involved in the pathophysiology of
MDD. Kloiber et al. (2013) recently suggested an association
of polymorphisms in the leptin gene with failure of AD to
achieve remission. In this study, decreased leptin serum levels and
reduced leptin mRNA expression were detected in patients with
impaired treatment response, independently of their genotype
configuration.

Endogenous opioids are involved in the regulation of mood
and behavior. Three receptors (mu, delta, and kappa) inter-
act with a family of endogenous opioid peptides (β-endorphin,
enkephalins, and dynorphins). Studies in a mouse model of MDD
have demonstrated that the combination of monoaminergic ADs
and opioid receptor agonists can produce synergistic AD effects
(Berrocoso and Mico, 2009). The mu receptor has been associated
with citalopram response (Garriock et al., 2010). Haj-Mirzaian
et al. (2013) demonstrated that elevated levels of endogenous opi-
oids and nitric oxide due to bile-duct ligation in mice induced an
AD-like effect. The effect was reversed by blockade of the nitrergic
and opioid systems, suggesting an involvement of these systems in
non-response. However, it is difficult to evaluate the risk-benefit
balance of currently available mu opioid receptors agonists as
ADs, partly because of their inherent abuse liability.

NEURAL PLASTICITY AND RESPONSE TO ANTIDEPRESSANTS
Molecular aspects
Once the AD has increased monoamines in the synaptic cleft or
bound to post-synaptic serotoninergic or noradrenergic recep-
tors, it activates second messengers, such as the cyclic adenosine
monophosphate (cAMP) pathway, leading to the production
of cAMP-dependent protein kinase (PKA). This activation may
in turn stimulate nuclear transcription factors, such as cAMP
response element binding protein (CREB), via phosphoryla-
tion. Activated CREB enhances the transcription of many tar-
get genes, including brain-derived neurotrophic factor (BDNF),
which exerts its effects mainly by binding to its specific recep-
tor: the tyrosine receptor kinase B (TrkB). Consequently, non-
response to AD has been investigated in relationship to alterations
of these targets, particularly when polymorphisms of the genes
encoding these proteins have been reported.

BDNF secretion and intercellular trafficking are related to a
SNP in the BDNF gene that causes a valine to methionine sub-
stitution (Val66Met). A meta-analysis by Kato and Serretti (2010)
indicated a better response to ADs in Met allele carriers. Other
neurotrophic/growth factors have also been implicated in TRD
and/or in AD response, including vascular endothelial growth fac-
tor (VEGF), fibroblast growth factor 2, and insulin-like growth
factor 1 (IGF-1).

In CREB mutant mice (CREBaD), the SSRI fluoxetine and NRI
desipramine still induce AD-like effect in bioassays for depres-
sive behavior (Conti et al., 2002). This effect is accompanied by
a desipramine-induced attenuation of the stress-induced activa-
tion of the HPA axis in both CREBaD-deficient and control mice
(Conti et al., 2002). Interestingly, the AD-induced increase in
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BDNF in the cortex and hippocampus is absent in CREBaD-
deficient mice (Conti et al., 2002), indicating that CREB may be a
critical mediator of the transcriptional effects of AD.

Heterozygous bdnf +/− mice, in which the levels of BDNF
in the brain are reduced by approximately half, and mice with
an inducible deletion of bdnf in the forebrain exhibited blunted
AD response in the forced swim test (Saarelainen et al., 2003;
Monteggia et al., 2004). This result is related to the alteration
of BDNF in the dentate gyrus of the hippocampus. Indeed, the
selective deletion of BDNF in the dentate gyrus but not the CA1
region is sufficient to attenuate the effects of desipramine and
citalopram in the forced swim test (Adachi et al., 2008). Further,
in the BDNFMet/Met mice, chronic fluoxetine is no more able to
reverse stress-related behavior (Chen et al., 2006; Yu et al., 2012),
to increase hippocampal BDNF levels and to stimulate dentate
gyrus synaptic plasticity (Bath et al., 2012). It is, however, to note
that the action of desipramine is still present (Yu et al., 2012),
which suggests a specific contribution of the 5-HT system in these
effects. These findings are coherent with clinical findings as it was
observed that serum levels of BDNF were low in MDD patients
and this normalizes after remission (Molendijk et al., 2011). The
molecular target of BDNF is TrkB, and mice with a conditional
deletion of the TrkB gene restricted to the forebrain do not
respond to ADs (Saarelainen et al., 2003). Similar results were
observed in Aquaporin-4 (AQP4) knockout animals. AQP4 is a
key molecule for maintaining water homeostasis in the CNS that
is expressed in adult neural stem cells and astrocytes. AQP4 inval-
idation disrupts the chronic fluoxetine-induced enhancement of
adult mouse hippocampal neurogenesis (which is also a process
crucially involved in the AD response; see next section) as well as
AD-evoked behavioral improvement under both basal conditions
and a chronic, mild stress-evoked depressive state (Kong et al.,
2009).

Stress induces changes in the brain that can persist for the
lifespan. Variations in genes implicated in 5-HT neurotransmis-
sion may interact with environmental factors to influence AD
response (El-Hage et al., 2009). One group of signaling path-
ways involved in the cellular stress response includes the family
of mitogen-activated protein kinases (MAPKs). Bruchas et al.
(2011), focusing on the dorsal raphe nucleus, a brain region in
which corticotropin-releasing factor, kappa-opioid receptors, and
5-HT systems converge, demonstrated that social defeat stress
causes an increase in the activity of the intracellular signaling
molecule p38α MAPK. They demonstrated that p38α MAPK acti-
vation within the dorsal raphe nucleus is responsible for the abil-
ity of stress to trigger depressive-like states. They demonstrated
that in 5-HT neurons, p38α MAPK acts to directly influence SERT
trafficking and ultimately increase the rate of 5-HT reuptake.

Another key molecular player in the response to monoamin-
ergic ADs is p11. Indeed, p11 is downregulated in several
brain regions of MDD patients or in animal models of MDD
(Svenningsson et al., 2006; Alexander et al., 2010), whereas ADs
and ECT increase p11 in the frontal cortex and hippocam-
pus (Svenningsson et al., 2006; Warner-Schmidt et al., 2010;
Oh et al., 2013). This response appears to be related to BDNF
because p11 is reduced in mice in which BDNF is downregu-
lated and increased in mice in which BDNF is overexpressed

(Warner-Schmidt et al., 2010). p11 is also regulated by gluco-
corticoids (Zhang et al., 2008) and pro-inflammatory cytokines
(Warner-Schmidt et al., 2011). Mice that lack p11 throughout
their body display a depressive-like phenotype (Svenningsson
et al., 2006; Warner-Schmidt et al., 2009, 2010), and more inter-
estingly, the response to AD drugs is reduced in these mice
(Svenningsson et al., 2006; Egeland et al., 2011; Eriksson et al.,
2013). Interestingly, the accumbens-restricted overexpression of
p11 is sufficient to induce the depressive-like phenotype in mice
but does not modify the response to ADs (Alexander et al., 2010),
whereas ablation of p11 from pyramidal projection neurons in the
cortical layer 5A does not alter depressive-like behavior but results
in a diminished response to ADs (Schmidt et al., 2012a), indi-
cating that the mechanisms underlying the pathophysiology of
MDD might differ from the mechanisms underlying the response
to ADs.

Recent studies have provided evidence for a BDNF gene ×
environment interaction. Stress and ADs have opposing actions
on BDNF and neurogenesis. Stress decreases and ADs increase
the expression of BDNF in the dentate gyrus granule cell layer.
These changes contribute to the regulation of neurogenesis by
stress and ADs (Duman and Li, 2012). Mutant mice with a het-
erozygous deletion of BDNF, which results in the expression of
approximately half the normal levels of BDNF, display normal
behavior under baseline conditions but exhibit a depressive phe-
notype upon exposure to stress and an altered response to ADs
(Duman et al., 2007; Ibarguen-Vargas et al., 2009).

Other factors have been implicated in the response to AD
(e.g., zinc and cytokines). Clinical evidence suggests that zinc
deficiency induces depression- and anxiety-like behaviors. Zinc
administration improves the efficacy of ADs in MDD patients
and may be particularly relevant for TRD patients. Recent inves-
tigations on the molecular mechanisms responsible for these
observations suggest a role for zinc in the regulation of neuro-
transmitters, antioxidant mechanisms, neurotrophic factors and
neuronal precursor cells. The presynaptic release of zinc from
axon terminals of glutamatergic neurons is prominent in the
hippocampus, where zinc exerts complex pleiotropic effects on
neuronal plasticity, neurogenesis, and neuronal viability, affecting
learning, memory, and emotional regulation (Swardfager et al.,
2013). The neuroprotective properties of zinc at physiological
concentrations may be attributable to the blockade of excito-
toxic Ca2+ in?ux and upregulation of cellular antioxidant sys-
tems. Chronic zinc administration can increase BDNF expression
(Swardfager et al., 2013).

Conboy et al. (2011) explored the expression of macrophage
migration inhibitory factor (MIF) in astrocytes and neurogenic
cells in the subgranular zone of the rodent dentate gyrus and
characterized its presence in stem cells, cells undergoing prolif-
eration, and recently proliferated cells undergoing maturation.
They found that MIF deficiency is associated with a phenotype
characterized by increased anxiety- and depression-like behav-
iors. Furthermore, they determined that in the subgranular zone
of the hippocampus, macrophage MIF expression is modulated
in parallel with cell proliferation by stress, glucocorticoid levels,
and fluoxetine. Both the genetic deletion of MIF and chronic
treatment with the MIF antagonist Iso-1 resulted in reduced
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cell proliferation, and MIF deletion also abolished the enhanced
proliferation induced by chronic fluoxetine.

Moon et al. (2012) provided evidence that macrophage MIF is
regulated by long-term exercise and that it mediates induction of
serotonin and neurotrophic factors, resulting in the amelioration
of depressive behaviors in a rodent model. MIF was upregulated
during both long-term voluntary exercise and repeated electro-
convulsive seizure treatments. The authors demonstrated that
MIF induced TPH2 and Bdnf expression in the rat brain along
with ERK1/2 activation, resulting in an increase in 5-HT levels
by MIF. In addition, direct intra-brain administration of MIF
induced an AD-like response in the forced swim test. These results
demonstrate that MIF induces AD-like behavior and mediates
the effect of exercise on mood improvement (Moon et al., 2012).
Physical activity has neuroimmune effects that are likely involved
in enhanced neuroplasticity, reduced oxidative stress, increases in
5-HT, dopamine, and noradrenaline, and enhanced glucocorti-
coid sensitivity (Eyre et al., 2013). Thus, physical activity should
be recommended in addition to AD therapy to improve drug
response.

Cellular targets
In the past 15 years, the process leading to the generation of
new neurons in the adult hippocampus (adult neurogenesis) has
been shown to be compromised in rodent models of MDD;
this effect is prevented by administration of monoaminergic AD
drugs (see Hanson et al., 2011; Eisch and Petrik, 2012; Petrik
et al., 2012; Bambico and Belzung, 2013; Tanti and Belzung,
2013a,b for recent reviews). These data have been corroborated
by clinical studies (Boldrini et al., 2009, 2012, 2013), although
some contradictory findings have been initially reported (Reif
et al., 2006). Furthermore, these data extend beyond pharma-
cotherapy, as increase in hippocampal neurogenesis has also been
observed after ECT (Malberg et al., 2000) or VNS (Revesz et al.,
2008). However, increase in adult hippocampal neurogenesis
alone is insufficient to induce AD-like effects (Sahay et al., 2011).
Interestingly, studies have established that the ability of AD treat-
ments to stimulate neurogenesis applies to all phases of the gen-
eration of new cells (proliferation, maturation) and is observed in
the ventral and dorsal hippocampus (Tanti and Belzung, 2013b).
Furthermore, adult hippocampal neurogenesis is not only a cor-
relate of the therapeutic action of monoaminergic drugs but
appears to be essential to achieve recovery. Indeed, abolition of
hippocampal neurogenesis by focal X-ray hippocampal irradia-
tion suppresses some and/or all behavioral effects of fluoxetine
and/or imipramine in animals (Santarelli et al., 2003; Airan et al.,
2007; Surget et al., 2008, 2011; Wang et al., 2008b; David et al.,
2009; Perera et al., 2011). Similar results are observed after genetic
ablation of adult neurogenesis (Lehmann et al., 2013). However,
the situation is more complicated if we consider the effects of
newly developed putative ADs: indeed, whereas the effects of a
CNR1 ligand are abolished by suppression of neurogenesis (Jiang
et al., 2005) as observed with monoaminergic-acting compounds,
most of the AD-like effects of MCHR1 (Melanin-concentrating
hormone receptor 1), CRH1 (corticotrophin-releasing hormone),
or V1b (Vasopressin V1b) antagonists are not prevented by abla-
tion of neurogenesis (David et al., 2007; Surget et al., 2008). This

result indicates that although the ability of the treatments used
in the clinic (which all target monoaminergic systems) to elicit
remission relies on neurogenesis, the therapeutic effects of a drug
can also be achieved via neurogenesis-independent mechanisms.
For example, the dual orexine receptor almorexant induces AD-
like effects but can decrease neurogenesis in some cases (Nollet
et al., 2012), and rTMS suppresses the survival rate of proliferat-
ing cells (Czéh et al., 2002). The ability of new cells to contribute
to recovery requires the incorporation of the new neurons into a
functional network, which occurs when these cells are 4–8 weeks
old. Thus, the use of an anti-mitotic agent to suppress neurogen-
esis revealed that the ablation of 2-week-old cells did not modify
the effects of ADs (Bessa et al., 2009), whereas the 4-week-old cells
are recruited after successful AD therapy to facilitate the regu-
lation of the HPA axis after disruption by chronic stress (Surget
et al., 2011). Therefore, it appears that hippocampal neurogenesis
can be considered a process underlying AD non-response, related
to the generation of new functional neurons.

The essential role of adult hippocampal neurogenesis in
achieving remission is further supported by the observation that
environmental factors that contribute to remission also act on
adult hippocampal neurogenesis. Indeed, environmental enrich-
ment and running both enable recovery and stimulate neu-
rogenesis. Furthermore, the AD-like effects of environmental
enrichment are suppressed by genetic abolition of neurogenesis
(Schloesser et al., 2010). Factors associated with higher AD non-
response, such as aging, are also related to lower hippocampal
neurogenesis (Couillard-Despres et al., 2009).

Several hypotheses have been formulated regarding the func-
tion of adult hippocampal neurogenesis. According to some
authors, this process might be crucial for pattern separation
(Clelland er al., 2009; Sahay et al., 2011; Nakashiba et al., 2012;
Tronel et al., 2012), a process that enables the differentiation of
two closely overlapping stimuli. Thus, a deficit in pattern sep-
aration might lead to overgeneralization and cognitive bias. A
restoration of such a deficit could contribute to remission. Others
claim that hippocampal neurogenesis is required for contextual
memory (Shors et al., 2001; Dupret et al., 2008; Deng et al., 2009;
Trouche et al., 2009). Hippocampal neurogenesis is essential for
regulation of the HPA axis (Schloesser et al., 2009; Snyder et al.,
2011; Surget et al., 2011), and an increase in neurogenesis might
facilitate recovery via normalization of HPA axis function. Finally,
hippocampal neurogenesis have also been proposed to be cru-
cial for anxiety behavior (Revest et al., 2009; Fuss et al., 2010;
Mateus-Pinheiro et al., 2013) or executive functions (Burghardt
et al., 2012); if restored, these functions would enable the sub-
ject to react more accurately to the environment. Interestingly,
all of the above-mentioned processes are disturbed in MDD and
could be essential to achieving remission (see Tanti and Belzung,
2013a,b, for reviews).

If hippocampal neurogenesis is crucial in achieving remission,
any strategy that leads to an increase in the number of new neu-
rons in this structure could facilitate recovery or accelerate the
onset of therapeutic outcome when combined with ADs. Several
processes have been shown to increase neurogenesis, including
environment enrichment, physical exercise, and learning. Thus,
one can speculate that combining any of these activities with AD
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treatment could increase the therapeutic outcome of pharma-
cotherapy.

HORMONAL TARGETS AND RESPONSE TO ANTIDEPRESSANTS
HPA axis regulation
It has been repeatedly demonstrated that ∼50% of patients with
MDD exhibit a dysfunction of the tuning of the HPA axis (Young
et al., 1991; Holsboer, 2000; Pariante and Miller, 2001; Pariante,
2003), which can be measured using the dexamethasone-
suppression test or combined dexamethasone/CRH test. Indeed,
these patients exhibit dexamethasone non-suppression, indicat-
ing a defect in the negative feedback that enables the suppression
of the secretion of glucocorticoids in healthy subjects. This dys-
regulation is restored after effective AD therapy, and interestingly,
the therapeutic action of the treatment only occurs once nor-
mal feedback of the HPA axis has been restored (see Belzung
and Billette De Villemeur, 2010, for a review), indicating that
restoration of the HPA axis regulation is mandatory to enable
recovery. Interestingly, normalization of HPA axis overactivity
also occurs after successful ECT (Kling et al., 1994), indicat-
ing that this property goes beyond classical pharmacotherapy.
Thus, the tuning of the HPA axis may be related to the ability
to achieve a therapeutic outcome after treatment. If this outcome
cannot be achieved, a resistance and/or non-response to treat-
ment should be observed (Ising et al., 2007; Binder et al., 2009;
Hennings et al., 2009; Schüle et al., 2009; Horstmann et al.,
2010). This relationship has been demonstrated: a defect in HPA
axis regulation is not only a signature of MDD or of remis-
sion but also a predictor of treatment non-response. Indeed,
using the combined dexamethasone/CRH test, Brouwer et al.
(2006) demonstrated that the AD response rate in high-ACTH
patients was significantly lower than that in intermediate-ACTH
patients. Similar results have been reported by Ising et al. (2007),
who demonstrated that patients who do not exhibit a reduc-
tion of the cortisol response to a dexamethasone/CRH test after
2–3 weeks of treatment are not likely to respond to the current
treatment. However, this has not been confirmed in two other
studies (Paslakis et al., 2010; Carpenter et al., 2011). For example,
Carpenter et al. (2011) rather found an increased pre-treatment
cortisol after DEX/CRH to be associated with sertraline response.
Possibly, rapid initial improvement of the cortisol response fol-
lowing DEX/CRH would be a more effective predictor of response
outcome.

At the molecular level, the negative feedback on the HPA
axis mainly occurs via the binding of glucocorticoids, such as
cortisol or corticosterone, on specific receptors, such as the glu-
cocorticoid receptors (GRs), which have low affinity for gluco-
corticoids and are thus only activated when a high level of stress
hormones is present. The mode of action of GRs is very com-
plex: in the absence of glucocorticoids, GRs are packaged into
a large molecular complex consisting of chaperone heat-shock
proteins, such as hsp90 and hsp70, and co-chaperones, such as
FKBP51, which bind to the receptor and keep it inactive, thus
decreasing the affinity of GRs for glucocorticoids. High FKBP51
induces inhibition of glucocorticoid-related GR activation, and
thus, FKBP51 can be considered a negative feedback loop regulat-
ing GRs (Schmidt et al., 2012b). Interestingly, in MDD subjects,

peripheral FKBP51 reduction is a marker for successful AD ther-
apeutic outcome because FKBP51 levels are diminished in AD
responders but not non-responders(Cattaneo et al., 2013).

The contribution of HPA regulation to treatment outcome
after AD has been confirmed by studies investigating the con-
tribution of genes involved in the tuning of the stress axis after
treatment. Most findings concern the FKBP5 gene. Several reports
have investigated the association of FKBP5 polymorphisms with
the response to AD drugs. In 2004, a strong association between
polymorphisms of the FKBP5 gene and the response to AD was
observed in 280 depressed patients of the MARS sample (Binder
et al., 2004). These results were subsequently replicated in the
STAR∗D sample (Lekman et al., 2008) as well as in another
German sample (Kirchheiner et al., 2008). Interestingly, this rela-
tionship appears to be independent of the class of AD drug
because it was observed in patients treated with TCAs, SSRIs,
or mirtazapine. However, two smaller studies of Spanish and
Korean subjects reported negative associations in small samples
(Papiol et al., 2007; Tsai et al., 2007). In fact, in the patients
carrying the genotypes associated with faster response to AD, pre-
treatment HPA-axis dysregulation was low compared to other
patients (Binder et al., 2004), which might have facilitated the
normalization of the HPA-axis and thus recovery.

Polymorphisms of the GR gene have also been studied in asso-
ciation with treatment outcome. Studies have demonstrated that
the BclI and ER22/23EK polymorphisms are associated with the
response to ADs (Brouwer et al., 2006; van Rossum et al., 2006).
Other association studies have focused on the influence of poly-
morphisms in the CRHR1, CRHR2, and CRH-BP genes. Allele
G carriers at the rs2270007 site of the CRHR2 gene exhibited
a worse response to the SSRI citalopram (Papiol et al., 2007)
when compared to other alleles. Similarly, in a Chinese pop-
ulation, polymorphism at the rs242941 site of the CRH1 gene
has been associated with fluoxetine response (Liu et al., 2007b).
Finally, polymorphisms of genes related to hsp70 protein have
also been associated with poor response to AD (Pae et al., 2007a).
Taken together, these genetic studies strengthen the view that a
pre-treatment defect in HPA axis regulation may predict poor
treatment outcome.

Environmental studies further corroborate this assertion.
Hyperactivity of the HPA axis is related to chronic stress.
Interestingly, two recent publications reported that elevated stress
prior to treatment was associated with a good response to SSRIs
(Keers et al., 2010; Horacek et al., 2011). However, other studies
have shown the opposite (Monroe et al., 1992) or no association
(Bock et al., 2009). These discrepancies could be related to gene ×
environment interactions because the effects of stress on treat-
ment outcome may vary according to genotype. For example, in
patients carrying more than one s allele of the SERT gene (which
is associated with increased vulnerability to stress), the occurrence
of a stressor predicted a poor response to ADs (Mandelli et al.,
2009; Keers et al., 2011). Similar findings were obtained using
a large sample of patients treated with escitalopram; in patients
carrying polymorphisms inducing vulnerability to stress, such as
polymorphism at the rs1360780 site of the FKBP5 gene and at
the rs110402 site of the CRHR1 gene, stressors were predictive of
response to treatment (Keers and Uher, 2012).
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FIGURE 1 | Mechanisms (in blue) associated with antidepressant therapy resistance and recommendations for clinical practice (in green).

Finally, evidence for the involvement of HPA axis feedback
dysregulation in AD non-response is also provided by data from
patients with diseases that are highly comorbid with MDD, such
as Cushing’s disease. Cushing’s disease is a syndrome related
to chronic glucocorticoid excess, due either to an overproduc-
tion of ACTH caused by a pituitary adenoma (66% of patients),
to an adrenal adenoma or carcinoma (24% of patients), or
to ectopic causes (10% of patients). Approximately half of the
patients display MDD (Sonino and Fava, 2002; Pereira et al.,
2010). Interestingly, MDD patients with Cushing’s disease are
poor responder to treatment with classical AD therapy (Sonino
et al., 1986, 1993), whereas a good therapeutic outcome can
be achieved by treatments that normalize the HPA overactivity
(Sonino and Fava, 2002; Pereira et al., 2010). These results con-
firm that excessive function of the HPA axis is associated with AD
non-response.

To improve drug response, pre-treatment HPA dysfunc-
tion should be assessed with the dexamethasone suppression
test or, preferably, the combined dexamethasone/CRH, as this
latter test appears to be more specific (Ising et al., 2007).
Polymorphisms of HPA-related genes, such as the FKBP5,
CRHR1, or GR genes, would also be highly relevant, even if
they are not yet currently used in clinical practice. If these
markers predict poor HPA function, one could predict that
treatments targeting the HPA axis (CRF1 antagonists, V1b
receptor antagonists, GR antagonists, FRBP51 inhibitors) could
be useful therapeutic strategies to improve drug response as

well as the onset of response when combined with more
conventional ADs.

Thyrotropin releasing hormone (TRH)
The relationship between thyroid function and MDD is well-
known. Indeed, hypothyroidism is associated with MDD, and
TRH levels correlate with symptom severity (Bauer et al., 2009).
Furthermore, MDD patients exhibit alterations in several mark-
ers of thyroid function, particularly of the thyroid hormone
triiodothyronine (T3) (see Hage and Azar, 2012 for a review).
Interestingly, T3 is widely used to improve the therapeutic out-
come of AD drugs in patients who exhibit poor response to
treatment (Aronson et al., 1996; Nierenberg et al., 2006), partic-
ularly in those treated with TCAs. Successful treatment with T3
alone has also been reported in some older studies (Feldmesser-
Reiss, 1958; Flach et al., 1958; Wilson et al., 1974). These findings
are further supported by preclinical evidence. Indeed, T3 alone
elicited an AD-like effect in a bio-assay for AD response (Lifschytz
et al., 2006, 2011), whereas the combination of T3 with chronic
fluoxetine increased the effects of the SSRI (Brochet et al., 1987;
Eitan et al., 2010). This effect appears to be related to thy-
roid function because it has also been shown that the effects of
TCAs are reduced in rats in which hypothyroidism has been pro-
voked by the addition of propylthiouracil to their drinking water
(Martin et al., 1987). The effects of T3 occur via an interaction
with nuclear thyroid hormone receptors (TRs). Four such recep-
tors have been described: α-1, α-2, β-1, and β-2. It would be of
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interest to determine which of these receptors might mediate the
effects of T3. A recent study demonstrated that administration
of dronedarone, a specific TRα antagonist, prevented the AD-like
effects of T3, suggesting that the TRα receptor is responsible for
the effects of T3 (Lifschytz et al., 2011). This observation is con-
sistent with the finding that TRα receptors are the most highly
expressed TRs in the brain (Williams, 2008) as well as with the
observation that mice in which this receptor is mutated display
depressive-like behavior (Pilhatsch et al., 2010).

Few studies have investigated the association of polymor-
phisms of thyroid function-related genes with MDD and AD
response. However, the relationship of a polymorphism of the
deiodinase type I (D1) gene (D1 converts inactive T4 to active
T3) with the ability of T3 to augment the effects of AD has been
investigated (Papakostas et al., 2009).

Interestingly, the effects of T3 in patients undergoing AD ther-
apy are particularly remarkable in some subcategories of patients,
particularly in women (Altshuler et al., 2001; Agid and Lerer,
2003) and in patients with atypical MDD.

Further progress could certainly be achieved in improving AD
response by (a) dosing pre-treatment T3 hormones in patients
and (b) studying polymorphisms of thyroid function related
genes. Such studies would enable the segregation of patients
according to their thyroid hormone status and the initiation of co-
therapy with T3 at the beginning of AD therapy in those patients
with the highest thyroid dysfunction.

DISCUSSION
To summarize, we know from various evidence from the lit-
terature that response to ADs can be driven but also altered
at various levels (Table 1). Derived from these data, several
peripheral or central biomarkers can now enable predicting an
increased risk of non-response to AD treatment. They include
markers genetic testing (polymorphisms of P450, ABCB1, SERT,
NERT, COMT, MAOA, leptin, FKBP5, hsp70, GR, BclI, CRHR1,
CRHR2, BDBF, D1, TRα genes, etc), plasmatic dosage (BDNF,
cortisol, FKBP51, etc.) or brain imaging. Predictors of treat-
ment response can easily be uncovered by deduction from
predictors of treatment non-response: for example, if a poor
response to ADs is met in Val allele carriers of the BDNF gene,
this also indicates that good response might be achieved in
the Met carriers. If poor response is shown in patients hav-
ing low rostral cingulate activity, high response is observed
in patients exhibiting elevated pretreatment rostral cingulate
activity.

Based on the potential mechanisms of response to AD, sev-
eral practical implications may be deducted (see Figure 1).
Some of these conclusions have entered clinical routine and
are now part of practical recommendations, such as augmenta-
tion therapy by thyroid hormones, and are sustained by strong
clinical evidence (Shelton et al., 2010). However, other innova-
tive strategies may enter further clinical investigation through
randomized controlled studies. Among these new strategies,
controlling co-medications, smoking status, or weight, assess-
ing pre-treatment hormonal status combined with dexametha-
sone/CRH tests and T3 levels, investigating SNPs of specific
genes known to be implicated in AD non-response, and the

use of brain imaging or EEG to identify brain changes known
to predict poor response to ADs are among the most promis-
ing. A more systematic referral to therapeutic drug monitoring
(plasma concentration quantification) would also be useful as it
appears to be largely insufficiently used given the considerable
inter-individual variability in the pharmacokinetic characteris-
tics of drugs. It enables the adaptation of the dosage of ADs to
achieve the plasma drug concentration that ensures the highest
probability of response (Hiemke et al., 2011). New augmenta-
tion strategies could also be developed based on the evidence
reported in the present review, such as combining monoamin-
ergic treatment with physical activity, cognitive training, stress
reduction, P-gp inhibitors, mu opioid receptors agonists, zinc,
and drugs targeting hormonal dysfunction (T3, FKBP5 inhibitor,
or CRH1 or V1b antagonists). Switching ADs from one ineffective
AD to a similar or different class of ADs and from SSRI/SNRIs
to TCAs, MAOIs, and non-conventional antidepressant drugs,
such as NMDA antagonists, may be other valuable strategies, as
well as switching to somatic therapies, such as ECT, rTMS, VNS,
or DBS.

One of the main obstacles to improving care strategies is the
wide heterogeneity of patients labeled as suffering from TRD
and/or showing insufficient response to conventional AD. This
heterogeneity is the consequence of the relatively poor speci-
ficity of the criteria for diagnosis, which are still based on clinical
evaluation; even the rating scales typically used to assess clinical
response exhibit relatively good inter-rater and test-retest valid-
ity. Moving toward a more systematic use of biomarkers may
improve the characterization of clinical phenotypes of MDD and
their biological, imaging or genetic, proteomic and metabolomic
correlates (Leuchter et al., 2010). As we have extensively reviewed,
although TRD and/or treatment non-response is a consider-
able challenge to improving patient outcome and preventing
severe complications of prolonged depressive states, it represents a
unique opportunity to better understand mechanism of action of
ADs and thus to better understand the pathophysiology of MDD
and improve its clinical characterization. This potential makes
research on TRD and/or treatment non-response a high priority
for new research developments at both the preclinical and clinical
levels.
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Despite the development of valuable new techniques (i.e., genetics, neuroimage) for the
study of the neurobiological substrate of psychiatric diseases, there are strong limitations
in the information that can be gathered from human studies. It is thus critical to develop
appropriate animal models of psychiatric diseases to characterize their putative biological
bases and the development of new therapeutic strategies. The present review tries to
offer a general perspective and several examples of how individual differences in animals
can contribute to explain differential susceptibility to develop behavioral alterations, but
also emphasizes methodological problems that can lead to inappropriate or over-simplistic
interpretations. A critical analysis of the approaches currently used could contribute
to obtain more reliable data and allow taking full advantage of new and sophisticated
technologies. The discussion is mainly focused on anxiety-like and to a lower extent on
depression-like behavior in rodents.

Keywords: individual differences, sex, anxiety, depression, stress, forced swim test, genetic selection, inbred strains

INTRODUCTION
It is now well-accepted that the development of pathologies in
humans is related to individual differences determining either vul-
nerability or resilience. Therefore, individual differences in animal
models of any disease are expected. If such differences are actu-
ally observed, these could allow us to further characterize factors
contributing to them. On the other hand, if we suspect that a
factor is involved in differential susceptibility to develop certain
pathology, we can evaluate the predictive value of this factor.
When searching for the differential susceptibility of animals to
develop a certain behavioral disorder akin to a psychiatric dis-
ease we may be interested in specific aspects that include: (i) a
more in depth behavioral characterization, (ii) the identification
of biological markers, or (iii) the general goal of establishing neu-
robiological correlates of such a disease. In parallel we can study
the putative genes involved. Unfortunately, numerous genes are
usually involved in the development of most psychiatric diseases,
with a minor contribution of each particular gene, making the
study of the influence of particular genes extremely challeng-
ing. We will focus here on the impact of individual differences
in putative animal models of psychiatric disorders, particularly
anxiety, although some complementary references will be made to
depression.

If we are interested in anxiety we need to identify tests to
evaluate anxiety-like behavior (ALB) and models to induce hyper-
anxiety in animals. An excellent overview of the genetic basis of
ALB and some interpretative problems can be consulted (Clément
et al., 2002). There are different tests advocated to evaluate ALB
in rodents. At this point it is important to note that it is now
well-accepted that we can distinguish between fear and anxiety

(Davis et al., 2010). Fear appears in response to the actual pres-
ence of a precise danger (i.e., predator) or signals that precisely
announce the appearance of danger (i.e., a sound signaling the
imminence of a shock). In contrast, anxiety is generated in sit-
uations involving conflict or exposure to dangers that are not
clearly signaled and have a high degree of unpredictability regard-
ing the time and probability of appearance (i.e., the feeling of
danger when rodents are exposed to a novel open space). Sev-
eral tests have been proposed to evaluate anxiety and anxiolytics
(Crawley, 1985; Treit, 1985). Some of them use the sponta-
neous behavior of animals in certain conditions, and others are
based on classical or instrumental conditioned responses. The
formers include activity/exploration in unknown environments
of different configurations [open-field, hole-board, elevated plus-
maze (EPM), or dark–light (D–L) boxes] or social interaction in
unknown environments. Another unconditioned response, the
acoustic startle response (ASR), has also been used as a marker
of anxiety. The second group includes the conditioned burying
test and several operant tasks such as active avoidance/escape
responses, conditioned suppression, and Geller–Seifter conflict
test. The overall impression is that there are no obvious advan-
tages for the second as compared to the former tasks regarding
evaluation of anxiolytics. Consequently, we will mainly refer
to the former tasks, with special emphasis on the EPM, the
most widely used in rodents, and, to a lesser extent, to the
light–dark (L–D; or D–L) test and the ASR. The EPM con-
sists of a plus-maze elevated over the floor, with two (closed)
arms surrounded by walls and two others unprotected (open).
The L–D apparatus has two compartments, one small and dark
and another much greater and illuminated. In the L–D version
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the animals are initially put into the illuminated area and we
measure the latency to enter for the first time in the dark com-
partment, the number of transitions between light and dark
and the time spent in each compartment. In the D–L version,
the animals are introduced into the dark compartment and the
latency to enter into the illuminated area together with the other
described measures are recorded. The EPM and L–D/D–L tests
are based on the anxiety elicited in rodents (which are noctur-
nal animals) by open and illuminated spaces, and the natural
tendency of these animals to explore new environments. These
two opposite tendencies generated a conflict and we expect less
emotional or less anxious animals to spend more time in the
open arms of the EPM and the illuminated area of the L–D
test.

There are two critical and interrelated questions behind the
use of animal models in general that can apply to anxiety. The
first is whether the test measures something related to anxiety
in humans. The second is whether any individual behavioral test
or particular measure within a test is capturing the essence of
anxiety. It is generally assumed that anxiety, as other psycholog-
ical traits, is likely to be a complex theoretical construct, and
therefore it is naïve to assume that we can catch the essence
of the trait with only one single test or one single measure. In
fact, psychometric tests in humans assuming such a complexity,
very often contain subscales measuring different components of
anxiety. In contrast, most reports classifying animals in groups
with putatively different levels of anxiety (or any other behav-
ioral trait) are based on a single test and a single measure
within a particular test (i.e., time spent in the open arms of
the EPM) and this constitutes a strong limitation of these types
of studies. The situation is even worse when we use the same
approach to obtain genetically segregated lines/strains. Therefore,
the approaches to this problem are in part conceptually different in
animal models and humans and this can detract validity to animal
studies.

There is another possible reason for the discrepancies among
the tests that not necessarily relies on the fact that they measured
different aspects of anxiety. Performance in a particular test may be
influenced by factors (genes) other than anxiety that can perturb
the actual relationship between the variable measured and the anx-
iety trait. The perturbing effects of those factors may be markedly
different among lines/strains because of the random selection of
genes related to these interfering factors. In this regard, Trullas
and Skolnick (1993) in a seminal paper compared the magnitude
of the ASR and the time spent in the open arm of the EPM in seven
different mouse strains and showed the expected negative corre-
lation between both variables when the average of values for each
strain were included in the analysis. However, and importantly,
when comparing only two particular strains, the relationship
between the both parameter was erratic, likely because of the
erratic contribution of random selection of non-anxiety-related
genes to the performance of the animals in the two particular
tests.

Exploratory factorial analysis has been repeatedly used to
compare information given by different tests and to identify a
putative anxiety factor. This analysis allows studying how different
individual measures within a test or across different tests load on

some statistically defined orthogonal (independent) axes. Never-
theless, it is important to note that those axes are in principle
statistical not biological and we subjectively named these in func-
tion of the measures strongly loading on these factors. Using this
approach, File et al. (1993) observed that time spent and num-
ber of entries in the open arms of the EPM strongly loaded on
one factor that they called anxiety whereas number of entries in
the closed arms loaded on another factor called activity. When
factorial analysis has been applied to behavior in different tests
presumably measuring anxiety, it is generally observed that key
anxiety-related variables load on different factors, supporting the
multi-factorial nature of anxiety (i.e., Belzung and Le Pape, 1994;
Ramos and Mormède, 1998; Aguilar et al., 2002). It is thus not
surprising that animals can differ in some tests of anxiety but not
in others when for instance comparing strains or the consequences
of certain genetic or environmental (i.e., acute or chronic stress)
manipulations.

Factorial analysis allows not only identifying putative underly-
ing factors but also evaluating the contribution of each factor to
the variability observed in the population under study. As any par-
ticular behavioral variable is likely to be at least partially influenced
by different underlying factors, it is possible that the contribution
of each factor may change among different groups of animals.
To illustrate this problem, factorial analysis of the behavior of
male and female rats in different tests revealed a greater overall
contribution of the factor activity in females and a greater con-
tribution of the factor anxiety in males (Fernandes et al., 1999).
It is expected this would happen when comparing strains or
genetic or environmental manipulations and could contribute to
explain quantitative differences in the loading of certain partic-
ular variables among different reports. It is particularly notable
the discrepancies as to whether or not some variables related to
activity load on the same factor as more anxiety-related measures
(Ramos et al., 1997; Carola et al., 2002; Kanari et al., 2005; Milner
and Crabbe, 2008; Takahashi et al., 2008). However, this is not
so surprising. If we are working with high emotional animals,
a marked reduction of any type of activity in novel environ-
ments is expected (also depending on the configuration of the
environment), whereas such a generalized reduction of activity
would be lower and more focused on the most dangerous parts
of the apparatus in less emotional animals. In sum, exploratory
factorial analysis can help to identify key behavioral measures
associated with a particular trait, but we have to be aware that
the quantitative relationship of these measures with the trait of
interest can be modulated by a wide range of environmental
and genetic factors. This can explain the discrepancies among
the studies regarding the load of a particular measure on the
factor of interest (i.e., anxiety), but also the inconsistencies in
the relationship between key behavioral measures and biological
parameters.

There are different, usually complementary, approaches to the
study of individual differences that are summarized in Table 1:
(a) the study of phenotypic differences in a non-selected outbred
population of animals; (b) the study of animals genetically selected
for a particular characteristic; (c) comparison of already avail-
able inbred strains; and (d) the study of genetically manipulated,
mutant, animals.
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Table 1 | Different approaches for the characterization of individual differences.

Approach Groups

Normal population (outbred) Natural variations in trait A Animals with high, intermediate, or low levels of the trait A

Induced variations in trait A Affected and non-affected animals, which have or not the trait A

Polymorphisms of genes of interest Animals with different alleles

Genetic selection for a trait (A or another) Animals (inbred or outbred) with high or low levels of the trait (A or another)

Comparison of already existing inbred animals Animals with different levels of the trait A

Genetic manipulation of targeted genes Wild-type, heterozygous, or homozygous animals, with different levels of the trait A

After the selection or classification, several behavioral or biological measures are taken in the different groups of animals.

INDIVIDUAL DIFFERENCES IN NON-SELECTED
POPULATIONS
Depending on the main objectives, there are three main possi-
bilities for the study of individual differences in non-genetically
selected populations of animals (Table 1). If we suspect that
anxiety could be associated to certain behavioral or biological
characteristics, we can classify the animals on the basis of ALB
and then study putative differences in those characteristics pre-
sumably related to this trait. If we are interested in how certain
individual characteristics are predictive of the consequences of
exposure to conditions, usually stress, that can elicit hyper-anxiety
or depression, we classify the animals on the basis of the trait
of interest and then expose the animals to environmental chal-
lenges. In this way we can support or reject the notion that there
are differences in the consequences of stress that are related to the
selected pre-stress trait. Finally, we can analyze how allelic variabil-
ity in a population (polymorphisms) is related to the development
of ALB.

SEARCHING FOR ASSOCIATION BETWEEN A PARTICULAR TRAIT AND
OTHER BEHAVIORAL OR BIOLOGICAL CHARACTERISTICS
We can first expose the animals to a particular test (i.e., the EPM),
select a particular variable measured in the test (i.e., time spent
in the open arms), and classify the animals by the median of
the time spent in the open arms in low or high anxiety (LA or
HA). In some cases, we could be interested in comparing only the
extremes of the population after grouping it for instance in thirds
or quartiles. After that, we would test the animals in other situa-
tions reflecting the traits we want to relate to anxiety. In addition
to the problem already discussed of relying in one single mea-
sure, the above approaches require behavior of animals in the
chosen test having a high degree of consistency when animals are
repeatedly tested. One serious drawback is the fact that animal
behavior can change after repeated exposure to the same situation
so that the factors mainly contributing to a particular behavior
can change. This is the case of the EPM and the forced swim
test (FST).

The effects of prior experience with the EPM are not consis-
tent across reports, some authors reporting changes and others
not. Nevertheless, it has been repeatedly reported that experience
of animals with the EPM can blunt the response to anxiolytics
(i.e., File et al., 1993; Treit et al., 1993). Two different explanations
have been offered: (a) during the first exposure animals would

develop phobia to the open arms that is not sensitive to classi-
cal anxiolytics (File et al., 1993); or (b) during the first exposure,
the activity is motivated by curiosity but also by searching for an
escape (Roy et al., 2009). If the latter factors are reduced during
the second exposure because the animals already knows that no
escape is possible, the interest for exploring the more dangerous
open arms can diminish and consequently drug-induced reduc-
tion of anxiety is not enough to overcome the low motivation to
explore. Regardless of the final explanation, factorial analysis has
confirmed that open arm entries are influenced by different factors
during the first and the second exposure to the EPM (File et al.,
1993; Holmes and Rodgers, 1998). In assessing test–retest reliabil-
ity of the EPM measures results are also inconsistent, with good,
intermediate, or bad reliabilities (i.e., Pellow et al., 1985; Lister,
1987; Andreatini and Bacellar, 2000). It is possible that discrep-
ancies regarding the influence of prior experience with the EPM
are related to the contextual memory capabilities to remember the
novel environment during a second exposure as well as to the dif-
ferent contribution of anxiety versus motivation to explore among
individuals and strains. Animals with poor contextual memory
would be expected to perform more similarly during two expo-
sures to the EPM. Animals in which a high motivation to explore
predominates over or compensates for high levels of anxiety, may
markedly reduce the open arms exploration when the environ-
ment is already known. On the contrary, animals in which HA
predominates over motivation to explore during the first exposure
may explore more the open arms during a second exposure when
anxiety was probably reduced. In those animals whose contribut-
ing factors, whatever the reasons, do not markedly change from
the test to the retest, a good correlation could be found, whereas
this correlation would be low if contributing factors drastically
change.

The FST was described by Porsolt et al. (1977) as a test to
evaluate antidepressants. The classical procedure involves a pre-
exposure (pre-test) to the water tank for 15 min, followed by
administration of three doses of antidepressants over the next
24 h, the last administration 1 h before a second exposure to
the tank for 5 min. Time spent immobile during the test was
the critical measure. We further introduced measurement of three
different behaviors (struggling or climbing, mild swim, and immo-
bility; Armario et al., 1988), an approach presently followed by
most researchers. Moreover, we demonstrated that a pre-test was
not needed to detect antidepressant activity in rats, although
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the efficacy of antidepressants was better after previous experi-
ence with the situation (Armario et al., 1988; Martí and Armario,
1993). It is well-known that forced swim behavior of animals can
markedly change from the first to the second exposure (Porsolt
et al., 1978). Changes in behavior from the pre-test to the test are
likely to be the result of at least two opposite factors: the coping
style (proactive or passive) of the animals and the learned expe-
rience about the inescapability of the situation. It is thus hardly
surprising that not only the behavior during the first exposure
but also the changes from the first to the second exposure are
markedly different among strains of rats (Martí and Armario,
1996). In view of all these results it is considered that the FST
can evaluate individual differences in coping strategies, certain
environmental conditions (i.e., exposure to uncontrollable stress)
enhancing passive (depression-like) coping that is reversed by
antidepressants. Unfortunately, the relationship of the FST with
other behavioral traits, particularly those also involving coping
strategies, has been poorly explored in non-genetically selected
populations. It is noteworthy in this regard that the FST has been
scarcely compared with the tail suspension test (TST), another
test based on the same principle as the FST that can only be
applied to mice (Stéru et al., 1985). When such a comparison has
been made using two different outbred mice strains, NMRI mice
showed more immobility than CD1 mice in the TST, but the oppo-
site was found in the FST (Vaugeois et al., 1997). Although we can
hypothesize that the discrepancies are due to the contribution of
specific factors to each test in addition to the common coping
style, more studies are needed. Regarding the relationship of the
FST with ALB, the available data support a low or null relationship
(Andreatini and Bacellar, 1999; Naudon and Jay, 2005; do-Rego
et al., 2006; unpublished data). To our knowledge only one paper
has studied the consistency of immobility in the FST, using the
classical pre-test/test procedure and comparing the immobility
in the tests performed either 2 or 4 weeks apart (Drugan et al.,
1989) and the correlation was reasonably good (r = 0.72 and 0.63,
respectively).

We need more studies on test–retest consistency in tests of both
ALB and depression-like behavior so far as this consistency is crit-
ical for proper assignation of each subject to a particular group,
especially when only two groups are formed in function of the
median. This problem is partially overcome if we assigned subjects
to at least three groups (lowest, intermediate, and highest thirds)
and all of them are further studied. This allows us to compare the
two extreme groups, thus reducing the probability of incorrectly
assigning animals to groups. Moreover, the intermediate group
can give us information about the logic of the results obtained
as we expect this group being in between the other two in any
parameter of interest.

A well-known example of the use of non-genetically selected
animals to study individual differences has been the character-
ization of the high responder (HR) and low responder (LR)
phenotypes. This classification was based on their activity (high
versus low, respectively) during prolonged exposure (up to 2 h) in a
novel environment. It was initially reported that activity of animals
in a particular novel environment (a circular corridor) was related
to the initial acquisition of amphetamine self-administration, with
HR rats acquiring this behavior faster and more strongly (Piazza

et al., 1989). Later it was observed a higher or more prolonged cor-
ticosterone response to stress in HR as compared to LR rats that
may affect behavioral responsiveness to psychostimulants (Piazza
et al., 1991). The rationale for focusing on corticosterone was the
strong involvement of the hypothalamic–pituitary–adrenal (HPA)
axis in stress and in several aspects of the response to addictive
drugs (Piazza and Le Moal, 1998; Koob and Kreek, 2007). The
activation of the HPA axis is a prototypical response to both sys-
temic (i.e., hemorrhage) and emotional stressors (i.e., predator
odor exposure) in all vertebrates. Systemic and emotional stressors
are differentially processed within the brain but signals converge at
the paraventricular nucleus of the hypothalamus (PVN), the key
central controller of the HPA axis. The release of corticotrophin-
releasing hormone (CRH) and other secretagogues formed in the
PVN into the pituitary portal blood is the primary event leading to
the activation of synthesis and release of adrenocorticotropic hor-
mone (ACTH) in the anterior pituitary. This hormone controls
the synthesis and release of glucocorticoids (cortisol in humans
and most mammals, corticosterone in rodents) that exert numer-
ous peripheral and brain effects important for the behavioral,
physiological, and pathological consequences of stress. Another
important characteristic of the activation of the HPA axis is that
plasma levels of ACTH and corticosterone is consistently related to
the intensity of stressors and can be therefore used as a biomarker
of stress (Armario et al., 2012).

Other authors further confirmed, using a rectangular open-
field, that HR rats showed higher HPA activity at both peripheral
and central levels, including enhanced CRH gene expression in the
PVN (Kabbaj et al., 2000). However, HR–LR rats also differed in
anxiety. This is an important problem when we are trying to find
biological correlates of specific behavioral traits and gives support
to the importance of a more extensive behavioral characterization
of the animals in these types of studies.

In order to know whether the differential corticosterone
response was related to either novelty-seeking or anxiety trait, we
exposed the rats to both a circular corridor and the EPM, demon-
strating that activity in the circular corridor and time spent in the
open arms of the EPM were completely independent variables.
This allowed us to classify animals in function of novelty-seeking
(HR–LR) or anxiety (HA–LA). We reported that HR showed
higher HPA response to stressors than LR rats, confirming pre-
vious reports, whereas no differences were found between HA and
LA rats (Márquez et al., 2006). The latter results appear to indicate
that HPA responsiveness to stress is not a biomarker of anxiety
and this conclusion is supported by other data presented in this
review.

CHARACTERIZING AFFECTED AND NON-AFFECTED INDIVIDUALS
AFTER STRESS
The existence of individual or strain differences in susceptibility
to develop hyper-anxiety or depression-like behavior under nor-
mal conditions or after stress is a good opportunity to search for
the behavioral and neurobiological correlates of vulnerability. It
is common to find controversial results in the literature, but in
most cases not appropriate attention is given to the origin of the
controversies. In addition to living conditions/facilities and proce-
dural differences, a possible source of discrepancies is the genetic
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differences among currently used outbred mice and rat strains.
This is a problem difficult to solve, but if there are consistent
discrepancies among particular labs regarding the consequences
of certain stress models, attention should be paid to the possi-
ble differences in the strain of animals they are using. It is more
likely that discrepancies can appear when using inbred rat or mice
strains, which nevertheless offer unique experimental possibilities
(see later).

The usefulness of classifying the animals in function of the
impact of stress and further exploring possible correlates is exem-
plified by the work done by Cohen’s lab with putative animal
models of post-traumatic stress disorder (PTSD). They demon-
strated in rats that a brief exposure to cat urine odor can trigger
long-lasting (weeks) increases in ALB as measured by the EPM and
the ASR. They classified the animals in function of the degree of
alterations in ALB caused by odor exposure in well-adapted and
mal-adapted (Cohen et al., 2003, 2005) for further exploring ther-
apeutic strategies (Matar et al., 2006) or neurobiological changes
associated to the differential response to cat odor (Kozlovsky et al.,
2007). In some cases an additional intermediately affected group
was also studied (Kozlovsky et al., 2007). This approach is very
useful for the characterization of biological factors involved in
vulnerability or resilience, but we cannot know whether differ-
ences were present before exposure to the triggering situation (i.e.,
stress) or they developed as a consequence of such an exposure.
Transversal human studies have the same problem that can be
solved with longitudinal studies. In animals, this problem can
be overcome measuring certain behavioral and biological vari-
ables before and after the triggering situation. For instance, it
has been reported in rats that ASR before exposure to a puta-
tive model of PTSD (one session of inescapable shock followed
by weekly reminders) predicts the stress-induced enhancement of
the ASR, which was only observed in those rats assigned to the
top third group before exposure to stress (Rasmussen et al., 2008).
Although these types of results need replication from different labs,
it is a reasonable approach that parallels longitudinal studies in
humans.

In the last decades, an animal model of chronic stress that uses
chronic irregular exposure to a combination of different types
of stressors over a period of one to several weeks has attracted
considerable attention. This model of chronic stress was devel-
oped by Katz et al. (1981). The basic idea is that this stress model
may be closer to human situations in which the type of stressors
encountered daily as well as the time when they appear have a
high degree of unpredictability and uncontrollability. The terms
chronic unpredictable or chronic variable stress (CUS or CVS)
have been used to refer to this model, but the term chronic mild
stress (CMS), popularized by Willner’s laboratory in a series of
seminal papers, starting in 1990 (Willner, 2005), is frequently
used. The interest for CUS mainly derived from the reduction of
sucrose consumption typically observed after 4 weeks of expo-
sure to the stressors. As rodents like sweets, the reduction of
sucrose intake is considered as a sign of anhedonia, a cue symp-
tom of depression, which is corrected by antidepressants. It is
frequently reported that such procedure enhances anxiety- and
depression-like behavior, the latter reflected in anhedonia (i.e.,
reduced sucrose consumption) and passive coping strategies (i.e.,

increased immobility in the FST or the TST) (Willner, 2005;
Hill et al., 2012).

Despite its extensive use, the CUS model has still important
concerns. One is that the actual contribution of each particular
stressor is not known, and it is difficult to predict the conse-
quences of the different protocols used and which ones are the
most appropriate. Another is related to the precise protocols used
to evaluate sucrose preference (i.e., with or without prior food
or water deprivation) and the extent to which changes in sucrose
intake are an index of anhedonia. As chronic stress can reduce food
intake, thus inducing a certain degree of anorexia, it is question-
able the use of sucrose, which has caloric properties, to evaluate
the purely hedonic properties of sweet solutions. This caveat is
supported by a study in rat that observed reduction of sucrose
but not saccharin consumption after CUS (Gronli et al., 2005).
Regarding CUS-induced changes in anxiety, there are discrepant
results, with absence of effects or even reduced anxiety in some
cases (i.e., D’Aquila et al., 1994; Harris et al., 1998; Vyas and Chat-
tarji, 2004; Mitra et al., 2005; Matuszewich et al., 2007; Kompagne
et al., 2008).

It is likely that the origin of the discrepancies is at least in
part due to genetically or environmentally determined differences
in susceptibility among the different animals used. For instance,
two reports have demonstrated the importance of individual dif-
ferences by comparing two different outbred rat strains (Nielsen
et al., 2000; Bekris et al., 2005). Two other studies have followed
the approach of classifying animals in function of the impact of
CUS, an approach that seems very promising with this particu-
lar model. Li et al. (2010) classified Wistar rats in anhedonic and
non-anhedonic (reduction or not of sucrose preference) after CUS
and observed also differences in other variables including behav-
ior in novel environments and in the FST. Overall, CUS exposure
resulted in reduced ALB in the open-field and EPM, but this anxi-
olytic effect was restricted to non-anhedonic (stress resistant) rats.
These results nicely illustrate that the impact of CUS may be oppo-
site if we are working with vulnerable versus resilience populations
of animals. Using a similar criterion, Christensen et al. (2011) clas-
sified rats exposed to CUS as vulnerable or resistant and studied
the differential gene expression in granular cells of the ventral
dentate gyrus (taken by laser micro-dissection). More system-
atic studies using this approach are needed with CUS, a model
of depression that is gaining acceptance among researchers and
it is very good to explore individual differences in vulnerability
to stress.

GENETIC POLYMORPHISMS
In contrast to human studies, the impact of polymorphisms in ani-
mals is still in its infancy. However, some interesting results have
been obtained regarding anxiety and depression. For instance, a
rare single nucleotide polymorphisms (SNP) in the gene coding
for vasopressin has been found in a normal population of Wistar
rats that is more frequently present is those animals characterized
by high ALB after genetic selection (Murgatroyd et al., 2004). This
SNP in the regulatory region of the vasopressin gene resulted in
enhanced vasopressin gene transcription in the PVN that appears
to be strongly associated to the HA trait. Similarly, variations
in the promoter region of a gene involved in the regulation of
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circadian rhythms (Per3) have also been associated to anxiety in
mice (Wang et al., 2012). Two inbred rat strains that markedly
differ in ALB, Lewis and spontaneously hypertensive rats (SHR),
showed a SNP in the 3′-untranslated region of the α-synuclein
gene, which codes for a (mainly) presynaptic protein associated to
several brain diseases (Chiavegatto et al., 2009). This SNP results
in enhanced expression of α-synuclein in the hippocampus and is
associated with the enhanced anxiety of Lewis rats. SNP affect-
ing depression-like behavior has also been reported. Thus, a
C1473G polymorphism in the mouse tryptophan hydroxylase 2
gene (which code for the enzyme responsible for the brain synthe-
sis of serotonin) is observed in several inbred laboratory mice but
not in wild mice (Osipova et al., 2010) and those strains homozy-
gotes for the G allele are characterized by high levels of inter-male
aggression and immobility in the FST (Osipova et al., 2009). These
types of studies are likely to contribute to a better comparison of
animal and human studies.

ANIMALS GENETICALLY SELECTED FOR ANXIETY
There are several well-characterized examples of animals geneti-
cally selected for ALB. The outbred Roman high avoidance (RHA)
and Roman low avoidance (RLA) rats were obtained by genetic
selection on the basis of their performance in a two-way active
avoidance task (see Steimer and Driscoll, 2003). It was later
found that the two lines differed not only in active avoidance,
but also in terms of emotionality, the RLA rats being more
emotional than RHA rats. The lines differ in some tests of anx-
iety more markedly than in others, being particularly relevant
the inconsistencies regarding the EPM. A process of inbreed-
ing has been carried out to obtain RHA and RLA strains that
has essentially maintained the behavioral differences (Escorihuela
et al., 1999). In Landgraf ’s lab it has been obtained genetically
selected lines of HA- and LA-related behavior (HAB, LAB) from
Wistar rats and CD1 mice on the basis of the time spent in
the open arms of the EPM (Liebsch et al., 1998b; Kromer et al.,
2005). Similarly, genetic selection has allowed obtaining several
lines of rats and mice showing depression-like behavior, includ-
ing Flinders sensitive rats, congenitally learned-helplessness rats
and H/Rouen mice (El Yacoubi and Vaugeois, 2007). Never-
theless, because the present review aims to identify strategies
and problems associated with the characterization of individ-
ual differences, we will focus only on a few representative
examples.

When we want to obtain genetically selected animals we use
certain parameters to select the animals that are directly related
to the problem of interest. The adequacy of the genetic process
is evaluated measuring such behavior in each generation and the
selection of the extremes in each generation. The selection process
can result in two genetically heterogeneous outbred lines or in two
genetically homogeneous inbred strains. We can thus eventually
obtain stable lines/strains differences in the measure(s) of interest
that are maintained across generations. If we are interested in
selecting animals for ALB we can expose the animals to the EPM
and choose a particular variable (i.e., the time spent in the open
arms) to select the extremes of the population and mate males and
females having the same phenotype to obtain two lines markedly
differing in intensity. This has been the case of HAB–LAB rats

(Liebsch et al., 1998b). The authors demonstrated that the two
lines showed clear differences not only in the EPM but also in
the D–L test (Henniger et al., 2000), what gives support to actual
differences in ALB. In contrast, the ASR, which is considered to
be positively related to anxiety, was lower in HAB as compared to
LAB rats under normal conditions and after sensitization by prior
exposure to footshock (Yilmazer-Hanke et al., 2004). Interestingly,
factorial analysis revealed a higher contribution of anxiety and a
lower contribution of activity to explain behavioral variability in
HAB as compared with LAB rats during exposure to the EPM (Ohl
et al., 2001).

On the other hand, HAB and LAB rats also appear to differ in
another important trait, coping behavior, which identify whether
animals are prone to develop passive or active strategies when
facing novel aversive situations. During exposure to forced swim
LAB rats show higher levels of active (struggling) behavior and
lower levels of immobility than HAB rats (Liebsch et al., 1998b).
These results obtained in HAB–LAB rats can be explained in two
ways: (a) anxiety may markedly influence coping behavior, or (b)
random genetic selection of genes resulted in parallel selection of
genes influencing coping behavior. Factorial analysis can help to
choose between the two hypotheses. As struggling behavior in the
FST loaded on a different factor than EPM open arm entries and
time spent in light in the L–D test (Salomé et al., 2002), it appears
that the hypothesis of random selection of genes is more plausi-
ble. However, it is intriguing that a negative relationship between
anxiety or high emotionality and active behavior in the FST has
been repeatedly reported in genetically selected rat lines/strains
(Abel, 1991; Paré and Redei, 1993; Piras et al., 2010), whereas no
relationship appears to exist between classical anxiety measures
and forced swim behavior in normal populations of rats and mice
(earlier commented).

The above results illustrate some of the critical issues we are
dealing with when selecting animals on the basis of a specific cri-
terion for ALB. If animals also differ in other tests presumably
related to the construct of anxiety (i.e., D–L, ASR), then we are
more confident that the lines/strains really differ in anxiety. On
the contrary, if no differences are observed in other tests, we have
to be more cautious and assume that the selected lines only differ
in certain aspects of anxiety.

In searching for the neurobiology of behavioral traits, it is
common to study whether two selected lines also differ with
respect to some biological variables of interest based on specific
hypotheses about such a relationship. For instance, attention has
been devoted to the putative relationship between anxiety and
the activity of the HPA axis usually comparing a pair of lines
differing in anxiety. Unfortunately, such studies can lead to spuri-
ous and confusing results due to the already discussed random
selection of genes specifically involved in the control of anxi-
ety or in the control of the HPA axis. For instance, there is a
reasonable degree of accordance in that RLA (HA) lines/strains
showed an enhanced HPA responsiveness to stress as compared
to RHA (LA) lines/strains. This is true particularly regarding
emotional or predominantly emotional stressors but not systemic
stressors (i.e., Gentsch et al., 1982; Carrasco et al., 2008). How-
ever, the comparative HPA response of HAB–LAB rats to stressors
showed different results depending on the particular stressor used
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(Liebsch et al., 1998a; Landgraf et al., 1999; Frank et al., 2006). The
lack of consistent relationship between anxiety and HPA respon-
siveness is also supported by data in a non-genetically selected
population of Sprague-Dawley rats where ACTH and corticos-
terone responses to novel environment did not differ in HA or
LA rats (Márquez et al., 2006). In fact, available data are, not
unexpectedly, deceptive and the overall analysis strongly indi-
cates that there is no relationship between trait anxiety and the
activity of the HPA axis either in humans or laboratory rodents
(Courvoisier et al., 1996; Ramos and Mormède, 1998; Solberg
et al., 2003; Armario and Nadal, 2013).

There are several main lessons from those studies. First, if
we want to establish a relationship between the HPA axis and
anxiety (or other behavioral trait) we need to evaluate the HPA
response: (a) to emotional rather than systemic stressors; (b) to
different types of emotional stressors; and (c) in different pairs
of lines/strains selected for similar criterion. If this approach is
not followed and our conclusions are based on less complete
experimental designs we need to be aware of the limitations
of our study and the possibility to obtain spurious relation-
ships. More importantly, if such a relationship is accepted by
other researchers is a matter of fact or as working hypotheses
in order to further explore its precise neurobiological substrate,
we will invest considerable effort in the wrong way. In addi-
tion, if we search for similar relationship in other lines apparently
selected for the same or similar criterion the results should be
necessarily inconsistent, introducing a high level of noise in the
literature.

In sum, it is important to realize that each particular test can
capture only certain aspects of anxiety and can be influenced by
factors other than anxiety. This is particularly important when
we want to know whether classification of a normal or genetically
selected population of animals in function of a particular variable
can also result in changes other behavioral aspects presumably
influenced by anxiety. It can be expected that the relationship with
other behavioral aspects is strongly influenced by the criterion
used for the selection of anxiety. The same applies to the pos-
sible relationship of anxiety with any biological parameter such
as the HPA axis. There are no easy solutions to these problems,
but one possible strategy is to include more than one test in the
selection criterion. A complementary one during genetic selection
is to simultaneously select several different pairs of lines (2 or 3)
from the same original population and the same criterion and
then, once the different pairs were stable, to simultaneously study
all lines when trying to relate the chosen trait with other behav-
ioral or physiological characteristics. If we introduce more than
one test to characterize any behavioral trait or several different
stressors for the evaluation of the HPA axis, we can be more confi-
dent about the significance of the findings. We are aware that this
is expensive and time consuming, but could be feasible with the
joint effort of various labs and can contribute to clarify important
controversies.

EXPLOITING ALREADY AVAILABLE STRAIN DIFFERENCES
Rather than selecting animals for a specific criterion we can take
advantage of the use of the considerable number of already avail-
able genetically selected lines/strains of rats and mice. Inbred

and recombinant inbred strains have been an excellent genetic
tool (Nguyen and Gerlai, 2002) and considerable attention has
been paid to baseline or stress-induced anxiety in available rats
or mice inbred strains. The problem of random genetic selection
can affect any genetically selected animal, but it is expected to
be worst with inbred than outbred strains as genetic variability
is completely reduced in the formers. If specific alleles influenc-
ing any specific (physiological or behavioral) trait are randomly
fixed in all subjects, the distortion is likely to be greater than
in genetically selected outbred populations. As most genetically
modified mice are obtained from particular inbred strains, it
is not surprising to find important phenotypic differences after
genetic modifications depending on the genetic background of
mutant animals. Thus, null mutation of the serotonin trans-
porter was found to increase anxiety in the C57BL/6J background,
but not in the 129P1/Rej background (Holmes et al., 2003). The
genetic background has influence on some particular tests for
anxiety as deletion of the pro-enkephalin gene increased anxi-
ety as evaluated with the L–D test and the ASR in the C57BL/6J
background, whereas in the DBA/2J background the deletion
increased anxiety in the zero maze and the social interaction test
(Bilkei-Gorzo et al., 2004).

There are numerous reports describing baseline differences in
ALB and depression-like behavior as well as differences in the
responsiveness to anxiolytics and antidepressants among com-
mercially available outbred and inbred rodent strains. Before
discussing some available data, it is important to take into account
the general problem of possible differences in pharmacokinet-
ics. As a matter of fact, only some studies comparing group or
strain differences in the response to psychotropic drugs presented
data about pharmacokinetics. If such data are not presented, it is
critical to compare at least two functionally unrelated responses
to the drug (Lahmame and Armario, 1996; Belzung, 2001). If
differences in sensitivity to the drugs among the groups are
similar, independently of the function studied, a major contri-
bution of pharmacokinetics should be expected. On the contrary
function-dependent differences may be suggestive of pharmaco-
dynamics differences. In addition to pharmacokinetics, there are
other reasons for this differential response that has been previ-
ously discussed regarding anxiolytics (Belzung, 2001) and they
will be only briefly summarized. One is that drugs would be
more effective in those subjects or strains showing higher base-
line levels of ALB or depression-like behavior. Although this
hypothesis is frequently supported by studies on environmen-
tally induced changes in behavior, this does not always applies
to an important number of examples with available outbred or
inbred rodent strains (see Belzung, 2001 for review). An addi-
tional explanation is that pharmacodynamics differences may
exist related to the functional activity of neurotransmitters and
receptors or neural circuits critically involved in the control of
ALB. This differential response could be the fundamentals for
the elucidation of underlying alterations in neurotransmission or
circuits.

The above consideration can also be applied to depression-
like behavior. Rat and mice strain differences in responsiveness
to the tricyclic antidepressant imipramine were firstly reported by
Porsolt et al. (1978) in the FST. In mice, strain differences in the
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response to several antidepressants using the FST or TST were also
reported (van der Heyden et al., 1987; Lucki et al., 2001). Compar-
ison of different inbred rats strains revealed striking differences
in the response to several antidepressants that are not related to
baseline differences in forced swimming behavior or drug pharma-
cokinetics (Lahmame and Armario, 1996; Lahmame et al., 1997;
López-Rubalcava and Lucki, 2000). Further studies have allowed
associating altered responsiveness to antidepressants with partic-
ular biological characteristics. For instance, the deficient response
of DBA/2J and BALB/c mice to the selective serotonin reuptake
inhibitor citalopram appears to be dependent on the integrity of
the serotoninergic system and is related to impaired serotoninergic
synthesis (Cervo et al., 2005).

The CUS procedure is also being used to approach individual
or strain differences in susceptibility to ALB and depression-
like behavior. Crusio’s and Belzung’s labs have obtained inter-
esting data comparing CBA/H, C57BL/6, and DBA/2 inbred
mice strains. They found that CBA/H and C57BL/6, but not
DBA/2 mice, showed decreased sucrose consumption after CUS
(Pothion et al., 2004). Further, it was demonstrated that the
effect of CUS was dependent on sex, strain, and the partic-
ular type of task used to evaluate anxiety and depression-like
behaviors (Mineur et al., 2006). Similarly, whereas CUS reduced
neurogenesis in the subgranular (dentate gyrus) and subven-
tricular zones and impaired hippocampus-dependent but not
hippocampus-independent learning tasks, there was not clear
relationship between changes in neurogenesis and changes in
behavior across strains and sexes (Mineur et al., 2007). Another
study not only demonstrated that BALB/cByJ mice are more
emotional than C57BL/6, but that classification of mice from
both strains into high or low emotional on the basis of their
response to the EPM and free exploratory tests resulted in higher
impact of CUS in the more emotional (Ducottet and Belzung,
2004).

It is of note that an important degree of individual differ-
ences are usually observed in inbred animals that are likely to
be due to the influence of environmental factors through epi-
genetic processes (Jakovcevski et al., 2008). In this regard, there
are important differences among the breeding procedures used
in the various provider centers and this information should be
made available to researchers. For instance, litter size, sex ratio,
disturbances of the litter during weaning, individual versus com-
munal nesting, age of weaning, number of animals per cage
during the post-weaning period or at adulthood are scarcely
reported factors. Attention should also be paid to the possi-
bility of genetic differences between supposedly inbred strains.
The Wistar Kyoto (WKY) is an inbred strain of rats that has
been reported to show depression-like behavior in the FST (Paré
and Redei, 1993; Martí and Armario, 1996), but the response
to antidepressants seemed inconsistent. Quite interestingly, Will
et al. (2003) obtained two genetically derived sub-strains of WKY
rats that showed a clear differential response to some antidepres-
sants, explaining prior controversial results. The origin of this
genetic variability is still unknown. The above mentioned factors
can explain the important discrepancies between laboratories in
the FST behavior of particular outbred and inbred mice either
in drug-free conditions or in response to antidepressants (Lucki

et al., 2001; Ventura et al., 2002; David et al., 2003; Dulawa et al.,
2004; Cervo et al., 2005; Guzzetti et al., 2008; Sugimoto et al.,
2008).

GENETIC MANIPULATION OF TARGETED GENES
More classical approaches have been genetically driven silencing or
over-expression of a particular gene. Again, approaches strongly
differ in humans and animals, thus making it more difficult to
translate results from bench to clinic.

The introduction of genetically modified animals has repre-
sented an extraordinary advance in biomedicine, but there are
important problems associated with this approach, including the
possible developmental consequences of the altered expression of
a gene in the embryo or the lack of tissue/cell specificity. Impor-
tant concerns have been more recently overcome by the use of
conditional and more tissue selective mutations. Since this topic
has been extensively discussed, we would like to focus only on
a less discussed problem. Gene polymorphisms within a normal
population of animals can modify (increasing or decreasing) the
expression of this gene or its function, whereas genetic modifica-
tions can completely block expression or cause a non-physiological
over-expression. It is obvious that these non-natural modifica-
tions are far from those usually observed in natural populations.
Therefore, any observed consequence of such genetic manipula-
tion can be viewed with great caution when thinking about the
actual impact of more modest natural alterations of gene expres-
sion or function. Over-estimation of the impact of a particular
gene can detract attention from other genes and create expectan-
cies that are not further supported by more real data. This problem
is in great part solved by the inclusion in the studies of heterozy-
gote animals. Thus, neurochemical characteristics of heterozygote
5-HTT+/− mice are close to the presence of the two short alleles
of the serotonin transporter (5-HTT) in humans (Murphy et al.,
2001), which is associated with trait anxiety (Lesch et al., 1996).
Under minimal stressful conditions, heterozygote mice behave as
wild-type in several different tests for anxiety, whereas homozy-
gote mice showed clear signs of enhanced anxiety (Holmes et al.,
2003). Interestingly, heterozygote mice appear to be more sen-
sitive to the negative impact of early life experience on anxiety
(Carola et al., 2008), suggesting enhanced vulnerability to stress
similar to that observed in humans carrying the short allele of
the 5-HTT gene (Caspi et al., 2003). Although some results are
sometimes difficult to replicate, these data indicate that we can
design strategies in animal research closer to human studies. Con-
sidering the polygenic nature of human pathologies, particularly
important in this regard is the possibility of studying the inter-
actions between different genes in animal models (Murphy et al.,
2003).

A less explored approach with high translational value is the
introduction in mice of genes having natural human mutations
associated to vulnerability or pathologies. A most relevant case
is that of the val66met polymorphism of the brain-derived neu-
rotrophic factor (BDNF) neurotrophin, which impairs activity-
dependent BDNF secretion (Egan et al., 2003) and results in
enhanced stress-induced anxiety (Chen et al., 2006) and impaired
fear extinction learning in both mice and humans (Soliman et al.,
2010).

Frontiers in Pharmacology | Neuropharmacology November 2013 | Volume 4 | Article 137 | 69

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


“fphar-04-00137” — 2013/11/7 — 15:01 — page 9 — #9

Armario and Nadal Individual differences in animal models

SEX DIFFERENCES
The present review does not specifically address sex differences,
but some key points will be discussed. Epidemiological studies in
humans indicate that the prevalence of certain psychiatric disor-
ders such as depression (dysthymia, major depression, atypical,
and seasonal) and anxiety (generalized anxiety, post-traumatic
stress, and panic) are clearly higher in females than males (Toufexis
et al., 2006), although the precise contribution of biological,
social and cultural factors is still unclear. In addition, some
differences in the therapeutic response to drugs have also been
reported (Marazziti et al., 2013) and there is evidence for sex
differences in pharmacokinetics of antidepressants in humans,
although their clinical relevance is still under debate (Kokras
et al., 2011). For all the above reasons, there is now a renewed
interest for the study of sex differences in animal models of
psychopathologies.

Sex differences in ALB and depression-like behavior in rats and
mice have sometimes been reported, but the bulk of results did
not favor the hypothesis that major differences exist. Activity in
novel environments (including the EPM) is consistently higher in
female rats and this can explain the greater number of open and
closed arm entries in the EPM (Lucion et al., 1996; Fernandes et al.,
1999; Gulinello and Smith, 2003; Simpson et al., 2012). However,
most papers failed to demonstrate specific differences in anxiety
when taking into account the time spent in the open arms and tests
other than the EPM (Johnston and File, 1991; Lucion et al., 1996;
Stock et al., 2000; Gulinello and Smith, 2003; Braun et al., 2011). It
is possible that female rats display lower anxiety restricted to some
specific ages (Imhof et al., 1993) and to the pro-estrous phase of
the estrous cycle (Mora et al., 1996; Frye et al., 2000). Interestingly,
direct comparison of Sprague-Dawley and FSLs has demonstrated
no sex differences in time spent in the open arms in the former
strain but clearly greater levels in females as compared with males
from the FSL (Kokras et al., 2011). This suggests that some genetic
selection processes could differentially alter anxiety in the two
sexes. In mice, results showed no sex differences (Rodgers and Cole,
1993). The anxiolytic effects of diazepam in the EPM has been
found to be similar in either intact or gonadectomized rats of both
sexes (Stock et al., 2000; Wilson et al., 2004). In contrast, in another
study in which lower baseline anxiety was observed in females
than males, the former did not respond to two different doses
of diazepam whereas males did (Simpson et al., 2012). Whether
the latter results are suggestive of a lower sensitivity of females
to anxiolytics or can be explained by pre-drug differences remains
unclear. It is important to realize that sex differences are the results
of the evolutionary history of each species and that perhaps rats
and mice are not the appropriate species to model sex differences
in anxiety and emotional behavior humans (Donner and Lowry,
2013).

It is unclear whether or not female rodents show more active
coping behavior in the FST. It was initially reported that females
showed lower levels of immobility than males and that immo-
bility was not affected by the estrous cycle (Alonso et al., 1991).
These results were further confirmed (Barros and Ferigolo, 1998;
Simpson et al., 2012), but other reports have shown less clear
effects (Kokras et al., 2009, 2011; Morrish et al., 2009) or even
greater immobility in females (Dalla et al., 2008; Kokras et al.,

2009). Null or minor sex differences are consistently observed in
mice in the FST and TST (David et al., 2001; Caldarone et al.,
2003; Jones and Lucki, 2005; Steiner et al., 2008; Andreasen
and Redrobe, 2009). Inconsistent results have also been reported
regarding the action of antidepressants, with less sensitivity
to chronic fluoxetine or citalopram in females (Lifschytz et al.,
2006; Gunther et al., 2011) or similar response to desipramine,
clomipramine, or fluoxetine (Monteggia et al., 2007; Jacobsen
et al., 2008; Dalla et al., 2010). In one study, no differences
appeared to exist in mice between sexes in the effects of amitripty-
line on the TST and FST, despite a differential response in the
learned-helplessness paradigm (Caldarone et al., 2003), another
putative model of depression. Nevertheless, the neurobiologi-
cal substrate of behavior in the FST appears to differ in male
and female mice as conditional knocking of the bdnf gene
increased depression-like behavior in females but not males
(Monteggia et al., 2007). Therefore, although the performance
in some particular tests may be similar in males and females,
it is likely that this can be achieved by different neurobiological
mechanisms.

CONCLUSION
Development of appropriate animal models to induce and test
behavioral changes reminiscent of those observed in human
psychiatric disorders as well as to identify factors of differential sus-
ceptibility to develop such disorders is still a great challenge. This
is due in part to the complexity of the problems with are dealing
with, but also to naïve approaches, which pay not enough atten-
tion to well-described methodological concerns. Results obtained
in genetically selected animals (outbred or inbred) can be viewed
with caution and it is recommended to compare several different
lines or strains to reduce the probability of obtaining spurious
relationships when searching for the biological substrate. A com-
bination of genetic selection and experimental manipulation of
target molecules is critical to reveal causality. Moreover, the poly-
genetic nature of psychiatric diseases makes it likely that only
animal having genetic changes in more than one target gene could
approach to human disease.

Some of the approaches used in animals are not possible in
humans, but we can develop animal models as close as possible
to human studies. This includes the study of the consequences of
natural polymorphisms in the same genes in animal and humans
populations, the introduction in mice of human genes associated
with certain pathologies by genetic engineering, and the use of het-
erozygotes in genetically modified animals. Parallel approaches in
humans and animals, when possible, can help to uncover method-
ological problems and to advance faster. The characterization of
the biological bases of individual differences is likely to be one of
the great challenges of biomedicine in the next future.
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There is ample evidence that genetic factors play an important role in anxiety disorders. In
support, human genome-wide association studies have implicated several novel candidate
genes. However, illumination of such genetic factors involved in anxiety disorders has not
resulted in novel drugs over the past decades. A complicating factor is the heterogeneous
classification of anxiety disorders in the Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV-TR) and diverging operationalization of anxiety used in preclinical and
clinical studies. Currently, there is an increasing focus on the gene × environment (G × E)
interaction in anxiety as genes do not operate in isolation and environmental factors have
been found to significantly contribute to the development of anxiety disorders in at-risk
individuals. Nevertheless, extensive research on G × E mechanisms in anxiety has not
resulted in major breakthroughs in drug discovery. Modification of individual genes in rodent
models has enabled the specific study of anxiety in preclinical studies. In this context, two
extensively studied neurotransmitters involved in anxiety are the gamma-aminobutyric acid
(GABA) and 5-HT (5-hydroxytryptamine) system. In this review, we illustrate the complex
interplay between genes and environment in anxiety processes by reviewing preclinical and
clinical studies on the serotonin transporter (5-HTT), 5-HT1A receptor, 5-HT2 receptor, and
GABAA receptor. Even though targets from the serotonin and GABA system have yielded
drugs with known anxiolytic efficacy, the relation between the genetic background of these
targets and anxiety symptoms and development of anxiety disorders is largely unknown.
The aim of this review is to show the vast complexity of genetic and environmental factors in
anxiety disorders. In light of the difficulty with which common genetic variants are identified
in anxiety disorders, animal models with translational validity may aid in elucidating the
neurobiological background of these genes and their possible role in anxiety. We argue that,
in addition to human genetic studies, translational models are essential to map anxiety-
related genes and to enhance our understanding of anxiety disorders in order to develop
potentially novel treatment strategies.

Keywords: translational, animal model, GABAA, 5-HT, 5-HT1A receptor, 5-HT2 receptor, 5-HTT, 5-HTTLPR

INTRODUCTION
Anxiety disorders constitute one of the most prevalent classes
of psychiatric disorders. Anxiety disorders in the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV) include panic
disorder (PD), generalized anxiety disorder (GAD), phobias, social
phobia, obsessive compulsive disorder (OCD), and post-traumatic
stress disorder (PTSD) and were the most common mental dis-
orders within Europe in 2010 with 14% prevalence (Wittchen,
2011). The heterogeneous classification system of individual anx-
iety disorders in the DSM-IV is based on symptomatology rather
than etiology (Friedman et al., 2011). Anxiety disorders are often
comorbid with other psychiatric disorders such as mood disorders

and substance abuse disorders which make anxiety disorders in
general a heterogeneous class of psychiatric disorders. More-
over, specific anxiety disorders are often incomparable to each
other with regard to the symptomatology. Specifically, OCD and
PTSD are quite different with regard to their symptomatology
compared to GAD or social phobia. Application of the DSM-V
has not resulted in major changes in the classification of anxi-
ety disorders (Friedman et al., 2011). The complex and specific
classification of anxiety disorders may eventually hinder drug
development as one-to-one translation to preclinical models is
not possible. A classification based on the neurobiological mecha-
nisms underlying pathological anxiety (intermediate phenotypes)
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has been proposed as a novel strategy to discover novel targets to
treat anxiety symptoms (Ressler and Mayberg, 2007). However,
so far, progress in understanding the neurobiology of emotional
(dys)regulation has not resulted in novel treatments. Another
approach is based on the hypothesis of dysfunctional neurotrans-
mitter systems, which assumes that anxiety disorders are associated
with abnormal functionality of specific neurotransmitter systems.
However, the definition of a “dysfunctional” neurotransmitter sys-
tem is difficult and not without confounds, and even more, a
direct and consistent relation between specific neurotransmitters
systems and anxiety disorders has not been established. The dif-
ficulty of developing novel anxiolytic drugs is illustrated by the
fact that existing anxiolytic drugs such as benzodiazepines (BZs)
and selective serotonin (5-hydroxytryptamine, 5-HT) reuptake
inhibitors (SSRIs) have been developed several decades ago. The
development of BZs was the result of serendipity and SSRIs were
primarily developed to treat major depressive disorder. Interest-
ingly, when patients start using SSRIs they experience anxiogenic
effects of the drug, while after administration of several weeks
SSRIs work anxiolytically. This is probably due to activation of 5-
HT2C receptors as antagonists for these receptors are able to reverse
the acute anxiogenic effect of SSRIs (Bagdy et al., 2001). More-
over, chronic exposure to SSRIs has been shown to downregulate
5-HT2C receptors in the cortex (Attar-Levy et al., 1999). Although
extensive search has occurred in the ensuing decades to find new
targets for anxiolytics based on the known and anticipated neuro-
chemical mechanisms underlying anxiety, no real breakthroughs
have emerged. Currently, SSRIs remain the preferred drugs for the
treatment of anxiety disorders (augmented with BZs for a limited
time interval). Although efficacious, some patients are treatment
resistant, and inherent disadvantages with regard to side effects
are attached to the use of SSRIs and BZs. Therefore, preclinical
and clinical studies over the last decades have focused on other
mechanisms to target anxiety processes in order to ultimately treat
anxiety disorders. Since then, evidence has emerged for several
novel anxiety targets, including the corticotropin-releasing factor
1 (CRF1) receptors, neurokinin 1 (NK-1) receptors, and gluco-
corticoid receptors (for review, see Cryan and Sweeney, 2011).
Although the preclinical efficacy of drugs targeting these neu-
rotransmitters was often encouraging during development, no
superior therapeutic anxiolytic effects have been found in sub-
sequent clinical trials. Thus, no novel anxiolytic drug targets have
reached the market to replace the current treatment choices. Sur-
prisingly, even though targets such as the serotonin 1A (5-HT1A)
receptor, serotonin 2 (5-HT2) receptor, the serotonin transporter
(5-HTT), and the gamma-aminobutyric acid-A (GABAA) recep-
tor have yielded drugs with known efficacy, the relation between
the genetic background of these targets and anxiety symptoms and
disorders is little understood. The complexity of anxiety disorders
calls for a multidisciplinary approach of the phenomenon of anx-
iety. In this review, we argue that by using translational preclinical
models, anxiety-related genes can be mapped and this information
may subsequently be used to enhance our understanding of clin-
ical studies in order to identify novel drug targets for anxiety. To
this end, this review focuses on the convincing evidence stemming
from preclinical and clinical studies that genes involved in the sero-
tonin and GABA system play a pivotal role in the development of

anxiety disorders. These 5-HTergic and GABAergic genes are high-
lighted throughout this review to illustrate the complexity of the
genetic background of anxiety disorders.

HERITABILITY OF ANXIETY DISORDERS
From family studies, the risk to develop an anxiety disorder
such as PD, phobias, OCD, or GAD is three- to sixfold higher
in first-degree relatives of affected probands compared to unaf-
fected individuals (Chantarujikapong et al., 2001; Hettema et al.,
2001). Also, twin studies have aided in estimating the genetic
and environmental components of the variance in PTSD (See-
dat et al., 2001). Moreover, concordance rates in monozygotic
twins have been found to be increased compared to dizygotic
twins for anxiety disorders with an estimated heritability in the
range of 20–40% (Hettema et al., 2005). Thus, it is clear that
genetic variability contributes to a certain extent to the risk for
anxiety disorders. Nevertheless, the rather limited heritability
implies that anxiety disorders are not mere genetically defined
disorders.

LINKAGE MAPPING
When a disease runs in the family, genetic markers in several gen-
erations can be studied, and such linkage mapping has been found
to be critical for identifying genes that are causal for anxiety disor-
ders. It is assumed that a gene contributing to a disease is located in
the same area of the genome as the genetic marker. Significant link-
age for anxiety and PD has been reported at chromosomes 9q31
(Thorgeirsson et al., 2003), 2q (Fyer et al., 2006), 7p (Knowles
et al., 1998), 13q (Hamilton et al., 2003), 15q (Fyer et al., 2006),
and 22q (Hamilton et al., 2003). Significant linkages were also
found for a “PD syndrome” (13q; Weissman et al., 2000). Addi-
tionally, suggestive-linkage regions were reported for agoraphobia
(1q; Gelernter et al., 2001), PD and agoraphobia (12q; Smoller
et al., 2001a), social phobia (Gelernter et al., 2004), and markers
for specific phobia on chromosome 14 (Gelernter et al., 2003).
Finally, Kaabi et al. (2006) detected a strong linkage signal for
anxiety and PD on chromosome 4 (4q31-q34) at marker D4S413.
Linkage studies for OCD have only revealed single nucleotide poly-
morphisms (SNPs) in the glutamate transporter gene SLC1A1 on
9p24 (Walitza et al., 2010). Although linkage studies have impli-
cated several chromosomal regions that may harbor susceptibility
genes (Smoller et al., 2008a), no candidate genes have emerged that
play a straightforward role in the expression for a vulnerability to
anxiety or anxiety disorders (Smoller et al., 2009). This is probably
due to the fact that several genetic risk factors only explain a lim-
ited amount of variance. Moreover, the strongest linkage signals
seem to derive from recessive and highly penetrant diseases. Link-
age studies are good to detect regions involved in these recessive
diseases and can narrow down the search for causal variants to a
few million base pairs.

ASSOCIATION MAPPING
Association studies compare allelic variation in a group of patients
to a healthy control population. When a certain allele plays a role
in the development or susceptibility of a disease or is correlated
with a causal allele, the frequency of this allele will be increased in
the case population compared to the control population. Usually,
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linkage studies result in a signal of candidate genes in a certain
region and are followed by a genetic association study on alle-
les in that genetic region. In this way, a specific gene or even a
specific allele can be identified to play a causal role in a certain
disorder. Genetic association studies have become the predomi-
nant method for identifying susceptibility loci for complex traits
(Smoller et al., 2008a). Several genes have been associated with
PD (Hovatta and Barlow, 2008), such as, e.g., catechol-o-methyl
transferase (COMT; Hamilton et al., 2002; Domschke et al., 2004;
Woo et al., 2004; Rothe et al., 2006), adenosine A2A receptor
(ADORA2A; Deckert et al., 1998; Hamilton et al., 2004), chole-
cystokinin (CCK; Wang et al., 1998; Hattori et al., 2001; Maron
et al., 2005), CCK-B receptor (Kennedy et al., 1999), 5-HT1A recep-
tor (HTR1A; Maron et al., 2004; Rothe et al., 2004; Fakra et al.,
2009; Choi et al., 2010), 5-HT2A receptor (HTR2A; Inada et al.,
2003; Maron et al., 2005), 5-HTT (SLC6A4; Lesch et al., 1996;
McDougle et al., 1998; Bengel et al., 1999; Ohara et al., 1999; Lee
et al., 2005; Munafo et al., 2005), monoamine oxidase A (MAO-A;
Deckert et al., 1999; Inada et al., 2003; Maron et al., 2004; Samo-
chowiec et al., 2004), and the regulator of G protein signaling
2 (Rgs2; Smoller et al., 2008b). Genetic association studies have
also revealed several genes involved in PTSD, with most attention
for genes involved in the hypothalamus–pituitary–adrenal (HPA)
axis and the regulation of neurobiological pathways such as the
SLC6A4, DAT1, DRD2, DRD4, FKBP5, and GCCR (systematically
reviewed in Digangi et al., 2013). Although linkage studies only
found SNPs in the SLC1A1 to be associated with OCD, association
studies have found more genes such as SLC6A4, HTR1D, HTR2A,
HTR2C, DRD4, DRD2, SLC1a1, GRIN2B, GABBR1, COMT,
MAO-A, TPH1, TPH2, BDNF (brain-derived neurotrophic fac-
tor), NTRK2, OLIG2, and MOG (reviewed in Walitza et al., 2010).
For GAD the Gad2, Rgs2, and Ppargc1a (in anxiety-spectrum
disorders) were found to be associated (Sokolowska and Hov-
atta, 2013). Moreover in general CDH2, ALAD, PSAP, EPB41L4A,
DYNLL2, and PTGDS that were associated with anxiety disor-
ders (Sokolowska and Hovatta, 2013). Among all these genes, the
SLC6A4 (5-HTT) is one of the most widely investigated genes in
relation to anxiety-related personality traits (Munafo et al., 2003).
Most association studies of anxiety disorder have focused on can-
didate genes, which are suspected to play a role in a particular
anxiety disorder. This can be based on earlier biological evi-
dence (biological candidate) or because these genes are located
within loci previously implicated via linkage studies (positional
candidates). However, most likely more than one gene variant is
involved in the regulation of distinct emotional responses, which
together with the environmental influence will determine who will
become affected. Studies in animal models of anxiety have pro-
vided evidence for the involvement of certain genes. The most
intensively studied candidate genes are related to neurotransmit-
ter systems implicated in the regulation of anxiety, to various
neuropeptides, and to stress-related genes, and for that reason
have functioned as targets to develop anxiolytic drugs. These
targets include 5-HT, noradrenalin (NE), glutamate, dopamine,
GABA, RGS2, and neuropeptides (CRF, neuropeptide Y, BDNF).
To address the complexity of psychiatric disorders, two strate-
gies have evolved; (1) going “big” and (2) going “deep” (Smoller
et al., 2009).

GENOME-WIDE ASSOCIATION STUDIES
First studies have looked for SNPs based on an unbiased survey
of the entire genome (genome-wide association studies, GWAS).
The main aim of this strategy is to increase the explained vari-
ance of genetic studies by increasing the number of genes and,
subsequently, sample size. By selecting a reduced set of SNPs that
adequately represents the genetic variation, the whole DNA can be
investigated with DNA chips measuring up to millions of SNPs.
Although statistically stringent demands are uphold, the GWAS
approach has resulted in the elucidation of genes and genetic
variants involved in complex diseases such as autism and bipo-
lar disorder although at a disappointing level (Chen et al., 2010;
Gershon et al., 2011). With regard to anxiety, several anxiety genes
have been found (Hovatta and Barlow, 2008), yet replication stud-
ies are lacking. Currently, GWAS are still on-going to localize and
identify putative risk genes for anxiety disorders. The reason why
GWAS were relatively unsuccessful for anxiety disorders is not
fully clear. Several causes have been proposed, to name a few:
(1) small effect sizes (Manolio et al., 2009); (2) new analytical
approaches are necessary to detect more locations in the genome
(Lubke et al., 2012); (3) epistasis, only a few genes together could
contribute to a genetic risk while a gene on its own will never be
identified. Network- and pathway-based methods are necessary
in identifying candidate genes and to provide functional links to
connect genetic variants to phenotypes (reviewed in Sun, 2012);
(4) copy number variations (CNVs) might be responsible for a
non-trivial proportion of common risk disease. The majority of
CNVs remain invisible to current GWAS technology and would
require whole-genome sequencing instead; (5) epigenetic inheri-
tance, all technologies that are used in GWAS are based on DNA
sequence, however not all inherited information is carried in the
DNA. Therefore, GWAS are not detecting epigenetic variations and
epigenome-wide association studies should be performed to dis-
cover epigenetically inherited variations; (6) gene × environment
(G × E) effects, as in many psychiatric disorders, the environment
induces complex G × E interactions which are hard to pick up by
GWAS technology.

ENDOPHENOTYPES
Instead of going big, another strategy that has been increasingly
applied is going “deep,” i.e., the use of endophenotypes or inter-
mediate phenotypes. These familiar or heritable traits are assumed
to underlie anxiety disorders and may result in more insight
into neurobiological mechanisms compared to classically defined
anxiety disorder. Endophenotypes are particularly relevant in
anxiety disorders, as the neural circuitry and central pathways
mediating anxiety are relatively well known, partly because of
extensive animal models and knowledge derived from functional
magnetic resonance imaging (fMRI) studies in humans. Those
enable the study of the relationship between activities in particu-
lar brain areas and anxiety. The amygdala, a limbic area involved
in emotional processing, shows enhanced activity in phobias and
PTSD compared to healthy individuals (Etkin and Wager, 2007).
Such (endo) phenotypes are important targets for genetic stud-
ies because the link between genetic variation and disorder risk is
reflected more directly, as, e.g., became clear when specific candi-
date polymorphism were associated with such brain parameters.
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A polymorphism in the promoter of the 5-HTT gene has been
frequently associated with amygdala reactivity (Hariri et al., 2002;
Hariri and Holmes, 2006) implicating the S-allele (low transcrip-
tional activity of the 5-HTT) in the increased amygdala reactivity
toward external stimuli (Hariri, 2009). Anxiety and related stress
responses are conserved in mammals at different levels. Therefore,
similar genes in humans and rodents may regulate critical aspects
of anxiety. While in humans it is difficult to control the genetic het-
erogeneity and environmental influences, animal models provide
the possibility to identify novel candidate genes under controlled
circumstances. In the section “preclinical genetic approaches to
anxiety”, we describe some animal models of anxiety that made it
possible to study in vivo genetic associations at a functional level.

CONCLUSION
In conclusion, genetic studies aiming to unravel the neurobiologi-
cal background of anxiety disorders have proven to be challenging.
This is likely due to a complex and polygenic genetic background
of anxiety disorders in which many genes influence the risk to
develop anxiety disorders, each of them with a small effect. More-
over, epistatic processes, having the ability to mask the phenotype
derived from other genes, are also very likely to be involved whereas
environmental factors induce complex G × E interactions. The
fact that different susceptibility genes segregate in different fam-
ilies possibly plays a role, making it extremely difficult to detect
relatively small and diverse effects. Reported genes that have been
associated with anxiety disorders have often been followed by
non-replications. The risk of false positives is considerable and
meta-analysis studies are needed to hint at a putative suscepti-
bility gene or definitively reject it. Even if replications have been
found, the number of negative studies often exceeds the number of
positive studies (Smoller et al., 2009). These challenges have led to
a generally critical perspective in the search of mental illness genes
(Muglia, 2011; Klein et al., 2012). Moreover, Crow (2011) critically
questions why only 1–2% of the 80–90% heritability of major psy-
chiatric diseases can be attributed to genes identified by linkage
and association. This suggests that many loci with small effects are
involved for the heritability of anxiety-related personality traits
(Shifman et al., 2008).

PRECLINICAL GENETIC APPROACHES TO ANXIETY
Despite extensive research, human linkage and association studies
have not led to major breakthroughs so far. Therefore, it is of great
importance to use other approaches in studying the involvement
of genes in anxiety disorders as well. Animal pathology resembles
human pathology to a certain (but varying) degree (Fernando and
Robbins, 2011) and has greatly enhanced our knowledge in the
neurobiological mechanisms underlying anxiety. Animal models
can be powerful in dissecting putative genes in anxiety and anxiety-
associated traits (Flint and Shifman, 2008; Kas et al., 2011), which
can be used in parallel to human genetic studies. Because genomic
technology advances rapidly, linkage between targets and neu-
ronal circuitry and genetic factors involved in anxiety disorders are
becoming increasingly elucidated. Fundamental research aimed at
these targets may contribute to unraveling novel insights in anxiety
processes and consequently engender new opportunities for drug
discovery. The future needs a strict translational approach; data

found in human (anxiety) research including genetic and environ-
mental factors, should be used to formulate scientific approaches
in animals and vice versa. In animals, we have the opportunity
to apply cell-specific inducible knock-outs or knock-ins. More-
over, new optogenetic technology enables selective manipulation
of cellular mechanisms and circuit functions linked to the gene’s
suggested function (Tye and Deisseroth, 2012). The 5-HT1A recep-
tor, the 5-HT2 receptor, the 5-HTT, and the GABAA receptor
complex belong to the most known and discussed targets in the
field and will therefore be discussed below. Human and animal
research continues to find new mechanisms around these targets
and involvement of these targets in neural networks involved in
anxiety modulation, opening new possibilities to apply in animal
models and human psychopathology.

ANIMAL MODELS OF ANXIETY
The development of predictive animal models and genetically
modified rodents has aided to clarify the role of several pharma-
cological molecules in brain circuits relevant to anxiety processes,
including normal and abnormal behavior. Many animal models
for anxiety are based on the natural behavior patterns of rodents
(Rodgers et al., 1997). These ethologically based behavioral mod-
els include “approach-avoidance” tasks (Cryan and Holmes, 2005)
where animals are exposed to aversive environments such as an
open field, elevated plus maze or light/dark box and avoid the
aversive arena (center of open field, open arms of elevated plus
maze, light arena in light/dark box). Besides these unconditioned
procedures also conditioned procedures have been used to model
anxiety disorders, including conflict procedures such as the Vogel
water-lick conflict test (Vogel et al., 1971), defensive burying tests
(de Boer and Koolhaas, 2003), the four-plate test (Boissier et al.,
1968), and fear-potentiated startle (Brown et al., 1951). Next to
these tests also other parameters have been developed to assess
anxiety such as the use of radiotelemetry to assess physiological
parameters (Bouwknecht et al., 2007), social interaction tests (File
and Seth, 2003), predator stress (Blanchard and Blanchard, 1971),
and stress-induced vocalizations (Sanchez, 2003). All these mod-
els assess behavior that is functionally related to human anxiety as
they show good face and construct validity.

THE 5-HT1A RECEPTOR
The 5-HT1A receptor has been implied in anxiety because 5-HT1A

receptor agonists exert anxiolytic activity in rodent models of anx-
iety (Olivier et al., 1999). Although clinically, development of new
5-HT1A receptor agonists for anxiety disorders (e.g., ipsapirone,
gepirone, tandospirone, flesinoxan) failed, the 5-HT1A receptor
has received considerable interest as a critical target implied in
anxiety (Olivier et al., 1999; Holmes, 2008; Lanfumey et al., 2008;
Akimova et al., 2009; Savitz et al., 2009). 5-HT1A receptors are
G protein-coupled inhibitory receptors expressed in 5-HTergic
neurons as autoreceptors and in non-5-HTergic neurons as het-
eroreceptors. The somatodendritic 5-HT1A autoreceptor controls
5-HTergic tone via feedback inhibition, although recently it was
shown that not all 5-HT neurons express the somatodendritic
5-HT1A autoreceptor mRNA (Kiyasova et al., 2013). It has been
hypothesized that desensitized 5-HT1A autoreceptors delay the
onset of action of SSRIs that act by enhancing brain 5-HT levels
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(Gardier et al., 1996; Blier et al., 1998). 5-HT1A receptors are quite
abundantly, although restrictedly present in some brain areas.
Autoreceptors are mainly, if not only, found in the dorsal and
median raphé nuclei, whereas postsynaptic heteroreceptors are
found in high densities in limbic regions (including hippocampus)
and in the frontal medial prefrontal and entorhinal cortices.

Human data
Genetic and imaging studies in humans suggest that 5-HT1A recep-
tor density or regulation are associated with anxiety, but also
with the response to antidepressants (Lesch and Gutknecht, 2004).
An association was found between a C(-1019)G polymorphism
(rs6295G/C) in the promoter region of the 5-HT1A receptor gene
(Htr1a) and mood-related variables, including amygdala reactivity
(Fakra et al., 2009). The G-allele is associated with enhanced raphé
(presynaptic) 5-HT1A autoreceptor expression but reduced post-
synaptic 5-HT1A heteroreceptor expression (Le FranÇois et al.,
2008). How such changes contribute to an anxious phenotype is
not known yet. More polymorphisms in the Htr1a gene exist, but
it is not clear whether they influence anxiety (Drago et al., 2008).

Preclinical data
5-HT1A receptors were found to modulate anxiety. All generated
5-HT1A receptor knock-out (5-HT1A

−/−) mice in several strains
displayed enhanced anxiety (Heisler et al., 1998; Parks et al., 1998;
Ramboz et al., 1998), although the anxious phenotype was depen-
dent on the paradigm used (Pattij et al., 2001). Interestingly, the
Swiss-Webster 5-HT1A

−/− mouse displayed a reduced sensitivity
to the anxiolytic and sedative effects of diazepam, a non-α-subunit
selective GABAA-positive allosteric modulator (Sibille et al., 2000;
Olivier et al., 2001), indicating changes in some α-subunits of
the GABAA–BZ receptor complex. However, this BZ insensitiv-
ity did not occur in other strains (Olivier et al., 2001; Pattij et al.,
2002). Apparently, dysfunction of the GABAA–BZ system is not
a prerequisite for the “anxiogenic” phenotype of the 5-HT1A

−/−
mouse. The anxiogenic phenotype in the 5-HT1A

−/− mouse was
not responding to SSRIs (Santarelli et al., 2003), although Guil-
loux et al. (2006) showed that 5-HT1A

−/− mice on a C57Bl/6
background did respond better to SSRIs compared to wildtypes.
Moreover, it appeared that overexpression of the 5-HT1A recep-
tor reduced anxiety (Kusserow et al., 2004). Rescue experiments
of forebrain 5-HT1A receptors showed that postsynaptic 5-HT1A

receptors are critical in the development of the anxiogenic phe-
notype in the null mutations (Gross et al., 2002). In addition,
transgenic developmental overexpression of 5-HT1A receptors in
the rostral brain was sufficient to restore normal anxiety levels.
Pharmacological blockade of 5-HT1A receptors in early devel-
opment, but not in adulthood, appeared sufficient to enhance
anxious behavior in wildtype mice (Lo Iacono and Gross, 2008;
Vinkers et al., 2010a). Zanettini et al. (2010) found increased social
anxiety in the 5-HT1A

−/− mice, however this was reversed by post-
natal handling, indicating that neural circuits involved with social
anxiety are susceptible to early-life experiences. The complex reg-
ulation of anxiety processes during development and adulthood
illustrates the complexity of the neural substrate. Also the genetic
regulation of anxiety and its pathology makes it clear that straight-
forward and simple relationships between the function of a certain

receptor and anxiety are not very likely. Richardson-Jones et al.
(2010) were able to manipulate the level of presynaptic 5-HT1A

autoreceptors during adulthood without a concomitant change
in postsynaptic 5-HT1A heteroreceptors. Mice with higher (1A-
high) or lower (1A-low) autoreceptor levels were tested on their
stress vulnerability and response to antidepressants. 1A-low mice
showed enhanced 5-HT tone and still respond to an SSRI, whereas
1A-high mice had decreased 5-HT tone and were unresponsive
to SSRIs. The authors suggest that 1A-lows reflect human C/C,
whereas 1A-highs model G/G carriers of the Htr1a C(-1019)G
polymorphism. Such genetic mouse models are extremely useful
in studying the underlying processes emerging in anxiety disor-
ders. In addition, Bortolozzi et al. (2012) showed that C-1A-siRNA
can be used in vivo to selectively silence the 5-HT1A autorecep-
tor resulting in reduced 5-HT1A-autoreceptor expression, but no
alterations in postsynaptic 5-HT1A receptors. Interestingly C-1A-
siRNA increased the SSRI-induce elevation of extracellular 5-HT.
Effects were seen after i.c.v. and intranasal C-1A-siRNA infusion
which opens up new possible therapeutic applications. In conclu-
sion, by genetic manipulation it was possible to study the exact
role of specific 5-HT1A receptors (e.g., presynaptic autoreceptors
and postsynaptic heteroreceptors) in anxious behavior. Rodents
can be manipulated in one specific gene, or even in a specific area.
By doing so, the involvement of different 5-HT1A receptors within
anxiety disorders can be unraveled, and anxiolytic drugs can be
developed for more specific targets (e.g., targeting only postsynap-
tical 5-HT1A receptors in the rostral brain). Moreover, changes in
other mechanisms in the brain in the modified mutant mouse
can direct us to putative other and relevant targets and mecha-
nisms involved in the complex anxiety phenotypes emerging. For
example Pet1, a transcriptional factor of the ETS (E-twenty six)
family, is important for determining the identity of 5-HT neurons
in the raphe. Kiyasova et al. (2011) investigated 5-HT neurons in
the Pet 1 knock-out mice and discovered a subset of 5-HT neurons
that were either Pet1-dependent or Pet1-resistant, which resulted
in different morphological features. Moreover, Pet1 knock-out
mice showed reduced anxiety-like behavior in conflict-tests, but
increased fear in aversive conditioning paradigms. Thus, Pet1 plays
an important role in the acquisition and maintenance of 5-HT
identity (Gaspar and Lillesaar, 2012; Andrade and Haj-Dahmane,
2013). These findings suggest that the differentiation of subpopu-
lations of 5-HT neurons could also be a factor contributing to the
development of anxiety disorders.

