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Editorial on the Research Topic

Emerging Technologies and Systems for Biologically Plausible Implementations of

Neural Functions

The human brain is a complex and fascinating biological machine. With 20 W only, the activity
of 100 billion neurons and 3 orders of magnitude more (1015) synapses in a volume as small as
a shoebox allow us to learn, process, sense, and perceive a vast amount of information from the
external environment in real-time. The human brain features a distributed system based on slow
and unreliable components. Yet, it is able to learn from experience and compute unstructured
data reliably with extreme energy efficiency. Therefore, our brain’s real-time and low-power
cognitive processes have always been the ultimate ambition in terms of building artificial systems
for Edge Information-Extraction and Computing, User-Specific Applications such as Healthcare,
Autonomous vehicles, Robotics, and the Internet of Things. Studies on the brain lead to models
describing its operating and computational principles, which in turn can be used as a guideline to
build new devices, circuits, and systems emulating brain functionality.

Neuromorphic Very Large-Scale Integration (VLSI) circuits model neural networks using
a synthetic biology approach whereby they attempt to understand the properties of brain-
inspired neural networks by building biologically plausible artifacts that reproduce the physics
of the biological systems they model. Neuromorphic circuits can exhibit very slow, biologically
plausible, time constants, facilitating the artificial system and/or real-world interaction. Despite
the slow time constants, the neuromorphic neural processing chips have fast response times,
thanks to a distributed memory, which improves the latency typical of conventional von
Neumann architectures. For these reasons, neuromorphic systems can be developed to carry out
sensory data analysis and information extraction and solve problems in noisy and uncertain
settings and constraint satisfactory problems. In addition, these systems are able to learn from
experience, leading to significant progress in the perceptive abilities of e.g., robots, security, and
healthcare systems.

Recently, emerging technologies, encompassing memristive and spintronic devices, have been
investigated to further improve the memory performance and to complement Complementary
Metal Oxide Semiconductor (CMOS) technology, in power-limited neuromorphic systems on
edge. Thanks to their excellent performance in terms of high scalability, low latency, low-
power operation, and their ability to reversibly change their conductance upon applying proper
electrical stimuli, these devices are being researched to emulate artificial synaptic or neural
behaviors. Furthermore, their intrinsic physical properties are well suited to implement spike-based
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FIGURE 1 | Distribution of the contributions across disciplines.

time, rate-sensitive operations locally, and support edge-of-
chaos dynamics, as well as fundamental computing primitives
belonging to biological neurons and synapses.

This Research Topic provides an overview of the avant-
garde artificial biologically plausible sensing, computing, and
perception paradigms and technologies enabling biologically
plausible neuromorphic systems. Contributions cover the
following areas:

1. Sensors for biological signals and external environmental
stimuli.

2. Emerging devices, circuits, and systems enabling
neuromorphic paradigms.

3. Emerging technologies and device models to emulate synaptic
plasticity and learning.

4. Biologically plausible models that are implementable in
neuromorphic sensing, computing, and perception systems.

The 18 articles in this collection span and merge several
disciplines, from the field of engineering to life science and
neuroscience, with a significant portion of cross-disciplinary
works, as illustrated in Figure 1. Furthermore, this collection
provides a good representation of worldwide research, collecting
contributions from four continents and 14 countries.

Among the authors, only 14% are female and the
percentage of female first/last authors is 16% each. The
data evidence that there is still a long path ahead to achieve
gender balance.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Covi, Donati, Brivio and Heidari. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 8636806

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


ORIGINAL RESEARCH
published: 15 October 2019

doi: 10.3389/fnins.2019.01078

Frontiers in Neuroscience | www.frontiersin.org 1 October 2019 | Volume 13 | Article 1078

Edited by:

Stefano Brivio,

Institute for Microelectronics and

Microsystems (CNR), Italy

Reviewed by:

Saeed Safari,

University of Tehran, Iran

Chao Wang,

University of Science and Technology

of China, China

*Correspondence:

Guosheng Yi

guoshengyi@tju.edu.cn

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 30 May 2019

Accepted: 24 September 2019

Published: 15 October 2019

Citation:

Hao X, Yang S, Wang J, Deng B,

Wei X and Yi G (2019) Efficient

Implementation of Cerebellar Purkinje

Cell With the CORDIC Algorithm on

LaCSNN. Front. Neurosci. 13:1078.

doi: 10.3389/fnins.2019.01078

Efficient Implementation of
Cerebellar Purkinje Cell With the
CORDIC Algorithm on LaCSNN
Xinyu Hao, Shuangming Yang, Jiang Wang, Bin Deng, Xile Wei and Guosheng Yi*

School of Electrical and Information Engineering, Tianjin University, Tianjin, China

Purkinje cell is an important neuron for the cerebellar information processing. In this

work, we present an efficient implementation of a cerebellar Purkinje model using

the Coordinate Rotation Digital Computer (CORDIC) algorithm and implement it on

a Large-Scale Conductance-Based Spiking Neural Networks (LaCSNN) system with

cost-efficient multiplier-less methods, which are more suitable for large-scale neural

networks. The CORDIC-based Purkinje model has been compared with the original

model in terms of the voltage activities, dynamic mechanisms, precision, and hardware

resource utilization. The results show that the CORDIC-based Purkinje model can

reproduce the same biological activities and dynamical mechanisms as the original model

with slight deviation. In the aspect of the hardware implementation, it can use only logic

resources, so it provides an efficient way for maximizing the FPGA resource utilization,

thereby expanding the scale of neural networks that can be implemented on FPGAs.

Keywords: Purkinje, multiplier-less, coordinate rotation digital computer (CORDIC), field-programmable gate

array (FPGA), digital implementation

INTRODUCTION

The cerebellum is a very important part of the human brain and associated with many
important functions with a large number of incoming and outgoing connections between the brain,
brainstem, and spinal cord. These functions are not only relevant to motor control including error
correction (Doya, 2000; Llinas, 2009), tracking movements (Paulin, 1993; Miall et al., 2000), and
coordinated movements (Thach et al., 1992; Heck et al., 2007) but also relevant to many non-motor
functions such as linguistic prediction, word generation, emotional control, and so on (Leiner et al.,
1993; Schmahmann and Caplan, 2006; Pleger and Timmann, 2018). Purkinje cells (PCs) make up
the middle layer of the cerebellum, Purkinje layer, which is responsible for receiving information
from the cerebellar granule cell (GC) synapses through parallel fibers (PF) and climbing fibers (CF)
in brainstem. In addition to being all the constituent cells of the cerebellar Purkinje layer, PCs also
directly connect to deep cerebellar nuclei cells, which are the main output cells of cerebellum. So, it
is obvious that PCs play the most important role in the information processing of the cerebellum.
Besides, PCs are responsible for cerebellar motor learning (Gilbert and Thach, 1977) with the
information stored in the synapses with granule cells. The information is presented as the variation
of synaptic strength according to the error signals carried by CFs through spike timing-dependent
plasticity (STDP), which consists of long-term potential (LTP) and long-term depression (LTD)
(Ito and Kano, 1982; Han et al., 2000; Medina et al., 2000). This learning mechanism can be
obviously observed in classical eyeblink conditioning experiments (Bao et al., 2002) and cerebellar
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vestibulo-ocular reflex (VOR) (Blazquez et al., 2003;
Masuda and Amari, 2008), which are mainly caused by the
function of PCs.

There are two calculation modes for simulation spiking
neurons or spiking neural networks, serial computing mode,
and the parallel computing mode (Yang S. M. et al., 2019).
The serial computing mode is mainly based on some computer
simulation software that is incompatible with the parallel
computing features of real neural systems. In order to achieve
these in a more biological way, more and more neuroscientists
prefer to implement neurons and neural networks with parallel
computing mode. Analog very Large-Scale Integration (VLSI),
Graphics Processing Unit (GPU), and Field Programmable
Gate Array (FPGA) are the three most used platforms with
parallel computing capacity. Analog VLSI is an efficient analog-
based method for hardware implementation of spiking neurons
and neural networks because it can realize the non-linear
function directly (Han, 2005; Hsieh and Tang, 2012). However,
it cannot be flexibly changed once formed, so it is more
suitable for well-defined circuits. In addition, its high cost and
long development cycle also limit the application range. GPU
provides a digital implementation method for spiking neurons
and neural networks with its powerful parallel calculation ability
and many researches have been carried on GPUs (Igarashi et al.,
2011; Yamazaki and Igarashi, 2013). However, the kernel-launch
method used on GPU and the limited bandwidths are obstacles
for dealing with a lot of data. Compared to the two methods
above, FPGA has many advantages for realizing the neural
circuits. On one hand, the flexible reconfigurability and parallel
computing architecture can perfectly meet the requirements for
exploring characteristics of not only spiking neurons but also
the large-scale spiking neural networks; on the other hand,
its low area and power consumption also make it popular in
neurosciences (Yang et al., 2017, 2018a). In this work, the neuron
is implemented on the Large-Scale Conductance-Based Spiking
Neural Networks (LaCSNN) system first proposed by Yang S.
et al. (2019). The system consists of six Altera EP3SL340 FPGAs
and is designed to simulate large-scale spiking neural networks
with digital neuromorphic architecture. Its powerful storage
capacity, high calculation speed, and sufficient resources make it
an effective tool for neuroscience researches.

Although the advantages of FPGA are very prominent, the
disadvantages are also distinct. Most of the resources on FPGA
are logic resources; the lack of memory and multiplier resources

TABLE 1 | Conductance parameters of cerebellar Purkinje cell.

Current type gi Ei x∞ (αx ) τ x (βx )

Potassium 10 −95 1/
{

1+ exp[−(V + 29.5)/10 ]
}

0.25+ 4.375 exp[(V + 10)/10 ], V ≤ −10

0.25+ 4.375 exp[−(V + 10)/10 ], V > −10

Sodium 125 50 1/
{

1+ exp[(V + 59.4)/10 .7]
}

m∞ = 1/
{

1+ exp[−(V + 34.5)/10 ]
}

0.15+ 1.15/
{

1+ exp[(V + 33.5)/15 ]
}

Calcium 1 125 1.6/
{

1+ exp[−0.072(V − 5)]
}

0.02(V + 8.9)/
{

exp[(V + 8.9)/5]− 1
}

M 0.75 −95 0.02/
{

1+ exp[−(V + 20)/5]
}

0.01 exp[−(V + 43)/18]

Leak 2 −70 – –

often limits the scale when implementing neural networks.
As a kind of digital systems, it is difficult to implement the
non-linear functions directly. To solve these problems, many
methods have been proposed. One of the most frequently used
methods is to store the function values in a storage area with
continuous address space in advance, which is called look up
table (LUT) realization. When used, the function value can be
obtained by addressing. This method is very easy but costs
much memory resources. Besides, the use of LUTs increases the
duration of reconstruction when changing model parameters.
Another method, Taylor series approximation, is to replace
the non-linear function in the neighborhood with an n-order
polynomial approximation for a certain error. This method
can make a trade-off between LUT resources and multiplier
resources with different approximation order, but it still needs
these resources (Lee and Burgess, 2003). The piece-wise linear
(PWL) approximation (Julian et al., 1999) is a more efficient
method to solve these problems but there are two main cons:
one is there will be unavoidable error due to the use of several
linear segments; the other is that it needs to recalculate when the
non-linear function changes. So, in this work, we propose a non-
multiplier and non-LUTmethod with the CORDIC algorithm for
implementing the cerebellar Purkinje model on FPGA.

One of the main reasons for implementing single neurons
with optimization algorithms on FPGA is to lay a foundation for
realizing large-scale spiking neural networks. Many researches
have been carried out in recent years. Yang et al. (2018b) propose
a series of techniques for implementing a conductance-based
neuron model that is beneficial for building large-scale neural
networks. Soleimani et al. (2012) implement a classic Izhikevich
model using PWL method to prove that the method can simplify
the hardware implementation with showing similar dynamic
behaviors. Ambroise et al. (2013) also implement an Izhikevich
model on FPGA, but it is mainly to propose an architecture to
reproduce a neural network with only one computation core (one
neuron) based on one multiplier. Bonabi et al. (2012) implement
a Hodgkin–Huxley (H–H) single neuron with the CORDIC
algorithm and some LUTs that show high precision with more
compact used logic.

There are also many researches about implementing the
CORDIC algorithm on FPGA. Valls et al. (2002) evaluate
some methods for the CORDIC algorithm and realize a
variable precision method using conventional arithmetic on
FPGA. Liu et al. (2014) implement a modified CORDIC
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algorithm that reduces the utilization of ROM resources and
power consumption. Garcia et al. (2006) realize a pipelined
CORDIC architecture with solution for overflow and quadrant
correction and successfully generating sine and cosine waves.
Muñoz et al. (2010) propose a floating-point CORDIC FPGA
implementation for calculating transcendental functions. The
FPGA implementation of the CORDIC algorithm can give full
play to the advantages of FPGA and utilize hardware resources
to realize an optimization scheme combining hardware and
algorithm. The pipelined computational structure of FPGA
can also enhance the real-time performance of the CORDIC
algorithm, minimizing the computational delay due to the
iterative operations. Therefore, the CORDIC algorithm can be
widely applied to real-time high-quality signal processing with
high-performance requirements.

The remaining parts of this work are arranged as follows.
In section Neuron Model, the original model and modified
CORDIC model of cerebellar PC are presented. The CORDIC
algorithm used is also introduced in this section. Section
Hardware Implementation Based on LaCSNN describes the
details of hardware implementation. The results of software
simulation and hardware simulation are shown in section
Results. We also compare and analyze the result between
the original model and the CORDIC model with various
evaluation indicators for both the two simulations. The
behaviors of a network with this neuron are also presented.
section Discussion illustrates the discussion and conclusion for
this work.

NEURON MODEL

Original Purkinje Model
During the exploration of PCs, many mathematic models have
been built for different research interests (De Schutter and Bower,
1994a,b; Khaliq et al., 2003). Many models are either too detailed
to form a large-scale neural network or too simple to have many
basic biological characteristics. For the starting point of our
implementation, which is to propose a method for simplifying
a single neuron model with relatively high biological plausibility
and make contributions to build large-scale networks on FPGA,
we choose an H–H (Hodgkin and Huxley, 1952)-based model
proposed by Miyasho et al. (2001) and Middleton et al. (2008),
which consists of 32 ionic channels and simplified by Kramer
et al. (2008) to 5. The membrane potential is shown as follows:

C
dV

dt
= −gkn

4 (V − Ek) − gNam∞ (V)3 h (V − ENa)

−gCac
2 (V − ECa) − gM M(V − EM )

−gL (V − EL)− I (1)

where V represents the membrane potential, C represents the
membrane capacitance, and gi and Ei (i ǫ {k,Na,Ca,M, L})
are the maximum ionic conductance and reversal potentials
for different ion channels, respectively. There are five ionic
currents and an external stimulus current I in this model:
a potassium current Ik = gkn

4 (V − Ek), a sodium current
INa = gNam∞ (V)3 h (V − ENa), a calcium current ICa =

gCac
2 (V − ECa), an M-current IM = gMM (V − EM) , and a leak

current IL = gL (V − EL). n, m, h, c, and M are gating variables
for different ionic currents and the dynamics are described
as follows:

x∞ =
αx

αx + βx
, τx =

1

αx + βx
(2)

dx

dt
=

x∞ − x

τx
(3)

x∞ is the state variable, τx is the time constant for
xǫ {n,m, h, c,M}, αx, and βx are relevant functions, and all
of these are functions of membrane potential V. The detailed
parameter values and the description for ionic currents dynamics
are provided in Table 1.

CORDIC-Based Purkinje Mode
In order to make the implementation more suitable for building
large-scale neural network and improve the calculation speed,
we modify the original Purkinje model to save memory and
multiplier resources with the CORDIC algorithm and introduce
as follows.

The CORDIC algorithm is originally developed in Volder
(1959) as an algorithm for calculating trigonometric and
hyperbolic functions and first used in navigation systems. Then,
a unified CORDIC algorithm is proposed in Walther (1971).
By introducing a coordinate system parameter m, the circular
rotation, hyperbolic rotation, and linear rotation are unified into
the same CORDIC iterative equations, which provide a premise
for the multifunction of the same hardware implementation. The
essence of the CORDIC algorithm is to approximate a certain
rotation angle by using a set of constant angle bases. It is possible

FIGURE 1 | The diagram of pipeline structure for the five variables used in

cerebellar Purkinje model.
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to accurately calculate many non-linear functions by using vector
repeated rotation. Its iterative equation is as follows:







Xi+1 = Xi −mqiYi · 2
−i

Yi+1 = Xi + qiXi · 2
−i

Zi+1 = Zi − qi · θi

(4)

FIGURE 2 | The schematic diagram of the functional shift multiplier (FSM).

where Xi and Yi are the value before rotation, Xi+1 and Yi+1 are
the value after rotation, qi is the direction of rotation, θi and
the relationship between m value and rotation mode are both
described in Equation (5).

θi =







tanh−1 (

2−i
)

, m = −1, hyperbolic rotation

2−i, m = 0, linear rotation

arctan(2−i), m = 1, circular rotation

(5)

The exponential operations and divisions used in this paper
are calculated in the hyperbolic rotation and linear rotation
modes, respectively. The division can be easily gotten with θi =

2n−i
(

θi= 2i−n
)

, where n determines the calculation range. As
for the exponential operations, since through hyperbolic rotation
we can only obtain the values of coshθ and sinh θ , eθ needs
to be calculated with the basic relationship between hyperbolic
functions sinh θ + coshθ = eθ . According to Equation (5), we can
know that the convergence domain is limited by tanh−1 (

2−i
)

. In
detail, the maximum value it can be calculated is determined by
the sum of all the angles, which is approximately equal to 1.1182.
It is obvious that it cannot meet the calculation requirements of
this model. So, before calculating, the input variable needs to be
preprocessed to expand the convergence domain. Suppose the
input variable is θ , it can be divided into integer part A and
fractional part b after being divided by ln2 just as Equation (6)

FIGURE 3 | The schematic diagram of data flow for V and currents in the modified model. (A) The pipeline of “V.” (B) The pipeline of “Ik.” (C) The pipeline of “INa.” (D)

The pipeline of “ICa.” (E) The pipeline of “IM.” (F) The pipeline of “IL.”.
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FIGURE 4 | The schematic diagram of data flow for gating variables, a state variable and the detailed structures of one iteration in each CORDIC operations. (A) The

pipeline of “c” and “M.” (B) The pipeline of “h” and “n.” (C) The pipeline of “h∞.” (D) One iteration of CORDIC division (CDI). (E) One iteration of expand CORDIC

exponential (ECEXP). (F) One iteration of and CORDIC exponential (CEXP) in order.

and the exponential operation will be eθ = 2A· ebln2.

θ

ln2
= A+ b (6)

There are two reasons for choosing ln2, one is the exponential
operation of integer part can be transmitted to power of 2
directly, which can be easily implemented by shifting; the other
one is that b · ln2 is smaller than 1.1182, which is just within
the convergence domain. With this method, we can perform
exponential operations in any range. After careful consideration,
in the case of ensuring high precision and minimizing resource
consumption, the iterations in this work are chosen as: 10 for
exponential operations and 12 for divisions with n= 2 for θi.

HARDWARE IMPLEMENTATION BASED
ON LaCSNN

To the best of our knowledge, there are no works on
FPGA implementation for cerebellar PC model based on H–
H form. The detailed implementation method is described in
the following.

In order to be implemented on a digital system, the differential
equations of the Purkinje model should be solved with the
Euler method. The Euler method is suitable for hardware
implementation with its easy operation and adequate precision.
The discretization results with a mathematical finite-difference
method are shown as follows, Equation (7) is for membrane
potential and Equation (8) shows the results of other variables:

V
[

k+ 1
]

= V
[

k
]

+







gkn
4
(

V
[

k
]

− Ek
)

− gNam∞
3h

(

V
[

k
]

− ENa
)

−gCac
2
(

V
[

k
]

− ECa
)

−gMM
(

V[k]− EM
)

− gL
(

V
[

k
]

− EL
)

− I
}∗(

1t

C
)

(7)


















h
[

k+ 1
]

= h
[

k
]

+
h∞−h[k]

τh

∗
1t

n
[

k+ 1
]

= n
[

k
]

+
n∞−n[k]

τn

∗
1t

c
[

k+ 1
]

= c
[

k
]

+
(

α∗
c

(

1− c
[

k
])

− β∗
c

[

k
])∗

1t

M
[

k+ 1
]

= M
[

k
]

+
(

α∗
M

(

1−M
[

k
])

− β∗
MM

[

k
])∗

1t

(8)

where k is the iterations and 1t is the time step for the
Euler method. Generally speaking, the precision is inversely
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FIGURE 5 | The voltage activities of original model and the modified CORDIC model.

proportional to the value of the time step, and in this work,
the time step is set to be 0.004ms, which is the same
in Traub et al. (2003).

Since floating-point operations take up a lot of resources
and require a long calculation time, the FPGA implementation
usually uses fixed-point calculations under the premise of
meeting the computing needs. The bit width of fixed-point
calculation is another important factor affecting precision or even
implementation result besides the time step. The selection of bit
width can be divided into an integer part and a fractional part,
which can be estimated according to the software simulation
results. For example, the range of V in this work is−60 to 40mV,
so the integer part should be 7 at least for 27/2 > | − 60|. If
we need the precision to be 0.001, the bit width of the fractional
part that directly determines it should be 10. In the calculation
process of this work, the range of most variables is from −100
to 100, so the bit width of the integer part for most logical
operation modules is 8. It should be pointed out that one of
the variables reached 8,000 in the process of calculating h∞, so
the bit width of the integer part for related logical operation
modules is 14. In order to guarantee the precision of spiking
and dynamics, the bit width of the fractional part is chosen
to be 15.

In this work, all of the variables including V, n, h, c, and
M in Equations (7) and (8) are designed to be realized with
pipeline structures. The overall pipeline schematic is shown in
Figure 1. There are two parts for one pipeline structure, the
“Pipeline” includes all the calculations in Equations (7) and (8)
and the “Buf” consists of a certain number of buffers to store
the calculation results for each variable. This implementation
method can improve the throughout and calculation efficiency
of the LaSCNN system.

It is well-known that one of the factors limiting the size of
the network implemented on the FPGA is the limited multiplier
and memory resources. Due to most of the resources on FPGA is
logic resources, all the multiplication, division, and exponential
operations are replaced by adders and shifters in this work.
The division and exponential operations are implemented with
the CORDIC method as described in section Neuron Model
and the multiplications are implemented through two methods,
which are more efficient than the CORDIC algorithm. On one
hand, we can only use shifters and adders for the multiplications
with a constant multiplicand. The main idea of this method is

decomposing the constant into a summation of several (−1)k2n

with different values of k and n and shifting the multiplier
according to the values. k is 0 or 1, which determines the sign
bit and the absolute value of n determines the number of bits
that the multiplier need to be shifted. The direction of shifting
is decided by the sign bit of n. If n is negative, the multiplier
needs to be shifted to the left; if n is positive, the multiplier
needs to be shifted to the right. On the other hand, the rest
of multiplications are realized with functional shift multipliers
(FSMs) with the structure shown in Figure 2. As we can see, one
of the variables is split into single bits through a bus splitter and
output to the multiplexers as enable signals. That is, if a bit of
this variable is 0, the output of the corresponding multiplexer is
0; if a bit of this variable is 1, the output of the corresponding
multiplexer will be the value of the other variable after shifting.
The number of shifters is related to the bit position of the
previous variable. Finally, add all the values from multiplexers
and then the multiplication result can be obtained. It is worth
noting that there is always one slow variable in a multiplication
and splitting this variable is a better choice when using FSMs.
Due to each additional bit of an FSM consumes a shifter and a
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multiplexer, all the FSMs used in this work are designed to fit
the inputs in order to minimize the use of logical resources. The
overall bit width is between 13 and 18.

Besides, when implementing the exponential operations with
the CORDIC algorithm, we find that the iterative structure of X
and Y is very similar, so we merge the two iterations and then
the iterative Equation (4) becomes like Equation (9), which can
save about one-third of the logical resources without changing
the results. Under the premise of ensuring accuracy, the iterations
of CORDIC is set to 20 for division and 10 for exponential
operations in this work.

{

Xi+1 = Xi + qiXi · 2
−i

Zi+1 = Zi − qi · tanh
−1 (

2−i
) (9)

The schematic diagram of dataflow for V is shown in Figure 3.
Figure 3A shows the data flow of V with ionic currents and
external current in the modified model. The detailed structures
for the ionic currents are shown in Figures 3B–F. The schematic
diagrams for the other four variables and the CORDIC algorithm
are shown in Figure 4. Figure 4A is the structure for c and
M and Figure 4B is for h and n. Due to space limitations,
we only give a typical example for CORDIC-based non-linear
function that includes all the compartments used in other
functions in the Figure 4C. Figures 4D–F show the detailed
structure for non-linear operations realized with the CORDIC
algorithm. For the sake of simplicity, the figures only give
the structure for one iteration of each operation and it will
need several same structures with different values of “shift” for
realizing the calculation. There is no LUTs and multipliers in
all the designs so we can get a non-multiplier and non-LUT
implementation through this method, which has potential for
large-scale cerebellum realization on LaCSNN.

RESULTS

Comparison of Software Simulation
Results
The original and CORDIC-based cerebellar Purkinje model are
both simulated withMATLAB v2014a. The time step for software
simulation is 0.004ms. The membrane potential waveforms of

TABLE 2 | The value of RMSE and mAE of non-linear function realized with

CORDIC.

CORDIC functions RMSE mAE

n∞ 0.0013 0.0098

τn 0.0010 0.0068

h∞ 8.80 × 10−4 0.0073

τh 0.0012 0.0102

m∞ 0.0013 0.0082

αc 0.0012 0.0146

βc 0.0015 0.0299

αM 1.42 × 10−5 1.28 × 10−4

βM 5.22 × 10−5 4.29 × 10−4

two models are shown in Figure 5. As shown in the figure and
taking the original model as an example, the burst activity with
increasing amplitude can be seen when I = −25 (Bursting I).
With the decrease of I, the interburst intervals decrease and
the bursting becomes more durable (Bursting II). When I =

−33.09485 (I′), a value in the critical region, the voltage activity
presents bursts interspersed with amplitude modulation, which
is the new type of activity founded in Kramer et al. (2008). The
continuous decrease of I will make bursting disappear gradually,
from the only spiking amplitude modulation (I = −33.1) to
the complete fast spiking (I < −33.2). The CORDIC model can
successfully reproduce the same voltage activities as performed
in the original model but with different values of I. That is caused
by the differences of the non-linear function realized with two
different methods. There are inevitable errors of the CORDIC
algorithm due to the iterative operations, but it will not affect
overall results and can meet our requirements. To show it clearly,
the detailed spiking waveforms for fast spiking of the two models
are shown in Figure 6. We can see that there exists a certain but
small difference in spiking interval and the disparity of amplitude
is also limited.

FIGURE 6 | The spikes under fast spiking mode of the two models. The blue

lines and red lines are for original model and the CORDIC model, respectively.

The solid lines represent the spike waveform. The dash lines show the spike

moment and the black one shows the synchronous spike moment of the two

models. Horizontal arrows represent spiking intervals.

TABLE 3 | The value of ERRt and Corr of five different types of spikes.

Spike type ERRt Corr

Bursting I 0.0011 0.9980

Bursting II 0.0006 0.9890

Bursting with amplitude modulation 0.0037 0.9835

Amplitude modulation 0.0041 0.9922

Fast spiking 0.0005 0.9817
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FIGURE 7 | The curve and absolute error of nine nonlinear functions. The top panel of each figure is the function curve and the bottom panel of each figure is the

absolute error. Blue lines represent the original nonlinear functions and red lines represent the CORDIC functions. (A–I) Represents n∞, τn, h∞, τh,αc,βc,αM,βM,

and m∞ in order.

Error Analysis
In order to evaluate the CORDIC model more accurately, we
use different methods to quantify the error between the two
models to get a more comprehensive understanding of the
CORDIC model. The detailed description of the method is
as follows.

1) Maximum absolute error (mAE):

The absolute error (AE) is defined as the difference between the
absolute values of the voltage of the two models. The maximum

absolute error is defined as the difference between the voltage
maximum absolute values of the two models. The two indexes
can be calculated with the following equation:

{

AE (i) = |Fori (i) − FCORDIC (i)| , i = 1, 2, . . . ,N
mAE = max (|Fori (i) − FCORDIC (i)|) , i = 1, 2, . . . ,N

(10)

where Fori(i) represents the relevant value of the original model
and the FCORDIC(i) represents the relevant value of the CORDIC
model. The symbol |·| is used to get the absolute value and the
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FIGURE 8 | Comparison of the dynamics between the original model (A) and

the CORDIC model (B) with I = I′. The “FP” and “LC” represent fixed points

and limit cycles, respectively.

max(·) is used to get the maximum value. In order to get the error
of the CORDIC algorithm in detail, we calculated the mAE of
all nine non-linear functions realized by the CORDIC algorithm
under a complete spiking waveform for a more convincing effect.
The values are summarized in Table 2.

2) Root mean square error (RMSE):

The root mean square error is a typical measurement index
for two value differences and very sensitive to very large or very
small errors. We also calculate the RMSEs of all nine non-linear
functions with the equation below and summarized in Table 2.

RSME =

√

√

√

√

1

N

N
∑

i−1

(Fori(i)− FCORDIC(i))
2 (11)

3) Error of spikes’ timing (ERRt):

The error of spikes’ timing reflects the difference in spiking
interval between the two models. It can not only directly reflect
the difference in spiking periodicity but also indirectly reflect the
difference in the shape of the spiking waveform. To calculate

the spiking interval, we should find a synchronous spike at first
just as Figure 5. Then, measure the time interval between the
synchronous spike and the previous or next spike. The error can
be calculated as follows:

{

ERRt = |
1TCORDIC−1Tori

1Tori
|

1T = tsyn − tpre or 1T = tnex − tsyn
(12)

where 1TCORDIC represents the spiking time interval of the
CORDIC model and the 1Tori represents the spiking time
interval of the original model.

4) Correlation coefficient (Corr):

The correlation coefficient is an amount of linear correlation
between the two groups of data. For the spiking waveforms of the
two kinds of neurons, the larger the correlation coefficient is, the
more similar the two waveforms are, and the maximum value of
Corr is 1. As shown in Equation (13), the Corr is generally defined
as the ratio of covariance to variance product of two sets of data.
The covariance and the variance of the two sets of data can be
obtained by Equation (14).

Corr =
cov(Vori, VCORDIC)

σ (Vori)σ (VCORDIC)
(13)











cov (Vori, VCORDIC)

=
∑n

i=1

(

Vori (i) − Vori

) (

VCORDIC (i) − VCORDIC

)

σ (V) =

√

∑n
i−1 (V(i)− V)

2
(14)

We calculate the ERRt at 20 different times and take the average
as the final value and the Corr is calculated with the membrane
voltage values 6ms (about 3–4 complete spiking) after the start of
spiking synchronization. Both the two indexes are measured with
five spiking modes and the values are summarized in Table 3.
It can be seen from the table that the ERRt of the five spiking
modes are <0.005, which indicates that the difference between
the spiking intervals is small. In addition, the Corr of the five
discharge modes is also around 0.99, which indicates that the
spiking waveform is very similar.

The curves of the nine non-linear functions of the original
model and CORDICmodel are shown in Figure 7 with the shape
of AE below. As can be seen from Figure 7 and the two tables, the
model implemented using the CORDIC algorithm has very small
errors calculated by various methods and can meet the needs for
building spiking neurons.

Dynamic Analysis
In order to evaluate the difference between the two models
more comprehensively, we learn and compare the dynamical
mechanisms in different discharge modes. Because small errors
can cause large differences in dynamical diagrams, it is a good
way tomeasuremodel consistency. Formore convincing, we have
implemented the dynamic mechanisms in Kramer et al. (2008):
the bifurcation diagrams of voltage V and the slow variableM.

The simulation results of the entire system and its associated
bifurcation diagram for bursting with amplitude modulation are
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FIGURE 9 | The dynamic of the original model (left) and CORDIC model (right) for bursting, amplitude modulation, and fast spiking.

shown in Figure 8A, which is obtained from the original model,
and Figure 8B, which is from the CORDIC-based model. For
a clearer description, the portion of the M-current at (0.483,
0.546) mV is referred to as the fast subsystem. When the M-
current is reduced to less than the voltage at fold of fixed
points in the fast subsystem, the rapid discharge begins and
the attracting and repelling fixed points are also merged at this
point. After that, the voltage increases rapidly and the system
enters the fast subsystem along the attraction curve of the limit
cycle. During this period, the M-current gradually increases
until it reaches a fold of limit cycles in the fast subsystem.
Finally, the M-current decreases, and the dynamics of the system
temporarily follows the repelling branch of limit cycles until
the return fixed points (light gray) or limit cycles. It can be
seen from the figure that the small errors of CORDIC make
the shapes of the two figures slightly different, but the CORDIC
models can still reproduce the results in the original paper
very well.

Figure 9 shows the other three bifurcation diagrams for

bursting, amplitude modulation, and fast spiking. M-current

and calcium current play major roles in the switching
of the spiking mode. When the hyper-polarization due to
the M-current works (I < I′), the bursting occurs due
to the victory of hyperpolarization, then the cell enters
the stationary phase of bursting and spiking stops. When
the calcium current works, its depolarizing effect prevents
the hyperpolarization. Then, the stationary phase no longer
appears, with the amplitude modulation spiking instead. As
I continues to decrease, there only exists fast spiking. There
are still small differences in these figures, but they are

also able to reproduce the dynamical mechanisms that the
cell follows.

Network Behavior
In this section, we present a network of two coupled PCs to verify
the proposed method. The two PCs (Vpre and Vpost) are all in the
form of Equation (1) each with an extra added synaptic current
Isyn. The pre-PC is set to an excitatory cell and the post-PC is
set to an inhibitory cell. The pre one receives excitatory current
Isyn_postthrough GABAA receptors and the post one receives
inhibitory current Isyn_pre through AMPA receptors. The detailed
synaptic current is shown as follows:











dz
dt

=
1+tanh( V10 )

2
1−z
τ1

− z
τ2

Isyn_pre =Wzpre(Vpost − Vinh)
Isyn_post = Wzpost(Vpre − Vex)

(15)

whereW is neuron connection weight, z is the synaptic activation
variable, and τ1 and τ2 are time delay constants, which for
GABAA receptors are 0.5, 10 and for AMPA receptors are
0.2, 2, respectively. The other parameter values are: W = 0.5,
Vex= 0, Vinh = −50, I for pre and post cell is −25 and
−34, respectively.

The simulation results are shown in Figure 10. When the
two neurons are uncoupled, they both present the spike mode
according to the value of I, bursting mode for the pre cell with
I = −25, and fast spiking mode for the post cell with I = −34.
When the two neurons are coupled, the bursting period of the
pre cell becomes longer due to the excitatory synaptic current and
the spiking mode of the post cell turns into bursting due to the
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FIGURE 10 | The network behavior of the original model (left) and the CORDIC model (right).

inhibitory synaptic current. It is worth mentioning that the peak
value of each spike changes with time due to the interaction of
the two neurons, and the dynamic behavior shows corresponding
changes. We can see from Figure 10 that no matter the spiking
behaviors or the dynamic behaviors, the original model and
the CORDIC model show a high degree of consistency, which
indicates that the proposed method is also applicable for the
neural network.

Hardware Implementation Result
The modified CORDIC cerebellar Purkinje model is built
with the DSP Builder aided design toolbox in Simulink and
then transformed to VHLD hardware language that can be
compiled in Quartus II and downloaded to the LaCSNN
system through USB-Blaster with Joint Test Action Group
(JTAG) mode. In order to facilitate observation, the digital
outputs from FPGA are transmitted to analog signals through
a 16-bit dual-channel DA converter. The converter is also

connected to an oscilloscope where the voltage activity of the
model can be observed directly. The LaCSNN system and the
voltage activity on the oscilloscope screen are both shown in
Figure 11. The x-label and the y-label represent the time and
voltage, respectively.

The comparison of the software simulation results and
the FPGA implementation results for voltage activity is
shown in Figure 12. To clearly present the difference between
the two results, we give a partial spiking waveform. The
overall shape of the voltage is the same, but the period and
amplitude are different. The main reason is the usage of
the approximation method and the fixed-point calculation
on the hardware. The bifurcation diagrams for bursting,
amplitude modulation, fast spiking, and bursting with
amplitude modulation of the two simulation methods
are shown in Figure 13; for the same reason, the basic
shape of these diagrams is the same but the voltage values
have deviations.
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FIGURE 11 | The hardware implementation results of the CORDIC cerebellar

Purkinje cell on the LaCSNN system. The x-label is time with 100 ms/cell and

the y-label is voltage with 50 mV/cell. (A) The LaCSNN system and the

oscilloscope. (B) The membrane potential of “Bursting I” mode. (C) The

membrane potential of “Bursting II” mode. (D) The membrane potential of

“Bursting with amplitude modulation” mode. (E) The membrane potential of

“Amplitude modulation” mode. (F) The membrane potential of “Fast spiking”

mode.

FIGURE 12 | The detailed spiking shape of software simulation and hardware

implementation under the fast spiking mode. The blue line represents the

software simulation result and the red line represents the hardware

implementation result.

The resource utilization, working frequency, and power
dissipation of the original and CORDIC model are summarized
in Table 4. Due to the unroll iteration structure and a mass
of multiplications, the logical elements used by the CORDIC
model is more than the original model. However, the memory
bits used by LUTs and the DSP block 18-bit elements used by
multipliers can be reduced to zero. The power dissipation is
a little more also due to the unroll iteration structure. For a
clearer explanation, the same contents of the key algorithm of
this method are summarized in Table 5. Comparing the three
key algorithms, we can conclude that the FSM is more efficient

than the CORDIC with less logic resources and high working
frequency, which is why we do not use the CORDIC algorithm
to realize multiplications. With the number of iteration increases
(20 for division and 10 for exponent), the working frequency
decreases due to the iterative structure, which affects the working
frequency of the entire model. More importantly, it is obvious
that there’s no need for memory and multiplier resources for
realizing the non-linear operations with high frequency and low
power dissipation. It proves that, through this method, we can
efficiently convert memory resources and multiplier resources
into logical resources, which is of great significance to maximize
the use of FPGA on-chip resources and improve the scale of
neural network implementation.

DISCUSSION

There is a bottleneck for realizing a large-scale neural network
with high biological precision neurons such as the model in this
paper based on the H–H neuronmodel. These models have many
conductance-based ionic currents that usually contain many
non-linear functions and greatly increase the computational
complexity. To solve this problem, many previous studies are
working on FPGA resource optimization for spiking neurons
with different methods (Ahmadi and Zwolinski, 2010; Bonabi
et al., 2014; Hayati et al., 2016; Akbarzadeh-Sherbaf et al., 2018).
Ahmadi and Zwolinski (2010) propose a method with PWL
approximation for implementing the Izhikevichmodel. The non-
linear operations in the model are only multiplications for there
are no detailed ionic currents. The model complexity is relatively
simple so the reference meaning for building high biological
precision neurons is limited. Bonabi et al. (2014) implement an
H–H-based model and a two-mini-column network with the
CORDIC algorithm but it is only used for calculating exponent
operations, but there are still some things to do to implement
a large-scale neural network, because the multiplication and
division operations account for a large proportion of the model
and they still need multipliers and memory resources. Besides,
there is no simplification for the iterative structure as we have
done. Akbarzadeh-Sherbaf et al. (2018) use a general PWL
approach to implement a randomly connected network with
H–H models. If we just focus on one H–H model, the PWL
approach can successfully realize the non-linear functions and
improve the working frequency, but the precision is lower
than the CORDIC algorithm for a sharp curve will certainly
appear at the junction of the two linear sections. Besides, the
approximate range of each linear part is only applicable to that
set by the designer, so the linearization must be redesigned each
time the model changes, and any unexpected values may get
unexpected behaviors. As for the GPU platform, there may not
be many researches on implementing a single neuron on it,
but many researches have been carried on for the comparison
between GPUs and FPGAs about implementing spiking neural
networks (Cheung et al., 2012, 2016; Luo et al., 2016). The results
show that GPUs can speed up the simulations with multi-core
processors and parallel computing capacity, but compared to
FPGA, two obvious cons still exist. One is the small on-chip
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FIGURE 13 | The dynamic behavior of software simulation and hardware implementation under bursting, amplitude modulation, fast spiking, and bursting with

amplitude modulation mode. The blue line represents the software simulation results and the red line represents the hardware implementation results.

memory and bandwidth, which limits the scale, the other is
the high-power consumption of the desktop system. Besides,
the calculation speed of GPUs is also lower than FPGAs in
these works.

In order to save multiplier resources on FPGA, many
multiplier-less methods have been proposed with different
application ranges. Both Jokar and Soleimani (2017) and Hayati
et al. (2016) propose a multiplier-less structure with the PWL
approach that needs to linearize each function that contains
multiplication of variables. The multiplier-less implementation
in Agostini et al. (2005) and Gomar and Ahmadi (2014) are
simple for there are all constant number multiplications in their
models, which can be easily replaced by adders and shifters.
Thomas and Luk (2013) replace the multipliers with LUTs and

block RAMs, which use more LUT resources to save multiplier
resources. Our work presents an FSM, which is common to all
multiplication operations and easy to use. With this method,
users do not need to redesign the whole approximation using
the PWL approach, and all of the multiplications can be realized
just by adjusting the supported bit width, even simpler than
the method implementing the constant number multiplications.
The working frequency of the FSM is 195.92 MHz as shown
in Table 5, so the lower working frequency of the cell model
compared to the model mentioned above is only due to the
unavoidable iterative structure of the CORDIC algorithm and the
complexity of this model.

This paper presents a multiplier-less and LUT-less CORDIC
method to realize the conductance-based cerebellar Purkinje
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TABLE 4 | The resource utilization of hardware implementation for the two kinds

of models on Altera Stratix III EP3SL340H1152C2.

FPGA

resources

Total

available

Original

model

Modified

model

Total logical

elements

270,400 1,821 43,543

Dedicated

logical

registers

270,400 520 468

Total pins 744 29 29

Total memory

bits

16,662,528 307,200 0

DSP block

18-bit

elements

576 236 0

Total PLLs 4 1 1

Max

frequency

– 28.15 MHz 53.44 MHz

Total power

dissipation

– 275.40 mW 445.91 mW

TABLE 5 | The resource utilization of hardware implementation for CORDIC

algorithm and FSM on Altera Stratix III EP3SL340H1152C2.

FPGA

resources

Total

available

CORDIC-

Exponent

CORDIC-

Division

14-bit FSM

Total

logical

elements

270,400 644 1,222 303

Dedicated

logical

registers

270,400 565 537 0

Total pins 744 20 20 20

Total

memory

bits

16,662,528 0 0 0

DSP block

18-bit

elements

576 0 0 0

Total PLLs 4 0 0 0

Max

frequency

– 120.45

MHz

73.44 MHz 195.92 MHz

Total

power

dissipation

– 159.23

mW

164.81

mW

158.62 mW

model on FPGA. This can be used for the trade-off among logic
resources, memory resources, and multiplier resources, which
can be adopted to make full use of the FPGA resources to build a
large-scale neural network. All of the calculation modules in our

work, the FSM, CDI, and ECEXP, can be directly used for any
other models without any extra operation. Besides, the modified
pipelined parallel CORDIC algorithm can significantly reduce
the resource consumption and the complexity of the hardware
implementation architecture.

CONCLUSION

In this work, we present an efficient implementation of a
modified cerebellar PC using the CORDIC algorithm with
recently found new dynamic performance. Through the analysis
of various errors of the two single-neuron models and the
comparison of waveforms and network behaviors from different
aspects, it can be concluded that the original model and the
CORDIC-based model are consistent in biological activities and
dynamic mechanisms. After that, we use the non-multiplier
and non-LUT methods and implement the CORDIC model on
the LaCSNN system. The implementation results are observed
on the oscilloscope through the DA conversion module, which
are also consistent with the results of the software simulation.
By comparing the resource utilization of the original model
and the CORDIC model in FPGA implementation, we can
conclude that the method used in this paper can transform the
use of multiplier resources and memory resources into logical
resources, so as to maximize the utilization of FPGA on-chip
resources and expand the network scale that can be achieved.
This work provides an effective method for realizing large-scale
spiking neural networks of cerebellum or many other spiking
neural networks on FPGAs.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
manuscript/supplementary files.

AUTHOR CONTRIBUTIONS

XH, SY, XW, JW, BD, and GY made significant contributions
to the conception and design of manuscripts and the drafting of
manuscripts, as well as critical changes to important intellectual
content. All authors have approved publications in their current
form. All authors agree to be responsible for all aspects of the
work to ensure proper investigation and resolution of issues
related to the accuracy or completeness of any part of the work.

FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant Nos. 61771330 and 61871287).

REFERENCES

Agostini, L. V., Porto, R. C., Bampi, S., and Silva, I. S. (2005). “A FPGAbased design

of a multiplierless and fully pipelined JPEG compressor,” in DSD 2005: 8th

Euromicro Conference on Digital System Design, Proceedings (Porto), 210–213.

doi: 10.1109/DSD.2005.6

Ahmadi, A., and Zwolinski, M. (2010). “A modified Izhikevich model for

circuit implementation of spiking neural networks,” in IEEE Latin American

Frontiers in Neuroscience | www.frontiersin.org 14 October 2019 | Volume 13 | Article 107820

https://doi.org/10.1109/DSD.2005.6
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hao et al. Efficient Implementation of Purkinje Cell

Symposium on Circuits and Systems (LASCAS) (Foz do Iguacu), 192–195.

doi: 10.1109/LASCAS.2010.7410243

Akbarzadeh-Sherbaf, K., Abdoli, B., Safari, S., and Vahabie, A. H. (2018). A

scalable FPGA architecture for randomly connected networks o Hodgkin-

Huxley neurons. Front. Neurosci. 12:698. doi: 10.3389/fnins.2018.00698

Ambroise,M., Levi, T., Bornat, Y., and Saighi, S. (2013). “Biorealistic spiking neural

network on FPGA,” in 2013 47th Annual Conference on Information Sciences

and Systems (CISS) (Baltimore, MD).

Bao, S. W., Chen, L., Kim, J. J., and Thompson, R. F. (2002). Cerebellar cortical

inhibition and classical eyeblink conditioning. Proc. Natl. Acad. Sci. U.S.A. 99,

1592–1597. doi: 10.1073/pnas.032655399

Blazquez, P.M., Hirata, Y., Heiney, S. A., Green, A.M., andHighstein, S.M. (2003).

Cerebellar signatures of Vestibulo-Ocular reflex motor learning. J. Neurosci. 23,

9742–9751. doi: 10.1523/JNEUROSCI.23-30-09742.2003

Bonabi, S. Y., Asgharian, H., Bakhtiari, R., Safari, S., and Ahmadabadi, M. N.

(2012). “FPGA implementation of Hodgkin-Huxley neuron model,” in IJCCI

(Barcelona), 522–528.

Bonabi, S. Y., Asgharian, H., Safari, S., and Ahmadabadi, M. N. (2014). FPGA

implementation of a biological neural network based on the Hodgkin-Huxley

neuron model. Front. Neurosci. 8:379. doi: 10.3389/fnins.2014.00379

Cheung, K., Schultz, S. R., and Luk, W. (2012). “A large-scale spiking

neural network accelerator for FPGA systems,” in International Conference

on Artificial Neural Networks (Berlin; Heidelberg: Springer), 113–120.

doi: 10.1007/978-3-642-33269-2_15

Cheung, K., Schultz, S. R., and Luk, W. (2016). NeuroFlow: a general purpose

spiking neural network simulation platform using customizable processors.

Front. Neurosci. 9:516. doi: 10.3389/fnins.2015.00516

De Schutter, E., and Bower, J. M. (1994a). An active membrane model of the

cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol.

71, 401–419. doi: 10.1152/jn.1994.71.1.401

De Schutter, E., and Bower, J. M. (1994b). An active membrane model of the

cerebellar Purkinje cell. I. Simulation of current clamps in slice. J. Neurophysiol.

71, 375–400. doi: 10.1152/jn.1994.71.1.375

Doya, K. (2000). Complementary roles of basal ganglia and cerebellum

in learning and motor control. Curr. Opin. Neurobiol. 10, 732–739.

doi: 10.1016/S0959-4388(00)00153-7

Garcia, E. O., Cumplido, R., and Arias, M. (2006). “Pipelined CORDIC design

on FPGA for a digital sine and cosine waves generator,” in 2006 3rd

International Conference on Electrical and Electronics Engineering (Veracruz),

1–4. doi: 10.1109/ICEEE.2006.251917

Gilbert, P. F., and Thach,W. T. (1977). Purkinje cell activity duringmotor learning.

Brain Res. 128, 309–328. doi: 10.1016/0006-8993(77)90997-0

Gomar, S., and Ahmadi, A. (2014). Digital multiplierless implementation of

biological adaptive-exponential neuron model. IEEE Trans. Circuits Syst. I 61,

1206–1219. doi: 10.1109/TCSI.2013.2286030

Han, I. S. (2005). “Biologically plausible VLSI neural network implementation

with asynchronous neuron and spike-based synapse,” in IEEE IJCNN

(Montreal, QC), 3244–3248.

Han, V. Z., Grant, K., and Bell, C. C. (2000). Reversible associative depression

and nonassociative potentiation at a parallel fiber synapse.Neuron 27, 611–622.

doi: 10.1016/S0896-6273(00)00070-2

Hayati, M., Nouri, M., Abbott, D., and Haghiri, S. (2016). Digital multiplierless

realization of two-coupled biological hindmarsh-rose neuron model. IEEE

Trans. Circuits Syst. II 63, 463–467. doi: 10.1109/TCSII.2015.2505258

Heck, D. H., Thach, W. T., and Keating, J. G. (2007). On-beam synchrony in the

cerebellum as the mechanism for the timing and coordination of movement.

Proc. Natl. Acad. Sci. U.S.A. 104, 7658–7663. doi: 10.1073/pnas.0609966104

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hsieh, H. Y., and Tang, K. T. (2012). VLSI implementation of a bio-inspired

olfactory spiking neural network. IEEE Trans. Neural Netw. Learn. Syst. 23,

1065–1073. doi: 10.1109/TNNLS.2012.2195329

Igarashi, J., Shouno, O., Fukai, T., and Tsujino, H. (2011). Real-time simulation

of a spiking neural network model of the basal ganglia circuitry using general

purpose computing on graphics processing units. Neural Netw. 24, 950–960.

doi: 10.1016/j.neunet.2011.06.008

Ito, M., and Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje

cell transmission induced by conjunctive stimulation of parallel fibers

and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33, 253–258.

doi: 10.1016/0304-3940(82)90380-9

Jokar, E., and Soleimani, H. (2017). Digital multiplierless realization of a

calcium-based plasticity model. IEEE Trans. Circuits Syst. II 64, 832–836.

doi: 10.1109/TCSII.2016.2621823

Julian, P., Desages, A., and Agamennoni, O. (1999). High-level canonical piecewise

linear representation using a simplicial partition. IEEE Trans. Circuits Syst. I 46,

463–480. doi: 10.1109/81.754847

Khaliq, Z. M., Gouwens, N. W., and Raman, I. M. (2003). The contribution of

resurgent sodium current to high-frequency firing in Purkinje neurons:

an experimental and modeling study. J. Neurosci. 23, 4899–4912.

doi: 10.1523/JNEUROSCI.23-12-04899.2003

Kramer, M. A., Traub, R. D., and Kopell, N. J. (2008). New dynamics

in cerebellar Purkinje cells: torus canards. Phys. Rev. Lett. 101:068103.

doi: 10.1103/PhysRevLett.101.068103

Lee, B., and Burgess, N. (2003). “Some results on Taylor-series function

approximation on FPGA,” in Asilomar Conference on Signals, Systems and

Computers, 2198–2202. doi: 10.1109/ACSSC.2003.1292370

Leiner, H. C., Leiner, A. L., and Dow, R. S. (1993). Cognitive and language

functions of the human cerebellum. Trends Neurosci. 16, 444–447.

doi: 10.1016/0166-2236(93)90072-T

Liu, Y. D., Fan, L. H., and Ma, T. Y. (2014). A modified CORDIC FPGA

implementation for wave generation. Circuits Syst. Signal Process. 33, 321–329.

doi: 10.1007/s00034-013-9638-8

Llinas, R. R. (2009). Inferior olive oscillation as the temporal basis for motricity

and oscillatory reset as the basis for motor error correction. Neuroscience 162,

797–804. doi: 10.1016/j.neuroscience.2009.04.045

Luo, J. W., Coapes, G., Mak, T., Yamazaki, T., Tin, C., and Degenaar, P. (2016).

Real-time simulation of passage-of-time encoding in cerebellum using a

scalable FPGA-based system. IEEE Trans. Biomed. Circuits Syst. 10, 742–753.

doi: 10.1109/TBCAS.2015.2460232

Masuda, N., and Amari, S. I. (2008). A computational study of synaptic

mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex

learning. J. Comput. Neurosci. 24, 137–156. doi: 10.1007/s10827-007-0045-7

Medina, J. F., Nores, W. L., Ohyama, T., and Mauk, M. D. (2000). Mechanisms of

cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10,

717–724. doi: 10.1016/S0959-4388(00)00154-9

Miall, R. C., Imamizu, H., and Miyauchi, S. (2000). Activation of the cerebellum

in co-ordinated eye and hand tracking movements: an fMRI study. Exp. Brain

Res. 135, 22–33. doi: 10.1007/s002210000491

Middleton, S. J., Racca, C., Cunningham,M. O., Traub, R. D., Monyer, H., Knopfel,

T., et al. (2008). High-frequency network oscillations in cerebellar cortex.

Neuron 58, 763–774. doi: 10.1016/j.neuron.2008.03.030

Miyasho, T., Takagi, H., Suzuki, H.,Watanabe, S., Inoue, M., Kudo, Y., et al. (2001).

Low-threshold potassium channels and a low-threshold calcium channel

regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a

modeling study. Brain Res. 891, 106–115. doi: 10.1016/S0006-8993(00)03206-6

Muñoz, D. M., Sanchez, D. F., Llanos, C. H., and Ayala-Rincón, M. (2010).

“FPGA based floating-point library for CORDIC algorithms,” in 2010 VI

Southern Programmable Logic Conference (SPL) (Ipojuca: IEEE), 55–60.

doi: 10.1109/SPL.2010.5483002

Paulin, M. G. (1993). The role of the cerebellum in motor control and perception.

Brain Behav. Evol. 41, 39–50. doi: 10.1159/000113822

Pleger, B., and Timmann, D. (2018). The role of the human cerebellum in

linguistic prediction, word generation and verbal working memory: evidence

from brain imaging, non-invasive cerebellar stimulation and lesion studies.

Neuropsychologia 115, 204–210. doi: 10.1016/j.neuropsychologia.2018.03.012

Schmahmann, J. D., and Caplan, D. (2006). Cognition, emotion and the

cerebellum. Brain 129, 290–292. doi: 10.1093/brain/awh729

Soleimani, H., Ahmadi, A., and Bavandpour, M. (2012). Biologically inspired

spiking neurons: piecewise linear models and digital implementation. IEEE

Trans. Circuits Syst. I 59, 2991–3004. doi: 10.1109/TCSI.2012.2206463

Thach, W. T., Goodkin, H., and Keating, J. (1992). The cerebellum and the

adaptive coordination of movement. Annu. Rev. Neurosci. 15, 403–442.

doi: 10.1146/annurev.ne.15.030192.002155

Frontiers in Neuroscience | www.frontiersin.org 15 October 2019 | Volume 13 | Article 107821

https://doi.org/10.1109/LASCAS.2010.7410243
https://doi.org/10.3389/fnins.2018.00698
https://doi.org/10.1073/pnas.032655399
https://doi.org/10.1523/JNEUROSCI.23-30-09742.2003
https://doi.org/10.3389/fnins.2014.00379
https://doi.org/10.1007/978-3-642-33269-2_15
https://doi.org/10.3389/fnins.2015.00516
https://doi.org/10.1152/jn.1994.71.1.401
https://doi.org/10.1152/jn.1994.71.1.375
https://doi.org/10.1016/S0959-4388(00)00153-7
https://doi.org/10.1109/ICEEE.2006.251917
https://doi.org/10.1016/0006-8993(77)90997-0
https://doi.org/10.1109/TCSI.2013.2286030
https://doi.org/10.1016/S0896-6273(00)00070-2
https://doi.org/10.1109/TCSII.2015.2505258
https://doi.org/10.1073/pnas.0609966104
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/TNNLS.2012.2195329
https://doi.org/10.1016/j.neunet.2011.06.008
https://doi.org/10.1016/0304-3940(82)90380-9
https://doi.org/10.1109/TCSII.2016.2621823
https://doi.org/10.1109/81.754847
https://doi.org/10.1523/JNEUROSCI.23-12-04899.2003
https://doi.org/10.1103/PhysRevLett.101.068103
https://doi.org/10.1109/ACSSC.2003.1292370
https://doi.org/10.1016/0166-2236(93)90072-T
https://doi.org/10.1007/s00034-013-9638-8
https://doi.org/10.1016/j.neuroscience.2009.04.045
https://doi.org/10.1109/TBCAS.2015.2460232
https://doi.org/10.1007/s10827-007-0045-7
https://doi.org/10.1016/S0959-4388(00)00154-9
https://doi.org/10.1007/s002210000491
https://doi.org/10.1016/j.neuron.2008.03.030
https://doi.org/10.1016/S0006-8993(00)03206-6
https://doi.org/10.1109/SPL.2010.5483002
https://doi.org/10.1159/000113822
https://doi.org/10.1016/j.neuropsychologia.2018.03.012
https://doi.org/10.1093/brain/awh729
https://doi.org/10.1109/TCSI.2012.2206463
https://doi.org/10.1146/annurev.ne.15.030192.002155
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hao et al. Efficient Implementation of Purkinje Cell

Thomas, D. B., and Luk, W. (2013). Multiplierless algorithm for multivariate

Gaussian random number generation in FPGAs. IEEE Trans. VLSI Syst. 21,

2193–2205. doi: 10.1109/TVLSI.2012.2228017

Traub, R. D., Buhl, E. H., Gloveli, T., andWhittington, M. A. (2003). Fast rhythmic

bursting can be induced in layer 2/3 cortical neurons by enhancing persistent

Na+ conductance or by blocking BK channels. J. Neurophysiol. 89, 909–921.

doi: 10.1152/jn.00573.2002

Valls, J., Kuhlmann, M., and Parhi, K. K. (2002). Evaluation of CORDIC

algorithms for FPGA design. J. VLSI Signal Process. Syst. 32, 207–222.

doi: 10.1023/A:1020205217934

Volder, J. E. (1959). The CORDIC trigonometric computing technique. Electron.

Comput. IRE Trans. EC-8, 330–334. doi: 10.1109/TEC.1959.5222693

Walther, J. S. (1971). “A unified algorithm for elementary functions,” in May,

Spring Joint Computer Conference (Atlantic City, NJ).

Yamazaki, T., and Igarashi, J. (2013). Realtime cerebellum: a large-scale spiking

network model of the cerebellum that runs in realtime using a graphics

processing unit. Neural Netw. 47, 103–111. doi: 10.1016/j.neunet.2013.

01.019

Yang, S., Wang, J., Deng, B., Liu, C., Li, H., Fietkiewicz, C., et al.

(2019). Real-time neuromorphic system for large-scale conductance-

based spiking neural networks. IEEE Trans. Cybern. 49, 2490–2503.

doi: 10.1109/TCYB.2018.2823730

Yang, S. M., Deng, B., Li, H. Y., Liu, C., Wang, J., Yu, H. T., et al. (2018a). FPGA

implementation of hippocampal spiking network and its real-time simulation

on dynamical neuromodulation of oscillations. Neurocomputing 282, 262–276.

doi: 10.1016/j.neucom.2017.12.031

Yang, S. M., Hao, X. Y., Deng B., Wei, X. L., Li, H. Y., and Wang, J. (2019). A

survey of brain-inspired artificial intelligence and its engineering. Life Res. 1,

23–29. doi: 10.12032/life2018-0711-005

Yang, S. M., Wei, X. L., Deng, B., Liu, C., Li, H. Y., and Wang, J. (2018b). Efficient

digital implementation of a conductance-based globus pallidus neuron and the

dynamics analysis. Phys. A 494, 484–502. doi: 10.1016/j.physa.2017.11.155

Yang, S. M., Wei, X. L., Wang, J., Deng, B., Liu, C., Yu, H. T., et al. (2017). Efficient

hardware implementation of the subthalamic nucleus-external globus pallidus

oscillation system and its dynamics investigation. Neural Netw. 94, 220–238.

doi: 10.1016/j.neunet.2017.07.012

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Hao, Yang, Wang, Deng, Wei and Yi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 16 October 2019 | Volume 13 | Article 107822

https://doi.org/10.1109/TVLSI.2012.2228017
https://doi.org/10.1152/jn.00573.2002
https://doi.org/10.1023/A:1020205217934
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1016/j.neunet.2013.01.019
https://doi.org/10.1109/TCYB.2018.2823730
https://doi.org/10.1016/j.neucom.2017.12.031
https://doi.org/10.12032/life2018-0711-005
https://doi.org/10.1016/j.physa.2017.11.155
https://doi.org/10.1016/j.neunet.2017.07.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01120 November 7, 2019 Time: 16:37 # 1

ORIGINAL RESEARCH
published: 08 November 2019

doi: 10.3389/fnins.2019.01120

Edited by:
Stefano Brivio,

Institute for Microelectronics
and Microsystems (CNR), Italy

Reviewed by:
Keum-Shik Hong,

Pusan National University,
South Korea

Guoqi Li,
Tsinghua University, China

*Correspondence:
Jun Li

jun.li@coer-scnu.org
Jie Yu

jieyu@shu.edu.cn

Specialty section:
This article was submitted to

Neuromorphic Engineering,
a section of the journal

Frontiers in Neuroscience

Received: 19 June 2019
Accepted: 03 October 2019

Published: 08 November 2019

Citation:
Xu L, Geng X, He X, Li J and Yu J

(2019) Prediction in Autism by Deep
Learning Short-Time Spontaneous

Hemodynamic Fluctuations.
Front. Neurosci. 13:1120.

doi: 10.3389/fnins.2019.01120

Prediction in Autism by Deep
Learning Short-Time Spontaneous
Hemodynamic Fluctuations
Lingyu Xu1,2, Xiulin Geng2, Xiaoyu He2, Jun Li3,4* and Jie Yu2*

1 Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China, 2 School
of Computer Engineering and Science, Shanghai University, Shanghai, China, 3 Guangdong Provincial Key Laboratory of
Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal
University, Guangzhou, China, 4 Key Lab for Behavioral Economic Science & Technology, South China Normal University,
Guangzhou, China

This study aims to explore the possibility of using a multilayer artificial neural network
for the classification between children with autism spectrum disorder (ASD) and typically
developing (TD) children based on short-time spontaneous hemodynamic fluctuations.
Spontaneous hemodynamic fluctuations were collected by a functional near-infrared
spectroscopy setup from bilateral inferior frontal gyrus and temporal cortex in 25
children with ASD and 22 TD children. To perform feature extraction and classification,
a multilayer neural network called CGRNN was used which combined a convolution
neural network (CNN) and a gate recurrent unit (GRU), since CGRNN has a strong
ability in finding characteristic features and acquiring intrinsic relationship in time series.
For the training and predicting, short-time (7 s) time-series raw functional near-infrared
spectroscopy (fNIRS) signals were used as the input of the network. To avoid the
over-fitting problem and effectively extract useful differentiation features from a sample
with a very limited size (e.g., 25 ASDs and 22 TDs), a sliding window approach was
utilized in which the initially recorded long-time (e.g., 480 s) time-series was divided
into many partially overlapped short-time (7 s) sequences. By using this combined
deep-learning network, a high accurate classification between ASD and TD could be
achieved even with a single optical channel, e.g., 92.2% accuracy, 85.0% sensitivity,
and 99.4% specificity. This result implies that the multilayer neural network CGRNN can
identify characteristic features associated with ASD even in a short-time spontaneous
hemodynamic fluctuation from a single optical channel, and second, the CGRNN can
provide highly accurate prediction in ASD.

Keywords: ASD, fNIRS, neural network, time series, CGRNN model

INTRODUCTION

Autism spectrum disorder (ASD) refers to a group of neurodevelopmental disorders, including
autism and Asperger’s syndrome (AS). The current diagnostic criteria for ASD focus on two
core symptoms: social communication impairment, restricted interests, and repetitive behaviors
(Sharma et al., 2018). Due to the complexity and diversity of ASD, it often takes a long time from
detection of the behavioral signs to the definitive diagnosis, which inevitably leads to the lagging
of necessary treatment or intervention. In recent years, the ASD prevalence is increasing rapidly
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(e.g., 1 in 59, with the prevalence of 4:1 male to females), therefore
the study in ASD has drawn significant attention to the public
(Christensen et al., 2016). To overcome the drawback that the
diagnosis of ASD relies on behavioral observation solely, a variety
of studies have been performed, including those brain imaging
studies to find characteristics associated with this disorder.
On the other hand, with the advance of machine learning,
in particular, deep-learning artificial neural network, it may
become possible for neurologists to use these machine-learning
algorithms to analyze the brain image data collected from ASD
and perform image-based early diagnosis of ASD. In addition to
this, machine-learning may also play a promising role in ASD
intervention, for instance, using personalized intelligent robots to
interact with ASD individuals to improve their behaviors (Amaral
et al., 2017; Rudovic et al., 2018).

A large variety of brain image studies have demonstrated
functional and structural abnormalities in brains of ASD.
For example, magnetic resonance imaging (MRI) studies have
uncovered that individuals with ASD present an aberrant age-
related brain growth trajectory in the frontal area (Elizabeth
and Eric, 2005; Lainhart, 2010; Courchesne et al., 2011), which
strongly suggests that functional brain measurement at young
ages is crucial for revealing ongoing abnormalities in ASD.
Libero et al. (2015) utilized multimodal brain imaging modalities
[structural MRI, diffusion tensor imaging (DTI), and hydrogen
proton magnetic resonance spectrum (1H-MRS)] to investigate
neural structure in the same group of individuals (19 adults with
ASD and 18 adults with TD) and used the decision tree with
fractional anisotropy (FA), radial diffusivity (RD), and cortical
thickness as features to perform classification between ASD
and TD. This combination method overcomes the discrepancy
problem arising from using each imaging method separately
(Libero et al., 2015). Some functional brain studies have shown
atypical brain activation in response to various cognitive tasks
or decreased resting-state functional connectivity (RSFC). These
characteristics could also be used for differentiating between
individuals with ASD and TD individuals (Kaiser and Pelphrey,
2012; Murdaugh et al., 2012; Deshpande et al., 2013). For
example, Iidaka calculated the correlation matrix of resting-state
functional magnetic resonance imaging (RS-fMRI) time series
and then sent the matrix as input to a probabilistic neural
network (PNN) for the classification, which demonstrated that
the inherent connection matrix generated by RS-fMRI data might
serve as biomarkers for predicting ASD (Iidaka, 2015).

Functional near-infrared spectroscopy (fNIRS) as an optical
brain imaging modality utilizing near-infrared light to probe
human brain functional activity, is advancing rapidly in
techniques and applications. Hong et al. (2018) investigated
a brain-computer interface framework for hybrid fNIRS and
electroencephalography (EEG) for locked-in syndrome (LIS)
patients, and found that the prefrontal cortex is identified as
a suitable brain region for imaging. They also studied hybrid
fNIRS and EEG for early detection of hemodynamic responses
(Hong and Khan, 2017; Khan et al., 2018). Furthermore, they
developed a new vector phase diagram to differentiate the initial
dip phase and the delayed hemodynamic response (HR) phase
of oxy-hemoglobin changes (1HbO) (Zafar and Hong, 2018).

Very recently fNIRS was also adopted in the investigation
of atypical brain activity associated with ASD (Adelina and
Bravo, 2011; Jung et al., 2016; Li and Yu, 2018). For instance,
Mitsuru et al. measured brain hemodynamic fluctuations of
bilateral Brodmann area 10 (BA10) in 3- to 7-year-old ASD
and TD children under conscious conditions. They found that
slow hemodynamic fluctuations showed abnormal functional
connections in ASD (Mitsuru et al., 2013).

Thus far, most of the classifications between ASD patients and
normal controls depend on prior characteristic features extracted
empirically from brain images. However, due to the complexity
and limited knowledge about the pathogenic mechanism of ASD,
the hidden factors associated with ASD, which can be used for
accurate differentiation between ASD and normal controls, are
not easy to be observed and identified merely through reading the
brain images. Since the deep-learning artificial neural network
is a data-driven method, has the ability to find characteristics
hidden in the complete data set. We hypothesize that deep-
leaning model might be used for the prediction of ASD through
brain images, in particular, our fNIRS data collected from
children with ASD, though deep learning based approaches have
not been well studied (Ilias et al., 2016; Dvornek et al., 2017;
Chiarelli et al., 2018).

On the other hand, a critical challenge for acquiring
brain images of most of brain imaging modalities such
as MRI/functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), single photon emission
computed tomography (SPECT) and positron emission
tomography (PET), et al. is that the subject has to be strictly still
during image acquisition that could last 5–10 min or longer.
It is not an easy task for conscious (not sedated) children, in
particular children with ASD. Therefore if the characteristics of
ASD can extract from brain images collected in a short time, it
is of great practical significance for brain imaging study in ASD.
Even though EEG and fNIRS are not as sensitive to motion as
those imaging techniques mentioned above, the artifact caused
by head movement still can deteriorate the time-series signals,
resulting in an inaccurate result. Thus we aim at two goals in
this study: (1) exploring the possibility of using a deep-learning
neural network to extract features associated with ASD from
fNIRS signals; and (2) using a short-time (e.g., 7 s) fNIRS
time series to perform accurate classification between ASD
and TD children.

To test our hypothesis and realize the goals, we collected
approximate 8-minute spontaneous hemodynamic fluctuations
from the bilateral inferior frontal gyrus and temporal lobe
by an fNIRS setup in 25 children with ASD and 22 TD
children. To analyze the fNIRS data [i.e., time-series of
oxygenated hemoglobin (HbO2), deoxygenated hemoglobin
(Hb), and total hemoglobin (HbT = HbO2 + Hb)], we
designed a multilayer neural network consisting of CNN and
GRU as a combined unit (called CGRNN) for learning and
predicting ASD. The CGRNN is powerful in recognizing
characteristic features, identifying the relationship among data
in the sequence, and has low computation cost. To test
the possibility of using short-time spontaneous hemodynamic
fluctuations for the differentiation between ASD and TD,
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we segregated the long-time (i.e., 8 min) data sequence
into many overlapped short-time (i.e., 7 s) sub-sequences,
and then sent them as the input to the CGRNN for the
training and classification. The result demonstrated that even
using the short-time hemodynamic fluctuation from a single
optical channel, we could achieve a rather high accurate
classification with 92.2% accuracy, 85.0% sensitivity, and
99.4% specificity. Receiver operating characteristic curve (ROC)
Curves also showed that the performance of CGRNN for
the classification between ASD and TD is better than GRU,
CNN, and Long Short-Term Memory (LSTM) model, implying
that CGRNN is a suitable deep-learning neural network for
predicting ASD by using spontaneous hemodynamic fluctuations
recorded by fNIRS.

MATERIALS AND METHODS

fNIRS Data Collection
In this study, we used a continuous wave fNIRS system
(FOIRE-3000, Shimadzu Corporation, Tokyo, Japan) to record
spontaneous hemodynamic fluctuations. fNIRS uses near-
infrared light to probe brain activity in terms of HbO2 and Hb.
As an optical imaging modality, fNIRS is relatively low cost,
portability, safety, low noise (compared to fMRI), and easiness to
use. Unless EEG and MEG, its data are not much susceptible to
electrical noise. At the same time, it can measure the blood flow
changes in the local capillary network caused by neuron firings
(Naseer and Hong, 2015). FOIRE-3000 has 16 light sources and
16 detectors. Each light source emits three different wavelengths
(780, 805, and 830 nm) near-infrared light in an alternating way.
The back reflected light which has passed through the cortex
is received by neighboring light detectors. Each source-detector
(SD) pair forms a detection channel with a fixed SD distance
of 3.0 cm. The fNIRS is used to measures the change in light
intensity of the three wavelengths, which is converted to the
concentration change in hemoglobin (e.g., HbO2, Hb, and HbT)
by the modified Beer-Lambert law. Neural activity can induce a
change in hemoglobin concentration in the local region of the
cortex through the neurovascular coupling, which is the basic
principle of fNIRS (and fMRI).

Twenty-five children with ASD and twenty-two TD children
with an average age of 9.3 (±1.4) and 9.5 (±1.6) respectively were
recruited in this study. They were all right-handed. Among them,
the ASD group consisted of eighteen boys and seven girls. The
TD group included eighteen boys and four girls. Experienced
clinicians diagnosed all ASD patients in hospitals. Before fNIRS
data collection, each subject was informed about the experimental
protocol and written informed consent was obtained from his/her
parents. During the data collection, the subject sat in a dark,
quiet room with their eyes closed and tried to stay still. The
spontaneous (or resting-state) hemodynamic fluctuations were
recorded from the bilateral inferior frontal and temporal regions
on each subject. The experimental protocol is following the
ethical standards of the Academic Ethics Committee of South
China Normal University (Zhu et al., 2014). It meets the Helsinki
Declaration (Inc, 2009).

Figure 1A represents the location of fNIRS measurement
channels. Yellow circles indicate light sources and green circles
represent light detectors. The number (1–44) in the white square
is the number for the channel (each channel consists of a pair
of a light source and light detector). Figure 1B displays the
location of each channel on the brain cortices. The probing area
included the bilateral inferior frontal gyrus (1–10 for the left
and 23–32 for the right) and bilateral temporal lobe (11–22 for
the left and 33–44 for the right). In locating channel positions,
the international 10–10 system for EEG was referenced. For
each subject approximate 8-minute spontaneous hemodynamic
fluctuations were recorded with∼70 millisecond time resolution,
corresponding to a sampling rate of 14.29 Hz.

Data Analysis
Data Processing Flow
Figure 2 gives an overview of our data processing flow. The
flow divides into two parts. The first part is to increase the
sample data for the problem of the small amount of original
hemoglobin data. We use the fNIRS time series data as input, and
traverse the ASD and TD raw hemoglobin data in the form of
sliding window. Each data set can be transformed into a series
of continuous and partially overlapping sub-sequence. Each sub-
sequence is the data within a labeled sliding window. Hence, the
expansion of the small sample data set is performed. The second
part, we propose a multilayer neural network, CGRNN model,
which combines CNN and GRU, and demonstrate its utility on
the accurate classification between ASD and TD with a short-
time fNIRS time series. The function in each part of the model
is listed below:

(1) The first part of the model uses three-layer CNN to
complete the local mode recognition of fNIRS time
series. CNN can extract local sub-sequence from the
input sequence. Its primary process is to perform the
equivalent input transformation on each sub-sequence.
So the pattern learned from a specific position of the
series can be recognized at any other place later. Thus we
can complete the identification of the regional pattern of
the sequence and strengthen the generalization ability of
feature recognition.

(2) The second part of the model adds the max-pooling layer
to prevent over-fitting. Max-pooling layer compresses the
data in the form of down-sampling to reduce the parameter
information and avoids over-fitting. Moreover, it extracts
the maximal value of the feature sequence and further
excavates the intrinsic characteristics of data.

(3) The third part of the model utilizes GRU to enhance time
series association. We make the feature sequences extract
by max-pooling as an input of the GRU. The GRU layer
is presented in Figure 2. The reset gate (Rt) and the
update gate (Zt) in the GRU are used to capture short-term
and long-term dependencies in the sequence. Therefore,
GRU can remember the features in the order of time and
infer results from features, which serve to strengthen the
correlation of series.
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FIGURE 1 | The source-detector configuration where the yellow circles indicate the sources, the green circles indicate the detectors, and the white square between
a source and a detector is a channel (A). Location of fNIRS measurement channels over the inferior frontal and temporal cortex (B).

FIGURE 2 | The process of the time-series data.
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(4) The fourth part is the construction of classifier. The
distributed feature learned by the full connection layer
maps to the sample tag space.

Expansion of Small Sample
Because of the less number of fNIRS time series, over-fitting is
easy to occur in the training of CGRNN model. Thus we expand
the data set in the form of setting the sliding window and excavate
the distinctive features of the small sample data set further, which
maximize the predictive ability of the CGRNN. More specifically,
the time-series of one attribute define as “m” in one channel
hemoglobin data. One uses a sliding window with step “s” and
width “w” (s < < w) to divide the time series, and obtains
N = ł(m−w + s)/sł (m > > w) sub-sequences of length w where
the symbol “łł” represents the rounding toward minus infinity.
Finally, m divides into N overlapping sub-sequences. And the set
of sub-sequence is T. There are T = {T1, T2,.. TN}. If the original
information is ASD, the sub-sequence collection label is 1. If the
original data is TD, the sub-sequence set label is 0. The process of
sliding window is shown in Figure 3.

CGRNN Model
The CGRNN model is proposed by a combination of CNN and
GRU. Among them, CNN is responsible for the identification
of the local mode of the original hemoglobin time series,
which uses its translation invariant property to extract subtle
but distinct features from fNIRS signals, distinguishing the
heterogeneity characteristics of ASD from TD in various feature
combinations. We use CNN to improve the CGRNN prediction
ability. Specifically, first of all, to learn the spatial hierarchies
of hemoglobin, the original data is converted into the three-
dimensional tensor (samples, time, feature). Then the three-
dimensional tensors are put into CNN part for training.
CNN uses the convolution kernel to perform the same input
transformation for the input data. Local sub-sequences can
be extracted from the entire sequence. Patterns learned from
one location in the series can be identified at any other
location afterward.

Our network uses three convolution layers to introduce
the special hierarchical structure of the space filter by making
the continuous convolution layer window grow larger. Further,

FIGURE 3 | The set of the sliding window (w) and step size (s).

Rectified Linear Unit (RELU) has the function of making
some neurons lose activity and reducing the complexity of
network structure. Hence, each layer of CNN aggregates a
RELU. Finally, the max-pooling layer is utilized to reduce the
occurrence of over-fitting further and extract the maximum value
of distinctive features by down-sampling. In other word, the
data are compressed to reduce the parameter information and
excavate the useful information further.

The original time series is prone to gradient disappearance
in the course of CNN training, which results in the invalid
training. So we use GRU behind the max-pooling layer to
solve this problem. GRU network model is a sequence structure
that prevents the gradual disappearance of early information
by carrying information across multiple time steps. It mainly
contains two gate functions (reset gate and update gate). The reset
gate and the update gate are utilized to capture the short-term
and long-term dependence in the sequence, respectively. GRU
remembers the features in the order of time and infers results
from features, which serves to strengthen the correlation of series.
The specific calculation formula is as follows:

Zt = σ
(
Wz •

[
ht−1, xt

])
(1)

rt = σ
(
Wr •

[
ht−1, xt

])
(2)

Where ht−1 is the hidden state at time t–1, xtis input. W stands
for weight. Zt represents the update gate, which determines
how much previous information is retained. rt stands for the
reset gate. It provides a mechanism to discard past implicit
states that have nothing to do with the future, i.e., reset gate
determines how much past information has been forgotten. The
activation function of both gates is the sigmoid function with a
range of {0, 1}.

h̃t = tanh
(
W •

[
rt ∗ ht−1, xt

])
(3)

ht= (1− zt) ∗ ht−1 + zt ∗ h̃t (4)

h̃t denotes candidate hidden state. It uses the reset gate to
control the inflow of the last hidden state that contains the past
information. If the reset gate is approximately 0, the previous
implicit state will discard.

ht is the hidden state at time t, which uses update gate Zt
to update the last hidden state ht−1 and candidate hidden state
h̃t. Update gate controls the important degree of the implicit
state of the past at the current moment. If the update gate is
approximately 1, the former implicit state will be saved and
passed to the present moment.

This design can deal with the gradient attenuation of CNN
and capture the widely spaced dependencies in time-series better.
Finally, CGRNN model builds a classifier in the form of adding
a full connection layer on the end of GRU. The distributed
feature of learned by the full-connection layer maps to the
sample tag space. The CGRNN flow is illustrated in Figure 4.
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FIGURE 4 | CGRNN flow.

RESULTS

Analysis of Different Channels
To prevent training samples too few to fitting, we adjusted the
experimental parameters and divided the data by the sliding
window of 100 and step of 50 finally, i.e., considered 7-second
data as a sub-sequence. Each sub-sequence corresponded to a
specific label. Then we converted the processed data into the
three-dimensional tensor (3552, 100, and 1) for the input. We
used the data of 28 people to train model. Most of people were
divided into 136 sub-sequences. But for a few people the number
of sub-sequences was less than 136 because of the recording time
was shorter than 8 min (e.g., some children could not tolerate
8-minute measurement, so we had to stop fNIRS recording
early). So the final sample size was 3552. Our CGRNN network
used three convolution layers. The three convolution layers,
respectively had 32, 64, and 128 filters, their kernel_sizes were all
five. In each convolution layer, the filter transforms the matrix
of a child node in the current layer into the matrix of a unit
node in the next layer. The node matrix processed by the filter
is determined by the filter size, namely kernel_size. Among of
them, the filter slides at regular intervals on the neural network
matrix of the current layer and does dot product. In other words,
the element of the filter at each position are multiplied by the
corresponding element of the input sample and we add up the
overall result. We assume that the input sample is [a, b, c, d],
and one of the filters is [2, 3], the interval is 1. Then we can get
[a × 2 + b × 3, b × 2 + c × 3, c × 2 + d × 3] through the
calculation of dot product. The result is called feature map, and
the number of feature map is the same as the number of filters.
For example, the first convolution layer uses 32 filters, 32 filter
maps are obtained after convolution calculation and serve as the
input of the second convolution layer.

The input of GRU includes the input sample at current time
and the hidden state of the previous sample. The hidden state
of the previous time and the current time is multiplied by the
weight matrix. Then the added data are sent to the update gate,
that is, multiply by the sigmoid function. Therefore, the update
gate determines how much previous information and current
information is retained. The operation of reset gate is similar
to update gate. However, the weight matrix of the reset gate
is different from that of the update date because the reset gate
determines how much past information has been forgotten it.
So GRU not only capture the short-term dependence, but also
capture the long-term dependence in the sequence. Furthermore,
the CGRNN model were trained using the RELU active function,
the binary_cross-entropy loss function, and the Adam optimizer
with the default parameter values. The dropout rate during
training was fixed to 0.5. Learning rate was 0.01. Models were
initialized using default settings. The output were 128 filters, each
filter was an 88 dimensional vector. Then, the hemoglobin data
were divided into three parts: training set, validation set, and test
set. Their proportion is 3:1:1. We trained the CGRNN in the
training set, evaluated the generalization ability of the model in
the verification set, and saved the optimal model with the smallest
loss function. Finally, the model was tested on the test set.

To evaluate the performance of CGRNN classifier, this
study applies sensitivity, specificity, and accuracy to the test
results of CGRNN classifier (Cheng et al., 2019). Among them,
ASD calls positive class, TD calls negative class. Sensitivity
means the proportion of actual positives that are correctly
classified in all positives. Specificity is the proportion of actual
negatives that are correctly identified in all negatives. Accuracy
defines the percentage of correct diagnoses among all diagnoses.
More specifically, we consider testing every 7-second data of
one attribute with a single-channel. There are 44 channels
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for each person’s data in the test set. Each channel consists
of three attributes (HbO2, Hb, and HbT). Each attribute
divides into sub-sequences in the form of the sliding window.
Every sub-sequence of 7 s tests its sensitivity, specificity, and
accuracy. Finally, the average of sub-sequences denotes the final
sensitivity, specificity, and accuracy. The test results are presented
in Figures 5, 6.

The hemodynamic activity recorded from the bilateral inferior
frontal and temporal lobes vary significantly, which may imply
that not every location (or channel) is closely associated with
ASD, or sensitive enough for the discrimination, so it is not
necessary to achieve good accuracy for the classification in
every channel. If the characteristics of ASD can extract from
brain images collected in few channels (which might be closely
associated with ASD), it is of great practical significance for brain
imaging study in ASD.

Figure 5 shows that CGRNN classifier performs well on
HbO2, Hb, and HbT. Although the classification results of
different channels under the same attribute are quite different,
some channel classification effects are significant. Therefore,
CGRNN classifier perform an accurate distinction between ASD
and TD children. Moreover, though HbT is the sum of HbO2 and
Hb, it may provide richer discriminative information than HbO2
and Hb. For instance, the accuracy of HbO2, Hb, HbT in channel
three are 76.8, 64.4, and 88.7%, respectively.

Accuracy represents the overall diagnostic accuracy of ASD
and TD. Hence, Figure 6 sorts the accuracy from large to
small and shows the top ten channels with their corresponding

attributes. The classification effect is evaluated by accuracy,
as shown in Figure 6. The first is the Hb of channel 10:
92.2% accuracy, 85.0% sensitivity, and 99.4% specificity. The
second is the HbO2 of channel 43: 90.8% accuracy, 87.9%
sensitivity, and 93.8% specificity. The third is the HbT of channel
25: 90.0% accuracy, 81.6% sensitivity, and 98.5% specificity.
Most of the functional imaging modalities such as fMRI,
MEG, and SPECT, et al., is that the imaging data usually
requires recording and analyzing for several minutes. However,
the CGRNN model proposed in this paper performs better
classification effect by using only 7-second data and has practical
application value.

Classification Effect of CGRNN
Moreover, to visualize the classification performance of the
CGRNN model further, we randomly select four pairs of ASD
and TD children to display the results of the test data. To expand
the number of test samples and make the predictive result more
accurate, we splice together the data from the same column.
Specifically, for each people, we splice 6,859 rows of one column
data into 13,718 rows of one column data. Then the time series
for most of people is divided into 273 sub-sequences by using
a sliding window with a width of 100, and a step of 50. The
predictive result for each sub-sequence is displayed in Figure 7A.
The average of the accuracy is shown in Figure 7B.

The classification effect of ASD and TD children is illustrated
in Figures 7A,B. Figure 7A is the real distribution of test
data. The X-axis represents the randomly selected four pairs

FIGURE 5 | (A–C) Show the prediction of 44 channels in HbO2, Hb, and HbT three attributes.
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FIGURE 6 | The display diagram of the top 10 channels with corresponding properties that have the best classification effect. Ten sets of data are sorted from large
to small by accuracy.

FIGURE 7 | CGRNN classification effect. (A) The predictive distribution of test data. (B) The accuracy of sequences diagnosis.

of people in the test set. Each pair consists of an ASD child
and a TD child. ASD children express by blue, and TD
children express by pink. Y-axis represents a collection of sub-
sequences. Z-axis represents the predicted value of CGRNN
model. Predictive values range from 0 to 1. The predictive
value of TD children is less than 0.5 for accurate forecasting,
and the predicted value of ASD is more than 0.5 for precise
prediction. Predicted values of ASD data are represented by
“o.” The Others are represented by “∗.” Figure 7B shows the
diagnostic accuracy of sub-sequences. The X-axis represents the
four pairs of people randomly selected in the test set. The Y-axis
is the percentage of correctly diagnosed sub-sequences in the
whole sequences.

We can see that the predictive values of ASD are basically
between 0.5 and 1.0 from Figure 7A. Most of the predicted
values of TD concentrate in the vicinity of zero. So there are
four clear lines on the Y-axis, and these are stacked by “∗.”
In other words, most of the TD test results are correct. As
shown in Figure 7B, the average predictive value of ASD children
greater than 0.5 is 89% and the average predictive value of TD
children less than 0.5 is 98%. Because each sub-sequence is a
7-second fNIRS time series, we can assume that the recognition
accuracy of 7 s of ASD data is 89%, and the recognition accuracy

of 7 s of TD data is 98%. Therefore, the CGRNN model
can effectively distinguish between ASD and TD children in a
short time (7 s).