5-HT2 RECEPTORS
Clinical data
The 5-HT2 receptor subtypes are implicated in anxiety and in the
mechanisms of related treatments (Quesseveur et al., 2012). 5-HT2

receptors couple to multiple cellular signaling pathways and are
involved in several physiological brain functions (Leysen, 2004).
For example, when SSRIs are combined with 5-HT2C receptor
antagonists this may result in greater efficacy in reducing anxiety
symptoms and improving sleep (Garner et al., 2009). Agomelatine
is a melatonergic receptor (M1 and M2) agonist, but also contains
5-HT2C receptor antagonistic properties, and has anxiolytic prop-
erties in patients with GAD (Stein et al., 2008). However, the initial
promise for 5-HT2C antagonists such as deramciclane in GAD
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(Naukkarinen et al., 2005) has still to be confirmed consistently
within large randomized placebo controlled studies.

Preclinical data
As in patients with GAD, agomelatine has been shown to relieve
anxiety-like behavior in animals (Millan et al., 2005). More-
over, the 5-HT2C receptor antagonist SB242084 increased the
response of SSRIs in animal models (Cremers et al., 2004).
Interestingly, Gomes and Nunes-de-Souza (2009) showed that
stimulation of 5-HT2A/2C receptors rather than stimulation of 5-
HT1A receptors in the periaqueductal gray matter (PAG) attenuate
anxiety-like behaviors in mice previously exposed to the elevated
plus maze. Moreover, in mice intra-PAG infusions of mCPP
(meta-chlorophenylpiperazine), a 5-HT2B/2C receptor agonist,
attenuated anxiety-like behavior in the elevated plus maze which
was blocked by the 5-HT2A/2C receptor antagonist ketanserin
(Nunes-de-Souza et al., 2008). Thus 5-HT2A/2C receptors within
the PAG play a key role in the regulation of anxiety-like behav-
ior in mice. With respect to interactions of the 5-HT2 receptor
it was shown that CRF sensitized the 5-HT2 receptor-mediated
signaling through the CRF1 receptor. This resulted into increased
anxiety-like behavior in mice (Magalhaes et al., 2010), indicating a
functional interaction between CRF and 5-HT. Furthermore, eti-
foxine, a GABAA receptor potentiator, dose-dependently increased
the number of punished crossing in a four-plate test in mice
(decreased anxiety). Interestingly this anti-punishment effect was
blocked when a 5-HT2A antagonist was administered (Bourin
and Hascoet, 2010). In addition co-administration of the 5-HT2A

receptor agonist DOI together with a subthreshold dose of eti-
foxine induced an anti-punishment effect as well. Together these
data indicate that the effect of etifoxine was modulated by 5-HT2A

ligands and that GABA and 5-HT can be co-released and act as
co-transmitters in some regions of the central nervous system
(CNS; Bourin and Hascoet, 2010). Several studies have suggested
that 5-HT2A receptors modulate learning and memory (Meneses,
2007a,b). As such, Zhang et al. (2013) found that stimulation of
5-HT2A receptors with the agonist TCB-2 enhanced the extinction
of cued fear memory in mice after trace and delay fear condi-
tioning paradigms, while blockage with MDL 11,939 showed the
opposite effect. With respect to G × E interaction it was shown
that maternal separation increased adult anxiety behavior (Huot
et al., 2001; Kalinichev et al., 2002). Interestingly, Benekareddy
et al. (2011) have shown that blockade of the 5-HT2 receptor
(ketanserin) during early postnatal life prevented the increased
anxiety seen in animals exposed to maternal separation. Moreover,
the enhanced 5-HT2A receptor mRNA in the prefrontal cortex
was also blocked by postnatal treatment of ketanserin, implicat-
ing that the 5-HT2 receptors are involved in the adverse effects
of maternal separation. In addition to the pharmacological stim-
ulation and blockage of the 5-HT2 receptor, disruption of the
5-HT2A receptor in mice increased anxiety-like behavior in con-
flict anxiety paradigms as well (Weisstaub et al., 2006). Martin
et al. (2013) created a mouse model expressing only the fully edited
VGV isoform of the 5-HT2C receptor and showed that these mice
had increased anxiety-like behavior after stimulation with a 5-
HT2C receptor agonist in the social interaction test. Moreover, in
response to an innately aversive ultrasonic stimulus these mice

freezed significantly more and displayed decreased brain 5-HT
turnover during stress. When these results were put in relation with
the 5-HT2C receptor mRNA splicing process it turned out that the
truncated protein (5-HT2C receptor-Tr) interacted with the full-
length receptor (5-HT2C receptor-Fl). The 5-HT2C receptor-Tr
was localized in the endoplasmic reticulum where it bound to the
5-HT2C receptor-Fl. As a result, the 5-HT2C receptor-Fl could not
reach the plasma membrane (Martin et al., 2013). These results
show that the 5-HT2C receptor pre-mRNA editing and splicing
altering 5-HT2C receptor levels are involved in pathological con-
ditions. Finally, the decreased sociability and sniffing induced by
mCPP (5-HT2B/2C agonist) in 5-HTT+/+ mice, was not seen in
5-HTT−/− mice (Moya et al., 2011) which is probably due to
increases in RNA editing of the 5-HT2C receptor in the amygdala
of 5-HTT−/− mice that generates less active reporter isoforms.
In conclusion, the 5-HT2 receptors are involved in anxiety pro-
cesses; however more research is needed to further dissect the
physiological relevance in different brain regions.

THE SEROTONIN TRANSPORTER (5-HTT)
Human data
The 5-HTT has been implied in processes underlying mood, anx-
iety and associate disorders mainly because SSRI anxiolytics block
5-HT uptake into the neuron thereby increasing 5-HTergic output.
Polymorphisms in the promoter of the 5-HTT gene (5-HTTPRL)
and its associated transcriptional control region, influence the
functioning of the 5-HTergic system (Lesch, 2001). Variable num-
bers of tandem repeat polymorphisms are known in intron 2 as
well as several SNPs that influence the structure of the 5-HTT
protein (Murphy and Lesch, 2008). This makes the modulation of
5-HTergic transmission via the 5-HTT mechanism highly com-
plex and gives probably an important insight in the factors that
play a role in the genetic complexity of any psychiatric disorder.
Gene variations influence intermediate biological phenotypes in
concert with other genes, epigenetic variation, environmental and
developmental factors. All these complex interactions contribute
to the risk or resilience to develop a psychiatric condition. One
avenue to pursue would be to try to find associations between
specific candidate genes and intermediate phenotypes mediat-
ing between a moderating allele and a more complex disease
phenotype (Murrough and Charney, 2011).

The 5-HTTLPR allele variations are called the short “S” allele
and the long “L” allele. The S-allele has 44 base pairs less and lower
transcriptional activity of the 5-HTT gene than the L-form. The
S-allele has been the focus of many association studies (Hamilton,
2009). Although negative studies and non-replications with anxi-
ety phenotypes have been reported (e.g., Risch et al., 2009; Grabe
et al., 2011), many reported associations with anxiety-related traits
and anxiety disorders (Lesch et al., 1996; McDougle et al., 1998;
Bengel et al., 1999; Ohara et al., 1999; van Gestel et al., 2002; Lee
et al., 2005; Munafo et al., 2005). Considerable evidence showed
that after stressful life-events the low expression S-allele is associ-
ated with poorer outcomes (Lesch et al., 1996; Caspi et al., 2003). A
significant interaction between maternal anxiety during gestation
and subsequent levels of infant negative emotionality at 6 months
of age was modulated by the 5-HTTLPR of the child (Pluess et al.,
2011). Moreover, SS-allele carriers appeared particularly sensitive
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toward unpredictability as seen by modulated attention to the
stress (Drabant et al., 2012), suggesting that such a mechanism
may underlie the risk for psychopathology. In addition, deduc-
tive reasoning appeared also dependent on 5-HTTPRL genotype.
Differences in 5-HTT functioning renders some individuals more
vulnerable to emotional factors, thereby generating a deleterious
effect on rational reasoning (Stollstorff et al., 2013). A gene × gene
interaction was found between the 5-HTTLPR (measure in LL-
variants) and an oxytocin receptor variant (TT variant of the
SNP rs2268498) on individual differences in negative emotionality
(Montag et al., 2011). Such data indicate that 5-HTergic and oxy-
tocinergic neurotransmission processes are somewhere entwined
and seem to play a role in affective disorders. In general, S-alleles
of the 5-HTTLPR are associated with increased risk for a vari-
ety of psychiatric disorders, including anxiety. Thus, the S-allele
is considered a “risk” or “vulnerability” allele (Caspi et al., 2010)
whereas the function of the L-allele is far less clear although this
allele has been suggested as a potential risk factor for the devel-
opment of psychopathic traits too (Glenn, 2011). Because every
human has either L, S or both alleles and most people do not suf-
fer from psychiatric abnormalities; it must be assumed that the
genome includes several “protective” alleles that make many indi-
viduals resilient to stress and pathology. Such protective genes have
been suggested, e.g., the CRF1-receptor variants that have been
associated with protection from the extreme stresses of maltreat-
ment during childhood (Polanczyk et al., 2009) and protective,
emotional-resilience enhancing effects of the L-allele in students
(Stein et al., 2009). Belsky et al. (2009) suggested that S-allele car-
riers are more vulnerable in general, not only negatively, but also
positively. Thus“vulnerability genes” or“risk alleles” seem to make
individuals more susceptible to environmental influences, for bet-
ter and for worse. Homberg and Lesch (2011) take the hypothesis
that S-carriers perform better in cognitive tasks than L-carriers
and argue for a switch from a deficit-orientated connotation of the
5-HTTLPR variants to a cognitive superiority of S-allele carriers
(which have enhanced reactivity of corticolimbic neural circuitry).
Environmental conditions will determine whether a positive (cog-
nitive) or negative (emotional) response will happen. Also Hankin
et al. (2011) showed that SS-allele children were more sensitive
to the environment. Under unsupportive, non-positive parenting
SS-allele children exhibit low levels of positive affect, but with
supportive/positive parenting these children displayed higher lev-
els of positive affect. In addition to this, Eley et al. (2012) showed
an association between the 5-HTTLPR and response to psycho-
logical treatment. That is, SS-allele children with anxiety disorder
respond up to 20% better to psychotherapy compared to L-allele
(SL/LL) carriers. This environmental sensitivity of the 5-HTTLPR
makes it even more difficult, and should be taken into account
when treating anxiety disorders.

Preclinical data
Several animal models were created to study the role of the 5-
HTT and altered 5-HT signaling in the in vivo actions of SSRIs.
For instance, Thompson et al. (2011) created a knock-in mouse
expressing 5-HTT M172, which did not affect the recognition of 5-
HT, but affected the serotonergic system and emotional behavior.
Also, mice overexpressing 5-HTT have been generated resulting in

reduced anxiety levels and bodyweight (Jennings et al., 2006; Line
et al., 2011) and enhanced 5-HT2A/C receptor function (Dawson
et al., 2011). This model, together with 5-HTT knock-out (5-
HTT−/−) models might eliminate the effects of lifelong 5-HTT
disturbances with all the compensatory effects occurring over the
life span. Both 5-HTT−/− mouse (Bengel et al., 1998) and rat
(Smits et al., 2006) have been created. 5-HTT−/− rodents dis-
play increased extracellular 5-HT in several brain regions (Fabre
et al., 2000; Mathews et al., 2004; Shen et al., 2004; Homberg et al.,
2007a; Olivier et al., 2008). Due to these increased extracellular
5-HT levels alterations in neurodevelopment and 5-HT synthe-
sis/metabolism are found (reviewed in Murphy and Lesch, 2008;
Homberg et al., 2010). 5-HTT−/− rodents have been considered as
an extreme model of the 5-HTTLPR polymorphisms in humans,
as brain and behavioral phenotypes of 5-HTT−/− animals resem-
ble the heterogeneity observed for the 5-HTTLPR (Hariri and
Holmes, 2006; Wellman et al., 2007; Homberg et al., 2008b; Olivier
et al., 2008).5-HTT−/− animals have an altered ability to cope
with stress and display anxiogenic and depressogenic behavior
(Holmes et al., 2002; Tjurmina et al., 2002; Adamec et al., 2006;
Wellman et al., 2007; Olivier et al., 2008; Jansen et al., 2010; Kalu-
eff et al., 2010). Interestingly, when the environment is rewarding,
5-HTT−/− rodents are more hypersensitive as shown by their
increased sensitivity for psychostimulants (Sora et al., 1998, 2001;
Homberg et al., 2008a; Nonkes et al., 2013) indicating that 5-
HTT−/− rodents are more sensitive to the environment. As found
in S-allele carriers (Roiser et al., 2006a,b, 2007; Finger et al., 2007),
improved cognition has been observed in 5-HTT−/− rodents
(Homberg et al., 2007b, 2008b; Brigman et al., 2010) together with
improved behavioral flexibility, directing their behavior toward
the most rewarding stimuli (Brigman et al., 2010; Nonkes et al.,
2013). Reduced conditioned freezing to a predicted foot shock is
found in 5-HTT−/− rodents when a positive stimulus was given
(Nonkes et al., 2012). However, it appears that phenotypical plas-
ticity is not only present in 5-HTT−/− animals early in life, but
also later in life (Homberg and van den Hove, 2012). This also
accounts for heterozygous (5-HTT+/−) rodents, which might be
considered as a more valuable model for the 5-HTTLPR model
as they have reduced expression of the 5-HTT, comparable to
the S-allele carriers. For instance, low maternal care increased
anxiety-like behavior in adult 5-HTT+/− mice, but not in wild-
type littermates (Carola et al., 2008). This increased emotionality
was linked to increased BDNF mRNA levels in the hippocam-
pus, suggesting a role for BDNF in programing the 5-HTT+/−
brain to become more susceptible to the environment. Inter-
estingly, only 5-HTT+/− mice that experienced high maternal
care showed increased 5-HT and norepinephrine levels in the
hippocampus, together with decreased 5-HT turnover (Carola
et al., 2011). At baseline level, 5-HTT+/− mice display decreased
emotional behavior, however, upon prenatal maternal restraint
stress, 5-HTT+/− offspring displayed increased emotional behav-
ior (Van den Hove et al., 2011), although also decreased anxiety
levels and enhanced memory performance were found in these
mice. This is an important finding as individuals with anxiety
symptoms have a range of biases in emotion processing, such as
a willingness to selectively attend to thread cues (Bar-Haim et al.,
2007; Waters et al., 2008) and to interpret emotionally ambiguous

www.frontiersin.org June 2013 | Volume 4 | Article 74 | 81

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


“fphar-04-00074” — 2013/6/10 — 17:41 — page 8 — #8

Olivier et al. Drug discovery for anxiety disorders

stimuli in a negative manner (Mathews and MacLeod, 2005).
When 5-HTT−/− and 5-HTT+/− mice underwent a loser expe-
rience in a social defeat test they displayed delayed fear extinction
and decreased recall of extinction to a higher extent than wild-
types (Narayanan et al., 2011). In addition, 5-HTT−/− losers
displayed increased anxiety levels and reduced exploration (Jansen
et al., 2010). Similarly, increased escape latencies were found in
5-HTT−/− and 5-HTT+/− mice after repeated inescapable foot-
shock stress (Muller et al., 2011). Moreover, chronic psychosocial
stress due to an intruder in the cage resulted into decreased loco-
motor activity and increased social avoidance (Bartolomucci et al.,
2010). It is clear that both the immature developing brain as well
as the mature brain is sensitive to changes in the environment.

The advantage of having animal models for human disorders
is that underlying mechanisms in the brain can be more eas-
ily studied as environmental influences can be regulated. With
use of for example fMRI or microPET (micro-positron emission
tomography) scanning, brain areas can be studied in humans.
By doing so, it was discovered that the amygdala and prefrontal
cortex of S-allele carriers showed hyperactivity upon environ-
mental stimuli (Hariri et al., 2002; Kalin et al., 2008). However,
a molecular understanding of this phenomenon is lacking, while
such understanding might be helpful in identifying new targets for
the diagnoses and therapy of anxiety disorders. With use of ani-
mal models it is possible to study the gene, the environment and
their interactions. For example, low maternal care caused defi-
cient GABAA receptor binding in the amygdala during adulthood.
In pups with low maternal care increased α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor binding was found in
the hippocampus, which correlated with BDNF mRNA levels in
the somatosensory cortex. These effects are independent of geno-
type, and are only environmental. However, lower maternal care
in 5-HTT−/− mice elevated BDNF mRNA levels in the hippocam-
pus. Moreover, it was shown that loser stress in a resident-intruder
test increased pronounced neuroplastic changes of pyramidal neu-
rons in the prelimbic cortex and amygdala (Nietzer et al., 2011).
Also effects on the corticolimbic system were found (reviewed in
Homberg and van den Hove, 2012). While we now only discussed
the G × E interactions, epigenetics is probably also a key contrib-
utor for these interactions. The relationship between genetic and
epigenetic variation at the 5-HTT gene has so far not been studied
in 5-HTT-deficient animal models. But 5-HTT-deficient rodents
may be particularly suitable to study these interactions.

GABAA RECEPTOR α SUBUNITS AND ANXIETY
In the 1950s, BZs were serendipitously found as having therapeu-
tically interesting activity with anxiolysis, sedation, anticonvulsive
activity, and muscle relaxation. The molecular target of BZs is the
GABAA receptor (Möhler and Okada, 1977). BZs mediate their
actions via a modulatory binding site that is present on most, but
not all GABAA receptors. The binding site for BZs is formed by one
of the α subunits (α1, α2, α3, or α5) and a γ subunit (almost exclu-
sively the γ2 subunit) GABAA receptors are the main inhibitory
neurons in the CNS and it is estimated that 20–30% of all neu-
rons in the CNS are of the GABAA type. BZs do not open the Cl−
channel in the absence of GABA. Only if the GABA receptor site is
activated, activation of the BZ site may modulate the opening of

the channel. Ligands at the BZ binding site are allosteric modula-
tors. They modify the efficacy and/or affinity of GABA in positive
(positive allosteric modulation, PAM), negative (negative allosteric
modulation, NAM), or have neutral effects by stabilizing different
three-dimensional conformations of the complex. Selectivity of a
ligand for a specific receptor subtype can be obtained by affinity
and/or by efficacy changes that determine the potential potency of
a ligand.

Human data
Even though specific SNPs of the GABAergic system have been
found to play a role in anxiety disorders (Nemeroff, 2003; Kalu-
eff and Nutt, 2007), GWAS on anxiety disorders are scarce and
GABAergic candidate genes emerging from the existing studies
have been equivocal (Logue et al., 2012; Otowa et al., 2012). A lim-
ited number of studies suggested some link between the GABRA2
gene and anxiety. Nelson et al. (2009) found that polymorphisms
in the GABRA2 gene interact with early childhood trauma and
increase the risk for PTSD. Pham et al. (2009) found, investigat-
ing 26 SNPs in four GABAA receptor genes (GABRA2,3,6 and
GABRG2) that none of the allelic variation in these genes was
involved in liability to anxiety-spectrum disorders. Besides the
GABRA subunit genes, several other GABAergic systems have been
implicated in the genetic load of GABA system pathways on the
psychobiology of anxiety. Suggestive signals for an association with
anxiety disorders and anxiety-related personality traits have been
found for other genes, e.g., glutamic acid decarboxylase 1 (Het-
tema et al., 2006) and 2 (Smoller et al., 2001b), b3 subunits of
the GABAA receptor (Feusner et al., 2001), the diazepam bind-
ing inhibitor (Thoeringer et al., 2007), and the GABA transporter
1 (Thoeringer et al., 2009). The latter authors suggest a multiple
system hit-theory in the genetic basis of anxiety disorders; many
loci at different genes of the GABA system, each with a small effect,
contribute to an individual’s risk on anxiety disorder. If several risk
genes are present, anxiety might develop depending upon adverse
environmental (stress) factors.

Preclinical data
By making the GABA α subunits insensitive to the diazepam
binding [α1(H101R) mice] strong evidence was gathered that α1
subunits were involved in sedative and anterograde amnesia effects
of diazepam. As such α2 point mutations [α2(H101R) mice] led to
absence of the anxiolytic and diminished muscle relaxant action,
but intact anxiolysis. Point mutations in α3 [α3(H126R) mice]
and α5 [α5(105R) mice] did not diazepam-induced myorelax-
ation, whereas sedation and anxiolysis were intact. Such data
strongly suggest a functional differentiation in the GABAA recep-
tors depending on the α-subunit composition (for review, see
Möhler, 2006; Rudolph and Knoflach, 2011). Classic BZs are
still frequently prescribed, have therapeutic activity but, inherent
to the activation of all relevant α-subunits, come with build-in
side effects. If used as anxiolytic tool, sedation is one of the
troubling side effects. Furthermore, upon chronic use, BZs can
lead to dependency, tolerance and induce abuse liability limit-
ing long-term use (Tan et al., 2011). Recent efforts have tried to
synthesize new drugs that have selectivity and potency for spe-
cific α subunits (Rudolph and Knoflach, 2011) although relatively
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selective drugs for the α1 subunit are already in use for seda-
tion/hypnotic purposes (zolpidem, zopiclone, (S)-zopiclone, and
zaleplon). Compounds that selectively activate the α2 subunits and
have no effects on any other α subunit might constitute an ideal,
non-sedative anxiolytic, although activation of α3 subunits might
contribute to an anxiolytic profile (Dias et al., 2005; Vinkers et al.,
2009; Atack, 2010). L-838417, a partial PAM at α2, α3, and α5
containing GABAA receptors and an antagonist at α1 containing
receptors has a non-sedating anxiolytic profile in mice (McKernan
et al., 2000; van Bogaert et al., 2006) and primates (Rowlett et al.,
2005). Development of this compound has been stopped due to an
unfavorable pharmacokinetic profile (Scott-Stevens et al., 2005).
TPA023, an α2/α3 PAM, has anxiolytic and no sedative effects in
rodents (Atack et al., 2006). TPA023 was evaluated in three phase 2
studies in GAD and showed preliminary indications of anxiolytic
activity without sedation (Atack, 2010). However, this compound
had to be withdrawn due to severe preclinical toxicity. A compa-
rable story holds for ocinaplon, having a non-sedative anxiolytic
profile in humans but also had to be withdrawn due to hepa-
totoxicity (Lippa et al., 2005; Czobor et al., 2010). Several other
ligands have been synthetized and tested, mostly restricted to pre-
clinical phases. It appears possible to make compounds with some
selectivity for specific α subunits but in vivo efficacy is extremely
difficult to design: both positive and negative allosteric modula-
tors have been found, sometimes even mixed PAM/NAM effects
on different α subunits are present or no selectivity is present
in vitro whereas in vivo some efficacy is found (e.g., ocinaplon).
MRK-409, an extremely low partial agonist (PAM) at α1, α2, and
α5 containing GABAA receptors but higher intrinsic activity at
α3 subunit GABAA receptors, appeared to be anxioselective in
animals but sedative in humans, already at low (<10%) recep-
tor occupancy (Atack et al., 2011). One of the unresolved issues
around subunit selective GABAergic compounds is the issue of
tolerance and abuse potential. Does activation of all α subunit
containing GABAA receptors lead to addiction or is that caused
by specific α subunits? This is an important issue because the
development of potentially abusive medications will meet severe
constraints if not impossible. There is some evidence that acti-
vation of α1 subunits is essential in the addictive properties of
BZs (Tan et al., 2010, 2011). However, the processes of tolerance
development are complex and endpoint-dependent (Vinkers et al.,
2012). If the therapeutic effects of activation of α1-containing
GABAA receptors cannot be separated from potential addictive
side effects, no further development of α1 subunit specific ligands
can be expected. However, if addictive properties are not entwined
in (chronic) activation of the other α(2,3,5) subunits, new devel-
opments in the field of anxiety (and others like cognition and
analgesia) might be expected (Mirza and Munro, 2010; Vinkers
et al., 2010a).

THE INTERACTION BETWEEN 5-HT AND GABA
The GABA and the serotonergic system may directly interact
(Lista et al., 1989; Gao et al., 1993; Fernandez-Guasti and Lopez-
Rubalcava, 1998). However, the evidence is equivocal (Shephard
et al., 1982; Thiebot, 1986). A serotonergic component in the
anxiolytic actions of GABAergic BZs has been suggested (Stein
et al., 1977; Thiebot et al., 1984; Harandi et al., 1987). Moreover,

studies have found that a decreased serotonin activity and turnover
emerges after the administration of BZs (Chase et al., 1970; Stein
et al., 1977; Pratt et al., 1979; Trulson et al., 1982; Wright et al.,
1992), although others have not found such effects (Shephard and
Broadhurst, 1982; Thiebot et al., 1984; Thiebot, 1986). Also, the
vast majority of serotonergic neurons express GABAA receptor α3-
subunit immunoreactivity but not GABAA receptor α1-subunit
staining (Gao et al., 1993). This is remarkable as the α1 subunit
is highly prevalent in the CNS. Thus, BZs could at least partially
produce their anxiolytic effects by activating α3 subunits located
on serotonergic neurons (Vinkers et al., 2010b). In support, sero-
tonergic raphe nuclei receive a prominent GABAergic input via
distant sources as well as interneurons (Harandi et al., 1987; Bagdy
et al., 2000; Gervasoni et al., 2000; Varga et al., 2001; Vinkers et al.,
2010b). Together, the interaction of the GABA and serotonin sys-
tem in anxiety disorders could be valuable in the search for novel
anxiolytic drugs. Nevertheless, the fact that BZs acutely reduce
anxiety, whereas SSRIs take several weeks before anxiolytic activ-
ity becomes apparent suggests that the two drug classes exert their
effects via different mechanisms.

TRANSLATIONAL STUDIES INTO ANXIETY
Can the data on the involvement of 5-HT in anxiety and anxi-
ety disorders (here illustrated with the 5-HTT, the 5-HT2 receptor
and the 5-HT1A receptor) be used to design translational research
that possibly will generate new hypotheses and targets for anxi-
olytic therapeutics? Recently, Jasinska et al. (2012) formulated a
hypothesis around the involvement of the 5-HTT gene, stress and
raphe–raphe interactions in order to try to explain the risk of
depression as a result of G × E interactions between the 5-HTT
gene and stress. Different populations of 5-HTergic neurons in the
dorsal raphe (DR) nucleus exist that differentially contribute to the
response to stress. As mentioned before differentiation of subpop-
ulations of 5-HT neurons could also be a factor contributing to
the development of anxiety disorders (Gaspar and Lillesaar, 2012;
Andrade and Haj-Dahmane, 2013). Although Jasinska et al. (2012)
hypothesize this mechanism mainly for depression, there is no a
priory reason why anxiety disorders would not be mediated by this
or a similar mechanism. The authors propose that the variability in
the reuptake of 5-HT during stressor-induced raphe–raphe inter-
actions alters the balance in amygdala–ventromedial prefrontal
cortex–DR (VMPFC–DR) circuitry. This VMPFC-DR circuitry
is important in the reactivity to stressors and the regulation of
emotion. In LL-individuals with an efficient 5-HT transport the
circuitry is able to normalize, but not so in SS-individuals, poten-
tially leading to abnormal activity and pathology. Whether such
a mechanism also acts in human pathology is as yet unresolved
but could lead to specific searches for new mechanisms causing
pathological anxiety. Next to different functional 5-HTergic pop-
ulations in the DR, 5-HTTs appear very dynamically regulated
(Steiner et al., 2008), undergo regulated membrane trafficking
as well as transitions between low and high activity states, with
many signaling pathways involved. Moreover, 5-HTT exhibits
dynamic associations with cytoskeletal binding proteins; actually
Chang et al. (2012) found two pools of 5-HTT proteins on the
surface of 5-HTergic cells, one relatively with free diffusion, the
other with restricted mobility due to binding to the cytoskeleton.
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Whether the 5-HTergic system exerts this kind of extremely vari-
ability which might lead to new and better understanding of the
role of the 5-HTT complex, including its genetic variability is
still a matter of the future but it remains fully possible that new
mechanisms involved in anxiety and its disorders might emerge.

CONCLUDING REMARKS
This review has illustrated the complexity of research on the
genetic background of anxiety disorders. Although we discuss only
the serotonergic and the GABA system, more systems/candidates
are of potential interest including glutamate, NE, dopamine, and
some peptides (reviewed in Christmas et al., 2008), as well as
specific translocator protein which promote neurosteroidogene-
sis (Taliani et al., 2009; Nothdurfter et al., 2012) and agomelatine
(Stein et al., 2008). However, in the present review, four targets
have been presented to exemplify the complexity of anxiety: the
5-HT1A receptor, 5-HT2 receptor, 5-HTT, and GABAA recep-
tor. This is important as two known class of drugs (SSRIs and
BZs) are effective anxiolytics. Even though these anxiolytic drugs
have been around for decades, no subsequent breakthrough has
become available. The reasons for the relative lack of progress
in the anxiety field are not completely clear but may be due to
the heterogeneous classification of anxiety disorders, but also the
complex regulatory and financial regulations in the finding of new
“druggable” targets (beyond the scope of this review, see, e.g.,
Knutsen, 2011). Nevertheless, a recurring theme is the contin-
ued paucity of novel targets for anxiolytic drugs and our limited
knowledge of the mechanisms underlying the various anxiety dis-
orders. This includes the limited contribution of genetic studies
to novel anxiolytic targets. In this review, we have argued that
it is vital to invest in fundamental research in the mechanisms
involved in anxiety processes in animals and unaffected individu-
als. Because a direct investigation of the human brain is often not
possible, animal research may contribute considerably in finding
neural substrates for anxiety and its pathology. However, it is not
realistic to think that such knowledge is completely translatable to
the clinical situation. Moreover, in animal models it is not always
possible to model specific symptoms related to human pathology,

which might cause limitations in the development of novel drug
targets.

The initial hope was, after elucidation of the human genome,
that the identification of causative genes would be a matter of
time. Notwithstanding a certain degree of heritability of anxiety
disorders, no single gene or set of genes has emerged from a large
number of studies on large cohorts of patients thus far. It becomes
increasingly evident that anxiety disorders, probably similar to the
neurobiological mechanisms underlying anxiety processes, are the
result of many hundreds of genes with small effects which display
complex interactions with both environmental factors and other
genes. Therefore, genetic approaches in studies on anxiety disor-
ders may be enriched with preclinical studies to identify relevant
drug targets. It is improbable that a single gene contributes signif-
icantly to anxiety processes to a large degree. It is striking that the
functionality of GABA and 5-HT system in “normal” or “patho-
logical” anxiety in healthy individuals is largely unknown, In case
of 5-HT modulation (via 5-HT1A receptor activation or block-
ade of the 5-HTT) an indirect effect is possibly the most logical
explanation, because treatment of anxiety disorders with SSRIs or
buspirone takes weeks or even months before anxiolytic activity is
seen (acute effects seen after administration of these drugs are even
anxiogenic). The delayed effect therefore points to induction of
mechanisms that slowly change and need time to become effective
(plasticity changes). Anxiolytic effects after activation of GABAA

receptors seem acute and might point to a primary mechanism
directly involved in anxiety regulating mechanisms. Close collab-
oration between fundamental research and clinical studies into
the mechanisms underlying anxiety might lead to breakthroughs
in the search for novel anxiolytic drugs and enhance the success of
research and development efforts aimed at drug discovery for anx-
iety disorders. In conclusion, we argue that animal models should
play an important role in the future anxiolytic drug development as
a fundamental component of a broad multidisciplinary approach.
To be successful, novel clinical insights into the etiology of anx-
iety disorders from preclinical studies must be integrated in the
broader context of human genetic studies and novel biopathway
analysis.
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Posttraumatic stress disorder (PTSD) is a
severe condition resulting from exposure
to traumatic events, such as combat sit-
uations, sexual assault, serious injury or
the threat of death. Symptoms include dis-
turbing recurring flashbacks, avoidance or
numbing of memories of the event, and
hyperarousal, which continue for more
than a month after the traumatic event.
Reduced cortical GABA (Kugaya et al.,
2003) and cebrospinal fluid (CSF) allo-
pregnanolone levels (Rasmusson et al.,
2006) that positively and allosterically
modulate GABA action at GABAA recep-
tors (Belelli and Lambert, 2005) suggest
that in PTSD patients, a perturbation
of GABAergic neurotransmission plays a
role in the pathogenesis of this disorder.
Thus restoring downregulated brain allo-
pregnanolone levels may be beneficial in
treating PTSD.

There is a general consensus that mal-
adaptive fear responses (i.e., impaired fear
extinction) are a core feature of stress-
induced PTSD (Myers and Davis, 2007;
Maren, 2008). Exaggerated fear responses
and impaired extinction learning, or the
inability to extinguish fear memories, are
often treated with exposure-based ther-
apy (EBT), which involves the expo-
sure of the patient to the feared context
without any danger (Joseph and Gray,
2008). This closely approximates the pro-
cedure used to simulate and study fear
responses and fear extinction learning in
PTSD mouse models (Marks, 1979). While
psychological therapy has been highly
effective both in treating PTSD and in
preventing the progression of the event
sequelae that leads to consolidation of
fear memories, one challenge of PTSD
therapy is the spontaneous recovery of fear

that often reemerges following successful
EBT.

For this reason, pharmacological treat-
ment may be advantageous alone or in
combination with EBT. Selective serotonin
reuptake inhibitors (SSRIs) are currently
the drugs of choice in treating PTSD.
They are effective in facilitating and restor-
ing the neurobiological changes altered in
PTSD patients, and they are devoid of the
unwanted side effects that plague the use of
benzodiazepines, more importantly, SSRIs
are potent therapeutics where benzodi-
azepines fail to be beneficial. Following
the observation that low non-serotonergic
doses of fluoxetine and congeners increase
allopregnanolone levels as their primary
mechanism of action, we suggested that
SSRIs acting as selective brain steroido-
genic stimulants (SBSSs) can improve dys-
functional emotional behavior and may be
of advantage in PTSD treatment. In addi-
tion to its use in PTSD, this novel steroido-
genic mechanism of action of SSRIs given
at low doses offers enormous therapeutic
potentials for the treatment of other psy-
chiatric disorders, including anxiety spec-
trum disorders, premenstrual dysphoria,
and probably depression, as these disor-
ders may be caused by a downregulation of
neurosteroid biosynthesis (Uzunov et al.,
1996; Westenberg, 1996; Guidotti and
Costa, 1998; Romeo et al., 1998; Uzunova
et al., 1998; Steiner and Pearlstein, 2000;
Berton and Nestler, 2006; Pinna et al.,
2006a, 2009; Pinna, 2010; Ipser and Stein,
2012; Pinna and Rasmusson, 2012; Lovick,
2013).

In vitro studies show that SSRIs
may activate 3α-hydroxysteroid dehy-
drogenase, thereby facilitating the
reduction of 5α-dihydroprogesterone

into allopregnanolone (Griffin and
Mellon, 1999). Nonetheless, the pre-
cise neuronal mechanisms involved in
the neurosteroidogenic action of SSRIs
remain unclear. Drug design welcomed
allopregnanolone biosynthesis as a target
for novel rapidly acting anxiolytics devoid
of sedation, tolerance, and withdrawal
liabilities (Rupprecht et al., 2009, 2010;
Schüle et al., 2011), and, in addition to
low doses of SSRIs, selective ligands for
the (18 kDa) translocase protein (TSPO),
which increase allopregnanolone levels,
may be beneficial in anxiety and PTSD
(Rupprecht et al., 2009).

A PTSD MOUSE MODEL
In our laboratory, we have used the socially
isolated (SI) mouse as a model char-
acterized by a downregulation of allo-
pregnanolone biosynthesis associated with
endophenotypic features of PTSD. The rel-
evance of the SI mice as a model of PTSD
lays in reproducing behavioral and neu-
rochemical alterations that are found in
PTSD patients (Pibiri et al., 2008). Thus, SI
mice express decreased corticolimbic allo-
pregnanolone levels in emotion-relevant
brain areas (frontal cortex, hippocam-
pus, basolateral amygdala) (Pibiri et al.,
2008; Pinna et al., 2008). The impulsivity
and violence of combat veterans (Forbes
et al., 2008), is matched in SI mice by
high levels of aggression (Pinna et al.,
2003). In PTSD patients, enhanced con-
textual fear and impaired fear extinction
learning was shown during re-exposure
to events that symbolize the triggering
traumatic event; however, cued fear was
not changed (Ameli et al., 2001; Rauch
et al., 2006). SI mice, analogously, display
exaggerated contextual fear and impaired
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fear extinction and unchanged cued fear
responses (Pibiri et al., 2008; Pinna et al.,
2008). Interestingly, PTSD patients fail
to respond to the pharmacological action
of benzodiazepine and show decreased
frontocortical benzodiazepine site bind-
ing (Bremner et al., 2000). Of note, SI
mice show a lack of sedative/anxiolytic
activity to diazepam and zolpidem (Pinna
et al., 2006b; Nin et al., 2011). In con-
trast, allopregnanolone or S-norfluoxetine
at low, non-SSRI active doses reduced
anxiety in SI mice, an effect that was
mimicked by allopregnanolone’s analog
ganaxolone (Pinna and Rasmusson, sub-
mitted). Interestingly, anxiolytic doses
of S-norfluoxetine also normalized the
immobility time of SI mice as determined
by the forced swim test (Nin et al., 2011).

Social isolation causes changes in the
frontocortical and hippocampus expres-
sion of GABAA receptor subunits. The cor-
tical expression of α1, α2, and γ2 subunit
mRNA was decreased by ≈50%, and α4
and α5 was increased by 130% in SI mice.
The expression α1 subunit mRNA in layer
I was decreased by 50% and unchanged in
layer V of SI mice (Pinna et al., 2006b).
Likewise, GABAAreceptor subunit expres-
sion of α1 was decreased and that of
α5 was increased in the hippocampus.
A downregulation of α1 (−40%) and an
increase in the expression of α5 subunit
proteins (+100%) was also determined
in SI mice. Because γ2 subunits are a
necessary prerequisite for the formation
of benzodiazepine-sensitive GABAA recep-
tors, our study suggests that the decrease
in γ2 expression and the lack of ben-
zodiazepine’s anxiolytic action observed
in SI mice may be a result of stress-
induced formation of benzodiazepine-
insensitive GABAA receptors strategically
integrated in circuitry that regulate anxi-
ety. Interestingly, we observed a decreased
benzodiazepine binding to hippocampal
synaptic membranes (Pinna et al., 2006b).

Unlike benzodiazepines, which have
a selective pharmacological profile and
fail to activate GABAA receptors con-
taining α4 and α6 subunits (Brown
et al., 2002), allopregnanolone modu-
lation of GABAA receptors exhibits a
broad pharmacological profile. Although
allopregnanolone acts preferentially on
δ subunit-containing GABAA receptors,
which confers neurosteroid sensitivity,

it also exerts effects on other GABAA

receptor subtypes at higher concen-
trations (Mihalek et al., 1999; Stell
et al., 2003). Thus, increasing corti-
colimbic allopregnanolone levels with
allopregnanolone injections or stimulat-
ing allopregnanolone biosynthesis with
S-norfluoxetine, or directly activation
of GABAA receptors with ganaxolone
likely improved anxiety because allopreg-
nanolone/ganaxolone acts on a larger
spectrum of GABAA receptor subunits.
Thus, allopregnanolone or analogs are
more advantageous than benzodiazepines
because they improve anxiety, fear, and
aggressiveness when benzodiazepines are
inactive. In addition, unlike benzodi-
azepines, allopregnanolone, ganaxolone,
or SBSS ligands may improve emotional
behavior at non-sedative concentrations
(Pinna et al., 2003, 2006b; Nelson and
Pinna, 2011; Nin et al., 2011; Pinna and
Rasmusson, submitted). These obser-
vations suggest that drugs designed to
selectively increase neurosteroidogenesis
may alleviate PTSD by facilitating GABAA

receptor neurotransmission.

PHARMACOLOGICAL TARGETS TO
STIMULATE NEUROSTEROIDOGENESIS
A seminal observation by Uzunova et al.
(1998) suggested that SSRIs, includ-
ing fluoxetine and fluvoxamine might
be beneficial in the treatment of major
unipolar depression by increasing the
brain levels of allopregnanolone. This
SSRI-induced neurosteroidogenic effect
correlated with improved depressive
symptomatology and was confirmed by
several other reports in the field (Romeo
et al., 1998, reviewed in Pinna et al.,
2006a; Schüle et al., 2011). Previous
studies reported that SSRIs induce allo-
pregnanolone biosynthesis in rodent
brain slices following incubation with
the allopregnanolone’s precursor 5α-
dihydroprogesterone (Uzunov et al.,
1996). These observations were confirmed
in experiments in which fluoxetine’s abil-
ity to induce neurosteroidogenesis in
several corticolimbic structures was chal-
lenged using mouse models of psychiatric
disorders such as the SI mouse (Pinna
et al., 2003, 2004). Interestingly, fluoxe-
tine’s action as a steroidogenic stimulant
appeared to be the primary mechanism
of SSRIs: the drug concentrations, which

increased brain allopregnanolone levels
were less than, and dissociated from, those
effective as a selective serotonin reuptake
inhibitor, which justified a new name to
better define the “SSRI” mechanism of
action: selective brain steroidogenic stimu-
lants or SBSS (Pinna et al., 2006a, 2009).
The discovery of this novel mechanism
of action of SSRIs has stimulated drug
design to focus on the development of
new, more effective therapies for anxiety
disorders by targeting neurosteroidoge-
nesis. Novel neuronal biomarkers, for
the pharmacological target of neuros-
teroidogenesis as the next generation of
anxiolytic drugs, have been discovered
(Rupprecht et al., 2009). These include the
TSPO (Costa et al., 1994; Papadopoulos
et al., 2006), which represents the start-
ing point and an important rate-limiting
step in neurosteroidogenesis. TSPO reg-
ulates neurosteroidogenesis in the brain
by gating the entry of cholesterol into
the inner mitochondrial membranes of
glial cells, and its conversion into preg-
nenolone by P450scc Figure 1 (Costa
and Guidotti, 1991; Costa et al., 1994;
Papadopoulos et al., 2006; Rupprecht
et al., 2010). Pregnenolone can then be
taken up by pyramidal neurons (Costa
and Guidotti, 1991) where a cascade of
enzymatic processes takes place in the
cytosol resulting in the production of
neurosteroids, including pregnenolone
sulfate and allopregnanolone Figure 1.
New molecules that bind with high affinity
to TSPO have been recently investigated;
these drugs are able to exert important
anxiolytic effects but are devoid of the
unwanted side effects associated with ben-
zodiazepines, including over-sedation,
tolerance, and withdrawal symptoms
(Rupprecht et al., 2009, 2010). In mouse
models, TSPO agents have been shown
to potently increase allopregnanolone
levels in the hippocampus and cortex,
as well as to induce anxiolytic effects
(Kita et al., 2004). XBD173 and etifox-
ine have proven to be highly efficacious
anxiolytic and antidepressant drugs in a
number of behavioral tests (Rupprecht
et al., 2010; Schüle et al., 2011). The anx-
iolytic effects of these agents were related
to their ability to increase neurosteroid
biosynthesis upstream of allopregnanolone
synthesis within the neurosteroidogenic
cascade Figure 1, as confirmed by studies
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FIGURE 1 | Therapeutic strategies to increase neurosteroidogenesis and improve PTSD by

enhancing GABAergic neurotransmission. Depicted are three strategies to improve PTSD
symptoms by increasing corticolimbic allopregnanolone levels or by direct activation of GABAA

receptors. (A) TSPO ligands induce an upstream regulation of neurosteroidogenesis by gating the
entry of cholesterol into the inner mitochondrial membranes of glial cells, and its conversion into
pregnenolone. Pregnenolone can then be taken up by pyramidal neurons (Costa and Guidotti, 1991)
where a cascade of enzymatic processes takes place in the cytosol resulting in the production of
allopregnanolone. Interestingly, pregnenolone can be further sulfated to pregnenolone sulfate,
which has been described as both a positive NMDA receptor modulator (Kussius et al., 2009) and
negative GABAA receptor modulator (Mtchedlishvili and Kapur, 2003). (B) S-NFLX induces a
downstream activation of neurosteroidogenesis likely by stimulating allopregnanolone content at
the level of 3α-HSD (Griffin and Mellon, 1999). Neurosteroidogenesis is not globally expressed in
the brain but relies on rate-limiting step enzymes, which guard allopregnanolone availability and
thereby normalize its physiological levels in the required corticolimbic areas (e.g., after activation of
TSPO or after S-NFLX). Allopregnanolone, synthesized in glutamatergic cortical or hippocampal
pyramidal neurons, may improve PTSD symptoms after being secreted by an autocrine fashion and
act locally by binding post-synaptic or extra-synaptic GABAA receptors located on the same neuron
in which it was produced (arrow 1) (Agis-Balboa et al., 2006, 2007). Allopregnanolone may also
diffuse into synaptosome membranes of the cell bodies or dendritic arborization to attain
intracellular access to specific neurosteroid binding sites of GABAA receptors (arrow 2) (Akk et al.,
2005). (C) Allopregnanolone’s analogs (e.g., ganaxolone) directly activate GABAA receptors and are
beneficial in pathological conditions in which allopregnanolone biosynthesis is severely impaired.
TSPO, translocate protein (18 kDa); 5α-DHP, 5α-dihydroprogesterone; 5α-RI, 5α-reductase type I;
3α-HSD, 3α-hydroxysteroid dehydrogenase; S-NFLX, S-norfluoxetine.

in which key enzyme blockers for neuros-
teroid biosynthesis, including finansteride
and trilostane (Schüle et al., 2011), were
used. TSPO ligands (AC-5216/XBD173
and YL-IPA08) also improve PTSD-like
behavior in rodents in studies of sit-
uational reminders and contextual fear
responses (Qiu et al., 2013). In sum-
mary, these studies demonstrated the
neuropharmacological effects of several
TSPO agents, suggesting that TSPO may
represent a therapeutic target for drug
discovery. Thus, these drugs, which ful-
fill the requirements as SBSS molecules,
may be a new class of drugs for the future

treatment of PTSD and other anxiety dis-
orders. Consistently, TSPO ligands have
recently showed promising therapeutic
effects in clinical studies (Rupprecht et al.,
2010; Schüle et al., 2011).

The advantage of having a drug that
“indirectly” activates GABAA receptors
by increasing allopregnanolone levels
Figure 1 within the brain is that allopreg-
nanolone will not be globally increased.
Physiological concentrations of allopreg-
nanolone are unevenly expressed in the
brain (Pinna et al., 2000; Pibiri et al.,
2008), and regulated by rate-limiting step
enzymes such as 5α-reductase type I.

Pharmacological treatments also induce
a cell specific upregulation of brain
allopregnanolone, which is increased
in frontal cortex (pyramidal neurons,
5α-reductase is not expressed in interneu-
rons), hippocampus (CA1-3 pyramidal
neurons and dentate gyrus granular cells),
and basolateral amygdala (pyramidal-
like neurons) after fluoxetine but not
in striatum (where allopregnanolone is
produced in GABAergic long-projecting
neurons, spiny neurons) (Agis-Balboa
et al., 2006, 2007). Hence, while allo-
pregnanolone is downregulated during
social isolation, fluoxetine elevates its lev-
els in glutamatergic neurons but not in
GABAergic neurons (Nelson and Pinna,
2011). If allopregnanolone is administered
directly, it would be expressed all over
the brain and reach high levels in brain
regions where its levels are physiologically
lower.

Ideally, the SBSS drugs of the future
that selectively induce anxiolytic and anti-
PTSD effects, will be those molecules,
prototypic of fluoxetine, devoid of sero-
tonergic effects but capable of activating a
neurosteroidogenesis cascade downstream,
possibly stimulating allopregnanolone
content at the level of 5α-reductase
or 3α-hydroxysteroid dehydrogenase.
Understanding whether FLX’s action
on neurosteroidogenesis is mediated by
upregulating expression or function of 5α-
reductase is of pivotal importance because
this enzyme is downregulated in corticol-
imbic areas of SI mice and in post-mortem
frontal cortex (BA9) of depressed patients
(Agis-Balboa et al., submitted).

As an alternative, in patients
who cannot adequately synthesize
allopregnanolone and in whom admin-
istration of an SBSS is ineffective because
neurosteroidogenesis is greatly impaired,
the administration of an allopregnanolone
analog (Gulinello et al., 2003; Kaminski
et al., 2004), such as ganaxolone that
directly activates GABAA receptors
Figure 1 may offer a safe therapeutic alter-
native. A multisite Phase II trial of the
efficacy and safety of ganaxolone in PTSD
is currently under process.

CONCLUSION
Targeting allopregnanolone biosynthesis
with selective neurosteroidogenic agents
offers several therapeutic advantages: (1)
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allopregnanolone is not globally expressed
in the brain like in the case of administer-
ing allopregnanolone itself, in fact, using a
neurosteroidogenic molecule relies on the
stimulation of rate-limiting step enzymes
Figure 1, which guard allopregnanolone
levels and thereby normalize its physiolog-
ical levels in the required brain areas; and
(2) stimulating allopregnanolone biosyn-
thesis downstream of pregnenolone in the
neurosteroidogenic cascade circumvents
the production of several neurosteroids,
which by activating various neurotrans-
mitter systems may be associated with
unwanted side effects.
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Newer antidepressants are needed for the many individuals with major depressive
disorder (MDD) that do not respond adequately to treatment and because of a delay
of weeks before the emergence of therapeutic effects. Recent evidence from clinical
trials shows that the NMDA antagonist ketamine is a revolutionary novel antidepressant
because it acts rapidly and is effective for treatment-resistant patients. A single infusion
of ketamine alleviates depressive symptoms in treatment-resistant depressed patients
within hours and these effects may be sustained for up to 2 weeks. Although
the discovery of ketamine’s effects has reshaped drug discovery for antidepressants,
the psychotomimetic properties of this compound limit the use of this therapy to the
most severely ill patients. In order to develop additional antidepressants like ketamine,
adequate preclinical behavioral screening paradigms for fast-acting antidepressants need
to be established and used to identify the underlying neural mechanisms. This review
examines the preclinical literature attempting to model the antidepressant-like effects of
ketamine. Acute administration of ketamine has produced effects in behavioral screens for
antidepressants like the forced swim test, novelty suppression of feeding and in rodent
models for depression. Protracted behavioral effects of ketamine have been reported to
appear after a single treatment that last for days. This temporal pattern is similar to its
clinical effects and may serve as a new animal paradigm for rapid antidepressant effects
in humans. In addition, protracted changes in molecules mediating synaptic plasticity
have been implicated in mediating the antidepressant-like behavioral effects of ketamine.
Current preclinical studies are examining compounds with more specific pharmacological
effects at glutamate receptors and synapses in order to develop additional rapidly acting
antidepressants without the hallucinogenic side effects or abuse potential of ketamine.

Keywords: ketamine, antidepressants, depression, animal models, BDNF

INTRODUCTION
Major depressive disorder (MDD) is a serious public health
problem and one of the most common psychiatric disorders,
with a lifetime prevalence of 17% in the United States (Kessler
et al., 2005). Although the currently available antidepressants
provide a measurable degree of therapy, approximately 50% of
individuals diagnosed with MDD do not respond adequately to
first–line treatment with conventional antidepressants (Trivedi
et al., 2006; Fava et al., 2008). Moreover, the 3–4 week delay
in the onset of therapeutic efficacy is particularly difficult for
patients with persistent suicidal ideation. Patients that emerge
as treatment resistant, defined as failing two or more trials of
medication, are more severely ill with comorbid anxiety disor-
ders and are at increased risk of suicide for an extended period
of time (Joffe et al., 1993; Souery et al., 2007; Schosser et al.,
2012). Therefore, there is a pressing medical need to develop
rapidly acting therapeutics that are capable of immediately reliev-
ing the depressive symptomology, and persisting in their action as
an antidepressant, for patients unable to respond to conventional
therapies.

Recently it has been demonstrated that the NMDA receptor
antagonist ketamine has rapid-acting and transient antidepres-
sant effects in patients that are treatment resistant (Mathew
et al., 2012). However, the discovery of ketamine is no panacea.
The psychotomimetic properties and abuse potential of ketamine
necessitate caution in promoting this particular compound as
a general treatment for MDD. Understanding the underlying
mechanism of action of ketamine linked to behavioral improve-
ment is of significant importance for the development of novel,
more improved antidepressants beyond the use of ketamine.
This review will focus on the molecular alterations and animal
behavior studies that have been used to measure potential cor-
relates of the antidepressant effects of ketamine. As ketamine
produces clinical antidepressant effects with a different time
course and apparently different neurochemical mechanism than
conventional antidepressants, the results of these studies have
revealed new paradigms that can be used to identify novel
compounds which may have a similar therapeutic potential
and time course as ketamine in targeting treatment resistant
depression (TRD).
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KETAMINE—CLINICAL TRIALS
The initial clinical trials were double blind crossover studies that
utilized a single infusion of ketamine (0.5 mg/kg) administered
intravenously over a 40 min period (Berman et al., 2000; Zarate
et al., 2006). Berman et al reported decreases in depressive symp-
tomology, which emerged progressively over the first 3 days in all
of the eight patients that were treated; one patient continued to
show antidepressant-like effects 2 weeks post-infusion. Similarly,
Zarate and colleagues reported a significant and rapid alleviation
of depressive symptoms in 12 individuals on the first day, with six
subjects exhibiting symptom alleviation for a least 1 week; two of
these subjects continued to show antidepressant effects 2 weeks
post-single ketamine infusion. Subsequent studies reported sig-
nificant efficacy of ketamine in reducing suicidal ideation in indi-
viduals exhibiting TRD (Diazgranados et al., 2010). Moreover,
a proof of concept trial conducted in treatment-resistant bipo-
lar patients revealed a more rapid onset of antidepressant effects
following ketamine infusion concomitant to their valproate and
lithium treatment compared to previous studies conducted in
MDD patients. However, the alleviation of depressive symp-
toms in the bipolar study persisted for only 3 days compared
to the 7 days reported in earlier trials. In addition, ketamine
had significant efficacy in patients resistant to electroconvulsive
therapy (ECT) and produced more rapid antidepressant effects
compared to ECT (Ibrahim et al., 2011). Unlike the almost imme-
diate alleviation of depressive symptomology associated with
ketamine infusion, similar reductions in symptoms were observed
approximately 1–2 weeks following the first of the thrice-weekly
ECT exposures. Furthermore, the use of ketamine as the anes-
thetic prior to ECT has been suggested to improve outcome and
response to ECT (Hoyer et al., 2013). Indeed, the administration
of ketamine/propofol (ketofol) improved the severity of seizure
duration, induced an earlier onset of the antidepressant effect
and significantly improved cognitive performances compared to
propofol (Wang et al., 2012). Recently, it was reported that sub-
anesthetic doses of S-ketamine with propofol actually worsened
the post-treatment disorientation in some patients (Jarventausta
et al., 2013). Further research is ongoing to determine the benefit
of the S-enantiomer over the commonly used racemic mixture of
ketamine. One group suggested that S-ketamine did not induce
the transient psychotomimetic effects evident in the initial phase
of infusion (Segmiller et al., 2013).

An extensive clinical trial involving 67 patients at two
sites with documented TRD established the most definitive
antidepressant efficacy of ketamine, in comparison with the
benzodiazepine, midazolam, used as an active placebo con-
trol (Murrough et al., 2013). The response rates to ketamine
vs. midazolam were 64 and 28%, respectively, with ketamine
significantly reducing scores in the MADRS by 7.95 points.
Ketamine-treated patients continued to exhibit improved scores
over the 7-day period post-infusion compared to midazolam,
however, the reduction of depressive scores on day 7 was no
longer significant. Although most studies of ketamine have
involved only a small number of patients, this is the best-
designed and most extensive clinical trial to confirm the efficacy
of ketamine in rapidly and persistently alleviating depressive
symptomology.

Because the clinical effects of ketamine are transient, studies
have assessed the efficacy of ketamine administration when given
chronically. Significant improvement of symptoms persisted fol-
lowing six infusions of ketamine over 11 days, although the 9
patients treated in this trial eventually relapsed 19 days after the
final infusion (aan het Rot et al., 2010). In addition, the effects
of oral administration of ketamine given over a long-term period
yielded positive findings, with patients exhibiting improved mood
over the 28-day treatment period. Interestingly, although the level
of symptom alleviation was the same as that achieved by I.V.
infusion of ketamine, oral ketamine did not elicit a significant
effect on depressive symptoms until day 14 of treatment but for-
tunately did relieve anxiety symptoms within 3 days of treatment
(Irwin et al., 2013). Psychotomimetic effects were not observed
in these patients; however, there were some reports of sleep dis-
turbances and diarrhea. Moreover, another study conducted in
bipolar patients using sublingual ketamine indicated significant
(70%) numbers of individuals exhibiting improved mood with
limited side effects with rapid onset of action. These data indicate
that further evaluation of the administration route of ketamine
and their side effect profiles may be beneficial.

Although there is a clear consensus on the rapidity of the
antidepressant effect of ketamine in TRD, with most patients
experiencing elevated mood starting approximately 120 min
post-infusion, not all patients respond to ketamine treatment.
Response rates across studies have ranged between 25 and 85%
at 24 h and 14–70% at 72 h (Aan Het Rot et al., 2012). In addi-
tion, the duration of the antidepressant effect has varied across
studies. In most of the trials conducted so far, only approximately
half of the patients exhibited relief of depressive symptoms from
ketamine lasting past 72 h. The reasons underlying variability in
the response to ketamine are unknown. Given the heterogeneous
nature of depression, a number of genetic, environmental and
patient characteristics may be associated with treatment response.
For example, patients with a family history of alcohol use disorder
(AUD) exhibit better outcomes in response to ketamine adminis-
tration, reporting less psychotomimetic disturbances and greater
reductions of depression symptoms, compared to MDD patients
without a history of AUD (Phelps et al., 2009). In addition, poten-
tial biomarkers or genetic variants will likely be found to augment
or prevent responsiveness to ketamine.

Some clinical studies have tried to identify the critical phar-
macological characteristics of ketamine associated with treatment
response. Modification of the NMDA receptor subunit NR2B may
confer an increased treatment response; indeed, NR2B antago-
nists, CP-1016060 and MK-0657 have shown good efficacy in
treating TRD patients (Preskorn et al., 2008; Ibrahim et al.,
2012a). AZD6765, a NMDA channel blocker, was assessed for
its antidepressant-like qualities in a double blind crossover study
involving 22 subjects. Although no psychotomimetic effects of
this compound were reported, depressive symptoms were alle-
viated only for the first 2 h following infusion (Zarate et al.,
2013). Similarly, administration of riluzole, (a sodium chan-
nel blocker, which indirectly inhibits glutamate release) for 4
weeks following ketamine infusion did not potentiate symptom
improvement compared to placebo (Ibrahim et al., 2012b). These
reports and a growing literature indicate that the mechanisms of
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action mediating ketamine’s antidepressant effects have not yet
been identified and are not elicited simply by the blockade of
NMDA receptors.

ANTIDEPRESSANT-LIKE BEHAVIORAL EFFECTS OF
KETAMINE IN RODENTS
The ability of ketamine to affect depressive-like behavior in
a number of preclinical behavioral paradigms and models of
depression has been widely studied in the past few years. Many
reports indicate that acute administration of ketamine produces
antidepressant-like effects in rodents (Table 1). However, some of
the findings have not been replicated consistently by other labo-
ratories. The literature concerning the antidepressant-like effects
of ketamine is reviewed here, focusing on the effects of varying
test conditions on behavioral outcomes. In addition, many studies
have now reported that the effects of a single dose of ketamine can
be measured over a protracted period of time lasting between days
to weeks (Table 2). The time course of these protracted effects
resembles the time course for ketamine’s clinical effects (Yilmaz
et al., 2002; Maeng et al., 2008), and may represent a new ani-
mal behavioral paradigm that correlates with the clinical effects
of rapidly acting antidepressants.

FORCED SWIM TEST (FST)
The FST is the most frequently used behavioral test for measuring
depressive-like behavior in rodents. It has also been a frequently
used test within the preclinical ketamine literature. Mice and rats
placed in cylinders containing water rapidly become immobile,
demonstrated by floating passively or making only movements
necessary to remain afloat. Based on an immobility response
induced by inescapable exposure to stress, the FST also has strong
predictive validity because short-term administration of antide-
pressant compounds from a variety of pharmacological classes
reduces immobility time in the FST. These drugs include tricyclic
compounds, MAO inhibitors, atypical antidepressants, and SSRIs
(Cryan et al., 2005). Furthermore, the behavioral effects of tri-
cyclics and SSRIs do not last beyond a few hours following their
acute administration (Hoshaw et al., 2008).

Several groups have reported that a single administration of
ketamine produced acute reductions of immobility in the FST
shortly after injection (Table 1). Although the majority of these
studies utilized a 10 mg/kg dose administered intraperitoneally
(i.p.), subanesthetic doses of ketamine ranging from 10–50 mg/kg
have produced antidepressant-like effects in the FST. However,
some studies failed to detect acute effects of ketamine using the
FST in mice (Bechtholt-Gompf et al., 2011) or in rats (Popik et al.,
2008).

A feature of ketamine’s pharmacology distinct from conven-
tional antidepressants is that it produces protracted behavioral
effects persisting between one to several days after administration
(Table 2). The majority of studies indicate that the FST remains
sensitive to the protracted effects of ketamine up to 1 week after a
single injection (Table 1). These protracted effects were reported
to persist for 8 days (Ma et al., 2013), 10 days (Yilmaz et al.,
2002), 12 days (Garcia et al., 2008a), and 2 weeks (Maeng et al.,
2008). Interestingly, antidepressant-like effects of ketamine were
observed in the FST 2 months following the cessation of a 15-day

treatment of rats during adolescence (Parise et al., 2013). This
result is in line with other studies that have used a 10 or 12-
day dosing regimen to establish longer-lasting effects of chronic
ketamine on depressive-like activity in the FST (Tizabi et al.,
2012; Akinfiresoye and Tizabi, 2013). Only one study examin-
ing the protracted effects of ketamine failed to report this finding
(Lindholm et al., 2012).

The presence of chronic stress has been shown to facilitate the
detection of antidepressant-like effects of ketamine in the FST
(Koike et al., 2013a). There are also significant strain differences
in the sensitivity to ketamine. For example, Wistar rats are insen-
sitive to the antidepressant-like effects of low dose ketamine (2.5
and 5 mg/kg) following chronic treatment. In contrast, WKY rats
were extremely sensitive to ketamine-induced reductions in FST
immobility (Tizabi et al., 2012). WKY rats have a high baseline
immobility level in the FST, which may allow for a greater sen-
sitivity to compounds. Moreover, WKY rats are a genetic model
of pathological depression and anxiety (Will et al., 2003; Solberg
et al., 2004), which could provide them greater sensitivity to the
effects of ketamine. Finally, the WKY strain is insensitive to SSRIs
(Lopez-Rubalcava and Lucki, 2000; Tejani-Butt et al., 2003; Will
et al., 2003) showing that ketamine is active under conditions
where current antidepressants are ineffective. This feature makes
WKY rats a useful strain in which to assess novel compounds
resembling ketamine, which may be screened for efficacy in TRD.

TAIL SUSPENSION TEST (TST)
The TST is widely used in the preclinical ketamine literature as a
less stressful test of behavioral despair when mice are suspended
from their tail (Steru et al., 1985; Cryan et al., 2005). TST has pre-
dictive validity because it measures antidepressant-like responses
from various classes of drugs. Ketamine reduces immobility levels
in mice acutely, with studies reporting reductions in immobility
time at 30 min (Mantovani et al., 2003; Rosa et al., 2003; Cruz
et al., 2009; Koike et al., 2011a) and 24 h (Koike et al., 2011b)
following a single injection of ketamine.

The most effective dose in the TST was 30 mg/kg. ICR mice
were particularly sensitive to ketamine and continued to exhibit
decreased immobility 72 h after treatment (Koike et al., 2011b).
Furthermore, a lower dose of ketamine (10 mg/kg) was effective in
reducing TST immobility increased by chronic mild stress (CMS)
48 h after ketamine injection (Ma et al., 2013). In contrast, two
studies indicated that the acute reduction in immobility by high
dose ketamine (50 and 160 mg/kg) was not maintained 1 week
following treatment in mice (Popik et al., 2008; Bechtholt-Gompf
et al., 2011). These data suggest that the TST is most valuable in
the assessment of the more immediate antidepressant effects of
ketamine. However, exposure to stress could increase the sensi-
tivity to ketamine in the TST. To date there are no studies that
have investigated whether the TST is sensitive to a chronic dosing
regimen of ketamine.

NOVELTY SUPPRESSED FEEDING (NSF)
Exposure to a novel environment produces an anxiety-like phe-
notype in rodents known as hyponeophagia. In the NSF and
novelty-induced hypophagia (NIH) tests, the latency to feed is
increased and the amount of food consumption is reduced in a
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Table 1 | Acute effects of ketamine.

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

ACUTE EFFECTS OF KETAMINE

Burgdorf
et al., 2013

Male adult (2–3
months)
Sprague-Dawley rats

Fort Dodge (Butler,
USA), I.V., I.P., and S.C.
10 mg/kg

Reduced immobility in FST 20–60 min
and 24 h post i.p. Injection (10 mg/kg).
Reduced latency to feed in the NIH 1 h
post 10 mg/kg i.v.

Increased NR2B and GluR1
expression in the mPFC and
HC 24 h post-injection

Carrier and
Kabbaj, 2013

Male (250–270 g)
and female
(200–225 g)
Sprague-Dawley rats

Fort Dodge (Butler
Schein), Inc.
2.5–0 mg/kg

Latency to feed was reduced in the NSF
24 h post-injection (5 and 10 mg/kg).
Increased sucrose consumption of
males 48 h post-injection in the SPT.
Reduced immobility in FST in males &
females 30 min post-injection

Increased mTOR
phosphorylation in males
and females, reduced eEF2
phosphorylation in males
(5 mg/kg)

Gigliucci
et al., 2013

Male (280–320 g)
Sprague- Dawley rats

Vetoquinol Ltd., UK
(1.0 mg/ml). 10–25 mg/kg
i.p.

Rats exhibited antidepressant-like
effects in the FST at 1 or 24 h after a
single injection of ketamine. Ketamine
was ineffective following 3 injections
(24, 5 and 1 h prior to testing). Ketamine
(25 mg/kg) reversed stress-induced
immobility; this was prevented by pCPA
treatment at 24 h but not at 1 h
post-injection

Depletion of cortical
serotonin levels by pCPA
(1.0 mg/kg once daily for 3
days) attenuated the
antidepressant-like effect of
ketamine in the FST

Koike et al.,
2013a

Male
Sprague-Dawley rats
(185–325 g at
testing)

Ketalar® Sankyo Yell
Pharmaceutical Co.,
Ltd., 1–10 mg/kg i.p.

Ketamine (10 mg/kg) decreased
immobility 30 min post-treatment in rats
exposed to 21 days of corticosterone
administration

N/A

Koike et al.,
2013b

Male ICR (5 weeks)
and male C57BL/6j
(9 weeks)

Ketalar® Sankyo Yell
Pharmaceutical Co., Ltd.
30 mg/kg i.p.

Ketamine decreased immobility in the
FST & latency to feed in the NSF at
30 min and 24 h post-injection.
K252a prevented ketamine’s effects at
24 h.

N/A

Muller et al.,
2013

Male Sprague
Dawley rats
(330–400 g)

Fort-Dodge (Pfizer CT),
USA. 15 mg/kg (i.p.)

Reduced immobility in FST 2 h
post-injection

Increased p-αCamKII and
decreased SNARE complex
expression 1– 4 h
post-injection. No effect on
GSK-3 activity. Protracted
increased in synapsin
expression1 h to 7 days
post-injection

Walker et al.,
2013

CD-1 mice (6 wks.
old) and C57BL/6J
mice (12 weeks old)

Fort Dodge Animal
Health 6 mg/kg (i.p.)

Ketamine co-administered with LPS but
not pretreatment 24 h prior blocked
LPS-induced immobility in FST and
anhedonia in the SPT. 10 h post LPS,
ketamine administration reversed the
anhedonia in SPT, this was blocked by
NBQX

Ketamine did not block the
LPS-induced increases in
kynurenine metabolites,
cytokines or BDNF
expression at 6–28 h

Iijima et al.,
2012

C57Bl/6J mice (9
weeks)

Sigma-Aldrich 30 mg/kg
(i.p.)

Latency to feed in the NSF was reduced
at 30 min and 24 h post-injection.
Rapamycin reversed the 24 h reduction
in NSF latency

N/A

(Continued)
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Table 1 | Continued

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

Liu et al.,
2012

BDNF knockin mice,
(Val66Met SNP)
Val/Met, Met/Met
and Val/Val (WT) 6–8
months

Hospira Inc. 10 mg/kg
(i.p.)

24 h post-injection the AD effects of
ketamine in the FST were blocked in
Met/Met mice

Met/Met knockin mice are
insensitive to the molecular
effects of ketamine on
spine head diameter and
spine length modulated in
WT mice

Yang et al.,
2012

Male Wistar rats
(180–220 g)

Gutian Pharmaceutical
CO. Ltd., Fuijan, China
10 mg/kg (i.p.)

Reduced immobility in FST 30 min
post-injection

Increased mTOR
phosphorylation in HC and
PFC

Yang et al.,
2013b

Male Wistar rats
(200–300 g)

Gutian Pharmaceutical
CO. Ltd., Fuijan, China
5–15 mg/kg (i.p.)

Dose-dependent reduction in immobility
in the FST 30 min post-injection

Increased BDNF levels in
the HC following 10 and
15 mg/kg. Dose dependent
increase in phosphorylated
mTOR levels in HC

Wang et al.,
2011

Male Wistar rats (60
days old)

Sigma-Aldrich 15 mg/kg
(i.p.)

Decreased immobility in the FST 60 min
post-injection

Increased BDNF expression
and decreased
phosphorylation of GluR1
(Ser845) in HC 60 min
post-injection

Beurel et al.,
2011

WT and GSK-3 Knock
in mice

10 mg/kg (i.p.) AD effects in LH in WT but not GSK-3
knock-in mice

Increased pGSK-3β (CTX
and HC) 30 and 60 min
post-injection

Koike et al.,
2011a

Male ICR mice
(25–35 g)

Sigma-Aldrich
3–30 mg/kg (i.p.)

Ketamine reduced immobility in the TST
24 h post 30 mg/kg injection. Rapamycin
reversed the ketamine-induced
reduction in TST immobility

N/A

Reus et al.,
2011

Male Wistar rats (60
days old)

Fort Dodge Animal
Health—0.1 g/ml
injectable solution,
5–10 mg/kg

Immobility in the FST was reduced at
60 min postinjection by 10 mg/kg only

Ketamine 5 mg/kg
increased the expression of
BDNF, CREB, and PKC
phosphorylation in the PFC.
5mg/kg increased BDNF in
the HC and Amg. 10 mg/kg
decreased BDNF in the
PFC, HC, and Amg.
10 mg/kg increased CREB
expression and PKC
phosphorylation in the PFC

Li et al., 2010 Male Sprague
Dawley rats
(150–250 g)

Sigma-Aldrich 10 mg/kg
(i.p.)

Ketamine produced AD effects in the
FST, LH and NSF test 24 h post-injection,
blocked by rapamycin

Ketamine 10 mg/kg
activated mTOR, ERK, and
PKB/Akt signaling, blocked
by NBQX, Ketamine
10 mg/kg increased
expression of certain
synaptic proteins at 2, 6,
and 72 h post-injection,
blocked by rapamycin

Ghasemi
et al., 2010

Male NMRI mice
(23–30 g)

Sigma-Aldrich
0.5–5 mg/kg (i.p)

Ketamine reduced immobility in the FST
45 min post-injection (2 and 5 mg/kg)

N/A

Cruz et al.,
2009

Male Swiss mice
(25–35 g)

Sigma-Aldrich
6.35–50 mg/kg (i.p.)

12.5, 25, and 50 mg/kg ketamine
reduced immobility in the FST 30 min

N/A

(Continued)
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Table 1 | Continued

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

post-injection. Only 50 mg/kg ketamine
reduced immobility in the TST

Engin et al.,
2009

Male
Sprague-Dawley rats
(180–360 g)

10–50 mg/kg (i.p.) Ketamine (50 mg/kg) increased the % of
open arm entries in the EPM. Both
doses decreased immobility in the FST
30 min post-injection

N/A

Rezin et al.,
2009

Male Wistar rats
(300 g)

Fort Dodge Animal
Health 15 mg/kg (i.p.)

Ketamine did not reverse the
CMS-induced reduction in consumption
of sweet food

Ketamine reversed the
CMS-induced reductions in
mitochondrial respiratory
chain enzymes

Garcia et al.,
2008a

Male Wistar rats (60
days old)

Fort Dodge (Brazil) 5, 10,
and 15 mg/kg (i.p.)

1 h post-injection ketamine (5 &
10 mg/kg) significantly reduced
immobility in the FST

BDNF increased in the HC
following ketamine injection
(15 mg/kg)

Hayase et al.,
2006

Male ICR mice
(60–90 days old)

Sankyo Co., Ltd. Tokyo,
Japan 30–1.0 mg/kg (i.p.)

Ketamine increased the latency to
immobility in the FST and was anxiolytic
in the EPM at both doses 60 and
120 min post-injection

N/A

Rosa et al.,
2003

Swiss mice male and
female (30–40 g)

Sigma-Aldrich 5 mg/kg
(i.p.)

Ketamine reduced immobility in the TST
30 min post-injection

N/A

Mantovani
et al., 2003

Male Swiss mice
35–45 g)

0.1 mg/kg (i.p.) Ketamine reduced immobility in the TST
30 min post-injection

N/A

This table outlines studies that have assessed the antidepressant-like effects of ketamine at 30 min to 24 h post-administration in commonly used behavioral

tests. Molecular alterations of relevance to ketamine’s molecular mechanism of action are also reported. FST, forced swim test; TST, tail suspension test; LH,

learned helplessness; NSF, novelty suppressed feeding; SPT, sucrose preference test; EPM, elevated plus maze; AD, antidepressant; CMS, chronic mild stress; LPS,

lipopolysaccharide; HC, hippocampus; CTX, cortex; Amg, amygdala; mPFC, medial prefrontal cortex; WT, wild type.

novel environment. These tests, based on a similar principle, dif-
fer in methodology; NSF requires acute food deprivation 24 h
prior to testing whereas the NIH utilizes an 8–10-day training
period without deprivation. These tests have considerable face
validity, although interpretation of results with the NSF may be
limited by the use of food deprivation. Hyponeophagia is one
of the few anxiety-related tests that are reliably attenuated fol-
lowing chronic, but not acute, administration of antidepressant
drugs (Bodnoff et al., 1988; Dulawa and Hen, 2005). In contrast,
ketamine reduced the latency to eat within hours of treatment.
The effective dose range for ketamine in this task varied across
studies: 30 min and 24 h following 5–10 mg/kg (Li et al., 2010;
Carrier and Kabbaj, 2013) and 30 mg/kg (Iijima et al., 2012), but
all tests resulted in a significant reduction in the latency to feed
in the novel environment. Moreover, ketamine (10 mg/kg) suc-
cessfully reduced the latency to eat in the NIH 1 h post-injection
(Burgdorf et al., 2013). More protracted effects of acute ketamine
treatment (3 mg/kg) were observed 48 h following treatment in
mice exposed to chronic stress, although ketamine did not reduce
feeding latency in stress naïve mice in this study (Autry et al.,
2011).

Overall, these data suggest that hyponeophagia is highly sensi-
tive to a single dose of ketamine, although additional parameters

of these tests remain to be examined more systematically. The
fact that ketamine produced anxiolytic effects rapidly whereas
conventional antidepressants require chronic treatment for weeks
agrees with a more rapid onset of clinical effects. As TRD
patients exhibit increased comorbid anxiety compared to treat-
ment responsive MDD patients, the usefulness of assessing
ketamine in anxiety tests should not be overlooked.

SUCROSE PREFERENCE TEST (SPT)
Sucrose consumption is widely accepted as a measure of anhedo-
nia in rodents and has significant face validity in terms of its sen-
sitivity to chronic stress and antidepressant treatment. Repeated
administration of ketamine (7 days) reversed the decrease in
sucrose consumption in rats exposed to chronic stress. Although
it should be noted that this dosing regimen with ketamine also
increased sweet food consumption in both stressed and non-
stressed rats (Garcia et al., 2009). Furthermore, administration
of a low dose of ketamine (0.5 mg/kg) for 10 days significantly
increased sucrose consumption in WKY rats (Akinfiresoye and
Tizabi, 2013). Marked increases in sucrose consumption in rats
persisted at 1, 3, 5, and 7 days after a single treatment with
ketamine (10 mg/kg) (Li et al., 2011), indicating significant pro-
tracted effects of ketamine on this behavior.
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Table 2 | Protracted effects of ketamine.

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

PROTRACTED EFFECTS OF KETAMINE

Akinfiresoye
and Tizabi,
2013

Male WKY rats Fort-Dodge (Henry
Schien), 0.25 and
0.5 mg/kg (i.p.),
administered daily for
10 days

Only chronic administration of
0.5 mg/kg reduced immobility
in the FST and increased
sucrose intake in the SPT

0.25 mg/kg ketamine did not alter mTOR
phosphorylation or synapsin 1 and BDNF
expression

Liu et al., 2013 Male Sprague-Dawley
rats (150–250 g)

Hospira Inc., 1 and
10 mg/kg (i.p.)

Ketamine reduced immobility
in the FST 24 h and 1 week
following a single 10 mg/kg
injection. This effect was not
observed 2 weeks
post-injection

Ketamine increased p- S6K, p-ERK, p-Akt
but not p-mTOR or GSK-3b 1 h
post-injection (10 mg/kg). These changes
were not detected 24 h post-injection.
5-HT and hypocretin induced EPSCs were
increased 24 h following ketamine
treatment (10 mg/kg). Ketamine 1 and
10 mg/kg increased spine head diameter
and spine density

Ma et al.,
2013

C57Bl/6J mice (7 wks.
old 20 g)

Gutian Pharmaceutical
CO. Ltd., Fuijan, China.
10 mg/kg (i.p.)

Ketamine reversed
CMS-induced increases in
immobility in the FST and TST
48 h post-treatment.
Ketamine reversed
CMS-induced reductions in
sucrose intake in the SPT,
24 h, 4, 6, and 8 days
post-treatment. In
non-stressed animals
ketamine reduced immobility
in the TST and FST at 3 and
24 h post-injection

N/A

Parise et al.,
2013

Male adolescent
Sprague-Dawley rats
(post-natal day 35–49)

Fort-Dodge (Schein), 5,
10, and 20 mg/kg (i.p.).
Administered twice a day
for either 1 or 15 days

Ketamine (10 and 20 mg/kg)
reduced immobility in the FST
24 h after the 2nd injection.
CMS-induced immobility was
reversed by ketamine
(20 mg/kg). No effect of
ketamine on SPT was
observed. Two months after
chronic ketamine treatment
rats exhibited an anxiolytic
phenotype on the EPM and
AD effects in the FST

N/A

Lindholm
et al., 2012

Adult male C57Bl/6J
and WT & BDNF ±
mice

Sigma-Aldrich 20 and
50 mg/kg (i.p.)

Decreased immobility in FST
in WT mice at 45 min but not
7 days post-injection

No alterations in TrkB phosphorylation at
60 min or 7 days post-injection

Tizabi et al.,
2012

Male and Female WKY
and Wistar rats

Fort-Dodge (Schein),
0.25–5 mg/kg (i.p.),
administered once or
daily for 10 days

No acute/chronic effect of
ketamine on Wistar
immobility levels in the FST.
2.5 and 5 mg/kg reduced
immobility of WKY rats in the
FST; the 5 mg/kg dose had
protracted effects 1 week
post-injection. Chronic
administration of 2.5 and

Ketamine (chronic 0.5 mg/kg paradigm)
increased AMPA receptor binding & the
AMPA/NMDA ration in WKY rats

(Continued)
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Table 2 | Continued

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

5 mg/kg reduced immobility
of WKY but not Wistar. The
effect of the 2.5 mg.kg dose
were evident 1 week
following the cessation of
treatment

Autry et al.,
2011

Adult male C57BL/6
WT and inducible BDNF
KO mutants

Fort Dodge Animal
Health 3 mg/kg (i.p.)

No effect in EPM or fear
conditioning 24 h
post-injection. Reduced FST
immobility at 30 min, 3 h,
24 h, and 1 week, blocked by
NBQX.
Reduced latency to feed in
NSF, increased sucrose intake
& decreased immobility in
CMS mice 30 min
post-injection. Rapamycin did
not block ketamine-induced
reductions in FST immobility
30 min post-injection.
Anisomycin prevented the
effects of ketamine in the
NSF & FST. TrkB KO mice did
not response to ketamine

Increased TrkB activation. Increased BDNF
protein but not mRNA at 30 min and 1 h
post-injection. Decreased phosphorylation
of eEF2 in HC. Blocked spontaneous
activity of NMDARs in HC cultures

Bechtholt-
Gompf et al.,
2011

CD-1 and BALB/c mice Sigma-Aldrich, dose
range 0.5–3.0 mg/kg

Reduced immobility in TST
1 h post-injection (1.0 mg/kg),
not observed at day 7. No
effect on FST immobility at
any dose, or time point

N/A

Koike et al.,
2011b

Male ICR mice
(25–35 g) and male
Sprague-Dawley rats
(230–350 g)

Sigma-Aldrich
3–30 mg/kg (i.p.)

Ketamine reduced the
number of failures to escape
in the LH test 30 min post
10 mg/kg injection. Reduced
immobility in the TST 30 min
& 72 h post 30 mg/kg
injection

N/A

Li et al., 2011 Male Sprague Dawley
rats (150–250 g)

Sigma-Aldrich 10 mg/kg
(i.p.)

Ketamine reversed
CMS-induced anhedonia in
the NSF test 2 days
post-injection. Sucrose
consumption was increased
1, 3, 5, and 7 days following
the single ketamine injection

Ketamine reversed CMS-induced deficits
in synaptic EPSCs, spine density and
synaptic protein expression. At 7 days
post-treatment these effects were still
apparent

Yilmaz et al.,
2002)

Male Wistar rats
(280–310 g)

Parke-Davis 50 mg/ml
stock 1.0 mg/kg (i.p.)

Ketamine reduced FST at 3, 7,
and 10 days post-injection,
(this was only in the second
test of each day).

N/A

Garcia et al.,
2009

Wistar rats (300–350 g) Fort Dodge Animal
Health 15 mg/kg once on
day 7 or daily for 7 days

CMS-induced reductions in
sucrose intake, weight loss,
adrenal hypertrophy, and

No differences in HC BDNF concentrations

(Continued)
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Table 2 | Continued

References Species and strain Ketamine—supplier

and dose

Behavioral alterations Molecular alterations

increased ACTH and
corticosterone levels were
reversed by acute and chronic
ketamine administration.
Chronic ketamine increased
sucrose intake in controls

Garcia et al.,
2008b

Wistar rats (300–350 g) Fort Dodge Animal
Health, 5, 10, and
15 mg/kg—daily i.p.
injections for 12 days

All doses reduced immobility
in the FST

HC BDNF concentrations were not altered

Popik et al.,
2008

Male Wistar rats (270 g)
and male Sprague
Dawley rats (275 g),
C57/Bl/Han male mice
(24 g) and Male Swiss
mice (28 g)

Biowet, Pulawy, Poland,
FST rats, 1.0 mg/kg. TST
mice, 50–1.0 mg/kg. FST
mice, 1.25–10 mg/kg

Reduction of immobility in
the FST in mice but not in
rats at 30 min post-injection
only (50 mg/kg). Ketamine
reduced immobility in the
TST at 40 min but not at 1
week post-injection

N/A

Maeng et al.,
2008

Mice Sigma-Aldrich
0.5–10 mg/kg (i.p.)

Ketamine reduced the
number of escape failures in
LH 24 h post-injection.
Ketamine (2.5 mg/kg)
reduced immobility in the
FST at 30 min and 2 weeks
post-injection

Ketamine reduced phosphorylation of HC
GluR1 (S845), rescued by NBQX

This table outlines studies that have assessed the antidepressant-like effects of ketamine from day 2, or, 48 h post-administration onwards in commonly used

behavioral tests. In some of these studies earlier time points have been assessed, the results are also included in this table. Molecular alterations of relevance to

ketamine’s molecular mechanism of action are also reported. FST, forced swim test; TST, tail suspension test; LH, learned helplessness; NSF, novelty suppressed

feeding; SPT, sucrose preference test; EPM, elevated plus maze; AD, antidepressant; CMS, chronic mild stress; LPS, lipopolysaccharide; HC, hippocampus; CTX,

cortex; Amg, amygdala; mPFC, medial prefrontal cortex; WTm, wild type.

Decreases in sucrose consumption induced by exposure to LPS
(Walker et al., 2013) and CMS (Ma et al., 2013) were reversed
following a single ketamine treatment. Protracted effects of acute
ketamine treatment were evident in CMS exposed mice tested at
4, 6, and 8 days after a single ketamine treatment (Ma et al., 2013).
In contrast, the consumption of sugar pellets in CMS exposed
rats was not altered by ketamine treatment (Rezin et al., 2009),
although this particular test is not directly comparable to the tra-
ditional SPT. It should be noted that there is a lack of consensus
on the most appropriate SPT protocol to model an anhedonic
state in rats. Nevertheless, these data support the use of the SPT
as a sensitive screening test for rapid-acting antidepressant-like
drugs such as ketamine.

ELEVATED PLUS MAZE (EPM)
The EPM is frequently used to measure anxiety behavior in
rodents (Bourin, 1997; Rodgers et al., 1997) and has strong pre-
dictive validity for screening anxiolytics. However, it is generally
not sensitive to antidepressant treatments. Ketamine induced an
anxiolytic phenotype in rats during exposure to the EPM 30 min
after a single ketamine injection (Engin et al., 2009). A similar
effect was observed in mice 1 and 2 h following treatment (Hayase

et al., 2006). These studies indicate that the EPM was not sen-
sitive to low doses of ketamine; only higher doses (30 mg/kg)
induced a significant anxiolytic effect. Moreover, lower doses of
ketamine did not induce an anxiolytic response in the EPM in
stress naïve mice (Autry et al., 2011). The lack of effect of low
doses of ketamine is also characteristic of the TST. Parise and
colleagues described significant anxiolytic effects in the EPM in
rats 2 months after the completion of a 15-day dosing regimen
of 20 mg/kg per day during adolescence (Parise et al., 2013).
Although the presence of drug effects after such a long interval
could indicate sensitivity to the protracted effects of ketamine,
developmental factors may have played a greater role. At present
the EPM can only be proposed as a tool for assessing the more
immediate anxiolytic effects of ketamine.

LOCOMOTOR ACTIVITY
Antidepressant-like effects of ketamine are usually evaluated in
conjunction with spontaneous activity, because increased motor
activity can produce false positive effects in the aforementioned
behavioral tasks. Ketamine produces significant hyperactivity
immediately following injection; 10 min post i.p. injection of
low dose ketamine (5–15 mg/kg), rats displayed hyperactivity in
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spontaneous activity (da Silva et al., 2010). In addition, repeated
administration of ketamine (50 mg/kg) sensitized rats to its
hyperactive effects (Popik et al., 2008).

However, most studies have reported either no change or a
reduction of locomotor activity after ketamine. A reduction of
open field behavior was produced by ketamine in rats at 30 min
post 50 mg/kg (Engin et al., 2009) and 1 h post 10 and 25 mg/kg
(Gigliucci et al., 2013). In addition, a single injection of ketamine
did not alter locomotor activity beyond 30 min post-injection
in rats (Reus et al., 2011; Tizabi et al., 2012; Yang et al., 2012;
Akinfiresoye and Tizabi, 2013) or in mice (Lindholm et al., 2012).
At 24 h post-injection, there was no effect on locomotor activity in
mice by ketamine or by the NMDA antagonists CPP and MK-801
(Autry et al., 2011).

Furthermore, chronic administration of low dose ketamine did
not affect spontaneous activity in adult rats (Garcia et al., 2008b;
Ma et al., 2013). Interestingly, it was shown recently that hyper-
activity was displayed in adolescent but not adult rats following
chronic ketamine administration (Parise et al., 2013). Many of the
experiments assessed in this review did not measure the effects of
ketamine on locomotor activity at the dose and time point used.
However, taken together, the data suggest it is important practice
to assess changes in activity measures post-treatment to identify
and eliminate the involvement of any potential locomotor effect
in the behavioral responses to ketamine.

LEARNED HELPLESSNESS (LH)
The LH model of depression produces escape deficits in rodents
exposed to unpredictable and uncontrollable stress (Seligman
et al., 1980). LH is a popular model of depression as it has good
face validity and induces a number of endophenotypes that can
be measured in other behavioral tasks, including the FST and
NSF. Repeated treatment with antidepressants reversed the cop-
ing behavior deficits in rats and mice (Shanks and Anisman,
1988; Caldarone et al., 2000). A single administration of ketamine
(10 mg/kg) has been reported to reverse the deficits in cop-
ing behavior induced by learned helplessness 30–60 min (Beurel
et al., 2011; Koike et al., 2011a) and 24 h after treatment (Maeng
et al., 2008; Li et al., 2010). Furthermore, ketamine is effec-
tive in producing antidepressant-like effects in the LH in CMS-
treated mice at even a lower dose (3 mg/kg) (Autry et al., 2011).
Currently, there is no information regarding the protracted effects
of ketamine in LH.

CHRONIC MILD STRESS (CMS)
Exposure to the CMS model induces depressive behavior in
rodents following the presentation of a series of stressors in an
unpredictable sequence over a prolonged period of time. CMS
produces a number of behavioral changes in rodents thought
to resemble features of depressed patients, such as anhedonia
or loss of grooming (Willner, 1997, 2005). CMS satisfies most
of the criteria of validity for an animal model of depression;
it is etiologically relevant with good design, resulting in similar
pathological alterations observed in humans that are sensitive to
chronic antidepressant treatment. The behavioral and molecular
changes induced by CMS are reversed by treatment with antide-
pressant drugs, but only after administration for several weeks.

In contrast, ketamine reversed the behavioral and physiological
alterations induced by CMS in rats following acute administra-
tion and the effects were maintained following chronic treatment.
Acute and chronic treatment with ketamine reversed the increase
in adrenal gland weight, promoted regain of body weight, and
normalized circulating corticosterone and ACTH levels (Garcia
et al., 2009). Physiological alterations induced by CMS were
reversed by acute ketamine treatment in a similar study but failed
to reverse CMS-induced anhedonia in the SPT (Rezin et al., 2009).
In addition, CMS-exposed adolescent rats exhibited decreased
immobility, increased sucrose consumption and latency to feed
immediately following acute ketamine treatment (Parise et al.,
2013).

Because the CMS is accepted as a rodent model of depres-
sion, CMS is an ideal paradigm with which to screen the
antidepressant-like effects of novel therapeutics like ketamine.
Reversal of CMS-induced depressive-like phenotypes measured
using the mouse FST, NSF, and SPT has been reported by
ketamine in the absence of any drug effect in stress naïve mice
(Autry et al., 2011). Furthermore, the effect of ketamine in the
NSF test was observed to persist in CMS mice 48 h post-injection.
In line with these findings, two similar studies have indicated an
increased sensitivity of CMS-exposed mice to ketamine (Li et al.,
2011; Ma et al., 2013). Taken together, the CMS data is the most
consistent and possibly the most valid method of examining the
antidepressant-like effects of ketamine in preclinical studies.

KETAMINE—MOLECULAR MECHANISMS OF ACTION
In order to develop novel and more effective antidepressants,
the molecular mechanisms underlying the protracted behavioral
improvement associated with ketamine treatment need to be
understood fully. The majority of this information has been gar-
nered from preclinical animal studies and the principle findings
are detailed in the following section.

NMDA AND AMPA RECEPTORS
Currently the hypothesis for ketamine’s mechanism of action
focuses on a cascade of neurochemical events that are initiated
shortly after administration of ketamine. The events then per-
sist in a protracted manner for days following its metabolism and
elimination.

Reductions in neurogenesis and synaptic plasticity play a key
role in the pathophysiology of MDD. Synaptic plasticity refers
to the dynamic capability of synapses to form and retract pro-
cesses, thereby modifying synaptic strength and communication.
The most well studied mechanisms mediating changes in plas-
ticity are long-term potentiation (LTP) and long-term depres-
sion (LTD). These processes involve significant alterations in
pre and post-synaptic scaffolding proteins and glutamate recep-
tors, primarily the glutamatergic receptor, α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid (AMPA). The AMPA receptor
containing the subunits GluR1, GluR4, and GluR2 are involved
in LTP, whereas GluR2, GluR3, and GluR4 are required for the
AMPA receptor internalization needed to facilitate LTD (Kessels
and Malinow, 2009). N-methyl-d-aspartate (NMDA) receptors at
excitatory synapses are also subject to trafficking and significantly
decrease in synaptic density during LTD (Peng et al., 2010). In the
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pyramidal cells of the hippocampus, LTP and LTD bidirectionally
regulate dendritic spine growth and retraction, whereas AMPA
expression is positively related to the size of the spine head. These
dynamic processes are stabilized by concurrent alterations in the
expression of synaptic proteins and signaling pathways.

Ketamine blocks NMDA receptors (NMDARs) at concentra-
tions of 2–50 μm. The subsequent suppression of tonic gluta-
mate input to GABAergic interneurons, results in disinhibition
of glutamate signaling. This disinhibition and increase in gluta-
mate neurotransmission is mediated by a decrease in GABAergic
inhibitory feedback of the pyramidal neurons in layer V of the
PFC, a region widely implicated in the development of psychiatric
disorders (Homayoun and Moghaddam, 2007). Interestingly,
post-mortem studies report reductions in pyramidal cells and
GABAergic interneurons in the PFC of depressed individuals
(Choudary et al., 2005; Rajkowska et al., 2007). Increases in
glutamate will activate ionotropic AMPARs resulting in Na2+
influx and subsequent membrane depolarization, induction of
signaling cascades and protein synthesis. Certain AMPARs that
lack the GluR2 subunit actually result in Ca2+ influx (Kessels
and Malinow, 2009). Upregulation of AMPA receptor expression
following ketamine administration mediates the increased sen-
sitivity to glutamate. It has been suggested that this increased
sensitivity or “synaptic scaling” is necessary to maintain stabil-
ity in synaptic plasticity and increased protein synthesis in the
presence of chronic NMDAR blockade (Kavalali and Monteggia,
2012).

Pharmacological inhibition of ketamine’s behavioral effects
has been achieved using the AMPA receptor antagonist,
2, 3-dihdroxyl-6-nitro-7-sulfamoyl-benzo(f)quinoxaline-2, 3-
dione (NBQX), reversing the antidepressant effects of ketamine
in the LH paradigm (Maeng et al., 2008; Koike et al., 2011b).
Furthermore, co-administration of AMPAR antagonists blocked
the effects of ketamine in the FST (Autry et al., 2011). As
AMPARs have a clear role in mediating ketamine’s effects, a recent
study showed the antidepressant-like effect of AMPA administra-
tion in the depressive-like WKY rats (Akinfiresoye and Tizabi,
2013). This data indicate that AMPA receptors and indeed the
AMPA/NMDA ratio is an important consideration and target in
the development of potential therapeutics.

mTOR SIGNALING
Data suggests that the protracted antidepressant-like effects of
ketamine are mediated by molecular alterations to the signaling
pathway for the mammalian target of rapamycin (mTOR) (see
Figure 1), a serine/threonine kinase and key component of the
insulin-signaling pathway (Li et al., 2010). Two functional mTOR
complexes regulate the initiation of protein translation in mam-
malian cells, mTOR complex 1 (mTORC1) and mTOR complex
2 (mTORC2) (Rosner and Hengstschlager, 2011). A recent post-
mortem study implicated decreases in cortical mTOR-signaling
kinases in the pathophysiology of MDD (Jernigan et al., 2011).
Additionally, rats exposed to CMS exhibit significant reductions
in the phosphorylation of several kinases in the mTOR pathway
in the amygdala of stressed rats (Chandran et al., 2013).

There is an inverted U-shape associated with ketamine-
induced mTOR activation, with higher doses having no effect.

In rodents, ketamine administration induced mTOR signaling
approximately 30 min after injection. Li and colleagues elucidated
some core features of ketamine’s mechanism of action, primarily
focusing on the alterations in mTOR dependent synapse forma-
tion in the PFC of rats (Li et al., 2010). In addition, they reported
increased phosphorylation of mTOR, p70 KD ribosomal protein
S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding
protein 1 (4E-BP1). P70S6K is required to inhibit suppression
of eEF2, which prevents protein translation. Simultaneously, the
phosphorylation of 4E-BP1 results in the release of eukaryotic
translation initiation factor 4E (eIF-4E), thereby triggering the
initiation of translation of synaptic proteins. These changes were
accompanied by antidepressant-like behavior in the FST and NSF
test (Li et al., 2010).

mTOR is ubiquitously expressed and has been found to local-
ize in the cytoplasm of dendrites, where it can initiate the trans-
lation of synaptic proteins essential for the induction of LTP
(Duman et al., 2012). PSD95, GluR1 and synapsin are upregu-
lated approximately 2 h post-ketamine; this increase is observed
for up to 72 h. Similarly, upregulation of Arc, a cytoskeletal pro-
tein is observed approximately 1 h post-injection and sustained
for up to 6 h (Li et al., 2010). Arc is linked to the induction of
early and late phase LTP and memory formation (Panja et al.,
2009). A recent study confirmed that ketamine and MK-801
induced increases in immediate early genes, such as Arc, C-fos
and Homer1a. Homer1a/Homer1b/PSD-95 signaling is impli-
cated in glutamate induced synaptic plasticity (de Bartolomeis
et al., 2013) and may be an interesting marker of plasticity for
ketamine-like compounds. Similarly, reductions in the expres-
sion of eukaryotic elongation factor 2 (eEF2) is consistently
observed in rodents following ketamine administration both in
the PFC (Carrier and Kabbaj, 2013) and hippocampus (Autry
et al., 2011). Interestingly, females are more sensitive to the behav-
ioral effects of low dose ketamine compared to males; however,
females do not exhibit decreases in eEF2 (Carrier and Kabbaj,
2013). Nevertheless, phosphorylation and inhibition of eEF2 may
be a useful marker for rapid antidepressants, as increased phos-
phorylation of eEF2 in the PFC is also reported following chronic
fluoxetine treatment in rats (Dagestad et al., 2006).

Pharmacological modulation of different components of the
mTOR-signaling pathway (Figure 1) has been used to investi-
gate mechanisms underlying the acute and protracted behavioral
actions of ketamine. Inhibition of Akt, following blockade of
phosphatidylinositol-3-kinase (PI3K) by LY294002, and inhibi-
tion of ERK using U0126, prevented ketamine reversal of CMS-
induced deficits (Li et al., 2010). The Trk/B inhibitor K252a
blocked the effects of ketamine in the TST and the NSF when
tested 24 h, but not at 1 h (Koike et al., 2013b). The rapamycin-
FKBP12 complex inhibits mTOR signaling when directly bound
to mTORC1 (Hoeffer and Klann, 2010). Rapamycin pretreat-
ment inhibited both the molecular and behavioral effects of
ketamine on FST, NSF and the LH 24 h post-injection (Li et al.,
2010). Furthermore, rapamycin administration did not inhibit
the effects of ketamine in the NSF test at 30 min post-injection,
but ketamine’s effects were completely blocked at 24 h post-
injection (Iijima et al., 2012). Thus, it appears that mTOR sig-
naling is clearly associated with the protracted behavioral effects
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FIGURE 1 | Following blockade of NMDARs, phosphorylation of Akt

activates mTOR complex 1 (mTORC1), which results in increased

p70S6K phosphorylation and increased protein translation via inhibition

of 4E-BP and release of eIF-4B. Glutamate binds AMPARs, which induces
depolarization of the membrane, enabling Ca2+ influx through VDCCs. This
results in BDNF release from synaptic vesicles. The subsequent binding of

TrkB receptors induces ERK and Akt signaling. These pathways all converge
to increase synaptic protein translation and receptor trafficking to the cell
membrane. Additionally, activation of mTORC2 by S6, and inhibition of GSK-3,
induces mTORC1 activation via increased Akt phosphorylation. Furthermore,
mTORC2 activation induces protein kinase C (PKC) signaling transduction,
which regulates actin and other cytoskeletal proteins.

of ketamine measured 24 h later or longer, but other mechanisms
may be involved in the immediate effects of ketamine, such as
increased AMPAR activation. It is of interest to note that other
antidepressants, including 5-HT2C receptor antagonists, citalo-
pram and electro-convulsive seizures (ECS, the equivalent to ECT
in rodents) all increase mTORC1 levels (Elfving et al., 2013;
Opal et al., 2013). However, the SSRI, sertraline, and the TCA,
imipramine, actually have anti-proliferative effects that are medi-
ated by inhibition of mTOR (Lin et al., 2010; Jeon et al., 2011).
Furthermore, there is evidence that suggests rapamycin adminis-
tration alone and the subsequent inhibition of mTOR signaling
is capable of inducing antidepressant-like effects in the rat FST
(Cleary et al., 2008). Moreover, the effects of long-term modu-
lation of mTOR have yet to be assessed. These data indicate the
role of mTOR signaling may be more complex than originally
anticipated.

Other drugs have been used to identify neural mechanisms
that might account for the antidepressant-like behavioral effects
of ketamine. NMDA receptor blockade using MK-801 or CPP
reduced immobility in the FST for up to 3 and 24 h, respectively,

but neither compound reproduced the protracted effects of
ketamine at longer intervals (Autry et al., 2011). The NR2B
antagonist RO-25-6981 was suggested to induce mTOR signal-
ing, resulting in similar molecular and behavioral effects as
those observed following ketamine administration (Maeng et al.,
2008; Li et al., 2010). In addition, the mGlu2/3 receptor antago-
nists LY341495 and MGS0039 decreased immobility time in the
TST. NBQX had a limited effect on these antagonists, whereas
rapamycin reversed the behavioral effects of these compounds at
24 h post-treatment, suggesting a role for mTOR signaling but not
AMPA in mediating the antidepressant-like effects of mGluR2/3
antagonists (Koike et al., 2011a). The mGluR5 antagonist MPEP
induced antidepressant-like effects in the NSF at 30 min and
24 h post-injection (Iijima et al., 2012). The effects at 24 h were
blocked by rapamycin and the protein synthesis inhibitor ani-
somycin but not by the TrkB inhibitor K252a. In addition, the
mGluR7 agonist AMN082 produced an antidepressant like effect
in the TST 40 min post-injection which was reversed by NBQX
pretreatment, suggesting that AMPA mediates the antidepressant
effects of this compound (Bradley et al., 2012). Finally, the glycine
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functional partial agonist GLYX-13 produced an antidepressant-
like effect in the FST, NIH and LH tests that extended for 24 h
after injection, similar to the effects of ketamine (Burgdorf et al.,
2013). These data suggest that when investigating the potential of
novel compounds targeting glutamate, both mTOR and AMPA
mediation should be assessed. Furthermore, it is important to
choose an appropriate rodent strain in which to conduct these
assays. For example, CD-1 mice are insensitive to modulation of
the glutamatergic system and the subsequent antidepressant-like
effects of AMNO82 and the mGluR 7 negative modulator MMPIP
(O’Connor and Cryan, 2013).

BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF)
Chronic administration of antidepressant drugs increases neu-
rotrophins including BDNF (Duman and Monteggia, 2006).
BDNF has high affinity for tyrosine kinase receptor B (TrkB),
activating a number of signaling pathways that regulate neuronal
growth and survival. This pathway also regulates the phosphory-
lation of cyclic-amp response element binding protein (CREB),
which is integral to affective behavior, in addition to learning
and memory (Autry and Monteggia, 2012). Post-mortem stud-
ies have reported reductions in BDNF and TrkB expression in
the hippocampus and PFC of MDD patients and depressed sui-
cides (Krishnan et al., 2007; Castren and Rantamaki, 2010; Yu
and Chen, 2011). Rodent models of chronic stress and depres-
sion have recapitulated these region-specific changes of BDNF
(Duman and Monteggia, 2006; Autry and Monteggia, 2012). At
a behavioral level, BDNF administration reduces immobility in
the FST (Shirayama et al., 2002; Hoshaw et al., 2005; Deltheil
et al., 2008). Additionally, the over-expression of TrkB recep-
tors leads to an antidepressant-like behavioral phenotype in mice
(Koponen et al., 2004). BDNF deficient mice are depressive-like
in some behavioral tests and fail to respond to conventional
antidepressants in the CMS and FST compared to wild type mice
(Saarelainen et al., 2003; Monteggia et al., 2007; Ibarguen-Vargas
et al., 2009).

Activation of the mTOR pathway by ketamine enhances trans-
lation of BDNF in the hippocampus (Garcia et al., 2008a; Autry
et al., 2011; Yang et al., 2012). The inhibition of eEF2 and subse-
quent increase in BDNF translation is proposed to mediate the
rapid antidepressant-like effects of ketamine (Monteggia et al.,
2013). Equally ketamine is capable of inducing a rapid release
of glutamate. Following NMDA receptor blockade, AMPAR acti-
vation results in calcium influx via L-type voltage gated calcium
channels (VDCC) inducing the release of BDNF from synaptic
vesicles (see Figure 1). Furthermore, BDNF regulates neuronal
mTOR function via Akt and PI3K, creating a positive feedback
loop of BDNF production following the activation of mTOR by
ketamine (Hay and Sonenberg, 2004; Hoeffer and Klann, 2010).

A single nucleotide polymorphism Val66Met (rs6265) in the
BDNF gene has been proposed as a potential impediment to the
antidepressant response to ketamine in TRD patients. Val/Val car-
riers are more sensitive to the antidepressant-effects of ketamine
compared to the Val/Met carriers (Laje et al., 2012). However, not
all studies have reported a positive correlation of improvement
in depressive symptoms with increased BDNF (Machado-Vieira
et al., 2009; Rybakowski et al., 2013). It is worth noting that BDNF

serum concentrations were significantly lower in bipolar patients
that did not respond to ketamine treatment compared to respon-
ders at baseline (Rybakowski et al., 2013). Mice that possess this
polymorphism did not respond to ketamine and displayed sig-
nificant impairments in synaptogenesis (Lindholm et al., 2012;
Liu et al., 2012). However, at higher doses, repeated dosing or
continuous infusion of ketamine, BDNF levels were increased,
although this increase was correlated with neurodegeneration and
cognitive deficits (Ibla et al., 2009; Goulart et al., 2010). Similarly,
humans who chronically abuse ketamine exhibit higher BDNF
concentrations compared to healthy controls (Ricci et al., 2011).

As a downstream product of multiple signaling cascades
induced by ketamine, the production of BDNF occurs rapidly
and may underlie the protracted behavioral response to ketamine.
Indeed, acute i.c.v infusion of both BDNF and insulin-like growth
factor (IGF-1) are capable of mediating protracted antidepres-
sant like effects in the FST lasting up to 6 days following the
infusion (Hoshaw et al., 2008). These data not only indicate that
alterations in BDNF levels are most likely involved in the pro-
tracted effects of ketamine, but also confirms that rapid and
persistent increases in neurotrophins are useful markers of novel
rapid-acting antidepressants.

GLYCOGEN SYNTHASE KINASE-3 (GSK-3)
GSK-3 is a serine/threonine protein kinase and a major target for
the mood stabilizer lithium (Klein and Melton, 1996; Stambolic
et al., 1996). TRD patients are often given a period of antide-
pressant augmentation treatment with lithium when they fail
to response to SSRIs alone (Carvalho et al., 2007; Bauer et al.,
2010). Furthermore, studies have shown that GSK-3 is function-
ally regulated by serotonin modulation, primarily mediated by
5-HT1A autoreceptors and via iPI3K/Akt signaling (Polter et al.,
2012). GSK-3β± heterozygous mice display significant reductions
in immobility in the FST (O’Brien et al., 2004). Interestingly mice
with a knock-in mutation of GSK-3, which prevents its phos-
phorylation, do not respond to ketamine treatment in the LH
paradigm, suggesting that some of ketamine’s potential therapeu-
tic efficacy might be mediated following inhibition of this kinase
(Beurel et al., 2011). Furthermore, combination of ketamine
and the GSK-3 inhibitor, SB216763, significantly reduced immo-
bility in the FST; at a molecular level, this combination of
ketamine and SB216763 amplified the frequency of 5-HT and
hypocretin-induced EPSCs and increased spine density in the
mPFC. Conversely, it had been shown that ketamine has lim-
ited effects on GSK-3 expression in hippocampal synaptosomes
(Muller et al., 2013). Moreover, a single dose of ketamine reversed
the behavioral effects of CMS, but the GSK-3 inhibitor SB216763
had no effect on CMS-induced behavioral scores (Ma et al., 2013).
Further preclinical studies are required to evaluate the role of
GSK-3β in the antidepressant-like response to ketamine. A recent
assessment of three depressed patients indicates a significant
increase in phosphorylated GSK-3β in the plasma of ketamine-
treated individuals over the 120-min assessment period (Yang
et al., 2013a). Although the inhibition of GSK-3β modulates m-
TOR signaling (Figure 1) and may potentially augment the effects
of antidepressants such as ketamine, it is unclear whether GSK-3
directly mediates the effects of ketamine.

www.frontiersin.org December 2013 | Volume 4 | Article 161 | 109

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Browne and Lucki Antidepressant effects of ketamine

CONCLUSION AND FUTURE DIRECTIONS
The development of ketamine as a rapidly acting antidepres-
sant drug has the potential to revolutionize clinical treatment.
Nevertheless, the clinical use of ketamine for depression poses a
number of challenges. Ketamine is an hallucinogenic drug sub-
ject to abuse and must be given in a controlled setting. The effects
of ketamine are short-lasting and can only be sustained by its
repeated treatment. A desirable research direction would be to
develop other drugs with similar antidepressant effects that are
devoid of ketamine’s liabilities. However, progress in this area
is constrained by uncertainty concerning the critical pharma-
cological mechanisms underlying the antidepressant effects of
ketamine.

Animal models have the potential to translate the pharmaco-
logical effects of ketamine that are most critical for its clinical
antidepressant effects. A substantial body of literature now indi-
cates that ketamine produces antidepressant-like effects in pre-
clinical tests for antidepressant activity and in animal models of
depression. Acute ketamine produces immediate effects on many
behavioral tests that are similar to antidepressants. However, the
protracted effects of ketamine measured for days after a single
administration are not produced by conventional antidepressants.
They define a new paradigm for antidepressant drug discovery
that is the best temporal correlate with ketamine’s clinical activ-
ity. Inconsistent findings across laboratories may arise from a
disparity in methodology used across studies. The most perti-
nent variables are that the efficacious dose is dependent on the
behavioral task employed, conditions surrounding administra-
tion and the time of testing post-administration of ketamine. For
example, evidence suggests that the effects of low and seemingly
sub-efficacious doses of ketamine are more effective following
stress exposure. Behavioral tests with high predictive validity for
antidepressant-like effects, such as the FST, are sensitive to acute
and chronic ketamine. They can be utilized in conjunction with
other tests sensitive only to chronic antidepressant treatment,
such as the NSF/SPT, to measure the protracted benefits that are
unique to ketamine. Overall, combination of a stress or genetic
model of depression/anxiety with behavioral assessment over a
1–2 week period post-treatment with low doses of ketamine will
yield the most valid and useful information.

Among the many barriers to translation of ketamine’s clini-
cal antidepressant effects across species stand a number of key
pharmacological factors. The route of administration of ketamine
in preclinical models is by i.p. injection, whereas intravenous
infusion is usually employed in clinical trials. Therefore, it may
be beneficial for animal studies to employ intravenous infusion
where practical. In addition, plasma levels of ketamine mon-
itored in the first 2 h following administration can determine
whether the dose/route of administration of ketamine produces
comparable bioavailability across species. Given that the half-life
of ketamine is short, differing levels of ketamine may account
for some variation in the behavioral tests. However, ketamine is
no longer present when protracted behavioral effects are mea-
sured days after administration. These protracted changes result
from rapid and sustained molecular alterations induced follow-
ing a single treatment with ketamine. In addition, the preservative
benzethonium chloride (BCl) is universally used in ketamine

preparations both for clinical and preclinical use. Although
present in low concentrations, BCl can act synergistically with
ketamine to inhibit muscarinic and α7-nicotinic acetylcholine
receptors (Durieux and Nietgen, 1997; Coates and Flood, 2001).
The extent to which the additive properties of BCl on ketamine-
induced modulation of the cholinergic system may affect the
antidepressant-like response to ketamine is unknown. In the
present review, there was no systematic evidence that positive or
negative findings were associated with the source of ketamine in
the behavioral studies examined here (Tables 1, 2).

The mechanisms underlying ketamine’s effects, the simulta-
neous blockade of NMDA receptors and activation of AMPA
receptors, are integral for the induction of the antidepressant
response. The long-term consequences of these molecular alter-
ations are likely to mediate ketamine’s protracted antidepressant-
like effects mediated via increased synaptic plasticity, neuronal
survival and maturation. These changes occur within hours of
ketamine administration and occur in parallel with both the rapid
and protracted behavioral effects in animal models of depression.
The rapid modulation of mTOR, its downstream mediators, such
as Akt and ERK, and BDNF represent markers of the molecular
correlates of the antidepressant effects of ketamine and its abil-
ity to modify synaptic plasticity. Novel therapeutics for TRD are
likely to modulate these markers in a similar temporal pattern to
that of ketamine and can be used to identify better pharmaceutical
agents to treat TRD.
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Our knowledge of the pathophysiology of affect dysregulation has progressively increased,
but the pharmacological treatments remain inadequate. Here, we summarize the cur-
rent literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in
major depression and other neurological disorders that also include mood disturbances.
We focus on direct evidence in the human postmortem brain, and review rodent
genetic and pharmacological studies probing the role of the somatostatin system in
relation to mood. We also briefly go over pharmacological developments targeting the
somatostatin system in peripheral organs and discuss the challenges of targeting the
brain somatostatin system. Finally, the fact that somatostatin deficits are frequently
observed across neurological disorders suggests a selective cellular vulnerability of
somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes
are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunc-
tion, high inflammatory response, high demand for neurotrophic environment, and
overall aging processes. Together, based on the co-localization of somatostatin with
gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron sub-
types, and its temporal-specific function, we discuss the possibility that deficits in
somatostatin play a central role in cortical local inhibitory circuit deficits leading to
abnormal corticolimbic network activity and clinical mood symptoms across neurological
disorders.

Keywords: somatostatin, somatostatin-expressing interneurons, SST, SOM, SRIF, depression, mood disorders,

GABA inhibition

INTRODUCTION
Mood disturbances are commonly observed in many neuro-
logical disorders. The chronic, recurrent and long duration
of mood disturbances not only place an enormous emotional
and financial burden on patients, but also on their fami-
lies and society. Nearly 10% of all primary care office visits
are depression-related (Stafford et al., 2000), but only 30% of
patients with mood disturbances achieve remission with ini-
tial treatment (Trivedi et al., 2006). Somatostatin is a pep-
tide expressed in multiple organs. In the brain, somatostatin
(also known as somatotrophin release inhibiting factor and
often abbreviated as SST, SRIF, or SOM) acts as a modulatory
and inhibitory neuropeptide that is co-localized with gamma-
aminobutyric acid (GABA), and that is involved in regulating
multiple aspects of physiological and behavioral stress responses,
including inhibition of hypothalamic hormone release, amyg-
dala central nucleus output, and cortical local circuit integra-
tion of sensory input. Research advances over the past three
decades suggest a critical role for somatostatin in the patho-
physiology of mood disorders, and potential new therapeutic
strategies. Several recent reviews have summarized the role of the
somatostatin system, including in receptor subtypes (Patel, 1999;
Csaba and Dournaud, 2001), pharmacological developments
(Neggers and van der Lely, 2009), and during normal and patho-
logical aging (Patel, 1999; Viollet et al., 2008; Martel et al., 2012).

This article highlights current findings on the functional roles of
somatostatin in local neuronal circuits, and reviews somatostatin
deficits across neurological disorders, including neuropsychi-
atric disorders [e.g., major depressive disorder (MDD), bipolar
disorder, schizophrenia], and neurodegenerative disorders (e.g.,
Parkinson’s, Alzheimer’s, and Huntington’s diseases; Table 1).
This raises interesting questions, including first; whether the
somatostatin deficits observed in neurological disorders repre-
sent common, distinct, or partly overlapping mechanisms of
symptoms across disorders and, second, what may be the causes
and biological mechanisms underlying the selective neuronal vul-
nerability of somatostatin-expressing neurons. In addition, we
review somatostatin findings associated with affect regulation
at the genetic, cellular, and pharmacological levels in animal
studies. So far, these findings suggest that somatostatin deficits
across different brain systems and diseases may play a central
role in the affective symptom dimension rather than non-specific
signals in neurological disorders (Figure 1). As somatostatin
itself is not an ideal drug target, including for antidepres-
sant effect, we suggest that further studies characterizing the
intrinsic properties and biological vulnerabilities of somatostatin-
expressing neurons, may identify novel targets with implications
for understanding the function of local cell circuits and brain
regions underlying affective symptoms across several neurological
disorders.
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Table 1 | Low somatostatin in human neurological disorders.

Neurological disorders Brain region Pathological findings Reference

Major depressive disorder CSF Decreased Agren and Lundqvist (1984),

Kling et al. (1993), Molchan et al. (1993)

Dorsolateral prefrontal cortex Decreased (RNA expression) Sibille et al. (2011)

Anterior cingulate cortex Decreased (RNA expression) Tripp et al. (2011),

Tripp et al. (2012)

Amygdala Decreased (RNA and protein expression) Guilloux et al. (2012)

Schizophrenia CSF Decreased Bissette et al. (1986),

Reinikainen et al. (1990)

Dorsolateral prefrontal cortex Decreased (RNA expression) Morris et al. (2008),

Guillozet-Bongaarts et al. (2013)

Hippocampus Decreased (neuron number and density) Konradi et al. (2011a)

Caudal entorhinal cortex Decreased (neuron number and density) Wang et al. (2011)

Parasubiculum Decreased (neuron number and density) Wang et al. (2011)

Bipolar disorder Caudal entorhinal cortex Decreased (neuron density) Wang et al. (2011)

Parasubiculum Decreased (neuron density) Wang et al. (2011)

Hippocampus Decreased (neuron number and RNA expression) Konradi et al. (2011b)

Dorsolateral prefrontal cortex Decreased (RNA expression; trend level) Sibille et al. (2011)

Alzheimer’s disease CSF Decreased Bissette et al. (1986); Tamminga et al. (1987)

Temporal cortex Decreased (immune-reactivity) Rossor et al. (1980); Candy et al. (1985)

Frontal cortex Decreased (immune-reactivity) Davies and Terry (1981); Candy et al. (1985)

Hippocampus Decreased (gene expression per cell) Dournaud et al. (1994)

Parahippocampal cortex Decreased (neuronal density) Dournaud et al. (1994)

Parkinson’s disease CSF Decreased Dupont et al. (1982)

Frontal cortex Decreased (radioimmune-reactivity) Epelbaum et al. (1988)

Others Temporal cortex Decreased (immune-reactivity) Beal et al. (1986)

LOW SOMATOSTATIN IN NEUROPSYCHIATRIC AND
NEURODEGENERATIVE DISORDERS
MAJOR DEPRESSIVE DISORDER
Patients with major depressive disorder (MDD) show decreased
somatostatin levels in the cerebrospinal fluid (CSF; Agren and
Lundqvist, 1984; Molchan et al., 1991; Kling et al., 1993), and tran-
siently decreased CSF somatostatin which normalize with recovery
in MDD (Rubinow et al., 1985; Post et al., 1988). Evidence for low
levels of CSF somatostatin was found to correlate significantly
with elevated urinary cortisol in MDD patients (Molchan et al.,
1993). This is consistent with the altered hypothalamic-pituitary-
adrenal (HPA) axis function described in some depressed patients
(Holsboer, 2000). The route and characterization, however, from
CSF somatostatin to MDD pathophysiology is not direct, poten-
tially due to a paucity of information on factors regulating CSF
somatostatin, and to inconclusive somatostatin/HPA axis studies
in MDD patients. Hence, despite these early findings, interest in
somatostatin in mood disorders has declined over time.

Human post-mortem studies from our group have described
region-specific somatostatin deficits in MDD patients, includ-
ing a down-regulation of somatostatin gene expression in the

dorsolateral prefrontal cortex (dlPFC), subgenual anterior cingu-
late cortex (sgACC), and amygdala (Sibille et al., 2011; Tripp et al.,
2011, 2012; Guilloux et al., 2012). In addition, two peptides co-
localized with somatostatin, neuropeptide Y and cortistatin, are
both significantly down-regulated in MDD patients (Tripp et al.,
2011, 2012).These three neuropeptides (somatostatin, neuropep-
tide Y, and cortistatin) are markers of GABAergic neurons that
specifically target the dendritic compartment of pyramidal cells
(de Lecea et al., 1997; Viollet et al., 2008), and that are essential
in gating incoming sensory information (Figure 1). Other types
of GABAergic cell markers, such as parvalbumin and cholecys-
tokinin, are mostly not affected by MDD (although see Tripp et al.,
2012). Interestingly, these somatostatin deficits were systematically
more robust in female subjects across cohorts and regions (Sibille
et al., 2011; Tripp et al., 2011, 2012; Guilloux et al., 2012), consis-
tent with the female heightened vulnerability to develop MDD,
and suggesting that low somatostatin may represent a molec-
ular correlate of sexual dimorphism in vulnerability to affect
dysregulation. Notably, these findings are also consistent with
earlier postmortem studies showing reduced calbindin-positive
cell numbers in MDD (Rajkowska et al., 2007; Maciag et al.,
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FIGURE 1 | Schematic of somatostatin signaling, pathological regulators

and biological functions relevant to affect regulation. Somatostatin
pathway activity is responsive to (left panel), and regulates (right panel),
several biological events, and molecular and cellular properties that have
been linked to mood disturbances. Somatostatin and somatostatin-

expressing interneurons are key conduits for regulating incoming information
and pyramidal cell function. In contrast, other GABA neurons subtypes
targeting the perisomatic pyramidal cell compartment are mostly not affected
in major depression. NPY, neuropeptide Y; PYR, pyramidal neuron; PV,
parvalbumin.

2010), as somatostatin is mostly expressed in a subgroup of
calbindin-positive cells (reviewed in Viollet et al., 2008). Converg-
ing evidence from down-regulation of somatostatin co-localized
GABA markers in MDD across multiple human post-mortem
studies suggests that this particular GABA subpopulation in the
forebrain is selectively vulnerable, among other subtypes of GABA
neurons. Furthermore, these local cell circuit-based findings intro-
duce a new role for somatostatin in depression, which is distinct
from its previously investigated role in the regulation of the HPA
axis (Rubinow et al., 1983; Molchan et al., 1993; Weckbecker et al.
2003).

OTHER NEUROPSYCHIATRIC DISORDERS
Schizophrenia is a neuropsychiatric disorder characterized by
positive (e.g., hallucination), negative symptoms (e.g., emo-
tional blunting, apathy) and cognitive symptoms. Somatostatin
deficits in schizophrenia are demonstrated by a reduction of
CSF somatostatin (Bissette et al., 1986; Reinikainen et al., 1990),
decreased somatostatin gene expression in the dlPFC (Mor-
ris et al., 2008; Guillozet-Bongaarts et al., 2013), and decreased
number and density of somatostatin-expressing neurons in the
hippocampus (Konradi et al., 2011a), caudal entorhinal cortex
and parasubiculum (Wang et al., 2011). Changes in somatostatin
are also identified in bipolar disorder, which is clinically char-
acterized by fluctuating mood. Studies in subjects with bipolar
disorder indicate decreases in somatostatin cellular density in the
caudal entorhinal cortex and parasubiculum (Wang et al., 2011),
number of somatostatin-expressing neurons in the hippocampus
(Konradi et al., 2011b), somatostatin gene expression in the dlPFC
(trend level; Sibille et al., 2011) and hippocampus (Konradi et al.,

2011b). In addition, patients with bipolar disorder show elevated
CSF somatostatin during manic states (Sharma et al., 1995).

NEURODEGENERATIVE DISORDERS
Alzheimer’s disease is a neurodegenerative disease with neu-
ropsychiatric symptoms (Bungener et al., 1996). Decreased CSF
somatostatin (Bissette et al., 1986; Tamminga et al., 1987) and
decreased somatostatin immune-reactivity across cortical and
subcortical regions is reported in subjects with Alzheimer’s dis-
ease, including temporal cortex, frontal cortex, and hippocampus
(Davies et al., 1980; Rossor et al., 1980; Davies and Terry, 1981;
Candy et al., 1985; Dournaud et al., 1994). Depression is a com-
mon comorbid symptom in Parkinson’s disease and predicts
greater disability at any assessment point (Aarsland et al., 1999).
Decreased CSF somatostatin, decreased somatostatin immuno-
reactivity, and binding sites are also observed in the temporal
cortex and frontal cortex of patients with Parkinson’s disease (Beal
et al., 1986; Epelbaum et al., 1988). Notably, reduced CSF somato-
statin in Parkinson’s disease appears to be irreversibly present at
the onset of symptoms (Dupont et al., 1982).

REDUCED SOMATOSTATIN AND LOW MOOD?
The evidence outlined in this review provides only a glimpse of the
potential full range of somatostatin deficits across neurological dis-
orders, as multiple other brain regions and disease categories await
further characterization (Table 1). Taken together, the cumula-
tive evidence demonstrates that somatostatin deficits are common
neurochemical and molecular features in individuals with neuro-
logical disorders, regardless of their categorical diagnosis. While
somatostatin studies of cell number and gene expression in human
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postmortem brains suggest a specific alteration of somatostatin-
positive neurons across neurological disorders, it is possible
that changes and dys-synchronization of additional components
of local neuronal circuits contribute to a common symptom
dimension, which we speculate includes low affect and mood dys-
regulation. Hence, this review is not comprehensive, but rather,
highlights the recent findings in brain somatostatin signaling and
the potential role of somatostatin deficits in affect dysregula-
tion for integrating categorical models of mood symptoms into
a dimensional model across neurological disorders.

SOMATOSTATIN: GENES, NEURONS AND PHARMACOLOGY
SOMATOSTATIN SIGNALING
Somatostatin is a modulatory neuropeptide that synergizes with
GABA-mediated inhibition, and that specifically targets the
distal dendritic compartment of pyramidal neurons in corti-
cal local circuits (Kawaguchi and Kubota, 1997; Gentet et al.,
2012). Somatostatin inhibits release of numerous hormones from
the hypothalamus, including corticotrophin releasing hormone
(CRH; Wang et al., 1987; Patel, 1999). The somatostatin gene prod-
uct is composed of 14 or 28 amino-acid residues. Both forms of
somatostatin, somatostatin-14 and somatostatin-28, are generated
by tissue-specific post-translational processing of the 116 amino-
acid pre-pro-somatostatin peptide (Warren and Shields, 1984;
Tostivint et al., 2008). Somatostatin-14 is predominantly produced
in the central nervous system (CNS) but also in many peripheral
organs (Epelbaum, 1986). Somatostatin-28 is mainly synthesized
along the gastrointestinal tract (Fitz-Patrick and Patel, 1981). The
5′-upstream sequence of the somatostatin gene contains cyclic-
AMP response element (CRE; Montminy et al., 1986), making
its expression activity-dependent. Thus, somatostatin expression
is preferentially altered by various stressors, such as seizures
(Vezzani and Hoyer, 1999; Tallent and Qiu, 2008) and electri-
cal foot shock (Ponomarev et al., 2010). Moreover, mice with
conditional homozygous and constitutive heterozygous brain-
derived neurotrophic factor (Bdnf) knockout or disruption of
exon IV-expressing Bdnf transcripts show decreased somatostatin
gene expression (Glorioso et al., 2006; Martinowich et al., 2011;
Guilloux et al., 2012), demonstrating that somatostatin expression
depends on Bdnf signaling. However, the molecular mechanisms
by which this neurotrophic factor controls somatostatin and
somatostatin-expressing neurons are still unknown.

Somatostatin, cortistatin and their receptors are closely inter-
twined systems (de Lecea et al., 1996, 1997; reviewed in Spier and
de Lecea, 2000; de Lecea, 2008). Sharing high structural homology
with somatostatin, cortistatin binds to all somatostatin receptor
subtypes and is known to be regulated by exon IV-expressing
Bdnf transcripts (Martinowich et al., 2011). However, distinct
from somatostatin, cortistatin binds to additional receptors (e.g.,
growth hormone secretagogue receptor 1a and Mas-related gene
X2 receptor) (Robas et al., 2003; Siehler et al., 2008) and has
different physiological properties (e.g., activation of cation selec-
tive currents not responsive to somatostatin; Spier and de Lecea,
2000), suggesting that somatostatin and cortistatin may both con-
tribute to affect regulation in an integrated, yet differential mode.
The intracellular pathway of somatostatin signaling coupled to
all five somatostatin receptors subtypes (Sst1−5) is through the

activation of inhibitory G protein (Gi) and the following inhi-
bition of adenylyl cyclase, leading to reduction of cAMP levels,
activation of phosphotyrosine phosphatases, and modulation of
mitogen-activated protein kinases and phospholipase C (Koch and
Schonbrunn, 1984; Koch et al., 1988).

Sst1−5 present different patterns of coexpression in the brain
(Kluxen et al., 1992; Moller et al., 2003; reviewed in Martel et al.,
2012). Sst1 is found in retina, basal ganglia and hypothalamus,
Sst2 is highly abundant in several telencephalic structures (neo-
cortex, hippocampus, and amygdala), Sst3 immunoreactivity has
only been described in neuronal cilia (Schulz et al., 2000), Sst4
is expressed in olfactory bulb, cerebral cortex and CA1 region of
the hippocampus (Schreff et al., 2000), and expression of Sst5 has
been detected in cerebral cortex, hippocampus, amygdala, pre-
optic area, and hypothalamus (Stroh et al., 1999; Strowski et al.,
2003; Olias et al., 2004). Interestingly, when co-expressed in the
same cells, Sst5 influences Sst2 internalization and trafficking and
modulates cellular desensitization to the effects of somatostatin-14
(Sharif et al., 2007), suggesting that the precise actions of somato-
statin depend on the specific interaction of the Sst1−5 receptors
expressed locally in each brain region.

GENETIC POLYMORPHISMS IN THE SOMATOSTATIN SYSTEM
The relatively high degree of amino acid conservation across
species indicates that somatostatin-related genes have been
highly constrained during evolution (Patel, 1999; Olias et al.,
2004). Accordingly, there are currently very few reports linking
somatostatin gene polymorphisms with neurological disorders.
A primate-specific single nucleotide polymorphism (SNP) in
the human somatostatin gene [C/T polymorphism (rs4988514)]
is associated with increased risk in Alzheimer’s disease pro-
gression and additive effect with the APOE epsilon4 allele
(Vepsalainen et al., 2007; Xue et al., 2009), although this was not
confirmed in larger genome-wide association studies (GWAS)
(Hollingworth et al., 2011; Guerreiro et al., 2013). Leu48Met and
Pro335Leu SNPs in the SST5 gene are of potential significance to
patients with bipolar disorder (Nyegaard et al., 2002), but no asso-
ciations of SST5 SNPs are found in patients with autism (Lauritsen
et al., 2003). The paucity of associations with somatostatin gene
variants is surprising and may reflect either strong negative selec-
tion against genetic variations in this gene, or alternatively, dilution
of signal due to heterogeneity of DSM-IV-based cohorts in genetic
association studies. So, dimensional phenotypes, as defined by
clusters of mood symptoms, which are closer to gene functions
may have implications for future genetic studies of somatostatin
and other genes.

SOMATOSTATIN-EXPRESSING NEURONS: DIVERSITY AND ROLES
Gamma-aminobutyric acid (GABA) neurons are a diverse group
of inhibitory cells which co-release neuropeptides in order to sup-
port a fine-tuning of neuronal signaling and architecture. The local
inhibitory circuits provide spatiotemporal control of information
processing through at least 20 subtypes of cortical GABA neurons,
which are based on their expression of different calcium binding
proteins and neuropeptides, localization, targeting, and differ-
ential electrophysiological properties. Recent detailed reviews on
GABA neuron subpopulations have been published (Csaba and
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Dournaud, 2001; Di Cristo et al., 2004; Markram et al., 2004; Tan
et al., 2008; Fishell and Rudy, 2011; Gentet et al., 2012; DeFelipe
et al., 2013; Le Magueresse and Monyer, 2013). Approximately 20–
30% of GABA neurons in the mouse somatosensory cortex express
somatostatin (Lee et al., 2010; Rudy et al., 2011), and 40–50% of
GABA neurons contain parvalbumin without overlapping with
somatostatin in the frontal cortex, primary somatosensory cortex
and visual cortex of mouse (Gonchar et al., 2007; Xu et al., 2010)
and the visual cortex of rat (Gonchar and Burkhalter, 1997).

Recent reports focusing on the patterns of cortical neu-
ronal connectivity show that somatostatin-expressing interneu-
rons mediate the firing of pyramidal neurons with a fine level
of specificity among cortical layers. Integrating optogenetic and
electrophysiology approaches, mouse somatostatin-expressing
interneurons in layer 2/3 of the somatosensory cortex provide
a tonic inhibition to the distal dendrites of excitatory pyramidal
neurons by sharpening selectivity during periods of quiet wake-
fulness, which may contribute to synchronized firing in cortical
networks and sensorimotor integration (Gentet et al., 2012). Inter-
estingly, in mouse somatosensory cortex, somatostatin-expressing
interneurons show a spatially precise connectivity with pyrami-
dal neurons through direct targeting in layers 2/3 or indirectly
through inhibition of local parvalbumin interneurons in layer 4
(Xu et al., 2013). Moreover, in layers 2/3 of the mouse prefrontal
cortex, somatostatin-expressing interneurons compartmentalizes
inhibitions of calcium signaling to spine heads, not shafts, sug-
gesting that dendrite-targeting inhibition through somatostatin-
expressing interneurons may contribute to downstream cellular
processes such as synaptic plasticity (Chiu et al., 2013). In mouse
visual cortex, somatostatin-expressing interneurons are found to
mediate response levels of specific subsets of pyramidal neu-
rons whereas parvalbumin-expressing neurons alter response gain
(Wilson et al., 2012). Parvalbumin-expressing neurons receive
excitatory input from the thalamus and make strong synapses on
the soma and axons of their target cells (Kawaguchi and Kubota,
1997) to control spike timing of the output neurons. In contrast,
somatostatin-expressing neurons mostly do not receive input from
thalamus (Beierlein et al., 2003; Cruikshank et al., 2010) and are
instead activated through feed-forward mechanisms by activated
pyramidal neurons. Somatostatin-expressing interneurons prefer-
entially target distal dendrites of pyramidal neurons in layer 2/3 to
modulate the processing of incoming sensory information before
it is integrated at the soma level (Di Cristo et al., 2004; Markram
et al., 2004; Tan et al., 2008; Murayama et al., 2009; Xu et al., 2013).
Hence, the distinct GABAergic and prototypical inhibitory pop-
ulations, expressing either parvalbumin or somatostatin, shape
the spatiotemporal control of multiple post-synaptic potentials in
cortical local circuits, and provide a framework to investigate the
role of inhibitory circuits in physiology and pathology.

GENETIC APPROACHES TO INVESTIGATE THE SOMATOSTATIN SYSTEM
Mice mutant for somatostatin were created by deleting the cod-
ing region of the pre-pro-somatostatin (the last ten codons of
the first exon; Zeyda et al., 2001). Somatostatin knockout (KO;
SstKO) mice show intact motor coordination and motor learning,
but have a significant impairment in motor learning as demands
of motor coordination are increased. Overall, a detailed analysis

demonstrated that SstKO mice are healthy, fertile, and show no
overt behavioral phenotypes, including anxiety-like behavior in
the open-field and fear conditioning tests. Notably, SstKO mice
display high basal plasma levels of corticosterone and growth hor-
mone (Zeyda et al., 2001), confirming a somatostatin-mediated
inhibition of HPA axis function. Similarly, mice lacking indi-
vidual Sst1−5 receptors have been tested in numerous biological
fields. Of these, Sst2 emerged as the primary receptor of inter-
est (Zeyda and Hochgeschwender, 2008), and Sst2

KO mice display
increased anxiety-like behavior in the elevated plus maze and open
field, increased immobility in the forced swim test, decreased loco-
motion coupled with an increase of pituitary adrenocorticotropic
hormone release instead of growth hormone (Viollet et al., 2000).
In line with the observed changes in Sst2

KO mice, acute predator
stress in rats led to up-regulated Sst2 gene expression in the amyg-
dala and cingulate cortex, shown correlated with Fos expression
in the amygdala (Nanda et al., 2008). As the product of a different
gene, cortistatin shares a high structural and functional similar-
ity with somatostatin-14 (de Lecea et al., 1996, 1997). Notably,
compared with the weak inhibitory effects of somatostatin on
the basal release of CRH from rat hypothalamus and hippocam-
pus, cortistatin exhibits strong inhibition of the expression and
release of basal CRH (Tringali et al., 2012). These findings sug-
gest that Sst2 may regulate affective phenotypes and HPA axis
responses both through somatostatin and cortistatin. Given the
limitations of human studies, SstKO mice provide an opportunity
to explore the causal role of somatostatin in affect dysregulation
and the underlying neural mechanisms. Such insights, however,
will require systematic behavioral characterization with fine spa-
tial and temporal resolution by including female cohorts and
region-specific manipulation at different developmental stages.
Based on the published studies to date, it is still unclear whether
these mutants recapitulate behavioral features of mood disorders.
Knowing the effects of somatostatin signaling on neuroendocrine
regulation, future studies need to assess the molecular and cellu-
lar systems that somatostatin mutations converge upon, and where
the exact neural circuits are affected. Moreover, combining genetic
and environmental factors in animal models is critical to enhance
the accuracy of disease modeling and translational efforts. For
example, acute or chronic exposure to stress or to stress hormones
may capture how such etiological factors determine the vulnera-
bility to external insults, in contrast to baseline behavioral testing.
In addition, mood disorder-related sex differences are observed
in community-based epidemiological studies, where the factor of
seeking treatment is removed (Kornstein et al., 2000; Festinger
et al., 2008; Leach et al., 2008) and findings of low somatostatin in
the amygdala appear more robust in postmortem studies of female
MDD subjects (Tripp et al., 2012), suggesting that gender/sex may
represent a biological predisposing factor, or at least a moderating
factor, in the intrinsic vulnerability of the somatostatin system.

Although many mood disorders emerge during adolescence
(Paus et al., 2008), behavioral abnormalities including affect dys-
regulation are often heritable and apparent before diagnostic crite-
ria are met (McGuffin et al., 2003; Geller et al., 2006). It is unclear
when somatostatin deficits occur and potentially begin to con-
tribute to the formation of affective symptoms. Tracking somato-
statin system using new anatomic techniques with refined cellular
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definition, from Brainbow (Livet et al., 2007) to CLARITY (Chung
et al., 2013) and SeeDB (Ke et al., 2013), across different develop-
mental stages may help identify age-dependent neural architecture
and disease mechanisms related to somatostatin function.

SOMATOSTATIN ANALOG DEVELOPMENT AND PHARMACOLOGICAL
STUDIES
As native somatostatin peptides have a very short half-life time
(approximate 1–3 min; Sheppard et al., 1979), long-acting and
highly potent somatostatin analogues are currently available for
the treatment of acromegaly and neuroendocrine tumors, includ-
ing octreotide (long-acting; LAR-OCT; Bauer et al., 1982) and
Lanreotide (slow release or autogel; Bevan, 2005; Molitch, 2008).
Compared to somatostatin, pharmacological tools of the five
somatostatin receptor subtypes have lagged behind, partly due
to the lack of high-affinity antagonists.

In addition, several novel somatostatin therapy models are
available: (1) Universal somatostatin (Schmid and Schoeffter,
2004): a somatostatin molecular analog with high binding affin-
ity to all or most human somatostatin receptors. An exam-
ple is SOM230, which interacts with Sst1,2,3,5 and particularly
potent at Sst5 compared with LAR-OCT; (2) Chimeric somato-
statin/dopamine molecule (Saveanu et al., 2002; Pivonello et al.,
2005): a somatostatin and dopamine hybrid agonist, based on
reports that dopamine and somatostatin receptors can hetero-
oligomerize to enhance functional responses (Rocheville et al.,
2000). An example is BIM-23A760, which accelerates the suppres-
sion of growth hormone and adrenocorticotropic hormone by
the interaction with Sst2 and Drd2 simultaneously; (3) Chimeric-
somatostatin vaccinations (Haffer, 2012): a fusion protein express-
ing chloramphenicol acetyl transferase protein and somatostatin.
Two somatostatin vaccinations, JH17 and JH18, can effectively
reduce weight gain and reduce final body weight percentage of
normal, non-obese mice and mice with diet-induced obesity via
the intra-peritoneal route; (4) Non-peptide antagonists, such as
SRA880 (Sst1 selective), ACQ090 (Sst3 selective) and Sst4 selective
β peptide agonists (Rivier et al., 2003; Hoyer et al., 2004). Despite
this extensive list, the practical use of somatostatin in the brain is
hampered by the multiple effects of the peptide, by the need for
small molecules targeting specific, high affinity receptors on the
target cells in specific brain regions, and by the need for feasible
routes of administration that lead to fast delivery into the brain.

The potential for using somatostatin analogues as treatment
in the CNS is emerging for treatment of epilepsy (Vezzani and
Hoyer, 1999; Tallent and Qiu, 2008), pain (Mollenholt et al., 1994;
Taura et al., 1994) and headaches (Sicuteri et al., 1984; Kapicioglu
et al., 1997); potential use for treatment of mood disorders is sug-
gested by reversal of emotion-like behaviors in rodent models.
Several pharmacological studies support a role of somatostatin in
affect regulation. Intra-ventricular administration of somatostatin
in rats produces anxiolytic- and antidepressant-like behaviors
in the elevated plus-maze and forced swim tests, and a neu-
rophysiological signature of anxiolytic drugs (e.g., reduction of
theta frequency and theta frequency curve slope; Engin et al.,
2008). Mice with intra-amygdalar and intra-septal microinfusions
of somatostatin-14 and somatostatin-28 display reduced anxiety-
like behavior in the elevated plus-maze and shock-probe tests

(Yeung et al., 2011). Moreover, anxiolytic effects in the elevated
plus-maze test are described after intra-cerebroventricular infu-
sions of a selective Sst2 receptor agonist, but not after infusions of
the other four receptor agonists; antidepressant-like effects in the
forced swim test are observed following infusions of either Sst2 or
Sst3 agonists (Engin and Treit, 2009). Another agent to enhance
somatostatin functioning, SRA880 (an antagonist of auto-receptor
Sst1), synergizes with imipramine in causing antidepressant-like
effects in the tail suspension test and increases Bdnf mRNA
expression in the mouse cerebral cortex (Nilsson et al., 2012).

EFFECTS OF ANTIDEPRESSANTS ON SOMATOSTATIN IN THE CNS
Significant efforts have been directed toward the characterization
of the downstream targets of antidepressant treatment, with a
focus on somatostatin. A recent study demonstrates that chronic
imipramine treatment increases somatostatin expression in mouse
hypothalamus (Nilsson et al., 2012). However, there is incon-
sistency regarding the effect of chronic citalopram treatment
on somatostatin levels in rats (Kakigi et al., 1992; Prosperini
et al., 1997; Pallis et al., 2006, 2009). Repeated administration of
imipramine, maprotiline, mianserin, carbamazepine or zotepine
has no effect on somatostatin levels in various brain regions of rats
(Weiss et al., 1987; Kakigi et al., 1992). While some somatostatin
receptors seem to exert anxiolytic or antidepressant-like effects,
there is no direct evidence supporting somatostatin receptors as
downstream targets of current antidepressants. Together, these
findings suggest that somatostatin levels are mostly unchanged
by antidepressants. It is unclear whether somatostatin, GABA, or
GABA functioning in somatostatin-expressing interneurons may
be the real mediators or antidepressant targets. Future studies are
needed to determine the involvement of somatostatin receptors
and associated intracellular signaling pathways in the therapeu-
tic effects of antidepressants, or whether somatostatin effects are
independent of current antidepressant modalities.

POTENTIAL MECHANISMS OF SELECTIVE VULNERABILITY
OF SOMATOSTATIN-EXPRESSING INTERNEURONS
It is possible that low somatostatin in diseases acts as a biomarker
for deregulated function of somatostatin-expressing neurons. As
such, it is essential to identify upstream factors responsible for
the dysfunction of somatostatin-expressing interneurons in neu-
rological disorders. We speculate that intrinsic cellular properties
in somatostatin-expressing neurons may determine their selec-
tive vulnerability to various insults. Pathways underlying this
high vulnerability may include high intrinsic oxidative stress
related to mitochondria, high sensitivity to inflammation, high
dependence on neurotrophic environment, and cellular devel-
opmental and aging processes. These canonical pathways might
provide novel cell-based perspectives in the treatment of affected
somatostatin-expressing cells across neurological disorders.

OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTIONS
Oxidative stress produced by mitochondria during respiration is
a common pathogenic mechanism implicated in neurological dis-
orders (Sorce and Krause, 2009; Stefanescu and Ciobica, 2012).
Depressed states in mood disorders are associated with decreased
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brain energy generation (Baxter et al., 1985, 1989). Mitochon-
drial dysfunction together with the oxidative stress accumulation
has been proposed to synergistically contribute to the neuro-
endangerment processes underlying depression (Gardner et al.,
2003; Burnett et al., 2005) and neurodegenerative diseases (Lin and
Beal, 2006; Mancuso et al., 2007; Petrozzi et al., 2007). Similarly,
high baseline oxidative stress could be an intrinsic characteris-
tic of vulnerable neuronal populations. Notably, neuronal nitric
oxide synthase (nNOS) and NADPH diaphorase (NADPHd), two
enzymes that produce reactive oxidative species, are extensively
and almost exclusively co-localized with somatostatin and neu-
ropeptide Y (Dun et al., 1994; Figueredo-Cardenas et al., 1996;
Jaglin et al., 2012), hence providing a neurochemical basis for
high susceptibility of somatostatin-expressing neurons to generate
oxidative stress in response to pathophysiological insults.

HIGH DEPENDENCE ON NEUROTROPHIC ENVIRONMENT
Brain-derived neurotrophic factor (BDNF) and its receptor neu-
rotrophic tyrosine kinase receptor type 2 (TrkB) have been
implicated in mood disorders (Guilloux et al., 2012; Tripp et al.,
2012). BDNF-TrkB signaling is one of the key mediators for
maintaining normal somatostatin gene expression (Glorioso et al.,
2006; Martinowich et al., 2011). Progressively impairing BDNF-
TrkB signaling in patients with mood disturbances may directly
impact the biology of somatostatin-expressing neurons, resulting
in somatostatin deficits. In addition, Bdnf-TrkB signaling itself
is vulnerable to increased inflammation (Goshen et al., 2008; Koo
and Duman, 2008; Song and Wang, 2011) and high glucocorticoids
insults (Hodes et al., 2012). Mild oxidative stress inhibits tyrosine
phosphatases activity (Barrett et al., 2005), potentially leading to
impaired TrkB downstream signaling. Cortistatin and neuropep-
tide Y expression partly overlaps with the somatostatin neuron
population in rodents (Figueredo-Cardenas et al., 1996; de Lecea
et al., 1997; Xu et al., 2010). Comparing the profile of gene changes
between subjects with MDD and mice with genetically-altered
Bdnf signaling suggest that the reduced somatostatin, neuropep-
tide Y and cortistatin are partly downstream from a combination
of reduced constitutive and activity-dependent Bdnf signaling
(Guilloux et al., 2012). In contrast, markers for other GABA neu-
ron subtypes targeting the perisomatic area region cell body and
axon initial segment of pyramidal neurons (i.e., cholecystokinin
and calretinin), appear to be independent of BDNF signaling and
unaffected in MDD patients (Guilloux et al., 2012; Tripp et al.,
2012). Hence, it is possible that the somatostatin-specific cellu-
lar function and vulnerability are partly mediated by BDNF-TrkB
signaling during both physiological and pathological processes of
affect regulation.

INFLAMMATION AND CELLULAR AGING
Inflammation has been implicated as a contributing factor in
the onset and progression of many neurological disorders (Di
Filippo et al.,2008). Mood disturbances are associated with an acti-
vated inflammatory response system (Padmos et al., 2008; Miller
et al., 2009), including increased levels of peripheral interleukins
and tumor necrosis factor-alpha in MDD patients (Kaestner
et al., 2005; Howren et al., 2009; Dowlati et al., 2010; Maes,
2011). Inflammatory illnesses are associated with more depressive

episodes (Celik et al., 2010; Maes et al., 2012), suggesting that
prior depression may sensitize inflammatory responses. Patients
treated with inflammatory cytokines, such as interferon-α, are
at greater risk of developing depressive episodes (Castera et al.,
2006; Lotrich et al., 2007). Somatostatin released from sensory
nerves and somatostatin receptors on peripheral blood mononu-
clear cells play a crucial role in anti-inflammation through
inhibition of pro-inflammatory peptide release (Szolcsanyi et al.,
1998; Kurnatowska and Pawlikowski, 2000; Helyes et al., 2004).
Rats with chronic inflammation induced by lipopolysaccharide
show decreased hippocampal somatostatin expression (Gavilan
et al., 2007). It is possible that there is crosstalk among periph-
eral inflammation, somatostatin function, and central effects
of somatostatin-expressing neurons. Hence, decreasing somato-
statin expression due to cellular impairment in the progress
of neurological diseases may further enhance inflammation in
a vicious cycle, leading to exacerbated cellular vulnerability of
somatostatin-expressing neurons.

Aging is associated with a considerable increase in
an activated, pro-inflammatory state (Wei et al., 1992;
Bruunsgaard and Pedersen, 2003), a decline in circulating levels
of Bdnf (Erickson et al., 2010), and increased oxidative dam-
age (Sohal and Weindruch, 1996). Somatostatin expression is
significantly decreased with age in human cortical regions, but
parvalbumin expression is not altered by age (Erraji-Benchekroun
et al., 2005; Glorioso et al., 2011). Similarly, the number of
hippocampal somatostatin-expressing interneurons decreases in
aged rats, but the number of parvalbumin-expressing neurons
remains the same (Vela et al., 2003). Somatostatin and IL-1β
mRNA expression are negatively correlated in aged hippocampus
of rats (Gavilan et al., 2007). Comparing the effects of aging on
somatostatin expression in the sgACC, an accelerated reduction is
found in patients with MDD compared to normal aging subjects
(Tripp et al., 2012), suggesting a pattern resulting in an early aging
phenomenon which we have speculated may be synergistically
induced by normal age-related changes and depression-related
pathological change (Douillard-Guilloux et al., 2013).

CONCLUSION
Here we have focused on somatostatin, a GABA marker,
down-regulated in MDD, schizophrenia, bipolar disorder, and
neurodegenerative diseases. Exploring cross-disease molecular
(somatostatin) and cellular (somatostatin-expressing interneu-
rons) pathological findings suggests a dimensional pathological
phenotype that is specific to the somatostatin gene/cell biolog-
ical entity rather than to categorical brain disorders. Based on
these results we speculate that common risk factors affecting
somatostatin and somatostatin-expressing neurons may impact
information processing in the cortical local circuits (Figure 1).
Clarifying the role of somatostatin and its regulation of GABA
inhibition in affect regulation could provide new strategies for
predicting, delaying, and treating neurological diseases with
mood disturbances. A number of questions remain. For exam-
ple, are the prevalent somatostatin deficits seen in multiple
diseases reflected in a common symptom dimension, such as
low mood, across neurological diseases? What are the critical
events that determine the vulnerability of somatostatin-expressing
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neurons? And what are the pathogenic mechanisms that mediate
the observed disease-related molecular and cellular phenotypes?
One possibility is that inflammation, oxidative stress, aging,
and reduced neurotrophic support may all converge to affect
somatostatin-expressing neurons. Targeting these pathways may
exert neuro-protective effects on somatostatin-expressing neu-
rons, as a potential therapeutic approach with implications

for several neuropsychiatric disorders and neurodegenerative
diseases.
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Animal and clinical studies of gene-environment interactions have helped elucidate the
mechanisms involved in the pathophysiology of several mental illnesses including anxiety,
depression, and schizophrenia; and have led to the discovery of improved treatments. The
study of neuropeptides and their receptors is a parallel frontier of neuropsychopharma-
cology research and has revealed the involvement of several peptide systems in mental
illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered
neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing
anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which
is highly responsive to environmental stimuli, particularly neurogenic stressors, and in
turn modulates behavioral responses to these stressors and alters key neural processes,
including hippocampal theta rhythm and associated learning and memory. Here, we
review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt
to highlight aspects that are relevant and/or potentially translatable to the etiology and
treatment of major depression and anxiety. Evidence pertinent to autism spectrum and
metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also
nominate some key experimental studies required to better establish the therapeutic
potential of this intriguing neuromodulatory signaling system, including an examination of
the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common
neural substrates and circuitry that are identified as dysfunctional in these debilitating brain
diseases.

Keywords: relaxin-3, RXFP3, neuropeptide, arousal, stress, mood and depression, autism spectrum disorders,

eating disorders

INTRODUCTION
It has now become widely accepted by neuroscientists and the
clinical community that mental illness can arise from multiple
sources and causes, including genetic mutations or epigenetic
effects, and key environmental impacts during early develop-
ment, and adolescence. A need for an ongoing reappraisal of
how best to study and classify mental illness is also acknowl-
edged, including the development of circuit-level frameworks
for understanding different modality deficits in depression (e.g.,
Nestler, 1998; Willner et al., 2013), autism spectrum disorders
(ASD; e.g., Haznedar et al., 2000; Markram and Markram, 2010;
Yizhar et al., 2011b; Fan et al., 2012), and schizophrenia (e.g.,
Spencer et al., 2003; O’Donnell, 2011; Millan et al., 2012; Jiang
et al., 2013).

Similarly, novel structural and molecular targets in brain that
might underpin better treatments for the debilitating conditions
encompassed by the clinical spectrum of anxiety, major depres-
sion, and related psychiatric illnesses need to be identified and
explored. In this regard, it is clear that neuromodulatory sys-
tems that utilize monoamine and peptide transmitters play a

key role in the neurophysiology of circuits associated with affec-
tive behavior and cognition (Hoyer and Bartfai, 2012; Marder,
2012; van den Pol, 2012), and they can be both aberrant in
psychiatric pathology and targets for novel treatments (e.g., Dom-
schke et al., 2011; Hoyer and Bartfai, 2012; Lin and Sibille,
2013).

Relaxin-3 is a highly conserved neuropeptide that is abun-
dantly expressed in four small groups of largely γ-aminobutyric
acid (GABA) projection neurons in mammalian brain (Bath-
gate et al., 2002; Burazin et al., 2002; Tanaka et al., 2005), and
is involved in regulating aspects of physiological and behav-
ioral stress responses and the integration of sensory inputs (see
Smith et al., 2011). Recent reviews have highlighted the putative
role of relaxin-3 in the control of feeding and the neuroen-
docrine axis (Tanaka, 2010; Ganella et al., 2012, 2013b). However,
existing neuroanatomical and functional evidence also suggests
the GABA/relaxin-3 system acts as a broad “arousal” network
which is highly responsive to environmental stimuli (neurogenic
stressors) and modulates stress responses and other key behav-
iors/neural processes. These effects are mediated via a variety
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of mechanisms, such as influencing hippocampal theta rhythm
and associated learning and memory, and via putative actions
throughout the limbic system (Tanaka et al., 2005; Ma et al.,
2009a, 2013; Banerjee et al., 2010). Here, in the broader context
of the potential for neuropeptide-receptor systems as therapeu-
tic drug targets (Hoyer and Bartfai, 2012), we review existing
experimental data on relaxin-3 and modulation of its receptor,
relaxin family peptide 3 receptor (RXFP3), in rodents and high-
light its relevance to the etiology of various neuropsychiatric
disorders.

NEUROPEPTIDE-RECEPTOR SYSTEMS AS TARGETS FOR
TREATMENT OF NEUROPSYCHIATRIC DISORDERS
Since the early discovery of “substance P” (von Euler and Gaddum,
1931), a plethora of neuropeptide-receptor systems have been
identified and characterized (see Hoyer and Bartfai, 2012). Neu-
ropeptides are commonly co-released with GABA/glutamate and
monoamine transmitters, and generally signal through G-protein
coupled receptors to modulate a broad range of neural processes
and behaviors. The potential attractiveness of neuropeptide-
receptor systems as therapeutic drug targets is enhanced by their
high level of signaling specificity. For example, expression of neu-
ropeptides is often restricted to small populations of neurons
within a small number of brain nuclei (e.g., orexin, MCH, and
neuropeptide S; Xu et al., 2004; Sakurai, 2007; Saito and Nagasaki,
2008), and neuropeptides frequently bind to their receptors with
high affinity and specificity due to their generally large allosteric
binding sites (Hoyer and Bartfai, 2012). Neuropeptides are also
often preferentially released under states of high neuronal firing
frequency in response to the nervous system being challenged, as
can occur during acute or chronic environmental stress and/or in
association with neuropsychiatric disorders (Hökfelt et al., 2000,
2003; Holmes et al., 2003).

These characteristics suggest that therapeutic drugs which
target neuropeptide systems may be less prone to unwanted “non-
specific” side-effects compared to current drug treatments. For
example, although tricyclic antidepressants are relatively effec-
tive at increasing 5-hydroxytrypamine (5-HT) and noradrenaline
signaling to reduce the symptoms of major depression, they are
hampered by cross-reactivity with other transmitter systems and
reduce histamine and cholinergic signaling, which contributes to
unwanted side effects (Westenberg, 1999). Even their “replace-
ment” drugs (selective serotonin reuptake inhibitors, SSRIs) are
associated with shortcomings such as slow onset of action and
patient resistance, and side effects including sexual dysfunc-
tion, and weight gain (Nestler, 1998). Similar problems have
been encountered in the development of antipsychotics to treat
schizophrenia (Tandon, 2011), suggesting that more selective
drugs that target relevant peptide receptors could have broad
therapeutic applications (Hökfelt et al., 2003; Holmes et al., 2003;
Hoyer and Bartfai, 2012).

Interest in the therapeutic potential of neuropeptide-receptor
systems has further increased following a number of studies
which implicate their dysregulation as contributing to disease sus-
ceptibility. For example, narcolepsy is strongly associated with
reduced orexin signaling (Burgess and Scammell, 2012); post-
traumatic stress syndrome (PTSD) susceptibility and panic has

been linked to pituitary adenylate cyclase-activating polypeptide
(PACAP) receptor-1 and corticotrophin-releasing factor (CRF)
receptor-2 signaling (Ressler et al., 2011; Lebow et al., 2012; see
also Dore et al., 2013); and neuropeptide Y (NPY) and CRF
appear to play a role not only in the underlying pathophysiol-
ogy of schizophrenia and depression, but as likely downstream
mediators of the therapeutic effects following treatment with
monoamine-targeting drugs (Arborelius et al., 1999; Ishida et al.,
2007; Zorrilla and Koob, 2010; Nikisch et al., 2011). Not sur-
prisingly, the antidepressant potential of drugs which directly
target NPY and CRF signaling is currently under investiga-
tion (Paez-Pereda et al., 2011), while drugs that target recep-
tors for neurotrophic factors and other neuropeptides, such as
brain-derived neurotrophic factor (BDNF; Vithlani et al., 2013)
and neuropeptide S (NPS; Pape et al., 2010), offer consider-
able promise as antidepressants and anxiolytics (Schmidt and
Duman, 2010; McGonigle, 2011), in light of the effects of the
native peptides in relevant animal models of neurogenesis, and
neural structure and activity (Rotzinger et al., 2010; Pulga et al.,
2012).

However, from a translational viewpoint, over the last two
decades pharmaceutical and biotechnology groups have been
attempting to target neuropeptide systems to treat various CNS
disorders and despite encouraging pre-clinical data, clinical stud-
ies investigating the antidepressant potential of neuropeptide
receptor-targeting drugs have yielded mixed findings. For exam-
ple, the neurokinin 1 (NK1) antagonist “aprepitant,” which is
effective at treating nausea during chemotherapy (de Wit et al.,
2004), was unsuccessful in the treatment of major depression
(Keller et al., 2006). CRF receptor-1 antagonists are also yet
to demonstrate clear antidepressant properties (Binneman et al.,
2008), although anxiolytic effects are promising (Bailey et al.,
2011); and trials of these compounds against alcohol abuse
and relapse are being undertaken (Zorrilla et al., 2013). NPY
agonists were initially observed to inhibit circulating stress hor-
mones during sleep in healthy controls (Antonijevic et al., 2000),
while subsequent testing in depressed patients failed to con-
fer therapeutic effects (Held et al., 2006). Although frustrating
for industry and clinical and basic researchers, in regard to
depression, these findings are more likely to reflect the complex
underlying nature of the targeted disorder and its symptoms,
rather than inherent flaws with neuropeptide-receptor systems
as drug targets. Indeed, more recently, drugs that target orexin
receptors have demonstrated promise in the treatment of sleep
disorders (Hoyer and Jacobson, 2013; Winrow and Renger,
2014).

THE NEUROPEPTIDE RELAXIN-3 AND ITS RECEPTOR, RXFP3
Relaxin-3 is a two chain, 51 amino acid neuropeptide discov-
ered by our laboratory in 2001 (Bathgate et al., 2002; Burazin
et al., 2002; Rosengren et al., 2006). Relaxin-3 is the ancestral gene
of the relaxin family of peptides (Wilkinson et al., 2005), which
includes the namesake peptide “relaxin” (H2 relaxin or relaxin-
2 in humans) that was observed to relax the pelvic ligament in
guinea pigs almost a century ago (Hisaw, 1926). In contrast to the
many and varied peripheral actions of relaxin (Sherwood, 2004;
Bathgate et al., 2013a), relaxin-3 is abundantly expressed within
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the mammalian brain (Bathgate et al., 2002; Burazin et al., 2002)
and acts as a neurotransmitter by activating its cognate G-protein
coupled receptor, RXFP3 [also known as GPCR135, SALPR, and
GPR100; Matsumoto et al., 2000; Liu et al., 2003; Boels et al., 2004;
see Bathgate et al., 2006, 2013a]. Although research in this area is
still in its relative infancy (Smith et al., 2011), several key features
have highlighted relaxin-3/RXFP3 systems as an attractive putative
target for the treatment of cognitive deficits, and neuropsychiatric
disorders, including depression.

Neuroanatomical studies conducted in the rat (Burazin et al.,
2002; Tanaka et al., 2005; Ma et al., 2007), mouse (Smith et al.,
2010) and macaque (Ma et al., 2009b,c) have revealed that relaxin-
3 is mainly expressed within neurons of the pontine nucleus
incertus (NI; Goto et al., 2001; Olucha-Bordonau et al., 2003; Ryan
et al., 2011), while smaller populations are present in the pontine
raphé, periaqueductal gray, and a region dorsal to the substan-
tia nigra (see Figure 1). Relaxin-3 containing neurons in these
areas innervate a broad range of target forebrain regions rich in
RXFP3. NI relaxin-3 neurons are predominately GABAergic (Ma
et al., 2007; Cervera-Ferri et al., 2012), and it is likely relaxin-3
signaling confers complimentary inhibitory effects to the primary
transmitter, as in cell-based studies RXFP3 activation is linked
to Gi/o and reduces cAMP accumulation (van der Westhuizen
et al., 2007). In recent electrophysiological experiments, how-
ever, RXFP3 activation was able to hyperpolarize or depolarize
presumed RXFP3-positive neurons within the rat intergenicu-
late leaflet (Blasiak et al., 2013), suggesting the effect of receptor
activation or inhibition may vary with the neurochemical phe-
notype and connectivity of the target neuron, as described for
other peptides. RXFP3 activation also stimulates ERK1/2 MAP
kinase and other pathways in vitro (van der Westhuizen et al.,
2010), although related changes in gene expression or precise roles
of RXFP3 signaling within distinct neuronal populations in vivo
remain unknown.

The distribution of relaxin-3-positive axons and RXFP3
mRNA/binding sites within key midbrain, hypothalamic, lim-
bic, and septohippocampal circuits of the rodent and primate
brain (Ma et al., 2007, 2009b; Smith et al., 2010) suggests relaxin-
3/RXFP3 neural networks represent an “arousal” system that
modulates behavioral outputs such as feeding and the responses
to stress; and associated neuronal processes including spatial and
emotional memory and hippocampal theta rhythm (see Figure 1).
These actions have been investigated in a number of functional
studies in rodents (see Ma et al., 2009a; Smith et al., 2011; Ganella
et al., 2012 for review). As numerous neuropsychiatric disor-
ders are either associated with alterations in these processes and
behaviors, and/or can be therapeutically treated by drugs which
modulate these processes and behaviors (Mazure, 1998; Anand
et al., 2005; McGonigle, 2011; Tandon, 2011; Millan et al., 2012),
the relaxin-3/RXFP3 system has considerable potential as a novel
therapeutic target and warrants further investigation.

RELAXIN-3/RXFP3 SIGNALING: A NOVEL TARGET FOR THE
TREATMENT OF DEPRESSION?
IS RELAXIN-3 IS AN “AROUSAL” TRANSMITTER?
Wakefulness, along with highly aroused behavioral states such
as when an animal is alert, attentive, active, or engaged in

exploratory behavior, are mediated by the interactive signaling of
a range of “arousal” neurotransmitters (Saper et al., 2005). Sev-
eral arousal transmitters and their associated neural networks
and single or multiple target receptors have been identified,
including the monoamines 5-HT, acetylcholine, noradrenaline,
and dopamine (Nestler, 1998; Saper et al., 2005; Berridge et al.,
2012), and the peptides orexin, melanin-concentrating hor-
mone (MCH) NPY, CRF, and NPS (Hökfelt et al., 2003; Xu
et al., 2004; Ishida et al., 2007; Sakurai, 2007; Zee and Man-
thena, 2007; Bittencourt, 2011). Indeed, it is now widely thought,
based particularly on studies using optogenetic control of neural
pathways, that selective spatiotemporal recruitment and coor-
dinated activity of various cell type-specific brain circuits may
underlie the neural integration of reward, learning, arousal, and
feeding.

As mentioned, considerable neuroanatomical evidence suggests
relaxin-3 should be thought of as an arousal neurotransmit-
ter. For example, relaxin-3 neurons project to several areas that
regulate arousal, such as the midbrain, cortex, thalamus, and
limbic and septohippocampal regions, in a similar way as the
monoamine and other peptide arousal systems (Ma et al., 2007;
Smith et al., 2010, 2011). In fact, the “restricted” localization of
relaxin-3 (GABA) neurons and the broadly distributed relaxin-
3 projections throughout the brain are remarkably similar to
those of the raphé/5-HT (Steinbusch, 1981; Monti and Jantos,
2008; Lesch and Waider, 2012) and locus coeruleus/noradrenaline
(Jones et al., 1977; Takagi et al., 1980; Berridge et al., 2012)
pathways/networks.

Arousal neurotransmitter systems are extensively intercon-
nected, and relaxin-3 fibers, and RXFP3 are enriched within the
pedunculopontine/laterodorsal tegmentum and basal forebrain,
periaqueductal gray and lateral hypothalamus; which contain
interconnected populations of neurons which produce acetyl-
choline, dopamine and orexin/MCH, respectively (Saper et al.,
2005). Furthermore, along with 5-HT and orexin fibers and recep-
tors (Meyer-Bernstein and Morin, 1996; Marchant et al., 1997;
Peyron et al., 1998; Thankachan and Rusak, 2005; Pekala et al.,
2011), relaxin-3 fibers/RXFP3 are enriched within the sensory
and photic integrative thalamic center, known as the intergenic-
ulate leaflet (Harrington, 1997; Morin, 2013), and application of
an RXFP3 agonist can excite (depolarize) NPY neurons within
this region (Blasiak et al., 2013), which project to the suprachias-
matic nucleus and promote wakefulness (Shinohara et al., 1993;
Thankachan and Rusak, 2005; Zee and Manthena, 2007). Fur-
thermore, rat NI relaxin-3 neurons express the 5-HT1A receptor
(and possibly other 5-HT receptors), and chronic 5-HT deple-
tion increased relaxin-3 mRNA in the NI (Miyamoto et al., 2008);
while in preliminary electrophysiological studies, bath applica-
tion of orexin activated rat NI relaxin-3 neurons in a brain slice
preparation (Blasiak et al., 2010).

Indeed, arousal and stress transmitter systems, including CRF
and orexin peptides and their receptors, have long been impli-
cated in reward and drug seeking behavior (Koob, 2010; Kim et al.,
2012) and we recently demonstrated that antagonism of RXFP3
in brain – specifically within the bed nucleus of the stria termi-
nalis – reduced self-administration of alcohol and cue- and stress
(yohimbine)-induced relapse in alcohol-preferring iP rats (Ryan
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FIGURE 1 | (A,B) Low and high magnification micrographs of a coronal
section through the mouse NI, displaying neurons positive for relaxin-3-like
fluorescent immunoreactivity. The region displayed in (B) is outlined in
(A). The location of the midline (m/l) is indicated with a dotted line.
Anterior-posterior coordinates from bregma, −5.38 mm. Scale bars A,
100 μm; B, 250 μm. (C) Schematic parasagittal representation of the rodent
brain, illustrating the ascending relaxin-3 system and the distribution of
RXFP3 in regions grouped by function. Amyg, amygdala; Arc, arcuate
nucleus; BST, bed nucleus of stria terminalis; Cb, cerebellum; CgC,
cingulate cortex; Cx, cerebral cortex; DBB, diagonal band of Broca; DG,

dentate gyrus; DMH, dorsomedial nucleus of hypothalamus; DR, dorsal
raphé nucleus; dSN, region dorsal to the substantia nigra; DTg, dorsal
tegmental nucleus; Hi, hippocampus; Hypo, hypothalamus; IC, inferior
colliculus; IGL, intergeniculate leaflet; IPN, interpeduncular nucleus; LH,
lateral hypothalamus; LPO, lateral preoptic area; MLF, medial longitudinal
fasciculus; MR, median raphé; NI, nucleus incertus; OB, olfactory bulb;
PAG, periaqueductal gray; PnR, pontine raphé; PVA, paraventricular thalamic
area; PVN, paraventricular hypothalamic nucleus; RSC, retrosplenial cortex;
S, septum; SC, super colliculus; SuM, supramammillary nucleus; Thal,
thalamus.

et al., 2013b). As monoamines (Nutt et al., 1999; Berridge et al.,
2012) and peptides (Nemeroff, 1992; Brundin et al., 2007; McGo-
nigle, 2011) are established or putative targets for the development
of antidepressant drugs (Willner et al., 2013), the status of relaxin-
3/RXFP3 as a similar and likely interconnected arousal system
suggests a similar therapeutic potential.

Abnormal sleep and the disruption of circadian rhythm are
common symptoms of the major neurodegenerative diseases
(Hastings and Goedert, 2013) and neurological disorders such as
depression (Berger et al., 2003), schizophrenia (Van Cauter et al.,
1991), and anxiety (Monti and Monti, 2000), and the success
of current pharmacological treatments for these diseases appears
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to be mediated in part through normalizing these symptoms
(McClung, 2007). In line with neuroanatomical features, a num-
ber of functional studies suggest that relaxin-3 signaling promotes
wakefulness. In rats, relaxin-3 mRNA displays a circadian pattern
of expression which peaks during the dark/active phase (Baner-
jee et al., 2005), and intracerebroventricular (icv) infusion of an
RXFP3 agonist during the light/inactive phase has been reported
to increase locomotor activity (Sutton et al., 2009). These data
were partly replicated in mice, in which chronic virally medi-
ated delivery of an RXFP3 agonist into the cerebroventricular
system slowed the decline in locomotor activity associated with
habituation to a novel environment (Smith et al., 2013a). Mixed
background (129S5:B6) relaxin-3 knockout (KO) mice were also
hypoactive compared to wildtype littermate controls when placed
in novel environments (Smith et al., 2009), and although this phe-
notype was not reproduced in C57BL/6J backcrossed colonies;
during the dark/active phase backcrossed relaxin-3 KO mice trav-
eled less distance on voluntary home-cage running wheels and
appeared to spend more time sleeping than wildtype controls
(Smith et al., 2012). These data are consistent with a possible
regulation of circadian activity by relaxin-3/RXFP3 signaling in
the IGL and network-induced changes in SCN activity (Blasiak
et al., 2013), a possibility that is currently being explored in
both wildtype and gene deletion mouse strains (Hosken et al.,
2013).

RELAXIN-3 NEURONS ARE INVOLVED IN THE RESPONSE TO STRESS
A current view of the stress response is the behavioral and phys-
iological changes generated in the face of, or in anticipation of,
a perceived threat. The stress response involves activation of the
sympathetic nervous system and recruitment of the hypothalamic-
pituitary-adrenal (HPA) axis. When an animal encounters a social,
physical or other stressor, these endogenous systems are stimulated
and generate a “fight-or-flight” response to manage the “stressful”
situation. Acutely, these changes are considered advantageous, but
when an organism is subjected to prolonged or chronic stres-
sors, the continuous irregularity in homeostasis is considered
detrimental and leads to metabolic and behavioral disturbances
(McEwen, 2007). Chronic stress is a well-known trigger for depres-
sion in humans, which often involves prolonged over-activation
of the HPA axis, resulting in increased circulating glucocorticoids
(Mazure, 1998; McEwen, 2007). Since its discovery in 1982 by the
late WylieVale and others (Bittencourt,2013), CRF has been shown
to play a key role in the stress response and in major depression
(Nemeroff, 1992; Arborelius et al., 1999; Paez-Pereda et al., 2011).
A major source of CRF expression is the parvocellular neurons of
the paraventricular hypothalamic nucleus (PVN) that project to
the portal circulatory system. In response to stress, CRF is released
which triggers the HPA axis by stimulating the release of adreno-
corticotropic hormone (ACTH) by the pituitary gland. ACTH
binds to receptors in the adrenal gland, which responds by secret-
ing cortisol (corticosterone in rodents). CRF is also expressed
within a number of other brain regions including the extended
amygdala and the raphé nuclei (Cummings et al., 1983; Morin
et al., 1999) and produces a range of extra-pituitary effects via
CRF1 and CRF2 receptors that are broadly expressed throughout
the brain (Chalmers et al., 1995; Van Pett et al., 2000).

Relaxin-3 neurons within the rat NI express high levels of CRF1

receptor (Bittencourt and Sawchenko, 2000; Tanaka et al., 2005;
Ma et al., 2013), and the majority of these neurons are activated
(i.e., display increased relaxin-3 mRNA, Fos immunoreactivity
and/or depolarization) following a restraint stress or icv injec-
tion of CRF (Tanaka et al., 2005; Lenglos et al., 2013; Ma et al.,
2013). Relaxin-3 expression in the NI was also increased fol-
lowing a repeated swim stress, and this effect was blocked via
pre-administration of the CRF1 antagonist, antalarmin (Baner-
jee et al., 2010). NI neurons are also activated by a range of other
stressors, including foot shock, treadmill running, and food depri-
vation (Ryan et al., 2011), although their impact on relaxin-3
expression has not been assessed. Similarly, the responsiveness
of the other relaxin-3 neuron populations has not yet been inves-
tigated. The stress-responsiveness of relaxin-3 neurons appears
highly conserved, as gene microarray analysis of three-spine stick-
leback fish revealed that exposure to a predator markedly increased
relaxin-3 expression in the brain compared to controls (Sanogo
et al., 2011).

Although the precise location and identity of the CRF neu-
rons that innervate relaxin-3 neurons is unknown, the NI receives
strong afferent inputs from the CRF-rich lateral and medial pre-
optic area (Lenglos et al., 2013; Ma et al., 2013), while the close
proximity of the NI to the fourth ventricle suggests that vol-
ume transfer is also possible (Bittencourt and Sawchenko, 2000).
Current data (Lenglos et al., 2013; Ma et al., 2013) and the plas-
ticity of CRF and CRF receptor expression (see Dabrowska et al.,
2013) suggest the level of CRF innervation and activation of the
NI/(relaxin-3) cells may be altered under different physiological
and pathological conditions, along with other aspects of their
overall phenotype.

In addition to responding to stress, relaxin-3/RXFP3 signal-
ing is able to modulate a variety of stress-related responses. In
a recent report, C57B/6J backcrossed relaxin-3 KO mice were
reported to display a “subtle decrease” in anxiety-like behavior
compared to WT controls (Watanabe et al., 2011b), although a
similar phenotype was not observed in a largely parallel study
(Smith et al., 2012). In a more relevant set of experiments which
highlight the anti-depressant potential of relaxin-3/RXFP3 sig-
naling, icv infusion of a specific RXFP3 agonist reduced anxiety-
and depressive-like behavior in rats (Ryan et al., 2013a). These
findings have been partly corroborated by an independent study,
which observed similar reductions in anxiety-like behavior fol-
lowing icv infusion of relaxin-3 in rats (Nakazawa et al., 2013).
These pharmacological effects might be mediated, at least in
part, by actions in the amygdala, which is largely responsi-
ble for conferring anxiety-related symptoms that are commonly
experienced during depression (Holmes et al., 2012). The cen-
tral and medial amygdala displays some of the highest densities
of RXFP3 expression within the rodent brain (Ma et al., 2007;
Smith et al., 2010), and injection of a specific RXFP3 agonist
into the central amygdala reduced the characteristic freezing
fear response displayed by rats when anticipating a foot shock
following conventional auditory fear conditioning (Ma et al.,
2010).

Relaxin family peptide 3 receptor expression is also highly
enriched within the PVN (Ma et al., 2007; Smith et al., 2010),
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and icv injection of relaxin-3 in rats increased CRF and c-fos
mRNA within the PVN and increased plasma ACTH, indicative
of HPA axis activation (Watanabe et al., 2011a). These findings
suggest that although the net sum of behavioral responses fol-
lowing “global” (or intra-amygdala) RXFP3 activation appears
to be anxiolytic/antidepressant in nature (Nakazawa et al., 2013;
Ryan et al., 2013a), RXFP3 signaling can in fact either promote
or attenuate different aspects of the stress response, depend-
ing on the brain region modulated. This feature is shared
with several other neuropeptides. For example, rodent studies
have demonstrated that orexin and galanin signaling can either
increase or decrease anxiety-like behavior, depending on the brain
region(s) targeted (Bing et al., 1993; Möller et al., 1999; Lung-
witz et al., 2012), while icv administration of NPS has been
shown to decrease anxiety while increasing HPA axis activity (Xu
et al., 2004; Smith et al., 2006). NPY (possibly from the arcu-
ate nucleus) can activate the HPA axis via NPY Y1 receptors
expressed on PVN CRF neurons (Albers et al., 1990; Dimitrov
et al., 2007); but icv administration of NPY and a specific Y1
agonist inhibits fear behavior during contextual fear conditioning
(Lach and de Lima, 2013).

High densities of relaxin-3-positive fibers and RXFP3
mRNA/binding sites are also present within several other brain
structures that contribute to the central stress response and
have been implicated in the etiology of anxiety and depression
(Ma et al., 2007; Smith et al., 2010), including the: (i) dorsal
raphé, which contains stress-responsive 5-HT neurons that are
critical for determining depression susceptibility and recovery
(Zhang et al., 2012; Challis et al., 2013); (ii) hippocampus, which
expresses high densities of glucocorticoid receptors and often dis-
plays reduced volume and neurogenesis and impaired function in
depressed patients (Manji et al., 2003; Videbech and Ravnkilde,
2004; Willner et al., 2013); (iii) periaqueductal gray, which is
involved in fear behavior and associated autonomic responses
(Vianna et al., 2001), and which contains relaxin-3 neurons posi-
tive for CRF1/2 immunoreactivity (Blasiak et al., 2013); (iv) bed
nucleus of the stria terminalis, which constitutes a stress inte-
gration center that contains CRF-expressing and other peptide
containing GABA/glutamate neurons, which strongly influence
the PVN and are reportedly dysfunctional in several psychiatric
disorders, including depression, anxiety-disorders, and addiction
(Dunn, 1987; Walker et al., 2009; Koob, 2010; Lebow et al., 2012;
Crestani et al., 2013; Zheng and Rinaman, 2013); (v) medial pre-
optic area, in which neurons also express high levels of CRF and
strongly project to and influence the PVN (Marson and Foley,
2004; Lenglos et al., 2013); (vi) lateral habenula, a key structure
mediating the response to emotionally negative states (Willner
et al., 2013), in which neuron activity was shown recently to be
regulated by levels of β-CaMK II expression and to be suffi-
cient to either induce or alleviate depressive-like symptoms in
rodents, depending on whether these neurons were activated or
inhibited, respectively (Li et al., 2013); (vii) anterior cingulate cor-
tex, which acts to stabilize emotional responses via inhibitory
projections to the amygdala that are often reduced in depressed
patients (Anand et al., 2005; Willner et al., 2013) and; (viii) medial
prefrontal cortex, which is dysfunctional in depressed patients
and strongly projects to the PVN and amygdala to suppress

behavioral responses to stress (Espejo and Minano, 1999). The
medial prefrontal cortex is of additional interest, as it forms a
main source of afferent input into the NI (Goto et al., 2001).
A recent study has also demonstrated that stimulation of CRF1

positive NI neurons that project to the medial prefrontal cortex
(either electrophysiologically or via administration of CRF) act
to inhibit this region, while electrical or CRF-mediated stimu-
lation of the whole NI impaired long term potentiation within
the hippocampo-prelimbic medial prefrontal cortical pathway
(Farooq et al., 2013).

RELAXIN-3 NEURONS MODULATE HIPPOCAMPAL ACTIVITY
A key feature of hippocampal function is a state of synchronous
neuronal firing at theta rhythm (4–10 Hz in humans), which
is required for the hippocampus to mediate its important roles
in memory formation and retrieval, spatial navigation, and
rapid eye movement (REM) sleep (Vertes and Kocsis, 1997).
Hippocampal function is disrupted by elevated circulating glu-
cocorticoids during chronic stress, which can contribute to the
cognitive deficits seen in depression (Murphy et al., 2001; Clark
et al., 2009). Furthermore, a common hallmark of depression
is stress-related increases in REM sleep (Kimura et al., 2010),
which is robustly reduced to normal levels following antide-
pressant treatment (Argyropoulos and Wilson, 2005), an effect
partly mediated by 5-HT signaling (Adrien, 2002). In light of
the critical role that hippocampal theta rhythm plays in nor-
mal neurological function and its propensity for disruption
in disease states, it is not surprising that almost all currently
available anxiolytic and pro-cognitive drugs alter hippocampal
theta rhythm (McNaughton and Gray, 2000). It has in fact
been suggested that this feature can be used as an “output” for
screening the potential effectiveness of new psychoactive drugs
(McNaughton et al., 2007).

The ability of ascending brainstem nuclei such as the reticularis
pontis oralis (RPO) and median raphé to modulate hippocampal
theta rhythm is well established. These functions are mediated
not only by projections to the hippocampus, but also via inner-
vation of several “nodes” of the septohippocampal system such
as the interpeduncular nucleus (IPN), supramammillary nucleus,
posterior hypothalamus, and medial septum (Vertes and Koc-
sis, 1997). In particular, the medial septum has been termed
the hippocampal theta rhythm “pace-maker” and contains pop-
ulations of cholinergic and GABAergic neurons which provide
alternating synchronous excitatory/inhibitory input to recipro-
cally connected hippocampal neurons (Vertes and Kocsis, 1997;
Wang, 2002; Hangya et al., 2009). The NI sits adjacent to, and
is strongly interconnected with, the RPO, median raphé and
IPN, and efferent relaxin-3-positive projections innervate the
hippocampus and the major nodes of the septohippocampal
pathway (Ma et al., 2007; Teruel-Marti et al., 2008; Smith et al.,
2010; Cervera-Ferri et al., 2012), including the medial septum
which displays a high density of relaxin-3 immunoreactive fibers
and terminals which make synaptic contacts with hippocampal-
projecting cholinergic and GABAergic neurons in the rat
(Olucha-Bordonau et al., 2012).

Functional studies have confirmed the regulation of hip-
pocampal theta rhythm by the NI. In anesthetized rats, electrical
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stimulation of the NI induced hippocampal theta rhythm, whereas
electrolytic lesion of the NI blocked the ability of the RPO to
generate hippocampal theta rhythm (Nunez et al., 2006; Teruel-
Marti et al., 2008). In conscious rats with electrolytic lesions of the
NI, theta-dependent behaviors are impaired such as the acqui-
sition of fear extinction in a contextual auditory conditioned
fear paradigm (Pereira et al., 2013). Simultaneous recording of
hippocampal and NI field potentials (Cervera-Ferri et al., 2011)
and electrophysiological recording of NI neurons (Ma et al.,
2013) have also revealed that these two structures are “theta-
synchronized” and individual neurons display coherent firing.
Although it is likely that these actions are primarily conferred
by GABA (or to a much lesser extent, glutamate) transmission of
these septohippocampal-projecting NI neurons (Ma et al., 2007;
Cervera-Ferri et al., 2012), relaxin-3/RXFP3 signaling nonetheless
appears capable of contributing to this functional effect. Our lab-
oratory has shown that local infusion of an RXFP3 agonist into the
medial septum of anesthetized rats promotes hippocampal theta
rhythm, while medial septum infusion of an RXFP3 antagonist in
conscious rats inhibits hippocampal theta and theta-dependent
spatial memory measured in a spontaneous alternation task
(Ma et al., 2009a).

RELEVANCE OF RELAXIN-3/RXFP3 SIGNALING TO SOCIAL
BEHAVIOR AND AUTISM?
In rodents, social behavior is highly dependent upon three aspects
of brain function: (i) arousal, which is required for motiva-
tion to engage in social contact, and mediates appropriate mood
responses (Crawley et al., 1981); (ii) stress responses, which reg-
ulate levels of social withdrawal/anxiety (File and Seth, 2003)
and; (iii) exploration and social recognition, which is associated
with hippocampal theta rhythm activity (Maaswinkel et al., 1997).
Notably, relaxin-3 has been demonstrated to modulate all of these
behavioral aspects.

Abnormal social behavior is associated with depression and is
a key symptom of ASD (Millan et al., 2012; Bishop-Fitzpatrick
et al., 2013). Human imaging studies indicate that autism is often
characterized by structural abnormalities in limbic structures such
as the hippocampus (Haznedar et al., 2000; Ohnishi et al., 2000),
which according to post-mortem studies consists of principal
neurons that are smaller in size and are more densely packed
(Bauman and Kemper, 2005). The amygdala is another major
limbic structure that has been the focus of many human (van
Elst et al., 2000) and animal (Amaral et al., 2003) studies of social
aggression, and in rodent models of autism, hyperexcitability and
enhanced long term potentiation in lateral amygdala neurons has
been reported (Lin et al., 2013). Reduced activity of the anterior
cingulate cortex has been observed in human autistic patients,
which is correlated with deficits in attention and executive con-
trol (Fan et al., 2012). The PVN is another major limbic structure
relevant to autism partly due to the presence of oxytocin neu-
rons, which are crucial for mother-infant bonding (Mogi et al.,
2010) and promote social interaction (Lukas et al., 2011). Autism
is associated with loss of PVN oxytocin neurons (McNamara et al.,
2008), and oxytocin is displaying considerable promise in clin-
ical treatment of this disorder (Yamasue et al., 2012). The PVN
also contains neurons that express vasopressin, which reciprocally

interact with oxytocin neurons and strongly influence social
behaviors such as aggression (Caldwell et al., 2008), suggesting
similar therapeutic potential (Ring, 2011; Lukas and Neumann,
2013).

Relaxin-3/RXFP3 systems are well placed to modulate social
behavior and other symptoms of ASD due to their presence
throughout the limbic hippocampus, amygdala, anterior cingu-
late cortex, and PVN. Particularly intriguing, however, is the
strong link between relaxin-3 and oxytocin. Oxytocin receptors are
expressed within the rat and mouse NI (Vaccari et al., 1998; Yoshida
et al., 2009), and microarray/peptidomics analysis revealed that
the most striking neurochemical change that occurred within the
rat hypothalamus following acute icv infusion of relaxin-3 and
resultant activation of RXFP3 (and RXFP1) was a large (>10-
fold) upregulation of oxytocin (Nakazawa et al., 2013). In contrast,
chronic hypothalamic RXFP3 signaling resulted in an opposite
effect, as viral-mediated hypothalamic delivery of an RXFP3 ago-
nist for 3 months reduced hypothalamic oxytocin mRNA by ∼50%
(Ganella et al., 2013a). Whether some or all oxytocin neurons
express RXFP3 or whether these effects are mediated in part or
in full by indirect actions, remains to be determined experimen-
tally. Similarly, vasopressin neurons may also be targeted by RXFP3
signaling (Ganella et al., 2013a).

Despite the potential for a role of relaxin-3/RXFP3 signaling
in aspects of social behavior, only a single functional study has
thus far been reported, which observed that compared to wildtype
littermate controls, female 129S5:B6 mixed background relaxin-3
KO mice engaged in fewer encounters with a novel mouse in a
social interaction test (Smith et al., 2009). Therefore, further stud-
ies including those that test the therapeutic potential of RXFP3
agonists in validated rodent models of major ASD symptoms are
required. These might also include assessment of aggressive behav-
ior, with the presence of RXFP3 in brain“defensive centers”such as
the amygdala, PAG, and ventromedial hypothalamus (see Future
Studies of Relaxin-3/RXFP3 System).

RELAXIN-3/RXFP3 CONTROL OF FEEDING AND RELEVANCE
FOR EATING DISORDERS?
It is generally accepted that obesity has rapidly reached epi-
demic proportions, but is also one of the leading preventable
causes of death worldwide. Notably, there is evidence that obe-
sity associated metabolic signals markedly increase the odds of
developing depression; and depressed mood not only impairs
motivation, quality of life and overall functioning, but also fur-
ther increases the risks of complications associated with obesity
(Hryhorczuk et al., 2013). Therefore, curbing the global growth
in obesity and associated health problems, and demands on pub-
lic healthcare, is a major challenge which offers huge economic
reward for agencies that develop effective treatments (Kopel-
man, 2000; Carter et al., 2012; Roux and Donaldson, 2012;
Adan, 2013). Conversely, a smaller but important niche exists
for the development of orexigenic agents to treat symptoms
of decreased appetite and/or cachexia associated with cancer
and its treatment, immune deficiency, and anorexia nervosa
(Sodersten et al., 2006).

RXFP3 is present in several hypothalamic feeding centers in
rat brain (Kishi and Elmquist, 2005) including the PVN (Liu
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et al., 2003), lateral hypothalamus, arcuate, and dorsomedial
nuclei (Sutton et al., 2004; Ma et al., 2007). These data prompted
a series of pharmacological studies which consistently demon-
strated that relaxin-3 and selective RXFP3 agonist peptides are
potently orexigenic in rats following acute delivery into the lat-
eral cerebral ventricle (Liu et al., 2005, 2009; McGowan et al.,
2005; Sutton et al., 2009; Shabanpoor et al., 2012; Hossain et al.,
2013) or various hypothalamic regions (McGowan et al., 2007).
Chronic delivery of RXFP3 agonists via repeated intra-PVN injec-
tion (McGowan et al., 2006), osmotic minipump (icv) infusion
(Hida et al., 2006; Sutton et al., 2009), or viral constructs injected
into the PVN (Ganella et al., 2013a) also reliably increase food
consumption and bodyweight, and result in metabolic changes
such as increased plasma levels of leptin, insulin, and adiponectin,
and decreased plasma levels of growth hormone and thyroid
stimulating hormone. Co-administration of RXFP3 antagonists
are able to prevent the increases in feeding induced by acute
RXFP3 agonist injections (Kuei et al., 2007; Haugaard-Jonsson
et al., 2008), but a significant reduction in feeding behavior pro-
duced by acute blockade of endogenous relaxin-3/RXFP3 signaling
in satiated and food restricted rats is yet to be reported; suggesting
a graded impact on this heavily regulated homeostatic behav-
ior. Furthermore, relaxin-3 KO mice (C57BL/6J background) do
not display any overt differences in feeding or bodyweight under
normal housing and dietary conditions (Watanabe et al., 2011b;
Smith et al., 2012), despite an earlier report that mixed (129S5:B6)
background relaxin-3 KO mice fed on a diet with higher than nor-
mal (moderate) fat content were largely resistant to the obesity
observed in WT controls (Sutton et al., 2009). Clearly this is an
important area for further research in normal and other suitable
transgenic mice. A recent study suggested that relaxin-3/RXFP3
signaling may be more important under specific physiological
conditions, as in stressed female rats with intermittent access to
palatable liquid food, relaxin-3 expression in the NI was increased
in food restricted versus ad libitum fed animals (Lenglos et al.,
2013).

Increased feeding is a common side effect of antipsychotic med-
ications (Theisen et al., 2003), and acute atypical (clozapine) and
typical (chlorpromazine and fluphenazine) antipsychotic treat-
ments increased the number of Fos-positive cells in the rat NI
(Rajkumar et al., 2013). On this basis, it was hypothesized that
increased NI activation may be partly responsible for the antipsy-
chotic drug induced increase in feeding behavior, which if correct,
would suggest that relaxin-3/RXFP3 signaling might also play a
role. Further evidence supporting this theory comes from a gene
association study, in which>400 schizophrenia patients undergo-
ing treatment with antipsychotic medications were assessed, many
of whom displayed co-morbid metabolic syndromes (Munro et al.,
2012). Interestingly, a polymorphism within the RXFP3 gene was
significantly associated with obesity, while one polymorphism in
the relaxin-3 gene and two in the RXFP3 gene were significantly
associated with hypercholesterolemia.

In another gene association study, members of a Puerto Rican
family with schizophrenia had a mutation within a chromosome
5p locus, which had earlier been identified in similar studies
of familial schizophrenia-like symptoms (Bespalova et al., 2005).
This locus contains the RXFP3 gene, and although sequencing

of the coding region and proximal promoter did not reveal func-
tionally significant variants, further upstream or downstream pro-
moter regions were not assessed. Antipsychotics block dopamine
D2 receptors and are the primary therapy for psychotic, positive
symptoms (hallucinations/delusions) of schizophrenia (Tandon,
2011; Castle et al., 2013). It is possible, however, that modula-
tion of endogenous relaxin-3/RXFP3 signaling might reduce the
severity of the negative affective symptoms and cognitive deficits
displayed in schizophrenic patients. These putative roles might
be mediated via actions within limbic structures to modulate
relevant neural circuits that regulate theta and other frequency
brain oscillations, to enhance attention, working, and episodic
memory (Ma et al., 2009a; Millan et al., 2012). However, exper-
imental evidence in support of this speculation is yet to be
gathered.

Overall, given the enormity of the obesity epidemic and asso-
ciated health problems and the lack of understanding of, and
effective pharmacological therapies for, eating disorders such as
anorexia nervosa, there is a strong justification for further studies
that involve chronic manipulation of RXFP3 signaling to assess
feeding, metabolism, and body weight.

FUTURE STUDIES OF THE RELAXIN-3/RXFP3 SYSTEM
Considerable experimental evidence obtained over the last decade
suggests that endogenous relaxin-3/RXFP3 signaling promotes
arousal and contributes to the central response to stress, and
the highly conserved nature of this peptide/receptor system sug-
gests it plays important biological roles. Current data suggest
that drugs which act to increase relaxin-3/RXFP3 signaling are
likely to have therapeutic/beneficial effects in a range of clinical
conditions. Like many other complex neuromodulatory (pep-
tide) systems, however, receptor modulation in different brain
regions may confer differential effects; and in a therapeutic context,
increased brain RXFP3 activation may produce both beneficial
and “undesirable” effects. With RXFP3 agonists, in some disorders
these may include increased HPA axis activity (Watanabe et al.,
2011a) and bodyweight gain (McGowan et al., 2005; Ganella et al.,
2012; Lenglos et al., 2013); while with RXFP3 antagonists these
may include decreased arousal and motivation. Therefore, char-
acterizing precise direct and indirect actions of relaxin-3/RXFP3
signaling within the major RXFP3-rich regions of the rodent brain
remains an important long term goal. Similarly, neurons in the
relaxin-3 rich NI express a large array of receptors for transmit-
ters, and monoamine and peptide modulators (Blasiak et al., 2010;
Ryan et al., 2011; Ma et al., 2013), and it will be important to care-
fully assess how these signals are integrated by the NI relaxin-3
system.

Studies which have centrally administered RXFP3 agonists
have mainly employed the icv route, and although it is often
assumed that peptides are able to access receptors throughout
the whole brain (Bittencourt and Sawchenko, 2000), recent stud-
ies in our laboratory using fluorophore-conjugated relaxin family
peptides suggest that periventricular regions such as the PVN
may be exposed to higher concentrations of peptide (Chan et al.,
2013). Although RXFP3 agonists or antagonists have been locally
infused into the bed nucleus of the stria terminalis (Ryan et al.,
2013b), central amygdala (Ma et al., 2010), medial septum (Ma
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et al., 2009a), and hypothalamic nuclei (McGowan et al., 2007)
of rodents, in connection with actions on reward, fear, spa-
tial memory, and feeding, respectively; many other RXFP3-rich
brain regions including those distal to the ventricular system
remain to be targeted, including the median raphé, superior
and inferior colliculus, intergeniculate leaflet, IPN, supramam-
millary nucleus, diagonal band of Broca, fields within the dorsal
and ventral hippocampus, and the retrosplenial and cingulate
cortices (see Figure 1). Intranasal delivery may be a viable alter-
nate route of peptide administration based on recent studies
with insulin, oxytocin/vasopressin and NPS (e.g., Ionescu et al.,
2012), but ultimately, characterization of the net effects of acti-
vating RXFP3 throughout the brain is required, using highly
stable peptides or small synthetic molecules that cross the blood–
brain barrier (Bathgate et al., 2013b) and can be administered
systemically.

In addition to characterizing the function of relaxin-3/RXFP3
at a regional level, it is crucial to characterize the populations
of neurons that express RXFP3 within each nucleus/region, and
whether they are stimulated or inhibited following RXFP3 activa-
tion. Such functional data will provide valuable insights into the
mechanisms of relaxin-3 action, but to date, this has only been par-
tially achieved in the intergeniculate leaflet (Blasiak et al., 2013).
Based on equivalent studies of similar systems such as the orexins,
such features may be complicated, despite the relative simplicity
of the one ligand/one receptor, relaxin-3/RXFP3 system.

In the context of arousal, an RXFP3-rich area of particular
interest is the lateral hypothalamus (Ma et al., 2007; Smith et al.,
2010). If it is assumed that RXFP3 activation inhibits receptor-
positive neurons, then it is possible that relaxin-3/RXFP3 may pro-
mote arousal by directly inhibiting neurons which express MCH,
which act to inhibit arousal (Saito and Nagasaki, 2008). Alterna-
tively, activation of RXFP3 expressed on GABAergic interneurons
which project to and inhibit orexin/dynorphin/(neurotensin) neu-
rons in the area (Alam et al., 2005; Burt et al., 2011; Furutani
et al., 2013), may indirectly disinhibit these neurons, increasing
the activity of these arousal-promoting networks. If, however,
RXFP3 signaling directly stimulates specific target neurons, these
scenarios could be reversed. Similar hypothetical circuits can be
conceived involving sleep active neurons that express galanin in
the ventrolateral preoptic area (Gaus et al., 2002), 5-HT and non
5-HT neurons in the dorsal and median raphé (Morin and Meyer-
Bernstein, 1999; Kirby et al., 2000; Kocsis et al., 2006), and a
host of other systems throughout the brain (Smith et al., 2013b).
Traditional immunohistochemical approaches to achieving this
goal have been hampered, however, as sufficiently sensitive and
specific antisera for RXFP3 are currently unavailable. An alter-
native approach has observed relaxin-3-positive fibers in the rat
medial septum terminating on neurons expressing choline acetyl-
transferase, parvalbumin, and glutamate decarboxylase (Olucha-
Bordonau et al., 2012); but this“indirect”method is labor intensive
and future studies would benefit from the development of an
RXFP3 antibody, or transgenic mice which express a reporter
gene under the control of the RXFP3 promoter (e.g., Chee et al.,
2013).

Acute icv infusion of an RXFP3 agonist decreased the time rats
spent immobile in the Porsolt forced swim test (Ryan et al., 2013a),

which is used to test for putative antidepressant drug action. How-
ever, more recently this measure of “depressive-like” behavior has
been described as having poor predictive, face, and construct valid-
ity (Nestler and Hyman, 2010), particularly as such changes in
behavior are evident in rodents following acute administration
of SSRIs, while these drugs require chronic administration over
weeks in humans before therapeutic effects are observed. It is also
possible that the Porsolt paradigm, which was developed to test
drugs that target monoamine systems, may not be optimal for
assessing drugs that target neuropeptide receptors. Therefore, it
will be important to test the antidepressant potential of acute and
chronic delivery of RXFP3 agonists against behavioral measures
such as anhedonia and aberrant reward-associated perception, and
memory in additional validated rodent models of depression, such
as the chronic unpredictable mild stress, chronic social defeat,
and chronic methamphetamine withdrawal models (Nestler and
Hyman, 2010; Russo and Nestler, 2013) and/or assess effects on
brain activity patterns (McNaughton and Gray, 2000).

Similarly, it will be of interest to assess whether RXFP3 agonists
(or antagonists) can improve social behavior in one or more of the
rodent models of ASD, such as the commonly used BTBR (Silver-
man et al., 2010) and transgenic mouse strains (Peca et al., 2011).
Determining whether RXFP3 antagonists are protective against
the obesity and metabolic syndromes induced by high fat diets in
rodents is also a logical and important goal (Panchal and Brown,
2011; Ganella et al., 2012).

These studies would benefit greatly from the development
of small molecule RXFP3 agonists and antagonists with a sta-
ble in vivo half-life that can cross the blood–brain barrier, and
hence could be administered peripherally. Such compounds would
penetrate the brain more evenly and in a manner more closely
resembling the method that would eventually be adopted in
humans, rather than preferentially accessing regions near the ven-
tricular system, which occurs following icv infusions. Peripheral
delivery methods also circumvent the need for surgical implan-
tation of indwelling guide cannulae in experimental studies. The
development of such compounds has not been reported, however,
despite initial efforts by some groups (e.g., Alvarez-Jaimes et al.,
2012).

In the meantime, further experimental studies are likely to ben-
efit from recently developed and novel methods to manipulate the
relaxin-3/RXFP3 system. For example, the RXFP3 agonist “R3/I5”
has been successfully delivered chronically into the PVN of rats
using an adeno-associated viral construct (Ganella et al., 2013a),
which improves upon previous studies which relied on repeated
injections (McGowan et al., 2006) or osmotic minipump infu-
sions of exogenous peptide (Hida et al., 2006; Sutton et al., 2009),
which are stressful and invasive techniques that can potentially
alter behavior. The development and study of conditional rxfp3
KO mice in which RXFP3 protein could be deleted either glob-
ally or within specific brain regions in adult mice would not only
help characterize the regional role of endogenous relaxin-3/RXFP3
signaling, but should also prevent the “masking” of phenotypes
which may occur due to developmental compensation in life-long
relaxin-3 KO mice (Smith et al., 2012).

The clustered/restricted distribution of relaxin-3 neurons
within the NI readily enables targeting of these neurons with
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injected viral constructs (Callander et al., 2012), which could be
used to drive the expression of virally encoded genes of inter-
est under the control of the relaxin-3 promoter (Tanaka et al.,
2009). Cell type-specific expression of light-gated ion chan-
nels has become a powerful resource for the anatomical and
functional deconstruction of neuronal networks and allows the
structural dynamics and electrical activity of genetically defined
neurons to be manipulated and analyzed on the millisecond
timescale (Zhang et al., 2010; Yizhar et al., 2011a; Kalmbach et al.,
2012). The overall function of relaxin-3 NI neurons could be
similarly assessed via targeted expression of channelrhodopsins
and related functional measures. Similarly, the expression in NI
GABA/relaxin-3 expressing neurons of excitatory and inhibitory
“Designer Receptors Exclusively Activated by Designer Drugs”
(DREADDs; Nawaratne et al., 2008; Sasaki et al., 2011; Farrella
and Roth, 2013; Wess et al., 2013) will allow the effects of acute
and chronic activation/inhibition of these neurons on brain cir-
cuit activity and behavior to be conveniently studied in freely
moving animals. These studies will be important in delineating
whether in the NI, it is relaxin-3 or GABA signaling or GABA
signaling specifically associated with the relaxin-3-expressing neu-
rons that is primarily linked to effects on brain network activity
and changes in behavior (see e.g., GABA/AgRP neurons in
the arcuate nucleus in control of feeding (Atasoy et al., 2012;
Liu et al., 2013).

For effective drug development in the future, the definition and
characterization of depression and antidepressant drug treatment
effects, currently based heavily on symptomatic criteria, needs to
be improved, so that greater emphasis is placed on the underly-
ing dysfunction at the circuit, neuron, and transmitter level (see
Millan et al., 2012; Willner et al., 2013). In this regard, charac-
terizing the potential involvement of novel transmitter systems
such as relaxin-3 in the etiology of depression will be of interest.
Although relaxin-3 and RXFP3 are genetically highly conserved
between rodents and humans, more experiments are needed to
demonstrate conserved functions of these signaling networks. The
anatomical distribution of relaxin-3 and RXFP3 in non-human
primate brain is very similar to that observed in rat and mouse
(Ma et al., 2009b,c); and so “select” studies in non-human pri-
mates should be informative (Willard and Shively, 2012). Further
studies of any potential involvement of relaxin-3 in the etiology
of neurological or psychiatric diseases are also warranted (c.f. Lin
and Sibille, 2013). For example, in addition to comprehensive
searches for polymorphisms in the relaxin-3 or RXFP3 genes that
might result in altered neurotransmission and affective behav-
ior; once suitably validated assays for human relaxin-3 peptide
and/or RXFP3 protein levels are available, studies to determine
whether these are altered in patients who suffer from depression
and other mental disorders could be completed, as potential mark-
ers for dysregulation of relaxin-3/RXFP3 related signaling. Any
such findings would, based on prior experience with other peptide-
receptor systems such as NPS and PACAP (Pape et al., 2010; Ressler
et al., 2011), provide a significant stimulus to this relatively new
area of research.

Finally, there are clear signs in the academic literature and
emerging from government agencies and Pharma that the field
of psychiatric disease research is entering a new era in relation

to better understanding and improved drug and environmental-
based treatments. This involves an emphasis on analyzing the
neural circuitry that causes these brain diseases, rather than a
reliance on more “isolated” conventional neurotransmitter and
receptor based studies or isolated gene-based studies (Millan et al.,
2012; Abbott, 2013; Insel et al., 2013a,b). Thus, newly iden-
tified signaling systems like relaxin-3/RXFP3 will need to be
studied in the context of regulatory impacts on key neural cir-
cuits under physiological and pathological conditions in human
(patient-relevant) and industry-validated experimental models,
and demonstrate genuine efficacy to restore the required balance
of excitatory/inhibitory transmission in one or more diseases.

However, given the relative paucity of new therapeutic drug
discoveries in the field over the last several decades using “older
style” techniques, this recent realization and redirection in psy-
chiatric disease research in some way removes any disadvantage a
“new, little investigated” system such as this might have over other
more exhaustively explored systems. Certainly, based on what is
known regarding the anatomical distribution of relaxin-3/RXFP3
networks and the prominent effects they can demonstrate on
fundamental processes (such as coherent neural firing in the “sep-
tohippocampal system” and associated limbic circuits (Farooq
et al., 2013; Ma et al., 2013) and effects on circadian activity related
circuits (Smith et al., 2012; Blasiak et al., 2013), there is reason for
optimism regarding its ability to be relevant therapeutically and to
attract the attention of major Pharma.

CONCLUSION
The study of neuropeptide-receptor systems is a key area of neu-
ropsychopharmacology research and has revealed the involvement
of several peptide systems in mental illnesses, in addition to iden-
tifying novel targets for their treatment. Relaxin-3 is a highly
conserved neuropeptide in mammalian brain. Relaxin-3 neu-
rons located in the midbrain and pons, innervate a broad range
of RXFP3-rich circuits (hypothalamic, septohippocampal, and
limbic) to modify stress, arousal, and other modalities that are
often dysfunctional in neuropsychiatric diseases. Therefore, fur-
ther elucidating the full array of relaxin-3/RXFP3 network effects
under normal and pathological conditions represents an impor-
tant and promising research goal, which may eventually help
meet the challenges and opportunities for improving the symp-
tomatic treatment of sufferers of conditions such as anxiety and
major depression, and the social and cognitive deficits in neu-
rodevelopmental, and degenerative disorders, by restoring the
required balance of excitatory/inhibitory transmission within the
appropriate neural circuits.

ACKNOWLEDGMENTS
The research in the authors’ laboratory reviewed here was sup-
ported by grants from the National Health and Medical Research
Council (NHMRC) of Australia (509246, 1005988, and 1024885)
and the Pratt and Besen Foundations, and by the Victorian Gov-
ernment Strategic Investment. Andrew L. Gundlach is an NHMRC
(Australia) Senior Research Fellow and a Brain & Behavior
Research Foundation (USA) NARSAD Independent Investigator.
The authors acknowledge the contribution of their current and
former colleagues to the relaxin-3 related research reviewed.

Frontiers in Pharmacology | Neuropharmacology March 2014 | Volume 5 | Article 46 | 136

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

REFERENCES
Abbott, A. (2013). Novartis reboots brain division. Nature 502, 153–154. doi:

10.1038/502153a
Adan, R. A. H. (2013). Mechanisms underlying current and future anti-obesity

drugs. Trends Neurosci. 36, 133–140. doi: 10.1016/j.tins.2012.12.001
Adrien, J. (2002). Neurobiological basis for the relation between sleep and

depression. Sleep Med. Rev. 6, 341–351.
Alam, M. N., Kumar, S., Bashir, T., Suntsova, N., Methippara, M. M., Szymusiak,

R., et al. (2005). GABA-mediated control of hypocretin- but not melanin-
concentrating hormone-immunoreactive neurones during sleep in rats. J. Physiol.
(Lond.) 563, 569–582. doi: 10.1113/jphysiol.2004.076927

Albers, H. E., Ottenweller, J. E., Liou, S. Y., Lumpkin, M. D., and Anderson, E.
R. (1990). Neuropeptide Y in the hypothalamus: effect on corticosterone and
single-unit activity. Am. J. Physiol. 258, R376–R382.