Since our model is the first ASD classification using
a single channel of fNIRS time series data that employs
neural network model, there are no canonical comparison
partners. We thus compared our model with some widely used
traditional classification algorithms such as Logistic Regression
(LR), k-Nearest Neighbor (KNN), Random Forest (RF), and
Support Vector Machine (SVM) classification methods. LR
is a generalized linear regression analysis model, it is often
used in the binary classification of disease diagnosis. KNN
is a well-known machine learning classification algorithm, it
determines the category of the sample to be divided according
to the category of the nearest sample or samples. RF is a
classifier that uses multiple trees to train and predict samples,
its classification performance is much better than LR and KNN
algorithm. With limited sample size, SVM has stronger ability
of generalization in comparison with other existing machine
learning algorithms. Firstly, we divided data set in the form of
the sliding window (w = 100, s = 50), the input to these models
were two-dimension data (the number of samples, window_size).
Then we used GridSearchCV to tune hyper parameter and
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made feature engineering. By contrast, the CGRNN model
outperformed the other four traditional models as shown
in Table 1.

DISCUSSION

ROC Comparison Under Different Neural
Network Models
For further determining the efficiency of our model, we
respectively, applied CNN, LSTM, and GRU to the classification
between the children with ASD and TD children based on
short-time spontaneous hemodynamic fluctuations. CNN is a
feedforward neural network, it not only plays an important
role in computer vision tasks, but also has an impact on
the time-series analysis. CNN can extract features from local
time-series data by using convolution, modularize represented
information, utilize data more efficiently. LSTM can overcome
the limitation of vanishing gradient in time-series analysis of
RNN, thus can capture long-term dependence in time sequential
learning. Compared with LSTM, GRU has one less gating unit,
which leads to fewer parameters and easy convergence, its
computation cost is lower. In these neural network models, the
same input data sets as in the CGRNN model were used. The best
parameters for each model was selected by validation. We tested
the accuracy of each model in 44 channels, and displayed the
results in Figure 8. The red dot shown the four neural network
models (CNN, LSTM, and GRU) also have good performance in
the classification for channel 10.

Then we further used ROC to aggregate characteristics of
“True Positive Rate” (TPR) and “False Positive Rate” (FPR) and
evaluate CGRNN model classification by comparing with ROC
curves of different models. TPR represents the proportion of
true positives that are correctly classified in all true positives.
FPR denotes the percentage of false positives that are correctly
classified in all false positives. Empirical ROC curve takes TPR
and FPR as ordinate and abscissa, respectively. The TPR and FPR
points show different diagnostic locations. These are connected
to compose ROC curves. Without considering the effect of
misdiagnosis and missed diagnosis, we make the diagnosis
point closest to the top left corner (0, 1) as the cut-off point
(Fawcett, 2005).

Figure 9 showed the comparison of ROC curves of
different models. Since hemoglobin data of channel 10 had
the best-classified effect, we selected channel 10 to respectively,
verify the ASD classified effect of CGRNN, GRU, CNN, LSTM
four different neural network models. Each test selected three
thresholds, i.e., max value, min value, and mid-value. Each
threshold corresponded to a point (FPR, TPR). All coordinate
points were connected to draw the ROC curve these points were
used to identify different algorithm performance visually.

TABLE 1 | Accuracy of different classification models.

Model LR KNN RF SVM CGRNN

Accuracy 61.5% 65.0% 80.2% 81.2% 92.2%

FIGURE 8 | The performance of 44 channels.

FIGURE 9 | ROC comparison for different models.

CGRNN model was closest to the upper left corner in the ROC
curve, so it had the best classification effect. The second was the
CNN model, which was helpful to extract hemoglobin features.
The third was the GRU model, which cannot play a useful
role in classification. Finally, the LSTM model had the worst
classification effect. Besides, we compared the area (AUC) under
the ROC curve of each model. AUC is a comprehensive measure
of all possible classification effect. It regards as the probability that
the model randomly arranges the positive sample above negative
sample. Generally speaking, the larger the AUC value is, the better
the classification effect is (Fawcett, 2005). The comparison shown
that the AUC of GRU algorithm was the largest. Therefore, the
diagnosis of CGRNN algorithm is the most valuable.
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FIGURE 10 | The distribution of best classification performance (i.e., accuracy >80.0%) channels (blue number) based on HbO2 (A) and Hb (B) attributes in the left
and right brain regions. The yellow area indicates the frontal lobe. The rose-red area represents the temporal lobe.

Furthermore, most of the previous studies utilized multiple
feature variables to perform effective differentiation between
ASD and TD. No one applied seven seconds’ data of single-
channel to achieve a better classification effect. The CGRNN
uses the 7-second test data of the Hb attribute of channel 10
to have 92.2% accuracy, 85.0% sensitivity, and 99.4% specificity.
Therefore, the CGRNN model cannot only diagnose patients with
autism efficiently and accurately but also avoid the misdiagnosis
of healthy people.

Comparison of the Classification Ability
of Brain Regions
Figure 10 displays the location of selected channels with good
differentiating ability (accuracy >80.0%) in the HbO2 and Hb
attribute. For HbO2 (Figure 10A), there are seven channels
locating in the frontal lobe (4 on the left, 3 on the right),
and two channels situated in the temporal lobe (both on the
right), indicating that the HbO2 data of the frontal is more
discriminative than the temporal area. Among them, the most
discriminative channel 10 locates in the left frontal region.
Overall, on the HbO2, the data from the left and right hemisphere
has little difference in classification ability (four channels on the
left and five channels on the right). For the Hb data (Figure 10B),

there are seven channels on the right and two channels on the left,
indicating that the Hb data from the right brain is more separable.

CONCLUSION

Our study aims to explore the feasibility of using a multilayer
artificial neural network for the classification between children
with ASD and TD children based on short-time spontaneous
hemodynamic fluctuations.

The contribution of this study has three aspects. First of
all, a multilayer neural network called CGRNN was used,
which combined three-layered CNN and one-layered GRU. Since
CGRNN has a strong ability in finding characteristics associated
with ASD and acquiring intrinsic relationship in fNIRS time-
series, it can accurately predict ASD by using a short fNIRS
time series, which is of great significance for brain imaging
research on ASD.

Secondly, different from using small sample data of fNIRS,
we expanded the data in the form of the sliding window
and combined the CGRNN model to excavate the intrinsic
characteristics of the data and improved its predictive ability.
The result showed our model performed better than the other
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four traditional algorithms such as LR, KNN, RF, and SVM.
Furthermore, we used ROC curve to compare our model with
CNN, LSTM and GRU neural network model to demonstrating
the reliability of our model.

Finally, we demonstrated that though HbT is the sum of HbO2
and Hb, it may provide richer discriminative information than
HbO2 and Hb. On HbO2 attribute, the hemodynamic signal
from the frontal lobe rather than the temporal lobe leads to a
better classification. On Hb attribute, hemodynamic signal from
the right hemisphere contains more discriminative information
between ASD and TD than the left hemisphere.
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The brain performs intelligent tasks with extremely low energy consumption. This work

takes its inspiration from two strategies used by the brain to achieve this energy

efficiency: the absence of separation between computing and memory functions and

reliance on low-precision computation. The emergence of resistive memory technologies

indeed provides an opportunity to tightly co-integrate logic and memory in hardware.

In parallel, the recently proposed concept of a Binarized Neural Network, where

multiplications are replaced by exclusive NOR (XNOR) logic gates, offers a way to

implement artificial intelligence using very low precision computation. In this work, we

therefore propose a strategy for implementing low-energy Binarized Neural Networks that

employs brain-inspired concepts while retaining the energy benefits of digital electronics.

We design, fabricate, and test a memory array, including periphery and sensing circuits,

that is optimized for this in-memory computing scheme. Our circuit employs hafnium

oxide resistive memory integrated in the back end of line of a 130-nm CMOS process,

in a two-transistor, two-resistor cell, which allows the exclusive NOR operations of the

neural network to be performed directly within the sense amplifiers. We show, based on

extensive electrical measurements, that our design allows a reduction in the number of

bit errors on the synaptic weights without the use of formal error-correcting codes. We

design a whole system using this memory array. We show on standard machine learning

tasks (MNIST, CIFAR-10, ImageNet, and an ECG task) that the system has inherent

resilience to bit errors. We evidence that its energy consumption is attractive compared

to more standard approaches and that it can use memory devices in regimes where they

exhibit particularly low programming energy and high endurance. We conclude the work

by discussing how it associates biologically plausible ideas with more traditional digital

electronics concepts.

Keywords: binarized neural networks, resistive memory, memristor, in-memory computing, biologically plausible

digital electronics, ASICs
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1. INTRODUCTION

Through the progress of deep learning, artificial intelligence
has made tremendous achievements in recent years. Its energy
consumption in graphics or central processing units (GPUs and
CPUs) remains, however, a considerable challenge, limiting its
use at the edge and raising the question of the sustainability
of large-scale artificial intelligence-based services. Brains, by
contrast, manage intelligent tasks with highly reduced energy
usage. One key difference between GPUs and CPUs on the
one hand and brains on the other hand is how they deal with
memory. In GPUs and CPUs, memory and arithmetic units
are separated, both physically and conceptually. In artificial
intelligence algorithms, which require large amounts of memory
access, considerably more energy is spent moving data between
logic and memory than in doing actual arithmetic (Pedram
et al., 2017). In brains, by contrast, neurons—which implement
most of the arithmetic—and synapses—which are believed to
store long-term memory—are entirely colocated. A major lead
for reducing the energy consumption of artificial intelligence is
therefore to imitate this strategy and design non-von Neumann
systems where logic and memory are merged (Indiveri and
Liu, 2015; Querlioz et al., 2015; Editorial, 2018; Yu, 2018).
There is new interest in this idea today with the advent of
novel nanotechnology-based non-volatile memories, which are
compact and fast and can be embedded at the core of the
Complementary Metal Oxide Semiconductor (CMOS) process
(Prezioso et al., 2015; Saïghi et al., 2015; Wang et al., 2015;
Covi et al., 2016; Serb et al., 2016; Ambrogio et al., 2018;
Yu, 2018). Another key difference between processors and the
brain is the basic nature of computations. GPUs and CPUs
typically perform all neural network computations with precise
floating-point arithmetic. In brains, most of the computation
is done in a low-precision analog fashion within the neurons
(Klemm and Bornholdt, 2005; Faisal et al., 2008), resulting in
asynchronous spikes as an output, which is therefore binary.
A second idea for cutting the energy consumption of artificial
intelligence is therefore to design systems that operate with much
lower-precision computation.

In recent years, considerable research has been conducted
to implement neural networks using analog resistive memory
as synapses—the device conductance implementing the synaptic
weights. To a large extent, neural network computation can
be done using analog electronics: weight/neuron multiplication
is performed based on Ohm’s law, and addition is natively
implemented with Kirchoff’s current law (Prezioso et al., 2015;
Serb et al., 2016; Ambrogio et al., 2018; Li et al., 2018; Wang
et al., 2018). This type of implementation is, to a certain extent,
very biologically plausible, as it reproduces the two strategies
mentioned above. The challenge of this implementation,
however, is that it requires relatively heavy analog or mixed-
signal CMOS circuitry such as operational amplifiers or
Analog-to-Digital Converters, resulting in significant area and
energy overhead.

In parallel, a novel class of neural networks has recently been
proposed—Binarized Neural Networks (or the closely related
XNOR-NETs) (Courbariaux et al., 2016; Rastegari et al., 2016). In

these neural networks, once trained, synapses as well as neurons
assume only binary values, meaning +1 or −1. These neural
networks therefore have limited memory requirements and also
rely on highly simplified arithmetic. In particular, multiplications
are replaced by one-bit exclusive NOR (XNOR) operations.
Nevertheless, Binarized Neural Networks can achieve near state-
of-the-art performance on vision tasks (Courbariaux et al., 2016;
Rastegari et al., 2016; Lin et al., 2017) and are therefore extremely
attractive for realizing inference hardware. The low precision of
Binarized Neural Networks and in particular the binary nature
of neurons—which is reminiscent of biological neurons spikes—
also endows them with biological plausibility: they can indeed be
seen as a simplification of spiking neural networks.

Great effort has been devoted to developing hardware
implementations of Binarized Neural Networks.
Using nanodevices, one natural intuition would be to adopt
the strategy proposed for conventional neural networks and
perform arithmetic in an analog fashion using Kirchoff’s law
(Yu et al., 2016; Yu, 2018). However, Binarized Neural Networks
are very digital in nature and are multiplication-less. These
networks can therefore provide an opportunity to benefit, at the
same time, from both bioinspired ideas and the achievements
of Moore’s law and digital electronics. In this work, we propose
a fully digital implementation of binarized neural networks
incorporating CMOS and nanodevices, and implementing the
biological concepts of tight memory and logic integration,
and low-precision computing. As memory nanodevices, we
use hafnium oxide-based resistive random access memory
(OxRAM), a compact and fast non-volatile memory cell that is
fully compatible with the CMOS process (Grossi et al., 2016).

However, one significant challenge to implementing a digital
system with memory nanodevices is their inherent variability
(Ielmini and Wong, 2018; Ly et al., 2018), which causes
bit errors. Traditional memory applications employ multiple
error-correcting codes (ECCs) to solve this issue. ECC
decoding circuits have large areas and high energy consumption
(Gregori et al., 2003) and add extra time to data access
due to syndrome computation and comparison. Moreover,
the arithmetic operations of error-syndrome computation are
actually more complicated than those of a Binarized Neural
Network. This solution is difficult to implement in a context
where memory and logic are tightly integrated, especially when
part of the computation is performed during sensing. This is one
of the main reasons that the state of the art of RRAM for in-
memory computing does not correct errors and is not compatible
with technologies with errors (Chen et al., 2017, 2018). In this
paper, we introduce our solution. We design, fabricate, and test
a differential oxide-based resistive memory array, including all
peripheral and sensing circuitry. This array, based on a two-
transistor/two-resistor (2T2R) bit cell, inherently reduces bit
errors without the use of ECC, and we show that it is particularly
well-adapted for in-memory computing. We then design and
simulate a fully binarized neural network based on this memory
array. We show that the XNOR operations can be integrated
directly within the sense operation of the memory array and
that the resulting system can be highly energy efficient. Based
on neural networks on multiple datasets (MNIST, CIFAR-10,
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ImageNet, and ECG data analysis), we evaluate the number of bit
errors in the memory that can be tolerated by the system. Based
on this information, we show that the memory nanodevices can
be used in an unconventional programming regime, where they
feature low programming energy (less than five picoJoules per
bit) and outstanding endurance (billions of cycles).

Partial and preliminary results of this work have been
presented at a conference (Bocquet et al., 2018). This paper adds
additional measurements of OxRAMswith shorter programming
pulses, an analysis of the impact of bit errors on more datasets
(ImageNet and ECG data analysis), and a detailed comparison
and benckmarking of our approach with processors, non-
binarized ASIC neural networks, and analog RRAM-based
neural networks.

2. MATERIALS AND METHODS

2.1. Differential Memory Array for
In-memory Computing
In this work, we fabricated a memory array for in-memory
computing with its associated peripheral and sensing circuits.
The memory cell relies on hafnium oxide (HfO2) oxide-based
resistive Random Access Memory (OxRAM). The stack of the
device is composed of a HfO2 layer and a titanium layer. Both
layers have a thickness of ten nanometers, and they grow between
two titanium nitride (TiN) electrodes. Our devices are embedded
within the back-end-of-line of a commercial 130-nmCMOS logic

process (Figure 1A), allowing tight integration of logic and non-
volatile memory (Grossi et al., 2016). The devices are integrated
on top of the fourth (copper) metallic layer.

We chose hafnium oxide OxRAMs because they are known
to provide non-volatile memories compatible with the modern
CMOS process and only involve foundry-friendly materials and
process steps.

After a one-time forming process, such devices can switch
between low-resistance and high-resistance states (LRS andHRS)
by applying positive or negative electrical pulses, respectively.
Our work could be reproduced with other types of memories.
NOR flash cells, which are readily available in commercial
processes, could be used, and their potential for neuromorphic
inference has been proven Merrikh-Bayat et al. (2017). However,
they suffer from high programming voltages (higher than ten
volts) requiring charge pumps, have limited endurance, and are
not scalable to the most advanced technology nodes (Dong et al.,
2017). Emerging memories such as phase change memory or

spin torque magnetoresitive memory could also be used adopting
the strategies presented in this paper. These technologies do not

require a forming process, and they can bring enhanced reliability
with regards to OxRAMs but come with an increased process cost
(Chen, 2016).

Conventionally, OxRAMs are organized in a “One Transistor-
One Resistor” structure (1T1R), where each nanodevice is
associated with one access transistor (Chen, 2016). The LRS
and HRS are used to mean the zero and one logic values or

FIGURE 1 | (A) Scanning Electron Microscopy image of the back-end-of-line of the CMOS process integrating an OxRAM device. (B) Photograph and (C) simplified

schematic of the one kilobit in-memory computing-targeted memory array characterized in this work.
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FIGURE 2 | (A) Schematic of the precharge sense amplifier used in this work to read 2T2R memory cells. (B) Schematic of the precharge sense amplifier augmented

with an XNOR logic operation.

the inverse. The read operation is then achieved by comparing
the electrical resistance of the nanodevice to a reference value
intermediate between the typical values of resistances in HRS and
LRS. Unfortunately, due to device variability, OxRAMs are prone
to bit errors: the HRS value can become lower than the reference
resistance, and the LRS value can be higher than the reference
resistance. The device variability includes both device-to-device
mismatch and the fact that, within the same device, the precise
value of HRS and LRS resistance changes at each programming
cycle (Grossi et al., 2018).

To limit the number of bit errors, in this work, we fabricated a
memory array with a “Two Transistors-Two Resistors” structure
(2T2R), where each bit of information is stored in a pair
of 1T1R structures. A photograph of the die is presented in
Figure 1B and its simplified schematic in Figure 1C. Information
is stored in a differential fashion: the pair LRS/HRS means
logic value zero, while the pair HRS/LRS means logic value
one. In this situation, readout is performed by comparing the
resistance values of the two devices. We therefore expect bit
errors to be less frequent, as a bit error only occurs if a device
programmed in LRS is more resistive than its complementary
device programmed in HRS. This concept of 2T2R memory
arrays has already been proposed, but its benefits in terms of
bit error rate have never been demonstrated until this work
(Hsieh et al., 2017; Shih et al., 2017).

The programming of devices in our array is made sequentially,
i.e., on a device-by-device basis. The first time that the memory
array is used, all devices are “formed.” To form the device of
row i and column j, the bit line BLj, connected to the bottom
electrode of the memory device, is set to ground, and the word
line WLi is set to a voltage chosen to limit the current to a
“compliance value” of 200µA. A voltage ramp is applied to the

sense line SLi connected to the top electrode of the memory
device, increasing from 0 to 3.3V at a ramp rate of 1,000 V/s.
This forming operation is performed only once over the lifetime
of the device. To program a device into its LRS (SET operation),
the bit line BLj is set to ground, while the sense line SLi is set to
2V . The word line WLi is again set to a voltage chosen to limit
the current to a compliance value, ranging from 20 to 200µA
depending on the chosen programming condition. To program a
device into its HRS (RESET operation), a voltage of opposite sign
needs to be applied to the device, and the current compliance
is not needed. The sense line SLi is therefore set to the ground,
while the word lineWLi is set to a value of 3.3V , and the bit line
BLj to a “RESET voltage” ranging from 1.5 to 2.5V depending on
the chosen programming condition. For both SET and RESET
operations, the programming duration can range from 0.1 to
100µs. During programming operations, all bit, select, and word
lines corresponding to non-selected devices are grounded, with
the exception of the bit line of the complementary device of the
selected device: this one is programmed to the same voltage as the
one applied to the sense line to avoid any disturbing effect on the
complementary device.

In our fabricated circuit, the readout operation is performed
with precharge sense amplifiers (PCSA) (Zhao et al., 2009, 2014)
(Figure 2A). These circuits are highly energy-efficient due to
their operation in two phases, precharge and discharge, avoiding
any direct path between the supply voltage and ground. First, the
sense signal (SEN) is set to ground and SL to the supply voltage,
which precharges the two selected complementary nanodevices
as well as the comparing latch at the same voltage. In the second
phase, the sense signal is set to the supply voltage, and the
voltages on the complementary devices are discharged to ground
through SL. The branch with the lowest resistance discharges
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faster and causes its associated inverter output to discharge to
ground, which latches the complementary inverter output to the
supply voltage. The two output voltages therefore represent the
comparison of the two complementary resistance values. In our
test chip, the read time is approximately 10 ns and results from
the high capacitive load associated with our probe testing setup.
Without this high capacitive load, the switching time would be
determined by the time to resolve the initial metastability of the
circuit. This switching time can be as fast as 100 ps in a scaled
technology (Zhao et al., 2014).

We fabricated a differential memory array with 2,048 devices,
therefore implementing a kilobit memory array. Each column of
complementary nanodevices features a precharge sense amplifier,
and rows and columns are accessed through integrated CMOS
digital decoders. The pads of the dies are not protected from
electrostatic discharge, and the dies were tested with commercial
22-pad probe cards. In all the experiments, voltages are set
using a home-made printed circuit board, and pulse voltages are
generated using Keysight B1530A pulse generators. In the design,
the precharge sense amplifiers can optionally be deactivated
and bypassed, which allows the nanodevice resistance to be
measured directly through external precision source monitor
units (Keysight B1517a).

2.2. Design of In-memory Binarized Neural
Network Based on the Differential Memory
Building Block
This work aims at implementing Binarized Neural Networks in
hardware. In these neural networks, the synaptic weights, as well
as the neuronal states, can take only two values, +1 and −1,
while these parameters assume real values in conventional neural
networks. The equation for neuronal value Aj in a conventional
neural network is:

Aj = f

(

∑

i

WjiXi + bj

)

, (1)

where Xi are the neuron inputs, Wji the synaptic weights values,
bj a bias term, and f the neural activation function, which
introduces non-linearity into the network. Typical examples
of activation functions are the sigmoid function, the softmax
function, and the hyperbolic tangent function. In Binarized
Neural Networks, the activation function is much simpler, as it
is substituted by the sign function, as shown in Equation (2):

Aj = sign

(

POPCOUNT
i

(

XNOR
(

Wji,Xi

))

− Tj

)

. (2)

In this equation, Tj is the so-called threshold of the neuron, and
it is learned during training. POPCOUNT is the function that
counts the number of ones in a series of bits, and sign is the
sign function.

The training process of binarized neural networks differs
from that of conventional neural networks. During training,
the weights assume real weights in addition to the binary
weights, which are equal to the sign of the real weights.
Training employs the classical error backpropagation equations

with several adaptations. The binarized weights are used in the
equations of both the forward and the backward passes, but the
real weights change as a result of the learning rule (Courbariaux
et al., 2016). Additionally, as the activation function of binarized
neural networks is the sign function and is not differentiable,
we consider the sign function as the first approximation of the
hardtanh function,

Hardtanh(x) = Clip(x,−1, 1), (3)

and we use the derivative of this function as a replacement for
the derivative of the sign function in the backward pass. This
replacement is a key element for training BNN successfully. The
clip interval in Equation (3) is not learned and is chosen to
be between −1 and 1 for all neurons. Using a larger interval
would indeed increase the vanishing gradient effect, while using a
smaller interval would lead to derivatives higher than one, which
can cause exploding gradient effects.

Finally, the Adam optimizer is used to stabilize learning
(Kingma and Ba, 2014). A technique known as batch-
normalization is employed at each layer of the neural network
(Ioffe and Szegedy, 2015). Batch-normalization shifts and scales
the neuronal activations over a batch during the training process.
This method is used optionally in conventional neural networks
to accelerate and stabilize learning. Using this technique becomes
essential when training binarized neural networks to reach high
accuracies, as it ensures that neuronal activations utilize both
+1 and −1 values. At inference time, batch-normalization is no
longer necessary, and the threshold learned by this technique can
be used directly as the neuronal threshold in Equation (2).

With this learning technique, binarized neural networks
function surprisingly well. They can achieve near state-of-the-
art performance on image recognition tasks such as CIFAR-
10 and ImageNet (Lin et al., 2017). After learning, the real
weights serve no more purpose and can be discarded. This
makes binarized neural networks exceptional candidates for
hardware implementation of neural network inference. Not only
are their memory requirements minimal (one bit per neuron
and synapse), but their arithmetic is also vastly simplified.
Multiplication operations of Equation (1) are expensive in terms
of area and energy consumption, and they are replaced by one-bit
exclusive NOR (XNOR) operations in Equation (2). Additionally,
the real sums in Equation (1) are replaced by POPCOUNT
operations, which are equivalent to integer sums with a low
bit width.

It is possible to implement ASIC Binarized Neural Networks
with solely CMOS (Ando et al., 2017; Bankman et al., 2018).
However, a more optimal implementation would rely on
emerging non-volatile memories and associate logic andmemory
as closely as possible. This approach can provide non-volatile
neural networks and eliminate the von Neumann bottleneck
entirely: the nanodevices can implement the synaptic weights,
while the arithmetic can be done in CMOS. Most of the literature
proposing the use of emerging memories as synapses relies
on an ingenious technique to perform the multiplications and
additions of Equation (1) that relies on analog electronics: the
multiplications are done based on Ohm’s law and the addition

Frontiers in Neuroscience | www.frontiersin.org 5 January 2020 | Volume 13 | Article 138339

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hirtzlin et al. Digital Implementation of BNNs

FIGURE 3 | (A) Schematization of the implemented Binarized Neural Network highlighting connections to one specific neuron. (B) Schematization of the full

architecture to implement the Binarized Neural Network in the “parallel to sequential” configuration. The system assembles a memory block surrounded by logic

circuits and moves minimal data between the blocks. The architecture is presented with three rows and three columns (i.e., N = M = 3) of kilobit memory blocks (i.e.,

n = 32).

based on Kirchoff’s current law (Yu et al., 2016; Ambrogio
et al., 2018). This analog approach can be transposed directly to
binarized neural networks (Tang et al., 2017; Sun et al., 2018a,b;
Yu, 2018). However, binarized neural networks are inherently
digital objects that rely, as previously remarked, on simple logic
operation: XNOR operations and low bit-width sums. Therefore,
here, we investigate their implementation with purely digital
circuitry. This concept also recently appeared in Natsui et al.
(2018) and Giacomin et al. (2019) and in our preliminary version
of this work (Bocquet et al., 2018). Our work is the first one to
present measurements on a physical memory array that include
the effect of bit errors.

A first realization is that the XNOR operations can be
realized directly within the sense amplifiers. For this, we follow
the pioneering work of Zhao et al. (2014), which shows that
a precharge sense amplifier can be enriched with any logic
operation. In our case, we can add four additional transistors
in the discharge branches of a precharge sense amplifier
(Figure 2B). These transistors can prevent the discharge and
allow the implementation of the XNOR operation between input
voltage X and the value stored in the complementary OxRAM
devices in a single operation.

Based on the basic memory array with PCSAs enriched
with XNOR, we designed the whole system implementing a

Binarized Neural Network. The overall architecture is presented
in Figure 3. It is inspired by the purely CMOS architecture
proposed in Ando et al. (2017), adapted to the constraints
of OxRAM. The design consists of the repetition of basic
cells organized in a matrix of N by M cells. These basic cells
incorporate a n×nOxRAMmemory block with XNOR-enriched
PCSAs and POPCOUNT logic. The whole system, which aims
at computing the activation of neurons (Equation 2), features a
degree of reconfigurability to adapt to different neural network
topologies: it can be used either in a “parallel to sequential” or in
a “sequential to parallel” configuration.

The parallel to sequential configuration (presented in
Figure 3) can deal with layers with up to n × N input neurons
and up to n ×M output neurons. In this situation, at each clock
cycle, the system computes the activations of M output neurons
in parallel. At each clock cycle, each basic cell reads an entire
row of its OxRAM memory array while performing the XNOR
operation with input neuron values. The results are used to
compute the POPCOUNT operation over a subset of the indices
i in Equation (2), using fully digital five-bit counters embedded
within the cell. Additional logic, called “popcount tree” and only
activated in this configuration, computes the full POPCOUNT
value operation over a column by successively adding the five-
bit-wide partial POPCOUNT values. The activation value of the
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FIGURE 4 | (a) Distributions of the LRS and HRS of the OxRAM devices in an array programmed with a checkerboard pattern. RESET voltage of 2.5V, SET current of

55µA, and programming time of 1µs. (b,c) Proportion of 1 values read by the on-chip precharge sense amplifier, over 100 whole-array programming cycles of a

memory array, for the two complementary checkerboards configuration. (d) Rate of programming failure indicated of the precharge sense amplifier circuits as a

function of the ratio between HRS and LRS resistance (measured by a sense measure unit) in the same configuration as (a–c). (e–f) Proportion of 1 values read by the

on-chip precharge sense amplifier, over 100 whole-array programming cycles of a memory array, for the last layer of a binarized neural network trained on MNIST

(details in body text).

neuron is obtained by subtracting the complete POPCOUNT
value at the bottom of the column from a threshold value stored
in a separate memory array; the signed bit of the result gives the
activation value. At the next clock cycle, the next rows in the
OxRAM memory arrays are selected, and the activations of the
nextM neurons are computed.

The sequential to parallel configuration (not presented), by
contrast, can be chosen to deal with a neural network layer with
up to n2 inputs neurons and up to NM output neurons. In
this configuration, each basic cell of the system computes the
activation of one neuron Aj. The input neurons Xi are presented
sequentially by subsets of n inputs. At each clock cycle, the
digital circuitry therefore computes only a part of Equation (2).
The partial POPCOUNT is looped to the same cell to compute
the whole POPCOUNT sequentially. After the presentations of
all inputs, the threshold is subtracted, the binary activation is
extracted, and Equation (2) has been entirely computed.

This whole system was designed using synthesizable
SystemVerilog. The memory blocks are described in behavioral
SystemVerilog. We synthesized the system using the 130-nm
design kit used for fabrication, as well as using the design kit of
an advanced commercial 28-nm process for scaling projection.

All simulations reported in the results sections were
performed using Cadence Incisive simulators. The estimates
for system-level energy consumption were obtained using the
Cadence Encounter tool. We used Value Change Dump (VCD)
files extracted from simulations of practical tasks so that the
obtained energy values would reflect the operation of the
system realistically.

3. RESULTS

3.1. Differential Memory Allows Memory
Operation at Reduced Bit Error Rate
This section first presents the results of electrical characterization
of the differential OxRAM arrays. We program the array with
checkerboard-type data, alternating zero and one bits, using

programming times of one microsecond. For programming
devices in HRS (RESET operation), the access transistor is fully
opened, and a reset voltage of 2.5V is used. For programming
devices in LRS (SET operation), the gate voltage of the access
transistor is chosen to ensure a compliance current of 55µA.
Figure 4a shows the statistical distribution of the LRS and HRS
of the cells, based on 100 programming cycles of the full array.
This graph uses a standard representation in the memory field,
where the y axis is expressed as the number of standard deviations
of the distribution (Ly et al., 2018). The figure superimposes
distributions of left (BL) and right (BLb) columns of the array,
and no significant difference is seen between BL and BLb devices.
The LRS and HRS distributions are clearly separate but overlap
at a value of three standard deviations, which makes bit errors
possible. If a 1T1R structure were used, a bit error rate of 0.012
(1.2%) would be seen with this distribution. By contrast, at the
output of the precharge sense amplifiers, a bit error rate of 0.002
(0.2%) is seen, providing a first indication of the benefits of the
2T2R approach. Figures 4b,c show the mean error (using the
2T2R configuration) on the whole array for the two types of
checkerboards. We see that all devices can be programmed in
HRS and LRS. A few devices have an increased bit error rate.
This graph highlights the existence of both cycle-to-cycle and
device-to-device variability and the absence of “dead” cells.

We now validate in detail the functionality of the precharge
sense amplifiers. The precise resistance of devices is first
measured by deactivating the precharge sense amplifiers and
using the external source monitor units. Then, the precharge
sense amplifiers are reactivated, and a sense operation is
performed. Figure 4d plots the mean measurement of the sense
amplifiers as a function of the ratio between the two resistances
that are being compared, superimposed on the ideal behavior of a
sense amplifier. The sense amplifiers show excellent functionality
but can make mistakes if the two resistances differ by less
than a factor of five. Finally, Figures 4e,f show the results of
repeating the experiments of Figures 4b,c in a more realistic
situation and on a different die. We trained a memory array 100
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times with weights corresponding to the last layer of a binarized
neural network trained on the MNIST task of handwritten digit
recognition. As in the checkerboard case, no dead cell is seen, and
a similar degree of cycle-to-cycle and device-to-device variation
is exhibited.

The programming rates are strongly dependent on the
programming conditions. Figure 5 shows the mean number of
incorrect bits on a whole array for various combinations of
programming time (from 0.1 to 100µs), RESET voltage (between
1.5 and 2.5 Volts), and SET compliance current (between 28 and
200µA). We observe that the bit error rate depends extensively

FIGURE 5 | Number of errors for different programming conditions, as

measured by precharge sense amplifier, for a 2T2R configuration on a kilobit

memory array. The “< 1” label means that no errors were detected. The error

bars present the minimum and maximum number of detected errors over five

repetitions of the experiments.

on these three programming parameters, the SET compliance
current having the most significant impact.

In Figure 6, we look more precisely at the effects of cycle-
to-cycle device variability and device aging. A device and its
complementary device were programmed through 700 million
cycles. Figures 6A,B show the distribution of the LRS andHRS of
the device under test and its complementary device after different
number of cycles, ranging from the first one to the last one. We
can observe that as the devices are cycled, the LRS and HRS
distributions become less separated and start to overlap at a lower
number of standard deviations. This translates directly to the
mean resistance of the devices in HRS and LRS (Figures 6C,D),
which become closer as the device ages. More importantly, the
aging process impacts the device bit error rate (Figure 6E): the
bit error rate of the device and its complementary device increase
by several orders of magnitudes over the lifetime of the device.
The same effect is seen on the bit error rate resulting from
the precharge sense amplifier (2T2R), but it remains at a much
lower level: while the 1T1R bit error rate goes above 10−3 after
a few million cycles, the 2T2R remains below this value over
the 700 million cycles. This result highlights that the concept of
cyclability depends on the acceptable bit error rate and that the
cyclability at constant bit error rate can be considerably extended
by using the 2T2R structure. It should also be highlighted
that the cyclability depends tremendously on the programming
conditions. Figures 7A,B shows endurance measurements with
a reset voltage of 1.5V (all other programming conditions
are identical to Figures 6A–E). We can see that the device
experiences no degradation through more than ten billion cycles.
Over that time, the 2T2R bit error rate remains below 10−4.

We now aim at quantifying and benchmarking the benefits
of the 2T2R structure more precisely. We performed extensive
characterization of bit error rates on the memory array in various

FIGURE 6 | (A,B) Distribution of resistance values, (C,D) mean resistance value, and (E) mean bit error rate over 10 million cycles, as measured by precharge sense

amplifier, in the 2T2R configuration, as a function of the number of cycles for which a device has been programmed. RESET voltage of 2.5V, SET current of 200µA,

and programming time of 1µs.
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FIGURE 7 | (A,B) Mean resistance value of the BL and BLb device over 10 thousand cycles for measurements of a device pair over 5× 1010 cycles. RESET voltage

of 1.5V, SET current of 200µA, and programming time of 1µs.

FIGURE 8 | (A) Experimental bit error rate of the 2T2R array, as measured by precharge sense amplifier, as a function of the bit error rate obtained with individual

(1T1R) RRAM devices under the same programming conditions. The detailed methodology for obtaining this graph is presented in the body text. Bit error rate obtained

with (B) Single Error Correcting (SEC) and (C) Single Error Correcting Double Error Detection (SECDED) ECC as a function of the error rate of the individual devices.

regimes. Figure 8A presents different experiments where the
2T2R bit error rate is plotted as a function of the bit error rate
that would be obtained by using a single device programmed in
the same conditions. The different points are obtained by varying
the compliance current Ic during SET operations, and the graph
associates two types of experiments:

• The points marked as “Low Ic” are obtained using whole-
array measurement, where devices are programmed with a
low SET compliance current to ensure a high error rate. Each
device in the memory array is programmed once (following
the checkerboard configuration), and all synaptic weights are
read using the on-chip precharge sense amplifiers. The plotted
bit error rate is the proportion of weights for which the
read weight differs from the weight value targeted by the
programming operation.

• The points marked as “High Ic” are obtained bymeasurements
on a single device pair. A single 2T2R structure in the array
is programmed ten million times by alternating programming
to +1 and −1 values. The value programmed in the 2T2R
structure is read using an on-chip precharge sense amplifier
after each programming operation. The plotted bit error rate
is the proportion of read operations for which the read weight
differs from the targeted value.

We can see that the 2T2R bit error rate is always lower
than the 1T1R one. The difference is larger for a lower
bit error rate and reaches four orders of magnitude for
a 2T2R bit error rate of 10−8. The black line represents
calculations where the precharge sense amplifier is supposed to
be ideal (i.e., to follow the idealized dotted characteristics of
Figure 4C).
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FIGURE 9 | Recognition rate on the validation datasets of the fully connected

neural network for MNIST, the convolutional neural network for CIFAR10, and

AlexNet for ImageNet (Top 5 and Top 1) and in the ECG analysis task, as a

function of the bit error rate over the weights during inference. Each

experiment was repeated five times; the mean recognition rate is presented.

Error bars represent one standard deviation.

To interpret the results of the 2T2R approach in a
broader perspective, we benchmark them with standard error-
correcting codes. Figures 8B,C show the benefits of two codes,
using the same plotting format as Figure 8A: a Single Error
Correction (SEC) and a Single Error Correction Double Error
Detection (SECDED) code, presented with different degrees of
redundancy. These simple codes, formally known as Hamming
and extended Hamming codes, are widely used in the memory
field. Interestingly, we see that the benefit of these codes
are very similar to the benefit of our 2T2R approach with
an ideal sense amplifier, at equivalent memory redundancy
(e.g., SECDED(8,4)), although our approach uses no decoding
circuit and performs the equivalent of error correction directly
within the sense amplifier. By contrast, ECCs can also reduce
bit errors, to a lesser extent, using less redundancy, but the
required decoding circuits utilize hundreds to thousands of
logic gates (Gregori et al., 2003). In a context where logic and
memory are tightly integrated, these decoding circuits would
need to be repeated many times, and as their logic is much
more complicated than that of binarized neural networks, they
would be the dominant source of computation and energy
consumption. ECC circuits are also incompatible with the idea
of integrating XNOR operations within the sense amplifiers and
cause important read latency.

3.2. Do All Errors Need to Be Corrected?
Based on the results of the electrical measurements, and before
discussing the whole system, it is important to determine the
OxRAMbit error rate levels that can be tolerated for applications.
To answer this question, we performed simulations of binarized
neural networks on four different tasks:

• MNIST handwritten digit classification (LeCun et al.,
1998), the canonical task of machine learning. We use
a fully connected neural network with two 1024-neuron
hidden layers.

• The CIFAR-10 image recognition task (Krizhevsky and
Hinton, 2009), which consists of recognizing 32 × 32 color
images spread between ten categories of vehicles and animals.
We use a deep convolutional network with six convolutional
layers using kernels of 3 × 3 and a stride of one, followed by
three fully connected layers.

• The ImageNet recognition task, which consists of recognizing
224 × 224 color images out of 1000 classes. This task is
considerably more difficult than MNIST and CIFAR-10. We
use the historic AlexNet deep convolutional neural network
(Krizhevsky et al., 2012).

• A medical task involving the analysis of electrocardiography
(ECG) signals: automatic detection of electrode misplacement.
This binary classification challenge takes as input the ECG
signals of twelve electrodes. The experimental trial data are
sampled at 250 Hz and have a duration of three seconds
each. To solve this task, we employ a convolutional neural
network composed of five convolutional layers and two fully
connected layers. The convolutional kernel (sliding window)
sizes decrease from 13 to 5 in each subsequent layer. Each
convolutional layer produces 64 filters detecting different
features of the signal.

Fully binarized neural networks were trained on these tasks
on NVIDIA Tesla GPUs using Python and the PyTorch deep-
learning framework. Once the neural networks were trained, we
ran them on the dataset validation sets, artificially introducing
errors into the neural network weights (meaning some +1
weights were replaced by −1 weights, and reciprocally). Using
this technique, we could emulate the impact of OxRAM bit
errors. Figure 9 shows the resulting validation accuracy as a
function of the introduced bit error rate for the four tasks
considered. In the case of ImageNet, both the Top-1 (proportion
of validation images where the right label is the top choice of the
neural network) and the Top-5 (proportion of validation images
where the right label is within the top five choices of the neural
network) are included.

On the three-vision tasks (MNIST, CIFAR-10, and ImageNet),
we see that extremely high levels of bit errors can be tolerated: up
to a bit error rate of 10−4, the network performs as well as with no
errors. Minimal performance reduction starts to be seen with bit
error rates of 10−3 (the Top-5 accuracy on ImageNet is degraded
from 69.7% to 69.5%). At bit error rates of 0.01, the performance
reduction becomes significant. The reduction is more substantial
for harder tasks: MNIST accuracy is only degraded from 98.3%
to 98.1%, CIFAR-10 accuracy is degraded from 87.5% to 86.9%,
while ImageNet Top-5 accuracy is degraded from 69.7% to 67.9%.

The ECG task also shows extremely high bit error tolerance,
but bit errors have an effect more rapidly than in the vision tasks.
At a bit error rate of 10−3, the validation accuracy is reduced from
82.1% to 78.7%, and at a bit error rate of 0.01, to 68.4%. This
difference between vision and ECG tasks probably originates in
the fact that ECG signals carry a lot less redundant information
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FIGURE 10 | Dark blue circles: MNIST validation accuracy as a function of the inference energy of our Binarized Neural Network hardware design. Light blue squares:

same, as a function of the energy used for arithmetic operation in a real-valued neural network employing eight-bit fixed-point arithmetic. The different points are

obtained by varying the number of hidden neurons in (A) a one hidden layer neural network and (B) a two hidden layers neural network. Insets: number of synapses in

each situation.

than images. Nevertheless, we see that even for ECG tasks, high
bit error rates can be accepted with regards to the standards of
conventional digital electronics.

4. DISCUSSION

4.1. Projection at the System Level
4.1.1. Impact of In-Memory Computation
We now use all the paper results to discuss the potential of
our approach. Based on our ASIC design, using the energy-
evaluation technique described at the end of theMethods section,
we find that our system would consume 25 nJ to recognize one
handwritten digit, using a fully connected neural network with
two hidden layers of 1,024 neurons. This is considerably less
than processor-based options. For example, Lane et al. (2016)
analyses the energy consumption of inference on CPUs and
GPUs: operating a fully connected neural network with two
hidden layers of 1,000 neurons requires 7 to 100 millijoules
on a low-power CPU (from NVIDIA Tegra K1 or Qualcomm
Snapdragon 800 systems on the chip) and 1.3 millijoules on a
low-power GPU (NVIDIA Tegra K1).

These results are not surprising due to the considerable
overhead for accessing memory in modern computers. For
example, Pedram et al. (2017) shows that accessing data in a
static RAM cache consumes around fifty times more energy
than the integer addition of this data. If the data is stored in
the external dynamic RAM, the ratio is increased to more than
3,000. Binarized Neural Networks require minimal arithmetic:
no multiplication and only integer addition with a low bit width.
When operating a Binarized Neural Network on a CPU or GPU,
almost the entirety of the energy is used to move data, and

the inherent topology of the neural network is not exploited
to reduce data movement. Switching to in-memory or near-
memory computing approaches therefore has the potential to
reduce energy consumption drastically for such tasks. This is
especially true as, in inference hardware, synaptic weights are
static and can be programmed to memory only once if the circuit
does not need to change function.

4.1.2. Impact of Binarization
We now look specifically at the benefits of relying on Binarized
Neural Networks rather than real-valued digital ones. Binarized
Neural Networks feature considerably simpler architecture than
conventional neural networks but also require an increased
number of neurons and synapses to achieve equivalent accuracy.
It is therefore essential to compare the binarized and real-
value approaches.

Most digital ASIC implementations of neural networks have
an inference function with eight-bit fixed-point arithmetic,
the most famous example being the tensor processing units
developed by Google (Jouppi et al., 2017). At this precision, no
degradation is usually seen for inference with regards to 32- and
64-bis floating-point arithmetic.

To investigate the benefits of Binarized Neural Networks,
Figure 10 looks at the energy consumption for inference over
a single MNIST digit. We consider two architectures: a neural
network with a single hidden layer (Figure 10A) and another
with two hidden layers (Figure 10B), and we vary the number of
hidden neurons. Figures 10A,B plot on the x-axis the estimated
energy consumption of a Binarized Neural Network using our
architecture based on the flow presented in the Methods section.
It also plots the energy required for the arithmetic operations
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(sum and product) of an eight-bit fixed-point regular neural
network, neglecting the overhead that is considered for the
Binarized Neural Network. For both types of networks, the y-
axis shows the resulting accuracy in the MNIST task. We see
that at equivalent precision, the BinarizedNeural Network always
consumes less energy than the arithmetic operations of the real-
valued one. It is remarkable that the energy benefit depends
significantly on the targeted accuracy and should therefore be
investigated on a case-by-case basis. The highest energy benefits,
a little less than a factor ten, are seen at lower targeted precision.

Binarized Neural Networks have other benefits with regards to
real-valued digital networks: if the weights are stored in RRAM,
the programming energy is reduced due to the lower memory
requirements of Binarized Neural Networks. The area of the
overall circuit is also expected to be reduced due to the absence of
multipliers, which are high-area circuits.

4.1.3. Comparison With Analog Approaches
As mentioned in the introduction, a widely studied approach
for implementing neural networks with RRAM is to rely on
an analog electronics strategy, where Ohm’s law is exploited
for implementing multiplications and Kirchoff’s current law
for implementing additions (Prezioso et al., 2015; Serb et al.,
2016; Shafiee et al., 2016; Ambrogio et al., 2018; Li et al.,
2018; Wang et al., 2018). The digital approach presented in
this paper cannot be straightforwardly compared to the analog
approach: the detailed performance of the analog approach
depends tremendously on its implementation details, device
specifics, and the size of the neural network. Nevertheless, several
points can be raised.

First, the programming of the devices is much simpler in our
approach than in the analog one: one only needs to program a
device and its complementary device in LRS and HRS, which
can be achieved by two programming pulses. It is not necessary
to verify the programming operation, as the neural network has
inherent bit-error tolerance. Programming RRAM for analog
operation is a more challenging task and usually requires a
sequence of multiple pulses (Prezioso et al., 2015), which leads
to higher programming energy and device aging.

For the neural network operation, the analog approach and
ours function differently. Our approach reads synaptic values
using the sense amplifier, which is a highly energy-efficient
and fast circuit that can operate at hundreds of picoseconds in
advanced CMOS nodes (Zhao et al., 2014). This sense amplifier
inherently produces the multiplication operation, and then the
addition needs to be performed using a low bit-width digital
integer addition circuit. The ensemble of a read operation and the
corresponding addition typically consumes fourteen femtojoules
in our estimates in advanced node. In the analog approach,
the read operation is performed by applying a voltage pulse
and inherently produces the multiplication through Ohm’s law
but also the addition though Kirchoff law. This approach is
attractive, but, on the other hand, requires the use of CMOS
analog overhead circuitry such as an operational amplifier, which
can bring high energy and area overhead. Which approach is
the most energy-efficient between ours and the analog one will

TABLE 1 | RRAM Properties with different programming conditions.

Programming

condition

Strong

(Figure 6)

Optimized

endurance

(Figure 7)

Optimized

programming

energy

SET compliance current 200µA 200µA 200µA

RESET voltage 2.5V 1.5V 2V

Programming time 1µs 1µs 100 ns

2T2R bit error rate

(before aging)

< 10−7 < 10−4 < 10−5

Programming energy 200 ∼ 400pJ 150 ∼ 400pJ 20 ∼ 30pJ

(SET/RESET)

Cyclability (number of

cycles at BER < 10−3)

> 108 > 1010 > 108

probably depend tremendously on memory size, application, and
targeted accuracy.

Another advantage of the digital approach is that it is much
simpler to design, test, and verify as it relies on all standard
VLSI design tools. On the other hand, an advantage of the
analog approach is that it may, for a small memory size, function
without access transistors, resulting in higher memory densities
(Prezioso et al., 2015).

4.1.4. Impact in Terms of Programming Energy and

Device Aging
A last comment is that the bit error tolerance of binarized
neural networks can have considerable benefits at the system
level. Table 1 summarizes the measured properties of RRAM
cells under different programming conditions, chosen from
those presented in Figure 5. We consider only the conditions
with bit error rates below 10−3 (i.e., corresponding to a “<
1” data point in Figure 5), as this constraint makes them
appropriate for use for all tasks considered in section 3.2. The
“strong” programming conditions are the ones presented in
Figure 6. They feature a low bit error rate before aging but high
programming energy. The other two columns correspond to two
optimized choices. The conditions optimized for programming
energy are the conditions of Figure 5 with bit error rates below
10−3 and the lowest programming energy. They use a lower
RESET voltage (2.0V) than the strong conditions and a shorter
programming time (100 ns). The cyclability of the device—
defined as the number of programming cycles a cell can perform
while retaining a bit error rate below 10−3—remains comparable
to the strong programming conditions. The conditions optimized
for endurance are, by contrast, the conditions of Figure 5 with a
bit error rate below 10−3 and the highest cyclability: more than
1010 cycles, as already evidenced in Figure 7. These conditions
use a low RESET voltage 1.5V but require a programming time
of 1µs.

4.2. Conclusion
This work proposes an architecture for implementing binarized
neural networks with RRAMs and incorporates several
biologically plausible ideas:
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• Fully co-locating logic memory,
• Relying only on-low precision computation (through the

Binarized Neural Network concept),
• Avoiding multiplication altogether, and
• Accepting some errors without formal error correction.

At the same time, our approach relies on conventional
microelectronics ideas that are non-biological in nature:

• Relying on fixed-point arithmetic to compute sums, whereas
brains use analog computation,

• Using sense amplifier circuits, which are not brain-inspired,
and

• Using a differential structure to reduce errors, a traditional
electrical engineering strategy.

Based on these ideas, we designed, fabricated, and extensively
tested a memory structure with its peripheral circuitry and
designed and simulated a full digital system based on this
memory structure. Our results show that this structure allows
neural networks to be implemented without the use of Error-
Correcting Codes, which are usually used with emerging
memories. Our approach also features very attractive properties
in terms of energy consumption and can allow that use of RRAM
devices in a “weak” programming regime, where they have low
programming energy and outstanding endurance. These results
highlight that although in-memory computing cannot efficiently
rely on Error-Correcting Codes, it can still function without
stringent requirements on device variability if a differential
memory architecture is chosen.

When working on bioinspiration, drawing the line between
bio-plausibility and embracing the differences between the
nanodevices of the brain and electronic devices is always
challenging. In this project, we highlight that digital electronics
can be enriched by biologically plausible ideas. When working
with nanodevices, it can be beneficial to incorporate device
physics questions into the design, and not necessarily to target
the level of determinism that we have been accustomed to
by CMOS.

This work opens multiple prospects. On the device front, it
could be possible to develop more integrated 2T2R structures to
increase the density of the memories. The concept of this work
could also be adapted to other kinds of emerging memories, such
as phase-change memories and spin torque magnetoresistive
memories. At the system level, we are now in a position to
fabricate larger systems and to investigate the extension of our
concept to more varied forms of neural network architecture
such as convolutional and recurrent networks. In the case
of convolutional networks, a dilemma appears between taking
the in-memory computing approach to the fullest degree, by
replicating physically convolutional kernels or implementing
some sequential computation to minimize resources, as works
have started to evaluate already. These considerations open the
way for truly low-energy artificial intelligence for both servers
and embedded systems.
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Spike Encoded Pixels
Daniel J. Mannion*, Adnan Mehonic, Wing H. Ng and Anthony J. Kenyon

Department of Electronic and Electrical Engineering, University College London, London, United Kingdom

Memristors have many uses in machine learning and neuromorphic hardware. From

memory elements in dot product engines to replicating both synapse and neuron wall

behaviors, the memristor has proved a versatile component. Here we demonstrate

an analog mode of operation observed in our silicon oxide memristors and apply this

to the problem of edge detection. We demonstrate how a potential divider exploiting

this analog behavior can prove a scalable solution to edge detection. We confirm its

behavior experimentally and simulate its performance on a standard testbench. We show

good performance comparable to existing memristor based work with a benchmark

score of 0.465 on the BSDS500 dataset, while simultaneously maintaining a lower

component count.

Keywords: memristor, edge detection, computer vision, spiking neural networks, neuromorphic computing

1. INTRODUCTION

Interest in the application of memristors was originally driven by their potential as non-volatile
memory elements. Subsequent work has demonstrated their capability to compute, to emulate
biological synapses, and even to perform some of the functions of the biological neuron. Resistance
switches, a sub-class of memristors, can be seen as devices that switch between two or more
discrete resistance states. However, they exhibit very rich resistance dynamics under a variety of
electrical stimuli. Here we demonstrate that it is not necessary to fully switch such devices to obtain
useful functionality. They can be operated in an analog regime to perform elementary computing
tasks: in our example, edge detection, and potentially far more. This suggests the possibility of
reconfigurable networks of memristors in which different sections of an array can simultaneously
store data, perform Boolean logic, generate spikes, integrate multiple inputs, and perform a variety
of machine intelligence-related tasks. The memristor thus becomes a simple two terminal building
block for a reconfigurable set of computing architectures.

When we consider memristors as computational elements it is largely as accelerators of
mathematical operations such as the dot product operator. These accelerations then lead to the
speed up of conventional algorithms further down the line. In this work we take the premise a step
further by showing that a unique combination of volatile device behaviors with a potential divider
arrangement accelerates not just a single operation but the entire computational problem of edge
detection in a single stage.

Before detailing previous memristor based studies, we should acknowledge that the field of low
power vision is a well researched field with promising alternatives such as event cameras (Gallego
et al., 2019). Event cameras encode images in a different manner than a typical charge-coupled
device. Rather than reporting the absolute value of a pixel, an event camera signals when the change
in a pixel’s value exceeds a threshold. Encoding images in thismanner when combinedwith absolute
pixel values, allows for more efficient algorithms one example being the edge detection and tracking
of Kueng et al. (2016). The technique can be considered a novel sensor technology requiring further
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processing by a central processing unit (CPU) or graphics
processing unit (GPU) to handle the unique data produced by
the camera.

In contrast, memristor based techniques work with absolute
pixel values and are intended as hardware accelerators with the
aim of reducing computational overhead. Alone they will struggle
to achieve the same performance as event cameras, which
exploit the sophisticated processing possible on a CPU/GPU.
For example, in the tracking work of Kueng et al. (2016) edge
detection is achieved through a combination of both a Harris
corner detector and a Canny edge detector. Therefore, memristor
techniques should not be considered the end solution but instead
as accelerators to be used in conjunction with other systems.

The work presented in this paper follows the latter approach
in that it works with absolute pixel values and is intended as
a hardware accelerator. However, it differentiates itself from
existing techniques in both function and form. Firstly, it does
not simply accelerate a single operation, such as a crossbar does
for the dot product operation, but instead accelerates the entire
process of edge detection. The output requires no additional
processing except for the reading of spikes. Secondly, we replace
the commonly used crossbar structure, which is the standard
in memristive image processing, and instead use a potential
divider built from our volatile devices. The combination of
volatile devices placed in a potential divider arrangement is
unique and has not been used before in the application of image
processing. It differs entirely from studies using non-volatile
devices in a crossbar (Yakopcic and Taha, 2017; Khokhar and
Khalid, 2018; Li et al., 2018), differing in both device behavior
and circuit layout. Where potential dividers have been used
before in image processing, they have been non-volatile and
required the frequent reprogramming of weights. For example,
the study that most closely resembles our own approach is the
use of memristive threshold logic to detect moving objects (Maan
et al., 2015). Although their memristors are also in a potential
divider arrangement their use is more complicated. They are
non-volatile devices requiring a training phase between frames,
in which their conductances are reprogrammed depending on
the previous frames values. In contrast, our approach requires no
programming nor training phase, instead operating on the fly.
This makes for a simpler circuit design.

We will begin by outlining the origin and basis of the
existing memristor based techniques and then detail how our
approach differs.

In conventional computing there exist a number of algorithms
to carry out edge detection, one example being the Sobel
algorithm (Duda, 1973). In this the gradient across neighboring
pixels is calculated from the scalar dot product of the pixel in
question and its surrounding pixels with a predetermined 3 × 3
matrix, referred to as a kernel. Two different kernels are used, one
determining the horizontal gradient,Gx and the other the vertical
gradient, Gy.

Gx =





−1 0 +1
−2 0 +2
−1 0 +1



 Gy =





+1 +2 +1
0 0 0
−1 −2 −1





The results of these two dot products are combined to find the
overall gradient using Equation (1).

G =

√

Gx
2 + Gy

2 (1)

As a result, Sobel relies on a number of dot product
operations being carried out across the image. However, because
dot products involve the passing of data back and forth
between processors and memory they lead to bottlenecks and
inefficiencies (Fatahalian et al., 2004). Therefore, one approach
to improving the efficiency of edge detection is to accelerate the
dot product operator.

Circuits designed to accelerate dot product operations are
named dot product engines (DPEs). An effective DPE can be
implemented using the memristor (Chua, 1971; Strukov et al.,
2008). Thememristor is a two terminal device similar to a resistor
with the exception that its conductance is not fixed. Instead it can
be adjusted with an applied voltage. For example, voltages in one
polarity may make the device more conductive while voltages in
the opposite polarity will make it less conductive. Therefore, a
memristor’s conductance depends on the potentials applied to it
in the past and so can be considered a form of memory.

This memory property is exploited when implementing
memristive DPEs. Memristors are arranged into a crossbar array
with the value of one matrix element encoded in the conductance
of the memristor and the value of the second encoded in the
applied voltage (Alibart et al., 2013). The multiplication of matrix
elements is carried out by applying the voltage to the memristor
producing an output current as defined by Ohm’s law. As is
required in the dot product operator, the output currents for each
element are summed in accordance with Kirchoff’s current law.
Crossbar arrays consisting of memristors have previously been
shown to be effective DPEs (Hu et al., 2016).

The Sobel algorithm was implemented by Can Li et. al. on
a memristive DPE with good performance (Li et al., 2018).
They made use of non-volatile, analog memristors in a crossbar
structure. A variation on directly implementing Sobel on a DPE
is to instead teach the same algorithm to a neural network.
Memristive crossbar arrays are still used as DPEs. However, the
multiplication is of inputs and trained network weights, not of the
matrices directly derived from Sobel. Yakopcic et al. constructed
a multilayer perceptron network and trained it to replicate the
Sobel algorithm, again with good performance (Yakopcic and
Taha, 2017). Their system used non-volatile memristors with
128 discrete conductance states. More bespoke implementations
depart further from the conventional crossbar or neural network
architectures and replace the dot product entirely. Fuzzy
XOR gates implemented with memristors can determine pixel
gradients (Merrikh-Bayat et al., 2014) and swarm computations,
based on the behavior of ants, have been replicated with grids of
memristors (Pajouhi and Roy, 2018).

Although these approaches aim to improve efficiency through
changes to circuit design, none consider the encoding of their
signals, instead choosing to use only continuous real encoding.
An alternative is to use spike-encoded signals. Information is
represented in either spike timings, spike shape, or both. A spike-
based circuit is typically analog and computes at the arrival
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of a spike. It is argued that its inactivity between spikes can
result in a more power efficient network (Joubert et al., 2012).
This has led to the development of neural networks that exploit
such spiking signals, called spiking neural networks (SNNs),
with a variety of CMOS implementations (Indiveri et al., 2006).
Spiking neural networks operate using unsupervised learning
rules, one example being the spike-timing-dependent plasticity
rule (STDP). Applications such as character recognition via
STDP have been demonstrated in both Von-Neumann computer
systems (Diehl and Cook, 2015) and memristive systems (Covi
et al., 2016). However, computation is not solely restricted to
the use of STDP learning rules. Memristors exhibiting generic
analog behavior have been used in the learning of spatiotemporal
patterns and sound localization (Wang et al., 2018) as well as in
the sorting of spike patterns (Werner et al., 2016).

In our application, pixel values are encoded into the frequency
of spike trains. Therefore, the detection of edges is equivalent
to determining the difference in frequency between neighboring
pixels. We present a simple potential divider circuit consisting
of two amorphous silicon oxide memristors whose switching
characteristics we have detailed previously (Mehonic et al., 2017;
Munde et al., 2017; Kenyon et al., 2019). The potential divider
design is able to indicate the difference in frequency of its inputs
with the amplitude of spikes at its output. By inserting our
memristive potential divider between neighboring pixels we can
detect differences in pixel values and in turn identify edges.

We will begin by describing the devices used in this work
and how their behavior differs from typical memristors. We then
go on to detail our circuit and experimental data confirming
its behavior. Finally, we describe our model of the circuit and
present simulated results for a collection of images.

2. DEVICES

Our devices are of a metal-insulator-metal (MIM) structure with
a sputtered silicon oxide insulator layer. They consist of a gold
top electrode with a wetting layer of titanium on the oxide
and a bottom electrode of molybdenum. The device size
is 200 × 200 µm. Figure 1A details the dimensions of
each layer. More details regarding fabrication can be found
in Mehonic et al. (2017).

These devices were originally developed as binary memory
cells, able to switch between two distinct low and high resistance
states (Mehonic et al., 2017) but have also demonstrated
a number of neuromorphic uses such as in replicating
synapse functionality (Zarudnyi et al., 2018), neuronal spiking
and integration (Mehonic and Kenyon, 2016) as well as
more conventional machine learning techniques such as
interference (Mehonic et al., 2019). A typical application is as
elements within random access memories, referred to as resistive
random access memory (RRAM). RRAM devices switch between
their two distinct resistance states in response to a sufficiently
large voltage being applied to the device. Although we have
previously shown our devices behave in this manner we do not
use this conventional RRAM behavior in this work. Instead,
we use an analog operating mode which is obtained through a
change in the initial stressing of the device.

2.1. Analog Operation and Current
Transients
It is well known the behavior of a memristor is defined by
its device history. One of the key stages in this history is the
initial stressing of the device, in which the device transitions
from a pristine to an operational state. This initial stressing is
typically carried out using a voltage sweep and is referred to as
electroforming. After electroforming, the device exhibits binary
switching behavior as we have shown in Mehonic et al. (2017).
However, by modifying this initial stressing we find the device
can be forced into an alternative operating mode, one that does
not exhibit discrete jumps in resistance but instead analog and
volatile changes. A characteristic feature of this operating mode
is the observed transient in current in response to constant
potentials, shown in Figure 1B. Therefore, we have devices able
to exhibit either digital or analog behaviors depending on how
the device is initially stressed.

In order to induce the analog operating mode the device
is not electroformed with a voltage sweep but instead has a
constant current driven through the device at the top electrode.
The magnitude of the stressing current can range from -10 to
−100µA and should be maintained until the change in device
conductance slows and levels out. An example of this forming
process is included as an inset to Figure 1B. It should be stressed
this is not an operating condition but an initial step in order
to induce the analog regime and so could be considered a kind
of electroforming. However, it should not be confused with the
electroforming typically associated withmemristors. This process
is a smooth transition, very different from the discrete jumps of
electroforming. After removing the current bias and allowing the
device to relax, it is now in the analog regime and will exhibit the
characteristic current transients.

Transients similar to those in Figure 1B have been
documented before in other MIM structures. Studies of
barium strontium titanate capacitors (Zafar et al., 1998; Saha
and Krupanidhi, 2001) revealed transients of the same form and
timescale. Although it may seem reasonable to believe transients
are the result of capacitive charging this theory fails in two ways.
Firstly, the change in conductance is in the opposite sense to
what would be expected. If we were simply charging the electrode
we would expect a decrease in current, instead we observe an
initial increase. Secondly, the latter half of the transient, which is
a decrease in current, occurs over a duration of 50s. Considering
our device is driven by a low impedance voltage source, we would
expect significantly shorter timescales. The capacitance of the
device can be approximated to be 35 to 40 pF; assuming a relative
dielectric constant between 3.5 to 4, an area of 4 × 10−4(cm2)
and a thickness of 35 nm. If we then assume the combined source
and lead resistances were to be at the extreme end, say 100 �, the
time constant of the system would range from 3.5 to 4 ns, many
orders of magnitude smaller than what is observed. Instead, the
cause of this behavior is thought to be drifting oxygen vacancies
in turn modulating electronic conduction (Meyer et al., 2005;
Zhong et al., 2010).

When driven with a negative bias at the top electrode, current
transients consist of two parts; an initial increase in conductance
followed by a later decrease. The increase in conductance is
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FIGURE 1 | (A) Our devices use an active layer of 35 nm sputtered amorphous silicon oxide. The bottom contact is a 280 nm layer of molybdenum and the top

contact is a 115 nm layer of gold with a 3 nm wetting layer of titanium. (B) Examples of the current transients which occur when constant negative voltages are

applied to the top electrode with respect to the bottom electrode. Transients consist of two parts. There is an initial increase in conductance and a subsequent

decrease. In this work we operate only within the first region, the increase in conductance. Inset is a plot of the absolute voltage across the device during the initial

stressing stage. A constant current of −10µA is driven through the device. The applied voltage decreases over time, indicating the reduction in device resistance that

occurs as a result. (C) Negative and positive voltages have an opposite effect on the device’s conductance. When a train of negative voltage spikes were applied to

the device in a potential divider setup with a fixed 1M� resistor, the voltage of spikes at the output increases over time (black trace), corresponding to an increase in

conductance of the memristor. In contrast, when a train of positive spikes are interleaved in anti-phase with the negative spikes (red trace), the output voltage

increases to a lesser extent. This demonstrates the competing effects positive voltages have on the memristor. The positive spikes are reversing the changes in

conductance cause by the negative spikes. (D) Setup to demonstrate the competing effects of negative and positive polarities. Gaussian pulses with a full width at

half maximum (FWHM) of 1.3 ms are generated by a signal generator. These are applied to the top contact of the memristor which is in a potential divider with a fixed

1M� resistor. The output voltage, Vpot, is measured at the output of the potential divider. (E) Our circuit that determines the difference in frequency of two input spike

trains. Both inputs generate pulse trains with a negative amplitude and a frequency proportional to their input value. Each input is connected to a single memristor.

Both memristors then join at a common node. The output of the circuit, Vout, is taken at this common node. The amplitude of output spikes indicate the difference

between the two input frequencies. Larger differences in frequency result in larger amplitudes at the output.

volatile and resets on the order of seconds, whereas the decrease
in conductance ismore persistent. In this work, we operate within
only the first portion of the transient.Within this region, applying
a negative bias to the top electrode creates an increase in the
device conductance which can then be reversed with subsequent
positive biases. This behavior is demonstrated in Figure 1C. A
single device was placed in series with a fixed 1 M� resistor
connected to ground, forming a potential divider - as shown
in Figure 1D. Any change in device conductance is observed in
the change of the potential divider’s output voltage. An increase
in device conductance will result in larger output amplitudes
while a decrease in conductance will result in smaller output

amplitudes. When a train of pulses with negative amplitudes is
applied to the device (black trace) we observe an increase in
the amplitude of output spikes over time, corresponding to an
increase in device conductance. In contrast, when a positive pulse
train is interleaved in anti-phase with the original negative train
(red trace) the two processes begin to compete. The negative
pulses increase conductivity while the positive pulses decrease
it. Although this still leads to a small increase in conductivity,
which we assume is due to some asymmetries, it is less than when
the negative train does not face competition. It is this competing
behavior between spike trains of opposite polarities that forms
the basis of our circuit.
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3. CIRCUIT DESIGN

To determine the gradient across two neighboring pixels we
require a circuit that detects the difference in frequency between
two spike trains. Our circuit achieves this by exploiting the
opposing effects spike trains of opposite polarities have on
our devices.

Both input sources are connected to each other through a
combination of two memristors in series, as shown in Figure 1E.
The memristors are in opposite orientations with their bottom
contacts connected, forming a potential divider. The amplitudes
of output spikes are therefore dependent on the conductances of
both memristors. Sources produce spikes of negative polarity and
are connected to the top contact of their respective memristor.
For either memristor, when the source directly connected to it
generates a spike and the neighboring source is grounded, it
experiences a negative bias, causing an increase in conductance.
In direct contrast, the second memristor, whose source is
grounded, is in the opposite orientation and so experiences a
bias in the opposite polarity. This causes its conductance to
decrease. We have therefore introduced a form of competition
between the two inputs. When a source fires it acts to increase
the conductance of its attached memristor while decreasing the
conductance of its neighbor.

If the two inputs are of the same frequency any increase
in conductance caused by one input is swiftly canceled out
by the opposing effect of the other. This will result in both
memristors having a similar conductance with no change
in output amplitude. Alternatively, when one input has a
higher frequency than the other, the high frequency input will
overpower the opposing effect of the second input. This will drive
the memristor with the high frequency input to become more
conductive while suppressing increases in the conductance of the
low frequency input. Given the potential divider arrangement,
the amplitude of output spikes for the high frequency input will
increase while those of the low frequency spikes are driven down
to a minimum value. This behavior is shown in Figure 2. The
inputs are initially both set to 50 Hz with no observed change
in the amplitude of output spikes. The frequency of one input
is then set to 100 Hz, resulting in a difference in frequency of
50 Hz. This causes the amplitude of the output spikes caused by
the 100 Hz input to increase in amplitude, whereas the output
spikes generated by the 50 Hz signal remain at their initial value.
Therefore, as the difference in frequency between the two inputs
increases, so does the amplitude of output spikes from the higher
frequency input. These amplitudes can be used as an indicator for
the difference in input frequencies.

Importantly, at no point should the two inputs be allowed to
fire at the same time. If this occurs the circuit would no longer
behave as a potential divider due to neither of the inputs being
grounded. As a result the output voltage will merely follow the
voltage of both inputs producing an erroneous output. In this
work we avoid conflicts by inhibiting the latter spike when two
spikes do happen to overlap. We chose this approach because it
was considered the simplest to implement in a physical system.
Each spike source would be designed with an enable/disable
input, which, when triggered, inhibits any output. The output

FIGURE 2 | Experimental data demonstrating the circuit’s ability to detect

differences in frequency between two input spike trains. Two scenarios are

presented: the first with no difference in input frequency and the second with a

difference of 50 Hz. Spikes are Gaussian shaped with a full width at half

maximum (FWHM) of 1.3 ms. Each Gaussian pulse has been cropped to a

width 2 ms. (A,C) These show the input and output signals, respectively, for

the case of no difference in input frequency. Both input 1 (red trace) and input

2 (black trace) are set to 50 Hz. In the plot beneath we see the amplitude of

spikes at the output remain approximately constant for both inputs. For clarity

we have included an envelope tracking the output spikes caused by input 1

(dotted red trace) and input 2 (dotted black trace). (B,D) Shows the input and

output signals, respectively, for the case with a 50 Hz difference in input

frequency between the two inputs. Input 1 is set to 100 Hz while input 2

remains at 50 Hz. For clarity, we have again overlaid two envelopes tracking

the output spikes caused by input 1 and input 2. This time, we observe at the

output that spikes caused by input 1 increase in amplitude over time, whereas

those from input 2 remain constant.

of a source would then connect to its neighbor’s enable/disable
input. Thus, when a source fires and produces a spike, it is
simultaneously inhibiting its neighbor from firing. Crucially, this
implementation uses only local signals, avoiding issues with the
routing of control signals.

Edges manifest as sharp changes in pixel values across the
image, equivalent to large differences between the frequencies
of neighboring pixels. By connecting our circuit between
two neighboring pixels, as shown in Figure 3A, we detect
these differences and produce output spikes with amplitudes
proportional to the differences in frequency. Large amplitude
output spikes correspond to sharp changes in pixel values,
indicating potential edges.

4. METHODOLOGY

4.1. Simulation
In order to simulate the circuit’s performance when applied to
an image, we require a model approximating its behavior. We
constructed a look-up table describing the circuit’s response.
Given two input frequencies, the look-up table returns the
average amplitude of spikes at the circuit’s output. These
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FIGURE 3 | (A) An illustration of how edge detection would be implemented. The circuit is placed between two neighboring pixels. Large differences in pixel values

will produce output spikes with larger amplitudes. (B) The look-up map describing our circuit’s behavior. The average amplitude of output spikes above a threshold is

plotted along the z axis. We use this look-up table during simulations. It approximates the circuit’s output for any given pair of input frequencies. The sampling points

from which this map was interpolated from are illustrated with red circles. (C) Benchmarking results on the BSDS500 dataset. The distribution of F-Measures, defined

in Arbeláez et al. (2011) are plotted for memristive techniques (green) and standard operators (blue). The results are obtained from the set of 200 test images provided

by BSDS500. (D) Comparison of F-Measure scores for a set of operators using both the original test images and images produced by our own circuit as their input.

An improvement in performance is observed over the Prewitt, Sobel, and log operators.

measurements were taken after the circuit was allowed to settle,
always ≤ 500 ms after inputs were first applied. Spikes take the
same form as those used in Figure 2, they are Gaussian in shape
with a full width at half maximum (FWHM) of 1.5 ms and are
trimmed to a width of 2 ms. The model was constructed using
data obtained from a physical implementation of the circuit with
input frequencies ranging from 50 to 100 Hz. We characterize
the circuit with a sampling resolution of 10 Hz. Each of the points
sampled are illustrated with a red circle in Figure 3B and are used
to form the dataset for interpolation. The look-up table produced
as a result of this process is shown in Figure 3B.

Input frequencies are generated from images such as those
presented in Figure 4A. Pixel values are first converted from
color to grayscale using MATLAB’s rgb2gray function. The
function uses the following equation to combine the three
components: 0.2989R + 0.5870G + 0.1140B where R,G, and B
correspond to the red, green and blue components of the pixel.
The grayscale values are then linearly mapped from 0 to 255
to frequencies between 50 and 100 Hz. Example outputs for
each simulation are shown in Figure 4B. In this figure we have
combined the results from both a horizontal and vertical edge
detection. Each pixel represents a single circuit placed between
two neighboring pixels. The value of the pixel is proportional to

the average amplitude of output spikes that are above a defined
threshold - the same quantity as that returned from the look-
up table. Brighter pixels correspond to larger output amplitudes,
which are caused by larger differences in input frequencies and
therefore indicate potential edges.

4.2. Benchmarking
Benchmarking is a useful tool in comparing solutions to
a computational problem. Of the previous memristive edge
detection studies, only onemakes use of benchmarking (Khokhar
and Khalid, 2018), with the BSDS500 dataset (Arbeláez
et al., 2011). The BSDS dataset provides 500 images for
testing edge/boundary detection algorithms combined with
a benchmarking script to standardize comparisons between
algorithms. Although the authorsmake use of the dataset, they do
not use the associated benchmarking script. Instead using their
own custom analysis. We make use of both the dataset as well
as its benchmarking script in the hope that future studies can
compare effectively against our work. The authors of Khokhar
and Khalid (2018) have kindly made their data available for us to
put through the standard benchmark as a comparison.

The performance of each memristor implementation is
compared against a number of standard operators: Prewitt, Sobel,
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FIGURE 4 | (A) A sample of the original input images presented to the circuit. Source: Arbeláez et al. (2011). In simulation, there exists an edge detection circuit

between each neighboring pixel. Pixels are mapped from their 0–255 value to a frequency range between 50–100 Hz. (B) The corresponding output images of the

simulation. Each pixel represents the output of an edge detection circuit placed between two neighboring pixels. The average amplitude of output spikes above a

threshold is mapped from the voltage to a pixel value from 0 to 255 and is plotted in this image. Brighter pixels indicate edges. We have combined the simulations of

edge detection in both the vertical and horizontal plane.

log, Roberts and Canny. Each technique is awarded a score,
named the F-Measure. This score is related to the probability
of a pixel being an edge and the probability of a false positive
with more details on its derivation given in Arbeláez et al.
(2011). The larger the F-Measure the more effective the edge
detection. In Figure 3C we have plotted the F-Measure scores for
each technique, in addition to a random approach which merely
classifies pixels as edges with a 50% probability.

In addition to this, we also characterize the use of our circuit
as an input to standard edge detection operators, quantifying
whether or not it improves performance. For each operator, we
begin by running the benchmarking script using the original

dataset images as inputs to form a set of control data.We then run
a second test but instead now use the output image generated by
our circuit as the input image to the conventional operator. The
performances of these two cases are then compared to identify
any improvements in performance.

5. RESULTS AND DISCUSSION

5.1. Performance
Examples of the circuit’s output are presented in Figure 4B.
Unfortunately, it is not possible to quantitatively compare our
circuit against the techniques of Li et al. (2018) and Yakopcic
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FIGURE 5 | (A,B) The circuit response plotted in two different perspectives for clarity. The response for two circuits are presented in both figures, a potential divider of

two high resistance devices (red markers) and a potential divider of two low resistance devices (green markers). Markers represent the inputs sampled for the circuit.

(C) The circuit response when devices have asymmetric resistances. The red markers indicate the points sampled from the circuit. (D) The effect of device variance on

circuit performance. The circuit’s benchmark score (F-Measure) is plotted for a range of simulations where variations in device resistances were introduced. Device

variations were distributed randomly and with a Gaussian distribution. The standard deviation of device resistances were increased with the effect of a reduction in

performance. For reference the score of a system randomly categorizing pixels as edges is also plotted.

and Taha (2017). Both studies use different images and in
the case of Li et al. (2018), their input has purposefully
been made to exhibit noise. However, in using the BSDS500
dataset we are able to compare the circuit’s performance against
other conventional operators as well the memristor based
work of Khokhar and Khalid (2018) who also make use of
this dataset.

Figure 3C shows our circuit’s benchmark performance against
other techniques, where we achieve an F-Measure of 0.465.
This places our performance at the bottom end of conventional
operators, on par with the Canny operator. However, in
comparison to other memristive techniques, such as Khokhar
and Khalid (2018) who achieve an F-measure of 0.366, we present
a jump in performance.

An alternative approach would to consider our circuit
an accelerator, for example, as the input to one of the
standard operators. This technique leads to an improvement in
performance for the Prewitt, Sobel and log operators as shown
in Figure 3D. On the other hand, algorithms that score lower
F-Measures on the BSDS500 dataset, such as the Roberts and
Canny detectors, do not improve through the use of our circuit
as an input.

5.2. Variance
Variability in device performance is a common issue with
memristive devices. In this work, we are primarily concerned
with the variance in device resistances leading to offsets in voltage
at the potential divider’s output and in turn define a maximum
tolerable variability.

Our device resistances varied from 0.77 to 2.17 M� when
sampled across 16 devices, with 50% of devices falling within
the resistance range of 0.99–1.66M�. We found these variations
were spatially distributed, neighboring devices would have
similar resistances while those separated were likely to vary.

We consider two scenarios when assessing the effect of
variance on circuit performance. The first is when both devices
of the potential divider have a similar resistance. The second is
when the two devices have different resistances. When the two
devices making up the potential divider have similar resistances,
we find little differences in the circuit behavior other than an
offset in spike amplitudes. Figure 5A shows the circuit’s response
for two instances, a pair of 1.24 and 1.32 M� devices and
pair of 2.17 and 2.10 M� devices. Figure 5B shows the same
plot from a different perspective for clarity. The shape of the
circuit’s response does not vary significantly between each case,
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whereas there is a noticeable offset. Alternatively, when pairs of
devices are not equal and instead have asymmetric resistances
the circuit has an asymmetric response, as shown in Figure 5C.
Fortunately, the asymmetry of the circuit’s response does not have
a significant impact on the circuit performance, with benchmark
scores dropping from an F-Measure of 0.474 to 0.459 when we
account for such effects.

On the other hand, symmetric variances affect the circuit in a
more significant way. The voltage offsets caused by such variances
interfere with the classification of edges. This is because a pixel
is deemed an edge if the output voltage is above a threshold,
however, voltage offsets cause a blurring of this threshold. Some
non-edges are raised above the threshold and some edge pixels
are dragged beneath the threshold, introducing errors in the
output image. Such offsets can be caused by additive thermal
noise, investigated in the Supplementary Material, or by device
variances which we will now detail.

To quantify the effect of variances on the circuit performance,
we simulate the circuit with varying device resistances. Devices
exhibit a gaussian distribution of resistances allocated randomly
across the image. These variances lead to voltage offsets at the
outputs of each circuit, an example of which is included as an
inset of Figure 5D. We simulated and benchmarked the system
for a range of distributions with varying standard deviations.
This resulted in a drop of performance as shown in Figure 5D.
The system performs no better than the random control beyond
approximately a standard deviation of 250 k�. Through this we
can define amaximum acceptable standard deviation by using the
score of other memristive studies as a threshold. Taking Khokhar
and Khalid (2018) as the threshold with a score of 0.366, we
can determine a maximum allowable standard deviation of
50 k�. The standard deviation of our current devices can be
approximated to be 472 k�, although this should be treated
with caution seeing as we have only 16 samples to characterize
hence the approach is not statistically significant. At this stage, it
appears the variance in our devices is too large for the system to
be realized. Althoughwe cannot comment on the specific cause of
such variances, if this were the result of sample fabrication, then
it is a matter of refining fabrication processes. However, a more
detailed study would have to be carried out to identify the causes
of such variances and the ultimate limitations.

5.3. Scalability
Our chosen figure of merit to compare the scalability of
techniques considers the number of components required for
each additional raster/pixel added to the circuit. This includes
both the number of additional memristors as well as any
periphery circuitry included at output or intermediate layers.
This quantifier allows for a quick comparison regardless of
whether a scanned or parallel approach is taken. We do not
consider the input circuitry. Table 1 compiles the component
count per raster for each of the studies cited in this paper.
Although data could be collected for most techniques it was
not possible to fully assess (Khokhar and Khalid, 2018). We
approximate their output to require a single comparator per
raster in order to threshold outputs as stated in their paper.
However, they also require peripheral circuitry to regularly

TABLE 1 | Comparison of the increase in component count required for each

additional implemented raster.

Study Memristors

per

raster/Pixel

Operational amplifiers

per raster/Pixel

Size of

raster

Mannion et al. (this study) +2 +1 (Comparator) 1× 2

Li et al. (2018) +25 +1 (Transconductance) 5× 5

Yakopcic and Taha (2017) +461 +40 (20 Summing, 20

Unity Gain)

3× 3

Khokhar and Khalid (2018) +225 Not available 1× 2

update memristor weights, which they do not document. This
will act to increase both the component count and circuit
footprint, hence, we can say with some confidence it is a more
complex circuit than the others presented here.

Of the remaining two techniques by Li et al. (2018) and
Yakopcic and Taha (2017), the approach of Li et al. is by
far superior with respect to component count. This is not
surprising considering their approach features a single crossbar
array with one transimpedance amplifier per column whereas
Yakopcic’s neural network consists of 10 input neurons, 20
hidden layer neurons and 2 memristors for each synapse
connection to represent +/- weights. Equally, Yakopcic’s hidden
neurons consist of two operational amplifiers, further increasing
circuit size.

When comparing our circuit to these three techniques we
must consider how the system will be implemented. Either a
scanned approach may be taken, whereby only a single kernel
is physically implemented and then scanned across the image,
or a parallel approach is taken, with multiple copies of the
circuit operating in parallel, each on their respective section
of the image. The scanned approach favors scenarios where
latency is less of a concern and small footprints are desired,
whereas the parallel approach suits scenarios requiring the real
time processing of images. Our circuit requires approximately
a twelfth of the memristors required by Can Li yet the same
number of output operational amplifiers, albeit in a different
configuration. That said, our circuit should not be considered the
better technique solely on this basis. As detailed in the following
section on limitations, our circuit has a finite settling time due to
the memory properties of our devices. Therefore, if a scanning
implementation is being used we require a finite relaxation
time between the presentation of inputs to avoid mixing. As a
result, a scanning approach would favor a crossbar technique
such as Li et al. (2018) whereas our circuit is better suited to a
parallel implementation.

5.4. Limitations
Although our circuit provides the advantage of a potentially
reduced component count, we identify some limitations. The
first applies to any technique determining the gradient across
neighboring pixels and it concerns the resolution of the image.
For high resolution images, a sharp edge may occur across
a number of pixels. The change in intensity associated with
the edge is now spread across the group of pixels, thereby
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FIGURE 6 | The effect of image resolution on circuit performance. The

benchmarking score (F-Measure) is plotted against the scale factor of the

image resolution. An improvement in performance is observed for lower

resolution images. For example, the highest score occurred when the images

were at a 1/3 of their original resolution. It was not possible to investigate the

effect of increasing image resolution as there were no high resolution images

available for the dataset.

reducing the change experienced by each individual pair of pixels,
essentially smoothing out the edge. The higher the resolution, the
worse this effect will be. A simple solution is to down-sample
the image. However, although this will help in some cases,
the image resolution will always play a role in limiting which
edges can be detected. We investigate this limitation by reducing
the resolution of the benchmark images, processing the image
and then scaling the image back to its original resolution for
benchmarking. The scores of the circuit for different resolutions
are plotted in Figure 6. When the image is reduced in resolution
and then applied to the circuit the performance is generally
better than at the benchmark’s original resolution. However,
if the resolution is reduced beyond a third of its original,
the performance drops owing to the loss in information that
is occurring.

The second limitation is specific to our approach. Once inputs
are applied to the circuit, the output has a finite settling time
after which it is then stable. The output should not be read
before this time to avoid incorrect readings. This limits the
operating frequency of the circuit. The configuration used in
this work has a settling time consistently ≤ 500 ms. This time
can be adjusted through changes in a number of parameters
including the amplitudes or widths of input spikes and the chosen
operating frequencies.

6. CONCLUSION

We have shown how a potential divider of two memristors
can indicate the difference in frequencies between two spike
trains. We confirmed this behavior experimentally and applied
the circuit to the problem of edge detection successfully

achieving a jump in performance compared to other memristive
techniques. The circuit requires no external control signals,
training signals or power supply, instead operating exclusively
on input signals. This proves an advantage for scalability.
Without the need for these external signals, as required with
DPEs or neural networks, we have reduced the complexity of
routing signal paths and computational overhead. Equally, its
passive nature combined with spike operation makes it well
suited for low power applications. Besides edge detection, the
circuit may also have broader applications. Its fundamental
behavior is the detection of differences in frequency between
two input spike trains. This may prove useful in other
computational schemes.

Furthermore, in showing an alternative operating region
devoid of switching has computational uses, we have
demonstrated yet another function resistance switching
devices can provide. With the very same devices able to
implement arrays of memory and both analog and discrete
computations, we envisage reconfigurable networks of
these devices having real potential in delivering flexible
hardware accelerators.
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Dealing with big data, especially the videos and images, is the biggest challenge of
existing Von-Neumann machines while the human brain, benefiting from its massive
parallel structure, is capable of processing the images and videos in a fraction of
second. The most promising solution, which has been recently researched widely,
is brain-inspired computers, so-called neuromorphic computing systems (NCS). The
NCS overcomes the limitation of the word-at-a-time thinking of conventional computers
benefiting from massive parallelism for data processing, similar to the brain. Recently,
spintronic-based NCSs have shown the potential of implementation of low-power high-
density NCSs, where neurons are implemented using magnetic tunnel junctions (MTJs)
or spin torque nano-oscillators (STNOs) and memristors are used to mimic synaptic
functionality. Although using STNOs as neuron requires lower energy in comparison to
the MTJs, still there is a huge gap between the power consumption of spintronic-based
NCSs and the brain due to high bias current needed for starting the oscillation with
a detectable output power. In this manuscript, we propose a spintronic-based NCS
(196 × 10) proof-of-concept where the power consumption of the NCS is reduced
by assisting the STNO oscillation through a microwatt nanosecond laser pulse. The
experimental results show the power consumption of the STNOs in the designed NCS
is reduced by 55.3% by heating up the STNOs to 100◦C. Moreover, the average
power consumption of spintronic layer (STNOs and memristor array) is decreased by
54.9% at 100◦C compared with room temperature. The total power consumption of the
proposed laser assisted STNO-based NCS (LAO-NCS) at 100◦C is improved by 40%
in comparison to a typical STNO-based NCS at room temperature. Finally, the energy
consumption of the LAO-NCA at 100◦C is expected to reduce by 86% compared with
a typical STNO-based NCS at the room temperature.