Alvarez-Jaimes, L., Sutton, S. W., Nepomuceno, D., Motley, S. T., Cik, M.,
Stocking, E., et al. (2012). In vitro pharmacological characterization of RXFP3
allosterism: an example of probe dependency. PLoS ONE 7:e30792. doi:
10.1371/journal.pone.0030792

Amaral, D. G., Bauman, M. D., Capitanio, J. P., Lavenex, P., Mason, W. A., Mauldin-
Jourdain, M. L., et al. (2003). The amygdala: is it an essential component of
the neural network for social cognition? Neuropsychologia 41, 517–522. doi:
10.1016/S0028-3932(02)00310-X

Anand, A., Li, Y., Wang, Y., Wu, J., Gao, S., Bukhari, L., et al. (2005).
Activity and connectivity of brain mood regulating circuit in depression: a
functional magnetic resonance study. Biol. Psychiatry 57, 1079–1088. doi:
10.1016/j.biopsych.2005.02.021

Antonijevic, I. A., Murck, H., Bohlhalter, S., Frieboes, R. M., Holsboer, F., and
Steiger, A. (2000). Neuropeptide Y promotes sleep and inhibits ACTH and cortisol
release in young men. Neuropharmacology 39, 1474–1481. doi: 10.1016/S0028-
3908(00)00057-5

Arborelius, L., Owens, M. J., Plotsky, P. M., and Nemeroff, C. B. (1999). The role of
corticotropin-releasing factor in depression and anxiety disorders. J. Endocrinol.
160, 1–12. doi: 10.1677/joe.0.1600001

Argyropoulos, S. V., and Wilson, S. J. (2005). Sleep disturbances in depres-
sion and the effects of antidepressants. Int. Rev. Psychiatry 17, 237–245. doi:
10.1080/09540260500104458

Atasoy, D., Betley, J. N., Su, H. H., and Sternson, S. M. (2012). Deconstruc-
tion of a neural circuit for hunger. Nature 488, 172–177. doi: 10.1038/nature
11270

Bailey, J. E., Papadopoulos, A., Diaper, A., Phillips, S., Schmidt, M., van
der Ark, P., et al. (2011). Preliminary evidence of anxiolytic effects of the
CRF1 receptor antagonist R317573 in the 7.5% CO2 proof-of-concept exper-
imental model of human anxiety. J. Psychopharmacol. 25, 1199–1206. doi:
10.1177/0269881111400650

Banerjee, A., Ma, S., Ortinau, S., Smith, C. M., Layfield, S., Burazin, T. C. D.,
et al. (2005). Relaxin-3 neurons in the nucleus incertus – projection patterns,
response to swim stress and relaxin-3 neuronal signalling. Soc. Neurosci. Abstr. 35,
59.57.

Banerjee, A., Shen, P.-J., Ma, S., Bathgate, R. A. D., and Gundlach, A. L.
(2010). Swim stress excitation of nucleus incertus and rapid induction of
relaxin-3 expression via CRF1 activation. Neuropharmacology 58, 145–155. doi:
10.1016/j.neuropharm.2009.06.019

Bathgate, R. A. D., Halls, M. L., van der Westhuizen, E. T., Callander, G. E., Kocan,
M., and Summers, R. J. (2013a). Relaxin family peptides and their receptors.
Physiol. Rev. 93, 405–480. doi: 10.1152/physrev.00001.2012

Bathgate, R. A. D., Oh, M. H., Ling, W. J., Kaas, Q., Hossain, M. A., Gooley, P. R.,
et al. (2013b). Elucidation of relaxin-3 binding interactions in the extracellular
loops of RXFP3. Front. Endocrinol. (Lausanne) 4:13. doi: 10.3389/fendo.2013.
00013

Bathgate, R. A. D., Ivell, R., Sanborn, B. M., Sherwood, O. D., and Summers, R.
J. (2006). International Union of Pharmacology LVII: recommendations for the
nomenclature of receptors for relaxin family peptides. Pharmacol. Rev. 58, 7–31.
doi: 10.1124/pr.58.1.9

Bathgate, R. A. D., Samuel, C. S., Burazin, T. C. D., Layfield, S., Claasz,
A. A., Reytomas, I. G., et al. (2002). Human relaxin gene 3 (H3) and
the equivalent mouse relaxin (M3) gene. Novel members of the relaxin
peptide family. J. Biol. Chem. 277, 1148–1157. doi: 10.1074/jbc.M1078
82200

Bauman, M. L., and Kemper, T. L. (2005). Neuroanatomic observations of the brain
in autism: a review and future directions. Int. J. Dev. Neurosci. 23, 183–187. doi:
10.1016/j.ijdevneu.2004.09.006

Berger, M., Van Calker, D., and Riemann, D. (2003). Sleep and manipulations of
the sleep-wake rhythm in depression. Acta Psychiatr. Scand. 108, 83–91. doi:
10.1034/j.1600-0447.108.s418.17.x

Berridge, C. W., Schmeichel, B. E., and España, R. A. (2012). Noradrener-
gic modulation of wakefulness/arousal. Sleep Med. Rev. 16, 187–197. doi:
10.1016/j.smrv.2011.12.003

Bespalova, I. N., Angelo, G. W., Durner, M., Smith, C. J., Siever, L. J., Buxbaum,
J. D., et al. (2005). Fine mapping of the 5p13 locus linked to schizophrenia and
schizotypal personality disorder in a Puerto Rican family. Psychiatry Genet. 15,
205–210. doi: 10.1097/00041444-200509000-00012

Bing, O., Möller, C., Engel, J. A., Soderpalm, B., and Heilig, M. (1993). Anxiolytic-
like action of centrally administered galanin. Neurosci. Lett. 164, 17–20. doi:
10.1016/0304-3940(93)90846-D

Binneman, B., Feltner, D., Kolluri, S., Shi, Y., Qiu, R., and Stiger, T. (2008). A
6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH1
antagonist) in the treatment of major depression. Am. J. Psychiatry 165, 617–620.
doi: 10.1176/appi.ajp.2008.07071199

Bishop-Fitzpatrick, L., Minshew, N. J., and Eack, S. M. (2013). A systematic review
of psychosocial interventions for adults with autism spectrum disorders. J. Autism
Dev. Disord. 43, 687–694. doi: 10.1007/s10803-012-1615-8

Bittencourt, J. C. (2011). Anatomical organization of the melanin-concentrating
hormone peptide family in the mammalian brain. Gen. Comp. Endocrinol. 172,
185–197. doi: 10.1016/j.ygcen.2011.03.028

Bittencourt, J. C. (2013). The tale of a person and a peptide: Wylie W. Vale Jr. and the
role of corticotropin-releasing factor in the stress response. J. Chem. Neuroanat.
54, 1–4. doi: 10.1016/j.jchemneu.2013.04.005

Bittencourt, J. C., and Sawchenko, P. E. (2000). Do centrally administered neuropep-
tides access cognate receptors?: an analysis in the central corticotropin-releasing
factor system. J. Neurosci. 20, 1142–1156.

Blasiak, A., Blasiak, T., Lewandowski, M. H., Hossain, M. A., Wade, J. D., and
Gundlach, A. L. (2013). Relaxin-3 innervation of the intergeniculate leaflet of the
rat thalamus – neuronal tract-tracing and in vitro electrophysiological studies.
Eur. J. Neurosci. 37, 1284–1294. doi: 10.1111/ejn.12155

Blasiak, A., Gundlach, A. L., and Lewandowski, M. H. (2010). Orexins increase
nucleus incertus neuronal activity: implications for a possible reinforcing arousal
drive. FENS Abstr. 5, 104.2.

Boels, K., Hermans-Borgmeyer, I., and Schaller, H. C. (2004). Identification of a
mouse orthologue of the G-protein-coupled receptor SALPR and its expression
in adult mouse brain and during development. Dev. Brain Res. 152, 265–268. doi:
10.1016/j.devbrainres.2004.06.002

Brundin, L., Bjorkqvist, M., Petersen, A., and Traskman-Bendz, L. (2007).
Reduced orexin levels in the cerebrospinal fluid of suicidal patients with
major depressive disorder. Eur. Neuropsychopharmacol. 17, 573–579. doi:
10.1016/j.euroneuro.2007.01.005

Burazin, T. C. D., Bathgate, R. A. D., Macris, M., Layfield, S., Gundlach, A. L.,
and Tregear, G. W. (2002). Restricted, but abundant, expression of the novel rat
gene-3 (R3) relaxin in the dorsal tegmental region of brain. J. Neurochem. 82,
1553–1557. doi: 10.1046/j.1471-4159.2002.01114.x

Burgess, C. R., and Scammell, T. E. (2012). Narcolepsy: neural mechanisms of sleepi-
ness and cataplexy. J. Neurosci. 32, 12305–12311. doi: 10.1523/JNEUROSCI.2630-
12.2012

Burt, J., Alberto, C. O., Parsons, M. P., and Hirasawa, M. (2011). Local
network regulation of orexin neurons in the lateral hypothalamus. Am. J. Phys-
iol. Regul. Integr. Comp. Physiol. 301, R572–R580. doi: 10.1152/ajpregu.006
74.2010

Caldwell, H. K., Lee, H. J., Macbeth, A. H., and Young, W. S. III. (2008). Vasopressin:
behavioral roles of an "original" neuropeptide. Prog. Neurobiol. 84, 1–24. doi:
10.1016/j.pneurobio.2007.10.007

Callander, G. E., Ma, S., Ganella, D. E., Wimmer, V. C., Gundlach, A. L., Thomas, W.
G., et al. (2012). Silencing relaxin-3 in nucleus incertus of adult rodents: a viral
vector-based approach to investigate neuropeptide function. PLoS ONE 7:e42300.
doi: 10.1371/journal.pone.0042300

Carter, R., Mouralidarane, A., Ray, S., Soeda, J., and Oben, J. (2012). Recent
advancements in drug treatment of obesity. Clin. Med. 12, 456–460. doi:
10.7861/clinmedicine.12-5-456

www.frontiersin.org March 2014 | Volume 5 | Article 46 | 137

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

Castle, D., Keks, N., Newton, R., Schweitzer, I., Copolov, D., Paoletti, N., et al. (2013).
Pharmacological approaches to the management of schizophrenia: 10 years on.
Australas Psychiatry 21, 329–334. doi: 10.1177/1039856213486211

Cervera-Ferri, A., Guerrero-Martinez, J., Bataller-Mompean, M., Taberner-Cortes,
A., Martinez-Ricos, J., Ruiz-Torner, A., et al. (2011). Theta synchronization
between the hippocampus and the nucleus incertus in urethane-anesthetized
rats. Exp. Brain Res. 211, 177–192. doi: 10.1007/s00221-011-2666-3

Cervera-Ferri, A., Rahmani, Y., Martinez-Bellver, S., Teruel-Marti, V., and
Martinez-Ricos, J. (2012). Glutamatergic projection from the nucleus incer-
tus to the septohippocampal system. Neurosci. Lett. 517, 71–76. doi:
10.1016/j.neulet.2012.04.014

Challis, C., Boulden, J., Veerakumar, A., Espallergues, J., Vassoler, F. M., Pierce, R.
C., et al. (2013). Raphe GABAergic neurons mediate the acquisition of avoidance
after social defeat. J. Neurosci. 33, 13978–13988. doi: 10.1523/JNEUROSCI.2383-
13.2013

Chalmers, D. T., Lovenberg, T. W., and De Souza, E. B. (1995). Localization of
novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific
subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression.
J. Neurosci. 15, 6340–6350.

Chan, L. J., Smith, C. M., Chua, B. E., Lin, F., Bathgate, R. A. D., Separovic, F.,
et al. (2013). Synthesis of fluorescent analogues of relaxin family peptides and
their preliminary in vitro and in vivo characterization. Front. Chem. 1:30. doi:
10.3389/fchem.2013.00030

Chee, M. J. S., Pissios, P., and Maratos-Flier, E. (2013). Neurochemical characteri-
zation of neurons expressing melanin-concentrating hormone receptor 1 in the
mouse hypothalamus. J. Comp. Neurol. 521, 2208–2234. doi: 10.1002/cne.23273

Clark, L., Chamberlain, S. R., and Sahakian, B. J. (2009). Neurocognitive mecha-
nisms in depression: implications for treatment. Ann. Rev. Neurosci. 32, 57–74.
doi: 10.1146/annurev.neuro.31.060407.125618

Crawley, J. N., Hays, S. E., O’Donohue, T. L., Paul, S. M., and Goodwin, F. K. (1981).
Neuropeptide modulation of social and exploratory behaviors in laboratory
rodents. Peptides 2(Suppl. 1), 123–129. doi: 10.1016/0196-9781(81)90066-8

Crestani, C. C., Alves, F. H. F., Gomes, F. V., Resstel, L. B. M., Correa, F. M. A.,
and Herman, J. P. (2013). Mechanisms in the bed nucleus of the stria terminalis
involved in control of autonomic and neuroendocrine functions: a review. Curr.
Neuropharmacol. 11, 141–159. doi: 10.2174/1570159X11311020002

Cummings, S., Elde, R., Ells, J., and Lindall, A. (1983). Corticotropin-releasing
factor immunoreactivity is widely distributed within the central nervous system
of the rat: an immunohistochemical study. J. Neurosci. 3, 1355–1368.

Dabrowska, J., Hazra, R., Guo, J.-D., Witt, S. D., and Rainnie, D. G. (2013). Central
CRF neurons are not created equal: phenotypic differences in CRF-containing
neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria
terminalis. Front. Neurosci. 7:156. doi: 10.3389/fnins.2013.00156

de Wit, R., Herrstedt, J., Rapoport, B., Carides, A. D., Guoguang-Ma, J., Elmer,
M., et al. (2004). The oral NK(1) antagonist, aprepitant, given with stan-
dard antiemetics provides protection against nausea and vomiting over multiple
cycles of cisplatin-based chemotherapy: a combined analysis of two randomised,
placebo-controlled phase III clinical trials. Eur. J. Cancer 40, 403–410. doi:
10.1016/S0959-8049(03)00931-6

Dimitrov, E. L., DeJoseph, M. R., Brownfield, M. S., and Urban, J. H. (2007).
Involvement of neuropeptide Y Y1 receptors in the regulation of neuroen-
docrine corticotropin-releasing hormone neuronal activity. Endocrinology 148,
3666–3673. doi: 10.1210/en.2006-1730

Domschke, K., Reif, A., Weber, H., Richter, J., Hohoff, C., Ohrmann, P., et al. (2011).
Neuropeptide S receptor gene – converging evidence for a role in panic disorder.
Mol. Psychiatry 16, 938–948. doi: 10.1038/mp.2010.81

Dore, R., Iemolo, A., Smith, K. L., Wang, X., Cottone, P., and Sabino, V. (2013).
CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of
PACAP. Neuropsychopharmacology 38, 2160–2169. doi: 10.1038/npp.2013.113

Dunn, J. D. (1987). Plasma corticosterone responses to electrical stimulation of the
bed nucleus of the stria terminalis. Brain Res. 407, 327–331. doi: 10.1016/0006-
8993(87)91111-5

Espejo, E. F., and Minano, F. J. (1999). Prefrontocortical dopamine depletion induces
antidepressant-like effects in rats and alters the profile of desipramine during
Porsolt’s test. Neuroscience 88, 609–615. doi: 10.1016/S0306-4522(98)00258-9

Fan, J., Bernardi, S., Dam, N. T., Anagnostou, E., Gu, X., Martin, L., et al. (2012).
Functional deficits of the attentional networks in autism. Brain Behav. 2, 647–660.
doi: 10.1002/brb3.90

Farooq, U., Rajkumar, R., Sukumaran, S., Wu, Y., Tan, W. H., and Dawe, G. S. (2013).
Corticotropin-releasing factor infusion into nucleus incertus suppresses medial
prefrontal cortical activity and hippocampo-medial prefrontal cortical long-term
potentiation. Eur. J. Neurosci. 38, 2516–2525. doi: 10.1111/ejn.12242

Farrella, M. S., and Roth, B. L. (2013). Pharmacosynthetics: reimagining the phar-
macogenetic approach. Brain Res. 1511, 6–20. doi: 10.1016/j.brainres.2012.09.043

File, S. E., and Seth, P. (2003). A review of 25 years of the social interaction test. Eur.
J. Pharmacol. 463, 35–53. doi: 10.1016/S0014-2999(03)01273-1

Furutani, N., Hondo, M., Kageyama, H., Tsujino, N., Mieda, M., Yanagisawa, M.,
et al. (2013). Neurotensin co-expressed in orexin-producing neurons in the lateral
hypothalamus plays an important role in regulation of sleep/wakefulness states.
PLoS ONE 8:e62391. doi: 10.1371/journal.pone.0062391

Ganella, D. E., Callander, G. E., Ma, S., Bye, C. R., Gundlach, A. L., and Bath-
gate, R. A. D. (2013a). Modulation of feeding by chronic rAAV expression of
a relaxin-3 peptide agonist in rat hypothalamus. Gene Ther. 20, 703–716. doi:
10.1038/gt.2012.83

Ganella, D. E., Ma, S., and Gundlach, A. L. (2013b). Relaxin-3/RXFP3 signaling
and neuroendocrine function – a perspective on extrinsic hypothalamic control.
Front. Endocrinol. (Lausanne) 4:128. doi: 10.3389/fendo.2013.00128

Ganella, D. E., Ryan, P. J., Bathgate, R. A. D., and Gundlach, A. L. (2012). Increased
feeding and body weight gain after acute/chronic hypothalamic activation of
RXFP3 by relaxin-3 and receptor-selective synthetic and rAAV-driven agonist
peptides: functional and therapeutic implications. Behav. Pharmacol. 23, 516–
525. doi: 10.1097/FBP.0b013e3283576999

Gaus, S. E., Strecker, R. E., Tate, B. A., Parker, R. A., and Saper, C. B. (2002).
Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in
multiple mammalian species. Neuroscience 115, 285–294. doi: 10.1016/S0306-
4522(02)00308-1

Goto, M., Swanson, L. W., and Canteras, N. S. (2001). Connections of the nucleus
incertus. J. Comp. Neurol. 438, 86–122. doi: 10.1002/cne.1303

Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F., and Varga, V. (2009). GABAergic
neurons of the medial septum lead the hippocampal network during theta activity.
J. Neurosci. 29, 8094–8102. doi: 10.1523/JNEUROSCI.5665-08.2009

Harrington, M. E. (1997). The ventral lateral geniculate nucleus and the intergenic-
ulate leaflet: interrelated structures in the visual and circadian systems. Neurosci.
Biobehav. Rev. 21, 705–727. doi: 10.1016/S0149-7634(96)00019-X

Hastings, M. H., and Goedert, M. (2013). Circadian clocks and neurodegen-
erative diseases: time to aggregate? Curr. Opin. Neurobiol. 23, 1–8. doi:
10.1016/j.conb.2013.05.004

Haugaard-Jonsson, L. M., Hossain, M. A., Daly, N. L., Bathgate, R. A. D., Wade, J.
D., Craik, D. J., et al. (2008). Structure of the R3/I5 chimeric relaxin peptide, a
selective GPCR135 and GPCR142 agonist. J. Biol. Chem. 283, 23811–23818. doi:
10.1074/jbc.M800489200

Haznedar, M. M., Buchsbaum, M. S., Wei, T. C., Hof, P. R., Cartwright,
C., Bienstock, C. A., et al. (2000). Limbic circuitry in patients with autism
spectrum disorders studied with positron emission tomography and magnetic
resonance imaging. Am. J. Psychiatry 157, 1994–2001. doi: 10.1176/appi.ajp.157.
12.1994

Held, K., Antonijevic, I., Murck, H., Kuenzel, H., and Steiger, A. (2006). Neuropep-
tide Y (NPY) shortens sleep latency but does not suppress ACTH and cortisol in
depressed patients and normal controls. Psychoneuroendocrinology 31, 100–107.
doi: 10.1016/j.psyneuen.2005.05.015

Hida, T., Takahashi, E., Shikata, K., Hirohashi, T., Sawai, T., Seiki, T., et al.
(2006). Chronic intracerebroventricular administration of relaxin-3 increases
body weight in rats. J. Recept. Signal Transduct. Res. 26, 147–158. doi:
10.1080/10799890600623373

Hisaw, F. L. (1926). Experimental relaxation of the pubic ligament of the guinea pig.
Proc. Soc. Exp. Biol. Med. 23, 661–663. doi: 10.3181/00379727-23-3107

Hökfelt, T., Bartfai, T., and Bloom, F. (2003). Neuropeptides: opportunities
for drug discovery. Lancet Neurol. 2, 463–472. doi: 10.1016/S1474-4422(03)
00482-4

Hökfelt, T., Broberger, C., Xu, Z.-Q. D., Sergeyev, V., Ubink, R., and Diez, M.
(2000). Neuropeptides–an overview. Neuropharmacology 39, 1337–1356. doi:
10.1016/S0028-3908(00)00010-1

Holmes, A., Heilig, M., Rupniak, N. M., Steckler, T., and Griebel, G. (2003).
Neuropeptide systems as novel therapeutic targets for depression and anxi-
ety disorders. Trends Pharmacol. Sci. 24, 580–588. doi: 10.1016/j.tips.2003.
09.011

Frontiers in Pharmacology | Neuropharmacology March 2014 | Volume 5 | Article 46 | 138

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J.
W., et al. (2012). Individual differences in amygdala-medial prefrontal anatomy
link negative affect, impaired social functioning, and polygenic depression risk. J.
Neurosci. 32, 18087–18100. doi: 10.1523/JNEUROSCI.2531-12.2012

Hosken, I. T., Smith, C. M., Chua, B. E., and Gundlach, A. L. (2013). “Consequences
of relaxin-3 null mutation in mice on food-entrainable arousal,” in Proceedings of
Sixth International Conference on Relaxin and Related Peptides, Florence.

Hossain, M. A., Smith, C. M., Ryan, P. J., Buchler, E., Bathgate, R. A. D., Gundlach, A.
L., et al. (2013). Chemical synthesis and orexigenic activity of rat/mouse relaxin-3.
Amino Acids 44, 1529–1536. doi: 10.1007/s00726-013-1478-0

Hoyer, D., and Bartfai, T. (2012). Neuropeptides and neuropeptide receptors: drug
targets, and peptide and non-peptide ligands: a tribute to Prof Dieter Seebach.
Chem. Biodiv. 9, 2367–2387. doi: 10.1002/cbdv.201200288

Hoyer, D., and Jacobson, L. H. (2013). Orexin in sleep, addiction and more:
is the perfect insomnia drug at hand? Neuropeptides 47, 477–488. doi:
10.1016/j.npep.2013.10.009

Hryhorczuk, C., Sharma, S., and Fulton, S. E. (2013). Metabolic distur-
bances connecting obesity and depression. Front. Neurosci. 7:177. doi:
10.3389/fnins.2013.00177

Insel, T., Krystal, J., and Ehlers, M. (2013a). New drug development for cognitive
enhancement in mental health: challenges and opportunities. Neuropharmacology
64, 2–7. doi: 10.1016/j.neuropharm.2012.07.041

Insel, T. R., Voon, V., Nye, J. S., Brown, V. J., Altevogt, B. M., Bullmore, E. T., et al.
(2013b). Innovative solutions to novel drug development in mental health. Neu-
rosci. Biobehav. Rev. 37, 2438–2444. doi.org/10.1016/j.neubiorev.2013.1003.1022

Ionescu, I. A., Dine, J., Yen, Y. C., Buell, D. R., Herrmann, L., Holsboer,
F., et al. (2012). Intranasally administered neuropeptide S (NPS) exerts anx-
iolytic effects following internalization into NPS receptor-expressing neurons.
Neuropsychopharmacology 37, 1323–1337. doi: 10.1038/npp.2011.317

Ishida, H., Shirayama, Y., Iwata, M., Katayama, S., Yamamoto, A., Kawahara, R.,
et al. (2007). Infusion of neuropeptide Y into CA3 region of hippocampus pro-
duces antidepressant-like effect via Y1 receptor. Hippocampus 17, 271–280. doi:
10.1002/hipo.20264

Jiang, Z., Cowell, R. M., and Nakazawa, K. (2013). Convergence of genetic and
environmental factors on parvalbumin-positive interneurons in schizophrenia.
Front. Behav. Neurosci. 7:116. doi: 10.3389/fnbeh.2013.00116

Jones, B. E., Halaris, A. E., McIlhany, M., and Moore, R. Y. (1977). Ascending projec-
tions of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline
neurons. Brain Res. 127, 1–21. doi: 10.1016/0006-8993(77)90377-8

Kalmbach, A., Hedrick, T., and Waters, J. (2012). Selective optogenetic stimula-
tion of cholinergic axons in neocortex. J. Neurophysiol. 107, 2008–2019. doi:
10.1152/jn.00870.2011

Keller, M., Montgomery, S., Ball, W., Morrison, M., Snavely, D., Liu, G., et al. (2006).
Lack of efficacy of the substance P (neurokinin1 receptor) antagonist Aprepitant
in the treatment of major depressive disorder. Biol. Psychiatry 59, 216–223. doi:
10.1016/j.biopsych.2005.07.013

Kim, A. K., Brown, R. M., and Lawrence, A. J. (2012). The role of orexins/hypocretins
in alcohol use and abuse: an appetitive-reward relationship. Front. Behav.
Neurosci. 6:78. doi: 10.3389/fnbeh.2012.00078

Kimura, M., Müller-Preuss, P., Lu, A., Wiesner, E., Flachskamm, C., Wurst, W.,
et al. (2010). Conditional corticotropin-releasing hormone overexpression in the
mouse forebrain enhances rapid eye movement sleep. Mol. Psychiatry 15, 154–
165. doi: 10.1038/mp.2009.46

Kirby, L. G., Rice, K. C., and Valentino, R. J. (2000). Effects of corticotropin-
releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus.
Neuropsychopharmacology 22, 148–162. doi: 10.1016/S0893-133X(99)00093-7

Kishi, T., and Elmquist, J. K. (2005). Body weight is regulated by the brain:
a link between feeding and emotion. Mol. Psychiatry 10, 132–146. doi:
10.1038/sj.mp.4001638

Kocsis, B., Varga, V., Dahan, L., and Sik, A. (2006). Serotonergic neuron
diversity: identification of raphe neurons with discharges time-locked to the
hippocampal theta rhythm. Proc. Natl. Acad. Sci. U.S.A. 103, 1059–1064. doi:
10.1073/pnas.0508360103

Koob, G. F. (2010). The role of CRF and CRF-related peptides in the dark side of
addiction. Brain Res. 1314, 3–14. doi: 10.1016/j.brainres.2009.11.008

Kopelman, P. G. (2000). Obesity as a medical problem. Nature 404, 635–643.
Kuei, C., Sutton, S., Bonaventure, P., Pudiak, C., Shelton, J., Zhu, J., et al.

(2007). R3 (B�23-27) R/I5 chimeric peptide, a selective antagonist for GPCR135

and GPCR142 over relaxin receptor LGR7. J. Biol. Chem. 282, 25425. doi:
10.1074/jbc.M701416200

Lach, G., and de Lima, T. C. (2013). Role of NPY Y1 receptor on acquisition, con-
solidation and extinction on contextual fear conditioning: dissociation between
anxiety, locomotion and non-emotional memory behavior. Neurobiol. Learn.
Mem. 103, 26–33. doi: 10.1016/j.nlm.2013.04.005

Lebow, M., Neufeld-Cohen, A., Kuperman, Y., Tsoory, M., Gil, S., and
Chen, A. (2012). Susceptibility to PTSD-like behavior is mediated by
corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the
stria terminalis. J. Neurosci. 32, 6906–6916. doi: 10.1523/JNEUROSCI.4012-
11.2012

Lenglos, C., Mitra, A., Guevremont, G., and Timofeeva, E. (2013). Sex differences in
the effects of chronic stress and food restriction on body weight gain and brain
expression of CRF and relaxin-3 in rats. Genes Brain Behav. 12, 370–387. doi:
10.1111/gbb.12028

Lesch, K. P., and Waider, J. (2012). Serotonin in the modulation of neural plasticity
and networks: implications for neurodevelopmental disorders. Neuron 76, 175–
191. doi: 10.1016/j.neuron.2012.09.013

Li, K., Zhou, T., Liao, L., Yang, Z., Wong, C., Henn, F., et al. (2013). βCaMKII in
lateral habenula mediates core symptoms of depression. Science 341, 1016–1020.
doi: 10.1126/science.1240729

Lin, H. C., Gean, P. W., Wang, C. C., Chan, Y. H., and Chen, P. S. (2013). The
amygdala excitatory/inhibitory balance in a valproate-induced rat autism model.
PLoS ONE 8:e55248. doi: 10.1371/journal.pone.0055248

Lin, L. C., and Sibille, E. (2013). Reduced brain somatostatin in mood disorders: a
common pathophysiological substrate and drug target? Front. Pharmacol. 4:110.
doi: 10.3389/fphar.2013.00110

Liu, C., Chen, J., Kuei, C., Sutton, S., Nepomuceno, D., Bonaventure, P., et al.
(2005). Relaxin-3/insulin-like peptide 5 chimeric peptide, a selective ligand for
G protein-coupled receptor (GPCR)135 and GPCR142 over leucine-rich repeat-
containing G protein-coupled receptor 7. Mol. Pharmacol. 67, 231–240. doi:
10.1124/mol.104.006700

Liu, C., Eriste, E., Sutton, S., Chen, J., Roland, B., Kuei, C., et al. (2003).
Identification of relaxin-3/INSL7 as an endogenous ligand for the orphan G-
protein-coupled receptor GPCR135. J. Biol. Chem. 278, 50754–50764. doi:
10.1074/jbc.M308995200

Liu, C., Kuei, C., Sutton, S., Shelton, J., Zhu, J., Nepomuceno, D., et al. (2009). Prob-
ing the functional domains of relaxin-3 and the creation of a selective antagonist
for RXFP3/GPCR135 over relaxin receptor RXFP1/LGR7. Ann. N. Y. Acad. Sci.
1160, 31–37. doi: 10.1111/j.1749-6632.2008.03790.x

Liu, T., Wang, Q., Berglund, E. D., and Tong, Q. (2013). Action of neurotransmitter:
a key to unlock the AgRP neuron feeding circuit. Front. Neurosci. 6:200. doi:
10.3389/fnins.2012.00200

Lukas, M., and Neumann, I. D. (2013). Oxytocin and vasopressin in rodent behaviors
related to social dysfunctions in autism spectrum disorders. Behav. Brain Res. 251,
85–94. doi: 10.1016/j.bbr.2012.08.011

Lukas, M., Toth, I., Reber, S. O., Slattery, D. A., Veenema, A. H., and Neumann, I. D.
(2011). The neuropeptide oxytocin facilitates pro-social behavior and prevents
social avoidance in rats and mice. Neuropsychopharmacology 36, 2159–2168. doi:
10.1038/npp.2011.95

Lungwitz, E. A., Molosh, A., Johnson, P. L., Harvey, B. P., Dirks, R. C., Dietrich, A.,
et al. (2012). Orexin-A induces anxiety-like behavior through interactions with
glutamatergic receptors in the bed nucleus of the stria terminalis of rats. Physiol.
Behav. 107, 726–732. doi: 10.1016/j.physbeh.2012.05.019

Ma, S., Blasiak, A., Olucha-Bordonau, F. E., Verberne, A. J., and Gund-
lach, A. L. (2013). Heterogeneous responses of nucleus incertus neurons to
corticotropin-releasing factor and coherent activity with hippocampal theta
rhythm in the rat. J. Physiol. (Lond.) 591, 3981–4001. doi: 10.1113/jphysiol.2013.
254300

Ma, S., Bonaventure, P., Ferraro, T., Shen, P. J., Burazin, T. C. D., Bathgate, R. A. D.,
et al. (2007). Relaxin-3 in GABA projection neurons of nucleus incertus suggests
widespread influence on forebrain circuits via G-protein-coupled receptor-
135 in the rat. Neuroscience 144, 165–190. doi: 10.1016/j.neuroscience.2006.
08.072

Ma, S., Kastman, H., Olucha-Bordonau, F. E., Capogna, M., Hossain, A., Wade, J. D.,
et al. (2010). Relaxin-3 receptor activation in the central amygdala enhances fear
extinction in the rat: implications for relaxin-3 control of emotion. Soc. Neurosci.
Abstr. 809.24.

www.frontiersin.org March 2014 | Volume 5 | Article 46 | 139

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

Ma, S., Olucha-Bordonau, F. E., Hossain, M. A., Lin, F., Kuei, C., Liu, C., et al.
(2009a). Modulation of hippocampal theta oscillations and spatial memory
by relaxin-3 neurons of the nucleus incertus. Learn. Mem. 16, 730–742. doi:
10.1101/lm.1438109

Ma, S., Sang, Q., Lanciego, J. L., and Gundlach, A. L. (2009b). Localization of
relaxin-3 in brain of Macaca fascicularis - Identification of nucleus incertus in
primate. J. Comp. Neurol. 517, 700–712. doi: 10.1002/cne.22197

Ma, S., Shen, P. J., Sang, Q., Lanciego, J. L., and Gundlach, A. L. (2009c). Distribution
of relaxin-3 mRNA and immunoreactivity and RXFP3-binding sites in the brain
of the macaque, Macaca fascicularis. Ann. N. Y. Acad. Sci. 1160, 256–258. doi:
10.1111/j.1749-6632.2009.03954.x

Maaswinkel, H., Gispen, W. H., and Spruijt, B. M. (1997). Executive function of the
hippocampus in social behavior in the rat. Behav. Neurosci. 111, 777–784. doi:
10.1037/0735-7044.111.4.777

Manji, H. K., Quiroz, J. A., Sporn, J., Payne, J. L., Denicoff, K., Gray, A. N., et al.
(2003). Enhancing neuronal plasticity and cellular resilience to develop novel,
improved therapeutics for difficult-to-treat depression. Biol. Psychiatry 53, 707–
742. doi: 10.1016/S0006-3223(03)00117-3

Marchant, E. G., Watson, N. V., and Mistlberger, R. E. (1997). Both neuropeptide
Y and serotonin are necessary for entrainment of circadian rhythms in mice by
daily treadmill running schedules. J. Neurosci. 17, 7974 –7987.

Marder, E. (2012). Neuromodulation of neuronal circuits: back to the future. Neuron
76, 1–11. doi: 10.1016/j.neuron.2012.09.010

Markram, K., and Markram, H. (2010). The intense world theory – a unify-
ing theory of the neurobiology of autism. Front. Hum. Neurosci. 4:224. doi:
10.3389/fnhum.2010.00224

Marson, L., and Foley, K. A. (2004). Identification of neural pathways involved
in genital reflexes in the female: a combined anterograde and retrograde
tracing study. Neuroscience 127, 723–736. doi: 10.1016/j.neuroscience.2004.
04.063

Matsumoto, M., Kamohara, M., Sugimoto, T., Hidaka, K., Takasaki, J., Saito, T.,
et al. (2000). The novel G-protein coupled receptor SALPR shares sequence sim-
ilarity with somatostatin and angiotensin receptors. Gene 248, 183–189. doi:
10.1016/S0378-1119(00)00123-2

Mazure, C. M. (1998). Life stressors as risk factors in depression. Clin. Psychol. Sci.
Pract. 5, 291–313. doi: 10.1111/j.1468-2850.1998.tb00151.x

McClung, C. A. (2007). Circadian genes, rhythms and the biology of mood disorders.
Pharmacol. Ther. 114, 222–232. doi: 10.1016/j.pharmthera.2007.02.003

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation:
central role of the brain. Physiol. Rev. 87, 873–904. doi: 10.1152/physrev.000
41.2006

McGonigle, P. (2011). Peptide therapeutics for CNS indications. Biochem. Pharma-
col. 83, 559–566. doi: 10.1016/j.bcp.2011.10.014

McGowan, B. M., Stanley, S. A., Smith, K. L., Minnion, J. S., Donovan, J., Thompson,
E. L., et al. (2006). Effects of acute and chronic relaxin-3 on food intake and
energy expenditure in rats. Regul. Peptides 136, 72–77. doi: 10.1016/j.regpep.2006.
04.009

McGowan, B. M., Stanley, S. A., Smith, K. L., White, N. E., Connolly, M. M.,
Thompson, E. L., et al. (2005). Central relaxin-3 administration causes hyper-
phagia in male Wistar rats. Endocrinology 146, 3295–3300. doi: 10.1210/en.
2004-1532

McGowan, B. M., Stanley, S. A., White, N. E., Spangeus, A., Patterson, M.,
Thompson, E. L., et al. (2007). Hypothalamic mapping of orexigenic action
and Fos-like immunoreactivity following relaxin-3 administration in male Wistar
rats. Am. J. Physiol. Endocrinol. Metab. 292, E913–E919. doi: 10.1152/ajpendo.003
46.2006

McNamara, I. M., Borella, A. W., Bialowas, L. A., and Whitaker-Azmitia, P. M.
(2008). Further studies in the developmental hyperserotonemia model (DHS) of
autism: social, behavioral and peptide changes. Brain Res. 1189, 203–214. doi:
10.1016/j.brainres.2007.10.063

McNaughton, N., and Gray, J. A. (2000). Anxiolytic action on the
behavioural inhibition system implies multiple types of arousal contribute
to anxiety. J. Affect. Disord. 61, 161–176. doi: 10.1016/S0165-0327(00)
00344-X

McNaughton, N., Kocsis, B., and Hajos, M. (2007). Elicited hippocam-
pal theta rhythm: a screen for anxiolytic and procognitive drugs through
changes in hippocampal function? Behav. Pharmacol. 18, 329–346. doi:
10.1097/FBP.0b013e3282ee82e3

Meyer-Bernstein, E. L., and Morin, L. P. (1996). Differential serotonergic innerva-
tion of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in
circadian rhythm modulation. J. Neurosci. 16, 2097–2111.

Millan, M. J., Agid, Y., Brüne, M., Bullmore, E. T., Carter, C. S., Clayton, N. S., et al.
(2012). Cognitive dysfunction in psychiatric disorders: characteristics, causes
and the quest for improved therapy. Nat. Rev. Drug Discov. 11, 141–168. doi:
10.1038/nrd3628

Miyamoto, Y., Watanabe, Y., and Tanaka, M. (2008). Developmental expression and
serotonergic regulation of relaxin 3/INSL7 in the nucleus incertus of rat brain.
Regul. Peptides 145, 54–59. doi: 10.1016/j.regpep.2007.08.010

Mogi, K., Nagasawa, M., and Kikusui, T. (2010). Developmental consequences and
biological significance of mother-infant bonding. Prog. Neuropsychopharmacol.
Biol. Psychiatry 35, 1232–1241. doi: 10.1016/j.pnpbp.2010.08.024

Möller, C., Sommer, W., Thorsell, A., and Heilig, M. (1999). Anxiogenic-like action
of galanin after intra-amygdala administration in the rat. Neuropsychopharma-
cology 21, 507–512. doi: 10.1016/S0893-133X(98)00102-X

Monti, J. M., and Jantos, H. (2008). The roles of dopamine and serotonin, and of
their receptors, in regulating sleep and waking. Prog. Brain Res. 172, 625–646.
doi: 10.1016/S0079-6123(08)00929-1

Monti, J. M., and Monti, D. (2000). Sleep disturbance in generalized anxiety
disorder and its treatment. Sleep Med. Rev. 4, 263–276. doi: 10.1053/smrv.19
99.0096

Morin, L. P. (2013). Neuroanatomy of the extended circadian rhythm system. Exp.
Neurol. 243, 4–20. doi: 10.1016/j.expneurol.2012.06.026

Morin, L. P., and Meyer-Bernstein, E. L. (1999). The ascending serotoner-
gic system in the hamster: comparison with projections of the dorsal and
median raphe nuclei. Neuroscience 91, 81–105. doi: 10.1016/S0306-4522(98)
00585-5

Morin, S. M., Ling, N., Liu, X. J., Kahl, S. D., and Gehlert, D. R. (1999). Differential
distribution of urocortin- and corticotropin-releasing factor-like immunore-
activities in the rat brain. Neuroscience 92, 281–291. doi: 10.1016/S0306-
4522(98)00732-5

Munro, J., Skrobot, O., Sanyoura, M., Kay, V., Susce, M. T., Glaser, P. E.,
et al. (2012). Relaxin polymorphisms associated with metabolic disturbance
in patients treated with antipsychotics. J. Psychopharmacol. 26, 374–379. doi:
10.1177/0269881111408965

Murphy, F. C., Rubinsztein, J. S., Michael, A., Rogers, R. D., Robbins, T. W., Paykel,
E. S., et al. (2001). Decision-making cognition in mania and depression. Psychol.
Med. 31, 679–693. doi: 10.1017/S0033291701003804

Nakazawa, C. M., Shikata, K., Uesugi, M., Katayama, H., Aoshima, K., Tahara, K.,
et al. (2013). Prediction of relaxin-3-induced downstream pathway resulting in
anxiolytic-like behaviors in rats based on a microarray and peptidome analy-
sis. J. Recept. Signal Transduct. Res. 33, 224–233. doi: 10.3109/10799893.2012.
756895

Nawaratne, V., Leach, K., Suratman, N., Loiacono, R. E., Felder, C. C., Armbruster, B.
N., et al. (2008). New insights into the function of M4 muscarinic acetylcholine
receptors gained using a novel allosteric modulator and a DREADD (designer
receptor exclusively activated by a designer drug). Mol. Pharmacol. 74, 1119–1131.
doi: 10.1124/mol.108.049353

Nemeroff, C. B. (1992). New vistas in neuropeptide research in neuropsychiatry:
focus on corticotropin-releasing factor. Neuropsychopharmacology 6, 69–75.

Nestler, E. J. (1998). Antidepressant treatments in the 21st century. Biol. Psychiatry
44, 526–533. doi: 10.1016/S0006-3223(98)00095-X

Nestler, E. J., and Hyman, S. E. (2010). Animal models of neuropsychiatric disorders.
Nat. Neurosci. 13, 1161–1169. doi: 10.1038/nn.2647

Nikisch, G., Baumann, P., Liu, T., and Mathe, A. A. (2011). Quetiapine affects
neuropeptide Y and corticotropin-releasing hormone in cerebrospinal fluid
from schizophrenia patients: relationship to depression and anxiety symptoms
and to treatment response. Int. J. Neuropsychopharmacol. 15, 1051–1061. doi:
10.1017/S1461145711001556

Nunez, A., Cervera-Ferri, A., Olucha-Bordonau, F., Ruiz-Torner, A., and Teruel,
V. (2006). Nucleus incertus contribution to hippocampal theta rhythm gen-
eration. Eur. J. Neurosci. 23, 2731–2738. doi: 10.1111/j.1460-9568.2006.
04797.x

Nutt, D. J., Forshall, S., Bell, C., Rich, A., Sandford, J., Nash, J., et al. (1999).
Mechanisms of action of selective serotonin reuptake inhibitors in the treat-
ment of psychiatric disorders. Eur. Neuropsychopharmacol. 9 S81–S86. doi:
10.1016/S0924-977X(99)00030-9

Frontiers in Pharmacology | Neuropharmacology March 2014 | Volume 5 | Article 46 | 140

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

O’Donnell, P. (2011). Adolescent onset of cortical disinhibition in schizophre-
nia: insights from animal models. Schizophr. Bull. 37, 484–492. doi:
10.1093/schbul/sbr028

Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T.,
et al. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain
123 1838–1844. doi: 10.1093/brain/123.9.1838

Olucha-Bordonau, F. E., Otero-Garcia, M., Sanchez-Perez, A. M., Nunez, A., Ma, S.,
and Gundlach, A. L. (2012). Distribution and targets of the relaxin-3 inner-
vation of the septal area in the rat. J. Comp. Neurol. 520, 1903–1939. doi:
10.1002/cne.23018

Olucha-Bordonau, F. E., Teruel, V., Barcia-Gonzalez, J., Ruiz-Torner, A., Valverde-
Navarro, A. A., and Martinez-Soriano, F. (2003). Cytoarchitecture and efferent
projections of the nucleus incertus of the rat. J. Comp. Neurol. 464, 62–97. doi:
10.1002/cne.10774

Paez-Pereda, M., Hausch, F., and Holsboer, F. (2011). Corticotropin releasing factor
receptor antagonists for major depressive disorder. Expert Opin. Investig. Drugs
20, 519–535. doi: 10.1517/13543784.2011.565330

Panchal, S. K., and Brown, L. (2011). Rodent models for metabolic syndrome
research. J. Biomed. Biotechnol. 35, 1982.

Pape, H.-C., Jüngling, K., Seidenbecher, T., Lesting, J., and Reinscheid, R. K. (2010).
Neuropeptide S: a transmitter system in the brain regulating fear and anxiety.
Neuropharmacology 58, 29–34. doi: 10.1016/j.neuropharm.2009.06.001

Peca, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N.,
et al. (2011). Shank3 mutant mice display autistic-like behaviours and striatal
dysfunction. Nature 472, 437–442. doi: 10.1038/nature09965

Pekala, D., Blasiak, T., Raastad, M., and Lewandowski, M. H. (2011). The influence
of orexins on the firing rate and pattern of rat intergeniculate leaflet neurons -
electrophysiological and immunohistological studies. Eur. J. Neurosci. 34, 1406–
1418. doi: 10.1111/j.1460-9568.2011.07868.x

Pereira, C. W., Santos, F. N., Sanchez-Perez, A. M., Otero-Garcia, M., Marchioro,
M., Ma, S., et al. (2013). Electrolytic lesion of the nucleus incertus retards
extinction of auditory conditioned fear. Behav. Brain Res. 247, 201–210. doi:
10.1016/j.bbr.2013.03.025

Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe,
J. G., et al. (1998). Neurons containing hypocretin (orexin) project to multiple
neuronal systems. J. Neurosci. 18, 9996–10015.

Pulga, A., Ruzza, C., Rizzi, A., Guerrini, R., and Calo, G. (2012). Anxiolytic- and
panicolytic-like effects of neuropeptide S in the mouse elevated T-maze. Eur. J.
Neurosci. 36, 3531–3537. doi: 10.1111/j.1460-9568.2012.08265.x

Rajkumar, R., See, L. K., and Dawe, G. S. (2013). Acute antipsychotic treatments
induce distinct c-Fos expression patterns in appetite-related neuronal struc-
tures of the rat brain. Brain Res. 1508, 34–43. doi: 10.1016/j.brainres.2013.
02.050

Ressler, K. J., Mercer, K. B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., et al.
(2011). Post-traumatic stress disorder is associated with PACAP and the PAC1
receptor. Nature 470, 492–497. doi: 10.1038/nature09856

Ring, R. H. (2011). A complicated picture of oxytocin action in the
central nervous system revealed. Biol. Psychiatry 69, 818–819. doi:
10.1016/j.biopsych.2011.03.020

Rosengren, K. J., Lin, F., Bathgate, R. A. D., Tregear, G. W., Daly, N. L., Wade, J.
D., et al. (2006). Solution structure and novel insights into the determinants of
the receptor specificity of human relaxin-3. J. Biol. Chem. 281, 5845–5851. doi:
10.1074/jbc.M511210200

Rotzinger, S., Lovejoy, D. A., and Tan, L. A. (2010). Behavioral effects of neuropep-
tides in rodent models of depression and anxiety. Peptides 31, 736–756. doi:
10.1016/j.peptides.2009.12.015

Roux, L., and Donaldson, C. (2012). Economics and obesity: costing the problem
or evaluating solutions? Obes. Res. 12, 173–179. doi: 10.1038/oby.2004.23

Russo, S. J., and Nestler, E. J. (2013). The brain reward circuitry in mood disorders.
Nat. Rev. Neurosci. 14, 609–625. doi: 10.1038/nrn3381

Ryan, P. J., Buchler, E., Shabanpoor, F., Hossain, M. A., Wade, J. D., Lawrence, A. J.,
et al. (2013a). Central relaxin-3 receptor (RXFP3) activation decreases anxiety-
and depressive-like behaviours in the rat. Behav. Brain Res. 244, 142–151. doi:
10.1016/j.bbr.2013.01.034

Ryan, P. J., Kastman, H. E., Krstrew, E. V., Chirlov, L., Rosengren, K. J.,
Hossain, M. A., et al. (2013b). Relaxin-3/RXFP3 system regulates alcohol-
seeking. Proc. Natl. Acad. Sci. U.S.A. 110, 20789–20794. doi: 10.1073/pnas.1317
807110

Ryan, P. J., Ma, S., Olucha-Bordonau, F. E., and Gundlach, A. L. (2011). Nucleus
incertus – an emerging modulatory role in arousal, stress and memory. Neurosci.
Biobehav. Rev. 35, 1326–1341. doi: 10.1016/j.neubiorev.2011.02.004

Saito, Y., and Nagasaki, H. (2008). The melanin-concentrating hormone system
and its physiological functions. Results Probl. Cell Differ. 46, 159–179. doi:
10.1007/400_2007_052

Sakurai, T. (2007). The neural circuit of orexin (hypocretin): maintaining sleep and
wakefulness. Nat. Rev. Neurosci. 8, 171–181. doi: 10.1038/nrn2092

Sanogo, Y. O., Hankison, S., Band, M., Obregon, A., and Bell, A. M. (2011). Brain
transcriptomic response of threespine sticklebacks to cues of a predator. Brain
Behav. Evol. 77, 270–285. doi: 10.1159/000328221

Saper, C. B., Scammell, T. E., and Lu, J. (2005). Hypothalamic regulation of sleep
and circadian rhythms. Nature 437, 1257–1263. doi: 10.1038/nature04284

Sasaki, K., Suzuki, M., Mieda, M., Tsujino, N., Roth, B., and Sakurai, T. (2011).
Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in
mice. PLoS ONE 6:e20360. doi: 10.1371/journal.pone.0020360

Schmidt, H. D., and Duman, R. S. (2010). Peripheral BDNF produces
antidepressant-like effects in cellular and behavioral models. Neuropsychophar-
macology 35, 2378–2391. doi: 10.1038/npp.2010.114

Shabanpoor, F., Akhter Hossain, M., Ryan, P. J., Belgi, A., Layfield, S., Kocan, M., et al.
(2012). Minimization of human relaxin-3 leading to high-affinity analogues with
increased selectivity for relaxin-family peptide 3 receptor (RXFP3) over RXFP1.
J. Med. Chem. 55, 1671–1681. doi: 10.1021/jm201505p

Sherwood, O. D. (2004). Relaxin’s physiological roles and other diverse actions.
Endocr. Rev. 25, 205–234. doi: 10.1210/er.2003-0013

Shinohara, K., Tominaga, K., Isobe, Y., and lnouye, S.-I. T. (1993). Photic regulation
of peptides located in the ventrolateral subdivision of the suprachiasmatic nucleus
of the rat: daily variations of vasoactive intestinal polypeptide, gastrin-releasing
peptide, and neuropeptide Y. J. Neurosci. 13, 793–800.

Silverman, J. L., Tolu, S. S., Barkan, C. L., and Crawley, J. N. (2010). Repeti-
tive self-grooming behavior in the BTBR mouse model of autism is blocked
by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35, 976–989. doi:
10.1038/npp.2009.201

Smith, C. M., Blasiak, A., Ganella, D. E., Chua, B. E., Layfield, S. L., Bathgate, R. A. D.,
et al. (2013a). “Viral-mediated delivery of an RXFP3 agonist into brain promotes
arousal in mice,” in Proceedings of Sixth International Conference on Relaxin and
Related Peptides, Florence.

Smith, C. M., Chua, B. E., Walker, A. W., and Gundlach, A. L. (2013b). “Potential
hypothalamic targets of relaxin-3 innervation: a perspective,” in Proceedings of
Sixth International Conference on Relaxin and Related Peptides, Florence.

Smith, C. M., Hosken, I. T., Sutton, S. W., Lawrence, A. J., and Gundlach, A. L. (2012).
Relaxin-3 null mutation mice display a circadian hypoactivity phenotype. Genes
Brain Behav. 11, 94–104. doi: 10.1111/j.1601-183X.2011.00730.x

Smith, C. M., Lawrence, A. J., Sutton, S. W., and Gundlach, A. L. (2009). Behavioral
phenotyping of mixed-background (129S5:B6) relaxin-3 knockout mice. Ann. N.
Y. Acad. Sci. 1160, 236–241. doi: 10.1111/j.1749-6632.2009.03953.x

Smith, C. M., Ryan, P. J., Hosken, I. T., Ma, S., and Gundlach, A. L. (2011). Relaxin-3
systems in the brain – the first 10 years. J. Chem. Neuroanat. 42, 262–275. doi:
10.1016/j.jchemneu.2011.05.013

Smith, C. M., Shen, P. J., Banerjee, A., Bonaventure, P., Ma, S., Bathgate, R. A. D.,
et al. (2010). Distribution of relaxin 3 and RXFP3 within arousal, stress, affective,
and cognitive circuits of mouse brain. J. Comp. Neurol. 518, 4016–4045. doi:
10.1002/cne.22442

Smith, K. L., Patterson, M., Dhillo, W. S., Patel, S. R., Semjonous, N. M.,
Gardiner, J. V., et al. (2006). Neuropeptide S stimulates the hypothalamo-
pituitary-adrenal axis and inhibits food intake. Endocrinology 147, 3510–3518.
doi: 10.1210/en.2005-1280

Sodersten, P., Bergh, C., and Zandian, M. (2006). Understanding eating disorders.
Horm. Behav. 50, 572–578. doi: 10.1016/j.yhbeh.2006.06.030

Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M.
E., and McCarley, R. W. (2003). Abnormal neural synchrony in schizophrenia. J.
Neurosci. 23, 7407–7411.

Steinbusch, H. W. (1981). Distribution of serotonin-immunoreactivity in the central
nervous system of the rat-cell bodies and terminals. Neuroscience 6, 557–618. doi:
10.1016/0306-4522(81)90146-9

Sutton, S. W., Bonaventure, P., Kuei, C., Roland, B., Chen, J., Nepomuceno, D., et al.
(2004). Distribution of G-protein-coupled receptor (GPCR)135 binding sites and
receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine

www.frontiersin.org March 2014 | Volume 5 | Article 46 | 141

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

and sensory processing. Neuroendocrinology 80, 298–307. doi: 10.1159/0000
83656

Sutton, S. W., Shelton, J., Smith, C., Williams, J., Yun, S., Motley, T., et al.
(2009). Metabolic and neuroendocrine responses to RXFP3 modulation in
the central nervous system. Ann. N. Y. Acad. Sci. 1160, 242–249. doi:
10.1111/j.1749-6632.2008.03812.x

Takagi, H., Shiosaka, S., Tohyama, M., Senba, E., and Sakanaka, M. (1980). Ascend-
ing components of the medial forebrain bundle from the lower brain stem in the
rat, with special reference to raphe and catecholamine cell groups. A study by the
HRP method. Brain Res. 193, 315–337. doi: 10.1016/0006-8993(80)90168-7

Tanaka, M. (2010). Relaxin-3/insulin-like peptide 7, a neuropeptide involved in the
stress response and food intake. FEBS J. 277, 4990–4997. doi: 10.1111/j.1742-
4658.2010.07931.x

Tanaka, M., Iijima, N., Miyamoto, Y., Fukusumi, S., Itoh, Y., Ozawa, H., et al.
(2005). Neurons expressing relaxin 3/INSL 7 in the nucleus incertus respond
to stress. Eur. J. Neurosci. 21, 1659–1670. doi: 10.1111/j.1460-9568.2005.
03980.x

Tanaka, M., Watanabe, Y., and Yoshimoto, K. (2009). Regulation of relaxin 3 gene
expression via cAMP-PKA in a neuroblastoma cell line. J. Neurosci. Res. 87,
820–829. doi: 10.1002/jnr.21895

Tandon, R. (2011). Antipsychotics in the treatment of schizophrenia: an overview.
J. Clin. Psychiatry 72(Suppl. 1), 4–8. doi: 10.4088/JCP.10075su1.01

Teruel-Marti, V., Cervera-Ferri, A., Nunez, A., Valverde-Navarro, A. A., Olucha-
Bordonau, F. E., and Ruiz-Torner, A. (2008). Anatomical evidence for a ponto-
septal pathway via the nucleus incertus in the rat. Brain Res. 1218, 87–96. doi:
10.1016/j.brainres.2008.04.022

Thankachan, S., and Rusak, B. (2005). Juxtacellular recording/labeling anal-
ysis of physiological and anatomical characteristics of rat intergeniculate
leaflet neurons. J. Neurosci. 25, 9195–9204. doi: 10.1523/JNEUROSCI.2672-
05.2005

Theisen, F. M., Linden, A., Konig, I. R., Martin, M., Remschmidt, H., and Hebebrand,
J. (2003). Spectrum of binge eating symptomatology in patients treated with
clozapine and olanzapine. J. Neural Transm. 110, 111–121.

Vaccari, C., Lolait, S. J., and Ostrowski, N. L. (1998). Comparative distribution
of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain.
Endocrinology 139, 5015–5033.

Van Cauter, E., Linkowski, P., Kerkhofs, M., Hubain, P., L’Hermite-Baleriaux,
M., Leclercq, R., et al. (1991). Circadian and sleep-related endocrine
rhythms in schizophrenia. Arch. Gen. Psychiatry 48, 348. doi: 10.1001/arch-
psyc.1991.01810280064009

van den Pol, A. N. (2012). Neuropeptide transmission in brain circuits. Neuron 76,
98–115. doi: 10.1016/j.neuron.2012.09.014

van der Westhuizen, E. T., Christopoulos, A., Sexton, P. M., Wade, J. D., and Sum-
mers, R. J. (2010). H2 relaxin is a biased ligand relative to H3 relaxin at the
relaxin family peptide receptor 3 (RXFP3). Mol. Pharmacol. 77, 759–772. doi:
10.1124/mol.109.061432

van der Westhuizen, E. T., Werry, T. D., Sexton, P. M., and Summers, R. J. (2007). The
relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2
through a protein kinase C-dependent mechanism. Mol. Pharmacol. 71, 1618–
1629. doi: 10.1124/mol.106.032763

van Elst, L. T., Woermann, F. G., Lemieux, L., Thompson, P. J., and Trimble, M.
R. (2000). Affective aggression in patients with temporal lobe epilepsy: a quan-
titative MRI study of the amygdala. Brain 123, 234–243. doi: 10.1093/brain/123.
2.234

Van Pett, K., Viau, V., Bittencourt, J. C., Chan, R. K., Li, H. Y., Arias, C.,
et al. (2000). Distribution of mRNAs encoding CRF receptors in brain and
pituitary of rat and mouse. J. Comp. Neurol. 428, 191–212. doi: 10.1002/1096-
9861(20001211)428:2<191::AID-CNE1>3.0.CO;2-U

Vertes, R. P., and Kocsis, B. (1997). Brainstem-diencephalo-septohippocampal
systems controlling the theta rhythm of the hippocampus. Neuroscience 81,
893–926.

Vianna, D. M., Graeff, F. G., Landeira-Fernandez, J., and Brandao, M. L. (2001).
Lesion of the ventral periaqueductal gray reduces conditioned fear but does not
change freezing induced by stimulation of the dorsal periaqueductal gray. Learn.
Mem. 8, 164–169. doi: 10.1101/lm.36101

Videbech, P., and Ravnkilde, B. (2004). Hippocampal volume and depres-
sion: a meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966. doi:
10.1176/appi.ajp.161.11.1957

Vithlani, M., Hines, R. M., Zhong, P., Terunuma, M., Hines, D. J., Revilla-
Sanchez, R., et al. (2013). The ability of BDNF to modify neurogenesis and
depressive-like behaviors is dependent upon phosphorylation of tyrosine residues
365/367 in the GABAA-receptor γ2 subunit. J. Neurosci. 33, 15567–15577. doi:
10.1523/JNEUROSCI.1845-13.2013

von Euler, U. S., and Gaddum, J. H. (1931). An unidentified depressor substance in
certain tissue extracts. J. Physiol. 72, 74.

Walker, D. L., Miles, L. A., and Davis, M. (2009). Selective participation of the bed
nucleus of the stria terminalis and CRF in sustained anxiety-like vs. phasic fear-
like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291–1308. doi:
10.1016/j.pnpbp.2009.06.022

Wang, X. J. (2002). Pacemaker neurons for the theta rhythm and their syn-
chronization in the septohippocampal reciprocal loop. J. Neurophysiol. 87,
889–900.

Watanabe, Y., Miyamoto, Y., Matsuda, T., and Tanaka, M. (2011a). Relaxin-3/INSL7
regulates the stress-response system in the rat hypothalamus. J. Mol. Neurosci. 43,
169–174. doi: 10.1007/s12031-010-9468-0

Watanabe, Y., Tsujimura, A., Takao, K., Nishi, K., Ito, Y., Yasuhara, Y., et al. (2011b).
Relaxin-3-deficient mice showed slight alteration in anxiety-related behavior.
Front. Behav. Neurosci. 5:50. doi: 10.3389/fnbeh.2011.00050

Wess, J., Nakajima, K., and Jain, S. (2013). Novel designer receptors to probe
GPCR signaling and physiology. Trends Pharmacol. Sci. 34, 385–392. doi:
10.1016/j.tips.2013.04.006

Westenberg, H. G. (1999). Pharmacology of antidepressants: selectivity or
multiplicity? J. Clin. Psychiatry 60(Suppl. 17), 4–8.

Wilkinson, T. N., Speed, T. P., Tregear, G. W., and Bathgate, R. A. D. (2005). Evolution
of the relaxin-like peptide family. BMC Evol. Biol. 5:14. doi: 10.1186/1471-2148-
5-14

Willard, S. L., and Shively, C. A. (2012). Modeling depression in adult female
cynomolgus monkeys (Macaca fascicularis). Am. J. Primatol. 74, 528–542. doi:
10.1002/ajp.21013

Willner, P., Scheel-Krüger, J., and Belzung, C. (2013). The neurobiology of depres-
sion and antidepressant action. Neurosci. Biobehav. Rev. 37, 2331–2371. doi:
10.1016/j.neubiorev.2012.12.007

Winrow, C. J., and Renger, J. J. (2014). Discovery and development of orexin receptor
antagonists as therapeutics for insomnia. Br. J. Pharmacol. 171, 283–293. doi:
10.1111/bph.12261

Xu, Y. L., Reinscheid, R. K., Huitron-Resendiz, S., Clark, S. D., Wang, Z., Lin, S. H.,
et al. (2004). Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-
like effects. Neuron 43, 487–497. doi: 10.1016/j.neuron.2004.08.005

Yamasue, H., Yee, J. R., Hurlemann, R., Rilling, J. K., Chen, F. S., Meyer-
Lindenberg, A., et al. (2012). Integrative approaches utilizing oxytocin to enhance
prosocial behavior: from animal and human social behavior to autistic social
dysfunction. J. Neurosci. 32, 14109–14117. doi: 10.1523/JNEUROSCI.3327-
12.2012

Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M., and Deisseroth, K. (2011a).
Optogenetics in neural systems. Neuron 71, 9–34. doi: 10.1016/j.neuron.2011.
06.004

Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea,
D. J., et al. (2011b). Neocortical excitation/inhibition balance in information
processing and social dysfunction. Nature 477, 171–178. doi: 10.1038/nature
10360

Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L. J., Onaka, T., et al.
(2009). Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor
expressed in serotonergic neurons in mice. J. Neurosci. 29, 2259–2271. doi:
10.1523/JNEUROSCI.5593-08.2009

Zee, P. C., and Manthena, P. (2007). The brain’s master circadian clock: implications
and opportunities for therapy of sleep disorders. Sleep Med. Rev. 11, 59–70. doi:
10.1016/j.smrv.2006.06.001

Zhang, F., Gradinaru, V., Adamantidis, A. R., Durand, R., Airan, R. D., de
Lecea, L., et al. (2010). Optogenetic interrogation of neural circuits: technol-
ogy for probing mammalian brain structures. Nat. Protoc. 5, 439–456. doi:
10.1038/nprot.2009.226

Zhang, J., Fan, Y., Li, Y., Zhu, H., Wang, L., and Zhu, M. Y. (2012).
Chronic social defeat up-regulates expression of the serotonin transporter
in rat dorsal raphe nucleus and projection regions in a glucocorticoid-
dependent manner. J. Neurochem. 123, 1054–1068. doi: 10.1111/jnc.
12055

Frontiers in Pharmacology | Neuropharmacology March 2014 | Volume 5 | Article 46 | 142

http://www.frontiersin.org/Neuropharmacology/
http://www.frontiersin.org/Neuropharmacology/archive


Smith et al. Relaxin-3/RXFP3 networks and neuropsychiatric disorders

Zheng, H., and Rinaman, L. (2013). Yohimbine anxiogenesis in the elevated plus
maze requires hindbrain noradrenergic neurons that target the anterior ventro-
lateral bed nucleus of the stria terminalis. Eur. J. Neurosci. 37, 1340–1349. doi:
10.1111/ejn.12123

Zorrilla, E. P., Heilig, M., de Wit, H., and Shaham, Y. (2013). Behav-
ioral, biological, and chemical perspectives on targeting CRF(1) receptor
antagonists to treat alcoholism. Drug Alcohol Depend. 128, 175–186. doi:
10.1016/j.drugalcdep.2012.12.017

Zorrilla, E. P., and Koob, G. F. (2010). Progress in corticotropin-releasing
factor-1 antagonist development. Drug Discov. Today 15, 371–383. doi:
10.1016/j.drudis.2010.02.011

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 28 October 2013; accepted: 28 February 2014; published online: 21 March
2014.
Citation: Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M and
Gundlach AL (2014) Relaxin-3/RXFP3 networks: an emerging target for the treat-
ment of depression and other neuropsychiatric diseases? Front. Pharmacol. 5:46. doi:
10.3389/fphar.2014.00046
This article was submitted to Neuropharmacology, a section of the journal Frontiers in
Pharmacology.
Copyright © 2014 Smith, Walker, Hosken, Chua, Zhang, Haidar and Gundlach.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) or licensor are credited and that the origi-
nal publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org March 2014 | Volume 5 | Article 46 | 143

http://dx.doi.org/10.3389/fphar.2014.00046
http://dx.doi.org/10.3389/fphar.2014.00046
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


REVIEW ARTICLE
published: 09 August 2013

doi: 10.3389/fphar.2013.00099

Comorbid obsessive-compulsive symptoms in
schizophrenia: contributions of pharmacological and
genetic factors
Frederike Schirmbeck and Mathias Zink*

Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Faculty Medicine Mannheim, Heidelberg University, Mannheim, Germany

Edited by:
Maarten Van Den Buuse, Mental
Health Research Institute, Australia

Reviewed by:
Bradley D. Pearce, Emory University,
USA
Daniela Brunner, PsychoGenics,
USA
Maarten Van Den Buuse, Mental
Health Research Institute, Australia

*Correspondence:
Mathias Zink, Central Institute of
Mental Health, Department of
Psychiatry and Psychotherapy,
Medical Faculty Mannheim,
Heidelberg University, PO Box
12 21 20, D-68072 Mannheim,
Germany
e-mail: mathias.zink@
zi-mannheim.de

A large subgroup of around 25% of schizophrenia patients suffers from
obsessive-compulsive symptoms (OCS) and about 12% fulfill the diagnostic criteria
of an obsessive-compulsive disorder (OCD). The additional occurrence of OCS is
associated with high subjective burden of disease, additional neurocognitive impairment,
poorer social and vocational functioning, greater service utilization and high levels of
anxiety and depression. Comorbid patients can be assigned to heterogeneous subgroups.
One hypothesis assumes that second generation antipsychotics (SGAs), most importantly
clozapine, might aggravate or even induce second-onset OCS. Several arguments support
this assumption, most importantly the observed chronological order of first psychotic
manifestation, start of treatment with clozapine and onset of OCS. In addition, correlations
between OCS-severity and dose and serum levels and duration of clozapine treatment hint
toward a dose-dependent side effect. It has been hypothesized that genetic risk-factors
dispose patients with schizophrenia to develop OCS. One study in a South Korean sample
reported associations with polymorphisms in the gene SLC1A1 (solute carrier family 1A1)
and SGA-induced OCS. However, this finding could not be replicated in European patients.
Preliminary results also suggest an involvement of polymorphisms in the BDNF gene
(brain-derived neurotrophic factor) and an interaction between markers of SLC1A1 and the
gene DLGAP3 (disc large associated protein 3) as well as GRIN2B (N-methyl-D-aspartate
receptor subunit 2B). Further research of well-defined samples, in particular studies
investigating possible interactions of genetic risk-constellations and pharmacodynamic
properties, are needed to clarify the assumed development of SGA-induced OCS. Results
might improve pathogenic concepts and facilitate the definition of at risk populations,
early detection and monitoring of OCS as well as multimodal therapeutic interventions.

Keywords: antipsychotic agents, clozapine, comorbidity, compulsion, genetics, obsession, schizophrenia, SLC1A1

GENE AND ENVIRONMENT INTERACTIONS IN PSYCHIATRIC
DISORDERS
Several frequent and disabling mental disorders manifest as
a consequence of both genetic and environmental factors.
Schizophrenia for instance is commonly perceived on the back-
ground of a gene-and-environment interaction (GxEI), where
individual genetic properties dispose to a specific liability and
sensitivity for specific stressors. These could include migration,
other stressful life events, or effects of psychotropic substances
(van Os and Kapur, 2009; van Os et al., 2008, 2010). Similar
concepts were suggested regarding depression (Keers and Uher,
2012), anxiety disorders (Gregory et al., 2008; Nugent et al.,
2011) and obsessive-compulsive disorder (OCD) (Nicolini et al.,

Abbreviations: AMS, amisulpride; APZ, aripiprazole; ARMS, at risk mental state;
BDNF, brain derived neurotrophic factor; CBT, cognitive behavioral therapy; CLZ,
clozapine; DLGAP3, disks large associated protein 3; GxEI: Gene and environment
interaction; OCS, obsessive-compulsive symptoms; OCD, obsessive-compulsive
disorder; OLZ, olanzapine; SGA, second generation antipsychotics; SLC1A1, solute
carrier family gene 1A1; SNP, single nucleotide polymorphism; SSRI, selective
serotonin reuptake inhibitor.

2009; Pauls, 2010). Expanding the view to common comor-
bidities it is even more complex and demanding to inves-
tigate whether these might also be described on the basis
of GxEI.

In this review we summarize evidence investigating possi-
ble pharmacological and genetic risk constellations underlying
the co-occurrence of comorbid obsessive-compulsive symptoms
(OCS) in schizophrenia.

EPIDEMIOLOGY OF OCS IN SCHIZOPHRENIA
Patients with schizophrenia have a high lifetime risk of about
25% for comorbid OCS and a recent meta-analysis reports that
12.1% also fulfill the criteria for an OCD (Figure 1C; Poyurovsky
et al., 2004, 2012; Buckley et al., 2009; Lysaker and Whitney,
2009; Mukhopadhaya et al., 2009; Achim et al., 2011; Hadi et al.,
2011). In contrast, prevalence rates of 1–2% for OCD in the gen-
eral population are considerably lower (Murphy et al., 2010).
Accordingly, primary OCD-patients carry a relatively low risk
(1.7%) to develop comorbid psychotic symptoms (de Haan et al.,
2009).

www.frontiersin.org August 2013 | Volume 4 | Article 99 | 144

http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Neuropharmacology/10.3389/fphar.2013.00099/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MathiasZink&UID=69964
mailto:mathias.zink@zi-mannheim.de
mailto:mathias.zink@zi-mannheim.de
http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Schirmbeck and Zink Obsessions and compulsions in schizophrenia

FIGURE 1 | Prevalence estimations of OCS and OCD within different

samples of patients. (A) Mean prevalence rates in ARMS studies. (B)

Mean prevalence rates in first-episode psychotic patients. (C) Mean
prevalence rates in patients suffering from chronic schizophrenia.

Schizophrenia patients, who suffer from comorbid OCS often
also display pronounced and sometimes treatment resistant posi-
tive and negative symptoms (Cunill et al., 2009; Sa et al., 2009).
In addition, they present with specific neurocognitive deficits
(Schirmbeck et al., 2012b), more often utilize health care services
(Berman et al., 1995a), and show heightened levels of anxiety
and depression (Lysaker and Whitney, 2009) when compared to
schizophrenia patients without OCS. These pronounced impair-
ments result in an additional burden of disease, in poorer social
and vocational function (Fenton and McGlashan, 1986; Lysaker
et al., 2004; Öngür and Goff, 2005; de Haan et al., 2013) and in a
less favorable overall prognosis (Schirmbeck and Zink, 2013).

CLINICAL PRESENTATION AND EXPLANATORY CONCEPTS
Several heterogeneous subgroups of comorbid patients have been
suggested depending on the diverse clinical course and phe-
notypic presentation. In order to unravel the specific interplay
of genetic, psychosocial and pharmacological factors current
research tries to focus on homogeneous subgroups. Subdivisions
into such subgroups can for example be achieved according to the
time point of first manifestation of comorbid OCS and the clinical
course.

ONSET OF OCS
First onset of OCS has been described at different stages during
the course of psychotic illness:

(1) Before psychosis as independent, co-existing symptoms or
diagnosed OCD.

(2) Prior to psychotic manifestation as part of the at risk mental
state (ARMS).

(3) Simultaneously with the first manifestation of psychosis.
(4) After the first psychotic episode during the course of chronic

schizophrenia.
(5) As de novo OCS after initiation of antipsychotic treatment.

A remarkably large subgroup of patients already suffers from OCS
during ARMS. Overall, sample-size weighted mean prevalence
rates show that 12.1% (CI: 9.4–14.8%) of ARMS patients report
OCS (Shioiri et al., 2007; Niendam et al., 2009; Bechdolf et al.,
2011; Sterk et al., 2011; Hur et al., 2012), while 5.2% (CI: 4.1–
6.3%) fulfill the criteria for OCD (Shioiri et al., 2007; Niendam

et al., 2009; Rubino et al., 2009; Bechdolf et al., 2011; Fontenelle
et al., 2011; DeVylder et al., 2012; Fusar-Poli et al., 2012; Sterk
et al., 2011) (Figure 1A). Slightly higher averaged rates for OCS
(17.1%, CI: 14.0–20.2) and OCD (7.3%, CI: 5.3–9.3%) can be
found in first episode patients (Figure 1B; Poyurovsky et al.,
1999a; de Haan et al., 2004; Sterk et al., 2011; de Haan et al.,
2012; Zink et al., under review). Large variability of epidemio-
logical data between studies can be explained by differences in
the definition of ARMS criteria and differences in the psychome-
tric assessment of OCS or OCD. Regarding the impact of OCS
during the ARMS on other clinical variables, findings have been
heterogeneous. Whereas higher impairment of psychosocial func-
tioning (de Haan et al., 2012; DeVylder et al., 2012; Fusar-Poli
et al., 2012; Hur et al., 2012) and more severe depressive symp-
toms (Niendam et al., 2009; DeVylder et al., 2012; Fontenelle
et al., 2012; de Haan et al., 2013) have consistently been reported,
findings regarding transition rates into psychosis (Niendam et al.,
2009; Fontenelle et al., 2011, 2012; Fusar-Poli et al., 2012) and
cognition (Van Dael et al., 2011){4854}(Hur et al., 2012) are
contradicting.

Apart from OCS during the ARMS a growing body of evi-
dence investigated the co-occurrence of OCS during mani-
fest schizophrenia. A significant subgroup within these patients
reports OCS development after treatment-start with second gen-
eration antipsychotic agents (SGA). The order of the three
events “onset of psychosis,” “start with SGA treatment” and
subsequent “de novo development of OCS” hints toward the
involvement of pharmacodynamic mechanisms (see Figure 2E
and detailed description in section OCS induced by second-
generation antipsychotics).

CLINICAL COURSE
In addition to varying time-points of first manifestation of
OCS, the course of symptom severity over time also differs
(Figure 2). OCS may appear as fluctuating symptoms, they
may resolve, persist or even worsen over time. Within those
patients who already reported manifest OCD prior to the psy-
chotic illness, e.g., as adolescents, OCS will most likely persist
or worsen independent of the course of schizophrenia (Hwang
et al., 2009). Within those individuals who develop OCS some-
time during the course of schizophrenia, only scarce longitu-
dinal studies examined quantitative changes over time. One
large investigation from the Netherlands followed participants
over a period of 5 years and described a predominantly fluc-
tuating course of OCS severity in over 70% of the comorbid
sample: Some patients experienced the remission of OCS, oth-
ers a fluctuating, more or less cyclic course, some reported
first onset of OCS, whereas a forth group showed persisting
symptom severity (Mahasuar et al., 2011). Another longitudi-
nal study in a German sample investigated two pharmacolog-
ical diverse groups and found persisting OCS severity over 12
months in the group treated with clozapine (CLZ) and olan-
zapine (OLZ) (Schirmbeck et al., 2012b, 2013). The diverse
clinical course adds to the heterogeneous clinical presentation
and suggests an involvement of different environmental fac-
tors and/or symptom interactions in the longitudinal devel-
opment of comorbid OCS in schizophrenia (see section
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FIGURE 2 | OCS might manifest at different time points during the

course of schizophrenia illness. In addition, the clinical course is highly
variable. Blue symbols indicate the onset and severity of OCS, red ones are
related to psychotic symptoms. (A) Pre-existing and persistent OCS. (B)

Intermittent OCS during ARMS or later in the clinical course. (C) OCS-onset
during ARMS and persistent course, strongly associated to the psychotic
symptoms (schizo-obsessive concept). (D) Fluctuating course of OCS. (E)

Second-onset OCS during antipsychotic treatment.

Underlying neurobiological mechanisms and environmental
factors).

Furthermore, specific symptom dimensions of schizophrenia
might overlap with the obsessive-compulsive phenotype (Fink
and Taylor, 2001), making a careful differentiation and classi-
fication of presented symptoms necessary. Especially in cases
of catatonic schizophrenia (Fink, 2013), a reliable assessment
with established psychometric scales such as the catatonia rating
scale (CRS) (Bräunig et al., 2000) and the Yale-Brown-Obsessive-
Compulsive Scale (YBOCS) (Woody et al., 1995; de Haan et al.,
2006) is often difficult. Historically, a more precise character-
ization was achieved by an undisguised view on the natural
long-term course of schizophrenia, for instance published by
Karl Leonhard (Beckmann et al., 2000). These descriptions allow
clear discrimination between OCS and catatonic symptoms most
importantly in patients with so-called “manneristic catatonia.”

Clinical research and an improved pathogenic understanding
of OCS in patients with schizophrenia is thus dependent on a
careful exploration of symptoms. Several aspects help to discrimi-
nate delusions or hallucinations from typical OCS to ensure valid
and reliable diagnosis (see Table 1).

PATHOGENIC CONCEPTS
In attempts to explain the co-occurrence of OCS in schizophre-
nia, heterogeneous, partly overlapping but also contradicting
pathogenic concepts have been suggested.

The two rather common psychiatric syndromes could of
course develop independently, representing a random associa-
tion. Based on the above mentioned high prevalence rates and
diverse clinical presentation this cannot be the only explanation
for OCS in nearly every fourth patient with schizophrenia.

Early concepts assumed that patients with schizophre-
nia develop OCS as an attempt to reduce psychotic symp-
toms and thus, the presence of OCS was proposed to have
protective effects regarding psychotic disintegration, based
on single-case analyses or small case series (Stengel, 1945;
Dowling et al., 1995). Similarly, Guillem et al. described
negative correlations between specific OCS and the sever-
ity of psychotic disorganization in thinking and behavior,
proposing compensating mechanisms (Guillem et al., 2009).
However, in a broader perspective, subsequent research revealed
higher severity of psychotic symptoms and more functional
impairment if OCS were present (Cunill et al., 2009) (see
above).

Approaching the co-occurrence from the OCD spec-
trum, the concept of “schizotypic OCD” has been described
(Poyurovsky and Koran, 2005; Poyurovsky et al., 2008). This
concept assumes that primary OCD-patients present beliefs,
which can be classified on a spectrum between obsessions
and delusions emphasizing the similarities as being irra-
tional thoughts, the first with insight and the latter lacking
insight. In line with this concept, the category of “obses-
sions without insight” was integrated into the fourth edition
of the Diagnostic and Statistical Manual (DSM IV). OCD-
patients without insight might therefore represent a subgroup
with genetic, phenotypic and therapeutic vicinity to the
schizophrenia-like spectrum (Tumkaya et al., 2009; Catapano
et al., 2010).

Approaching the co-occurrence from the schizophrenia spec-
trum, a so-called “schizo-obsessive” subtype of psychosis has
been proposed, based on cross-sectional evaluations (Poyurovsky,
2013). This subtype has been suggested to comprise OCS in
addition to positive, negative and cognitive schizophrenia symp-
toms (Poyurovsky et al., 2012). Similar concepts have been
proposed by Hwang et al. (2000), Bottas et al. (2005), and
Reznik et al. (2001, 2005). Attempts to validate the “schizo-
obsessive” subtype on a neurobiological level have been incon-
sistent. Some studies proposed specific neurological features
(Sevincok et al., 2006; Poyurovsky et al., 2007b), cognitive deficits
(Lysaker et al., 2002, 2009) and even structural abnormalities
(Gross-Isseroff et al., 2003).

The mentioned high prevalence rates of OCS in the ARMS,
led to the perception that specific OCS could be a part of
the basic symptom cluster in the early course of schizophrenia
(Sullwold and Huber, 1986; Ebel et al., 1989).

The summarized pathogenic concepts mirror the high degree
of heterogeneity within the comorbid sample. They are currently
discussed and the number of publications on this topic nearly
doubles every year.
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Table 1 | Identification of obsessive-compulsive symptoms in schizophrenia.

Insight-criterion Patients suffering from OCD typically fulfill three symptom characteristics: they attribute the obsessions, impulsive
symptoms and compulsions to their own thinking, declare with insight their unreasonableness and show some
degree of resistance against them. In particular the first two properties allow a differentiation from hallucinations
and delusions. Ruminations or stereotypic ego-dystonic cognitions with direct relation to the contents to psychotic
thinking should not be diagnosed as obsessions.

OCS not solely related to the
psychotic content

Cleaning or checking behavior should be diagnosed as compulsions only if it is accompanied by typical obsessions
and not, if the patient currently suffers from delusions of contamination, intoxication or infection.

Re-evaluation of OCS after
remission of psychotic symptoms

If first manifestation of OCS occurs simultaneously with the first psychotic exacerbation, the final decision on a
valid comorbid condition should be postponed until the remission of psychotic symptoms.

Differentiation from catatonic
symptoms

Repetitive behavior or stereotypic actions should carefully be discriminated from catatonic symptoms most
importantly in patients with so-called “manieristic catatonia.”

Obsessions presented as
pseudohallucinations

A subgroups of OCS patients, who experience their obsessions as extremely aversive and burdening may try to
distance themselves by using expressions such as “voices” or “foreign thought content”, but in most cases these
phenomena can be characterized as pseudohallucinations.

SGA-induced OCS Patients without a previous history of OCS might develop these phenomena during antipsychotic treatment. This
constellation hints toward the unfavorable effect of second-onset OCS induced by SGAs.

Clinical aspects that have to be considered when differentiating between psychotic symptoms (delusions, hallucinations) and OCS.

UNDERLYING NEUROBIOLOGICAL MECHANISMS AND
ENVIRONMENTAL FACTORS
Neurobiology
While the described explanatory concepts mainly follow a clin-
ical or psychopathological rationale, several investigations tried
to improve the pathogenic understanding from a neurobiological
perspective. So far, most emphasis has been given to a mul-
timodal neurocognitive characterization. Preliminary investiga-
tions of neurological soft signs (Sevincok et al., 2006; Poyurovsky
et al., 2007b) and neuroimaging techniques (Gross-Isseroff et al.,
2003) need replication.

For primary OCD recent reviews of published literature
reported specific cognitive deficits especially in the areas of cog-
nitive shifting abilities, inhibitory control and the application of
effective planning strategies (Kuelz et al., 2004). Based on these
findings, the question arose whether OCS in schizophrenia might
also be linked to additional cognitive impairment in these OCD-
related domains (Lysaker and Whitney, 2009). Subsequently, sev-
eral authors tried to differentiate schizophrenia samples with vs.
without comorbid OCS on the basis of their neuropsychological
performance. Findings have been contradicting. Whereas some
investigations did not find any significant differences (Hermesh
et al., 2003; Whitney et al., 2004; Öngür and Goff, 2005; Tumkaya
et al., 2009; Tiryaki and Ozkorumak, 2010; Achim et al., 2011;
Meijer et al., 2013), others even suggested that OCS may be asso-
ciated with better cognitive abilities (Lee et al., 2009; Borkowska
et al., 2013), especially in the prodromal states of schizophrenia
(Van Dael et al., 2011; Fontenelle et al., 2012; Hur et al., 2012;
Zink et al., under review). Most results, however, showed more
pronounced deficits in the described domains of executive func-
tioning (Hwang et al., 2000; Lysaker et al., 2002, 2009), cognitive
flexibility (Kumbhani et al., 2010; Patel et al., 2010), and also
delayed visual memory (Berman et al., 1998; Schirmbeck et al.,
2011).

In a recent longitudinal assessment, Lysaker et al. prospec-
tively analyzed executive functioning and reported that deficits
were linked to greater concurrent and prospective self-report
of OCS among schizophrenia patients (Lysaker et al., 2009). A
comprehensive prospective investigation by Schirmbeck et al.
explicitly included OCD-related cognitive domains in their anal-
ysis (Kuelz et al., 2004; Rajender et al., 2011). Over a period of 12
months schizophrenia patients with comorbid OCS showed sig-
nificant pronounced deficits with increasing effect sizes regarding
cognitive flexibility, visuo-spatial perception, and visual mem-
ory. Performance in these domains correlated with OCS severity
(Schirmbeck et al., 2012b).

Based on these findings and with respect to possible causal
pathways, it has been proposed that pronounced cognitive deficits
reflect an underlying neurobiological risk factor for schizophrenia
patients to develop OCS and mirror at least partially overlap-
ping neurobiological mechanisms with OCD. In order to further
substantiate this hypothesis neurobiological links that explain the
pronounced deficits in the comorbid sample should be iden-
tified. Therefore, research should focus on candidate regions,
which have been described in primary OCD, such as increased
activation-levels in the orbitofrontal cortex (Whiteside et al.,
2004; Friedlander and Desrocher, 2006)using fMRI approaches.

Regarding neurotransmission, current pathogenic theories of
OCD assume a central serotonergic dysfunction in a network
comprising cortical, striatal and thalamic centers (Pogarell et al.,
2003). Corresponding evidence is provided by the therapeu-
tic effects of selective serotonin reuptake inhibitors (SSRIs) and
cognitive behavioral therapy (CBT) in OCD (Linden, 2006;
Saxena et al., 2009). In addition, neuroimaging studies with
structural and functional methods confirmed alterations in the
suggested network (Friedlander and Desrocher, 2006; Menzies
et al., 2008; Kwon et al., 2009a). Based on these findings it has
been assumed that the strong serotonergic antagonism of CLZ
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(Coward, 1992; Meltzer and Huang, 2008; Meltzer, 2012) and
OLZ (Duggan et al., 2000) constitute a pathogenic mechanism in
the development of second-onset OCS in schizophrenia (for more
detail see section Epidemiological evidence and Pharmacological
evidence). However, apart from serotonergic dysfunctions, alter-
ations in dopaminergic activity (Van der Wee et al., 2004) and in
glutamatergic neurotransmission, have also been related to OCD:
Support for the involvement of glutamate in the development of
OCD comes from animal models (Joel, 2006; Albelda et al., 2010;
Yang and Lu, 2011), human MR spectroscopy (Whiteside et al.,
2006; Starck et al., 2008), treatment approaches addressing the
glutamatergic system (Coric et al., 2005; Poyurovsky et al., 2005,
2010; Lafleur et al., 2006; Pittenger et al., 2006) and the following
results from genetic investigations.

Genetic disposition
Previous family and twin studies suggest a strong heritability
of OCD (Nicolini et al., 2009; Pauls, 2010). In contrast, results
from genetic association studies with a primary focus on candi-
date genes of serotonergic and dopaminergic neurotransmission
were rather ambiguous. So far, only one linkage finding has con-
sistently been replicated, which refers to single nucleotide poly-
morphisms (SNP) in the gene SLC1A1 (solute carrier family) on
chromosome 9p24, encoding the neuronal glutamate transporter
EAAC1 (excitatory amino acid carrier 1) (Veenstra-VanderWeele
et al., 2001; Arnold et al., 2006; Dickel et al., 2006; Stewart et al.,
2007; Shugart et al., 2009; Wendland et al., 2009).

Possible neurogenetic disposition to develop OCS during the
course of psychotic illness has just recently become a focus of
interest. Research within this field is still scarce and needs further
exploration. Progress has been achieved within a specific sub-
group, suggesting a genetic disposition to develop OCS during
SGA treatment (see section Genetic disposition).

Environmental factors
As briefly mentioned above, the majority of comorbid patients
reports large fluctuation of OCS severity as either remitting,
de novo development or intermittent OCS. However, the effect
of environmental factors on onset or symptom severity as well
as on interactions with other psychopathological processes has
scarcely been investigated. Thus, the small number of longitu-
dinal studies leaves important aspects unresolved. These include
the following questions: (1) Do dynamic OCS and psychotic
symptoms follow a parallel course? (2) Does a causal interac-
tion of symptom variability exist? (3) Does experienced stress,
life-events or antipsychotic medication influence the severity and
course of OCS? Detailed follow-up analyses of the potential influ-
ence of environmental factors are therefore needed. Patients,
who recently reported changes in their OCS should be investi-
gated by means of an ‘Experience Sampling Method’ (ESM). This
approach captures the reactivity to environmental factors and
the course of symptoms in detail on a day to day basis, in real
life situations, which allows to resolve symptom interactions and
contextual triggers of variability. Results could provide the basis
for individualized interventions, including adjusted modules of
cognitive behavioral therapy (CBT).

Inconsistent results regarding associated neurobiological
and environmental factors are most probably a consequence

of the reported heterogeneity within the comorbid sample.
Furthermore, methodological concerns such as the restriction to
mainly cross-sectional evaluations and a lack of power due to
small sample sizes add to inconclusive findings.

Thus, progress in pathogenic understanding seems most
likely if future research focuses on the detailed characteriza-
tion of homogeneous subsamples. One recent very promising
approach has been achieved within the subgroup of patients
who develop secondary OCS during SGA treatment. The fol-
lowing section summarizes evidence supporting the hypothe-
sis of SGA-induced OCS and introduces possible genetic risk
factors.

OCS INDUCED BY SECOND-GENERATION ANTIPSYCHOTICS
The subgroup of patients who report first onset or aggravation of
OCS after psychotic manifestation and treatment initiation with
SGAs has been briefly mentioned above. The simple assessment of
the order of three important events (first psychotic manifestation,
start of antipsychotic treatment and subsequent onset of OCS)
helps to define this subgroup (Lykouras et al., 2003; Schirmbeck
and Zink, 2012; Schirmbeck et al., 2013). The observation that
schizophrenia patients develop OCS after psychotic manifesta-
tion and treatment initiation is mainly linked to SGAs and has
rarely been reported under first generation antipsychotics. Several
authors related this observation to the fact that SGAs carry the
important pharmacodynamic feature of balanced antidopamin-
ergic and antiserotonergic properties, which markedly exceed
the low affinity of first generation antipsychotics to serotonergic
receptors (Meltzer, 1995; Meltzer et al., 2003). In addition, differ-
ential effects on GABAergic and glutamatergic neurotransmission
have to be considered (Lopez-Gil et al., 2010).

The hypothesis of SGA-induced OCS as a side-effect (Lykouras
et al., 2003; Kwon et al., 2009b) first arose after the pioneer
observations of Baker et al. (1992) and de Haan et al. (1999).
Since then several studies show a clear association and possi-
ble causal interaction between SGA-treatment, most importantly
CLZ (Schirmbeck and Zink, 2012), and the de novo occurrence of
OCS (de Haan et al., 2004; Reznik et al., 2004; Kwon et al., 2009b;
Schirmbeck et al., 2011).

Without a doubt, CLZ must be considered an indispensable
part of the antipsychotic armament (Joober and Boksa, 2010;
Kang and Simpson, 2010; Kane, 2011; Meltzer, 2012), especially
in cases with otherwise treatment resistant psychoses (Kane et al.,
1988). Several investigations (Asenjo Lobos et al., 2010) includ-
ing the CATIE-study (McEvoy et al., 2006) have demonstrated
its superior antipsychotic efficacy (Gupta and Daniel, 1995; Still
et al., 1996; Kelly et al., 2003). Therefore, CLZ is considered the
antipsychotic of first choice in treatment resistant schizophrenia.
In addition, the substance demonstrates important anti-suicidal
effects resulting in low mortality rates of CLZ-treated schizophre-
nia patients (Tiihonen et al., 2009). However, within a variety
of other important side effects (Asenjo Lobos et al., 2010), the
de novo occurrence or exacerbation of OCS under antipsychotic
treatment has most often been observed with CLZ (Lykouras
et al., 2003; Reznik et al., 2004; Schirmbeck and Zink, 2012).
Due to a lack of controlled clinical trials, proposed causal inter-
relations cannot be confirmed, according to the general criteria
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suggested by Bradford Hill (2011). Nevertheless, several epi-
demiological (Epidemiological evidence) and pharmacological
(Pharmacological evidence) arguments support this assumption
(for summary see Table 2).

EPIDEMIOLOGICAL EVIDENCE
Increase of OCS prevalence after market approval of SGAs
Only few investigations reported comorbidity rates in sam-
ples treated with first generation antipsychotics (Fenton and
McGlashan, 1986; Berman et al., 1995a,b; Nolfe et al., 2010). After
market approval of SGAs, most importantly CLZ, in the 1970s in
Europe and the late 1980s in the USA (Hippius, 1989; Kang and
Simpson, 2010), prevalence estimations markedly rose. Although
a potential publication bias and increased general awareness of
this topic needs to be considered, these data provide a first indirect
hint toward a possible interrelation.

Higher OCS prevalence during the chronic course of schizophrenia
As mentioned, prevalence estimations on OCS and OCD in
ARMS and first episode samples clearly vary (see Figure 1 and
section Onset of OCS). However, when compared to established
rates of 12% (OCD) and 25% (OCS) in chronic schizophrenia,
they appear to be significantly smaller. The higher rates in the later
stages of the disease might partly be attributed to antipsychotic
treatment.

Onset of de novo OCS during antipsychotic treatment or marked
aggravation
Several case reports and cases series, as well as systematic evalua-
tions describe the de novo emergence of OCS during the treatment
with atypical antipsychotics, most importantly CLZ (Schirmbeck
and Zink, 2012). Poyurovski et al. estimated that up to 70%
of schizophrenia patients treated with mainly antiserotonergic
SGAs such as CLZ, OLZ or risperidone develop secondary OCS
(Poyurovsky et al., 2004), while Lykouras et al. reviewed pub-
lished data and even reported de novo OCS in 77% of CLZ
treated patients (Lykouras et al., 2003). Independent studies
reported high proportions of SGA-induced OCS within samples

of comorbid patients: 25 of 28 (89%) (Schirmbeck et al., 2011),
29 of 39 (74%) (Lin et al., 2006) and 23 of 26 (88%) (Lim et al.,
2007). Furthermore, retrospective assessments of the individual
disease histories show that most patients experience the onset
of OCS after first manifestation of psychosis and the start with
SGA-treatment (Schirmbeck et al., 2012a) (Figure 3).

PHARMACOLOGICAL EVIDENCE
A variety of studies contribute to the assumption that antisero-
tonergic SGAs have pro-obsessive effects.

Higher prevalence of OCS in samples treated with CLZ
The risk for comorbid OCS markedly differs if patients are strat-
ified according to their mode of antipsychotic treatment. As

FIGURE 3 | In this sample of 44 comorbid patients the survival-curve

shows the events “start of SGA treatment” and “first onset of OCS”

on an individual basis related to the first manifestation of psychosis.

The longitudinal course of OCS shows a high degree of variability and is not
depicted here. The graphs shows that in all but 7 cases OCS developed
subsequently to psychosis and the vast majority of patients reported OCS
onset after treatment-start with SGAs (Schirmbeck et al., 2012a).

Table 2 | Arguments supporting SGA-induction of OCS.

Epidemiology The prevalence rates of OCS in schizophrenia increased after market approval of clozapine (Schirmbeck and Zink, 2012).
The comorbidity rates in later disease stages are higher than at first manifestation of schizophrenia (see Figure 1).
Schizophrenia patients with comorbid OCS are most frequently found to be treated with clozapine. Vice versa high OCS prevalence
in patients treated with clozapine (Poyurovsky et al., 2004; Lim et al., 2007; Poyurovsky et al., 2007a; Schirmbeck et al., 2011).

Pharmacology The type of antipsychotic treatment is associated with the risk for OCS: Marked difference between samples treated with first
generation antipsychotics or mainly dopaminergic SGAs (such as aripiprazole or amisulpride) compared to clozapine (Ertugrul et al.,
2005; Sa et al., 2009; Schirmbeck et al., 2011).
OCS manifest as a unfavorable drug effect de novo during treatment with potent antiserotonergic SGAs such as clozapine (see
Figure 3) (Schirmbeck and Zink, 2012).
The severity of OCS is positively correlated with duration, dosage and serum levels of clozapine treatment (Lin et al., 2006;
Schirmbeck et al., 2011).
The OCS severity is found stable over time in patients under stable clozapine treatment (Schirmbeck et al., 2013).
The severity of OCS improves after reduction of clozapine dosage to minimally sufficient levels (due to augmentation or
combination) (Rocha and Hara, 2006; Zink et al., 2006; Englisch et al., 2009).

Summary of epidemiological and pharmacological arguments supporting the assumption that OCS can be induced or at least markedly aggravated by SGA-treatment

as an unfavorable side effect (Schirmbeck et al., 2012b).
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reported, high prevalence rates in CLZ-treated patients (Ertugrul
et al., 2005), contrast with low rates during treatment with first
generation antipsychotics, for instance, haloperidol (Sa et al.,
2009) or other SGAs. Differences in pharmacodynamic prop-
erties, in particular regarding inherent serotonergic blockade,
monoaminergic reuptake inhibition or even partial serotoner-
gic agonism might explain these diverging findings (Shapiro
et al., 2003; Meltzer and Huang, 2008; Meltzer and Sumiyoshi,
2008; Remington, 2008; Lopez-Gil et al., 2010). Interestingly,
Aripiprazole (APZ), a partial dopaminergic and serotonergic ago-
nist, was associated with an inherent anti-obsessive effect in
schizophrenia patients with OCS (Connor et al., 2005; Zink et al.,
2006; Chang et al., 2008; Englisch and Zink, 2008; Englisch et al.,
2009), quite similar to amisulpride (AMS), a dopamine D3/D2
receptor antagonist (Kim et al., 2008; Pani et al., 2008). A compar-
ison of schizophrenia patients under antipsychotic monotherapy
with either mainly antiserotonergic SGAs (CLZ or OLZ; group I)
or mainly dopaminergic SGAs (AMS or APZ; group II) revealed
that more than 70% of group-I-patients suffered from OCS while
less than 10% of patients in group-II reported OCS (Schirmbeck
et al., 2011). Vice versa, a stratification of schizophrenia patients
according to presence or absence of comorbid OCS revealed that
77% of comorbid patients were treated with clozapine while
only 36% of schizophrenia patients without OCS received this
substance (Lim et al., 2007). These results clearly suggest an asso-
ciation between CLZ treatment and comorbid OCS. However, a
possible confounding effect due to the selection of specific SGAs
for specific subgroups of patients has to be considered.

Noteworthy, in some cases an alleviation of OCS severity
after the addition of CLZ (Peters and de, 2009), an increase
in CLZ dosage (Lykouras et al., 2003) or start with OLZ treat-
ment (van Nimwegen et al., 2008; Poyurovsky, 2013) has been
observed. Regarding these contradicting findings, some impor-
tant aspects should be discussed. One explanation relates to the
above mentioned diagnostic difficulties to differentiation between
OCS and delusional or catatonic symptoms (Table 1). Patients
with schizophrenia, who show obsessive ruminations or stereo-
typic thoughts during acute psychosis or repetitive ritualized
behavior clearly related to the patient’s primary psychotic con-
dition might indeed benefit from treatment with CLZ. Thus,
careful diagnostic evaluations are necessary. Furthermore, anti-
obsessive effects of antipsychotics have also been reported in
primary OCD, including OLZ, especially in cases with treatment-
resistance to serotonergic antidepressants (Bloch et al., 2006;
Bandelow et al., 2008; Dold et al., 2011; Muscatello et al., 2011).
Nevertheless, even in treatment-resistant OCD current treat-
ment guidelines do not recommend CLZ as an augmentation
strategy.

Associations between the duration of treatment and OCS severity
Correlations between pharmacological variables and OCS pro-
vide further support for proposed causal interactions. Lin et al.
(2006) compared CLZ-treated patients with and without comor-
bid OCS and found significantly longer CLZ treatment periods
for the comorbid group, but no difference in duration of illness.
Schirmbeck et al. reported a positive correlation between OCS
severity and duration of CLZ-treatment (Schirmbeck et al., 2011).

Accordingly, de Haan et al. reported this association for OLZ (de
Haan et al., 2002).

ASSOCIATION BETWEEN DOSAGE AND BLOOD SERUM LEVELS AND
OCS SEVERITY
Several authors demonstrated positive correlations between dose
or serum levels of CLZ and severity of OCS (Lin et al., 2006;
Reznik et al., 2004; Mukhopadhaya et al., 2009; Schirmbeck
et al., 2011). Similarly, a reduction of daily CLZ-dosage, for
instance through the combinations with another SGA, such as
APZ, resulted in an alleviation of OCS severity (Rocha and Hara,
2006; Zink et al., 2006; Englisch et al., 2009). This observed effect
might represent both a reduction of the suggested dose-related
side effect of CLZ and/or a consequence of inherent anti-obsessive
effects of APZ due to its partial dopaminergic and serotoner-
gic agonism. The latter assumption was supported by a placebo
controlled randomized trial, which showed reduced OCS severity
after combination with APZ, but unchanged CLZ dose during the
course of the study (Chang et al., 2008).

Differential effects of SGAs on the course of OCS
A recent longitudinal study revealed differential effects of antipsy-
chotic agents on comorbid OCS. Within a 12 months obser-
vational period, changes in YBOCS scores significantly differed
between two pharmacologically diverse groups (completer anal-
ysis: p = 0.006; full sample analysis: p = 0.007). Whereas the
CLZ/OLZ group showed persistently high OCS severity over time,
the AMS/APZ group reported further decrease of the initially low
YBOCS-scores (Schirmbeck et al., 2013).

In conclusion, reported data show strong associations between
comorbid OCS in schizophrenia and mainly antiserotonergic
SGAs, most importantly CLZ. The published epidemiologi-
cal and pharmacological evidence hint toward causal interac-
tions, suggesting CLZ’s strong inherent antiserotonergic proper-
ties (Steingard et al., 1993; Joober and Boksa, 2010; Kang and
Simpson, 2010), most importantly the antagonism at 5-HT1C,
5-HT2A and 5HT2C receptors (Coward, 1992; Meltzer, 1994;
Meltzer and Huang, 2008) as an relevant underlying mechanism.
Low affinities to dopamine receptors result in a very small ratio of
dopaminergic/serotonergic receptor blockade, which largely dif-
fers from SGAs such as AMS or APZ (Scatton et al., 1997; Shapiro
et al., 2003; Correll, 2008). In addition, reciprocal interactions
of dopaminergic and serotonergic neurotransmission with glu-
tamatergic and GABAergic functions might play an important
role (Lopez-Gil et al., 2010). Thus, pharmacotherapy constitutes
a relevant environmental factor, which might exert pro-obsessive
effects in schizophrenia patients. Within a broader perspective,
additional questions arise concerning predisposing factors. These
might comprise patient-inherent characteristics (neurocognitive
profile, the subtype of psychosis, the stage of the illness, any kind
of affective comorbidity or a family history for anxiety disorders)
and the individual genetic disposition.

GENETIC DISPOSITION
Associations with the gene SLC1A1 have consistently been repli-
cated in primary OCD patients. Based on these findings a
South Korean research group investigated the genetic risk to
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develop second-onset OCS during treatment with SGAs (Kwon
et al., 2009b). Kwon et al evaluated associations between spe-
cific SNPs of the candidate gene SLC1A1 and SGA-induced OCS
and showed strong associations with the A/C/G dominant haplo-
type rs2228622 / rs3780413 / rs37801412. The odds ratio of 3.96
indicated an almost 4 times higher likelihood for patients, who
carried this A/C/G haplotype to suffer from SGA-induced OCS.
Neither the gene SLC1A1 nor its chromosomal region has been
associated with vulnerability to schizophrenia spectrum disorders
(Deng et al., 2007). The same group further described a genetic
interaction of the SLC1A1 polymorphism with variants in the
gene DLGAP3 (disks large associated protein 3) and a link to SGA-
induced OCS (Ryu et al., 2011). In addition, Cai et al reported
on an interaction of SNPs in SLC1A1 and the type 2B subunit
of the N-methyl-D-aspartate receptor gene (GRIN2B), as well as
interactions with the YBOCS score in Chinese patients (Cai et al.,
2013).

A replication approach of the results obtained by Kwon et al.
(2009b) was conducted in 103 schizophrenia patients of European
descent treated with SGAs. However, the described finding could
not be reproduced, neither in single marker, nor in haplotype
analyses. Because no genetic associations between SLC1A1 poly-
morphisms and OCS were found within the power limits of
this study, much larger samples seem necessary to untangle the
interplay of pharmacological and genetic risk factors for OCS
in schizophrenia (Schirmbeck et al., 2012a). The brain derived
neurotrophic factor (BDNF) was recently proposed as a third can-
didate gene, because the Val66Met polymorphism was found to
be associated with OCS in schizophrenia (Hashim et al., 2012).
So far, independent replication approaches regarding BDNF,
DLGAP3 and GRIN2B have not been conducted.

RESEARCH PERSPECTIVES
GxEI ON A SECOND LEVEL OF COMPLEXITY
GxEIs are core elements within current theories of schizophrenia
(van Os and Kapur, 2009; van Os et al., 2008, 2010), depres-
sion (Keers and Uher, 2012), anxiety disorders (Gregory et al.,
2008; Nugent et al., 2011) and OCD (Nicolini et al., 2009; Pauls,
2010). High rates of bi-directional comorbidities lead to the obvi-
ous question, if these co-occurrences could also be explained by
common GxEIs. One example of this experimental psychopathol-
ogy has been illustrated by the described investigation of the risk
to develop secondary OCS during treatment with SGAs. Here,
the environmental factor is represented in the pharmacological
treatment of schizophrenia with pro-obsessive SGAs.