Keywords: neuromorphic computing system, laser, power efficient, COMSOL multiphysics, spin torque nano-
oscillators

INTRODUCTION

The grand challenge of exascale computing, 1018 operations/second, calls for a dramatic change
in hardware of the current petascale supercomputers. A paradigm shift is needed to tackle the
issue of processing the explosively growing Big Data from different sources, which are mostly
images and videos as the most time and power-consuming task for the existing Von-Neumann

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 142960

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01429
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01429
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01429&domain=pdf&date_stamp=2020-01-22
https://www.frontiersin.org/articles/10.3389/fnins.2019.01429/full
http://loop.frontiersin.org/people/751651/overview
http://loop.frontiersin.org/people/303465/overview
http://loop.frontiersin.org/people/584267/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01429 January 13, 2020 Time: 16:55 # 2

Farkhani et al. Laser Assisted STNO-Based NCS

computing machines (VNCs). Filling the gap between the
performance of the current computing systems and the brain
requires development of a computing system with similar
features as the brain; brain-inspired computing systems,
so-called neuromorphic computing systems (NCSs). Such
systems overcome the limitation of the word-at-a-time thinking
of the VNCs by massive parallel data processing similar
to the brain (U.S. Department of energy, 2015; DeepMind,
2018; Hbp, 2018; Ibm, 2018; SpiNNaker, 2018). An NCS
includes many parallel processors (neurons) communicating
using simple messages (spikes) through programmable memory
units (synapses). Although significant progress has been made in
the CMOS implementation of NCSs, there are some fundamental
limits to the simultaneous improvement of area and power in
CMOS-based NCS (Fong et al., 2016). Such limits have driven
a significant effort to investigate beyond-CMOS NCSs. The spin-
based devices integrated with electronics (i.e., spintronics) have
opened a door for designers to implement low-power high-
density NCSs. In spintronic-based NCSs, magnetic switching in
magnetic tunnel junction (MTJ) (Fong et al., 2016) or magnetic
oscillation in spin-torque nano-oscillator (STNO) (Yogendra
et al., 2015, 2016; Kurenkov et al., 2019) is used to mimic
neuron firing. While using oscillation of magnetic moment
decreases the power consumption by an order of magnitude
compared with the magnetic moment switching [critical current:
∼106 Acm−2(Costa et al., 2017) vs.∼10−7Acm−2 (Fukami et al.,
2016)], still there is a huge gap between spintronic-based NCSs
and the brain in terms of power consumption and speed. This
is due to the fact that the traditional way of oscillating the
magnetic moment through the bias current consumes high power
and it is done at low speeds. Hence, there is a crucial need
for eliminating or decreasing the bias current in spintronic-
based NCSs.

Magnetic tunnel junctions and STNOs can be used to
perform Bayesian computation in networks inspired by cortical
microcircuits of pyramidal stochastic neurons. This type of
neurons spikes stochastically, observed in the cortex (Sengupta
et al., 2016). The membrane voltage of a cell can change
from the rest potential to oscillatory mode as a result of
bifurcation (Bose, 2014). This is very similar to what happen
inside STNOs, where the magnetization of FL starts to oscillate
by increasing the current passing through the STNO to the
currents higher than critical current (Hopf bifurcation). On
the other hand, STNOs can show different precession modes
based on their bias current (out-of-plane precession and in-plane
precession with small or large angle), which are as the result
of different bifurcation types, e.g., Hopf bifurcation causes
in plane precession and heteroclinic bifurcation leads to out-
of-plane precession (Nakada and Miura, 2016). However, in
this work, the STNOs with in-plane precession have been
used and in order to mimic neuron firing the transition
from the magnetization resting state (non-oscillating) to the
magnetization oscillation is utilized. It should be noted that the
STNOs cannot be used to mimic all bifurcations, for example
STNOs unable to mimic SNIC (saddle node on an invariant
circle) bifurcation where the f-I curve is continuous (Bose,
2014). In neural networks inspired by biological behavior, the

activation function represents the rate of action potential firing
in the cell (Hodgkin and Huxley, 1952). In this manuscript,
STNOs are used to implement the binary activation function,
which is widely used to implement the linear perceptrons
in neural networks. The weakness of this type of activation
function is that the number of neurons needed for achieving a
certain amount of accuracy increases. However, the main goal
of this manuscript is to investigate the proof-of-the-concept
of improving the performance of the STNO-based systems by
elevating the temperature of the STNOs using laser illumination.
The STNO-based NCS is used as an application to explore the
effectiveness of the proposed idea.

In this manuscript, for the first time to our knowledge, we
propose to design a laser-assisted STNO-based NCS (LAO-NCS)
to improve power consumption of the state-of-the-art NCSs by
at least 40%; narrowing the gap of power efficiency between the
Brain and the current NCSs.

Spin Torque Nano-Oscillators Basics
The schematic of an STNO is shown in Figure 1A, which consists
of a Pinned Layer (PL) with fixed magnetization and a free
layer (FL) with changeable magnetization direction separated by
a tunneling oxide layer e.g., MgO or Al2O3. Figure 1B shows
the magnetization direction of the free layer (m) and different
torques acting on it (Yogendra et al., 2015). TP describes the
precession torque that leads to the oscillation of m. TD is the
damping torque that aligns m with Heff and TSTT is the spin-
transfer torque caused by a bias current (Yogendra et al., 2016).
The interaction of TSTT and TD determines the oscillatory orbit
of m. As TSTT increases, m will be placed in an orbit farther
than Heff, which will lead to a lower frequency of oscillation of
m as shown in Figure 1B (Csaba and Porod, 2013). It is shown
experimentally and through simulation that the frequency of the
STNO can be locked to the frequency of an RF current passing
through it (Rippard et al., 2005, 2013) or an external oscillating
RF field (Slavin et al., 2010). Moreover, the frequency of two
STNOs can lock if they are close to each other (Kaka et al.,
2005). In STNO-based NCSs, the frequency locking of the STNO
and comparing its output power with a threshold power are two
mechanisms used to implement neuron firing. However, in all
cases, a very high DC current (i.e., bias current) is needed flowing
through the STNO to generate the required torque (i.e., TSTT).

FIGURE 1 | (A) The schematic view of a MTJ as spin torque nano-oscillators
(STNO) and (B) the magnetization direction of MTJ free layer (FL) and torques
acting on it.
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Effect of Raising Temperature on Spin
Torque Nano-Oscillators
The dynamic behavior of the FL magnetic moment is modeled
using Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation as
follows (Sengupta et al., 2016):

(1+ α2)

|γ|

∂m̂
∂τ
= −m̂× EFF − αm̂× m̂× EFF+

1
qNs

(m̂× Is × m̂) (1)

where, α, and m̂ are the gyromagnetic ratio, Gilbert damping
factor and magnetization of the FL, respectively. EFF is
the effective magnetic field acting on FL described by

EFF = UA + ex + TF , where UA, ex, and TF are
uniaxial anisotropy field, external magnetic field and thermal
fluctuations field, respectively. Ns =

MSV
µB

is the number of spins
in the FL of volume V (MS is the saturation magnetization
and µB is Bohr magneton) and Is is the input spin current.
The first term in (1) represents the precession torque (TP) that
makes m̂ precess around the easy axis. The second term is the
damping term (TD) that tries to align m̂ with easy axis. The
third term represents the transverse component of spin current
being absorbed by m̂ (TSTT). In the absence of third term (no
current passing through STNO), and in the equilibrium, m̂
is aligned with easy axis. By increasing the current, the third
term starts to increase, and m starts to oscillate around the easy
axis. Higher currents will make the m̂ to be placed on orbit
farther than easy axis (i.e., higher output power). Increasing the
temperature affects the dynamic behavior of the FL through
decreasing the saturation magnetization (MS) of it, decreasing
the resistance of the STNO and increasing the dispersion of the
initial deviation of the magnetic moment from easy axis due to
higher thermal fluctuations.

Saturation Magnetization
It is shown theoretically (Ashcroft and Mermin, 1976) and
experimentally (Alzate et al., 2014) that the dependency of MS
can be well described by Bloch’s law as follows:

MS(T) = MS(0)
(

1− (T/T
∗

)
3
2

)
(2)

where T is the absolute temperature in Kelvin and MS(0) is
the saturation magnetization at 0K, and T∗ is a fitting factor.
Equation (2) shows that increasing the temperature decreases the
MS(T). This will lead to a degradation of the uniaxial anisotropy
field, which decreases the minimum current required for the FL
magnetic oscillation.

Resistance
Two tunneling mechanisms contribute to the STNO resistance
including electron spin-polarized direct elastic tunneling and
spin independent tunneling. The total conductance of the STNO
can be described as (Teixeira et al., 2010).

G(θ) = GT [1+ P1P2 cos θ]+ GST (3)

where θ is the angle between the magnetization of the FL and the
PL. P1 and P2 are the effective tunneling spin polarization of the

magnetic layers. GT is the pre-factor for direct elastic tunneling.
All these parameters are temperature-dependent. Elevating the
temperature will increase GT and reduces P1 and P2 (Teixeira
et al., 2010). As a result, RP is almost independent of temperature
while RAP reduces approximately linearly with temperature. This
has been experimentally shown in Teixeira et al., 2010, Takeuchi
et al., 2015, and Hu et al., 2016.

Thermal Fluctuations
The effect of temperature on random fluctuating field can
be modeled by TF while its x, y, and z components
have uncorrelated Gaussian distribution with zero mean and√(

2αkBT
) /
(γMSV M t) standard deviation (Brown, 1963;

Sankey et al., 2005; Yogendra et al., 2017). α, kB, γ, V,
and 1t are the Gilbert damping parameter, the Boltzmann’s
constant, the gyromagnetic ratio, the volume of the FL and the
integration time step. Elevating the temperature will increase the
dispersion of TF , which leads to an easier oscillation of the
FL magnetic moment. In order to explore the mentioned effects
on oscillation behavior of the STNO at elevated temperatures,
different characteristics of the STNO (e.g., resistance, TMR, and
output power of the oscillation) have been measured at different
temperatures from 27◦C up to 100◦C in section “Memristor
Behavior at Elevated Temperatures.”

Memristor Behavior at Elevated
Temperatures
Tantalum-oxide (TaOx) memristors are one of the best candidate
in memory and NCS applications due to their unique
characteristics such as CMOS compatibility (Diokh et al., 2013),
low power operation (Strachan et al., 2011), high endurance
(Lee et al., 2011), and long retention of states (Ninomiya et al.,
2013). The conduction mechanism of the TaOx memristors
can be modeled by two parallel conduction mechanisms
including hopping conduction and Schottky thermionic emission
(Graves et al., 2017) as follows:

Itotal = 2elvphNkBTe
(
−

W
kBT

)
e
(
−

2l
ζ

)
sinh

(
qlF
kBT

)
︸ ︷︷ ︸

IHop

+AT2e

(
−
φB0−β

√
F

kBT

)
︸ ︷︷ ︸

ISch

(4)
where, kB is the Boltzmann constant, I is the hopping distance,

W is the hopping energy, ζ is the wave function localization, F
is the applied field (converts from V), T is the temperature, vph
is the vibrational phonon frequency, A is the reduced effective
Richardson constant multiplied by active device area, φBo is
the barrier height, and β is the barrier lowering factor. N is
proportional to the density of electrons in the conduction path
multiplied by the relevant conducting area. Based on this model,
which is well fitted with experimental results, the temperature
dependence of TaOx memristor resistance can be divided into
two regions called cold and hot regions (Graves et al., 2017).
In the cold region (T ≤ 350K), the state-dependent hopping
conduction is dominant and the resistance of memristor is
almost temperature insensitive. In the hot region, however, the
Schottky emission of electrons determines the hot current, and
the memristor’s resistance decreases with raising the temperature,
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FIGURE 2 | The schematic view of the novel LAO-NCS. The STNO and
memristor act as neuron and synapse, respectively. The STNOs will be heated
to 100◦C by illuminating a laser pulse.

rapidly. Note that, the amount of resistance change of memristor
in hot region depends on the memristor’s initial resistance.

Proposed Laser Assisted Neuromorphic
Computing System
Our novel envisioned LAO-NCS is shown in Figure 2, which is
a crossbar array of programmable TaOx memristors as synapses
and the STNOs as neurons assisted thermally by a narrow laser-
pulse. Considering the fact that in many applications, size of the
memristor array is much larger than the area of the STNO-based
neurons, there is no significant area improvement in stacking the
memristor array on top of the STNOs. Hence, the memristor
array and the STNOs are supposed to be next to each other in
the proposed LAO-NCS. Moreover, this structure allows direct
laser illumination on the STNOs’ top contacts. The resistance
of the memristors can be tuned using an electric signal flowing
through them. The NCS operation starts with a calibration phase
in which the temperature of the STNOs will be elevated to 100◦C
and stabilized. Then, the NCS is ready for operation and the
processing phase will start. The processing phase can be divided
into two steps including stimulation and recovery, which will
be repeated in sequence. In the stimulation step, the crossbar
array sums the weighted input currents passing them to the
STNOs, which are already set in AP-state (the magnetization
direction of the FL and the PL are anti-parallel). In case, the
weighted input currents are sufficiently large, the FL magnetic
moment of the STNO starts to oscillate that will be detected by
a sensing circuit immediately, and translated to neuron firing.
The sensing circuit should use track and terminate method
(Farkhani et al., 2017, 2018; Torrejon et al., 2017) in order to
minimize the energy consumption of the NCS. Immediately after
detecting the STNO oscillation, the recovery step begins. In
the recovery step, the input corresponding to the fired neuron
will be activated in the post-synaptic neuronal layer. Note that
one of the advantages of using oscillation instead of magnetic
moment switching is that there is no need for switching back
the FL magnetization. Hence, the recovery step can be done

in a very short time (∼600 ps) compared with the magnetic
moment switching (∼2 ns) without extra energy consumption
for switching back the magnetic moment. In our approach, the
energy consumption needed for starting the STNO oscillation
will be lowered significantly by increasing the temperature of
the STNO using a nanosecond laser pulse. In fact, increasing the
temperature of the STNO will decrease its energy barrier, which
leads to a lower bias current needed for starting the oscillation
in the STNO. On the other hand, in case, the temperature of
TaOx memristor array increases to temperatures above 350K due
to heat propagation, the resistance of memristors will decrease,
as discussed in previous section. However, it seems unlikely that
the memristor array temperature reaches above 350K due to
limited laser power. Moreover, in order to keep the memristor
temperature below 350K, a thermal insulator layer can be placed
between the memristor array and the STNOs. Considering the
fact that the STNO current passes through the memristor array,
the total power consumption of the memristor array will be
reduced, significantly. As a result, the power consumption of
the LAO-NCS decreases compared with typical spintronic-based
NCSs. Considering the fact that the control transistors (Tct) act as
switches, heating them up has no significant impact on the overall
performance of the LAO-NCS.

Interaction Between Laser and the Spin
Torque Nano-Oscillators
The on-chip laser can be achieved through vertical cavity surface
emitting laser (VCSEL) (Chen et al., 2014; Zhou et al., 2015;
Kozlov and Carusone, 2016). VCSEL’s unique specification is that,
in contrast to the conventional edge-emitting semiconductor
lasers, its laser beam is emitted perpendicular to its surface,
which makes it a proper candidate for on-chip laser applications
including the LAO-NCS. The output power of VCSEL can be
tuned through changing the supply voltage of its driver (Kozlov
and Carusone, 2016). Hence, in order to control the output
power of the laser, a CMOS interface circuit is designed, which
is described below.

CMOS Interfacing Circuit
Figure 3A shows the block diagram of the proposed LAO-NCS.
The spintronic layer includes a memristors array, STNOs, Tc,
and a sensing circuit. The CMOS interface circuit adjusts the
output laser power by manipulating the supply voltage of the
laser diode driver (LDD). In this way, the CMOS interfacing
block can control the STNO temperature in the spintronic layer.
Figures 3B,C show the circuit design of the CMOS interfacing
block and its timing diagram, respectively. As mentioned before,
the LAO-NCS operating time can be divided to calibration and
processing phases. In the calibration phase, the temperature of
the STNO is increased from 27◦C to 100◦C (first laser pulse
with high power), and stabilized at this temperature (second
laser pulse with low power). In the processing phase, the STNO
temperature will be kept at 100◦C with a sequence of low power
laser illuminations as shown in Figure 3C. The operation of the
CMOS interfacing circuit is as follows. The counter is clocked
with a 500 MHz clock and generates the b0, b1, and b2 signals.
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FIGURE 3 | (A) The block diagram of the proposed LAS-NCS including CMOS interfacing block, VCSEL array, LDD, and the spintronic layer. (B) CMOS interfacing
circuit design. (C) Timing diagram of the CMOS interfacing block.

FIGURE 4 | The measured (A) frequency and (B) output power of the STNO versus different bias current from 0 to 600 µA. The frequency of oscillation is
unrecognizable from noise at IBias<60 µA due to low output power of oscillation. The maximum frequency change is 10% @ IBias=600 µA. Output powers higher
than 10 nW are detectable by sensing circuits. (C) The schematic view of the neuron firing detection approach.

Then, the logic circuit generates the VLDD signal from the output
of the counter. During the first pulse of VLDD, the level shifter is
enabled by a logic circuit and the voltage of VLDD will be set at
VDDH that leads to a high output power laser pulse. During the
next pulses, the transmission gate is enabled and the level shifter
is disabled by the logic circuit. Hence, the voltage of the VLDD
node is at VDD and the laser output power will be lower.

Neurons’ Readout Approach
The sensing circuit is to sense the magnetization oscillation of
the STNOs (neurons) in order to find the fired neuron(s) and
activate the corresponding input(s) in the post-synaptic neuronal
layer. This can be done either by sensing the frequency or

the output power of the oscillating signal across the STNOs,
and comparing it with a threshold frequency or a threshold
output power. Figures 4A,B shows the measured frequency
and the output power of our STNO samples in response to
different bias currents. At bias currents lower than 60 µA,
the output power of oscillation is very low. As a result, the
frequency of oscillation is not detectable. By increasing the bias
current, the frequency of oscillation decreases. However, the
frequency reduction rate is slow (just 10% frequency reduction
at 600 µA). Hence, it is difficult to detect the fired neuron
by comparing the frequency of oscillation with a reference
frequency. In contrast, thanks to the advances in power detector
(PD) circuits, signals with few nano-Watt output power are
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FIGURE 5 | (A) The microscopic image and (B) schematic view of the MTJ stack as STNO. (C) Schematic view of the experimental setup used for characterization
of the STNO at different temperatures.

detectable within few nano-seconds and with micro-Watts
power consumption (Li et al., 2010; Qayyum and Negra, 2017).
Hence, the output power of oscillation is used to detect the
oscillating STNO.

The schematic view of the sensing approach is shown in
Figure 4C. The current of memristor array passing through the
STNO leads to its resistance oscillation. As a result, a weak
signal with milli-Volt amplitude oscillating at GHz frequency
will appear across the STNO. This weak AC signal, first, will be
amplified by a low noise amplifier (LNA). Then, the output signal
of LNA will be converted to a DC voltage by the PD. The output
voltage of the PD will be compared with a threshold voltage by the
comparator. In case, IMem. passing through the STNO will be high
enough, the DC output voltage of the PD becomes higher than the
threshould voltage. Hence, the output voltage of the comparator
switches from “0” to “1” and it will be considered as neuron firing.

RESULTS

In order to evaluate the power efficiency of the LAO-NCS,
first, the effect of elevating the temperature on the STNO
characteristics is measured. Then, based on the measured
results, a behavioral model of the STNO is extracted. For TaOx
memristor, a behavioral model for the temperature dependency
of its resistance is extracted based on the data of Graves et al.
(2017). Finally, both models are used to measure the power
consumption of LAO-NCS in MATLAB simulator. The CMOS
interface circuit is simulated and validated by HSPICE simulator
in 65 nm CMOS technology. The thermal interaction between the
laser pulses and the STNO is simulated in COMSOL simulator.

Experimental Measurement
In order to explore the effect of rising temperature on the
STNO characteristics, we used the STNO stack structure
of Substrate/(100) Al2O3/(3) Ta/(30) CuN/(5) Ta/(17)
Pt38Mn62/(2) CoFe30/(0.85) Ru/(2.6) CoFe40B20/MgO
wedge/(1.4) CoFe40B20/(10) Ru/(150) Cu/(30) Ru (thicknesses
in nm). The CoFeB FL has in-plane magnetization. The stack
has the circular shape with diameter of 175 nm. The microscopic
image of the STNO sample and the schematic view of the
deposited layer stack are shown in Figures 5A,B.

To evaluate the output power of the STNO at different
temperatures, the experimental setup of Figure 5C is utilized.
The bias current is injected to the STNO through T1 and T2
terminals of the bias-tee. In case, the bias current will be high
enough, it will lead to the oscillation of the STNO resistance.
This resistance oscillation will provide a micro-volt oscillation
at T3 terminal of the bias-tee. Finally, the micro-volt oscillation
of the STNO is amplified by an amplifier (47 dB) and will be
injected to a spectrum analyzer in order to measure the oscillation
characteristics of the STNO. The heating plate is used to set
the temperature of the STNO at different temperatures above
the room temperature. Figure 6A shows the PSD measured
at different temperature from 27◦C to 100◦C for 230 µA bias
current (the curves are offset by 10 µV2 along the vertical axis
for clarity). Note that the impedance mismatch in the acquired
spectrum needs to be considered. The input impedance of the
amplifier is 50�. Hence, considering the resistance mismatch
between the amplifier and the STNO, the measured output power
is only a fraction of actual emitted power of the STNO. In order
to eliminate the effect of impedance mismatch, the integrated
matched output power (Pout) of each device is calculated as
follows (Costa et al., 2017):

Pout = Pmeasured

((
RSTNO + RAmp

)2

4RSTNO.RAmp

)
(5)

where RSTNO and RAmp are the resistance of the STNO and
input resistance of the amplifier, respectively. Pmeasured is the
measured output power based on the spectrum analyzer output.
Figure 6B shows the measured STNO resistance in P- and
AP-state at different temperatures from 27◦C to 100◦C. The
AP-state resistance is decreased with increasing the temperature
and the P-state resistance is almost constant as predicted by
equation (3), and shown experimentally before (Teixeira et al.,
2010; Takeuchi et al., 2015; Hu et al., 2016). As a result, the
TMR ratio decreases by increasing the temperature (Figure 6C)
that shows the typical behavior of MTJs as a function of the
bias current. The matched output power (Pout) of the STNO
versus the bias current at different temperatures from 27◦C to
100◦C is shown in Figure 6D. By applying sufficient positive bias
current, the oscillation will start, and by further increasing the
bias current, the amplitude of the oscillation increases, which

Frontiers in Neuroscience | www.frontiersin.org 6 January 2020 | Volume 13 | Article 142965

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01429 January 13, 2020 Time: 16:55 # 7

Farkhani et al. Laser Assisted STNO-Based NCS

FIGURE 6 | (A) The PSD measured at different temperature from 27◦C to
100◦C for 230 µA bias current, the curves are offset by 10 µV2 along the
vertical axis for clarity. (B) The AP and P states resistance, (C) the TMR ratio,
(D) the integrated matched output power (Pout ), and (E) the noiseless output
power of STNO sample.

leads to a higher output power. Although the decrease in TMR
with the bias current and temperature give an adverse result, the
total power increases due to the fact that the input power increase
dominates. It should be noted that applying a negative bias
current will not cause oscillation, but increases the noise power,
which leads to a higher Pout . In order to eliminate the effect of
noise on Pout , the output power of the negative bias currents
are deducted from the output power of the positive bias currents
as shown in spin Hall nano-oscillators (SHNOs) (Tarequzzaman
et al., 2019). As a result, the minimum bias current needed to
detect the STNO oscillation of the fired neuron by the sensing
circuit will decrease. This decreases the total energy consumption
of the LAO-NCS as will be discussed in section “Hand-Written
Digit Recognition Application”.

Laser-Spin Torque Nano-Oscillators
Interaction
The laser-STNO heat transfer is simulated in the COMSOL
multiphysics simulator for the STNO stack (Böhnert et al., 2017).
The shape, material and sizing of each layer is exactly similar

to the STNO stack used in the experimental measurements.
The laser beam is illuminated on the top electrode of the
STNO stack to heat up the overall temperature of it. Hence,
the top electrode should absorb the maximum laser energy in
order to achieve the maximum efficiency. The bottom electrode
is made of CuN with a thickness of 30 nm, while the top
electrode is made of AlSiCu. Hence, a nanosecond laser with
355 nm wavelength is used to decrease the transmissivity of
electrode. The optical transmittance and reflectance of the
electrode are around 0.13 and 0.25, respectively (Maruyama
and Morishita, 1998). Note that, the transmitted laser will be
absorbed by lower layers in the STNO stack and increases its
overall temperature. Hence, the energy loss is just related to
the reflected laser. This is considered for calculating the total
energy consumption described in the next sections. This energy
loss can be reduced by engineering the material and surface of
the top electrode.

Figure 7A shows the temperature distribution in the STNO
stack at the end of calibration phase, which shows a uniform
temperature distribution in all parts of the STNO. Figure 7B
shows the laser power distribution. The power and the diameter
of the laser beam are 71 µW and 350 nm, respectively. Figure 6C
shows the normalized laser power in each laser radiation during
the calibration and processing phases. The first two consecutive
laser pulses do the calibration phase. The first laser pulse is
illuminated for 4 ns with 100% power (71 µW) to heat the MTJ
stack above 100◦C. Then, the laser beam is cut off for 2 ns. The
second laser pulse is applied for 4 ns with 30% power (21.3 µW)
in order to stabilize the STNO temperature.

As mentioned before, the processing phase includes the
stimulation and recovery steps. In the stimulation step, the
inputs will be applied to the NCS and their corresponding
response will be calculated by the NCS. The laser is cut off
during the stimulation step. Then, the recovery step will be
started and the input corresponding to the fired neuron will
be activated in the post-synaptic neuronal layer. Moreover, the
laser will be illuminated on the STNO with 30% power for
2 ns during the recovery step in order to compensate the heat-
loss during the stimulation step. During the recovery step, the
NCS inputs are disconnected and the power consumption of
the STNOs and the memristor crossbar array is almost zero.
This will continue repeatedly to keep the STNO temperature
around 100◦C. Figure 7D shows the temperature of the FL
in the STNO stack, which is almost stabilized around 100◦C
(∼±5◦C). It should be noted that the low temperature variations
across the MgO barrier at the STNO stack prevents the
reliability issues.

Power Consumption of Spin Torque
Nano-Oscillators and Memristor
In this section, the effect of elevating the temperature on
power consumption of the STNO and memristor is explored.
Figure 8A shows the power consumption of an STNO at
different temperatures. In order to calculate the STNO power
consumption, the STNO current is supposed to be the minimum
current required for starting the oscillation with a detectable
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FIGURE 7 | (A) The temperature distribution in MTJ stack at the end of calibration phase. (B) The laser power distribution. (C) The laser power pulse normalized to
maximum laser power versus time. (D) The maximum and minimum temperature of MTJ stack and the FL temperature versus time.

FIGURE 8 | (A) The power consumption of an STNO vs. temperature. Power
consumption is normalized to its room temperature value. (B) The power
consumption improvement of memristor with different initial values at different
temperature from 40◦C to 100◦C compared with room temperature (27◦C).
The solid part is related to memristor current reduction due to STNO current
reduction. The dotted part is related to resistance reduction of memristor at
elevated temperatures. In order to calculate the power consumption, the
STNO and memristor current is supposed to be the minimum current required
for starting oscillation (162 µA @ 100◦C and 241 µA @ 27◦C).

output power, ranging from 241 µA at 27◦C to 162 µA at 100◦C
(Figure 6E). The power consumption of STNO at the recovery
step is zero. Hence, the calculated power consumption for the
STNO is related to the stimulation step. The power consumption

of the STNO decreases by 56.3% (127 µW @ 27◦C to 55.5 µW
@ 100◦C) while increasing the temperature to 100◦C. This is due
to the fact that heating up the STNO reduces its magnetization
saturation and effective anisotropy field that tends to keep the
magnetization direction of the FL aligned with the easy axis. Note
that in real applications, the STNO current depends on the input
voltages of the memristor array and the initial resistance of the
memristors. Hence, the real power consumption improvement is
application-dependent.

In order to calculate the power consumption of TaOx
memristors at elevated temperatures, the conductance of the
memristors and the current passing through them should be
measured at different temperatures. However, the amount of
conductance increase depends not only on the temperature,
but also is a function of the initial resistance of the memristor
(weights) and the applied voltage (inputs). Figure 8B shows
the power consumption improvement of the TaOx memristors
with different initial conductance from 0.2 µS to 21 µS at
different temperatures from 40◦C to 100◦C compared with the
room temperature (27◦C). The solid part is related to memristor
current reduction due to the STNO current reduction and
the dotted part is related to the resistance reduction of the
memristor at elevated temperatures. The conductance range used
in Figure 8B is aligned with the experimental data of Graves
et al. (2017) that is used for benchmarking. Considering the fact
that the STNO current will be passed through the memristors,
the memristor current is considered equal with the STNO
current at different temperatures when calculating the memristor
power consumption.

As illustrated in Figure 8B, by increasing the memristor
temperature to 100◦C, the power consumption reduction of
59% for memristors with initial conductance values equal or
lower than 2.6 µS is expected. However, for memristors with
higher initial conductance values, the conductance increase
rate due to the increased temperature is higher which leads
to a larger power reduction. Note that most of the power
consumption improvement of the memristors is due to the
lower current passing through them (e.g., 4.8 µS at 100◦C:
54.4% power improvement due to lower current versus 3%
power improvement due to resistance reduction), especially at
conductance values equal or lower than 2.6 µS. On the other
hand, heating up the memristor array requires a laser pulse with
higher output power, which reduces the power efficiency of the
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FIGURE 9 | (A) The size of pictures in MNIST database is reduced to 14 × 14
and used to train the 196 × 10 NCS. (B) The original weights after training.
(C) Weights after setting the negative ones to zero and multiplying the positive
ones by 3. The power consumption distribution of (D) STNOs and (E)
memristor array in 196 × 10 NCS for 1000 test images at 27◦C and 100◦C,
respectively. The average power consumption of (F) STNOs, memristor array,
(G) laser, CMOS interface circuit, and the whole NCS at different temperatures
from 27◦C to 100◦C.

proposed LAO-NCS. Hence, in the LAO-NCS, the laser is used to
heat up the STNOs only and the temperature of memristor array
leaved unchanged.

Hand-Written Digit Recognition
Application
Considering the fact that independent studies of spintronic
elements cannot accurately reflect the performance of the whole

NCS, the effectiveness of the proposed LAO-NCS is evaluated
by the hand-written digit recognition application. To do that, a
196 × 10 NCS is designed to recognize the handwritten digits
in MATLAB. Then, the MNIST handwritten digits database
(LeCun et al., 1998) is used to train the NCS and the weights
are extracted. The network is trained by 1000 training images
using the Scaled Conjugate Gradient (SCG) method for a fully
connected feedforward neural network. The size of the images
is reduced to 14 × 14 (Figure 9A). Considering the facts that
the negative weights cannot be implemented by the memristors,
the negative weights are considered as zero (Figures 9B,C). This
will reduce the accuracy of system (89% → 54%). In order
to compensate the accuracy reduction partially, the positive
weights are multiplied by three. This will increase the accuracy
from 54% to 71.3%. In the next step, the weights are mapped
to the resistance of memristors in the array (the zero weights
are considered as open circuit). In order to model the effect
of temperature increase on the power consumption of the
STNOs, equations are fitted to the experimental results of section
“Interaction between Laser and the STNOs” (Figure 6). Then,
the fitted equations are used in MATLAB to model the power
consumption of the LAO-NCS at different temperatures from
27◦C to 100◦C. Considering the fact that the laser just illuminated
on the STNOs, the temperature of the memristor array is assumed
to be lower than 350K (the memristor resistance is constant with
respect to its temperature). However, in case, the temperature
of the memristor array increases due to heat propagation from
the STNOs, the resistance of the memristors slightly reduces that
improves the power efficiency of the LAO-NCS. Finally, 1000 test
images have been applied to the modeled NCS in MATLAB and
the power consumption reduction of the STNOs (Figure 9D) and
the memristor array (Figure 9E) is calculated for each test image.
The accuracy of the system is 71.3%. This is due to the fact that
the negative weights cannot be implemented using memristors.
The accuracy can be improved by adding a hidden layer to the
system or adding the number of neurons in each layer, which
comes with a higher complexity in hardware implementation.
However, the main focus of this manuscript is on investigating
the effect of raising temperature on the power consumption of
the STNO-based NCS.

As illustrated in Figures 9D,E, increasing the temperature
from 27◦C to 100 has reduced the average power consumption
of the memristor array and the STNOs by 54.7% and 55.3%,
respectively. Hence, the total power consumption of the
spintronic layer is reduced by 54.9% as shown in Figure 9F.
This is due to the smaller resistance of the STNOs and the lower
bias current passing through the memristors and the STNOs
at elevated temperatures. The average power consumption
improvement of the STNOs (54.9% in for a single STNO (56.3%
in Figure 8A) in previous section. This is due to the fact
that the calculated power consumption is the average of power
consumption of all STNOs (the oscillating one and the non-
oscillating STNOs).

The total power consumption of the LAO-NCS includes the
power consumption of the spintronic layer (the memristors and
the STNOs), the CMOS interfacing circuit, the CMOS sensing
circuit and the laser. However, it should be noted that the
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sensing circuit is common between the LAO-NCS and typical
STNO-based NCS. Hence, it has similar effect on the total
power consumption of both circuit. Due to the fact that the
calibration phase is done just one time at the beginning of
the NCS operation, its power consumption’s contribution to
the total power consumption of the LAO-NCS is negligible.
Hence, the power consumption of the LAO-NCS is calculated
only for the processing phase. The power consumption of
the CMOS interfacing circuit and the laser are shown in
Figure 9G at different temperatures. The power consumption
of the CMOS interfacing circuit can be further decreased using
low voltage circuit techniques. However, due to its very low
power consumption (∼15µW), its effect on the total power
consumption is negligible. To achieve a higher temperature, a
higher laser power is required. Note that, in stimulation step,
the laser is turned off and it has no power consumption. In
recovery step, the laser is illuminated for 2 ns with 213 µW
power to keep the temperature of the STNOs around 100◦C.
Considering the fact that the power consumption improvement
in the spintronic layer is significantly higher than the power
consumption of the laser and the CMOS interfacing circuit, the
total power consumption of the LAO-NCS decreases by 40% at
100◦C compared with the room temperature.

The power consumption of the CMOS sensing circuit can
be estimated as the total power consumption of LNA, PD,
and comparator. The power consumption of LNA at required
frequency range (1.3–1.5 GHz, Figure 4A) can be estimated
around 160 µW (Parvizi et al., 2016). However, this is a wideband
LNA and the power consumption of narrowband LNA can be
lower (Kargaran et al., 2018). Moreover, PD circuits with power
consumption lower than 100 µW are realized in the literatures
(Li et al., 2010; Qayyum and Negra, 2017). Finally, the power
consumption of the comparator (@500 MHz) can be estimated
200 µW (Khorami and Sharifkhani, 2018). All in all, the total
power consumption of the CMOS sensing circuit is estimated to
be lower than 400 µW for this specific application.

Technology Scaling Effect on LAO-NCS
Technology scaling will lead to a lower laser power consumption
due to the smaller size of the STNOs. As a result, the power
efficiency of the LAO-NCS is expected to improve further. As
an example, for the STNO samples of Monteblanco et al. (2017),
the STNO area is 60 nm × 70 nm = 4200 nm2. Comparing with
the STNO samples used in this manuscript with 24052 nm2,
the STNO samples of Monteblanco et al. (2017) need a laser
pulse with ∼ 38 µW output power in order to increase their
temperature up to 100◦C. Decreasing the laser power from
213 µW to 38 µW reduces the total power consumption of the
NCS at 100◦C from 911 µW to 736 µW in Figure 9G. As a result,
the power consumption improvement of the LAO-NCS will be
increased from 40% to 51.3%.

Energy Consumption
Elevating the temperature reduces the switching time of the
MTJs (Farkhani et al., 2019b). Since the oscillation mechanism
of STNOs is similar with switching, similar trend is expected
for the delay before starting the oscillation. Hence, at 100◦C,

77% delay reduction can be expected (Farkhani et al., 2019b).
The energy consumption can be calculated from multiplication
of power consumption and delay. Hence, considering 77% delay
reduction and 40% power consumption reduction, 86% lower
energy consumption of the LAO-NCS at 100◦C can be expected
compared with a typical STNO-based NCS at room temperature.

Comparison With CMOS-Based NCS
Considering the fact that there is no fully-implemented and
integrated spintronic-based NCS, it is hard to perform an
accurate comparison between spintronic-based NCS and the
CMOs-based NCS. Hence, it is tried to give a general
perspective. Synaptic memristors (130 × 1015) shows 10–
100 times better performance (operation/sec/Watt/cm2) over
CMOS-based synapses (∼2 × 1015) (Mandal et al., 2014).
Furthermore, 2–3 orders of magnitude improvement by MTJ
neurons and their sensing circuit (1.2 × 108) is achieved over
fully-CMOS implementations (2.3 × 105) (Mizrahi et al., 2018).
Neurons and their sensing circuits contribute the most to
the overall performance. Therefore, 2–3 orders of magnitude
performance improvement is expected using MTJ-Memristor
NCSs compared with the CMOS-based NCSs. The use of
nano-oscillators specified for NCSs, one order of magnitude
improvement in performance compared to the use of MTJ
neuron, where full switching is used [critical current density:
∼106 A/cm2 (Costa et al., 2017) vs. ∼107 A/cm2 (Fukami et al.,
2016)], is expected. Finally, thermally assisting STNOs using
laser can improve the power consumption by 40%. However, the
spin-based devices are suffering from high process variation and
relatively high cost compared with their CMOS counterpart.

Comparison With the Other Heating
Methods
Thermally assisted MTJ switching in STT-RAMs is widely used
to decrease the bias current (Walter et al., 2011; Prejbeanu et al.,
2013; Bender and Tserkovnyak, 2016; Dai et al., 2017; Safranski
et al., 2017). Heating up the MTJ is used to improve the FL
switching in two different ways including creating a temperature
gradient between FL and PL, called Seebeck effect (Walter et al.,
2011; Bender and Tserkovnyak, 2016; Safranski et al., 2017) and
heating the MTJ above FL blocking temperature (TB) to reduce
its switching current, called Thermally Assisted Switching – TAS
(Prejbeanu et al., 2013; Bandiera and Dieny, 2016; Dai et al.,
2017). In the first method, using a temperature gradient across
the MTJ, a pure spin current will be injected to FL. This pure spin
current acts as an anti-damping thermal spin torque (also called
spin Seebeck torque) and decreases the bias current (Safranski
et al., 2017). Note that in NCS application, heating up the MTJs
should not lead to their switching, but heating should ease the
switching. This means that the switching should happen by the
current flowing from crossbar array with the help of heating.
Hence, the Seebeck effect, in original form, cannot be used in
NCSs. Moreover, considering the fact that temperature gradient is
the source of Seebeck effect, specific time should be allocated for
MTJ cooling before starting the next stimulation step that lowers
the general speed of the NCS.
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In TAS, a modified type of MTJ is needed, where the
FL consists of a ferromagnetic layer pinned with a low
TB antiferromagnet (AF), such as FeMn (90–160◦C) or
IrMn (120–260◦C). The PL is a SyF pinned with a high
TB antiferromagnet, such as PtMn (350◦C) (Bandiera and Dieny,
2016). In standby mode, the FL presents a very high thermal
stability, because it is pinned by the low TB antiferromagnet.
Then, during stimulation phase, the stack heats up in order
to ease the FL switching (Prejbeanu et al., 2013). In TAS,
Joule heating is used to heat the MTJ junction above the
blocking temperature of antiferromagnetic layer by passing an
extra current through it. Then, a magnetic field or a spin
polarized current switches the FL magnetization. Finally, while
keeping the magnetic field or spin polarized current, the MTJ
stack is cooled down.

Energy Consumption
In TAS, in order to heat the FL layer by 200◦C, a current density
of 2–4 × 106 A.cm−2 with a bias voltage of 1.1V is needed for
different materials (Prejbeanu et al.; 2013). Hence, the power
consumption of the TAS is estimated as 0.53 mW to 1.06 mW for
the MTJ stack with a cross section area similar to the MTJ stack
used in our simulations [π × (87.5 nm)2 = 24.052 × 10−15m2].
The power consumption of LAO for a 200◦C temperature
increase of the STNO is estimated as 0.4 mW, which shows
1.3X-2.6X lower power consumption compared with the TAS. In
addition, the use of LAS has the following advantages over TAS:

(1) The TAS, in its original form, cannot be used in an
NCS application because heating all the MTJs above
TB and passing current through them leads to FL
switching in all MTJs.

(2) There is no need for an antiferromagnetic layer close to the
FL and the proposed laser assisted method can be applied
to typical MTJs.

(3) No heating current line is required, which improves
the density.

(4) In contrast with the TAS, which needs a bipolar select
transistor in order to inject two bipolar current into the
MTJ, LAS can be used with CMOS select transistor.

(5) In TAS, the minimum heating time is limited to 500 ps
(Bandiera and Dieny, 2016) due to the fact that the MTJ
voltage should not exceed the MTJ breakdown voltage.
However, the heating of the ferromagnetic material above
Curie temperature by a femto-second laser pulse has been
shown experimentally (Walowski, 2012).

In terms of complexity, considering the extra layer (photonic
layer) needed in the implementation of the LAO, LAO
comes with a higher complexity compared to the Joule
heating approach.

CONCLUSION

To reduce the power consumption of future STNO-based NCSs,
a microwatt-nanosecond laser pulse is utilized for the first time to
ease the magnetic oscillation of the STNO through heating. The
power consumption of the spintronic layer and the total power
consumption of the proposed LAO-NCS are improved by 54.9%
and 40% at T = 100◦C compared with operation at the room
temperature. Moreover, 86% lower energy consumption can be
expected for the LAO-NCA at 100◦C compared with a typical
NCS at the room temperature. It should be noted that scaling the
technology and increasing the temperature above 100◦C leads to
further improvement of the power consumption.
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The development of highly integrated electrophysiological devices working in direct
contact with living neuron tissue opens new exciting prospects in the fields of
neurophysiology and medicine, but imposes tight requirements on the power dissipated
by electronics. On-chip preprocessing of neuronal signals can substantially decrease the
power dissipated by external data interfaces, and the addition of embedded non-volatile
memory would significantly improve the performance of a co-processor in real-time
processing of the incoming information stream from the neuron tissue. Here, we evaluate
the parameters of TaOx-based resistive switching (RS) memory devices produced by
magnetron sputtering technique and integrated with the 180-nm CMOS field-effect
transistors as possible candidates for on-chip memory in the hybrid neurointerface
under development. The electrical parameters of the optimized one-transistor–one-
resistor (1T-1R) devices, such as the switching voltage (approx. ±1 V), uniformity of
the Roff/Ron ratio (∼10), read/write speed (<40 ns), and the number of the writing cycles
(up to 1010), are satisfactory. The energy values for writing and reading out a bit ∼30
and ∼0.1 pJ, respectively, are also suitable for the desired in vitro neurointerfaces, but
are still far too high once the prospective in vivo applications are considered. Challenges
arising in the course of the prospective fabrication of the proposed TaOx-based RS
devices in the back-end-of-line process are identified.

Keywords: neural tissue, in vitro neurointerfaces, high-density microelectrode arrays, non-volatile memory,
resistive switching, tantalum oxide, 1T-1R device, back-end-of-line process

INTRODUCTION

Modern electrophysiological techniques provide us with the versatile tools to study the inner
workings of living neuronal circuits and open an opportunity to control them at the finest
level. These methods, ranging from patch clamp to high-density microelectrode arrays, are of
tremendous use in single-cell, neuronal culture, and brain studies (Bonifazi and Fromherz, 2002;
Eversmann et al., 2011; Eickenscheidt et al., 2012; Szostak et al., 2017; Luan et al., 2018). Moreover,
the advances in electrophysiology and neuroscience provide the possibility to implement novel
medical devices, such as neuroprosthetics and brain–computer interfaces. In turn, the technological
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development of microelectronics and microfabrication
have made it possible to implement tiny devices that can
simultaneously receive the data from tens of thousands of
channels (Frey et al., 2010; Massobrio et al., 2015). When
combined with modern data processing techniques, such as spike
sorting algorithms, these capabilities can be used to handle the
data describing the real-time behavior of thousands of neurons
in living tissue.

Meanwhile, advanced neuron stimulation techniques, such
as optogenetics, have emerged (Goncalves et al., 2017). Using
such tools, one can create precise high-bandwidth bidirectional
interfaces to neuronal tissue, which is of interest not only to
fundamental neurophysiological studies but for pharmacology
and medicine as well.

Direct contact with living tissue imposes tight requirements
on the power dissipated by electronics. On the other hand, highly
integrated electrophysiological devices provide tremendous
amount of data, and in all cases, except for simple recording
experiments, these data should be processed in real time. In this
respect, off-loading raw data to remote processing equipment
is not the best solution since, in high-density systems, the
data acquisition rate can reach several gigabytes per second,
and the data transfer circuitry will itself use a substantial
amount of power. Moreover, this transfer and processing will
introduce additional delays and, particularly in the case of
medical applications, it is inconvenient to route such wide high-
speed interfaces to the external processing devices. Today, it is
possible to make processing devices with power requirements
of less than 20 mW/GOPS (Reuther et al., 2019) and this paves
the way to preprocess on-chip neuronal signals from several tens
of thousands of channels. Considering a typical event rate of
1,000 events per second, observed by a probe of comparable
area (Juavinett et al., 2019) and estimating the amount of
computations required to classify a single event as 106 operations,
one can detect and classify neuronal spikes in less than a 100-mW
power envelope, which is much less than it would be required to
transmit the raw data out (around 300–400 mW) for serial link
with the required bandwidth (Hsiao et al., 2006).

Nevertheless, even using on-chip processing of the raw data,
it is still desirable to lower the power consumption of the data
processing circuitry further down. One way to achieve this is to
replace the static memories used by data processors with some
kind of the emerging non-volatile memory. Since static memories
are responsible for a substantial fraction of the dissipated power,
this approach looks appealing.

The above-mentioned approaches are currently being
investigated, ultimately aiming at the development of a hybrid
neurointerface for bidirectional communication with the living
neuronal tissue in real time. The schematic diagram of such
prospective neurointerface is shown in Figure 1. As pointed
out above, the idea is to reduce the external input/output
data rate and to enable online processing of neuronal activity.
A substantial data rate reduction can be achieved by processing
raw voltage waveforms to extract spiking activity from neurons
in contact with the interface electrode array. Such procedure
requires the application of data clustering algorithms, known as
spike sorting, which work by matching raw data to pre-extracted

encoded patterns and adapting to changes online. Although these
patterns change slowly following the changes in the neuronal
tissue as well as the electrical drift of electrodes, access to them
is constantly required, and every extracted spike demands quite
a large exchange with the memory. The detailed architecture of
the neurointerface will be described elsewhere. The current work
presumes that, potentially, the density of resistive random access
memory (ReRAM) can be substantially higher than those of static
RAM (SRAM). In addition, suggesting that the spiking activity
of neurons occurs irregularly, the corresponding access to the
memory is relatively rare, and since ReRAM in the retention
mode does not require any (static) energy consumption, it
would eventually be beneficial compared to SRAM. Therefore,
here, we shall consider resistive switching (RS) non-volatile
memory arrays, which can be integrated into the neurointerface
chip. RS non-volatile memory has been previously used for
processing-in-memory, particularly to simulate spiking networks
(Pantazi et al., 2016; Wang et al., 2018), to accelerate vector–
matrix multiplications (Prezioso et al., 2015) or to discriminate
the recorded neuronal spiking events from the background
activity and perform data compression of signals recorded by a
multi-electrode array (Gupta et al., 2016).

Among the different non-volatile memory concepts, the one
exploiting the reversible RS effect in thin films of transition metal
oxides is a viable candidate (Rohde et al., 2005; Yang et al., 2010;
Wong et al., 2012). The advantages of this kind of RS devices,
once they are carefully optimized in terms of combination of
materials, thickness of the functional layer, and switching pulses
parameters, are as follows: good scalability (Govoreanu et al.,
2011; Park et al., 2012), low power consumption (Goncalves et al.,
2017), relatively high read/write speed (Lee et al., 2010, 2011),
large number of writing cycles (Rohde et al., 2005; Kim et al.,
2011), and, most importantly for the emerging neurointerfacing
applications, the possibility to fabricate memory devices in the
back-end-of-line (BEOL) process (Kim et al., 2012; Park et al.,
2013; Goux et al., 2014; Li et al., 2018) of modern high-density
mixed-signal fabrication flow. Dozens of papers have been
published previously, describing the ReRAM devices employing
mainly TiO2 (Frey et al., 2010; Jeong et al., 2009), HfO2 (Yang
et al., 2010; Goncalves et al., 2017), and Ta2O5 (Rohde et al.,
2005; Wedig et al., 2015) as functional layers. Over the last
decade, very promising parameters have been demonstrated in
terms of memory window, uniformity, endurance, and retention
in RS devices integrated with the CMOS process, and ReRAM
has been eventually successfully commercialized (see e.g. Fujitsu
ReRAM memory data sheet)1. However, the variability of the
electrical parameters for different transition metal oxide-based
RS devices on the chip and from one switching cycle to
another is still an issue, which is attributed to the inherent
stochastic nature of the switching process (Fantini et al., 2014;
Kim et al., 2014b). Also, the fact that such memory devices
have been implemented does not necessarily imply they can be
easily integrated into hybrid neurointerfaces under development.
In particular, high-density embedded memory arrays should

1https://www.fujitsu.com/global/documents/products/devices/semiconductor/
memory/reram/MB85AS4MT-DS501-00045-1v0-E.pdf
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FIGURE 1 | Schematic diagram of a high-density in vitro hybrid neurointerface for bidirectional communication with neuronal culture.

have RS devices placed in the lowest possible metallization
layers to increase the density and to lower routing congestion.
Moreover, this approach decreases the parasitic capacitances of
memory lines, thus lowering the overall energy consumption.
Such placement requires the stability of the RS device parameters
upon subsequent processing steps, which are performed at
temperatures up to ∼400◦C as part of the standard fabrication
technology (Walczyk et al., 2011).

Tantalum oxide is a popular functional layer used to devise
resistive memory devices, and indeed, there have been a large
number of published papers describing the operation of RS
devices employing TaOx and different electrodes, including
both 1-bit (Wong et al., 2012) and multi-bit (“analog”) (Kim
et al., 2014a) switching behavior. The functional properties of
transition metal oxide-based RS devices integrated with CMOS
transistors (so-called one transistor–one resistor, 1T-1R, memory
device) are well documented either (Lee et al., 2010, 2011).
Nevertheless, once the goal is to fabricate TaOx-based 1T-1R RS
devices to be used as built-in memory arrays for neurointerface
applications, careful optimization of their parameters is needed
so that they could fit the requirements, such as uniform switching
voltage (in the range±1–2 V), low energy consumption (∼10/0.1
pJ per write/read operation), modest retention time (several
days), and high endurance (>107 writing cycles).

In this work, we describe the implementation of TaOx-
based resistive switching devices and their integration with
the matrices of 180-nm CMOS transistors, ultimately aiming
at the development of on-chip non-volatile memory arrays.
Such memory can be used for the temporary storage of the
data from the co-processor integrated on the bidirectional
neurointerface chip and processing the information from the
neuronal tissue in real time.

MATERIALS AND METHODS

Pt bottom electrode was deposited by magnetron sputtering. In
order to form the metal–insulator–metal functional structure,
windows∼5 µm× 5 µm in size were first formed by dry plasma
etching in a SiOx layer grown plasma-enhanced chemical vapor
deposition technique (the schematic is shown in Figure 2A). The
TaOx layer, 5–20 nm in thickness, was deposited by direct current
reactive magnetron sputtering of pure metal Ta target in pure O2.
The top electrode (TE) Ta thin film with precise thickness in the
nanometer range was further deposited in the same vacuum cycle
from the same Ta target sputtered in an Ar atmosphere. To study
the effect of the top electrode on the electrical properties of TaOx-
based RS devices, alternative TEs, such as W, TiN, Ag, and Al,
were also deposited (see Supplementary Table S1). The TE was
capped with a thick W film in the same vacuum cycle to ensure
the conductivity across the electrode area and protect the active
Ta layer from oxidation.

Hard X-ray photoemission spectroscopy (HAXPES) analysis
of as-grown TaOx films was performed at DESY synchrotron
(endstation P22) at the excitation X-ray energy of E = 6 keV
(an overall energy resolution of about 0.2 eV) with Specs
225-HV analyzer. The photoelectrons at such energies have
the inelastic mean free path of ∼7 nm, thus increasing the
probing depth up to ∼20–22 nm. Consequently, the relative
contribution of the surface components is decreased, and true
chemical composition across the bulk of the tantalum oxide layer
can be revealed.

Sub-micron 1T-1R RS devices were fabricated by integrating
the Pt/TaOx/Ta structures described above with 180-nm CMOS
field-effect transistors in a 1,024 × 1,024 matrix (Figure 2B).
Combining optical and e-beam lithography patterning, the RS
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FIGURE 2 | Schematic of panel (A) the Pt/TaOx/Ta 1R device topology with “cross-bar” geometry and (B) its integration with the field-effect transistor (FET).

devices were formed on top of remote W contacts to the drain
of n-channel transistors (see Supplementary Figure S1a).

The electrical measurements were performed using a
Keysight B1500A semiconductor device parameter analyzer in
combination with a Cascade Microtech Summit 11000M probe
station. The polarity of the voltage corresponds to the value on
the top electrode. The forming voltage was derived from the first
I–V curve. All endurance tests were performed by switching
with square waveform voltage pulses in a vast time width range
(40 ns–1 µs). For 1T-1R device characterization, an additional
channel was used to control the gate voltage.

Transmission electron microscopy (TEM) study was
performed with the S/TEM Titan 80–300 (Thermo Fisher
Scientific) microscope equipped with a spherical aberration
probe corrector, an energy-dispersive X-ray spectrometer
(EDAX), and a high-angle annular dark-field detector
(Fischione). The microscope was operated at 300 kV.

RESULTS AND DISCUSSION

The actual elemental composition of a few-nanometer-thick
functional TaOx layer (capped with Al) is O:Ta ∼3.1, as revealed
by Rutherford backscattering spectrometry (RBS) analysis (see
Supplementary Figure S2). HAXPES analysis was used to
confirm the overall super-stoichiometric elemental composition
of the TaOx layer up to O:Ta ∼3.9, as compared to the
stoichiometric Ta2O5 film grown by atomic layer deposition
(spectra shown in Figure 3), implying a large excess of O atoms
in the as-grown tantalum oxide layer. In addition, HAXPES data
revealed two non-equivalent O states in the sputtered TaOx layer:
the lines with BE = 532.3 eV and BE = 533.2 eV, which are
attributed to the stoichiometric Ta2O5 (equivalent to that grown
by ALD), and extra oxygen trapped during the sputtering process,
respectively. By taking the relative Ta4d and O1s peak areas and
using the corresponding photoeffect cross-sections, we calculated
the overall composition to be Ta1O3.9, in reasonable agreement
with the RBS results.

The fabricated Ta/TaOx/Pt RS cells were characterized in
quasi-direct current (DC) mode by recording the I–V sweeps.

Using the compliance current set at Ic = 10−4 A, the first
switching cycle (called “electroforming”) was similar, within
0.5 V, to the subsequent ones, indicating the “forming-free”
operation (Figures 4A,B). However, the variability of the
switching parameters from cycle to cycle evident from the
presented I–V curves is quite significant.

The thickness of the functional layer was further varied in the
range of 3–24 nm in order to minimize the forming voltage while
maintaining the maximal number of switching cycles. The data
for Uform. vs. the thickness of the TaOx layer are given in Figure 5.
The number of the switching cycles for the devices with different
thicknesses is given in the inset.

Thus, an optimized functional structure was further used
to fabricate devices in “cross-bar” geometry (Supplementary
Figure S1b) for endurance tests with short (<50 ns) pulses. The
results of such tests using Uon = 0.8 V/Uoff =−1.0 V and t = 40 ns
are presented in Figure 6.

The retention test was further conducted for the same RS
devices to examine their long-term memory functionality. After
the SET process at room temperature, when all devices are in the
low-resistance state (LRS), the chip is subjected to heating up to
T = 200◦C. The change of LRS Ron value by 10% was chosen as

FIGURE 3 | Core-level photoemission spectra of Ta 4d and O 1s lines of the
10-nm-thick TaOx layer as grown by magnetron sputtering obtained by the
HAXPES technique.

Frontiers in Neuroscience | www.frontiersin.org 4 February 2020 | Volume 14 | Article 9476

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00094 February 24, 2020 Time: 19:13 # 5

Zhuk et al. TaOx-Based RS Memory for Neurointerfaces

FIGURE 4 | (A) Bipolar RS characteristics of the single Ta/TaOx/Pt device. (B) Normalized distribution of the forming (red) and SET (black) voltages for the
Pt/TaOx/Ta 1T1R devices.

a criterion for the device unacceptable degradation. According to
the Arrhenius plot of the measured data (Figure 7), the devices
successfully pass the retention time of 10 years at T = 85◦C.
However, this temperature obviously cannot be reached in our
application since on-chip memory matrix basically contacts the
living neuron cells. Therefore, the operating temperature should
be less than 40◦C, which will be ensured by the heat removal in
the current version of the in vitro chip. Direct simulation of the
heating balance in the entire system with realistic contributions
has not been carried out so far.

Let us now describe the electrical properties of the 1T-
1R RS devices employing the optimized 1R devices described
above and the factory 180-nm CMOS transistors. While setting

FIGURE 5 | Plot of the electroforming voltage vs. the thickness of the
functional TaOx layer in the Ta/TaOx/Pt RS 1R devices (inset: number of
switching cycles for different TaOx layer thicknesses).

the compliance current by the gate voltage on the transistor
at Ic = 3 × 10−2 mA, the average electroforming voltage
of the 1T-1R devices in DC mode was less than 1.5 V,
with stable I–V form during 100 DC cycles (Figure 8). The
endurance test was performed by applying 100-ns-long switching
pulses of selected memory cells. In order to maintain the best
switching uniformity during the endurance test, the voltage pulse
parameters were chosen to provide Ron/Roff ∼10 and were set as
U = + 1.7 V/−2.1 V, t = 100 ns. The fabricated sub-micrometer
1T-1R devices survive more than 1010 switching cycles without
any signs of degradation (Figure 9).

The use of 1T-1R built-in memory devices prepared in the
BEOL process implies that they are fabricated early BEOL flow

FIGURE 6 | Endurance test of the “cross-bar” Ta/TaOx/Pt devices, switched
by Uswitch. ∼ ± 1 V and t = 40 ns pulses.
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FIGURE 7 | Arrhenius plot of the data retention properties for TaOx-based RS
devices [inset: raw data on RON(t) for different temperatures].

FIGURE 8 | Sequential DC I–V curves of 1T-1R devices based on the
Ta/TaOx/Pt stack.

in a second–third metallization layer and should maintain their
characteristics following the subsequent annealing at T = 400◦C,
which is part of the upper Al metallization layers technology.
In order to investigate the compatibility of the fabricated 1T-1R
memory devices with the 180-nm CMOS technology, they were
post-annealed in vacuum (10−6 Torr) at T = 400◦C for∼30 min.
It was found that, upon such annealing step, both pristine and
electroformed devices have degraded, yielding very high leakage
current and no resistive switching (Supplementary Figure S3).
In order to investigate the degradation mechanism to possibly
improve the thermal stability of the device parameters, we have
used transmission electron microscopy analysis of the device
stack cross-section before and after annealing. The images shown
in Figure 10 indicate that the crystalline structure of the Ta layer

FIGURE 9 | Number of writing cycles for the sub-micrometer Ta/TaOx/Pt
crossbar RS devices.

has vanished upon annealing, while the relative thickness of the
Ta vs. TaOx layers has changed. This suggestion is confirmed by
comparing fast Fourier transform (FFT) pictures of the Ta layer
before and after annealing, shown in the insets in Figures 10A,C.
The oxygen concentration profile across the stack obtained using
energy-dispersive X-ray (EDX) analysis with a sub-nanometer
exciting electron beam reveals the redistribution of oxygen atoms
in the stack (Figures 10B,D), implying the redox reaction at
the Ta/TaOx interface. The reduction of tantalum oxide may
eventually result in the dramatic decrease of its resistivity, which
is the cause of the degradation.

In order to overcome the latter problem of degradation
of the 1T-1R device properties during the BEOL process,
magnetron sputtering of the tantalum oxide layer was performed
at T = 400◦C (prior to Ta layer deposition at room temperature).
Such step results in the “normalizing” of the stoichiometry of the
TaOx layer to O/Ta ≈ 2.5, as confirmed by RBS analysis (not
shown), and excludes further oxidation of the Ta layer on top.
Thus, the prepared Ta/TaOx/Pt-based 1T-1R devices successfully
survive the annealing at T = 400◦C for 30 min, to yield at
least ∼107 of the switching cycles (tests are still in progress)
(Supplementary Figure S4). However, it comes at the price of
increasing the electroforming voltage up to Uform. = + 2.5 V (as
compared to Uform. =+ 1.4 V for non-annealed devices).

In conclusion, on-chip non-volatile memory may significantly
improve the performance of the co-processor to be used for
real-time processing of the information stream received from
the neuron tissue in neurointerfaces under development. Among
several candidates, resistive memory (ReRAM) is a viable option.
We have evaluated the use of Ta/TaOx/Pt-based resistive devices
produced by magnetron sputtering and integrated with the 180-
nm CMOS field-effect transistors as a possible candidate for on-
chip memory. While the electrical parameters of the optimized
1T-1R devices, such as switching voltage (approx. ± 1 V),
uniformity of the Roff/Ron ratio (∼10), read and write speed
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FIGURE 10 | High-resolution TEM images of the Ta/TaOx/Pt device stack cross-section (a) and the same device following the annealing at T = 400◦C, 30 min (c)
(FFT of the Ta metallic layer is shown in the inset). (b,d) Elemental profiles across the stack as revealed by EDX analysis of the as-prepared and annealed stacks,
respectively.

(<40 ns), and the number of the writing cycles (∼1010), are
encouraging, there are still challenges to overcome. In particular,
the energy per write operation is ∼30 pJ, which is still much too
high for use in vivo applications, where the power consumption
and heat dissipation are critical constraints. Also, the perspective
to fabricate memory on-chip in the BEOL process implies the
metallization annealing steps (at T = 400◦C), which affects the
operation of the fabricated devices. Further work is necessary to
optimize the device stack and fabrication technology to enable
TaOx-based non-volatile memory matrices to be used in hybrid
neurointerfaces under development.
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Development of spiking neural networks (SNNs) controlling mobile robots is one of
the modern challenges in computational neuroscience and artificial intelligence. Such
networks, being replicas of biological ones, are expected to have a higher computational
potential than traditional artificial neural networks (ANNs). The critical problem is in the
design of robust learning algorithms aimed at building a “living computer” based on
SNNs. Here, we propose a simple SNN equipped with a Hebbian rule in the form of
spike-timing-dependent plasticity (STDP). The SNN implements associative learning by
exploiting the spatial properties of STDP. We show that a LEGO robot controlled by the
SNN can exhibit classical and operant conditioning. Competition of spike-conducting
pathways in the SNN plays a fundamental role in establishing associations of neural
connections. It replaces the irrelevant associations by new ones in response to a change
in stimuli. Thus, the robot gets the ability to relearn when the environment changes.
The proposed SNN and the stimulation protocol can be further enhanced and tested
in developing neuronal cultures, and also admit the use of memristive devices for
hardware implementation.

Keywords: spiking neural networks, spike-timing-dependent plasticity, learning, neurorobotics, neuroanimat,
synaptic competition, neural competition, memristive devices

INTRODUCTION

The adoption of brain-inspired spiking neural networks (SNNs) constitutes a relatively novel
paradigm in neural computations with high potential, yet not fully discovered. One of the most
intriguing and promising experimental illustrations of SNNs was the development of robots
controlled by biological neurons, the so-called neuroanimates, proposed at the end of the XX
century and currently attracting much attention (Meyer and Wilson, 1991; Potter et al., 1997;
Reger et al., 2000; Izhikevich, 2002; Pamies et al., 2014; Dauth et al., 2016). In those experiments,
neural networks self-organized in dissociated neuronal cultures, which was suggested to be used as a
decision-making element in robotic systems. In the earlier 1990s, Meyer and Wilson introduced the
term an animat, as a composition of words “animal” and “automat,” referring to a robot exhibiting
the behavior of an animal (Meyer and Wilson, 1991). Later, several research groups developed
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prototypes of hybrid systems composed of a robot controlled by
a living neural network. The main idea was to achieve adaptive
learning in biological SNNs with a real physical embodiment.

Learning is inevitably linked with the interaction of an
agent with its environment. Therefore, to implement learning
in vitro, a neural network should be equipped with a “body”
interacting with the environment. The first neuroanimat was
proposed by Mussa-Ivaldi’s group (Reger et al., 2000). To
control a tiny wheeled robot Khepera, they used electric
potentials recorded from brain slices of the sea lamprey
fed by signals from light sensors. Almost in parallel with
this study, Potter et al. (1997) suggested connecting a
neuronal culture grown on a multielectrode array (MEA)
to animate a roving robot (DeMarse et al., 2001). They
succeeded in constructing a virtual neuroanimat capable of
moving in the desired direction within 60◦ corridor after
2 h of “training” with a success rate of 80% (Bakkum
et al., 2008). Shahaf et al. (2008) used ultrasonic sensors
detecting the presence of an obstacle in the trajectory of
a neuroanimat by stimulating a neuronal culture, which,
in turn, controlled the movement. Obstacles located on the
right or left side provoked population bursts with different
spiking signatures. Then, a computer algorithm detected and
classified the population bursts and moved the robot in the
corresponding direction.

Despite extensive experimental studies conducted over the
last decades, the high computational potential of SNNs has not
been really achieved. The main problem faced by the researchers
building “living computers” is the absence of robust learning
algorithms. Unlike the backpropagation algorithm (Rumelhart
et al., 1986) and deep learning approaches (Lecun et al., 1998),
which revolutionized artificial neural networks (ANNs), SNNs
still lack similar methodology. In a more general context, the
learning principles of biological neural networks are not explored
up to the level sufficient for designing engineering solutions
(Gorban et al., 2019). Several attempts were made to adapt the
backpropagation algorithm and its variations to SNNs (Hong
et al., 2010; Xu et al., 2013). Within this approach, an ANN is
subject to learning, and then the obtained weights are transferred
with some limitations to a similar SNN (Esser et al., 2016).
However, SNNs trained in such a way usually do not achieve a
level of accuracy similar to their ANN counterparts. This can be
explained both by the formulation of the recognition problem
and by the nature of the tests (Tavanaei et al., 2019).

One of the intriguing brain features is the ability to associative
learning. It is based on synaptic plasticity, most likely of a
Hebbian type (Hebb, 1949). A classic example of associative
learning is Pavlovian conditioning (Pavlov, 1927). Generally, it
binds a conditional stimulus (CS) with an unconditional stimulus
(US). The US always evokes a response in the nervous system,
whereas the CS initially does not. After several presentations of
the US and CS together, the nervous system starts responding
to the CS alone. Hebbian associative learning can be extremely
efficient, given that the neural input dimension is high enough
(Gorban et al., 2019; Tyukin et al., 2019). Experimentally,
associative learning is often achieved in the form of operant
or instrumental conditioning, which is characterized by the

presentation of stimuli to an animal depending on its behavior
(Pavlov, 1927; Hull, 1943; Dayan and Abbott, 2001).

There are several approaches to implement associative
learning in mathematical models. One is to incorporate US and
CS events as spiking waves or patches of activity propagating
in neural tissue and associate them through a spatiotemporal
interaction. Learning underlying such a “spatial computation”
can be implemented by using spike-timing-dependent plasticity
(STDP) (Gong and van Leeuwen, 2009; Palmer and Gong,
2014). The STDP implements the Hebbian rule. In this
case, repeated arrival of presynaptic spikes a few milliseconds
before the generation of postsynaptic action potentials leads
to potentiation of the synapse, whereas the occurrence of
presynaptic spikes after postsynaptic ones provokes synaptic
depression (Markram et al., 1997; Bi and Poo, 1998; Sjöström
et al., 2001). A different approach to the conditioning paradigm
uses reinforcement learning, e.g. on the basis of an eligibility trace
and dopamine modulated STDP (Houk et al., 1995; Izhikevich,
2007). Based on this type of plasticity, a robot interacting with
humans capable of associating color and touch patterns was
recently designed (Chou et al., 2015). However, this approach
is quite complicated and was implemented only in model
neural networks.

Many attempts to implement learning features in
neuroanimats have been made in cultured neural networks
grown in vitro. The use of synaptic plasticity as a mechanism
of reinforcement or control of functional connections was
demonstrated only in the case of relatively simple adaptive
changes in the network. It has been suggested that the network
homogeneity (e.g. unstructured connectivity) precludes the
emergence of more complex forms of learning (Pimashkin
et al., 2013, 2016). Earlier, we proposed an approach to explain
the problems of learning in unstructured neural networks
by the competition between different pathways conducting
excitation to a neuron or set of neurons (Lobov S. A. et al.,
2017; Lobov S. et al., 2017b). Recently, the possibility to
structure the network geometry by directing axon growth was
demonstrated experimentally (Malishev et al., 2015; Gladkov
et al., 2017), which opens a new venue to build network
architectures in vitro.

In this article, we study how spatial or topological properties
of STDP can be used to implement associative learning in
small SNNs. We show that the competition of spike-conducting
pathways in a network plays an essential role in establishing
the association of neural connections. In particular, on the
network scale, STDP potentiates the shortest neural pathways
and depresses alternative longer pathways. It permits replacing
irrelevant associations by new ones in response to changes
in the structure of external stimuli. We show that a roving
robot controlled by an especially designed SNN can exhibit
classical and operant conditioning. Application of the shortest-
pathway rule allows the robot to relearn sensory-motor skills
by rewiring the SNN on the fly when the environment changes.
The developed SNN topology and the stimulation protocol
can be adapted further for structured neural network cultured
in vitro and for designing hardware SNNs based on, e.g.
memristive plasticity.
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MATERIALS AND METHODS

The SNN Model
To simulate the dynamics of a SNN, we adopt the approach
described elsewhere (Lobov S. A. et al., 2017). Briefly, the
dynamics of a single neuron is given by Izhikevich (2003):

dv
dt
= 0.04v2

+ 5v+ 140− u+ I(t), (1)

du
dt
= a(bv− u), (2)

where v is the membrane potential, u is the recovery variable,
and I(t) is the external driving current. If v ≥ 30, then v ← c,
u← u + d, which corresponds to generation of a spike. We set
a = 0.02, b = 0.2, c = −65, and d = 8. Then, the neuron is silent
in the absence of the external drive and generates regular spikes
under a constant stimulus, which is a typical behavior of cortical
neurons (Izhikevich, 2003, 2004). The driving current is given by:

I (t) = ξ (t)+ Isyn(t)+ Istml(t), (3)

where ξ (t) is an uncorrelated zero-mean white Gaussian noise
with variance D, Isyn(t) is the synaptic current, and Istml(t) is the
external stimulus. As a stimulus, we use a sequence of square
electric pulses of the duration of 3 ms delivered at 10 Hz rate,
with the amplitude sufficient to excite the neuron.

The synaptic current is the weighted sum of all synaptic inputs
to the neuron:

Isyn (t) =
∑

j

gjwj(t)yj(t), (4)

where the sum is taken over all presynaptic neurons, wj is the
strength of the synaptic coupling directed from neuron j, gj is
the scaling factor, in this paper we set them equal to 20 or -20
(Lobov S. A. et al., 2017) for excitatory and inhibitory neurons,
respectively, and yj(t) describes the amount of neurotransmitters
released by presynaptic neuron j.

To model the neurotransmitters, we use Tsodyks-Markram’s
model (Tsodyks et al., 1998) that accounts for short-term
depression and facilitation. We use this model with the
following parameters: the decay constant of postsynaptic currents
τI = 10 ms, the recovery time from synaptic depression
τrec = 50 ms, the time constant for facilitation τfacil = 1 s.

The dynamics of the synaptic weight wij of coupling from
an excitatory presynaptic neurons j to a postsynaptic neuron
i is governed by the STDP with two local variables (Song
et al., 2000; Morrison et al., 2008). Assuming that τij is the
time delay of spike transmission between neurons j and i,
a presynaptic spike fired at time tj and arriving to neuron
i at tj + τij induces a weight decrease proportional to the
value of the postsynaptic trace si. Similarly, a postsynaptic
spike at ti induces a weight potentiation proportional
to the value of the presynaptic trace sj. The weighting

functions obey the multiplicative updating rule (Song et al.,
2000; Morrison et al., 2008). Thus, the weight dynamics
is given by:

dsi

dt
= −

si

τS
+

∑
ti

δ (t − ti) , (5)

dsj

dt
= −

sj

τS
+

∑
tj

δ(t − tj − τij), (6)

dwij

dt
= λ

[
(1− wij)sjδ (t − ti)− αwijsiδ

(
t − tj − τij

)]
, (7)

where τS = 10 ms is the time constant of spiking traces, λ = 0.001
is the learning rate, and α = 5 is the asymmetry parameter.

We implemented the SNN model (see below) as custom
software NeuroNet developed in QT C++ environment. For
the axonal delays, we used τij = 3 ms for parallel connections
and τij = 4.2 ms for diagonal coupling. The selected delays are
proportional to the interneuron distances and thus take into
account the network topology. The app supports SNNs with up
to 104 neurons. On an Intel R© CoreTM i3 processor, the simulation
can be performed in real time for a SNN with tens of neurons.

Mobile Robot and Unconditional Motor
Response
We built a robotic platform from a LEGO R© NXT Mindstorms R©

kit. Figure 1A shows the mapping of the robot sensors
and motors to the sensory- and motoneurons, respectively.
NeuroNet software was used to implement SNNs of different
types controlling the robot behavior. Figure 1B illustrates the
simplest SNN providing the robot with unconditional responses
to touching events (see below). The software was run on a
standalone PC connected to the robot controller through a
Bluetooth interface.

The robot is equipped with two touch sensors and
two ultrasonic sonars (Figure 1C). A sensitive bumper
detects touch stimuli (collisions with obstacles) from the
left and right side of the robot (Figure 1B). When a
touch sensor is on, the corresponding sensory neuron
(either N3 or N4) is stimulated by a train of pulses
delivered at 10 Hz rate (Figure 1C, top-left panel). Such
stimulation models signal processing in the sensory system
of animals. The ultrasonic sonars are located above the
bumper and are coupled to sensory neurons N1 and N2
(Figure 1C, bottom-left panel). A sonar sensor turns on if
the distance to an obstacle is less than 15 cm. Then, the
corresponding neuron is stimulated by a train of square pulses
delivered at 10 Hz rate.

The SNN controls the robot movements through the
activation of motoneurons. Motor neuron N7 produces
tonic spiking with the mean frequency F, which is
mapped simultaneously to the left and right motors. As a
result, the robot moves straightforward with the velocity
proportional to F. Neurons N5 and N6 are coupled to
the right and left motors, respectively. The amount of
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FIGURE 1 | Experimental setup. (A) Mapping of the sensory and
motoneurons in the mobile LEGO robot. (B) Simple SNN controlling basic
robot movements and providing unconditional responses to touch stimuli.
(C) Signaling pathways. Touch (top) and sonar (bottom) sensory neurons
receive stimulating trains of rectangular pulses from the corresponding
sensors. Then, motoneurons drive the robot’s motors.

neurotransmitters released by these neurons modulates
the rotation velocity of the corresponding motor. When
N5 (N6) fires, the right (left) motor slows down (or even
rotates backward if, e.g. F = 0), and the robot turns to
the right (left).

The robot also has three LEDs facilitating its recognition in
the arena by a zenithal video camera. Video frames, captured
at 29 Hz rate, were analyzed offline. Trajectory tracking
was performed by employing a computer vision algorithm
implemented in the OpenCV library. Robot detection is based
on the fact that the robot image is a high gradient area. The
LEDs turn off when a touch sensor is activated, which allows
such events to be detected by analyzing the overall glow of
the robot image.

The touch sensors mediate US (Figures 1B,C, top). When
one of them is activated due to a collision with an obstacle,
the corresponding sensory neuron (N3 or N4) starts firing and
directly excites a motoneuron (N5 or N6, Figure 1B). As a
result, the corresponding motor starts rotating backward, and the
robot turns away from the obstacle and thus avoids the negative
stimulus (Supplementary Video S1).

The sonars are connected to sensory neurons N1 and N2
and mediate CS. At the beginning of learning, the CS in the
form of an approaching obstacle does not evoke any robot’s
response. The goal of learning is to associate CS with US
to avoid the obstacles in advance without touching them. To
provide stimulation of “sensory neurons”, according to the STDP
protocol, the stimulating pulses from the touch sensors have a
10-ms delay relative to the sonar pulses (Figure 1C).

RESULTS

The Shortest Pathway Rule
Let us consider a pair of unidirectionally coupled neurons driven
by periodic stimuli applied to one of them (Figure 2A). Stimuli
excite the first neuron, and then the activation propagates along
the “chain” to the second cell, which fires, given that the coupling
strength w21 is strong enough. Then, the presynaptic spikes
precede the postsynaptic ones, and, as a result, the weight
increases following the STDP rule (the first term in the right-hand
side of Eq. 7). Such a situation can be extended into a chain of
three or even more neurons (Figure 2B). Thus, STDP increases
the corresponding synaptic weights.

However, if we add a new connection from the first neuron to
the third one (Figure 2C), the weight dynamics changes crucially.
Although all synapses are excitatory, the coupling directed from
the second to the third neuron is depressed, while the other
two are potentiated. This occurs because the axonal delay via
the direct way N1–N3 (τ31, Figure 2C) is significantly shorter
than the delay via the pathway N1–N2–N3 (τ321 = τ21 + τ32,
Figure 2C). Thus, the first neuron makes fire directly the third
one (which is also postsynaptic for w32), and its spikes appear
ahead of the spikes coming from the second neuron (presynaptic
for w32). Such an inverse sequence (Figure 2D) forces depression
of the coupling w32 according to the STDP rule (the second
term in the right-hand side of Eq. 7). We thus can formulate the
shortest pathway rule:

• On the network scale, STDP potentiates the shortest neural
pathways and depresses alternative longer pathways.

SNN Exhibiting Non-trivial Associative
Learning
Let us now employ the shortest-pathway rule to implement
conditional learning in an SNN. Figure 3A shows a simple
SNN consisting of four neurons, which can exhibit associative
learning. The SNN receives two types of inputs: CS and US
applied to neurons N1 and N3, respectively. To comply with
the STDP protocol of paired stimulation, we assume that the US
pulses arrive with a delay of 10 ms relative to CS pulses (see
also Figure 1C).

At the beginning, the coupling between N1 and N3, w31, is
not sufficient to excite N3 through the CS pathway. However,
under stimulation, it is potentiated due to the appropriate delay
between US and CS. At the same time, the coupling between N2
and N3, w32, is depressed due to the shortest pathway rule. Thus,
after learning, we get the network shown in Figure 3B and the CS
alone can activate neuron N3 and then the motoneuron. We also
note that, similarly, if the CS is applied to N2 instead of N1, then
w32 will be potentiated, while w31 depressed, and we get the same
effect of associative learning.

SNN Driving Robot
The above-discussed SNN (Figure 3) has one motoneuron and
hence can drive one motor channel. To process events coming
from the right and left sensors of the robot, we need to extend
the SNN to account for two motor channels. Thus, we duplicate
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FIGURE 2 | The shortest pathway rule. STDP potentiates the shortest pathways and inhibits alternative connections (Wij , τi j are the weight and axonal delay of the
coupling from neuron j to neuron i). (A,B) Left: Initial situation. Right: After STDP. The link width corresponds to the synaptic strength. Presynaptic spikes in a
unidirectional chain precede postsynaptic spikes and STDP potentiates synaptic couplings. (C) The shortcut from neuron N1 to N3 makes the coupling from N2 to
N3 “unnecessary” and STDP depresses it. (D) Spikes in the network and evolution of synaptic weights.

FIGURE 3 | Associative learning based on the spatial properties of STDP.
(A) The initial SNN. (B) Potentiation of the coupling w31 and depression of w32

during simultaneous stimulation of neuron N3 and N1 (US pulses are applied
with a delay of 10 ms relative to CS pulses in order to comply with the STDP
protocol).

the SNN shown in Figure 3 but, at the same time, share some of
the neurons between two copies of the SNN (Figure 4A). The
resulting SNN contains four sensory neurons (N1, N2 for CS
and N3, N4 for US, Figure 4A) and two motoneurons N5, N6
modulating the rotation velocities of the left and right motors,
respectively (see also Figure 1). Neurons N3 and N4 are mutually
inhibitory coupled with fixed synaptic weights (w34 = w43 = 1).

The pair of neurons receiving CS (N1, N2) can be
connected to the pair of sonars in an arbitrary order (left–
right or right–left). Depending on the connection, there
can be two types of associations between the stimuli and
motors: either with strong “parallel” (PA) or strong “diagonal”
(DA) pathways (Figure 4B). Such freedom ensures that
there is no a priori chosen structure in the complete SNN.
Instead, the SNN adapts to the stimuli coming from the
environment. Thus, the mutual exchange of the CS sources
can simulate a situation with a change in the environment,
which should induce relearning in the SNN and adaptation

to novel conditions. Note that the bidirectional coupling
between neurons N1 and N2 plays a fundamental role by
providing synaptic competition while training couplings to
neurons N3 and N4.

Classical or Pavlovian Conditioning
To implement Pavlovian (classical) conditioning, let us, for
a moment, deactivate neuron N7 responsible for forward
movement. If an object approaches the robot from one side,
the corresponding touch sensor is activated, and we get
an unconditional response (Figure 4C and Supplementary
Video S1). At the same time, the corresponding sonar is also
triggered on, and paired trains of stimuli innervate sensory
neurons with a time delay of 10 ms.

We repeated such a stimulation alternately on the left and right
sides of the robot. This protocol led to the potentiation of two
associations for the left and right sides. Five stimulating cycles
applied to the right and left sides were sufficient to achieve robust
learning. After switching the connections of the sonars between
sensory neurons N1 and N2, the SNN was able to relearn the
associations (i.e. to switch between PA and DA, Figure 4B) after
about 10–15 stimulus cycles.

In practice, to avoid obstacles successfully, the robot should
gain high selectivity of the right and left channels. Then, in
the presence of an obstacle on the left side, neuron N5 fires
while neuron N6 is silent, which occurs in part due to inhibitory
connections between neurons N3 and N4. Experimentally, the
channel selectivity can be monitored by measuring the ratio of
synaptic weights of “parallel” and “diagonal” connections:

wP = (w31 + w42)/2,wD = (w41 + w32)/2. (8)
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FIGURE 4 | Model of classical conditioning. (A) The design of a two-channel SNN by duplicating the single-channel SNN (Figure 3) sharing some neurons. The
neural circuit includes neurons N1–N4 involved in learning. Motoneurons N5 and N6 provide turning the robot away from an obstacle. (B) The SNN after learning.
PA, parallel association: N1 (N2) is associated with N3 (N4), couplings w31 and w42 are potentiated. DA, diagonal association: N2 (N1) is associated with N3 (N4),
couplings w32 and w41 are potentiated. (C) Application of a stimulus to the touch and sonar sensors. (D) Evolution of the average weights of parallel (wP ) and
diagonal (wD) couplings under classical conditioning. Arrows PA and DA denote the time instants of the beginning of learning with correspondent scheme of the US
mapping; touchL (touchR) is the time course of triggering the left (right) touch sensor.

Figure 4D shows the dynamics of these connections when
simulating classical conditioning. Note that in the case of PA,
the parallel connection wP is potentiated, while the diagonal
connection wD is depressed. This happens due to simultaneous
potentiation/depression of the pairs (w31,w42) and (w41,w32),
according to the shortest pathway rule. After switching the CS
inputs (Figure 4D, DA arrow), the opposite effect is observed,
which leads to relearning in the SNN.

To achieve a high learning rate, our experiments show that the
SNN should satisfy the following conditions:

1. Intermediate noise variance (D = 5.5 in experiments).
2. Bidirectional coupling between CS neurons (N1 and

N2, Figure 4A).
3. Couplings between CS and US neurons are STDP-driven.
4. Inhibitory connections between US neurons (N3 and

N4, Figure 4A).

Condition (1) agrees with our previous findings showing that
the network rearrangement under stimulation takes place in a
certain interval of the noise intensity (Lobov S. A. et al., 2017).
At low noise intensity, the neuronal activation may not reach the
level necessary for STDP-ordered pre and post-synaptic spiking.
At high noise intensity, random STDP events dominate and break
learning (see Supplementary Figure S1). Condition (2) expresses
competition between the synapses involved in the associations
increasing the SNN selectivity. Thus, competition plays a positive

role in learning, unlike the case study reported previously (Lobov
S. et al., 2017b). Condition (3) implies a reduction of the SNN
selectivity due to a negative effect that STDP can have on the
synaptic couplings between CS neurons (w21 and w12). Condition
(4) leads to competition between neurons “for the right” to be
activated and, as a result, to an increase in the selectivity of the
connections of the right and left channels.

Operant or Instrumental Conditioning
Animals learn behaviors through active interaction with the
environment. To model such natural learning, we use operant
(or instrumental) conditioning. To implement it, we activated
motoneuron N7 (Figures 1B,C) responsible for forward
movement and introduced the robot in an arena with several
obstacles (Figure 5A).

In the beginning, the robot could avoid obstacles only
after touching them due to US (Figure 5A). Then, learning
progressively established associations between approaching
obstacles (sonars, CS) and touching events (US). Thus, the
robot learned to avoid obstacles in advance, without touching
them (Figure 5B and Supplementary Videos S2, S3). We then
switched sonars. Similarly to classical conditioning, the robot was
able to relearn the associations (Figure 5C, PA arrow).

The learning rate depends on the total time of activation of the
touch sensors. In turn, this time depends on the configuration
of the arena, i.e. the arena size and the number of obstacles.
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FIGURE 5 | Operant conditioning. (A) Trajectory of the robot in the first 2 min of the experiment. Exclamation marks indicate the positions of collisions with
obstacles. (B) Same as in (A) but after learning. (C) Evolution of the weights of parallel (wP ) and diagonal (wD) couplings (compare to Figure 4D). Beige and
green-blue bars correspond to periods (A,B), respectively.

In the Morris water maze (Figure 5A, 1 m2), learning takes
about 2 min. In a larger room (50 m2) with a few obstacles, the
learning time increases to 10–20 min. Relearning takes about
twice a longer time.

In the operant conditioning, the SNN selectivity did not reach
the value achieved in classical conditioning (compare Figures 4D,
5C). It occurs due to the fact that in the arena, the robot can
approach objects in front. In this case, both sonars detect them,
which leads to a simultaneous generation of stimuli on the
left and right sides and competition between two connections
from the same sensory neuron. Technical constraints, such as
a narrow sensing angle of the sonars, also affect the correct
implementation of the obstacle-avoidance task negatively. All
these factors diminish the learning quality. Therefore, the robot
sometimes collides with obstacles. Thus, in a real environment,
learning does not reach 100% collision avoidance.

DISCUSSION

Competition is a universal paradigm well-extended both in
neurophysiology, e.g. in the form of lateral inhibition (Kandel
et al., 2000) and the ANN studies, e.g. in the form of competitive
learning in Kohonen networks (Kohonen, 1982) or imitation
learning (Calvo Tapia et al., 2018). In this work, we have
proposed an SNN model implementing associative learning
through an STDP protocol and temporal coding of sensory
stimuli. To achieve successful learning, the SNN makes use
of two mechanisms of competition. The first type is neuronal

competition, i.e. different neurons compete to be the first to get
excited. In our case, this mechanism was provided by inhibitory
connections between US neurons.