As stated in chapter 4, SGAs increase the risk for secondary
OCS via a pharmacodynamic mechanism. Independently, a set
of SNPs within the gene SLC1A1 seem to predispose to OCD.
However, the initially reported high odds ratio by Kwon et al.
(2009b) could not be replicated in a similar study performed with
European patients (Schirmbeck et al., 2012a). Thus, the general
genetic background of a patient (Asian or European) might be of
importance when a specific SGA (balance between dopaminer-
gic and serotonerigic blockade) is introduced as the treatment of
choice. Furthermore, gene-x-gene interactions (SNPs in SLC1A1,
BDNF, DLGAP3, and GRIN2B) have been suggested as further
influencing factors (Ryu et al., 2011; Hashim et al., 2012) and

should be considered in forthcoming studies. It is an important
progress in recent neurobiological research to investigate how
the interaction of these factors might influence the propensity of
schizophrenia patients to suffer from comorbid OCS when being
treated with SGAs.

Future progress might depend on two aspects: First, well
defined homogeneous clinical cohorts should be defined to
reduce the number of possible confounding causal factors to a
minimum. Considering the order of symptom onset, the clin-
ical course and the applied treatment for sample characteriza-
tion might be helpful. Second, much larger cohorts have to be
recruited in multicenter studies to investigate possible genetic
risk constellations. If power analyses would be based on the
much smaller genetic-risk estimations for the gene SLC1A1 in the
European sample (Schirmbeck et al., 2012a), group size calcula-
tions result in about five thousand participants, which would be
necessary for replication.

Besides pharmacological treatment as a relevant factor, fur-
ther non-pharmacological environmental factors could play an
important role in the development of OCS in schizophrenia.
Such factors might include, psychosocial stress induced by critical
life events, interpersonal factors, changes of the vocational situ-
ation or the present state of general physical health. In addition,
the reciprocal interaction and possible causal directions between
OCS and psychotic positive, negative and cognitive symptoms
of schizophrenia must be unraveled and considered. One impor-
tant tool to unravel the interdependence of these variables are the
above described experience sampling approaches. These allow to
investigate the individual symptom variability in real life situa-
tions on a day to day basis.

Collected data will help to identify the time course of
symptom-changes and its relation to important environmental
factors. These studies are currently planned and will hopefully
result in an improved understanding of etiological factors influ-
encing the course of OCS in schizophrenia. Within this context it
will also be desirable to collect DNA samples in order to analyse
possible predisposing effects of the above mentioned polymor-
phisms to experience the development or aggravation of OCS
after being exposed to stressful life events. Thus, combining expe-
rience sampling and genetic characterizations might markedly
improve our insight into GxEI.

THERAPY
At present, pharmacological treatment interventions, most
importantly combination as well as augmentation strategies, have
been suggested to improve OCS in the highly impaired comorbid
group (Schirmbeck et al., 2013). To address possible pro-obsessive
effects of predominantly anti-serotonergic SGAs, the add-on of
mainly dopaminergic SGAs such as AMS and APZ has been pro-
posed (Connor et al., 2005; Zink et al., 2006; Englisch and Zink,
2008; Kim et al., 2008; Yang et al., 2008; Englisch et al., 2009;
Muscatello et al., 2011). In addition, the augmentation with sero-
tonergic antidepressants has been evaluated, for example with the
tricyclic antidepressant clomipramine (Berman et al., 1995b) or
with SSRIs, most often fluvoxamine (Poyurovsky et al., 1999b;
Reznik and Sirota, 2000; Hwang et al., 2009). Results of these trials
have been inconsistent with some studies failing to observe the
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Table 3 | Therapeutic approaches.

Early recognition
and monitoring

Definition of at-risk-constellations.
Monitoring of subclinical levels of OCS or beginning cognitive impairment using sensitive sets of neurocognitive tests
(Schirmbeck et al., 2011, 2012b).

Polypharmacy Augmentation with antidepressants: Clomipramine, fluvoxamine and other SSRIs. [Level of evidence: RCTs, CS, CR] (Berman
et al., 1995b; Poyurovsky et al., 1999b; Reznik and Sirota, 2000).
Caveat: Additive (anticholinergic) side effects and pharmacokinetic interactions
Augmentation with mood stabilizers (lamotrigine, valproic acid) aiming at a reduction of SGA-dosage to minimally sufficient levels
[Level of evidence: CS, CR] (Zink et al., 2007; Poyurovsky et al., 2010; Rodriguez et al., 2010; Canas et al., 2012).
Combination of pro-obsessive SGAs with neutral or anti-obsessive SGAs (amisulpride, aripiprazole) in order to reduce the
clozapine-dosage to minimally sufficient levels [Level of evidence: RCT, CS, CR].
(Connor et al., 2005; Zink et al., 2006; Englisch and Zink, 2008; Kim et al., 2008; Yang et al., 2008; Englisch et al., 2009;
Muscatello et al., 2011)

Psychotherapy Cognitive behavioral therapy involving exposure and response prevention [Level of evidence: CS, CR] (Schirmbeck and Zink, 2012;
Tundo et al., 2012).

Summary of therapeutic approaches for schizophrenia patients with comorbid OCS or OCD. The current level of empirical evidence is indicated in square brackets.

Abbreviations: CR, case report; CS, case series; RCT, randomized controlled trial.

intended effects of OCS reduction. Furthermore, additive anti-
cholinergic side effects and pharmacokinetic interactions have
to be considered. Finally, first promising results were published
reporting on the augmentation with mood stabilizers such as val-
proic acid (Zink et al., 2007; Canas et al., 2012) or lamotrigine
(Poyurovsky et al., 2010; Rodriguez et al., 2010).

So far, very limited data exists on the efficacy and safety of cog-
nitive behavioral therapy (CBT) for this group of patients. The
small number of case reports and case series can hardly be rec-
onciled with the fact, that CBT including exposure and response
prevention is considered treatment of first choice for primary
OCD with remarkably high effect sizes (Gava et al., 2007; Koran
et al., 2007; Rosa-Alcazar et al., 2008; Kuelz and Voderholzer,
2011). With one exception, currently available CBT manuals for
OCD do not provide guidelines for the treatment of OCS in
schizophrenia (Emmelkamp and van Oppen, 2000; Lakatos and
Reinecker, 2007; Oelkers et al., 2007; Foerstner et al., 2011).
However, a summary of the published reports on 30 comor-
bid patients (Schirmbeck et al., 2013), who were treated with
CBT including exposure elements or just exposure and response
prevention alone showed favorable outcome measures with sig-
nificant reduction of OCD severity in 24 patients. In the included
case series by Tundo et al. (2012) 52% of investigated individuals
were classified as “much or very much” improved, 33% as respon-
ders and 19% as remitters. The available evidence of CBT for OCS

in schizophrenia is certainly limited by the small case numbers
and further controlled clinical trials are needed. However, despite
adverse clinical outcomes in 10%, and a total dropout rate of
20%, preliminary results suggest meaningful and marked reduc-
tion of OCS severity in 80% of participants (Schirmbeck et al.,
2013). Table 3 summarizes possible pharmacological and non-
pharmacological approaches and current evidence of empirical
support.

CONCLUSIONS
The summarized data substantiate the conclusions that OCS is
a very frequent and relevant comorbid burden in schizophre-
nia. The clinical presentation of the co-occurrence is very diverse,
suggesting different subgroups with heterogeneous pathogenic
mechanisms. First insight into GxEI has been achieved for the
subgroup of patients who experienced second-onset OCS during
treatment with SGAs. In the future, a broader set of environ-
mental variables, including non-pharmacological factors, and
further genetic risk-constellations should be analysed, starting
in the ARMS. In perspective, this will not only improve the
risk prediction regarding comorbid OCS, but also early recog-
nition and monitoring of emerging symptoms. Research within
this field will further provide the individual framework of predis-
posing and disease-provoking factors with immediate impact for
pharmacological and CBT approaches.
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The introduction of atypical antipsychotic drugs (AAPDs), or second-generation
antipsychotics, with clozapine as the prototype, has largely changed the clinicians’
attitudes toward the treatment of mental illnesses including, but not limited to
schizophrenia. Initially, there was optimism that AAPDs would be superior over typical
antipsychotic drugs (TAPDs), or first-generation antipsychotic drugs, in terms of efficacy
in various phenomenological aspects, including cognitive impairment, and less likelihood
of causing adverse events. However, these views have been partly challenged by results
from recent meta-analysis studies. Specifically, cardio-metabolic side effects of AAPDs, in
spite of a relative paucity of extrapyramidal symptoms, may sometimes limit the use of
these agents. Accordingly, attempts have been made to develop newer compounds, e.g.,
lurasidone, with the aim of increasing efficacy and tolerability. Further investigations are
warranted to determine if a larger proportion of patients will be benefitted by treatment
with AAPDs compared to TAPDs in terms of remission and recovery.

Keywords: antipsychotic drugs, second generation, schizophrenia, effectiveness, side effects, remission

INTRODUCTION
Antipsychotic drugs have been considered to represent a series
of compounds to treat specific symptoms of schizophrenia, i.e.,
positive (delusions, hallucinations, disorganized thoughts, and
etc.) and negative (blunt affect, avolition, social withdrawal, and
etc.) symptoms. Conventional, or “typical,” antipsychotic drugs
(TAPDs) exert antipsychotic effects at doses that cause extrapyra-
midal motor side effects due to dopamine (DA)-D2 receptor
blocking properties. Selective actions on psychotic symptoms,
with less chance to cause extrapyramidal side effects (EPS), have
become possible with the advent of newer class agents, so-called
“atypical antipsychotic drugs (AAPDs)” (Meltzer, 1991a). In
addition to positive symptoms of schizophrenia, which antipsy-
chotic drugs were initially expected to ameliorate, there is a recent
trend to use AAPDs for other psychiatric diseases, e.g., mood
disorders, as discussed below.

The development of antipsychotic drugs has been cou-
pled with more intricate theories on the pathophysiology of
schizophrenia (Meltzer, 1991b). For example, hyperactivity of DA
neurons projecting to the limbic regions, e.g., nucleus accum-
bens and amygdala, has been shown to be associated with positive
symptoms, while a decrease in DA activity in the prefrontal cortex
has been considered to cause negative symptoms (Seeman et al.,
2006). On the other hand, phencyclidine (PCP), an antagonist at
the N-methyl-D-aspartate (NMDA) type glutamate receptor, has
been found to produce schizophrenia-like symptoms. This obser-
vation led to the glutamate hypothesis of the disease, which is
proposed to be linked to the DA hypothesis (Toru et al., 1994).

This article aims to provide theoretical issues on AAPDs in
relation to efficacy for treating psychotic symptoms and cog-
nition, as well as safety and tolerability. Specifically, cognitive
benefits of lurasidone, a novel AAPD are a focus of this paper.

Based on previous discussions (Oliveira et al., 2009; Melnik et al.,
2010; Meltzer, 2013) and updated information on these issues, the
author present a hypothesis for future directions of therapeutics
of schizophrenia and related disorders.

HISTORY OF ANTIPSYCHOTIC DRUGS
The serendipitous discovery of the ability of chlorpromazine to
treat psychomotor excitation of schizophrenia confirmed the con-
cept that the illness is a medical entity related to brain chemistry
(Delay and Deniker, 1955) (Figure 1). The subsequent devel-
opment of haloperidol, also inhibiting psychomotor symptoms,
provided a clue to the pharmacological target shared by most
antipsychotic agents; the DA-D2 receptor (Seeman et al., 2006).
This property of TAPDs (Figure 2) is associated with the inci-
dence of motor dysfunction, e.g., parkinsonisms, akashisia, dys-
tonia and dyskinesia, as well as endocrinological derangements,
e.g., hyperprolactinemia (Sumiyoshi, 2008).

The search for improved medications for schizophrenia led to
the implementation of clozapine, the prototype of AAPDs (Kane
et al., 1988; Meltzer, 1989). Clozapine shows strong blocking
effects for serotonin (5-HT)-5-HT2A and DA-D4 receptors rela-
tive to D2 receptors, which is thought to underlie the ability of this
compound to ameliorate not only positive symptoms, but also
negative symptoms to some extent, without causing EPS (Meltzer
et al., 1989; Stockmeier et al., 1993; Sumiyoshi et al., 1995).

The experience with clozapine prompted the development of
a series of AAPDs with relatively potent 5-HT2A vs. D2 receptor
blocking effects, in an attempt to decrease the likelihood of EPS
and elevation of plasma prolactin (pPRL) levels. Consequently,
risperidone, olanzapine, quetiapine, aripiprazole, ziprasidone,
have been developed (Figure 3). In addition, paliperidone, an
active metabolite of risperidone, as well as lurasidone, asenapine
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FIGURE 1 | Historical overview of the development of antipsychotic

drugs.

FIGURE 2 | Representative typical (first generation) antipsychotic

drugs.

and iloperidone (in the USA), amisulpiride (in Europe), and per-
ospirone and blonanserin (in Japan), have enriched the choice of
AAPDs (Figure 4).

PHARMACOLOGY
The above AAPDs, except amisulpiride, a relatively selective
D2/D3 ligand, share a property of relatively high 5-HT2A vs. D2

receptor affinity (Meltzer et al., 1989; Stockmeier et al., 1993;
Sumiyoshi et al., 1995). Some of them, e.g., clozapine, olanza-
pine and quetiapine, also exhibit considerable affinities for D1,
histamine H1, adrenalin-α1, and muscarinic-M1, receptors, and
etc. (Meltzer et al., 2003; Newman-Tancredi and Kleven, 2011).
Pharmacologic profiles for representative AAPDs can be summa-
rized as eliciting relatively strong affinities for 5-HT1A, 5-HT2C

FIGURE 3 | Atypical (second generation) antipsychotic drugs widely

used.

FIGURE 4 | Atypical (second generation) antipsychotic drugs recently

developed.

and NA-α1 receptors, in addition to 5-HT2A and D2 receptors, as
indicated in Figure 5 (Newman-Tancredi and Kleven, 2011).

Other common pharmacologic features of AAPDs include
the ability to increase extracellular concentrations of DA and
acetylcholine in the prefrontal cortex, as measured by in vivo
microdialysis (Kuroki et al., 1998; Ichikawa et al., 2002). This
property has been associated with beneficial effects of these com-
pounds on negative symptoms and cognitive impairment (Kuroki
et al., 1998; Ichikawa et al., 2002; Meltzer et al., 2003). It should be
noted that the mechanisms of action of antipsychotic drugs were
largely derived from studies using animal models of behavioral
abnormalities, e.g., sensorimotor gating deficits (Swerdlow et al.,
1994).

EFFICACY
GENERAL VIEWS
A recent meta-analysis comparing AAPDs and TAPDs in the
treatment of chronic schizophrenia suggests the advantage of
clozapine, risperidone, olanzapine, and amisulpiride over TAPDs
(Leucht et al., 2009b) for overall efficacy. However, the effect
sizes were small (Leucht et al., 2009b), and specific side effects of
these agents, e.g., hyperprolactinemia for risperidone and weight
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FIGURE 5 | Receptor binding profiles of antipsychotic drugs. A larger pKi value represents a stronger affinity for the particular receptor. [Data from
Newman-Tancredi and Kleven (2011)].

gain/metabolic syndrome for olanzapine and clozapine, should be
considered (Zhang et al., 2013).

For first-episode patients, Zhang et al. (2013) conducted a
meta-analysis of acute, randomized trials with AAPDs vs. TAPDs
comparison. The results indicate AAPDs as a whole showed supe-
rior efficacy for negative symptoms, and that olanzapine and
amisulpiride specifically showed greater benefits than TAPDs
(Zhang et al., 2013).

COGNITION
Patients with schizophrenia demonstrate a 1–2.5 standard devi-
ation decline in performance on neuropsychological tests of a
range of cognitive domains, e.g., several types of memory, exec-
utive function (planning, flexibility of thinking and etc.), atten-
tion/information processing, verbal fluency, and motor function
(Harvey and Keefe, 1997; Keefe et al., 2004) (Figure 6). Cognitive
impairment in schizophrenia has been suggested to largely deter-
mine the outcome for patients (Green, 1996; Addington and
Addington, 2000; Green et al., 2000).

Although TAPDs, e.g., haloperidol, exert detrimental influence
on cognition in healthy subjects (Saeedi et al., 2006; Veselinovic
et al., 2013), there has been controversy about whether AAPDs
are more advantageous over TAPDs for its enhancement in
schizophrenia (Meltzer et al., 1999; Woodward et al., 2005;
Goldberg et al., 2007). Results of the large scale trials, such as
the Clinical Antipsychotic Trials of Intervention Effectiveness
(CATIE) study, suggest AAPDs may not elicit superiority over
TAPDs on cognition (Keefe et al., 2007). However, observations
in the CATIE trial should be interpreted with caution, as it did not
include a placebo arm, and the results were from chronic patients
(Lieberman et al., 2005).

Besides a trial with chronic schizophrenia (Weickert et al.,
2003), there has been little study on cognition in acute
schizophrenia that includes a placebo arm. Accordingly, we
recently reported a double-blind placebo-controlled trial to

FIGURE 6 | Cognitive impairment of schizophrenia, as evaluated by the

MATRICS Consensus Cognitive Battery–Japanese version. Patients with
schizophrenia (N = 30) demonstrate about a one-standard deviation decline
from the normative value in the performance on tests of several cognitive
domains. Data were obtained from Outpatient Clinic of University of
Toyama Hospital.

examine the effect of lurasidone, a novel AAPD (Meyer et al.,
2009; Sumiyoshi et al., 2013), on cognitive performance in
patients with acute psychosis, followed by a long-term extension
study (Sumiyoshi et al., 2013) (Figure 7).

In the acute study patients were randomized to receive treat-
ment with lurasidone 80 mg (N = 125), 160 mg (N = 121),
quetiapine 600 mg (N = 120), or placebo (N = 122). Subjects
who completed the 6-week treatment were eligible for the
double-blind extension study to receive a once-daily flexible
dose of lurasidone (40–160 mg/day; N = 151) or quetiapine
(200–800 mg/day; N = 85). Subjects who received placebo in
the acute study were administered lurasidone (40–160 mg/day;
N = 56). Cognitive performance was examined with the com-
puterized CogState battery (Pietrzak et al., 2009) at baseline
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FIGURE 7 | Schema of the protocol for the double-blind study of the

effect of lurasidone on cognitive function in patients with acute

schizophrenia (Sumiyoshi et al., 2013; 3rd Asian Congress on

Schizophrenia Research).

FIGURE 8 | UCSD Performance-based Skills Assessment—Brief version

(UPSA-B).

of the acute phase, and after 6, 19, and 32 weeks of treat-
ment. The battery consists of eight tasks that measure verbal
learning, speed of processing, attention/vigilance, visual work-
ing memory, visual memory, spatial working memory, reason-
ing and problem solving, and social cognition (Pietrzak et al.,
2009). The average of standardized Z-scores from each task was
used as the valid neurocognitive composite Z-score. Functional
capacity was evaluated with UCSD Performance-based Skills
Assessment—Brief version (UPSA-B) (Mausbach et al., 2011)
(Figure 8).

At 6 weeks, the change in the neurocognitive composite
Z-score did not differ significantly among all groups in intent-
to-treat population (N = 488). In the evaluable analysis sam-
ple (N = 267) according to pre-specific criteria, lurasidone, at
160 mg, was superior to both placebo (p < 0.05, d = 0.367) and
quetiapine XR (p < 0.05, d = 0.411) (Figure 9). Patients with
any of the active treatments elicited greater improvement in the
UPSA-B score than did those given placebo. In the 6-month
extension study, lurasidone, at flexible doses of 40–160 mg/day,

FIGURE 9 | Cognitive composite z-scores in double-blind 6-week acute

phase study of lurasidone (LUR) relative to placebo (PBO). Data are
based on LOCF analysis of CogState composite score (standardized
z-score) at week 6 in the evaluable-test sample set (N = 267). ∗P < 0.05,
ANCOVA adjusted for baseline and pooled center.

showed a significantly greater cognitive benefit compared to
quetiapine XR, at flexible doses of 200–800 mg/day, at week 32
(p < 0.01, d = 0.57). Mixed effects model analysis demonstrated
significant cross-sectional and longitudinal relationship between
the cognitive composite score and UPSA-B total score.

Data from the placebo-controlled acute phase study provide
robust evidence for the ability of lurasidone to enhance cognitive
function and functional capacity in patients with schizophrenia.
The relatively high rate of subjects who did not provide evaluable
data may be associated with awareness of illness, or insight, of
study participants (Harvey et al., 2013).

In spite of some beneficial effects, discussed above, no treat-
ments have been approved for treating cognitive or nega-
tive symptoms in schizophrenia. Therefore, further efforts are
required in this area.

MOOD DISORDERS
Recently, AAPDs have been used for a variety of psychiatric
conditions, in addition to schizophrenia, e.g., mood disorders,
although the mechanisms underlying their therapeutic effects
remain unknown. So far, the Food and Drug Administration
in the US has approved indications for olanzapine, quetiapine,
risperidone, aripiprazole, and asenapine to treat bipolar disor-
der, as shown in Table 1 (Bobo, 2013; Spielmans et al., 2013). As
for major depressive disorder, a recent meta-analysis (Spielmans
et al., 2013) indicates adjunctive treatment with AAPDs, e.g.,
aripiprazole, olanzapine/fluoxetine, quetiapine, or risperidone,
is effective in reducing depressive symptoms, with small-to-
moderate effect sizes. Olanzapine, quetiapine, and aripiprazole
are indicated to treat major depression (Spielmans et al., 2013),
as shown in Table 2.

OTHER DISEASES
Some AAPDs have been suggested to ameliorate part of
symptoms or caregiver’s burden in other conditions, such as
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Table 1 | Year of approval by FDA of AAPDs for bipolar disorder.

Acute mania/

mixed episodes

Bipolar disorder

maintenance Tx

Acute bipolar

depression

Olanzapine 2000 2004 2003a

Quetiapine 2004 2004b 2008

Risperidone 2003 2009c

Aripiprazole 2004 2004

Asenapine 2007

Lurasidone 2013d

aOlanzapine/flluoxetine combination.
bIn combination with valproate/lithium.
cDepot formulation.
d Both for monotherapy and in combination with valproate/lithium.

Table 2 | Year of approval for major depression.

Add-on to antidepressants Monotherapy

Quetiapine 2009 Applying

Olanzapine 2009a

Aripiprazole 2007

aOlanzapine/flluoxetine combination.

Alzheimer’s disease (Mohamed et al., 2012), Huntington disease
(Adam and Jankovic, 2008), Parkinson’s disease (Friedman,
2011), and Tourette’s syndrome (Maher and Theodore, 2012).
For example, AAPDs have been reported to reduce psychosis,
agitation, and/or aggressive behavior in Alzheimer’s disease and
Huntington disease (Mohamed et al., 2012; Adam and Jankovic,
2008). Clozapine, as well as quetiapine to some extent, has
been shown to be effective in controlling psychotic symptoms of
Parkinson’s disease (Friedman, 2011).

TOLERABILITY
Compared to TAPDs, AAPDs have been associated with reduced
risk of EPS and tardive dyskinesia, although the latter compounds
may more frequently induce weight gain and cardio-metabolic
side effects in schizophrenia (De Hert et al., 2012a). Further,
some large scale studies with chronic patients did not find notice-
able differences in efficacy between the two antipsychotic classes
(Lieberman et al., 2005; Jones et al., 2006; Leucht et al., 2009a),
raising a question about the advantage of AAPDs. However, there
is a suggestion that higher benefit/risk ratios for AAPDs would
be expected in acute patients compared with chronic patients
(Zhang et al., 2013). In fact, a recent meta-analysis (Zhang et al.,
2013) indicates olanzapine, amisulpiride, risperidone and queti-
apine, elicit superior efficacy, greater treatment persistence and
less EPS than TAPDs. These authors also found greater weight
increase and metabolic changes for some of these AAPDs, such
as olanzapine (Zhang et al., 2013).

These lines of evidence prompted the development of newer
antipsychotic drugs with minimal adverse events associated
with the above AAPDs, e.g., weight gain, lipid metabolism,
cardiovascular risk, and glucose intolerance. Accordingly, the
FDA approved iloperidone and asenapine in 2009, followed

FIGURE 10 | Advantage of atypical antipsychotic drugs (AAPDs) for

improving outcome in the treatment of psychotic disorders. Compared
to typical antipsychotic drugs, AAPDs elicit fewer incidences of
extrapyramidal signs, which enhance compliance and adherence. AAPDs
may also demonstrate greater efficacy for mood symptoms. The superiority
of AAPDs in terms of ameliorating psychotic symptoms and cognitive
impairment is under debate. The development of newer antipsychotic drugs
with minimal adverse events associated with some existing AAPDs, e.g.,
weight gain, cardiovascular symptoms, and hormonal abnormalities, may
provide an effective strategy to attain greater remission rates.

by lurasidone in 2010, for the treatment of adults with acute
schizophrenia. De Hert et al. (2012b) conducted a systematic
review and exploratory meta-analysis of these new AAPDs
together with paliperidone in the treatment of schizophrenia
and bipolar disorder. The findings suggest a relatively greater
tolerability for lurasidone in comparison with placebo, and
indicate the need for further controlled studies comparing the
newer agents with other antipsychotic drugs currently available
(De Hert et al., 2012b).

PERSPECTIVES
In the pursuit of novel therapeutics, critical issues to be addressed,
or “unmet needs,” include (1) treatment-resistant patients, (2)
prevention of psychosis, and (3) remission/recovery. There have
been some suggestions for the former two, e.g., clozapine for
treatment-resistant schizophrenia (Kane et al., 1988; Meltzer,
1989), and risperidone and olanzapine for prevention (McGorry
et al., 2002; McGlashan et al., 2006). On the other hand, there
seems to be a relative paucity of information on whether AAPDs
increase remission in schizophrenia (Takeuchi et al., 2012), due,
partly, to the limited number of valid assessment methods
(Alaqeel and Margolese, 2012).

Such measures include the Remission in Schizophrenia
Working Group (RSWG) criteria (Andreasen et al., 2005), which
has been developed to operationally define symptomatic remis-
sion. Using the RSWG criteria, Alaqeel et al. (2013) recently
conducted a meta-analysis to compare remission rates between
AAPD and TAPD treatments. Results from four eligible studies,
with 3433 schizophrenia patients, suggest AAPDs are associated
with a 1.46 increased probability of attaining remission relative to
TAPDs (Alaqeel et al., 2013). The lower dropout rate with AAPDs
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may explain the modest but significant increase in the rate of
enduring symptomatic remission, which deserves further study.

CONCLUSIONS
Antipsychotic drugs play a major role in the treatment of
schizophrenia and related disorders. However, there remain a
number of issues to be solved to more effectively improve clin-
ical practice, e.g., dealing with treatment-resistant patients. As
discussed, some evidence suggests the superiority of AAPDs as
a group over TAPDs in terms of compliance/adherence, although
controversy exists. At least, it is legitimate to confirm that AAPDs
elicit lower incidence of EPS compared to TAPDs. Accordingly,
AAPDs may also demonstrate greater efficacy for mood symp-
toms, and less likelihood to cause secondary negative symptoms
related to EPS (Figure 10).

Further investigations are warranted to determine if a larger
proportion of patients can be benefitted by treatment with

AAPDs compared with TAPDs in terms of remission and
recovery. Specifically, efforts to develop newer antipsychotic com-
pounds with minimal adverse events associated with some exist-
ing AAPDs, e.g., weight gain, cardiovascular symptoms, and hor-
monal abnormalities, will provide a promising strategy to attain
this goal.
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Antagonism of N -methyl-D-aspartate (NMDA) receptors by phencyclidine (PCP) is thought
to underlie its ability to induce a schizophrenia-like syndrome in humans, yet evidence
indicates it has a broader pharmacological profile. Our previous lesion studies highlighted
a role for serotonergic projections from the median, but not dorsal, raphe nucleus in
mediating the hyperlocomotor effects of PCP, without changing the action of the more
selective NMDA receptor antagonist, MK-801. Here we compared locomotor responses
to PCP and MK-801 in rats that were administered 5,7-dihydroxytryptamine (5,7-DHT)
into either the dorsal or ventral hippocampus, which are preferentially innervated by
median and dorsal raphe, respectively. Dorsal hippocampus lesions potentiated PCP-
induced hyperlocomotion (0.5, 2.5 mg/kg), but not the effect of MK-801 (0.1 mg/kg).
Ventral hippocampus lesions did not alter the hyperlocomotion elicited by either compound.
Given that PCP and MK-801 may induce different spatiotemporal patterns of locomotor
behavior, together with the known role of the dorsal hippocampus in spatial processing,
we also assessed whether the 5,7-DHT-lesions caused any qualitative differences in
locomotor responses. Treatment with PCP or MK-801 increased the smoothness of the
path traveled (reduced spatial d) and decreased the predictability of locomotor patterns
within the chambers (increased entropy). 5,7-DHT-lesions of the dorsal hippocampus did
not alter the effects of PCP on spatial d or entropy – despite potentiating total distance
moved – but caused a slight reduction in levels of MK-801-induced entropy.Taken together,
serotonergic lesions targeting the dorsal hippocampus unmask a functional differentiation
of the hyperlocomotor effects of PCP and MK-801. These findings have implications for
studies utilizing NMDA receptor antagonists in modeling glutamatergic dysfunction in
schizophrenia.

Keywords: serotonin, hippocampus, phencyclidine, MK-801, 5,7-dihydroxytryptamine, locomotor hyperactivity,

spatial d, entropy

INTRODUCTION
Phencyclidine (PCP) and MK-801 are often used interchange-
ably in the psychopharmacological literature as they are both
non-competitive antagonists of the glutamatergic N-methyl-D-
aspartate (NMDA) receptor. It is well-established, however, that
MK-801 is more potent at this receptor site than PCP, and that
both agents have direct, and dissimilar, effects on other neu-
rotransmitter systems (Lodge and Johnson, 1990; Morris et al.,
2005). For example, PCP is a more potent catecholaminergic
reuptake inhibitor than MK-801 (Snell et al., 1988; Hiramatsu
et al., 1989) and is reported to block reuptake at the serotonin
transporter (Hiramatsu et al., 1989; Rothman, 1994; Millan et al.,
1999). More recent in vitro binding studies distinguish PCP and
MK-801 by their relative affinities to the dopamine D2 receptor
(Kapur and Seeman, 2002; Seeman et al., 2005), although negative
findings have also been reported (Millan et al., 1999; Jordan et al.,
2006). It is also suggested that PCP has moderate affinity for the

serotonin 5-HT2A receptor (Kapur and Seeman, 2002) but this has
not been replicated by other studies (Millan et al., 1999; Rabin
et al., 2000).

The functional mechanism of action of PCP and its analog,
ketamine, is of great interest as they are able to evoke a syndrome in
humans resembling the spectrum of symptoms in schizophrenia.
These “dissociative anesthetics” are thus distinct from psychos-
timulants like amphetamine, as they can induce not only positive
symptoms but also the negative symptoms and cognitive deficits
characteristic of the illness (Luby et al., 1959; Krystal et al., 1994;
Halberstadt, 1995; Jentsch and Roth, 1999; Morris et al., 2005).
Moreover, while psychostimulants typically require chronic use
to elicit psychotic states in healthy subjects, a single dose of a
PCP or ketamine can induce schizophrenia-like behavioral dis-
turbances (Abi-Saab et al., 1998; Moghaddam and Jackson, 2003;
Stone and Pilowsky, 2006). Indeed, their pharmacological char-
acterisation as NMDA receptor antagonists in the 1980s (Anis
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et al., 1983; Lodge and Johnson, 1990) led to the development of
the “NMDA receptor hypofunction hypothesis of schizophrenia,”
which suggests that dopaminergic dysfunction may be secondary
to a primary glutamatergic deficit (Jentsch and Roth, 1999; Olney
et al., 1999; Svensson, 2000; Javitt, 2004; Coyle, 2006). The ubiq-
uitous distribution of glutamatergic neurons in the brain, and
their regulation by neuromodulatory transmitters, make them
a likely candidate for dysfunction in schizophrenia. Interactions
between the glutamate system and the dopamine or serotonin sys-
tems have been widely studied in this context (Aghajanian and
Marek, 2000; Svensson, 2000; Coyle, 2006; Meltzer et al., 2011).
However, while PCP may be an appropriate pharmacological tool
used in modeling the disorder (Lipska and Weinberger, 2000;
Morris et al., 2005), whether its schizophrenia-like effects are due
entirely to NMDA receptor antagonism remains to be determined
(Kapur and Seeman, 2002; Seeman et al., 2005; Seeman and Lasaga,
2005).

Previous studies have provided evidence of differential sero-
tonergic involvement in the hyperlocomotor effects of PCP and
MK-801. For example, PCP-induced locomotor behavior in rats is
attenuated by the administration of 5-HT2A receptor antagonists
(Maurel-Remy et al., 1995; Krebs-Thomson et al., 1998; Millan
et al., 1999). In contrast, 5-HT2A receptor blockade has less con-
sistent effects on MK-801-elicited hyperactivity (Maj et al., 1996;
Higgins et al., 2003), suggesting subtle differences in the mech-
anism of action of these NMDA receptor antagonists. Indeed,
when administered alone, locomotor behaviors such as forward
ambulation and stereotypic movements induced by PCP and MK-
801 are qualitatively different (Hiramatsu et al., 1989; Tricklebank
et al., 1989; Lehmann-Masten and Geyer, 1991; Danysz et al., 1994;
Ogren and Goldstein, 1994; Gilmour et al., 2009). Some suggest
that this is mediated by the ability of PCP to increase serotonin
turnover (Hiramatsu et al., 1989), yet others have reported that
MK-801 alters serotonin turnover but not PCP (Martin et al.,
1998b). Both PCP- and MK-801-induced locomotor hyperactiv-
ity, however, is enhanced by pre-treatment with a 5-HT2C receptor
antagonist (Hutson et al., 2000). In fact, the 5-HT2C receptor is
emerging as a key serotonin receptor subtype involved in the mod-
ulation of locomotor behaviors (Takahashi et al., 2001; Giorgetti
and Tecott, 2004; Halberstadt et al., 2009). Serotonergic projec-
tions to the hippocampus, in particular, are implicated in the
modulation of locomotion (Takahashi et al., 2000; Kusljic and van
den Buuse, 2004; Dias Soares et al., 2007) and the 5-HT2 receptor
family seems especially involved in this region (Takahashi et al.,
2001; Dave et al., 2004).

We have extensively studied the role of brain serotonin in
models of schizophrenia in rats using the approach of selec-
tive lesions. Injection of the serotonergic neurotoxin, 5,7-
dihydroxytryptamine (5,7-DHT), into the median, but not the
dorsal, raphe nucleus (MnR, DR) was found to potentiate PCP-
induced locomotor behaviors (Kusljic et al., 2003, 2005), but not
the effect of MK-801 (Kusljic et al., 2005), providing evidence of
a pharmacological distinction between these drugs at the level of
serotonergic projections originating in the MnR. Local 5,7-DHT
administration into MnR projection regions revealed that lesions
of the dorsal, but not ventral, hippocampus enhanced both PCP-
and ketamine-induced hyperlocomotion (Kusljic and van den

Buuse, 2004; Adams et al., 2009). Taken together, these findings
raised questions about both the selectivity and sensitivity of lesion
effects. Specifically, we wanted to clarify: (1) whether 5,7-DHT-
lesions of the dorsal hippocampus are sufficient to distinguish
between the actions of PCP and MK-801, like MnR lesions; and
(2) whether the lesions also enhance locomotor responses to PCP
at a five-fold lower dose. To this end, our first experiment inves-
tigated both dorsal and ventral hippocampal lesion effects on
locomotor hyperactivity induced by 0.5 and 2.5 mg/kg of PCP
or 0.1 mg/kg of MK-801.

In addition, we wished to examine more qualitative aspects
of locomotor behavior using a novel method of analyses. Pre-
viously, such high resolution approaches have shown that PCP
and MK-801 induce different spatiotemporal patterns of loco-
motor behavior (Lehmann-Masten and Geyer, 1991), and that
pre-treatment with serotonin receptor ligands modulates the type
of patterns elicited by PCP, creating an entirely new behavioral
profile (Krebs-Thomson et al., 1998). Therefore, we conducted a
second experiment focusing on more qualitative aspects of loco-
motor responses to PCP (2.5 mg/kg) and MK-801 (0.1 mg/kg)
in dorsal hippocampus lesioned rats, including the “smoothness”
and “predictability” of locomotor paths. Given the prominent role
of the dorsal hippocampus in spatial information processing, with
visuospatial inputs directed mainly to the dorsal, but not ven-
tral, domain (Moser and Moser, 1998; Small, 2002; Bast, 2007),
we anticipated our lesions might modulate such spatial aspects of
locomotor behavior, either at baseline or following drug treatment.

MATERIALS AND METHODS
ANIMALS
Sixty four male Sprague-Dawley rats (aged 4–5 weeks) were
obtained from the Department of Pathology, University of
Melbourne (Parkville, VIC, Australia), or Monash Animal Services
(Clayton, VIC, Australia). Colony conditions were standardized,
with a 12/12 h light/dark cycle (lights on 7:00–19:00) and the tem-
perature maintained at approximately 22◦C. All procedures were
performed in the light phase. Rats were housed in groups of 2–3
in cages enriched with shredded paper and cardboard boxes, with
standard food and tap water available ad libitum. All surgical and
experimental protocols were approved by the Animal Experimen-
tation Ethics Committee of the University of Melbourne or the
Howard Florey Institute (Parkville, VIC, Australia), and adhered
to the guidelines outlined in the Australian Code of Practise for the
Care and Use of Animals for Scientific Purposes (National Health
and Medical Research Council of Australia, 2004).

DRUGS AND SOLUTIONS
To prevent oxidation, 5,7-DHT (5,7-dihydroxytryptamine crea-
tinine sulfate salt, Fluka BioChemika, Sigma-Aldrich, St. Louis,
MO, USA) was dissolved in 0.9% saline containing 0.1% ascorbic
acid. The selective noradrenaline reuptake inhibitor, desmethylim-
ipramine hydrochloride (DMI; Sigma-Aldrich), was prepared in
distilled water and dissolved by sonication. The non-steroidal
anti-inflammatory agent, Carprofen (Rimadyl®, 50 mg/ml, Pfizer,
West Ryde, NSW, Australia) was diluted in 0.9% saline. Con-
sistent with previous work in our laboratory, PCP hydrochlo-
ride (Experiment 1: Sigma-Aldrich; Experiment 2: National
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Measurement Institute, Pymble, NSW, Australia) and (+)-MK-
801 hydrogen maleate (dizocilpine, Sigma-Aldrich) were dissolved
in 0.9% saline and administered subcutaneous (s.c.). All doses
were taken as the weight of the salt and injection volume was
1 mg/kg body weight.

STEREOTAXIC LESION SURGERY
Surgery was conducted when animals were 7–8 weeks old as
described previously (Kusljic and van den Buuse, 2004; Adams
et al., 2008, 2009; Adams and van den Buuse, 2011). In brief,
rats were randomly allocated to one of four groups: dor-
sal hippocampus-injected (DHI), ventral hippocampus-injected
(VHI) or their equivalent sham-operated controls. At the outset
of surgery, 30 min prior to 5,7-DHT infusion, DMI (20 mg/kg, i.p.)
was injected to prevent the destruction of noradrenergic neurons.
Animals were then anesthetized using a 10% isoflurane/oxygen
mixture and transferred to a stereotaxic apparatus affixed with a
nose cone to maintain anesthesia. Carprofen (5 mg/kg, s.c.) was
used to minimize post-operative discomfort. Holes were drilled
in the skull above the dorsal or ventral hippocampus, using the
following coordinates relative to bregma: posterior −3.6 mm, lat-
eral ±1.5 and ±3.5 mm, and ventral −3.8 mm for the dorsal
hippocampus; posterior −5.6 mm, lateral ±4.8 mm and ven-
tral −8.0 mm for the ventral hippocampus (Paxinos and Watson,
1998). 5,7-DHT (1 μl, 5 μg/μl) was injected bilaterally into the
dorsal or ventral hippocampus over 2 min; for the DHI infu-
sions, two 0.5 μl injections were used. Sham-operated rats received
equivalent volumes of vehicle solution. Rats were allowed two
weeks to recover from surgery before behavioral experiments
started.

LOCOMOTOR HYPERACTIVITY TESTING
Locomotor activity was measured in eight automated photocell
cages (43 cm × 43 cm × 31 cm, l × w × h, ENV-520, Med
Associates Inc., St. Albans, VT, USA). Each cage had 16 evenly-
spaced infrared transmitters and receivers on each of its four sides,
which detected a rat’s position in three dimensions (x, y and z).
Software (Activity Monitor 4.0, Med Associates Inc.) recorded the
status of the infrared beams every 50 ms, effectively generating a
spatio-temporal map of an animal’s movement throughout a test-
ing session. Every 5 min, the software calculated the total distance
moved from these data, reflecting the gross distance traveled by an
animal with small repetitive movements filtered out.

Each session included a random allocation of 5,7-DHT-
lesioned rats and sham-operated controls. Baseline locomotor
activity was initially recorded for 30 min, allowing the ani-
mals to habituate to the cages before receiving drug treatment.
Post-injection locomotor activity was then recorded for further
90 min. Testing sessions were separated by 3–4 days to allow for
drug clearance, and the order of treatment in each experiment
was pseudo-randomized to offset potential interactions, such as
sensitisation, that could occur between treatments. Baseline activ-
ity differences were assessed by averaging pre-injection distance
moved across all testing sessions within each experiment. As base-
line activity was unaffected by the serotonergic lesions in both
experiments, these data were subsequently removed from analyses
of drug effects.

ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)
Lesions were confirmed by measuring serotonin levels in the dor-
sal and ventral hippocampus using Serotonin ELISA kits (Labor
Diagnostika Nord GmbH & Co. KG, Nordhorn, Germany), with
minor adjustments as described before (Adams et al., 2009; Adams
and van den Buuse, 2011). Rats were decapitated at least three
days after the end of locomotor testing, and the dorsal and ventral
hippocampi dissected out, weighed, and stored at −80◦C until
ELISA. Serotonin levels were normalized for tissue wet weight.
Analyses of ELISA data from DHI- and VHI-sham-operated rats
in each experiment found no differences in hippocampal serotonin
levels between the two types of controls; therefore, these groups
were combined. In line with our previous work (Adams and van
den Buuse, 2011), DHI or VHI rats were excluded if the percent-
age serotonin depletion was <20% in the relevant hippocampal
domain compared to sham-operated animals; presently, only one
VHI rat was excluded from Experiment 1.

DESIGN AND ANALYSES
Animals were used in two experimental cohorts. Experiment 1
contained DHI (n = 16), VHI (n = 8) and equivalent sham-
operated controls (n = 17); all rats received saline, 0.5 and
2.5 mg/kg PCP, and 0.1 mg/kg MK-801 in locomotor activity
tests. Experiment 2 contained only DHI (n = 12) and DHI-sham-
operated (n = 11) rats; all animals received saline, 2.5 mg/kg PCP
and 0.1 mg/kg MK-801 in locomotor activity tests; 0.02 mg/kg
MK-801 was also tested in these animals yet these data are not pre-
sented as this dose had negligible effect on locomotor responses.
Using a within-subjects design to assess drug responses was impor-
tant for comparing the effects of PCP and MK-801 by minimizing
the variation that is inherent in between-group comparisons; in
addition, it greatly reduced the number of animals required.

In Experiment 1, distance moved data were calculated by the
activity monitor software. In Experiment 2, raw x, y, t data were
extracted from the software as ASCII text files and analyzed for
qualitative aspects of locomotor activity. Analysis of the spatial
structure of locomotor paths was performed by calculating the
descriptive statistic, spatial d. As described by Paulus and Geyer
(1991), spatial d is based conceptually on fractal geometry and
calculated using scaling arguments. Changes in d reflect smoother
(reduced d values) or rougher (increased d values) locomotor
paths. Entropy was used to quantify the predictability of locomo-
tor paths, specifically the predictability of sequences of transitions
across different zones of the test chamber (Paulus and Geyer,
1993). For example, a rat repeatedly circling along the outer edges
of the chamber would move through zones 1, 2, 3, 6, 9, 4, and
back to 1; repetition of this sequence many times would result in
a low entropy measure. By contrast, a rat that moves through dif-
ferent zones of the chamber via more diverse routes would result
in higher entropy levels.

Analysis of variance (ANOVA) with repeated measures, as
appropriate, was used to compare differences between and within
groups using SYSTAT software (SYSTAT 9.0, SPSS Inc., Chicago,
IL, USA). All data were analyzed separately, initially in an overall
ANOVA with data from each group (Experiment 1: sham-
operated, DHI, VHI; Experiment 2: sham-operated, DHI). When
significant main effects of, or interactions with, group were found
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in the main analyses, planned (a priori) ANOVA comparisons
ensued, with either DHI or VHI groups compared to controls, and
drug effects compared to that of saline injection.

Distance moved data from Experiment 1 were analyzed in
5-min intervals to assess possible time-dependent drug effects,
whereas distance moved, spatial d and entropy data from
Experiment 2 were assessed in 30-min intervals. Post-injection
spatial d and entropy data were analyzed for 60 min as low activity
levels in the 60–90 min block following saline treatment ren-
dered measurement of these variables unreliable. Thus, overall
ANOVAs of all post-injection activity data contained the repeated
measures variables, “drug” (Experiment 1: four saline/drug treat-
ments; Experiment 2: three saline/drug treatments) and “time”
(Experiment 1: 18 5-min intervals; Experiment 2: two or three
30-min intervals).

Enzyme-linked immunosorbent assay data were analyzed by
comparing absolute serotonin levels in either the dorsal or ventral
hippocampus. Data are presented as percentage depletion relative
to sham-operated animals to control for inter-assay variability.

Differences were considered significant if p < 0.05.

RESULTS
SEROTONIN DEPLETION IN THE DORSAL AND VENTRAL HIPPOCAMPUS
In Experiment 1, DHI rats showed a comparable level of serotonin
depletion in the ventral hippocampus as VHI rats, but a greater
extent of depletion in the dorsal hippocampus (Table 1). VHI rats
in this cohort also showed a slight, but significant, depletion of
serotonin in the dorsal hippocampus. Like those in Experiment 1,
DHI rats in Experiment 2 showed serotonin depletion in both
the dorsal and ventral hippocampus compared to sham-operated
controls (Table 1).

EXPERIMENT 1: LESION EFFECTS ON LOCOMOTOR HYPERACTIVITY
INDUCED BY 0.5 AND 2.5 mg/kg PCP AND 0.1 mg/kg MK-801
Analysis of variance of average pre-injection distance moved found
no group differences, indicating that 5,7-DHT administration into
the dorsal or ventral hippocampus did not affect levels of base-
line activity (Figure 1). Locomotor activity diminished over this

Table 1 | Serotonin depletion pattern in the dorsal and ventral

hippocampus of 5,7-DHT-lesioned rats.

Dorsal hippocampus Ventral hippocampus

% Depletion F, p % Depletion F, p

Experiment 1

DHI 77 ± 4** 177.0, <0.001 54 ± 5** 34.3, <0.001

VHI 19 ± 8* 5.4, 0.029 45 ± 8* 14.0, 0.001

Experiment 2

DHI 79 ± 5** 130.1, <0.001 82 ± 2** 138.1, <0.001

Data are expressed as mean percentage depletion of serotonin ± SEM in each
hippocampal domain relative to the sham-operated controls in each experiment.
Statistical results in adjacent columns refer to the F- and p-values obtained
in ANOVA comparison of absolute serotonin levels. *p < 0.05, **p < 0.001
compared to sham-operated controls.

FIGURE 1 | Effect of 5,7-DHT-lesions targeting the dorsal or ventral

hippocampus on locomotor hyperactivity induced by 0.5 and

2.5 mg/kg PCP and 0.1 mg/kg MK-801. Panels show mean distance
moved (cm) in 5 min intervals ± SEM for DHI (n = 16), VHI (n = 8) and
sham-operated rats (n = 17) treated with (A) saline (B) 0.5 and
(C) 2.5 mg/kg PCP and (D) 0.1 mg/kg MK-801. Total distance moved
following 0.5 and 2.5 mg/kg PCP injection was significantly higher in
DHI rats compared to controls (see text for details).
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30 min pre-injection habituation period similarly in all animals
(main effect of time: F5,190 = 163.5, p < 0.001).

Analysis of all post-injection distance moved data revealed sig-
nificant lesion effects (main effect of group: F2,38 = 3.7, p=0.034;
drug by group interaction: F6,114 = 3.7, p = 0.002; Figure 1). Rats
that were administered 5,7-DHT into the dorsal hippocampus
showed enhanced locomotor hyperactivity following 0.5 mg/kg
PCP treatment, with a 109 ± 37% increase in total post-injection
distance moved compared to controls (main effect of group:
F1,31 = 7.2, p = 0.012; drug by group interaction: F1,31 = 6.0,
p = 0.020; Figure 1B). Confirming our previous findings (Kusljic
and van den Buuse, 2004), DHI rats also showed potentiated
hyperlocomotor effects of 2.5 mg/kg PCP treatment (51 ± 15%
increase in total distance moved; main effect of group: F1,31 = 10.6,
p = 0.003; drug by group interaction: F1,31 = 9.3, p = 0.005;
Figure 1C). The enhancement of PCP-induced hyperlocomo-
tion was uniform throughout the session for both doses (lack of
significant interactions with time and group; Figures 1B,C). In
contrast, VHI and sham-operated animals showed similar PCP-
induced locomotor hyperactivity at both doses (main effects of
drug: 0.5 mg/kg, F1,23 = 13.4, p = 0.001; 2.5 mg/kg, F1,23 = 133.3,
p< 0.001; Figures 1B,C). Notably, treatment with MK-801 evoked
locomotor hyperactivity to a similar extent and temporal magni-
tude in sham-operated, DHI and VHI rats (main effect of drug:
F1,38 = 127.3, p< 0.001; drug by time interaction: F17,646 = 42.3,
p < 0.001), indicating that the potentiated hyperlocomotor effect
in DHI rats is unique to PCP (Figure 1D).

EXPERIMENT 2: FURTHER ANALYSIS OF DORSAL HIPPOCAMPUS
LESION EFFECTS ON LOCOMOTOR HYPERACTIVITY INDUCED BY
2.5 mg/kg PCP AND 0.1 mg/kg MK-801
Distance moved
As observed in Experiment 1, average pre-injection distance
moved did not differ between DHI and sham-operated rats in
this experiment. Both groups habituated to the chambers with
similar levels of activity (Figure 2A).

Analysis of variance of all post-injection distance moved data
found that the effects of drug treatment were, again, dependent on
lesion group (drug by group interaction: F2,42 = 6.3, p = 0.004;
Figure 2A). As expected, total PCP-induced hyperactivity was
greater in DHI rats than in sham-operated controls (51 ± 13%
increase in total distance moved; main effect of group: F1,21 = 8.5,
p = 0.008; drug by group interaction: F1,21 = 11.3, p = 0.003;
Figure 2A, middle panel). In addition, MK-801 treatment caused a
time-dependent increase in locomotor activity that was unaffected
by dorsal hippocampus lesions (main effect of drug: F1,21 = 125.1,
p < 0.001; drug by time interaction: F2,42 = 52.1, p < 0.001;
Figure 2A, bottom panel). The lack of significant interactions
between time and group in analyses of distance moved data for
both compounds also corresponded with Experiment 1. Represen-
tative plots of post-injection activity are provided in Figure 3, in
which enhanced PCP-induced hyperlocomotion in a DHI animal
is clearly depicted (Figure 3B, bottom panel).

Spatial d
Assessment of average pre-injection spatial d revealed no dif-
ference in baseline levels between DHI and sham-operated rats

(Figure 2B). After saline treatment, spatial d values increased
over the course of the test sessions as the animals habituated to
the chambers and made fewer smooth, linear exploratory move-
ments (saline data only, comparison of all three time blocks: main
effect of time, F2,42 = 18.9, p < 0.001; Figure 2B, top panel).
Spatial d values exceeded baseline levels during the 30–60 min
block (F1,21 = 27.7, p < 0.001) but not during the 0–30 min
block.

Overall ANOVA of post-injection data found time-dependent,
drug effects on spatial d that were unaffected by the lesions (main
effect of drug: F2,42 = 45.3, p < 0.001; drug by time interaction:
F2,42 = 46.4, p < 0.001). Compared to saline, both PCP and
MK-801 treatments reduced spatial d in DHI and sham-operated
rats (main effects of drug: PCP, F1,21 = 67.7, p < 0.001; MK-801,
F1,21 = 61.4, p < 0.001), with more pronounced effects occur-
ring in the 30–60 min time block (drug by time interactions:
PCP, F1,21 = 9.5, p = 0.006; MK-801, F1,21 = 82.6, p < 0.001;
Figure 2B). Further analyses for each time block revealed that PCP
treatment reduced spatial d in both blocks (0-30 min, F1,21 = 23.5,
p < 0.001; 30–60 min, F1,21 = 75.3, p < 0.001), whereas the
effect of MK-801 treatment was significant in the 30–60 min
interval only (0–30 min, F1,21 = 3.6, p = 0.071; 30–60 min,
F1,21 = 135.5, p < 0.001). 5,7-DHT-lesions targeting the dorsal
hippocampus, however, did not influence the changes in overall
smoothness of the paths traveled following treatment with either
compound.

Entropy
Analysis of mean pre-injection entropy data found no group dif-
ferences, highlighting that the predictably of the paths traveled at
baseline was unchanged by 5,7-DHT administration into the dor-
sal hippocampus (Figure 2C). In saline-treated animals, entropy
values declined over the course of the session as the animals
became habituated to the test chambers, indicating that the loco-
motor paths became progressively more repetitive (saline data
only, comparison of all three time blocks: main effect of time,
F2,42 = 51.6, p < 0.001; Figure 2C, top panel). Entropy levels
were lower than baseline during both post-injection time blocks
(0–30 min, F1,21 = 11.0, p = 0.003; 30–60 min, F1,21 = 103.5,
p < 0.001).

Assessment of all post-injection data found an overall, time-
dependent influence of drug treatment on entropy levels (main
effect of drug: F2,42 = 34.6, p < 0.001; drug by time interaction:
F2,42 = 35.5, p < 0.001; Figure 2C). Drug effects on entropy
were further influenced by hippocampal 5,7-DHT lesions (drug
by group interaction: F2,42 = 3.7, p = 0.032). PCP administration
increased entropy compared to saline injection (main effect of
drug: F1,21 = 51.1, p< 0.001), indicating that the animals traveled
in less predictable manner around the chambers. While entropy
levels following saline treatment decreased over time, after PCP
injection entropy was elevated throughout the session (drug by
time interaction: F1,21 = 28.5, p < 0.001; 0–30 min, F1,21 = 8.4,
p = 0.009; 30–60 min, F1,21 = 65.1, p< 0.001). This effect was sim-
ilar in sham-operated and DHI animals (Figure 2C, middle panel).
Treatment with MK-801 also increased entropy compared to saline
injection (main effect of drug: F1,21 = 36.5, p< 0.001) yet, similar
to its effect on spatial d, this was significant only in the 30–60 min
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FIGURE 2 | Effect of 5,7-DHT-lesions targeting the dorsal hippocampus

on qualitative aspects of locomotor hyperactivity induced by 2.5 mg/kg

PCP and 0.1 mg/kg MK-801. Panels show mean (A) distance moved (cm),
(B) spatial d, and (C) entropy in 30 min intervals ± SEM for DHI (n = 12) and
sham-operated rats (n = 11) treated with saline (top), 2.5 mg/kg PCP (middle),

and 0.1 mg/kg MK-801(bottom). Total distance moved following 2.5 mg/kg
PCP injection was, again, significantly higher in DHI rats compared to
controls (see text for details). ##p < 0.01, ###p < 0.001 for comparison with
baseline. **p < 0.01, ***p < 0.001 for comparison with saline in respective
time block.

time block (drug by time interaction: F1,21 = 51.4, p < 0.001;
0–30 min, F1,21 = 0.024, p = 0.878; 30–60 min, F1,21 = 64.1,
p < 0.001). Interestingly, compared to sham-operated controls,
overall MK-801-induced enhancement of entropy was reduced
in DHI rats (drug by group interaction: F1,21 = 4.6, p = 0.043;
Figure 2C, bottom panel). Serotonergic lesions targeting the dor-
sal hippocampus, therefore, did not alter the random nature of
locomotor paths traveled following PCP treatment, yet slightly
reduced the extent to which MK-801 treatment increased this
factor.

DISCUSSION
There is considerable interest in the behavioral mechanism of
action of PCP as it can produce a state in healthy humans anal-
ogous to symptoms in schizophrenia. Here we report that rats
with 5,7-DHT-lesions targeting the dorsal hippocampus show

potentiated locomotor hyperactivity following treatment with 0.5
or 2.5 mg/kg PCP, extending our earlier work by showing that
the lesions are also sensitive to a five-fold lower dose (Kusljic and
van den Buuse, 2004). Given the role of the hippocampus in spa-
tial information processing, we anticipated that enhanced PCP
responses in DHI rats would be associated with changes in the
modulation of spatial d or entropy, yet analysis of behavioral
patterns revealed no lesion effects on these variables at base-
line or following PCP treatment. In contrast to PCP, DHI rats
did not show a parallel enhancement of locomotor responses to
MK-801, but rather a slight, but significant, reduction in MK-801-
induced entropy. Thus, like lesions of serotonergic cell bodies in
the MnR (Kusljic et al., 2005), 5,7-DHT-lesions targeting the dor-
sal hippocampus are sufficient to unmask functional differences
between PCP and the more selective NMDA receptor antagonist,
MK-801. Together with data from numerous locomotor activity
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FIGURE 3 | Spatial patterns of locomotor hyperactivity shown by

representative, individual sham-operated (top) and DHI (bottom)

animals. Plots show activity traces in the 60–90 min time block following

treatment with (A) saline (B) 2.5 mg/kg PCP and (C) 0.1 mg MK-801.
Enhanced PCP-induced locomotor hyperactivity in DHI rats is clearly depicted
by the increased density of tracings in the chamber (panel B, bottom).

experiments in 5,7-DHT-lesioned rats (see Adams et al., 2008 for
review; Adams et al., 2009), these results indicate that serotonin
projections from the MnR to the dorsal hippocampus are involved
in the hyperlocomotor mechanism of action of the dissociative
anesthetics, PCP and ketamine, as opposed to that of psychostim-
ulants, like amphetamine, and in a manner seemingly independent
of their ability to block NMDA receptors, or modulate spatial pat-
terns of behavior. Like other reports (Snell et al., 1988; Hiramatsu
et al., 1989; Rothman, 1994; Kapur and Seeman, 2002; Seeman
et al., 2005; Seeman and Lasaga, 2005), our findings lend strength
to the notion that the schizophrenomimetic effects of PCP and
ketamine may not be due to NMDA receptor antagonism alone.

The differential effects of the lesions on PCP or MK-801-
induced forward locomotion seem to hinge on impaired sero-
tonergic tone in the dorsal hippocampus only, since rats with
ventral hippocampus lesions in Experiment 1 showed no change in
responses to either compound. In addition, dorsal hippocampus
serotonin depletion appears robust in potentiating PCP responses
regardless of the additional depletion observed in the ventral
domain. In our early study, DHI rats showed no secondary lesion
effects in the ventral hippocampus (Kusljic and van den Buuse,
2004); the asymmetric pattern of serotonin depletion observed
in our DHI and VHI rats more recently has been discussed in
detail elsewhere (Adams et al., 2009). However, with reduced sero-
tonin levels in the whole hippocampus, we cannot definitively
conclude that the behavioral changes are due to 5,7-DHT effects
in the dorsal hippocampus only. Since entropy and spatial d was
not assessed in VHI animals, it is possible that serotonin deple-
tion in both hippocampal domains of DHI rats contributed to the
reduction of MK-801-induced entropy. The ventral hippocampus

also contains so-called “place cells,” involved in creating an inter-
nal representation of the environment (O’Keefe and Dostrovsky,
1971; Sweatt, 2004), suggesting that it, too, participates in spatial
information processing (Moser and Moser, 1998). Nevertheless,
the absence of corresponding functional changes in VHI rats
in Experiment 1, together with our previous work (Kusljic and
van den Buuse, 2004; Adams et al., 2009), suggests that serotonin
depletion in the ventral hippocampus does not largely influence
drug-induced hyperlocomotion.

Neither dorsal nor ventral hippocampal lesions were found to
alter baseline locomotor behavior. Given that the expression of
motor deficits after 6-hydroxydopamine-lesions depends on lev-
els of dopamine depletion being >80–90% (Koob et al., 1981;
Zigmond et al., 1990), it is possible that overt effects on base-
line behavior were not seen due to insufficient levels of serotonin
depletion. However, some of our previous cohorts have shown
>80–90% depletion of hippocampal serotonin without showing
alterations in baseline activity (Kusljic and van den Buuse, 2004;
Adams et al., 2009). Even so, the utility of the 30 min habituation
phase to assess baseline deficits may be questioned, as activity lev-
els soon become negligible during this period making it difficult to
evaluate any change. Indeed, others report that the extent of dorsal,
but not ventral, hippocampal serotonin depletion correlates with
the amount of activity displayed in the dark phase (Williams and
Azmitia, 1981). Observing our lesioned animals in a novel open
field, potentially in the dark phase, as well as incorporating assess-
ments of vertical activity and grooming behavior, may provide a
better appraisal of baseline lesion effects on motor behavior. In
the present studies, as in our previous experiments, the expression
of behavioral changes due to 5,7-DHT-lesions targeting the dorsal
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hippocampus was found to depend on pharmacological challenge
(Adams et al., 2009; Adams and van den Buuse, 2011).

Phencyclidine has previously been shown to produce bipha-
sic effects on spatial patterns of locomotion, generating smoother
paths at 2.25 mg/kg (decreasing d) and reducing the smoothness
of paths (increasing d) at higher doses (6.75, 10.125 mg/kg; Krebs-
Thomson et al., 1998). Using the same analytical method, we
similarly found that administration of 2.5 mg/kg PCP decreased d
equally in both control and DHI rats. Interestingly, pre-treatment
with a 5-HT2A/2C agonist potentiated hyperlocomotion and fur-
ther decreased spatial d in rats treated with 2.25 mg/kg PCP
(Krebs-Thomson et al., 1998); together with the current data,
one could speculate that 5-HT2A/2C receptors in the dorsal hip-
pocampus are involved in the former, but not the latter, effect.
Finding that 0.1 mg/kg MK-801 also increases locomotion while
producing smoother locomotor paths (decreasing d), and that
both compounds reduce the predictability of the locomotor paths
traveled (increasing entropy) is novel to this study. Hippocam-
pal NMDA receptors are vital for spatial memory and information
processing, with evidence indicating that they are necessary for the
acquisition, or encoding, of spatial memory but not for retrieval
(Nakazawa et al., 2004; Martin and Clark, 2007). One interpreta-
tion of the increase in entropy following MK-801 or PCP treatment
is that NMDA receptor blockade impairs the animals’ memory of
where they have previously been in the chamber, making them
explore more randomly. In addition, 5,7-DHT-lesions targeting
the dorsal hippocampus selectively reduced the ability of MK-
801 to increase entropy, independent of its effect on locomotor
activity. The mechanism underlying this more subtle effect of
the lesions is unclear, but likely relates to a lesion-induced dys-
regulation of hippocampal NMDA receptors. Since PCP-induced
entropy was not changed by the lesions, this could simply reflect
the more potent and selective NMDA antagonist actions of
MK-801.

Treatment with 0.1 mg/kg MK-801 and 2.5 mg/kg PCP pro-
duced equivalent levels of hyperlocomotion in control animals in
both experiments. However, the maximal effect of MK-801 was
seen between 30 and 60 min post-injection followed by a gradual
decrease, while the peak PCP effect occurred earlier, between 15
and 30 min. The different times to onset of maximal effect of these
agents corroborate previous studies (Ogren and Goldstein, 1994;
Klamer et al., 2005), and may reflect differences in their temporal
association to the NMDA receptor (Ogren and Goldstein, 1994).
Indeed, MK-801 and PCP have similar volumes of distribution
(Schwartz and Wasterlain, 1991; Shelnutt et al., 1999) and indexes
of lipophilicity making them equally brain penetrant (Ault et al.,
1995). In both experiments, however, the time to onset of PCP’s
effects in DHI rats was more rapid, and the effect more vigorous
and longer lasting, which is unlikely to arise from lesion-induced
changes in pharmacokinetics. Instead, altered hyperlocomotor
responses to PCP, and ketamine (Adams et al., 2009), in DHI rats
appear to be a quantitative enhancement of the normal motor
responses to these agents. In control animals, these compounds
may activate serotonergic transmission in the dorsal hippocampus
in a manner such that it inhibits their own effects. Accordingly, the
absence of intact serotonergic tone in the dorsal hippocampus of
DHI rats unmasks this self-activated, inhibitory mechanism. This

could be significant to the mechanism of action of these dissocia-
tive compounds, as the lesion-induced enhancement was observed
across all tested doses of PCP (0.5, 2.5 mg/kg) and ketamine (6.25,
12.5, 25 mg/kg; Adams et al., 2009).

Mechanisms within the dorsal hippocampus through which
PCP and ketamine putatively activate serotonergic transmission
could be pre- or post-synaptic, or a combination of both. As
hypothesized earlier (Kusljic and van den Buuse, 2004), the
effect could involve reduced PCP-induced serotonin release in the
dorsal hippocampus (Martin et al., 1998a). Ketamine treatment
increases extracellular serotonin levels in the ventral hippocampus
(Lorrain et al., 2003), yet there is a lack of data regarding its effect
in the dorsal domain. Serotonin release following treatment with
these agents may result directly from SERT reuptake inhibition
(Hori et al., 1996; Nishimura et al., 1998; Millan et al., 1999) or
indirectly via glutamatergic disinhibition (Martin et al., 1998a),
whereby preferential blockade of NMDA receptors on GABAergic
interneurons by NMDA receptor antagonists “disinhibits” cortico-
limbic circuits, causing the release of neurotransmitters (Olney
et al., 1999). It follows, however, that MK-801 treatment would
also disinhibit hippocampal circuits, and it was recently shown
that local infusion of MK-801 increases extracellular serotonin
levels in the dorsal hippocampus (Fallon et al., 2007). An alter-
native mechanism to explain the enhanced PCP responses may
involve post-synaptic changes in serotonergic receptors. Autora-
diography experiments revealed that local 5-HT1A and 5-HT2A

receptor densities are unchanged by the lesions, yet there is a
70% increase in 5-HT2C receptor densities in the dorsal hip-
pocampus of DHI rats (Adams and van den Buuse, 2011). This
finding is compelling because, unlike systemic administration,
infusion of 5-HT2C receptor agonists into the dorsal hippocam-
pus stimulates locomotor activity (Takahashi et al., 2001; Stiedl
et al., 2007). Thus, a simple explanation for our results would be
a direct action by PCP on an upregulated 5-HT2C receptor pool
in the dorsal hippocampus of DHI rats. However, preliminary in
vitro data indicate that PCP, ketamine or MK-801 do not directly
bind to or activate the human 5-HT2C receptor (unedited INI
5-HT2C receptor isoform; Stewart and Christopoulos, Monash
Institute of Pharmaceutical Sciences, Parkville, VIC, Australia,
unpublished observations). While this does not exclude the pos-
sibility of a direct action on rat 5-HT2C receptors, particularly
in light of evidence that PCP and ketamine act directly on rat
5-HT2A receptors (Nabeshima et al., 1988; Kapur and Seeman,
2002), this would have little relevance to humans. Additional
locomotor behavioral experiments combining the local admin-
istration of selective ligands, such as for 5-HT2 receptor subtypes,
into the dorsal hippocampus in conjunction with systemic PCP
or MK-801 treatment are required. Finally, it is also possible that
downstream alterations – either intrinsic or extrinsic to the hip-
pocampus – might be involved in altered behavioral responses
in DHI rats. It is clear that there are numerous mechanisms by
which 5,7-DHT-lesions targeting the dorsal hippocampus could
disclose differences in the hyperlocomotor effects of PCP and
MK-801; the exact reasons remain speculative without further
experiments.

Building on our previous 5,7-DHT-lesion studies in rats, our
data highlight an important role for serotonin projections to the
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dorsal hippocampus, most likely from the MnR, in the mechanism
of action of the dissociative anesthetics, PCP,and ketamine, but not
that of MK-801. Given the direction and sensitivity of the behav-
ioral change in dorsal hippocampus lesioned rats, in a normal
state, these compounds may activate MnR-dorsal hippocampus
serotonergic transmission in manner that subsequently serves to
inhibit their net hyperlocomotor effects. The importance of clar-
ifying the pharmacology of the “NMDA receptor antagonists”
in the context of understanding their schizophrenogenic prop-
erties has been emphasized before (Klamer et al., 2005; Gilmour

et al., 2009; Seillier and Giuffrida, 2009), with others finding that
PCP and ketamine should not be used interchangeably (Gilmour
et al., 2009). Understanding of how the “NMDA receptor antago-
nists” exert their hyperlocomotor effects in rodents is limited and,
despite the seemingly analogous outward expression of locomotor
hyperactivity they elicit, it is clear that the underlying neuro-
chemical mechanisms are different. Elucidating these differences,
particularly with neurotransmitter and brain region specificity, is
important in the translation of preclinical research using these
compounds in the context of schizophrenia.
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Depression is a major health problem for which most patients are not effectively
treated. This problem is further compounded in children and adolescents where only
two antidepressants [both selective serotonin reuptake inhibitors (SSRIs)] are currently
approved for clinical use. Mouse models provide tools to identify mechanisms that might
account for poor treatment response to antidepressants. However, there are few studies
in adolescent mice and none in juvenile mice. The tail suspension test (TST) is commonly
used to assay for antidepressant-like effects of drugs in adult mice. Here we show that
the TST can also be used to assay antidepressant-like effects of drugs in C57Bl/6 mice
aged 21 (juvenile) and 28 (adolescent) days post-partum (P). We found that the magnitude
of antidepressant-like response to the SSRI escitalopram was less in P21 mice than in
P28 or adult mice. The smaller antidepressant response of juveniles was not related to
either maximal binding (Bmax) or affinity (K d) for [3H]citalopram binding to the serotonin
transporter (SERT) in hippocampus, which did not vary significantly among ages. Magnitude
of antidepressant-like response to the tricyclic desipramine was similar among ages, as
were B 3

max and K d values for [ H]nisoxetine binding to the norepinephrine transporter in
hippocampus. Together, these findings suggest that juvenile mice are less responsive to
the antidepressant-like effects of escitalopram than adults, but that this effect is not due to
delayed maturation of SERT in hippocampus. Showing that theTST is a relevant behavioral
assay of antidepressant-like activity in juvenile and adolescent mice sets the stage for
future studies of the mechanisms underlying the antidepressant response in these young
populations.

Keywords: antidepressant, selective serotonin reuptake inhibitor, tricyclic, serotonin transporter, norepinephrine

transporter, juvenile, adolescent, depression

INTRODUCTION
Depression is a major public health problem for which most
patients are not effectively treated. This problem is further com-
pounded in children and adolescents by limited pharmacological
treatment options (Bylund and Reed, 2007). The selective sero-
tonin reuptake inhibitor (SSRI) fluoxetine is currently the only
FDA approved treatment for depression in children and ado-
lescents up to 18 years old, and escitalopram is approved for
children and adolescents age 12 and older. Exacerbating the sit-
uation further, children and adolescents respond poorly to these
antidepressants compared with adults (Tsapakis et al., 2008; Het-
rick et al., 2009, 2010). Given the high prevalence of adolescent
depression, affecting 4–8% of the population with an incidence
of 25% by the end of adolescence (Kessler et al., 2001; Bujoreanu
et al., 2011) and, of major concern, the high prevalence of sui-
cide in this young population (the third leading cause of death in
the 15- to 19-year age group; Reed et al., 2008), there is a clear

need to understand the neural mechanisms accounting for these
differences between children and adolescents on the one hand
and adults on the other, with the hope to uncover targets for the
development of more effective treatments. However, despite many
reports showing marked differences in the antidepressant response
of children and adolescents compared with adults (Bylund and
Reed, 2007; Tsapakis et al., 2008; Hetrick et al., 2009, 2010; Hazell
and Mirzaie, 2013) there is a paucity of studies investigating the
underlying mechanisms. Thus, reasons for the age-dependency of
antidepressant response remain poorly understood.

Animal models are needed to examine the mechanisms under-
lying age-dependent effects of antidepressants. To date, there are
only a few preclinical studies of antidepressants in juvenile and
early adolescent animals, and most have been conducted using
rats. SSRIs were found to reduce time spent immobile in the forced
swim test (FST), an index of antidepressant-like activity, in rats as
young as postnatal day (P) 21 as well as in adults, whereas blockers
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of the norepinephrine (NE) transporter, such as the tricyclic
antidepressant desipramine (DMI), were ineffective in the FST
in rats younger than P28 (Pechnick et al., 2008; Reed et al., 2008).
The mechanistic basis for these findings remains to be determined,
but is thought to involve the delayed maturation of the NE neu-
rotransmitter system relative to the serotonin (5-HT) system. In
terms of the actual drug targets themselves, i.e., the serotonin and
norepinephrine transporters (SERT and NET, respectively), infor-
mation about their expression in juvenile and adolescent animals is
sparse. Using quantitative autoradiography, Galineau et al. (2004)
reported a triphasic profile for SERT in amygdala and hypothala-
mus of rats where expression peaked around P21, decreased at P28
and plateaued through P70, the oldest age tested (see also Daws
and Gould, 2011). For NET, Sanders et al. (2005) also using autora-
diography, reported that expression of NET in some brain regions
(e.g., locus coeruleus) was much greater in rats aged P20 than in
adults, while in other regions NET expression in P20 rats was either
less than (e.g., CA3 region of hippocampus) or similar (e.g., cor-
tex, CA1 and CA2 regions of hippocampus, dentate gyrus) to that
of adult rats. Thus, it is not clear from studies in rats, if expres-
sion or activity of SERT and NET correlates positively with the
emergence of an antidepressant-like response to SSRIs and NET
blockers.

Lacking are studies in mice to probe the mechanistic basis
underlying differences in antidepressant-efficacy among juveniles,
adolescents, and adults. The relative ease with which mice can be
genetically manipulated makes them a powerful tool for preclinical
research. However, there are few studies that have used adolescent
(≥P28) mice to investigate antidepressant-like response (Bourin
et al., 1998; David et al., 2001a; Mason et al., 2009) and none that
have used mice younger than P28. Although mice have been used
to examine the consequences of antidepressant treatment during
prenatal, early postnatal and adult periods, juvenile and adolescent
periods remain largely unexplored. Likewise, little is known about
SERT and NET expression during these juvenile and adolescent
periods in mice.

The tail suspension test (TST) is a preclinical test with good
predictive validity that has become one of the most widely used
models for assessing antidepressant-like activity in adult mice
(Cryan et al., 2005). Currently there is only one report of its use
in adolescent (P35) mice. Thus, it is unknown if the TST can be
used to detect antidepressant-like effects of drugs in early adoles-
cent (P28) and juvenile (P21) mice. The goals of the present study
were twofold: first, to examine if the TST can be used to mea-
sure antidepressant-like activity in P21 and P28 mice; and second,
to begin to examine the relationship between antidepressant-like
activity and the expression and affinity of hippocampal SERT and
NET in juvenile, adolescent, and adult mice.

MATERIALS AND METHODS
ANIMALS
Juvenile (P21), early adolescent (P28), and adult (P62–90) male
and female C57Bl/6 mice were obtained from an in house breed-
ing colony (breeding pairs originally obtained from Jackson Lab).
Body weights for male mice ranged from 6.6 to 9.8 g for P21,
from 9.7 to 18.5 g for P28, and from 23.7 to 42.8 g for adults,
and body weights for female mice ranged from 6.3 to 10.0 g for

P21, from 10.8 to 15.1 g for P28, and from 19.1 to 31.3 g for
adults. Animals were housed in a temperature-controlled (24◦C)
vivarium maintained on a 14/10-h light/dark cycle (lights on at
07:00, experiments conducted during the light period) in plas-
tic cages (29 cm × 18 cm × 13 cm) containing rodent bedding
(Sani-chips, Harlan Teklad, Madison, WI, USA) with free access to
food (Rodent sterilizable diet, Harlan Teklad, Madison, WI, USA)
and water. After weaning on postnatal day 21, mice were housed in
groups of five with same-sex peers. All procedures were conducted
in accordance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals (Institute of Laboratory Ani-
mal Resources, Commission on Life Sciences, National Research
Council 1996), and with the Institutional Animal Care and Use
Committee, The University of Texas Health Science Center at San
Antonio.

TAIL SUSPENSION TEST
The TST was conducted based on the original description by Steru
et al. (1985) [for a review, see (Castagne et al., 2011)]. On the day
before testing, mice were moved from the colony room and housed
overnight in a holding room adjoining the procedure room. On
the test day, mice were placed in the procedure room and allowed
1–2 h to acclimate before receiving an injection of saline vehi-
cle (subcutaneously [sc] or intraperitoneally [ip]), escitalopram
(10 mg/kg, sc), or DMI (32 mg/kg, ip). Routes of drug adminis-
tration were based on results in adult mice reported by Cryan et al.
(2005) and Sanchez et al. (2003). Each mouse was tested only once
(i.e., not given multiple drugs nor exposed to the TST on multiple
occasions). Drugs or saline were injected 30 min before testing.
Immediately before testing, the distal end of the tail was fastened
to a flat aluminum (2 × 0.3 × 10 cm) bar using adhesive tape
at a 90◦ angle to the longitudinal axis of the mouse tail and the
aluminum bar, with a distance of 3–4 cm between the base of the
tail and the edge of the bar. A hole opposite the taped end of the
bar was used to secure the bar to a hook in the ceiling of a visually
isolated white test box (40 cm × 40 cm × 40 cm). Each mouse was
suspended by its tail for 6 min, allowing the ventral surface and
front and hind limbs to be video-recorded using a digital camera
facing the test box. Total time immobile was measured (in sec-
onds) during the entire 6 min test period. Immobility was defined
as the absence of initiated movements, and included passive sway-
ing of the body. A mouse was excluded from the experiments if it
climbed and held on to its tail or the aluminum bar for a period
of 3 s or longer. In the present study no mice aged P21 or P28
were excluded. Approximately 5% of adult mice were excluded.
Immobility was scored manually by observers watching the video
and who were blind to the treatment. Typically two observers
scored each videotape with excellent inter-observer agreement
(r2 > 0.9).

Initial experiments were designed to examine the utility of the
TST in juvenile and adolescent mice. Male and female mice were
given either a sc or ip injection of saline, corresponding to the
route of administration for escitalopram and DMI, respectively.
The purpose of these initial experiments was to identify possible
effects of age, gender, and route of administration, as well as any
interactions among these factors, on immobility in the TST. Age
affected basal immobility, and did so in a similar manner in both
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genders after both routes of administration (see Results). Subse-
quent experiments investigated the two reference antidepressant
drugs, escitalopram (10 mg/kg, sc) and DMI (32 mg/kg, ip), in
male mice. Drug doses were selected based on preliminary data
obtained in our laboratory that showed these doses to be the low-
est to produce maximal effects on immobility in adult C57Bl/6J
mice.

[3H]CITALOPRAM AND [3H]NISOXETINE SATURATION BINDING IN
HIPPOCAMPAL HOMOGENATES
All binding experiments were carried out using tissue from male
C57Bl/6 mice.

[ 3H]citalopram binding to SERT
Saturation binding of [3H]citalopram in membrane homogenate
preparations from mouse hippocampi was carried out following
the methods of D’Amato et al. (1987) with minor modifications.
Briefly, male mice were decapitated, the brain removed and
hippocampi collected. Hippocampi from individual mice were
homogenized in 25 ml of 4◦C 50 mM Tris, 120 mM NaCl, 5 mM
KCl buffer (pH 7.4 at 25◦C), at 2600 rpm on a Polytron tissue
homogenizer (Brinkman Instruments, Westbury, NY, USA). The
homogenate was centrifuged for 10 min at 30,600 × g at 4◦C.
The supernatant was discarded, and the pellet re-suspended on ice
using a Potter Elvehjem glass and Teflon homogenizer in 25 ml
ice-cold buffer. The homogenate was re-centrifuged for 10 min at
30,600 × g. The final pellet was re-suspended to yield a protein
concentration of approximately 0.5–1.2 μg/μl. Protein was quan-
tified spectrophotometrically on a plate reader (SpectraMax 190,
Molecular Devices, Sunnyvale, CA, USA) using Bradford reagent
(Sigma, St. Louis, MO, USA). Binding assays were run in trip-
licate for each hippocampal membrane homogenate preparation.
Homogenates were incubated at 25◦C for 1 h in buffer (50 mM Tris,
120 mM NaCl, 5 mM KCl) containing 0.1–10 nM [3H]citalopram
(Perkin Elmer). Non-specific binding was defined by addition of
10 μM sertraline (Pfizer). Incubation was terminated by addi-
tion of 4 ml of ice cold buffer and rapid filtration under vacuum
onto Whatman GF/B filter paper strips (Brandel, Gaithersburg,
MD, USA) pre-soaked in 5% polyethyleneimine (Sigma). Filters
were washed twice and radioactivity trapped on the filters was
measured by liquid scintillation counting using a Beckman 6500
(Beckman, Brea, CA, USA) with efficiencies of 40–65%. Bind-
ing data were analyzed by non-linear regression using GraphPad
Prism 5.04.

[ 3H]nisoxetine binding to NET
Saturation binding of [3H]nisoxetine in membrane homogenate
preparations from mouse hippocampi was carried out following
the methods of Tejani-Butt (1992). Hippocampal homogenate
preparation for [3H]nisoxetine binding was as described for [3H]
citalopram binding, except that hippocampi were pooled from two
mice to yield protein concentrations of 1.0–1.7 μg/μl, the buffer
was pH 7.4 at 4◦C and the final washed pellet was re-suspended in
50 mM Tris, 300 mM NaCl, 5 mM KCl (pH 7.4 at 4◦C). Binding
assays were carried out for 4 h at 4◦C in 50 mM Tris, 300 mM
NaCl, 5 mM KCl at the same volumes used for [3H] citalopram
binding. [3H] nisoxetine concentration ranged from 0.5 to 30 nM

for the saturation assays. Non-specific binding was defined with
10 μM mazindol (Sigma, St Louis, MO, USA). Data collection and
analysis were the same as described for [3H]citalopram binding.

STATISTICAL ANALYSIS
Statistical analyses were performed using Prism 5.04 (GraphPad,
San Diego, CA, USA) and NCSS 2007 (Kaysville, UT, USA). TST
data were analyzed using ANOVA, followed by Tukey’s multiple
comparison tests. Binding data were analyzed using Kruskal–
Wallis test because of significant differences in standard deviations
among age groups (Bartlett’s test). All data are expressed as
mean ± standard error of the mean (SEM), and P < 0.05 was
considered statistically significant.

DRUGS
Escitalopram oxalate [Shanco International Inc. (Hazlet, NJ,
USA)] and DMI hydrochloride [Sigma-Aldrich (St. Louis, MO,
USA)] were dissolved in physiological saline. Escitalopram was
injected sc at doses expressed as base per kilogram body weight
(Sanchez et al., 2003). DMI was injected ip at doses expressed as
salt per kilogram body weight. The injection volume was 10 ml/kg.

RESULTS
USE OF THE TST IN JUVENILE AND ADOLESCENT MICE
The TST is a preclinical test with good predictive validity that
is widely used to detect antidepressant-like activity (Cryan and
Holmes, 2005; Cryan et al., 2005), and that has been used in mice
as young as P35 (Mason et al., 2009). Antidepressant-like activity
in this test is defined by the ability of a drug to reduce the time a
mouse spends immobile. We first examined if the TST could be
used in P21 and P28 mice, given the possibility that young mice
may display so little baseline immobility that the effect of a drug
to reduce immobility further may not be detectible. To this end,
six separate groups of mice (male and female, n = 20 of each
gender and each age, P21, P28, or adult) received an injection of
saline either sc or ip (n = 10 of each gender and age receiving
saline sc, and n = 10 of each gender and age receiving saline ip)
and time spent immobile in a 6 min test was quantified. There
was no significant effect of gender or route of administration on
immobility time, a finding that is consistent with reports for adult
mice (e.g., David et al., 2001b; Jones and Lucki, 2005; Andreasen
and Redrobe, 2009). There was however, a significant effect of age
[F(2, 119) = 6.63, P < 0.0025]. Because there were no signifi-
cant interactions among age, gender, and route of administration,
data were collapsed with age as the only variable (Figure 1). P21
mice spent significantly less time immobile (99 ± 8 s) than P28
(123 ± 7 s) or adult mice (135 ± 6 s), and P28 mice did not
differ significantly from adults. A factor that might contribute to
reduced immobility time in P21 mice is their smaller size. Regres-
sion analyses of immobility time as a function of body weight for
all ages and both genders, inclusive, revealed an overall positive
correlation (r = 0.24, P < 0.01). However, regression analyses
within each age group revealed no significant correlation between
body weight and immobility time (P21, r = −0.12, P = 0.46; P28,
r = 0.23, P = 0.11; adult, r = 0.05, P = 0.66, data not shown).

These data show that juvenile and adolescent mice spend suf-
ficient time immobile in the TST that detection of a drug effect
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FIGURE 1 | Immobility time in theTST as a function of age. Juvenile
mice (P21) spent significantly less time immobile than either adolescent
(P28) or adult mice (P > 62). Each age group consisted of 40 animals
treated with saline (20 males and 20 females, half of them treated sc and
the other half ip). Because there were neither main nor interaction effects
of gender and route of administration, data are shown collapsed with age
as the only factor. *P < 0.05, **P < 0.01 (Tukey post hoc test). Data are
mean and SEM.

to decrease immobility should be possible. To test this, juvenile
and adolescent mice were treated acutely with either escitalo-
pram (sc) or DMI (ip), two antidepressants known to produce
robust effects in the TST in adult mice (Sanchez et al., 2003;
O’Leary et al., 2007).

REFERENCE ANTIDEPRESSANTS REDUCE IMMOBILITY ACROSS AGES
Escitalopram (10 mg/kg, sc) and DMI (32 mg/kg, ip) reduced
immobility time in the TST in all age groups [F(1, 51) = 66.45,
P < 0.01] (Figure 2). However, the extent to which they decreased
immobility differed among the age groups. For escitalopram there
was a significant interaction between treatment and age [F(2,
51) = 5.08, P < 0.01] because escitalopram reduced immobil-
ity less in P21 mice than in P28 and adult mice. For DMI there
was a significant effect of age [F(2, 51) = 7.14, P < 0.01] and DMI
tended to reduce immobility more in P21 and P28 mice than in
adults, but the interaction between treatment and age did not reach
statistical significance. Sample sizes for saline-, escitalopram-, and
DMI-treated mice, respectively, were 20, 8, and 10 for mice aged
P21; 20, 8, and 8 for mice aged P28, and 20, 10, and 9 for adult mice.
The larger sample size for saline-treated mice is due to pooling data
from male mice injected with saline sc (n = 10) and ip (n = 10)
for each age. These results show that the TST can be used to exam-
ine antidepressant-like drug effects in mice as young as P21. Next
we investigated the relationship between the antidepressant-like
effects of escitalopram and DMI and the expression of their tar-
gets, the SERT and NET, respectively, in hippocampus of P21, P28,
and adult mice.

[3H]CITALOPRAM AND [3H]NISOXETINE SATURATION BINDING IN
HIPPOCAMPUS AS A FUNCTION OF AGE
As shown in Figures 3A,C,E and Table 1, [3H]citalopram sat-
uration binding in mouse hippocampal homogenates revealed

FIGURE 2 | Effect of escitalopram and DMI to reduce time spent

immobile in theTST in male juvenile, adolescent, and adult mice.

(A) Escitalopram (10 mg/kg, sc) significantly reduced immobility time in all
age groups. There was a significant interaction between age and treatment
revealing that escitalopram is less effective in reducing immobility time in
P21 mice, compared with P28 or adult mice. (B) DMI (32 mg/kg, ip)
significantly reduced immobility time in all age groups. Sample sizes were
as follows: P21, n = 38 (20 saline, 8 escitalopram, 10 DMI); P28, n = 37
(20 saline, 8 escitalopram, 8 DMI); adult mice n = 39 (20 saline, 10
escitalopram, 9 DMI). There was no main effect of route of saline
administration, so saline data were collapsed with age and drug as the only
factors; two-way ANOVA with Tukey’s post hoc tests, *P < 0.05,
**P < 0.01. Data are mean and SEM.

no significant difference in maximal binding (Bmax) or affin-
ity (Kd) values among P21 (n = 10), P28 (n = 8), and adult
(n = 9) male mice. Likewise, [3H]nisoxetine saturation binding
in mouse hippocampal homogenates revealed no significant dif-
ference in Bmax or Kd values among P21 (n = 9), P28 (n = 9),
and adult (n = 7) male mice (Figures 3B,D,F; Table 1). Of note
is the greater variability in Kd values for [3H]citalopram bind-
ing in P21 mice, compared with their P28 and adult counterparts
(P < 0.001, Bartlett’s test). Similarly, the variance of the Kd val-
ues for [3H]nisoxetine binding in young mice was greater than
in adults (P < 0.01, Bartlett’s test), suggesting that these young
ages may represent a transitional period where SERT and NET
are shifting toward the functional activity state of adult SERT
and NET.
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FIGURE 3 | Specific binding of [3H]citalopram to SERT and

[3H]nisoxetine to NET in hippocampal membrane homogenates from

male P21(�) P28 (�) and adult (•) mice. Membrane preparations
were incubated with increasing concentrations of [3H]citalopram or
[3H]nisoxetine. Non-specific binding was defined in the presence of
10 μM sertraline or 10 μM mazindol, respectively. Specific binding was
obtained by subtracting non-specific binding from total binding at each

ligand concentration. (A,B) Show saturation binding isotherms for binding
of [3H]citalopram or [3H]nisoxetine, respectively. Bmax and K d values for
[3H]citalopram to SERT are summarized in (C,E), and for [3H]nisoxetine
binding to NET in (D,F), respectively. For [3H]citalopram sample sizes
were as follows: P21 n = 10, P28 n = 8, adult n = 9; and for
[3H]nisoxetine, P21 n = 9, P28 n = 9, adult n = 7. Data are mean
and SEM.

RELATIONSHIP BETWEEN ANTIDEPRESSANT-LIKE EFFECT AND
SATURATION BINDING WITH [3H]CITALOPRAM AND [3H]NISOXETINE
IN HIPPOCAMPUS ACROSS AGE GROUPS
Data from Figure 2 and Table 1 are plotted in Figure 4 and
illustrate the relationship, or lack thereof, between the abil-
ity of escitalopram and DMI to produce antidepressant-like
effects in the TST and the expression and affinity values for
hippocampal SERT (Figures 4A,C) and NET (Figures 4B,D).

TST data plotted in Figure 4 are the immobility times for
each individual escitalopram- or DMI-treated mouse, subtracted
from the mean value for immobility time of the same age
saline-treated mice (i.e., data from Figure 2). This difference
provides a measure of the magnitude of antidepressant-like
response that takes into account the difference in immobility
times among saline-treated mice of different ages. The abil-
ity of escitalopram to produce antidepressant-like effects in the
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Table 1 | Summary of Bmax and K d values for [3H]citalopram binding

to SERT and [3H]nisoxetine binding to NET in male P21, P28, and

adult mice.

P21 P28 Adult

[3H]Citalopram

Bmax (fmol/mgpr) 139 ± 8 180 ± 21 163 ± 17

K d (nM) 2.3 ± 0.4 1.3 ± 0.2 1.5 ± 0.1

[3H]Nisoxetine

Bmax (fmol/mgpr) 112 ± 7 143 ± 10 136 ± 23

K d (nM) 5.7 ± 0.9 7.4 ± 2.0 2.5 ± 0.8

[3H]citalopram binding n = 8–10 per group where hippocampi were from one
mouse per assay. For [3H]nisoxetine binding n = 7–9 per group, but where each
assay was from pooled hippocampi from two mice. For each ligand, there were
no significant differences in Bmax or Kd values among ages (Kruskal–Wallis). Data
are mean and SEM.

TST increased with age, but was not associated with parallel
increases in either Bmax (Figure 4A) or affinity of SERT for
[3H]citalopram (i.e., smaller Kd values; Figure 4D). The ability

of DMI to produce antidepressant-like effects did not change sig-
nificantly across age groups. Likewise, Bmax and Kd values for
[3H]nisoxetine binding to NET did not vary significantly as a
function of age.

DISCUSSION
The major findings of the present study are first, that the SSRI esci-
talopram and the NET blocker DMI produced antidepressant-like
effects in mice as young as P21, the youngest age tested; second,
that the magnitude of antidepressant-like response to escitalopram
increased with age but was not paralleled by increasing expression
or affinity of hippocampal SERT; and third that the magnitude
of antidepressant-like response to the tricyclic, DMI, as well as
expression and affinity of hippocampal NET, did not differ signif-
icantly among P21, P28, and adult mice. These findings support
the utility of juvenile mice to study antidepressant-like activity of
drugs. Moreover, our finding that juvenile mice are less sensitive to
the antidepressant-like effect of escitalopram than adults, parallels
clinical data reporting that, compared to adults, children have a
relatively poor therapeutic response to the SSRIs, fluoxetine, and

FIGURE 4 | Relationship between antidepressant-like response and

hippocampal SERT and NET expression and affinity in P21, P28, and

adult male mice. The magnitude of antidepressant-like response to the SERT
blocker, escitalopram, increased with age but neither Bmax (A) nor K d (C)

values for [3H]citalopram binding to SERT varied significantly with age. The
magnitude of antidepressant-like response to the NET blocker, DMI, as well
as Bmax (B) and K d (D) values for [3H]nisoxetine binding to NET remained

relatively constant across ages. Data are re-plotted from Figure 2 andTable 1.
TST data from Figure 2 are plotted on the y -axis as “magnitude of
antidepressant-like response,” defined as the immobility time for individual
drug-treated mice subtracted from the mean immobility time of same aged
saline-treated mice; the larger the number, the greater the antidepressant-like
effect. Sample sizes are the same as reported in legends to Figures 2,3 and
Table 1. Data are mean and SEM.
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escitalopram, the only two FDA approved antidepressants for this
young population.

In rodents, postnatal days 21–27 are considered the juvenile
period and postnatal days 28–42 equivalent to early adolescence
(Spear, 2000; Bylund and Reed, 2007). To date only a few studies
have investigated antidepressant-like activity of drugs in adoles-
cent mice and none have studied juvenile mice. Adolescent mice
(P28 or P35) were found to be sensitive to the antidepressant-like
effect of both SSRIs and tricyclics in the FST (Bourin et al., 1998;
David et al., 2001a,b; Mason et al., 2009). Only one study has used
the TST to investigate antidepressant-like activity in adolescent
mice (P35) and, as for studies using the FST, found that both
SSRIs and tricyclics were effective in reducing immobility time.
Consistent with these studies, we also found that both SSRI and
tricyclic classes of antidepressant effectively reduced immobility
time of adolescent (P28) and adult mice in the TST. Likewise, our
findings in P28 and adult mice are in good agreement with reports
in P28 and adult rats, where both SSRIs and tricyclic antidepres-
sants were effective in producing antidepressant-like activity in the
FST (Reed et al., 2008).

To our knowledge, this is the first report of antidepressant-
like activity in P21 mice. We found that the SSRI, escitalopram,
produced antidepressant-like activity in these mice; however the
magnitude of this effect was less than that in adolescent (P28)
or adult mice. Similarly, studies using rats aged P21 in the FST,
found them to be sensitive to the antidepressant-like effects of
SSRIs, including escitalopram (Reed et al., 2008). However, in this
study a head-to-head comparison with P28 and adult rats was not
included, making it difficult to draw conclusions as to whether
the magnitude of antidepressant-like effect was less in P21 rats,
compared to P28 or adult rats. Based on the present studies, where
P21, P28, and adult mice were compared head-to-head, it is clear
that the magnitude of escitalopram to produce antidepressant-like
effects in P21 mice is less than in adult mice.

We also found that P21 mice were sensitive to the
antidepressant-like effect of the tricyclic, DMI. Unlike our finding
for escitalopram, the magnitude of antidepressant-like effect of
DMI was similar among P21, P28, and adult mice. This finding
contrasts with studies using rats, where Reed et al. (2008) found
P21 rats to be insensitive to tricyclics, including DMI. Potential
reasons for these differences include species (rat versus mouse),
behavioral test (FST versus TST), drug dose, and route of admin-
istration. For example, the highest dose of DMI tested in studies
using P21 rats was 20 mg/kg (ip; Reed et al., 2008), whereas in our
studies using mice, the dose was 32 mg/kg (ip). Thus, our ability
to detect antidepressant-like effects of DMI in mice as young as
P21 may result in part from using a higher dose. Certainly, phar-
macokinetic differences between species and across ages are also a
consideration.

In the clinical setting a key difference between adult and pedi-
atric depression is response to pharmacotherapy (Hazell et al.,
1995; Kratochvil et al., 2006; Bridge et al., 2007; Bylund and Reed,
2007; Hazell and Mirzaie, 2013). The present studies using mice, as
well as published reports using rats, show that like humans, juve-
nile mice, and rats respond differently to antidepressant drugs.
While there are some apparent discrepancies in reported findings,
particularly those relating to the emergence of antidepressant-like

activity of DMI, there are numerous factors that may account for
these; some of which have been touched on already (e.g., dose,
species, test). With regard to the clinical setting, it is important
to keep in mind that therapeutic benefit is also contingent upon
tolerability of the drug. Thus, although tricyclics are not approved
for use in children and adolescents, data from clinical trials have
been mixed, with some studies reporting that tricyclics lowered
depression scores in adolescents, while others found tricyclics to
be therapeutically ineffective (Hazell and Mirzaie, 2013). However,
consistent with the mechanism of action of tricyclic antidepres-
sants, these drugs were more likely than placebo to produce adverse
side effects, including vertigo, tremor, low blood pressure, and
dry mouth. Thus, due to inconclusive demonstrations of thera-
peutic benefit in young humans, and the possibility of harmful
side effects, or increased sensitivity to adverse side-effects in this
patient population, tricyclic antidepressants are not prescribed for
children and adolescents.

The key finding from the present study is that it is pos-
sible to detect antidepressant-like activity of drugs in mice as
young as P21. This finding opens the door for studies geared
to understanding the mechanisms underlying the relatively poor
therapeutic response of young humans to SSRIs, which in turn
paves the way for identifying treatments with improved thera-
peutic efficacy. It is worth emphasizing that essentially nothing
is known about the mechanisms of antidepressant activity in
juvenile and adolescent mice. Rat studies have led the way, but
even then, knowledge is not extensive (for review, see Bylund
and Reed, 2007) with many unknowns remaining. For exam-
ple, the effect of antidepressants can be dependent on relative
rates of neurotransmitter synthesis and it is not yet known if
the activity of neurotransmitter synthesizing enzymes (e.g., tryp-
tophan hydroxylase, tyrosine hydroxylase) varies during these
postnatal periods in mice. Here, we began to investigate pos-
sible mechanisms underlying the divergent response of juvenile
mice to SSRIs and tricyclic antidepressants by first quantifying the
expression and affinity of their target proteins, SERT and NET, in
hippocampus.

Hippocampus was selected for these initial studies given its
importance in mood and antidepressant drug effects (Camp-
bell and McQueen, 2004). In rats the delayed emergence of
antidepressant-like activity of tricyclics is thought to be related
to delayed maturation of the noradrenergic system compared
with the serotonergic system (Murrin et al., 2007). As far as NET
is concerned, the primary target of DMI, its expression during
postnatal development in rat brain, measured using quantita-
tive autoradiography, is age and brain region dependent. NET
expression increases rapidly across brain regions between P10 and
P15, and attains adult levels in some regions (e.g., cortex, CA1
and CA2 regions of hippocampus, dentate gyrus, amygdala, stria-
tum) that are maintained into adulthood; in others regions (e.g.,
CA3 region of hippocampus) NET expression attains adult lev-
els at P15, but then decreases at P20 before returning to adult
levels at P25 (Sanders et al., 2005). To date there are no reports
on the development of expression of NET in mouse brain over
the postnatal ages studied here. Our data show that in hippocam-
pus, NET expression was similar in P21, P28, and adult mice.
Likewise, the affinity of NET for [3H]nisoxetine was similar across
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these ages. Data from adult mouse hippocampus presented here
are in general agreement with those reported by others [e.g.,
Bmax 127 ± 5 fmol/mgpr and Kd 0.7 ± 0.05 nM, C57Bl/6 male
mice (Csölle et al., 2013)], and in adult rat cerebral cortex [Bmax

97 ± 12 fmol/mgpr and Kd 0.8 ± 0.11 nM (Tejani-Butt, 1992)].
Our data are also consistent with the quantitative autoradiography
measures of NET in rat hippocampus reported by Sanders et al.
(2005), where, with the exception of CA3 region, NET expression
did not vary across juvenile, adolescent, and adult ages. Given
that we carried out saturation binding assays in homogenates
taken from whole hippocampus it would be unlikely we would
detect any age-dependent changes in a sub-region of hippocam-
pus (such as CA3). At the expense of anatomical resolution, our
saturation binding approach afforded a measure of transporter
affinity, which to our knowledge has not been previously reported
for P21 or P28 mouse or rat. Our findings in mouse hippocam-
pus show that NET expression and affinity are at adult levels by
P21. Given that the antidepressant-like effects of DMI in the TST
were also similar among juvenile, adolescent, and adult mice, it
appears that NET expression and affinity in hippocampus paral-
lels DMI’s antidepressant efficacy in mice. It must be recognized,
however, that this does not rule out the possibility that DMI’s
antidepressant-like activity in the TST depends on NET expres-
sion in other regions. Further studies are needed to determine
the brain region(s) and mechanisms (e.g., transporters, receptors)
that mediate antidepressant-like behavioral activity in the TST
following administration of NET blockers, and how this may vary
with age.

Even less is known about the postnatal development of expres-
sion and affinity of SERT in mice. Quantitative autoradiography
studies to date indicate that in rats, SERT expression reaches adult
levels between birth and P21 (Zhou et al., 2000; Galineau et al.,
2004; Bylund and Reed, 2007). Consistent with these findings in
rats, we found that SERT expression in hippocampus of P21 and
P28 mice was similar to that in adults. We also found that the
affinity of hippocampal SERT for [3H]citalopram was equivalent
among P21, P28, and adult mice. To our knowledge there are
only two reports of [3H]citalopram binding using adult C57Bl/6
mouse hippocampal homogenate preparations. Our group previ-
ously reported values in good agreement with those reported here
[Bmax 171 ± 20 fmol/mgpr; Kd 1.1 ± 0.2 nM (Gould et al., 2011)].
Another group reported a higher Bmax (555 ± 35 fmol/mgpr) but a

similar Kd (1.2 ± 0.1 nM; Csölle et al., 2013). Of note in the present
study, even though statistical analyses did not reveal significant
differences in affinity of hippocampal SERT for [3H]citalopram
among ages, the variance of the Kd values differed significantly
among ages. As is clear in Figure 3E, Kd values varied from 0.3
to 4.6 nM in juveniles, 0.6 to 2.1 nM in adolescents and 1.0 to
1.8 nM in adults. Thus, the spread in Kd values dropped from
4.3 nM in P21 mice, to 1.5 nM in P28 mice and to 0.8 nM
in adult mice. These data suggest that juvenile and adolescent
periods may be critical periods in development where, although
the density of SERT is at adult expression levels, the functional
activity (affinity) of SERT is undergoing a transition to that of
the adult. In the case of the present data, approximately half of
P21 mice had Kd values in line with those of adults, and the
remainder had Kd values two or more fold greater (i.e., lower
affinity for [3H]citalopram). Based on these initial data, it is
tempting to speculate that this variability in when the “switch”
from juvenile to adult SERT affinity occurs, accounts in part
for the variability in individual response to SSRIs in pediatric
depression.

These studies are, to our knowledge, the first to obtain Bmax and
Kd values for [3H]citalopram binding to SERT and [3H]nisoxetine
binding to NET, two of the most prominent targets of currently
available antidepressant drugs, in juvenile and adolescent mice,
and the results are in agreement with the few existing reports from
adult mice (Gould et al., 2011; Csölle et al., 2013). The present
findings raise the possibility that, although SERT expression may
be at or near adult levels in P21 mice, the large variability in affin-
ity state of SERT for SSRIs may account, at least in part, for the
lower clinical effectiveness of SSRIs in children. Showing that the
TST is a relevant behavioral assay of antidepressant-like activity in
juvenile (P21) and adolescent (P28) mice, sets the stage for future
studies of the mechanisms underlying the antidepressant response
in these young populations.
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Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance
of abstinence. We previously developed an animal model of inhibitory peer influences on
ethanol drinking using prairie voles and here sought to understand whether this influential
behavior was due to specific changes in drinking patterns and to variation in a microsatellite
sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie
voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick
a subject exhibited during continuous access to water and 10% ethanol during periods of
isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid
consumption confirmed previous results that high drinkers typically decrease ethanol intake
when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout
structure revealed differences in the number of ethanol drinking bouts in the subpopulations
of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by
visual and by cross-correlation analyses demonstrated that pair housing did not increase
the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a
microsatellite did not predict susceptibility to peer influence or any other drinking behaviors.
In summary, subpopulations of high drinkers were identified, by fluid intake and number
of drinking bouts, which did or did not lower their ethanol intake when paired with a low
drinking peer, and these subpopulations should be explored for testing the efficacy of
treatments to decrease ethanol use in groups that are likely to be responsive to different
types of therapy.

Keywords: prairie vole, social behavior, alcohol, ethanol, peer pressure, vasopressin, genetics, regulatory

microsatellite

INTRODUCTION
Excessive alcohol (ethanol) use in the United States contributes
to over 80,000 deaths per year (apps.nccd.cdc.gov/DACH_ARDI).
Therefore, it is extremely important to understand all factors
contributing to excessive ethanol drinking, as well as those that
contribute to decreases in drinking. Peer influences can lead to
increases in ethanol drinking in some cases, and to decreases in
others. Both types of influence can be crucial on the path to either
alcohol abuse (Fisher et al., 2007; Park et al., 2008) or abstinence
(Gordon and Zrull, 1991; Bond et al., 2003; Wu and Witkiewitz,
2008; Kelly et al., 2011). Understanding the processes by which
peer influences take effect will help inform and improve prevention
and treatment strategies for alcoholism.

Biological mechanisms underlying peer influence are underex-
plored, in large part because such influence is difficult to model in
laboratory animals. Most laboratory animals do not develop selec-
tive affiliations between individual adult animals and therefore
cannot model specific social interactions between peers. In con-
trast, individuals of socially monogamous species do form such
selective affiliations. For example, socially monogamous prairie
voles (Microtus ochrogaster) exhibit increased preference not only

for their sexual partner, but also to their same-sex cage mates
(Getz et al., 1981; Williams, 1992; DeVries et al., 1997a). We have
previously modeled specific social influences of ethanol drinking
in prairie voles. Specifically, we have shown that, depending on
the experimental conditions, housing with siblings or peers can
either facilitate (Anacker et al., 2011a) or inhibit ethanol drinking
in these animals (Anacker et al., 2011b). Moreover, such influ-
ence on ethanol drinking is specific to same-sex peers, and not
male–female pairs (Hostetler et al., 2012).

The positive (inhibitory) influence of voles drinking low doses
of ethanol on voles drinking high doses of ethanol was specific to
ethanol, and was not observed with other palatable fluids (Anacker
et al., 2011b). The decrease in ethanol drinking did not occur
when high drinking animals were housed together, indicating that
the high drinkers did not decrease their intake spontaneously or
due to potential anxiety associated with cohabitation, but did so
because of the influence of low drinkers. Moreover, the change
in intake due to this peer influence was long-lasting and main-
tained even after the voles were separated. However, we also
observed that while some of the voles changed their drinking
behaviors due to influence of their peer, others did not. It is

www.frontiersin.org July 2013 | Volume 4 | Article 84 | 185

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/about
http://www.frontiersin.org/Neuropharmacology/10.3389/fphar.2013.00084/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AllisonAnacker&UID=81898
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AndreyRyabinin&UID=44068
mailto:allison.anacker@gmail.com
http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


“fphar-04-00084” — 2013/7/2 — 21:25 — page 2 — #2

Anacker and Ryabinin Peer drinking influences in voles

important to understand what makes a specific individual suscep-
tible or resistant to peer influence, in order to target prevention
or treatment accordingly. Based on our previous findings show-
ing that high and low drinkers will alter alcohol intake levels
when paired together, while matched drinkers will not, here we
explored the manner in which the high–low drinking pairs affect
one another. We hypothesized that high drinkers’ decrease in
ethanol intake would be due to the development of a drinking
pattern that was linked to that of a low drinking peer when they
were housed together. To address this hypothesis here, we investi-
gated features of prairie voles’ drinking patterns using a lickometer
system.

Reports from other laboratories have demonstrated that the
establishment of social bonds in prairie voles is dependent on
the neuropeptide arginine vasopressin, acting via the vasopressin
1a receptor (V1aR; Winslow et al., 1993; Carter et al., 1995; Liu
et al., 2001; Nair and Young, 2006; Donaldson et al., 2010).
The gene for this receptor in prairie voles (avpr1a) contains
a microsatellite region upstream of the transcription start site,
which is polymorphic (Young et al., 1997; Hammock and Young,
2002, 2004; Hammock et al., 2005; Ophir et al., 2008; Solomon
et al., 2009). Studies have demonstrated that the length of the
microsatellite influences gene expression and receptor levels in
many brain regions, and the expression in turn affects behav-
ior (Hammock et al., 2005; Solomon et al., 2009). Specifically,
several types of social behaviors including partner preference
have been correlated with microsatellite length. In addition to
vasopressin’s involvement in social behaviors, the neuropep-
tide levels are also affected by ethanol drinking and thought
to play a role in the development of tolerance (Linkola et al.,
1978; Hoffman et al., 1990; Inder et al., 1995; Harding et al.,
1996; Rivier and Lee, 1996; Madeira and Paula-Barbosa, 1999;
Silva et al., 2002). In addition, while one laboratory reported
no effects of avpr1a deletion on ethanol intake (Caldwell et al.,
2006), a more recent study found increased ethanol intake in
avpr1a knockout mice (Sanbe et al., 2008). While studies on the
role of avpr1a in alcohol drinking provided conflicting results,
we explored whether the microsatellite length could relate to
the degree of social influence on alcohol intake. Therefore, we
further hypothesized that the length of the V1aR microsatel-
lite could be correlated with ethanol drinking or the degree
of social influence on ethanol drinking in prairie voles, and
addressed this hypothesis in this study.

MATERIALS AND METHODS
ANIMALS
Prairie voles were bred in our colony at the Portland Veterans
Affairs Medical Center Veterinary Medical Unit. All procedures
were approved by the Institutional Animal Care and Use Com-
mittee and adhered to the guidelines put forth in the National
Institutes of Health Guide for the Care and Use of Labora-
tory Animals. Voles were weaned around 21 days of age and
housed in same-sex sibling pairs, with females and males housed
in different rooms, until beginning the experiment. Voles were
housed under 14L:10D lighting conditions and had continuous
ad libitum access to water and food (corn, oats, and rab-
bit chow). Adult male and female voles (n = 95) were used

in these studies, ranging from 58 to 95 days of age at the
start of the experiment.

APPARATUS
The “lickometer” apparatus used in these experiments was a vari-
ation of that described previously (Ford et al., 2005; Anacker
et al., 2011a). As before, the apparatus consisted of a metal floor
(10 cm × 20 cm and 30 mm high; VWR, Tualatin, WA, USA),
connected by electrical wires to metal spouts of the drinking tubes
to create an open circuit through a dual lickometer device (MED
Associates, Inc., St. Albans, VT, USA), which was connected to a
PC. The wire bottom was positioned underneath the sipper tubes
so that the animals were required to have at least one paw on the
metal rack to touch the drinking spout, thereby completing the
electrical circuit. Each lick exhibited by a subject was recorded by
MED-PC IV software (MED Associates, Inc.) and stored for later
analysis. The cage containing each apparatus was modified from
the apparatus designed by Ford et al. and a schematic diagram is
pictured in Figure 1. The plastic cage bottom that surrounded the
wire rack was 16.8 cm × 27.6 cm and 5.4 cm high (Flair Plastic
Products, Inc., Portland, OR, USA) and had bedding, food, and a
nestlet available, so the subjects were not required to be on the wire
rack when they were not drinking. The plastic cage top was 17 cm
high and in addition to the holes for the drinking spouts, there were
holes in the lid and openings along the bottom for air circulation
(Flair Plastic Products, Inc.). The cages used for pair housing were
identical except that they were twice as wide, with separate lids
for each half, and a wire mesh down the center that divided the
cage into two equal compartments but allowed the subjects visual,
olfactory, vocal, and some tactile contact, similar to what has
been described by us previously (Anacker et al., 2011a,b; Hostetler
et al., 2012). Wire dividers were distant from the wire racks
and drinking spouts and did not interfere with lickometer data
collection.

PROCEDURE
At the beginning of the experiment, voles were placed in individual
lickometer cages and given access to water in the drinking tubes for
5 days, to habituate to the apparatus. After habituation, subjects
were presented with ethanol in one drinking tube (10% ethanol
by volume in tap water) and water in the other, and they had
continuous access to these solutions throughout the rest of the
experiment. Fluid volumes were recorded every 24 h, and the
position of the bottles relative to one another was counterbalanced
across pairs and switched every 2 days. Fluids were replaced every
2 days. After recording fluid volumes each day, and changing fluids
every second day, the lickometer recording began and continued
for 22 h.

After 4 days of access to ethanol in isolation, subjects were
categorized as consistent high, medium, or low drinkers, depen-
dent on the amount of ethanol they consumed (g/kg/day) and
the preference ratio for ethanol over water, using identical crite-
ria to a previous study (Anacker et al., 2011b). Specifically, high
drinking was defined as no less than 9 g/kg of ethanol per day
and no less than 0.75 ethanol preference over water. Low drinking
was defined as less than 5 kg/day and less than 0.5 ethanol pref-
erence. After 4 days of baseline drinking in isolation, each animal
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FIGURE 1 | Schematic diagram of lickometer cages and timeline.

Custom-designed cages were made to house voles individually (A) or in pairs
separated by a mesh divider (B). In both cases, plastic cages with air holes in
the top surrounded wire metal racks that covered most of the cage floor.
Voles had to step on the wire rack to reach the metal sipper tubes to obtain
fluid, completing an electrical circuit to register each lick on the drinking tube.

Subjects habituated to drinking water from the tubes for 5 days prior to the
start of the experiment. They then had access to 10% ethanol and water for
4 days, after which time they were categorized as high or low drinkers. High
and low drinkers were paired and given access to ethanol and water for
another 4 days, followed by a final 4 days of isolation with continued access
to ethanol and water.

was categorized by subtracting the number of “low” scores for
preference and dose from the number of “high” scores. Animals
receiving a positive number were labeled “high drinkers” while
those receiving negative numbers were labeled “low drinkers.”
Also as in other studies (Anacker et al., 2011b; Hostetler et al.,
2012), high drinkers were paired with low drinkers and moved into
the double cages with mesh dividers, where continuous access to
ethanol and water continued for 4 days. Here, pairs were made up
of same-sex, unrelated strangers. After pairing, subjects were again
moved into isolation and had access to ethanol and water for a final
4 days. In this experiment, the controls similar to those used in past
studies (namely high–high and low–low matched drinking pairs)
were not used, since the focus of the study was on the behavioral
mechanism by which the change in drinking occurs specifically
in high–low pairs. Instead, subjects for comparison were gener-
ated based on individual performance in the experiment: subjects
that changed their drinking level when paired were compared with
those subjects that did not alter drinking.

Following the final isolation period, voles were euthanized by
CO2 inhalation, and tail tissue samples were taken for genetic
analysis.

DRINKING ANALYSES
Ethanol intake and preference were calculated for each day based
on fluid volumes consumed. Average measures for each housing
period were compared by two-way repeated measures ANOVA

with high and low drinkers as a between-subjects variable. Fur-
ther analyses were done by splitting high drinkers into a group
of animals that decreased their drinking level category during the
4 days of pair housing with a low drinker and a group of animals
that did not, and comparing ethanol intake on each day of isola-
tion and pair housing. Drinking data from days two and six are
not presented in order to correspond with the lickometer data (see
below), but data from each of these days were very consistent with
the respective surrounding days. Bonferroni post-tests were used
to determine specific group differences. As in a previous study
(Anacker et al., 2011b), there were no sex differences in measures
of alcohol consumption or the effects of pair housing on ethanol
consumption and so data are presented and analyzed collapsed
across sexes.

To validate the lickometer, water and ethanol volume consumed
were each compared with the number of licks registered for each
subject, and analyzed using a Pearson’s correlation.

The lickometer data were analyzed as described previously
(Ford et al., 2005) by custom software for bout frequency (num-
ber of bouts), bout size, interbout interval, bout length, lick rate,
and latency to first bout. For voles with zero or one drinking
bouts per day, the data could not be analyzed using this software.
However, the number of bouts for these subjects was included
in the group analysis. Averages were compared by repeated mea-
sures ANOVA with three groups (high drinkers that remained high,
high drinkers that decreased drinking level when paired, and low
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drinkers) as a between-subjects variable and each day throughout
isolation and pair housing as the repeated measure. Due to a power
failure, lickometer data for days two and six were not collected
for a subset of animals. Rather than eliminating these subjects
from the entire repeated-measures analysis, those 2 days were
removed. Bonferroni post-tests were used to determine specific
group differences.

The lickometer data were then processed using custom-
designed software (u2615, Portland, OR, USA) which first rescaled
the data from 10 ms to 1 s resolution. Cumulative lick plots for
each pair on the last day of isolation and pairing were examined,
since the subjects would have had the most time to establish sta-
ble drinking patterns under each housing condition. The number
of bouts occurring in temporal proximity (≤15 min apart) was
determined using a standardized visual assessment. The number
of close bouts, and the number of close bouts normalized to the
lowest number of bouts exhibited by one member of the pair,
were compared using two-way repeated measures ANOVA with
change in drinking as a between-subjects factor and housing as
the repeated measure.

The data processed through u2615 were then analyzed for each
pair by a cross-correlation analysis (R for Mac OS). The correla-
tions were compared between the last day of isolation and the last
day of pair housing. The presence or absence of a significant cor-
relation for each day was noted, as well as the lag time and degree
of correlation (autocorrelation function, ACF) for each significant
correlation. The lag time range was limited to ±10 min, in order to
analyze only behaviors that occurred close together in time. This
metric indicated which subject followed the other in drinking, and
was examined in conjunction with individual pair data indicating
which subject changed intake.

MICROSATELLITE LENGTH ANALYSIS
DNA was extracted from each subject’s tail tissue sample using a
DNeasy Blood and Tissue Extraction Kit (Qiagen, Valencia, CA,
USA). The V1aR microsatellite sequence was amplified using a
variation of a previously published PCR technique (Hammock
et al., 2005). We used the same sequences of primers but the for-
ward primer was labeled with a 5-FAM fluorophore (Eurofins
MWG Operon, Huntsville, AL, USA). We also used a touchdown
PCR protocol to increase the specificity of the reaction (Korbie
and Mattick, 2008), with a HotStarTaq DNA polymerase (Qia-
gen). The reactions were heated to 94◦C for 15 min to activate
the polymerase, and then had 28 cycles of 30 s denaturing (94◦C),
45 s annealing, and 1 min for elongation (72◦C). The annealing
temperature started at 71◦C on the first cycle and decreased by
1◦C in each of the following 12 cycles. The last 25 cycles all had
an annealing temperature of 58◦C. The reaction was ended by a
5 min elongation at 72◦C and cooling to 4◦C.

The samples were each read by a 3130xl Genetic Analyzer
(Applied Biosystems, Carlsbad, CA, USA), by the Oregon Clinical
and Translational Research Institute Core Laboratory at Oregon
Health & Science University (OHSU). The microsatellite length
was determined for each allele for each subject with approximately
3 base pair resolution.

Microsatellite allele lengths were not normally distributed due
to a highly leptokurtotic sample, which could not be normalized

by any transformation. Thus, correlations could not be conducted
using the collected data. Instead, a median split was applied to
the data and t-tests were performed to compare between animals
that had short or long average microsatellite length. A number of
dependent variables were tested (baseline preference and intake,
change in preference and intake for high or low drinkers between
isolation 1 and pairing, or pairing and isolation 2, or overall from
isolation 1 to isolation 2) and a Bonferroni correction for multi-
ple comparisons was applied to yield the corrected threshold for
significance α = 0.005.

RESULTS
High drinkers were paired with low drinkers, leading to a total of
32 pairs that completed the experiment, while medium drinkers
did not continue past the initial isolation phase. Of these, 14 pairs
were female and 18 pairs were male.

As expected, high drinkers had a significantly higher prefer-
ence for ethanol than low drinkers (high: 0.703 ± 0.024; low:
0.372 ± 0.030; F(1,62) = 45.71; p < 0.0001) and exhibited
higher intakes (high: 11.7 ± 0.536 g/kg; low: 5.45 ± 0.369 g/kg;
F(1,62) = 40.85; p < 0.0001), in accordance with their categoriza-
tion. There was a significant effect of housing conditions on pref-
erence (F(1,124) = 4.91; p = 0.009) but not intake (F(1,124) = 0.82;
p = 0.441). As seen in our previous study (Anacker et al., 2011b),
there was a significant interaction between drinking category and
housing condition on preference (F(1,124) = 6.94; p = 0.0014) and
intake (F(1,124) = 4.48; p = 0.013). Planned Bonferroni post-tests
revealed that high drinkers decreased their ethanol preference from
baseline (isolation 1) to paired housing and isolation 2 (t = 3.93
and 3.26, respectively; df = 15; p < 0.001), as well as the intake
level (t = 2.76 and 2.44, respectively; df = 15; p< 0.05), while low
drinkers did not significantly change (Figure 2).

Also as in the previous study (Anacker et al., 2011b), the behav-
ior of individual animals within the high drinkers differed, and
they could be subcategorized into animals that either did (15/32;
∼47%; 7 female and 8 male) or did not (17/32; ∼53%; 7 female
and 10 male) change their drinking under social conditions. The
change was defined as the subject’s average drinking during pair
housing meeting the criteria for a drinking level different than
the baseline drinking level. While all high drinkers had greater
ethanol preference and intake than low drinkers on the first and
last day of the first isolation period, only those high drinkers
that altered their drinking under social conditions decreased their
preference and intake to the level of the low drinkers during
pair housing (Figure 3). There was a main effect of group on
ethanol preference (F(2,305) = 51.65, p < 0.0001) and intake
(F(2,305) = 34.47, p < 0.0001), a main effect of day on prefer-
ence (F(5,305) = 10.26, p < 0.0001) and intake (F(5,305) = 7.66,
p < 0.0001), and an interaction between the group and hous-
ing on preference (F(10,305) = 6.40, p < 0.0001) and intake
(F(10,305) = 9.86, p < 0.0001). Post hoc tests revealed that the low
drinkers had significantly lower ethanol preference and intake than
both groups of high drinkers on each day of isolation (p< 0.001),
while during pair housing, both the low drinkers and the high
group that changed had significantly lower ethanol intake than
the high drinkers that did not change (p< 0.001). On day 4 of iso-
lation, the high-change group had a significantly lower preference
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FIGURE 2 | Ethanol preference and intake in different housing conditions. Ethanol preference (A) and intake (B) by high (black) and low (white) drinkers in
each housing condition. *Significant difference between isolation 1 and subsequent housing conditions for high drinkers; p < 0.05.

FIGURE 3 | Ethanol preference and intake across days. Ethanol
preference (A) and intake (B) by high drinkers that did (black square) or did
not (black triangle) change ethanol intake when paired with low drinkers
(white square) is shown across days of isolation and pair housing. In
isolation, both high groups are significantly higher than the low drinkers.
During pair housing, the high drinkers that change intake and the low
drinkers are both significantly lower than the constant high drinkers.

for ethanol than the high-no change group (p < 0.05), while still
remaining significantly higher than the low drinkers, as described
above.

Volumes of ethanol and water consumed each day correlated
very well with the number of licks recorded for each subject

FIGURE 4 | Correlation of recorded licks with fluid volume consumed.

The relationship between the number of recorded licks from each drinking
tube on the X -axis with the volume of water (O) or ethanol (X) consumed
on the Y -axis, for each of 4 days in isolation is graphed for one cohort of
animals (n = 10) representative of the entire experiment. There was a
strong positive correlation for both water (r = 0.815, n = 40, p < 0.0001)
and ethanol (r = 0.694, n = 40, p < 0.0001).

(Figure 4). Analysis of the bouts of ethanol consumption revealed
one notable difference between high drinkers that did not change
ethanol intake when paired with low drinkers, and high drinkers
that did change, out of six different parameters assessed (Figure 5).
Since the software could not analyze data from subjects with one or
fewer drinking bouts, 10 low drinkers and one high drinker were
not included in the analysis of other features besides the number
of bouts. There was a main effect of group on the number of bouts
(F(2,300) = 10.69; p = 0.0001), interbout interval (F(2,240) = 5.71;
p = 0.006), and lick rate (F(2,225) = 5.30; p = 0.009). There was
also a main effect of day on the number of bouts (F(5,300) = 12.82;
p < 0.0001), interbout interval (F(5,240) = 5.33; p = 0.0001), and
lick rate (F(5,225) = 11.17; p < 0.0001). Most notably, there was
an interaction effect of group and day on the number of bouts
(F(10,300) = 3.06; p = 0.001).

Post hoc tests revealed the source of the interaction between
group and day on the number of ethanol drinking bouts. The
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FIGURE 5 | Ethanol drinking bout features. Bout features of high drinkers
that did (black triangle) or did not (black square) change ethanol intake when
paired with low drinkers (white square) are shown throughout isolation and
pair housing. The number of bouts of ethanol drinking (A), the average length
of bouts as measured by number of licks (B) and time (D), the average time

between bouts (C), the rate of licks within a bout (E), and the average time
until the first lick was recorded (F) are shown for each 22 h period. *Post hoc
significant difference between high-no change group and low group; #Post
hoc significant difference between high-no change group and high-change
group.

number of bouts was significantly higher in the high-no change
group than in the low group on all days (p < 0.05), while the
high-change group was never significantly different from the low
group. The high-change group did have significantly fewer drink-
ing bouts than the high-no change group on days 5 (p < 0.001)
and 7 (p < 0.05) during pair housing (Figure 5A).

Visual analysis of the cumulative lick graphs (Figure 6) revealed
that while there were occurrences of ethanol drinking bouts close
together in time for pairs of animals, the frequency of close bouts
was not significantly different between isolation (Figure 6A) and
pair housing (Figure 6B), or between pairs that did not change
drinking levels compared to those who did, and there was no
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FIGURE 6 | Cumulative number of licks of ethanol over 22 h for an

example pair. (A) The drinking patterns for subjects in a pair on the last day
of isolation. (B) The drinking patterns for subjects in the same pair on the last
day of pair housing. The high drinker is shown in blue and the low drinker is

shown in black. Each “step up” in the graph indicates a bout of drinking while
each horizontal line indicates a time when no drinking occurred. The red
circle indicates bouts that occurred close together in time, within the applied
threshold.

FIGURE 7 | Visual assessment of close ethanol drinking bouts

between partners in isolation and pair housing. (A) The number of
close bouts does not significantly differ between housing conditions or
group changes, and there is no significant interaction of effects. (B) The

proportion of close bouts relative to the lowest number of bouts
one subject exhibited does not significantly differ between housing
conditions or group changes, and there is no significant interaction
of effects.

interaction between the two factors when either the number
(Figure 7A) or proportion (Figure 7B) of close bouts was assessed.

Cross-correlation analyses revealed that over two-thirds of the
pairs exhibited a significant correlation between ethanol drink-
ing patterns regardless of whether they were physically isolated
(Figure 8A) or housed together (Figure 8B). Additionally, there

was no consistent difference in the presence or absence of corre-
lations between pairs that exhibited changes in drinking behavior
and those that did not (Table 1). Contrary to our hypothesis,
there was no consistent directionality of the lag time of cross-
correlations in pairs that changed their drinking level: in pairs
where high drinkers changed to low drinkers, there was not a
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FIGURE 8 | Cross-correlations between ethanol drinking patterns of

peers. (A) Correlations between high and low drinkers in isolation, before
they have been housed together. (B) Correlations between high and low
drinkers in pairs on the fourth day of pair housing. The Y -axis represents
the strength of the correlation (autocorrelation function; ACF), while
horizontal dashed lines represent the threshold for significance. The
X -axis represents “lag” time, in seconds, between drinking events. A
significant correlation at a lag time “h” indicates that h seconds after the

high drinker licks, the low drinker is likely to lick; a positive h value indicates
that the high drinker leads the low drinker, and a negative value indicates
that the low drinker leads the high drinker. Pairs shown are examples of
each type of pair observed: those where both subjects changed drinking
levels when paired (top panels), those where the high drinker changed
to match the low drinker (middle panels show two of many variations
of outcomes), and those where neither subject changes (bottom
panels).
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Table 1 | Number of pairs exhibiting significant correlations in

drinking patterns.

Ethanol

isolation 1

Ethanol

pair

Water

isolation 1

Water

pair

Change Correlation 11 12 14 14

No correlation 6 5 3 3

No change Correlation 12 12 12 15

No correlation 3 3 3 0

The total number of pairs (32) is divided into groups where at least one subject
changed the drinking pattern and those that did not (change, no change). For
each group, the number of pairs exhibiting a significant correlation or not, when
analyzed by the cross-correlation function within a lag time of 10 min is shown
for each ethanol and water drinking patterns, in isolation and pair housing. There
are clearly no significant differences between groups that did or did not change,
between isolation and pairing, or between ethanol and water.

greater presence of a negative lag time that would indicate the low
drinker “leading” the high drinker (Figure 8B panels 2 and 3).

There was no significant correlation between the number
of close bouts by visual assessment and the strength of cross-
correlations (ACF value; r = 0.083; n = 19; p = 0.734). However,
there was a statistical trend for a positive correlation between the
proportion of close bouts by visual assessment (number normal-
ized to the lowest number possible for each pair) and the strength
of cross-correlations (r = 0.444; n = 18; p = 0.065).

The region containing the V1aR microsatellite was successfully
amplified and lengths were determined for 59 subjects. The rate of
homozygosity was 47%. The length of the amplified region ranged
from 669 to 736 base pairs. The mean, median and mode for all
alleles were 703, 699, and 698 bp, respectively. The allele lengths
were not normally distributed.

There was no significant difference in drinking behavior
between subjects with short or long average microsatellite lengths
on any measure of behavior (Table 2): initial ethanol preference,
initial ethanol intake, change in ethanol preference or intake from
isolation to pair housing, pair housing to subsequent isolation, or
overall change from the beginning to the end of the experiment.
There was a difference within high drinkers, where subjects with
long alleles had a greater decrease in ethanol preference from the
beginning to the end of the experiment than those with short alle-
les (t = 2.27; df = 26; p = 0.031), but this difference did not
remain significant when adjusted for multiple comparisons.

DISCUSSION
Prairie voles drinking large amounts of ethanol paired with low
drinkers in the lickometer apparatus exhibit a decrease in drink-
ing similar to what we have previously demonstrated in home cage
drinking (Anacker et al., 2011b). This previous study has already
indicated that this decrease is not spontaneous but is due to social
influence. The present experiments indicate that the observed
changes in ethanol drinking are not dependent on peers drink-
ing together at the same time, or following specific patterns of
consumption. Accordingly, this finding is in agreement with our
previous results which showed that no changes in saccharin drink-
ing occurred when high drinkers were paired with low drinkers

Table 2 | Effect of V1aR microsatellite length on ethanol drinking

behaviors.

Behavior t, df p Value

Baseline preference t = 0.151 df = 57 0.880

Baseline intake t = 1.37 df = 57 0.176

High preference change 1 t = 1.30 df = 26 0.207

High preference change overall t = 2.27 df = 26 0.0314

Low preference change 1 t = 0.257 df = 29 0.799

Low preference change overall t = 0.638 df = 29 0.529

High intake change 1 t = 0.166 df = 26 0.870

High intake change overall t = 0.441 df = 26 0.663

Low intake change 1 t = 0.000571 df = 29 1.00

Low intake change overall t = 0.0418 df = 29 0.967

Subjects possessing a short or long average microsatellite length were compared
for each of the behaviors listed in the column on the left.The results of the t tests
are listed in the middle column, with the p value in the right. Significant (p< 0.05)
values prior to correction are shown in bold, though no tests remained significant
when the Bonferroni correction was applied (p< 0.005). Baseline preference and
intake were based on the average ethanol (and water) intakes of the first 4 days
of access, during isolation. “High” indicates a comparison between only the
high drinkers, and “Low” indicates only the low drinkers. “change 1” indicates
the change in drinking from the average during isolation 1 to the average during
pair housing. “change overall” indicates the change in drinking from the average
during isolation 1 to the average during isolation 2 following pair housing.

(Anacker et al., 2011b). Specifically, the lack of changes in saccha-
rin drinking suggested that even if pair housing of animals could
synchronize their consummatory behaviors, this synchronization
is not sufficient to affect their individual drinking levels. How-
ever, there are subtle differences in the features of voles’ drinking
bouts that can differentiate which subjects change their intake
when paired. Specifically, high drinkers that lowered their ethanol
intake when paired with a low drinker exhibited a lower number
of ethanol drinking bouts when paired than the high drinkers that
did not change. It is interesting to note that a tendency toward a
lower number of drinking bouts was present in this group even
before pairing, along with gradual decreases in intake and pref-
erence across days in isolation. The high-change group showed a
tendency toward a lower number of ethanol drinking bouts in iso-
lation relative to the high drinking group, while the intake levels
remained similar; this may be explained by the slight increase in
the lick rate of the high-change group, which would allow them
to maintain the high level of intake while decreasing the num-
ber of bouts. The high-change group also exhibited a tendency
toward higher total fluid consumption relative to the high-no
change group, resulting in a similar ethanol dose consumed but a
lower preference in the high-change group compared to the high-
no change group. This observation suggests that the pairing with a
low drinker interacted with this tendency toward lower preference
and lower number of bouts to produce a more robust decrease
in ethanol intake. Thus, we could differentiate subpopulations of
high drinkers that were and were not responsive to social influence
to decrease ethanol intake, based on differences in fluid preference
and on the number of drinking bouts that already existed when
isolated.
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These findings have potential to lead to future translational
work. It is widely known that different types of therapies work
for only subsets of people with alcohol use disorders (Anton et al.,
2006). Some people may be responsive to social support groups,
others to drug therapies, and others to cognitive or behavioral
therapy, while still others benefit from a combination. It would be
extremely helpful if there were tools to allow clinicians to iden-
tify these subpopulations in order to target appropriate treatment
to achieve the greatest effect to decrease problem drinking. To
our knowledge, there is currently no other animal model where
subpopulations that are likely to be responsive to different types
of treatments have been identified. If further studies identified
behavioral and biological mechanisms of actions or endopheno-
types that could predict the success of social influence on lowering
drinking, this information could be explored to improve treat-
ment outcomes. Future studies could also test whether the group
of high drinking voles that was unresponsive to pairing with a low
drinker would be more responsive to pharmacotherapy than to
peer influence to decrease drinking.

Furthermore, it remains to be explored why a subset of voles
was susceptible to peer influence. One possibility is that differ-
ent levels of anxiety predispose particular individuals to imitate
or avoid a peer. The argument could be made in either direction:
higher social anxiety could lead to an increase in trying to “blend
in” or to avoid contact and influence from a peer. Hostetler et al.
(2012) showed that baseline anxiety-related behavior in the ele-
vated plus maze was correlated with alcohol drinking, although the
correlation was higher in isolated housing than in paired housing,
and specifically in males, but it remains possible that individual
differences in baseline or reactive anxiety are associated with the
changes in alcohol drinking levels. While no measures of stress or
anxiety levels were taken in the current study, it needs to be noted
that early studies did not find effects of same-sex pairing on gluco-
corticoid levels (DeVries et al., 1997b). Since the initial aim of this
study was to examine drinking patterns of behavior without dis-
turbing the animals, future studies should examine different types
of anxiety in relation to alcohol intake, as well as corticosterone
levels. It is also possible that the voles that responded to peer influ-
ence have different social behaviors overall, which may have led
them to alter their drinking behavior, for example to spend more
time interacting with the partner rather than drinking. It would be
interesting to explore social behaviors, e.g., in a social interaction
test, to examine how they relate to propensity to alter drinking
behavior in a social context.

Interestingly, specific episodes of peer influence were not
detected by any comparisons of drinking patterns undertaken
here. The visual assessment of the cumulative lick records and
the cross-correlation analyses both indicated that subjects often
have drinking bouts that are close together in time. We initially
hypothesized that these coincident drinking bouts would occur
more often when pairs were housed together than when they were
in isolation, since they may synchronize their ultradian rhythms
to be awake and feeding and drinking at the same time. However,
this was not the case; nearly equal numbers of pairs had significant
correlations in isolation and in paired housing.

While we found that neither cumulative lick record nor cross-
correlation analyses revealed evidence of consistent patterns of

linked ethanol intake in pairs, we also found that these differ-
ent analyses did not exhibit strong correlations with one another.
In particular, we would have expected a large number of close
drinking bouts in a visual assessment of drinking patterns to be
associated with a stronger ACF value in the cross-correlation, but
this positive correlation did not reach statistical significance. There
are many possible reasons for this. One explanation is that the lag
time between bouts would have to be nearly identical within a
pair in order to produce a strong ACF by cross-correlation. If the
time between paired subjects’ drinking bouts varied even by 30 s
for each bout, it is possible that a significant ACF value would
never be produced by cross-correlation: each lag time would be
cataloged, but would have such a low frequency of occurrence that
none would be considered significant. In this case, with animal
behavior having the potential to be extremely variable even within
a framework of a consistent pattern, cross-correlational analyses
may not be optimal for detecting such patterns.

Given the evidence from the various types of pattern anal-
yses performed in this study, it appears that prairie voles do not
alter their ethanol drinking behavior by synchronizing their drink-
ing patterns with those of a peer. Therefore, another mechanism
must be at work to explain the peer-dependent change in drinking
levels observed in the present study and previous work, where
most often the high drinker decreases its intake when paired
with a low drinker. Thus, it is an open question whether the
low drinker is typically the dominant vole within the pair and,
if so, how this may dictate ethanol intake or changes in ethanol
intake. Another possible explanation is that the voles try to match
one another’s intoxication levels, perhaps through visual cues or
vocal interactions. This explanation would address the specificity
of behavioral changes observed for ethanol but not saccharin, a
rewarding substance that does not lead to intoxication.

The length of the vasopressin receptor 1a (avpr1a) microsatel-
lite fragment observed here was different than what has previously
been reported by others. Hammock and Young (2005) and
Solomon et al. (2009) reported a range of 723–760 and 703–798
base pairs, respectively, which are considerably longer and show
very little overlap with our sample. Additionally, they observed
between 75 and 100% heterozygosity and a normal distribution
while almost half or our sample was homozygous, leading in part
to a highly leptokurtic distribution. Since the subjects in our study
arose from different colonies of prairie voles than the previously
published findings, it is possible that they originate from a differ-
ent subsample of the wild prairie vole population, and that in our
colony we have a larger presence of similarly sized alleles leading
to a higher frequency of particular alleles and homozygosity.

In addition to differences in allele length in the samples, the
present experiment did not find effects of the microsatellite length
on any measure of prairie voles’ ethanol drinking behavior, or on
the propensity to change ethanol intake when paired with a peer.
There was an indication of an effect of the longer microsatellite
length corresponding to a greater change in ethanol preference
following the effect of a peer influence, but this effect did not
remain significant following adjustment for multiple compar-
isons. Thus, this trend should only be considered suggestive of the
potential for the avpr1a microsatellite to modulate social influence
on ethanol drinking. A recent study in human adolescents
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demonstrated no role of a different repeat region, a variable num-
ber tandem repeat in the dopamine D4 receptor gene, in the effects
of friends’ drinking levels on subjects’ drinking (van der Zwaluw
et al., 2012).

The effects of the V1aR microsatellite length reported by others
appear to be very specific to particular tests and environments.
For example, microsatellite length was correlated with the recep-
tor expression level in various brain regions, and several of these
regions were then correlated with measures of partner prefer-
ence in the laboratory test (Hammock et al., 2005), but not when
laboratory-bred voles were tested for social monogamy in semi-
natural enclosures (Ophir et al., 2008; Solomon et al., 2009), or
in wild prairie voles (Mabry et al., 2011). In contrast, the length
was correlated with genetic monogamy in the wild, but not in
semi-natural enclosures.

One possible reason for effects that may be difficult to detect
has previously been proposed by others (Ophir et al., 2008): while
there are several ways in which microsatellite length may influence
expression levels (Hammock and Young, 2005), it is likely that par-
ticular single nucleotide polymorphisms in avpr1, rather than its
length, could be a better predictor gene expression and, ultimately,
behavior.

CONCLUSION
The present study shows that while high drinkers decrease their
ethanol intake when paired with low drinkers, it is not due to
matching patterns of drinking, and the behavioral changes cannot
be predicted by the length of the microsatellite polymorphism in
the vasopressin receptor 1a. Other behaviors and specific genetic
polymorphisms that may affect peer-influenced ethanol drink-
ing may be studied in the future. This study demonstrates new

methods for examining data from fluid consumption studies
where social influences can be assessed using visual and cross-
correlational analyses. Most importantly, this study shows that
subpopulations of high drinkers that decrease their ethanol intake
can be identified based on changes in intake levels and bout num-
ber when paired with a low drinker. This provides a model system
in which the efficacy of potential therapies can be tested using
groups which are likely to respond to different types of treat-
ments. It will be important to examine whether subpopulations
of human alcohol drinkers can be identified with similar means,
and to explore whether they are similarly responsive to social
or other types of treatments to decrease alcohol drinking; then
further testing of this animal model of alcohol drinking can be
used to elucidate specific mechanisms of action and responses to
treatments that can inform treatment of humans with alcohol use
disorders.
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Stress increases the risk of drug abuse, causes relapse to drug seeking, and potentiates
the rewarding properties of both nicotine and cocaine. Understanding the mechanisms
by which stress regulates the rewarding properties of drugs of abuse provides valuable
insight into potential treatments for drug abuse. Prior reports have demonstrated that stress
causes dynorphin release, activating kappa opioid receptors (KOR) in monoamine circuits
resulting in both potentiation and reinstatement of cocaine and nicotine conditioned place
preference. Here we report that kappa opioid-dependent reinstatement of cocaine and
nicotine place preference is reduced when the mice are exposed to a randomized chronic
mild stress (CMS) regime prior to training in a conditioned place preference-reinstatement
paradigm. The CMS schedule involves seven different stressors (removal of nesting for
24 h, 5 min forced swim stress at 15◦C, 8 h food and water deprivation, damp bedding
overnight, white noise, cage tilt, and disrupted home cage lighting) rotated over a 3-week
period.This response is KOR-selective, as CMS does not protect against cocaine or nicotine
drug-primed reinstatement. This protection from reinstatement is also observed following
sub-chronic social defeat stress, where each mouse is placed in an aggressor mouse home
cage for a period of 20 min over 5 days. In contrast, a single acute stressor resulted
in a potentiation of KOR-induced reinstatement, as previously reported. Prior studies
have shown that stress alters sensitivity to opioids and prior stress can influence the
pharmacodynamics of the opioid receptor system. Together, these findings suggest that
exposure to different forms of stress may cause a dysregulation of kappa opioid circuitry
and that changes resulting from mild stress can have protective and adaptive effects against
drug relapse.

Keywords: kappa opioid receptor, cocaine, nicotine, stress, conditioned place preference

INTRODUCTION
It is well-established that stress increases the risk of drug abuse,
relapse to drug seeking, and potentiates the rewarding proper-
ties of cocaine (Covington and Miczek, 2001; McLaughlin et al.,
2003; Redila and Chavkin, 2008; Bruchas et al., 2010). Previous
studies have implicated a critical role for dynorphin/kappa opioid
systems in the mediation of stress-induced behaviors includ-
ing reinstatement of drug seeking in both place preference and
self-administration animal models. Studies have shown that stress-
induced reinstatement to alcohol, cocaine, and nicotine seeking
is absent in kappa opioid receptor (KOR) KO and dynorphin
KO mice as well as following pretreatment with KOR antago-
nists (Beardsley et al., 2005; Redila and Chavkin, 2008; Walker
and Koob, 2008; Walker et al., 2011; Jackson et al., 2013). How-
ever, while numerous models of acute stress reinstate drug seeking
through dynorphin/KOR activation, the effects of prior repeated
stress exposure, and various magnitudes of stress exposure on
KOR-mediated reinstatement has not been examined.

The dynorphin/KOR system is composed of prodynorphin
peptides and KOR, a seven-transmembrane spanning Gi/o

protein-coupled receptor (GPCR). In addition to the classical
inhibitor effects on adenylate cyclase activity, KOR also cou-
ples to mitogen-activated protein kinase pathways (Bruchas et al.,
2010; Al-Hasani and Bruchas, 2011) to mediate various behavioral
effects (Bruchas et al., 2011; Potter et al., 2011). It is thought that
stress causes dynorphin release activating KOR within monoamine
nuclei (ventral tegmental area, dorsal raphe, locus coeruleus) and
their projection targets (extended amygdala, nucleus accumbens,
etc.; Wise, 2004; Zhang et al., 2005; Carlezon et al., 2006; Gehrke
et al., 2008; Land et al., 2008, 2009; Ebner et al., 2010; Bruchas
et al., 2011; Al-Hasani et al., 2013; Graziane et al., 2013). The KOR-
mediated reduction in dopamine and serotonin activity results in
dysphoria-like behavior that drives reinstatement of drug seeking
to relieve this negative affective state. KORs are highly regulated
via G-protein-coupled receptor kinase (GRK) phosphorylation
and desensitization mechanisms. In opioid receptors this cellular
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regulatory system acts to remove receptor-G-protein activation,
and promotes tolerance, arrestin signaling and/or receptor recy-
cling (McLaughlin et al., 2004; Al-Hasani and Bruchas, 2011;
Williams et al., 2013).

Chronic mild stress (CMS) is a widely adopted animal model
for inducing depression- and anxiety-like behaviors because
it mimics the unpredictable intermittent stress exposure that
humans experience, for complete review see Hill et al. (2012).
The model utilizes repeated, randomized stress events, over the
course of several weeks to mimic the unpredictable nature of mild
stress experience (Elizalde et al., 2008; Peng et al., 2012; Tye et al.,
2013). Numerous studies have demonstrated that various types
of CMS models act to alter neurotransmitter systems includ-
ing monoamine (dopamine, serotonin, and norepinephrine),
gamma-aminobutyric acid (GABA), and glutamatergic transmis-
sion (Rasheed et al., 2008; Vancassel et al., 2008; Tye et al., 2013).
However, the role of CMS on opioid system regulation is not
as well-known, with only a few reports showing that dynor-
phin and enkephalin opioid neuropeptide mRNA remain relatively
unchanged in CMS models in various brain regions (Bertrand
et al., 1997; Bergström et al., 2008). More recent reports have
shown that repeated stress can dysregulate the effects of KOR
signaling within dorsal raphe serotonergic circuits (Lemos et al.,
2012a) but the functional consequences of repeated stress exposure
or CMS compared to acute and sub-chronic stressors on kappa
opioid-dependent behaviors has not been investigated.

Here we determined how different types of exposure to stress
(acute, sub-chronic, and chronic) impact subsequent kappa
opioid-mediated reinstatement of cocaine and nicotine place pref-
erence. We determined how different forms of stress, including a
3-week CMS, sub-chronic social defeat stress (SDS), and acute
forced swim stress (FSS), impact kappa opioid-induced reinstate-
ment. We found that the initial cocaine and nicotine conditioned
place preference were unchanged in sub-chronic stress and CMS
exposure, however, KOR-induced cocaine and nicotine reinstate-
ment was absent in mice that were pre-exposed to CMS, in contrast
to acute stress, which caused potentiated KOR-reinstatement. In
addition, we found that cocaine and nicotine drug-primed rein-
statement is not affected by pre-exposure to stress, suggesting that
this protective ablation of KOR-induced reinstatement by CMS,
selectively affects KOR-mediated behavioral responses.

MATERIALS AND METHODS
ANIMAL SUBJECTS
Male C57BL/6 wild-type mice, bred locally and maintained in
Washington University mouse facility (20–30 g) were used for all
experiments. All mice were group-housed within the Animal Core
Facility at Washington University in St. Louis, given access to food
pellets and water ad libitum, and maintained in specific pathogen-
free housing. Mice were transferred at least 1 week before testing
into a colony room adjacent to the behavioral testing room to
acclimatize to the study environment and prevent stress during
conditioning phases. Housing rooms were illuminated on a 12-h
light/dark cycle with lights on at 7 AM. All animal procedures were
approved by the Animal Care and Use Committee of Washington
University in St. Louis, in accordance with the National Institutes
of Health Guide for the Care and Use of Laboratory Animals.

DRUGS
Cocaine HCl and racemic U50,488 methanesulfonate were
provided by the National Institute on Drug Abuse and Drug Sup-
ply Program and in some instances Sigma Aldrich (St. Louis, MO,
USA). Nicotine hydrogen tartrate salt was purchased from Sigma
Aldrich (St. Louis, MO, USA), dissolved in phosphate buffered
solution. The free base form of nicotine was used for calculat-
ing all injection doses. All drugs were dissolved in saline unless
otherwise indicated.

CONDITIONED PLACE PREFERENCE AND REINSTATEMENT PARADIGM
Mice were trained in an unbiased, balanced three-compartment
conditioning apparatus and the reinstatement of cocaine place
preference (CPP) paradigm was conducted as previously described
(Land et al., 2009; Bruchas et al., 2011; Al-Hasani et al., 2013). On
pre-conditioning day mice were allowed free access to all three
chambers for 30 min (cocaine CPP) and 20 min (nicotine CPP).
Time spent in each compartment was recorded with a video cam-
era (ZR90; Canon) and analyzed using Ethovision 8.5 (Noldus).
Mice were randomly assigned to saline and drug compartments
and received a saline injection in the morning (10 ml/kg, s.c.)
and cocaine (15 mg/kg, s.c.) or nicotine (0.5 mg/kg, s.c.; Jack-
son et al., 2013) injection in the afternoon, at least 4 h after the
morning training on two consecutive days for nicotine condition-
ing and three consecutive days for cocaine conditioning. To test
for cocaine place preference the mice were allowed free access to
the three compartments. Scores were calculated by subtracting the
time spent in the drug-paired compartment, post-test minus the
pre-test. Mice were considered to have conditioned if the con-
ditioning score was within 15–85% of total conditioning time,
approximately 50 and 80% of mice reached this criteria for nico-
tine and cocaine conditioning, respectively. This was followed
by 2 days (nicotine) or 3 days (cocaine) of extinction training
during which saline (10 ml/kg, s.c.) was injected in both the
morning and afternoon prior to placement into isolated condi-
tioning compartments. Mice were then tested for extinction of
place preference with free access to all three chambers. Mice were
considered to have extinguished cocaine and nicotine preference
if scores fell within 15% of their initial preference scores, approx-
imately 98% of mice met this criteria. Mice that did not meet
these criteria were excluded from the study and mice that met
these criteria and extinguished continued on to the reinstatement
phase.

On reinstatement test day mice were injected with KOR ago-
nist, U50,488 (5 mg/kg, i.p.), placed in their home cage for 30 min
(cocaine CPP) or 20 min (nicotine CPP) as previously described
(Redila and Chavkin, 2008; Land et al., 2009; Al-Hasani et al.,
2013), after which they were placed in the CPP apparatus and
allowed free access to all three compartments for reinstatement
expression. Reinstatement was measured as time (s) in drug-
paired chamber on reinstatement test day minus time spent in
drug-paired chamber following extinction training. On the fol-
lowing day, all mice were exposed to a priming injection of
cocaine (15 mg/kg, s.c.) or nicotine (0.5 mg/kg, s.c.) to test
for drug-primed reinstatement and placed in the apparatus with
free access to all compartments. Reinstatement scores were cal-
culated by subtracting the time spent in the cocaine or nicotine
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side post-reinstatement minus the extinction test as previously
described (Land et al., 2009; Bruchas et al., 2011).

ACUTE STRESS
During reinstatement (day 10) mice were subjected to FSS in which
they were placed in an 18 cm deep bucket of water at 30◦C and
allowed to swim for upto 6 min. Mice were removed immediately
if they appeared to be at risk of drowning. After a 5 min dry off and
recovery period mice were injected with U50, 488 (5 mg/kg, i.p.)
in the home cage for 30 min and then placed in the CPP chambers,
with access to all three compartments to access reinstatement to
cocaine place preference.

SUB-CHRONIC SOCIAL DEFEAT STRESS
Social defeat stress was performed as previously described
(Bruchas et al., 2011). From the afternoon of the conditioning
post-test (day 5) until post-extinction day (day 9) mice were placed
in the home cage of an aggressor mouse for a period of 20 min
in the afternoon 2 h following extinction or post-testing (typi-
cally from 4 to 6 PM). Mice were monitored carefully for severe
injury during SDS and were removed if necessary. No mice met
this criterion in this study. In addition, as previously described
(Land et al., 2009; Bruchas et al., 2011) all mice are observed and
tracked to receive similar bouts of aggression and exhibit charac-
teristic social defeat postures (McLaughlin et al., 2006; Land et al.,
2009) to ensure similar stress exposure in each treatment group.
On day 10 mice were injected with U50,488 (5 mg/kg, i.p.) in the
home cage and then placed in the CPP chambers 30 min later
to access reinstatement to cocaine seeking. On day 11, for drug-
primed reinstatement, mice were injected with cocaine (15 mg/kg,
i.p.) and immediately placed in the testing chambers.

CHRONIC MILD STRESS PARADIGM
In order to model randomized mild stress exposure, we adapted
a previously validated CMS paradigm. Stressors were randomly
assigned during the 3-week stress period (outlined in Table 1)
prior to conditioned place preference/reinstatement procedure.
During reinstatement phase the mice were injected with U50,488
(5 mg/kg, i.p.) in the home cage (30 min) and then placed in the
CPP chambers to assess reinstatement to cocaine place preference.
On the following day, mice were injected with cocaine (15 mg/kg,
s.c.) or nicotine (0.5 mg/kg, s.c.) priming injection and again
allowed free access to all three chambers to determine drug prime-
induced reinstatement of place preference.

LOCOMOTOR ACTIVITY
During the 3-day conditioning period and during reinstatement
test days, locomotor activity was recorded as distance traveled (cm)
throughout the 30 min period using video tracking (Canon) of
animal movement and Ethovision 8.5 software analysis (Noldus).
During the conditioning period the total distance (cm) on condi-
tioning days are represented. During reinstatement post-test trials
distance (cm) is represented as 5 min bins throughout the 30 min
test period.

DATA ANALYSES AND STATISTICS
Data were expressed as means ± SEM. All raw data were calcu-
lated via Ethovision video tracking and then place preference or

locomotor data were calculated as described. Data were normally
distributed, and differences between groups were determined
using Student’s independent t-tests, one-way ANOVA, or two-way
ANOVA as appropriate. ANOVA’s were followed by post hoc Bon-
ferroni comparisons if the main effect was significant at p < 0.05.
Statistical analyses were conducted using GraphPad Prism 5.0F
(GraphPad, San Diego, CA, USA).

RESULTS
ACTIVATION OF KAPPA OPIOID RECEPTORS FOLLOWING ACUTE
STRESS POTENTIATES REINSTATEMENT OF COCAINE PLACE
PREFERENCE
It has previously been shown that FSS is sufficient to induce rein-
statement and potentiation to drug seeking in a KOR-dependent
manner (McLaughlin et al., 2003; Schindler et al., 2012; Smith
et al., 2012). Furthermore, stress-induced activation of KOR rein-
states nicotine, alcohol, and cocaine seeking (Bruchas et al., 2010;
Van Bockstaele et al., 2010; Wee and Koob, 2010; Graziane et al.,
2013). In this study, we determined whether acute exposure to a
single swim stress would prevent or potentiate a subsequent KOR-
mediated reinstatement of CPP. Mice were subjected to cocaine
conditioning, extinction, and reinstatement as described. On
reinstatement day mice were exposed to swim stress for up to
6 min, were injected with KOR agonist U50,488 (5 mg/kg, i.p)
5 min following recovery, and then placed in the CPP cham-
ber 30 min later (Figure 1A). Mice subjected to FSS prior to
KOR activation by U50,488 showed significant and robust poten-
tiation of reinstatement to cocaine seeking when compared to
mice that were not subjected to FSS but that were injected with
only U50,488 to induce reinstatement (Figure 1B, n = 8–15
(***p < 0.001, no stress and U50 vs. FSS and U50; one-way
ANOVA, Bonferroni post hoc test). Locomotor activity during
the reinstatement test was measured and the combination of
FSS, followed by KOR-induced reinstatement to cocaine seeking
showed a reduction in locomotor activity when compared to both
the non-stressed group and the FSS alone group (Figure 1C).
These data suggest that acute stress exposure induces a poten-
tiation of KOR agonist-induced reinstatement of cocaine place
preference.

SUB-CHRONIC STRESS EXPOSURE BLOCKS SUBSEQUENT KOR
AGONIST-INDUCED REINSTATEMENT OF COCAINE PLACE
PREFERENCE
To determine the effects of multiple rounds of stress exposure on
KOR-induced reinstatement, mice were subjected to 20 min of
SDS at the end of the day during extinction training and prior
to the reinstatement phase. On day 10, the reinstatement test
day, a single dose of U50,488 (5 mg/kg, i.p.) was administered
to induce reinstatement of cocaine place preference (Figure 2A).
Prior exposure to sub-chronic SDS resulted in a significant block
of U50,488 induced reinstatement of cocaine place preference
(Figure 2B: *p< 0.05, no stress and U50,488 vs. SDS and U50,488,
**p < 0.01, SDS and U50,488 vs. SDS and cocaine; one-way
ANOVA followed by Bonferroni post hoc test, n = 12–16). This
inhibition of reinstatement was selective for activation of KOR
because a priming injection of cocaine (15 mg/kg, s.c.) still caused
significant reinstatement of cocaine CPP following exposure to
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FIGURE 1 | Acute forced swim stress potentiates U50,488-induced

reinstatement of cocaine place preference. (A) Timeline of cocaine place
preference-reinstatement experimental paradigm. (B) Cocaine preference
scores (day 5), calculated as post-test minus pre-test on the cocaine-paired
side (condition) and U50,488-induced (5 mg/kg, i.p.) reinstatement scores
(day 10) of extinguished place preference (reinstate). Data show a significant
potentiation in KOR-reinstatement following forced swim stress and U50,488.

Groups are defined in the figures as their final reinstatement grouping
(U50 = U50,488). Data represent the mean preference (s) ± SEM, n = 8–15
(***p < 0.001, no stress and U50 vs. forced swim stress and U50;
one-way ANOVA followed by Bonferroni post hoc test). (C) Locomotor
activity measured as distance traveled (cm) during the 30 min
reinstatement trial. Data represent the mean preference (s) ± SEM,
n = 8–15.

the sub-chronic SDS paradigm (Figure 2B; **p < 0.01, SDS
and U50 vs. SDS with cocaine, n = 12–16). We also measured
locomotor activity during the 30 min reinstatement phase. Both
the non-stress + U50,488 group and the SDS + U50,488 group
show a similar KOR-mediated reduction in locomotor over the
30 min period, supporting the notion that prevention of rein-
statement by pre-exposure to stress, is not due to additional
alterations in mouse locomotor activity (Figure 2C). In contrast,
as shown in previous studies (Reith, 1986; Tolliver et al., 1994;
Giros et al., 1996; Sora et al., 1998; Zhang et al., 2002) locomotor
activity was significantly elevated in mice reinstated with cocaine
(##p < 0.01 and ###p < 0.005, SDS and U50,488 vs. SDS and
cocaine at 5 and 10 min time point, respectively; **p < 0.01, no
stress and U50,488 vs. SDS and U50,488 at 10 min time point;
***p < 0.005, SDS and cocaine vs. both no stress and U50 and
SDS and U50,488 at 15 min; ****p < 0.001 SDS and cocaine vs.
both no stress and U50 and SDS and U50,488 at 20, 25, and
30 min time points; two-way ANOVA followed by Bonferroni
post hoc test, n = 12–16). Taken together, these data suggest that
exposure to a sub-chronic repeated SDS causes a significant pre-
vention of kappa agonist-induced reinstatement of cocaine place
preference.

CHRONIC MILD STRESS PROTECTS AGAINST U50,488-INDUCED
REINSTATEMENT TO COCAINE AND NICOTINE PLACE PREFERENCE
Kappa opioid receptor agonists and stress have been shown in
numerous models to affect the magnitude of cocaine and nicotine
place preference as well as cause reinstatement of cocaine and nico-
tine preference behavior (Redila and Chavkin, 2008; Land et al.,
2009; Bruchas et al., 2010; Al-Hasani and Bruchas, 2011; Al-Hasani
et al., 2013; Jackson et al., 2013). However, it is not known how
repeated CMS ultimately influences cocaine and nicotine prefer-
ence, or how CMS influences subsequent KOR or drug-primed
reinstatement of cocaine or nicotine reinstatement. Therefore, we
determined how a CMS paradigm adapted from Elizalde et al.
(2008); Peng et al. (2012), and Tye et al. (2013) (Table 1 and
Figures 3A and 4A) influences cocaine and nicotine condition-
ing, as well as KOR-induced reinstatement of cocaine and nicotine
CPP. The CMS paradigm involved a random assignment of seven
mild stressors during a 3-week period (see Table 1) prior to the
cocaine or nicotine CPP/reinstatement training protocol.

There was no significant difference between the no stress and
CMS-exposed groups in the magnitude of the initial cocaine
(15 mg/kg, s.c.) or nicotine (0.5 mg/kg, s.c.) conditioned place
preference scores. This finding suggests that exposure to CMS does
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FIGURE 2 | Exposure to sub-chronic social defeat stress prevents

U50,488-induced reinstatement of cocaine place preference. (A) Timeline
of cocaine place preference-reinstatement experiment. (B) Cocaine
preference scores (day 5) calculated as post-test minus pre-test on the
cocaine-paired side (condition) and U50,488-induced (5 mg/kg, i.p.)
reinstatement scores (day 10) of extinguished place preference (reinstate),
calculated as reinstatement test day minus extinction post-test day.
Groups are defined in the figures as their final reinstatement grouping
(U50 = U50,488). Data show a significant attenuation in KOR-reinstatement
following sub-chronic social defeat stress. Data represent the mean
preference (s) ± SEM, n = 12–16 (*p < 0.05, no stress and U50,488 vs.
social defeat stress and U50,488, **p < 0.01, social defeat stress and

U50,488 vs. social defeat stress and cocaine; one-way ANOVA followed by
Bonferroni post hoc test). (C) Locomotor activity measured as distance
traveled (cm) during the 30 min reinstatement trial. Data represent the mean
preference (s) ± SEM, n = 12–16 (##p < 0.01 and ###p < 0.005, social defeat
stress and U50,488 vs. social defeat stress and cocaine at 5 and 10 min
time point, respectively; **p < 0.01, no stress and U50,488 vs. social
defeat stress and U50,488 at 10 min time point; ***p < 0.005, social
defeat stress and cocaine vs. both no stress and U50 and social defeat
stress and U50,488 at 15 min; ****p < 0.001 social defeat stress and
cocaine vs. both no stress and U50 and social defeat stress and U50,488
at 20, 25, and 30 min time points; two-way ANOVA followed by Bonferroni
post hoc test).

not effect the subsequent conditioned rewarding effects of cocaine
or nicotine (Figures 3B and 4B). Extinction rates of place pref-
erence between no stress, SDS-exposed and CMS-exposed groups
were not significantly changed. In contrast, following extinction

of either cocaine or nicotine place preference in CMS groups,
KOR-induced reinstatement of both cocaine and nicotine place
preference was significantly reduced (Figure 3B: *p < 0.05, no
stress and U50,488 vs. stress and U50,488; Student’s t-test, n = 7;

Table 1 |Three-week chronic mild stress schedule.

Week Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

1 17:00 to next day:

damp bedding

4 h white noise 8 h cage tilt Continuous light

24 h

Removal of

nesting 24 h

Food and water

deprivation 8 h

Swimming at 4◦C

for 5 min

2 Continuous light

24 h

17:00 to next day:

damp bedding

Food and water

deprivation 8 h

Swimming at 4◦C

for 5 min

8 h cage tilt 4 h white noise Removal of nest-

ing 24 h

3 Swimming at 4◦C

for 5 min

Continuous light

24 h

8 h cage tilt Removal of

nesting 24 h

4 h white noise Food and water

deprivation 8 h

17:00 to next day:

damp bedding

Three weeks prior to cocaine or nicotine conditioned place preference-reinstatement paradigm the mice were randomly assigned the different stressors
highlighted in the table. Paradigm is modified from Elizalde et al. (2008); Peng et al. (2012), and Tye et al. (2013).
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FIGURE 3 | Exposure to chronic mild stress blocks U50,488-induced

but not cocaine-primed reinstatement of cocaine place preference.

(A) Timeline of cocaine place preference-reinstatement experiment. (B) Cocaine
preference scores (day 26), calculated as post-test minus pre-test on the
cocaine-paired side (condition), U50,488-induced (5 mg/kg, i.p.) reinstatement
scores (reinstate, day 31), or cocaine-induced (15 mg/kg, i.p) reinstatement
(prime, day 32) of extinguished place preference. Data show a significant
attenuation in U50,488-induced but not cocaine-primed reinstatement to
cocaine seeking following chronic mild stress. Groups are defined in the
figures as their final reinstatement grouping (U50 = U50,488).Data represent

the mean preference (s) ± SEM, n = 7 (*p < 0.05, no stress and U50,488 vs.
stress and U50,488; Unpaired Student’s t -test). (C) Locomotor activity
measured as distance traveled (cm) during three cocaine conditioning days.
Data represent the mean preference (s) ± SEM, n = 7 (#p < 0.05 day 23 vs.
day 25 in the no stress group; **p < 0.01day 23 vs. day 24 and ***p < 0.005
day 23 vs. day 25 between stress group; one-way ANOVA followed by
Bonferroni post hoc test). (D) Locomotor activity measured as distance
traveled (cm) during reinstatement. Data represent the mean preference
(s) ± SEM, n = 7 (*p < 0.05 at 5 min time point in the no stress group vs.
CMS group; two-way ANOVA followed by Bonferroni post hoc test).

Figure 4B: *p < 0.05, Student’s t-test, n = 5–8. While CMS pro-
tected against U50,488-induced reinstatement it had no significant
effect on cocaine or nicotine drug-primed reinstatement; indi-
cating that this protective effect of CMS was selective for KOR
agonist-induced reinstatement. Locomotor activity was measured
during the 3-day conditioning period to determine if exposure
to 3 weeks of CMS alters the locomotor response to nicotine
(0.05 mg/kg, s.c.) and cocaine (15 mg/kg, s.c.). No significant dif-
ferences in locomotor activity were found between no stress group
and the CMS group following cocaine treatment (Figure 3C). As
predicted, distance traveled significantly increased over the 3-day
cocaine conditioning period, as previously shown (Zhang et al.,
2002; Tzschentke, 2007; Figure 3C: #p < 0.05 day 23 vs. day 25 in
the no stress group; **p< 0.01 day 23 vs. day 24 and ***p< 0.005
day 23 vs. day 25 between stress group; one-way ANOVA followed
by Bonferroni post hoc test, n = 7). However, nicotine-induced

elevations in locomotor activity were significantly reduced follow-
ing CMS on the second and third day of nicotine conditioning
(Figure 4C: *p < 0.05, no stress vs. CMS as compared to the
no-CMS group; two-way ANOVA followed by Bonferroni post hoc
test, n = 5–8). Locomotor activity was also measured during U50-
induced reinstatement in both the nicotine and cocaine groups.
In the cocaine group only at the 5 min time point was there
a significant decrease in locomotor activity in the CMS group
compared to the no stress group (Figure 3D: *p < 0.05; two-
way ANOVA followed by Bonferroni post hoc test). The nicotine
group showed a similar profile, locomotor activity was also sig-
nificantly decreased in the CMS group compared to the no stress
group at both the 5 and 10 min time point (Figure 4D: *p< 0.05;
two-way ANOVA followed by Bonferroni post hoc test). Together,
these results support the conclusion that CMS protects against
subsequent KOR-mediated cocaine and nicotine reinstatement
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FIGURE 4 | Exposure to chronic mild stress blocks U50,488-induced

but not nicotine-primed reinstatement of nicotine place preference.

(A) Timeline of nicotine place preference-reinstatement experiment.
(B) Nicotine preference scores (day 26), calculated as post-test minus pre-test
on the nicotine-paired side(condition), U50,488-induced (5 mg/kg, i.p.;
reinstate, day 31) and nicotine-induced (0.5mg/kg, i.p) reinstatement (prime,
day 32) scores of extinguished place preference. Data show a significant
reinstatement of nicotine place preference following U50,488 in the no stress
group. Groups are defined in the figures as their final reinstatement grouping

(U50 = U50,488). Data represent the mean preference (s) ± SEM, n = 5–8
(*p < 0.05, Student’s t -test). (C) Locomotor activity measured as distance
traveled (cm) during three cocaine conditioning days. Data represent the
mean preference (s) ± SEM, n = 5–8 (*p < 0.05, no stress vs. chronic mild
stress on days 24 and 25, respectively; two-way ANOVA followed by
Bonferroni post hoc test). (D) Locomotor activity measured as distance
traveled (cm) during reinstatement. Data represent the mean preference
(s) ± SEM, n = 5–8 (*p < 0.05 at 5 min and 10 min time point in the no stress
group vs. CMS group; two-way ANOVA followed by Bonferroni post hoc test).

and further suggests that CMS may act to regulate KOR system
function.

DISCUSSION
In the present study we investigated the interactions between
various types of stress paradigms and how they influence KOR-
induced reinstatement of cocaine and nicotine preference. We
determined the effects of a single acute stress, sub-chronic
social defeat, and CMS on cocaine and nicotine conditioned
place preference and KOR-induced reinstatement. Although, FSS,
SDS, and CMS have all been implicated in regulating hedo-
nic state and reward, the present report describes a previously
unknown connection between prior stress exposure and KOR-
mediated stress-induced behavior. Together, these findings sug-
gest that various types of stress exposure act to influence the
dynorphin/KOR-mediated reinstatement response, but they also

demonstrate that prior CMS has no lasting effect on the rewarding
properties of cocaine or nicotine in conditioned place preference
paradigms.

Stress-induced opioid peptide release has been reported for
three major opioid systems, and its release has been demonstrated
to be associated with a variety of behavioral outputs including
stress-induced analgesia, reinstatement, dysphoria, depression,
and anxiety-like behaviors (Carlezon et al., 2006; Land et al.,
2008; Bruchas et al., 2010; Chartoff et al., 2012; Al-Hasani et al.,
2013). In these reports, animals are typically exposed to a sin-
gle stress event (e.g., forced swim, social defeat, foot shock)
and then KOR-mediated behaviors are measured following acute
stress exposure (McLaughlin et al., 2003; Bruchas et al., 2011;
Schindler et al., 2012). However, the stress experience over the
course of an animal’s lifetime is complex in nature occurring
usually in multiple, randomized epochs. Therefore, the effects
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of CMS on KOR-mediated behavior remain an important area
of investigation. Both repeated stress, and CMS models have
been reported to induce dramatic changes in neural circuits and
neuromodulator function (Hill et al., 2012; Lemos et al., 2012a,b;
Tye et al., 2013), however, CMS effects on regulating cocaine-,
nicotine-, and opioid-mediated conditioned preference behaviors
is not known. Specifically, CMS-induced changes in serotoner-
gic, noradrenergic, and dopaminergic signaling and release have
all been reported (Rasheed et al., 2008; Vancassel et al., 2008;
Hill et al., 2012) implicating important functions of monoamine
regulation in CMS alterations of mood and reward seeking.
In addition, it has been shown that repeated stress and CMS
dramatically alter neuropeptidergic circuit function and impact
neuropeptide modulation in subsequent stress responsivity, by
either sensitizing the response or acting to facilitate desensitiza-
tion. In the current report we found that following a single acute
FSS, activation of KOR signaling caused potentiation of cocaine
preference-reinstatement (Figure 1). In contrast, repeated SDS or
CMS protected against subsequent KOR-mediated reinstatement
(Figures 2, 3, and 4). We also found that this CMS protective
effect not only influenced KOR-induced cocaine reinstatement
(Figure 3) but it also blocked KOR-induced reinstatement of
nicotine place preference (Figure 4), suggesting a conserved mech-
anism for multiple drugs of abuse. Interestingly, CMS exposure
had no effect on the initial cocaine or nicotine conditioning, nor
did CMS exposure impact the magnitude of drug-primed rein-
statement. These findings suggest that SDS and CMS induce a
type of “tolerance” to subsequent KOR activity, which has also
been previously reported when administering repeated doses of
KOR agonists (McLaughlin et al., 2004). Stress adaptability mech-
anisms are a critical consideration in our current findings because
reports demonstrating that dramatic changes in neural circuit
function include effects on KOR and corticotropin releasing fac-
tor (CRF) signaling following various types of repeated stress
exposure (McEwen and Gianaros, 2011; Lemos et al., 2012a,b).

The precise neuronal and molecular mechanisms for SDS- and
CMS-induced attenuation of KOR-induced reinstatement were
not identified in this study but are important and exciting exten-
sions of this work. There are a number of mechanisms that maybe
involved in CMS-induced regulation of KOR-reinstatement. KOR
regulation following repeated and high agonist-receptor occu-
pancy has been previously reported to be mediated by GRK3
phosphorylation of serine 369 in mouse/rat KOR or serine 358
in the human KOR (Wang et al., 2003; McLaughlin et al., 2004;
Bruchas et al., 2006, 2007a; Chen et al., 2007). In repeated SDS
or CMS models it is possible that recurrent activation of KOR
causes subsequent downregulation and desensitization of KOR
signaling preventing further activation of KOR until full recov-
ery. Furthermore, KOR regulation and deactivation (in contrast to
mu-opioid receptors) take several weeks to recover as functional
receptor entities (McLaughlin et al., 2004; Bruchas et al., 2007b),
consistent with the CMS time course used in this study. Sur-
prisingly the preventative effect of prior stress on KOR-mediated
reinstatement did not also prevent KOR-induced decreases in loco-
motor activity (Figure 2C) suggesting that SDS acts in specific
neural circuits associated with reinstatement but not locomotion.
Therefore selective blockade of KORs in specific brain regions

during repeated SDS, and CMS and subsequent measures of
KOR-mediated behavioral responses will be required in future
studies. In addition, utilizing GRK3 knockout mice, or expression
of KOR-S369/358 mutants in vivo, and exposure to CMS are inter-
esting extensions of this work as prior work has shown that GRK3
signaling is required for KOR-mediated behavioral effects via
phosphorylation, arrestin recruitment, and p38 signaling (Bruchas
et al., 2011). It has also been shown that KOR-mediated signaling
to G-protein inwardly rectifying potassium channels in the sero-
tonergic dorsal raphe nucleus (DRN) is altered following repeated
stress exposure (Lemos et al., 2012a). Together, with the recent
evidence that these circuits are implicated in KOR-induced rein-
statement (Land et al., 2009; Bruchas et al., 2011) it is possible that
CMS causes dysregulation of KOR signaling in the DRN to ulti-
mately influence subsequent KOR-induced behavioral responses
including reinstatement of drug seeking. Furthermore, CMS may
cause downregulation of KOR in the locus coeruleus, a region
which has recently been identified to play a key role in KOR-
mediated reinstatement to cocaine place preference (Al-Hasani
et al., 2013). However, these hypotheses will require further study
using selective neural circuit dissection techniques.

The effects of stress on cocaine and nicotine seeking have been
widely reported by numerous groups (for reviews see Koob, 2008;
Aguilar et al., 2009). In the case of cocaine, it is well-established
that stress and exposure to cues causes robust reinstatement
of drug seeking in both animals models and human subjects
(Koob and Kreek, 2007). The effects of stress on nicotine rein-
statement in animal models are less well-characterized, although
reports have shown that acute stress exposure potentiates nicotine-
seeking behavior and reinstates drug seeking (Buczek et al., 1999;
Bilkei-Gorzo et al., 2008; Plaza-Zabala et al., 2010; Yamada and
Bruijnzeel, 2011; Leão et al., 2012; Smith et al., 2012). It has also
been established that human subjects widely report stress as the
primary reason for their continued tobacco use (Bruijnzeel, 2012).
However, the effects of randomized CMS on nicotine place prefer-
ence in animal models has not been previously studied, nor have
mechanisms of stress on KOR-induced regulation of nicotine-
induced behavior been widely explored with the exception of
some recent reports implicating KOR in nicotine-induced behav-
ior (Smith et al., 2012; Jackson et al., 2013). Our current findings
build on this prior work, and for the first time show that agonist-
induced KOR activation is sufficient to cause reinstatement of
nicotine CPP. Additionally, our finding that KOR agonist does not
promote reinstatement of nicotine CPP following CMS suggests
interesting and complex interactions between CMS and dynor-
phin/KOR neural circuits that are conserved for both nicotine and
cocaine. However, whether similar neural circuits (e.g., dopamin-
ergic, serotonergic) are required for KOR-dependent nicotine
reinstatement as compared to cocaine reinstatement will require
further investigation.

In summary, we report that frequency and duration of stress
differentially influences KOR-induced reinstatement of cocaine
and nicotine preference. The present study shows that repeated
stress or CMS prior to reinstatement prevents a KOR-induced
reinstatement response, while acute exposure to stress induces
potentiation of KOR-reinstatement. The wide array of recent
studies investigating the interactions between stress and KOR
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function on reward, reinstatement, and dysphoria suggest that
KOR interacts with multiple neurotransmitter systems and circuits
to mediate its complex role in behavioral output. We identified
previously unrecognized roles for acute, sub-chronic, and chronic
stress exposure on KOR-mediated behavioral function. These find-
ings suggest that understanding the regulation of dynorphin/KOR
systems in response to various stress exposures is critical to under-
standing and identifying KOR as a potentially novel therapeutic
target system in drug relapse, anxiety, and depression.
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Depression is a commonly reported co-morbidity during rehabilitation from alcohol
use disorders and its presence is associated with an increased likelihood of relapse.
Interventions which impede the development of depression could be of potential
benefit if incorporated into treatment programs. We previously demonstrated an
ameliorative effect of physical exercise on depressive behaviors in a mouse model of
alcohol abstinence. Here, we show that environmental enrichment (cognitive and social
stimulation) has a similar beneficial effect. The hypothalamic-pituitary-adrenal (HPA) axis
is a key physiological system regulating stress responses and its dysregulation has been
separably implicated in the pathophysiology of depression and addiction disorders. We
performed a series of dexamethasone challenges and found that mice undergoing 2
weeks of alcohol abstinence had significantly greater corticosterone and ACTH levels
following a DEX-CRH challenge compared to water controls. Environmental enrichment
during alcohol abstinence corrected the abnormal DEX-CRH corticosterone response
despite a further elevation of ACTH levels. Examination of gene expression revealed
abstinence-associated alterations in glucocorticoid receptor (Gr ), corticotrophin releasing
hormone (Crh) and pro-opiomelanocortin (Pomc1) mRNA levels which were differentially
modulated by environmental enrichment. Overall, our study demonstrates a benefit of
environmental enrichment on alcohol abstinence-associated depressive behaviors and
HPA axis dysregulation.

Keywords: alcohol, abstinence, depression, environmental enrichment, HPA axis, dexamethasone, GR, pomc1

INTRODUCTION
One of the biggest impediments to recovery programs for alcohol
use disorders is the development of psychological disturbances
by patients, such as post-dependent dysphoric syndromes. This
is a significant issue to be addressed because the presence of co-
morbid psychiatric conditions such as depression and anxiety
during abstinence is linked to a greater probability of relapse (Pelc
et al., 2002). However, attempts to improve rehabilitation rates are
hindered by the uncertainty over the precise causes of abstinence-
associated psychopathology. Numerous studies of rodent models
have provided evidence that withdrawal from exposure to addic-
tive compounds elicit depression-related behavioral phenotypes
(reviewed by Renoir et al., 2012). Not dissimilar, depression-
related behavioral changes also feature in rodents withdrawn
from alcohol and include anhedonia and helplessness, similar to
the major aspects of clinical depression (Rasmussen et al., 2001;
Stevenson et al., 2009; Fukushiro et al., 2012; Pang et al., 2013).
Several studies have established that the withdrawal phase itself
is marked by specific cellular and molecular changes in the brain
(Crews et al., 2004; Nixon and Crews, 2004; Aberg et al., 2005;

He et al., 2009; Stevenson et al., 2009). Recently, Vendruscolo
and colleagues proposed that the phases of acute withdrawal and
protracted abstinence are distinct within themselves, marked by
differences in hypothalamic-pituitary-adrenal (HPA) axis activity
and expression levels of the glucocorticoid receptor (Vendruscolo
et al., 2012).

The HPA axis is the key physiological system that regulates
circulating levels of adrenal stress hormones (cortisol, corticos-
terone). Dysregulation of HPA axis activity is separably impli-
cated in the pathology of addiction disorders (see reviews by
Sinha, 2008; Picciotto et al., 2010; Picetti et al., 2013) and depres-
sion (see reviews by Braquehais et al., 2012; Laryea et al., 2012;
Lopresti et al., 2013). Modification of HPA axis signaling can
alter drug seeking behavior (Deroche-Gamonet et al., 2003; Pastor
et al., 2008; Wang et al., 2008). There have been few examinations
of HPA axis regulation in a clinical population of alcoholics or
those undergoing rehabilitation. However, the early evidence is
that HPA axis activity is dysregulated during alcohol withdrawal.
The biphasic nature of withdrawal proposed by Vendruscolo
is consistent with the finding that recovering alcoholics have
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increased levels of cortisol and ACTH levels initially, which typ-
ically normalize upon completion of a rehabilitation program
(Hundt et al., 2001). While an increase in ACTH levels is indica-
tive of anterior pituitary dysfunction, a recent report indicated
increased methylation of the pomc1 gene promoter region in
alcohol dependent patients (Muschler et al., 2010) which trans-
lates to suppression of gene expression and a predicted reduction
in ACTH levels. The conflicting implications of these studies
demonstrate that further work is required to better understand
the nature of HPA axis pathology during abstinence from alcohol.

The development of non-pharmacological interventions for
the treatment of addiction and depression are highly attractive
as simple and low-cost approaches. We previously demonstrated
that mice abstinent from alcohol display depression-related
behaviors which are ameliorated by engaging in physical exer-
cise (wheel-running) provided during the period of abstinence
(Pang et al., 2013). Other groups have reported that environmen-
tal enrichment, a paradigm of social and cognitive stimulation,
has the capacity for non-drug modification of addiction-related
behaviors (Solinas et al., 2008; Chauvet et al., 2009; Nader et al.,
2012). Furthermore, environmental enrichment can exert anti-
depressive effects on behavior in several models of depression
(Pang et al., 2009; Hendriksen et al., 2012; Lehmann et al., 2013;
Stuart et al., 2013), possibly through HPA axis modulation (Du
et al., 2012). Therefore, we sought to investigate whether envi-
ronmental enrichment could exert a corrective effect on the
depressive phenotype of a mouse model of alcohol abstinence.

MATERIALS AND METHODS
MICE
Six-week old female C57BL/6J mice were purchased from Animal
Resources Centre (Murdoch, WA, Australia) and housed at the
Florey Neuroscience Laboratories (University of Melbourne, VIC,
Australia) in a temperature-controlled environment on a 12:12 h
light-dark cycle with food and water provided ad libitum. All the
behavioral studies were conducted at the Integrative Neuroscience
Facility (INF). All experiments were approved by the Howard
Florey Institute animal ethics committee in accordance with the
recommended guidelines set by the National Health and Medical
Research Council (NHMRC) of Australia.

ETHANOL SELF-ADMINISTRATION
From 8 weeks of age, mice were allowed to self-administer 10%
(v/v) ethanol solution (two bottle free-choice) for a period of six
weeks as previously published (Pang et al., 2013). An alternative
source of untreated water was freely available at all times (see
Figure 1A for study schematic). The placements of the ethanol-
and water-containing bottles were randomly alternated through-
out the experiment to avoid location preference bias. The control
group only had access to normal tap water provided in two drink
bottles. All mice were single-housed during the first 6 weeks of
this study and daily fluid intake was recorded. Consistent with
our previous publication (Pang et al., 2013), mice did not differ
in total daily fluid intake (data not shown). Ethanol consuming
mice showed high preference >85%, averaging 15–18 g/kg alco-
hol per day. There was no difference in weight gain across the six
weeks. After six weeks of free-choice ethanol drinking, the ethanol

solution-containing drink bottle was removed for two weeks
prior to commencement of behavioral testing. Water-drinking
mice were provided a single bottle of water during this period.
Mice were randomly allocated to continue being maintained
in standard-housing (Alc Abstn SH) or undergo environmental
enrichment (Alc Abstn EE). Mice undergoing enrichment were
re-grouped 4–6 mice per cage since social stimulation was part of
the enrichment paradigm. Enriched mice were housed in larger
cages supplemented with shredded paper, tunnels and objects of
varying textures and shapes. The configuration of the cage was
changed every 3 days. Behavioral testing commenced after 14 days
of abstinence; separate cohorts of mice were used for the DEX
combinatorial challenges which were conducted on the 15th day
of abstinence.

SACCHARIN PREFERENCE TEST (SPT)
Mice (10 per group) were single-housed over a 12 h overnight
period and provided the opportunity to consume 0.1% (w/v) sac-
charin solution or tap water (Short et al., 2006). The total volume
of fluid intake was recorded, and preference ratio was determined
by calculating the volume of saccharin solution consumed as a
proportion of total fluid intake. Enriched mice were re-grouped
in their enrichment cages after the test.

FORCED-SWIM TEST (FST)
Mice (10 per group) were individually placed into beakers (17 cm
diameter) of water (23–25◦C) filled to a depth such that tails
would not be in contact with the bottom of the beaker. Each test
lasted for a total of 5 mins and was video recorded for subsequent
scoring by an experimenter who was blind to treatment and hous-
ing conditions of the mice. The total immobility time adopted by
each mouse over the final 4 mins of the test was recorded.

DEXAMETHASONE CHALLENGES
The dexamethasone suppression test (DST) involved a single
i.p. injection of dexamethasone (DEX) (0.1 mg/kg body weight;
Sigma-Aldrich, St. Louis, MO, USA) between 0800–1000H. Six
hours later, mice were killed and trunk blood collected for cor-
ticosterone analysis. For the DEX-CRH and DEX-ACTH chal-
lenges, mice were treated according as per the DST. Six hours after
DEX administration, mice received CRH (i.p., 20 mg/kg body
weight; Sigma-Aldrich) or ACTH (i.p., 50 µg/100 g body weight;
Prospec, Rehovot, Israel). Thirty mins post-CRH/ACTH injec-
tions, mice (4–6 per group) were killed and trunk blood collected
for corticosterone analysis.

QUANTIFICATION OF SERUM CORTICOSTERONE AND ACTH LEVELS
For basal levels of corticosterone, non-stress mice were killed
between 0900–1100H for blood collection. Post-stress levels were
determined with blood samples collected from mice exposed to
10 mins of forced-swim stress performed between 0900–1100H
then killed immediately after. Briefly, mice were killed by cervical
dislocation and trunk blood was collected, allowed to coagulate
at room temperature for 30 mins before being centrifuged at 1070
rcf for 15 mins. Serum was collected and stored at –20◦C until
quantification of corticosterone was performed. Corticosterone
was quantified using EIA (Cayman Chemical, Ann Arbor, MI,
USA) according to the manufacturer’s instructions. Serum ACTH
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levels were determined using a Milliplex Mouse Bone Panel 2A
kit (Millipore, St. Charles, MO, USA) as per the manufacturer’s
recommendations. Samples were read on a Luminex 100 instru-
ment. These analyses were performed by Cardinal Bioresearch
(New Farm, QLD, Australia).

TISSUE COLLECTION, SAMPLE PREPARATION AND
SEMI-QUANTITATIVE REAL-TIME PCR
Mice (5–6 per group) were killed via cervical dislocation
and brains were removed for microdissection of the relevant
regions. Adrenal glands were harvested. All tissue was snap
frozen in liquid nitrogen and stored at –80◦C. Tissue was dis-
rupted using a bioruptor and RNA was isolated using RNeasy
RNA Mini kits (Qiagen, Melbourne, VIC, Australia) according
to the manufacturer’s instructions. Extracted RNA was stored
at –80◦C. Sample was reverse transcribed into cDNA using
SuperScript®VILO™ cDNA synthesis kit (Invitrogen, Mulgrave,
VIC, Australia) according to the manufacturer’s instructions.
cDNA products were stored at –20◦C until further use. cDNA
was amplified using the SYBR Green JumpStart Taq Ready Mix
(Sigma, Castle Hill, NSW, Australia) based on the manufacturer’s
instructions [primer sequences are provided in Du et al. (2012)].
Efficiency curves and optimal reaction volumes for all primer
pairs were determined. Glucocorticoid receptor (GR, nr3c1) and
mineralocorticoid receptor (MR, nr3c2) expression was measured
in the hypothalamus and pituitary. CRH expression was mea-
sured in the hypothalamus and proopiomelanocotin (POMC1)

and dopamine receptor D2 (Drd2) expression was measured in
the pituitary gland. Real-time quantitative PCR was carried out
using the Applied Biosystems 7500 Fast Real-time PCR system
sequence detection software version 1.4 (Applied Biosystems,
Foster City, CA, USA). Cyclophilin was used as an endogenous
control for the hypothalamus and pituitary analyses. Each sample
and housekeeping control was run in duplicate.

STATISTICAL ANALYSIS
Statistical analyses were performed using SPSS statistics 17.0 and
graphical data was generated with GraphPad Prism 5.0. Data
was analysed with one or two-way analysis of variance (ANOVA)
and where a significant difference was detected, followed up
with post-hoc Bonferroni t-tests to determine specific between-
group differences. In all cases, the significance level was set at
p < 0.05.

RESULTS
ETHANOL ABSTINENCE-ASSOCIATED DEPRESSIVE PHENOTYPE IS
CORRECTED BY ENVIRONMENTAL ENRICHMENT
Saccharin preference test
One-way ANOVA revealed a significant difference in saccha-
rin preference between the groups [F(2, 29) = 44.6, p < 0.001]
(Figure 1B). Standard-housed alcohol abstinent (Alc Abstn) mice
had decreased saccharin preference compared to water con-
trols (p < 0.001). Environmentally enriched Alc Abstn mice
had significantly greater saccharin preference compared to the

FIGURE 1 | Environmentally enriched alcohol abstinent mice do not

display pro-depressive behaviors. (A) Schematic representation of
experimental design leading up to behavioral testing. An identical
design was used in the lead up to the DEX combinatorial challenges.
(B) Reduced saccharin preference associated with alcohol abstinence
was not observed in the enriched group. (C) Differences in saccharin
preference test were not due to change in total fluid consumption.

(D) Alcohol abstinent mice recorded significantly greater immobility
times in the forced-swim test compared to water controls and
enriched abstinent mice. Alc Abstn SH: 2 week alcohol abstinence in
standard housing conditions; Alc Abstn EE: 2 week alcohol abstinence
in environmentally enriched housing conditions. 10 mice per group.
1-way ANOVA followed by post-hoc Bonferroni’s t-test: ∗∗p < 0.01;
∗∗∗p < 0.001.
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standard-housed Alc Abstn group (p < 0.001), but not differ-
ent to controls. There was no significant difference in total
fluid consumption during the test [F(2, 29) = 0.131, p = 0.818]
(Figure 1C).

Forced swim test
One-way ANOVA revealed a significant difference between the
groups for total immobility time in the FST [F(2, 29) = 10.29, p <

0.001] (Figure 1D). Post-hoc testing showed that the standard-
housed Alc Abstn mice averaged greater immobility times than
water controls (p < 0.01). Environmentally enriched Alc Abstn
mice had significantly reduced FST immobility times compared
to the standard-housed group (p < 0.01), but not different to
controls.

ETHANOL ABSTINENCE IS ASSOCIATED WITH ABNORMAL DEX-CRH
RESPONSE
Quantification of serum corticosterone levels after forced-
swim stress revealed an overall effect of stress (F(1, 14) = 45.6,
p < 0.001) with no difference between the treatment groups
[F(1, 14) = 0.0652, p = 0.80] (Figure 2A). There were no appar-
ent differences in baseline and post-stress corticosterone levels.

We examined HPA axis activity in further detail by conducting the
dexamethasone suppression challenge in combination with CRH
and ACTH. There were no significant differences in serum cor-
ticosterone levels between water controls and alcohol abstinent
mice following DEX and DEX-ACTH treatments (Figure 2B).
However, alcohol abstinent mice had significantly higher serum
corticosterone levels compared to water controls following the
DEX-CRH challenge (p < 0.01). Serum ACTH levels did not dif-
fer between the groups after DEX challenge, but was significantly
higher in alcohol abstinent mice compared to water controls after
DEX-CRH challenge (p < 0.05) (Figure 2C).

ENVIRONMENTAL ENRICHMENT MODIFIES DEX-CRH RESPONSE OF
ALCOHOL ABSTINENT MICE
Having found a specific difference in corticosterone response in
the DEX-CRH challenge, we repeated the DEX-CRH challenge,
and included a group of Alc Abstn mice that had undergone
environmental enrichment during the abstinence period. There
was no significant difference between the three groups in the
DEX challenge [F(2, 17) = 2.82, p = 0.09] (Figure 3A). However,
one-way ANOVA detected a significant difference between the
groups in the DEX-CRH challenge [F(2, 17) = 26.12, p < 0.001].

FIGURE 2 | Alcohol abstinence associated with abnormal DEX-CRH

response. (A) No significant difference in serum corticosterone levels at
baseline and immediately following forced-swim stress. (B) Similar levels of
serum corticosterone after DEX and DEX-ACTH challenges. Alcohol abstinent
mice had significantly higher corticosterone levels compared to water

controls in the DEX-CRH challenge. (C) Serum ACTH levels were similar after
DEX challenge but alcohol abstinent mice have significantly higher levels of
ACTH after the DEX-CRH challenge. 4–6 mice per group. Two or one-way
ANOVA followed by post-hoc Bonferroni’s t-test: ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

FIGURE 3 | Environmental enrichment modifies DEX-CRH response of

alcohol abstinent mice. (A) Serum corticosterone levels did not differ
between the groups in the DEX challenge. In the DEX-CRH challenge, Alc
Abstn mice had significantly higher levels of corticosterone compared to
water controls and the environmentally enriched abstinent mice. (B) The
three groups had similar ACTH levels following the DEX challenge. However,

following DEX-CRH, enriched Alc Abstn mice responded with even greater
levels of ACTH compared to the standard-housed Alc Abstn group. Alc Abstn
SH: 2 week alcohol abstinence in standard housing conditions; Alc Abstn EE:
2 week alcohol abstinence in environmentally enriched housing conditions. 6
mice per group. One-way ANOVA followed by post-hoc Bonferroni’s t-test:
∗p < 0.05; ∗∗∗p < 0.001.
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Post-hoc Bonferroni’s t-test showed that serum corticosterone lev-
els of standard-housed Alc Abstn mice were significantly greater
than water controls (p < 0.001) and environmentally enriched
Alc Abstn mice (p < 0.001).

Serum ACTH levels did not differ between the groups in
the DEX challenge [F(2, 17) = 0.51, p = 0.61] (Figure 3B). ACTH
levels differed significantly between the groups in the DEX-CRH
challenge [F(2, 17) = 32.64, p < 0.001]. Similar to the data in
Figure 2C, standard-housed Alc Abstn mice had higher ACTH
levels than water controls (p < 0.05). Surprisingly, environ-
mentally enriched Alc Abstn mice had significantly higher lev-
els of ACTH compared to standard-housed Alc Abstn mice
(p < 0.001).

MODIFIED GENE EXPRESSION DURING ETHANOL ABSTINENCE:
EFFECTS OF ENVIRONMENTAL ENRICHMENT
Withdrawal from an acute binge-like ethanol intake is associ-
ated with stress hyper-reactivity manifesting as enhanced CORT
and ACTH responses to stress (Buck et al., 2011). The findings
that Alc Abstn mice respond with significantly higher levels of
corticosterone and ACTH in the DEX-CRH challenge is further
evidence of HPA axis hyperactivity. To gain a better appreci-
ation of this pathophysiology, we examined the mRNA levels
of key regulatory genes involved in HPA axis function, namely
the glucocorticoid receptor (GR), mineralocorticoid receptor
(MR), crh, pomc1 (the precursor of ACTH) and dopamine 2
receptor (drd2). A previous study had demonstrated the dynamic
nature of GR mRNA expression which differs between a state of

acute withdrawal (down-regulation) and protracted abstinence
(up-regulation) (Vendruscolo et al., 2012). We examined pitu-
itary drd2 gene expression due to evidence of dopamine D2
receptor-mediated regulation of pomc1 mRNA levels (Cote et al.,
1986; Pardy et al., 1990).

In the hypothalamus, GR mRNA levels were significantly
different between the groups [F(2, 14) = 9.288, p = 0.003]
(Figure 4A). Post-hoc Bonferroni showed that GR gene expres-
sion was significantly greater in the standard-housed Alc Abstn
group compared to both the water controls (p < 0.01) and the
environmentally enriched Alc Abstn group (p < 0.05). In con-
trast, there was no significant difference in MR gene expression
between the groups [F(2, 14) = 0.429, p = 0.661] (Figure 4B).

GR mRNA levels were also significantly different between the
groups in the pituitary [F(2, 14) = 6.389, p = 0.013] (Figure 4C).
Post-hoc testing showed greater MR gene expression in the
standard-housed Alc Abstn group (p < 0.05) and environmen-
tally enriched Alc Abstn group (p < 0.05) compared to water
controls. Similarly, but in contrast to the findings in the
hypothalamus, pituitary MR mRNA levels significantly differed
between the groups [F(2, 14) = 6.973, p = 0.01] (Figure 4D) with
both standard-housed (p < 0.05) and environmentally enriched
Alc Abstn (p < 0.05) groups having higher expression levels
compared to the water control group.

Crh gene expression was also significantly different between
the groups [F(2, 14) = 17.72, p < 0.001] (Figure 5A). Post-
hoc testing showed significantly reduced Crh mRNA levels
in the standard-housed Alc Abstn group (p < 0.001) and

FIGURE 4 | Differential effects of environmental enrichment on

steroid hormone receptors. (A) An up-regulation of GR expression in
the hypothalamus of Alc Abstn mice is not observed in the group
exposed to enrichment. (B) No observable change to hypothalamic MR
expression. (C) Up-regulation of pituitary GR expression in Alc Abstn
mice is maintained in the enriched group. (D) In contrast to the

hypothalamus, pituitary MR expression was increased with alcohol
abstinence, and this persisted in the enriched group. Alc Abstn SH: 2
week alcohol abstinence in standard housing conditions; Alc Abstn EE:
2 week alcohol abstinence in environmentally enriched housing
conditions. Five mice per group. One-way ANOVA followed by
post-hoc Bonferroni’s t-test: ∗p < 0.05, ∗∗p < 0.01.
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FIGURE 5 | Differential effects of enrichment on hypothalamic and

pituitary gene expression. (A) Hypothalamic Crh expression was
significantly reduced in the standard-housed Alc abstn group, and
unaltered by enrichment. (B) Pituitary pomc1 expression was
significantly reduced in the standard-housed Alc Abstn group but
was significantly elevated in the enriched group. (C) Pituitary Drd2

expression was not significantly altered by alcohol abstinence. Alc
Abstn SH: 2 week alcohol abstinence in standard housing
conditions; Alc Abstn EE: 2 week alcohol abstinence in
environmentally enriched housing conditions. 5–6 mice per group.
1-way ANOVA followed by post-hoc Bonferroni’s t-test: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

environmentally enriched Alc Abstn group (p < 0.01) compared
to water controls.

In the pituitary, pomc1 gene expression was significantly differ-
ent between the groups [F(2, 14) = 45.78, p < 0.001] (Figure 5B).
The expression level in standard-housed Alc Abstn mice was
0.51 fold compared to the water control group (p < 0.05).
pomc1 gene expression was significantly increased in environmen-
tally enriched Alc Abstn mice when compared to water control
(p < 0.001) and standard-housed Alc abstn (p < 0.001) groups.
There was a significant difference in drd2 gene expression between
the groups [F(2, 14) = 5.05, p = 0.0238] (Figure 5C) with post-
hoc analysis revealing no significant difference between controls
and standard-housed Alc Abstn mice, but a significant elevation
in environmentally enriched Alc Abstn mice compared to controls
(p < 0.05).

DISCUSSION
Our study has provided further evidence that the expression
levels of key centrally-expressed regulators of HPA activity are
altered during abstinence from self-administration of alcohol.
More specifically, we noted an up-regulation of the two major
adrenal steroid receptors in the brain, with the observed effect on
GR consistent with previous reports (Vendruscolo et al., 2012).
We also observed a region-specific effect of abstinence since MR
was up-regulated in the pituitary but remained unaffected in
the hypothalamus. Additionally, hypothalamic expression of crh
and pituitary expression of pomc1 were down-regulated. The
collective data suggest suppression of HPA axis activity during
abstinence following chronic alcohol consumption. Given the
current evidence implicating HPA axis pathophysiology as a fea-
ture of clinical depression, our findings support the hypothesis
that dysregulation of the HPA axis is a key event for the develop-
ment of abstinence-related depression which we have replicated
in a mouse model.

FUNCTIONAL CHARACTERIZATION OF HPA AXIS PATHOLOGY DURING
ALCOHOL ABSTINENCE
This is the first study attempting to functionally characterize
pathophysiology of the HPA axis during abstinence from alco-
hol in mice. By performing the DEX challenge in combination

with CRH and ACTH administration, we interrogated steroid
receptor-mediated suppression of corticosterone levels as well as
pituitary and adrenal function. It was important to determine
the response to DEX because DEX non-suppression is a reported
feature of clinical depression associated with high levels of stress
(Fountoulakis et al., 2004) and a smaller suppressive response to
DEX has been linked to GR polymorphisms which increase risk
for depression (see review by Manenschijn et al., 2009). However
no significant difference in basal and post-DEX corticosterone
levels between the abstinent and control groups were observed
suggesting that suppression of HPA axis activity via down-stream
signaling from GR is likely to be normative in abstinent ani-
mals. In contrast, we found a significantly greater corticosterone
response of abstinent animals compared to controls in the DEX-
CRH challenge, matched by an exaggerated elevation of ACTH.
These suggest a pathological pituitary response initiated by CRH
signaling in abstinent animals. The pathology is likely to be
limited to the pituitary since direct stimulation of the adrenals
to elicit corticosterone secretion in the DEX-ACTH challenge
yielded comparable results.

As far as we are aware, this is the first time an abnormal
DEX-CRH response has been reported in a mouse model of alco-
hol abstinence. However, our findings are consistent with the
limited available clinical data. Hundt et al. also performed the
DEX-CRH challenge on 19 alcoholic inpatients and reported sig-
nificantly elevated cortisol and ACTH responses (Hundt et al.,
2001). Interestingly, upon completion of the withdrawal program,
the DEX-CRH responses of patients were largely normalized. It
is important to note that another clinical study has reported
that during the acute phase of withdrawal, a pathological DEX-
CRH response is limited to increased cortisol levels but not
ACTH (Zimmermann et al., 2003). Thus, given that we observed
an increased ACTH response in the DEX-CRH test, our study
design of 2 weeks abstinence accurately models protracted, not
acute, abstinence. The molecular mechanisms involved in the
normalization of a pathological DEX-CRH response following
protracted alcohol abstinence are presently unknown and will
require further investigation. Elucidating the precise signaling
pathways involved could contribute to pharmacotherapies which
facilitate rehabilitative efforts.
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ENVIRONMENTAL ENRICHMENT CORRECTS ABSTINENCE-RELATED
DEPRESSIVE BEHAVIORS
The corrective effect of environmental enrichment on sac-
charin preference and FST immobility suggests that cogni-
tive and social stimulation imparts benefits in ameliorating
withdrawal-associated depressive behaviors. Independent groups
have demonstrated that environmental enrichment is a modifier
of addiction-related neurobiology by preventing the incubation
of cocaine craving (Chauvet et al., 2012) and attenuating cocaine
seeking behavior (Thiel et al., 2009). Enrichment has also been
reported to elicit a blunted ACTH response to stress associated
with nicotine withdrawal (Skwara et al., 2012). Our study is the
first to demonstrate a benefit of environmental enrichment on the
depression-related behavioral phenotype associated with alcohol
abstinence and extends our previous work on physical exercise as
a potential anti-depressive intervention (Pang et al., 2013).

GLUCOCORTICOID RECEPTOR GENE EXPRESSION IS UP-REGULATED
DURING PROTECTED ALCOHOL ABSTINENCE
Our data also indicated that a variety of molecular regulators
of the HPA axis are differentially susceptible to modulation by
environmental enrichment. Prior to this study, the regulation
of GR gene expression by enrichment in the context of alcohol
abstinence had not been investigated. Indeed, despite the pos-
itive effects of enrichment in the context of addiction, little is
known about the potential molecular mechanisms underlying
those effects. Our findings of increased GR gene expression are
in agreement with elevated corticosterone concentrations in the
brain after a period of ethanol withdrawal (Little et al., 2008).
A GR-selective effect of environmental enrichment (sparing MR)
in normative mice has previously been reported (Olsson et al.,
1994) and this gene-specific effect of enrichment was observed in
our examination of the hypothalamus. However, a previous study
had found that GR protein levels are decreased after acute (24 h)
withdrawal of ethanol (Roy et al., 2002) which is in contrast to
the increased GR expression we observed in the hypothalamus
and pituitary. This conflicting finding could reflect the differ-
ential regulation of the glucocorticoid receptor (both gene and
protein levels) during acute withdrawal and after a prolonged
period of withdrawal. A more definitive understanding of GR
regulation under these different conditions would require future
studies that directly compare GR mRNA and protein levels. Roy
and colleagues had proposed that diminished GR function in
hypothalamus was likely to be the underlying pathology respon-
sible for HPA axis dysfunction during ethanol exposure and
withdrawal. While that might be true during the acute phase of
withdrawal, our findings together with Vendruscolo et al. (2012)
indicate that it is in fact an up-regulation of GR expression during
protracted alcohol abstinence that underlies HPA axis pathology.
This was further supported by our observation that environmen-
tally enriched abstinent mice had normative levels of GR in the
hypothalamus.

ENVIRONMENTAL ENRICHMENT CORRECTS ABSTINENCE-RELATED
ABNORMAL DEX-CRH RESPONSE AND GENE EXPRESSION
It is known that chronic alcohol consumption leads to prolonged
activation of the HPA axis, persistent increases in circulating

cortisol/corticosterone levels and culminating in dysregulation
of crh gene expression which itself is a crucial factor in medi-
ating chronic alcohol-related neuroadaptations (see review by
Heilig and Koob, 2007). Our finding of decreased hypothala-
mic crh gene expression after protracted abstinence following
chronic ethanol consumption is consistent with previous reports
(Falco et al., 2009; Silva and Madeira, 2012). However, it is likely
that the down-regulation of crh is a key pathological change
during the process of chronic alcohol consumption which per-
sists once alcohol is withdrawn (Richardson et al., 2008). To
date, there has only been one study examining the modulation
of crh expression by environmental enrichment which reported
a non-significant increase in the hypothalamus (Francis et al.,
2002). Consistent with that, we did not observe any significant
effect of environmental enrichment on crh expression in the alco-
hol abstinent group. One implication of this result is that the
beneficial effect of environmental enrichment in correcting the
abnormal DEX-CRH response of abstinent mice is downstream
of the hypothalamus, and that possibility is supported by our
work which described peripheral effects of enrichment on adrenal
secretion of corticosterone (Du et al., 2012).

The non-effect of enrichment on hypothalamic crh expression
is in marked contrast to the surprising up-regulation of pitu-
itary pomc1 expression, further highlighting the specific nature
of enrichment effects on gene expression. A previous study of rats
maintained on a 7-week dark-phase ethanol consumption paired
with daytime withdrawal reported a suppression of pomc1 mRNA
levels by the end of a 3-week gradual ethanol withdrawal pro-
cedure (Rasmussen et al., 2000). That finding is consistent with
our data on the alcohol abstinent mice which is not surprising
given the somewhat similar design of the studies. This is the first
report of an enrichment-associated up-regulation of pomc1 which
is consistent with the further elevation of ACTH levels in this
group for the DEX-CRH challenge. However, the increased gene
expression and greater functional output do not corroborate with
the normalization of corticosterone levels following DEX-CRH.
At the present time, we are only able to speculate on the mecha-
nisms which could account for this apparent inconsistency. It is
possible that the corrective effect of enrichment lies downstream
of ACTH, i.e., exposure to environmental enrichment modifies
the expression pattern of ACTH receptors located peripherally
in the adrenal cortex. This possibility is supported by a study
that described enrichment-mediated alterations of the temporal
profile of HPA axis activity (Moncek et al., 2004).

ARGININE VASOPRESSION AS A POTENTIAL MODIFIER OF HPA AXIS
IN ALCOHOL ABSTINENCE
Another potential modifier of ACTH is the stress-responsive
arginine vasopressin (AVP) which is implicated in high-alcohol
drinking behavior (Zhou et al., 2011a). AVP is reportedly
increased after protracted abstinence from cocaine (Zhou et al.,
2011b) but has yet to be investigated thoroughly in the con-
text of alcohol abstinence. Interestingly, naloxone administra-
tion (an opioid receptor antagonist commonly used to diminish
alcohol craving) has been reported to result in an up-regulation
of AVP expression. However, the mechanism of AVP-dependent
ACTH release is likely to involve multiple signaling pathways
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(Perdona et al., 2012). Regulation by AVP could account for
our observation of an apparent dissociation between ACTH and
corticosterone levels since control-like corticosterone levels were
elicited from enriched abstinent mice in the DEX-CRH challenge
despite the presence of more exaggerated ACTH levels. Further
work will be required to determine if AVP-mediated signaling
is involved in imparting the corrective effects of environmental
enrichment in the DEX-CRH challenge.