The second type of mechanism is synaptic competition; i.e.
different synaptic inputs to a single neuron compete to be the
one exciting the neuron. This mechanism has been less addressed
in the literature on learning. Earlier, it was shown that in
unstructured networks, synaptic competition leads to negative
consequences for learning (Lobov S. A. et al., 2017; Lobov S. et al.,
2017b). We have shown that the proposed structured architecture
of the SNN, together with synaptic competition implementing
the STDP-mediated rule of the shortest pathway, can ensure
learning. We also note that the proposed mechanism of synaptic
competition works well in the case of temporal coding of stimuli.
Stimulus coding by the firing rate may require the development
of a different approach. For example, in our recent study (Lobov
et al., 2020), we implemented synaptic competition using synaptic
forgetting, depending on the activity of the postsynaptic neuron.
This allowed performing a mixed type of coding (temporal and
rate) in the problem of recognition of electromyographic signals.

To test the SNN, we used it for controlling a mobile robot.
We have shown that indeed, the robot exhibits successful learning
at the behavioral level in the form of classical and operant
conditioning. During navigation in an arena, the SNN self-
organizes in such a way that after learning, the robot avoids
obstacles without collisions, relying on CS only. Moreover, it
can also relearn if the connection of CS sensors is switched
between the corresponding sensory neurons, and a network
rewiring, widely observed in biological neural networks, is
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required (Calvo Tapia et al., 2020). The mechanism of relearning
can be considered as a model of the animals’ ability to adapt
to changes in the environment. In the SNN, it is possible due
to synaptic competition. Our experiments have also shown that
learning is robust. The robot can operate in environments of
different sizes and with varying densities of obstacles.

The proposed SNN implements a model with two associations:
left and right sensors “coupled” to the right and left turns. In
general, such associative learning can be extended to multiple
inputs and outputs. Thus, the proposed architecture can be
considered as a perceptron composed of spiking neurons with
two inputs and two outputs, where logical 1 or 0 at an input
corresponds to the presence or absence of a CS, respectively.
Then, the US provides a learning mechanism on how to excite
the target neuron in the output layer, i.e. how to obtain the desired
output. Thus, we get a simple mechanism for supervised learning,
i.e. a replacement of the backpropagation algorithm for SNNs.
However, the question of how many neurons such a spiking
perceptron can contain and, hence, how many classes can be
discriminated in this way requires additional studies.

We note that the parameters of sensory stimuli play a crucial
role in the learning of behaviors. For example, longer delays
between stimuli or their inverse order (CS after US) can impair
learning. In this sense, the temporal coding in SNNs requires
fine-tuning of the neuronal circuits and maybe not robust. The
rate coding using, e.g. the triplet-based STDP rule (Pfister and
Gerstner, 2006), voltage-based STDP with homeostasis (Clopath
et al., 2010), or STDP together with BCM rule (Wade et al., 2008;
Liu et al., 2019) is likely to increase the reliability of robot control.
However, in this case, we may end up with a mixed type of coding
(temporal and rate).

Due to structural simplicity, the proposed SNN and the
learning algorithm admit a hardware implementation by, e.g.
using memristors, which are adaptive circuit elements with
memory. Memristors change their resistance depending on the
history of electrical stimulation (Wang et al., 2019). Since the
first experiments and simulations (Linares-Barranco et al., 2011),
significant progress has been achieved in the implementation
of excitatory and inhibitory STDP by using resistive-switching
devices (RRAM), which are a particular class of memristors with
two-terminal metal–insulator–metal structure. Although most
of STDP demonstrations still rely on a time overlap of pre-
and postsynaptic spikes (Yu et al., 2011; Kuzum et al., 2013;
Emelyanov et al., 2019), the rich internal dynamics of higher-
order memristive devices related to multi-time-scale microscopic
transport phenomena provides timing- and frequency-dependent
plasticity in response to non-overlapping input signals in a
biorealistic fashion (Du et al., 2015; Kim et al., 2015). Memristive
plasticity can be realized at different time scales, in particular
with STDP windows of the order of microseconds (Kim et al.,
2015), which is essential for the development of fast spike
encoding systems.

Upon reaching the technology maturity, arrays of memristive
synapses offer unique scalability being integrated with CMOS
layers and showing spatiotemporal functions (Wang W. et al.,
2018), as well as combined with artificial memristive neurons
(Wang Z. et al., 2018) within a single network. Simple spiking

architectures of Pavlov’s dog association have been proposed on
memristors (Ziegler et al., 2012; Milo et al., 2017; Tan et al.,
2017; Minnekhanov et al., 2019). However, more sophisticated
architectures are required to reproduce different types of
associative learning to be adopted in advanced robotic systems.
We anticipate that, soon, artificial neurons can be realized on
the CMOS architecture, whereas the STDP can be implemented
by incorporating memristors (Emelyanov et al., 2019). It seems
convenient to have paired micro-scaled memristive devices to
reproduce bipolar synaptic weights. They can be mounted in a
standard package for easier integration into the SNN circuits.

Finally, we also foresee that the provided architecture can be
implemented in biological neural networks grown in neuronal
cultures in vitro. Modern technology of microfluidic channels
permits building different network architectures (Gladkov et al.,
2017). On the one hand, such a living SNN could verify if
our understanding of the learning mechanism at the cell level
is correct. From the other side, biological neurons have a
much higher level of flexibility mediated by different molecular
mechanisms that may shed light on how learning and sensory-
motor control are organized in nature.
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Graph theory has been extensively applied to the topological mapping of complex

networks, ranging from social networks to biological systems. Graph theory has

increasingly been applied to neuroscience as a method to explore the fundamental

structural and functional properties of human neural networks. Here, we apply graph

theory to a model of a novel neuromorphic system constructed from self-assembled

nanowires, whose structure and function may mimic that of human neural networks.

Simulations of neuromorphic nanowire networks allow us to directly examine their

topology at the individual nanowire–node scale. This type of investigation is currently

extremely difficult experimentally. We then apply network cartographic approaches

to compare neuromorphic nanowire networks with: random networks (including an

untrained artificial neural network); grid-like networks and the structural network of

C. elegans. Our results demonstrate that neuromorphic nanowire networks exhibit a

small–world architecture similar to the biological system of C. elegans, and significantly

different from random and grid-like networks. Furthermore, neuromorphic nanowire

networks appear more segregated and modular than random, grid-like and simple

biological networks and more clustered than artificial neural networks. Given the

inextricable link between structure and function in neural networks, these results

may have important implications for mimicking cognitive functions in neuromorphic

nanowire networks.

Keywords: neuromorphic, atomic-switch networks, nanowires, topology, complex networks, structural

connectivity, graph theory, artificial neural networks

1. INTRODUCTION

1.1. Graph Theory Applications
Graph theory is a framework used to represent complex networks mathematically, whereby
network components are represented as nodes (N) and connections between components are
represented as edges (E) (Boccaletti et al., 2006). Since the 1950s, graph theory has been applied to
networks in a variety of fields, including social networks (Harary and Norman, 1953), progression
of disease (Eubank et al., 2004; Mason and Verwoerd, 2007), transport networks (Wakabayashi
and Iida, 1992), the internet (Albert et al., 2011), and many others. Graph theory has largely been
employed to study the structure of networks, known as structural connectivity. Measures such
as the path length (PL), clustering coefficient (CCoeff ), participant coefficient (PCoeff ), within-
module degree z-Score (MZ), degree and small worldness (see Box 1 for definitions), are useful
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BOX 1 | Graph Theory Terms

Clustering Coefficient (CCoeff): A measure of how much nodes in a graph tend to cluster together. This reflects the proportion of nodes connected to node N

that are also connected to each other (Verweij et al., 2014).

Degree (DEG): The number of edges connected to a node, N.

Hubs: Areas through which large amounts of information flow to reach from one part of a network to another (Types of hubs and non-hub nodes are described in

Figure 6).

Within-Module Degree z-Score (MZ): Measures how well connected a node is to other nodes in the same module (or cluster/community). This demonstrates

whether the node is a hub in the network (i.e., much of the information flows through this node) (Guimerà and Amaral, 2005). Guimera and Nunes Amaral define MZ

> 2.5 as hub-like nodes, and MZ < 2.5 as non-hub nodes.

Modularity: A measure of network segregation into distinct modules (or clusters/communities) that have sparse connections between each module (Cohen and

D’Esposito, 2016).

Participant Coefficient (PCoeff): Measures how homogeneous a node’s edges are distributed across modules (or clusters/communities). Nodes are divided into

two classes: (1) High PCoeff: connector nodes with many global edges across modules (strong between-module and weak within-module connectivity Rubinov and

Sporns, 2010; Cohen and D’Esposito, 2016); and (2) Low PCoeff: provincial/local nodes with mostly edges that connect nodes within a module (strong within-module

and weak between-module connectivity) (Joyce et al., 2010; Van Diessen et al., 2014; Bertolero et al., 2015).

Path Length (PL): Measures the minimal number of edges of all possible node connections in a network (Van Diessen et al., 2014; Verweij et al., 2014).

Small–worldness: A type of network architecture in which local clustering is combined with short path length. This architecture offers important advantages for

network functionality, ranging from synchronizability to information flow (Oliveira et al., 2014; Muldoon et al., 2016).

Small–world Propensity: Introduced by (Muldoon et al., 2016), used to account for potential variations in connection strength in a network, by measuring how

clustering and path length differ from random and grid-like networks.

characterizations of the structural properties of a network
(Strogatz, 2001; Estrada and Hatano, 2008; Grayson et al., 2016).
In many cases, analyzing the structure of a network is the first
step to understanding its function (Strogatz, 2001).

Graph theory measures have been applied to the study of
biological networks, including the brain structure of organisms
such as the neural networks of C. elegans (Achacoso and
Yamamoto, 1991; Yan et al., 2017) and Macaque monkeys
(Achard et al., 2006), in attempt to better understand their
function. Biological networks typically demonstrate a small–
world architecture (see Box 1 for definition). Small–worldness
has been shown to allow for high efficiency of synchronized and
parallel information transfer between neural regions (Bullmore
and Sporns, 2009). Within such a system, shorter paths from
node to node (with few longer sparse connections) may provide
more efficient communication across an entire system, thereby
facilitating dynamical processes that require global coordination

and information flow (Watts and Strogatz, 1998; Strogatz,
2001). For instance, regions with short path length and high
clustering coefficient confer an ability to transfer information
quickly between a large number of nodes. Contrastingly, areas
with long path lengths and low clustering may allow for
sparse connections between individual clusters in a network,
resulting in a slower spread of information over greater
distance (Strogatz, 2001; Bullmore and Sporns, 2012; Muldoon
et al., 2016). Understanding these distinct structural features
within biological neural networks has allowed researchers
to infer that such networks may utilize different structural
properties to communicate under separate time scales (e.g.,
fast local synchronization within dense regions and slow global
communication between dense regions; Chow and Kokotovic,
1985; Tahmassebi et al., 2017).

The commencement of the Human Connectome Project in
2005 (Sporns et al., 2005) has driven a surge in techniques and

Frontiers in Neuroscience | www.frontiersin.org 2 March 2020 | Volume 14 | Article 18492

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Loeffler et al. Topology of Neuromorphic Nanowire Networks

studies to map the structure and function of the human brain
network (Sporns et al., 2002; Bertolero et al., 2015; Farahani
et al., 2019; Gilson et al., 2019). Many such studies apply graph
theory to analyse the connectivity within and between regions of
the brain (Bullmore and Sporns, 2009). While the networks of
simple organisms such as C. elegans are composed of only 270–
300 individual neurons (Yan et al., 2017), the human brain is a
much larger network, composed of tens of billions of neurons
(although the exact number is contested), each of which has
around ten thousand synapses (Koch, 2004; Shepherd, 2004). The
sheer number of neural components makes it extremely difficult
to model human neural networks graphically. Therefore, much
of the graph theory analysis on human neural networks is applied
to large collection of neurons, or even entire regions of the brain
(e.g., Bassett and Bullmore, 2006; Gilson et al., 2019).

1.2. Neuromorphic Systems: Mimicking the
Brain in Hardware
In parallel to developments in neuroscience, the engineering
community has spurred the development of neuromorphic
systems that can mimic the function of human neurons in
hardware (Vianello et al., 2017). Carver Mead’s pioneering
efforts to emulate biological information processing using analog
circuits (instead of logic gates used in digital computing)
and leveraging the inherent device physics of Metal Oxide
Semiconductor Field Effect Transistors (MOSFETs) established
a new paradigm in computing hardware (Mead, 1990).
Today, neuromorphic computing encompasses the use of novel
nanotechnologies such as non-volatile memory devices and
memristors (memory-resistors) that can mimic synapse-like
memory and spiking temporal characteristics (Yang et al., 2013;
Burr et al., 2017; Ziegler et al., 2018; Roy et al., 2019). Because
of their unconventional “beyond von Neumann” architecture,
which substantially reduces power requirements, such devices
are also attractive for implementing Artificial Neural Network
(ANN) algorithms, which require computationally-intensive
training to learn input-output relationships, thereby mimicking
neurons and synaptic connections in software (Xu et al., 2018).

Similarly, neuromorphic chips [e.g., IBM’s TrueNorth
(Merolla et al., 2014; Akopyan et al., 2015) and Intel’s Loihi
(Davies et al., 2018)] have been developed specifically as ANN
accelerators, although their neuromorphic hardware attributes
are limited to the integration of processing and memory to
reduce power requirements. More generally, a limitation of
neuromorphic in-memory computing hardware systems is
their restriction to a regularized grid-like array structure that
emphasizes the role of individual synapse-like elements (e.g.,
memristors), rather than the network architecture as a whole.

This limits potential advantages arising from structure–
function integration in a distributed network, such as in a
small–world architecture seen in biological neural networks
(Bullmore and Sporns, 2009; Chialvo, 2010). It is likely
that due to their conventional grid-like array structure, most
neuromorphic systems lack the emergent dynamical properties
that are characteristic of neural network circuitry (e.g., memory,

learning, and even intelligence). Such emergent properties are
attributed to the complexity of neural networks and the interplay
between structure and function (Hagmann et al., 2008; Chialvo,
2010; Bassett and Gazzaniga, 2011). It is important to note that
factors other than topology may influence emergent behavior
(e.g., learning rules specifically designed for ability acquisition;
Chollet, 2019). However, much of the literature exploring
emergence in complex systems, including biological networks,
emphasizes the role of topology, and structural properties as
key to understanding emergence (Angeline, 1994; Chialvo, 2010;
Pascual-García, 2016; Dumitrescu et al., 2017).

We previously introduced a novel neuromorphic system
comprised of self–assembled nanowires whose structure and
function (in response to electrical stimulation) mimic that of
biological neural networks (Kuncic et al., 2018; Diaz-Alvarez
et al., 2019). In these networks, each junction between nanowires
provides a non-linear synaptic function in a similar manner
as an atomic switch (Terabe et al., 2005; Ohno et al., 2011).
Rather than focusing on the controllability of individual synapses
like ANNs or other neuromorphic systems, our Atomic Switch-
like Networks (ASNs) mimic the complex topology of biological
neural networks, by mimicking biological self–assembly to form
similarly complex networks comprised of nanowires (synthetic
neurons) and junctions (synthetic synapses) (Stieg et al., 2012;
Diaz-Alvarez et al., 2019).

Previous studies have shown that ASNs exhibit emergent
properties such as non-linear dynamics, recurrence and capacity
for learning, which arise from the complexity of the networks, as
well as the properties of the atomic switch-like junctions (Terabe
et al., 2005; Avizienis et al., 2012; Kuncic et al., 2018). Such
properties are essential for brain-like function (Avizienis et al.,
2012). However, due to the complexity of ASNs, it is highly
difficult to understand or predict the impact and interactions
of the networks’ structure and functions from experimental
data alone. Furthermore, due to the networks’ self-assembled
structure, it is experimentally difficult to control the topology
to measure how it influences dynamics. It is also extremely
difficult to use imaging-based techniques such as or electron
microscopy (e.g., White et al., 1986; Eberle and Zeidler, 2018)
reconstructions to unpack the structural connectivity of ASNs,
as it is impossible to tell whether or not intersecting wires
form a junction between them. We therefore have developed a
computational model that simulates the structure experimental
ASNs, based on functional, experimental validation (Kuncic et al.,
2018; Diaz-Alvarez et al., 2019). For the purposes of the present
study, we use this model solely to construct simulated self-
assembled networks for structural analysis. ASNs are made of a
fixed nanowire structure that does not change under electrical
activation. Our simulations allow us to visualize each wire and
connection individually in a graphical representation, and to
easily alter them, either by changing the positioning and lengths
of individual wires and junctions, or manipulating the density
and dispersion of the networks. Consequently, our model enables
us to examine the structural properties of specific sections of the
network, which is currently impossible to do experimentally, as
well as different realizations of nanowire networks.
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Here, we apply graph theory measures to simulated ASNs with
varying topologies. This allows us to examine the topological
properties of ASNs, and compare themwith a range of real-world
networks. These include the simple organism C. elegans, as well
as random and grid-like networks.

2. METHODS

2.1. Construction of Simulated ASNs
To explore the topology of ASNs, we generated multiple
networks with different structural parameters (see Figure 1 for
visualizations). Hardware ASNs acquire a complex network
structure through bottom-up self-assembly (Avizienis et al., 2012;
Stieg et al., 2012; Diaz-Alvarez et al., 2019), similar to neural
network growth in the brain. To simulate this self-assembly, we
modeled nanowires as 1D objects of length uniformly drawn
from a normal distribution of specified average wire length
(mean of distribution, ranging from 6 to 9 µm) and wire
dispersion (ratio of standard deviation to the mean, ranging
from 0 to 50%). These wires were randomly placed within a
2D plane of fixed size (30 × 30 µm), with horizontal and
vertical positions of the wire centers generated from a uniform
spatial distribution. The angular orientation of each wire was
generated from a uniform distribution on 2π . A junction
was modeled at each intersection point between nanowires
(Kuncic et al., 2018; Diaz-Alvarez et al., 2019). The connectivity
was mapped to a graph adjacency matrix representation with
nodes corresponding to nanowires and edges corresponding
to junctions. In real networks, not every intersection between
wires need necessarily form a junction. It is, however, practically
difficult to determine where individual junctions exist in the self-
assembled networks (Diaz-Alvarez et al., 2019). In our simulated
networks, the simplifying assumption that all intersections result
in junctions has negligible effect on network functionality when
compared to experimental measurements of hardware ASNs (see
Supplementary Materials).

For each of the networks, the following parameters were
varied: number of nanowires (i.e., 100, 500, 1,000, or 2,000
nws), average nanowire length (6 – 9 µm), and dispersion

FIGURE 1 | Neuromorphic nanowire networks. (a) Optical microscopy image

of an actual self–assembled network of nanowires. The length of wires varies

from∼6 to 50µm in this image. (b) Simulated 500 nw (6,065 junction) network

generated by our model. The length of wires in the simulated networks varies

from 6 to 9µm.

of wire length (0, 10, 20, and 50% of average nanowire
length). Using this process, we generated a total of 39
different combinations of networks. All simulated networks
were constructed in Matlab v2018a and Python v3.7.3. All
structural connectivity measures were taken from the open-
source Brain Connectivity Toolbox (Rubinov and Sporns, 2010)
and NetworkX (Hagberg et al., 2008) packages.

To contextualize the structural connectivity of our ASNs, we
simulated the topology of Watts-Strogatz networks ranging from
random to grid-like, and C. elegans. Graph theory measures
were applied to the connectivity data of each ASN, as well
as to each of the Watts-Strogatz and C. elegans networks (see
Figure 2 for graphical representations of all networks). We also
included a fully-connected ANN similar to a random Watts-
Strogatz network. Next, we compared global clustering coefficient
and average path lengths (Watts and Strogatz, 1998). We also
calculated the small–world propensity values for each network
to establish an unbiased (see Box 1) measure of small–worldness
in all networks (Muldoon et al., 2016). Finally, we mapped 100
and 500 nw ASNs, as well as C. elegans and correspondingly sized
random and grid-like WS networks, on the Guimerà and Amaral
(2005) cartographic plane to compare participant coefficient
and within-module degree z-score. This allowed us to examine
the modularity and integration of the networks (Guimerà and
Amaral, 2005; Power et al., 2013; Bertolero et al., 2015).

2.2. Construction of Random and Grid-Like
Watts-Strogatz Networks
To create a series of Watts-Strogatz networks, we first created
a ring lattice with N nodes of mean degree 2k, where 2k =
mean degree of the corresponding ASN with N nodes. In the
Watts-Strogatz networks, each node is connected to its k nearest
neighbors on either side. For each edge, E, in the graph, we
then rewire the target node to k other nodes in the network
with probability β . When β = 0, no edges are rewired and
the model returns a locally-clustered ring lattice. We term this
network grid-like, as its non-graphical representation is formed
from a grid-shaped lattice. In contrast, when β = 1, all
of the edges are rewired and the ring lattice is transformed
into a random graph (MathWorks, 2016). We varied β from
0 to 1 in steps of 0.05, leaving 21 networks ranging from
completely Grid-Like (β = 0) to completely Random (β = 1),
for each size N. A β of 0.2 is denoted as displaying “small–
world” characteristics (Watts and Strogatz, 1998). Furthermore,
to compare ASNs with a WS random-like ANN model, we
constructed a 5-layer ANN, with 10 input nodes, 10 output nodes
and 160 nodes in each middle layer. Every node in each layer
is connected to every node in its parent and child layers (hence
the term “fully-connected”). However, no nodes are connected
within layers.

2.3. Construction of C. elegans Networks
Neuronal connectivity data of the simple nematode C. elegans
(277 neurons and 2,105 synaptic connections) was adapted
from Achacoso and Yamamoto (1991), and electron microscope
reconstructions by White et al. (1986).
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FIGURE 2 | Graphical representations of sample networks: Grid-like Watts-Strogatz (WS) networks (β=0; left); random Watts-Strogatz networks (β=1; center-left);

ASNs (center-right); C. elegans and fully-connected ANN networks (right). Nodes represent nanowires (or neurons for C. elegans and ANN), while edges represent

junctions (or synapses for C. elegans and virtual synapses for ANN).

3. RESULTS

3.1. Small–Worldness
We compared the structures of multiple unique ASNs across
four sizes (a total of 39 networks comprised of 100, 500, 1,000,
or 2,000 nanowires) with a fully-connected ANN, a C. elegans
network, and Watts-Strogatz random/grid-like networks across
four sizes and 21 varying β parameters (one network for each β ,
and for each size). See Table 1 for a full statistical description of
each network.

Figure 3 shows a comparison of path lengths and path
distances between 100 and 500 nw ASNs, and a C. elegans
network. Figure 4 shows a comparison of global mean path
length and global clustering coefficient for each of the networks
studied. Larger ASNs have similar mean path length to C. elegans,

but higher clustering. However, ASN networks of similar size to
C. elegans have a higher average path length.

ASNs are also more clustered and have a longer mean path
length than random WS networks (β = 1). Compared to grid-
like WS networks (β = 0), ASNs tend to be less clustered with
generally shorter path lengths. Compared to a fully–connected
ANN of 500 nodes, ASNs display much higher clustering, and
longer path lengths.

Using path length and clustering coefficient to estimate small–
worldness Watts and Strogatz (1998), ASNs would fall in the
small–world category, with relatively low path length and high
clustering. Recently a measure called small–world propensity has
been employed to consider potential drawbacks of the Watts–
Strogatz method (see Box 1; Muldoon et al., 2016).
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One-way ANOVAs were conducted to compare the small–
world propensity of 100 nw ASNs with 100 node WS random-
like, 100 node WS grid-like and C. elegans networks. There
was a significant difference between groups [F(3, 10) = 47.16,
p < 0.001] (where F is the ratio of mean square values of
each group). Post-hoc analysis using the Bonferonni correction
for multiple comparisons indicated that 100 nw ASNs had
higher small–world propensity [Mean (M) = 0.69, Standard
Deviation (SD) = 0.04] than random networks (M = 0.29,
SD = 0) and grid-like networks (M = 0.29, SD = 0),
but there was no significant difference between ASNs and C.
elegans (M = 0.55, SD = 0; see Supplementary Materials

for boxplots and multiple comparison graphs). We repeated
these ANOVAs for 500 nw ASNs and 500 node WS networks
[F(3, 9) = 182.16, p < 0.001]. Post-hoc analysis indicated that
500 nw ASNs (M = 0.68, SD = 0.02) had higher small–world
propensity than random networks (M = 0.29, SD = 0), grid-
like networks (M = 0.29, SD = 0) and C. elegans (M = 0.55,
SD = 0). Figure 5 shows a visual difference between ASNs and
other networks.

3.2. Modularity and Integration
We used MZ and PCoeff measures to plot ASNs on a Guimerà
and Amaral (2005) cartographic space (see Figure 6A for
100 and 500 nw ASN values, and Supplementary Figure 5

for 1,000 and 2,000 nw ASN values). Briefly, this involves
calculating the modular assignment of each node (see Box 1),
and then estimating each nodes’ topological role, relative to the
modular assignment: high MZ = high within-node connection
(segregation) and high PCoeff = high between-node connection
(integration). When combined, these measures exhibit the
modularity and hub characteristics of a network. Each region
in this space classifies a node in a network as a specific type.
Almost all the nodes in all sizes of ASNs were categorized as
ultra-peripheral (PCoeff = 0), peripheral (MZ < 2.5, 0 <

PCoeff < 0.62), and non-hub connector regions (MZ < 2.5,
0.62 < PCoeff < 0.80). There were also a very few nodes that
fell in the provincial hub region (MZ > 2.5, and 0 < PCoeff
< 0.30).
We compared the PCoeff and MZ of ASNs to both WS

networks, and a biological system such as the C. elegans (see
Figure 6B). One-way ANOVAs were conducted to compare the
PCoeff and MZ of 100 nw ASNs with 100 node WS random-
like, 100 node WS grid-like and C. elegans networks. There was
a significant difference between groups [F(3, 1,517) = 112.64,
p < 0.001] for PCoeff, but there was no significant difference
for MZ. Post-hoc analysis using the Bonferonni correction for
multiple comparisons indicated that 100 nw ASNs had lower
PCoeff (M = 0.22, SD = 0.23) than C. elegans (M = 0.41,
SD = 0.21) and random networks (M = 0.57, SD = 0.17), but
there was no significant difference between ASNs and grid-like
networks. We repeated these ANOVAs for 500 nw ASNs and 500
node WS networks, and the results were largely unchanged (see
Supplementary Materials).

The structures of WS random-type networks tend to have
higher PCoeff values (see Table 1 for means and standard
deviations), mainly in the PCoeff > 0.8 region (non-hub kinless
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FIGURE 3 | Path length comparison of sample 100 and 500 nw ASNs with C. elegans. (A) Path length of each node from a randomly selected peripheral node for

sample 100, 500 nw and C. elegans networks. (B) Distribution of path lengths from all node pairs in each sample network, including the average and median path

length distributions, for 100, 500 nw and C. elegans networks.
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FIGURE 4 | Watts and Strogatz (1998) cartographic plane: global clustering coefficient and global mean path length. Each large dot represents 39 ASNs of varying

parameters, with colors representing the network size (number of nanowire nodes). The small dots are Watts-Strogatz networks, rewired from completely random

(β = 1) to grid-like (β = 0). Beta values decrease from bottom to top. The large yellow square measures the C. elegans network, and the large pink triangle is a

500-node fully-connected ANN.

FIGURE 5 | Average small–world propensity values for Watts-Strogatz (WS), 500-node ANN, C. elegans and ASNs of varying sizes (number of nanowires, nw).

Averages for WS were taken across all 21 β parameters from 0 to 1, with error bars reflecting standard deviation across β parameters. Averages for ASNs were taken

from 39 networks with varying parameters as described in the methods section, with error bars reflecting standard deviation across network parameters.

nodes). They also have some examples of MZ > 2.5 in the
connector and kinless hub regions, but mainly MZ < 2.5. WS
grid-like networks have lower PCoeff values, typically limited
to ultra-peripheral and peripheral regions. C. elegans networks
cover a greater portion of the cartographic space, although most
of the nodes tend to fall within the peripheral and non-hub
regions (see Guimerà and Amaral, 2005 for more examples of
biological PCoeff/MZ distributions).

4. DISCUSSION

ASNs exhibit a small–world structure, characterized by relatively
short mean path length, alongside high clustering (Sporns et al.,
2002; Sporns and Zwi, 2004). When compared with random
or grid-like Watts–Strogatz networks, ASNs demonstrate more
biological-like small–worldness features. While both random
networks and ASNs have short path lengths, ASNs show higher
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FIGURE 6 | Guimera-Amaral (2005) Cartographic-Space: Within-Module

Degree z-Score (MZ) and Participant Coefficient (PCoeff). The dark-gray region

(bottom left) refers to ultra-peripheral nodes (i.e., nodes with only one or few

connections within a module); The light red region refers to peripheral nodes

(i.e., nodes that are non-hubs and are only connected within a module); The

green region refers to non-hub connector nodes (i.e., nodes that are

connected to other modules but are not hubs); The blue region (bottom right)

refers to non-hub kinless nodes (i.e., non-hub nodes not belonging to a

particular module); The yellow region (top left) refers to provincial hubs (i.e.,

hub nodes that are highly connected within a module, but not between

modules); The cream region refers to connector hubs (i.e., nodes that are

highly connected between modules, but not necessarily within modules); the

light-gray region (top right) refers to kinless hubs (i.e., hubs not belonging to a

particular module). Regions are adapted from Guimerà and Amaral (2005). See

Box 1 for example nodes. (A) 500 nw ASN networks. Each colored dot is the

mean MZ and PCoeff for the most dense (Avg DEG = 40.66) variations of

ASNs. (B) 500 node WS networks and C. elegans networks. Squares

represent the MZ and PCoeff for C. elegans. Stars and crosses represent the

MZ and PCoeff values for WS networks with β = 0 and 1, respectively. (C)

Average PCoeff and MZ scores for each type of network.

clustering. In studies on human neural networks, it has been
suggested that a small–world network is ideal, for example, for
synchronizing neural activity between brain regions (Latora and
Marchiori, 2001; Reijneveld et al., 2007; Verweij et al., 2014).
In turn, this reflects the capacity for high global efficiency of
parallel information transfer between such regions (Bullmore and
Sporns, 2009). ASNs may therefore have capacity for efficient,
synchronized and parallel information transfer across the entire
network, similar to that of biological systems.

However, the structure of wiring within and between
regions/clusters, as highlighted by PCoeff and MZ measures,
may be different from biological systems such as C. elegans
(see Supplementary Figure 3 for comparison with human node
types). In biological neural networks, PCoeff and MZ are used
to identify whether particular nodes play a hub-like role in the
network. Hubs are central areas through which large amounts
of information is trafficked to reach different parts of a network
(van den Heuvel and Sporns, 2013). They are characterized by
high connectivity to other network regions, as well as central
positioning in the network. MZ scores have been used to denote
hub status (e.g., z-Score < 2.5), while PCoeff values are used
to classify the type of hub (Guimerà and Amaral, 2005; Joyce
et al., 2010). Our results are consistent with previous studies
showing that nodes in C. elegans have many peripheral and
non-hub connector nodes, but also some hub-type provincial
and connector nodes (Achacoso and Yamamoto, 1991; Guimerà
and Amaral, 2005; Power et al., 2013). Such networks maintain
a balance between integration and segregation of modules. In
contrast, random WS networks are largely comprised of highly
integrated, non-hub nodes, with a few hub-type nodes. This
reflects a network with few modules. Grid-like WS networks are
entirely comprised of non-hub, ultra-peripheral/peripheral type
nodes, with very little integration or even modularity, as they
have no connector nodes to connect between any modules that
may exist.

How do ASNs fit within this space? Our results suggest that
ASNs have a high proportion of peripheral, non-hub type nodes,
similar to grid-like graphs. However, ASNs also have many non-
hub connector nodes, which grid-like graphs lack. This means
that ASNs are highly segregated, but also have many connections
between modules, although they are weaker than within-module
connections. Therefore they also have higher modularity than
C. elegans. Random networks, on the other hand are highly
integrated and have very few connector or peripheral nodes.
Therefore ASNs have greater segregation than random networks,
and higher modularity than both random and grid-like networks.
ASNs involve a balance between integration and segregation,
that is biased toward the presence of highly clustered, tight-knit
modules with sparse inter-connectivity.

However the modularity and segregation of ASNs do not
seem to reflect that of an organism like C. elegans. The
nematode network has a greater balance between segregation
and integration than ASNs, although likely with less modularity.
Even ASNs that are highly dense only have a few hub-type
nodes, meaning that most of the network’s capacity to transfer
information occurs in segregated modules, with sparse links
between modules. Networks like the C. elegans would likely
have fewer modules, with more central hub-type nodes that
are responsible for directing information flow to and from the
segregated modules of the network (hence the term hub).

Optimization of the structure of ASNs to represent biological-
like networks may be desirable in the future, to allow for more
biological-like capacities. For instance, increasing the size of the
networks, and allowing for a greater balance between sparse and
dense connections may allow for a more equivalent distribution
of MZ and PCoeff scores, as well as increasing small–worldness
even more. If these parameters are changed, it may be possible to
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construct nanowire networks that are even more representative
of a biological system. However, it may be that ASNs currently
demonstrate similar functionality to biological organisms, but
with a uniquely highly modular and segregated structure that has
more emphasis on peripheral-type nodes. In such a case, nodes
within a particular module or cluster may communicate more
within that module than with nodes outside it, yet still produce
dynamics that are similar to biological systems (Kuncic et al.,
2018). Due to the high small–worldness that ASNs demonstrate,
it may be possible that these types of networks place much less
importance on hub-type nodes or regions, as many other small–
world complex networks do (e.g., Guimerà and Amaral, 2005;
van den Heuvel and Sporns, 2013; Verweij et al., 2014). We plan
to investigate the functional connectivity of ASNs in a future
study, to understand how similar the interplay between structure
and function in these networks may be to biological systems and
other real-world networks.

4.1. Conclusion
Neuromorphic nanowire networks demonstrate a small–world
architecture that is similar to the biological system of C. elegans,
and is distinct from random or grid-like networks (including
untrained artificial neural networks). However, they also appear
to be comprised of nodes that are equivalent to peripheral
or non-hub nodes in a biological system, while being more
segregated and modular, and less reliant on hubs of information
flow. In future studies, investigating the functional properties
of neuromorphic nanowire networks under electrical activation,

coupled with altering the topology of these networks, will
provide new insights into the interplay between structural and
functional connectivity in a way that is extremely difficult
experimentally. This may bring us closer to better understanding
the physical components that may give rise to emergent
dynamical behaviors of neural-network-like structures; behaviors
that, in turn, enable cognitive functions such as learning and
memory, or even intelligence.
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Among the recent innovative technologies, memristor (memory-resistor) has attracted

researchers attention as a fundamental computation element. It has been experimentally

shown that memristive elements can emulate synaptic dynamics and are even capable

of supporting spike timing dependent plasticity (STDP), an important adaptation rule

that is gaining particular interest because of its simplicity and biological plausibility. The

overall goal of this work is to provide a novel (theoretical) analog computing platform

based on memristor devices and recurrent neural networks that exploits the memristor

device physics to implement two variations of the backpropagation algorithm: recurrent

backpropagation and equilibrium propagation. In the first learning technique, the use

of memristor–based synaptic weights permits to propagate the error signals in the

network by means of the nonlinear dynamics via an analog side network. This makes the

processing non-digital and different from the current procedures. However, the necessity

of a side analog network for the propagation of error derivatives makes this technique

still highly biologically implausible. In order to solve this limitation, it is therefore proposed

an alternative solution to the use of a side network by introducing a learning technique

used for energy-based models: equilibrium propagation. Experimental results show that

both approaches significantly outperform conventional architectures used for pattern

reconstruction. Furthermore, due to the high suitability for VLSI implementation of the

equilibrium propagation learning rule, additional results on the classification of the MNIST

dataset are here reported.

Keywords: artificial neural network, biologically plausible learning rule, neuromorphic computing, recurrent neural

network, associative memory, memristor

INTRODUCTION

In the last few decades, the search of innovative computing platforms that could offer new,
ultra-low power processing methods and architectures has intensified. Neuromorphic computing
approaches aim to go beyond the state-of-the-art in conventional digital processing by exploiting
complex dynamics and nonlinear phenomena emerging from the physics of nonvolatile memory
devices (e.g., memristors) (Chua, 1971; Strukov et al., 2008). The hallmark of this kind of
devices is the peculiar analog signal storing capability that allows them to mimic the behavior
of neural synapses. The processing is not only analog and different from current digital
processors, but also enhances computing speed and power efficiency for large sets of sensor
data. This has been achieved by combining memristor technology with advanced deep learning
algorithms used to train neural networks. In supervised learning, one of the most popular
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method used for training feedforward neural networks is the
backpropagation algorithm. Although it is considered a powerful
technique, it is computationally expensive and is commonly
labeled as biologically implausible. The generalization of this rule
to continuous-time recurrent networks was first introduced by
Almeida (1987) and Pineda (1988) who independently obtained
the same results. Recurrent backpropagation aims to iteratively
adjust the weight matrix of the network in order to let the system
converge, for fixed input and initial state, to a desired attractor. As
for feedforward neural networks, this is achieved by minimizing
a particular loss function associated to the system parameters
with the difference that the error signal is now backpropagated
by introducing an associated differential equation. This allowed
to avoid the direct gradient’s computations and reduced the large
number of required multiplications. However, the necessity of a
side network for the propagation of error derivatives makes this
technique still highly different from emulating the brain complex
computation. This hypothesis is further supported by the fact that
there is no known mechanism that could explain how an error
message is propagated backwards through the same pathway
of the incoming signal. Recently, Scellier and Bengio (2017)
proposed an alternative solution to the use of a side network
by introducing Equilibrium Propagation, a learning technique
used for energy-based models. The advantage of this approach
is indeed the requirement of just one kind of neural computation
for the training phase of the network. Firstly, inputs are clamped
and the network relaxes to a fixed point which corresponds
to a local minimum of the energy function. Secondly, after
introducing a small external error signal, the network relaxes
to a new but close-by fixed point which now corresponds to
a rather lower cost value. Even though the two methods seem
quite different, it is easy to observe that both share the same
goal, finding low-energy configurations that have low cost values.
The aim of this work is to propose a novel (theoretical) analog
computing platform based on memristor devices and recurrent
neural networks that exploits the memristor device physics to
implement two variations of the backpropagation algorithm.
In the first section, it is provided a brief introduction on
memristors and their peculiar properties useful for the physical
implementation. In the second section, a general introduction on
biological algorithms is presented with particular attention on
recurrent backpropagation and equilibrium propagation. In the
last section, the two techniques are compared with the existing
algorithms used in pattern reconstruction providing results of
their compelling efficiency. Lastly, it is shown the application
of a memristor-based recurrent neural network trained with
equilibrium propagation used for the classification of a small
subset of the MNIST dataset. The choice of using only this
learning rule was mainly dictated by the fact that using a side
network, as in the recurrent backpropagation approach, would
at least double the required IC area.

MEMRISTOR–BASED RECURRENT
NEURAL NETWORK

Massive progress has already been made with neuromorphic
systems based on traditional analog and digital integrated

circuits. Among all the recent alternatives which aim to
emulate neurobiological components and functions, memristive
devices have drawn particular attention (Jo et al., 2010).
Memristors, often termed as Resistive Switching devices, are
single-port electrical dynamical systems whose conduction
properties depend on the history of applied input at the port
(Chua and Sung Mo, 1976). The typical memristor physical
implementation consists of two metal electrodes sandwiching
a switching material. An intuitive connection links these two
electrodes to the corresponding role of axons and dendrites
and the switching layer to the variable interconnection weight
of synapses. The crossbar architecture is probably the most
commonly used computing structure exploiting the memristive
behavior for mapping neural networks in hardware. Its basic
working principle is the application of Kirchhoff’s Current Law
to compute the input to the i-th neuron as the algebraic sum
of the weighted inputs Ii =

∑

j Gijvj. Here, Ii is the i-th input

current, Gij is the connecting memductance between the i-th and
j-th neurons and vj is the output voltage generated by the j-th
neuron. This produces the vector-matrix multiplication in situ
by a single read operation which eliminates the need for constant
bidirectional data transfer from the memory to the computing
unit (Sun et al., 2019).

The most peculiar characteristic of this kind of devices is
the synaptic plasticity effect which is also observed in biological
neural systems. Since conductances can be tuned by controlling
the coordinated activity of pre- and post-synaptic neurons,
memristor-based neural networks can consequently emulate
neurobiological phenomena while mimicking the underlying
learning process. From neurological studies, it turned out that
the neural coding is highly dynamic, therefore recurrent neural
networks seem well suited to model similar behavior and have
been used to investigate the mechanisms adopted by neurons
populations in solving various complex tasks.
For this reason, consider a recurrent neural network and let
each synaptic weight be described by a generic memristor
(see also Corinto et al., 2015; Leon, 2015) that satisfies the
following equations:

{

i = G(x)v
dx
dt

= f (x, v)
(1)

where i is the current, v is the voltage, G(·) is the memductance
and x is the internal state vector. Let the memristor–based
synaptic weight be G(x) = w, with the purpose of giving a formal
description of the network’s learning process, the state vector can
be defined by the two following dynamics:











i = wv
dw
dt

= f1(w, v, y)
dy
dt

= f2(w, v, y)

{

i = wv
dw
dt

= g(w, v) (2)

In the next sections, the derivation of the previously mentioned
variants of the backpropagation algorithm for recurrent neural
network is given in order to clarify the use of the different
choice of the state vector x. Further work is still needed to
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find physical devices that approximate the proposed memristive
synapse dynamics in (2).Manymodels of memristor devices (e.g.,
Phase Change Memory, Resistive NonVolatile Memory, etc.)
have been presented during the last decade but unfortunately the
existing mathematical representations are not suitable for this
kind of investigation. The current approach available in literature
is to embed memristor device in suitable synaptic circuit so that
the dynamics of internal (state) variables can be controlled by
appropriate pulses. Thus, the learning rules can be implemented
by a series of discrete programming pulses that perform the
weights update according to the learning rules defined by the
recurrent backpropagation and the equilibrium propagation
algorithms. This can be obtained bymeans of amplitude/duration
modulation of a voltage (or current) pulse applied on a physical
device via the 1T–1R (one transistor–onememristor) architecture
(see Liu et al., 2015; Merced-Grafals et al., 2016). An alternative
approach is based on the use of emulator of generic memristors
(Ascoli et al., 2016; Assaf et al., 2019) such that the dynamics
in (2) can be obtained. Although the physical realization of
memristor synapses is a challenging problem, its investigation
is out of the scope of the present work that aims to show
howmemristor–based recurrent neural networks withmemristor
synapses support equilibrium propagation algorithms. A further
study will be devoted to tackle the implementation of proposed
memristor synapses.

BIOLOGICALLY-PLAUSIBLE LEARNING
ALGORITHMS

The rules that govern the learning process in the brain are
poorly understood. Despite the great success of deep learning
in a wide variety of complex tasks (LeCun et al., 2015),
learning rules in the brain are most likely local and strictly
feedforward. Theoretical analysis of biological neural networks
showed indeed that connections between neurons are mostly
strengthened depending on the coordinated activity of pre-
synaptic and post-synaptic cells rather than computations of
all downstream neurons (Hebb, 1949; Gerstner et al., 2014).
Therefore nowadays, there is an increasing interest in machine
learning and computational neuroscience in the study of neuron-
like architecture with local learning rules that aim to approximate
the surprising efficiency of the backpropagation training process.
Many bio-plausible approaches include feedback allignment
(Lillicrap et al., 2016), target propagation algorithms (Lee et al.,
2015), membrane potential based backpropagation algorithm
(Lee et al., 2016), equilibrium propagation (Scellier and Bengio,
2017), etc. See for example Whittington and Bogacz (2019)
for an extensive review. Since neurological research suggests
that the neural representation is highly dynamic, models based
on recurrent neural networks seem well suited to capture
similar behavior and therefore have been used to investigate
the mechanisms by which neural populations solve various
computational problems. In order to take advantage of the
intrinsic nonlinear dynamics of the system, two learning
techniques for continuous time recurrent neural networks were
mainly considered: recurrent backpropagation and equilibrium

propagation. Even though the latter shows a more suitable
affinity for VLSI implementations (Scellier and Bengio, 2017), the
former represents the first attempt in approaching energy-based
models from a supervised point of view and therefore is worth
being mentioned and compared. In the next subsections, it is
provided a brief introduction to the construction and derivation
of both algorithms.

Recurrent Backpropagation
Consider a Recurrent Neural Network (RNN) whose state vector
v evolves according to:

dvi

dt
= −vi + gi





N
∑

j=1

wijvj + Ii



 , i = 1, . . . ,N (3)

where N is the number of neurons of the network and Ii is
an external input to the i-th neuron. There is no restriction
on the choice of the activation function gi as long as it is
monotone and differentiable (Pineda, 1988). In the most general
case, neurons can be considered either as input, output or hidden
units depending on the application. The goal of the algorithm
is to adjust the weights wij so that, for a given initial condition
v0 = v(t0) and a given vector of input I, the RNN (3) converges to
a desired fixed point v∞ = v(t∞). This is obtained byminimizing
a loss function E which measures the euclidean distance between
the desired fixed point and the actual fixed point:

E =
1

2

N
∑

i=1

J2i =
1

2

N
∑

i=1

(Ti − v∞i )2 (4)

where Ti is the i-th desired output state component and Ji is the
i-th component of the difference between the current fixed point
v∞i and the target point Ti. Observe that E depends on the weight
matrix W through the fixed point v∞(W, I). Therefore, one way
to drive the system to converge to a desired attractor is to let
it evolve in the weight parameter space along trajectories which
have opposite direction of the gradient of E:

dwij

dt
= −η

∂E

∂wij
= η

N
∑

k=1

Jk
∂v∞

k

∂wij
, η > 0 (5)

where η is the learning rate. The derivative of v∞
k

with respect to
wij is derived by observing that the fixed points of (3) must satisfy
the nonlinear equation:

v∞k = gk

(

N
∑

s=1

wksv
∞
s + Ik

)

. (6)

Differentiating (6) with respect to wij one obtains (for more
details see the Appendix):

∂v∞
k

∂wij
= (δki − g′k(Î

∞
k )wki)

−1g′i (Î
∞
i )v∞j (7)

where δki is the kronecker delta. Unfortunately, (7) requires
the computation of a reciprocal for computing the weights’

Frontiers in Neuroscience | www.frontiersin.org 3 March 2020 | Volume 14 | Article 240104

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zoppo et al. Memristor-Based Recurrent Neural Networks

update and therefore Pineda (1988) bypassed this problem
by considering

yi = g′i (Î
∞
i )

N
∑

k=1

Jk(δki − g′k(Î
∞
k )wki)

−1 (8)

which can be seen as the steady state of the following
side network:

dyk

dt
= −yk + g′k(Î

∞
k )

(

N
∑

i=1

wikyi + Jk

)

. (9)

In conclusion, the weights’ update rule is defined by:

dwij

dt
= ηy∞i v∞j (10)

which is therefore dependent on the corresponding fixed points
of the dynamical systems (3) and (9). Here is the summary of the
whole learning process:

1) Firstly, (3) evolves starting from a random initial condition
and converges to the corresponding fixed point v∞;

2) Secondly, (9) evolves starting again from a random initial
condition and converges to the corresponding fixed point y∞;

3) Lastly, the weights of the matrixW are updated according to

1wij = ηy∞i v∞j , η > 0. (11)

Equilibrium Propagation
Consider now the following energy function E:

E(v) =

N
∑

i=1

v2i
2

−
1

2

N
∑

i,j=1

wijgi(vi)gj(vj)−

N
∑

i=1

Iigi(ui) (12)

where N is the number of neurons of the network and Ii is an
external input to the i-th neuron. Again, there is no restriction
on the choice of the activation functions gi(·) ∀i = 1, . . . ,N
as long as they are differentiable and monotone. Assume that
the time evolution of the state variable v is governed by the
gradient dynamics:

dvi

dt
= −

∂E

∂vi
= −vi+g

′

i (vi)





N
∑

j=1

wijgi(vj)+ Ii



 , i = 1, . . . ,N

(13)
Observe that, the network is recurrently connected with
symmetric connections (i.e., wij = wji). Typically in the
supervised learning framework, the output units aim to recreate
their targets T. The deviation of the fixed points v∞, output
values of the network, from the targets T is measured by the
quadratic loss function:

C =
1

2

N
∑

i=1

(Ti − vi)
2 (14)

Observe that this function is defined for any state of v. The central
idea of Equilibrium Propagation is to introduce the augmented
energy function:

F(v,W,T) = E(v,W)+ βC(v,W,T)

v,T ∈ R
N ,W ∈ R

N×N ,β ≥ 0 (15)

and replace the free dynamics with the augmented dynamics:

dvi

dt
= −

∂F

∂vi
(16)

Here, the second term −β ∂C
∂vi

gradually pushes v toward
configurations that have lower cost values. This is done, as in
the previous model, by simply adjusting W so as to minimize
the cost value of the fixed point. Now, in order to derive
the corresponding learning rule, let us introduce the following
objective function

J(W) = C(v∞,W,T) v,T ∈ R
N ,W ∈ R

N×N (17)

Observe that J(W) is the cost at the fixed point. The equilibrium
propagation algorithm estimates the gradient ∂J

∂W based on
measures at the fixed points of the free and the augmented
dynamics that we will set as v∞ and v∞β . Scellier and Bengio
(2017), indeed, proved the following statement:

∂J

∂W
= lim

β→0

∂F
∂W (v∞β )− ∂F

∂W (v∞)

β
(18)

offering an alternative way to estimate the gradient of the
objective function. Therefore, the network follows the following
dynamics for the training phase:

1) Firstly, T is clamped and the network follows the free
dynamics (13) relaxing to the free fixed point v∞ where
∂F
∂W (v∞) is measured (free phase);

2) Secondly, the influence parameter is introduced and the
network relaxes to a new but nearby fixed point v∞β where
∂F
∂W (v∞β ) is measured (weakly clamped phase).

3) Lastly, the weights of the matrix W are changed according to
(18) and updated as follows:

1wij ∝ + η[gi(v
β ,∞
i )gj(v

β ,∞
j )− gi(v

∞
i )gj(v

∞
j )], η > 0.

(19)

IMPLEMENTATION AND EXPERIMENTAL
RESULTS

In this section, it is first provided an experimental evidence
of the two models’ efficiency in a pattern reconstruction task.
Afterwards, an example on the classification of a subset of
MNIST dataset is here reported using equilibrium propagation
as learning rule.
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FIGURE 1 | In the left panel, the dataset of all the 16 patterns to be learnt. In the right panel, a graphical representation of the corresponding patterns’ correlation

matrix computed with the Pearson correlation coefficient.

FIGURE 2 | Accuracy for different radius of connectivity. On the left, the results obtained by using Recurrent Backpropagation and on the right, the results obtained by

using Equilibrium Propagation. p is the probability of flipping each pixel of the image from white to black and viceversa.

Pattern Reconstruction
In this section, a comparison between the two aforementioned
training algorithms for pattern’s reconstruction task is presented.
For this kind of application, input units are chosen to be
simultaneously output units and no hidden units are considered.
Moreover, due to the construction of the gradient dynamics
(13), symmetric weights were chosen for both methods. This
condition also guarantees the convergence of the model (3).
During the training phase, each image shown in Figure 1 is
repeatedly proposed to the network by means of a constant
input I until it is memorized. In the case of multiple patterns
to be learnt, the previous steps are performed for each single
image of the dataset for different epochs. Here patterns were
shown to the network in the same order for each epoch
but this choice was not restrictive since similar performances
were obtained even in the case the images were proposed
in a random fashion. In order to train the network, the
following hyperparameters and initial conditions were set for the
training phase:

- Random initialization of the state variable v;

- In the recurrent backpropagation case, each single time the

first state variable converges, the second variable is reset to

y(0) = (0.5, . . . , 0.5)T ∈ R
N ;

- The matrix W is symmetric and initialized with uniform
random values between [−0.1; 0.1];

- The activation functions gi ∀i = 1, . . . ,N are hyperbolic
tangent functions;

- The learning parameter η = 0.01;

- The number of epoch is 300.
- Time spans for the simulation of the dynamics systems are

chosen in order to guarantee the convergence of the state

variables.

With the aim of assessing the applicability of this method in VLSI
implementation, a short analysis on the importance of local-
global connections of the network’s neurons was performed.
For further details on the relation of the topology and the
computational performance of attractor neural networks refer
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to McGraw and Menzinger (2003), Hasler and Marr (2013) or
Stauffer et al. (2003), Tanaka et al. (2019) for additional results
on current approaches for enhancing the energy efficiency of
hardware-level neural networks bymeans of sparse and less costly
number of connections. Here, for sake of simplicity, a simpler
investigation was carried out by increasingly disconnecting
global connections arising from a full matrix by simply setting to
zero all the elements that were located outside a band about the
main diagonal. In order to test the network, corrupted patterns
were created by flipping, with probability p, each pixel of the
image from white to black and viceversa. The cut of K outer
diagonals from the matrix reduces the number of synapses from
N2 to N2 − K(K + 1). In this analysis, a corrupted pattern is
recognized as reconstructed if the least square error with respect
to the original images is equal to 0. The validation was carried
out by testing the recovery capabilities of the network against
5000 corrupted patterns for each class shown in Figure 1. The
results obtained by both methods are shown in Figure 2 with
different levels of test images’ corruption (e.g., p = 0.10, p = 0.15,
p = 0.20, and p = 0.25). It is easy to see that both methods seem
to reach promising and equally meaningful results in the case of
fully connected networks. However, Equilibrium Propagation is
able to get better results even with a small amount of connections.
This fact, together with the absence of a side network really
motivates us to investigate this method as a solution worth to be
considered for a VLSI implementation. This improvement might

FIGURE 3 | Mean accuracy over 1000 reconstructed patterns for different

number of epochs using Equilibrium Propagation (in blue) and Recurrent

Backpropagation (in orange).

be induced by the noisy estimator of the gradient given by (19)
that helps the network to efficiently explore the parameter space
by avoiding to get stuck in local minima. This might be further
seen in Figure 3 where good values of accuracy are already
obtained by Equilibrium Propagation in the first 50 epochs
whereas Recurrent Backpropagation needs at least 300 epochs.
In last analysis, in order to assess the efficiency of the two novel
methods, it is additionally performed a comparison with two of
the most used learning rules for training networks in associative
memory’s tasks. It is well known that a standard Hopfield model
trained on uncorrelated patterns with the Hebbian rule has an
approximate capacity of 0.14N (N is the number of units in
the network) (McEliece et al., 1987). Unfortunately, this capacity
decreases significantly if patterns are correlated. To overcome
this problem, a novel learning method has been introduced by
Storkey (1997). The Storkey learning rule presents indeed a
significantly improved performance over the standard Hopfield
model, both with correlated and uncorrelated data.
However, as shown in Table 1 and in the examples of Figure 4,
the results provide evidence that both recurrent backpropagation
and the equilibrium propagation algorithms are perfectly able to
reconstruct even in the presence of correlated patterns.

Pattern Classification
As a second experimental result, it is now provided an application
of the model introduced by Scellier and Bengio (2017) in a
pattern classification task of a subset of the MNIST dataset: 5
classes and 600 patterns for each class. The model used here is
still a recurrent neural network with symmetric connections, 1
hidden layer, no skip-layer and no lateral connections. Following
Scellier and Bengio (2017), a hard sigmoid was chosen as
activation function and the training process was performed by
iterating the successive steps:

1) Fix the pattern as a constant input;
2) Run the free phase until convergence of the hidden and the

outputs units may be reached and collect g(v∞i )g(v∞j );

3) Run the weakly clamped phase until convergence and collect

g(v
β ,∞
i )g(v

β ,∞
j );

4) Update the synaptic weights according to (19).

In order to perform the training process, (16) was first discretized
into short time lapses of duration ǫ as follows:

vt+1 = vt − ǫ
∂F

∂vi
(20)

However, as suggested by Scellier and Bengio (2017), the state
variable should be bounded between 0 and 1 and therefore a

TABLE 1 | Accuracy for each single learning rule over 1,000 corrupted images, with probability 0.1, for each of the 16 classes.

Hebbian rule Storkey rule Recurrent BackProp rule Equilibrium Propagation rule

Accuracy 0.1792 0.2663 0.9968 0.9971
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FIGURE 4 | From the top row: six corrupted patterns with probability p = 0.1, reconstructed pattern with hebbian rule, Storkey rule, recurrent backpropagation rule,

Equilibrium Propagation rule and in the last row the target patterns.

slightly different update rule was used:

vt+1 = g

(

vt − ǫ
∂F

∂vi

)

(21)

where g(·) is the hard sigmoid function. The predicted value
corresponds to the index of the output units which reached the
maximum value among all the others. All the hyperparameters
chosen were in accordance with the suggestions proposed in
Scellier and Bengio (2017): the learning rate ǫ = 0.5 is used for
the iterative inference, β = 1 is the value of the clamping factor
in the second phase, α1 = 0.1,α2 = 0.05 are the two different
learning rates for updating the parameters in the first and second
layer. Observe that the authors were not considering a single
learning rate η as in (19). However, instead of choosing a random
sign for β for the second phase, the two learning parameters
α1,α2 were decreased by half after each epoch. The results are
shown in Figure 5 and are consistent with the findings described
in Scellier and Bengio (2017).

CONCLUSIONS

In this paper, the dynamics of memristor–based recurrent
neural networks has been analyzed. The network is trained
by using two different generalizations of the backpropagation
algorithm adapted to the continuous domain and energy-based
models. Such in situ training learning rules permit to the
memristor–based neural network to continuously adapt and
adjust the synaptic weights without the direct computation
of the loss function’s gradient. Although, further work is

FIGURE 5 | Error rates of the trained neural network over 100 random

patterns chosen among the training set (in orange) and 100 patterns from the

test set (in blue) using Equilibrium Propagation learning rule.

still necessary to find physical memristor devices/emulators
approximating the proposed memristive synapse dynamics,
this manuscript provides two learning rules for the weights’
update that can be implemented by a series of discrete
programming pulses. Simulated results make clear that both
methods significantly outperform conventional approach used
for pattern reconstruction. In addition, promising results are
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also obtained by using equilibrium propagation in performing
classification tasks.
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Here we provide a perspective concept of neurohybrid memristive chip based on the
combination of living neural networks cultivated in microfluidic/microelectrode system,
metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to
control the analog memristive circuits, process the decoded information, and arrange
a feedback stimulation of biological culture as parts of a bidirectional neurointerface.
Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering
of the network of dissociated hippocampal neuron cells, fabrication of a large-scale
cross-bar array of memristive devices tailored using device engineering, resistive state
programming, or non-linear dynamics, as well as hardware implementation of spiking
neural networks (SNNs) based on the arrays of memristive devices and integrated
CMOS electronics. The concept represents an example of a brain-on-chip system
belonging to a more general class of memristive neurohybrid systems for a new-
generation robotics, artificial intelligence, and personalized medicine, discussed in the
framework of the proposed roadmap for the next decade period.

Keywords: memristor, neuronal culture, spiking neural network, microfluidics, biosensor, neuroprosthetics

INTRODUCTION

The growing demand in miniature and energy-efficient electronic interface with bioelectrical
activity for personalized medicine and other related products essentially depends on development
of biohybrid electronic technologies (Vassanelli and Mahmud, 2016). The emergence of new
technologies for creating thin-film sensors and non-invasive signal processing systems ensures the
development of fundamentally new approaches to solve the problems of recording activity signals
of brain, heart, and muscles, as well as skin condition in the form of wearable systems for processing
and diagnostic. Such bio-compatible microelectronic systems, along with new biotechnologies, may
provide a breakthrough in the field of neuroprosthetics with an important competitive advantage:
a miniature bioelectrical sensor based on micro- and nanostructures with an option to store and
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process signals in multiple manners, including feed-forward
approach and feedback loops, may serve as an active
neurointerface for intelligent control and management of
neuronal structures.

A wide variety of neuroprosthetic technologies have emerged
recently from prosthetic arms (Fukuma et al., 2016; Petrini et al.,
2019b) and legs (Petrini et al., 2019a) to prosthetic hearing
(Rouger et al., 2007) and vision (Fernandez, 2018). Some of limb
prostheses were non-invasively controlled by electrical signals
from the muscles electrical activity (myograms) or electrical
activity of selected areas of the motor cortex. The most promising
bionic technologies are aimed at creating prosthetic devices
controlled by the electrical activity of neurons via specialized
arrays of electrodes implanted into neural tissue. In order to
provide sensory feedback, additional arrays can also be implanted
in somatosensory areas of the cerebral cortex or afferent systems
of the spinal cord. The implantation of sensor chips into the visual
cortex or a retina of an eye is becoming a serial operation today
(Chuang et al., 2014). Cochlear implants are used by hundreds
of thousands of patients around the world (NIH, 2016). Another
promising direction is neurohybrid computing systems with
living neural cells cultured in a nutrient medium in vitro and,
after the maturation and formation of a large number of synaptic
connections between cells, implemented to control an external
robotic device or solve the complex sensory-cognitive task (e.g.,
pattern recognition). These devices also called neuroanimats in
the literature (Xydas et al., 2008).

Another modern technology, memristors, possess the unique
property of non-linear resistive memory and could serve as
analog information processing systems with a neuron-like
structure, as well as an electrophysiological activity sensor with
capacity of simultaneous accumulation and non-volatile storage.
Further development of memory-embedded sensors (Tzouvadaki
et al., 2015; Doucey and Carrara, 2019) and neurohybrid
systems, including neuroprostheses based on the integration of
memristive and microelectrode CMOS technologies, as well as
spiking neural network (SNN) architectures, will ensure the
processing and real-time classification of electrophysiological
and other analog signals, related to the activity of biological
neuronal networks. Potential applications of this technology may
target in vivo testing of pharmacological effects, biosensors and
detectors of electromyography (EMG) signals, as well as muscle
force extraction for various technical systems (smart tissue,
wearable electronics, smart wheelchairs, cyber-physical suits, and
vehicles). Most challenging problems are currently related to
the application of implantable and non-implantable machine-
to-nervous-system interfaces and neuroprostheses for correcting
and restoring cognitive abilities, complex motor patterns like
locomotion, and vision.

In this perspective, we discuss the main challenges associated
with development of compact multifunctional neurohybrid
systems for the bidirectional interface of living biological systems
and memristive electronics combined with microelectrode and
microfluidic systems. As compared to the previous works
(Vassanelli and Mahmud, 2016; Chiolerio et al., 2017) focused
on general trends and approaches for interfacing between
neuronal and extrinsic/intrinsic neuromorphic systems, here we

provide a comprehensive analysis of the implementation of a
CMOS-integrated hybrid system based on scalable memristive
devices and arrays back-end-of-line or monolithically integrated
with CMOS circuits, analog signal processing on CMOS
chips with memristive and microelectrode arrays. Specialized
memristive neural architectures are proposed to implement
functional abilities of some regions of the brain and nervous
system. A roadmap of research and development in the
field of memristive neuromorphic and neurohybrid systems
has been for the first time presented and discussed in this
manuscript in the context from state-of-the-art tasks to future
challenges (until 2030).

It is worth noting here that memristors provide only one of the
possible options for creating biomimetic electronic systems for
neural interfaces. In particular, the neuromorphic function has
also been demonstrated in colloidal nanomaterials or networks
of nanowires (O’Kelly et al., 2016; Manning et al., 2018) and
organic electrochemical transistors (Gkoupidenis et al., 2015,
2017; Tarabella et al., 2015; Battistoni et al., 2019b). Certain
advantages of such materials over CMOS architectures have
been discussed in recent reviews (Inal et al., 2018; Rivnay
et al., 2018; van De Burgt et al., 2018; Ling et al., 2020) and
mainly related to the flexibility and mechanical property match
with neural tissue, the lower impedance, and current densities.
Nevertheless, they are outside the scope of this perspective,
and we will limit ourselves only to the CMOS-compatible
approaches that are ready for the integration into existing
technological workflows dedicated to practical applications.
The focus on metal–oxide memristive electronics will allow
going beyond the traditional neuromorphic chips as parts of
neurohybrid systems (Hogri et al., 2015; Boi et al., 2016;
Buccelli et al., 2019).

MEMRISTIVE NEUROHYBRID CHIP:
CONCEPT AND CHALLENGES

According to the general definition (Vassanelli and Mahmud,
2016; Chiolerio et al., 2017), the neurohybrid system provides an
interaction between biological (neuronal) and artificial elements
in the open- or closed-loop manner. Despite the large number
of available examples, they usually reflect different sides of such
interaction and primary confirm some level of connectivity
between biological and artificial systems. A functional interface
between simple living being (slime mold) and memristor devices
has been reported (Adamatzky et al., 2012) and, recently, the
possibility of direct synaptic coupling of neuron cells from the
rat cortex through a memristive device has been demonstrated
(Juzekaeva et al., 2019). Future implementation of this approach
requires the development of interrelated solutions at all levels,
using both existing and emerging technologies in a single
conceptual map matching the requirements for compactness,
performance, energy efficiency, speed, reliability, and safety. In
this paper, we analyze such solutions within the framework of a
single concept of a neurohybrid CMOS chip that implements a
compact interface between the biological (neuronal) system and
the electronic subsystem.
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Figure 1A demonstrates a schematic representation of
the proposed neurohybrid system, which consists of several
functional layers combined in one CMOS-integrated chip. The
top layer is a part of the neuronal system represented here by a
culture of dissociated hippocampal cells grown on multielectrode
array (MEA) and functionally ordered by a special layout of
microfluidic channels indicated in Figure 1B. The MEA is
used for extracellular registration and stimulation of neurons
in vitro and is implemented on the top metallization layers of
the CMOS layer together with an array of memristive devices
(Figure 1D). The simplest task performed by memristive devices
is the direct processing of spiking activity of the biological
network (Figure 1C); however, self-learning neural network
architectures based on fully connected cross-bar memristive
arrays can be designed for adaptive decoding of spatiotemporal
characteristics of bioelectric activity. The output of this artificial
network (Figure 1F) can be used to control the cellular
network via gradual modulation of extracellular stimulation
(Figure 1G) according to the given protocol. This way, analog
and digital circuits should be implemented in the main CMOS
layer (Figure 1E) for accessing and controlling the MEA and
memristive devices, amplifying, generating, and transmitting
signals between layers. To create neurohybrid chip, joint design
and optimization are required for all mentioned elements at the
levels of materials, devices, architectures, and systems. Within the
framework of this concept, the following subjects of interrelated
research and developments should be considered at fundamental
and applied levels:

1) Neural networks cultured in vitro with a given connectivity
to implement a certain information function;

2) Microfluidic cell manipulation techniques on a chip;
3) CMOS- and bio-compatible technology for the MEA

fabrication;
4) Scalable and CMOS-compatible memristive devices;
5) Microelectrode and memristive arrays integrated on-chip

with CMOS electronics;
6) Analog/digital peripheral and control circuits on CMOS

chip;
7) Specialized SNN based on memristive arrays and CMOS

electronics;
8) Interconnection/integration solutions for connecting

various functional modules.

The first two tasks are required only in the case of creating
a neurohybrid device like the neuroanimat, with information
processing by an ensemble of cultured living neuron cells. To
create both implantable and non-implantable devices such as
neuroprostheses, the implementation of this route apparently
should start with the task 3.

Two main groups of challenges must be addressed for the
successful development of this technology. From the biological
side of neural integration, the main problems are related to
biocompatibility and matching mechanical properties of MEA
materials in contact with neuronal culture, device geometries
and accessibility to neuronal culture, their scaling to brain
activity in vivo, as well as the reaction of living neurons to

electrical stimulation and power dissipation (including glial
scarring). From the electronic engineering side, we should note
the required high spatiotemporal resolution of MEA, transition
from 2D to 3D electrode system, minimum size and high
density of memristive devices needed for subsequent monolithic
integration, area- and energy-efficient solutions for analog
information processing by memristive circuits. Both groups of
challenges, possible solutions, and trade-offs are considered in the
corresponding sections below.

LIVING NEURAL NETWORK:
BIOLOGICAL SIDE OF NEURAL
INTEGRATION

The main problem of neuronal cultures in vitro is related to
homogeneous network structure, which is developed in randomly
patterned cells on the substrate. During the last decade, new
methods of neuroengineering have been developed to control the
position of cells and direction of axon and dendrite growth (le
Feber et al., 2015; Na et al., 2016; Renault et al., 2016). Recently,
it has been shown that the main feature of functional network
topology as unidirectional synaptic connectivity between cell
clusters can also be engineered using microfluidic technology
(Gladkov et al., 2017; Poli et al., 2017; Forró et al., 2018). Being
implanted in the damaged brain, such tools of network structure
manipulation allow one to mimic brain areas, which are involved
in reflex activity, pattern retrieval in multilayered unidirectional
network (Brewer et al., 2013; Poli et al., 2017) for neural tissue
recovery from brain injury (Shimba et al., 2019). Next, it could be
combined with an array of non-invasive planar microelectrodes,
which provide spiking activity registration and stimulation of
isolated or multiple neurons. Spiking activity could be monitored
and induced in several independent axonal pathways, which
grow between subnetworks through the microchannels. Thus, the
precise input and output could be implemented in engineered
multilayered network with the designed connectivity, where the
full potential of the proposed task can be solved in closed-loop
conditions with memristive spiking network. First, such a system
could be used for the stabilization of spontaneous activity, which
slowly stochastically changes, and second, to classify patterns
according to various input signals and induce spike-timing-
dependent plasticity (STDP) in a living network, where pre- and
postsynaptic neurons could be accessed independently.

Biocompatibility and mechanical matching of materials are
the key problems that arise on the way to neural integration.
They have been already addressed in many commercial
MEA by using gold, platinum, indium tin oxide (ITO), and
titanium nitride (TiN) as electrode materials. The signal-to-
noise ratio (SNR) depends strongly on the biological part of
the system, but can be increased by the small impedance
of recording electrodes. In order to reduce the impedance
and increase the charge transfer efficiency, the surface area
of electrodes can be modified by covering with porous
conductive materials, such as Pt-black, Au nanoparticles,
carbon nanotubes (CNTs), and conductive polymers like
poly(3,4-ethylenedioxythiophene) (PEDOT) (Obien et al., 2015).
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FIGURE 1 | Memristive neurohybrid chip. (A) Schematic representation of the neurohybrid chip composed of a neuronal system (the brain cellular culture grown on
MEA) and an electronic subsystem represented by the mixed analog–digital circuits coupling microelectrode arrays, memristive devices, and intrinsic neuromorphic
systems. (B) The sketch of a spatially ordered neuronal culture with individual axons grown in microfluidic channels. (C) The response of metal–oxide memristive
device to spiking activity recorded in the culture. Black line—voltage drop on memristor, red line—voltage drop on load resistor as current sensor, and blue
line—resistance of memristive device responding in a volatile or non-volatile manner to noise and spikes with different parameters. (D) The example of CMOS
integration of metal–oxide memristive device based on thin ZrO2(Y) film sandwiched between top metal layers of CMOS circuit. (E) The typical diagram of
registration, amplification, and analysis of bioelectric activity by using multielectrode/memristive arrays and embedded CMOS circuits. (F) The typical spiking neural
architecture with competitive interneuron connections. (G) The scheme of extracellular electrical stimulation of living neurons modulated by the electronic subsystem
to control their activity.

Moreover, the enhanced biocompatibility has been demonstrated
for electrodes with a nanostructured porous surface in the
form of laser-micropatterned PEDOT:PSS (Santoro et al., 2017).
The next level of improved compatibility between electrodes
and cells or living tissue relies on the use of extracellular
matrix materials, which increase the adhesive properties of
the electrodes and reduce the risk of inflammatory processes
(Won et al., 2018).

An important problem of the registration of neuronal activity
is associated with the geometry/topology and spatial resolution
of microelectrode arrays. Conventional MEAs do not allow
recording the activity of individual cells, because the step between
electrodes (>30 µm) exceeds the neuron soma size (about 12–
18 µm). Owing to the advanced CMOS technology, a new type of
MEA has been commercialized, in which amplifiers and ADC are
located on one chip with electrodes. This approach reduces the
inter-electrode distance and consequently increases the spatial
resolution of electrodes. The search for optimal solutions to
combine high spatial resolution with a high SNR is currently
underway (Ghane-Motlagh and Sawan, 2013; Müller et al., 2015).
The proposed system concept presumes a 2D neuron interface
on top of the MEA electronics. However, planar electrodes
reach their limits when it comes to tissue slices or cell clusters.
Although, a 3D-MEA with micron-size electrodes penetrating

40–100 µm deep into the tissue is already on the market1, the
lattice-like 3D electrode interface should be developed to really
mimic or interface the brain.

All these problems are exacerbated when scaling the proposed
technology to registration and stimulation of brain activity
in vivo, especially taking into account high conductivity,
inertness, biocompatibility, and stretchability required for the
interaction with living tissue (Qi et al., 2017). Devices for
detecting neural activity in vivo can be fabricated in the form
of 2D or 3D arrays of electrodes combined on one substrate.
Two types of 3D probes are widely used: electrodes placed
on an array of silicon needles and neural probes, on which
arrays of electrodes are located. Recently, densely arranged
probes based on silicon-on-insulator (SOI) technology have been
actively developed (Scholvin et al., 2015; Angotzi et al., 2017;
Lopez, 2019). The dense arrangement of electrodes allows spatial
oversampling of neural activity and accurate sorting of spikes. In
the active neural probes, local amplification of the recorded signal
near the electrode with microfabricated CMOS circuit improves
the recording quality by reducing the electrode impedance and
crosstalk between neighboring shank wires (Raducanu et al.,

1https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-
layers

Frontiers in Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 358113

https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-layers
https://www.multichannelsystems.com/news/3d-meas-recording-inner-cell-layers
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00358 April 25, 2020 Time: 16:42 # 5

Mikhaylov et al. Neurohybrid Memristive Chip Concept

2017). Simultaneous recording of signals from a large number
of electrodes (up to 1400) can be possible due to the time
division multiplexing method. In addition, when developing
neural probes, it is necessary to consider heating of tissue due
to power dissipation, which is limited to a threshold of 1◦C for
chronic experiments (Kim et al., 2007). To reduce tissue damage
and inflammatory response, the size of the shanks should be
miniaturized and can reach 25 µm for the SOI technology. For
the passive probes, one of the approaches to thin the shank can be
based on materials with low stiffness like nanoelectrode filaments
or poly(etherimide) fibers. On the other hand, such materials
require additional support during implantation, particularly,
control of localization and speed modes of insertion (Dryg
et al., 2015), as well as special guides from soluble materials
(Won et al., 2018).

Another important problem is the reaction of living cultures
and tissues at the interface with the artificial electronic subsystem.
Needless to say that purely electrical contact can serve non-
invasively not affecting the cell in contrast to different methods of
optical recordings or chemical manipulations. More complicated
task is to provide correct stimulation of the target area in
the brain or in the neuronal culture. Problems may appear
in long-term implantations, when the neuronal system under
stimulation (including electrical one) starts to adapt itself
maintaining the network homeostasis and trying to escape the
external perturbation (Middleton et al., 2010; Graczyk et al.,
2018). Adaptation is based on the mechanism of homeostatic
plasticity, which ensures the functional stability of neuronal
system by equipoising intrinsic excitability and synaptic strength.
It balances the network excitation and inhibition, and coordinates
the changes in circuit connectivity (Tien and Kerschensteiner,
2018). In addition, any mechanical impact on the brain tissue,
such as implantation of electrodes, may cause the appearance
of a glial scar that restricts the area damaged by the electrodes.
For instance, sharp electrodes implanted into a brain after some
time are insulated by glial cells produced around the electrode
hence decreasing the effect of stimulation (Sillay et al., 2013; Wu
et al., 2013). The gliotic encapsulation problem can be mitigated
by chemical functionalization of materials at the electrode–tissue
interface. Coating of electrodes with extracellular matrix proteins,
collagen and Matrigel films can reduce the astrogliotic scarring
(He et al., 2006; De Faveri et al., 2014; Shen et al., 2015). Another
efficient approach to mitigate the rejection is to reduce the
electrode size, for example, by using the PEDOT-coated carbon
fiber as a material of electrodes (Patel et al., 2016).

The limiting factor to resolution and functionality of the
proposed neurohybrid concept may be the power consumption
needed for a given SNR when basing the concept on CMOS
(or any other semiconductor) technology. This problem depends
on the type of interface with the neuronal system (in vitro
or in vivo) and the energy efficiency of electronic subsystem.
In the case of in vitro interface, the existing commercially
available CMOS MEA has the overall power consumption of
about 30 W2, which is mainly determined by the off-chip

2http://www.multichannelsystems.com/sites/multichannelsystems.com/files/
documents/manuals/CMOS-MEA5000-System_Manual.pdf

interface electronics and does not include the data processing
and analysis equipment. The in vivo interface systems have
been studied previously in relation to neural prostheses for
restoring and enhancing memory (Berger et al., 2011; Hampson
et al., 2018; Song et al., 2018) also by using PC-controlled
multichannel recording/stimulation closed-loop systems and
special mathematical models. To the best of our knowledge,
none of the mentioned systems has been implemented yet on a
single chip. Although miniaturization is a general requirement to
create such bioelectronic platforms (Birmingham et al., 2014), we
believe that it can only be achieved using the area- and energy-
efficient memristive electronics based on CMOS technology and
shown below. Of course, this task should be reached hand in hand
with the development of miniaturized wireless systems for energy
harvesting and bi-directional communication that will definitely
improve safety, access to anatomical sites, and enable ultra-
minimally invasive delivery methods, reducing tissue trauma
during implantation and immune response (Masius and Wong,
2020; Piech et al., 2020).

MEMRISTIVE DEVICES: TOWARD CMOS
INTEGRATION

A memristor (memory resistor) was predicted by Chua (1971)
as the fourth passive element of electrical circuits. For a long
time, it was considered as a theoretical object. Only in 2008,
the memristive effect was first correlated (Strukov et al., 2008)
with the phenomenon of reversible resistive switching, which
can occur in a simple thin-film metal–oxide–metal nanostructure
and is associated with local rearrangement of the oxide atomic
structure and composition under the action of inhomogeneous
electric field, temperature, and concentration gradients (Ielmini
and Waser, 2016). Currently, memristors and memristive systems
are the basis of a new paradigm in electronics related to
creation of brain-like network architectures by using the ability
of memristive devices to emulate the most important functions
of biological synapses and neurons. Since 2015, there has been
an increase in the number of publications regarding a hardware
implementation of the simplest artificial neural networks (ANNs)
(most often in the form of a single-layer perceptron) based on a
limited number of memristive connections (Prezioso et al., 2015;
Serb et al., 2016; Yao et al., 2017). Larger integrated memristive
1T-1R or passive cross-bar arrays have been fabricated and
shown to date (Cai et al., 2019; Kataeva et al., 2019; Zhou
et al., 2019) to implement various multiplication operations
and neuromorphic functionality on the basis of precise analog
tuning the conductance of memristive devices. Although some
higher functionalities of board-integrated systems like multilayer
perceptron (Bayat et al., 2018; Li et al., 2018a; Mikhaylov
et al., 2018) and the first fully memristive neural network with
unsupervised learning (Wang et al., 2018) were demonstrated
and revolutionized, the higher functionalities are still restricted
with a practical size up to 64 × 128 of memristive arrays.

Thus, the necessary condition for the development of
advanced functional electronic circuits based on memristors is
their integration with mixed analog-digital CMOS transistor
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circuits. At the same time, the capabilities and functionality
of traditional ANN architectures based on programmable
memristive weights are limited by the size of the memristive
array, the increase of which is constrained not by low
scalability (the minimum size of the memristive element
may be of the order of nanometer; Pi et al., 2019), but
by insufficient reproducibility of device parameters due to
the stochastic nature of resistive switching. For example, the
widely used back propagation updating rule, which has been
proved to be efficient for traditional supervised neural networks,
often requires additional write-verification techniques (Yao
et al., 2017) to modulate memristive devices into the desired
states, incurring software/hardware overheads on memristive
neurohybrid architectures.

The non-linear behavior of memristive devices in response
to electrical pulses together with their unique scalability are the
most important advantages that determine a unique possibility of
hardware implementation of SNN (Demin and Nekhaev, 2018;
Guo et al., 2019) based on the processes of self-organization
in neural network architectures and qualitatively different from
traditional neural networks (perceptrons). We believe that
implementation of brain-like networks of future generations
will be based on the stochastic dynamics of memristors and
synchronization of neural oscillators. Such works are carried
out at the most basic level (Ignatov et al., 2016; Gerasimova
et al., 2017), demonstrate the possibility of implementing higher
(cognitive) brain functions, but require the development of
adequate models of neural synchrony based on stochastic
memristive plasticity.

Nevertheless, such a rapid progress in the implementation of
memristive neuromorphic systems makes it possible not only to
expect in the nearest future the creation of brain-like networks
with memristive plasticity for novel computing paradigms, but
also to take the next step and develop memristive neurohybrid
systems on the basis of intrinsic analogy in the properties of
memristive and natural systems. It is important to note that
compact memristor-based devices for real-time processing of
bioelectric activity (threshold detection of spikes) can be created
owing to the integrative change in their resistive state (Gupta
et al., 2016). In this case, the metastable (volatile) behavior is
an important property of memristive devices for continuous and
energy-efficient encoding of large volumes of spiking activity
of living biological cultures (Gupta et al., 2018). It should
be mentioned that effective use of memristors in neurohybrid
systems is dependent on the predictable behavior of memristive
nanomaterials and devices, as well as on the ability to control
the parameters of their non-linear response to complex electrical
signals, which should be a subject of comprehensive study at the
micro- and macro-levels.

Noise plays a very significant and constructive role in
memristive devices, and only recently new investigations on the
positive role of noise have been started (Mikhaylov et al., 2016;
Filatov et al., 2019). Nowadays, there are many known examples,
where the interplay of non-linearity and fluctuations can change
the properties of a stochastic system in a counter-intuitive way, in
classical and quantum physics (Fiasconaro et al., 2004; Chichigina
et al., 2005, 2011; Valenti et al., 2008, 2015; Falci et al., 2013;

Spagnolo et al., 2015, 2016, 2018a,b). Furthermore, internal
and external noise can play a positive role in the switching
dynamics of memristors, as in stochastic resonance phenomenon
(La Barbera and Spagnolo, 2002; Valenti et al., 2004; Agudov et al.,
2010). This paves the way for using the intensity of fluctuations
as a control parameter for switching dynamics in memristive
devices (Agudov et al., 2020).

CMOS CIRCUITS: ON-CHIP ANALOG
AND DIGITAL SYSTEMS

As noted above, a significant progress has been demonstrated
on the way toward integration of memristive arrays and CMOS
circuits (Cai et al., 2019; Kataeva et al., 2019). The electronic
subsystem required for the CMOS integration of memristive
arrays includes peripheral and control circuitry. In Kataeva et al.
(2019), large passive memristive cross-bars are accessed via on-
chip CMOS interface circuits which are controlled by a custom
FPGA board. To reduce latency and power consumption, a full set
of mixed-signal interface blocks and a digital processor have been
recently integrated together with memristive cross-bar array on a
single chip (Cai et al., 2019), instead of using discrete components
on printed board. On-chip integration of processor allows the
neuron functions and network structures to be reprogrammed
through simple software changes, enabling different algorithms
to be mapped on the same hardware platform.

With respect to the electronic subsystem of the neurohybrid
chip, a number of technical problems have to be solved to
organize the optimal interaction of living neuronal culture with
memristive arrays. Reading, processing, and reflection of the
spiking activity of neural cells must be carried out with a duration
of no more than a typical pulse (spike) in the areas of the
neurons. At the prototyping stage, a separate reading amplifier
and recording amplifier cannot be allocated to each electrode of
contact with a living culture due to the limited area of the CMOS
layer. This should be implemented in future with higher design
standards or a smaller number of electrodes.

It is necessary to implement an array of reading and writing
amplifiers in the CMOS layer, which allows transmitting pulses
from a living culture through electrodes to memristive array
and vice versa, simultaneously on a certain surface area. The
reading and writing amplifiers must be tuned to the signal
from living tissue amplified to the levels of active operating
modes of memristors. In the CMOS layer, it is also necessary to
implement access circuits for electrodes and memristors at row
and column addresses.

Circuits for stimulation of living culture/tissue (by using
the response of memristive network) are supposed to be
implemented on the basis of the pulse-width modulation (PWM).
If necessary, for the simultaneous reading of the electrode states
in the CMOS layer, banks of buffer memory can be implemented.
It is proposed to use ADC and DAC circuits to input and
output information about the analog state of memristors, but the
required bits of the ADC and DAC should be determined at the
prototyping stage (8 bits are assumed in the layout). The initial
input and subsequent output of information for a set of statistics
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on the experiment and processing can be implemented on the
basis of standard bidirectional interfaces (Cai et al., 2019).

Although the local resistive switching effect in memristive
devices provides the unique compactness, fast and energy-
efficient operation of passive memristive arrays (Xia and Yang,
2019), the active arrays integrated with peripheral and control
electronics should be always a subject of explicit evaluation
and benchmarking depending on the development/prototyping
stage (Cai et al., 2019; Zhao et al., 2020). Recently, several
reports on such benchmarking have shown potential advantages
of memristive chips over conventional ones: 19.7, 6.5 times,
and 2 orders of magnitude better energy efficiency compared to
the Google’s tensor processing unit (TPU), a highly optimized
application-specific integrated circuit (ASIC) system, and the
state-of-the-art graphics-processing unit (GPU), respectively
(Sun et al., 2020; Yao et al., 2020). The performance benchmark
of memristive neuromorphic computing system shows 110 times
better energy efficiency and 30 times better performance density
compared to Tesla V100 GPU. So, even rough estimates for
memristive circuits considered in this article allow one to imagine
their great potential from the viewpoint of speed, performance,
power consumption, and compactness.

The issue of reliability of memristive neural networks is
also currently in the eyeshot of many researchers and requires
the use of system approach and comprehensive consideration
(see Zhao et al., 2020 for review on the status of reliability
studies in this field). An example of such a system approach to
ensure the reliability of neural networks based on memristors is
proposed by the authors (Danilin et al., 2019; Shchanikov et al.,
2020). Another promising way is to use specialized algorithms
for tuning (training) memristor-based neural networks, as it is
proposed in Wang et al. (2019). This approach makes it possible
to create a neural network that self-adapts to non-idealities of
the 1T-1R memristive array, thereby providing the necessary
level of reliability.

One more important limitation when creating electronic
devices in contact with living cultures/tissues is to preserve
a trade-off between performance and power dissipation. On-
chip processing is more efficient than transmitting raw data
to the external processing unit (Zhuk et al., 2020), but the
power consumption of state-of-the-art digital processors is too
high. The dissipated power of memristive chips, according to
the estimates made by a number of research groups, does not
exceed tens of mW: 13.7 mW (Li et al., 2018b), 7.438 mW
(Yao et al., 2020), 6.62 mW (Wang et al., 2019), 42.1 mW (Lee
et al., 2020), 64.4 mW (Cai et al., 2019). The power dissipation
strongly depends on the amplitudes and frequencies of the signals
and increases with increasing the values of these parameters,
which is not necessary in principle when working with living
neurons. In addition, in a traditional computing system, power
is also dissipated in memory units (Horowitz, 2014) and even
much more in data movement, while both data storage and
computation can be combined in one memristive device. So, the
use of memristors to create a system on chip seems to be much
more efficient and safe for neural interfacing.

Therefore, one can argue that memristive CMOS circuits
will outperform traditional digital computing tools (CPU, GPU,

TPU, ASIC) in all key parameters for a wide range of data-
intensive applications, one of which is the real-time on-chip
processing of electrophysiological data in the frame of the
proposed neurohybrid concept.