In summary, our study has provided molecular and func-
tional evidence of pituitary pathology in protracted abstinence
from alcohol. Environmental enrichment was able to prevent the
development of abstinence-associated depression-related behav-
iors and corrected the pathological DEX-CRH corticosterone

response. Further studies investigating the precise molecular
mechanisms underlying the benefits of enrichment could uncover
novel therapeutic targets to facilitate rehabilitation from alco-
holism.
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Adolescence, defined as a transition phase toward autonomy and independence, is a natural
time of learning and adjustment, particularly in the setting of long-term goals and personal
aspirations. It also is a period of heightened sensation seeking, including risk taking and
reckless behaviors, which is a major cause of morbidity and mortality among teenagers.
Recent observations suggest that a relative immaturity in frontal cortical neural systems
may underlie the adolescent propensity for uninhibited risk taking and hazardous behaviors.
However, converging preclinical and clinical studies do not support a simple model of
frontal cortical immaturity, and there is substantial evidence that adolescents engage in
dangerous activities, including drug abuse, despite knowing and understanding the risks
involved. Therefore, a current consensus considers that much brain development during
adolescence occurs in brain regions and systems that are critically involved in the perception
and evaluation of risk and reward, leading to important changes in social and affective
processing. Hence, rather than naive, immature and vulnerable, the adolescent brain,
particularly the prefrontal cortex, should be considered as prewired for expecting novel
experiences. In this perspective, thrill seeking may not represent a danger but rather a
window of opportunities permitting the development of cognitive control through multiple
experiences. However, if the maturation of brain systems implicated in self-regulation is
contextually dependent, it is important to understand which experiences matter most. In
particular, it is essential to unveil the underpinning mechanisms by which recurrent adverse
episodes of stress or unrestricted access to drugs can shape the adolescent brain and
potentially trigger life-long maladaptive responses.

Keywords: drug addiction, adolescence, impulsivity, brain imaging, animal models

INTRODUCTION
A common consideration on addiction disorders acknowledges
that individual characteristics may predispose to drug addiction;
meanwhile excessive drug intake still is considered to influ-
ence personal traits and promote compulsive drug consumption
(Swendsen and Le Moal, 2011). The vast majority of drug users
are teenagers and young adults or began consuming during ado-
lescence (O’Loughlin et al., 2009). In particular, a recent report of
the National Survey on Drug Use and Health indicated that 31.2%
of people below the age of 25 had consumed illicit drugs during the
past month, while only 6.3% of older people acknowledged to do
so (Substance Abuse and Mental Health Services Administration,
2010). The younger teenagers start using drugs, the more severe
signs of drug addiction are. Among people in the USA that tried
marijuana before the age of 14, 12.6% developed signs of drug
abuse or dependence, while only 2.1% of those experiencing mar-
ijuana after the age of 18 suffered from severe signs of dependence
(Substance Abuse and Mental Health Services Administration,
2010).

Adolescent risk-taking and reckless behavior is a major public
health concern that increases the odds of poor lifetime outcomes,
including loss of control over drug use. Compelling evidence
based on imaging technologies have shown that brain circuitries

involved in affective and cognitive processes interact dynamically
across development. At the cellular level, these changes correspond
with the marked overproduction of axons and synapses in early
puberty, and rapid pruning in later adolescence and young adult-
hood. The current consensus considers that patterns of neural
connection among systems of emotion, motivation and cogni-
tive processes related to the pursuit of long-term goals undergo
a natural reorganization and a set of maturational refinements
during adolescence (Gogtay et al., 2004; Giedd, 2008). In con-
trast to the relatively early and rapid changes in affective systems
that appear to be linked to pubertal maturation, another set of
cognitive skills and competence in self-control seem to develop
gradually across adolescence and continue to mature long after
puberty is over (Dahl, 2008). This key observation may explain
why adolescence is characterized by an imbalance between the
relative influences of motivational and control systems on behav-
ior (Somerville et al., 2011). As a consequence, the adolescent
brain is a tempted brain as long as the development of execu-
tive functions including relevant decision making and planning,
abstract reasoning and response inhibition remains unfinished
(Dahl, 2008).

In this perspective, taking drugs during adolescence may inter-
fere with the normal brain development, and may increase the
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vulnerability to abuse drugs later during adulthood (Andersen,
2003; Crews et al., 2007). Despite the growing number of preven-
tion campaigns, drug consumption in adolescents remains quite
stable over the past years. Strikingly, a relevant communication
released in 1952 already acknowledged that “drug addiction in
adolescence is not a new phenomenon” (Zimmering et al., 1952),
and the ultimate question was already clearly identified “How-
ever, there is still the question of why, under apparently similar
external conditions, some boys will try the drugs and others won’t,
why some go down the road of addiction while others give up the
drug (. . .).” Sixty years later, this question remains partially unan-
swered. Animal models, especially rodents, have contributed to
a better comprehension of the juvenile state. In particular, con-
verging evidence has pointed out to an enhanced vulnerability
to drug abuse in adolescents, but questions and controversies
remain regarding the relevance of the different animal models
and the interpretation of the data (Schramm-Sapyta et al., 2009).
Interestingly, these authors conclude that even if an increased
recreational drug use is usually observed during adolescence, evi-
dence relating to pathological drug seeking and taking still is
lacking. In this review, we try to summarize the biological fac-
tors relevant to adolescent driving risks and we discuss the clinical
observations in the light of preclinical findings linking impulsiv-
ity and emotional reactivity to initiation of drug use and risks of
abuse.

PUBERTY AND ADOLESCENCE
Risk taking during adolescence is the product of an interac-
tion between heightened stimulation seeking and an immature
self-regulatory system that is not yet able to modulate reward-
seeking impulses (Steinberg and Morris, 2001; Steinberg, 2004,
2005). A consensus could put adolescents at risk for emotional
and behavioral disorders. Nevertheless, increased risk and novelty
seeking can be beneficial for learning novel strategies for survival
(Kelley et al., 2004). Indeed, from an anthropologic perspective,
some types of risk taking can be viewed as an adaptive willingness
to demonstrate bravery in order to acquire a better social status.
In many situations, it seems that adolescent do not become more
fearless after puberty but rather they may become more highly
motivated to act boldly despite their fears, particularly when they
perceive that acting in a brave or reckless way might bring them
increased recognition by peers (Dahl, 2008).

The period of adolescence is a time of considerable change, as
sex-specific pubertal hormones bring about changes in physical
stature, reproductive organs and other secondary sexual char-
acteristics. Neuroendocrine changes during puberty influence
behavioral and emotional development (Waylen and Wolke, 2004).
Since testosterone cross the blood brain barrier (Pardridge and
Mietus, 1979), it contributes to the cortical pruning during ado-
lescence, especially in frontal and temporal lobes (Witte et al.,
2010; Nguyen et al., 2013). This observation is of interest and
may explain sexual dimorphism in gray matter and its behavioral
consequences (Neufang et al., 2009; Paus et al., 2010; Bramen et al.,
2012).

A classical strategy to assess this influence is to select adolescents
of similar age, but experiencing different stage of puberty. Mid-
late puberty adolescents differ from adolescents in early puberty

in their emotional regulation of startle response and postauricular
reflex, two physiological measure of defensive and appetitive moti-
vation (Quevedo et al., 2009). Similar results have been reported
with mid/late puberty adolescents displaying an enhanced pupil
dilatation in response to emotional words (Silk et al., 2009).

GRADUAL EMERGENCE OF COGNITIVE SELF-CONTROL
DURING ADOLESCENCE: INSIGHT FROM NEUROIMAGING
The adolescent behavior, marked by intense affective expres-
sion and impulsive responses, has long been studied, but the
most recent imaging technologies have contributed to a bet-
ter knowledge of the developing brain during adolescence. In
particular, it has been shown that proportion of gray mat-
ter decreases whereas white matter increases during transition
from childhood to young adulthood (Paus et al., 1999; Lenroot
and Giedd, 2006). Whereas the enhanced myelination follows
a quite linear pattern all over the brain, with only slight local
variations, the diminution of gray matter, also called synap-
tic pruning, is more selective. Hence, myelination is not only
considered as an electrical insulator that increases the speed of
neuronal signal transmission, but also as a key process that mod-
ulates the timing and synchrony of neuronal firing patterns that
convey meaning in the brain (Giedd, 2008). The main neurobi-
ological changes that account for risky behaviors in adolescence
occur in the mesocorticolimbic system, particularly in the pre-
frontal structures (Chambers et al., 2003; Crews et al., 2007; Crews
and Boettiger, 2009). Studies comparing adult and adolescent
cortical function indicate that adolescent process information
differently, often enlisting different brain regions than adults.
Difficulty with executive cognitive functioning and behavioral
self-control, including difficulties with planning, attention, fore-
sight, abstract reasoning, judgment, and self-monitoring have
been reported in adolescents, and several functional magnetic
resonance imaging (fMRI) studies have examined the functional
neuroanatomy underlying executive processing in children, ado-
lescent and adults (Luna et al., 2010). This growing body of
evidence supports the idea that frontostriatal systems undergo
significant remodeling in the period from adolescence to young
adulthood. Specifically, protracted development of prefrontal
cortex (PFC), in concert with an amplified motivational drive
mediated by the striatum, is thought to be critical to increased
novelty seeking and suboptimal decision making that leads to risky
behavior and experimental drug use. Assuming that orbitofrontal
cortex (OFC) is critical to making value decisions, individual
differences in the development of this region might increase
or decrease sensitivity to reward through suboptimal computa-
tion of incentive value based on reward magnitude coded by
the striatum. Conversely, reduced orbitofrontal modulation of
striatal-mediated motivational drive could lead to increased nov-
elty seeking and impulsive choice. In either case, significant
imbalance in the neurodevelopmental trajectory of this circuit
could lead to loss of self-control during a vulnerable period
(Yurgelun-Todd, 2007).

The immature connections between the PFC, the nucleus
accumbens (Nacc) and the amygdala have been proposed to
largely influence goal-directed behaviors in adolescents (Galvan
et al., 2006; Ernst et al., 2009). In particular, it has been shown
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that teenagers engage the orbitofrontal cortex to a much lesser
extent compared to adults when facing risky choices. Similarly,
adolescents have been also shown to display a decreased and
uncoordinated neuronal processing in the OFC during simple
reward-related behavior (Sturman and Moghaddam, 2011). These
types of observation may partially explain the increased propen-
sity for reckless behaviors during adolescence (Eshel et al., 2007).
Finally, in order to emphasize the adolescent brain immaturity
upon reward expectations, compelling evidence recently demon-
strated a linear reduction of insular activation along with age, with
early adolescents displaying the higher activation and late adoles-
cents exhibiting the most reduced signal while gambling in a slot
machine task (Van Leijenhorst et al., 2010).

Several epidemiological researches support the idea that adoles-
cence is the life period with the highest rate of impulsive behavior
(Steinberg et al., 2008; Romer et al., 2009). Steinberg and col-
leagues described a linear decrease of impulsivity from the age
of 10–30: using different age cohorts, steeper delay discounting
and weaker performances on the IOWA gambling task (IGT) have
been reported in adolescents, compared to adults (Steinberg et al.,
2009; Cauffman et al., 2010). A longitudinal study using the IGT
in adolescents aged from 11 to 18 confirmed this result by show-
ing that performance improved continuously with age (Overman
et al., 2004). These observations are thought to mirror the matu-
ration of the PFC, which allows the transition from impulsive to
more controlled choices. Conversely, an inverted-U shape curve
for sensation seeking has been reported as well, with a peak around
age 14 (Steinberg et al., 2008). Again, the dissociation between the
progressive development of impulse control and the non-linear
development of the reward system may result in a misbalance that
enhances impulsive choices for reward (Ernst et al., 2009).

Converging fMRI studies exploring decision-making tasks have
shown that adolescents and adults share many similarities in neu-
rocircuitry activation, but they also display intriguing differences.
A greater response in the left Nacc was reported in teenagers while
adults displayed an increased activation in the left amygdala (Ernst
et al., 2005). Galvan et al. (2006) also reported enhanced Nacc
response to reward in adolescent compared to adults, as well as
reduced activation in areas of the frontal cortex. Most recently,
in a study examining risk taking in monetary decision-making,
it has been shown that adolescents displayed a reduced activa-
tion in regions of the OFC compared with adults, and reduced
activity in these frontal brain regions was correlated with greater
risk-taking tendencies in teens (Eshel et al., 2007). These findings
suggest that adolescents engage relatively fewer prefrontal regula-
tory processes than adults when making decisions. Consequently
teenagers may be more prone to risk taking in certain situations.
In other words, reduced prefrontal cognitive control may autho-
rize a greater influence of affective systems that dictate decision
making and behavior which, in turn, increases adolescent vul-
nerability to social and peer contexts that activate strong feelings
(Dahl, 2008).

In a recent study aiming at assessing adolescent and adult
behaviors in a video driving game, it has been shown that
adolescent participants took more risks, focused more on the
benefits than the costs of risky behavior, and made riskier deci-
sions when surrounded by peers compared to adults (Gardner

and Steinberg, 2005). These findings confirm that adolescents
may be more prone to peer influences on risky decision-making,
and that peer influence (and other social-context variables)
may play an important role in explaining reckless behaviors
during adolescence. Interestingly, it has been established that
young adolescents, categorized as highly resistant to peer influ-
ence, displayed enhanced brain connectivity, especially in the
frontal cortex, compared to adolescents categorized as highly
influenced by peers (Grosbras et al., 2007). Resistance to peer
influence has also been positively correlated with ventral stria-
tum activation, but negatively correlated with activation in the
amygdala (Pfeifer et al., 2011). Specific pattern of cortical acti-
vation in adolescents has been reported by using mentalizing,
face recognition and theory of mind tasks. For example, early
adolescents aged from 10 to 14 engaged more their medial PFC
than adults to analyze the intent of a drawing (sincere or ironic),
despite similar performance on the task (Wang et al., 2006).
This might reflect a greater effort for the youngsters to perceive
social emotional situations they are not yet used to, while adults
analyze these situations more effectively, based upon previous
experiences.

Noteworthy, adolescence also represents a particular period of
emotional perception and regulation. Cognition and decision-
making processes in adolescents are highly influenced by their
emotional state, a phenomenon called hot cognition (in opposi-
tion to cool cognition, in which decision-making occurs under
low emotional level). Adolescents also seem to be more sensitive
to stressful stimuli. The rate of cortisol release after a stressful
task displayed a linear increase with age, in young adolescents
aged from 9 to 15 years (Gunnar et al., 2009; Stroud et al., 2009).
Presenting fearful faces, induced a higher reactivity of the amyg-
dala in adolescents compared with children and adults (Hare et al.,
2008). Interestingly, the habituation of amygdala activity to these
fearful faces was lower in subjects screened for high trait anxi-
ety. This enhanced sensitivity to stressful stimuli, together with a
higher proportion of hot cognition, constitutes another support
for adolescents’ reckless behaviors when coping with anxiogenic
situations.

ARE TEENS MORE VULNERABLE TO DRUG ABUSE THAN
ADULTS?
Higher impulsivity is considered to promote drug first use, and
eventually may lead to an increased vulnerability to develop drug
addiction, defined as a loss of control over drug consumption and
a compulsive pattern of drug use (Belin et al., 2008). Impulsivity
is not easily defined (Evenden, 1999; Chamberlain and Sahakian,
2007), but a broad definition would include lack of attention, dif-
ficulty to suppress or control a behavioral response, pronounced
novelty-seeking behavior, inability to anticipate consequences, dif-
ficulty to plan actions or reduced problem-solving strategies as
key features. Because adolescents display more impulsive behav-
iors, the link between impulsivity and drug consumption has been
extensively studied.

Converging studies using self-report questionnaire in teens
demonstrated that impulsivity during adolescence was predictive
of drug use and gambling (Romer et al., 2009), smoking initi-
ation (O’Loughlin et al., 2009) and later alcohol abuse (Ernst
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et al., 2006; von Diemen et al., 2008). Reciprocally, impulsivity
appeared to be exaggerated in adolescents with alcohol use dis-
orders compared to healthy control (Soloff et al., 2000). Further,
a study assessing genetic polymorphism has also demonstrated
that a particular allele (A1) from the Taq1a polymorphism of the
dopamine D2 receptor gene was positively correlated with alco-
hol and drug use (Esposito-Smythers et al., 2009). Concomitantly,
impulsive carriers of the allele reported significantly more alcohol
and drug-related problems than impulsive non-carriers. These
findings highlight the interaction between vulnerability factors in
the propensity to develop psychiatric troubles.

Cognitive impulsivity, defined as an inability to consider future
outcomes, is a subdivision of impulsivity that takes into account
emotional subjective representation of a delayed outcome. This
concept is known as the discounting value of a reward (Rach-
lin, 1992). The use of the delay discounting, which offers to
choose between immediate low rewards and future higher rewards,
has contributed to better understand the neurobiological under-
pinnings of economic choice and decision-making. Adolescent
tobacco smokers were found to be more impulsive than their
non-smoker couterparts in a delay discounting task, and more
prone to novelty seeking (Peters et al., 2011). Interestingly, the
same group of adolescent smokers showed a marked decrease of
striatal activation during a reward anticipation paradigm, which
was positively correlated with smoking frequency. It is important
to note that the increased impulsiveness reported in adolescent
smokers might be a consequence, and not a predictor, of the
addicted behavior. Studies comparing current and ex-smokers
suggested that enhanced delay discounting curve concerns only
current smoker (Bickel et al., 1999, 2008). However, other stud-
ies revealed that cognitive impulsivity could constitute a possible
predictor of later substance use. Naïve adolescents, having a first
cigarette smoking experience, were more impulsive in a delay
discounting task (Reynolds and Fields, 2012). Nicotine intox-
ication is most likely not responsible for such results; it may
rather reflect a personality trait shared by most of the adolescent
smokers. Higher propensity to impulsive choices was also found
to be predictive of the first ecstasy use in females (Schilt et al.,
2009), and was also associated with binge drinking (Xiao et al.,
2009).

It has been suggested that impulsivity represents a good index
to predict the outcome of a smoking-cessation program: ado-
lescents screened for higher impulsive trait significantly failed
to maintain abstinence compared their non-impulsive counter-
parts (Krishnan-Sarin et al., 2007). Cognitive therapies targeting
impulsivity, as reviewed elsewhere (Moeller et al., 2001), may con-
stitute untapped opportunities for developing new approach to
develop effective self-control in adolescents. This may contribute
to prevent reckless behaviors occurring during this period of
important morbidity.

MODELING THE ADOLESCENT VULNERABILITY TO DRUG
ABUSE
Brain development in juvenile rodents has been reported to display
similar patterns resembling those of human beings, suggesting that
the rodent model might be relevant to study the neurobiological
underpinnings of teenage brain maturation (Spear, 2000). The

juvenile period in rodents lasts from day 28 to day 42 after birth,
but these limits, a bit restrictive, are usually extended to include
a larger period from day 25 to day 55 (Tirelli et al., 2003). Neu-
roanatomical studies have described a massive synaptic pruning
of dopamine receptors during adolescence in rodents (Andersen
et al., 2000): D1 and D2 receptors density increased in the Nacc, the
striatum and the PFC until the age of 40 days, and then progres-
sively declined during early adulthood. Conversely, D3 receptors
increased until 60 days (Stanwood et al., 1997). Another study
revealed an increase of dopamine fibers in the medial PFC soon
after weaning (Benes et al., 2000), that was in part controlled by
the serotoninergic system: neonatal lesion of the raphe nucleus led
to an increase of dopamine (DA) fibers sprouting from the ventral
tegmental area (VTA) and the substantia nigra. Additionally, gluta-
matergic innervations from the PFC to the Nacc (Brenhouse et al.,
2008) and to the amygdala (Cunningham et al., 2002) has been
shown to follow a linear sprouting from weaning age to early adult-
hood. Dopaminergic modulation during adolescence appeared to
be not entirely functional: the effects of D1 and D2 agonist on
GABAergic interneurons in the PFC were weaker in adolescent,
suggesting an uncompleted maturation of this modulatory system
(Tseng and O’Donnell, 2007).

Behavioral studies comparing juvenile and adult rodents
revealed that mice displayed a greater preference for a novel envi-
ronment (Adriani et al., 1998), and enhanced impulsive responses
compared to adults in a delay discounting task (Adriani and Lavi-
ola, 2003). Juvenile rodents also expressed a higher level of social
interaction since social interactions were found to be more reward-
ing in juvenile than in adults rodents in a conditioned place
preference (CPP) paradigm (Douglas et al., 2004). In line with
this observation, a study reported that juvenile rats had lesser
activation of dopamine signaling in the Nacc when facing non-
social stimuli, but a more persistent response to social stimuli
compared with adults (Robinson et al., 2011). This might reflect
the importance of social interaction in juvenile animals.

In the elevated plus maze, adolescent rats spent a reduced
period of time in the open arms, indicating a higher anxiety
(Doremus et al., 2003; Estanislau and Morato, 2006; Lynn and
Brown, 2010) although mice displayed a reversed profile (Macrì
et al., 2002). Similar observations were reported using a contex-
tual fear conditioning: adolescent rats froze significantly more
than adults (Anagnostaras et al., 1999; Brasser and Spear, 2004;
Esmoris-Arranz et al., 2008), but again adolescent mice froze less
than adults (Pattwell et al., 2011).

With regards to the aversive effects of drugs, it has been shown
that nicotine, ethanol, THC, amphetamine and cocaine induced
less aversive effects in adolescent than in adult animals. In addi-
tion, conditioned taste aversion performed with a non-addictive
substance (lithium chloride that induces abdominal pain after i.p.
injections) is reduced in adolescent rats suggesting that insensitiv-
ity to aversive effects may be a generalized feature of adolescence
(Philpot et al., 2003; Wilmouth and Spear, 2004; Schramm-Sapyta
et al., 2006, 2007; Quinn et al., 2008; Drescher et al., 2011).

Meanwhile, several studies have reported increased reward sen-
sitivity in juvenile animals. Nicotine and alcohol were found to be
more rewarding in young rodents compared with adults (Philpot
et al., 2003; Brielmaier et al., 2007; Kota et al., 2007; Torres et al.,
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2008; Spear and Varlinskaya, 2010). Similarly, increased sweet-
ened condensed milk consumption (relative to body weight) was
observed in adolescent rats compared with older ones. This behav-
ioral observation was correlated with an increased c-fos expression
in the Nacc core and the dorsal striatum (Friemel et al., 2010).
Investigations assessing the effect of psychostimulants in adoles-
cent rats using a CPP task remain a bit controversial, but a greater
reward sensitivity in adolescents rats, particularly at lower doses,
has been claimed in specific conditions (Badanich et al., 2006;
Brenhouse et al., 2008; Zakharova et al., 2009).

FACTORS INFLUENCING DRUG ABUSE IN ADOLESCENT
RODENTS
Motor impulsivity refers to behavioral disinhibition and loss of
impulse control, without necessary integration of emotional pro-
cessing (Brunner and Hen, 1997). In animals, many behavioral
tests have been shaped to assess this form of impulsivity, such as
the five-choice serial reaction time task (5-CSRTT) and the dif-
ferential reinforcement of low-rate (DRL). To our knowledge, the
only study comparing impulsivity in non-treated normal adult
and adolescent rats revealed that the latter were more impulsive
in a DRL schedule (Andrzejewski et al., 2011). Prenatal exposure
to nicotine has been shown to increase impulsivity in a 5-CSRTT
during adolescence (Schneider et al., 2012), and chronic exposure
to nicotine in adolescent rats produced long-lasting increase of
motor impulsivity during adulthood (Counotte et al., 2009, 2011).
In this study, nicotine chronic treatment was able to induce more
impulsive behaviors on the 5-CSRTT when occurred during ado-
lescence than during adulthood. This specific alteration, which
did not affect cognitive impulsivity in a delay discounting task, has
been correlated with a stronger nicotine-induced dopamine release
in the PFC in adolescent rats. Similarly, impulsive adolescents,
screened with the latency to approach a novel object, displayed an
enhanced DA response to a cocaine challenge compared to non-
impulsive adolescents or impulsive young adults (Stansfield and
Kirstein, 2005).

However, prenatal treatment with nicotine, shown to alter
motor impulsivity, failed to alter behavioral responses in a delay-
discounting task (Schneider et al., 2012). While the influence
between cognitive impulsivity and drug-seeking behaviors has
been well established in humans, supplementary observations
will be necessary to understand how it works in rodents. Dier-
gaarde et al. (2008) have proposed that, at least in adult rats,
motor impulsivity may be related to the initiation of drug seeking,
while cognitive impulsivity may be associated with a decreased
ability to suppress an acquired nicotine-seeking behavior and
increased vulnerability to relapse. Ultimately, motor impulsivity,
but not cognitive impulsivity might be more appropriate to assess
drug-seeking vulnerability in juvenile rats.

Some basal differences of Hypothalamo-Pituitary-Adrenal
(HPA) axis regulation may underlie an increased sensitivity to
stressful stimuli in adolescent rodents. After an acute stress,
adolescent rats displayed a higher adrenocorticotropic hormone
(ACTH) and corticosterone release compared to adults (Romeo
et al., 2006a,b). After a 30-min chronic restraint stress every
day during 7 days, juvenile rats exhibited higher corticosterone
levels immediately after the stressor, but corticosterone levels

return to baseline values faster in adolescent than in adult rats
(Romeo et al., 2006a). Male rats have been found to be more
sensitive than females to the deleterious effects of maternal
separation on PFC thickness (Spivey et al., 2009). Given the rela-
tions between stress and drug-seeking behaviors (Shaham et al.,
2000; Koob and Le Moal, 2001), this increased sensitivity of the
stress system may explain why some adolescents persist in drug
abuse. A chronic cocaine treatment during adolescence increased
several measures of anxiety when animals had become adults
(Stansfield and Kirstein, 2005), which may further explain this
persistence.

Compared to controls, rats stressed for 7 consecutive days dur-
ing adolescence showed higher nicotine-induced enhancement
of locomotor activity; this effect was not reported when stress
occurred during adulthood (Cruz et al., 2008). Adolescent rats
exposed to either a chronic restraint stress or a multiple-stress
protocol showed higher locomotor response to cocaine challenge,
and higher basal corticosterone level as well (Lepsch et al., 2005).
Social stresses during adolescence increased behavioral sensitiza-
tion to amphetamine (Mathews et al., 2008), but opposite effects
were also reported (Kabbaj et al., 2002). Maternal separation was
shown to increase impulsivity and reward-seeking behaviors (Col-
orado et al., 2006). Three hours of maternal separation between
PND 0 and PND 14 increased the locomotor sensitization to
cocaine, which was associated with an increase in D3R mRNA
in the Nacc shell (Brake et al., 2004). Nevertheless, another study
found no effect using a chronic social isolation on the locomotor
response to psychostimulants either in adolescent or adult male
rats (McCormick et al., 2005).

THE JUVENILE RODENT MODEL: PROMISES AND PITFALLS
Most studies point out to an increased drug-seeking behavior
in juvenile rodents, suggesting work hypotheses to explain why
teens are at risk to lose control over drug intake. First, enhanced
sensitivity to drug reward and two, lowered drug-induced aver-
sive side effects provide a good rationale for studying juvenile
rats vulnerability to drug abuse. However, no animal study has
so far directly demonstrated an increased susceptibility to com-
pulsive drug intake when first drug intoxication occurs during
adolescence. Some methodological issues may also promote some
misinterpretations, such as the lack of appropriate adult controls.
As mentioned above, rats and mice appear to exhibit opposite anx-
iety profiles, with juvenile rats more anxious and juvenile mice
less anxious than adults (Macrì et al., 2002; Lynn and Brown,
2010). Importantly, a few studies illustrated behavioral differences
between early, mid and late adolescence (Tirelli et al., 2003; Wilkin
et al., 2012), but most studies actually used juvenile rats of differ-
ent ages that differed from one lab to the other. Further, the lack of
consideration of social influence on drug consumption and related
behavior may constitute another important confounding factor.
Indeed, social interactions have been shown to highly influence
risky behaviors and drug abuse. In particular, it has been reported
that social interaction linked to a suboptimal cocaine dose could
produce a CPP (Thiel et al., 2008). Meanwhile, the presence of
counterparts decreased the aversive effect of ethanol in a condi-
tioned taste aversion paradigm in male adolescent rats, but not in
adults (Vetter-O’Hagen et al., 2009).
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Ventral tegmental area dopaminergic neurons have been
claimed to fire at a higher rate in adolescent rats, which is consis-
tent with the hypothesis of adolescent vulnerability to drug abuse
(McCutcheon et al., 2012). In line with this observation, a higher
drug-induced dopamine release has been reported in adolescent
rodents (Laviola et al., 2001; Walker and Kuhn, 2008). However,
behavioral response to drugs does not fit with this conclusion.
In particular, subchronic treatment with psychostimulants failed
to induce an increased locomotor sensitization in adolescent rats
(Frantz et al., 2007). Of particular importance, Frantz et al. (2007)
reported similar dopamine release in the Nacc between adoles-
cents and adults rats treated with psychostimulants. Conversely,
one study reported a locomotor sensitization to cocaine in juve-
nile mice and not in adults (Camarini et al., 2008); however, a
cocaine challenge performed 10 days after this experiment showed
a lower dopamine release in the Nacc of juvenile mice, despite a
faster onset peak. Further studies will be necessary to determine
the relation between DA release and locomotor sensitization to
psychostimulants in adolescent rats.

Although stress and impulsivity have been shown separately
to promote drug use, a few studies established cross-regulations
between both. Intracerebroventricular injections of corticotropin-
releasing factor (CRF) did not increase impulsivity in the 5-
CSRTT, but increased accuracy responding (Ohmura et al., 2009).
A chronic treatment with corticosterone during adolescence failed
to affect premature responses in this task, and even decreased
the number of impulsive behaviors in a Stop signal task (Torre-
grossa et al., 2012). More studies are needed to fully understand
this interaction, which is considered as a key element exaggerating
the emergence of psychiatric disorders in human (Fox et al., 2010;
Somer et al., 2012; Hamilton et al., 2013).

Another source of controversy is the conjecture according to
which the juvenile rodents would exhibit reduced self-control and
increased attraction to cues predicting reward (Ernst et al., 2009;
Burton et al., 2011). In opposition with this statement, juvenile
rats were shown to display a lower cue-induced reinstatement of
cocaine intake (Anker and Carroll, 2010). Further contrasting with
the above mentioned conjecture, juvenile mice (26–27 days) were
shown to exhibit enhanced flexibility compared to adults in an
odor-cue based procedure (Johnson and Wilbrecht, 2011). Given
the immaturity of the PFC in juvenile rats, as well as the key role of
this structure in cognitive flexibility (Baxter et al., 2000; Schoen-
baum et al., 2006; Gruber et al., 2010), this result might appear
counterintuitive. Nonetheless, an enhanced flexibility of adoles-
cents might help to promote a switch between a large number of
options, such as quitting drug intake in favor of a less detrimen-
tal behavior. It therefore tends to alleviate the omnipresence of
vulnerability elements in juvenile rodents, since cognitive flexibil-
ity is mandatory to acquire a behavioral repertoire necessary for
survival and autonomy.

It is important to acknowledge that only a minority of young-
sters experiencing recreational drugs will later develop clinical
symptoms of drug addiction and dependence, although the con-
tribution of fundamental research using animal models remains
quite limited to support this assertion. A current consensus sug-
gests that interindividual variations in brain maturation might
explain excessive behavioral outputs. Of particular interest, recent

evidence demonstrated that first, individuals with pronounced
impulsive traits displayed a thinner cortex (Shaw et al., 2011)
and second, the activation of the mesolimbic neurocircuitry of
adolescents trained to gamble in a monetary incentive task corre-
lated positively with their psychosocial and behavioral difficulties
(Bjork et al., 2011). The authors of this study elegantly acknowl-
edge that correlation most likely does not imply causality but,
nonetheless, these observations suggest that increased engagement
in problematic behaviors may partly result from mesolimbic sensi-
tivity to reward-predictive cues. And they conclude that increased
mesolimbic sensitivity may represent a trait that, in line with the
general immaturity of the adolescent brain, could partly explain
behavior-related injury or death in “at-risk” adolescents (Bjork
et al., 2011).

Some external factors, like sociodemographic status or famil-
ial environment, have also been considered to play a role in this
variability. Adverse events in childhood were shown to be predic-
tive of later alcohol dependence (Pilowsky et al., 2009). Converging
evidence has established the negative influence of parental miscon-
ducts (including substance use disorders) on children propensity
to develop similar disorders (Verdejo-Garcia et al., 2008). Gene
polymorphisms among adolescents with alcohol-related disor-
ders have been proposed to explain interindividual differences
in attentional bias toward alcohol (Pieters et al., 2011), or in
stress responsivity to drugs (Kreek et al., 2005). Although genetic
factors have been thought to explain between 30 and 60% of
addictive disorders (Kreek et al., 2005), gene influence mainly
depends on interaction with environmental factors. In partic-
ular, a gene polymorphism was shown to be closely related to
alcoholism in adults, and also in a subpopulation of adolescents
that were exposed to high psychosocial stress during childhood
(Clarke et al., 2011). A similar correlation has been found with
a specific genotype of the serotonin transporter (Kaufman et al.,
2007). In adolescents diagnosed for anxiety disorders, depression,
or in healthy controls, amygdala pattern of activation in response
to emotional faces was dependent of the pathology diagnosed
(Beesdo et al., 2009).

CONCLUSION
Risk taking and sensation seeking have long been considered hall-
marks of typical adolescent behavior and, meanwhile, have been
thought to represent vulnerability factors for developing substance
abuse disorders. Strikingly, despite a large number of preclini-
cal investigations delineating the brain circuitries underpinning
enhanced impulsiveness and increased emotional reactivity con-
stitutive of an extended behavioral repertoire, very few studies
support a specific vulnerability of juvenile rodents to lose control
over drugs of abuse. A provocative statement would argue that sci-
ence should better see the adult world with adolescent eyes, rather
than seeing the adolescent world using an adult watch. Indeed,
juvenile behaviors present adaptive benefits to acquire appropri-
ate skills for survival in absence of parental protection. Meanwhile,
it is true that these externalizing behaviors make adolescents, or at
least a subset of teens, more vulnerable to reckless conducts and
potential injuries. Objectively, the adolescent brain is prewired for
sensation seeking and risk taking which, in line with the height-
ened motivation for reward, often leads to careless behaviors.
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The development of self-regulatory competence is a normative
process (that depends on both brain maturation and social experi-
ences) at the end of which young adults have acquired the aptitude
to better regulate their emotions and impulsiveness.

A major aim for future researches consists in finding endophe-
notypes and vulnerability markers of substance use disorders and
drug abuse. It has been recently demonstrated that people suffer-
ing from substance abuse disorders shared with their non-addict
siblings similar behavioral traits, including high impulsivity and
sensation-seeking (Ersche et al., 2010). This study also revealed
that abnormal prefrontal and striatal connectivity might under-
pin risks of drug addiction (Ersche et al., 2012). In complement,
converging evidence have revealed that interindividual differences
arise from heterogeneity in the PFC function (George and Koob,
2010). Therefore, deeper investigations assessing PFC interindi-
vidual adaptations during adolescence are required to understand

how only specific developmental trajectories can lead to drug
addiction. In particular, understanding whether (and if true,
how) deficient brain maturation processes might be responsible
for sustained reward seeking and poor decision-making (mean-
ing persistence in risk taking despite adverse consequences) is of
the highest importance to better protect “at-risk” young adults. A
current consensus already acknowledges that the developing ado-
lescent brain is fragile and vulnerable to neurobiological insults
concomitant to drug abuse, in particular those related to alco-
hol intoxication (Crews et al., 2004). But, further preclinical and
clinical studies focusing on the adolescent PFC are required to
better understand how genes, environment, stress and individ-
ual temperament interact together to shape the neurobiological
mechanisms underpinning the vulnerability to lose control over
reward seeking, and potentially excessive drug taking, during the
transition from the adolescent world to the adult universe.
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There is considerable interest in developing highly selective dopamine (DA) D3 receptor
ligands for a variety of mental health disorders. DA D3 receptors have been implicated in
Parkinson’s disease, schizophrenia, anxiety, depression, and substance use disorders. The
most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors.
D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these
two receptors has been difficult to differentiate. Over the past 10–15 years a number of
compounds selective for D3 over D2 receptors have been developed. However, translating
these findings into clinical research has been difficult as many of these compounds cannot
be used in humans.Therefore, the functional data involving the D3 receptor in drug addiction
mostly comes from pre-clinical studies. Recently, with the advent of [11C]-(+)-PHNO, it has
become possible to image D3 receptors in the human brain with increased selectivity and
sensitivity. This is a significant innovation over traditional methods such as [11C]-raclopride
that cannot differentiate between D2 and D3 receptors. The use of [11C]-(+)-PHNO will
allow for further delineation of the role of D3 receptors. Here, we review recent evidence
that the role of the D3 receptor has functional importance and is distinct from the role of the
D2 receptor. We then introduce the utility of analyzing [11C]-(+)-PHNO binding by region of
interest. This novel methodology can be used in pre-clinical and clinical approaches for the
measurement of occupancy of both D3 and D2 receptors. Evidence that [11C]-(+)-PHNO
can provide insights into the function of D3 receptors in addiction is also presented.

Keywords: dopamine, occupancy, PET imaging, D3, D2

INTRODUCTION
Dopamine (DA) is a neurotransmitter that has been implicated
in a variety of psychiatric disorders such as Parkinson’s disease,
schizophrenia, and addiction. There has been a great deal of inter-
est in developing drugs that target DA receptors to treat these
various neuro-psychiatric disorders. Five types of DA receptor
subtypes have been identified and they are broadly classified as
D1-type and D2-type based on sequence homology and phar-
macology, and numbered in order of their date of cloning. First
described in the early 1990s (Sokoloff et al., 1990), D3 receptors are
a subtype of the previously characterized D2 receptor. Discovery
of this subtype sparked interest in determining the properties and
functions that distinguish it from D2 receptors. It is known that
D3 receptors are metabotropic 7-membrane-spanning receptors
that share overall ∼50% homology with the D2 receptor (Sibley
and Monsma, 1992). Like D2 receptors, the D3 subtype inhibits
adenylyl cyclase (Robinson and Caron, 1996). D3 receptors have
been localized to neurons containing tyrosine hydroxylase suggest-
ing that these receptors are pre-synaptic, corresponding to their

role as autoreceptors (Diaz et al., 2000). This is consistent with
reports that mutant mice lacking the D3 receptors are hyperac-
tive (Xu et al., 1997), presumably due to increases in DA resulting
from a lack of negative feedback normally mediated through D3
autoreceptors.

Historically, D2 receptors have been a treatment target (mostly
for schizophrenia and Parkinson’s disease), but the restricted local-
ization of D3 receptors (Bouthenet et al., 1991; Diaz et al., 2000;
Heidbreder, 2005) has led to interest in modulating D3 activity
for the treatment of addiction (Le Foll et al., 2000, 2005c; Joyce
and Millan, 2005), schizophrenia (Gross and Drescher, 2012), and
Parkinson’s disease (Joyce, 2001; see Sokoloff et al., 2006 for a
review). D3 receptors have been found to be localized to the islands
of Calleja, mammillary bodies, accumbens shell, frontoparietal
cortex, the substantia nigra/ventral tegmental area, and cerebel-
lar lobules 9 and 10 (Diaz et al., 2000). As discussed later in this
review, binding of radioligands to D3 receptors in the substan-
tia nigra/ventral tegmental area is used to quantify the level of
binding to D3 receptors, and Figure 1 provides an illustration of
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FIGURE 1 | Distribution of D3 receptors: immunohistochemical

localization of the DRD3 in rat brain. (A,B) Superimposable distributions
of binding of [125I]trans-7-OH-PIPAT, a DRD3-selective ligand (A), and
DRD3 immunoreactivity (B), with highest levels in the islands of Calleja
(IcjM and IC) and moderate levels in the shell of nucleus accumbens (Sh);
ac, anterior commissura. (C,D) Expression of DRD3 immunoreactivity
alone (in red in C) and in combination with tyrosine hydroxylase
immunoreactivity (in green in D). All tyrosine hydroxylase-positive neurons
in the mesencephalon express the DRD3. Distribution of the binding of
[125I]trans-7-OH-PIPAT in SN/VTA of D3R+/+ mice (E) and of D3R−/− mice
(F). Adapted with permission from Diaz et al. (2000).

D3 receptor immunoreactivity in the rodent brain. Figure 1 illus-
trates a great density of D3 receptors in the nucleus accumbens
and substantia nigra/ventral tegmental (Diaz et al., 2000).

Until recently, direct study of the D3 receptor has proven dif-
ficult due to the lack of compounds selective for D3, as opposed
to D2, receptors. Nonetheless, a number of selective antagonists
have been developed, including SB-277011-A (Reavill et al., 2000),
YQA14 (Song et al., 2012), PG01037 (Grundt et al., 2007), NGB
2904 (Yuan et al., 1998; Robarge et al., 2001), GSK 598809 (Dodds
et al., 2012; Nathan et al., 2012; Mugnaini et al., 2013), ABT-925
(Graff-Guerrero et al., 2010), ST 198 (Weber et al., 2001; Le Foll
et al., 2005d), and S33138 (Millan et al., 2008). Pre-clinical stud-
ies utilizing these ligands have supported the view that DA D3
receptor antagonists may be used for the treatment of psychiatric
disorders, notably addiction. Interestingly, pre-clinical findings
indicate a clear relationship between in vivo occupancy of these
receptors and behavioral response, particularly drug-seeking (see
below). In human trials exploring treatment options, the mea-
surement of occupancy of D3 receptors may thus be critical. To
our knowledge, only a few human trials using a highly selective D3
antagonist (GSK 598809) have been published (Dodds et al., 2012;

Nathan et al., 2012; Mugnaini et al., 2013), yet these trials have
been prematurely stopped. As listed on ClinicalTrials.gov, studies
examining D3 antagonists have been conducted for schizophrenia,
smoking and eating disorders. Generally, clinical investigations
remain in their infancy as few compounds suitable for use in
humans have been developed with selectivity for D3 over D2
receptors.

A recently published review briefly summarized the [11C]-(+)-
PHNO studies conducted in addiction to-date (Payer et al., 2014).
Here, we will additionally explore the importance of differenti-
ating the behaviors mediated by the D3 receptor from the D2
receptor. While the two receptors have historically been difficult to
distinguish, their functions are distinct and therefore further inves-
tigation of D3 receptors is mandated. We will briefly introduce the
published studies that indicate functional differences between D2
and D3 receptors. The present paper will also provide a more com-
prehensive summary of the positron emission tomography (PET)
technique and PET imaging with [11C]-(+)-PHNO. The focus of
this review will be to present novel methods allowing for the mea-
surement of occupancy of D3 receptors in pre-clinical and clinical
approaches using [11C]-(+)-PHNO and PET.

THE IMPORTANCE OF DIFFERENTIATING D3 FROM D2 RECEPTORS
Despite considerable structural homogeneity, growing evidence
suggests that the role of D3 and D2 receptors may be distinct.
Indeed, regulation of receptor expression in various pathologies
appears to differ between D3 and D2. Further, antagonists at the
D2 receptor seem to be less selective in their effects on behavior
which may account for the side effects observed with D2 agents
but not believed to occur with D3 antagonists. D3 antagonists
also have cognitive enhancing properties that are not observed
with D2 antagonists (Nakajima et al., 2013). These findings are
summarized below.

Differences between D2 and D3 receptors in pathology
Studies exploring the regulation of D2 and D3 receptors in drug
addiction reveal that these receptors are differentially regulated. D2
receptors appear to be downregulated in the brains of individuals
with addictions (Volkow et al., 2001). In contrast, post-mortem
findings from brains of cocaine addicted individuals revealed
upregulated D3 receptors (Staley and Mash, 1996). PET imaging
studies in cocaine (Payer et al., 2014) and in methamphetamine
polydrug users (Boileau et al., 2012; Matuskey et al., 2013) have
confirmed this up-regulation. It is likely that this regulation is due
to drug exposure, as various drugs of abuse, such as cocaine (Le
Foll et al., 2002), methamphetamine (Le Foll et al., 2005b), nico-
tine (Le Foll et al., 2003), and alcohol (Leggio et al., 2014) produce
this up-regulation.

With respect to schizophrenia, both D2 and D3 receptors are
upregulated in post-mortem brains but the level of D3 receptors
appear equivalent to controls in patients that had received antipsy-
chotic treatment prior to death (Joyce et al., 1988). This highlights
differences in the response to treatment between D2 and D3 recep-
tors. Consistent with this, there were also no differences between
controls and schizophrenics who received treatment in the binding
of [125]trans-7-OH-PIPAT to D3 DA receptors (Gurevich et al.,
1997).
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In Parkinson’s disease, there is a clear up-regulation of the D2
receptor and down-regulation of the D3 receptor (Levesque et al.,
1995; Morissette et al., 1998; Boileau et al., 2009). Administration
of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to non-
human primates produces a syndrome that resembles Parkinson’s
disease (postural rigidity, bradykinesia, and akinesia) in humans
and is thus used as a model of this disease. When given MPTP
unilaterally, symptoms can be observed on one side of the body and
neurochemical correlates can be compared to the non-lesioned
side. In monkeys given unilateral MPTP, an up-regulation of D2
receptors was found in the lateral caudate and putamen (Joyce
et al., 1986; Graham et al., 1990) of the treated hemisphere. This
up-regulation was also found when DA levels were reduced due
to 6-OHDA-induced denervation (LaHoste and Marshall, 1991).
In contrast to the findings with D2 receptors, D3 receptors were
down-regulated in the ipsilateral nucleus accumbens following a
6-OHDA lesion while D2 receptors were upregulated (Levesque
et al., 1995). Similarly, the brains of Parkinson’s disease patients
show increased D2 receptor density and decreased D3 receptors
(Ryoo et al., 1998).

Effects on drug taking behaviors
There is considerable pre-clinical evidence suggesting that D3
receptor antagonists may be effective as treatments for addiction.
Several reviews have proposed that D3 receptor antagonists may
reduce relapse to the seeking of a variety of classes of drugs (Heid-
breder et al., 2005; Le Foll et al., 2005c, 2007; Newman et al., 2005).
D3 receptor antagonists may be especially effective in alleviating
craving and relapse induced by conditioned stimuli (Le Foll et al.,
2005c) in the environment and thus may block the drug-seeking
induced by images and/or events associated with the drug of abuse.

The intravenous self-administration paradigm is a widely used
model of drug addiction in which animals are trained to learn a
new response that supplies or yields a bolus of drug. Although
this model has face validity (i.e., it looks like what it supposed
to measure), the effects of treatments on self-administration are
not always intuitive in a simple way. Although treatments that
block the reinforcing effects of drugs of abuse may decrease
the amount of drug self-administered, they may also increase
drug self-administration as the animal “compensates” for the
reduced potency of the drug (Pickens and Thompson, 1968;
Corrigall and Coen, 1989). Thus, treatment strategies that block
the rewarding effects of a drug may actually lead to its increased
self-administration.

These compensatory increases in behavior have been a disad-
vantage of D2 receptor antagonists, as opposed to D3 antagonists,
in pre-clinical models. That is, blockade of the D2 DA receptor
resulted in increases in responding for amphetamine (Yokel and
Wise, 1975), MDMA (Brennan et al., 2009), methamphetamine
(Brennan et al., 2009), or cocaine (Woolverton, 1986). By contrast,
blockade of D3 receptors with selective D3 receptor antagonists
had no effect on the self-administration of nicotine (Andreoli et al.,
2003), cocaine (Di Ciano et al., 2003; Gal and Gyertyan, 2003; Xi
et al., 2005; Achat-Mendes et al., 2010), methamphetamine (Orio
et al., 2010; Higley et al., 2011), or amphetamine (Higley et al.,
2012). It should be noted that one study found a decrease in the
self-administration of cocaine when the animal was required to

make more responses for drug (Xi et al., 2005), suggesting that
instances requiring high effort to obtain drug may be affected by
D3 antagonists. Further, it has been reported that D3 blockade by
the selective D3 antagonist SB-277011-A decreased alcohol self-
administration under low schedules of reinforcement (Thanos
et al., 2005; Heidbreder et al., 2007). More recently, studies with
D3 deficient mice have revealed that the D3 receptor is neces-
sary for alcohol consumption (Leggio et al., 2014). The reason for
the discrepancy between the alcohol findings and those of other
drugs is unknown, but together these findings suggest that, unlike
D2 receptor antagonists, D3 antagonists do not increase intake of
drugs of abuse and may serve as good pharmacological treatments.
In sum, the distinction between D2 and D3 receptor antagonists
may be important when devising treatments for addiction.

Effects on locomotor activity and catalepsy
Dopamine antagonists can produce undesirable effects on loco-
motor activity; however, these effects are absent with D3 antago-
nists. Decreases in locomotor activity can be viewed as a measure
of the non-specific, i.e., D2, effects of treatments and can be an
indication that these antagonists will have undesired side effects.
D2 antagonists have a well-known ability to reduce locomotion
and induce catalepsy. By comparison, administration of D3 antag-
onists have no effects on spontaneous locomotion (Reavill et al.,
2000; Le Foll et al., 2005a; Xi et al., 2005), stimulant-induced loco-
motion (Reavill et al., 2000), and are non-cataleptogenic (Vorel
et al., 2002; Xi et al., 2005). Indeed, comparison of the D3 antag-
onist SB-277011-A to the D2 antagonist haloperidol revealed no
ability to produce catalepsy of the former and significant catalep-
tic effects of the latter (Reavill et al., 2000). The D2 antagonist
L741626 has also been observed to produce catalepsy, however, the
D3 antagonists PG01037 and S33084 did so as well but to a lesser
extent (Millan et al., 2000; Achat-Mendes et al., 2010). D2 antago-
nists blocked stimulant-induced locomotion while D3 antagonists
had no effect (Millan et al., 2000). However, one study found
decreases in nicotine-induced locomotion with the D3 antago-
nist SB-277011-A (Ross et al., 2007) used at high doses which may
not be selective while another study found that the D3 antag-
onist NGB 2904 potentiated amphetamine-induced locomotion
(Pritchard et al., 2007).

Selectivity of effects
Another approach to demonstrate that D3 antagonists lack non-
specific effects is through evidence revealing that their effects are
selective to the behavior under study. In the case of drug addic-
tion, D3 antagonists hold promise because they seem to affect
drug-relevant behaviors while sparing behaviors motivated by
natural reward. This provides support not only for selectivity
of effects but also makes the point that D3 antagonists, used
as a treatment for drug addiction, will not have general effects
on motivation. One of the most consistently reported effects of
D3 antagonists is their ability to block drug-seeking behaviors
in animal models of relapse (i.e., reinstatement of drug-seeking
behaviors; Vorel et al., 2002; Andreoli et al., 2003; Xi et al., 2004,
2006; Gilbert et al., 2005; Gal and Gyertyan, 2006; Heidbreder
et al., 2007; Achat-Mendes et al., 2010; Khaled et al., 2010; Higley
et al., 2011, 2012). Importantly, this effect of reduced seeking to
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various drugs of abuse appears specific as no effect on food seeking
behavior has been reported (Gal and Gyertyan, 2006; Xi et al., 2006;
Cervo et al., 2007). Similarly, D3 antagonists are effective in block-
ing drug-seeking behaviors maintained by conditioned stimuli
under second-order schedule of reinforcement, while producing
no effects on responding for sucrose under a similar schedule of
reinforcement (Di Ciano et al., 2003).

In contrast, D2 antagonists appear non-selective in their effects.
That is, spiperone, haloperidol, L741626, or pimozide decreased
food intake (Wise et al., 1978; Corrigall and Coen, 1991; Achat-
Mendes et al., 2010). Interestingly, the latter study did not observe
any effects on the first day of testing, with effects being observed
only after repeated exposure of the animals to responding for
food under the effects of pimozide, which suggests that D2/3
receptors are involved in the learning of this behavior. This may
explain the lack of effect of eticlopride on food intake following
a single treatment (Ball et al., 2011). However, eticlopride also
decreased responding on a first test session when the animals were
required to make a more complex response for food (Caine and
Koob, 1994). Administration of haloperidol did not effect rein-
statement induced by a sucrose-paired conditioned stimulus (Gal
and Gyertyan, 2006), while eticlopride either increased (Ball et al.,
2011) reinstatement induced by a food-paired CS or decreased it
(Liu et al., 2010). Thus, D2 antagonists may be less selective and
affect non-specific aspects of motivation that are absent with the
highly selective D3 antagonists.

Effects on cognition
Evidence suggests that D3 antagonists may improve cognitive per-
formance and thus may be viable treatments for pathologies with
considerable cognitive deficits (dementia or schizophrenia; see
Nakajima et al., 2013 for a review). For example, memory can be
tested by imposing a delay between training and testing conditions.
In the social recognition test, animals are presented with a novel
juvenile rat and allowed to explore the juvenile. At a later point,
the juvenile is re-introduced and exploration time of the juvenile
is measured; if the animal spends less time exploring the animal
than it did during the first exposure, then memory of the juve-
nile is intact. By increasing the delay between presentations of the
juvenile, the memory for the juvenile is lost and exploratory time
increases. Administration of D3 antagonists S33084 or SB-277011-
A enhanced the memory for the juvenile after a delay (Millan et al.,
2007).

Relative to D2 antagonists, D3 antagonists also ameliorated
cognitive performance in the novel object discrimination task.
In this model, time spent in exploration of a novel object is
compared to exploratory time with a familiar object. Given that
animals explore novel objects, they should spend more time
exploring a novel object if the animal remembers the object with
which it has previous exposure. Using this task, it was revealed
that impairments in this task caused by a delay in the expo-
sure and test trials were reversed by a D3 antagonist S33084.
By contrast, normal performance observed without a delay was
impaired by the D2 antagonist L741626 (Watson et al., 2012a).
Similarly, when impairments in novel object recognition were
imposed by isolation rearing, D3 antagonists also enhanced perfor-
mance while D2 antagonists impaired performance under control

conditions (Watson et al., 2012b). Based on these and other obser-
vations (Nakajima et al., 2013), we and others have proposed that
D3 antagonists, but not D2 antagonists, may serve as cognitive
enhancers.

RECEPTOR OCCUPANCY IN ANIMALS
Pre-clinical studies have established the importance of functionally
distinguishing D3 from D2 receptors. In basic pharmacological
experiments, the ability of a compound to bind to D3, as opposed
to D2, receptors, can be measured by studying its affinity for these
different receptors. However, demonstrating that a compound will
bind to D3 receptors at a given dose is essential to establish that the
receptor is really occupied by the drug. Measurement of D3 recep-
tor occupancy has been difficult due to the lack of radioligands
selective for D3 over D2 receptors. The recent advent of [11C]-
(+)-4-propyl-9-hydroxynaphthoxazine ([11C]-(+)-PHNO; Wil-
son et al., 2005), a D3 preferring agonist (Narendran et al., 2006),
allows for the measurement of occupancy of D3 receptors. Specifi-
cally, the occupancy of D3 antagonists in various brain areas can be
evaluated by measuring [11C]-(+)-PHNO binding in the presence
or absence of drug. In a study by Kiss et al. (2011), [3H]-(+)-
PHNO binding in various brain areas was antagonized by either
the D3 antagonist SB-277011-A or the D2 antagonist SV-156 to
determine whether binding of [3H]-(+)-PHNO was due to occu-
pation of D2 or D3 receptors. They found that [3H]-(+)-PHNO
binding in the rat cerebellar lobules 9 and 10 but not in the stria-
tum was blocked by administration of a D3 antagonist, whereas
the opposite was true for a D2 antagonist (Kiss et al., 2011). These
results suggest that [3H]-(+)-PHNO binding in the cerebellar lob-
ules 9 and 10 is due to D3 receptors while [3H]-(+)-PHNO binds
to D2 receptors in the striatum. Thus, it is possible to estimate the
amount of binding of a D3 antagonist by measuring occupancy of
D3 receptors by [3H]-(+)-PHNO in cerebellar lobules 9 and 10,
and conversely, to estimate occupation of D2 receptors by binding
of [3H]-(+)-PHNO in the dorsal striatum.

This is consistent with the demonstration that SB-277011-A
decreased binding of [3H]-(+)-PHNO in various brain areas with
the greatest reduction being observed in the D3-rich substantia
nigra and ventral tegmental area, and the least reduction being
observed in the ventral striatum and D2-rich caudate/putamen
(Rabiner et al., 2009). The binding pattern of [3H]-(+)-PHNO
following the D2 antagonist SV-156 was complementary to that
following SB-277011-A, with the most reduction in binding being
observed in the dorsal striatum (Rabiner et al., 2009). Similarly,
in knockout mice lacking the D3 receptor, binding of [3H]-(+)-
PHNO was reduced in the ventral striatum and extra-striatal
regions, while it was reduced in the ventral striatum and dorsal
caudate-putamen in mice lacking the D2 receptor (Rabiner et al.,
2009). Thus, reciprocal differences are observed in the binding of
[3H]-(+)-PHNO in the brain. Occupancy of D3 receptors in rats
can be measured by analysis of the cerebellar lobules 9 and 10 and
binding of D2 receptors to the dorsal striatum.

Application of these principles has been used to measure the
occupancy of D3 receptors by the D3 antagonist, SB-277011-A
in a study by McCormick et al. (2013). To achieve this, rats were
pre-treated with 10 mg/kg SB-277011-A. Sixty minutes following
pre-treatment, rats were injected with [3H]-(+)-PHNO in the
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tail vein (intravenous injection) and a further 60 min allowed
for uptake of the tracer. Rats were then killed by decapitation
and brain areas of interest excised. Neural regions in which [3H]-
(+)-PHNO binds to D2 receptors, namely, the dorsal striatum
and nucleus accumbens, were excised. The cerebellar lobules 9
and 10, where binding is to D3 receptors, were also excised. By
comparison of the binding to D3 receptors by [3H]-(+)-PHNO
in the various brain areas it was possible to estimate the amount
of occupancy of D3 receptors. As can be seen in Figure 2, it was
reported that binding of [3H]-(+)-PHNO in cerebellar lobules
9 and 10 was low after administration of 10 mg/kg SB-277011-
A, suggesting that this D3 antagonist occupies D3 receptors and
competes with [3H]-(+)-PHNO which is displaced. Binding of
[3H]-(+)-PHNO in the striatum and nucleus accumbens was high
after 10 mg/kg SB-277011-A, suggesting that this compound does
not readily compete with [3H]-(+)-PHNO for D2 receptors in
these areas at this dose (McCormick et al., 2013). Collectively, these
findings confirm that SB-277011-A is a D3 antagonist with high
affinity for D3 receptors over D2 receptors (Reavill et al., 2000).

This approach has also been used to explore the binding of
another D3 antagonist, GSK598809, in rats. In this study, binding
of the radiotracer [11C]-(+)-PHNO to D3 receptors was decreased
in humans after treatment with the D3 antagonist GSK598809
(Mugnaini et al., 2013). Notably, this study took a translational
approach and demonstrated that administration of GSK598809
to rats disrupted a conditioned place preference for a nicotine-
paired environment and that this ability was observed with doses
which result in selective D3 occupancy (Mugnaini et al., 2013).
Conditioned place preference is a model of addiction and the abil-
ity of environmental stimuli to induce approach behaviors after
association with drug (Le Foll and Goldberg, 2005). This find-
ing is consistent with the hypothesis that D3 antagonists may be
especially involved in the conditioned learning of associations in
addiction (Le Foll et al., 2005c).

PET IMAGING IN HUMANS
Another method to measure occupancy of D3 receptors is through
in vivo methods such as PET imaging in humans. PET permits

FIGURE 2 | In vivo method for occupancy of D3 in rats. [3H]-(+)-PHNO
specific binding ratio in dorsal striatum, nucleus accumbens, and cerebellar
lobules 9 and10 (Lob 9 & 10) after pretreatment with vehicle (veh) or the
selective D3 antagonist SB-277011-A (SB). Graphs depict mean ± SD.
**p < 0.01 compared to the vehicle-treated group. Adapted from
McCormick et al. (2013).

the measurement of neurochemicals in vivo and has become a
powerful tool for neuroscientists to visualize and localize recep-
tors, measure enzymatic activity, and estimate endogenous levels
of neurotransmitters (Frankle and Laruelle, 2002; Parsey and
Mann, 2003; Volkow et al., 2003a,b). In PET imaging, a positron-
emitting radiotracer (e.g., [11C]-raclopride or [11C]-(+)-PHNO)
that binds to the protein of interest (e.g., D2 or D3 receptors),
is injected intravenously and the binding of this radiotracer to
receptors can be measured using the PET scanner. The D2/3 recep-
tors were the first to be imaged using [11C]-N-methylspiperone
in the living human brain using PET (Wagner et al., 1983). Since
then a number of new radioligands to measure these receptors
have been developed, e.g., [18F]-FESP, [11C]-raclopride, [11C]-N-
methylbenperidol, [11C]-FLB 457, [18F]-fallypride (Ehrin et al.,
1985; Coenen et al., 1987; Suehiro et al., 1990; Halldin et al., 1995;
Mukherjee et al., 1997). Since PET imaging measures the binding
of a radioligand to a receptor, changes in binding over time can
be attributed to up-regulation or down-regulation of the receptor.
However, PET imaging is a competitive measure, in that endoge-
nous DA competes with the radioligand for the receptor, thereby
providing an indirect measure of DA levels. The amount of bind-
ing of the radioligand is inversely proportional to the amount of
neurotransmitter present such that decreases in binding of the
radioligand to receptors infer an increase in DA levels.

There are two caveats to this approach: (1) although changes
in DA levels can be inferred, the mechanism by which the neu-
rotransmitter is changed is unknown. In hypothesizing whether
changes are due, for example, to altered release or re-uptake, ref-
erence to pre-clinical findings must be made; and (2) since PET
imaging, strictly speaking, measures binding of a radioligand to a
receptor, changes in binding can be due to receptor adaptations.
Thus, PET studies have within them an inherent problem of inter-
pretation: are changes in binding potential due to altered synaptic
DA or due to changes in the levels of the receptor? In general,
changes in binding potential following administration of an acute
challenge, for example, methylphenidate (Martinez et al., 2011),
can be assumed to be related to altered DA transmission because
the time frame of treatment is not long enough to observe altered
regulation of the receptor. However, more long-term changes, such
as those produced by chronic treatments (Brody et al., 2010), are
more difficult to interpret, and parallels with the animal litera-
ture or post-mortem findings in humans can be informative. For
a more detailed description of these caveats in PET imaging, see
(Morris et al., 2013). Each of these approaches (measurement of
DA levels and of D3 receptor levels) is considered further below.

Increased sensitivity in the detection of DA levels with
[ 11C]-(+)-PHNO
The DA system, and in particular, D2/3 receptors, is one of the
most extensively imaged receptor systems in the brain. The tra-
ditional radioligand that has been used is [11C]-raclopride. One
limitation of PET imaging is that the sensitivity to detect changes
in DA levels is low compared to that observed in animal studies,
and a ceiling effect of around 40% change in receptor binding is
observed (reviewed in Martinez and Narendran, 2010). Recently,
[11C]-(+)-PHNO, a selective D3 agonist for use in PET stud-
ies with humans, has been characterized (Narendran et al., 2006;

www.frontiersin.org July 2014 | Volume 5 | Article 161 | 231

http://www.frontiersin.org/
http://www.frontiersin.org/Neuropharmacology/archive


Le Foll et al. D3 occupancy

Willeit et al., 2006; Ginovart et al., 2007). Recent evidence sug-
gests that this agonist radioligand [11C]-(+)-PHNO enables the
detection of smaller changes in synaptic DA levels with greater
sensitivity as compared to [11C]-raclopride. This is supported by
the direct comparison of the dose-effect of amphetamine (0.1, 0.5,
and 2 mg/kg; i.v.) on binding of [11C]-(+)-PHNO and [11C]-
raclopride in cats (Ginovart et al., 2006). We also have recently
shown enhanced ability of [11C]-(+)-PHNO to detect elevation
of DA induced by smoking (Le Foll et al., 2014). Thus, the advent
of [11C]-(+)-PHNO has allowed for a more sensitive measure of
changes in DA levels than previously available radioligands.

Measurement of D3 receptors with [ 11C]-(+)-PHNO
Positron emission tomography imaging of D3 receptors in humans
has previously been problematic due to the lack of radiotrac-
ers selective for D3 over D2 receptors. In addition to increased
sensitivity in measuring DA levels, PHNO is also more selec-
tive for D3 receptors, allowing quantification of receptor levels.
Importantly however, the brain areas under investigation must
be carefully considered, as the selectivity varies depending on the
region of interest. D3, as compared to D2, signal is highest in
the substantia nigra, hypothalamus and ventral pallidum, moder-
ate in the globus pallidus and low/absent in the human striatum
(Tziortzi et al., 2011). Consistent with the binding studies in ani-
mals, in vivo PET studies in humans found that [11C]-(+)-PHNO
binding in the dorsal striatum was due to D2 receptors (Gino-
vart et al., 2007), while binding in the globus pallidus was due
to D3 receptors [Narendran et al., 2006; see the elegant study
of Tziortzi et al. (2011) for a dissection of D3 contribution to
[11C]-(+)-PHNO signal]. [11C]-Raclopride, a radiotracer with
equal affinity for the D2 and D3 receptors, bound more in the
striatum (Graff-Guerrero et al., 2008), confirming the selectiv-
ity of binding in this region for the D2 receptor. This is further
supported by the finding that [11C]-(+)-PHNO binding in the
substantia nigra is blocked by the D3 receptor antagonist SB-
277011-A in non-human primates (Rabiner et al., 2009). Thus,
in estimating occupancy of D3 receptors, binding of [11C]-(+)-
PHNO in the substantia nigra or globus pallidus can be measured,

whereas [11C]-(+)-PHNO can also be informative as to occu-
pancy of D2 receptors by measuring binding in the striatum.
However, it should be noted that binding of [11C]-(+)-PHNO is
not complete in all areas. Although the displacement of [11C]-
(+)-PHNO by SB-277011-A is almost 100% in the substantia
nigra and ventral tegmental area, only around 80% of the sig-
nal in the globus pallidus is attributable to the D3 receptor in
mouse and baboon (Rabiner et al., 2009). This contribution is
much less in the ventral striatum (around 50–60%) and even less
in caudate-putamen (20–40%), consistent with the lack of selec-
tivity of [11C]-(+)-PHNO for D3 receptors in these areas (Rabiner
et al., 2009). Figure 3 provides an illustration of the regional bind-
ing of [11C]-(+)-PHNO in the human brain. As can be seen,
binding is highest in substantia nigra, globus pallidus, and ven-
tral striatum; as such, changes in binding in these areas can reveal
the degree to which a treatment is selective for D3 receptors. By
comparison to areas in which [11C]-(+)-PHNO binding is to D2
receptors, imaging with [11C]-(+)-PHNO can provide a measure
of the occupancy of D2 vs. D3 receptors, which is not provided by
[11C]-raclopride.

In a study by Searle et al. (2010), the competition of a selective
D3 antagonist, GSK598809, with [11C]-(+)-PHNO was quanti-
fied in various brain regions and correlated with plasma levels
of GSK598809. In this study, binding of [11C]-(+)-PHNO to
receptors was expressed as displacement – the degree to which
[11C]-(+)-PHNO binding was prevented by the antagonist. Thus,
the greater the displacement of [11C]-(+)-PHNO, the greater the
binding of GSK598809 to receptors. As can be seen in Figure 4
(left panels), a correlation of plasma levels of GSK598809 and dis-
placement of [11C]-(+)-PHNO binding to the D2/3 receptor is
given. Binding of GSK598809 was greatest in the substantia nigra
and also apparent in the globus pallidus, as compared to mini-
mal binding in the ventral striatum, thalamus, dorsal caudate, and
dorsal putamen. These results indicate that GSK598809 is acting
primarily on the substantia nigra, then the globus pallidus and
very little in the caudate, consistent with the ability to measure
binding to D3 receptors [11C]-(+)-PHNO in the substantia nigra
(Searle et al., 2010).

FIGURE 3 | Vizualing D3 in humans with [11C]-(+)-PHNO. Uptake value mean images from 12 healthy controls. Note the preferential distribution in the
substantia nigra, globus pallidus, and ventral striatum. Adapted with permission from Graff-Guerrero et al. (2008).
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FIGURE 4 | Plots of [11C]-(+)-PHNO displacement against plasma

concentration of GSK598809 or ABT-925 in two brain regions.

Relationship of [11C]-(+)-PHNO displacement to plasma levels of
GSK598809 (left panels) and ABT-925 (right panels) in the substantia
nigra (top panels) or caudate (bottom panels). At high concentrations,

GSK598809 and ABT-925 almost completely blocked the specific
binding of [11C]-(+)-PHNO in substantia nigra, with negligible effects
on the caudate for GSK598809 and limited effect on the caudate for
ABT-925. With permission from Searle et al. (2010) and Graff-Guerrero
et al. (2010).

The ability to conduct occupancy studies with D3 antagonists
in humans was also demonstrated with the administration of a
selective D3 antagonist, ABT-925 (Graff-Guerrero et al., 2010).
Receptor occupancy by ABT-925 was higher in the globus pal-
lidus and substantia nigra than in caudate, putamen or ventral
striatum, indicating binding of ABT-925 to D3 receptors. By com-
parison, ABT-925 was bound minimally in areas where binding
is to D2 receptors, the ventral striatum, putamen, and caudate.
ABT-925 dose-dependently bound to areas where binding is due
to D3 receptors, the globus pallidus and substantia nigra, revealing
the selectivity of [11C]-(+)-PHNO for the D3 receptor (Figure 4,
right panels). It should be noted that these findings have been
called in to question by Rabiner and Laruelle (2010), a position
that has been countered (Day et al., 2010).

A recent study has been conducted with the selective D3 antag-
onist GSK598809 to demonstrate its binding to D3 receptors and
correlate this with clinical efficacy. In this study, marked changes
in binding were observed in the substantia nigra, moderate bind-
ing was observed in the globus pallidus and marginal changes
were found in the dorsal striatal regions (Searle et al., 2010). Thus,
binding of GSK598809 was to D3 receptors preferentially. In a
subsequent study, binding of GSK598809 to D3 receptors was
confirmed and extended to include behavioral tests in humans
(Mugnaini et al., 2013). In that study, it was found that while
under the influence of GSK598809, smokers actually increased

their rate of smoking. Although this may seem contrary to the
expected effects of a drug that blocks the effects of drugs, the
authors propose that increases in smoking may be compensatory
due to a reduced efficacy of cigarettes to deliver their reinforcing
effects. As discussed above, this is not a desirable effect and one
that is associated with D2 receptor antagonism in animals, not
D3 receptor antagonism. However, cigarette smoking was assessed
at about 8–19 h post-dose with GSK598809, and the possibil-
ity exists that a different time course of the drug administration
may yield different effects. Further, clinical trials of drug effi-
cacy for reducing smoking generally tend to assess smoking in
the natural environment at several weeks during and after drug
administration. Thus, further and more extensive clinical trials on
the effects of D3 antagonists on drug intake are warranted, espe-
cially given the promising findings in pre-clinical studies (reviewed
above).

The reasons for the termination of clinical trials with D3 agents
are unknown, but it is promising that some trials showed efficacy,
with one reporting a reduction in cigarette craving (Mugnaini
et al., 2013), and the other reporting reductions in attentional
bias to food cues in some populations (Nathan et al., 2012).
These findings are tempered somewhat by further reports that,
despite attenuated craving following GSK598809, cigarette smok-
ing increased (see discussion above; Mugnaini et al., 2013) while
GSK598809 did not alter brain responses to food images in obese
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patients (Dodds et al., 2012). These mixed findings, despite being
preceded by great theoretical interest, warrant further study of D3
agents.

ROLE OF D3 RECEPTORS: STUDIES WITH [11C]-(+)-PHNO
We have begun to use these imaging tools to determine the role of
the D3 receptor, as compared to the D2 receptor, in addictive dis-
orders. In our studies, we measured binding to D3 receptors using
[11C]-(+)-PHNO and to D2 receptors using [11C]-raclopride,
or compared [11C]-(+)-PHNO binding in D3-rich (substantia
nigra) vs. D2-rich (striatum) areas, to determine the relative role of
these receptors in addictive behaviors. To do this, we have studied
not only cocaine and methamphetamine abusers, but also patho-
logical gamblers, as gambling being recently classed as an addictive
disorder in the DSM-5 (American Psychiatric Association, 2013).

In our initial study, we examined [11C]-(+)-PHNO binding
in methamphetamine polydrug users and found that metham-
phetamine use was correlated with significantly higher [11C]-(+)-
PHNO binding in the D3-rich substantia nigra as compared to
healthy controls (Boileau et al., 2012). Since increased [11C]-(+)-
PHNO binding can reflect either lower DA levels or increased
number of receptors, these findings can be interpreted either way
at first glance. However, pre-clinical (Le Foll et al., 2002) and
post-mortem (Staley and Mash, 1996) studies have been con-
sistent in finding increased D3 receptor number in the brains
of drug-exposed individuals, suggesting that our findings with
[11C]-(+)-PHNO reflect an up-regulation in D3 receptor num-
ber. Also consistent with established findings (Volkow et al., 2001),
[11C]-(+)-PHNO binding in the D2-rich area of the striatum was
decreased in heavy methamphetamine users. Together, the results
of our study not only confirm those of past studies, but pro-
vide the first in vivo evidence in humans of an up-regulation of
D3 receptors in addicted individuals, an effect that was oppo-
site to that found for D2 receptors. Indeed, in a follow-up study
with cocaine dependent individuals (Payer et al., 2014), partici-
pants also had increased [11C]-(+)-PHNO binding in the D3-rich
substantia nigra as compared to controls, while [11C]-raclopride
binding was decreased in the D2-rich striatum, as consistent with
previous reports (Volkow et al., 2001). Together, these studies
suggest that treatments targeting the DA system in general may
not be the best strategy. That is, these approaches may produce
the same response in both D2 and D3 receptors (i.e., compen-
satory increases in both receptor subtypes). Rather, the present
findings suggest that strategies differentially affecting D2 vs. D3
receptors would be preferable. More selective approaches are
needed.

Most interesting for the present discussion are findings that
D3 binding in cocaine-dependent participants correlate with the
number of risky choices on the Game of Dice task (a measure of
risky decision making) and with errors on the Continuous Per-
formance Task (a measure of attention and inhibitory control;
Payer et al., 2014). Together, these findings implicate a relationship
between D3 receptor levels and risky decision making, suggesting
perhaps an addictive phenotype in that D3 receptor levels may
be related to impulsivity/risky decision making. This is echoed in
the additional finding that binding in D3-rich areas was correlated
with motivation to use methamphetamine (Boileau et al., 2012),

and, to a lesser extent, amphetamine-induced “rush,” indicating a
functional relevance of up-regulation of D3 receptors.

Indeed, in pathological gamblers, we found that [11C]-(+)-
PHNO binding in the D3-rich substantia nigra was correlated
with self-reported impulsivity and severity of gambling (Boileau
et al., 2013a). It should be noted that, in this study, there were no
overall differences in [11C]-(+)-PHNO binding between patho-
logical gamblers and healthy controls, suggesting a difference
between methamphetamine and cocaine addictions and an addic-
tion to gambling. These differences may reflect pharmacological
factors related to the presence of drug in the body and receptor
regulation in response to this. Further evidence for a difference
between drug abusers and gamblers was found in a recent study.
We demonstrated that in response to an amphetamine challenge,
[11C]-(+)-PHNO binding in the striatum was decreased to a
greater degree in the brains of gamblers compared to healthy con-
trols, presumably due to increased DA levels (Boileau et al., 2013b).
This is opposite to evidence that dopaminergic responses to chal-
lenges are blunted in the brains of drug addicts (Volkow et al.,
2001; Martinez et al., 2005, 2007). As mentioned above, changes
in [11C]-(+)-PHNO binding can reflect either receptor density
or DA levels, as alterations in either will affect [11C]-(+)-PHNO
binding. In these cited studies, since the measurements are in
response to an acute challenge and under this time course it can be
assumed rapid changes in [11C]-(+)-PHNO binding are unlikely
to reflect receptor internalization. Thus these changes can be said
to be due to greater increases in DA levels in pathological gamblers
vs. healthy controls. In sum, gamblers have no differences in D3
receptor number as compared to controls, whereas drug addicts
have upregulated D3 receptors. Further, DA efflux in response to
a drug challenge is blunted in drug addicts, while it is augmented
in gamblers. Nonetheless, the relationship of [11C]-(+)-PHNO to
impulsiveness may be a common factor, suggesting that the cor-
relation of D3 receptor binding to impulsiveness may highlight a
phenotype susceptible to addictions. [11C]-(+)-PHNO has also
been used to demonstrate that smoking elevates DA at the level of
the D3 receptor in the human brain (Le Foll et al., 2014), an effect
that confirms its relevance for nicotine addiction treatment.

CONCLUSION
Since the cloning of the D3 receptor by Sokoloff et al. (1990), much
more information is now available on its role. Pre-clinical stud-
ies have clearly delineated a role for D3 receptors in drug-seeking
behavior and in motivation to take drugs. There is a clear disso-
ciation in the functional role of D2 vs. D3 (Le Foll et al., 2009)
not only for addiction, but also for other important functions
such as cognition and motor control, and these findings have
possible implications for treatment of schizophrenia, dementia,
and Parkinson’s disease. It is therefore of foremost importance
that these pre-clinical findings be translated into clinical studies.
However, one caveat of previous studies has been that putative
D3 ligands were used at doses that did not selectively occupy the
D3 receptor (Graff-Guerrero et al., 2010). Here, we propose that
the use of recently developed methods using [3H]-(+)-PHNO in
both pre-clinical studies and human imaging studies should be
incorporated. This is important in testing of highly selective D3
ligands to ensure appropriate doses are chosen. It is also useful
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for ligands such as buspirone, that have shown to have some D3-
related effects, to determine the contribution between D2 and D3
receptors (Bergman et al., 2013; Le Foll and Boileau, 2013; Leggio
et al., 2014).
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It has long been established in traditional forms of medicine and in anecdotal
knowledge that the health of the body and the mind are inextricably linked. Strong
and continually developing evidence now suggests a link between disorders which
involve Hypothalamic-Pituitary-Adrenal axis (HPA) dysregulation and the risk of developing
psychiatric disease. For instance, adverse or excessive responses to stressful experiences
are built into the diagnostic criteria for several psychiatric disorders, including depression
and anxiety disorders. Interestingly, peripheral disorders such as metabolic disorders and
cardiovascular diseases are also associated with HPA changes. Furthermore, many other
systemic disorders associated with a higher incidence of psychiatric disease involve a
significant inflammatory component. In fact, inflammatory and endocrine pathways seem
to interact in both the periphery and the central nervous system (CNS) to potentiate states
of psychiatric dysfunction. This review synthesizes clinical and animal data looking at
interactions between peripheral and central factors, developing an understanding at the
molecular and cellular level of how processes in the entire body can impact on mental
state and psychiatric health.

Keywords: mind-body interactions, psychiatric diseases, stress response, HPA axis, mood disorders, peripheral

disorders, inflammatory processes

INTRODUCTION
The concept that our mind and our mental processes are influ-
enced by the health of our bodies is intuitively appealing and
central to many approaches to health and wellbeing. However,
there has been a recent explosion of clinical and physiologi-
cal evidence to support this theory, shifting a “commonsense”
approach to health toward a clinically useful and pharmacolog-
ically targetable model. We are now moving toward mechanistic
models for the interactions between peripheral and central fac-
tors, gaining an understanding at the molecular and cellular level
of how processes in the entire body can impact on mental state
and psychiatric health. Although good evidence exists for these
associations in many psychiatric disorders, in this review we will
focus on depression, for which the evidence is perhaps most
compelling.

Some epidemiological associations between corporeal disor-
ders and psychological ill-health are well established. The link
between coronary artery disease and depression, for example, has
been extensively investigated (Nemeroff and Musselman, 2000;
Rugulies, 2002; Barth et al., 2004), and it appears that not only
are the two disorders strongly associated but that depression is
a predictor of poor cardiovascular outcome. Such epidemiologi-
cal evidence reinforces the widely held notion that the sadness of
depression both co-occurs with and potentiates cardiac disease.
However, we are now moving toward an understanding of the
shared molecular processes which may underpin the link between
these disorders.

Although evidence of psychiatric and peripheral comorbidities
abounds in the literature, there is also growing interest in the
more subtle variations in physiological function which may be
antecedents of overt illness but which may be sufficient to modu-
late CNS processes and mental state. In this review we will focus
on several of the major pathways implicated in the aetiology of
depression which may mediate the links between the mind and
body.

SYSTEMIC DISORDERS ASSOCIATED WITH DEPRESSION
Strikingly, a recent study conducted in the United States indicated
that of middle aged or older adults meeting diagnostic criteria
for a major depressive disorder, two thirds reported comorbid
cardiovascular disease (González and Tarraf, 2013). Up to 20%
of patients with coronary heart disease meet diagnostic crite-
ria for major depression, and up to 47% report significant and
long-lasting depressive symptoms (Bush et al., 2005; Carney
and Freedland, 2008). Recent reports have indicated that this
effect is not restricted to individuals with cardiovascular dis-
ease, as patients undergoing rehabilitation for pulmonary disease
were even more likely than cardiac patients to exhibit clini-
cally significant depression and psychological distress (Serber
et al., 2012). Cardiovascular risk factors are pathologically rele-
vant even prior to diagnosis. Studies of patients with long-term
depressive or anxiety disorders revealed elevated incidence of
sub-clinical cardiovascular disease, as measured by a variety of
parameters including plaque deposition and arterial stiffness
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(Seldenrijk et al., 2013), and blood pressure, glucose, body mass
index (BMI), diet, and physical activity (Kronish et al., 2012).
Interestingly, and relevant to sex differences often observed in
the context of anxiety and depressive disorders [for which preva-
lence can be as twice higher in women compared to men, see
Bekker and van Mens-Verhulst (2007); Kimbro et al. (2012)],
significant depressive symptoms are more common in younger
women with peripheral arterial disease than in other gender-age
groups (Smolderen et al., 2010). Also, recent meta-analysis of
cardiovascular risk factors and depression in later life demon-
strated relatively strong associations between depression and dia-
betes, cardiovascular disease and stroke (Valkanova and Ebmeier,
2013).

These findings also highlight the relationship between dia-
betes and psychiatric health. Meta-analytic evidence suggests that
patients with depression have an elevated risk of developing type
two diabetes (Knol et al., 2006; Mommersteeg et al., 2013), and
conversely that patients with diabetes have significantly increased
risk of developing depression (Anderson et al., 2001; Rotella and
Mannucci, 2013). A longitudinal study revealed that the inci-
dence of diabetes was highest in individuals with the greatest
number of depressive symptoms (Carnethon et al., 2003), and
a large community-based study demonstrated that diabetes was
associated with an increased risk of depression (de Jonge et al.,
2006). This bi-directional relationship is suggestive of convergent
pathological processes rather than a simplistic cause and effect
relationship. Interestingly, some clinical studies have hypothe-
sized that the doubled rates of depression in female diabetic
patients could help explain the high prevalence of coronary heart
disease in women with diabetes (Clouse et al., 2003).

Autoimmune disease, for example rheumatoid arthritis, is also
associated with markedly elevated risk of depression (Margaretten
et al., 2011a; Covic et al., 2012). Notably, there appears to be
a strong correlation between the severity of rheumatoid arthri-
tis and the incidence of depression, with a recent meta-analysis
demonstrating that those with the most severe form of arthritic
disease have a six-fold higher incidence of depression relative to
those with the mildest form Godha et al. (2010).

Clearly the impact of declining quality of life associated with
severe systemic disease cannot be overlooked. However, these
findings and the many others describing strong associations with
psychiatric disease and peripheral illness do provoke the question
of whether there are fundamental mechanisms in common. How
does the health of the body affect the health of the mind, and
what are the underlying pathological processes which underpin
this relationship? Although we do not yet have a full under-
standing of the complexities of the bidirectional relationship
between body and brain, convergent evidence suggests that the
endocrine response to stress (via the HPA axis), and immune
dysregulation (via inflammatory pathways), may be playing a
central role.

STRESS RESPONSIVITY AND THE
HYPOTHALAMIC-PITUITARY-ADRENAL AXIS
The most well established example of mind-body interaction is
the link between psychological stress and psychological ill-health.
In fact, adverse or excessive responses to stressful experiences

are built into the diagnostic criteria for several psychiatric dis-
orders, including depression and anxiety disorders. The body’s
response to stress is mediated by the hypothalamic-pituitary-
adrenal (HPA) axis, by which stressful stimuli modulate the
activity of a tightly regulated cycle of circulating hormones. Stress
per se is not necessarily problematic; the body is well equipped to
respond to stressful stimuli and to some extent stress is necessary
for normal function. However, excessive or prolonged stress, or
perturbations in the function or regulation of the HPA axis may
result in abnormal changes in hormones circulating through both
the periphery and the CNS. As previously mentioned, women are
twice as likely as men to suffer from stress-related psychiatric dis-
orders and there is evidence that sex differences in stress responses
could account for this sex bias (Bangasser and Valentino, 2012).

The HPA axis is the primary circuit that mediates the phys-
iological response to stress and regulates the level of circulat-
ing glucocorticoid hormones (e.g., CORT: cortisol in humans,
corticosterone in rodents). Arginine vasopressin (AVP) and
corticotrophin-releasing hormone (CRH, also originally referred
to as CRF for corticotrophin-releasing factor) are synthesised
and released from the paraventricular nucleus (PVN) of the
hypothalamus, and are arguably the highest order regulators of
the HPA axis activity within the central nervous system (CNS).
These neuro-hormones act synergistically to stimulate adreno-
corticotrophin (ACTH) secretion from the anterior pituitary,
culminating in increased levels of circulating CORT. The HPA
axis is modulated by a negative feedback loop encompassing the
hippocampus, hypothalamus and anterior pituitary. Following
CORT secretion into the peripheral blood circulation, CORT
passes through the plasma membrane of cells, particularly in the
pituitary, hypothalamus, and hippocampus where it binds to the
glucocorticoid receptor (GR). Finally, glucocorticoid catabolism
involves 5α-reductase type 1 (predominantly a liver enzyme) and
11β-hydroxysteroid dehydrogenase type 2 (in kidney).

The psychological determinants of an individual’s response
to stress are important predictors of outcome, although this
area is beyond the scope of this review [reviewed comprehen-
sively by Liu and Alloy (2010)]. However, physiological variations
in HPA axis function and related pathways may also modu-
late the response to stress and alter the threshold for psychiatric
disorders. Despite substantial limitations in the objective assess-
ment of stress, multiple studies have documented an association
between stressful life experiences and depression (Kendler and
Gardner, 2010). Interesting examples of HPA axis dysfunction
modulating psychiatric health come from Cushing’s syndrome
and Addison’s disease, states of hyper- and hypo-cortisolemia,
respectively. Cushing’s syndrome is associated with a high preva-
lence of psychopathology, primarily depressive symptoms but
also mania and anxiety (Pereira et al., 2010). Addison’s disease has
been less extensively investigated but appears to be associated with
an increased risk of a variety of psychiatric symptoms, including
depression, delusions, hallucinations, and anxiety (Anglin et al.,
2006). In both disorders it should be borne in mind that adrenal
dysfunction can also lead to electrolyte and metabolic abnormal-
ities which can also contribute to CNS disturbances. Nonetheless,
the fact that treatment of the hyper- or hypo-cortisolaemia
resolves the psychiatric symptoms in most cases strongly suggests
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that changes in adrenal corticosteroids are a primary driving force
for the psychiatric symptoms (even though this is not the sole
determining factor, as half of subjects with Cushing’s do not
develop depressive symptoms). Therapeutic administration of
high doses of corticosteroids has been associated with the devel-
opment of a manic behavioral state (Warrington and Bostwick,
2006; Kenna et al., 2011; Fardet et al., 2012). These observations
also highlight a critical pathway by which HPA axis function may
alter mental state. Corticosteroids are generally prescribed in cases
of uncontrolled inflammatory disease, and act as powerful anti-
inflammatory factors. As we will discuss below, inflammatory
states are strongly linked to perturbations in psychiatric health.
More subtle variations in HPA axis function have been directly
associated with psychiatric disorders, in particular depression. A
recent meta-analysis described the magnitude of the difference
between depressed and non-depressed group in cortisol, ACTH
and CRH levels. Looking at 361 studies, the results show that
overall depression is associated with small-to-moderate elevations
in ACTH and cortisol and a reduction in CRH levels (Stetler and
Miller, 2011). However, in older people, the association between
cortisol and major depression was U-shaped (Bremmer et al.,
2007). Another large cohort study revealed significant associa-
tions between major depressive disorders and specific HPA axis
indicators, such as a higher cortisol awakening response in MDD
patients compared to controls (Vreeburg et al., 2009). Those
modest but significant differences were also observed in patients
with anxiety disorders (Vreeburg et al., 2010).

In line with clinical findings, the circadian pattern of corti-
costerone has been reported to be disrupted in rodent models of
depression (Touma et al., 2009; Bonilla-Jaime et al., 2010). In rats,
chronic stress induces a depressive-like phenotype, associated
with dysregulation of the HPA axis and reductions in dopaminer-
gic and serotonergic transmissions in the PFC (Mizoguchi et al.,
2008). Affective-like behavioral deficits have been reported in
mouse mutants with altered HPA axis function [see Renoir et al.
(2013) for review]. Chronic treatment with corticosterone as well
as isolation rearing increase the depressive-like behavior in GR-
dependent and independent manners (Ago et al., 2008). Chronic
elevation of corticosterone creates a vulnerability to a depression-
like syndrome that is associated with increased expression of
the serotonin synthetic enzyme tryptophan hydroxylase 2 (tph2),
similar to that observed in depressed patients (Donner et al.,
2012). Interestingly, the effects of chronic corticosterone admin-
istration in animal models have also been studied in the context
of affective and systemic disorders. In that regard, chronic cor-
ticosterone in mice was found to induce anxiety/depression-like
behaviors (David et al., 2009) as well as decrease sucrose con-
sumption in a model of anhedonia (Gourley et al., 2008). Chronic
antidepressant treatment reversed those behavioral impairments.
Furthermore, relevant to the relationship between stress and
metabolic syndrome, 4-wk exposure to high doses of corticos-
terone in mice, has been found to increase weight gain and
plasma insulin levels as well as reduce home-cage locomotion
(Karatsoreos et al., 2010).

Using a chronic mild stress (CMS) paradigm, in which
mice were housed individually and alternatively submitted to
unpredictable “mild” stressors (such as periods of continuous

overnight illumination, short periods of food/water deprivation
etc.), Palumbo et al. (2010) found that mice subjected to the CMS
procedure exhibited an increase in serum corticosterone levels
during the first few weeks of exposure. However, these elevated
corticosterone levels returned to baseline levels after 6 weeks of
CMS. Similarly, Adzic et al. (2009) reported reduced CORT lev-
els in chronically isolated rats (for 21 days), whereas CORT was
increased after an acute 30-min immobilization stress. Altered cir-
cadian activity of the HPA axis has also been reported in a CMS
rat model of depression (Christiansen et al., 2012). Interestingly,
this study suggests a recovery of diurnal corticosterone rhythm
after 8 weeks of CMS. Taken together, these observations sug-
gest an adaptive capacity for the HPA axis to cope with prolonged
stress.

The effects of chronic stress on HPA axis function have
been widely studied in both animal models and clinical popu-
lations. Many of those investigations have focused on the neg-
ative feedback part of the HPA axis (mainly mediated by the
GR). Such feedback is efficiently probed by the established com-
bined dexamethasone-suppression/corticotrophin-releasing hor-
mone stimulation (dex/CRH) test (Ising et al., 2007). Altered
dex/CRH test are seen in major depression (Mokhtari et al.,
2013) as well as in chronic stress conditions. For example, over-
commitment in chronically work-stressed teachers was signifi-
cantly associated with blunted response to the dex/CRH challenge
(Wolfram et al., 2013). Further regression analyses showed that
low social support at work and high job strain were associated
with more cortisol suppression after the dexamethasone sup-
pression test (Holleman et al., 2012). In rodents, social isolation
decreased the feedback sensitivity of the HPA axis to dexametha-
sone (Evans et al., 2012). Another animal study reported that
socially deprived mice had increased adrenal weights as well as a
greater increase in corticosterone levels in response to acute stress
(Berry et al., 2012). Interestingly, those chronic stress-induced
HPA axis dysfunctions were associated with depressive/anxiety-
like behavior as well as impaired hippocampal plasticity (i.e.,
altered hippocampal neurogenesis and reduction in BDNF levels)
(Berry et al., 2012; Evans et al., 2012).

Polymorphisms in genes controlling the activity of the HPA
axis are also associated with differential risk of psychiatric disease.
Polymorphisms in the GR gene have been associated with major
depression in multiple cohorts (van West et al., 2005; van Rossum
et al., 2006) [but also see Zou et al. (2010); Zimmermann et al.
(2011)]. Interestingly, some GR polymorphisms are also a predic-
tor of the HPA axis response to psychosocial tests (Kumsta et al.,
2007) and have been found to be associated with the extent of
stress hormone dysregulation in major depression (Menke et al.,
2013). Genotype-phenotype associations have also been identi-
fied in terms of response to antidepressant response (Ellsworth
et al., 2013). Evidence of gene-environment interactions in the
stress response and psychiatric susceptibility comes from a study
of the corticotrophin-releasing factor receptor (CRF-R) (Bradley
et al., 2008). Individuals with a particular CRF-R genotype who
had experienced child abuse had enhanced risk of depression as
adults, an observation repeated in two ethnically different pop-
ulations. Overall, studies suggest that the degree of HPA axis
hyperactivity can vary considerably across psychiatric patient
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groups, likely due to genetic and environmental factors during
early development or adult life. In that regard, two separate
studies reported that polymorphisms of the FKBP5 gene that
potentially modify the sensitivity of the GR are associated with an
increased likelihood of adult depression for individuals exposed
to adverse life events (Zimmermann et al., 2011) and child-
hood physical abuse (Appel et al., 2011). Genes involved in other
pathways may also potentiate an aversive response to stress. A
landmark early study described an association between a variant
in the serotonin transporter gene and the response to stressful
life experiences (Caspi et al., 2003). This functional variant in
a major target of antidepressant therapies is associated with an
elevated response to fearful stimuli, elevated hormonal responses
to stress, and increased risk of depression in response to stress
exposure (Lesch et al., 1996; Hariri et al., 2002; Jabbi et al., 2007).
Variants in multiple genes in the serotonergic pathway have also
been associated with altered behavioral phenotypes in animal
models [reviewed in Holmes (2008)]. Critically, changes in circu-
lating corticosteroids can regulate the activity of the rate-limiting
serotonin synthetic enzyme tryptophan hydroxylase 2 in the brain
(Clark et al., 2005, 2007). In rodent models, acute restraint stress
up-regulates serotonin production in the amygdala (Mo et al.,
2008), whilst chronic administration of ACTH to disrupt HPA
axis function results in an increased level of serotonin in the pre-
frontal cortex in response to acute stress (Walker et al., 2013).
Taken together these findings demonstrate that alterations in HPA
axis function can directly impact on CNS systems known to be
associated with psychiatric disease.

PERIPHERAL DISORDERS ASSOCIATED WITH HPA CHANGES
AND PSYCHIATRIC DISEASE
A wealth of evidence is now emerging to illustrate the link
between stress and risk factors for physiological disorders, in
particular metabolic disorders. Hyperactivity of the HPA axis
and hypercortisolaemia is associated with the metabolic syn-
drome (Anagnostis et al., 2009). Similarly, both chronic stress and
chronic treatment with glucocorticoids are associated with central
adiposity, dyslipidaemia, atrophy of skeletal muscles, insulin resis-
tance, and glucose intolerance: a suite of symptoms remarkably
resemblant of the metabolic syndrome itself (Kyrou and Tsigos,
2009; van Raalte et al., 2009).

Elevations of circulating glucocorticoids have also been linked
with an increased risk of depression in those with metabolic dis-
order (Vogelzangs et al., 2009), and relative insensitivity to the
dexamethasone suppression test has been documented in patients
with this disorder (Kazakou et al., 2012). On the other hand, dis-
turbances in fatty acid metabolism have been observed in cohort
studies of depression (Assies et al., 2010). Fatty acid levels appear
to have a bidirectional relationship with HPA axis activity, with
glucocorticoids modulating fatty acid metabolism (Brenner et al.,
2001; Macfarlane et al., 2008), and supplementation of polyunsat-
urated fatty acids reducing cortisol levels in both healthy subjects
(Delarue et al., 2003) and in those with depression (Jazayeri et al.,
2010; Mocking et al., 2012). A study examining this relationship
in more detail has shown that the circadian changes in cortisol
have a different association with the major fatty acid forms in
major depression patients compared to controls (Mocking et al.,

2013). Other studies have demonstrated both changes in vis-
ceral fat levels and adrenal gland volume in women with major
depressive disorders (Ludescher et al., 2008). Some of these asso-
ciations appear to have developmental antecedents, with exposure
to dietary high fat in the perinatal period being linked with both
altered HPA axis function and mood changes (Sasaki et al., 2013).

If metabolic disorders are considered as a spectrum, then dia-
betes is arguably positioned as the end point of this decline
in function. Chronic stress and sustained dysregulation of cor-
ticosteroid production are strongly associated with the devel-
opment of type 2 diabetes mellitus in both human cohorts
and in animal models (Chan et al., 2003; Rosmond, 2005;
Reagan et al., 2008; Anagnostis et al., 2009; Matthews and
Hanley, 2011). As an example in mice, streptozotocin (STZ)-
induced diabetes resulted in increased depressive-like behav-
ior as well as increased corticosterone levels (Ho et al., 2012).
The convergence of the associations between HPA axis dysfunc-
tion and both diabetes and depression is striking, with com-
pelling evidence for links between the two disorders and this
central underlying risk factor [reviewed in Champaneri et al.
(2010)].

Dysfunction of HPA signaling also appears to interact with
the autonomic nervous system to influence cardiovascular func-
tion. Components of the HPA axis act outside the hypothalamus
to regulate sympathetic outflow, and thus heart rate. Elevated
heart rate has been associated with depression in multiple stud-
ies (Forbes and Chaney, 1980; Carney et al., 1993, 2000; Lechin
et al., 1995), and is a strong predictor of multiple parameters of
cardiovascular disease, including myocardial ischaemia, arrhyth-
mias, hypertension, and cardiac failure (Dyer et al., 1980; Kannel
et al., 1987; Palatini and Julius, 1997). Depression is associated
with an increased risk of mortality in patients with cardiovascu-
lar disease (Mann and Thakore, 1999), and this increased risk is
strongly linked with hypercortisolaemia (Jokinen and Nordstrom,
2009). In healthy subjects, cortisol and ACTH response to the
Dex/CRH test were negatively associated with central adiposity
and blood pressure and positively associated with HDL choles-
terol, strong risk factors for cardiovascular disease (Tyrka et al.,
2012).

Taken together, these studies speak to the accumulating evi-
dence suggesting a link between disorders which involve HPA
dysregulation and the risk of developing psychiatric disease. This
is illustrative of the bidirectional relationship between periph-
eral illness and mental health: HPA axis changes may be either
contributors to or consequences of peripheral disorders but also
have the capacity to modulate brain function and predispose to
psychiatric disease.

PHARMACOLOGICAL TARGETING OF THE HPA AXIS
The GR antagonist mifepristone has been tested as an adjunc-
tive treatment for psychiatric disorders (Schatzberg and Lindley,
2008). Most recently, a randomized controlled trial of adjunc-
tive mifepristone in patients with bipolar disorder demonstrated
alterations in cortisol levels which were correlated with improve-
ments on neuropsychological tests of working memory (Watson
et al., 2012). An earlier, smaller scale trial by the same group
showed improvements in both neurocognitive function and
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depression rating scores (Young et al., 2004). However, a simi-
lar study in schizophrenia showed alterations in plasma cortisol
but no significant change in symptoms (Gallagher et al., 2005).
These mixed findings do highlight the potential utility of thera-
peutics targeting HPA axis function, but also are suggestive of the
heterogeneity in the role of the HPA axis across, and potentially
also within, psychiatric disorder diagnoses. The main challenge
in pharmacological targeting of the HPA axis is that blockage of
all GR-dependent processes could ultimately lead to counteractive
effects such as elevated endogenous corticosterone levels. In that
context, a newly developed high-affinity GR ligand (C108297)
shows promising characteristics in rats (Zalachoras et al., 2013).
Indeed, C108297 displays partial agonistic activity for suppression
of CRH gene expression and potently enhances GR-dependent
memory consolidation. This compound, which does not lead to
disinhibition of the HPA axis, could help in dissecting the molec-
ular signaling pathways underlying stress-related disorders. In
recent years, other therapeutic strategies interacting at different
levels of the HPA axis have been developed. Those include agents
acting on CRH-R1 receptor and adrenal steroidogenesis as well as
modulators of the 11β-hydroxysteroid dehydrogenase type (11β-
HSD1), the enzyme regulating cortisol metabolism (Thomson
and Craighead, 2008; Martocchia et al., 2011).

In patients who were successfully treated with fluoxetine,
the secretion of cortisol decreased (Piwowarska et al., 2012).
Furthermore, recent data suggest that GR levels in lymphocytes
could be used to predict response to antidepressant treatment
in major depressive patients (Rojas et al., 2011). However, it
should be noted that GR levels seemed inconsistent over time in
this study. Also, measuring cortisol levels in depressed patients
before and following treatment with SSRI, Keating et al. (2013)
concluded that that stress physiology was unlikely to be a key
factor in the response to antidepressant treatment. The varia-
tion in findings from these studies may reflect differing modes
of activity of the different antidepressant drug classes, superim-
posed on a heterogeneous patient population. This was illustrated
in a study examining changes in daily cortisol patterns in patients
using SSRIs, tricyclic antidepressants, other therapeutics or no
medications (Manthey et al., 2011). A complex pattern emerged,
with some antidepressants suppressing the morning peak in cor-
tisol, and others altering the response to the dexamethasone
suppression test. However, the challenges inherent to measuring
a circulating factor which is both diurnally regulated and acutely
sensitive to environmental cues should not be underestimated.

IMMUNE DYSREGULATION, INFLAMMATION AND
PSYCHIATRIC HEALTH
There is strong evidence that peripheral growth factors,
pro-inflammatory cytokines, endocrine factors, and metabolic
markers contribute to the pathophysiology of major depressive
disorders and antidepressant response (Schmidt et al., 2011).
Similarly, many of the systemic disorders associated with a higher
incidence of psychiatric disease involve a significant inflamma-
tory component. In fact, as our understanding of the aetiol-
ogy of these disorders deepens, it has become apparent that
there is significant overlap between the factors driving periph-
eral inflammatory disease and psychiatric disorders. Elevations

of pro-inflammatory cytokines have been observed in both clini-
cal populations and animal models of heart failure (Levine et al.,
1990; Francis et al., 2003), after coronary surgery (Hennein et al.,
1994), and following heart transplants (Azzawi and Hasleton,
1999). Importantly, the pathogenesis of atherosclerosis is intrin-
sically inflammatory (Koenig, 2001), with elevated local and
circulating pro-inflammatory cytokines. In addition, the acute-
phase marker C-reactive protein (CRP) is strongly associated with
cardiovascular disease (van Holten et al., 2013), and can be used
as a diagnostic or prognostic factor. As discussed above, cardio-
vascular disease is strongly associated with changes in psychiatric
health, in particular depression.

Cardiovascular disease is in turn closely linked with obe-
sity, dyslipidemia, diabetes and metabolic disease. The elevated
frequency of anxiety and depression in these disorders may in
part underlie the association between cardiovascular and psy-
chiatric risk factors. In studies of diabetic patient cohorts, the
inflammatory marker CRP was consistently predictive of direct
associations between depression severity, lipid profiles and obe-
sity levels (van Reedt Dortland et al., 2013). Similarly, increased
risk of depression in a cohort of patients with diabetes was asso-
ciated with a higher BMI, illustrating the link between depression
and poor control of cardiovascular risk factors (Kimbro et al.,
2012). Obesity itself is considered to be a state of low-grade
inflammation, and is linked with elevated depressive symptoms.
In addition, in a longitudinal study CRP levels at baseline were
statistically associated with depression scores (Daly, 2013).

Other disease states involving inflammatory processes are
associated with elevated risk of depression. Major depression is
the most common psychiatric manifestation of multiple sclero-
sis, with an incidence approaching 50% (Lo Fermo et al., 2010).
Likewise, although the incidence rate varies significantly between
studies, an elevated incidence of depression has been docu-
mented in systemic lupus erythematosus (Palagini et al., 2013)
and rheumatoid arthritis (Dickens et al., 2002). Common to all of
these disorders is an autoimmune-mediated elevation of inflam-
matory signaling, with increased circulating pro-inflammatory
cytokines observed in the periphery and in the CNS. Large case-
control studies have described increased rates of anxiety and
depression in patients with inflammatory bowel disease (Kurina
et al., 2001; Ananthakrishnan et al., 2013a,b). Altered gut perme-
ability to enteric bacteria has also been associated with depression.
Translocation of bacterial allergens [in particular lipopolysac-
charide (LPS)], stimulates a systemic immune response char-
acterized by elevated IgM and IgA antibodies reactive to the
bacteria. Individuals with chronic depression are more likely to
display increased LPS-reactive IgM and IgA than control subjects,
indicating that elevated gut permeability may be potentiating a
systemic inflammatory state (Maes et al., 2008, 2012a).