MEMRISTIVE NEURAL ARCITECTURES:
TOWARD NEUROPROSTHETICS

Biological relevance should be ensured when developing
substitutive (neuroprostheses, motorized prostheses) and
assisting neuromorphic systems [computer interfaces (Lobov
et al., 2016), exoskeletons (Mironov et al., 2017), wheelchairs,
“neuromobiles” (Mironov et al., 2018)]. Here, if possible, the
same neural “language” and the same principles of information
processing should be used as in a biological brain. Only in this
case, over time, we can expect the blurring of the boundary
between living and artificial neural subsystems, which will
ultimately lead to the expansion of human capabilities. On
the other hand, in all the neurochip perspective applications
discussed here, we have arrays of implantable or non-invasively
attached electrodes that record in real time the electrical activity
of ensembles of neurons and/or muscle fibers. It is clear that
the more electrodes and more frequently the signal is taken
from each of them, the higher is the spatial (topographic) and
temporal resolution and, accordingly, the potentially higher is
the accuracy of sensory recognition (vision, hearing) or motor
control commands sent to an electromechanical prosthesis.
In this manner, we get a huge amount of data that needs to
be processed in real time. Currently, it is common to use an
external processor, which performs this processing and provides
an interface between an external part of a prosthesis (camera,
microphone, artificial limb) and the microcontroller device from
a living tissue side. However, the solution of such problems could
be strongly optimized by exploiting a highly specialized processor
with neural network architecture adapted for this specific kind
of calculation and serving as if it is a natural extension of the
biological nervous system (Boi et al., 2016). In this case, the
computing device would be capable of processing a large input
dimension (determined by the number of electrodes in the MEA)
and performing the required real-time signal processing. In
our opinion, the SNN architecture based on phenomenological
models and integrated into the proposed hybrid system seems to
be a good compromise in the sense of both biological similarity
and computational/power cost.

Recently, the first steps have been taken toward EMG (Lobov
et al., 2015, 2020a) and EEG (Goel et al., 2006; Tahtirvanci
et al., 2018) interfaces based on SNNs. However, until now, no
learning rule for SNNs has been proposed, which is equal in its
universality and effectiveness to the back propagation algorithm
for ANNs based on formal neurons. Several attempts were made
to adapt the “backprop” and its variations to SNNs (Hong et al.,
2010; Xu et al., 2013; Esser et al., 2016), but associative learning
based on synaptic plasticity similar to that for living neurons
seems to be a more “natural” way. Indeed, traditional formal
neural networks contain artificial neurons with a static activation
function as key computational elements, i.e. there is no dynamics
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in such systems. Consequently, such systems are quite difficult
to synchronize with time sequences of individual spikes recorded
in a biological nervous system. Spiking artificial neurons, as
well as their biological prototypes, generate spike sequences
that could be synchronized with the biological pulse signal
through a non-linear interface—an artificial analog of synapse,
a memristor. Namely, it has been recently shown that a system
consisting of several spiking pre-synaptic neurons connected via
memristive devices to the one post-synaptic neuron can adapt
their conductivities (synaptic weights) to the same distribution
under STDP updates by the repeatable pre- and post-synaptic
trains of pulses, independent of the initial resistances of
memristors or their device-to-device variability (Emelyanov et al.,
2020). This means that the non-linear memristive spiking system
memorizes only useful information about millisecond-scale time
intervals between spikes which could encode some real data about
perceived objects from an environment or motor commands
to actuators. In a neurohybrid interface, spikes from biological
neurons could be transformed online (synchronized) to the trains
of voltage pulses generated by artificial spiking units which, in
turn, could be used for the informative update of memristive
weights as described above.

Neural networks of a living brain appear to use both temporal
and frequency coding (Clopath et al., 2010; Masquelier and Deco,
2013). Similar behavior is observed in memristive devices based
electronic circuits (Battistoni et al., 2019a). Thus, the process of
SNN learning should provide both types of coding. In addition,
SNNs, unlike their formal counterparts, can be trained by bio-
plausible, so-called local rules of synaptic weight change using
information only about the activity of interconnected neurons
and synaptic efficacy (weight magnitude) between them. These
rules do not require information from the outside, as in the case
of learning by error back propagation technique, and therefore
can be the basis of self-learning computing systems, with a
change in synaptic weight according to the rules of the Hebbian
(Morris, 1999), STDP (Bi and Poo, 1998), BCM (Bienenstock
et al., 1982), metabolic (Yousefzadeh et al., 2018), or homeostatic
(van Rossum et al., 2000) types. In the case of frequency coding, it
is necessary to use frequency-dependent varieties of STDP, such
as the triplet-based rule STDP (Pfister and Gerstner, 2006) or
voltage-based STDP (Clopath et al., 2010). Recent studies have
shown the possibility of rate and temporal coding in SNN using a
combination of Hebbian learning (through triplet-based STDP),
synaptic and neuronal competition (Lobov et al., 2020a,b).
Hebbian and other STDP rules have been demonstrated for a
large number of different kinds of memristors (Kim et al., 2015;
Ielmini and Waser, 2016; Emelyanov et al., 2019; Minnekhanov
et al., 2019) that confirms their high potential to serve as the
self-adjusting weights between neurons in SNN.

Moreover, on the basis of spiking architectures, it is possible
to naturally train recurrent networks in which there are feedback
connections from deeper layers of neurons to less deep layers,
as well as the lateral connections between neurons of the same
layer (Demin and Nekhaev, 2018). In general, such architectures
cannot be reduced to a feedforward neural network, such
as a long-short term memory (LSTM) “unrolled” in several
consecutive modules (Hochreiter and Schmidhuber, 1997;

Brownlee, 2019). Therefore, recurrent SNNs can potentially be
trained on the basis of local rules to realize complex dynamic
patterns corresponding to those in the biological part of
neurointerface. This kind of training can take place in real time,
continuously adapting to the individual characteristics of a user’s
behavior. This is a practically inaccessible task for the formal
ANN architectures that require a priori training by error back
propagation on a set of pre-recorded patterns.

Implementation of hardware SNN architectures based on
memristors certainly requires additional wide studies: first,
to identify a minimum set of local learning rules sufficient
for the convergence of training the network to a solution
of a given problem, second, to seek for the possibility of
adapting local rules (like that of STDP type) to hardware
implementation with memristive elements (either by appropriate
selection of the memristive material or by engineering the
temporal sequence and/or shape of spikes generated by artificial
neurons), and, at last, to optimize (by energy efficiency,
area and computing performance) the SNN architecture
design and placing corresponding periphery systems on
neurohybrid chip under development. Although the higher
computational/power efficiency of SNN is one of the well-
known advantages over traditional neural architectures (Lee
et al., 2020), further improvement in this direction can be
based on rich dynamics of memristive devices and avoiding
special programming circuitry used for the implementation
of learning rules.

The most interesting direction at the boundaries of
neurotechnology and neuromorphic prosthetics has recently
emerged thanks to the seminal paper (Juzekaeva et al., 2019),
where the main principles and feasibility of a memristive
prosthesis of a synapse connecting two not connected via
natural synapses neurons of a rat brain slice are proposed. This
work triggered the discussion of the option to use stochastic
memristive devices of different nature as main building block of
neuromorphic prosthesis relocating functions and topology of
natural neuronal circuits. Some steps in this direction have been
already presented (Talanov et al., 2018b) including blueprints
of a memristive neuron circuit (Talanov et al., 2017a,b, 2018a).
As the number of memristive neurons available grows and the
technology of their fabrication becomes more and more mature,
we could expect the rise of the number of spiking solutions
for the reimplementation of neuronal structures as electronic
memristive circuits with more and more bio-plausible functions.
Possibly, the most promising and timely problem, due to the
lesser number of neurons and synapses, is the spinal cord
direction that seems to attract rising interest of the researchers
community (Gill et al., 2018; Wagner et al., 2018). The current
state of neurorehabilitation of patients with complete spinal
cord injury including epidural spinal cord stimulation is mainly
experimental (Lavrov et al., 2008; Gad et al., 2013; Moraud
et al., 2016), and it seems that a memristive implementation
of part of the spinal cord circuits could restore the walking
patterns of patients with complete SCI. We should not limit
ourselves with the reimplementation of the part of the nervous
system for patients, we could envision the further development
of augmented nervous systems with digital extensions using
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memristive properties of self-adaptation for the bidirectional
brain to machine interfaces (Musk and Neuralink, 2019) based
on the proposed neurohybrid chip approach.

CONCLUSION AND OUTLOOK

Here the concept of a single neurohybrid chip is proposed based
on existing and future solutions in the field of neural cells
and microfluidic technologies, which allow spatial structuring
of living neural network combined with CMOS MEA and
memristive arrays for real-time recording, processing, and
stimulation of bioelectric activity interfaced and controlled by
mixed analog–digital circuits on the same chip. This concept
paves the way toward the creation of compact biosensors
and neuroprosthetics that cannot be realized on the basis of
traditional neurointerface architectures. The functionality of
the proposed neurohybrid chip is limited in several domains
on the side of electronic subsystem, including challenges
associated with power consumption and reliability of memristive
circuits. Significant efforts should be made to further understand
the basic principles of learning in living neural networks
and development of universal learning algorithms for SNN,
providing their biological relevance and compatibility with
memristive arrays. The key challenge on the road toward
neurohybrid systems still remains in the reliable interaction
between living neurons and electronics. Although memristors
can provide efficient recording and on-chip processing of the
neural activity, a number of problems are still related to
biocompatibility and mechanical impact, geometry, placement,
and miniaturization of electrodes and probes, as well as the
reaction of living cultures and tissues at the interface with the
artificial electronic subsystem. The potential transition from the
proposed 2D to the 3D electrode system could provide some
solutions, opening further questions related to implantation
into deeper regions of the brain without causing structural
damage to the tissue.

We hope that future realizations of the proposed concept may
go beyond the CMOS limitations and rely on a direct synapse-
scale interface based on organic and stochastic memristive nano-
networks. Such nano-neurointerface should provide network
distributed stimulation, when each stimulation event will be
at the level of small synaptic currents of physiological range,
hence not affecting the self-protection mechanisms of the
brain. Designed this way, recording, processing, and stimulation
electronic networks can be “physiologically” integrated into
different brain areas to compensate or enhance brain functions
from sensory level to the level of cognition and memory.
Integrated into neural tissue memristive networks can also
shed the light on the fundamental questions of analog neuron
information processing.

To illustrate the proposed approaches and related products
in a foreseeable timeline, Figure 2 shows a roadmap of
memristive neuromorphic and neurohybrid systems focused on
the specialized hardware based on the architecture and principles
of biological neural networks to support the development
and mass introduction of artificial intelligence technologies,

machine learning, neuroprosthetics, and neural interfaces. The
roadmap starts tentatively in 2008 with the beginning of
the current wave of interest to memristors (Strukov et al.,
2008) and includes long-lasting research in the broad fields
of neurobiology and neurophysiology. The following product
niches are provided at different stages of development in this
roadmap:

1) Neuromorphic computing systems;
2) Non-invasive memristive neurointerfaces;
3) Neuroimplants, neuroprostheses, and invasive

neurointerfaces.

There are the unique properties of memristive devices
that determine their decisive importance in the development
of neuromorphic and neurohybrid systems for computing
systems, brain–computer interfaces, and neuroprosthetics.
These products will occupy a significant part of the global
high-tech market worth trillions of dollars by 2030, taking
into account the speed of development and implementation of
artificial intelligence technologies, the Internet of Things,
technologies of big data, smart city, robotics. Targets
of the near future are neuroprosthetics, instrumental
adjustment/support/enhancement of human sensing and
cognitive abilities.

Hardware support is not just necessary for these
technologies—the further development of neurocognitive
technology industry and artificial intelligence is impossible
without it due to the pronounced inadequacy of the
traditional von Neumann architecture of computers for
solving anthropogenic problems requiring a neural network
architecture. As a result, we have unsatisfactory performance
with huge energy consumption by the existing ICT infrastructure
in the processing of even current (ongoing) anthropogenic tasks.
This trend with the spread of intelligent technologies will only
worsen, and therefore the development of specialized hardware
of neuromorphic and neurohybrid systems (discussed here and
based on memristors in a priority) is a key condition for the
development of high-tech industries as a whole.

The development of artificial hardware systems should be in
line with the bio- and neurotechnologies shown on the roadmap
in the form of critical milestones, when a clear decision should
be made on the most appropriate solutions. Over the past two
decades, some progress has been observed in the development
of biocompatible materials with the aim of creating multi-
channel recording devices for neuronal networks activity both
in vitro and in vivo. The prototypes of such devices are already
implanted in the brain of animals for a long time with minimal
immune response. Further optimization involves minimizing
damage during implantation into the brain by reducing the
size and increasing the flexibility of the probes in conjunction
with the electrodes scaling. At the same time, the development
of new-generation neuorohybrid systems will require a lot of
special not yet obtained tools and preliminary experiments on
animal models. These are the further advancement of neural
interfacing (in view of microelectrode biocompatibility, reliability
and rejection problems, 2D to 3D transition, etc.), chronic
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FIGURE 2 | A roadmap of memristive neuromorphic and neurohybrid systems.

neural pattern recognition and control devices (neurochips and
algorithms for them), power management, signal processing,
and data transfer in miniaturized platforms. Also, there is a
problem with proof-of-principle investigation of which of neural
circuits influence over disease progression in representative
animal models. All these stages are crucial for the development
of invasive neurointerfaces and memristive control systems
for them. These neurobiology and neurophysiology involved
investigations are still in progress and, due to the vast literature
reports, could begin to develop mass products in 2 or 3 years.
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Lifelong learning has deeply underpinned the resilience of biological organisms respect

to a constantly changing environment. This flexibility has allowed the evolution of

parallel-distributed systems able to merge past information with new stimulus for

accurate and efficient brain-computation. Nowadays, there is a strong attempt to

reproduce such intelligent systems in standard artificial neural networks (ANNs). However,

despite some great results in specific tasks, ANNs still appear too rigid and static in

real life respect to the biological systems. Thus, it is necessary to define a new neural

paradigm capable of merging the lifelong resilience of biological organisms with the

great accuracy of ANNs. Here, we present a digital implementation of a novel mixed

supervised-unsupervised neural network capable of performing lifelong learning. The

network uses a set of convolutional filters to extract features from the input images of

the MNIST and the Fashion-MNIST training datasets. This information defines an original

combination of responses of both trained classes and non-trained classes by transfer

learning. The responses are then used in the subsequent unsupervised learning based

on spike-timing dependent plasticity (STDP). This procedure allows the clustering of

non-trained information thanks to bio-inspired algorithms such as neuronal redundancy

and spike-frequency adaptation. We demonstrate the implementation of the neural

network in a fully digital environment, such as the Xilinx Zynq-7000 System on Chip

(SoC). We illustrate a user-friendly interface to test the network by choosing the number

and the type of the non-trained classes, or drawing a custom pattern on a tablet. Finally,

we propose a comparison of this work with networks based on memristive synaptic

devices capable of continual learning, highlighting the main differences and capabilities

respect to a fully digital approach.

Keywords: brain-inspired computing, supervised learning, unsupervised learning, spike-timing-dependent

plasticity (STDP), neuronal redundancy, lifelong learning, continual learning, FPGA

1. INTRODUCTION

In biology, systems consolidate and integrate information through neuropsychological processes
that regulate synaptic and homeostatic plasticity (Friedemann Zenke and Ganguli, 2017; Power
and Schlaggar, 2017). These mechanisms provide both plasticity for resilience and stability for
protecting the previously learned information. Adaptation, retention and learning mechanisms
have been recognized by the neuromorphic community as key tools for developing architectures
capable of reproducing low-power, bio-inspired and robust intelligent computation.
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Nowadays, Machine Learning (ML) empowers many
aspects in our daily life, from virtual personal assistants to
product recommendation and online fraud detection (Awoyemi
et al., 2017). In particular, deep learning (DL) methods have
dramatically enhanced classification and recognition capabilities
of artificial networks by exploiting general-purpose learning
algorithms with multiple processing layers (LeCun et al., 2015).
Hardware architectures have been proposed for implementing
deep multi-layer networks using CMOS technology and Field
Programmable Gate Arrays (FPGAs) (Camuñas-Mesa et al.,
2012; Gokhale et al., 2014; Indiveri and Liu, 2015). A further
improvement of this trend is related to the non-Von Neumann
hardware implementation of backpropagation algorithms using
non-volatile memories (NVMs) such as phase-change-memory
(PCM) and resistive switching memory (RRAM) (Burr et al.,
2015; Merrikh-Bayat et al., 2017; Ambrogio et al., 2018).

Accurate DL generally relies on large stationary batches of
training data for supervised algorithms, whereas autonomous
agents should be capable of continually learning throughout their
lifetime. In particular, lifelong learning refers to the capability
of plastically accommodating new knowledge and stabilizing
previous learnt information (Parisi et al., 2019). In computing
processing systems, these two concepts define a trade-off which
is studied as stability-plasticity dilemma (Martial Mermillod
and Bonin, 2013; Ditzler et al., 2015). Neuromorphic functions
based on DL algorithms lose the previously acquired information
when the available data are incremental and not constant. This
“catastrophic forgetting” is typical of artificial neural networks
(ANNs) and can be prevented in biological systems by complex
neurocognitive mechanisms (Cichon and Gan, 2015). Several
solutions have been proposed for achieving continual learning in
ANNs mainly by developing training methods able to overcome
catastrophic forgetting, such as: (i) replacing old redundant
information, useless for achieving better accuracy, with new one
(Rebuffi et al., 2017), (ii) task-specific synaptic consolidation
(Kirkpatrick et al., 2017) or (iii) allocating additional neural
resources (Rusu et al., 2016).

However, all these attempts have only partially enabled
continual learning mainly because they lack an intimate link
with bio-inspired techniques. In fact, bio-inspired learning
algorithms like spike-timing-dependent plasticity (STDP),
neuronal redundancy and spike-frequency adaptation appear
as key elements for achieving continual incremental learning in
various neural networks (Takiyama and Okada, 2012; Chicca
et al., 2014; Bianchi et al., 2019, 2020; Munoz-Martin et al., 2019).

In this paper, we demonstrate that the implementation
of bio-inspired techniques in ANNs is a key element to
achieve continual learning in a fully digital environment.
In particular, we propose a new kind of supervised-
unsupervised neural network that is able to merge the
stability of backpropagation algorithm with the flexibility
introduced by bio-inspired plasticity. We have implemented
the whole network in a fully digital environment using
the Xilinx Zynq-7000 system-on-chip (SoC). The blocks
that configure the network have been designed into the
programmable logic of the chip using the VHDL hardware
descriptive language.

We propose an interactive setup including user-friendly
peripherals for creating an interface with the external world.
In this way, it is possible to select the dataset to be tested
(e.g., MNIST or Fashion-MNIST) and challenge the network
by drawing an original pattern on a touch screen. The
evolution of the winner-take-all synapses over time, the real-time
classification accuracy and the intermediate results at every layer
of the network are monitored in real time on an LCD controlled
by the FPGA. We show accurate inference by the network
that is able to correctly classify up to 5 non-trained classes of
the MNIST and Fashion MNIST datasets, only relying on the
transfer learning of the trained information. Finally, we propose
a comparison on efficiency, area and energy consumption of the
network using non-volatile memories.

This work highlights the relevance of plausible
implementations of neural functions inside standard neural
networks and demonstrates the relevance of bio-inspired
techniques for achieving lifelong learning in artificial
intelligence systems.

2. ENABLE CONTINUAL LEARNING IN
ARTIFICIAL NEURAL NETWORKS

Catastrophic forgetting is a relevant problem in machine
learning, for which the network cannot plastically manage
new information while maintaining the ability of performing
previous learnt tasks. This behavior is opposite to what, actually,
is observed in the human brain. In biology, the theory of
complementary learning systems introduces a framework to
understand the mutual effort of hippocampus and neocortex to
accept new information at the same time in which the previous
knowledge is progressively consolidated (Kumaran et al., 2016;
Kirkpatrick et al., 2017). In particular, the hippocampal system
is responsible for a continuous adaptation to new incoming
information whereas the task of the neocortex is essentially
specialized in consolidating previous knowledge.

In our supervised-unsupervised neural network, we
essentially merge two approaches, i.e., (i) the accurate supervised
learning of the convolutional neural network (CNN), and (ii) the
plasticity provided by the STDP. The supervised part accounts
for the neocortex, while the unsupervised part accounts for the
hippocampal system. The bio-inspired neural redundancy and
the spike frequency adaptation of the post-neurons (POSTs)
used for classification further optimize the continual learning
capability of the system. The merging of supervised artificial
algorithms and bio-inspired approaches enables the solution of
the so called “stability-plasticity” dilemma, which, so far, has
prevented the achievement of lifelong learning in intelligent
artificial systems (Martial Mermillod and Bonin, 2013).

The bio-inspired algorithms provide resilience to ANNs
since they use previously stored knowledge to cluster non-
trained input classes. In fact, the network dynamically evolves
as a function of the evolving environment (i.e., increasing
the number of non-trained classes), and enables plasticity in
ANNs. This sort of transfer learning is different respect to
what, actually, is performed in standard ANNs. Generally,
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FIGURE 1 | (A) Schematic representation of biological STDP. Learning comes out by potentiation or depression of the synaptic connections, whose strength is

defined by the temporal relationship between PRE-signal, and POST-signals (i.e., output spikes, “Fire,” coming from the POST neurons, POST 1 and POST 2). (B)

Schematic representation of the neural redundancy, where several output neurons specialize in just one input class for mutual aid. This mechanism has been studied

in biology, and it is useful for increasing classification accuracy in WTA networks. (C) Schematic representation of spike-frequency adaptation in the POSTs, for

optimizing the STDP algorithm and enable efficient specialization.

transfer learning refers to the use of previously acquired
knowledge in one domain to solve a problem in a novel
domain (Barnett and Ceci, 2002; Pan and Yang, 2010).
Standard optimized approaches to transfer learning refer to
the use of a large domain of data that share invariant
relational information for further classification capabilities
(Doumas et al., 2008), such as in the frameworks of zero
and one shot learning (Palatucci et al., 2009; Vinyals et al.,
2016). However, differently from standard approaches, transfer
learning is here used to enable a continual and resilient
evolution of the network by classifying new patterns during
the unsupervised learning procedure. In this way, the network
dynamically changes its hardware relying on bio-inspired
algorithms like neuronal redundancy and spike frequency
adaptation and provides on-line plasticity respect to the standard
neural approach.

2.1. Neuronal Redundancy for STDP in
Winner-Take-All Architecture
In winner-take-all (WTA) neural networks, groups of spiking
neurons compete for improving the specialization capability
using both inhibitory and excitatory synapses (Binas et al., 2014).
These networks efficiently perform unsupervised learning of
multiple patterns by exploiting bio-inspired algorithms such as
STDP (Figure 1A) (Diehl and Cook, 2015; Ferré et al., 2018).
STDP is a biological process in which synapses adjust their
conductive strength as a function of the timing relationship
between spikes coming from a PRE-neuron (PRE) and a POST-
neuron (POST) (Markram et al., 1997; Abbott and Nelson, 2000).
This behavior results into a long-term potentiation (LTP) or
long-term depression (LTD) of the synaptic weights, enabling
the plastic storage of useful correlated information in the
synaptic connections (Abbott et al., 1997; Zucker and Regehr,
2002).

Due to their useful characteristics, WTA networks have
been modeled by a computational point of view (Oster

et al., 2009) and successively implemented in hardware CMOS
(Chicca et al., 2014), with memristive devices (Ambrogio et al.,
2016) and realizing digital designs in FPGAs (Ou et al.,
2012).

We found an interesting improvement of the accuracy
when a redundancy of neurons is provided to the WTA
part of the network. Indeed, neuronal redundancy has been
demonstrated to cover an important role in several biological
aspects like the learning speed in the motor cortex (Takiyama
and Okada, 2012). In our network, the system uses trained
convolutional filters to find a certain shape within input
images. For transfer learning, these features can be also
recognized even in non-trained classes. In particular, a set
of combinations of features can univocally define an input
object even if the network has never been trained with the
task of recognizing that type of image. Thus, for enabling
continual learning, it is essential to prepare additional, or
redundant, output neurons that can plastically adapt their
synapses in a WTA framework in order to accept new input
classes (Figure 1B).

2.2. Spike-Frequency-Adaptation for
Optimizing STDP
In order to further optimize the classification system provided
by the WTA part of the network, we have introduced the
spike-frequency adaptation of the POSTs (Figure 1C). Spike-
frequency adaptation is a bio-inspired technique (Connors et al.,
1982; Stefan and Ernst, 2009), that provides stability to the
unsupervised block of the neural architecture. In particular, when
the synaptic window between the pattern and the background
reaches a reference level, that specific POST increases its neuronal
threshold, thus reducing its frequency activity in time. This
is essential for power saving and specialization, because each
POST tends to fire only when a specific pattern appears at
the input.
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FIGURE 2 | Schematic representation of the hybrid supervised/unsupervised network for solving continual learning. Each one of the blocks have been implemented in

an FPGA using logic gates.

3. THE HYBRID
CONVOLUTIONAL-SPIKING NETWORK

The hybrid supervised-unsupervised neural network is shown in
Figure 2. The network is divided into three main blocks that are
described in the following sections.

3.1. Block 1: Convolutional Neural Network
(CNN) for Recognition
The first part of the system is constituted by a set of custom
convolutional filters that extract features from the input images.
Two kinds of filters are used, namely the class filters (CFs) and
the feature filters (FFs). Both the topologies have been trained
using a fully convolutional approach (Long et al., 2015), for
obtaining filters with dimensions 20 × 20. During inference,
the convolution of the filters with the input 28 × 28 image
creates a new matrix with dimension 9 × 9. After a max-pooling
operation, the maximum value of the responses is selected. If this
maximum is higher than the threshold, the response of the filter
to that image is a digital “1,” otherwise the response is taken as a
digital “0.”

Class filters and feature filters play different roles in the hybrid
neural network and they are obtained by two different custom
training algorithms.

1. Class Filters are designed to recognize only one specific class
of the dataset. To determine these class-selected filters we used
a fully convolutional approach as described in Munoz-Martin
et al. (2019). Thanks to the training procedure, the system
yields a positive response on the output neuron (“1” or “VDD”)
when only that specific class is detected.

2. Feature Filters have been extracted from the first layer of
a custom fully convolutional neural network (FCNN), as
described in Bianchi et al. (2019). The purpose of these filters
is to extract generic features (angles, curves...) within the
training dataset.

By keeping a constant total number of filters, e.g., 16, the number

of FF varies as a function of the non-trained classes, namely those

classes of patterns that are not presented during the preliminary
training phase. For instance, if we train 7 classes over 10, we could

accordingly train 7 CFs and 9 FFs. The splitting of the training

procedure concerning the different subsets of filters is one of the
key elements for performing lifelong learning. This is due to the
following reasons:

1. Non-trained classes should not be confused with trained

ones due to the high specialization of CFs that contain
a very specific correlation of features related to only one
specific class.

2. The dimension of the filters is higher with respect to a

standard convolutional approach (Krizhevsky et al., 2012).
This gives the possibility of visually mapping the feature in
the filter.

3. The combination of digital responses (“feature map”) after

convolution defines a set of original clusters of the patterns
belonging to a particular class.

In the digital design of the network presented in this paper,
training is performed using MATLAB or Python codes. We have
considered two datasets (MNIST and Fashion-MNIST) and all
the possible combinations with up to 5 non-trained classes (637
different sets of filters). The implementation in the FPGA just
performs testing operations. Input 28x28 images and filters (16
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filters of 20x20) are sent from Matlab to the SoC by UART
communication. The convolution has been implemented in the
FPGA as a matrix-vector-multiplication (MVM). More technical
details can be found in section 4.

3.2. Block 2: Combinational Logic for
Pattern Equalization
The responses from the convolutional filters are binary (i.e., VDD

or GND). Their combination configures a set of “feature maps”
which is unique for each class of the dataset. These feature maps
are classified in the third block.

Note that from class to class the pattern density P of the feature
map, namely the number of responses equal to VDD with respect
to the overall number of responses (Pedretti et al., 2017), can
change. This results in an unfair competition between the feature
maps presented to the WTA network, since the internal spiking
threshold of every POST is initially fixed to a nominal value.
To prevent spurious spiking activity due to the varying pattern
density and unfair fire excitability of the POSTs, we assigned
to each feature map an “equalized pattern” according to the
combinational logic circuit of Figure 3. In this combinational
logic, every particular set of responses after convolution of the
inputs with the filter selects a different equalized featuremap. The
patterns are previously stored in proper registers of the FPGA
and consist of the complete group of 4× 4 patterns with uniform
pattern density P = 25 %. We stored only those patterns which
have, at most, 2 pixels in common with the others. Note that
FFs are ignored in the combinational logic if a CF has given a
VDD response. If none of the CFs gives a VDD response, the logic
takes the combination of the responses from the FFs for selecting
another equalized pattern.

3.3. Block 3: Winner-Take-All Network for
Plastic Adaptation
The third block is formed by aWTAnetwork that performs STDP
learning and classification of the equalized patterns originating
from the combinational logic. As shown in Figure 4A, the feature
maps of the trained classes 0, 1, 2, 4, 7, 8, and 9 always have a
VDD response for a particular CF. On the other hand, Figure 4B
shows that, on average, non-trained classes 3, 5, and 6 give a
GND response to all the CFs, while they are characterized by
more than one combinations depending on the responses to
the FFs. Figure 4C shows the three most probable combinations
of responses from the average study of Figure 4B. Every
combination of responses is associated by the combinational
logic to an original equalized pattern that is classified on a further
output neuron of the WTA network. The feature maps shown
in Figures 4A–C have been extracted from the SoC operation.
We have modeled digitally the STDP integration, the inhibition
among neurons and the timing operation. In the digital model,
synaptic weights are represented with a counter from 0 to 255.

To better clarify the role of redundancy ìn our network,
Figure 5A shows the evolution of the pattern and background
conductances for the non-trained class “5.” Non-trained classes
can generate different equalized patterns due to different
combinations of responses from the FFs. However, the generated

feature maps have different probabilities of appearance RP, which
could complicate the learning procedure (Pedretti et al., 2017).
In fact, as shown in Figure 5B, the first pattern, which has a
RP = 46%, achieves a good separation between pattern and
background average conductance, while the second and the third
ones (28% and 15%, respectively) show a smaller window. These
three patterns are thus taken to represent the same non-trained
class, i.e., “5” in this case.

4. DIGITAL IMPLEMENTATION OF THE
NETWORK

This supervised-unsupervised neural network has been
implemented in the Xilinx Zynq-7000 SoC, using both the
Processor System (PS) and the Programmable Logic (PL). The
PS consists of a dual core ARM Cortex-A9, while the PL part is
configured by an FPGA Series 7. The SoC was mounted into the
Zedboard, a low-cost development board (Figure 6A).

The digital implementation performs inference operations,
allowing the assessment of the continual learning capabilities
as a function of the dataset, the number and the type of non-
trained classes. In particular, we have developed an interactive
digital system where an external user can track the evolution of
the system. For instance Figure 6B shows the learning procedure
of the unsupervised layer of the network while Figure 6C shows
the real-time evolution of the classification confusion matrix.
Furthermore, it is possible to monitor the evolution of the
intermediate layers, as in Figure 6D to study the results of the
convolution between the input and the filters. In addition, an
external touch screen is connected to the computer to allow
the drawing of a custom digit (Figure 6E) and directly track
its evolution.

4.1. Communication Setup of the SoC
Since continual learning is active during inference, we initially
performed the training on a classical Von Neumann machine
using Python or Matlab environments. Thus, in order to
execute the inference operations, the SoC needs to receive the
convolutional filters and the input images to test. We also create
a communication line between the computer and the SoC using
the UART-USB bridge. UART peripherals are connected to the PS
part of the SoC through an AXI (Advanced eXtensible Interface)
bus. Data are received or sent asynchronously. The PS part
is programmed by a C++ code using the application program
interface, API.

The input data from the datasets are grayscale images of
28 × 28 pixels. The convolutional filters use analog weights,
which can be both positive and negative. To provide a digital
implementation in the programmable logic of the SoC, we have
transformed the grayscale input images and the weights of the
convolutional filters into 8-bits integers.

Firstly, we send the data related to the convolutional filters
and the equalized patterns, which are stored in the PL part of the
SoC. The equalized patterns are defined by software simulations.
A pattern density of 25% with, at maximum, 2 pixels in common,
improves the multi-pattern learning in WTA networks based on
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FIGURE 3 | Implemented combinational logic for equalizing the responses coming from the convolution between the input image and the filters. Every bus line has

been associated with a certain equalized pattern. Note that the class filters have higher priority respect to the feature filters, which are selected only if all the class

filters give a GND response. In this way, the trained classes are univocally selected by their own class filter.

FIGURE 4 | (A) Average feature maps for the trained classes 0, 1, 2, 4, 7, 8, and 9. (B) Average feature maps for the non-trained classes 3, 5, and 6. (C) Extraction

for the study of the three most probable feature maps for each one of the non-trained classes. Each one of these feature maps has a different equalized pattern. The

neural redundancy allows to assign an equalized pattern to each feature map in order to improve the classification accuracy of the WTA network.

STDP (Pedretti et al., 2017). Once this data has been correctly
sent and stored, the MNIST images are transferred one by one.

One inference cycle includes all the operations needed for

classifying just one input pattern of MNIST or Fashion-MNIST

datasets. As the master clock has a frequency of 50 MHz, and
the UART baud-rate for sending and receiving data is equal to

230400 bps, the communication operation is the slowest one,
as it takes 40 ms to send one pattern and its corresponding

label (Figure 7). During this period, the system must perform
sequentially the operations included in blocks (1) and (2)
following a pipelined approach. The digital implementation of
the STDP (4) takes 20 ms to be performed, as it follows the

biological STDP timing. Thus, the calculation of the features map
(1) and their equalization (2) must finish in less than 20 ms. Since
the convolutions referred to each one of the filters are performed
in parallel, the total required time is much smaller than 20 ms, so
this timing limitation is not a constraint.

4.2. Real-Time Tracking of the Digital
Synaptic Evolution
A graphical interface has been implemented for observing the
real-time plastic adaptation of the system when performing
continual learning of non-trained classes. The display is
connected to the Zedboard by a VGA connection with a refresh
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FIGURE 5 | Digital STDP learning activities of three equalized patterns for the non-trained class “5” (A). The evolution of pattern and background average

conductances depends on the appearance rate RP. Note that RP affects the opening of the average synaptic window between pattern and background, as evident by

the corresponding synaptic images: the more a pattern appears at the input, the wider the window (B). Note that the three learning activities are stable and do not

present any errors. This efficiency has been achieved thanks to spike frequency adaptation, which optimizes the specialization of each post-neuron.

FIGURE 6 | (A) The low-cost Zedboard used for the implementation of the system. The Zedboard is connected to Matlab and to the screen. (B) Visual representation

of the digital STDP learning procedure, (C) the confusion matrix for classification, and the (D) responses after convolving the input with the filters. (E) An example of a

digit drawn by a user on the tabet connected to the system.

frequency of 60Hz. By selecting the proper switches on the board,
it is possible to study the different layers of the network, i.e., (i)
the evolution of the digital synapses of STDP, (ii) the average
feature maps and (iii) the real-time changes of the confusion
matrix used for tracking the classification accuracy.

4.3. Computation of the Feature Maps and
Equalization Logic
To enable the high recognition accuracy of CNNs, the input
pattern must be convolved with the filters. Data is transferred
from the PS to the PL through the AXI connection, while
convolution is performed as a sequence of operations. The input
image is divided into different subsets of matrices, all with
dimension 20x20 (Figure 8A). The number of split buses follows
the equation (PSIDE − FSIDE + 1)2, where PSIDE (pattern side) is
equal to 28 and FSIDE (filter side) is equal to 20. For each subset of
matrices, the pattern is multiplied by the filter and then summed
up, in order to get a 9× 9 output matrix whosemaximum value is
selected by the system (max pooling operation). If the maximum
is higher than the threshold set during the training procedure,
the response of the filter is a “1,” otherwise a “0.” All the matrices

are managed in parallel by serial bus communication in VHDL.
Several multiply and accumulate cores are developed inside the
programmable logic in order to speed up the system. At the
same time, the system provides a further output bus that enables
the visual tracking of the evolution of the system on the LCD
monitor.

Referring to Figure 7, O11 is a 16-bits bus that contains the
responses of the convolutional filters, while O12 is a 12-bits
bus with the RGB color (4 bits per channel) of each pixel of
the monitor. Thus, O11 feeds block (2) and the AXI block that
connects the PS with the PL (feature maps are transmitted to
MATLAB through UART), whileO12 directly feeds block (6). The
color encodes the information related to the percentage of the
responses for each pixel of the feature map.

Once the neural network has extracted the feature maps, the
FPGA performs the equalization step. The process reads the 16-
bits bus coming from block (1), one bit for every response of
the convolution between the input and the filters. Firstly, the
VHDL code scans the part of the bus related to the responses
coming from the CFs. If none of these filters has given a ‘1’, the
logic reads the second part of the input bus. Thus, following
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FIGURE 7 | Detailed schematic implementation of the system in the Xilinx Zedboard Dual-Core ARM Cortex (SoC). The filters are transmitted using the UART protocol

at a baud rate of 230400 bps, while the operations for classification have been determined in the Programmable Logic part. The external user can decide which

classes are trained and which not, and can select the channels of the monitor for observing the intermediate or the final results. Note that the management of the data

transfer is pipelined with the convolution plus STDP computation.

the hierarchy set by CFs and FFs, this block assigns to the
input feature map an equalized pattern from those stored in the
internet FPGA register, which works as a Look-Up-Table (LUT).
The equalization block has one main output,O21, a bus of 16-bits
containing the equalized 4× 4 pattern that feeds block (4).

4.4. Linear Feedback Shift Register (LFSR)
In order to implement STDP algorithm, it is necessary
to introduce stochasticity inside the SoC (Maass, 2014).
Stochasticity in our STDP protocol is given by “noise” spikes,
i.e., an uncorrelated spiking activity that is alternated with the
presentation of pattern spikes at the input of the unsupervised
layer (Pedretti et al., 2017).

Noise is an essential element for on-line learning in STDP,
as it induces depression of background synapses. It also allows
to remove or “forget” a previously learnt pattern when a new
one is submitted, thus introducing plasticity in the network
(Maass, 2014; Pedretti et al., 2018). It is important to set a
correct noise density (the number of stochastic spikes) for
improving the learning dynamics: a high noise density makes
faster the background depression, but learning becomes unstable,
as pattern and noise compete for synaptic potentiation.

We have set the noise density equal to 5%, thus 1 pixel turned
on. Noise spikes are submitted at a noise rate probability (RN)
equal to the input rate probability (RI)= 50%.

For generating pseudo-random numbers in the FPGA, we
have developed a 4-bits linear feedback shift register (LFSR). In
order to improve the uncertainty, the seed of the shift register is
variable and it is generated as a function of the interaction time
of the user with the board. Each time the user presses the bottom
B0, a counter with a pre-defined prescaler resets the seed of the
LFSR. The output of this block (O31) feeds block (4) (Figure 7).

4.5. STDP Timing
Block (4) of Figure 7 performs the STDP calculations by
managing the information of pattern and noise, i.e., buses O31

and O21. Once the noise appears at the input, a signal is sent
back to block (3) in order to update the noise bus for the next
operation. In this way, the LFSR is accordingly incremented and
generates different noise patterns.

The excitatory synapses are implemented with counters.
These counters increase or decrease their values according to
the STDP dynamics, 2.1. The duration of the signals of the
PRE-neurons and the POST-neurons follows the bio-inspired
evolution time of 10 ms. A more detailed representation of
the evolution of the signals is shown in Figure 8B. The fire
signal is sent back to block (5) and to the AXI block as a
bus (O42) of NN bits, where NN refers to the total number
of neurons.

Additional VHDL processes perform the integration, the
comparison and the fire operations for each of the output
neurons (Figure 8C). The neuronal integration is implemented
by adders (as many as the number of output neurons). If the value
reached by one counter is higher than a certain threshold value
(Pedretti et al., 2017), the associated neuron fires and the value of
the synapses is accordingly modified. The firing activity not only
causes the inhibition of the integrators (they are reset to zero), but
it also causes the gradual increment of the neuronal threshold.
The neuronal threshold is implemented with binary counters too,
one for each output neuron. This operating methodology helps
the STDP learning mechanism, as each neuron specializes in a
particular pattern. Indeed, a fire event of a target neuron occurs
only when a specific pattern arrives, thus avoiding learning errors
(Pedretti et al., 2017; Muñoz-Martin et al., in press).

In order to have a visual representation of the evolution of the
synapses, a further 12-bits bus that encodes the synaptic values as
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FIGURE 8 | (A) Detailed representation of the digital convolution operation. Input patterns are codified in buses of 6,272 bits (grayscale images of 28 × 28 pixels

converted into 8 bits-integer binary data). Note that the input pattern is split into several subsets of buses, all with the same size of the convolutional filters. The

elements of the split buses are multiplied by the elements of the convolutional filters one by one. The results are then summed up and stored into additional registers

(16 buses of 81 elements each one). (B) Signal evolution during the STDP operation. Each time the pattern appears at the input, the adders increase their values, till

the integration reaches the threshold. Then, the digital comparator maintains high its output for 10 ms, causing the potentiation/depression of the synapses at the

falling edge. Since all the FPGA processes are synchronous, the delay between signals is much smaller (µs) than the time scale used during the STDP operation (tens

of ms). (C) Detailed STDP-WTA scheme. Initially, the pattern/noise block alternates pattern (equalized feature maps) and noise (LFSR bus) at 50% rate of appearance,

for a duration of 10 ms each. Each output neuron {1 ... N } performs the integration and the comparison respect to the internal threshold. If the comparator fires, the

integrating adders are reset (inhibition) and the potentiation-depression block is activated to drive the excitatory synapses. In addition, the corresponding neuronal

threshold is increased in order to improve the specialization capability.

RGB information (signal O43) is sent to block (6) for displaying
the information on the LCD monitor.

4.6. Confusion Matrix
The real time computation of the confusion matrix is carried out
by comparing the input label of the image with the spiking output
neuron (signals O42 and “label” in Figure 7). Labels are sent as 4
bits integers.

Note that a specific VHDL process calculates the accuracy of
classification. This process performs statistical operations related
to the number of times a fire event occurred compared to the
label of the input class. As an example, get into consideration the
situation in which there are two non-trained classes, “1” and “2,”
and one output neuron. If the neuron fires for the first time, and
the label of the input class is “1,” the accuracy for that neuron is
100% for class “1” and 0% for class “2.” Now, the neuron fires
again, but this time the label is “2,” and the accuracy of that
neuron is 50% for class “1” and 50% for class “2.” If the neuron
fires for a third time, with the input label equal to “2,” now the
accuracy changes again, being 33% for class “1” and 66% for
class “2.” After this test phase, which lasts 100 fire activities, we
link a neuron to a non-trained class (the one that has given the
maximum accuracy).

A second process of block (5) manages two output buses: the
first bus contains the accuracies of the results and it feeds the
AXI block for data transmission to the PC (O51), for debugging

purposes. The other bus is related to the RGB color of each pixel
of the screen (O52), and it is connected to block (6).

Figure 9 shows that the management of the information
enables the track of the neuronal redundancy for investigating the
classification accuracy of the non-trained classes (in this case, 3, 5
and 6). Note that the neuronal redundancy is essential to achieve
higher classification accuracy. However, some confusion between
the further output neurons avoids a completely correct clustering
of the non-trained information.

4.7. Control of the LCD Monitor
The LCD monitor block of Figure 7manages the VGA using the
synchronizing signals (Hsync and Vsync), and the RGB 12-bits
bus for each pixel of the screen. The programmable logic selects
the correct output RGB bus (O12, O43, or O52) after reading
the position of the switches (SW0, SW1, and SW2) for showing
the output screen requested by the user. As an example, if the
user decides to check the evolution of the digital synapses of the
non-trained classes, this block selects the RGB bus coming from
block (1).

5. RESULTS

The fully digital approach of hybrid supervised-unsupervised
network has been tested for continual learning of up to 50%
non-trained classes. We have then compared the digital approach
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FIGURE 9 | Confusion matrix related to the classification results of the non-trained classes 3, 5, and 6 including the neural redundancy of 3 output neurons per

non-trained class. As observed, the additional output neurons improve significantly the global accuracy.

with amemristive-based network with PCM synapses, in terms of
area, energy consumption and testing efficiency (Munoz-Martin
et al., 2019).

5.1. Continual Learning Results
Figure 10 shows the classification results of the continual
learning accuracy for every combination of two non-trained
classes of the MNIST (a) and the Fashion-MNIST (c) datasets.
Concerning the MNIST, the classification accuracy of the non-
trained classes varies from 69 to 95%. Note that this value
is dependent on the similarities between the two non-trained
digits. For instance, non-trained class 4 has a classification
accuracy higher than 90% when it appears as a non-trained digit
together with any other digit, except when the other non-trained
class is number 9. In fact, numbers 4 and 9 have, on average,
common shapes that could respond to the same feature filter FF
(Figure 10B).

Note that, in Figure 10C, classes from 0 to 9 accordingly
refer to clothes: t-shirt, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot. Due to the more complexity of the
Fashion-MNIST dataset in terms of number and type of shapes,
the accuracy of every combination of two non-trained classes is
lower respect to the MNIST case.

Other average statistical results are shown in Figure 11, both
for theMNIST (a) and the Fashion-MNIST (b) datasets. Note that
the accuracy of the non-trained classes is strictly dependent on
the number and type of the non-trained digits. For instance, it
is interesting to observe that number 9, when it is not trained
together with other four non-trained classes, shows a very low
classification accuracy (from 21% to 50%) while, in the same
conditions, number 6 can be classified with an accuracy from 48%
to 73%. The degradation of the accuracy is mainly dependent
on the confusion among the non-trained classes and the lack
of efficient features-extraction from the reduced trained part of

the dataset. The global classification results for the non-trained
classes are summarized in Figure 12 for both the MNIST (a) and
the Fashion-MNIST (b). Note that the spread of the distribution
strongly increases whenmore than 40% of non-trained classes are
taken into consideration.

5.2. Discussion and Comparison With
Memristive-Based Approaches
The results about continual learning of section 5.1 demonstrate
that the network is able to re-use previously learnt information
to develop further knowledge during inference. However, the
FPGA-based fully digital approach is not the only feasible way
to perform continual learning. In particular, other works have
described the possibility of implementing a hybrid supervised-
unsupervised neural network using a PCM-based approach
(Bianchi et al., 2019; Munoz-Martin et al., 2019). PCM
devices are among the best candidates for building efficient
synaptic elements, especially for their 3D stacking integration
and multilevel programming capability (Kuzum et al., 2013).
Figure 13A shows a comparison between the fully digital
approach and the memristive-based design of the network for
the MNIST dataset. Note that the FPGA-based approach is more
accurate with respect to the memristive one, in terms of accuracy
of both trained and non-trained classes. This is mainly due
to the fact the multilevel capability of the devices is not as
good as the digital values implemented in the FPGA, that can
codify the synaptic weights with a big number of bits for better
precision. On the other hand, the area and power requirements
of the digital design are worse with respect to the PCM-based
approach, as evident from the table reported in Figure 13B. This
is strongly related to the efficiency of PCM devices that can be
operated in a parallel matrix-vector-multiplication architecture
during convolution, for improved timing and energy efficiency.
The power estimation of the FPGA has been extrapolated by
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FIGURE 10 | Classification accuracy of continual learning for all the combinations of two non-trained classes of the MNIST (A) and the Fashion-MNIST (C) datasets.

Note that the diagonal represents the case of only one non-trained class. Panel (B) shows the average shapes of classes 4 and 9 of the MNIST dataset. Since the

shapes have common features, it is important to provide the system with a generic set of filters able to differentiate the objects joining the two classes.

FIGURE 11 | Bar charts of continual learning classification accuracy for each one of the classes of the MNIST (A) and the Fashion-MNIST (B) datasets. Note that, on

average, the accuracy of a reference non-trained class varies depending on the number of the further non-trained classes. In particular, as the number of non-trained

classes increases, the continual learning accuracy degrades: this is mainly due to the confusion between new classes and to the worse efficiency in achieving good

transfer learning from the reduced training sub-dataset. Note that every bar is provided with the 3 σ standard deviation.

FIGURE 12 | Cumulative distributions of classification accuracy as a function of the increasing number of non-trained classes, from 1 to 5, for the MNIST (A) and the

Fashion-MNIST datasets (B).

using the internal software of Xilinx, Vivado. On the other
hand, the power analysis of a hardware realization based on
PCM synapses has been studied referring to the PCM devices
described in Bianchi et al. (2019) and to a peripheral circuitry

designed using a 90 nm node technology. The power required
by convolution has been estimated in simulation taken into
consideration the power for reading the PCM devices, the
number of total steps required for performing the convolution of
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FIGURE 13 | (A) Global accuracies for 0, 1, 2, 3 non-trained classes of MNIST dataset for both an FPGA-based design and a PCM-based approach. (B) Table of

comparison for the two approaches in terms of area estimation, power consumption and global accuracy after training all the dataset.

each filter and a peripheral circuitry for the management of the
results (operational amplifiers and decoders).

Note that the simulations claim that the possibility of parallel
matrix-vector-multiplication with memristive devices accelerates
the overall computation of the neural network and ease the
peripheral circuitry for data management. However, if a higher
accuracy is required, an increased number of levels of the weights
in the convolutional filters is necessary. If this necessity is easily
obtained in the FPGA by increasing the number of bits, in a fully
analog approach a more precise multilevel capability of the PCM
synapse depends on both the structure of the device and on the
programming precision.

5.3. Extension to Other Datasets
In order to provide a good behavior for larger datasets
(e.g., CIFAR-10), it is necessary to increment the number of
convolutional filters (i.e., increasing the training complexity),
and provide more output neurons per non-trained class (e.g.,
a neural redundancy of 5 output neurons instead of 3). The
main problem associated to the scalability of our network is
the exponential growing of resources required by the FPGA,
both in terms of area and power consumption. In particular
we simulated in software that, in order to obtain a full testing
capability for CIFAR10 at 91.5%, the required computational
power would double respect to what needed for MNIST. The
area consumption would increase accordingly (we simulated an
increment of 60%). In order to reduce these losses, it would
be possible to optimize the training procedure, by means, for
instance, the use of a validation set. Furthermore, it would be
possible to seek for a sub-selection of filters which could enable an
acceptable classification accuracy. However, this would require a
much more complex training procedure and would not assure
high classification standards.

6. CONCLUSIONS

In this paper, we proposed a new kind of hybrid supervised-
unsupervised neural network capable of continually learn new
concepts without forgetting the previous information. To prove
the capability of the network for lifelong learning we used

two datasets, (i) the MNIST and (ii) the Fashion-MNIST.
The network mimics the functionality of the human brain.
In particular, a section of the network stabilizes the learnt
information, as it happens in the neocortex, while another
part provides plasticity for accepting new information, as the
hippocampus. The first section of the network is constituted
by a set of convolutional filters which are specialized on the
recognition of a particular trained class or on the extraction
of generic features from the training dataset. Then, during
inference, the responses of the convolutional filters form a pattern
of responses, that is on-line learnt exploiting the benefits of
unsupervised spike-trimming-dependent plasticity, STDP. We
showed that the learnt pattern is original for both trained
classes and new classes, i.e., classes that were not used for
training the convolutional filters. We demonstrated the continual
learning capability of the network by building a fully digital
system on a System-on-Chip, SoC. A user-friendly interface was
implemented in order to challenge the network by choosing the
number and type of non-trained classes of the datasets. The
classification accuracy significantly improves when other bio-
inspired techniques are introduced in the digital framework of
the demonstration. In particular, the spike-frequency adaptation,
achieved by controlling the firing threshold of every neuron,
and the neuronal redundancy, boost the learning activity of the
non-trained classes. We showed that the network can classify
up to 30% of new classes with an accuracy around 80%.
Furthermore, we provided a comparison between a fully digital
approach and an analog one using non-volatile synapses such
as Phase-Change-Memories. This work highlights the possibility
of achieving continual learning in neural networks using bio-
inspired algorithms capable of merging the need of both stability
and plasticity of an intelligent system. Thus, it paves the way for
the creation of autonomous machines able to infer concepts and
continually learn without catastrophically forgetting previously
stored information.
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A perpendicular spin transfer torque (p-STT)-based neuron was developed for a spiking
neural network (SNN). It demonstrated the integration behavior of a typical neuron in
an SNN; in particular, the integration behavior corresponding to magnetic resistance
change gradually increased with the input spike number. This behavior occurred when
the spin electron directions between double Co2Fe6B2 free and pinned layers in the
p-STT-based neuron were switched from parallel to antiparallel states. In addition, a
neuron circuit for integrate-and-fire operation was proposed. Finally, pattern-recognition
simulation was performed for a single-layer SNN.

Keywords: neuromorphic, MRAM, spiking neuron, spiking neural network, artificial neuron

INTRODUCTION

Artificial neural network (ANN)-based artificial intelligence (AI) has been one of the most
successful technologies in recent years. Today, it is applied in numerous fields, such as education,
security, finance, science, and entertainment. In particular, the performance of the AI has already
exceeded the ability of human beings (Szegedy et al., 2015; He et al., 2016; Silver et al., 2016;
Hu J. et al., 2018) in fields such as image recognition and the Go game. However, there
is a limitation to conventional ANNs working on the von-Neumann architecture. The low
bandwidth between processor and memory in the von-Neumann architecture hinders efficient
neural networks processing (Merolla et al., 2014; Monroe, 2014). Neuromorphic computing
systems that mimic the human brain has been designed to overcome this limitation using
complementary metal oxide semiconductor (CMOS)-based artificial neuron devices. However,
it is a major challenge to implement high neuronal density by means of conventional CMOS
technology because emulating the integration function of the neuron relies on the capacitor
where the area of capacitor would be prohibitively large (∼1,000 F2) to obtain the desired
capacitance (∼10 fF/µm2) (Gentet et al., 2000; Indiveri et al., 2013). Therefore, an artificial neuron
device without a capacitor is necessary to implement high-density neuromorphic chip. Recently,
emerging artificial neuron devices have been reported as an alternative to CMOS-based neuron
devices such as partially depleted silicon-on-insulator n-MOSFET (PD-SOI n-MOSFET) (Dutta
et al., 2017), phase change random-access memory (PCRAM) (Tuma et al., 2016), and magnetic
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random-access memory (MRAM) (Grollier et al., 2016; Sengupta
et al., 2016; Shim et al., 2017; Srinivasan et al., 2017; Torrejon
et al., 2017; Mizrahi et al., 2018; Kurenkov et al., 2019). Among
them, MRAM has been proposed as a promising candidate
for artificial neuron device due to its high-area efficiency, fast
operating speed, and low power consumption (Zhang et al.,
2016; Liyanagedera et al., 2017; Hu G. et al., 2018). However,
past researches have mainly focused on stochastic behavior of
MRAM, and its integration behavior has not yet been reported.
In this work, we first demonstrated the integration behavior of
perpendicular spin transfer torque magnetic tunneling junction
(p-STT MTJ) spin valve when switching from parallel to
antiparallel states between Co2Fe6B2 free and pinned layers.
In addition, its integration behavior was discussed with grain
boundary in MgO tunneling barrier. Finally, we conducted
a pattern recognition simulation of a spiking neural network
(SNN) using our p-STT-based neuron.

MATERIALS AND METHODS

Device Fabrication
p-STT MTJ
A p-STT MTJ spin valve structure was fabricated using a 12-in
SiO2 wafer multichamber cluster magnetron sputtering system
under a high vacuum of <1 × 10−8 Torr. In particular, it was
vertically stacked with a W/TiN bottom electrode, Ta buffer
layer, Pt seed layer, [Co (0.47 nm)/Pt (0.23 nm)]6/Co (0.51 nm)
lower SyAF layer, Ru spacer layer (0.85 nm), Co (0.51 nm)/Pt
(0.23 nm)/[Co (0.47 nm)/Pt (0.23 nm)]3 upper SyAF layer, Co
buffer layer (0.4 nm), W bridge layer (0.2 nm), Co2Fe6B2 pinned
layer (0.95 nm), MgO tunneling barrier (1.0 nm), Fe insertion
layer (0.3 nm), Co2Fe6B2 lower free layer (0.8 nm), W spacer
layer (0.4 nm), Co2Fe6B2 upper free layer (0.8 nm), MgO capping
layer (0.8 nm)/Fe diffusion barrier (0.19 nm), W capping layer
(4.0 nm), and Ta/Ru top electrode. An amorphous Ta buffer layer
was used to prevent the texturing of the polycrystallinity of the
W/TiN bottom electrode. A Pt seed layer thickness was optimized
for the face-centered cubic (f.c.c) texturing of the [Co/Pt] SyAF
multilayers. The [Co/Pt]6 lower SyAF layer and [CoPt]3 upper
SyAF layer were perfectly antiferromagnetic coupled by inserting
an optimized Ru spacer layer by Ruderman–Kittel–Kasuya–
Yosida (RKKY) coupling. Then, the Co2Fe6B2 pinned layer was
ferrocoupled to the [CoPt]3 upper SyAF layer by a W bridge
layer. Then, the p-STT MTJ spin valve was ex situ annealed
at 350◦C for 30 min under a vacuum below 10−6 Torr and a
perpendicular magnetic field of 3 T. The p-STT MTJ spin valve
was cut into 1 × 1 cm2 pieces and was patterned into p-STT
MTJ with a device size of 1.6 × 1.6 µm2 using ion milling and
E-beam lithography. Then, p-STT MTJ was passivated, and their
contact pads were wire bonded to a sample holder to estimate the
electrical characteristics. The magnetic resistance versus applied
magnetic field (R–H) curve and integration characteristic of
the p-STT MTJ were measured with a homemade electrical
probing system with a ∼1-T electromagnet using a Keithley
236 source measure unit and an Agilent B2902A semiconductor
parameter analyzer.

IGZO-Based ReRAM
Five-nanometer-thick indium gallium zinc oxide (IGZO) film
was deposited on a 113-nm diameter plug-type TiN-bottom-
electrode-patterned wafer by radio frequency (RF) magnetron
sputtering at 40 W RF power, 40 sccm Ar flowrate, and 1 sccm
O2 flowrate for an IGZO target, followed by 400◦C annealing for
30 min in N2 ambient. For a top electrode patterning, 850 µl
photoresist (AZ5214E) was dropped on the IGZO thin film
layer followed by spin coating with 5,000 rpm for 30 s and
120◦C hard baking for 1 min and 40 s. Then, a photomask with
60 × 60 µm2 pattern size was aligned on the substrate followed
by exposure to UV light with a beam intensity of 20 mW/cm2

for 12 s. The exposed photoresist was developed for 50 s using
a developer (AZ300MIF) followed by deionized water rinse for
4 min. Afterward, the top Al electrode was deposited by direct
current (DC) magnetron sputtering at 30 W DC power and 30
sccm Ar flowrate for an Al target. Finally, lift-off process was
performed to make the top electrode pattern by acetone for 4 min
followed by methanol rinse for 4 min and deionized water rinse
for 4 min. Thus, the synapse devices have a sandwich device
structure of a bottom TiN electrode, an IGZO layer, and a top Al
electrode. Electrical characteristic was measured using a Keithley
4200A semiconductor parameter analyzer.

Pattern Recognition Simulation
Neuron
An empirical model was used to simulate the integration
characteristic of the p-STT MTJ. The logistic function was used to
fit a measured data (Supplementary Figure 1A). Thus, resistance
of the p-STT MTJ is given as follows:

r (n) =
rmin − rmax

1+
(

n
nv+nσ

)p + rmax + rσ (1)

where n, rmin, rmax, p, and nv were the number of applied pulse,
minimum and maximum resistance of the p-STT MTJ, fitting
constant (=0.3142), and curve fitting parameter depending on the
voltage, respectively. The integration characteristic of the p-STT
MTJ is determined by nv, which depends on the applied pulse
amplitude (Supplementary Figure 1B). In this empirical model,
nσ and rσ were added to account for device variation where
nσ∼N(µn, σn2) (µn = 0 and σn = 0.5) and rσ∼N(µr , σr2) (µr = 0
and σr = 0.2) are Gaussian random variables (Supplementary
Figures 1C,D).

Synapse
In this simulation, IGZO-based ReRAM is used as the artificial
synapse, as shown in Supplementary Figure 2A. The IGZO-
based ReRAM shows typical bistable current versus voltage (I–V)
curve of interface-type ReRAM, as shown in Supplementary
Figure 2B. To emulate synaptic property, we used a synapse
model similar to Ziegler et al. (2015) and Hansen et al. (2017).
In this model, change in synaptic weight is given by

M wp,d(t) = βp,d (w)w (t)
[

1−
1

wmax
w (t)

]
(2)
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FIGURE 1 | Schematic of neural network. (A) Biological neural network. (B) Artificial neural network using the perpendicular spin transfer torque (p-STT)-based
neurons and memristor synapse.

where w, β, and wmax represent the synaptic weight, the
weight-dependent learning rate, and maximum synaptic weight,
respectively. β determines the potentiation and depression curves
depending on the switching mechanism of the ReRAM (Ziegler
et al., 2015; Hansen et al., 2017). In order to obtain synaptic
weight change, β should be determined. Here, we use a learning
rate model given by

βp,d (M V,M t,w)

=

{
cp (M V,M t)× (1− γw) , potentiation : (V > 0)

−cd (M V,M t)× w, depression : (V < 0)
(3)

where γ is a positive constant, and cp and cd are MV and
Mt dependent function. In our model, cp (=0.275) and cd
(=0.063) are constant since MV and Mt were fixed for the
potentiation and depression. The simulation is well correlated
with potentiation/depression of the experimental data, as shown
in Supplementary Figure 2C.

Synaptic Weight Update
We used simplified spike timing-dependent plasticity (STDP)
learning rule for training SNN. Synaptic weight was updated with

the following equation:

w (tn+1) =

{
w (tn)+ M wp (tn) , 0 ≤ tpost − tpre < 10T

w (tn)+ M wd (tn) , otherwise
(4)

where M wp and M wnd are the synaptic weight change for the
potentiation and depression, respectively. T is the time of a one
cycle of integration–read–reset. Since we assumed a synchronous
system, T is constant. Additional circuits are required for STDP
operation. However, it is beyond the scope of this paper to deal
with synaptic learning circuit in detail. When the spiking time
difference between a preneuron (tpre) and a postneuron (tpost)
was <10 cycles (1 cycle = integration–read–reset), the synapses
connected with the pre- and postneurons were potentiated, and
the remaining synapses were depressed.

RESULTS

Artificial Neural Network Based on
p-STT-Based Neuron
In biological neural networks, neurons are connected to other
neighboring neurons via synapses, as shown in Figure 1A.
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FIGURE 2 | Magnetic and electrical properties of the perpendicular spin transfer torque (p-STT)-based neuron (1.6× 1.6 µm2). (A) Schematic structure. (B) M–H
curve in a wide scanning range of the applied perpendicular magnetic field (i.e., −4 ∼ + 4 KOe). (C) M–H curve in a narrow scanning range of the applied
perpendicular magnetic field (i.e., −0.5 ∼ + 0.5 KOe). (D) R–V curve. (E) R–H curve of the p-STT-based neuron.

Neurons integrate input spike signals from adjacent neurons via
synapses, i.e., integrate. In addition, neurons generate output
spike signals when membrane potentials reach a threshold
value, i.e., fire. This neuronal behavior is called “integrate-
and-fire,” which is the key operation of neuron (Hodgkin and
Huxley, 1952; Izhikevich, 2003). Similarly, artificial neurons
could be connected with other artificial neurons via artificial
synapses, where p-STT-based neurons are connected with
memristor-type synapse, as shown in Figure 1B. The p-STT-
based neurons receive spike signals through synapses connected
with preneurons, integrate the signals, and then sends out
output spike signals when the resistance of the p-STT-
based neurons reaches a certain threshold value. In the
following sections, we will describe in detail how p-STT-
based neuron works.

Magnetic Properties of p-MTJ
Figure 2A shows schematic structure of p-STT MTJ. Its magnetic
moment versus applied perpendicular magnetic field (M–H)
loop was investigated to determine the static magnetic behavior
of the p-STT MTJ, as shown in Figures 2B,C. It includes
four perpendicular magnetic anisotropy (PMA) layers: a double
Co2Fe6B2 free layer (i in Figure 2A), Co2Fe6B2 pinned layer (ii
in Figure 2A), upper [Co/Pt]3 SyAF layer (iii in Figure 2A), and
lower [Co/Pt]6 SyAF layer (iv in Figure 2A). Here, the Co2Fe6B2
pinned layer was ferrocoupled with the upper SyAF layer, whereas
the upper [Co/Pt]3 SyAF layer was antiferro coupled with the
lower [Co/Pt]6 SyAF layer. The magnetic moments of the double
Co2Fe6B2 free layer, Co2Fe6B2 pinned layer ferrocoupled with

the upper [Co/Pt]3 SyAF layer, and lower [Co/Pt]6 SyAF layer
were 0.130 (Mi in the inset of Figure 2C), 0.362 (Mii + iii in
Figure 2B), and 0.370 (Miv in Figure 2B) memu, respectively.
In addition, the double Co2Fe6B2 free layer showed an excellent
interface PMA characteristic with a good squareness and fair
coercivity (Hc, ∼0.13 kOe), as shown in Figure 2C. This result
indicates that the MgO tunneling barrier had good face-centered
cubic crystallinity that enhanced the coherent tunneling of the
spin electrons (Lee et al., 2016a,c,d). The magnetic resistance
versus voltage (R–V) behavior at room temperature (295 K)
was measured to investigate the spin transfer torque switching
behavior of the p-MTJ, as shown in Figure 2D. The switching
voltage from parallel to antiparallel states was −0.53 V (VPtoAP),
while the switching voltage from antiparallel to parallel states
was + 0.61 V (VAPtoP). The magnetic resistance versus magnetic
field (R–H) loop of the p-STT MTJ is shown in Figure 2E.
When the applied perpendicular magnetic field was scanned
from+ 0.5 to−0.5 kOe, the electron spin direction of the double
Co2Fe6B2 free layer was rotated from upward to downward so
that the electron spin directions between the double Co2Fe6B2
free and pinned layers were switched from antiparallel to parallel
states. As a result, the resistance of the p-STT MTJ decreased
from 82 to 46 �. The squareness and coercivity of the p-STT
MTJ measured with an R–H loop was almost the same as that
measured with an M–H loop, indicating that this device could
maintain a stable magnetic state in a zero magnetic field so that
the integration behavior would be characterized during the switch
from parallel to antiparallel between the double Co2Fe6B2 free
and pinned layers.
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FIGURE 3 | Integration characteristics of the perpendicular spin transfer torque (p-STT) magnetic tunneling junction (MTJ)-based neuron. (A) Dependence of the
integration behavior on the input spike number and amplitude. (B) Repeated integration characteristic of the p-STT MTJ (five sets of 100 input pulse spikes).

FIGURE 4 | Integration mechanism of the perpendicular spin transfer torque (p-STT) magnetic tunneling junction (MTJ). (A) Schematic of switching energy diagram
at grain inside (black) and grain boundary (yellow). Schematic illustration of integration mechanism: (B) initial state, (C) switching at grain boundary, (D) switching at
grain inside, and (E) integration.

Integration Property of p-MTJ Spin
Valves
Interestingly, the p-STT MTJ showed integration property when
consecutive voltage pulses (spike) were applied, as shown in
Figure 3A. The spike width was 50 µs, and the spike amplitude
was varied from −0.50 to −0.70 V. At all spike amplitudes,
i.e., −0.50, −0.55, −0.60, −0.65, and −0.70 V, the p-STT MTJ

performed the integration at input spikes of ∼100 pulses. In
addition, the resistance difference increased when the input
spike amplitude increased from −0.50 to −0.70 V at input
spikes of ∼100 pulses, as shown in Figure 3A. Over an input
spike amplitude of −0.7 V, no integration behavior was found.
In addition, the p-STT MTJ showed a good repeatability for
five sets of ∼100 input spike pulses, where the resistance
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FIGURE 5 | Schematic of artificial neural network. (A) Crossbar array of artificial synapses and (B) neuron circuit for integrate-and-fire.

increment by the 100 input spike pulses increased with the
input spike, as shown in Figure 3B. Our proposed p-STT
MTJ in Figure 3 showed a unique neuron characteristic (i.e.,
integration characteristic) compared to MTJ-based neurons
(stochastic characteristic with a two-terminal device or leaky-
integrate-and-fire characteristic with a three-terminal device),
as shown in Supplementary Table 1. The mechanism of this
behavior could be explained by understanding the grain-size
distribution of the polycrystalline MgO tunneling barrier. The
distribution of the sputtered polycrystalline MgO tunneling
barrier was 0.6 to ∼1.8 nm, where the average grain size was
∼0.94 nm, as shown in Supplementary Figure 3. This indicates
that even for a p-STT MTJ with a cell size of 35× 35 nm2,
multiple grains would exist within the p-STT MTJ cell, as shown
in Supplementary Figure 4. As a result, we can expect that the
p-STT MTJ with a cell size of 35× 35 nm2 would show an
integrate characteristic similar to Figure 3 since it has a large
number of grain within the p-STT MTJ cell. The interfacial PMA
of both the double Co2Fe6B2 free and pinned layers originated
from the hybridization between O atoms and X (Fe or Co)
atoms at the MgO tunneling barrier and Co2Fe6B2 layer interface.
Thus, the polygrain size distribution of the polycrystalline MgO
tunneling barrier directly and strongly affects the ferromagnetic
properties of both the double Co2Fe6B2 free and pinned layers,
i.e., resistance difference between parallel and antiparallel states
of the p-MTJ. In addition, the hybridized Fe–O and Co–O bonds
within the grains would be well oriented with the crystallinity of
the MgO tunneling barrier, so the electron spins would require
a high activation energy to switch from parallel to antiparallel.
Otherwise, the spin electrons at the grain boundaries would
have a relatively low energy barrier to switch from parallel to
antiparallel, compared with the spin electrons within the grains
(MacLaren and Willoughby, 2001; Victora et al., 2003; Kondo
et al., 2018), as shown in Figure 4A. Thus, the spin electrons at
the grain boundaries (Figure 4B) would first be switched from

parallel to antiparallel states (Figure 4C), and the spin electrons
inside the grain would then rotate due to the ferrocoupling
between the spin electrons at the grain boundary and inside the
grain (Figure 4D). As a result, the spin electrons in the grains
would be switched from parallel to antiparallel, which would
be a similar switching behavior to a previous report (Suzuki
et al., 2016). This switching process would induce the integration
behavior when the spikes are sequentially applied to p-STT MTJ
(Figure 4E). The integration behavior of a p-STT MTJ was
influenced by the crystallinity of the MgO tunneling barrier
in Figure 2A, i.e., a better crystallinity of the MgO tunneling
barrier led to a better integration characteristic, as shown in
Supplementary Figure 5. This integration behavior of the p-STT
MTJ would suggest that the p-STT MTJ could be applied
with the complementary metal–oxide–semiconductor field-effect
transistor (C-MOSFET) technology to produce artificial neuron.
In general, the perpendicular spin torque switching time of a
p-STT MTJ has been reported as ∼10 ns, which is the fastest
switching time among other semiconductor devices (Hu G. et al.,
2018). In addition, the operation of the integration by a p-STT
MTJ in Figure 3 was performed prior to a full the perpendicular
spin torque switching. Thus, the width of a spike pulse in Figure 3
could be less than ∼10 ns if the size of a neuron using a p-STT
MTJ can be scaled down–up to 35× 35 nm2, suggesting a lowest
power consumption per a spike in neuron (i.e., 1.6 × 1.6 µm2),
as shown in Supplementary Table 2.

p-STT MTJ-Based Integrate-and-Fire
Neuron
Although the p-STT MTJ exhibited integration behavior
depending on the input spike amplitude, it requires an additional
circuit to perform the fire operation. Thus, the p-STT MTJ-based
neuron circuit was designed using one p-STT MTJ, seven n-MOS
FETs, three p-MOS-FETs, and one reference resistance to conduct
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FIGURE 6 | Pattern recognition simulation. (A) Schematic of a single-layer spiking neural network (SNN). (B) Normalized synaptic weight before learning.
(C) Normalized synaptic weight connected with active neurons after learning. (D) Normalized synaptic weight connected with silent neurons after learning.
(E) Pattern recognition accuracy.

the integrate-and-fire operation as shown in Figure 5A. Note
that we calculated the area of the p-STT MTJ-based integrate-
and-fire neuron using 1.6×1.6 µm2 p-STT MTJ (i.e.,∼8.2 µm2),
which was approximately one-fourth smaller than the previous
report (Sourikopoulos et al., 2017), as shown in Supplementary
Figure 6 and Supplementary Table 3. In this circuit, “fire” occurs
when the resistance of the p-STT-based neuron exceeds the
reference resistance (Rref ). The neuron receives control signals
from a controller and performs integration, read, and reset
operations in each clock cycle, as shown in Figure 5A. One
controller can control multiple neurons simultaneously. In order
to implement neural network, cross-point array can be used
to realize analog matrix-vector multiplication. Figure 5B shows
the schematic illustration of typical cross-point neural network
implementation, which was fabricated by a cross-point synapse
array being connected with our proposed p-STT MTJ neuron.
Synapse would be IGZO-based memristor (in our experiment
shown in Supplementary Figure 2). Where the bias voltage
(Vbias) serves to ensure that the p-STT-based neuron is within
its proper operating range.

Pattern Recognition
To investigate the performance of the SNN, a single-layer SNN
consisting of input and output layers (50 p-STT-based neuron)
was designed, as shown in Figure 6A. In this simulation, IGZO-
based ReRAM was used in artificial synapse. A performance
test of the SNN was carried out using the MNIST handwritten
image set. MNIST images (6 × 104) were used for training,
and 1 × 104 images not included in the training were used for
testing. The probability of the input spike occurrence was set
to be proportional to the pixel value of an input image, and

the amplitude of an input spike was set to −1 V. The neurons
integrate the input spike signals and fire when the resistance
of the p-STT MTJ exceed Rth (=70 �). When the neurons fire,
they generated an output spike. The winner takes all (WTA)
was applied to the output neuron nodes. WTA improved the
accuracy of a single-layer SNN since the WTA guarantees non-
linear mapping in a single-layer SNN (Du et al., 2015; Hansen
et al., 2017). Finally, only the synaptic weights associated with
the fired output neurons were updated. In the initial synaptic
weight map, the conductance of the synapses was randomly
distributed. After training, the distribution of synaptic weights
was changed. The weights for active and silent neurons are
shown in Figures 6C,D, respectively. Even if there were more
than 10 epochs, there were some silent neurons, as shown in
Figure 6D. These silent neurons exhibited almost no firing
during training. The reason for this is that the WTA updates
only synaptic weights associated with neurons that have fired;
consequently, synaptic weights connected with neurons that
rarely fire are slower to learn. As a result, these less learned
synapses reduce the firing rate of the connected silent neurons
compared to other neurons. In the end, learning is rarely achieved
for the silent neurons. In biological neural networks, there is a
mechanism called “homeostasis” to overcome these problems.
With this mechanism, a neuron that frequently fires increases
the threshold required to fire, and a neuron that rarely fires
decreases it (Lee et al., 2016b,d; Johnson et al., 2018). This
mechanism lowers the fire threshold of neurons where learning
has not been achieved; thus, it causes neurons to be more
likely to fire during subsequent learning. However, it is difficult
to change the reference resistance Rth once it is set in the
circuit. This remains a problem to be solved in the future.
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We use simplified STDP learning rule for synaptic learning. The
synaptic weights before training are shown in Figure 6B. First,
we simulated the dependence of pattern recognition accuracy
on read error using our proposed the cross-point synapse array
(i.e., Figure 5B) being connected with our proposed p-STT MTJ
neuron (i.e., Figure 5A), as shown in Supplementary Figure 7.
The pattern recognition accuracy sustained at ∼76% up to read
error of 5% and then rapidly decreased with read error larger
than 5%. In addition, we tested the dependence of pattern
recognition accuracy on the reference resistance by simulation,
as shown below Supplementary Figure 8. We determined the
reference resistance that showed the highest accuracy of pattern
recognition simulation. Using the simulated reference resistance,
the pattern recognition accuracy rapidly increased to ∼76%
in two epochs, as shown in Figure 6E. Since the single-layer
SNN used in training is learned through STDP unsupervised
learning, so only clustering was performed for each output stage.
Therefore, the most frequent output values of each node were
compared with the determined input value to measure the pattern
recognition accuracy. The single-layer SNN, composed of p-STT-
based neurons, showed a maximum recognition accuracy of
∼76%, which was somewhat lower than that of other reported
neural networks (Burr et al., 2014). In the single-layer SNN,
pattern recognition accuracy increases with the number of output
neurons (Querlioz et al., 2015; Zahari et al., 2015; Hansen
et al., 2017). However, even if the number of output neurons is
increased to 100, it is difficult to obtain more than 90% accuracy.
The major reason for the low accuracy is the lack of proper
learning algorithms to train SNN. The spike signals are not
differentiable, so global learning rule such as backpropagation
cannot be used for training SNN. Therefore, local learning rule
such as STDP is mainly used for training SNN. This limits the
structure of neural network to a single layer. Therefore, in order
to increase the accuracy of the SNN, further study of the learning
algorithm is necessary.

DISCUSSION

p-STT MTJ could perform integration when the spin electron
directions at double Co2Fe6B2 free and pinned layers were
switched from parallel to antiparallel states. However, for
the integrate-and-fire operation, a neuron circuit performing
the fire behavior was essentially designed. Pattern recognition
accuracy of ∼76% was achieved using a ReRAM-based synapse

model and the STDP learning rule. In summary, the p-STT-
based neuron could perform like a typical neuron showing
integrate-and-fire behavior and would be a suitable for SNN.
In addition, a cross-point synapse array is essentially necessary,
where a selector is vertically stacked on a synapse to eliminate
a sneak current between synapses. Thus, further studies are
necessary on processes for fabricating cross-point synapse arrays
connected with p-STT-based neurons. In addition, since the two-
terminal p-STT-based neuron can perform only the integration
behavior, a circuit performing the fire behavior should also
be designed. Therefore, further study is also necessary on
a three-terminal p-STT-based neuron that uses a magnetic
domain moving mechanism. Finally, since a strong merit of
the p-STT-based neuron would be its power consumption;
further study is necessary for a neuron circuit design with low
power consumption.
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Hardware-based spiking neural networks (SNNs) inspired by a biological nervous
system are regarded as an innovative computing system with very low power
consumption and massively parallel operation. To train SNNs with supervision, we
propose an efficient on-chip training scheme approximating backpropagation algorithm
suitable for hardware implementation. We show that the accuracy of the proposed
scheme for SNNs is close to that of conventional artificial neural networks (ANNs)
by using the stochastic characteristics of neurons. In a hardware configuration, gated
Schottky diodes (GSDs) are used as synaptic devices, which have a saturated current
with respect to the input voltage. We design the SNN system by using the proposed
on-chip training scheme with the GSDs, which can update their conductance in parallel
to speed up the overall system. The performance of the on-chip training SNN system
is validated through MNIST data set classification based on network size and total time
step. The SNN systems achieve accuracy of 97.83% with 1 hidden layer and 98.44%
with 4 hidden layers in fully connected neural networks. We then evaluate the effect of
non-linearity and asymmetry of conductance response for long-term potentiation (LTP)
and long-term depression (LTD) on the performance of the on-chip training SNN system.
In addition, the impact of device variations on the performance of the on-chip training
SNN system is evaluated.

Keywords: neuromorphic, spiking neural networks, deep neural networks, on-chip training, supervised learning,
hardware-based neural networks, synaptic devices

INTRODUCTION

Recently, artificial neural networks (ANNs) have shown superior performance in several
fields, such as pattern recognition or object detection (Gokmen and Vlasov, 2016; Ambrogio
et al., 2018; Kim C.-H. et al., 2018; Kim J. et al., 2018; Kim et al., 2019). The
structure of ANNs was inspired by models of cortical hierarchies in neuroscience and
neuroengineering (Fukushima, 1988; Riesenhuber and Poggio, 1999; Pfeiffer and Pfeil, 2018).
In particular, convolutional neural networks (CNNs) inspired by the biological vision model
have significantly improved the accuracy of deep neural networks (Krizhevsky et al., 2012).
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However, it is difficult to say that the ANNs with a Von Neumann
architecture perfectly imitate a human’s brain, which is a very
high-speed and massively parallel operating system with ultra-
low power consumption (O’Connor et al., 2013; Shrestha et al.,
2018; Kang et al., 2019). In light of this, hardware-based spiking
neural networks (SNNs) capable of massively parallel operation
by using analog synaptic devices have been regarded as an
innovative type of computing system that can partially replace
ANNs (Hwang et al., 2018).

Spiking neural networks can imitate biological behavior with
various neuron and synapse models (Jo et al., 2010; Yang
et al., 2016). Neurons in SNNs generate spikes to communicate
between adjacent neurons. The input intensity of the neuron is
represented as the number of spikes generated from the neurons
(Oh et al., 2019). The spikes transmit through synapses and
are integrated into the membrane capacitor of neurons in the
next layer. When the membrane potential exceeds the threshold
voltage, the neuron generates a spike to the deeper layer. This
biological behavior of the neuron in SNNs can be matched to the
behavior of the rectified linear unit (ReLU) activation function
in ANNs (Diehl et al., 2015; Rueckauer et al., 2017). Since their
behavior can be matched with each other, weights trained in
ANNs with ReLU can be exactly converted to the weights in
SNNs with very slight accuracy degradation. Using the ANN-
to-SNN conversion method, SNNs have achieved state-of-the-
art accuracy in MNIST, CIFAR-10, and Imagenet classification
(Pfeiffer and Pfeil, 2018). However, the weights in SNNs should
be trained from ANNs in serial operation, and the conversion
is performed once. Therefore, SNNs adopting the ANN-to-
SNN conversion cannot update themselves depending on various
system situations and only perform the inference process for a
given task. For this reason, the performance of SNNs that adopt
conversion is sensitive to unexpected variations of hardware
and cannot save the power consumption required for training a
weight (Kim H. et al., 2018; Yu, 2018). In contrast, SNNs using
on-chip training schemes that can update weights on the chip
can have immunity against device variation or noise (Querlioz
et al., 2013; Kwon et al., 2019). In addition, the on-chip training
SNN systems train a weight by applying an update pulse to a
synaptic device representing a weight, which leads to low power
consumption for training a weight (Hasan et al., 2017).

There are two types of training weight methods for SNNs
on the chip. One imitates the unsupervised training behavior in
the human brain, for example, spike-timing-dependent plasticity
(STDP) algorithms (Bi and Poo, 1998; Milo et al., 2016;
Kheradpisheh et al., 2018). The other type is the supervised
training method, which updates weights by approximating the
backpropagation algorithm to match the behavior of the SNNs
(Lee et al., 2016; Tavanaei and Maida, 2019). SNNs using
unsupervised STDP have been reported to be implemented with
synaptic devices, such as RRAM or Flash devices (Pedretti et al.,
2017; Kim C.-H. et al., 2018; Prezioso et al., 2018). However,
compared to conventional ANNs, the performance of SNNs using
STDP is limited in terms of accuracy. In contrast to STDP,
the performance of SNNs using approximated backpropagation
is close to that of conventional ANNs. However, even in this
case, signals representing an error value should be propagated

backward while calculating and storing the values for updating
weights, which is the main reason why it is difficult to implement
hardware-based SNNs using on-chip training schemes.

Here, we propose a new supervised on-chip training scheme
that efficiently approximates the backpropagation algorithm
suitable for SNNs. The proposed on-chip training scheme
dramatically reduces the memory usage required for the weight
update by using 1 bit of memory per neuron to determine
whether the neuron generates a spike at the last time step, and
1 bit of memory per neuron to store the derivative of the neuron’s
activation function. By using the stochastic characteristic of
neurons in SNNs, the performance of SNNs using the proposed
training scheme achieves the performance of ANNs. For the
hardware configuration of on-chip training SNN systems, a gated
Schottky diode (GSD), which has a saturated current, is fabricated
as a synaptic device (Bae et al., 2017; Lim et al., 2019b). This
characteristic greatly improves the reliability of the SNN system
by allowing the GSDs to represent accurate weights even if an
unexpected voltage drop occurs in the system (Lim et al., 2019a).
In addition, a parallel conductance update scheme that speeds
up the SNN system is validated for GSDs. We then design and
simulate an on-chip training SNN system based on the results
measured from GSDs and verify the performance of the system
based on its ability to classify MNIST data sets. Lastly, the system
is evaluated for non-ideal characteristics of synaptic devices, such
as non-linearity, asymmetry, and device variation.

MATERIALS AND METHODS

Gated Schottky Diode
A three-terminal gated Schottky diode (GSD) that cuts off the
Schottky forward current was previously fabricated to act as a
synaptic device (Lim et al., 2019b). However, the GSD in the
previous paper was damaged by the sputtering process for the
deposition of metal electrodes. By reducing the sputtering power,
the current level of the GSD is improved. Figure 1A shows a bird’s
eye view of the GSD. The bottom gate (BG) and ohmic contact
(O) are made of n+-poly silicon. A SiO2/Si3N4/SiO2 (ONO) stack
is then deposited, and the Si3N4 layer acts as a charge storage
layer. As an active layer, undoped Si is deposited on the ONO
stack and O electrode. Contact holes are opened on the active
layer after the layer of SiO2 has formed. A Ti/TiN/Al/TiN stack
is deposited on the exposed active layer by sputtering and forms
the Schottky contact (S). Figure 1B shows a circuit diagram of an
n-type GSD when the voltage applied to the BG is positive. If VBG
is positive, the Schottky junction is formed at the S contact, and
NMOS is formed intrinsically within the structure of the GSD.
Measured IO-VBG curves of GSDs for different VO values are
shown in Figure 1C. The effective Schottky barrier height for
electrons decreases as VBG increases, and the operating current
of GSD is the reverse Schottky diode current. Therefore, the
reverse Schottky diode current also increases as VBG increases
and can be used as a weight for SNNs. In addition, since the
magnitude of the reverse Schottky diode current is low, an
SNN system using GSDs operates with low power consumption.
Figure 1D shows the measured IO-VO curves of GSDs with
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FIGURE 1 | (A) Bird’s eye view of a GSD. (B) Circuit diagram of a GSD. When VBG is positive, operating current flows with positive VO, and the current is cut off with
negative VO. (C) Measured IO-VBG curves of GSDs with different VO values. (D) IO-VO curves of GSDs with different VBG values. When VO is positive, saturated
current is shown as VO increases. Since a negative VO depletes electrons in the poly-Si active layer, the IO current is cut off.

different VBG values. Since VO above a certain value (e.g., 1.5 V
at VBG = 1 V) is dropped between O and S in Figure 1B, the
reverse Schottky diode current is saturated with respect to the
input voltage of VO. With the help of the saturation behavior,
the current of a GSD does not change despite voltage drops
along metal wires in a crossbar array, and voltage drops by
electronic switches do not affect the voltage across the device
(Lim et al., 2019a). In addition, negative VO depletes electrons
in the Si active layer when VBG is positive, and Schottky forward
current is blocked.

Figures 2A,B show the conductance response (IO at VO = 3 V,
VBG = 0 V, VS = 0 V) with respect to the time the erase
pulse (VBG = −7 V, VO = 0 V, VS = 0 V) and program pulse
(VBG = 5.5 V, VO = 0 V, VS = 0 V) are applied, respectively. Long-
term potentiation (LTP) and long-term depression (LTD) curves
are shown by applying the erase and program pulses, respectively.
After GSDs are initialized, each pulse with a different pulse width
is applied to the GSDs 10 times. Since the amount of charge

stored in the Si3N4 layer is determined by the total time the
FN tunneling current flows (Kim et al., 2010), the conductance
can be changed continuously with the time of the program or
erase pulses applied to the devices. The normalized conductance
response of the GSD is fitted by the model of conductance with
respect to the total time a pulse is applied to a synaptic device
(Querlioz et al., 2011; Ernoult et al., 2019; Kwon et al., 2019), as
follows:

GLTP (t) = aLTP +
1

βLTP
ln (t + cLTP) , for LTP (1)

GLTD (t) = aLTD −
1

βLTD
ln (t + cLTD) , for LTD (2)

where G is the conductance of the synaptic device, t is the total
time the pulse is applied, a and c are the fitting parameters,
and β is a non-linearity factor. As shown in Figure 2, the
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FIGURE 2 | IO behavior with respect to (A) erase time and (B) program time when VO is 3 V and VBG is 0 V. After the GSD is initialized, erase (–7 V) or program
(5.5 V) pulses are applied to the BG electrode, with 0 V applied to the S and O electrodes. Each pulse with a different pulse width is applied to the GSD 10 times.
(Inset) IO behavior with respect to the erase or program time on a linear scale.