The case for altered peripheral inflammation in psychi-
atric disease is strong, perhaps most so for major depression.
Individuals with clinically classifiable major depression exhibit a
wide range of changes in inflammatory markers, including ele-
vated cytokines, chemokines, and acute phase proteins, findings
which have been replicated in several meta-analyses and which
in some studies appear to be correlated with specific depressive
symptoms (Miller et al., 2009). There appears to be a shift in the

www.frontiersin.org December 2013 | Volume 4 | Article 158 | 243

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

function of the immune system in depression, with an increase
in pro-inflammatory cytokines accompanied by a decrease in
cellular immunity (Zorrilla et al., 2001; Dowlati et al., 2010).
The strength of these findings is heightened by a positive corre-
lation between the elevations in pro-inflammatory cytokines and
the severity of depression rating scores (Howren et al., 2009). A
recent longitudinal population-based study demonstrated strong
associations between depressive symptoms and elevated levels of
the pro-inflammatory cytokine IL-6 and CRP (Lu et al., 2013).
Notably, heightened IL-6, CRP and depressive symptoms were
all predictive of reduced pulmonary function, in a cohort with
no known history of obstructive pulmonary disease. This large
study highlights the substantial cross-over between inflammatory
disease and depressive symptomatology. However, there may be
differences between sub-populations in depression, with some
individuals more likely to display an inflammatory pathophys-
iology. Although the number of patients classified as suffering
atypical depression is relatively low, these patients may be more
likely to show high levels of inflammatory markers such as CRP
(Hickman et al., 2013). Part of the population variance may
result from polymorphisms in the CRP gene. The association
between CRP levels and depressive symptoms may be moderated
by CRP gene haplotype, in a complex manner which may under-
pin some of the variations in other association studies (Halder
et al., 2010). Patients receiving therapeutic administration of
cytokines for cancer or chronic viral infections, [in particular
interferon (IFN)-alpha and interleukin-2] frequently experience
psychiatric symptoms, including the development of frank major
depression in a significant proportion of patients (Capuron et al.,
2004; Raison et al., 2005). IFN-alpha stimulates both peripheral
and central release of pro-inflammatory cytokines, a fact which
underpins the behavioral effects of this cytokine and highlights
the capacity for systemic immune signals to regulate CNS pro-
cesses (Capuron et al., 2000, 2001, 2002, 2003, 2004; Raison et al.,
2005; Eller et al., 2009; Alavi et al., 2012; Birerdinc et al., 2012;
Udina et al., 2012).

Of particular relevance to the treatment of depressive disorders
is the emerging evidence that at least part of the therapeutic effi-
cacy of currently available antidepressants may result from their
concomitant anti-inflammatory effects. Although the response
rate and efficacy of current antidepressants is far from universal,
at least some patient populations derive significant benefit from
these medications. However, the previously accepted notion that
modulation of synaptic monoamines represents the sum total of
the therapeutic effects of these drugs has now come into ques-
tion. Recent studies have shown that selective-serotonin-reuptake
inhibitor medications can suppress immune cell activation and
release of inflammatory cytokines in the periphery and ex-vivo
(Diamond et al., 2006; Taler et al., 2007; Branco-de-Almeida et al.,
2011). Notably, this immune-regulatory effect is not restricted
only to the periphery, but can also affect microglia, the immune
cells of the CNS (Hashioka et al., 2007; Horikawa et al., 2010).
A recent meta-analysis of human depression studies showed that
antidepressant treatment at least partially ameliorates the eleva-
tions of pro-inflammatory cytokines associated with the disorder
(Hannestad et al., 2011). Although it is clear that drug discov-
ery in psychiatric disease needs to look beyond established drug

classes, these findings emphasize the potential clinical utility of
targeting inflammatory function in depression. Finally, potential
sex-differences have been suggested when assessing the effects of
LPS on cytokine gene expression. Indeed, females had increased
hippocampal levels of IL-6 of TNF-α with respect to males after
repeated administration of LPS (Tonelli et al., 2008).

MECHANISMS OF IMMUNE MODULATION OF PSYCHIATRIC
FUNCTION
Historically the CNS was regarded as a “privileged” site with
regards to the immune system, with little immune communi-
cation across the blood-brain barrier except in cases of frank
CNS infection. However, it is now clear that the brain is sensitive
to peripheral immune stimuli and can respond with activation
of central immune cells and local production of inflammatory
cytokines. Microglia are the CNS equivalent of macrophages,
releasing cytokines upon activation and facilitating a central
immune response, even in the absence of peripheral immune
cell migration into the CNS. The brain’s response to peripheral
inflammatory stimuli can be seen most clearly in the pattern of
behavioral changes which reliably results from systemic infec-
tion, administration of synthetic bacterial wall components or
administration of cytokines (Dantzer, 2004; Pucak and Kaplin,
2005). Termed “sickness behavior,” this encompasses changes in
motor activity, consummatory behavior, social interaction, circa-
dian rhythms, and responsivity to hedonic and aversive stimuli.
The parallels between these behavioral changes and aspects of
depression have been well noted and have been a prompt for
extensive research.

Systemic administration of synthetic bacterial endotoxin, or
LPS, induces a well-established pattern of peripheral inflam-
mation. However, multiple studies have now also demonstrated
that systemic inflammation activates CNS microglia, including in
non-human primates (Henry et al., 2008; Hannestad et al., 2012).
In mice, systemic LPS causes microglial activation and synthesis
of cytokines (Puntener et al., 2012). Microglia form close contacts
with synaptic structures and appear to regulate synaptic strength
(Wake et al., 2009). These cells also express multiple neurotrans-
mitter receptors and are therefore acutely responsive to neuronal
signaling (Kettenmann et al., 2011). Activated microglia are also
a key source of reactive oxygen species, contributing to a status
of inflammation-induced oxidative stress in the CNS (Dringen,
2005). Oxidative stress, driven both peripherally and centrally, is
strongly associated with psychiatric aetiology.

Reduced plasma L-tryptophan, the precursor for serotonin, is
a potential biomarker of “vulnerability to depression” (Maes et al.,
1993). Indeed, tryptophan depletion is widely used to study the
contribution of reduced serotonin transmission to the pathogen-
esis of major depressive disorder (Van der Does, 2001) and also
relevant in the context of immune activation (Kurz et al., 2011).
The depressive symptomatology associated with immunomodu-
latory therapy may be mediated in part by changes in tryptophan
metabolism. Pro-inflammatory cytokines such as IFN-γ, IFN-α,
and TNF-α, and reactive oxygen species, induce activation of the
enzyme, indolamine 2, 3 dioxygenase (IDO) in microglia, which
metabolizes tryptophan via the kyneurenine pathway (Maes,
1999; Wichers et al., 2005; Dantzer et al., 2008; Maes et al.,

Frontiers in Pharmacology | Neuropharmacology December 2013 | Volume 4 | Article 158 | 244

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

2012b). This shifts the balance of tryptophan toward kynure-
nine and away from serotonin, reducing serotonin bioavailability
(Capuron et al., 2002, 2003; Vignau et al., 2009). Notably, in
the CNS only microglia further metabolize kynurenine to quino-
linic acid, which exerts neurotoxic effects (Guillemin et al., 2005;
Soczynska et al., 2012). Patients treated with IFN-α for hepati-
tis C infection developed depressive symptoms including negative
moods that were correlated with increased levels of kynurenine
(Wichers et al., 2005). In addition, analysis of plasma tryp-
tophan and kynurenine pathway metabolites in patients with
major depression showed increased rates of tryptophan degrada-
tion compared to normal control subjects (Myint et al., 2007).
Taken together, these findings indicate that cytokine-induced
microglial activation can mediate changes in neurotransmitters
and other bioactive metabolites which may underpin mood dis-
orders. Also, recent data indicate that cognitive impairments (as
well as the decline in neurogenesis observed during ageing) can
be in part attributed to dysregulation in blood-borne factors such
as changes in peripheral CCL11 chemokine levels (Villeda et al.,
2011). These findings support the crosstalk between peripheral
molecular processes to central effects related to cognitive and
emotional function.

PHARMACOLOGICAL TARGETING OF INFLAMMATORY
PATHWAYS
Several of the therapies for the inflammatory disorder rheuma-
toid arthritis potentiate the effects of antidepressant therapies
(Margaretten et al., 2011b). Such drugs target pro-inflammatory
cytokine pathways, for example TNF-α antagonists such as etan-
ercept. This particular drug is also commonly used in the
treatment of the inflammatory skin condition psoriasis, and
large-scale studies of this drug have indicated that patients with
psoriasis receiving this drug show reduced depression scores rel-
ative to placebo (although the level of depressive symptoms in
these patients was relatively low overall, and would not con-
stitute a diagnosis of major depression) (Tyring et al., 2006).
Interestingly, follow-up studies indicated that the change in
depression score was independent of disease state (Krishnan
et al., 2007). Drugs with a similar TNF-α antagonist activity
have also shown antidepressant activity in trials in patients with
other inflammatory conditions, including Crohn’s disease and
ankylosing spondylitis (Persoons et al., 2005; Ertenli et al., 2012).

Critically, a recent study of the TNF-α antagonist infliximab in
otherwise healthy patients with major depression demonstrated
that the antidepressant activity of this drug was dependent on the
level of inflammatory markers at baseline (Raison et al., 2013).
This study demonstrated that depressed patients with higher
levels of the inflammatory markers TNF-α and CRP showed
a decrease in depression rating scores over the course of the
study. It is also worth noting that the patients in this study were
poorly responsive to classical antidepressant therapy, which may
indicate that a sub-population exists in whom inflammation is
correlated with both poor antidepressant response and efficacy
of anti-inflammatory medication. A second recent study also
demonstrated that patients with depression who experienced a
decline in symptoms with infliximab treatment also showed ele-
vated inflammatory gene expression in peripheral immune cells

(Mehta et al., 2013). Response to infliximab was also associated
with reductions in the expression of other genes involved with
innate immune activation. Agents such as infliximab are too large
to cross the blood-brain barrier, and therefore the amelioration
of depressive symptoms is more likely associated with resolution
of peripheral inflammation than direct effects of the drug in the
brain. However, as we have discussed above, CNS microglia are
acutely sensitive to circulating cytokine levels and so their level of
activity may well be modulated by anti-inflammatory treatment.

The developing focus on inflammatory function in depression
has spurred trials of other anti-inflammatory drugs as adjuncts to
antidepressant treatment. A large-scale longitudinal population
study revealed that statin users were less likely than non-users
to have depression at baseline (Otte et al., 2012). Statin users
who did not have depressive symptoms at baseline were also
less likely to develop depression during the follow-up period.
Statins are commonly prescribed to individuals who have had a
cardiac event or intervention. A prospective study in this popula-
tion showed that prescription of statins reduced the likelihood of
developing depression by up to 79% (Stafford and Berk, 2011).
A large community study also documented reduced exposure
to statins and aspirin (another non-steroidal anti-inflammatory
agent) in women with major depressive disorder (Pasco et al.,
2010). Likewise, women who were exposed to these agents were
also less likely to develop depression over the course of the study.
Similar results were also observed in a large population-based
cohort of elderly patients, with statins exerting a protective effect
against the development of depressive symptoms (Feng et al.,
2008). Notably, this study also documented a positive correlation
between the use of systemic corticosteroids and depression.

The cyclooxygenase-2 (COX-2) inhibitor celecoxib is a non-
steroidal anti-inflammatory drug used widely in the treatment
of pain, particularly related to arthritic conditions. This drug
has been found to improve depressive symptoms when adminis-
tered in conjunction with the antidepressants sertraline (Abbasi
et al., 2012), reboxetine (Muller et al., 2006), and fluoxetine
(Akhondzadeh et al., 2009). However, it should be noted that
other trials have resulted in conflicting findings, with several
showing no beneficial effect of celecoxib in depression (Musil
et al., 2011; Fields et al., 2012). The discrepancies in these
study results are potentially reflective of the complexity of the
inflammatory pathways, in which COX-2 and many other key
molecules may play multiple roles. In the brain, COX-2 has
anti-inflammatory and neuroprotective effects (Minghetti, 2004),
and COX-2 deficient mice show increased neuronal damage,
microglial reactivity and oxidative stress markers (Aid et al.,
2008). Hence targeting of inflammatory pathways in depres-
sion requires careful investigation of both peripheral and cen-
tral responsivity. COX-2, in particular, may not be the most
appropriate target for adjunct therapies in depression [reviewed
in Maes (2012)]. In addition, modulation of immune and
inflammatory signaling necessitates caution with regard to the
potential of lowering defenses to opportunistic infection and
malignancy. Long term use of immune-modifying drugs has
been associated with increased incidence of serious infections
and cancer (Bongartz et al., 2006; Atzeni et al., 2012; van
Dartel et al., 2013). This raises the possibility that agents which
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directly regulate the CNS rather than peripheral inflamma-
tory response, or have more mild anti-inflammatory effects,
may be more appropriate targets for the pharmacotherapy of
depression.

Still peripherally-active, but arguably milder in effect, are the
non-steroidal anti inflammatory medications, including aspirin.
Animal studies using aspirin have shown moderate but dis-
cernible effects on depressive behavior (Brunello et al., 2006;
Wang et al., 2011). Preliminary clinical trials have correlated this,
showing a synergistic effect of co-therapy with antidepressants
and aspirin (Mendlewicz et al., 2006). However, perhaps more
compelling is the result from a large-scale longitudinal cohort
study, which documented an association between aspirin use and
lowered risk of depression (Pasco et al., 2010). Echoing this is
a cross-sectional study which demonstrated that men with ele-
vated plasma homocysteine, a marker of cardiovascular risk, had
a reduced risk of depression if they had been taking aspirin
(Almeida et al., 2012).

Minocycline, a second-generation tetracycline derivative, has
recently attracted significant attention for its potential efficacy as
an antidepressant. This well characterized drug has potent anti-
inflammatory and neuroprotective effects which are independent
of its antibiotic efficacy (Pae et al., 2008; Dean et al., 2012).
Most importantly, minocycline readily crosses the blood brain
barrier and is known to inhibit microglial activation (Pae et al.,
2008; Dean et al., 2012). Studies in mice have demonstrated that
minocycline attenuated the elevations in CNS IL-1β, IL-6, and
IDO induced by bacterial endotoxins (Henry et al., 2008). This
study also showed that pre-treatment with minocycline prevented
the development of depressive-like behavioral endophenotypes,
and normalized the kynurenine/tryptophan ratio in the plasma
and brain (Henry et al., 2008). These findings clearly indicate
that minocycline has effects on microglia through inhibition
of the synthesis of pro-inflammatory cytokines and IDO up-
regulation, and that these may flow through to ameliorate mood
states. Echoing this, a small open-label study reported minocy-
cline (150 mg/kg/day) in combination with serotonin reuptake
inhibitor contributed to ameliorate depressive mood and psy-
chotic symptoms in patients with psychotic unipolar depression
(Miyaoka et al., 2012).

The developing appreciation of the role of inflammatory func-
tion in depression has highlighted the potential role of dietary
sources of anti-inflammatory species. Deficiencies of the anti-
oxidant and anti-inflammatory Coenzyme Q10 (CoQ10) have
been associated with depressed mood (Maes et al., 2009), and
a preliminary study of supplementation with CoQ10 showed an
amelioration of depression scores in a cohort with bipolar disor-
der (Forester et al., 2012). Several studies in pre-clinical models
have shown potential antidepressant effects of omega 3 fatty acids
(Watanabe et al., 2004), and conversely, deficient diets during pre-
natal development have been associated with persistent changes
in mood state (Chen and Su, 2013). Compounding this, altered
lipid profiles have been described in the cortex of patients with
mood disorders (Tatebayashi et al., 2012). Large-scale popula-
tion assays have shown associations between dietary lipid profiles
and the risk of depression (Hoffmire et al., 2012). Although the
outcomes of clinical trials using omega 3 supplementation are

still under some debate, recent meta-analyses have pointed to
some degree of improved outcome in depressed patients (Lin
and Su, 2007; Bloch and Hannestad, 2012; Martins et al., 2012).
Intriguingly, omega 3 fatty acids have received particular atten-
tion for the treatment of depressive symptoms post-myocardial
infarction (Gilbert et al., 2013; Siddiqui and Harvey, 2013). In
such cases, the anti-inflammatory effects of this lipid may be
ameliorating both the peripheral inflammatory state and the
secondary central inflammation.

INTERFACES BETWEEN HPA AXIS AND IMMUNE
DYSFUNCTION
Whilst it is clear that both inflammation and HPA dysfunc-
tion are associated with psychiatric pathology, these two systems
interact at multiple levels and may together constitute a syn-
ergistic effect on neuronal function. Across the spectrum of
systemic disorders associated with peripheral inflammation and
an increased risk of depression, many are also associated with
elevated susceptibility to, or worsening symptoms in response
to stress. A large scale longitudinal study showed an associa-
tion between inflammatory bowel disease (Crohn’s disease and
ulcerative colitis) and depressive symptoms (Ananthakrishnan
et al., 2013b). These disorders are strongly associated with per-
ceived life stress, with time to relapse predicted by stress levels
(Triantafillidis et al., 2013). Studies of metabolic syndrome, dia-
betes and associated cardiovascular diseases have shown that not
only is this suite of disorders associated with increased risk of
depression and a low-grade inflammatory state, but that chronic
stress is a strong promoting factor [reviewed in Kyrou and Tsigos
(2009)]. These interactions may have developmental antecedents,
with exposure to a high fat diet in early life being associated
with both altered HPA axis function, inflammatory regulation
and disordered behavioral profiles in later life (Sasaki et al.,
2013). Nonetheless, the question remains as to how these com-
plex systems interact in both the periphery and CNS, and by
what mechanisms these systems modulate neuronal function and
mood.

Synthetic glucocorticoids are used therapeutically at supra-
physiological levels for their anti-inflammatory effects. However,
when examining the relationship between the HPA axis and
the immune system in physiological or pathophysiological
states, the situation appears more complex. Glucocorticoids
modulate the immune system through binding to receptors
expressed by immune cells, which down-regulates transcrip-
tion of pro-inflammatory genes and up-regulates production
of anti-inflammatory cytokines (Barnes, 2006; Leonard, 2006).
Glucocorticoids also regulate the circulating numbers, tissue
distribution and activity profile of lymphocytes in a time-
dependent manner [comprehensively reviewed in Dhabhar
(2009)]. Compared to acute stress, chronic stress appears to sup-
press some of the protective aspects of immune regulation, whilst
enhancing the drive to a pro-inflammatory state. The complex-
ity of these interactions is reflective of the fact that chronic
stimulation of the HPA axis may not in fact result in a hyper-
cortisolaemic state; given the capacity of the HPA axis for neg-
ative feedback regulation, the baseline cortisol levels in chronic
stress may actually be lower than normal. Glucocorticoids can
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be used therapeutically as immuno-suppressants but in some
experimental models appear to have pro-inflammatory effects.
Part of this discrepancy may come from differences between
in vivo and in vitro models, however in addition the com-
plexities of chronic stress in an animal model should not be
overlooked. Chronic stress may appear to increase or decrease
circulating glucocorticoids depending on the method of stress
and the method of glucocorticoid measurement employed. An
animal with chronic down-regulation of HPA axis responsiv-
ity, for example, may respond to the acute stress of blood
collection or some forms of euthanasia with an overshoot of
normal glucocorticoid response, giving the impression of ele-
vated circulating hormone levels in response to the chronic
stress.

Immune activation may also feed back to modulate gluco-
corticoid sensitivity. Production of cytokines also up-regulates
expression of the GR and modulates the sensitivity of the
HPA axis to negative feedback (Arzt et al., 2000). Elevation of
pro-inflammatory cytokines, including IL-2, appears to inhibit
nuclear translocation of the GR and suppress glucocorticoid sig-
naling (Goleva et al., 2009; Schewitz et al., 2009). Likewise,
administration of IL-1 up-regulates HPA axis activity (Dunn,
2000). Systemic exposure to pro-inflammatory stimuli such as
bacterial LPS induces secretion of CRH, therefore activating the
HPA axis (Sternberg, 2006). These studies illustrate the com-
plex bidirectional interactions between HPA axis function and
regulation of inflammation. Potential sex-differences have been
suggested when assessing the effects of LPS on stress response.
Indeed, female rats showed a higher LPS-induced corticosterone
release compared to male animals (Tonelli et al., 2008). The rela-
tionship between HPA axis activity and inflammation may also
be regionally specific. The peripheral response to stress and HPA
activation is likely to be qualitatively, quantitatively and tempo-
rally distinct from that observed in the CNS. In a mouse model
of chronic stress, increases in basal inflammatory markers were
observed in multiple brain regions (Barnum et al., 2012). Chronic
unpredictable stress can also up-regulate the response to periph-
eral inflammatory stimuli, mediated by glucocorticoid signaling
(Munhoz et al., 2006). This differs somewhat to the concept of
glucocorticoid signaling as immunosuppressive, and highlights
the need for further investigation of the nexus between HPA and
immune function in the brain. Microglia represents the critical
interface point between the activity of the HPA axis, circulat-
ing inflammatory signals and the brain’s inflammatory response.
Microglial number and morphological changes associated with
activation can be increased by chronic stress in animal mod-
els (Nair and Bonneau, 2006; Tynan et al., 2010). Blockade of
glucocorticoid signaling can block stress-induced sensitization
of microglial inflammatory responses (Frank et al., 2011), and
microglial activation can be primed by in vivo exposure to glu-
cocorticoids (Nair and Bonneau, 2006) or chronic stress (Farooq
et al., 2012). Within the CNS, the balance between pro- and
anti-inflammatory responses to peripheral immune stimuli is
modulated by the density of microglial cells (Pintado et al., 2011).

The relationship between microglial activation and the stress
response has been most comprehensively investigated in animal
models. Repeated exposure to restraint stress induced microglial

activation in male C57BL/6 mice, as measured by the degree
of proliferation of microglia (Nair and Bonneau, 2006). The
increase in microglial number was positively correlated with ele-
vation of serum corticosterone levels induced by stress exposure.
Similarly, chronic restraint stress caused a significant increase
in activated microglia and number of microglia in multiple
brain regions (Tynan et al., 2010; Hinwood et al., 2012), and
inescapable stress potentiates the microglial response to immune
stimuli (Frank et al., 2012). However, high doses of glucocorti-
coid agonists suppress the microglial production of inflammatory
cytokines (Chantong et al., 2012). These differential responses
may be reflective of central vs. peripheral differences, in addi-
tion to switching from a pro- to anti-inflammatory response
to physiological vs. pharmacological levels of glucocorticoids.
Nonetheless, the consensus from these studies is that microglia
are acutely sensitive to both HPA axis function and inflamma-
tory signals, and act as an inflection point between peripheral
and central responses to these stimuli. As discussed above, the
activation state of the microglial population has direct effects on
neuronal function, via secondary cytokine production, reactive
oxygen species production, neurotoxic effects and modulation of
neurotransmitter production.

CONCLUSIONS
It has long been established in traditional forms of medicine
and in anecdotal knowledge that the health of the body and
the mind are inextricably linked. Although strong associations
between somatic illnesses and psychiatric disturbances have rou-
tinely been described in the literature, it is only recently that
western medicine has sought to, or indeed had the means to,
investigate the mechanisms underlying these associations. Strong
and continually developing evidence now suggests that converg-
ing disruptions to inflammatory and endocrine pathways may
interact in both the periphery and the CNS to potentiate states
of psychiatric dysfunction, in particular depressed mood. Further
evidence highlights the potential role of the CNS inflammatory

FIGURE 1 | Biological mechanisms by which peripheral dysfunction

may impact on neuronal function and therefore psychiatric state.

Schematic illustration of the potential role of the CNS inflammatory cells,
microglia, as a critical nexus between HPA axis activity, inflammation, and
neuronal dysfunction.

www.frontiersin.org December 2013 | Volume 4 | Article 158 | 247

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

cells, microglia, as a critical nexus between HPA axis activity,
inflammation and neuronal dysfunction (Figure 1). Aspects of
these pathways may therefore present as possible targets for thera-
peutic interventions for psychiatric disease or psychiatric compli-
cations of somatic disease. Even more efficacious may be targeting
multiple aspects of these pathways or convergence points such as
central microglial cells.

In this review we have focused on the biological mechanisms
by which peripheral dysfunction may impact on neuronal func-
tion and therefore psychiatric state. However, we do not wish
to discount the psychological influence of ill health on men-
tal function. Clearly the psychological stresses associated with
chronic illness or suboptimal health may themselves potentiate,
perpetuate and exacerbate psychiatric disease. An effective clin-
ical approach to integrated patient management therefore may
need to target the HPA axis dysfunction, inflammatory changes or
other pathological processes associated with peripheral disorders,
but also approach the psychological health of the patient.

REFERENCES
Abbasi, S. H., Hosseini, F., Modabbernia, A., Ashrafi, M., and Akhondzadeh,

S. (2012). Effect of celecoxib add-on treatment on symptoms and serum
IL-6 concentrations in patients with major depressive disorder: randomized
double-blind placebo-controlled study. J. Affect. Disord. 141, 308–314. doi:
10.1016/j.jad.2012.03.033

Adzic, M., Djordjevic, J., Djordjevic, A., Niciforovic, A., Demonacos, C., Radojcic,
M., et al. (2009). Acute or chronic stress induce cell compartment-specific phos-
phorylation of glucocorticoid receptor and alter its transcriptional activity in
Wistar rat brain. J. Endocrinol. 202, 87–97. doi: 10.1677/joe-08-0509

Ago, Y., Arikawa, S., Yata, M., Yano, K., Abe, M., Takuma, K., et al.
(2008). Antidepressant-like effects of the glucocorticoid receptor antag-
onist RU-43044 are associated with changes in prefrontal dopamine in
mouse models of depression. Neuropharmacology 55, 1355–1363. doi:
10.1016/j.neuropharm.2008.08.026

Aid, S., Langenbach, R., and Bosetti, F. (2008). Neuroinflammatory response
to lipopolysaccharide is exacerbated in mice genetically deficient in
cyclooxygenase-2. J. Neuroinflammation 5, 17. doi: 10.1186/1742-2094-5-17

Akhondzadeh, S., Jafari, S., Raisi, F., Nasehi, A. A., Ghoreishi, A., Salehi, B., et al.
(2009). Clinical trial of adjunctive celecoxib treatment in patients with major
depression: a double blind and placebo controlled trial. Depress. Anxiety 26,
607–611. doi: 10.1002/da.20589

Alavi, M., Grebely, J., Matthews, G. V., Petoumenos, K., Yeung, B., Day, C., et al.
(2012). Effect of pegylated interferon-alpha-2a treatment on mental health dur-
ing recent hepatitis C virus infection. J. Gastroenterol. Hepatol. 27, 957–965. doi:
10.1111/j.1440-1746.2011.07035.x

Almeida, O. P., Flicker, L., Yeap, B. B., Alfonso, H., McCaul, K., and Hankey, G. J.
(2012). Aspirin decreases the risk of depression in older men with high plasma
homocysteine. Transl. Psychiatry 2:e151. doi: 10.1038/tp.2012.79

Anagnostis, P., Athyros, V. G., Tziomalos, K., Karagiannis, A., and Mikhailidis,
D. P. (2009). The pathogenetic role of cortisol in the metabolic syndrome: a
hypothesis. J. Clin. Endocrinol. Metab. 94, 2692–2701. doi: 10.1210/jc.2009-0370

Ananthakrishnan, A. N., Gainer, V. S., Cai, T., Perez, R. G., Cheng, S. C., Savova,
G., et al. (2013a). Similar risk of depression and anxiety following surgery or
hospitalization for Crohn’s disease and ulcerative colitis. Am. J. Gastroenterol.
108, 594–601. doi: 10.1038/ajg.2012.471

Ananthakrishnan, A. N., Khalili, H., Pan, A., Higuchi, L. M., de Silva, P., Richter,
J. M., et al. (2013b). Association between depressive symptoms and incidence
of Crohn’s disease and ulcerative colitis: results from the Nurses’ Health Study.
Clin. Gastroenterol. Hepatol. 11, 57–62. doi: 10.1016/j.cgh.2012.08.032

Anderson, R. J., Freedland, K. E., Clouse, R. E., and Lustman, P. J. (2001). The
prevalence of comorbid depression in adults with diabetes: a meta-analysis.
Diabetes Care 24, 1069–1078. doi: 10.2337/diacare.24.6.1069

Anglin, R. E., Rosebush, P. I., and Mazurek, M. F. (2006). The neuropsychiatric pro-
file of Addison’s disease: revisiting a forgotten phenomenon. J. Neuropsychiatry
Clin. Neurosci. 18, 450–459. doi: 10.1176/appi.neuropsych.18.4.450

Appel, K., Schwahn, C., Mahler, J., Schulz, A., Spitzer, C., Fenske, K., et al. (2011).
Moderation of adult depression by a polymorphism in the FKBP5 gene and
childhood physical abuse in the general population. Neuropsychopharmacology
36, 1982–1991. doi: 10.1038/npp.2011.81

Arzt, E., Kovalovsky, D., Igaz, L. M., Costas, M., Plazas, P., Refojo, D., et al.
(2000). Functional cross-talk among cytokines, T-cell receptor, and glucocor-
ticoid receptor transcriptional activity and action. Ann. N.Y. Acad. Sci. 917,
672–677. doi: 10.1111/j.1749-6632.2000.tb05433.x

Assies, J., Pouwer, F., Lok, A., Mocking, R. J., Bockting, C. L., Visser, I., et al.
(2010). Plasma and erythrocyte fatty acid patterns in patients with recur-
rent depression: a matched case-control study. PLoS ONE 5:e10635. doi:
10.1371/journal.pone.0010635

Atzeni, F., Sarzi-Puttini, P., Botsios, C., Carletto, A., Cipriani, P., Favalli, E. G.,
et al. (2012). Long-term anti-TNF therapy and the risk of serious infections
in a cohort of patients with rheumatoid arthritis: comparison of adalimumab,
etanercept and infliximab in the GISEA registry. Autoimmun. Rev. 12, 225–229.
doi: 10.1016/j.autrev.2012.06.008

Azzawi, M., and Hasleton, P. (1999). Tumour necrosis factor alpha and
the cardiovascular system: its role in cardiac allograft rejection and
heart disease. Cardiovasc. Res. 43, 850–859. doi: 10.1016/S0008-6363(99)
00138-8

Bangasser, D. A., and Valentino, R. J. (2012). Sex differences in molecular and cel-
lular substrates of stress. Cell. Mol. Neurobiol. 32, 709–723. doi: 10.1007/s10571-
012-9824-4

Barnes, P. J. (2006). How corticosteroids control inflammation: Quintiles Prize
Lecture 2005. Br. J. Pharmacol. 148, 245–254. doi: 10.1038/sj.bjp.0706736

Barnum, C. J., Pace, T. W., Hu, F., Neigh, G. N., and Tansey, M. G. (2012).
Psychological stress in adolescent and adult mice increases neuroinflammation
and attenuates the response to LPS challenge. J. Neuroinflammation 9, 9. doi:
10.1186/1742-2094-9-9

Barth, J., Schumacher, M., and Herrmann-Lingen, C. (2004). Depression as a risk
factor for mortality in patients with coronary heart disease: a meta-analysis.
Psychosom. Med. 66, 802–813. doi: 10.1097/01.psy.0000146332.53619.b2

Bekker, M. H., and van Mens-Verhulst, J. (2007). Anxiety disorders: sex differences
in prevalence, degree, and background, but gender-neutral treatment. Gend.
Med. 4(Suppl. B), S178–S193. doi: 10.1016/S1550-8579(07)80057-X

Berry, A., Bellisario, V., Capoccia, S., Tirassa, P., Calza, A., Alleva, E., et al.
(2012). Social deprivation stress is a triggering factor for the emergence
of anxiety- and depression-like behaviours and leads to reduced brain
BDNF levels in C57BL/6J mice. Psychoneuroendocrinology 37, 762–772. doi:
10.1016/j.psyneuen.2011.09.007

Birerdinc, A., Afendy, A., Stepanova, M., Younossi, I., Baranova, A., and Younossi,
Z. M. (2012). Gene expression profiles associated with depression in patients
with chronic hepatitis C (CH-C). Brain Behav. 2, 525–531. doi: 10.1002/brb3.72

Bloch, M. H., and Hannestad, J. (2012). Omega-3 fatty acids for the treatment of
depression: systematic review and meta-analysis. Mol. Psychiatry 17, 1272–1282.
doi: 10.1038/mp.2011.100

Bongartz, T., Sutton, A. J., Sweeting, M. J., Buchan, I., Matteson, E. L., and Montori,
V. (2006). Anti-TNF antibody therapy in rheumatoid arthritis and the risk of
serious infections and malignancies: systematic review and meta-analysis of rare
harmful effects in randomized controlled trials. JAMA 295, 2275–2285. doi:
10.1001/jama.295.19.2275

Bonilla-Jaime, H., Retana-Marquez, S., Arteaga-Silva, M., Hernandez-Gonzalez,
M., and Vazquez-Palacios, G. (2010). Circadian activity of corticosterone in an
animal model of depression: response to muscarinic cholinergic stimulation.
Physiol. Behav. 100, 311–315. doi: 10.1016/j.physbeh.2010.03.002

Bradley, R. G., Binder, E. B., Epstein, M. P., Tang, Y., Nair, H. P., Liu, W.,
et al. (2008). Influence of child abuse on adult depression: moderation by
the corticotropin-releasing hormone receptor gene. Arch. Gen. Psychiatry 65,
190–200. doi: 10.1001/archgenpsychiatry.2007.26

Branco-de-Almeida, L. S., Kajiya, M., Cardoso, C. R., Silva, M. J., Ohta, K.,
Rosalen, P. L., et al. (2011). Selective serotonin reuptake inhibitors attenu-
ate the antigen presentation from dendritic cells to effector T lymphocytes.
FEMS Immunol. Med. Microbiol. 62, 283–294. doi: 10.1111/j.1574-695X.2011.
00816.x

Bremmer, M. A., Deeg, D. J., Beekman, A. T., Penninx, B. W., Lips, P.,
and Hoogendijk, W. J. (2007). Major depression in late life is associated
with both hypo- and hypercortisolemia. Biol. Psychiatry 62, 479–486. doi:
10.1016/j.biopsych.2006.11.033

Frontiers in Pharmacology | Neuropharmacology December 2013 | Volume 4 | Article 158 | 248

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

Brenner, R. R., Ayala, S., and Garda, H. A. (2001). Effect of dexamethasone on the
fatty acid composition of total liver microsomal lipids and phosphatidylcholine
molecular species. Lipids 36, 1337–1345. doi: 10.1007/s11745-001-0850-1

Brunello, N., Alboni, S., Capone, G., Benatti, C., Blom, J. M., Tascedda, F., et al.
(2006). Acetylsalicylic acid accelerates the antidepressant effect of fluoxetine in
the chronic escape deficit model of depression. Int. Clin. Psychopharmacol. 21,
219–225. doi: 10.1097/00004850-200607000-00004

Bush, D. E., Ziegelstein, R. C., Patel, U. V., Thombs, B. D., Ford, D. E.,
Fauerbach, J. A., et al. (2005). Post-myocardial infarction depression. Evidence
Report/Technology Assessment 123, 1–8.

Capuron, L., Neurauter, G., Musselman, D. L., Lawson, D. H., Nemeroff, C.
B., Fuchs, D., et al. (2003). Interferon-alpha–induced changes in trypto-
phan metabolism: relationship to depression and paroxetine treatment. Biol.
Psychiatry 54, 906–914. doi: 10.1016/S0006-322300173-2

Capuron, L., Ravaud, A., and Dantzer, R. (2000). Early depressive symptoms in
cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy. J. Clin.
Oncol. 18, 2143–2151.

Capuron, L., Ravaud, A., Gualde, N., Bosmans, E., Dantzer, R., Maes, M.,
et al. (2001). Association between immune activation and early depres-
sive symptoms in cancer patients treated with interleukin-2-based therapy.
Psychoneuroendocrinology 26, 797–808. doi: 10.1016/S0306-4530(01)00030-0

Capuron, L., Ravaud, A., Miller, A. H., and Dantzer, R. (2004). Baseline mood and
psychosocial characteristics of patients developing depressive symptoms during
interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav. Immun. 18,
205–213. doi: 10.1016/j.bbi.2003.11.004

Capuron, L., Ravaud, A., Neveu, P. J., Miller, A. H., Maes, M., and Dantzer, R.
(2002). Association between decreased serum tryptophan concentrations and
depressive symptoms in cancer patients undergoing cytokine therapy. Mol.
Psychiatry 7, 468–473. doi: 10.1038/sj.mp.4000995

Carnethon, M. R., Kinder, L. S., Fair, J. M., Stafford, R. S., and Fortmann, S. P.
(2003). Symptoms of depression as a risk factor for incident diabetes: findings
from the national health and nutrition examination epidemiologic follow-up
study, 1971-1992. Am. J. Epidemiol. 158, 416–423. doi: 10.1093/aje/kwg172

Carney, R. M., and Freedland, K. E. (2008). Depression in patients with coronary
heart disease. Am. J. Med.121, S20–S27. doi: 10.1016/j.amjmed.2008.09.010

Carney, R. M., Freedland, K. E., Rich, M. W., Smith, L. J., and Jaffe, A. S. (1993).
Ventricular tachycardia and psychiatric depression in patients with coronary
artery disease. Am. J. Med. 95, 23–28. doi: 10.1016/0002-9343(93)90228-H

Carney, R. M., Freedland, K. E., Stein, P. K., Skala, J. A., Hoffman, P., and Jaffe,
A. S. (2000). Change in heart rate and heart rate variability during treatment
for depression in patients with coronary heart disease. Psychosom. Med. 62,
639–647.

Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al.
(2003). Influence of life stress on depression: moderation by a polymorphism in
the 5-HTT Gene. Science 301, 386–389. doi: 10.1126/science.1083968

Champaneri, S., Wand, G. S., Malhotra, S. S., Casagrande, S. S., and Golden, S. H.
(2010). Biological basis of depression in adults with diabetes. Curr. Diab. Rep.
10, 396–405. doi: 10.1007/s11892-010-0148-9

Chan, O., Inouye, K., Riddell, M. C., Vranic, M., and Matthews, S. G.
(2003). Diabetes and the hypothalamo-pituitary-adrenal (HPA) axis. Minerva
Endocrinol. 28, 87–102.

Chantong, B., Kratschmar, D. V., Nashev, L. G., Balazs, Z., and Odermatt, A.
(2012). Mineralocorticoid and glucocorticoid receptors differentially regulate
NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2
microglial cells. J. Neuroinflammation 9, 260. doi: 10.1186/1742-2094-9-260

Chen, H. F., and Su, H. M. (2013). Exposure to a maternal n-3 fatty acid-deficient
diet during brain development provokes excessive hypothalamic-pituitary-
adrenal axis responses to stress and behavioral indices of depression and
anxiety in male rat offspring later in life. J. Nutr. Biochem. 24, 70–80. doi:
10.1016/j.jnutbio.2012.02.006

Christiansen, S., Bouzinova, E. V., Palme, R., and Wiborg, O. (2012). Circadian
activity of the hypothalamic-pituitary-adrenal axis is differentially affected in
the rat chronic mild stress model of depression. Stress (Amsterdam, Netherlands)
15, 647–657. doi: 10.3109/10253890.2011.654370

Clark, J. A., Flick, R. B., Pai, L. Y., Szalayova, I., Key, S., Conley, R. K., et al. (2007).
Glucocorticoid modulation of tryptophan hydroxylase-2 protein in raphe nuclei
and 5-hydroxytryptophan concentrations in frontal cortex of C57/Bl6 mice.
Mol. Psychiatry 13, 498–506. doi: 10.1038/sj.mp.4002041

Clark, J. A., Pai, L.-Y., Flick, R. B., and Rohrer, S. P. (2005). Differential hormonal
regulation of tryptophan hydroxylase-2 mRNA in the murine dorsal raphe
nucleus. Biol. Psychiatry 57, 943–946. doi: 10.1016/j.biopsych.2005.01.013

Clouse, R. E., Lustman, P. J., Freedland, K. E., Griffith, L. S., McGill,
J. B., and Carney, R. M. (2003). Depression and coronary heart dis-
ease in women with diabetes. Psychosom. Med. 65, 376–383. doi:
10.1097/01.PSY.0000041624.96580.1F

Covic, T., Cumming, S. R., Pallant, J. F., Manolios, N., Emery, P., Conaghan, P.
G., et al. (2012). Depression and anxiety in patients with rheumatoid arthritis:
prevalence rates based on a comparison of the Depression, Anxiety and Stress
Scale (DASS) and the hospital, Anxiety and Depression Scale (HADS). BMC
Psychiatry 12:6. doi: 10.1186/1471–244x-12-16

Daly, M. (2013). The relationship of C-reactive protein to obesity-related depressive
symptoms: a longitudinal study. Obesity (Silver Spring, Md) 21, 248–250. Epub
2013/02/14. doi: 10.1002/oby.20051

Dantzer, R. (2004). Cytokine-induced sickness behaviour: a neuroimmune
response to activation of innate immunity. Eur. J. Pharmacol. 500, 399–411. doi:
10.1016/j.ejphar.2004.07.040

Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., and Kelley, K. W.
(2008). From inflammation to sickness and depression: when the immune
system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56. doi: 10.1038/nrn2297

David, D. J., Samuels, B. A., Rainer, Q., Wang, J. W., Marsteller, D., Mendez,
I., et al. (2009). Neurogenesis-dependent and -independent effects of fluox-
etine in an animal model of anxiety/depression. Neuron 62, 479–493. doi:
10.1016/j.neuron.2009.04.017

Dean, O. M., Data-Franco, J., Giorlando, F., and Berk, M. (2012). Minocycline:
therapeutic potential in psychiatry. CNS drugs 26, 391–401. doi:
10.2165/11632000-000000000-00000

de Jonge, P., Roy, J. F., Saz, P., Marcos, G., and Lobo, A. (2006). Prevalent and
incident depression in community-dwelling elderly persons with diabetes mel-
litus: results from the ZARADEMP project. Diabetologia 49, 2627–2633. doi:
10.1007/s00125-006-0442-x

Delarue, J., Matzinger, O., Binnert, C., Schneiter, P., Chioléro, R., and Tappy,
L. (2003). Fish oil prevents the adrenal activation elicited by mental stress
in healthy men. Diabetes Metab. 29, 289–295. doi: 10.1016/S1262-36367
0039-3

Dhabhar, F. S. (2009). Enhancing versus suppressive effects of stress on
immune function: implications for immunoprotection and immunopathology.
Neuroimmunomodulation 16, 300–317. doi: 10.1159/000216188

Diamond, M., Kelly, J. P., and Connor, T. J. (2006). Antidepressants sup-
press production of the Th1 cytokine interferon-gamma, independent of
monoamine transporter blockade. Eur. Neuropsychopharmacol. 16, 481–490.
doi: 10.1016/j.euroneuro.2005.11.011

Dickens, C., McGowan, L., Clark-Carter, D., and Creed, F. (2002). Depression in
rheumatoid arthritis: a systematic review of the literature with meta-analysis.
Psychosom. Med. 64, 52–60.

Donner, N. C., Montoya, C. D., Lukkes, J. L., and Lowry, C. A. (2012).
Chronic non-invasive corticosterone administration abolishes the diurnal
pattern of tph2 expression. Psychoneuroendocrinology 37, 645–661. doi:
10.1016/j.psyneuen.2011.08.008

Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E. K., et al.
(2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67,
446–457. doi: 10.1016/j.biopsych.2009.09.033

Dringen, R. (2005). Oxidative and antioxidative potential of brain microglial cells.
Antioxid. Redox Signal. 7, 1223–1233. doi: 10.1089/ars.2005.7.1223

Dunn, A. J. (2000). Cytokine activation of the HPA axis. Ann. N.Y. Acad. Sci. 917,
608–617. doi: 10.1111/j.1749-6632.2000.tb05426.x

Dyer, A. R., Persky, V., Stamler, J., Paul, O., Shekelle, R. B., Berkson, D. M., et al.
(1980). Heart rate as a prognostic factor for coronary heart disease and mor-
tality: findings in three Chicago epidemiologic studies. Am. J. Epidemiol. 112,
736–749.

Eller, T., Vasar, V., Shlik, J., and Maron, E. (2009). The role of IL-2 and soluble IL-2R
in depression and antidepressant response. Curr. Opin. Invest. Drugs (London,
England: 2000) 10, 638–643.

Ellsworth, K. A., Moon, I., Eckloff, B. W., Fridley, B. L., Jenkins, G. D., Batzler, A.,
et al. (2013). FKBP5 genetic variation: association with selective serotonin reup-
take inhibitor treatment outcomes in major depressive disorder. Pharmacogenet.
Genomics 23, 156–166. doi: 10.1097/FPC.0b013e32835dc133

www.frontiersin.org December 2013 | Volume 4 | Article 158 | 249

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

Ertenli, I., Ozer, S., Kiraz, S., Apras, S. B., Akdogan, A., Karadag, O., et al.
(2012). Infliximab, a TNF-alpha antagonist treatment in patients with anky-
losing spondylitis: the impact on depression, anxiety and quality of life level.
Rheumatol. Int. 32, 323–330. doi: 10.1007/s00296-010-1616-x

Evans, J., Sun, Y., McGregor, A., and Connor, B. (2012). Allopregnanolone reg-
ulates neurogenesis and depressive/anxiety-like behaviour in a social isola-
tion rodent model of chronic stress. Neuropharmacology 63, 1315–1326. doi:
10.1016/j.neuropharm.2012.08.012

Fardet, L., Petersen, I., and Nazareth, I. (2012). Suicidal behavior and severe neu-
ropsychiatric disorders following glucocorticoid therapy in primary care. Am. J.
Psychiatry 169, 491–497. doi: 10.1176/appi.ajp.2011.11071009

Farooq, R. K., Isingrini, E., Tanti, A., Le Guisquet, A.-M., Arlicot, N., Minier, F.,
et al. (2012). Is unpredictable chronic mild stress (UCMS) a reliable model to
study depression-induced neuroinflammation. Behav. Brain Res. 231, 130–137.
doi: 10.1016/j.bbr.2012.03.020

Feng, L., Tan, C. H., Merchant, R. A., and Ng, T. P. (2008). Association between
depressive symptoms and use of HMG-CoA reductase inhibitors (statins), cor-
ticosteroids and histamine H(2) receptor antagonists in community-dwelling
older persons: cross-sectional analysis of a population-based cohort. Drugs
Aging 25, 795–805. doi: 10.2165/00002512-200825090-00005

Fields, C., Drye, L., Vaidya, V., and Lyketsos, C. (2012). Celecoxib or naproxen
treatment does not benefit depressive symptoms in persons age 70 and older:
findings from a randomized controlled trial. Am. J. Geriatric Psychiatry 20,
505–513. doi: 10.1097/JGP.0b013e318227f4da

Forbes, L. M., and Chaney, R. H. (1980). Cardiovascular changes during acute
depression. Psychosomatics 21, 472–477. doi: 10.1016/S0033-318273657-5

Forester, B. P., Zuo, C. S., Ravichandran, C., Harper, D. G., Du, F., Kim, S.,
et al. (2012). Coenzyme Q10 effects on creatine kinase activity and mood in
geriatric bipolar depression. J. Geriatric Psychiatry Neurology 25, 43–50. doi:
10.1177/0891988712436688

Francis, J., Weiss, R. M., Johnson, A. K., and Felder, R. B. (2003). Central mineralo-
corticoid receptor blockade decreases plasma TNF-alpha after coronary artery
ligation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R328–R335. doi:
10.1152/ajpregu.00376.2002

Frank, M. G., Thompson, B. M., Watkins, L. R., and Maier, S. F. (2012).
Glucocorticoids mediate stress-induced priming of microglial pro-
inflammatory responses. Brain Behav. Immun. 26, 337–345. doi:
10.1016/j.bbi.2011.10.005

Frank, M. G., Watkins, L. R., and Maier, S. F. (2011). Stress- and glucocorticoid-
induced priming of neuroinflammatory responses: potential mechanisms of
stress-induced vulnerability to drugs of abuse. Brain Behav. Immun. 25(Suppl.
1), S21–S28. doi: 10.1016/j.bbi.2011.01.005

Gallagher, P., Watson, S., Smith, M. S., Ferrier, I. N., and Young, A. H. (2005).
Effects of adjunctive mifepristone (RU-486) administration on neurocognitive
function and symptoms in schizophrenia. Biol. Psychiatry 57, 155–161. doi:
10.1016/j.biopsych.2004.10.017

Gilbert, K., Arseneault-Breard, J., Flores Monaco, F., Beaudoin, A., Bah, T. M.,
Tompkins, T. A., et al. (2013). Attenuation of post-myocardial infarction depres-
sion in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion.
Br. J. Nutr. 109, 50–56. doi: 10.1017/S0007114512003807

Godha, D., Shi, L., and Mavronicolas, H. (2010). Association between tendency
towards depression and severity of rheumatoid arthritis from a national repre-
sentative sample: the Medical Expenditure Panel Survey. Curr. Med. Res. Opin.
26, 1685–1690. doi: 10.1185/03007991003795808

Goleva, E., Li, L. B., and Leung, D. Y. (2009). IFN-gamma reverses IL-2- and IL-4-
mediated T-cell steroid resistance. Am. J. Resp. Cell Mol. Biol. 40, 223–230. doi:
10.1165/rcmb.2007-0327OC

González, H. M., and Tarraf, W. (2013). Comorbid cardiovascular disease and
major depression among ethnic and racial groups in the United States. Int.
Psychogeriatrics 25, 833–841. doi: 10.1017/S1041610212002062

Gourley, S. L., Wu, F. J., and Taylor, J. R. (2008). Corticosterone regulates pERK1/2
map kinase in a chronic depression model. Ann. N.Y. Acad. Sci. 1148, 509–514.
doi: 10.1196/annals.1410.076

Guillemin, G. J., Smythe, G., Takikawa, O., and Brew, B. J. (2005). Expression of
indoleamine 2, 3-dioxygenase and production of quinolinic acid by human
microglia, astrocytes, and neurons. Glia 49, 15–23. doi: 10.1002/glia.20090

Halder, I., Marsland, A. L., Cheong, J., Muldoon, M. F., Ferrell, R. E., and Manuck,
S. B. (2010). Polymorphisms in the CRP gene moderate an association between

depressive symptoms and circulating levels of C-reactive protein. Brain Behav.
Immun. 24, 160–167. doi: 10.1016/j.bbi.2009.09.014

Hannestad, J., DellaGioia, N., and Bloch, M. (2011). The effect of antide-
pressant medication treatment on serum levels of inflammatory cytokines:
a meta-analysis. Neuropsychopharmacology 36, 2452–2459. doi: 10.1038/npp.
2011.132

Hannestad, J., Gallezot, J.-D., Schafbauer, T., Lim, K., Kloczynski, T., Morris,
E. D., et al. (2012). Endotoxin-induced systemic inflammation activates
microglia: [11C]PBR28 positron emission tomography in nonhuman primates.
Neuroimage 63, 232–239. doi: 10.1016/j.neuroimage.2012.06.055

Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al.
(2002). Serotonin transporter genetic variation and the response of the human
amygdala. Science 297, 400–403 doi: 10.1126/science.1071829

Hashioka, S., Klegeris, A., Monji, A., Kato, T., Sawada, M., McGeer, P. L.,
et al. (2007). Antidepressants inhibit interferon-gamma-induced microglial
production of IL-6 and nitric oxide. Exp. Neurol. 206, 33–42. doi:
10.1016/j.expneurol.2007.03.022

Hennein, H. A., Ebba, H., Rodriguez, J. L., Merrick, S. H., Keith, F. M., Bronstein,
M. H., et al. (1994). Relationship of the proinflammatory cytokines to myocar-
dial ischemia and dysfunction after uncomplicated coronary revascularization.
J. Thorac. Cardiovasc. Surg. 108, 626–635.

Henry, C. J., Huang, Y., Wynne, A., Hanke, M., Himler, J., Bailey, M. T., et al.
(2008). Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflam-
mation, sickness behavior, and anhedonia. J. Neuroinflammation 5, 15. doi:
10.1186/1742–2094-5-15

Hickman, R. J., Khambaty, T., and Stewart, J. C. (2013). C-reactive protein is ele-
vated in atypical but not nonatypical depression: data from the National Health
and Nutrition Examination Survey (NHANES) 1999-2004. J. Behav. Med. doi:
10.1007/s10865–013-9510-0

Hinwood, M., Tynan, R. J., Charnley, J. L., Beynon, S. B., Day, T. A., and Walker, F.
R. (2012). Chronic stress induced remodeling of the prefrontal cortex: structural
re-organization of microglia and the inhibitory effect of minocycline. Cereb.
Cortex 24, 1058–1068. doi: 10.1093/cercor/bhs151

Ho, N., Balu, D. T., Hilario, M. R., Blendy, J. A., and Lucki, I. (2012). Depressive
phenotypes evoked by experimental diabetes are reversed by insulin. Physiol.
Behav. 105, 702–708. doi: 10.1016/j.physbeh.2011.09.003

Hoffmire, C. A., Block, R. C., Thevenet-Morrison, K., and van Wijngaarden, E.
(2012). Associations between omega-3 poly-unsaturated fatty acids from fish
consumption and severity of depressive symptoms: an analysis of the 2005-2008
National Health and Nutrition Examination Survey. Prostaglandins Leukotrienes
Essential Fatty Acids 86, 155–160. doi: 10.1016/j.plefa.2012.03.003

Holleman, M., Vreeburg, S. A., Dekker, J. J., and Penninx, B. W. (2012).
The relationships of working conditions, recent stressors and childhood
trauma with salivary cortisol levels. Psychoneuroendocrinology 37, 801–809. doi:
10.1016/j.psyneuen.2011.09.012

Holmes, A. (2008). Genetic variation in cortico-amygdala serotonin function and
risk for stress-related disease. Neurosci. Biobehav. Rev. 32, 1293–1314. doi:
10.1016/j.neubiorev.2008.03.006

Horikawa, H., Kato, T. A., Mizoguchi, Y., Monji, A., Seki, Y., Ohkuri, T., et al.
(2010). Inhibitory effects of SSRIs on IFN-gamma induced microglial activation
through the regulation of intracellular calcium. Prog. Neuropsychopharmacol.
Biol. Psychiatry 34, 1306–1316. doi: 10.1016/j.pnpbp.2010.07.015

Howren, M. B., Lamkin, D. M., and Suls, J. (2009). Associations of depression
with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71,
171–186. doi: 10.1097/PSY.0b013e3181907c1b

Ising, M., Horstmann, S., Kloiber, S., Lucae, S., Binder, E. B., Kern, N., et al. (2007).
Combined dexamethasone/corticotropin releasing hormone test predicts treat-
ment response in major depression - a potential biomarker. Biol. Psychiatry 62,
47–54. doi: 10.1016/j.biopsych.2006.07.039

Jabbi, M., Korf, J., Kema, I. P., Hartman, C., van der Pompe, G., Minderaa, R. B.,
et al. (2007). Convergent genetic modulation of the endocrine stress response
involves polymorphic variations of 5-HTT, COMT and, MAOA. Mol. Psychiatry
12, 483–490. doi: 10.1038/sj.mp.4001975

Jazayeri, S., Keshavarz, S. A., Tehrani-Doost, M., Djalali, M., Hosseini, M.,
Amini, H., et al. (2010). Effects of eicosapentaenoic acid and fluoxetine on
plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in
patients with major depressive disorder. Psychiatry Res. 178, 112–115. doi:
10.1016/j.psychres.2009.04.013

Frontiers in Pharmacology | Neuropharmacology December 2013 | Volume 4 | Article 158 | 250

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

Jokinen, J., and Nordstrom, P. (2009). HPA axis hyperactivity and cardiovascu-
lar mortality in mood disorder inpatients. J. Affect. Disord. 116, 88–92. doi:
10.1016/j.jad.2008.10.025

Kannel, W. B., Kannel, C., Paffenbarger, Jr. R. S., and Cupples, L. A. (1987). Heart
rate and cardiovascular mortality: the Framingham Study. Am. Heart J. 113,
1489–1494. doi: 10.1016/0002-8703(87)90666-1

Karatsoreos, I. N., Bhagat, S. M., Bowles, N. P., Weil, Z. M., Pfaff, D. W., and
McEwen, B. S. (2010). Endocrine and physiological changes in response to
chronic corticosterone: a potential model of the metabolic syndrome in mouse.
Endocrinology 151, 2117–2127. doi: 10.1210/en.2009-1436

Kazakou, P., Kyriazopoulou, V., Michalaki, M., Ierodiakonou, V., Psyrogiannis, A.,
and Habeos, I. (2012). Activated hypothalamic pituitary adrenal axis in patients
with metabolic syndrome. Horm. Metab. Res. 44, 839–844. doi: 10.1055/s-0032-
1311632

Keating, C., Dawood, T., Barton, D. A., Lambert, G. W., and Tilbrook, A. J.
(2013). Effects of selective serotonin reuptake inhibitor treatment on plasma
oxytocin and cortisol in major depressive disorder. BMC Psychiatry 13:124. doi:
10.1186/1471–244x-13-124

Kendler, K. S., and Gardner, C. O. (2010). Dependent stressful life events and prior
depressive episodes in the prediction of major depression: the problem of causal
inference in psychiatric epidemiology. Arch. Gen. Psychiatry 67, 1120–1127. doi:
10.1001/archgenpsychiatry.2010.136

Kenna, H. A., Poon, A. W., de los Angeles, C. P., and Koran, L. M. (2011). Psychiatric
complications of treatment with corticosteroids: review with case report.
Psychiatry Clin. Neurosci. 65, 549–560. doi: 10.1111/j.1440-1819.2011.02260.x

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., and Walters, E.
E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disor-
ders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62,
593–602. doi: 10.1001/archpsyc.62.6.593

Kettenmann, H., Hanisch, U.-K., Noda, M., and Verkhratsky, A. (2011). Physiology
of Microglia. Physiol. Rev. 91, 461–553. doi: 10.1152/physrev.00011.2010

Kimbro, L. B., Steers, W. N., Mangione, C. M., Duru, O. K., and Ettner, S. L. (2012).
The association of depression and the cardiovascular risk factors of blood pres-
sure, HbA1c, and body mass index among patients with diabetes: results from
the translating research into action for diabetes study. Int. J. Endocrinol. 2012,
747460. doi: 10.1155/2012/747460

Knol, M. J., Twisk, J. W., Beekman, A. T., Heine, R. J., Snoek, F. J., and Pouwer, F.
(2006). Depression as a risk factor for the onset of type 2 diabetes mellitus. A
meta-analysis. Diabetologia 49, 837–845. doi: 10.1007/s00125-006-0159-x

Koenig, W. (2001). Inflammation and coronary heart disease: an overview. Cardiol.
Rev. 9, 31–35. doi: 10.1097/00045415-200101000-00007

Krishnan, R., Cella, D., Leonardi, C., Papp, K., Gottlieb, A. B., Dunn, M., et al.
(2007). Effects of etanercept therapy on fatigue and symptoms of depression in
subjects treated for moderate to severe plaque psoriasis for up to 96 weeks. Br.
J. Dermatol. 157, 1275–1277. doi: 10.1111/j.1365-2133.2007.08205.x

Kronish, I. M., Carson, A. P., Davidson, K. W., Muntner, P., and Safford, M.
M. (2012). Depressive symptoms and cardiovascular health by the ameri-
can heart association’s definition in the reasons for geographic and racial
differences in stroke (REGARDS) study. PLoS ONE 7:e52771. doi: 10.1371/jour-
nal.pone.0052771

Kumsta, R., Entringer, S., Koper, J. W., van Rossum, E. F. C., Hellhammer,
D. H., and Wüst, S. (2007). Sex specific associations between common
glucocorticoid receptor gene variants and hypothalamus-pituitary-adrenal
axis responses to psychosocial stress. Biol. Psychiatry 62, 863–869. doi:
10.1016/j.biopsych.2007.04.013

Kurina, L. M., Goldacre, M. J., Yeates, D., and Gill, L. E. (2001). Depression and anx-
iety in people with inflammatory bowel disease. J. Epidemiol. Commun. Health
55, 716–720. doi: 10.1136/jech.55.10.716

Kurz, K., Schroecksnadel, S., Weiss, G., and Fuchs, D. (2011). Association between
increased tryptophan degradation and depression in cancer patients. Curr.
Opin. Clin. Nutr. Metab. Care 14, 49–56. doi: 10.1097/MCO.0b013e328340d849

Kyrou, I., and Tsigos, C. (2009). Stress hormones: physiological stress
and regulation of metabolism. Curr. Opin. Pharmacol. 9, 787–793. doi:
10.1016/j.coph.2009.08.007

Lechin, F., van der Dijs, B., Orozco, B., Lechin, M. E., Baez, S., Lechin,
A. E., et al. (1995). Plasma neurotransmitters, blood pressure, and heart
rate during supine-resting, orthostasis, and moderate exercise conditions in
major depressed patients. Biol. Psychiatry 38, 166–173. doi: 10.1016/0006-
3223(94)00258-5

Leonard, B. E. (2006). HPA and immune axes in stress: involvement of the seroton-
ergic system. Neuroimmunomodulation 13, 268–276. doi: 10.1159/000104854

Lesch, K.-P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S.,
et al. (1996). Association of anxiety-related traits with a polymorphism in
the serotonin transporter gene regulatory region. Science 274, 1527–1531. doi:
10.1126/science.274.5292.1527

Levine, B., Kalman, J., Mayer, L., Fillit, H. M., and Packer, M. (1990). Elevated cir-
culating levels of tumor necrosis factor in severe chronic heart failure. N. Eng. J.
Med. 323, 236–241. doi: 10.1056/NEJM199007263230405

Lin, P. Y., and Su, K. P. (2007). A meta-analytic review of double-blind, placebo-
controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin.
Psychiatry 68, 1056–1061. doi: 10.4088/JCP.v68n0712

Liu, R. T., and Alloy, L. B. (2010). Stress generation in depression: a systematic
review of the empirical literature and recommendations for future study. Clin.
Psychol. Rev. 30, 582–593. doi: 10.1016/j.cpr.2010.04.010

Lo Fermo, S., Barone, R., Patti, F., Laisa, P., Cavallaro, T. L., Nicoletti, A., et al.
(2010). Outcome of psychiatric symptoms presenting at onset of multiple scle-
rosis: a retrospective study. Multiple Sclerosis (Houndmills, Basingstoke, England)
16, 742–748. doi: 10.1177/1352458510365157

Lu, Y., Feng, L., Feng, L., Nyunt, M. S., Yap, K. B., and Ng, T. P. (2013). Systemic
inflammation, depression and obstructive pulmonary function: a population-
based study. Respir. Res. 14, 53. doi: 10.1186/1465–9921-14-53

Ludescher, B., Najib, A., Baar, S., Machann, J., Schick, F., Buchkremer, G., et al.
(2008). Increase of visceral fat and adrenal gland volume in women with depres-
sion: preliminary results of a morphometric MRI study. Int. J. Psychiatry Med.
38, 229–240. doi: 10.2190/PM.38.3.a

Macfarlane, D. P., Forbes, S., and Walker, B. R. (2008). Glucocorticoids and
fatty acid metabolism in humans: fuelling fat redistribution in the metabolic
syndrome. J. Endocrinol. 197, 189–204. doi: 10.1677/JOE-08-0054

Maes, M. (1999). Major depression and activation of the inflammatory response
system. Adv. Exp. Med. Biol. 461, 25–46. doi: 10.1007/978-0-585-37970-8_2

Maes, M. (2012). Targeting cyclooxygenase-2 in depression is not a viable ther-
apeutic approach and may even aggravate the pathophysiology underpinning
depression. Metab. Brain Dis. 27, 405–413. doi: 10.1007/s11011-012-9326-6

Maes, M., Kubera, M., Leunis, J. C., and Berk, M. (2012a). Increased IgA and IgM
responses against gut commensals in chronic depression: further evidence for
increased bacterial translocation or leaky gut. J. Affect. Disord. 141, 55–62. Epub
2012/03/14. doi: 10.1016/j.jad.2012.02.023

Maes, M., Berk, M., Goehler, L., Song, C., Anderson, G., Galecki, P., et al.
(2012b). Depression and sickness behavior are Janus-faced responses to
shared inflammatory pathways. BMC Med. 10:66. doi: 10.1186/1741-701
5-10-66

Maes, M., Kubera, M., and Leunis, J. C. (2008). The gut-brain barrier in major
depression: intestinal mucosal dysfunction with an increased translocation of
LPS from gram negative enterobacteria (leaky gut) plays a role in the inflamma-
tory pathophysiology of depression. Neuro Endocrinol. Lett. 29, 117–124.

Maes, M., Meltzer, H. Y., Scharpe, S., Bosmans, E., Suy, E., De Meester, I.,
et al. (1993). Relationships between lower plasma L-tryptophan levels and
immune-inflammatory variables in depression. Psychiatry Res. 49, 151–165. doi:
10.1016/0165-1781(93)90102-M

Maes, M., Mihaylova, I., Kubera, M., Uytterhoeven, M., Vrydags, N., and Bosmans,
E. (2009). Lower plasma Coenzyme Q10 in depression: a marker for treatment
resistance and chronic fatigue in depression and a risk factor to cardiovascular
disorder in that illness. Neuro Endocrinol. Lett. 30, 462–469.

Mann, J. N., and Thakore, J. H. (1999). Melancholic depression and abdominal fat
distribution: a mini-review. Stress 3, 1–15. doi: 10.3109/10253899909001108

Manthey, L., Leeds, C., Giltay, E. J., van Veen, T., Vreeburg, S. A., Penninx,
B. W., et al. (2011). Antidepressant use and salivary cortisol in depres-
sive and anxiety disorders. Eur. Neuropsychopharmacol. 21, 691–699. doi:
10.1016/j.euroneuro.2011.03.002

Margaretten, M., Barton, J., Julian, L., Katz, P., Trupin, L., Tonner, C., et al. (2011a).
Socioeconomic determinants of disability and depression in patients with
rheumatoid arthritis. Arthritis Care Res. 63, 240–246. doi: 10.1002/acr.20345

Margaretten, M., Julian, L., Katz, P., and Yelin, E. (2011b). Depression in patients
with rheumatoid arthritis: description, causes and mechanisms. Int. J. Clin.
Rheumatol. 6, 617–623. doi: 10.2217/ijr.11.6

Martins, J. G., Bentsen, H., and Puri, B. K. (2012). Eicosapentaenoic acid
appears to be the key omega-3 fatty acid component associated with effi-
cacy in major depressive disorder: a critique of Bloch and Hannestad and

www.frontiersin.org December 2013 | Volume 4 | Article 158 | 251

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

updated meta-analysis. Mol. Psychiatry 17, 1144–1149. discussion 63–67. doi:
10.1038/mp.2012.25

Martocchia, A., Curto, M., Toussan, L., Stefanelli, M., and Falaschi, P. (2011).
Pharmacological strategies against glucocorticoid-mediated brain damage
during chronic disorders. Recent Pat. CNS Drug Discov. 6, 196–204. doi:
10.2174/157488911796958020

Matthews, L. C., and Hanley, N. A. (2011). The stress of starvation: gluco-
corticoid restraint of beta cell development. Diabetologia 54, 223–226. doi:
10.1007/s00125-010-1963-x

Mehta, D., Raison, C. L., Woolwine, B. J., Haroon, E., Binder, E. B., Miller, A. H.,
et al. (2013). Transcriptional signatures related to glucose and lipid metabolism
predict treatment response to the tumor necrosis factor antagonist infliximab in
patients with treatment-resistant depression. Brain Behav. Immun. 31, 205–215.
doi: 10.1016/j.bbi.2013.04.004

Mendlewicz, J., Kriwin, P., Oswald, P., Souery, D., Alboni, S., and Brunello, N.
(2006). Shortened onset of action of antidepressants in major depression
using acetylsalicylic acid augmentation: a pilot open-label study. Int. Clin.
Psychopharmacol. 21, 227–231. doi: 10.1097/00004850-200607000-00005

Menke, A., Klengel, T., Rubel, J., Bruckl, T., Pfister, H., Lucae, S., et al. (2013).
Genetic variation in FKBP5 associated with the extent of stress hormone
dysregulation in major depression. Genes Brain Behav. 12, 289–296. doi:
10.1111/gbb.12026

Miller, A. H., Maletic, V., and Raison, C. L. (2009). Inflammation and its discon-
tents: the role of cytokines in the pathophysiology of major depression. Biol.
Psychiatry 65, 732–741. doi: 10.1016/j.biopsych.2008.11.029

Minghetti, L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenera-
tive brain diseases. J. Neuropathol. Exp. Neurol. 63, 901–910.

Miyaoka, T., Wake, R., Furuya, M., Liaury, K., Ieda, M., Kawakami, K., et al.
(2012). Minocycline as adjunctive therapy for patients with unipolar psychotic
depression: an open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry
37, 222–226. doi: 10.1016/j.pnpbp.2012.02.002

Mizoguchi, K., Shoji, H., Ikeda, R., Tanaka, Y., and Tabira, T. (2008). Persistent
depressive state after chronic stress in rats is accompanied by HPA axis dysreg-
ulation and reduced prefrontal dopaminergic neurotransmission. Pharmacol.
Biochem. Behav. 91, 170–175. doi: 10.1016/j.pbb.2008.07.002

Mo, B., Feng, N., Renner, K., and Forster, G. (2008). Restraint stress increases
serotonin release in the central nucleus of the amygdala via activation of
corticotropin-releasing factor receptors. Brain Res. Bull. 76, 493–498. doi:
10.1016/j.brainresbull.2008.02.011

Mocking, R. J., Assies, J., Bot, M., Jansen, E. H., Schene, A. H., and Pouwer, F.
(2012). Biological effects of add-on eicosapentaenoic acid supplementation in
diabetes mellitus and co-morbid depression: a randomized controlled trial.
PLoS ONE 7:e49431. doi: 10.1371/journal.pone.0049431

Mocking, R. J., Ruhe, H. G., Assies, J., Lok, A., Koeter, M. W., Visser, I.,
et al. (2013). Relationship between the hypothalamic-pituitary-adrenal-axis and
fatty acid metabolism in recurrent depression. Psychoneuroendocrinology. doi:
10.1016/j.psyneuen.2013.01.013

Mokhtari, M., Arfken, C., and Boutros, N. (2013). The DEX/CRH test for major
depression: a potentially useful diagnostic test. Psychiatry Res. 208, 131–139. doi:
10.1016/j.psychres.2012.09.032

Mommersteeg, P. M., Herr, R., Pouwer, F., Holt, R. I., and Loerbroks, A. (2013). The
association between diabetes and an episode of depressive symptoms in the 2002
World Health Survey: an analysis of 231, 797 individuals from 47 countries.
Diabetic Med. 30:e208–214. doi: 10.1111/dme.12193

Muller, N., Schwarz, M. J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Muller,
B., et al. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic
effects in major depression: results of a double-blind, randomized, placebo
controlled, add-on pilot study to reboxetine. Mol. Psychiatry 11, 680–684. doi:
10.1038/sj.mp.4001805

Munhoz, C. D., Lepsch, L. B., Kawamoto, E. M., Malta, M. B., Lima Lde,
S., Avellar, M. C., et al. (2006). Chronic unpredictable stress exacer-
bates lipopolysaccharide-induced activation of nuclear factor-kappaB in the
frontal cortex and hippocampus via glucocorticoid secretion. J. Neurosci. 26,
3813–3820. doi: 10.1523/JNEUROSCI.4398-05.2006

Musil, R., Schwarz, M. J., Riedel, M., Dehning, S., Cerovecki, A., Spellmann, I.,
et al. (2011). Elevated macrophage migration inhibitory factor and decreased
transforming growth factor-beta levels in major depression—No influence of
celecoxib treatment. J. Affect. Disord. 134, 217–225. doi: 10.1016/j.jad.2011.
05.047

Myint, A-M., Kim, Y. K., Verkerk, R., Scharpé, S., Steinbusch, H., and Leonard,
B. (2007). Kynurenine pathway in major depression: evidence of impaired
neuroprotection. J. Affect. Disord. 98, 143–151. doi: 10.1016/j.jad.2006.07.013

Nair, A., and Bonneau, R. H. (2006). Stress-induced elevation of glucocorti-
coids increases microglia proliferation through NMDA receptor activation.
J. Neuroimmunol. 171, 72–85. doi: 10.1016/j.jneuroim.2005.09.012

Nemeroff, C. B., and Musselman, D. L. (2000). Are platelets the link between
depression and ischemic heart disease. Am. Heart J. 140(4, Supplement), S57–
S62. doi: 10.1067/mhj.2000.109978

Otte, C., Zhao, S., and Whooley, M. A. (2012). Statin use and risk of depression in
patients with coronary heart disease: longitudinal data from the heart and soul
study. J. Clin. Psychiatry 73, 610–615. doi: 10.4088/JCP.11m07038

Pae, C. U., Marks, D. M., Han, C., and Patkar, A. A. (2008). Does minocy-
cline have antidepressant effect. Biomed. Pharmacother. 62, 308–311. doi:
10.1016/j.biopha.2007.12.005

Palagini, L., Mosca, M., Tani, C., Gemignani, A., Mauri, M., and Bombardieri,
S. (2013). Depression and systemic lupus erythematosus: a systematic review.
Lupus 22, 409–416. doi: 10.1177/0961203313477227

Palatini, P., and Julius, S. (1997). Association of tachycardia with morbidity and
mortality: pathophysiological considerations. J. Hum. Hypertens. 11(Suppl. 1),
S19–S27.

Palumbo, M. L., Canzobre, M. C., Pascuan, C. G., Rios, H., Wald, M., and
Genaro, A. M. (2010). Stress induced cognitive deficit is differentially modu-
lated in BALB/c and C57Bl/6 mice: correlation with Th1/Th2 balance after stress
exposure. J. Neuroimmunol. 218, 12–20. doi: 10.1016/j.jneuroim.2009.11.005

Pasco, J. A., Jacka, F. N., Williams, L. J., Henry, M. J., Nicholson, G. C., Kotowicz,
M. A., et al. (2010). Clinical implications of the cytokine hypothesis of depres-
sion: the association between use of statins and aspirin and the risk of major
depression. Psychother. Psychosom. 79, 323–325. doi: 10.1159/000319530

Pereira, A. M., Tiemensma, J., and Romijn, J. A. (2010). Neuropsychiatric dis-
orders in Cushing’s syndrome. Neuroendocrinology 92(Suppl. 1), 65–70. doi:
10.1159/000314317

Persoons, P., Vermeire, S., Demyttenaere, K., Fischler, B., Vandenberghe, J., Van
Oudenhove, L., et al. (2005). The impact of major depressive disorder on the
short- and long-term outcome of Crohn’s disease treatment with infliximab.
Aliment. Pharmacol. Ther. 22, 101–110. doi: 10.1111/j.1365-2036.2005.02535.x

Pintado, C., Revilla, E., Vizuete, M. L., Jimenez, S., Garcia-Cuervo, L., Vitorica,
J., et al. (2011). Regional difference in inflammatory response to LPS-injection
in the brain: role of microglia cell density. J. Neuroimmunol. 238, 44–51. doi:
10.1016/j.jneuroim.2011.06.017

Piwowarska, J., Chimiak, A., Matsumoto, H., Dziklinska, A., Radziwon-Zaleska, M.,
Szelenberger, W., et al. (2012). Serum cortisol concentration in patients with
major depression after treatment with fluoxetine. Psychiatry Res. 198, 407–411.
doi: 10.1016/j.psychres.2012.01.029

Pucak, M. L., and Kaplin, A. I. (2005). Unkind cytokines: current evidence for the
potential role of cytokines in immune-mediated depression. Int. Rev. Psychiatry
17, 477–483. doi: 10.1080/02646830500381757

Puntener, U., Booth, S., Perry, V., and Teeling, J. (2012). Long-term impact
of systemic bacterial infection on the cerebral vasculature and microglia.
J. Neuroinflammation 9, 146. doi: 10.1186/1742-2094-9-146

Raison, C. L., Broadwell, S. D., Borisov, A. S., Manatunga, A. K., Capuron, L.,
Woolwine, B. J., et al. (2005). Depressive symptoms and viral clearance in
patients receiving interferon-alpha and ribavirin for hepatitis, C. Brain Behav.
Immun. 19, 23–27. doi: 10.1016/j.bbi.2004.05.001

Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F.,
et al. (2013). A randomized controlled trial of the tumor necrosis factor antag-
onist infliximab for treatment-resistant depression: the role of baseline inflam-
matory biomarkers. JAMA Psychiatry 70, 31–41. doi: 10.1001/2013.jamapsychi-
atry.4

Reagan, L. P., Grillo, C. A., and Piroli, G. G. (2008). The As and Ds of stress:
metabolic, morphological and behavioral consequences. Eur. J. Pharmacol. 585,
64–75. doi: 10.1016/j.ejphar.2008.02.050

Renoir, T., Pang, T. Y., and Hannan, A. J. (2013). Effects of environmental manip-
ulations in genetically targeted animal models of affective disorders. Neurobiol.
Dis. 57, 12–27. doi: 10.1016/j.nbd.2012.04.003

Rojas, P. S., Fritsch, R., Rojas, R. A., Jara, P., and Fiedler, J. L. (2011). Serum brain-
derived neurotrophic factor and glucocorticoid receptor levels in lymphocytes
as markers of antidepressant response in major depressive patients: a pilot study.
Psychiatry Res. 189, 239–245. doi: 10.1016/j.psychres.2011.04.032

Frontiers in Pharmacology | Neuropharmacology December 2013 | Volume 4 | Article 158 | 252

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

Rosmond, R. (2005). Role of stress in the pathogenesis of the metabolic syndrome.
Psychoneuroendocrinology 30, 1–10. doi: 10.1016/j.psyneuen.2004.05.007

Rotella, F., and Mannucci, E. (2013). Diabetes mellitus as a risk factor for depres-
sion. A meta-analysis of longitudinal studies. Diabetes Res. Clin. Pract. 99,
98–104. doi: 10.1016/j.diabres.2012.11.022

Rugulies, R. (2002). Depression as a predictor for coronary heart disease: a review
and meta-analysis. Am. J. Prev. Med. 23, 51–61. doi: 10.1016/S0749-379700439-
7

Sasaki, A., de Vega, W. C., St-Cyr, S., Pan, P., and McGowan, P. O. (2013). Perinatal
high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood.
Neuroscience 240, 1–12. doi: 10.1016/j.neuroscience.2013.02.044

Schatzberg, A. F., and Lindley, S. (2008). Glucocorticoid antagonists in neu-
ropsychiatric [corrected] disorders. Eur. J. Pharmacol. 583, 358–364. doi:
10.1016/j.ejphar.2008.01.001

Schewitz, L. P., Lee, R. W., Dayan, C. M., and Dick, A. D. (2009). Glucocorticoids
and the emerging importance of T cell subsets in steroid refractory diseases.
Immunopharmacol. Immunotoxicol. 31, 1–22. doi: 10.1080/08923970802334848

Schmidt, H. D., Shelton, R. C., and Duman, R. S. (2011). Functional
biomarkers of depression: diagnosis, treatment, and pathophysiology.
Neuropsychopharmacology 36, 2375–2394. doi: 10.1038/npp.2011.151

Seldenrijk, A., van Hout, H. P. J., van Marwijk, H. W. J., de Groot, E.,
Gort, J., Rustemeijer, C., et al. (2013). Sensitivity to depression or anxiety
and subclinical cardiovascular disease. J. Affect. Disord. 146, 126–131. doi:
10.1016/j.jad.2012.06.026

Serber, E. R., Edwards-Hampton, S. A., Yeager, B., Clair, M., Taylor, M., Galloway,
S. K., et al. (2012). Prevalence of chest pain, depression, somatization, anxiety,
global distress, and substance use among cardiac and pulmonary rehabilitation
patients. Pain Res. Treat. 2012, 4. doi: 10.1155/2012/138680

Siddiqui, R. A., and Harvey, K. A. (2013). Dietary interventions with n-3 fatty acids
or probiotics targeting post-myocardial infarction depression. Br. J. Nutr. 109,
1–3. doi: 10.1017/S0007114512004254

Smolderen, K. G., Spertus, J. A., Vriens, P. W., Kranendonk, S., Nooren, M., and
Denollet, J. (2010). Younger women with symptomatic peripheral arterial dis-
ease are at increased risk of depressive symptoms. J. Vasc. Surg. 52, 637–644. doi:
10.1016/j.jvs.2010.04.025

Soczynska, J. K., Mansur, R. B., Brietzke, E., Swardfager, W., Kennedy, S. H.,
Woldeyohannes, H. O., et al. (2012). Novel therapeutic targets in depression:
minocycline as a candidate treatment. Behav. Brain Res. 235, 302–317. doi:
10.1016/j.bbr.2012.07.026

Stafford, L., and Berk, M. (2011). The use of statins after a cardiac intervention
is associated with reduced risk of subsequent depression: proof of concept for
the inflammatory and oxidative hypotheses of depression. J. Clin. Psychiatry 72,
1229–1235. doi: 10.4088/JCP.09m05825blu

Sternberg, E. M. (2006). Neural regulation of innate immunity: a coordinated
nonspecific host response to pathogens. Nat. Rev. Immunol. 6, 318–328. doi:
10.1038/nri1810

Stetler, C., and Miller, G. E. (2011). Depression and hypothalamic-pituitary-
adrenal activation: a quantitative summary of four decades of research.
Psychosom. Med. 73, 114–126. doi: 10.1097/PSY.0b013e31820ad12b

Taler, M., Gil-Ad, I., Lomnitski, L., Korov, I., Baharav, E., Bar, M., et al.
(2007). Immunomodulatory effect of selective serotonin reuptake inhibitors
(SSRIs) on human T lymphocyte function and gene expression. Eur.
Neuropsychopharmacol. 17, 774–780. doi: 10.1016/j.euroneuro.2007.
03.010

Tatebayashi, Y., Nihonmatsu-Kikuchi, N., Hayashi, Y., Yu, X., Soma, M., and
Ikeda, K. (2012). Abnormal fatty acid composition in the frontopolar cortex
of patients with affective disorders. Trans. Psychiatry 2:e204. doi: 10.1038/tp.
2012.132

Thomson, F., and Craighead, M. (2008). Innovative approaches for the treat-
ment of depression: targeting the HPA axis. Neurochem. Res. 33, 691–707. doi:
10.1007/s11064-007-9518-3

Tonelli, L. H., Holmes, A., and Postolache, T. T. (2008). Intranasal immune
challenge induces sex-dependent depressive-like behavior and cytokine
expression in the brain. Neuropsychopharmacology 33, 1038–1048. doi:
10.1038/sj.npp.1301488

Touma, C., Fenzl, T., Ruschel, J., Palme, R., Holsboer, F., Kimura, M., et al. (2009).
Rhythmicity in mice selected for extremes in stress reactivity: behavioural,
endocrine and sleep changes resembling endophenotypes of major depression.
PLoS ONE 4:e4325. doi: 10.1371/journal.pone.0004325

Triantafillidis, J. K., Merikas, E., and Gikas, A. (2013). Psychological factors and
stress in inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 7,
225–238. doi: 10.1586/egh.13.4

Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V.,
et al. (2010). Chronic stress alters the density and morphology of microglia in a
subset of stress-responsive brain regions. Brain Behav. Immun. 24, 1058–1068.
doi: 10.1016/j.bbi.2010.02.001

Tyring, S., Gottlieb, A., Papp, K., Gordon, K., Leonardi, C., Wang, A., et al. (2006).
Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-
blind placebo-controlled randomised phase III trial. Lancet 367, 29–35. doi:
10.1016/S0140-6736(05)67763-X

Tyrka, A. R., Walters, O. C., Price, L. H., Anderson, G. M., and Carpenter, L. L.
(2012). Altered response to neuroendocrine challenge linked to indices of the
metabolic syndrome in healthy adults. Horm. Metab. Res. 44, 543–549. doi:
10.1055/s-0032-1306342

Udina, M., Castellvi, P., Moreno-Espana, J., Navines, R., Valdes, M., Forns, X.,
et al. (2012). Interferon-induced depression in chronic hepatitis C: a sys-
tematic review and meta-analysis. J. Clin. Psychiatry 73, 1128–1138. doi:
10.4088/JCP.12r07694

Valkanova, V., and Ebmeier, K. P. (2013). Vascular risk factors and depression in
later life: a systematic review and meta-analysis. Biol. Psychiatry 73, 406–413.
doi: 10.1016/j.biopsych.2012.10.028

van Dartel, S. A. A., Fransen, J., Kievit, W., Flendrie, M., den Broeder, A. A.,
Visser, H., et al. (2013). Difference in the risk of serious infections in patients
with rheumatoid arthritis treated with adalimumab, infliximab and etanercept:
results from the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry.
Ann. Rheum. Dis. 72, 895–900. doi: 10.1136/annrheumdis-2012-201338

Van der Does, A. J. (2001). The effects of tryptophan depletion on mood and
psychiatric symptoms. J. Affect. Disord. 64, 107–119. doi: 10.1016/S0165-
0327(00)00209-3

van Holten, T. C., Waanders, L. F., de Groot, P. G., Vissers, J., Hoefer, I. E.,
Pasterkamp, G., et al. (2013). Circulating biomarkers for predicting cardio-
vascular disease risk; a systematic review and comprehensive overview of
meta-analyses. PLoS ONE 8:e62080. doi: 10.1371/journal.pone.0062080

van Raalte, D. H., Ouwens, D. M., and Diamant, M. (2009). Novel insights into
glucocorticoid-mediated diabetogenic effects: towards expansion of therapeutic
options. Eur. J. Clin. Invest. 39, 81–93. doi: 10.1111/j.1365-2362.2008.02067.x

van Reedt Dortland, A. K., Vreeburg, S. A., Giltay, E. J., Licht, C. M., Vogelzangs,
N., van Veen, T., et al. (2013). The impact of stress systems and lifestyle on dys-
lipidemia and obesity in anxiety and depression. Psychoneuroendocrinology 38,
209–218. doi: 10.1016/j.psyneuen.2012.05.017

van Rossum, E. F. C., Binder, E. B., Majer, M., Koper, J. W., Ising, M., Modell,
S., et al. (2006). Polymorphisms of the glucocorticoid receptor gene and major
depression. Biol. Psychiatry 59, 681–688. doi: 10.1016/j.biopsych.2006.02.007

van West, D., Van Den Eede, F., Del-Favero, J., Souery, D., Norrback, K.-F.,
Van Duijn, C., et al. (2005). Glucocorticoid receptor gene-based snp analy-
sis in patients with recurrent major depression. Neuropsychopharmacology 31,
620–627. doi: 10.1038/sj.npp.1300898

Vignau, J., Costisella, O., Canva, V., Imbenotte, M., Duhamel, A., and Lhermitte, M.
(2009). [Impact of interferon alpha immunotherapy on tryptophan metabolism
in patients with chronic hepatitis, C. Results of a pilot studies on ten patients].
L’Encephale 35, 477–483. doi: 10.1016/j.encep.2007.09.007

Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., et al. (2011).
The ageing systemic milieu negatively regulates neurogenesis and cognitive
function. Nature 477, 90–94. doi: 10.1038/nature10357

Vogelzangs, N., Beekman, A. T., Dik, M. G., Bremmer, M. A., Comijs, H.
C., Hoogendijk, W. J., et al. (2009). Late-life depression, cortisol, and
the metabolic syndrome. Am. J. Geriatr. Psychiatry 17, 716–721. doi:
10.1097/JGP.0b013e3181aad5d7

Vreeburg, S. A., Hoogendijk, W. J., van Pelt, J., Derijk, R. H., Verhagen, J. C., van
Dyck, R., et al. (2009). Major depressive disorder and hypothalamic-pituitary-
adrenal axis activity: results from a large cohort study. Arch. Gen. Psychiatry 66,
617–626. doi: 10.1001/archgenpsychiatry.2009.50

Vreeburg, S. A., Zitman, F. G., van Pelt, J., Derijk, R. H., Verhagen, J.
C., van Dyck, R., et al. (2010). Salivary cortisol levels in persons with
and without different anxiety disorders. Psychosom. Med. 72, 340–347. doi:
10.1097/PSY.0b013e3181d2f0c8

Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S., and Nabekura, J. (2009).
Resting microglia directly monitor the functional state of synapses in vivo

www.frontiersin.org December 2013 | Volume 4 | Article 158 | 253

http://www.frontiersin.org
http://www.frontiersin.org/Neuropharmacology/archive


Renoir et al. Mind-body interactions and psychiatric diseases

and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980. doi:
10.1523/jneurosci.4363-08.2009

Walker, A. J., Burnett, S. A., Hasebe, K., McGillivray, J. A., Gray, L. J., McGee, S.
L., et al. (2013). Chronic adrenocorticotrophic hormone treatment alters tri-
cyclic antidepressant efficacy and prefrontal monoamine tissue levels. Behav.
Brain Res. 242, 76–83. doi: 10.1016/j.bbr.2012.12.033

Wang, Y., Yang, F., Liu, Y. F., Gao, F., and Jiang, W. (2011). Acetylsalicylic acid as an
augmentation agent in fluoxetine treatment resistant depressive rats. Neurosci.
Lett. 499, 74–79. doi: 10.1016/j.neulet.2011.05.035

Warrington, T. P., and Bostwick, J. M. (2006). Psychiatric adverse effects
of corticosteroids. Mayo Clin. Proc. 81, 1361–1367. doi: 10.4065/81.
10.1361

Watanabe, S., Kanada, S., Takenaka, M., and Hamazaki, T. (2004). Dietary n-3 fatty
acids selectively attenuate LPS-induced behavioral depression in mice. Physiol.
Behav. 81, 605–613. doi: 10.1016/j.physbeh.2004.02.021

Watson, S., Gallagher, P., Porter, R. J., Smith, M. S., Herron, L. J., Bulmer, S., et al.
(2012). A randomized trial to examine the effect of mifepristone on neuropsy-
chological performance and mood in patients with bipolar depression. Biol.
Psychiatry 72, 943–949. doi: 10.1016/j.biopsych.2012.05.029

Wichers, M. C., Koek, G. H., Robaeys, G., Verkerk, R., Scharpe, S., and Maes,
M. (2005). IDO and interferon-alpha-induced depressive symptoms: a shift
in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry 10,
538–544. doi: 10.1038/sj.mp.4001600

Wolfram, M., Bellingrath, S., Feuerhahn, N., and Kudielka, B. M. (2013).
Emotional exhaustion and overcommitment to work are differentially asso-
ciated with hypothalamus-pituitary-adrenal (HPA) axis responses to a low-
dose ACTH1-24 (Synacthen) and dexamethasone-CRH test in healthy
school teachers. Stress (Amst.) 16, 54–64. doi: 10.3109/10253890.2012.
683465

Young, A. H., Gallagher, P., Watson, S., Del-Estal, D., Owen, B. M.,
and Ferrier, I. N. (2004). Improvements in neurocognitive function and
mood following adjunctive treatment with mifepristone (RU-486) in bipo-
lar disorder. Neuropsychopharmacology 29, 1538–1545. doi: 10.1038/sj.npp.
1300471

Zalachoras, I., Houtman, R., Atucha, E., Devos, R., Tijssen, A. M., Hu, P., et al.
(2013). Differential targeting of brain stress circuits with a selective glucocor-
ticoid receptor modulator. Proc. Natl. Acad. Sci. U.S.A. 110, 7910–7915. doi:
10.1073/pnas.1219411110

Zimmermann, P., Brückl, T., Nocon, A., Pfister, H., Binder, E. B., Uhr, M., et al.
(2011). Interaction of FKBP5 gene variants and adverse life events in predicting
depression onset: results from a 10-year prospective community study. Am. J.
Psychiatry 168, 1107–1116. doi: 10.1176/appi.ajp.2011.10111577

Zorrilla, E. P., Luborsky, L., McKay, J. R., Rosenthal, R., Houldin, A., Tax, A.,
et al. (2001). The relationship of depression and stressors to immunolog-
ical assays: a meta-analytic review. Brain Behav. Immun. 15, 199–226. doi:
10.1006/brbi.2000.0597

Zou, Y. F., Wang, F., Feng, X. L., Li, W. F., Tao, J. H., Pan, F. M., et al. (2010).
Meta-analysis of FKBP5 gene polymorphisms association with treatment
response in patients with mood disorders. Neurosci. Lett. 484, 56–61. doi:
10.1016/j.neulet.2010.08.019

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 16 September 2013; paper pending published: 14 October 2013; accepted: 30
November 2013; published online: 18 December 2013.
Citation: Renoir T, Hasebe K and Gray L (2013) Mind and body: how the health of
the body impacts on neuropsychiatry. Front. Pharmacol. 4:158. doi: 10.3389/fphar.
2013.00158
This article was submitted to Neuropharmacology, a section of the journal Frontiers in
Pharmacology.
Copyright © 2013 Renoir, Hasebe and Gray. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Pharmacology | Neuropharmacology December 2013 | Volume 4 | Article 158 | 254

http://dx.doi.org/10.3389/fphar.2013.00158
http://dx.doi.org/10.3389/fphar.2013.00158
http://dx.doi.org/10.3389/fphar.2013.00158
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive

	Cover
	Frontiers Copyright Statement
	New frontiers in the neuropsychopharmacology of mental illness
	Table of Contents
	New frontiers in the neuropsychopharmacology of mental illness
	References

	Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions
	Introduction
	Microdialysis: principle and methodology in mice
	Conventional intracerebral in vivo microdialysis
	Drug administration by reverse microdialysis
	Zero net flux method of quantitative* intracerebral microdialysis
	Statistical analysis and expression of results of microdialysis experiments in KO mice


	Intracerebral in vivo microdialysis in rodents
	First in rats
	Next in wild-type and knock-out mice
	The use of pharmacological tools in mice
	The use of mutated mice


	Advantages and limitations of using microdialysis in KO mice
	Advantages
	Limitations

	Conclusion
	References

	Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis
	Introduction
	Materials and methods
	Animals
	Drugs
	Electrophysiological recording
	Statistical analysis

	Results
	Comparison of basal firing rates across genotypes
	Comparison of 5-HT1A receptor sensitivity across genotypes
	Estimation of autoinhibition exerted by endogenous 5-HT across genotypes

	Discussion
	Genetic manipulations do not affect pacemaker characteristics of 5-HT neurons
	Lifelong exposure of 5-HT neurons to varying 5-HT levels results in changes in the sensitivity of somatodendritic 5-HT1A receptors
	Autoinhibition of 5-HT neurons by endogenous 5-HT is conserved in the physiological range, regardless of the sensitivity of 5-HT1A receptors
	Implications of the divergence between sensitivity to R(+)-8-OH-DPAT and 5-HT neuron autoinhibition

	Acknowledgments
	References

	A method for biomarker measurements in peripheral blood mononuclear cells isolated from anxious and depressed mice: ß-arrestin 1 protein levels in depression and treatment
	Introduction
	Experimental procedures
	Subjects
	Drugs
	Isolation of human and mouse peripheral blood mononuclear cells
	Collection of human blood and isolation of peripheral blood mononuclear cells
	Collection of mouse blood and isolation of peripheral blood mononuclear cellscolor pushcolor gray 0color pop

	ß-arrestin 1 levels in human and mouse peripheral blood mononuclear cells
	Protein extraction from peripheral blood mononuclear cells and immunoblots
	ß-arrestin 1 level measurements with immunoblot analyses

	Corticosterone model and treatment
	Statistical analysis

	Results
	ß-arrestin 1 is detected in human and mouse pbmc
	Chronic fluoxetine treatment normalizes ß-arrestin 1 expression in pbmc isolated from anxious/depressive-like mice

	Discussion
	PBMCs were isolated from unanesthetized mice
	ß-arrestin 1 protein levels can be measured in mouse and human pbmcs
	ß-arrestin 1 is a predictive marker of the pathophysiology of depression and the antidepressant response
	Limitations of the study

	Conclusion
	Acknowledgments
	Author contributions
	References

	Mechanisms of antidepressant resistance
	Introduction
	Poor Response to Antidepressant Therapy: Clinical Correlates
	Predictors of Poor Response to Antidepressant Therapy: Pharmacological Component
	Drug Metabolism
	Blood-Brain Barrier

	Predictors of Poor Response to Antidepressant Therapy: Neurobiological Components
	Brain Structures and Response to Antidepressants
	Neurotransmission and Response to Antidepressants
	Serotoninergic system
	Noradrenergic system
	Other neurotransmission systems

	Neural Plasticity and Response to Antidepressants
	Molecular aspects
	Cellular targets

	Hormonal Targets and Response to Antidepressants
	HPA axis regulation
	Thyrotropin releasing hormone (TRH)


	Discussion
	References

	Individual differences and the characterization of animal models of psychopathology: a strong challenge and a good opportunity
	Introduction
	Individual differences in non-selected populations
	Searching for association between a particular trait and other behavioral or biological characteristics
	Characterizing affected and non-affected individuals after stress
	Genetic polymorphisms

	Animals genetically selected for anxiety
	Exploiting already available strain differences
	Genetic manipulation of targeted genes
	Sex differences
	Conclusion
	Acknowledgments
	References

	The role of the serotonergic and gaba system in translational approaches in drug discovery for anxiety disorders
	Introduction
	Heritability of anxiety disorders
	Linkage mapping
	Association mapping
	Genome-wide association studies
	Endophenotypes
	Conclusion

	Preclinical genetic approaches to anxiety
	Animal models of anxiety
	The 5-HT1A receptor
	Human data
	Preclinical data

	5-HT2 receptors
	Clinical data
	Preclinical data

	The serotonin transporter (5-HTT)
	Human data
	Preclinical data

	GABAA receptor  subunits and anxiety
	Human data
	Preclinical data

	The interaction between 5-HT and gaba

	Translational studies into anxiety
	Concluding remarks
	References

	Targeting neurosteroidogenesis as therapy for PTSD
	A PTSD Mouse Model
	Pharmacological Targets to Stimulate Neurosteroidogenesis
	Conclusion
	Acknowledgments
	References

	Antidepressant effects of ketamine: mechanisms underlying fast-acting novel antidepressants
	Introduction
	Ketamine—Clinical Trials
	Antidepressant-Like Behavioral Effects of Ketamine in Rodents
	Forced Swim Test (FST)
	Tail Suspension Test (TST)
	Novelty Suppressed Feeding (NSF)
	Sucrose Preference Test (SPT)
	Elevated Plus Maze (EPM)
	Locomotor Activity
	Learned Helplessness (LH)
	Chronic Mild Stress (CMS)

	Ketamine—Molecular Mechanisms of Action
	NMDA and AMPA Receptors
	mTOR Signaling
	Brain-Derived Neurotrophic Factor (BDNF)
	Glycogen Synthase Kinase-3 (GSK-3)

	Conclusion and Future Directions
	Acknowledgments
	References

	Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target?
	Introduction
	Low somatostatin in neuropsychiatric and neurodegenerative disorders
	Major depressive disorder
	Other neuropsychiatric disorders
	Neurodegenerative disorders
	Reduced somatostatin and low mood?

	Somatostatin: genes, neurons and pharmacology
	Somatostatin signaling
	Genetic polymorphisms in the somatostatin system
	Somatostatin-expressing neurons: diversity and roles
	Genetic approaches to investigate the somatostatin system
	Somatostatin analog development and pharmacological studies
	Effects of antidepressants on somatostatin in the cns

	Potential mechanisms of selective vulnerability of somatostatin-expressing interneurons
	Oxidative stress and mitochondrial dysfunctions
	High dependence on neurotrophic environment
	Inflammation and cellular aging

	Conclusion
	Acknowledgments
	References

	Relaxin-3/rxfp3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases?
	Introduction
	Neuropeptide-receptor systems as targets for treatment of neuropsychiatric disorders
	The neuropeptide relaxin-3 and its receptor, rxfp3
	Relaxin-3/rxfp3 signaling: a novel target for the treatment of depression?
	Is relaxin-3 is an “arousal” transmitter?
	Relaxin-3 neurons are involved in the response to stress
	Relaxin-3 neurons modulate hippocampal activity

	Relevance of relaxin-3/rxfp3 signaling to social behavior and autism?
	Relaxin-3/rxfp3 control of feeding and relevance for eating disorders?
	Future studies of the relaxin-3/rxfp3 system
	Conclusion
	Acknowledgments
	References

	Comorbid obsessive-compulsive symptoms in schizophrenia: contributions of pharmacological and genetic factors
	Gene and Environment Interactions in Psychiatric Disorders
	Epidemiology of OCS in Schizophrenia
	Clinical Presentation and Explanatory Concepts
	Onset of OCS
	Clinical Course
	Pathogenic Concepts
	Underlying Neurobiological Mechanisms and Environmental Factors
	Neurobiology
	Genetic disposition
	Environmental factors


	OCS Induced by Second-Generation Antipsychotics
	Epidemiological Evidence
	Increase of OCS prevalence after market approval of SGAs
	Higher OCS prevalence during the chronic course of schizophrenia
	Onset of de novo OCS during antipsychotic treatment or marked aggravation

	Pharmacological Evidence
	Higher prevalence of OCS in samples treated with CLZ
	Associations between the duration of treatment and OCS severity

	Association between Dosage and Blood Serum Levels and OCS Severity
	Differential effects of SGAs on the course of OCS

	Genetic Disposition

	Research Perspectives
	GxEI on a Second Level of Complexity
	Therapy

	Conclusions
	References

	Antipsychotic treatments; focus on lurasidone
	Introduction
	History of Antipsychotic Drugs
	Pharmacology
	Efficacy
	General Views
	Cognition
	Mood Disorders
	Other Diseases

	Tolerability
	Perspectives
	Conclusions
	Acknowledgments
	References

	Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses
	Introduction
	Materials and methods
	Animals
	Drugs and solutions
	Stereotaxic lesion surgery
	Locomotor hyperactivity testing
	Enzyme-linked immunosorbent assay (elisa)
	Design and analyses

	Results
	Serotonin depletion in the dorsal and ventral hippocampus
	Experiment 1: lesion effects on locomotor hyperactivity induced by 0.5 and 2.5 mg/kg PCP and 0.1 mg/kg MK-801
	Experiment 2: further analysis of dorsal hippocampus lesion effects on locomotor hyperactivity induced by 2.5 mg/kg PCP and 0.1 mg/kg MK-801
	Distance moved
	Spatial d
	Entropy


	Discussion
	References

	Antidepressant-like drug effects in juvenile and adolescent mice in the tail suspension test: relationship with hippocampal serotonin and norepinephrine transporter expression and function
	Introduction
	Materials and methods
	Animals
	Tail suspension test
	[3h]citalopram and [3h]nisoxetine saturation binding in hippocampal homogenates
	[3h]citalopram binding to sert
	[3h]nisoxetine binding to net

	Statistical analysis
	Drugs

	Results
	Use of the tst in juvenile and adolescent mice
	Reference antidepressants reduce immobility across ages
	[3h]citalopram and [3h]nisoxetine saturation binding in hippocampus as a function of age
	Relationship between antidepressant-like effect and saturation binding with [3h]citalopram and [3h]nisoxetine in hippocampus across age groups

	Discussion
	Acknowledgments
	References

	Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake
	Introduction
	Materials and methods
	Animals
	Apparatus
	Procedure
	Drinking analyses
	Microsatellite length analysis

	Results
	Discussion
	Conclusion
	Acknowledgments
	References

	Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference
	Introduction
	Materials and methods
	Animal subjects
	Drugs
	Conditioned place preference and reinstatement paradigm
	Acute stress
	Sub-chronic social defeat stress
	Chronic mild stress paradigm
	Locomotor activity
	Data analyses and statistics

	Results
	Activation of kappa opioid receptors following acute stress potentiates reinstatement of cocaine place preference
	Sub-chronic stress exposure blocks subsequent kor agonist-induced reinstatement of cocaine place preference
	Chronic mild stress protects against u50,488-induced reinstatement to cocaine and nicotine place preference

	Discussion
	Acknowledgments
	References

	Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinence from chronic ethanol consumption
	Introduction
	Materials and Methods
	Mice
	Ethanol Self-Administration
	Saccharin Preference Test (SPT)
	Forced-Swim Test (FST)
	Dexamethasone Challenges
	Quantification of serum corticosterone and ACTH levels
	Tissue Collection, Sample Preparation and Semi-Quantitative Real-Time PCR
	Statistical Analysis

	Results
	Ethanol Abstinence-Associated Depressive Phenotype is Corrected by Environmental Enrichment
	Saccharin preference test
	Forced swim test

	Ethanol Abstinence is Associated with Abnormal DEX-CRH Response
	Environmental Enrichment Modifies DEX-CRH Response of Alcohol Abstinent Mice
	Modified Gene Expression During Ethanol Abstinence: Effects of Environmental Enrichment

	Discussion
	Functional Characterization of HPA Axis Pathology During Alcohol Abstinence
	Environmental Enrichment Corrects Abstinence-Related Depressive Behaviors
	Glucocorticoid Receptor Gene Expression is Up-Regulated During Protected Alcohol Abstinence
	Environmental Enrichment Corrects Abstinence-Related Abnormal DEX-CRH Response and Gene Expression
	Arginine Vasopression as a Potential Modifier of HPA Axis in Alcohol Abstinence

	Acknowledgments
	References

	Controversies about the enhanced vulnerability of the adolescent brain to develop addiction
	Introduction
	Puberty and adolescence
	Gradual emergence of cognitive self-control during adolescence: insight from neuroimaging
	Are teens more vulnerable to drug abuse than adults?
	Modeling the adolescent vulnerability to drug abuse
	Factors influencing drug abuse in adolescent rodents
	The juvenile rodent model: promises and pitfalls
	Conclusion
	References

	Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development
	Introduction
	The importance of differentiating D3 from D2 receptors
	Differences between D2 and D3 receptors in pathology
	Effects on drug taking behaviors
	Effects on locomotor activity and catalepsy
	Selectivity of effects
	Effects on cognition

	Receptor occupancy in animals
	Pet imaging in humans
	Increased sensitivity in the detection of da levels with [11c]-(+)-phno
	Measurement of d3 receptors with [11c]-(+)-phno

	Role of d3 receptors: studies with [11c]-(+)-phno

	Conclusion
	Acknowledgments
	References

	Mind and body: how the health of the body impacts on neuropsychiatry
	Introduction
	Systemic Disorders Associated with Depression
	Stress Responsivity and the Hypothalamic-Pituitary-Adrenal Axis
	Peripheral Disorders Associated with HPA Changes and Psychiatric Disease
	Pharmacological Targeting of the HPA Axis
	Immune Dysregulation, Inflammation and Psychiatric Health
	Mechanisms of Immune Modulation of Psychiatric Function
	Pharmacological Targeting of Inflammatory Pathways
	Interfaces Between HPA Axis and Immune Dysfunction
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