GSDs have a near-linear LTP curve (βLTP of ∼1.60) and a non-
linear LTD curve (βLTD of ∼8.03). The normalized conductance
responses as a parameter of the non-linearity factor are described
in Supplementary Figure S1.

On-Chip Training Algorithm
The behavior of an integrate-and-fire (I&F) neuron in an SNN
can approximate the conventional ReLU activation function in
ANNs (Tavanaei and Maida, 2019). A ReLU activation function,
f
(
y
)
, is defined as follows:

f
(
y
)
= max

(
0, y

)
, (3)

df
dy
=

{
1, y > 0
0, y ≤ 0

(4)

where y is the input signal of the activation function.
When the input signal of ReLU exceeds 0, the activated
value is propagated to the next layer, and the derivative
of ReLU is set to 1. This behavior of ReLU is similar
to the behavior of I&F neurons, which also generate and
propagate a spike when the membrane potential exceeds
the threshold voltage. In this regard, I&F neurons are used
in the forward-propagation phase (FP), the phase for the
inference process. In addition, we approximate the derivative
of the activation function of I&F neurons in the form of a
derivative of ReLU.

In SNNs, a weight is represented by the conductance
difference between two synaptic devices representing positive
and negative values. In the case of a network having L layers,
a weight connecting neuron i in layer l to neuron j in layer
l + 1 is represented by W l

ij = Gl
+, ij − Gl

−, ij, where l ∈
{1, . . . , L− 1} (Burr et al., 2015). The input of the first layer
is converted to a Poisson-distributed spike train, and the input
intensity is encoded as a spike rate. The input spikes are fed
into the GSD arrays, which represent the weight matrix. An I&F

neuron integrates charge resulting from the weighted sum into its
membrane capacitor:

V l
j (tFP) = V l

j (tFP − 1)+

N l−1∑
i

Sl−1
i (tFP)
Cmem

(Gl−1
+, ij − Gl−1

−, ij),

(5)
where Vl

j(tFP) is the membrane potential of I&F neuron j in
layer l at time step tFP, Nl−1 is the total number of neurons
in layer l-1, Sl−1

i(tFP) is a spike in the form of a voltage
pulse generated from neuron i in layer l-1 at time tFP, and
Cmem is the membrane capacitance of an I&F neuron. The
voltage pulses propagate along the O lines in the GSD array,
and the currents along the O lines are added to the S lines in
the array. The current output from the GSD array charges or
discharges the membrane capacitor of an I&F neuron. The I&F
neuron generates a spike when its membrane potential exceeds
the firing threshold voltage of the I&F neuron (V th). V th is
then subtracted from the membrane potential of the neuron:

if V l
j (tFP) > Vth :


V l
j (tFP) = V l

j (tFP)− Vth

Slj (tFP) = 1
glj = 1

(6)

else : Slj (tFP) = 0, (7)

where g is an approximated derivative of the neuron’s activation
function. When FP starts for a given input signal, the
approximated derivative g of each neuron’s activation function
is initialized to 0. Then, if the neuron generates a spike during
FP, g is set to 1. If the neuron does not generate a spike
during FP, g remains 0. Although the behavior of an I&F neuron
cannot be differentiable, neural networks have been reported
to show comparable performance when storing a derivative
with only 1 bit (Narayanan et al., 2017; Tavanaei and Maida,
2019). In the last layer (l = L), spikes generated from the
neurons and target spikes that supervise the correct answer are
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accumulated to obtain the “delta” value in the last layer (δL):

δLj = k
T∑

tFP=1

(
Targetj (tFP)− SLj (tFP)

)
, (8)

where T is the total time step for the FP, and k is a
constant that converts the number of spikes into the voltage
amplitude. For the correct label, a target spike train has a
value of 1, and its firing frequency is set to the maximum.
In other words, a target spike is generated every time step
with the value of 1 for the correct label, and no target spike
is generated for the wrong label. The constant k is set to
the value with the maximum δLj of 1 V. The whole process
performed in the FP is simply described with a 1-layer network
in Figure 3.

In the backward-propagation phase (BP), the delta values
reversely propagate to the previous layer through the synaptic
devices and are integrated to obtain the delta sum (Burr et al.,
2015; Hasan et al., 2017; Narayanan et al., 2017; Ambrogio et al.,
2018):

δli =

N l+1∑
j

λBPδ
l+1
j

CBP
(Gl
+, ij − Gl

−, ij)g
l
i, (9)

where g is the derivative of the neuron’s activation function
determined in the FP. λ is a constant representing the ratio
of voltage pulse width to voltage amplitude, and CBP is the
capacitance to store δ. The δ is obtained in the form of voltage
amplitude and is converted to a voltage pulse (λδ) with a

width proportional to the voltage amplitude using the pulse-
width modulation circuit (Hasan et al., 2017; Lim et al., 2019a).
Although the current direction of GSDs in the BP should be
kept the same as in the FP to maintain their conductance value,
the delta sum can be performed along the O line of GSD
arrays while maintaining the current flow direction (Lim et al.,
2018). Then, δliis obtained when the corresponding derivative (gli)
determined in the FP is 1.

In the update phase (UP), the conductance of synaptic devices
is updated depending on δ. In the conventional backpropagation
algorithm, the weight (W l

ij) update is calculated as 1W l
ij ∝

xliδ
l+1
j , where xli is the activated value. When this update rule

is applied to the SNNs, xli is matched to the number of spikes
generated from the neuron during the FP. However, significant
power consumption and memory usage are required for counting
and storing the number of spikes for every neuron, which can
become a bottleneck for the entire SNN system (Yu, 2018). In this
work, we use a 1-bit spike value (0 or 1) per neuron depending on
whether the neuron generated a spike at the last time step:

1tl+, ij = 1tl−, ij =
∣∣∣Sli (T)× λUPδ

l+1
j

∣∣∣ , (10)

where λ is a constant representing the ratio of voltage pulse
width to voltage amplitude and 1t is the width of the voltage
pulse applied to the corresponding synaptic device. In the UP,
since the amount of conductance update is modulated by λ, λ

represents the learning rate of conventional ANNs. Whether it
is a program pulse or an erase pulse is determined by the sign
of the delta value. When the weight increases, the conductance

FIGURE 3 | Conceptual diagram with a 1-layer network for the forward phase (FP) of the proposed on-chip training scheme. The spikes from previous layers
propagate along the O line of the G+ and G- array, and the current sum of the array is integrated into the membrane capacitor of the I&F. When the neuron H1 and
H2 generate a spike, the derivative (g1 and g2) of the neurons is set to a value of 1.
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of the synaptic device representing the positive weight increases
by the erase pulse and the conductance of the synaptic device
representing the negative weight decreases by the program pulse.
On the contrary, when the weight decreases, the program pulse
is applied to the device representing the positive weight and the
erase pulse is applied to the device representing the negative
weight. The whole training process of the proposed scheme is
represented in Algorithm 1.

Updating Method
After all delta values ( δ) except in the first input layer have been
obtained, the conductance of the GSDs is updated by δ and S(T).
To update the conductance of GSDs in parallel, we apply DC bias
to the BG and O lines of the array and a program or erase pulse

Algorithm 1 | On-chip training scheme in SNNs with synaptic devices.

1: Input: Poisson-distributed input spike train (S1), Total time step (T ), threshold
voltage of I&F neuron (Vth), ratio of the voltage pulse width to the voltage
amplitude (λ), capacitance (C)

2: Initialize: Membrane voltage (V ), derivative of the neuron’s activation
function (g)

3: for tFP = 1 to T do // Forward-propagation phase

4: for l = 2 to L do

5: V l
← V l

+ Sl−1 (Gl−1
+ −Gl−1

− )/Cmem

6: if V l > Vth then // If membrane voltage exceeds V th, the neuron
generates a spike

7: V l
← V l

− Vth

8: Sl
← 1

9: gl
← 1 (if l 6= L) // The corresponding derivative of the neuron’s

activation function is set to 1

10: else

11: Sl
← 0

12: end if

13: end for

14: δL
← δL

+ k
(
TargetSpike− SL)

15: end for

16: for l = L-1 to 2 do // Backward-propagation phase

17: δl
← λBPδl+1 gl (Gl

+ −Gl
−)/CBP

18: // δl is obtained in the form of voltage amplitude and converted to a
voltage pulse with a width proportional to the amplitude (λδl )

19: end for

20: for l = 1 to L-1 do//Update phase

21: 1t←
∣∣Sl (T) λUPδl+1

∣∣ // Applying a program or erase pulse to the
corresponding synaptic device

22: if δl+1> 0 then // Case of increasing a weight

23: Gl
+ ← Gl

+, LTP(t+1t) // Increasing conductance of Gl
+ by

applying an erase pulse

24: Gl
− ← Gl

−, LTD(t+1t) // Decreasing conductance of Gl
−by

applying a program pulse

25: end if

26: if δl+1< 0 then // Case of decreasing a weight

27: Gl
+ ← Gl

+, LTD(t+1t) // Decreasing conductance of Gl
+ by

applying a program pulse

28: Gl
− ← Gl

−, LTP(t+1t) // Increasing conductance of Gl
− by

applying an erase pulse

29: end if

30: end for

to the S lines of the array. Figure 4 shows the 2-by-2 layout of
GSD arrays and the bias conditions of program and erase in the
UP. The red dotted square represents the condition along the BG
and O lines for S(T) of 1, and the green dotted square stands for
the condition along the S line if δ is not equal to 0. The width of
the program and erase pulses is proportional to δ, which can be
implemented by the pulse-width modulation circuit (Lim et al.,
2019a). In this case, only cell 1 in Figure 4 should be updated by a
program or erase pulse, and the others should be inhibited in this
condition. When a program pulse with an amplitude of−3.5 V is
applied to the S line, the voltage of 2 V is applied to the BG line
of cell 1. The voltage difference between the BG and S in cell 1
is then 5.5 V, which is the condition for programming a GSD. On
the contrary, the voltage difference between BG and S of the other
cells does not exceed 5.5 V, so the other cells are inhibited in this
program scheme. In case of applying an erase pulse to the S line,
the erase pulse has the same width as the program pulse width,
but it has an amplitude of 5 V. The conductance change of each
cell condition is shown in Figure 5. The width of the program
pulse is 10 ms, and the width of the erase pulse is 100 ms. In both
the cases of program and of erase, only the conductance of cell 1
is updated, and the others are inhibited successfully. By using this
scheme, the GSDs in the array can be updated in parallel, which
can improve the update speed of the entire SNN system. Note that
the on-chip training SNN system updates weights as frequently
as the training iterations, so a parallel conductance update of the
device array is required to boost the training speed of the system.

RESULTS

Evaluation of On-Chip Training Scheme
We design and simulate fully connected (FC) neural networks
for MNIST classification to verify the proposed on-chip training
scheme for SNNs. The batch size of training is 1 to reduce
memory usage and the area footprint required for the memory.
The accuracy of SNNs is evaluated with the membrane voltage
of the neuron at the last layer. The parameters in the training
scheme for MNIST classification are described in Table 1.
Figure 6A shows the MNIST test set accuracy of SNNs using the
proposed on-chip training scheme according to the total time
step (T). Here we assume that synaptic devices have a linear
conductance response and no variation, and the baseline accuracy
in Figure 6A is evaluated in ANNs that have the same network
size. If T is 20, the maximum number of input, hidden, and
output spikes are 20. The increased T precisely represents the
activation value of each neuron and δ, resulting in improved
accuracy for SNNs. When T is equal or more than 20, the SNNs
show saturated accuracy but achieve accuracy near the baseline
accuracy of ANNs. Figures 6B,C show whether the proposed
on-chip training scheme can be applied to wider and deeper
networks. The on-chip training SNNs achieve higher accuracy
as the layer width increases, but the accuracy decreases as the
depth of the network increases with the same T. In this case,
since increased T represents more accurate neuron activation
values and δ, the accuracy in deeper networks is expected to
be improved. As a result of increasing T to 50, the accuracy of
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FIGURE 4 | Bias condition in the update phase with the GSD array. The red dotted square is the condition along the BG and O line for S(T) of 1, and the green
dotted square along the S line is the condition when δ is not equal to 0.

SNNs with 4 hidden layers increases, as shown in Figure 6C.
Nevertheless, the training curve for the network with 4 hidden
layers oscillates over epochs due to the large λUP. Since λUP
is multiplied by δ, a large λUP increases the amount of weight
update and causes the oscillating training curve. Thus, we scale
λUP to train deeper networks. After reducing λUP to 0.2λUP at
epoch 11 in Figure 6D, a stable training curve is obtained, and
the accuracy increases to 98.25%.

Table 2 compares this work with conventional on-chip
training schemes using analog synaptic devices for MNIST
classification. The proposed on-chip training scheme achieves an
accuracy near that of conventional ANNs even when the batch
size of training is 1 with a single hidden layer. In addition, we
increase the batch size to 100 to improve the proposed scheme
for SNNs with 4 hidden layers. Although increasing batch size
for training directly increases memory usage, it improves the
accuracy of deep networks. As a result, the network achieves an
accuracy of 98.44% (0.1% lower than the accuracy of an ANN
using the Adam optimizer), and shows excellent performance
compared to other on-chip training schemes.

When ANNs are converted to SNNs, I&F neurons generate
spikes at each time step with a probability proportional to the
activated value in the ANN. Then, the weights connected to the
neuron that generates a large number of spikes are updated with
a high probability in one training iteration. This weight update
scheme using a 1-bit spike event of a neuron is less accurate than

that using the total number of spikes of a neuron. However, the
average of total weight updates using a 1-bit spike approximates
the average of total weight updates using the number of spikes
of the neuron. To compare the weight update schemes, we trace
the sum of total weight updates in each layer with respect to the
training iterations. Case 1 is the sum of total weight updates using
1-bit spike events (this work), and Case 2 is the sum using the
total number of spike events. In Case 1, S(T) of the equation
(10) is 0 or 1, determined by the spike event at the last time
step. In Case 2, S(T) in the equation (10) is converted to the
number of spikes in the FP divided by T. For example, if the
neuron generates spikes 14 times in the FP with a T of 20, the
S(T) in the equation (10) is converted to 0.7 for Case 2. The actual
weight update is performed with the 1-bit spike of a neuron, but
the amount of the weight update is calculated by both ways at
each iteration to compare them. Figure 7 shows the difference
between the sum of total weight updates for Case 1 and Case 2.
As shown in Figure 7, the sums of total weight updates in both
cases are not exactly the same, but the values in Case 1 fluctuate
around the values in Case 2. In addition, we trace the sum of
weight updates of the random position in each layer: a synapse
connecting the 358th neuron as the input layer and the 124th
neuron as the hidden layer, and a synapse connecting the 97th
neuron as the hidden layer and the 5th neuron as the output layer.
As shown in Figure 8, the sum of weight updates in case 1 follows
the curve for case 2, although the curves are not exactly the same.
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FIGURE 5 | IO-VO curves of the GSDs in the array (A) programming for 10 ms
and (B) erasing for 100 ms depending on each condition in Figure 4. Only the
current of cell 1 is changed, while others are inhibited successfully.

This indicates that the proposed on-chip training scheme for
SNNs can achieve performance similar to that of ANNs by using
the stochastic characteristics of SNNs. In other words, a spike
from a neuron is generated at every time step with a probability
proportional to the value of the neuron’s activation function, so
the 1-bit spike event approximates the behavior of the neuron’s
activation function during training.

Non-ideal Device Characteristics
The accuracy of on-chip training SNNs versus the non-linearity
of conductance response is shown in Figure 9A. Although
the delta value (δ) can be applied to the synaptic devices
in the form of the program or erase pulse, the conductance
response is non-linear with respect to the updating pulse. As
a result, the expected weight updates cannot be reflected in
the conductance updates, which causes accuracy degradation
of SNNs. Nevertheless, an accuracy of higher than 93% is
obtained when the non-linearity factor (β) is 8 for both LTP and
LTD, which is an extremely non-linear conductance response of

TABLE 1 | The parameters when the GSDs are used as synaptic
devices in the SNNs.

Parameters Description Value

aLTP, aLTD cLTP, cLTD Parameters of the fitted
curve for the normalized
conductance response of
GSDs

2.270, 1.422 0.0278,
18.25

βLTP,βLTD Non-linearity factor of GSDs 1.60, 8.03

S Spike in the form of voltage
pulse

Pulse amplitude: 3 V
Pulse duration: 10 µs

Cmem Membrane capacitance of
I&F neuron

4T−8T fF (l = 1) 40−80
fF (l > 1)

V th Threshold voltage of I&F
neuron

0.1 V

λ Ratio of voltage pulse width
to voltage amplitude

BP 50 µs/V

UP 50 µs/V (l = L)
500 µs/V (l 6= L)

CBP Capacitance for BP 40 fF

synaptic devices. Since the conductance of synaptic devices is
updated continuously with the program or erase time, the on-
chip training SNN system can achieve high accuracy even with
highly non-linear devices. The accuracy of SNNs depending on
the non-linearity for LTD is shown in Figure 9A to investigate
the effect of asymmetry between the LTP and LTD curves
on the accuracy. The non-linearity factor of the LTP curve
has fixed values of 1 and 3. The accuracy of SNNs decreases
as the non-linearity factor for LTD increases, represented as
the red and black lines in Figure 9A. However, the degree
of accuracy reduction resulting from the asymmetry is less
than when β values for both LTP and LTD increase. In the
case of a GSD as a synaptic device, the on-chip training SNN
achieves an accuracy of 96.5%. The near-linear conductance
change in the LTP curve can mitigate the effect of non-linear
conductance change in LTD.

Inherent device variation is inevitable in neurons and synaptic
devices. We categorize the device variation into three types:
pulse-to-pulse variation (Chen et al., 2015), device-to-device
variation (Gong et al., 2018; Sun and Yu, 2019), and stuck-at-
off variation (Li et al., 2018). The performance of the proposed
on-chip training scheme is evaluated with the degree of each
variation and is compared with the performance of the off-
chip training scheme (Kwon et al., 2019). When the off-chip
training scheme is adopted to SNNs, the weights trained in ANNs
using ReLU are exactly converted to the weights in SNNs by
modulating the width of pulses applied to the synaptic devices.
The synaptic device used in the SNNs is the GSD device, which
has β values of ∼1.60 and ∼8.03 for LTP and LTD. In the
off-chip training scheme, the trained weights are transferred
to conductance along the LTP curve. When the ANN-to-SNN
conversion is adopted, the accuracy of off-chip training SNNs
with a T of 20 is 98.04% for MNIST data classification as a
baseline. All accuracy datapoints in Figures 9B–D were evaluated
five times and then averaged. The error bars show 1 standard
deviation over five simulations.
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TABLE 2 | Comparison of the proposed with conventional on-chip training schemes for hardware-based neural networks using analog synaptic devices.

Architecture Training method Batch size Network size Accuracy

FC (Zhang et al., 2018) Sign BP – 784-300-10 94.50%

FC (Chang et al., 2018) BP-based 10–50 784-300-10 97.93%

FC (Fu et al., 2019) BP-based – 400-100-10 95.55%

FC (Ambrogio et al., 2018) Adam 1 528-250-125-10 97.94%

FC (Lim et al., 2018) Manhattan learning rule 1 784-200-10 95.36%

FC (ANN*) Adam 100 784-256-256-256-256-10 98.54%

FC (This work) BP-based 1 784-256-10 97.83%

FC (This work) BP-based 100 784-256-256-256-256-10 98.44%

The accuracy of all reported data was evaluated through the classification of the MNIST test set and obtained through hardware-based simulation. The proposed on-chip
training scheme shows excellent accuracy compared to other on-chip training schemes. *Software-based neural network simulated in the Pytorch framework.

Figure 9B shows a comparison between the accuracy of SNNs
using the on-chip and off-chip training scheme by taking pulse-
to-pulse variation into account. When an update pulse is applied
to a synaptic device, a Gaussian distribution function is used to
indicate fluctuations in weight updates. The variation is applied
to the on-chip training SNN system whenever an update pulse
is applied. On the other hand, the variation affects the off-chip
training system only once when transferring the trained weights
to the conductance of synaptic devices in SNNs. As shown in

Figure 9B, the accuracy significantly decreases when a large
conductance variation is applied to the synapses in the off-
chip training SNN system. However, even if σ/µ increases to 2,
the accuracy of the on-chip training SNN system is maintained
(accuracy loss of 0.2% at σ/µ = 2).

We also evaluate the effects of device-to-device variation
on the SNNs. Synaptic devices in the array can have various
characteristics for one non-linearity factor. We assume that the
non-linearity factor of synaptic devices in the array follows a
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FIGURE 7 | Comparison between the updating method that uses only a 1-bit spike event at the last time step per neuron (Case 1) and the total number of
generated spikes in the neuron divided by the total time step (Case 2). The difference in the sum of total weight updates for Case 1 and Case 2 with respect to the
training iterations in (A) the first layer and (B) the second layer.

FIGURE 8 | Sum of weight updates in a synapse connecting two adjacent neurons in the 784-256-10 network. (A) Sum of weight updates in the synapse between
the 358th neuron as the input layer and the 124th neuron as the hidden layer. (B) Sum of weight updates in the synapse connecting the 97th neuron as the hidden
layer and the 5th neuron as the output layer.

Gaussian distribution, and the accuracy of SNNs is evaluated with
respect to the degree of variation. As a result of applying the
device-to-device variation, the synaptic device array has various
conductance responses with different non-linearity factors.
However, the on-chip training SNN systems also maintain their
accuracy, but the accuracy of off-chip training SNN systems
decreases as the degree of device-to-device variation increases, as
shown in Figure 9C.

Lastly, we investigate the effect of the stuck-at-off ratio on
the accuracy of SNNs. The stuck-at-off ratio is defined as the
ratio of the number of stuck-at-off devices to the total number
of devices in the array. Note that the number of devices with a
conductance of 0 increases as the stuck-at-off ratio increases, and
the stuck devices cannot be updated. As shown in Figure 9D, the
accuracy of on-chip training SNNs decreases as the stuck-at-off
ratio increases. A device pair represents a weight in SNNs, and
both devices in the pair are updated when the corresponding
weight is updated. Therefore, the weight updates are always
performed using both near-linear LTP and LTD curves, which

can mitigate the abrupt conductance change in the highly non-
linear LTD curve of the GSDs. However, if one device in the pair
is stuck-at-off with respect to all training iterations, the abrupt
changes of stuck devices cannot be mitigated and degrade the
performance of SNNs, even if the on-chip training scheme is
adopted. When the SNNs adopt the off-chip training scheme, the
accuracy of SNNs also degrades as the ratio increases, and the
degree of accuracy loss is more severe than in the case of adopting
the on-chip training scheme.

DISCUSSION

In this work, we proposed an on-chip training scheme suitable
for hardware-based SNNs using analog synaptic devices. This
scheme requires 2 bits of memory per neuron to update a
weight: 1 bit for storing the spike event of the neuron at the
last time step and the other for storing the derivative of the
neuron’s activation function. Since the input of the first layer is
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FIGURE 9 | Accuracy of the on-chip training SNN systems versus (A) the non-linearity factor (β) of conductance response, (B) pulse-to-pulse variation, (C)
device-to-device variation, and (D) stuck-at-off ratio. Although extremely non-linear and asymmetric devices are used as synaptic devices, high accuracy is
obtained. Degradation due to pulse-to-pulse variation and device-to-device variation is negligible, but degradation due to the stuck-at-off ratio is significant.

converted to a Poisson-distributed spike train, the probability of
generating a spike at each time step is determined by the activated
value of the neuron. The stochastic 1-bit spike event of an I&F
neuron helps the system achieve high accuracy while using the
minimum memory. In addition, we evaluated the performance
of the proposed training scheme in classifying N-MNIST data
that cannot be represented as Poisson-distributed spike trains.
As shown in Supplementary Table S1, the on-chip training SNN
system achieved 97.64% accuracy with real spike data from event-
based sensors (N-MNIST data) and still has the advantages of low
power consumption and hardware efficiency.

As a synaptic device, we fabricated a gated Schottky diode
(GSD), which has saturated current with respect to the input
voltage. Even if a noisy input voltage is applied to the GSD, the
weight represented by the GSD is stable because almost constant
saturation current is maintained. When the on-chip training
SNN system uses GSDs as synaptic devices, the array of GSDs
can be updated and inhibited in parallel operation, which greatly
boosts the training speed of the SNN system. In addition, the
energy consumption per spike in a GSD is about 30 fJ (∼1 nA

current at 3 V amplitude and 10 µs pulse width), so the on-
chip training SNN system is estimated to operate at very low
power consumption.

The on-chip training SNN system was verified with fully
connected neural networks for MNIST data classification. The
accuracy of SNNs (784-256-10) using the on-chip training
scheme achieved 97.83% withT of 20, compared to an accuracy of
98.04% when ANN-to-SNN conversion was used with the same
network. Since we did not use regularization methods such as
dropout (Srivastava et al., 2014) or L2 regularization, training
curves with a large λUP in deep networks can show variance,
and the accuracy of deep networks can decrease. In this case,
increasing T is a way to recover accuracy, because the activated
and delta values of the neuron are more precisely represented by
increased T. However, increasing T can be a burden on the overall
system because the forward-propagation process is repeated T
times in on-chip training SNNs. Increasing the batch size of the
training process is also a way to enhance the accuracy of deep
networks by averaging stochastic spike events of neurons within
a single batch training. We confirmed that the accuracy of deep
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networks with increased batch size (98.44%) is very close to
that of conventional ANNs (98.54%). In addition, the accuracy
of deep networks can be improved by controlling the λUP,
which is used as the learning rate of conventional ANNs.
Since the proposed on-chip training scheme uses a 1-bit spike
event at the last time step, the weight updates are calculated
less precisely compared to the conventional backpropagation
algorithm. Therefore, setting a small λUP allows deep networks
to achieve high accuracy.

We investigated the effect of the non-ideal characteristics
of synaptic devices on the performance of on-chip training
SNNs. Digital SNN systems seem to alleviate the influence
of the non-ideal characteristics of synaptic devices (Pani
et al., 2017; Yang et al., 2018; Yang et al., 2020), but analog
SNN systems can be affected by such synaptic characteristics.
Therefore, their influence needs to be considered when
evaluating the performance of analog SNN systems. In this
work, the non-linearity and asymmetry of devices affected the
performance of SNNs, but high accuracy was still achieved
even in the extreme case. Since the width of pulses to
be applied to synaptic devices is obtained in proportion
to the delta value, degradation due to non-linear weight
update is mitigated in this training scheme. Compared with
conventional on-chip training algorithms that use the number
of pulses to be applied to update the weights, this scheme
has the advantage of continuously and accurately updating
the conductance of synaptic devices. As a result, this training
system allows the conductance of analog synaptic devices
with continuous characteristics to be reflected in the training
process, thereby improving the accuracy of SNNs with non-linear
synaptic devices.

Furthermore, the effects of three types of device variations
on the performance of SNNs were evaluated with respect
to the degree of the variation when the GSDs are used as
synaptic devices: pulse-to-pulse variation, device-to-device
variation, and the stuck-at-off device ratio. Since on-chip
training SNNs can mitigate the impact of variation on the
system performance, the accuracies of on-chip training SNN
systems with GSDs are slightly affected by the pulse-to-
pulse variation and device-to-device variation. In contrast,
if one of the pairs of devices is stuck-at-off, non-linear
weight updates by the LTD curve of one GSD device have
a significant impact on the training process and degrade
the performance of on-chip training SNNs. However, since
GSDs are fabricated with reliable CMOS processes, the
stuck-at-off ratio in the GSD array is expected to be
negligibly small.

The main challenge of the proposed on-chip training scheme
for SNNs is realizing the performance of convolutional neural
networks (CNNs) or recurrent neural networks (RNNs). To
achieve this, weight sharing in the CNN structure should be
implemented in SNN systems with low power consumption
(Bartunov et al., 2018). Although the max-pooling layer and
softmax layer in CNNs can be implemented in SNNs (Rueckauer
et al., 2017), the batch normalization layer, which significantly
improves the performance of CNNs, should be implemented in
hardware-based SNNs while updating parameters during training
iterations. In addition, the long short-term memory (LSTM) layer
in RNNs should be implemented in the form of SNNs without
much memory usage. If the conditions mentioned above are met,
the proposed on-chip training scheme is expected to achieve
state-of-the-art performance for hardware-based SNNs with low
power consumption and high-speed parallel operation.
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Objective: For hypertensive individuals, their blood pressure (BP) is often managed by
taking medications. However, antihypertensive drugs might cause adverse effects such
as congestive heart failure and are ineffective in significant numbers of the hypertensive
population. As an alternative method for hypertension management, non-drug devices-
based neuromodulation approaches such as functional electrical stimulation (FES) have
been proposed. The FES approach requires the implantation of a stimulator into
the body. One recently emerging technique, called low-intensity focused ultrasound
stimulation (FUS), has been proposed to non-invasively modulate neural activities. In
this pilot study, the feasibility of adopting low-intensity FUS neuromodulation for BP
regulation was investigated using animal models.

Methods: A FUS system was developed for BP modulation in rabbits. For each
rabbit, the low-intensity FUS with different acoustic intensities was used to stimulate
its exposed left vagus nerve, and the BP waveform was synchronously recorded in its
right common carotid artery. The effects of the different FUS intensities on systolic blood
pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MAP), and heart
rate (HR) were extensively examined from the BP recordings.

Results: The results demonstrated that the proposed FUS method could successfully
induce changes in SBP, DBP, MAP, and HR values. When increasing acoustic intensities,
the values of SBP, DBP, and MAP would tend to decrease more substantially.

Conclusion: The findings of this study suggested that BP could be modulated through
the FUS, which might provide a new way for non-invasive and non-drug management
of hypertension.

Keywords: blood pressure management, low-intensity focused ultrasound stimulation, vagus nerve,
neuromodulation, hypertension animal study
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INTRODUCTION

High blood pressure (BP) is one of the leading causes of
morbidity and mortality worldwide. Clinically, a common
way for BP management is to regularly take antihypertensive
medications for the hypertensive population. While a variety
of antihypertensive drugs could effectively regulate BP with
a primary goal to prevent the occurrence of cardiovascular
and cerebrovascular complications such as stroke, a long-term
medication of antihypertensive administration may cause
some potential side effects such as congestive heart failure,
depression, immunological disease, orthostatic symptoms,
palpitations, precipitate angina, sexual dysfunction, and
syncope (Husserl and Franz, 1981; Marc et al., 2019).
Furthermore, some of the existing antihypertensive drugs
have been reported to be associated with an increased
risk of myocardial infarction (Psaty et al., 1995) as well as
ischemic stroke (Klungel et al., 2001). On the other hand,
for a substantial portion of patients with hypertension, their
BP is uncontrolled by currently available antihypertensive
drugs, which are designated as having resistant hypertension
(Bisognano et al., 2011).

Owing to those potential side effects of taking antihypertensive
medications regularly for a long time (even during the rest
of life) and the issue of resistant hypertension, device-based
non-drug neuromodulation approaches have been proposed
and developed for the administration of resistant hypertension.
This is because resistant hypertension is mainly a neurogenic
disease characterized by enhanced sympathetic nerve activity.
Thus, novel neuromodulation approaches targeting sympathetic
nerve inhibition might be potential for the treatment of
resistant hypertension. Tremendous evidences have proved
that neuromodulation techniques such as functional electrical
stimulation (FES) of the carotid baroreceptor (Scheffers et al.,
2010; Bisognano et al., 2011; Lohmeier and Iliescu, 2011;
Bakris et al., 2012; Hoppe et al., 2012)/vagus nerve (Plachta
et al., 2014; Gierthmuehlen et al., 2016; Annoni et al., 2019)
and renal sympathetic denervation (RSD) by different devices
and techniques [including surgical sympathectomy (Smithwick,
1948), laparoscopic sympathectomy (Gao et al., 2019), catheter-
based radiofrequency ablation (Krum et al., 2009), endovascular
ultrasound (Fengler et al., 2019), injection of neurotoxic agents
(Lohmeier and Hall, 2019), external stereotactic radiofrequency
(Cai et al., 2019), external high-intensity focused ultrasound
(Wang et al., 2013), etc.,] might reduce BP through sympathetic
nerve activity inhibition. However, these procedures of current
neuromodulation methods are either invasive or associated
with complete nerve damage. The invasive surgery for the
implant of FES stimulator would lead to some difficulties and/or
adverse effect such as complicated surgical implantation and
perioperative and post-surgery risks. In addition, dealing with
the damaged implanted electrodes wrapped in the scar tissue
remains unclear and difficult (Plachta et al., 2014). Besides that,
despite that the catheter-based RSD procedures are minimally
invasive and the procedures of performing external stereotactic
radiofrequency or external high-intensity focused ultrasound for
RSD are non-invasive, BP is reduced by completely destroying

the renal sympathetic nerve by utilizing the high intensity of the
radiofrequency/ultrasound energy.

By contrast with the electrical approaches (such as FES) and
denervation methods (such as RSD), one emerging technology
that is called low-intensity focused ultrasound stimulation (FUS)
has been shown in a number of literatures to be promising
in non-invasive neuromodulation without damaging the nerve
(Baek et al., 2017; Landhuis, 2017); thus, it should be a potential
approach for BP modulation. Specifically, the penetrability of
ultrasound allows it to penetrate non-invasively from the body
surface into a deep targeted nerve or tissue without a need of
surgical implantation. The focused characteristics of ultrasound
could ensure the precise stimulation of a targeted nerve or
tissue. Furthermore, by setting different acoustic parameters
such as intensity and frequency, neural activity could be
selectively activated or inhibited without nerve damage. Owing
to those advantages, FUS has opened a new era for non-
invasive neuromodulation and has been recently applied in a
number of studies in the field of neurosciences (Hakimova
et al., 2015; Baek et al., 2017; Landhuis, 2017). By far, the FUS
neuromodulation technique has been widely applied for brain
stimulation (Hakimova et al., 2015; Baek et al., 2017; Landhuis,
2017). Furthermore, the FUS has also been used to target different
peripheral nerves for neuromodulations. For example, targeting
FUS at the retina could activate a visual-evoked potential
equal to strong visual responses (Menz et al., 2013), at ear
labyrinth it could cause auditory sensation corresponding to an
audio-modulating signal (Tsirulnikov et al., 1988; Gavrilov and
Tsirulnikov, 2012), at the peripheral sensory neuroreceptors or
nerve fibers it could excite tactile, thermal, and pain sensations
(Bystritsky et al., 2011; Gavrilov and Tsirulnikov, 2012; Legon
et al., 2012), and at the sciatic nerve it could modulate motor
neuron activity (Kim et al., 2020).

The successful and the promising applications of low-intensity
FUS as described above for the neuromodulation of both the
central and the peripheral nerves inspired us to consider the
feasibility of utilizing FUS technique to stimulate the peripheral
nerves (such as vagus nerve) for BP regulation. One previous
animal study suggested that using focused pulsed ultrasound
for vagus nerve modulation could induce the change of its
compound action potential (CAP) (Juan et al., 2014). As it is well
known, the BP value is regulated by the vagus nerve (Plachta
et al., 2014; Annoni et al., 2019). Hence, we hypothesized that
it might be feasible to control the BP by stimulating the vagus
nerve via low-intensity FUS. In this pilot study, by using animals,
we investigated whether BP could be effectively controlled
through low-intensity FUS neuromodulation and explored how
the different acoustic intensities would influence on the BP
modulation as well as heart rate (HR). This study would be worth
looking forward to provide an effective way for non-invasive and
non-drug management of hypertension.

MATERIALS AND METHODS

In this study, the experiments of BP control through FUS
modulation were conducted on eight white rabbits (six
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New Zealand white rabbits and two Japanese white rabbits,
all male, body weight 3.5–4.5 kg). For each rabbit, the BP
modulation experiments included three sections: (1) animal
preparation, (2) ultrasonic stimulation, and (3) BP data
acquisition (as shown in Figure 1). All the animal experimental
procedures were approved by the Institutional Animal Care
and Use Committee (IACUC) of Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences (SIAT-
IACUC-190801-YGS-LWH-A0454-01). The details of the animal
experiment are described in the following subsections.

Animal Preparation
For each rabbit, its left vagus nerve was chosen as the targeted
nerve of BP modulation, and its right common carotid artery
was selected as BP detecting site. Although the FUS can be
applied non-invasively, a surgery was performed to expose the
left vagus nerve to ensure that the focus of the ultrasound
transducer precisely stimulates the targeted vagus nerve, and the
right common carotid artery was also exposed by surgery to
measure the BP values. Before the surgery commenced, a face
mask was initially put on the face of the rabbits. The rabbits
were induced to anesthetize using 5% isoflurane delivered with
oxygen at a rate of 0.8 L/min, and then the anesthesia level
was reduced to 2.5% isoflurane for maintenance. After that,
the rabbits were placed on a platform in supine position, their
neck hairs were shaved off with a razor, and then the surgical
area was sterilized with alcohol. The underlying sternohyoid
muscle was exposed through a ventral neck incision, and then
the left vagus nerve and the right common carotid artery
were exposed and separated from the neurovascular bundles,
respectively. The exposed left vagus nerve was targeted with a

low-intensity FUS probe for neuromodulation, and the exposed
right common carotid artery was catheterized for continuous BP
wave recording. During the experiment, 0.3% heparin sodium,
an anticoagulant, was used to prevent blood coagulation when
necessary to ensure that the experiment goes on smoothly.
After successfully conducting the experiment, the rabbits were
sacrificed with an overdose of isoflurane.

Ultrasonic Stimulation
Sonication Setup and Acoustic Measurement
An ultrasonic stimulation system was built using a function
generator, a power amplifier, and a focused ultrasound transducer
(shown in Figure 1). The driving signal from the functional
generator (SDG 1032X, SIGLENT, Shenzhen, China) was
amplified by a power amplifier (A075, E&I, Ltd., Rochester, NY,
United States) and then sent to a focused ultrasound transducer.
The focused ultrasound transducer with a fundamental frequency
(FF) of 3.7 MHz, a diameter of 19.5 mm, and a focal length of
17 mm was connected to an acoustic collimator. The collimator
was designed based on the characteristics of the ultrasound
transducer and was fabricated with a three-dimensional (3D)
printer, which was used to precisely focus the ultrasound on the
stimulation target. During the experiment, the collimator was
filled with ultrasound gel for better acoustic coupling.

Using the FUS with different acoustic intensities to stimulate
a nerve may cause different biological responses. In this study,
two kinds of acoustic intensities, spatial-peak pulse-average
intensity (Isppa) and spatial-peak time-average intensity (Ispta),
were examined to explore their influences on BP modulation.
The Isppa and the Ispta represent the degree of acoustic pressure
given by the driving voltage and the energy deposition rate in

FIGURE 1 | Experimental setup, with description of animal preparation, focused ultrasound stimulation (FUS) control, and data acquisition system. The placements
of FUS transducer and blood pressure (BP) transducer are shown. RF, radio frequency.
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TABLE 1 | Sonication parameters used in the stimulation trials with fixed
fundamental frequency (3.7 MHz), sonication duration (5 s), and
inter-stimulus interval (1 s).

AI: Isppa (W/cm2) Duty cycle (%) Tone-burst duration (ms) AI: Ispta (W/cm2)

18.0 30 0.3 5.4

48.5 30 0.3 14.6

87.3 30 0.3 26.2

18.0 50 0.5 9.0

48.5 50 0.5 24.3

87.3 50 0.5 43.6

18.0 70 0.7 12.6

48.5 70 0.7 34.0

87.3 70 0.7 61.1

18.0 100 – 18.0

48.5 100 – 48.5

87.3 100 – 87.3

the tissue, respectively. The Isppa can be theoretically calculated
according to the American Institute of Ultrasound Medicine
standards (NEMA, 2004) using the following equation (1):

Isppa =
P2

0
2ρc

(1)

where P0 is the acoustic peak pressure, ρ is the density of
the medium (1,000 kg/m3), and c is the sound speed in the
medium (1,480 m/s). Before the experiments, three sets of
Isppa parameters (shown in Table 1) were determined, and the
acoustic pressure fields in the focal region generated by the
ultrasonic stimulation system were practically measured using
a 3D acoustic scanning system (UMS3, Precision Acoustics,
Dorchester, United Kingdom) equipped with a calibrated
needle-type hydrophone (HNP-0400, Onda, Sunnyvale, CA,
United States). Figure 2A shows a typical example of acoustic
pressure distributions in the axial plane (X–Z section) with a
0.5-mm step at the focus position (Y-axis).

The Ispta can be calculated using the equation (2):

Ispta = DC× Isppa (2)

where DC represents the ultrasound duty cycle, a percentage
ratio of sonication active time to a total period. Thus, the Ispta
would be determined by both acoustic peak pressure and time-
related parameters (DC). During the experiment, the Ispta values
ranged from 5.40 to 87.3 W/cm2 by setting the DC values to be
30, 50, 70, and 100%, with different Isppa values (18.0, 48.5, and
87.3 W/cm2), as shown in Table 1.

Ultrasound Stimulation Trials
The FUS trials were conducted by setting parameters of the
function generator to examine the effects of different acoustic
intensities on the BP regulation. One channel of the function
generator was used to control the ultrasound FF and tone-burst
duration (TBD) and was triggered by another channel of the
function generator which was used to generate the bursts of
sinusoidal pulse waves and control the pulse repetition frequency
(PRF), sonication duration (SD), and inter-stimulus interval
(ISI), as shown in Figure 2B. The duty cycle (DC) equals to
TBD divided by 1/PRF. Note that the FUS with a DC of 100%
represents continuous stimulation and that with a DC less than
100% represents the pulsed stimulation.

In this study, the FF, PRF, SD, and ISI were fixed and
set to 3.7 MHz, 1 kHz, 5 s, and 1 s, respectively, and the
TBD was changed with different values to obtain different
DC and Ispta, as listed in Table 1. For each trial with a set
of predefined sonication parameters, the FUS duration lasted
for about 20 s to clearly observe the BP changes, and then
we waited for around 60 s after cessation of the stimulation
until the BP returned to the baseline level. The sequence of
sonication trials was pseudo-randomized and balanced across
the animals. Repeated ultrasound stimulation trials on the same
animal were conducted to ensure the effectiveness of the different
sonication parameter sets.

Data Acquisition
During the FUS experiments, the BP waveform was continuously
recorded in the exposed right common carotid artery with a
commercially available data acquisition system (ADInstruments
Pty Ltd., Bella Vista, NSW, Australia). The sampling rate was set

FIGURE 2 | (A) The acoustic pressure distributions of the 3.7-MHz FUS transducer in the axial plane (X–Z section) with 0.5-mm steps at the focus position (Y-axis).
(B) An illustration of parameters for a typical pulsed sonication: PP, peak pressure; Isppa, spatial-peak pulse-average intensity; Ispta, spatial-peak time-average
intensity; DC, duty cycle; TBD, tone-burst duration; PRF, pulse repetition frequency; SD, sonication duration; ISI, inter-stimulus interval; FF, fundamental frequency.
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as 1,000 Hz. Four important cardiovascular parameters, beat-to-
beat systolic BP (SBP), diastolic BP (DBP), mean arterial pressure
(MAP), as well as heart rate (HR), were calculated from the BP
recordings by using a commercial software (LabChart toolbox,
ADInstruments). SBP and DBP are defined as the amplitude of
the peak and the trough of BP waveform, respectively. MAP
represents an average blood pressure within a single cardiac cycle,
which could be calculated using equation (3). HR is defined as
the number of heartbeats in a minute and herein is calculated by
equation (4).

MAP =
1
3

SBP+
2
3

DBP (3)

HR = 60/IBI (4)

where IBI indicates inter-beat interval.

Statistical Analysis
A paired t-test was conducted to assess the significant difference
of the changes in arterial BP and HR when the FUS was turned off
and on. A correlation analysis measured with Pearson coefficient
was performed to estimate the relationship between the BP
control and each of the ultrasonic stimulation parameters, as well
as the relevance between the BP changes and the HR changes
in response to the FUS. The analysis results were expressed
as mean ± standard deviation (SD). A value of p < 0.05 was
considered to be statistically significant. All statistical tests were
conducted using the SPSS software package for data analysis.

RESULTS

BP Modulations With a Low-Intensity
FUS to the Vagus Nerve
Figure 3A shows a representative segment of the continuous BP
waveform recordings during the FUS to the left vagus nerve of
a rabbit with an incremental acoustic intensity (18.0, 48.5, and
87.3 W/cm2 Isppa), in which the FUS durations were indicated
by red bars. It was clearly observed from Figure 3A that the
arterial BP waveform gradually decreased from the baseline level
when the FUS was turned on, and the BP waveform slowly
returned back to the baseline level when the FUS was turned
off. Similar changes in the BP waveform characteristics were
observed when the FUS was conducted repeatedly. With the
increase of acoustic intensity (from 18.0 to 87.3 W/cm2 Isppa),
the BP value decreased more substantially. To further illustrate
this phenomenon in a clearer manner, a zoom-in of the BP
waveform under the FUS at 87.3 W/cm2 Isppa is shown in
Figure 3B.

Figure 4 shows the overall changes of SBP, DBP, MAP, and
HR of eight rabbits when applying FUS on the left vagus nerve at
3.7 MHz FF, 1 kHz PRF, 5 s SD, and 18.0–87.3 W/cm2 Isppa. The
white boxes indicated the values before stimulation, and the gray
boxes demonstrated the values recorded during the stimulation.
As shown in the boxplots, the mean values of SBP decreased by
1.91, 9.71, and 10.09 mmHg when applying FUS at 18.0, 48.5, and
87.3 W/cm2 Isppa, respectively. Meanwhile, the mean values of
DBP decreased by 3.01, 13.75, and 14.55 mmHg, MAP decreased
by 2.64, 12.41, and 13.06 mmHg, and HR decreased by 7.02, 19.21,
and 24.90 bpm when applying FUS at 18.0, 48.5, and 87.3 W/cm2

FIGURE 3 | Arterial blood pressure (ABP) and heart rate change when applying focused ultrasound stimulation (FUS) to the vagus nerve. (A) A typical recording of
the original ABP waveform of a white rabbit responding to the FUS with increasing acoustic intensities (18.0, 48.5, and 87.3 W/cm2 Isppa). ABP decreased when the
FUS was turned on. (B) A zoom-in view of ABP waveform under the FUS at 87.3 W/cm2 Isppa. The red bar indicates the period of stimulation.
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FIGURE 4 | The overall changes (n = 8) in (A) systolic blood pressure, (B) diastolic blood pressure, (C) mean arterial pressure, and (D) heart rate responding to
focused ultrasound stimulation. The white boxes indicate the values before stimulation, and the gray boxes indicate the values during the stimulation. *p < 0.05,
†p < 0.01, ‡p < 0.001.

Isppa, respectively. A paired t test showed that the decrease in
SBP, DBP, and MAP was significant when applying FUS at 18.0,
48.5, and 87.3 W/cm2 Isppa (Figures 4A–C). HR was significantly
decreased at 48.5 and 87.3 W/cm2 Isppa (Figure 4D). Thus, FUS
on the left vagus nerve at 3.7 MHz FF, 1 kHz PRF, 5 s SD, 1 s
ISI, and 18.0–87.3 W/cm2 Isppa significantly decreased SBP, DBP,
and MAP. The effectiveness and the repeatability of the SBP, DBP,
MAP, and HR reductions in response to the FUS on the left
vagus nerve were validated by multiple stimulation trials under
different stimulation parameters.

Effect of Acoustic Intensity on BP
Modulations
Ispta
Figure 5 shows the reduction percentage of SBP, DBP, and
MAP as Ispta increases when applying FUS on the left vagus
nerve at 3.7 MHz FF, 1 kHz PRF, and 5 s SD. On average,
decreases of 0.92–19.33% in SBP, 2.04–36.49% in DBP, and 1.61–
29.36% in MAP were recorded when Ispta increased from 5.40
to 87.30 W/cm2. Furthermore, the decrease in SBP, DBP, and
MAP was significantly correlated with Ispta (r = 0.55, p < 0.01
for SBP reduction; r = 0.62, p < 0.01 for DBP reduction; r = 0.61,
p < 0.01 for MAP reduction). Hence, the results suggested that
the BP modulations had a significant correlation with acoustic
intensity (Ispta) when applying FUS on the left vagus nerve.
The SBP, DBP, and MAP reduction tends to increase more
substantially with a higher Ispta. However, it is also worthy to
note that the SBP, DBP, and MAP reductions are not completely
monotonically increasing as Ispta increases. Note that Ispta is

composed of stimuli with different DC and Isppa combinations,
and the DC and Isppa might contribute to the BP reduction
differently, which might explain the non-monotonicity between
Ispta increase and BP reduction. Therefore, the respective effects
of Isppa and DC on BP modulations are presented in the
following discussion.

FIGURE 5 | Effects of acoustic intensity (AI) on blood pressure (BP). The
overall BP changes (n = 8) in percentage relative to the baseline level in the
different AIs (Ispta) with the set 3.7-MHz fundamental frequency, 1-kHz pulse
repetition frequency, and 5-s sonication duration. Reductions in systolic blood
pressure, diastolic blood pressure, and mean arterial pressure increased with
AI.
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FIGURE 6 | Reduction percentage of systolic blood pressure, diastolic blood pressure, and mean arterial pressure as (A) duty cycle increases and (B) Isppa increases.

FIGURE 7 | Correlation analysis between heart rate reduction and (A) systolic blood pressure reduction, (B) diastolic blood pressure reduction, and (C) mean arterial
pressure reduction, respectively.

Isppa and DC
Figure 6A shows the reduction percentage of SBP, DBP, and MAP
as DC increases when applying FUS with Isppa fixed at 18.0,
48.5, and 87.3 W/cm2, respectively. As shown in the figure, BP
reduction increased monotonically with the rise of DC when the
Isppa was fixed. A correlation analysis further confirmed that the
magnitude of SBP, DBP, and MAP reduction was also significantly
correlated with DC (r = 0.29, p < 0.05 for SBP reduction;
r = 0.31, p < 0.01 for DBP reduction; r = 0.31, p < 0.01 for
MAP reduction). Figure 6B shows the reduction percentage of
SBP, DBP, and MAP as Isppa increases when applying FUS with
DC fixed at 30, 50, 70, and 100%, respectively. In general, when
the DC was fixed, the SBP, DBP, and MAP reductions increase
monotonically with the rise of Isppa. Furthermore, the magnitude
of SBP, DBP, and MAP reduction was also significantly correlated
with Isppa (r = 0.42, p < 0.01 for SBP reduction; r = 0.49, p < 0.01
for DBP reduction; r = 0.48, p < 0.01 for MAP reduction).
Thus, both Isppa and DC could affect the magnitude of BP
reduction, which might explain the non-monotonic relationship
between Ispta and BP reduction (as shown in Figure 5). As

labeled in Figure 5, FUS with Ispta of 18.0 W/cm2 produced
a relatively lower BP induction than the adjacent points; this
might be because of the small Isppa (18.0 W/cm2), leading to a
smaller BP decline.

Effect of HR Changes on BP Modulations
In order to investigate the effect of HR changes on BP
modulation, a correlation analysis between the changes of HR
and changes of BP was conducted, and the results are shown in
Figure 7. As can be seen from the figure, the decrease in SBP,
DBP, and MAP was significantly correlated with the decrease in
HR (r = 0.36, p < 0.05 for SBP reduction; r = 0.54, p < 0.001
for DBP reduction; r = 0.50, p < 0.001 for MAP reduction). It
demonstrates that the HR changes have an important effect on
BP regulation. However, the correlation coefficients are moderate
(0.36–0.54, the maximum scope is [0 1]), which demonstrates
that the changes of BP elicited by FUS are not completely caused
by HR changes. There are other factors that might influence
the changes in BP.
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DISCUSSION AND CONCLUSION

Clinically, the first-line treatment for patients with hypertension
would be pharmacological antihypertensive therapy. Currently,
while there are a plethora of available antihypertensive drugs that
have been used to effectively treat hypertension, the drug safety
issue has been sustainedly concerned by the physicians and the
patients (Husserl and Franz, 1981; Psaty et al., 1995; Klungel et al.,
2001; Marc et al., 2019). In addition, the need of administrating
BP is unmet in the resistant hypertensive population. Therefore,
developing devices-based neuromodulation approaches would be
one alternative way to treat hypertension and its comorbidities
(Scheffers et al., 2010; Bisognano et al., 2011; Lohmeier and
Iliescu, 2011; Bakris et al., 2012; Hoppe et al., 2012). Recently,
a new advanced neuromodulation technology that uses focused
ultrasound stimulation to suppress or boost neurons’ activity
has been approved to be promising to treat some neuropathies
such as movement disorders, depression, and anxiety (Bystritsky
et al., 2011; Legon et al., 2012; Lohmeier and Hall, 2019).
Whether the newly approved neuromodulation technique would
be feasible and effective for BP modulation was investigated in
this animal study.

In this pilot study, the acute response of BP under low-
intensity FUS to the vagus nerve of rabbits was investigated. The
experimental results indicated that BP could be effectively
modulated through low-intensity FUS technique when
appropriate sonication parameters were set, to the best of
our knowledge, which should be the first time to demonstrate
the feasibility of using FUS on peripheral nerve for BP
neuromodulation. When FUS was targeted at the vagus nerve
with the sonication parameters of 3.7 MHz FF and 18.0–
87.3 W/cm2 Isppa, the values of the SBP, MAP, and DBP were
observed to be significantly reduced. Meanwhile, the acoustic
intensities of the FUS had a significant effect on the degree of
BP variation, such that the higher the acoustic intensity, the
more substantial reduction in the values of the SBP, DBP, and

MAP. In addition, the HR also decreased during the FUS period,
which indicates that the FUS at the vagus nerve may modulate
BP through regulating cardiac function and peripheral vascular
function. The correlation analysis between BP and HR produced
intermediate values (r = 0.36 for 1SBP, r = 0.54 for 1DBP,
r = 0.50 for 1MAP), demonstrating that the reduction of BP was
not only induced by the decline of HR. The decrease of HR when
the FUS was utilized also suggested that low-frequency FUS of
vagus nerve plays a role on the relief of tachycardia but should
avoid bradycardia.

It is worth noting that, compared to the FES-based
neuromodulation approach that has been proposed for
hypertension managements in clinical trials (Hoppe et al.,
2012), the acute response of BP to the proposed FUS approach
was found to be similar as that of the FES reported in a previous
study (Plachta et al., 2014). It was also found that the values
of the SBP, DBP, and MAP reduced substantially when the
focused ultrasound stimulation was turned on and then returned
back to the baseline level when the stimulation was turned
off. BP response exhibited similar waveform characteristics
when a repeated stimulation was administered during the
experiment (as illustrated in Figure 3). This suggested that the
FUS approach could be promising as an alternative non-drug
treatment method for hypertension, similar to the FES. In
comparison with applying the FES for BP regulation, which
requires the implantation of the stimulator into the targeted
nerve by invasive surgery (Scheffers et al., 2010; Bisognano et al.,
2011; Lohmeier and Iliescu, 2011; Bakris et al., 2012; Hoppe
et al., 2012; Plachta et al., 2014; Gierthmuehlen et al., 2016;
Annoni et al., 2019), ultrasound energy could penetrate into the
deep tissue in a non-invasive way, which has been proven in
a lot of previous studies (Bystritsky et al., 2011; Gavrilov and
Tsirulnikov, 2012; Baek et al., 2017), that may make the proposed
FUS approach outperform the existing device-based methods
for BP regulation. In addition, unlike the high-intensity focused
ultrasound stimulation used to ablate the renal sympathetic

FIGURE 8 | An example of the response of blood pressure when applying focused ultrasound stimulation to a carotid sinus nerve (A) and to a depressor nerve (B).
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nerve for drug-resistant hypertension treatment (Wang et al.,
2013), FUS could induce an antihypertensive effect without
damaging the nerve or tissues surrounding it. Therefore, FUS
might provide a better way for non-invasive and non-drug
management of hypertension. Although the FUS can be applied
non-invasively, which has been proven to be feasible in lots
of previous studies (Baek et al., 2017; Landhuis, 2017), in this
pilot study, it is noteworthy that, in order to identify the exact
targeted nerve that could induce an obvious antihypertensive
effect through FUS, an invasive animal surgery model was used
to expose the target nerve, and the ultrasound energy was directly
focused on the target nerve using a collimator fully filled with a
coupling agent. After identifying the target nerves specifically,
future works would test the effect of BP control by non-invasive
stimulation from the body surface. Whereas delivering the FUS
with exact alignment to the target nerve is a challenging issue,
image-guided technique may provide a promising option to
address the alignment issue, which has been proven to be feasible
in some previous studies (Kim et al., 2020).

The vagus nerve was initially selected in this pilot study
because BP is more responsive to changes in vagus nerve activity
than those in other nerves, and the vagus nerve is relatively easy
to locate. However, other autonomic nerves such as sympathetic
nerve and stretch-sensitive nerves such as carotid sinus nerve
and depressor nerve may also be used as a targeted nerve for BP
modulation with FUS method. In this study, we also preliminarily
investigated the response of BP when applying FUS to the carotid
sinus nerve and to the depressor nerve, respectively. However, the
experimental results showed that the sonication parameters used
in this study increased BP rather than decreased it when FUS was
targeted at the carotid sinus nerve, and when FUS was targeted at
the depressor nerve, it could reduce BP similar to that of targeting
the vagus nerve, but the BP decrease induced by the depressor
nerve stimulation was not as significant as that induced by the
vagus nerve stimulation. This phenomenon was also similar as
electrical stimulation (Douglas and Ritchie, 1956). An example
of the response of BP when applying FUS to a carotid sinus and
to a depressor nerve is shown in Figures 8A,B, respectively. The
intensity (Ispta) of the FUS used in Figure 8A was 34 W/cm2

and in Figure 8B were 14.6 and 26.2 W/cm2, respectively. Future
works will explore the appropriate sonication parameters that
could induce an antihypertensive effect when FUS was targeted to
the carotid sinus nerve, which may further broaden the window
of understanding on the potential applications of FUS for BP
regulations in clinical practice.

Noting that FF of ultrasound is an important parameter
for FUS, according to previous literatures (Bystritsky et al.,
2011; Gavrilov and Tsirulnikov, 2012; Baek et al., 2017), various
FF parameters have been adopted for FUS neuromodulation.
Generally, low-frequency ultrasound with FFs of less than
1 MHz was mostly utilized, while some studies adopted relatively
high FFs such as 1.68, 1.9, 2.5, 2.7, 3.2, 3.5, 4.6, 5, 2–7,
and 8 MHz for FUS neuromodulation. In order to learn the
response of BP induced by FUS at different frequencies, three
ultrasonic transducers with FF values of 548 kHz, 1.05 MHz,
and 3.7 MHz were tested in this preliminary experiment,
respectively. Our results showed that the 548-kHz ultrasonic

transducer induced little BP response, the 1.05-MHz ultrasonic
transducer induced a slight BP response, and the 3.7-MHz
ultrasonic transducer induced a significant BP response. Thus,
a 3.7-MHz ultrasonic transducer was used in this pilot study,
and its effect on BP modulation was systematically investigated.
Other ultrasonic parameters, such as PRF, SD, and ISI, were
also chosen based on previous literatures (Bystritsky et al., 2011;
Gavrilov and Tsirulnikov, 2012; Baek et al., 2017) and preliminary
experimental results.

In summary, for the first time, to the best of our knowledge,
this pilot animal study provided the evidence of acute response
of BP by low-intensity FUS. The experimental data indicated
that BP could be effectively modulated through low-intensity
FUS of the vagus nerve when the sonication parameters were
appropriately determined. The acute response of BP to low-
intensity FUS was similar as that of electrical stimulation, which
indicates that this new approach may provide an alternative way
for non-invasive and non-drug management of hypertension
and other diseases associated with vagal activity modulation.
However, the long-term antihypertensive effect still needs to be
verified by chronic stimulation. In the future, the influence of
additional sonication parameters such as FF, PRF, SD, and ISI
on short-term and long-term BP attenuation/regulation as well
as its corresponding thermal effect would be further investigated.
In addition, the mechanism by which FUS induces BP response
remains to be further investigated.
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Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer
interfaces for their favorable properties such as high target identification accuracy, less
training time, and low surrounding target interference. Conventional periodic stimuli can
lead to subjective visual fatigue due to continuous and high contrast stimulation. In this
study, we compared quasi-periodic and chaotic complex stimuli to common periodic
stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation
analysis (CCA) and coherence methods were used to evaluate the performance of the
three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated
by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach,
target identification accuracy was highest for the chaotic stimuli (M = 86.8, SE = 1.8)
compared to the quasi-periodic (M = 78.1, SE = 2.6, p = 0.008) and periodic (M = 64.3,
SE = 1.9, p = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that
the chaotic stimuli caused less fatigue compared to the quasi-periodic (p = 0.001)
and periodic (p = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led
to lower fatigue rates compared to the periodic stimuli (p = 0.011). We conclude that
the target identification results were better for the chaotic group compared to the other
two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective
visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable
for designing new comfortable VEP-based BCIs.

Keywords: VEP-based BCI, chaotic stimuli, quasi-periodic stimuli, CCA, coherence

INTRODUCTION

Electroencephalogram (EEG) is commonly used for EEG-based brain computer interfaces (BCIs)
as a non-invasive and low-cost method for measuring the brain neural activities (Wolpaw
et al., 2002; Lebedev and Nicolelis, 2006). BCI applications employing EEG use visual evoked
potentials (VEPs) (Middendorf et al., 2000; Müller-Putz et al., 2005; Lee et al., 2006, 2008;
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Wang et al., 2006,Wang Y. et al., 2017; Martinez et al., 2007;
Allison et al., 2008; Guo et al., 2008; Chen et al., 2015; Xie et al.,
2017, 2018), which are responses of the visual system to visual
stimuli. Various types of visual stimuli, such as flickering LED,
can be decoded from the EEG activity of the visual cortex and
used for diverse BCI applications (Takano et al., 2009; Lee et al.,
2011; Gao et al., 2014; Kapgate and Kalbande, 2015).

In VEP-based BCIs, the target stimuli are identified by
decoding all the gazed stimuli. The stimuli are required to be
orthogonal or almost orthogonal in time-, frequency-, or code-
based BCIs (Bin et al., 2009a). The oddball paradigm is an
example of time-based BCIs, whereby the target stimuli are
presented at different times and evoke event-related potentials
(ERPs) like the P300 (Jin et al., 2005; Lee et al., 2008; McCane
et al., 2015). Frequency-based BCIs may use visual stimuli that
are modulated in time according to a sine wave with different
temporal frequencies, which also evoke EEG responses at the
same frequencies and their harmonics (Middendorf et al., 2000;
Müller-Putz et al., 2005; Wang et al., 2006). Orthogonal visual
stimuli in code-based BCIs are generated by random codes
such as m-sequences, whereby different shifts of a modulating
code have been used to evoke code-modulated VEPs (c-VEPs)
(Nakanishi et al., 2014; Riechmann et al., 2016; Wei et al., 2016,
2018; Spüler, 2017; Liu et al., 2018; Shirzhiyan et al., 2019).

Due to their high decoding accuracy, external stimuli such as
periodic flickers are commonly used in VEP-based BCIs evoking
steady-state visual evoked potentials (SSVEPs) (Vialatte et al.,
2010; Keihani et al., 2018). In SSVEP-based BCIs, the stimulus
comprises a constant frequency that varies from low to high (1–
100 Hz), which then leads to specific EEG responses that correlate
with the stimulus frequency (Vialatte et al., 2010). Therefore, the
gazed target stimuli could be identified from their EEG responses.
However, among different frequency sets, the lower (1–12 Hz)
and medium (13–16 Hz) ones lead to high subjective discomfort,
fatigue, and possible epileptic seizures (Volosyak et al., 2011).
Various dynamical approaches have also been used for improving
SSVEP-based BCIs, such as dynamic stopping methods and the
detection of SSVEP responses for higher information transfer rate
(ITR) SSVEP-based BCIs (Yin et al., 2014; Jiang et al., 2018).

Visual stimuli have diverse dynamical patterns such as
periodic, quasi-periodic, and chaotic. Biological systems also
exhibit these dynamical behaviors (Attinger et al., 1966; Petrov
et al., 1997; Suzuki et al., 2016) including non-oscillatory chaotic
behavior, which is more complex than quasi-periodic oscillation
(Camazine et al., 2003; Saha and Galic, 2018; Strogatz, 2018).
Neuronal systems exhibit both complex oscillatory behavior
(Llinás, 1988; Zhanabaev and Kozhagulov, 2013; Zhanabaev
et al., 2016; Feng et al., 2017) as well as the non-oscillatory
chaotic behavior that is seen in neurons (Aihara et al., 1984;
Hong, 2011; Lv et al., 2016; Ma and Tang, 2017) and networks
(Aihara, 1989; Freeman, 1992; Potapov and Ali, 2000; Rössert
et al., 2015; Nobukawa and Nishimura, 2016) due to various
underlying mechanisms (Hoebeek et al., 2010; Ishikawa et al.,
2015). Stimuli with dynamical patterns such as chaotic behaviors
are thus expected to be more in harmony with the visual system.

Natural visual stimuli rarely flicker at a constant rate, but
rather exhibit more complex dynamics with quasi-periodic
temporal characteristics (Kayser et al., 2003; Butts et al., 2007;

Mazzoni et al., 2011). Natural visual stimuli are efficiently
encoded by the visual system which is capable of processing
and detecting information from complex natural environments
(Blake and Lee, 2005; Mazzoni et al., 2011). These visual
stimuli have similar spatial and temporal patterns resembling
the 1/f amplitude spectrum, features that are encoded more
efficiently by the retina and other components of the visual
system (Atick and Redlich, 1992; Yoshimoto et al., 2017). In
addition, chaotic patterns also follow the 1/f spectrum observed
in natural scenes and phenomena (Relano et al., 2002; Molina
et al., 2010). Quasi-periodic visual stimuli can generate phase-
locked responses (Keitel et al., 2017; Obleser et al., 2017;
Haegens and Golumbic, 2018) and also evoke responses with
independent dynamics that correlate with their corresponding
stimuli (Keitel et al., 2017). Temporal dynamics of the presented
visual stimuli leads to adjustment of the visual system based on
its inherent characteristics (Lasley and Cohn, 1981; Correa and
Nobre, 2008). For these reasons, it is possible to assume that
complex stimuli with dynamical temporal patterns such as quasi-
periodic and chaotic may generate correlated responses which
may lead to greater visual comfort for the viewer compared to
the periodic stimuli.

One of the important issues in VEP-based BCI applications
is the subjective visual fatigue caused by the flickering stimuli
(Volosyak et al., 2011; Chang et al., 2014; Won et al., 2015).
Periodic stimuli generating SSVEPs, due to their high contrast
flashes, are not comfortable and can lead to subjective visual
fatigue (Kardan et al., 2015; Xie et al., 2016). These periodic
patterns may also lead to migraine headache (DeTommaso et al.,
1999) or even epileptic seizures (Fisher et al., 2005). Studies have
used various methods including the use of high-frequency stimuli
rather than lower frequencies (Allison et al., 2010; Sakurada et al.,
2015; Ajami et al., 2018), polychromatic stimuli (Chien et al.,
2017), motion Newton’s rings and motion checkerboards (Xie
et al., 2012, 2017; Yan et al., 2017; Han et al., 2018), and rhythmic
pattern stimuli (Keihani et al., 2018) to minimize the subjective
visual fatigue, which still remains an important problem in VEP-
based BCI applications.

Utilization of visual stimuli with quasi-periodic and chaotic
patterns that are closer to natural scenes in BCI applications
requires further research. In our previous study, we used chaotic
and pseudo-random m-sequence binary codes and found that
chaotic codes lead to comparatively less fatigue (Shirzhiyan et al.,
2019). In this study, we introduce a new kind of visual stimuli
with quasi-periodic and chaotic characteristics to evoke distinct
visual potentials in normal subjects for their possible application
in VEP-based BCIs. For comparison, we used periodic stimuli
commonly employed in SSVEP-based BCI applications and
also compared subjective visual fatigue caused by these three
groups of stimuli.

MATERIALS AND METHODS

In this study, first of all, the stimulus groups were designed
and proper setup for the experiment was prepared. The data
recording step started with EEG and behavioral data (fatigue
data) recording from normal subjects. After preprocessing of
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the EEG data, the data analysis was done to decode the
presented stimuli from their corresponding data using canonical
correlation analysis (CCA) and coherence analysis methods.
These two methods calculate the similarity of templates with
EEG signals where the stimuli could be considered as templates
(template generation approach M1) or obtained from a training
dataset (template generation approach M2). Finally, the target
identification results using the above-mentioned methods and
the fatigue data were analyzed separately. The flowchart of this
study is presented in Figure 1.

Study Participants
Our study was announced in the faculties of medicine and
biomedical engineering via notice boards as well as in students’
social media groups. Forty-eight volunteers were initially enrolled
based on the inclusion criteria (normal or corrected vision with
no history of head trauma and without current use of drugs).
All subjects were informed about the study aims and procedure
of signal recording and were allowed to leave the experiment at
any point if they wished. Thirty-eight subjects participated in all
the sessions (18 females), aged 20–33 years old (23.01 ± 4.32).
The remaining 10 subjects did not participate in all the sessions
or left the session due to urgent work, and so their data were
excluded from the study. Written informed consent was signed
by the participants before joining the study in accordance with
the Declaration of Helsinki. The study was approved by the Office
of Research Review Board and the Research Ethics Committee of
the Tehran University of Medical Sciences, with LREC protocol
number IR.TUMS.REC.1394.2110.

Stimuli
We used visual stimuli consisting of modulating the brightness
of a red color LED measuring 4 cm × 4 cm according to
three different temporal patterns: periodic, quasi-periodic, or
chaotic. Each of these three categories had four different target
stimuli that had their orthogonal characteristics. All the stimuli
were generated using MATLAB software (Release 2016b, The
MathWorks, 193 Inc., Natick, MA, United States).

Periodic Stimuli
For generating the periodic stimuli, we used four sine waves at
the target frequencies of f1 − f4 (20, 25, 35, and 40 Hz), as shown
in Equation 1 and schematically illustrated in Figure 2A. It can
be seen that the simple periodic stimulus group (P1 – P4) had
constant frequencies and that their spectrum was sparse in the
frequency domain representation.

Pi = sin
(
2πfit

)
. t = 0 : 6 sec. f = [20 Hz . 25 Hz .

35 Hz. 40 Hz] (1)

Quasi-Periodic Stimuli
A sine-circle map was used to generate four quasi-periodic
stimuli (Essl, 2006). Equation 2 models the sinusoidal oscillators
that were perturbed by non-linear function.

θn+1 = θn +�− K/2π sin(2πθn) (2)

where � is the frequency ratio and K is the coupling length of
non-linear perturbation.

If the frequency ratio � is a rational number (p/q) with p
and q ∈ N (natural numbers), the map shows periodic behavior.
For irrational numbers of � and appropriate parameters of K, the
behavior of the sine-circle map is called quasi-periodic oscillation
(Essl, 2006).

Quasi-periodic stimuli were generated using a sine-circle map
by considering the parameter K = 0.5 and then � were selected
as irrational numbers

(√
5− 1

)
/2 ,
√

3− 1,
√

3/2 , and
√

2/9,
where the sine-circle map showed quasi-periodic behaviors.
These parameters were used to generate quasi-periodic stimuli
Q1, Q2, Q3, and Q4. After that, the generated sequences from the
sine-circle maps were considered as a time series with a sampling
frequency of 90 Hz. Thus, each sample of the sequences was
applied for a duration of 1/90 ms. The waveform and spectrum of
the quasi-periodic stimuli are shown in Figure 2B. The waveform
and spectrum of the quasi-periodic stimuli were more complex
compared to the periodic stimulus group.

Chaotic Stimulus Group
For generating chaotic stimuli, we used a logistic map which
is a one-dimensional map capable of generating chaotic signals
with low cross-interferences. This map is seen in most of the
natural phenomena and population growth of biological species
(Costantino et al., 1997), as defined in Equation 3.

x (i+ 1) = A x (i) (1− x (i)) (3)

where x is in the interval of [0 1] and indicates the ratio of
an existing population to the maximum possible population,
x(0) as the initial value of x, and A is the rate of reproduction
and starvation that is in the interval of [0 4]. This simple map
could generate chaotic dynamics in some values of parameter A
generally between 3.5 and 4 (May, 1976). Parameter A was chosen
in a way that the logistic map exhibited chaotic behaviors for
generating four chaotic sequences and were then presented at the
rate of 90 Hz as A = 3.982, 3.885, 3.987, and 4, respectively. In this
way, four different chaotic stimuli, Ch1, Ch2, Ch3, and Ch4, were
generated by the logistic map.

Figure 2C shows the waveforms of four chaotic stimuli with
their amplitude spectra.

The dotted black curved line in the amplitude spectra plots
shows the 1/f line, where f is the frequency vector (horizontal
axis). It can be seen that the amplitude spectra of the stimuli in
the chaotic group are closer to the 1/f spectrum line compared to
the quasi-periodic and periodic stimulus groups. Please note that
for better illustration, only 1 s of the total 6 s duration of every
stimulus is shown in the plot.

Auto- and Cross-Correlation Function of
Target Stimuli
The auto- and cross-correlation functions of the periodic,
quasi-periodic, and chaotic stimulus groups were calculated to
investigate their individual orthogonal characteristics. This was
done to verify overlapping characteristics in order to avoid
interference between the target stimuli. The auto- and cross-
correlation functions of the periodic, quasi-periodic, and chaotic
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FIGURE 1 | Flowchart of the study roadmap.

groups are presented in Figures 3A–C, respectively. It is obvious
that the auto-correlation function of each target stimulus group is
high, while within-group cross-correlations of stimuli with others
is comparatively low.

Stimulus Presentation Paradigm
All the subjects were presented with periodic, quasi-periodic, and
chaotic stimuli in a single lab visit. They were presented with each
of the periodic (P1 – P4), quasi-periodic (Q1 – Q4), and chaotic
(Ch1–Ch4) stimuli as 12 different sessions. The total duration of
each session (for each stimulus) was 90 s consisting of 10 trials.
In each trial (6 s duration), the same stimulus was presented to
the subject with a 2 s rest time in between the trials. An initial
rest of 10 s was included in each session. After each session (90 s),
the subjective fatigue was evaluated (see below). The maximum

duration of a whole stimulus presentation paradigm including
rest time was approximately 30 min. The stimulus presentation
paradigm is shown in Figure 4.

The subjects were informed before the experiment that they
will be asked to evaluate their own visual fatigue by considering
the amount of tiredness and discomfort caused by gazing at the
stimuli. They were asked to grade their visual fatigue level by
choosing a number between 0 for no fatigue and 10 for the highest
fatigue level. After each session (90 s), the subjects were asked to
self-report the level of visual fatigue caused by stimulation. Their
fatigue rate was recorded and they were asked for permission
to start the next session. The order of presentation of stimuli
in all groups was randomly distributed for all subjects to avoid
possible bias in subjective visual fatigue caused by the order
of presentation.
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FIGURE 2 | Time duration, amplitude, and frequency spectrum of the periodic (A), quasi-periodic (B), and chaotic (C) stimulus groups. Columns 1 and 2 in each
plot show the relevant waveforms and spectra of the stimuli of each group. For better illustration of the waveforms, they are shown in a 1 s timescale, while the total
duration of stimuli was 6 s.

Fatigue Evaluation Process
The level of subjective visual fatigue was measured using graded
values of the Visual Analogue Scale (VAS), which is suitable
for grading continuous phenomena (Aitken, 1969). The VAS is
a subjective estimation method for quantifying a feeling and
attitude which is hard to estimate directly (Gift, 1989; Grant et al.,
1999; Crichton, 2001; Tseng et al., 2010; Klimek et al., 2017).
This scale is mostly used in clinical research for measuring the
intensity of various symptoms (Paul-Dauphin et al., 1999) such as
pain (Bijur et al., 2001). It is commonly used in BCI applications
for the evaluation of a patient’s motivation and mood (Holz et al.,
2013), the level of subjective fatigue (Guger et al., 2013; Käthner
et al., 2014), pain (Choi, 2017), discomfort (Verwulgen et al.,
2018), and control ability (Chumerin et al., 2012).

Signal Recording Setup
The EEG signals were recorded using g.USB Amp with a
sampling rate of 1,200 Hz. Four active g.Ladybird electrodes were
placed at Oz, O1, O2, and Pz positions on the scalp of the subjects
where the visual evoked potentials have maximum amplitude
(Bin et al., 2011; Aminaka et al., 2015). Fpz and right earlobe
were used as the ground and reference electrodes, respectively.
An online bandpass filter with cutoff frequencies of 0.05 and
120 Hz was applied.

The generated stimuli were applied to a custom-made digital-
to-analog converter (DAC) board as a stimulus presenter box
(shown in Supplementary Figure 1) for driving an LED. The
LED was placed at a distance of 70 cm from the subject. The
trigger output of g.USB Amp (start time of EEG recording) and
the output of a Texas Instruments optical sensor (visual stimuli)

were sent to National Instruments (NI) DAQ. Details of the signal
recording setup are reported in our previous studies (Keihani
et al., 2018; Shirzhiyan et al., 2019).

Data Processing
The signal analysis procedure was carried out for the recorded
responses for each stimulus group (periodic, quasi-periodic, and
chaotic) (Supplementary Figure 2) separately to compare the
results of the three different groups. Tenfold cross-validation was
used as our validation method. In this method, nine-tenths of the
trials were used as the training data and one-tenth was used as the
testing data. The training data was used for template generation
and the testing data was used for target identification.

Preprocessing
The recorded trigger from g.USB Amp and sensor output and the
presented stimuli in NI DAQ were used for the detection of the
beginning of each trial and then each trial EEG data was extracted.
A zero-phase eighth-order band pass filter with cutoff frequencies
of 1 and 50 Hz was applied for all the trials.

Processing (CCA and Coherence Analysis)
To analyze the EEG data, we used two methods that are
commonly employed in BCI studies: CCA and coherence analysis
(Zhang et al., 2013, 2014; Vaid et al., 2015). These methods
measure the amount of correlation in the time and frequency
domains, respectively.

Canonical correlation analysis is a multivariable data analysis
method that measures the underlying time domain correlation
between two multidimensional signals and attempts to reveal a
linear time domain correlation by maximizing the correlation
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FIGURE 3 | Auto- and cross-correlation functions of the three stimulus groups. Plot (A–C) Correlation functions over different time lags of the periodic (A),
quasi-periodic (B), and chaotic (C) groups. Rows 1 and 2 in each plot show the auto- and cross-correlations of the target stimuli in each category, respectively.

FIGURE 4 | Stimulus presentation paradigm. All the stimuli in each group were presented in 10 trials. After each trial, a 2 s rest time was considered. At the end of
each session, the fatigue rate was evaluated.

of the two signals (Lin et al., 2006). CCA has been successfully
used in target identification and in the analysis of visual evoked
potentials (Lin et al., 2006; Bin et al., 2009b, 2011). Equation

4 defines the CCA coefficient of variables x and y, where
E
(
xty
)

stand for the covariance of x and y and E
(
xtx
)

and
E(yty) represent the variance of x and y, respectively. This
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method finds the canonical correlation vectors Wx and Wy for
two multidimensional variables, x and y, by maximizing their
canonical covariants.

Maxρ
(
x.y
)
=

wx. wy

E
(
xty
)√

E
(
xtx
)
E(yty)

(4)

Coherence analysis has been used to investigate the
synchronization process of brain regions (Nunez et al., 1997;
Lachaux et al., 1999; La Rocca et al., 2014). In addition, it
has been used as a feature extraction and target identification
method in BCI applications (Gysels and Celka, 2004; Krusienski
et al., 2012; Liew et al., 2015). The coherence of two signals is
sometimes called magnitude-squared coherence, as shown by
Equation 5 which defines the amount of coherence of two signals
at a specific frequency.

Cxy
(
f
)
=

∣∣Sxy (f )∣∣2
Sxx

(
f
)
Syy(f )

(5)

where Sxx and Syy are the power spectral densities of variables x
and y, respectively, and Sxy

(
f
)

is the cross power spectral density
between x and y (Sanei and Chambers, 2007).

In this study, variable x is the template and y is the EEG signal.
In BCI studies, it is common to use either the presented stimuli
or the average EEG signal of the training session trials to generate
the template. Therefore, in this study, we used two approaches
for generating templates. In the first approach (M1), the stimuli
were used as templates, while in the second approach (M2), we
attempted to extract templates from the training dataset.

Template Generation
Templates were generated by using the two aforementioned
approaches as described below.

Approach 1 (M1): using the presented stimuli as templates
The target stimuli were resampled to the sampling frequency of
the EEG responses (1,200 Hz) and zero-padded the resampled
target stimulus i by lag time Di. The lag time Di represents
the systematic lag for the presented stimuli and was calculated
by cross-correlating the target stimuli with the grand averaged
EEG responses and determining the time lag that yielded the
maximum cross-correlation values.

This step was not important for coherence analysis because
the magnitude-squared coherence was not sensitive to the time
lag between templates (stimuli) and responses, while the CCA
coefficients were maximum where the lag was considered.

Approach 2 (M2): generating templates using the training
dataset
In VEP-based BCI studies, it is also common to create templates
using the EEG signals from a subset of the data (i.e., a training
dataset) instead of the stimulus waveform itself, as this approach
allows capturing information related to the non-linear processing
of the system. Given that we had access to the training dataset, we
used this approach to generate templates by EEG data from the
training dataset.

This approach included extracting the EEG responses from
r trials in the training set, Xr×m×n

Traini , and averaging over r trials
to generate the template for stimulus i, Tm×n

i , where m is the
number of channels and n is the number of samples per trial.

Target Identification
After generating templates separately for the targets in each
group, the CCA coefficient and coherence were calculated by
Equations 4 and 5, where T was considered as variable x and
the EEG response was considered as variable y. For template
generation using the M1 approach, all the trials were separately
considered as testing trials, while 10-fold cross-validation was
considered for template generation using the M2 approach. Here,
ninefold of the dataset was considered as the training dataset
and the one remaining fold was considered as the testing trial.
Therefore, all the trials were tested once. The details of both the
approaches of target identification are given below.

For the CCA method:

(1) Extraction of testing trials Xm×n
Test , where m and n are the

channel numbers and samples in a trial, respectively.
(2) Calculation of the CCA coefficient of templates Ti and

Xm×n
Test as vector Pi

1× m .
(3) Calculation of the mean value of P1×m

i to create
the feature vector.

(4) Selection of the maximum value of feature vector.

For the coherence method:

(1) Extraction of testing trials Xm×n
Test , where m and n are the

channel numbers and samples in a trial, respectively.
(2) Calculation of the coherence function of templates Ti and

Xm×n
Test for obtaining the vector Ci (f ).

(3) Extraction of the coherence coefficient from vector of Ci(f )
in the target frequencies or a specific frequency band.

(a) Periodic group: the target frequencies in the periodic group
were the target frequencies of the presented stimuli as
shown in Figure 2A.

(b) Quasi-periodic group: the dominant frequencies of the
presented stimuli are shown in the spectra of stimuli in
Figure 2B.

(c) Chaotic group: the total frequency band of the chaotic
stimuli as shown in Figure 2C.

(4) Calculation of the mean value of Cm×f
i to create

the feature vector.
(5) Selection of the maximum value of the feature vector.

Figure 5 schematically shows the template generation and
target identification processes.

Statistical Analysis
Statistical analysis was done with SPSS software (version 16.0,
SPSS Inc., IBM Corp., Chicago, released 2011) for comparing
the analysis methods and also for evaluating the subjective visual
fatigue rate between the three groups of stimuli (periodic, quasi-
periodic, and chaotic).
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FIGURE 5 | Illustration of the two methods for (A) template generation using approaches M1 and M2. (B) Target identification using the canonical correlation analysis
(CCA) and coherence methods. (A) The templates for the CCA and coherence methods were derived by two approaches: M1 (using target stimuli) and M2 (using
training data). (B) For the target identification, the derived templates from the template generation approaches (A) were used for analysis by the CCA and coherence
methods. In this figure m, n, and r are the channel numbers, samples in a trial, and the trial numbers in a training dataset, respectively. f represents the frequency
vector in a specific frequency band in each stimulus group. XTrain are all training trials and Strain_i represents trial response to the ith stimulus in each stimulus group.

Statistical Analysis of Accuracies
Three-way repeated measures ANOVA was used to test the effects
of three factors—methods (CCA and coherence), approaches
(M1 and M2), and stimulus groups (periodic, quasi-periodic, and
chaotic)—with assumed sphericity (significance level α = 0.05).
Confidence intervals were adjusted by Bonferroni correction for
pairwise comparisons.

Statistical Analysis of Fatigue Rates
Within-group analysis of fatigue rates
To compare the VAS scores across stimuli within each
stimulus type (periodic, quasi-periodic, and chaotic), the

Friedman test (significance level α = 0.05) was used. Then,
the scores for each pair of stimuli were compared using
the Wilcoxon signed-rank test, with a Bonferroni-corrected
alpha set to 0.008.

Between-group analysis of subjective visual fatigue rates
For comparison of the subjective visual fatigue caused by
the periodic, quasi-periodic, and chaotic groups, the VAS
scores of each group were averaged for the four sessions for
each stimulus type for each subject and were then compared
using the Friedman test (significance level α = 0.05). The
Wilcoxon signed-rank test with Bonferroni correction was
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used for the comparison of each pair while α was set
at 0.0168.

RESULTS

Accuracy Analysis Results
The descriptive statistics of all accuracies of the three stimulus
groups (periodic, quasi-periodic, and chaotic) obtained from two
different methods (CCA and coherence) and template generation
approaches (M1 and M2) are reported in Table 1, and Figure 6
shows the estimated marginal means plots of accuracies.

The 2 (analysis method) × 2 (template approach) × 3
(stimulus group) ANOVA on target identification accuracy

revealed significant main effects of analysis method
[F(1,37) = 60.253, p = 0.0001, η2

p = 0.620] and template
approach [F(1,37) = 28.56, p = 0.0001, η2

p = 0.435], but not
stimulus group [F(1,37) = 1.143, p = 0.324, η2

p = 0.030], with
overall higher accuracy for the CCA method relative to coherence
and higher accuracy for the M1 template approach relative to M2.

However, these effects were qualified by significant two-
way interactions between analysis method and stimulus group
[F(2,74) = 47.0009, p = 0.0001, η2

p = 0.56] and template approach
and stimulus group [F(2,74) = 8.776, p = 0.0001, η2

p = 0.192]. The
interaction between analysis method and template approach was
not significant [F(1,37) = 3.695, p = 0.062, η2

p = 0.091]. Finally, the
three-way interaction was significant [F(2,74) = 35.74, p = 0.0001,
η2

p = 0.491]. To decompose the three-way interaction, we

TABLE 1 | Descriptive statistics of all accuracies obtained by two methods (CCA and coherence analysis) with two template generation approaches (M1 and M2) in three
different stimulus groups.

Method Approach Stimulus group Mean (%) Standard error (%) 95% Confidence interval

Lower bound (%) Upper bound (%)

CCA M1 P 79.5 2.4 74.8 84.3

Q 73.2 2.3 68.5 77.9

Ch 85.1 2.2 80.6 89.7

M2 P 64.3 1.9 60.5 68.2

Q 78.1 2.6 72.8 83.4

Ch 86.8 1.8 83.1 90.4

Coherence M1 P 75.0 2.2 70.5 79.5

Q 70.5 2.7 65.1 76.0

Ch 70.2 2.7 64.7 75.7

M2 P 74.5 2.5 69.5 79.6

Q 65.7 2.7 60.1 71.2

Ch 58.8 3.0 52.7 64.8

CCA, canonical correlation analysis; M1, using target stimuli; M2, using training data; P, periodic; Q, quasi-periodic; Ch, chaotic.

FIGURE 6 | Marginal estimated means of all accuracies. (A,B) Marginal means of the accuracies of both approaches for the CCA and coherence methods,
respectively. (C,D) Marginal means of the target identification accuracies of the stimulus groups for approaches M1 and M2, respectively.
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examined the effects of stimulus group for each analysis method
and template separately and conducted pairwise comparisons
between the stimuli groups.

For CCA and template approach M1, accuracy was higher
for the chaotic stimuli (M = 85.1, SE = 2.2) than for periodic
(M = 79.5, SE = 2.4, p = 0.0001) and quasi-periodic (M = 73.2,
SE = 2.3, p = 0.008), with quasi-periodic also being lower than
periodic (p = 0.0001). With template approach M2, CCA accuracy
was again higher for the chaotic group (M = 86.8, SE = 1.8)
compared to the other two groups, the accuracy now being better
for the quasi-periodic (M = 78.1, SE = 2.6) than for the periodic
stimuli (p = 0.0001) (Figure 6A).

For coherence analysis, using M1 template approach, multiple
comparison with α = 0.0168 did not show significant differences
between the periodic (M = 75.0, SE = 2.2), chaotic (M = 70.2,
SE = 2.7), and quasi-periodic (M = 70.5, SE = 2, p > 0.0168)
stimulus groups. Using M2 template approach, the periodic
group (M = 74.5, SE = 2.5) showed higher accuracy than did the
chaotic group (M = 58.8, SE = 3, p = 0.001), and the quasi-periodic
group (M = 65.5, SE = 2.7) did not significantly differ from the
other groups (p > 0.02) (Figure 6B).

VAS Scores Analysis Results
The subjective fatigue VAS scores for the four stimuli within each
stimulus group are shown in Figure 7 and the averaged scores for
each stimulus group are shown in Figure 8.

Results of Within-Group Analysis of the Periodic
Group
The Friedman test showed significant differences in the VAS
scores across stimuli in the periodic group [χ2(3) = 37.857,
p = 0.0001]. Participants reported on average highest subjective
fatigue scores for P1 (20 Hz) (M = 4.92, SE = 0.38) and P2
(25 Hz) (M = 4.5, SE = 0.30), which did not differ from each other
(Z = 1.99, p = 0.046). The scores for P3 (30 Hz) were significantly
lower (M = 3.2, SE = 0.22) than for P2 (p< 0.001), and P4 had the
lowest scores (M = 2.71, SE = 0.28).

Results of Within-Group Analysis of the
Quasi-Periodic Group
The Friedman test showed significant differences among the VAS
scores of stimuli in the quasi-periodic group [χ2(3) = 14.848,
p = 0.002]. Q4 (M = 3.65, SE = 0.32) caused relatively higher
fatigue scores compared to Q1 (M = 3.08, SE = 0.30, Z = 2.85,
p = 0.004) in the pairwise comparison of within-group quasi-
periodic stimuli. Q2 (M = 3.13, SE = 0.30) and Q3 (M = 3.05,
SE = 0.326) did not differ significantly from the others.

Results of Within-Group Analysis of the Chaotic
Group
The Friedman test showed significant differences in the VAS
scores for the stimuli in the chaotic group [χ2(3) = 20.125,
p = 0.0001]. Ch1 (M = 2.02, SE = 0.28) had lower fatigue scores
compared to Ch3 (M = 2.78, SE = 0.31, Z = 3.53, p = 0.0001), and
Ch4 (M = 2.84, SE = 0.30, Z = 2.79, p = 0.005). Ch2 (M = 1.78,
SE = 0.28) did not differ from Ch1 and Ch4.

FIGURE 7 | Within-group subjective fatigue evaluation. (A–C) Within-group
analysis of the fatigue rates for the periodic, quasi-periodic, and chaotic
groups, respectively. (A) In the periodic group, the pairs of (P1, P3), (P1, P4),
(P2, P4), and (P3, P4) showed significant differences. Higher frequencies led to
lower fatigue rates. (B) There was only one significant difference within Q1 and
Q4 in the quasi-periodic group. (C) The chaotic stimulus group showed
significant difference between the Ch1–Ch3 and Ch1–Ch4 pairs (*p < 0.001,
**p < 0.0001).

Details of the p-values for subjective fatigue comparisons
using the Friedman test with Bonferroni correction are presented
in Supplementary Table 1.

Between-Group Analysis of Subjective Visual Fatigue
Rate
The Friedman test showed that the subjective visual fatigue
scores differed across the three stimulus groups [χ2(2) = 28.69,
p = 0.0001]. Participants reported higher subjective fatigue for
the periodic stimuli compared to the quasi-periodic (Z = 2.931,
p = 0.003) and chaotic stimuli (Z = 4.429, p = 0.0001). In
addition, they also felt higher fatigue for the quasi-periodic
stimuli compared to the chaotic group (Z = 3.466, p = 0.001).

DISCUSSION

In this study, for the first time, we used quasi-periodic and chaotic
stimuli with different orthogonal characteristics and compared
them with periodic stimuli commonly employed in SSVEP-based
BCIs that use EEG data. We also compared the level of subjective
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FIGURE 8 | Subjective fatigue rates comparison between all the stimulus
groups. The periodic group had the highest fatigue rate compared to the other
two groups. The chaotic group had the least fatigue rate compared to the
periodic and quasi-periodic groups (**p < 0.0001, *p < 0.016).

visual fatigue caused by these three stimuli on young adult
participants. For this purpose, three groups of visual stimuli
with different temporal dynamics (periodic, quasi-periodic, and
chaotic) from simple sinusoidal frequencies to complex stimuli
were generated from sine-circle and logistic maps and used for
evoking visual potentials.

Periodic stimuli have been used for years in VEP generation
for eliciting SSVEP responses that are known for their
relatively high ITR, less training time (Parini et al., 2009),
and practical BCI applications (Lalor et al., 2005; Muller-
Putz and Pfurtscheller, 2008; Bin et al., 2009b; Yin et al.,
2015; Lin et al., 2016; Wang Y.T. et al., 2017; Wang et al.,
2018). Our results showed that the introduced dynamical visual
stimuli (quasi-periodic and chaotic stimulus groups) could also
evoke discriminative responses and can have even better target
identification accuracies than the periodic visual stimulus group
using the CCA method. In addition, compared to the other
stimulus groups (periodic and quasi-periodic), the obtained
accuracy values of target identification for the chaotic group by
employing the CCA method for template generation approaches
M1 (stimuli waveforms considered as a template) and M2
(templates generated from training EEG dataset) were the
highest, with values of M = 86.78%, SE = 1.8% and M = 85.1%,
SE = 2.2%, respectively. The results of the M1 approach for
the periodic, quasi-periodic, and chaotic stimuli indicate that
their corresponding EEG responses correlated with their stimuli
waveforms. It has been reported that the temporal structures of
quasi-rhythmic stimuli are reflected in the brain responses in the
visual cortex (Keitel et al., 2017).

Auto- and Cross-Correlation Function of
Stimulus Groups
The stimuli in the chaotic and quasi-periodic groups as well as in
the periodic group had orthogonal characteristics (Figure 3). This

was demonstrated by the fact that the pairwise cross-correlation
values between the stimuli were less than the auto-correlation
values for the target stimuli (Figure 3). The cross-correlation
functions showed that the stimuli within each stimulus group
were not correlated because their cross-correlation values were
close to zero. This meant that these stimuli were nearly
orthogonal and the interference between the stimuli would
be reduced in possible BCI applications. It is worth noting
that the chaotic group’s auto-correlation exhibited a Dirac-like
function, meaning that while these stimuli were orthogonal,
they did not correlate with themselves. This feature was absent
in the periodic and quasi-periodic groups, which required a
higher level of synchronization between the visual stimuli and
their EEG responses. The concept of Dirac-like auto-correlation
function has been used in code-modulated BCIs for generating
uncorrelated target stimuli from one code by the process of
shifting (Bin et al., 2011).

Cross-Correlation Function of Stimuli
and Responses
The cross-correlation function of the presented stimuli and their
corresponding responses suggest that the visual pathway system
serves as an input and the evoked potentials as the system
output. The lag of maximum of the cross-correlation function
is considered as a system delay, which was used in our analysis
especially in the CCA method for the M1 approach to generate
templates from the presented stimuli. Due to the periodic and
semi-periodic nature of the cross-correlation function (as seen in
Figures 9A,B), compensating for the delay in templates was not
necessary. However, compensating for the delay was vital for the
chaotic group because the chaotic stimuli correlated with their
corresponding responses in a specific time delay (Figure 9C). For
the CCA method using template generation from the training
dataset (M2 approach), the time delay compensation was not
needed as the inherent time delay was embedded in the templates
extracted from the training dataset.

Target Identification Results Comparison
The highest accuracy for the chaotic group was obtained by
CCA using the M2 approach, while the lowest accuracy was
obtained by the coherence method using the M2 approach.
The much lower accuracy seen with the chaotic stimuli using
coherence analysis may be explained by the fact that the
spectra of these stimuli are highly similar, making them
less discriminative compared to the other stimulus groups
(periodic and quasi-periodic) (column 2 in Figure 2C). As the
coherence analysis quantified the synchronization of the spectral
information of two variables, for the periodic stimuli (single
frequency) and even the quasi-periodic stimuli (containing
multiple dominant frequencies), measuring the amount of
synchronization between the narrow frequency bands (Vaid
et al., 2015) was relatively less likely to be impacted by
noise. However, as the chaotic stimulus spectra are similar
and less discriminant (column 2 in Figure 2C) compared to
the other stimulus groups, coherence analysis using the M2
approach is not recommended for chaotic stimuli. We suggest
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FIGURE 9 | Cross-correlations of the periodic, quasi-periodic, and chaotic stimuli with their corresponding EEG responses. Results of the periodic (A),
quasi-periodic (B), and chaotic (C) groups in all subjects. The lag of maximum correlation values in the plots were considered as delay time (Di , i = [1 2 . . . 4]) in
template generation using the M1 approach. X- and Y-values represent the lag black dot values where the cross-correlation function of the stimuli and their
corresponding responses are maximum, respectively.

the coherence method with the M1 approach for the analysis of
chaotic stimuli.

While using the M1 templates with the coherence method
led to a lower accuracy than with the CCA method, there is
some benefit to using the coherence method with chaotic stimuli.
Specifically, unlike CCA, coherence analysis is not sensitive to the
time lag between variables (Guevara and Corsi-Cabrera, 1996).
Therefore, using the coherence method could reduce the training
time because it removes the need to obtain training data in order
to extract the time lag needed for the time domain correlation.

The accuracy values of the M2 approach were found to be
relatively higher compared to M1 in the CCA analysis for the
quasi-periodic and chaotic stimuli (Figure 6 and Table 1). This
means that the EEG response to the chaotic and quasi-periodic
stimuli may contain not only the stimulus-locked components
but also more complex dynamics that did not correlate with the
visual stimuli while being discriminative.

Within-Group Subjective Visual Fatigue
Rate Evaluation
From Figure 7, it can be seen that the mean VAS scores of the
periodic stimulus group (P1 – P4, corresponding to frequencies
of 20, 25, 35, and 40 Hz) decreased as the frequency of the
target stimuli increased. These results confirm the fact that higher
frequencies cause a less subjective visual fatigue level compared to
lower ones (Allison et al., 2010; Volosyak et al., 2011; Yoshimoto
et al., 2017). The statistical results show significant differences
between all the pairs, except for P1 – P2 and P3 – P4 which were
close to each other compared to the other pairs.

Q4 stimulus had higher VAS scores compared to Q1. This may
be due to the fact that Q4 stimulus had dominant components
in lower frequencies (column 2 in Figure 2B) compared to Q1,
possibly leading to a more subjective visual fatigue. Ch1 stimuli
caused lower subjective visual fatigue compared to Ch3 and Ch4.
This could be due to the differences in the spectrum of Ch1
compared to those of Ch3 and Ch4 (column 2 in Figure 2C)
which tend to be in the higher frequencies.

In summary, the periodic stimulus group was less favorable
considering the higher subjective visual fatigue level compared
to the quasi-periodic and chaotic stimulus groups. For designing
homogenous BCI, it is recommended to optimize the quasi-
periodic and chaotic groups’ orthogonal stimuli by evaluating
their auto- and cross-correlation functions while at the same
time choosing appropriate frequency bandwidths to minimize
variations in the subjective visual fatigue.

Between-Group Subjective Fatigue Rate
Evaluation
The comparison of the subjective visual fatigue rates of the
periodic, quasi-periodic, and chaotic stimulus groups showed
that the chaotic group caused less visual fatigue compared to
the other two stimulus groups. The quasi-periodic group caused
lower levels of visual fatigue compared to the periodic one
(Figure 8). These results indicate the superiority of using the
chaotic group for designing new comfortable and ergonomic
VEP-based BCIs. Our recent study also showed that visual stimuli
with chaotic characteristics lead to significantly less visual fatigue
(Shirzhiyan et al., 2019).
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The visual fatigue reduction seen in the chaotic and even the
quasi-periodic stimuli group could be due to their dynamical and
complex nature which is more compatible with the visual system
compared to synthesized single frequencies. It has been shown
that the periodic stimuli that exist in nature are not very pure in
tone and have more than a single frequency as they contain quasi-
rhythmic components and have a complex dynamical structure
(Kayser et al., 2003; Butts et al., 2007; Mazzoni et al., 2011).

A simple deterministic dynamical system is also able
to generate extremely unpredictable, divergent, and fractal
behaviors (Boeing, 2016). These behaviors contain infinitely
self-similar patterns avoiding exact repetition (periodicity). It
is shown that fractal images and natural patterns are more
appealing compared to the synthesized ones (Redies, 2007;
Chapeau-Blondeau et al., 2009; Hagerhall et al., 2015; Kardan
et al., 2015), and also the chaotic patterns with high fractal
dimension and Lyapunov exponent are more aesthetically
pleasing (Aks and Sprott, 1996). The application of natural visual
stimuli that have sparse encoding can induce a resonant state
leading to the adaptation of the visual system to natural patterns
(Sekuler and Bennett, 2001; Redies, 2007) and possibly lower
visual discomfort. The results of the current study show that
visual fatigue scores are lower for quasi-periodic and chaotic
stimuli compared to periodic stimuli having one frequency. It is
speculated that this could be potentially because of the adaptation
of the visual system to the presented complex dynamical stimuli.

Additionally, the chaotic, quasi-periodic, and periodic
stimulus groups were closer to the 1/f amplitude spectrum,
with the chaotic group being the nearest (dotted black line in
the amplitude spectra plots of Figure 2). This pattern matches
our results of the VAS scores as the chaotic group had the least
visual fatigue in the same order with the other two groups. The
relevance of a comparatively less visual fatigue and nearness of
the chaotic stimuli to the 1/f amplitude spectrum is in agreement
with previous studies reporting that the visual system encodes
stimuli with 1/f amplitude spectral information (Tan and Yao,
2009; Ellemberg et al., 2012; Isherwood et al., 2017; Yoshimoto
et al., 2017).

Limitations and Plans for Future Studies
Our study has several limitations. Within-group analysis of the
subjective visual fatigue rates shows significant differences in all
the three groups. In practice, it is not favorable that different
target stimuli have different discomfort levels. To avoid possible
within-group differences, the parameters of the stimulus-
generated maps for each stimulus group could be selected in
order to have similar stimulus spectra while at the same time
preferring a higher frequency range instead of a lower one.

In this research, we did not study the optimization process for
selecting the appropriate parameters of the quasi-periodic and
chaotic stimuli. For future studies, optimization of the parameters
with the aim of having a sharper and greater auto-correlation
function of the target stimuli and a lower cross-correlation
function with other stimuli should be considered. It is possible
that such optimization can lead to better accuracy results.

The calculated lag times from the cross-correlation functions
in three different stimulus groups represent interesting patterns.

As can be seen from Figure 9, the obtained delay for each target
stimulus group differed from each other mainly in the periodic
stimulus group, while this delay was almost constant among the
target stimuli in the quasi-periodic and chaotic stimulus groups.
The diversity in the delay lags could potentially be due to the non-
linear behavior of the visual system to the presented input. We
plan to investigate this effect in a future project and study the
reasons leading to differential system delays for different stimulus
characteristics.

In our previous study, we have shown that using binary
chaotic codes versus m-sequences could decrease the subjective
visual fatigue, and this could be used as a modulating code in
c-VEP-based BCIs. Additionally, in this study, we found that
the chaotic stimulus group provided very high discrimination
between its individual stimuli, Ch1–Ch4, and could reduce the
fatigue rate better when compared to the traditional stimuli for
VEP generation (periodic stimuli). For further studies, it would
be probably feasible to attempt using chaotic stimuli generated
from other chaotic maps (such as Hanon map) and as short as
codes commonly used in c-VEP studies. This could lead to the
design of more comfortable and ergonomic c-VEP-based BCIs.

CONCLUSION

In this study, we introduced for the first time quasi-periodic
and chaotic visual stimuli for evoking VEPs in order to use
them in VEP-based BCIs and compared them with traditional
periodic stimuli used in SSVEP-based studies. The presented
complex stimuli (quasi-periodic and chaotic stimuli) satisfy the
necessities for use as visual stimuli in VEP-based BCIs. The
best target identification accuracy was obtained for the chaotic
stimuli. Potentially due to the more natural-like characteristics of
the chaotic and quasi-periodic stimuli, they led to less subjective
visual fatigue compared to the periodic stimulus group.
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Spiking neural networks (SNNs) are a computational tool in which the information

is coded into spikes, as in some parts of the brain, differently from conventional

neural networks (NNs) that compute over real-numbers. Therefore, SNNs can

implement intelligent information extraction in real-time at the edge of data acquisition

and correspond to a complementary solution to conventional NNs working for

cloud-computing. Both NN classes face hardware constraints due to limited computing

parallelism and separation of logic and memory. Emerging memory devices, like resistive

switching memories, phase change memories, or memristive devices in general are

strong candidates to remove these hurdles for NN applications. The well-established

training procedures of conventional NNs helped in defining the desiderata for memristive

device dynamics implementing synaptic units. The generally agreed requirements are

a linear evolution of memristive conductance upon stimulation with train of identical

pulses and a symmetric conductance change for conductance increase and decrease.

Conversely, little work has been done to understand the main properties of memristive

devices supporting efficient SNN operation. The reason lies in the lack of a background

theory for their training. As a consequence, requirements for NNs have been taken as

a reference to develop memristive devices for SNNs. In the present work, we show

that, for efficient CMOS/memristive SNNs, the requirements for synaptic memristive

dynamics are very different from the needs of a conventional NN. System-level

simulations of a SNN trained to classify hand-written digit images through a spike timing

dependent plasticity protocol are performed considering various linear and non-linear

plausible synaptic memristive dynamics. We consider memristive dynamics bounded by

artificial hard conductance values and limited by the natural dynamics evolution toward

asymptotic values (soft-boundaries). We quantitatively analyze the impact of resolution

and non-linearity properties of the synapses on the network training and classification

performance. Finally, we demonstrate that the non-linear synapses with hard boundary

values enable higher classification performance and realize the best trade-off between

classification accuracy and required training time. With reference to the obtained results,

we discuss howmemristive devices with non-linear dynamics constitute a technologically

convenient solution for the development of on-line SNN training.

Keywords: spiking neural network, MNIST, neuromorphic, analog memory, STDP, memristive synapse, memristor,

memristive devices
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1. INTRODUCTION

Spiking Neural Networks (SNNs) received a renewed wave
of interest from a computational point of view as a tool to
move the huge overload in data analysis from the cloud to
the edge. Indeed, they couple the neural network computing
power with spike coding of information, which is considered a
valid approach to reduce power requirement for the real-time
analysis of unstructured data. This enables the process of in-situ
decision making of autonomous systems (Indiveri et al., 2013).
SNNs are a complementary solution to conventional Neural
Networks (NNs), which compute with real-valued numbers and
are currently used to remotely analyze the data uploaded to the
cloud or at the edge only for inference, without online training
(Yu, 2018). Both NNs and SNNs require specific hardware
to boost their performance and computing speed. On one
side, hardware accelerators of NNs, like graphical processing
units and tensor processing units, are now widespread in the
market. On the contrary, hardware supporting SNNs are mainly
based on research platforms. In both cases, though, the lack
of parallelism and separation between storage and computing
units is still an issue, for which solutions are under investigation.
To this aim, emerging memory devices, compatible with back-
end of the production line of CMOS technology, and in
particular resistive switching random access memories (RRAM),
also named memristive devices, are considered among the best
candidates for hardware solutions supporting NNs and SNNs.
In particular, the so-called neuromorphic systems intend to use
memristive devices to update, during training, and store, for
inference, the synaptic weights of a network.

Since well-established robust and reliable training algorithms,
like the back-propagation of the gradient, is available for NNs,
the requirements for memristive devices for NN accelerators
have already been determined (Chen et al., 2015; Gokmen and
Vlasov, 2016; Sidler et al., 2016; Ambrogio et al., 2018; Fumarola
et al., 2018; Moon et al., 2018). It has been shown that the
memristive dynamics of the synapses, i.e., the evolution of
the memristor conductance driven by train of identical pulses,
determines the performance of the network (Chen et al., 2015;
Gokmen and Vlasov, 2016; Sidler et al., 2016; Fumarola et al.,
2018; La Barbera et al., 2018; Brivio et al., 2019a). In particular,
NN accelerators trained through back-propagation require a
memristive conductance evolving through many evenly-spaced
levels (linear dynamics) (Chen et al., 2015; Gokmen and Vlasov,
2016; Sidler et al., 2016; Fumarola et al., 2018). The same
agreement on the requiredmemristive synaptic dynamics in SNN
can hardly be reached because various training protocols have
been investigated with different results (Brivio et al., 2019a).
Currently, SNN training attempts include on-line spike-based
procedures (Payvand et al., 2018; Brivio et al., 2019a; Donati
et al., 2019) and off-line conventional training of a non-spiking
NN that must be afterwards converted into an equivalent SNN
(Diehl et al., 2015, 2016; Sengupta et al., 2019). The former allows
exploiting the full potential of memristive devices tuneability to
achieve a real-time on-line adaptive operation. Among the spike-
based training procedures, supervised learning rules inspired by
the back-propagation exist (Urbanczik and Senn, 2014; Müller

et al., 2017; Donati et al., 2019), which are seldom investigated
for systems including realistic simulations of memristive devices
(Nair et al., 2017; Payvand et al., 2018). On the contrary, the
literature is extremely rich of reports dealing with networks
trained by supervised (Brivio et al., 2019a) and unsupervised
versions of the so-called Spike Timing Dependent Plasticity
(STDP) (Diehl and Cook, 2015; Garbin et al., 2015; Querlioz
et al., 2015; Ambrogio et al., 2016; La Barbera et al., 2018). Few
reports indicate that non-linear memristive dynamics may be
beneficial for STDP-based SNNs (La Barbera et al., 2018; Brivio
et al., 2019a). A comprehensive review about neural networks and
spiking neural networks including also memristive devices can be
found in Bouvieret al. (2019). In addition, the deployment of all
the various emerging technologies for brain-inspired computing
is extensively described in Spiga et al. (2020).

In this paper, we aim at moving the first steps toward the
optimization of the training of a SNN through system-level
simulations as a function of various experimentally-inspired
memristive dynamics. Neuron model, training protocol, and
architecture are also compatible with a hardware implementation
in CMOS technology, as in the silicon chip described in Valentian
et al. (2019) and Regev et al. (2020). The investigated memristive
dynamics include linear and non-linear evolution bounded
within extreme maximum and minimum values, as well as a
non-linear evolution asymptotically approaching the boundary
values (details are reported below). The response of the network
is monitored throughout its training against the classification
of hand-written digits from the MNIST dataset (Lecun et al.,
1998). We choose this particular task in order to allow a direct
comparison with other results reported in the literature for NNs
(Chen et al., 2015; Garbin et al., 2015; Ambrogio et al., 2018) and
SNNs. (La Barbera et al., 2018; Brivio et al., 2019a) Furthermore,
the comparison among the various memristive dynamics is
performed in a quantitative manner through the definition of
figures of merit that apply to any mathematical formulation
for synaptic dynamics. We found that non-linear dynamics
bounded within extreme values is the most versatile dynamics,
which guarantees the best classification performance and the
best compromise between training duration and classification
accuracy. This result marks a clear difference with respect
to the recent finding related to conventional neural network
accelerators trained through the back-propagation algorithm,
which, according to a general agreement, require linear synapses
(Chen et al., 2015; Gokmen and Vlasov, 2016; Ambrogio et al.,
2018; Fumarola et al., 2018).

2. METHODS

2.1. Network Architecture and Training
Figure 1A presents the two-layers fully-connected feed-forward
SNN simulated for the classification of hand-written digits
from the MNIST dataset (Lecun et al., 1998). Simulations are
performed with the event-based N2D2 simulator tool (Bichler
et al., 2013). The full MNIST dataset is presented only once
for training (60,000 training digits), then testing (10,000 testing
digits). Each digit is composed of 28×28 pixels. The input layer
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FIGURE 1 | (A) Simulated SNN for the MNIST classification. (B) Simplified STDP learning rule. (C) Example of spiking activity of four output neurons when four different

input digits are presented, and Classification Accuracy (CA) definition. Adapted with permission from Ly et al. (2018). @IOP Publishing (2018). All rights reserved.

converts the input digit with a spike frequency encoding: each
input neuron generates a spike train with a spiking rate finput
proportional to the gray level of the corresponding input pixel.
finput ranges from fMIN = 83 Hz to fMAX = 22.2 kHz with a total
of 256 different gray levels. Spike trains are generated according
to a Normal distribution. Each input digit is presented to the
network for 350 µs during the training phase. The input layer is
composed of 28×28 input neurons fully-connected by weighted
synapses to the output layer composed of 500 Leaky Integrate-
and-Fire (LIF) output neurons with a leak time constant τ leak
= 120.0 µs. Note that after an output neuron fires a spike, it
cannot integrate any incoming spikes for a refractory period
trefrac = 1 ns. It also prevents all the other neurons of the
layer from integrating incoming spikes for a period tinhibit = 10
µs, referred to as lateral inhibition. This allows implementing
a Winner-Take-All (WTA) network between all the neurons
(Bichler et al., 2013). In addition, a slight delay in the firing time
of output neurons has been introduced: when an output neuron
reaches its threshold value, it fires a spike after a delay temit.
The parameter temit for each output neuron has been randomly
drawn from a normal distribution with a mean value µ = 0.1
ns and a standard deviation σ = 1 ps. This facilitates the
implementation of theWTAprocess. These parameters have been
optimized by a genetic algorithm. The network is trained with

an unsupervised simplified Spike-Timing-Dependent Plasticity
(STDP) rule (Figure 1B) (Suri et al., 2011; Querlioz et al.,
2015): if the post-synaptic neuron spikes after the pre-synaptic
neuron within a STDP time window tSTDP = 60.0 µs, the
synapse increases its synaptic weight by a quantity δw+ (synaptic
potentiation event). Otherwise, its synaptic weight is decreased
by a quantity δw− (synaptic depression event). Quantities δw+

and δw− follow different dynamics models described in the
following section. The weights are bounded between [0, 1] and
are initialized to the value of 0.8 before training. From a hardware
point of view, the initialization of devices to a predefined value is
more straightforward than a random initialization. In particular,
the weight value of 0.8 (i.e., high memristive conductance) is
coherent with an initialization performed in hardware with only
an electroforming step, which is required for a large class of
memristive devices (Brivio and Menzel, 2020). Furthermore,
the initialization does not influence the obtained classification
performances as demonstrated in Querlioz et al. (2013).

During the training phase, each output neuron becomes
sensitive to a specific class of digit as illustrated in the 2D
conductance mapping in the top left of Figure 1A (class of digit
“8”). After training, each output neuron is associated with the
digit it is the most sensitive to. This represents the class of
the neuron. To assess network performance during the testing
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phase, the Classification Accuracy (CA) is computed as defined
in Figure 1C. Each input digit is presented to the network for
350 µs and the output neuron that spikes the most within
this time window—the most active neuron—corresponds to the
network response. If the most active neuron class coincides
with the input digit, the digit is successfully classified (green
spikes). Otherwise, the digit is misclassified (red spikes). The
CA is calculated as the ratio between the number of successfully
classified digits, nclassified, and the number of input digits, ninput
(bottom of Figure 1C). As there are multiple ways to hand-write
the same digit, increasing the number of output neurons allows
for an improvement of network performance as demonstrated in
Querlioz et al. (2015). Indeed, this enables the network to have at
its disposal several neurons specialized to different hand-writings
of the same digit. As shown in Querlioz et al. (2015), the increase
of CA with the number of output neurons saturates after 500
output neurons.

It is worth pointing out that the network architecture and
operation are implemented according to the real hardware
possibilities of the current CMOS and memristive technologies.
In particular, contrary to Querlioz et al. (2015) who implemented
the same network as the present one, homeostasis, which, e.g.,
adjusts each individual output neuron threshold on the basis
on its instantaneous firing rate, is not included. As a matter of
fact, Querlioz et al. (2015) shows that homeostasis can improve
the classification accuracy by about 10%. On the other hand,
the hardware implementation of homeostasis would require
memory banks to store each individual neuron threshold values
and one additional capacitor per neuron to probe each neuron
firing rate, which will have a prohibitive impact on the required
silicon real estate (Dalgaty et al., 2019). Some pioneering works
are trying to address this issue with the help of memristive
technology (Dalgaty et al., 2019), but a hardware-compatible
homeostatic process over a large number of neurons has not been
elaborated yet.

Furthermore, the classification scheme can also be improved
with a voting procedure that takes into account the average
firing rate of each neuron pool as in Diehl and Cook (2015),
instead of considering only the individual neuron that fires the
most as in the present implementation. However, the voting
procedure based on the individual neuron firing rate eases
the circuit complexity and is only marginally influencing the
network performances. Indeed, Querlioz et al. (2015) obtained
a classification accuracy (94.5%) very close to that of Diehl et al.
(95%).

2.2. Models for Memristive Dynamics
The synaptic dynamics corresponds to the evolution of the
weight of an artificial synapse (proportional to the memristive
device conductance) when subjected to a train of identical
pulses. Considering bipolar memristive synapses, trains of pulses
of a given voltage polarity can lead to weight potentiation
and trains of pulses with the opposite polarity lead to weight
depression. As evident from the recent literature (Fumarola
et al., 2018) and pointed out by part of the present authors in
Frascaroli et al. (2018), themore general memristive conductance
dynamics usually follows a non-linear evolution with a slow

approach to the maximum and minimum values. Such dynamics
can be described by a non-linear soft-bound (NL-SB) model,
which has a particular importance in the field of computational
neuroscience. Indeed, Fusi and Abbott (2007) demonstrated that
NL-SB synapses generally endow a SNN with a larger memory
capacity (capacity of storage of memories) compared to synapses
whose weight evolve linearly between two boundary values. This
latter synaptic model will be referred to as linear hard-bound (L-
HB) synapses in the following. Fusi and Abbott (2007) showed
that L-HB synapses perform better than NL-SB ones only in the
particular case of a balanced network, i.e., a network in which
the rate of potentiation is the same as the rate of depression
events. From an experimental point of view, a memristive
dynamics is usually approximated with a L-HB dynamics by
interrupting a NL-SB one after a certain number of pulses at
the cost of reduced conductance window, Gmax/Gmin . Examples of
experimental reports can be found in Jang et al. (2015), Wang
et al. (2016), and Bousoulas et al. (2017). A third generic case,
which we will call non-linear hard-bound (NL-HB), consists in
a non-linear dynamics interrupted at arbitrary boundary values.
The boundary values are strictly reached after a certain finite
number of consecutive weight increase or decrease events. As
alreadymentioned, the NL-SB case is different because the weight
boundaries are reached as asymptotic values after an infinite
number of pulses (from a experimental point of view, tests up to
few thousand pulses have been performed; Brivio et al., 2019a).
The investigated L-HB and NL-SB dynamics in potentiation
(conductance increase) and depression (conductance decrease)
are shown in Figures 2A,B as solid and dotted lines, respectively.
Figures 2C,D report various investigated NL-HB cases, for
potentiation and depression operations as solid and dotted lines,
respectively. The examples reported in Figure 2 correspond to
specific mathematical expressions and parameterizations of the
dynamics models as described in the following.

Formally, the weight dynamics can be expressed in a
differential form in the continuous domain as a variation of
the weight, dw, per pulse, dn. The weights are always positive
because they are represented by the conductance value of
a physical device. Furthermore, it must be pointed out that
hard-bound cases are experimentally obtained by interrupting
a generic soft-bound dynamics, which therefore reduces the
conductance window of hard-bound cases. Despite this fact, all
the dynamics cases are simulated with the same conductance
window considering the weight as the normalized version of the
conductance between [0, 1], as plotted in Figure 2. Therefore,
for all the following equations one should consider w ∈ [0, 1]

and dw±

dn
= 0 outside the interval [0, 1]. In particular, the L-HB

dynamics is given by

dw±

dn
= ±α±, (1)

with α± ∈ (0, 1] and where the (·)+ and the (·)− stand for
potentiation and depression, respectively. Following Fusi and
Abbott (2007), Frascaroli et al. (2018), and Brivio et al. (2019a),
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FIGURE 2 | Investigated dynamics: (A) Linear Hard-Bound (L-HB); (B) Non-Linear Soft-Bound (NL-SB) and (C,D) Non-Linear Hard-Bound (NL-HB). Dynamics are

plotted as a function of the number of pulses for potentiation and depression operations (straight and dotted lines, respectively). The various dynamics cases are

defined in Table 1.

the NL-SB equation is given by

{

dw+

dn
= α+(1− w)γ+

dw−

dn
= −α−w

γ−
, (2)

with α± ∈ (0, 1] and γ± ≥ 1. It is evident from Equation (2)
that the weight variation tends to nullify as w approaches the
boundary values. The NL-HB dynamics is the truncated version
of the NL-SB properly re-scaled between 0 and 1, as follows

{ dw+

dn
=

α+
wstop,+

(1− w · wstop,+)
γ+

dw−

dn
= −

α−
wstop,−

(w · wstop,− + 1− wstop,−)
γ−

, (3)

where α± ∈ (0, 1], γ± ∈ [1,+∞). Nstop,± are the values of n at
which the corresponding NL-SB dynamics is truncated to get a
NL-HB one. wstop,± are the normalization terms that depend on
the value of Nstop,±, as shown in the Supplementary Material.

It is worth making some additional clarifications. Each
dynamics case is described by one or more free parameters
which are chosen as described in the following. It is clear from

Equations (1) and (2) that α± is the step height when departing
from the boundary value for the L-HB and the NL-SB dynamics.
Indeed, the weight moves away from the lower boundary value,
w = 0 for potentiation (resp. higher boundary value, w =

1 for depression) with a weight change equal to α+ (resp.
−α−). For the NL-HB case, the first step height is α±/wstop,± .
In addition, the weight change step is constant throughout the
entire weight range for the L-HB case; it decreases from α

to 0 for the NL-SB case; and it decreases from α±/wstop,± to a
finite value greater than 0 for the NL-HB case. The parameter
γ± introduces an additional non-linearity factor, whose effect
can be appreciated from Figure 2B. For each dynamics case,
potentiation and depression evolution are considered identical,
i.e., with the same values of the free parameters, α+ = α−,
γ+ = γ−, and Nstop,+ = Nstop,−. As a consequence, the
pace of approaching and departing to and from a given weight
value is the same only for linear synapses. On the contrary,
non-linear synapses are characterized by a certain asymmetry
between potentiation and depression. For instance, a NL-SB
synapse can be potentiated with a significant rate away from a
weight value close to 0 (w ≈ 0). In turn, at the same value, the
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depression rate is close to 0 because dw−/dn = −α−w
γ− ≈ 0.

As a matter of fact, the asymmetry between potentiation and
depression dynamics is usually present in real devices (Lee et al.,
2015; Frascaroli et al., 2018). The impact of asymmetry between
potentiation and depression dynamics on the performances of a
neuromorphic system has been investigated in some detail for
networks trained through back-propagation of the error (Chen
et al., 2015; Agarwal et al., 2016; Fumarola et al., 2018) and only
partially in spiking networks (La Barbera et al., 2018). However,
a procedure to decouple the effect of asymmetry from that of
non-linearity has not been proposed yet.

The memristive evolution in the network is determined
by the STDP rule described in the previous section and the
Equations (1)–(3). In fact, when the pre- and post-spikes are
emitted according to the potentiation (depression) window in
Figure 1B, a potentiation (depression) pulse is delivered to
the memristive synapse driving a weight change equal to δw+

(δw−). The quantity δw± is determined by the current synaptic
weight w and by the dynamics parameters in Table 1 according
to Equations (1)–(3). The programming of memristive device
with CMOS neuron circuit, in STDP-based schemes, has been
investigated in a number of works, which highlighted the need
to include compact interface electronics. Pedretti et al. (2017)
demonstrated STDP protocols on real 1 transistor-1 memristor
structures based on the temporal overlapping on pre- and post-
synaptic pulses driven by microcontrollers. Mostafa et al. (2016)
designed a memristor/CMOS neuron interface constituted by 4
CMOS transistors to drive weight depression and potentiation
operations separately within the framework of a generalized
version of STDP. Covi et al. (2018) tested the same structure by
wire-connecting a single memristor to two 350 nm technology
CMOS neurons. The neurons delivered the correct programming
pulses to obtain both analoge and digital memristive responses.
In Brivio et al. (2019a), a 6 transistor-1 memristor structure is
proposed to control synaptic potentiation, depression, and read
operations in an implementation of a generalized version of
STDP. The system-level simulation implemented in the present
work are compatible with such implementation details.

The main weighting property of a synapse is its resolution,
i.e., the number of weight values that it can store. The resolution
of a synapse has a direct impact on the performances of a
network (Bill et al., 2014; Brivio et al., 2019a). However, while
the definition of number of levels is straightforward for L-HB
dynamics, the same does not hold true in the case of non-linear
weight evolution, because in this case the weight values are not
evenly spaced. As a matter of principle, for NL-HB case, the
resolution could be evaluated equal to the number of update
events that are necessary to bring the weight from one boundary
value (e.g., 0) to the opposite (i.e., 1), i.e., exactly Nstop. However,
this is not a proper definition because the weight can be driven
from 0 to 1 with the same number of steps but through various
and very different trails. In particular, Figure 2C reports three
NL-HB cases for which the same number of pulses is required
to cover the full weight range but show very different dynamics.
It is reasonable to associate different resolutions (or effective
number of levels) to the three examples. In addition, it is worth
pointing out that the number of pulses required to cover the

TABLE 1 | List of the investigated dynamics defined by the values of their

parameters α, γ , and Nstop.

α± γ± Nstop,± η λ

L-HB 0.1 – – 10 0

0.02 – – 50 0

0.01 – – 100 0

0.005 – – 200 0

0.002 – – 500 0

NL-SB 0.02 9 – 500 0.02

0.016 7 – 500 0.020

0.008 3 – 500 0.010

0.004 1 – 500 0.005

NL-HB 0.002 3 500 402 0.006

0.008 3 500 225 0.015

0.03 3 500 90 0.047

0.002 1.16 559 500 0.004

0.002 4.57 796 500 0.006

0.002 9.88 1281 500 0.009

The corresponding values for resolution, η, and non-linearity, λ, are also reported.

full weight range is not a good definition for the NL-SB, which
strictly requires an infinite number of steps to reach the boundary
values. Indeed, the non-linear cases reported in Figure 2 should
be associated to different resolutions from a purely mathematical
point of view. These considerations are completely independent
from the effect of the noise and variability that unavoidably affect
any real memristive device (Yu et al., 2013; Frascaroli et al.,
2015, 2018; Covi et al., 2016; Brivio et al., 2017, 2019b). The
impact of noise and variability has been investigated for some
specific networks and some applications, demonstrating a general
tolerance of neuromorphic systems against memristive synapse
variability and noise (Querlioz et al., 2013; Garbin et al., 2014;
Burr et al., 2015; Covi et al., 2016; Bocquet et al., 2018). Since we
want to restrict the present study to a purely theoretical basis on
the very impact of synaptic dynamics on network performances,
the effect of noise and variability are left to a future work.

For the reasons above, we arbitrarily define an estimator for
the resolution (effective number of levels) of the memristive
device which can be applied to any generic dynamics expressed as
a weight variation (dw) per pulse (dn) in the continuous domain,
dw±

dn
= f±(w) [f±(w) must be differentiable for w ∈ (0, 1)]. The

resolution, η, is defined as

η =

{

∫ +∞

0

[dw

dn

]2
dn

}−1

. (4)

Equation (4) returns the correct number of levels for the trivial
L-HB case, i.e., equal to the number of pulses to go from one
boundary to the other one, and a reasonable estimate for the
non-linear cases, as discussed in the Supplementary Material.
η assumes analytical expressions for the dynamics cases under
study, as reported in the Supplementary Material. It is just worth
noticing that η =1 /α± for the L-HB case and is proportional to
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1/α± for the NL-SB (in agreement with Fusi and Abbott, 2007)
and the NL-HB cases.

According to the discussion above and to the recent literature,
a second property of weight dynamics is its non-linearity (λ),
which can be defined as the average curvature of the weight
evolution as a function of the number of potentiation or
depression pulses, w(n):

λ =
4

π

∫ +∞

0

|w′′(n)|

{1+ [w′(n)]2}
3/2

dn, (5)

where (·)′ and (·)′′ indicate the first and the second derivative with
respect to n.

In this work, we investigate the impact of these synaptic
properties, namely the resolution, η, and the non-linearity, λ,
on the training and performance of the SNN described above.
In particular, we consider various L-HB, NL-SB, and NL-HB
dynamics, as reported in theTable 1 and shown in Figure 2. Note
that the L-HB cases are only characterized by different values
of the resolution, because only one free parameter exists. For
the NL-SB case, it is possible to investigate different dynamics
for the same resolution, i.e., with different non-linearities. NL-
HB cases are chosen in a way to have the same Nstop,± (cases
1–3) or the same resolution, η (cases 4–6). We investigate
resolution values up to 500 because this is the one that guarantees
good performance on MNIST classification on the linear case,
according to previous literature results (La Barbera et al., 2018;
Brivio et al., 2019a) and as it will be evident also in the
following. The free parameters of the various dynamics cases
are generally compatible with experimental data as in Frascaroli
et al. (2018) and Brivio and Menzel (2020). For the sake of
completeness, it is worth noticing that dynamics of a memristive
device depends on the properties of the constitutive materials
and on the programming conditions. For instance, memristors
featuring double insulating layers have been reported to show
more gradual conductance evolution than devices with a single
insulating material (Park et al., 2016; Wang et al., 2016; Moon
et al., 2018; Brivio and Menzel, 2020). The response speed might
depend on the diffusivity of the mobile ionic species as well. It
is a property of the insulating materials itself, which can also
be slightly tuned by doping, strain, or by changing the atomic
structure and porosity (Azghadi et al., 2020; Brivio and Menzel,
2020). Furthermore, the programming scheme influences the
dynamics. Indeed, strong programming conditions (high voltage
or long pulses) result in large conductance changes with a few
pulses (Frascaroli et al., 2018). It is worth specifying that all the
parameters (α, γ , Nstop) defining the memristive dynamics affect
both resolution and non-linearity at the same time. More details
can be found in the Supplementary Material.

3. RESULTS

As discussed in the previous paragraph, the mathematical
formulation of all the investigated dynamics comprises a
parameter α, the only parameter that is present in all investigated
synaptic dynamics. In Figure 3, the classification accuracy, CA,
is shown to decrease as a function of α for the investigated

FIGURE 3 | Classification accuracy as a function of the parameter α for the

L-HB, NL-SB, and NL-HB cases.

cases. This observation is expected because 1/α is equal to the
synaptic resolution of the L-HB dynamics and is proportional to
that of the non-linear ones. It is already evident that the non-
linear cases perform better than the linear ones for a wide range
of the parameter α, in agreement with previous publications
(La Barbera et al., 2018; Brivio et al., 2019a). However, only
the evolution as a function of α does not catch the entire
complexity of the problem because, for the NL-SB and NL-
HB cases, α affects both resolution and non-linearity. Indeed,
the various types of weight dynamics in Figure 3 follow a
different decreasing trend. The maximum reached classification
accuracy settles close to 85%, which is lower than the best
results on theoretical SNNs (Diehl and Cook, 2015). However,
as stated above, the aim of the present work is to test SNNs
constituents and architectures that can be possibly realized in
hybrid CMOS/memristor technology (Valentian et al., 2019;
Regev et al., 2020). As discussed in the Methods section, the
inclusion of a homeostatic rule, which is of difficult hardware
implementation, would recover a classification accuracy close to
the best state of the art results, as demonstrated by Querlioz
et al. (2015) with the same network as the one implemented in
this work. The values of the collected classification accuracy are
reported in the Supplementary Material.

To get a deeper insight on the factors affecting the network
performances, the classification accuracy is plotted as a function
of η and λ in Figure 4, which reports the first of the main
results of the paper taking advantage of the mathematical toolkit
described in the previous section. Figure 4A shows that there is
a general trend of increasing CA with the synaptic resolution,
η. Different resolution values are shown for the dynamics with
hard-bounds, linear (squares) and non-linear (triangles), i.e., L-
HB and NL-HB. They show a very similar trend with slightly
higher CA for the non-linear case. The investigated NL-SB
dynamics (circles) share the same resolution (η = 500) but
they give different CA results. In particular, for the NL-SB, the
CA is reduced by the increase of non-linearity, λ, as shown in
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FIGURE 4 | Classification accuracy as a function of the parameters η (A) and λ (B), for the L-HB, NL-SB, and NL-HB cases. The symbols color follow the resolution

value, η, according to the color bars reported on the right sides of the panels.

Figure 4B. In turn, the non-linearity does not affect significantly
the performances of the non-linear synapses with hard bounds,
for which the CA remains almost stable over a wide range of λ

values. It is important to point out that NL-HB synapses with
the highest non-linearity λ = 0.047 are also characterized by
the lowest resolution η = 90 (please consider that the symbol
color is indicative of the synaptic resolution η, according to the
color reported on the right-hand side of the figure). In any case,
both the low resolution and the high non-linearity affect the
classification performance only by a small amount. In addition,
it is worthless to notice that the L-HB synapses are all described
by zero non-linearity (λ = 0).

In order to understand the previous results we monitor the
learning dynamics, i.e., the CA as a function of the training
time (i.e., number of training digits), which usually displays a
growth and a saturation toward the final maximum value. The
learning dynamics for all the investigated synaptic models are
reported in Figure 5 (circles, left axis).With training, the synaptic
weights evolve in a way that enables the distinction between the
digits. In particular, it is well known that linear synapses, i.e.,
characterized by weight-independent plasticity, tend to develop
bi-modal weight distributions after training (Song et al., 2000;
van Rossum et al., 2000; Rubin et al., 2001; Billings and van

Rossum, 2009). In this case, the weight values accumulate at the
edges of the useful weight range, i.e., [0,1] in the present case.
On the contrary, non-linear synapses with weight-dependent
plasticity tend to result in a uni-modal weight distribution,
with weight values accumulating in a value somewhere in the
middle of the allowed weight range (Song et al., 2000; van
Rossum et al., 2000; Rubin et al., 2001; Morrison et al., 2008;
Billings and van Rossum, 2009; Brivio et al., 2019a). This is the
result of the fact that strong (weak) synapses with non-linear
dynamics are weakly potentiated (weakly depressed), which was
shown to improve the memory capacity of the network on
one side and, on the other, limit the synaptic specialization of
the classification layer (Fusi and Abbott, 2007; Brivio et al.,
2019a). As amatter of fact, in general, weight-dependent synapses
and uni-modal distributions are considered less informative
(Hennequin et al., 2010), because they correspond to a lower
degree of specialization than weight-independent synapses and
bi-modal distributions. Conversely, uni-modal distributions are
considered more biologically realistic (Morrison et al., 2008).
The weight distributions of the investigated cases at the end of
the training are reported for the sake of completeness in the
Supplementary Figure 2. In order to monitor the development
of a weight specialization that enables the network to classify the
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FIGURE 5 | Classification Accuracy (CA, left axis) and weight contrast (right axis, as defined in the main text) as a function of the number of training images presented

to the SNN for various dynamics in the different panels.

input images, we analyze the clustering of the weights into two
groups as a function of training through the k-means algorithm
and consider the distance between the centers of the two clusters
as a measure of the network specialization, which we will call
weight contrast. Indeed, intuitively the weight contrast can be
considered as the ability to take advantage of a wide portion of the
available weight range. Other methods to group the weight values
into two clusters are analyzed in the Supplementary Material

and are in agreement with the k-means algorithm results. The

weight contrast is reported in Figure 5 (squares, right axis) for
the various dynamics cases. It is possible to notice that the linear
cases develop a large weight contrast at the end of training
(Figures 5A,B) in agreement with the general discussion above.
The non-linear cases show lower weight contrast than the linear
cases but with significant variations depending on the dynamics
parameters (for instance, cf. Figures 5J,L for two different NL-
HB cases). The weight contrast at the end of the training is plotted
against the parameters η and λ in Figures 6A,B, respectively.
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FIGURE 6 | (A,B) Weight contrast at the end of the training as a function of the parameters η and λ, for the L-HB, NL-SB, and NL-HB cases. (C) Classification

accuracy, CA, as a function of the weight contrast. The symbols color follow the resolution value, η, according to the color bar reported on the right side of panel.

Figure 6A shows that the L-HB case results in about the same
contrast for every resolution, while in the NL-SB case the same
synaptic resolution can give very different weight contrasts,
depending on the non-linearity, λ (Figure 6B). The NL-HB case
is the most interesting, because the additional parameter Nstop

allows to increase the contrast either by reducing the resolution,
as shown by the filled triangles in Figure 6A, or by reducing
the non-linearity at equal resolution, as shown by the empty

triangles in Figure 6B. Finally, Figure 6C reports the CA as a
function of the weight contrast. It shows that L-HB synapses
(squares) are all characterized by high contrast but only those
with high resolution achieve high classification accuracy (please
notice, again, that the symbol color is indicative of the synaptic
resolution η, according to the color reported on the right-side of
the figure). NL-SB synapses (circles) achieve high CA only when
the weight dynamics develops a high contrast. This is obtained
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by reducing the non-linearity (please compare with Figure 6B).
The classification results of the NL-HB synapses (triangles) are
almost independent from the weight contrast obtained at the end
of the training.

The results of Figures 4, 6 constitute already a relevant result
with respect to the state of the art. Indeed, linear synaptic
dynamics is often considered as the best solution for any kind
of hardware neural network, so that large efforts are spent to
improve linearity of memristor dynamics (Wang et al., 2016;
Bousoulas et al., 2017; Chen et al., 2019). Such belief may have
raised as a generalization of the results of exemplary works
on NN accelerators trained by back propagation of the error
generalized to other networks and other training protocols (Burr
et al., 2015; Fumarola et al., 2018). As a matter of fact, as
mentioned above and shown in Figure 6B, linearity improves
weight contrast and sustains the specialization of the network.
However, it has been demonstrated that non-linear synapses
improve memory lifetime and memory capacity of a network
in which the rates of potentiation and depression events are
not perfectly balanced (Fusi and Abbott, 2007). Furthermore,
van Rossum et al. (2000) pointed out that STDP tends to make
potentiated synapses more and more potentiated. Indeed, as a
synapse is strengthened, its correlation with the post-synaptic
neurons increases thus leading to a further potentiation. Van
Rossum et al. demonstrated that this destabilizing tendency of
STDP can be profitably counterbalanced by introducing weight-
dependent plasticity (i.e., a non-linear dynamics) which produces
a certain competition among synapses. The results in Figures 4, 6
can be generically ascribed to a different balance between contrast
decrease, increase of memory lifetime, and synaptic competition
with increasing non-linearity.

This result marks a difference with respect to memristor-
based neural network accelerators trained by global error back-
propagation for which the achievement of high weight contrast
and bi-modal weight distribution taking advantage of the full
weight range is fundamental for a successful training (Sidler et al.,
2016; Fumarola et al., 2018).

Another important aspect to consider is the duration of the
training process, which for some applications must be reduced
to a minimum. To evaluate it, we define the parameter 1train as
the fraction of training images required to reach 99% of the final
classification accuracy over the total number of digits available
for training, ntot (with ntot = 60,000 here). In symbols,

1train =
ntrain(CA = 99%CAmax)

ntot
, (6)

The parameter 1train is shown as a function of η and λ in
Figures 7A,B, respectively. Figure 7A indicates a correlation
between the synapse resolution and 1train. The correlation is
somehow expected in case of a strong tendency to the formation
of a bi-modal weight distribution, i.e., linear synapses (squares).
Indeed, if the weight values tend to concentrate at the boundary
values, the number of steps required to move the weight values
from a generic initial one to the boundary scales with the synapse
resolution. In agreement with this interpretation, the correlation
between 1train and η is not perfect for the non-linear cases,

because for the same resolution very different 1train values are
obtained, as shown in Figure 7A in particular for the NL-SB cases
(filled circles). Interestingly, the evolution of 1train as a function
of λ follows opposite trends for soft and hard bound cases (also
considering only the points at equal resolution, empty triangles
and filled circles), as visible in Figure 7B. It is worth noticing
that NL-SB and NL-HB with 500 levels resolution also show
the same evolution of contrast as a function of non-linearity,
as shown by filled circles and empty triangles in Figure 6B.
Therefore, the opposite trends of 1train as a function of non-
linearity cannot be explained by the need to develop, during
training, a weight contrast that scales differently with non-
linearity for NL-SB and NL-HB dynamics. On the contrary,
the classification accuracy of NL-SB and NL-HB dynamics with
the same 500 levels resolution follows opposite trends as a
function of non-linearity, as indicated in Figure 4B (though
the change for the NL-HB case is very modest). Therefore,
the fact that both accuracy and training time follow opposite
trends as a function of non-linearity can be an indication that,
for non-linear dynamics, the training time is influenced by
the maximum classification accuracy allowed by the particular
synaptic dynamics. Finally, also considering the training time,
the NL-HB cases (triangles) demonstrate more versatility than
the other dynamics in reducing the training duration either by
reducing the resolution, η (Figure 7A), or increasing the non-
linearity, λ (Figure 7B).

All the results are summarized in Figure 8. Figure 8A reports
the classification accuracy as a function of the training duration,
1train, for the various dynamics. The usual increase of CA
with η is evident for the L-HB case, demonstrating that an
increase in synaptic resolution produces a higher classification
accuracy at the expense of longer training duration. This fact
can be appreciated reminding that the symbol color follows the
resolution, η, in agreement with the color bar on the right-hand
side of the Figure 8. The saturation visible at high 1train may
be just due to the fact that, during training, further CA increase
takes longer and longer time. In Figure 8A, no general trend can
be appreciated for NL-SB and NL-HB synapses. For instance,
some NL-SB cases present long training times associated to a
degraded CA as a consequence of the effect of the non-linearity,
according to Figures 4, 7. In addition, for the NL-HB cases, the
CA shows a limited dependence on1train. In particular, the point
corresponding to the lowest training duration, interestingly,
guarantees almost the same classification performances as the
points requiring a longer training. This case could be considered
as the one realizing the best trade-off between classification
accuracy and required training time. As a matter of principle,
some applications may require both to maximize the CA and to
minimize 1train (i.e., maximize 1 − 1train). For this reason, we
can define the SNN efficiency, ǫ, as

ǫ =
CA+ (1− 1train)

2
, (7)

which is normalized between 0 and 1. ǫ values are shown
in Figures 8B,C as a function of η and λ, respectively (all
the achieved values of the performance metrics and a figure
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FIGURE 7 | Training duration, Ntrain, as a function of the parameter η (A) and λ (B), for the L-HB, NL-SB, and NL-HB cases. The symbols colors in follow the

classification accuracy, CA, in (A) and the resolution value, η, in (B) according to the color bars reported on the right sides of the panels.

reporting the efficiency as a function of accuracy are reported
in the Supplementary Material). The maximum efficiency is
reached by the NL-HB case with the lowest resolution and the
highest non-linearity (top- and left-most triangle in Figure 8B

and top- and right-most triangle in Figure 8C, with η = 90
and λ = 0.047). It corresponds to the dynamics with α =

0.03 in Figure 2C, which grants a classification accuracy that
is only slightly affected by resolution and non-linearity, as
shown in Figure 4. Such highly non-linear and highly weight-
dependent NL-HB dynamics resembles a NL-SB one and may
endow the network with longer memory lifetime (Fusi and
Abbott, 2007) and a higher synaptic competition within a
STDP training framework (van Rossum et al., 2000), resulting
in an improved synaptic contrast (right-most filled triangle in
Figure 6C). Furthermore, the maximum efficiency dynamics
takes advantage of a short training time justified by its low
resolution, as shown in Figure 7A. In turn, for the L-HB cases
(squares), the efficiency is degraded with increasing resolution
as a consequence of the increase of the training duration, as
shown in Figure 7A. The non-linearity, instead, deteriorates the
efficiency of the NL-SB dynamics (circles in Figure 7C) because
it both increases the training duration (Figure 7B) and reduces
the classification accuracy (Figure 7).

4. CONCLUSIONS

In conclusion, we analyzed the impact of the synaptic
weight dynamics on the performances of a two-layer fully-
connected SNN compatible with a hybrid CMOS/memristive
implementation and trained through an unsupervised STDP
protocol. We chose weight dynamics that can be realized, at
least as a matter of principle, through memristive technology.
We found that synapses with non-linear dynamics and hard
weight boundary values (NL-HB synapses) give performance
advantages for a SNN with STDP-based learning in various
aspects. First, NL-HB synapses guarantee the best classification
accuracy among the investigated dynamics (see Figures 3, 4,
8A) over all the investigated range of resolution, η. It is worth
noticing that this is a significant result in the context of the
present literature. Indeed, it has been extensively demonstrated
in several publications (Chen et al., 2015; Ambrogio et al., 2018;
Fumarola et al., 2018; Moon et al., 2018) that linear synapses
enable the best classification accuracy of neuromorphic systems
that implement in hardware the back-propagation of the global
error. This result has been extended, as a supposedly natural
consequence, as holding true for SNNs. However, few recent
works from the present authors (La Barbera et al., 2018; Brivio
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FIGURE 8 | (A) Classification accuracy, CA, as a function of the training duration, 1train, for the various dynamics. (B) Efficiency as a function of the resolution, η, and

(C) efficiency as a function of the non-linearity, λ. The symbols colors follow the resolution value, η, according to the color bars reported on the right sides of the panels.

et al., 2019a) have given indications that non-linear synapses can
perform better than linear ones for SNNs, which resulted in an
interesting debate (Berg et al., 2019). In the present work, we put
on firmer and quantitative basis the role of non-linearity on the
performances of unsupervised and STDP-based SNNs.

Furthermore, for applications in which the training duration
has to be minimized, the NL-HB dynamics also realized the best

trade-off between classification accuracy and training duration,
in agreement with the mathematical definition of efficiency given
above (see Figure 8).

All these results are ascribed to the fact that the NL-HB
dynamics produces a distinct behavior of the SNN, with respect
to L-HB and NL-SB dynamics. Indeed, in case of hard-bounds,
the classification accuracy and the weight contrast (ability to
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take advantage of a wide portion of the available weight range)
is minimally affected by the non-linearity (compare NL-SB and
NL-HB cases in Figures 4, 6). Moreover, the non-linearity of
NL-HB synapses tends to reduce SNN training duration, in
clear opposition with the trend of the soft-bound synapses
(Figure 7B). This is the reason for the low training duration for
the highly non-linear hard bound synapses, which results in a
high efficiency, ǫ, according to the definition above (Figure 8).

In addition, it is interesting to make some considerations
from a technological point of view. Memristive devices are
characterized by an intrinsic non-linear conductance dynamics.
More precisely, we have recently shown that the NL-SB
dynamics is the model that faithfully describes the behavior of
filamentary memristive devices (Frascaroli et al., 2018; Brivio
et al., 2019a). On the other hand, technological efforts have
been mainly focused on developing memristive synaptic devices
with high resolution and low non-linearity because these are
the requirement for hardware neural networks relying on back-
propagation of the error. The linear dynamics is usually obtained
by truncating the non-linear dynamics in the linear regime. This
solution however limits the synapse resolution to a lower values
with respect to those that can be obtained with a more complete
non-linear dynamics. In fact, in the present study, the dynamics
free parameters have been set to realistic values in particular
for the non-linear cases. On the contrary, resolutions of 200
and 500 levels can hardly be obtained over a linear conductance
evolution (Wang et al., 2016; Bousoulas et al., 2017; Chen et al.,
2019). For instance, in one of the best literature results, Wang
et al. (2016) reports a nearly linear dynamics over 300 pulses,
indicating a resolution close to 300 levels. However, their data is
best fitted with a NL-HB models with α = 0.004, γ = 1.02 and a
resolution of about 266 levels. Therefore, according to our results,
in the case of SNNs with STDP-based unsupervised training,
higher classification accuracy values, or efficiency values, can
be obtained with non-linear hard-bound synapses relaxing the
requirements on resolution and non-linearity for memristive
devices. Therefore, high performances for STDP-based SNNs can
be obtained with moderately challenging device engineering by
embracing, instead of facing, their intrinsic non-linear dynamics.
It is worth specifying that simulations have intentionally been
performed neglecting any source of variability in the synaptic
elements in order to isolate the very effect of synaptic dynamics.
From an experimental point of view, the various dynamics may

be affected more or less seriously by noise and variability. In
particular, we can expect the linear dynamics, being the most
challenging in real devices as stated above, to be the most affected
by noise and variability. However, a methodological experimental
investigation on highly optimized devices is required in order
to take into account the different role of dynamics-dependent
variability in the simulations.

Finally, the present paper defines a methodology to assess the
impact of synaptic dynamics on the performances of a neural
network and provides the basis for future works applied to
different training protocols, network architectures, applications,
and different synaptic dynamics features, e.g., asymmetry
between weight depression and potentiation processes and
potentially different dynamics evolution, size of the readout layer
and, as mentioned above, the impact of dynamics-specific noise
and variability features, all of which can have an impact on the
trade-offs pointed out in the manuscript.
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Wearable devices are a fast-growing technology with impact on personal healthcare for

both society and economy. Due to the widespread of sensors in pervasive and distributed

networks, power consumption, processing speed, and system adaptation are vital in

future smart wearable devices. The visioning and forecasting of how to bring computation

to the edge in smart sensors have already begun, with an aspiration to provide adaptive

extreme edge computing. Here, we provide a holistic view of hardware and theoretical

solutions toward smart wearable devices that can provide guidance to research in this

pervasive computing era. We propose various solutions for biologically plausible models

for continual learning in neuromorphic computing technologies for wearable sensors. To

envision this concept, we provide a systematic outline in which prospective low power

and low latency scenarios of wearable sensors in neuromorphic platforms are expected.

We successively describe vital potential landscapes of neuromorphic processors

exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory

technologies (e.g., memristive devices). Furthermore, we evaluate the requirements for

edge computing within wearable devices in terms of footprint, power consumption,

latency, and data size. We additionally investigate the challenges beyond neuromorphic

computing hardware, algorithms and devices that could impede enhancement of

adaptive edge computing in smart wearable devices.

Keywords: neuromorphic computing, edge computing, wearable devices, learning algorithms, memristive devices

1. INTRODUCTION

Wearable devices can monitor various human body symptoms ranging from heart, respiration,
movement, to brain activities. Such miniaturized devices using different sensors can detect, predict,
and analyze the physical performance, physiological status, biochemical composition, and mental
alertness of the human body. Despite advances in novel materials that can improve the resolution
and sensitivity of sensors, modern wearable devices are facing various challenges, such as low
computing capability, high power consumption, high amount of data to be transmitted, and low
speed of the data transmission. Conventional wearable sensing solutions mostly transmit the
collected data to external servers for off-chip computing and processing. This approach typically
creates an information bottleneck acting as one of the major limiting factors in lowering the power
consumption and improving the speed of the operation of the sensing systems. In addition, the
use of conventional remote servers with conventional signal processing techniques for processing
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these temporal real-time sensing data makes it computationally
intensive and results in significant power consumption and
hardware occupation. In this scenario, the edge computing
paradigm, whose definition typically includes all the networks
where the computation node is not in the cloud, has become
very attractive. Indeed, the closer the computing unit to the
sensing one, the more power efficient. In particular, a system
is defined able of “extreme edge computing” when the data
processing occurs right next to the sensor, on the same device
(Rubino et al., 2021). This paradigm calls for a radical shift of
perspective. Indeed, general-purpose systems are powerful and
versatile, but they do not take the diversity of the quantity and
quality of the information generated by different devices into
account. In this respect, a custom solution which optimizes
the available resources to perform the task at hand might
prove to be more advantageous in terms of power, area, and
latency than a general-purpose one. Moreover, even when
computing is moved to the extreme edge, standard processing
units might not provide the ideal solution to the aforementioned
issues. Standard von-Neumann architectures feature a physical
separation between memory and processing unit, thus further
increasing the power consumption to shuttle data between
units. Such solutions always need a trade-off between power
lifetime and computing capability. Bringing computing at the
edge enables faster response times and opens the possibility of
personalized always-on wearable devices able for continuously
interacting and learning with the environment. However, a
radical change of paradigm which uses innovative algorithms,
circuits and memory devices is needed to maximize the system
performance whilst keeping power and memory budgets at
a minimum.

Conventional computers, using Boolean and bit-precise
digital representations and executing operations with time-
multiplexed and clocked signal, are not optimized for fuzzy
inputs and complex cognitive tasks, such as pattern recognition,
time series prediction, and decision making. Deep Artificial
Neural Networks (ANNs) on the other hand have demonstrated
amazing results in a wide range of pattern recognition tasks
including machine vision, Natural Language Processing (NLP),
and speech recognition (LeCun et al., 2015; Schmidhuber, 2015).
Dedicated hardware ANN accelerators, including Graphical
Processing Units (GPUs), Tensor Processing Units (TPUs),
and custom Application Specific Integrated Circuits (ASICs)
with parallel architectures are being developed to execute these
algorithms and obtain high accuracy inference results. GPUs
provide a substrate well-suited to the parallel processing nature
of the ANNs and their very long memory bus is particularly apt
for running Vector Matrix Multiplications (VMMs), which are
at the core of the processing in deep neural networks. Therefore,
GPUs support the parallelism, though still pales in comparison to
the scale of parallelism that exists in the brain, but they consume
orders of magnitude more power than that of the brain (Silver
et al., 2016), since they are clocked and the memory access is
not localized. To solve this problem, ASIC accelerators try to
reduce the complexity of the structure by making the system
more application specific and using clock gating and specific
hardware structure which matches best to the structure of the

mapped neural network to reduce power consumption through
less memory read and data access (Cavigelli and Benini, 2016;
Chen et al., 2016; Lee et al., 2019; Song et al., 2019). For a
complete survey on the state-of-the-art ASIC accelerators for
biomedical signals refer to Azghadi et al. (2020).

To go even further in power savings, there are two problems
to be solved: (i) remove clock and (ii) perform computation with
co-localization of memory and processor. The first problem calls
for the development of event-based systems, where processing
is performed “asynchronously,” i.e., only when there are input
“events.” The algorithmic basis for this kind of “asynchronous”
processing is Spiking Neural Network (SNN), in which neurons
spike asynchronously only to communicate information to
each other.

To avoid the data movement between the memory and the
processor, the memory element should be not only used to
store data but also to perform computation inside the processor.
This approach is called “in-memory computing.” These two
approaches of (i) event-based systems and (ii) in-memory
computing, together with (iii) massive parallelism, are the three
fundamental principles which have led to the development
of neuromorphic computing, and to the realization of highly
efficient neuromorphic platforms (Schemmel et al., 2010; Furber
et al., 2014; Merolla et al., 2014; Moradi et al., 2017; Davies et al.,
2018; Frenkel et al., 2019a). Therefore, in this article, we will refer
to event-based highly parallel systems that are able to perform
real-time sensory processing.

Despite that current fully Complementary Metal-Oxide-
Semiconductor (CMOS) implementations of neuromorphic
platforms have shown remarkable performance in terms of
power efficiency and classification accuracy, there are still some
bottlenecks hindering the design of embedded sensing and
processing systems. First, the memory used is typically Static
Random Access Memory (SRAM), which has very low static
power consumption, but it is a large element (six transistors
per cell) and it is volatile. The latter feature implies that the
information about the network configuration has to be stored
elsewhere and transferred to the system at its startup. For large
networks, it may take tens of minutes before the system is
ready for normal operation. Second, always-on adaptive systems
need to work with time constants that have the same time-span
of the task that is being learned (e.g., longer than seconds).
Implementing such long time constants in neuromorphic CMOS
circuits is impractical, since it requires large area capacitors.

To overcome the limitations of fully CMOS-based approaches,
the intrinsic unique physical properties of emerging memristive
devices can be exploited for both long-term (non-volatile) weight
storage and short-term (volatile) task-relevant timescales. In
particular, non-volatile devices feature retention times on a long
time scale (>10 years, Cheng et al., 2012; Udayakumar et al.,
2013; Goux et al., 2014; Golonzka et al., 2018) while showing
weight reconfigurability with voltages compatible with typical
CMOS circuits (≤3.3 V). Volatile devices, instead, can have time
constants on the order of tens of milliseconds to seconds (Jo
et al., 2015; Wang et al., 2017; Wang et al., 2019; Wang et al.,
2019c; Yang et al., 2017; Covi et al., 2019), thus being able
to emulate biological time constants. This feature is especially
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useful to implement spatiotemporal recognition (Wang et al.,
2021) or to enable brain inspired algorithms which need to
keep trace of the recent neural activity. This non-volatile/volatile
property of memristive devices, together with a small footprint
and power efficiency, has indeed attracted a lot of interest in
the last 10 years (Linares-Barranco and Serrano-Gotarredona,
2009; Ielmini and Wong, 2018; Chicca and Indiveri, 2020).
However, memristive technology has to be supported by ad hoc
theoretically sound biologically plausible algorithms enabling
continual learning and capable to exploit the intrinsic physical
properties of memristive devices, such as stochasticity, to achieve
accuracy performance comparable to state-of-the-art ANNwhilst
reducing the power consumption.

This review discusses the challenges to undertake for
designing extreme edge computing wearable devices for
healthcare and biomedical applications in four different
categories: (i) the state-of-the-art wearable sensors and main
restrictions toward low-power and high performance learning
capabilities; (ii) different algorithms for modeling biologically
plausible continual learning; (iii) CMOS-based neuromorphic
processors and signal processing techniques enabling low-power
local edge computing strategies; (iv) emerging memristive
devices for more efficient and scalable embedded intelligent
systems. We focus on neuromorphic systems as key enabler
of extreme edge computing paradigms since they offer a very
convenient trade-off between computational capability and
power consumption. As graphically summarized in Figure 1,
we argue that a holistic approach which combines and exploits
all the strengths of these four categories in a co-designed
system is the key factor enabling future generations of smart
sensing systems.

2. WEARABLE SENSORS

Sensors act as the information collector of a machine or a
system that can respond to its physical ambient environment.
They are able to translate a specific type of information from a
physical environment, such as the human body, to an electrical
signal (Gao et al., 2016). Wearable devices enable mass ambient
data collection from humans and surrounding environment
and require miniaturized, flexible, and highly sensitive sensors
to capture clear information from the body. However, from
processing aspect and to make a signal meaningful toward
personalized devices, further development is still needed.

Since the sensing signal is relatively weak and noisy, a readout
circuit (normally composed by an amplifier, a conditioning
circuit and an analog signal processing unit) is necessary to make
the signal readable for a system (Kanoun and Tränkler, 2004; Gao
et al., 2016). The subsequent high-level system processes the data
and sends commands to actuators for a closed-loop control or
interaction (Witkowski et al., 2014; Lopez et al., 2018; Nweke
et al., 2018). For various applications ranging from human-
machine interfaces (Lopez et al., 2018) to health monitoring
(Pantelopoulos and Bourbakis, 2010; Herry et al., 2017), different
combinations of sensor and systems have been developed over
the past decade (Li et al., 2018c; Liang et al., 2019). The use

of machine learning empowers sensors to build novel smart
applications. The examples will be provided in this section.

2.1. Wearable Sensors With Machine
Learning
Recently, the field of artificial intelligence further boosts the
possibility of smart wearable sensory systems. The emerging
intelligent applications and high-performance systems require
more complexity and demand sensory units to accurately
describe the physical object. The decision-making unit or
algorithm can therefore output a more reliable result (Khezri and
Jahed, 2007; Wu et al., 2016; He et al., 2017; Liang et al., 2018,
2019). Depending on the signal acquiring position, Figure 1
illustrates four biopotential sensors and two widely used wearable
sensors along with their learning systems and applications,
which have also been summarized in Table 1. As evident from
Table 1, different sensors have very different specifications in
terms of bandwidth and signal amplitude, therefore, the front-
end interface needs to be designed taking the sensor features
into account. The sensors and systems for the biopotential signal
will be introduced first, and the other two wearable sensors will
be provided separately. The biopotential signal can be extracted
from the human body using a sensor with direct electrode
contact. The electrochemical activity of the cells in nervous,
muscular, and glandular tissue generates ionic currents in the
body. An electrode-electrolyte transducer is needed to convert
the ionic current to electric current for the front-end circuit.
The electrode that is normally made up of metal can be oxidized
by the electrolyte, generating metal ions and free electrons. In
addition, the anions in the electrolyte can also be oxidized to
neutral atoms and free electrons. These free electrons result in
current flow through the electrode. Thus, the surface potential
generated by the electrochemical activities in cells can be sensed
by the electrode. However, the bio-signals sensed by the electrode
are weak and noisy. Before digitizing the collected signals by
Analog to Digital Converter (ADC), an analog front-end is
essential to provide a readable signal. The design requirements of
the front-end for the biopotential electrodes can be summarized
as follows: (i) high commonmode rejection ratio; (ii) high signal-
to-noise-ratio; (iii) low-power consumption; (iv) signal filtering,
and (v) configurable gain (Yazicioglu et al., 2008).

2.1.1. Electrocardiography (ECG)
ECG sensor measures the electrical activity generated by
the electrochemistry around cardiac tissue. Containing
morphological or statistical features, ECG provides
comprehensive information for analyzing and diagnosing
cardiovascular diseases (Luz et al., 2016; Liang et al., 2020). In
previous studies, automatic ECG classification has been achieved
using machine learning techniques, such as Deep Neural
Network (DNN) (Kiranyaz et al., 2016; Rahhal et al., 2016),
Support Vector Machine (SVM) (Zhang et al., 2014; Raj et al.,
2016), and Recurrent Neural Network (RNN) (Alfaras et al.,
2019; Ortín et al., 2019). According to the Association for the
Advancement of Medical Instrumentation, there are five classes
of ECG type of interest: normal, ventricular, supraventricular,
fusion of normal and ventricular, and unknown beats. These
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FIGURE 1 | A graphical overview of adaptive edge computing in wearable biomedical devices. The figure shows the pathway from wearable sensors to their

application through intelligent learning. EMG and BIS figures adapted from Benalcázar et al. (2017) and Zhang and Harrison (2015).

TABLE 1 | Wearable biomedical signals and sensors.

Signal Sensor Position Signal band (Hz) Amplitude (mV) Information Application

ECG Electrode Chest 0.5–200 0.05–3 Heart contraction and

relaxation

Heartrate monitoring, cardiovascular

disease diagnosis

EMG Electrode Forearm surface/implant 20–1,000 0.01–10 Muscle activity Human-machine interaction

EEG Electrode Head surface/implant 0.1–100 0.001–0.1 Brain activity Brain-computer interface, brain disorder

monitoring

EOG Electrode Around eye 0.1–10 0.001–0.1 Gaze Human-machine interaction

BIS Drive electrodes and

measurement

electrodes

Body >0.1 – Body tissue impedance Cancer detection, health evaluation,

human-machine interaction

PPG Light emitter and

receiver

Body 0.1–10 – Pulse Heartrate monitoring, biometric

identification

methodologies can be evaluated by available ECG database
and yield over 90% accuracy and sensitivity for the five classes,
which is essential for future cardiovascular health monitoring. In
wearable application, Hossain and Muhammad (2016) and Yang
et al. (2016) present systems that measure ECG and send it to
the cloud for classification and health monitoring. Furthermore,
ECG sensor has been embedded in some of the commercially
available devices, such as Apple watch (Apple Inc.), which also
enables self-diagnosis for simple cardiovascular disease like atrial
fibrillation (Isakadze and Martin, 2020).

2.1.2. Electroencephalography (EEG)
Our brain neurons communicate with each other through
electrical impulses. An EEG electrode can help to detect potential
information associated with this activity through investigating
EEG (Lin et al., 2014; Jebelli et al., 2018) on the surface of the
skull. In comparison with other biopotential signals, surface EEG
is relatively weak (normally in the range of microvolt-level) and
noisy (Gargiulo et al., 2010; Thakor, 2015). Therefore, it requires

high input impedance readout circuit and intensive signal pre-
processing for clean EEG data (Yazicioglu et al., 2008; Jebelli
et al., 2018). While wet-electrode (Ag/AgCl) is more precise and
more suitable for clinical purpose, passive dry-electrode is more
suitable for daily health monitoring and brain-machine interface
(Gargiulo et al., 2010; Li et al., 2015). Besides, the applications
also include mental disorder (Shen et al., 2008), driving safety
(Lin et al., 2014; Li et al., 2015), and emotion evaluation (Wang
et al., 2014b). A commercial biopotential data acquisition system,
Biosemi Active Two, provides up to 256 channels for EEG
analysis (BioSemi, 2020). For a specific application, we can reduce
the number of electrodes to only detect the relevant areas, such
as 19 channels for depression diagnosis (Hosseinifard et al.,
2013), four channels for evaluating driver vigilance (Lin et al.,
2014) and 64 channels for emotional state classification (Wang
et al., 2014b). Although EEG is on-body biopotential, most
of the existing EEG researches employed offline learning and
analysis because of the system complexity and the high number
of channels. In wearable real-time applications, a smaller number
of channels are usually selected and the data are wirelessly sent to
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cloud for further processing (Lin et al., 2014; Li et al., 2015; Xu
et al., 2017; Hwang et al., 2018).

2.1.3. Electrooculography (EOG)
The eye movement, which results in potential variations
around eyes as EOG, is a combined effect of environmental
and psychological changes. It returns relatively weak voltage
(0.01–0.1 mV) and low frequency (0.1–10 Hz) (Thakor, 2015).
Differently from other eye tracking techniques using a video
camera and infrared, EOG provides a lightweight, inexpensive
and fully wearable solution to access human’s eye movement
(Duchowski, 2007). It is the most widely used wearable
human-machine interface, especially for assisting quadriplegics
(Duchowski, 2007). It has been used to control a wheelchair (Eid
et al., 2016), control a prosthesis limb (Duvinage et al., 2011;
Witkowski et al., 2014), and evaluate sleeping (Piñero et al.,
2004; Zhu et al., 2014; Barua et al., 2019). Additionally, recent
studies fuse EEG and EOG to increase the degree of freedom
of signal and enhance the system reliability, since they have
similar implicit information, such as sleepiness (Martin et al.,
1972; Barua et al., 2019) and mental health (Stevens et al., 1979).
EOG can also act as a supplement to provide additional functions
or commands to an EEG system (Punsawad et al., 2010; Wang
et al., 2014a; Witkowski et al., 2014).

2.1.4. Electromyography (EMG)
EMG is an electrodiagnostic method for recording and analyzing
the electrical activity generated by skeletal muscles. EMG is
generated by skeletal muscle movement, which frequently occurs
in arms and legs. It yields higher amplitude (up to 10 mV) and
bandwidth (20–1,000 Hz) compared to the other biopotentials
(Yazicioglu et al., 2008; Thakor, 2015). Near the active muscle,
different oscillation signals can be measured by a dry electrode
array, which allows the computer to sense and decode body
motion (Rissanen et al., 2008; Wang et al., 2010; Mendez et al.,
2017). A prime example is the Myo armband of Thalmic Labs,
which is a commercial multi-sensor device that consists of EMG
sensors, gyroscope, accelerometer and magnetometer (Rawat
et al., 2016). The sensory data is sent to phone or PC via
Bluetooth, where various body movements can be classified by
feature extraction and machine learning techniques. Moreover,
the application of EMG is frequently linked to target control
like a wheelchair (Inhyuk et al., 2005) and prosthetic hand
(Cipriani et al., 2008; Artemiadis and Kyriakopoulos, 2011) for
assisting disabled people. In addition, its application also includes
sign language recognition (Mendez et al., 2017), diagnosis of
neuromuscular disorders (Rissanen et al., 2008; Subasi, 2013),
analysis of walking strides (Wang et al., 2010), and virtual reality
(Rincon et al., 2016). Machine learning enables the system to
overcome the variation of EMG signals from different users
(Rissanen et al., 2008; Mendez et al., 2017).

2.1.5. Photoplethysmography (PPG)
PPG is an non-invasive and low-cost optical measurement
method that is often used for blood pressure and heart rate
monitoring in wearable devices. The optical properties in skin
and tissue are periodically changing due to the blood flow

driven by the heartbeat. By using a light emitter toward the
skin surface, the photosensor can detect the variations in light
absorption, normally from wrist or finger. This signal variation
is called PPG, which is highly relevant to the rhythm of the
cardiovascular system (Biswas et al., 2019b). Compared with
ECG, PPG is easily accessible and low cost, which makes it an
ideal intermedia of wearable heart rate measurement. Wrist-PPG
has already been deployed in various commercial smartwatches
or wristbands, such as AppleWatch, Fitbit Charge, and TomTom
Touch, for heart-rate monitoring (Hough et al., 2017). The
main disadvantage against ECG is that the PPG is relatively
less informative and not unique for different persons and
body positions. Thus, further analysis of PPG requires machine
learning or other statistics tools for calibrating the signal to
different scenarios. For example, it can be used in biometric
identification after deep learning (Reşit Kavsaoğlu et al., 2014;
Biswas et al., 2019a). It is worth mentioning that PPG can be also
a strong supplementary indicator in the application of ECG.

2.1.6. Bioimpedance spectroscopy (BIS)
BIS is another low-cost and powerful sensing technique that
provides informative body parameters. The principle is that
cell membrane behaves like a frequency-dependent capacitor
and impedance. The emitter electrodes generate multifrequency
excitation signal (0.1–100 MHz) on the skin while the receiver
electrodes collect these currents for demodulating the impedance
spectral data of the tissue in between (Matthie, 2008; Caytak
et al., 2019). Compared to homogeneous materials, body
tissue presents more complicated impedance spectra due to
the cell membranes and macromolecules. Therefore, the tissue
conditions, such as muscle concentration, structural, and
chemical composition, can be analysed through BIS. The BIS can
measure body composition, such as fat and water (Matthie, 2008).
Based on the different setup in terms of position and frequency,
it can also be helpful in the early detection of diseases, such
as lymphedema, organ ischemia, and cancer (Sun et al., 2010).
Furthermore, multiple pair-wise electrodes can form electrical
impedance tomography that describes impedance distribution.
By embedding these electrodes in a wristband, the tomography
can estimate hand gestures after training, which is another novel
solution of inexpensive human-machine interface (Zhang et al.,
2016).

2.2. Multisensory Fusion in Wearable
Devices
Every sensor has its own limitation. In some demanding cases,
a single sensor itself cannot satisfy the system requirement, such
as accuracy or robustness (Khaleghi et al., 2013; Alsheikh et al.,
2014; Gravina et al., 2017; Liang et al., 2019). The solution
involves increasing the number and type of sensors to form a
multisensory system or sensor network for one measured target
(Khaleghi et al., 2013; Alsheikh et al., 2014; Gravina et al., 2017).
Multiple types of sensor synergistically working in a system
provide more dimensions of input to fully map an object onto
the data stream. Different sensors return different data with
respect to sampling rate, number of inputs and the information
behind the data. Machine learning models, such as ANN and
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SVM, can be designed to combine multiple sources of data.
Depending on the application, sensor types and data structure,
several approaches have been proposed for multisensory fusion.
Generally, in such a system, machine learning is frequently used
and plays a vital role in merging different sources of sensory
data based on its multidimensional data processing mechanism.
The machine learning algorithms enable sensory fusion to occur
at the signal, feature or decision level (Khaleghi et al., 2013;
Gravina et al., 2017). When dealing with SNN, the multi-sensory
features or raw-data need to be encoded and fused in spike
sequences in order to fit the input modality of the spike-based
neural network. Furthermore, encoding the information in spikes
can also further attenuate the risk of catastrophic forgetting
issue in conventional neural networks (Azghadi et al., 2020). For
decision level fusion, a voting mechanism is typically needed
to output the final result after receiving the decisions from
different sources of sensors which may be processed by different
networks with different algorithms (Li et al., 2017). The results
showed that a multisensory system is advantageous in improving
system performance. For example, the fusion of ECG and PPG
patterns can be an informative physiological parameter for robust
medical assessment (Rundo et al., 2018). Counting the peak
intervals between PPG and ECG can estimate the arterial blood
pressure (He et al., 2014). Interestingly, a recent study shows
that the QRS complex of ECG can be reconstructed from PPG
by a novel transformed attentional neural network after training
(Chiu et al., 2020). This could be beneficial for the accessibility of
wearable ECG.

2.3. Challenges Toward Smart Wearable
Sensors With Edge Computing
The novel applications using multiple sensors and high learning
ability usually require more energy in the wearable computing
unit (Pantelopoulos and Bourbakis, 2010). Nevertheless, the
power supply in the wearable domain is a difficulty with
existing battery technologies. This weakness limits the further
development of smart wearable devices (Pantelopoulos and
Bourbakis, 2010). The existing solution is to wirelessly transfer
the raw data onto a cloud where the computationally intensive
algorithm is implemented (Patel et al., 2016). However, this
solution is not ideal considering (i) the complexity of using
a wireless module, (ii) the non-negligible power consumption,
(iii) the amount of data, (iv) the space limitation due to
the range of wireless transmission, (v) privacy issues due to
the broadcast of signals, and (vi) non-negligible time latency
due to communication channel. These technological drawbacks
strongly limit the application of wearable sensors.

Implementations of ANN in von Neumann architectures,
which have been frequently used in sensors, result therefore
in a non-optimized distribution of the energy consumption.
Conversely, it has been reported that signal processing activity
in the brain is several orders of magnitudes more power-efficient
and one order in processing rate better than digital systems
(Mead, 2020). Compared to conventional approaches based on
a binary digital system, brain-inspired neuromorphic hardware

has yet to be advanced in the contexts of data storage and
removal as well as their transmission between different units. In
this perspective, a neuromorphic chip with a built-in intelligent
algorithm can act as a front-end processor next to the sensor.
The conventional ADCs could be replaced by a delta encoder or
feature extractor converting the sensor analog output to spike-
based signal for the hardware (see Section 4). In the end, the
output becomes the result of recognition or prediction instead
of an intensive data stream. In this way, the computation occurs
at the local edge under low power and brain-like architecture.
In summary, the research on on-chip neuromorphic edge
computing is a multidisciplinary topic involving biologically
plausible algorithms, device/material engineering, system
modeling/co-design, and signal processing (Figure 1). The
following sections will provide more comprehensive discussion
toward these subjects.

3. ALGORITHMS FOR BIOLOGICALLY
PLAUSIBLE CONTINUAL LEARNING

In this section we will highlight some recently introduced
methods to port the power of modern machine learning
to neuromorphic edge devices. In the last couple of years,
machine learning has made big steps forward reaching close-
to human performance on a wide range of tasks. Many
of the most successful machine learning methods are based
on artificial neural networks (ANN), which are inspired by
the organization of information processing in the brain.
However, somewhat contradictory—mapping modern ANN
learning methods to brain-inspired hardware poses considerable
challenges to the algorithm and hardware design. The main
reason for this is, that the development of machine learning
algorithms has been strongly influenced by the development
of powerful mainframe computers that perform learning
offline in big server farms only eventually sending back
results to the user. While this development has paved the
ground for today’s success of ANNs, it has also lead the
field away from following the principles used in biology for
efficient learning.

Neuromorphic realizations of on-chip learning have therefore
often focused on biologically inspired learning rules, such
as Spike-Timing Dependent Plasticity (STDP). In this model,
synaptic weight changes only take place if pre-synaptic spikes
arrive at the synapse, which makes them very well-suited for
event-based algorithms (Diehl and Cook, 2014; Chen et al., 2018;
Li et al., 2018b; Lin et al., 2018). In this section we focus on
algorithmic advances that combine the efficiency of bio-inspired
plasticity rules with modern machine learning approaches. In
the following section 3.1 we will review recent approaches
to combine the strengths of modern machine learning and
brain-inspired algorithms, that are of particular interest for
edge computing applications. In section 3.2 we will focus on
the problem to cope with extreme memory constraints by
exploiting sparsity. In section 3.3 we will highlight additional
open challenges and future work.
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FIGURE 2 | Biologically inspired algorithms of learning in spiking neural networks. (A) The e-prop algorithm (Bellec et al., 2019) approximates back-propagation

through time using random feedback to propagate error signals to synapses of a recurrent SNN (adapted from Bellec et al., 2020). (B) Synaptic sampling (Kappel

et al., 2015) exploits the variability of learning rules and redundancy in the task solution space to learn sparse and robust network configurations (adapted from Kappel

et al., 2018). (C) Overcoming forgetting by selectively slowing down weight changes (Kirkpatrick et al., 2017). After learning a first task A, parameter distributions are

absorbed into a prior distribution that confines the motility of synaptic weights in subsequent tasks (task B).

3.1. Brain-Inspired Learning Algorithms for
Neuromorphic Hardware
Today, the dominating method for training artificial neural
networks is the error backpropagation (Backprop) algorithm
(Rumelhart et al., 1986), which provides an efficient and
scalable solution to adapting the network parameters to a set of
training data. Backprop is an iterative, gradient-based, supervised
learning algorithm that operates in three phases. First, a given
input activation is propagated through the network to generate
the output based on the current set of parameters. Then, the
mismatch between the generated outputs and target values is
computed using a loss function, and propagated backwards
through the network architecture to compute suitable weight
changes. Finally, the network parameters are updated to reduce
the loss. We will not go into the details behind Backprop
here, but see Schmidhuber (2015) for an excellent review and
historical survey of the development of the algorithm. The
problem of porting Backprop to neuromorphic hardware stems
from a well-known shortcoming of the algorithm known as
locking (Czarnecki et al., 2017). The weights of a network
can only be updated after a full forward propagation of the
data through the network, followed by loss evaluation. A
learning cycle ends after waiting for the back-propagation
of error gradients, which makes an efficient implementation
of Backprop on online distributed architectures challenging.

Also, Backprop is not well-suited for spiking neural networks
which have non-differentiable output functions. These problems
have been recently addressed in brain-inspired variants of the
Backprop algorithm.

3.1.1. Brain-Inspired Alternatives to Error

Backpropagation
In recent years a number of methods have been proposed to
approximate the gradient computation performed by Backprop
in order to prevent locking (see Richards et al., 2019 for a
recent review). Lillicrap et al. (2016) and Samadi et al. (2017)
proposed to replace the non-local error back-propagating term
of the Backprop algorithm by sending the loss through a fixed
feedback network with random weights that are excluded from
training. In this approach, named random feedback alignment
the back-propagating error signal acts as a local feedback to each
synapse, similar to a reward signal in reinforcement learning. The
fixed random feedback network de-correlates the error signals
providing individual feedback to each synapse. Lillicrap et al.
could show that this simple approach already provides a viable
approximation to the exact Backprop algorithm and performs
well for practical machine learning problems of moderate size.
In Neftci et al. (2017) an event-based version of random feedback
alignment, that is well-suitable for neuromorphic hardware, was
introduced. This approach was further generalized in Payvand
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et al. (2020a) to include a larger class of algorithms that use error
feedback signals.

An efficient model for learning complex sequences in spiking
neural networks, named Superspike, was introduced in Zenke
and Ganguli (2018). The model also uses a learning rule that
is modulated by error feedback signals and locally minimizes
the mismatch between the network output and a target spike
train. To overcome the problem of non-differentiable output,
Superspike uses a surrogate gradient approach that replaces the
infinitely steep spike events with a finite auxiliary function at the
time points of network spike events (Bengio et al., 2013). As in
random feedback alignment, learning signals are communicated
to the synapses via a feedback network with fixed weights. Using
this approach Zenke and others could demonstrate efficient
learning of complex sequences in spiking networks.

Another approach to approximate Backprop in spiking
neural networks uses an anatomical detail of Cortical neurons.
Sacramento et al. (2017) introduced a biologically inspired
two-compartment neuron model that approximates the error
backpropagation algorithm by minimizing a local dendritic
prediction error. Göltz et al. (2019) port learning by Backprop to
neuromorphic hardware by incorporating dynamics with finite
time constants and by optimizing the backward pass with respect
to substrate variability. They demonstrate the algorithm on the
BrainScaleS analog neuromorphic architecture.

3.1.2. Brain-Inspired Alternatives to Backpropagation

Through Time
Recurrent neural network (RNN) architectures often show
superior learning results for tasks that involve a temporal
dimension, which is often the case for edge computing
applications. Porting learning algorithms for RNNs is therefore
of utmost importance for efficient machine learning on the edge.
Backpropagation through time (BPTT)—the standard RNN
learning method used in most GPU implementations—unfolds
the network in time and keeps this extended structure in memory
to propagate information forward and backward which poses
a severe challenge to the power and area constraints of edge
computing. Recent theoretical results (Bellec et al., 2018, 2019)
show that the power of BPTT can be brought to biologically
inspired spiking neural networks (SNN) while at the same time
the unfolding can be prevented in an approximation that operates
only forward in time, enabling online, always-on learning. This
algorithm operates at every synapse in parallel and incrementally
updates the synaptic weights. As for random feedback alignment
and Superspike discussed above, the weight update depends only
on three factors, where the first two are determined by the states
of the two related input/output neurons, and the third is given by
synapse-specific feedback conveying the mismatch between the
target and the actual output (see Figure 2A for an illustration).
The temporal gap between these factors is mitigated by an
eligibility trace describing a transient dynamic. Eligibility traces,
have been theoretically predicted for a long time (Williams,
1992; Izhikevich, 2007), and have also recently been observed
experimentally in the brain (Yagishita et al., 2014; Brzosko et al.,
2015; He et al., 2015; Bittner et al., 2017).

3.2. Efficient Learning Under Stringent
Memory Constraints
The amount of available resources in neuromorphic systems is
kept low to increase energy efficiency. Memory elements are
especially impactful on the energy budget. Therefore, algorithms
are needed that make efficient use of the available memory
resources. The largest amount of memory in a network is
usually consumed by the synaptic weights. Since in practice,
the weights of many connections in a network converge to
values close to zero, several methods have been proposed to
reduce the memory footprint of machine learning algorithms by
exploiting sparsity in the network connectivity. Also in many
applications the bit precision per synapse can be reduced without
significant performance loss which further reduces the memory
footprint. We will discuss here three types of algorithms that
work under stringent memory constraints: (i) those that are
based on pruning connections after learning, (ii) online learning
with sparse networks and (iii) quantization-aware training that
implements learning algorithms in networks with reduced bit
precision per weight.

3.2.1. Pruning
Many approaches to exploit sparsity in learning algorithms
focus on pruning the network after training (see Gale et al.,
2019 for a recent review). Simple methods rely on pruning
by magnitude, simply by eliminating the weakest (closest to
zero) weights in the network (Ström, 1997; Collins and Kohli,
2014; Han et al., 2015). Some methods based on this idea have
reported impressive sparsity rates of over 95% for standard
machine learning benchmarks with negligible performance loss
(Guo et al., 2016; Zhu and Gupta, 2017). Other methods are
based on theoretical motivations and classical sparsification and
regularization techniques (Louizos et al., 2017; Molchanov et al.,
2017; Ullrich et al., 2017). These models reach high compression
rates. Dai et al. (2019) proposed a method to iteratively grow
and prune a network in order to generate a compact yet precise
solution. They provide a detailed comparison with state of the art
dense networks and other pruningmethods and reaching sparsity
above 99% for the LeNet-5 benchmark.

3.2.2. Online Learning in Sparse Networks
A number of authors also introduced methods that work directly
with sparse networks during training, which is often the more
interesting case for neuromorphic applications with online
training. Bellec et al. (2017) introduced an algorithm for online
stochastic rewiring in deep neural networks that works with
a fixed number of synaptic connections throughout learning.
The algorithm showed close-to state of the art performance
at up to 98% sparsity. Sparse evolutionary training (SET)
(Mocanu et al., 2018) introduced a heuristic approach that
prunes the smallest weights and regrows new weights in random
locations. Dynamic Sparse Reparameterization (Mostafa and
Wang, 2019) introduces a prune-redistribute-regrowth cycle.
They demonstrated compelling performance levels also for very
deep neural network architectures. Lee et al. (2018) introduced a
single shot pruning algorithm that yields sparse networks based
on a saliency criterion prior to the actual training. Dettmers
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and Zettlemoyer (2019) introduced a refined method for online
pruning and redistribution that surpasses the previous methods
in terms of sparsity and learning performance.

3.2.3. Quantization-Aware Training
Quantization-aware training is today a common method applied
in commercial and practical settings to port machine learning
to hardware with reduced bit precision per synapse. Several
approaches have been proposed. Stochastic rounding translates
the weight update into a probability and flips the weights to
the closest quantized value. This method has been applied to
online and offline learning with very low bit resolutions of
down to 2 bits per synapse (Müller and Indiveri, 2015; Müller
et al., 2017). (Hubara et al., 2016) introduced a binary deep
neural network architecture that uses only two weight values
(+1 and −1), achieving compelling learning performance. The
weight quantization was implemented with smooth functions so
that widely available implementations of error Backpropagation
could be used. Wang et al. (2018a) and Sun et al. (2019)
demonstrated deep learning in large state-of-the-art networks
with 8-bit precision floating point weights. Finally in recent
work (Choi et al., 2020) regularization, quantization and pruning
was combined to train compressed deep learning models and a
detailed performance analysis was provided.

3.3. Open Challenges and Future Work
As outlined above, edge computing poses quite specific challenges
to learning algorithms that are substantially different from
requirements of classical applications. Some of the algorithms
outlined above have already been successfully ported to
neuromorphic hardware. For example, the e-prop algorithm of
Bellec et al. (2018) has been implemented on the SpiNNaker 2
chip yielding an additional energy reduction by two orders of
magnitude compared to a X86 implementation (Liu et al., 2018).
See the next section 4 for more details on available neuromorphic
hardware and their applications.

In the remainder of this section we will highlight open
challenges that remain to be solved for efficient learning in edge
computing applications. In addition to the stringent memory and
power constraints learning at the edge also has to function in
an online scenario where data arrive in a continuous stream.
Some dedicated hardware resources, e.g., like memristive devices
discussed in section 5, may also show high levels in intrinsic
variability, so the learning algorithm should be robust against
these noise sources. In this section we discuss recent advances in
this line of research and provide food for thought on how these
specific challenges can be approached in future work.

3.3.1. Robust Learning Algorithms for Neuromorphic

Devices Exploiting Device Noise
Here we review recent advances in using inspiration from biology
to make learning algorithms robust against device variability.
Several authors have suggested that device noise and variability
should not be seen as a nuisance, but rather can serve as a
computational resource for network simulation and learning
algorithms (see Maass, 2014 for a thorough discussion). Pecevski
andMaass (2016) have shown that variability in neuronal outputs

can be exploited to learn complex statistical dependencies
between sensory stimuli. The stochastic behavior of the neurons
is used in this model to compute probabilistic inference, while
biologically motivated learning rules, that only require local
information at the synapses can be used to update the synaptic
weights. A theoretical foundation of the model shows that
the spiking network performs a Markov chain Monte Carlo
sampling process, that allows the network to “reason” about
statistical problems.

This idea is taken one step further in Neftci et al. (2015)
by showing that also the variability of synaptic transmission
can be used for stochastic computing. The intrinsic noise of
synaptic release is used to drive a sampling process that can be
implemented in an event-based fashion. In Kappel et al. (2015)
it was shown that the variability of learning rules and weight
parameters gives rise to a biologically plausible model of online
learning. The intrinsic noise of synaptic weight changes drives
a sampling process that can be used to exploit redundancies in
the task solution space (see Figure 2B for an illustration). This
model was applied to unsupervised learning in spiking neural
networks, and to closed-loop reinforcement learning problems
(Kappel et al., 2018; Kaiser et al., 2019). In Yan et al. (2019)
this model was also ported to the SpiNNaker 2 neuromorphic
many-core system.

3.3.2. Biologically Motivated Mechanisms to Combat

Forgetting in Always-on Learning Scenarios
Neuromorphic systems often operate in an environment where
they are permanently on and learning a continuous stream
of data. This mode of operation is quite different from most
other machine learning applications that work with hand-labeled
batches of training data. Always-on learning inevitably leads to
forgetting previously learned sensory experiences as a necessary
consequence of applying weight updates over time (Fusi et al.,
2005; Benna and Fusi, 2016). Inspiration to solve the associated
stability-plasticity problem by protecting relevant information
comes from biology. The mammalian brain seems to combat
forgetting relevant memories by actively protecting previously
acquired knowledge in neocortical circuits (Pan and Yang, 2009;
Yang et al., 2009, 2014; Cichon and Gan, 2015; Hayashi-Takagi
et al., 2015). When a new skill is acquired, a subset of synapses
is strengthened, stabilized and persists despite the subsequent
learning of other tasks (Yang et al., 2009).

A theoretical treatment of the forgetting problem was
conducted in the cascade model of Stefano Fusi and others (Fusi
et al., 2005; Benna and Fusi, 2016). They could show that learning
an increasing number of patterns in a single neural network leads
unavoidably to a state which they called catastrophic forgetting.
Trying to train more patterns into the network will interfere
with all previously learned ones, effectively wiping out the
information stored in the network. The proposed cascade model
to overcome this problem uses multiple parameters per synapse
that are linked through a cascade of local interactions. This
cascade of parameters selectively slows down weight changes,
thus stabilizes synapses when required and effectively combats
effects of catastrophic forgetting. A related model, that uses
multiple parameters per synapse to combat forgetting was used
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in Kirkpatrick et al. (2017) (see also Huszár, 2018 for a recently
introduced variation of the model). They used a Bayesian
approach that infers a prior distribution over parameter values at
each synapse. Synapses that stabilize during learning (converge
to a fixed solution) will be considered relevant in subsequent
learning and Bayesian priors help to maintain their values (see
Figure 2C for an illustration).

Another promising biologically inspired method that has
recently gained attention in machine learning, and which may
enable a system to benefit from large amounts of unlabeled
data, is self-supervised learning. This technique augments the
learning problem with pretext tasks which can be formulated
using only unlabeled data, but do require higher-level semantic
understanding in order to be solved (Hendrycks et al., 2019;
Zhai et al., 2019). These pretext tasks typically involve a
simple manipulation of the input, such as image rotation, for
which a target objective can be computed without supervision
(Kolesnikov et al., 2019). A promising recent approach combines
self-supervised learning and semi-supervised learning where
sparse labeled data is used to enhance the model performance
(Zhai et al., 2019). This method that incorporates sparse feedback
from a supervisor might be of particular interest for edge devices.

3.3.3. Biologically Motivated Mechanisms to

Enhancing Transfer and Sensor Fusion
Distributed computing architectures at the edge need to make
decisions by integrate information from different sensors and
sensor modalities and should be able to best make use of the
sensory information across a wide range of tasks. It is clearly not
very efficient to learn from scratch when confronted with a new
task. Therefore, to boost the performance of edge computing,
we consider here two aspects of transferring information to new
situations: transfer of knowledge between sensors (sensor fusion),
which has been treated in section 2.2, and transfer of knowledge
between multiple different tasks (transfer learning).

Transfer learning denotes the improvement of learning in a
new task through the use of knowledge from a related task that
has already been learned previously (Caruana, 1997; Torrey and
Shavlik, 2010). This contrasts most other of today’s machine
learning applications that focus on one very specific task. In
transfer learning, when a new task is learned, knowledge from
previous skills can be reused without interfering with them.
For example, the ability to perform a tennis swing can be
transferred to playing ping pong, while maintaining the ability
to do both sports. The literature on transfer learning is extensive
and many different strategies have been developed depending on
the relationship between the different task domains (see Lu et al.,
2015 and Weiss et al., 2016 for systematic reviews). In machine
learning a number of approaches have been applied to a wide
range of problems, including classification of images (Kulis et al.,
2011; Zhu et al., 2011; Duan et al., 2012; Long et al., 2017), text
(Prettenhofer and Stein, 2010;Wang andMahadevan, 2011; Zhou
et al., 2014a,b), or human activity (Harel and Mannor, 2010).

A very general approach to learn across multiple domains
is followed in the learning to learn framework of Schmidhuber
(1992, 1993). Their model features networks that are able
to modify their own weights through the network activity.

These network are therefore able to tinker with their own
processing properties. This approach has been taken to its
most extreme form where a network leans to implement
an optimization algorithm by itself (Andrychowicz et al.,
2016). This model consists of an outer-loop learning network
(the optimizer) that controls the parameters of an inner-
loop network (the optimizee). The training algorithm of
the inner-loop network works on single tasks that are
presented sequentially, whereas the outer-loop learner
operates across tasks and can acquire strategies to transfer
knowledge. This learning-to-learn framework was recently
applied to SNNs to obtain properties of LSTM networks
and use them to solve complex sequence learning tasks
(Bellec et al., 2018). In Bohnstingl et al. (2019), the learning-
to-learn framework was also applied to a neuromorphic
hardware platform.

4. SIGNAL PROCESSING FOR WEARABLE
DEVICES ON NEUROMORPHIC CHIP

Neuromorphic engineering is a branch of electrical engineering
dedicated to the design of analog/digital data processors that
aims to emulate biological neurons and synapses. The key
technological advantage of neuromorphic chips lies in (i)
their power efficiency as a result of reducing data movement
through co-location of memory and processor and sparsifying
the temporal information through events (spikes); (ii) their low
latency since they enable the real-time processing of signals
through temporal dynamics and (iii) their adaptive properties
which enable adjusting their parameters to the environment they
are being employed.

This increasing interest in neuromorphic engineering shows
that hardware SNNs are considered a key future technology with
high potential in key application, such as edge computing, and
wearable devices.

Neuromorphic technologies have sparked interest from
universities (Furber et al., 2014; Qiao et al., 2015; Moradi
et al., 2017; Neckar et al., 2018; Schemmel et al., 2020) and
companies, such as IBM (Merolla et al., 2014) and Intel (Davies
et al., 2018). There are two main approaches of fully-digital
and analog/digital mixed-signal that have been taken to design
event-driven neuromorphic chips. The similarities between the
two types are the employment of events and sending packets
for communicating information between different computational
cores. The employed communication scheme is Address-Event
Representation (AER), where the communicating neurons place
their address on a shared communication bus whenever they
spike. The difference between the two approach is the way the
computation is done. In the digital approach, the VMM and
the dynamics are calculated using bit-precise and time-stepped
approach, whereas in the mixed-signal approach the physics of
the computational substrate is used.

In this section, we will provide an overview of the
neuromorphic platforms, that to the best of our knowledge were
deployed for biomedical signal processing, showing promising
results to be exploited in wearable devices.
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4.1. Neuromorphic Processors
4.1.1. TrueNorth
TrueNorth (Merolla et al., 2014) is IBM’s neuromorphic chip that
uses a digital approach for both processing and communication.
One million neurons arranged in a tiled array of 4,096
neurosynaptic cores enablemassive parallel processing. Each core
contains 13 kB of local SRAM memory to keep neurons and
synapse’s states along with the axonal delays and information
on the fan-out destination. There are 256 Leaky-Integrator and
Fire (LIF) neurons implemented by time-multiplexing and 256
million synapses are designed in the form of SRAM memory.
Each core can support up to 256 fan-in and fan-out, and this
connectivity can be configured such that a neuron in any core can
communicate its spikes to any other neuron in any other core.

Thanks to the event-driven nature, the co-location of memory
and processing units in each core, and the use of low-leakage
silicon CMOS technology, TrueNorth can perform 46 billion
synaptic operations per second (SOPS) per watt for real-time
operation, with 26 pJ per synaptic event. Its power density of 20
mW/cm2 is about three orders of magnitude smaller than that of
typical CPUs.

4.1.2. SpiNNaker
The SpiNNaker machine (Furber et al., 2014), designed by the
University of Manchester, is a custom-designed ASIC based on
massively parallel architecture that has been designed to efficiently
simulate large spiking neural networks. It consists of ARM968
processing cores arranged in a 2D array where the precise details
of the neurons and their dynamics can be programmed. Although
the processing cores are synchronous microprocessors, the event-
based aspect of SpiNNaker is apparent in its message-handling
paradigm. Amessage (event) gets delivered to a core generating a
request for being processed. The communications infrastructure
between these nodes is specially optimized to carry very large
numbers of very small packets, optimal for spiking neurons.
A second generation of SpiNNaker was designed by Technical
University of Dresden (Mayr et al., 2019). Spinnaker2 continues
the line of dedicated digital neuromorphic chips for brain
simulation increasing the simulation capacity by a factor >10
while staying in the same power budget (i.e., 10× better
power efficiency). The full-scale SpiNNaker2 consists of 10
Million ARM cores distributed across 70,000 Chips in 10 server
racks. This system takes advantage of advanced 22 nm FDSOI
technology node with Adaptive Body Biasing enabling reliable
and ultra-low power processing. It also features incorporating
numerical accelerators for the most common operations.

4.1.3. Loihi
Loihi (Davies et al., 2018) is Intel’s neuromorphic chip with
many-core processing incorporating on-line learning designed
in 14 nm FinFET technology. The chip supports about 130,000
neurons and 130 million synapses distributed in 128 cores.
Spikes are transported between the cores in the chip using
packetized messages by an asynchronous network on chip.
It includes three embedded ×86 processors and provides a
very flexible learning engine on which diverse online learning

algorithms, such as STDP, different three factor and trace-
based learning rules can be implemented. The chip also
provides hierarchical connectivity, dendritic compartments,
synaptic delays as different features that can enrich a spiking
neural network. The synaptic weights are stored on local
SRAM memory and the bit precision can vary between 1
and 9 bits. All logic in the chip is digital, functionally
deterministic, and implemented in an asynchronous bundled
data design style.

4.1.4. DYNAP-SE
DYNAP-SE implements a multi-core neuromorphic processor
with scalable architecture fabricated using a standard 0.18
µm CMOS technology (Moradi et al., 2017). It is a full-
custom asynchronous mixed-signal processor, with a fully
asynchronous inter-core and inter-chip hierarchical routing
architecture. Each core comprises 256 adaptive exponential
integrate-and-fire (AEI&F) neurons for a total of 1k neurons
per chip. Each neuron has a Content Addressable Memory
(CAM) block, containing 64 addresses representing the pre-
synaptic neurons that the neuron is subscribed to. Rich synaptic
dynamics are implemented on the chip by using Differential Pair
Integrator (DPI) circuits (Bartolozzi and Indiveri, 2007). These
circuits produce EPSCs and IPSCs (Excitatory/Inhibitory Post-
Synaptic Currents), with time constants that can range from
a few µs to hundreds of ms. The analog circuits are operated
in the sub-threshold domain, thus minimizing the dynamic
power consumption, and enabling implementations of neural
and synaptic behaviors with biologically plausible temporal
dynamics. The asynchronous CAMs on the synapses are used to
store the tags of the source neuron addresses connected to them,
while the SRAM cells are used to program the address of the
destination core/chip that the neuron targets.

4.1.5. ODIN/MorphIC
Online-learning DIgital spiking Neuromorphic (ODIN)
processor occupies an area of only 0.086 mm2 in 28 nm FDSOI
CMOS (Frenkel et al., 2019a). It consists of a single neurosynaptic
core with 256 neurons and 2562 synapses. Each neuron can be
configured to phenomenologically reproduce the 20 Izhikevich
behaviors of spiking neurons (Izhikevich, 2004). The synapses
embed a 3-bit weight and amapping table bit that allows enabling
or disabling Spike-Dependent Synaptic Plasticity (SDSP) locally
(Brader et al., 2007), thus allowing for the exploration of both
off-chip training and on-chip online learning setups.
MorphIC is a quad-core digital neuromorphic processor with
2k LIF neurons and more than 2M synapses in 65 nm CMOS
(Frenkel et al., 2019b). MorphIC was designed for high-density
large-scale integration of multi-chip setups. The four 512-
neuron crossbar cores are connected with a hierarchical routing
infrastructure that enables neuron fan-in and fan-out values of
1k and 2k, respectively. The synapses are binary and can be either
programmed with offline-trained weights or trained online with
a stochastic version of SDSP.
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FIGURE 3 | Biomedical signal processing on neuromorphic hardware, from sensors to applications.

4.2. Biomedical Signal Processing on
Neuromorphic Hardware
Given the low latency and low power properties of these
neuromorphic chips, they are promising candidates for on-edge
processing of biomedical signals. Figure 3 illustrates the different
stages of biomedical processing using a neuromorphic system
pipeline. The sensory signals should first be encoded to spikes
or events which are fed to a neuromorphic SNN processor.
Depending on the application, appropriate SNN architecture is
mapped onto the chip and the output (e.g., anomaly detection, or
gesture recognition) is read out.

4.2.1. Encoding
In SNNs a single spike by itself does not carry any information.
However, the number and the timing of spikes produced by a
neuron are important. Just as their biological counterpart, silicon
neurons in neuromorphic devices produce spike trains at a rate
that is proportional to their input current. At the input side,
synapse circuits integrate the spikes they receive to produce
analog currents, with temporal dynamics and time constants
that can be made equivalent to their biological counterparts.
The sum of all the positive (excitatory) and negative (inhibitory)
synaptic currents afferent to the neuron is then injected into
the neuron.

To provide biomedical signals to the synapses of the SNN
input layer, it is necessary to first convert them into spikes.
A common way to do this is to use a delta-modulator
circuit (Corradi and Indiveri, 2015; Sharifshazileh et al., 2019)
functionally equivalent to the one used in the Dynamic Vision
Sensor (DVS) (Lichtsteiner et al., 2008). This circuit, in practice,
is an ADC that produces two asynchronous digital pulse outputs
(UP or DOWN) for every biosignal channel in the input. The UP
(DOWN) spikes are generated every time the difference between
the current and previous value exceeds a pre-defined threshold.
The sign of the difference corresponds to the UP or DOWN
channel where the spike is produced. This approach was used
to convert EMG signals, used in mixed-signal neuromorphic
chips (Donati et al., 2018, 2019) and in digital ones (Behrenbeck
et al., 2019; Ceolini et al., 2020), ECG signals (Bauer et al., 2019;
Corradi et al., 2019), and EEG and High Frequency Oscillation
(HFO) ones (Corradi and Indiveri, 2015; Sharifshazileh et al.,
2019).

4.2.2. Processing and Decoding
Table 2 shows the summary of neuromorphic processors
described previously where biomedical signal processing
applications were used. These works show promising results for
always-on embedded biomedical systems.

The first chip presented in this table is DYNAP-SE, used
to implement SNNs for the classification or detection of
EMG (Donati et al., 2018, 2019; Ma et al., 2020a,b) and
ECG (Bauer et al., 2019; Corradi et al., 2019) and to implement
a simple spiking perceptron as part of a design to detect HFO
in human intracranial EEG (Sharifshazileh et al., 2019). In
particular, in Donati et al. (2018), Bauer et al. (2019), and Ma
et al. (2020a,b) a spiking RNN is deployed for EMG/ECG signal
separation to facilitate the classification with a linear read-out.
SVM and linear least square approximation is used in the read out
layer for Bauer et al. (2019) and Corradi et al. (2019) and overall
accuracy of 91% and 95% for anomaly detection were reached,
respectively. In Ma et al. (2020a) a RNN was implemented for
discriminating three hand gesture using sEMG. Two hardware-
friendly spike-based read-out models were used to evaluate the
network performances: a rate-based state distance model, and
a STDP model. The results show classification accuracy of the
state distance method above 75%, better than the SVM approach,
whereas the STDP learning rule only achieved 60% accuracy.
The system was further expanded in Ma et al. (2020b), where
an adapting spike conversion was introduced, improving the
performances to 85%. In Donati et al. (2018), the state property
of the spiking RNN on EMG was investigated for different
hand-gestures. In Donati et al. (2019) the performance of a
feedforward SNN and a hardware-friendly spike-based learning
algorithm was investigated for hand-gesture recognition using
superficial EMG and compared to traditional machine learning
approaches, such as SVM. Results show that applying SVM and
the spiking learning method on the spiking output of the hidden
layer achieved a classification rate of 84% and 74%, respectively.
Nevertheless, the latter show a power consumption of about
0.05mW, two orders of magnitude more power-efficient than the
state-of-the-art embedded system (Benatti et al., 2015; Montagna
et al., 2018).

Recently, the hand-gesture classification benchmark
was implemented and compared on two digital
neuromorphic platforms, i.e., Loihi (Davies et al., 2018)
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and ODIN/MorphIC (Frenkel et al., 2019a,b) and an embedded
GPU, Nvidia Jetson Nano. The systems were using two different
sensor modalities, event-driven sensors and EMG to perform
sensor fusion. In particular, for processing vision inputs, a
spiking Convolutional Neural Network (CNN) was implemented
on Loihi and a spiking Multilayer Perceptron (MLP) was
implemented on ODIN/MorphIC (Ceolini et al., 2020) while
both the platforms used MLP for EMG processing. The
difference in the two pipelines is due to the design properties
of the neuromorphic systems (i.e., number of neurons, fan-in).
However, in both cases, the fusion was performed on the layer
before the one of classification, combining the output from
the spiking CNN and the spiking MLP for Loihi, and from
the two spiking MLPs on ODIN/MorphIC hardware. The
same structure was implemented on the embedded GPU and
the comparison was performed in terms of accuracy, power
consumption, and latency showing that the neuromorphic
chips are able to achieve the same accuracy with significantly
smaller energy-delay product, 30× and 600× more efficient
for Loihi and ODIN/MorphIC, respectively (Ceolini et al.,
2020). The comparison was further extended in Azghadi et al.
(2020), where the same task was applied to Field Programmable
Gate Array (FPGA) and memristive implementations. Results
show that neuromorphic hardware presents approximately
two orders of magnitude improvement in the energy-
delay product when compared to their FPGA counterparts,
which highlights the prospective use of such architectures in
edge computing.

4.3. Adaptation in Neuromorphic Processor
Local adaptation is an important aspect in extreme edge
computing, specially for wearable devices. The current methods
for training networks for biomedical signals rely on large
datasets collected from different patients. However, when it
comes to biological data, there is no “one size fits all.” Each
patient and person has their own unique biological signature.
Therefore, the field of Personalized Medicine (PM) has gained
lots of attention in the past few years and the online on-edge
adaptation feature of neuromorphic chips can be a game changer
for PM.

As was discussed in section 3.1, there is on-going effort in
designing spike-based online learning algorithms which can be
implemented on neuromorphic chips.

Example of today’s state of the art for on-chip learning
are Intel’s Loihi (Davies et al., 2018), DynapSEL and ROLLS
chip from UZH/ETHZ (Qiao et al., 2015; Qiao and Indiveri,
2016), BrainScales from Heidelberg (Schemmel et al., 2010)
and ODIN from UC Louvain (Frenkel et al., 2019a). Intel’s
Loihi includes a learning engine which can implement different
learning rules, such as simple pairwise STDP, triplet STDP,
reinforcement learning with synaptic tag assignments or any
three factor learning rule implementation. DynapSEL, ROLLS
and ODIN encompass the SDSP, also known as the Fusi
learning rule, which is a form of semi-supervised learning
rule that can support both unsupervised clustering applications
and supervised learning with labels for shallow networks
(Brader et al., 2007). Brainscales chip implements the STDP

rule. Moreover, Spinnaker 1 and 2 (Furber et al., 2013;
Mayr et al., 2019) can implement a wide variety of on-chip
learning algorithms since their designs make use of ARM
microcontrollers providing lots of configurability for the users.
Table 2 summarizes the learning algorithms implemented on the
neuromorphic chips that have been used for biomedical signal
processing. Synaptic bit precision is an important parameter
for online learning which is limited on chip due to the
memory footprint.

4.4. Open Challenges
4.4.1. System Integration
One of the main challenge in developing a device for Edge
Computing is the integration of the sensors with the processor,
which is generally valid, but evenmore in neuromorphic systems.
In heterogeneous systems, where sensor and processor are not
integrated in the same substrate, the main challenge is due
to the lack of a standard in the protocol of communication.
Although most of neuromorphic systems, both sensors and
processors, implement AER protocol, they present slightly
different implementations, i.e., parallel, serial, different AER
address width, which makes the integration difficult. Another
approach consists of designing sensors and processors on the
same substrate. This solution is preferable for wearable solutions
where edge computing is required, but it is currently not the
case for any neuromorphic chips. Any neuromorphic system,
in fact, comprises not only of the neuromorphic core but a
digital infrastructure that surrounds the core, i.e., FPGAs and
microcontrollers that allow the communication with the external
world and the network configuration.

4.4.2. Locality
The learning information for updating the weights of any on-
chip network should be locally available to the synapse since
otherwise this information should be “routed” to the synapse
by wires which will take a significant amount of area on chip.
The simplest form of learning which satisfies this requirement is
Hebbian learning which has been implemented on a variety of
neuromorphic chips in forms of unsupervised/semi-supervised
learning (Schemmel et al., 2010; Qiao et al., 2015; Qiao and
Indiveri, 2016; Frenkel et al., 2019a). However, Hebbian-based
algorithms are limited in the tasks they can learn and to the
best of our knowledge no large-scale task has been demonstrated
using this rule. Since gradient descent-based algorithms, such
as Backprop has had lots of success in deep learning, there
are increasingly more spike-based error Backprop rules that are
being developed as was discussed in section 3.1. These types of
learning algorithms have recently been custom designed in the
form of spike-based delta rule as back-bone of the Backprop
algorithm. For example, single layer implementation of the delta
rule has been designed in Payvand and Indiveri (2019) and
employed for EMG classification (Donati et al., 2019). Expanding
this to multi-layer networks involves non-local weight updates
which limits its on-chip implementation. Making the Backprop
algorithm local is a topic of on-going research which we have
discussed in section 3.1.
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TABLE 2 | Summary of neuromorphic platforms and biomedical applications.

Neuromorphic chip DYNAP-SE SpiNNaker Loihi TrueNorth ODIN

CMOS technology 180 nm ARM968, 130 nm 14 nm FinFET 28 nm 28 nm FDSOI

Implementation Mixed-signal Digital Digital ASIC Digital ASIC Digital ASIC

Energy per SOP 17 pJ @ 1.8 V Peak power 1 W per chip 23.6 pJ @ 0.75 V 26 pJ @ 0.775 12.7 pJ@0.55 V

Size 38.5 mm2 102 mm2 60 mm2 0.093 mm2 (core) 0.086 mm2

On-chip learning No Yes (configurable) Yes (configurable) No Yes (SDSP)

Synaptic bit precision 2 Configurable 1–9 1 3

Applications EMG, ECG, HFO EMG and EEG EMG EEG and Local Field Potential (LFP) EMG

4.4.3. Weight Storage
The ideal weight storage for online on-chip learning should have
the following properties: (i) non-volatility to keep the state of the
learnt weights even when the power shuts down to reduce the
time and energy footprints of reloading the weights to the chip.
(ii) Linear update which allows the state of the memory to change
linearly with the calculated update. (iii) Analog states which
allows a full-precision for the weights. Non-volatile memristive
devices have been proposed as a great potential for the weight
storage and there is a large body of work combining the CMOS
technology with that of the memristive devices to get the best of
two worlds.

In the next section we provide a thorough review on the state
of the art for the emerging memory devices and the efforts to
integrate and use them in conjunction with neuromorphic chips.

5. MEMRISTIVE DEVICES AND
COMPUTING

The severe power and area constraints under which a
neuromorphic processor for edge computing must work opened
ways toward the investigation of beyond-CMOS solutions.
Despite remaining in the early phase of its technological
development, memristive devices have been drawing attention
in the last decade thanks to their scalability, low-power
operation, compatibility with CMOS chip power supply and
CMOS fabrication process, and volatile/non-volatile properties.
In section 5.1, we will introduce memristive devices and
the properties that are appealing for adaptive extreme edge
computing paradigms. In section 5.2, we will explore the
role of memristive devices in neuromemristive systems and
give examples of possible applications. In section 5.3, we will
discuss the current challenges and the future perspectives of
memristive technology.

5.1. Conventional and Wearable Memristive
Devices
Memristive devices, as the name suggested, are devices which can
change and memorize their resistance states. They are usually
two-terminal devices, however, can be implemented with various
physical mechanisms, resulting in versatile existing forms,
e.g., resistive random access memory (RRAM, Figures 4A,B)

(Ielmini and Wong, 2018), phase change memory (PCM,
Figure 4C) (Zhang et al., 2019), magnetic random accessmemory
(MRAM, Figures 4D,E) (Miron et al., 2011), ferroelectric
tunneling junction (FTJ, Figure 4F) (Wen et al., 2013), etc. The
resistance memory of these devices can mimic the memory
effect of the basic components of biological neural system,
while the resistance changing can mimic the plasticity of
biological synapse. Facilitated with their simplicity of two-
terminal configuration and scalability to nanoscale, they are
inherently suitable for the hardware implementation of brain-
inspired computation materializing an artificial neural network,
i.e., neuromorphic computation (Jo et al., 2010; Wang et al.,
2016a).

This notation, in recent years, has incited wide investigations
on the various memristive devices and on their applications
in neural network learning and recognition, or, in short,
memristive learning (Ohno et al., 2011; Kuzum et al., 2012;
Alibart et al., 2013; Yang et al., 2013; Eryilmaz et al., 2014;
Ambrogio et al., 2018). The memristive learning can enable
energy efficient and low latency information process within
a reduced size of systems abandoning the conventional von-
Neumann architecture. Among other benefits, this will also
make it possible to process information where they are
acquired, i.e., within sensors, and reduce the bandwidth needed
for transferring the sensor data to data center, accelerating
the coming of the era of Internet-of-Things (IOT). Table 3

summarizes the key features of the main memristive device
technologies for neuromorphic/wearable applications in terms
of cell area, electrical characteristics, main advantages and
challenges. It is worth noticing that some figures of merit in this
context are radically different with respect to standard memory
requirements. Indeed, while in the memory scenario higher
read currents enable faster reading speed, in neuromorphic
applications currents as low as possible are preferred, since
the current is a limiting factor for neurons’ fan-out. Similarly,
SET and RESET times should be as fast as possible in memory
applications, while in our applications this requirement can
be relaxed thanks to the lower operating frequency of the
neurons (20–100Hz). Moreover, the number of achievable
conductance levels has to be increased (Ielmini and Pedretti,
2020). Some non-idealities which are usually detrimental for
memory applications, for instance, stochasticity of switching
parameters, are even beneficial for the neural networks. It is also
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worth noticing that the figures of merits in Table 3 are the best
results extracted from different devices. There are no devices that
simultaneously show all these best merits. For instance, if the
RRAM and PCM devices are engineered to have multilevel states
for multilevel synaptic application, lower endurance would be
expected. However, in another aspect, devices with only binary
states can also be used with dedicated binarized neural networks
and stochastic algorithms.

In addition to the commonly referred non-volatile type of
memristive switching, the RRAM device can also show volatile
behavior, which usually occurs when active materials, such
as silver or copper are used as electrode. The relatively long
retention time of the volatile behavior [tens of milliseconds
to seconds (Covi et al., 2019)] is then found to be similar
to the timescale of short term memory, and naturally was
proposed to mimic the short term memory effect of biological
synapses (Wang et al., 2017, 2019a). Practical examples where
volatile devices can be useful are voice (Zhong et al., 2021) and
spatiotemporal (Wang et al., 2021) recognition. In the latter case,
thanks to device volatility, the network does not need any training
and is naturally configured to detect events which occur in time
(Du et al., 2017; Wang et al., 2018c, 2019a; Moon et al., 2019).
Moreover, it should be mentioned that volatile devices have also
shown potential when used as reservoir in a computing system
for temporal information processing and time-series prediction,
and solver of second-order non-linear dynamic tasks (Du et al.,
2017; Moon et al., 2019).

Although most researches on memristive devices are carried
on rigid silicon substrates, the simple structure of memristive
devices can also be realized on flexible substrates (Shi et al.,
2020), which opens new interesting possibilities for realizing local
computation within wearable devices (Shang et al., 2017; Dang
et al., 2019).

The conventional floating gate non-volatile memories could
also be used for synaptic and neuromorphic application. For
instance, Malavena et al. (2019) show that floating gate memories
in NOR Flash array can be used for pattern learning via STDP
weight update algorithms. Floating gate transistors can also be
fabricated in two-terminal configuration, which can behave like
a memristive device and be used for various neuromorphic
applications (Danial et al., 2019). The mature fabrication process
and increasing integration capability of floating gate transistors
pose great advantages over emerging non-volatile memories.

5.2. Memristive Devices for Neuromorphic
Computing
5.2.1. Memristive Neural Components
As mentioned in section 5.1, the primary function of memristive
devices is the usage as synaptic devices to implement the
memory and plasticity of biological synapses. However, there are
increasing interests for these devices to be utilized to implement
nanoscale artificial neurons.

On the neuron side, the memristive device gradual internal
state change and its consequently abrupt switching closely mimic
the integrate-and-fire behavior of biological neurons (Mehonic
and Kenyon, 2016; Tuma et al., 2016; Suresh et al., 2019,

Figures 5A–C). Due to the sample structure and nanometer
level scalability, memristive neurons can be much more compact
than current CMOS neurons which might consist of current
sensor, ADC, Digital to Analog Converter (DAC), and capacitors,
all of which are expensive to implement in current CMOS
technology in terms of area and/or power consumption (Kwon
et al., 2018). The implementation of memristive neurons will also
enable full memristive neuromorphic computing (Wang et al.,
2018c), which promises further increases in the integration of the
hardware neuromorphic computing.

On the synaptic side, the key feature of the biological synapses
is their plasticity, i.e., tunable weight, which can be generally
implemented by resistance or conductance modification in the
memristive devices (Figure 5D). Fundamental learning rules
based on STDP have already been widely explored (Kuzum et al.,
2012; Wang et al., 2015; Covi et al., 2016, 2018; Mulaosmanovic
et al., 2017). Spatial spiking pattern recognition (Pedretti et al.,
2017), spiking co-incidence detection (Sebastian et al., 2017;
Prezioso et al., 2018), and spatial-temporal correlation (Wang
et al., 2018b, 2019b) has been reported recently. Synaptic
metaplasticity, such as paired-pulse facilitation, can also be
achieved via various device operation mechanism (Wang et al.,
2017; Zhu et al., 2017b; Wu et al., 2018).

5.2.2. Memristive Neural Networks
There are generally two approaches for a hardware neuromorphic
system utilizing memristive devices as synapses: (i) deep learning
accelerator, accelerating the artificial neural network computing
with multiple layer and error back-propagation, as well as
it’s variations, like convolutional neural network, recurrent
neural network, etc.; (ii) brain-like computing, attempting to
closely mimicking the behaviors of biological neural system, like
spike representation (Figure 5D) and collective decision making
behavior. In the deep learning accelerator approach, on-line
training places more requirements for the memristive synapses.
For instance, linear and symmetrical weight update is crucial for
the on-line training (Burr et al., 2015; Ambrogio et al., 2018),
while off-line training ignores it since the synaptic weight can
be programmed to the memristive device with fine tuning and
iterative verify (Yao et al., 2020). In deep learning, therefore, the
minimization of device variability becomes of utmost importance
to enable online training, as already proposed in some works
(Shafiee et al., 2016; Cheng et al., 2017; Song et al., 2017; Imani
et al., 2019; Ankit et al., 2020).

Collective decisionmaking is an important feature of the brain
computing, which requires high parallelism and, consequently,
low current devices. For instance, this feature is the essential
for Hopfield neural network (Hopfield, 1982), cellular neural
network (Duan et al., 2015), and coupled oscillators (Romera
et al., 2018). In the Hopfield neural network, the system
automatically evolves to its energy minimization points leading
the functionality of associative memory. The use of Hopfield like
recurrent neural networks (RNNs) with memristive devices has
already been successfully demonstrated in a variety of tasks (Milo
et al., 2017; Wang et al., 2020b). As an example of memristive
based coupled oscillator network, Ignatov et al. (2017) used
a network of self-sustained van der Pol oscillators coupled
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FIGURE 4 | Memristive devices for neuromorphic computing. (A) Interface type RRAM device; (B) Filamentary RRAM device; (C) Phase change memory device; (D)

MRAM device with in-plane spin polarization; (E) MRAM device with perpendicular spin polarization; (F) FTJ device.

TABLE 3 | Key features of non-volatile memristive devices.

RRAM PCM MRAM FTJ

Cell area [min. feature size] 4F2 (IRDS, 2020) 4F2 (IRDS, 2020) 9F2 (Rho et al., 2017) 4F2 (IRDS, 2020)

Retention >10 years (Goux et al., 2014) >10 years (Cheng et al., 2012) >10 years (Golonzka et al., 2018) >10 years (Udayakumar et al.,

2013)

Endurance 1012 (Kim et al., 2011; Lee et al.,

2011)

1011 (Kim et al., 2010) 1012 (Saida et al., 2017) > 1015 (Udayakumar et al.,

2013)

SET/RESET time
100ps (Torrezan et al., 2011) >100 ns, 10 ns 20 ns (Jan et al., 2018) 30 ns, 30 ns

85ps (Choi et al., 2016) (IRDS, 2020) 3 ns (Kitagawa et al., 2012) (Francois et al., 2019)

Read current 100pA (Luo et al., 2016) 25µA (De Sandre et al., 2010) 20µA (Kitagawa et al., 2012) 0.8 nA (Bruno et al., 2016),

device diameter 300 nm)

Write energy per bit 20 fJ (Kang et al., 2015) ∼100 fJ (Xiong et al., 2011) 90 fJ (Kitagawa et al., 2012) <10 fJ (Francois et al., 2019)

Main features Scalability, multilevel, speed, low

energy

Scalability, multilevel, low voltage Endurance, low power Endurance, low power, speed

Challenges Variability RESET current, temperature

stability, resistance drift

Density, scalability, variability Scalability

with oxide-based memristive devices to investigate the temporal
binding problem, which is a well-known issue in the field of
cognitive neuroscience. In this experiment, the network is able to
emulate an optical illusion which shows two patterns depending
on the influence of attention. This means that the network is able
to select relevant information from a pool of inputs, as in the case
of a system collecting signals from multiple sensors.

5.2.3. Applications of Memristive Neural Networks
At present, Backprop has already exploited for offline training
of moderate size memristive neural networks (Valentian et al.,
2019). Backpropagation based on online training schemes has
also been implemented in several memristive deep learning

accelerators (Li et al., 2018a; Wang et al., 2019d; Yao et al., 2020),
showing great success of memristive array on accelerating the
deep learning training and adaptive to some device non-ideal
characteristics. The readers can refer to more comprehensive
review papers for more details (Wang et al., 2020a; Zhang et al.,
2020; Berggren et al., 2021). In these works, however, the error
backpropagation—a backward vector matrix multiplication, and
the gradient descent calculation—a vector-vector out-product,
are both conducted in hosting computer. The implementation
of these two operations in memristive array will further
improve the performance of the deep learning accelerators, while
Hebbian-based learning algorithms could potentially bypass
these operations.

Frontiers in Neuroscience | www.frontiersin.org 16 May 2021 | Volume 15 | Article 611300219

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Covi et al. Adaptive Extreme Edge Computing

FIGURE 5 | Memristive devices as synapse or neuron for neuromorphic computing. (A–C) Memristive device act as threshold device for the firing function of

biological neuron (Mehonic and Kenyon, 2016), reproduced under the CC BY license. (D) Conceptual illustration of memristive device as artificial synapse for brain-like

neuromorphic computing (Wang et al., 2018b), reproduced under the CC BY-NC license.

Online versions of Backprop, as discussed in section 3, are
very recent and a memristive-based hardware demonstration
is not yet available, despite some work in this direction is
being done (Payvand et al., 2020b). To implement adaptation,
biologically plausible algorithms able to cope with the non-ideal
characteristics of memristive devices are needed. Hebbian-based
algorithms are expected to fulfill all these requirements. However,
memristive technology with Hebbian-based learning algorithms
has been so far mainly used in relatively simple networks.
More recently, systems able of solving different tasks, such as
speech recognition (Park et al., 2015), and exploring different
architectures and learning algorithms are being investigated.
In particular, the benefits of exploiting sparsity, mentioned
in section 3.2, are demonstrated for feature extraction and
image classification in networks trained with stochastic gradient
descend and winner-take-all learning algorithms (Sheridan et al.,
2016), as well as in hierarchical temporal memory, which does
not need training (Krestinskaya and James, 2018).

In the latest years, memristive devices have been used
in applications closer to biology, enabling hybrid biological-
artificial systems (Serb et al., 2020) and investigating biomedical
applications, ranging from speech and emotion recognition
(Saleh et al., 2015) to biosignal (Kudithipudi et al., 2016)
and medical image (Zhu et al., 2017a) processing. An
interesting application is the one of memristive biosensors, which
Tzouvadaki et al. (2018) used to implement a system for cancer
diagnostic. The innovative use of memristive properties was

demonstrated in hardware and opens the way to a broader use
of memristive technology where sensors and computing co-exist
in the same system or, possibly, in the same device. Finally, a
recent work utilizes memristor array for neural signal processing
which shows three-orders-of-magnitude improvements in power
efficiency compared with literature of CMOS ASIC technology
(Liu et al., 2020).

5.3. Open Challenges and Future Work
5.3.1. Device Non-idealities
Implementation of mainstream deep learning algorithms with
Backprop learning rule and memristive synapses imposes
some requirements for the memristive device, including linear
current-voltage relation for reading, analog conductance tuning,
linear and symmetric weight update, long retention time, high
endurance, etc. (Gokmen and Vlasov, 2016). However, no single
device can fulfill all these requirements simultaneously.

Various techniques have been proposed to compensate the
device non-idealities. For instance, to compensate the non-linear
current-voltage relation for reading, fixed read voltage with
variable pulse width or pulse number can be used for synaptic
weight reading, and the readout is represented by the charge
accumulation in the output nodes (Cai et al., 2019). Linear and
symmetric weight update is crucial for accurate online learning of
a memristive multilayer neural network with Backprop learning
rule (Burr et al., 2015). However, PCM devices usually only
show gradual switching in set direction (weight potentiation),
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while RRAM devices show gradual switching in reset direction
(weight depression). To achieve linear and symmetric weight
update, differential pair with two of these devices are usually used.
For a differential pair with two PCM devices, the potentiation
is achieved by applying set pulses on the positive part and the
depression is achieved by applying set pulses on the negative part,
thus gradual weight update in both potentiation and depression
can be achieved. To further enhance the linearity of weight
update, a minor conductance pair consisting of capacitors can
be used for frequent but smaller weight update, and finally
transferred to the major pair periodically (Ambrogio et al., 2018).
Another option to improve device linearity is limiting the device
dynamic range in a region far from saturation and where the
weight update is linear (Wang et al., 2016b; Woo et al., 2016).

In addition to mitigate the non-idealities of memristive
devices, more and more research efforts are made to exploit
these non-idealities for brain-like computations. For instance,
the stochasticity or noise in reading of memristive device
can be used for the probability computation for restricted
Boltzmann machine (Mahmoodi et al., 2019), or escape for
local minimization points in a Hopfield neural network (Cai
et al., 2020). The Ag filament based resistive switching device
shows short retention time and high switching dynamics, thus
was proposed for reservoir computing (Midya et al., 2019) and
spatiotemporal computing (Wang et al., 2019a) to process time-
encoded information.

5.3.2. Co-integration of Hybrid CMOS-Memristive

Neuromorphic Systems
The main steps to be taken to exploit the full potential of
an ASIC for end-to-end processing system go through the
integration of memristive devices and sensors with CMOS
technology. Indeed, the works presented so far are based
either on simulations or on real device data, or on memristive
chips interfaced with some standard digital hardware. Despite
integration of CMOS technology has been demonstrated for non-
volatile resistive switching devices already at a commercial level
(Yang-Scharlotta et al., 2014; Hayakawa et al., 2015), the design
of co-integrated memristive-based neuromorphic processors is
still under development. We envisage a three-phase process to
achieve a fully integrated system.

The first one is the co-integration of non-volatile memristive
devices with some peripheral circuits (Hirtzlin et al., 2020) and
to implement some logic and multiply-and-accumulate (MAC)
operations (Chen et al., 2019), which reaches the maturity with
the demonstration of a fully co-integrated SNN with analog
neurons and memristive synapses (Valentian et al., 2019). The
second phase is the co-integration of different technologies.
Despite this approach results in higher fabrication costs, it
presents several advantages in terms of system performance,
which can bemore compact and potentially more power efficient.
In particular, the co-integration of non-volatile and volatile
memristive devices can lead to a fully memristive approach. As an
example, Wang et al. (2018c) exploit volatile memristive devices
to emulate stochastic neurons and non-volatile memristive
devices to store the synaptic weights on the same chip, thus
demonstrating the feasibility and the advantages of the dual

technology co-integration process. Eventually, the final step
which has to be taken in the development of a dedicated ASIC
for wearable edge computing is the co-integration of sensors
and memristive-based systems. Shulaker et al. (2017) tackled
this challenge by designing and fabricating a gas sensing system
able of gas classification. The system uses RRAM arrays as
memory, Carbon Nanotube Field Effect Transistor (CNFET) for
computation and gas sensing, both 3D monolithically integrated
on CMOS circuits, which carry out computation and allow
memory access.

Finally, there are some further aspects to be considered
in order to ensure a successful co-integration. At advanced
technological nodes, the power supply of the chip might be
lower than the voltages required to operate memristive devices,
especially when a forming operation is required. To avoid the use
of charge pump circuits, as it is necessary in Flash technology,
a possible solution is investigating forming-free devices (Hansen
et al., 2018) and low-voltage operation devices with programming
voltages <1 V (Gilbert et al., 2013; Guo et al., 2020).

5.3.3. Learning With Memristive Devices
Adaptability is a feature of paramount importance in smart
wearable devices, which need to be able to learn the unique
feature of their user. This calls for the implementation of
lifelong learning paradigms, i.e., the ability of continuously
learning new features from experience. Typically, a network
has a limited memory capacity dependent on the network size
and architecture. Once the maximum number of experiences
is recorded, new features learned will erase old ones, thus
originating the phenomenon of catastrophic forgetting.

The problem of an efficient implementation of continual
learning has been thoroughly investigated (Parisi et al., 2019). In
the current scenario, a dichotomy exist between backprop-based
ANNs, which have very high accuracy but a limited memory
capacity, and brain-inspired SNNs, which feature higher memory
capacity thanks to their higher flexibility, but at the cost of
lower accuracy. Models used to reduce the effect of forgetting
stability-plasticity problem are described in section 3.3. The use
of memristive devices in such networks is still an open point. It is
possible that memristive device will be beneficial to increase the
network capacity (Brivio et al., 2018) at no extra computational
cost thanks to their slow approach to the boundaries (Frascaroli
et al., 2018), but so far this topic is still quite unexplored. An
interesting approach is proposed by Muñoz-Martín et al. (2019),
where the key strengths of supervised convolutional ANNs,
unsupervised SNNs, and memristive devices are combined in a
single system. The results indicate that this approach is robust
against catastrophic forgetting, whilst reaching 93% accuracy
when tested with both trained and non-trained classes.

6. DISCUSSION AND CONCLUSIONS

In this study, we presented the state-of-the-art core elements that
enable the development of wearable devices for healthcare and
biomedical applications with extreme edge adaptive computing
capability. Various sensors that can collect different bio-signals
from the human body are investigated. There is a variety of
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sensing specifications in terms of size, resolution, mechanical
flexibility and output signals that needs to be considered along
with their analog readout circuit at a limited amount of power
consumption. However, when the real-time processing of these
signals is deployed on edge, severe constraints raise in terms
of power efficiency, fast response times, and accuracy in the
data classification. The widely-used solution is to find a trade-
off between the energy and computational capacity, or send
the data to the cloud. However, these strategies are not ideal
and slow down the development of wearable smart sensing.
Another important aspect to be considered is the matching
of the time constants with the intended application. Indeed,
electronic systems are intrinsically much faster than real-time
events. This property can be exploited to carry out accelerated-
time simulations, which are extremely appealing to investigate
processes occurring in very long time scales (Schemmel et al.,
2020). In systems interacting with the environment, instead, the
time constants should be slowed down to match real-time ones
in order to optimize energy utilization and enable a seamless
processing of biological signals. To meet all the requirements,
the development of a platform needs to be optimized in synergy
with the other elements and every aspect of the design, from the
learning algorithms to the architecture.

Continual learning is required for adaptive wearable devices.
In this respect, brain-inspired algorithms promise to be
valid alternatives to standard machine learning approaches,
such as Backprop and BPTT. The exploitation of sparsity
in network connectivity increases the power efficiency by
optimizing the use of the available memory. However, the
problem of algorithmic robustness to non-ideal hardware (such
as noise and variability) and the problems of forgetting and
information transfer between tasks still persist and have to
be solved in combination with neuromorphic and emerging
technologies. SNNs are conceptually ideal for low-power in-
memory computing. Their event-based approach, which exploits
the low latency of electronics to route the spikes to the correct
neuron (Moradi et al., 2017), together with the use of analog
subthreshold circuits to reproduce biological timescales, allows
fast response times of the network while enabling smooth
real-time processing of data. The encoding of the incoming
signals into spikes is however still challenging. Moreover,
a fully CMOS-based approach has two major technological
issues. First, capacitors used to implement biological time
constants are massive and may consume up to 60% of
the chip area. Memristive technology can be beneficial in
this respect, as volatile devices offer a compact alternative
to CMOS capacitors. Second, the network configuration and
the synaptic weights are usually stored in Ternary Content-
Addressable Memory (TCAM)s and in SRAMs, respectively,
which hold the state only in the presence of a power supply.
This implies that (i) power supply cannot be switched off
during normal system operation unless the relevant information
is first stored somewhere else and (ii) at every start up
of the system, the information on the network has to be
uploaded, which may take tens of minutes. Non-volatile
memristive device-based versions of TCAM dramatically reduce
the initialization times, since the information is already stored

in the network. Moreover, memristive-based synapses can
also enable normally-off computing paradigms, thus further
improving power efficiency.

Besides low-power operation in a small footprint,
memristive devices also offer noisy properties, which—
if exploited in the right way—might facilitate the
implementation of stochastic learning algorithms. However,
the technology is still at its infancy and fabrication
processes are still under development, yielding high device
variability, which makes it difficult to produce reliable
multi-bit memory.

The focus of this study is describing the technological
challenges and possible solutions to bring computing abilities
on the edge. However, there are other practical aspects that
may pose a hurdle for the deployment of the envisaged high
performance edge biomedical systems (Figure 1). (i) Data set.
The available biomedical data sets may not represent uniformly
the human population, since they are mainly collected in
countries with a granted basic healthcare system. In this
context, online adaptation enables the biomedical device to
learn directly from the signal of the user, which should
mitigate data set related issues. (ii) Need for interpretability.
Especially in high-risk scenarios, such as in medicine, where
a false positive or negative can have a huge impact on
the patient, having transparent Artificial Intelligence (AI)
models and systems is of paramount importance to support
medical doctors in a decision (Barredo Arrieta et al., 2020).
(iii) Legal responsibility. Machine Learning (ML) is not
unerring. When it does, for example in automotive or
healthcare scenarios, our current legal systems lack laws that
can clearly define responsibilities (Eshraghian, 2020). (iv)
Generalization performance. Human intelligence outperforms
AI when dealing with generalization tasks, even though
some efforts are already devoted to improving this aspect
(McKinney et al., 2020). If successful, AI can provide a valid
instrument for medical doctors for an early detection of
a pathological abnormality (even before the patient displays
symptoms), an early start of appropriate therapy, and an overall
improvement of prognosis. However, these aspects lie well-
beyond the scope of this study and deserve an extensive review
on their own.

In summary, the ultimate goal toward smart wearable
sensing with edge computing capabilities relies on a bespoke
platform embedding sensors, front-end circuit interface,
neuromorphic processor and memristive devices. This platform
requires high-compatibility of existing sensing technologies
with CMOS circuitry and memristive devices to move the
intelligent algorithm into the wearable edge without significantly
increase the cost in energy. New solutions are needed to
enhance the performance of local adaptive learning rules
to be competitive with the accuracy of Backprop. Novel
encoding techniques to allow seamless communication from
sensors to neuromorphic chips have to be developed and
flanked by efficient event-based algorithms. So far there
is not a uniquely ideal solution, but we envisage that a
holistic approach where all the elements of the system
are co-designed as a whole is the key to build low-power
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end-to-end real-time adaptive systems for next-generation smart
wearable devices.
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Progress in computational neuroscience toward understanding brain function is

challenged both by the complexity of molecular-scale electrochemical interactions at the

level of individual neurons and synapses and the dimensionality of network dynamics

across the brain covering a vast range of spatial and temporal scales. Our work

abstracts an existing highly detailed, biophysically realistic 3D reaction-diffusion model

of a chemical synapse to a compact internal state space representation that maps onto

parallel neuromorphic hardware for efficient emulation at a very large scale and offers

near-equivalence in input-output dynamics while preserving biologically interpretable

tunable parameters.

Keywords: neuromorphic, synapse, Markov chain, Monte Carlo, synaptic transmission, computational efficiency

1. INTRODUCTION

It has been known since the pioneering of computer architecture by John von Neumann that
brains are far more effective and efficient in processing sensory information than digital computers,
owing to the massively parallel distributed organization of neural circuits in the brain that tightly
couple synaptic memory and computing at a fine grain scale (von Neumann, 1958). Modern
day computers still follow the “von Neumann” architecture where computing and memory
are kept separate, incurring severe penalties in computing bandwidth due to the bottleneck in
data flow between centralized processing and vast memory. Moore’s law’s relentless scaling of
semiconductor technology, with a doubling of integration density every 2 years, has allowed
the von Neumann architecture to remain fundamentally unchanged since its advent. As the
shrinking dimensions of transistors supporting the progression of Moore’s law are approaching
fundamental limits, it has become essential to consider alternative novel computing architectures
to meet increasing computational needs in this age of the deep learning revolution, which itself
is driven by advances rooted in a deeper understanding of brain function (Sejnowski, 2020).
At the forefront of this movement are neuromorphic systems, introduced by Mead (1990) as a
solution to these limitations. Neuromorphic engineering looks toward human brains as inspiration
for hardware systems due to their highly efficient computational nature. The human brain is
regarded as the pinnacle of efficient computing, operating at an estimated rate of 1016 complex
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operations per second while consuming less than 20 W
of power (Churchland and Sejnowski, 1992; Cauwenberghs,
2013). Therefore, neuromorphic engineering looks to mimic
the function and organization of neural structures using hybrid
analog and digital systems. This is possible because there
is significant overlap in the physics of computation between
the brain and neuromorphic engineering (Figure 1). In both
systems, information is carried in the form of charge, and, in
hardware, neuronal membrane dynamics are represented using
metal-oxide-semiconductor field-effect transistors (MOSFETs)
(Mead, 1989). In theMOSFET sub-threshold region of operation,
electrons and holes are the carriers of current between n-
or p-type channels and behave akin to ions flowing through
ion channels that mediate current across the neuronal cell
membrane. Fundamentally, these hardware systems share
analogous properties to their biological counterparts, including
charge stochasticity, diffusion as the primary mechanism of
carrier transport, and energy barriers modulated by gating
voltage. Paired with Boltzmann distributions of charge, these
systems are able to emulate current as an exponential function
of the applied voltage, capturing the same biophysics underlying
the neuronal dynamics (Mead, 1989; Broccard et al., 2017).

Since the introduction of neuromorphic engineering,
computational models of different complexity have been
introduced to describe neuronal dynamics, typically ranging
from more detailed and realistic conductance-based Hodgkin-
Huxley models to simpler integrate-and-fire models allowing
for better scalability. Synaptic connectivity between neurons
is of primary concern in the field currently because synaptic
strength and plasticity are fundamental to learning and
memory in both biological and artificial representations of
neural networks (Indiveri et al., 2011; Broccard et al., 2017).
In neuromorphic architectures, synapses instantiate both
computation and memory, and a new focus on compact
electronic implementations of this computational memory has
been emerging recently including the use of memristors (Boybat
et al., 2018). Efficient representation of synapses is a crucial topic
of concern as there are roughly 104 synapses for each neuron,
totalling approximately 1016 in the human brain. They are
diverse in nature and have highly complex temporal and spatial
dynamics, which further complicates their representations
(Broccard et al., 2017). Currently, there is a push for efficient
synaptic models while maintaining the intricate dynamical
behavior exhibited biophysiologically. Current models include
time-multiplexing synapses, analog bistable synapses, and binary
synapses to name a few, but the need for scalable and dynamically
complex models of synaptic function and transmission is still
existent and critical (Bartolozzi and Indiveri, 2007; Broccard
et al., 2017).

Modeling synapses is a challenging task due to their intricacy
and sheer quantity. As noted above, there are an estimated
1016 synapses in the human brain. They vary in function and
type, including both chemical and electrical synapses and exhibit
behavior spanning multiple different temporal and spatial scales,
as well as being highly stochastic in nature (van Rossum et al.,
2003; Wang et al., 2020). Additionally, synaptic plasticity causes
changes in synaptic strength over time associated with learning

and memory. Synaptic transmission involves a multitude of
mechanisms and molecular components, making simulations
including all components not readily scalable. In order to capture
the sophisticated dynamics of synapses in a scalable manner,
abstractions have to be made according to the research problem
in question. The stochastic nature of synapses also makes
large scale simulations more complicated as modeling stochastic
processes is typically more computationally demanding. It has
been shown in multiple instances that the noise present due
to the stochastic variability in synapses is highly integral to
synaptic transmission, so this becomes an important feature to
maintain (Malagon et al., 2016). For example, Moezzi et al.
(2014) proved that models including ion channel noise in
calcium channels paired with the existence of a presynaptic
mechanism causing random delays in synaptic vesicle availability
best capture the interspike interval behavior of auditory nerve
fiber models. Additionally, multiple experimental works have
found the existence of presynaptic vesicles that are released into
the synaptic cleft with some probability (Castillo and Katz, 1954;
Korn and Faber, 1991). There are multiple similar conclusions
found in modeling and experimental results as recently discussed
by McDonnell et al. (2016).

Synapses form the connections between neurons and the
strength of these connections changes over time, forming the
basis of learning and memory in both biological and artificial
neural networks. The computations involved in accurately
modeling the biophysics of synapses are complex due to the
highly nonlinear nature of their dynamics, yet most of the neural
networkmodels in use today abstract synaptic strength to a single
or small number of scalar values, tuned to a specific task. The
learning rule for updating synaptic strength is then typically
applied using abstractions of synaptic plasticity such as spike-
time dependent plasticity and its causal extensions for scalable
real-time hardware implementation (Pedroni et al., 2019).
Physical constraints and limitations in VLSI implementations
restrict the functional form of synaptic representation. In turn,
these abstractions restrict the potential computing power of
neuromorphic systems and restrain achievable benchmarks in
approaching the functional flexibility, resilience, and efficiency
of neural computation in the biological brain. Our work
addresses the need for a more biophysically realistic model of
the synapse with biologically tunable parameters to represent
synaptic dynamics while offering a path toward efficient real-time
implementation in neuromorphic hardware.

Synaptic transmission is dictated by a series of events initiated
by presynaptic stimulation in the form of action potentials.
An action potential causes membrane depolarization which
leads to stochastic opening and closing of voltage-dependent
calcium channels (VDCCs) lying on the presynaptic membrane
and a resulting influx of calcium to the presynaptic terminal.
Neurotransmitter release is modulated by calcium binding to
calcium sensors near the neurotransmitter filled vesicles at the
active zone, but calcium has other fates as it diffuses from
the VDCCs. In addition to binding to the calcium sensors,
it can bind to calbindin, which acts as a buffer, or it can be
removed by plasma membrane calcium ATPase (PMCA) pumps.
If enough calcium is able to bind to the calcium sensors, though,
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FIGURE 1 | (A) Multiscale correspondence between the fields of computational neuroscience and neuromorphic engineering. Reproduced with permission from

Churchland and Sejnowski (1992) and Cauwenberghs (2013) and (B) equivalence in Boltzmann thermodynamics between metal-oxide-semiconductor field-effect

transistors (MOSFETs) and ion channels resulting in current as an exponential function of applied voltage in both systems for sodium (bottom left) and potassium

(bottom right) (Hodgkin and Huxley, 1952; Mead, 1989).

then neurotransmitters are released across the synaptic cleft and
initiate downstream effects at the postsynaptic membrane (Bartol
et al., 2015). This process of synaptic transmission is the basis of
communication in the brain.

Abstracting this for computational efficiency, we created a
series of Markov state transitions to realize the system with
multiple internal states allowing for a biophysically tunable
model of synaptic connectivity implementable in neuromorphic
architectures. Markov models have a history of use as a stochastic
discrete state alternative to Hodgkin-Huxley type formulations
since their introduction (Hodgkin and Huxley, 1952; Armstrong,
1971; Colquhoun, 1973). Additional stochastic models have
been introduced, including the Gillespie method (1977), which
has been used to model neural channel noise (Gillespie, 1977;
Skaugen and Walloe, 1979; Chow and White, 1996). Markov
models have also found use in whole-cell models (Winslow
et al., 1999). Further extensions utilize a particle model (Koch,
1999). The importance of the inclusion of stochasticity in ion
channel behavior and synaptic transmission generally cannot be
understated. Its inclusion has been demonstrated time and time
again in experimental work and is thought to be integral in the
form and function of synaptic transmission (McDonnell et al.,
2016). This provides an additional complication in modeling
synapses and has been handled at various different stages of
transmission, including the stochastic models of vesicle release
using probabilistically generated quantal components, stochastic
models of transmitter diffusion, and stochastic models of
receptors (Castillo and Katz, 1954; van Rossum et al., 2003; Bartol
et al., 2015). These simulations are computationally expensive

due to the high transition rates paired with the small number
of transitions necessitating a small timepoint. Specifically,
Markov models have shown to be an effective method of
modeling ion channels but require high computational cost to
effectively do so.

This paper looks to abstract the computationally complex
and nonlinear nature of synaptic transmission dynamics in a
manner that is efficient and readily scalable for implementation
in neuromorphic silicon very large-scale integrated (VLSI)
circuits. This is done by introducing an efficient stochastic
sampling scheme within a Markov chain representation of
the components integral to stochastic presynaptic quantal
transmission.

2. MATERIALS AND METHODS

2.1. Markov Chain Models
The cascade of events from the action potential stimulus
input to the presynaptic neurotransmitter release output can
be equivalently modeled as a Markov chain to realize the
system with multiple internal states instead of directly tracking
all molecules and their kinetics in a computationally complex
spatiotemporal 3D reaction-diffusion model. Each internal
Markov state is assumed to be dependent solely on the state
at the previous timepoint and is conditionally independent
of all previous timepoints, simplifying simulations. Therefore,
the fully biophysically complex system of synaptic transmission
can be abstracted and sampled to create a Markov Chain
Monte Carlo (MCMC) simulation which answers the same
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FIGURE 2 | State diagram for voltage-dependent calcium channels and

resulting calcium influx in the presynaptic membrane. Reproduced with

permission from Bartol et al. (2015).

FIGURE 3 | State diagram for calbindin binding where HaMb describes the ath

high-affinity binding state and the bth medium-affinity binding state.

Reproduced with permission from Bartol et al. (2015).

question of neurotransmitter release utilizing tunable biophysical
parameters while providing scalability for implementation in
neuromorphic architectures.

For any given stimulus input, the VDCCs are assigned
transition probabilities between states based on a five-state
kinetic model (Figure 2) found experimentally and validated
computationally with four closed states and a single open
state (Church and Stanley, 1996; Bischofberger et al., 2002;
Bartol et al., 2015). Prior to the stimulus, all VDCCs begin in
the initial closed state, C0, and the concentration of calcium
in the presynaptic terminal is at steady-state. The transition
probabilities are voltage dependent akin to a Hodgkin-Huxley

model where αi(V) = αio exp
(

Vm
Vi

)

and similarly βi(V) =

βio exp
(

Vm
Vi

)

with parameter values from Bischofberger et al.

(2002). The number of open VDCCs at any givenmoment is used
to determine the number of calcium entering the presynaptic
terminal based on experimental I-V curves and the resulting I-V
equation found in Bischofberger et al. (2002) and used in Bartol
et al. (2015), which gives the value for kCa. Calcium influx is
captured by including transitions from the final closed VDCC
state, C3, to the open VDCC state and an internal calcium
generation. Using this, influx of calcium is modeled over the
entire stimulus input due to the VDCCs opening.

Once calcium has entered the presynaptic terminal, much of it
binds to calbindin, which acts as a buffer and primarily modulates
the amount of calcium that is able to reach the calcium sensors
at the active zone. The state transitions are reversible first-order

reactions, thus transition probabilities are dependent on the free
calcium in the system and updated as that amount changes
over time. Calbindin has four binding sites, two of high affinity
and two of medium affinity, leading to a nine-state calcium
concentration-dependent kinetic model (Figure 3; Nagerl et al.,
2000). By modeling the binding and unbinding of calcium to
calbindin as a loss or gain of free calcium, respectively, calcium
transients can also be elucidated.

Our Markov chain is a discrete-state chain in discrete time.
Markov chains are modeled by a probability that the chain will
move to another state given its current state and is conditionally
independent of all previous timesteps. The probabilities are by
nature only dependent on the current state of the Markov chain.
The probability of the state of a molecule X can typically be
predicted for a certain timepoint t + 1t as some particular state
xj using the states at all previous timepoints from the start of the
simulation, t = 0, to the timepoint just before that in question, t.
For a Markov chain simulation solely dependent on the previous
timepoint, it is possible to predict the probability that a molecule
is in a given state, xj at the timepoint t+1t using solely the state
of the single timepoint just before, Xt , which is known to be a
particular state xi. Thus, the probability of the molecule being in
state xj given that at the previous timepoint it was in state xi is
given as Pij. Succinctly, this is written as

P(Xt+1t = xj|Xt = xi,Xt−1t , ...,X0) = P(Xt+1t = xj|Xt = xi)

= Pij (1)

For state transitions, the probability of transitioning to an
adjacent state is the transition rate inherent in the system (kij
for the transition from state i to state j, and kij is not necessarily
equal to kji) times the timepoint, 1t. In the case of calbindin
transitions, this is further multiplied by the amount of free
unbound calcium for forward reactions as it is a first-order
reaction. For the VDCCs, the transition rates are the α, β , and
kCa. The probability that a molecule stays in its current state is
the sum of the probabilities it transitions to an adjacent state
subtracted from unity. For a multi-state system, this gives a
transition probability matrix for the likelihood of transition from
a given state at the current timepoint to any other state at the
next timepoint. This matrix is sparse, with nonzero probabilities
only for adjacent states to which a transition is possible. In the
case of the five-state VDCC system, this gives the probability of a
transition from state i to state j as

Pij =











kij 1t j = i± 1

1−
∑Nadj

k=0
Pik j = i, k 6= i

0 otherwise.

(2)

where transitions to adjacent states are given by the transition
rate kij times the timepoint, 1t; the probability of staying in
the current state is the sum of probabilities of adjacent state
transitions subtracted from unity, where Nadj is the number of
possible adjacent states. The probability of transitioning to a
non-adjacent state is set to zero.

Typically Markov state transitions are modeled via a discrete
inverse transform method, where given a random variable X, the
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FIGURE 4 | Markov sampling scheme for state transitions using partitions

of unity.

transition probabilities Pij describe a partition of unity (Figure 4).
Therefore, we can generate a random number uniformly, R ∼

U(0, 1) and map it onto discrete values of X. For example, in a
two state system, Xj = 0 if R ≤ Pi0 or Xj = 1 if Pi0 < R ≤

Pi0 + Pi1 = 1. This involves searching the state space for the next
state given the current state for each molecule in the system at
each timepoint, which can be a slow process for systems with a
large number of states and molecules.

Here we have implemented a more efficient MCMC sampling
strategy involving sampling from a multinomial distribution.
Therefore, instead of sampling from a uniform distribution for
each of n molecules, we sample from a multinomial distribution
once for each state, using n molecules as the number of
experiments, where X ∼ Multi(n, p1, . . . pk). For simulations
where the number of possible states is less than the number of
molecules, this is a more efficient sampling strategy. Since we
are particularly interested in the number of molecules in each
state at each timepoint, this is an effective approach. Multinomial
sampling thus describes the distribution of the n experiments
across k possible outcomes each with a probability of pk, where
nk is the number of experiments falling into the kth outcome
following a probability mass function of

f (n1, . . . , nk; n, p1, . . . pk) =
n!

n1! . . . nk!
pn11 . . . p

nk
k

(3)

In our model, for each state i, we have an initial number of
molecules in that state at a given timepoint t, or ni,t . As previously
described, there exists a probability that the molecules will
transition to any state at the next timepoint, including staying in
the original state given by Pij. Thus, to determine the distribution
of molecules ni,t across all states at the next timepoint, we sample
from a multinomial distribution according to

Xi,t+1t ∼ Multi(ni,t , Pi1, . . . Pik) (4)

for k possible states. We do this sampling for each state at
each timepoint and sum accordingly. This expedites computation
by only requiring a single computation at each timepoint,
sampling the distribution of all nmolecules at once.Algorithm 1

highlights the pseudocode for this process.

Algorithm 1:Markov Multinomial Reaction Sampling.

Result: The number of molecules in each state at each
timepoint for a simulation.

initialize number of states;
initializematrix of number of molecules per state per
timepoint;
for each timepoint do

for each state do
calculate transition probability according to Equation
(1);
sample multinomial distribution with current
number of molecules in the state and transition
probability;

end

update number of molecules in each state using samples;

end

Markov simulations for the VDCCs were run for 65 VDCCs
all starting in the closed state, C0. Calbindin molecules were
initiated in the different binding states according to the steady-
state concentration of calcium and at a baseline concentration of
4.5 10−5 M. All simulations were run for 10 ms with a timestep
of 1 µs. The simulations were repeated 1,000 times to obtain
an average and standard deviation. Markov simulations were
implemented using Python.

2.2. MCell Models
MCell is a modeling software that uses spatially realistic
3D geometries and Monte Carlo reaction-diffusion modeling
algorithms, which allows for biophysically realistic simulations
of high complexity as it specifically tracks the state of every
molecules in space and time (Bartol et al., 2015). Due to the
accuracy and specificity, it provides a ground truth for biological
simulations but does so at the cost of computational complexity.

To validate and compare our Markov models of synaptic
transmission, we built a biophysically realistic stochastic 3D
reaction-diffusion system with all major components for
presynaptic vesicle release variability in response to a stimulus
input (Figure 5) based on the models of Nadkarni et al. (2010)
and Bartol et al. (2015). The model includes realistic geometry
for a CA3-CA1 en passant synapse focusing primarily on
the presynaptic Schaffer collateral axon of a CA3 pyramidal
cell found in the hippocampus with parameters set from
experimental data (Nadkarni et al., 2010; Bartol et al., 2015).
The CA3-CA1 synapse was chosen for the simulations as it is
highly studied experimentally and is important for learning and
memory. Furthermore, CA3-CA1 synapses are relatively small,
containing one to two neurotransmitter release zones. Release
from this region is also known to be highly stochastic in nature,
necessitating the inclusion of stochasticity in biologically realistic
models (Nadkarni et al., 2010). All kinetics and parameters match
those used for the equivalent Markov models.

TheMCell model includes the canonical presynaptic geometry
for an average CA3-CA1 synaptic terminal as a rectangular box

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 698635235

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wagner et al. Markov Chain Abstractions

FIGURE 5 | MCell model for synaptic transmission containing voltage-dependent calcium channels (red), calcium (blue), calcium sensors (green), and plasma

membrane calcium ATPase pumps (purple). Calbindin not pictured here due to their large number. (A) Entire 0.5 µm by 0.5 µm by 4 µm box representing one

vesicular release site in a Schaffer collateral axon in the CA3 region and (B) a close-up of the release site.

measuring 0.5µm by 0.5µm by 4µm. This box captures the
dynamics of a single synaptic active zone, referring to the region
on the presynaptic membrane specialized for neurotransmitter
release. Initially, the terminal contains the calbindin buffer,
steady-state calcium concentration, PMCA pumps, VDCCs and
calcium sensors modulating neurotransmitter release (Nadkarni
et al., 2010). The detailed diffusion dynamics and kinetics of
these systems are based on experimental data and have been
discussed in further detail in Bartol et al. (2015). The active zone
is based on that of an average presynaptic active zone containing
seven docked neurotransmitter vesicle release sites. The VDCCs,
of type P/Q, are stationed at a biophysically realistic distance
from the active zone. They transition states in response to the
membrane depolarization. The location, number, and calcium
conductance of the VDCCs is replicated from experimental data
(Nadkarni et al., 2010). PMCAs are homogenously placed across
the presynaptic membrane while calbindin molecules are in a
uniform concentration within the volume. This is a flexible
architecture that can respond to any stimulus input and allows
for monitoring of the states of each molecule in the system. The
MCell CA3-CA1 synaptic transmission models were originally
created and validated in Nadkarni et al. (2010) and Bartol et al.
(2015). To compare with the Markov models, we used the same
single action potential stimulus.

MCell models were also run 1,000 times for 10 ms with a
timestep of 1 µs.

3. RESULTS

3.1. Voltage-Dependent Calcium Channels
The efficientMarkov chain implementation has strong agreement
with the full MCell model in terms of the internal state transients
in response to an external stimulus. The number of closed
VDCCs (state C0) decreases over the duration of the stimulus
(Figure 6A). The internal states (C1-C3) subsequently increase

and decrease as the membrane voltage increases and the forward
rates for the VDCCs increase (Figures 6B–D), leading to an
exponential increase in the open VDCCs while the membrane
depolarizes. Figure 6E shows the fraction of open VDCCs over
time in response to the action potential, which controls the
amount of calcium influx to the system. At the maximum
membrane potential, almost all VDCCs are in the open state.
As the membrane repolarizes, the reverse reaction rate constants
increase, and the VDCCs close. This leads to another increase and
decrease in the internal VDCC states as the receptors go from
their open to resting closed state (C0).

In its open state, VDCCs allow for the probabilistic influx
of calcium through the channels into the presynaptic bouton.
This is exemplified in Figure 6F, where there is an increase in
the calcium influx through the open VDCCs over the course of
the stimulus. Again, there is strong agreement between the more
computationally complex MCell model and the computationally
efficient Markov equivalent model.

3.2. Calbindin Buffer
Simulations of homogeneous calcium and calbindin were run
using the MCell, Markov and deterministic simulation schemes.
In the presence of calcium, the forward binding reaction is
heavily favored, and this is highlighted in Figure 7A where free
calcium exponentially decreases. A similar transient is apparent
for the unbound state of calbindin, as it quickly transitions to
different stages of high and medium binding Figure 7B. Over
the course of the simulation, all the free calcium is removed
from the system, and calbindin states reach a new steady-state
where there is still unbound calbindin. Similarly, the fully bound
state, H2M2, rapidly increases and reaches a new steady state
that is still only 1% of all calbindin Figure 7C. This is due to
the high concentration of calbindin in the presynaptic bouton.
Even once all the calcium is in a bound state, there is still
plenty of unbound or partially bound calbindin remaining in the
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FIGURE 6 | Fraction of voltage-dependent calcium channels (VDCCs) in each state: (A–D) Internal closed channel states, C0-C3, and (E) The open channel state, O.

(F) Calcium influx through open VDCCs in response to action potential stimulus for stochastic MCell, Markov, and deterministic ODE forward Euler simulation.

system. Calbindin acts as a strong buffer allowing for calcium
storage and asynchronous neurotransmitter release, so this and
slow unbinding rates become an important feature of calbindin.
The rapid extent to which calcium binds to calbindin shows the
impact of buffering on calcium’s ability to diffuse and bind to
the calcium sensors in the active zone. The inclusion of calbindin
at such high concentrations becomes a key feature of maintaining
the relatively low release rates of neurotransmitters even in the
presence of a stimulus.

3.3. Complexity Analysis
MCell uses a scheduler which allows for only making changes
to the scheduled particles, though in the worst-case, this still
scales with the total number of particles in the simulation,

n, where nVDCC is 65 and ncalb is 2.7 × 104. It also scales
with the length of the simulation, t, described by the number
of time points for a discrete simulation. The simulations for
the VDCC and calbindin both use 10k timepoints. At each
timepoint, a particle can transition to any of its adjacent or
branched states, b, which is similarly described by a fan-out factor
in electronic implementation. From the VDCC kinetic model
described in Figure 2, bVDCC is 1–2 depending on the state while
the calbindin kinetic model in Figure 3 gives bcalb of 2-4. The
overall time complexity forMCell isO(bnt). The classicalMarkov
representation tracks every particle. It also searches through the
space of each adjacent state for potential state transitions at each
time point. Therefore, classical Markov implementation similarly
results in an O(bnt) time complexity, or O(nt log2 b) at best
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FIGURE 7 | (A) Transients for homogeneous calcium-calbindin buffer binding in the presynaptic bouton for free calcium; (B) the unbound calbindin state, H0M0; and

(C) the fully bound calbindin state, H2M2 in all simulation types.

for implementation with an efficient search algorithm. Both the
multinomial Markov model and the Euler ODE implementation
describe the system in terms of the number of molecules in each
state leading to a dependence on the total number of states, s ≥ b,
rather than the total number of particles. The total number of
states for VDCC is 5 (Figure 2) while the number of states for
calbindin is 9 (Figure 3). Due to efficient sampling methods, the
multinomial Markov method is independent of the number of
adjacent states, leading to a time complexity of O(bst) for both
the multinomial Markov and Euler ODE methods. Thus, our
stochastic multinomial Markov model is equally amenable to
large scale simulations as the deterministic ODE method that is
typically used in simulations involving more synapses.

The traditional Markov sampling model and the MCell
representation store the molecular states in bits for each particle
as well as the states adjacent to the current state, leading to a space
complexity ofO(bn log2 s) The efficient Markov model and ODE
solution both simply store the number of molecules represented
by bits in each state at each timepoint as well as the branched
states resulting in a space complexity ofO(bs log2 n). There exists
a trade off here between the number of particles in each state
compared to the number of states where one is stored directly and
one is stored as an index. Thus, for simulations where the number
of states is less than the number of particles, the multinomial
Markov model is an efficient representation of the system, which
is typically the case for biochemical simulation. MCell is more
efficient with large state-space systems, but the number of states
could be sparsified in a multinomial Markov representation by
implementing dynamic instantiation and annihilation of states.
Additionally, unseen or rarely seen states could be ignored
by truncating based on probability of a particle being in that
state. This would functionally decrease the number of states
in the system allowing for use of the multinomial Markov
simulation method.

3.4. Benchmarks
Runtime and total floating point operations were used as metrics
for comparison between the simulation methods (Table 1).
We also looked at the number of pseudorandom number
generator calls (nPRNG) between the simulations as this provides

a metric to elucidate the differences observed in execution
time between the simulations. Here we compare MCell, the
standard Markov model, and the multinomial Markov stochastic
models. The deterministic Euler solution is included as well
for a non-stochastic comparison. Again, it is valuable to note
the importance of stochasticity in these models. Significant
work has shown the necessity of stochasticity in models of
synaptic transmission in order to match experimental work.
It has been demonstrated that deterministic models at this
scale generally underestimate quantal release as concentration
fluctuations are not captured (van Rossum et al., 2003; Bartol
et al., 2015; McDonnell et al., 2016). Thus, while deterministic
ODE models provide efficient simulation techniques, they are
not able to capture the full complexity of the dynamics of
synaptic transmission, hence motivating the need for an efficient
stochastic model.

In the VDCC simulations, the multinomial sampling MCMC
model has a runtime on the order of the forward Euler
deterministic solution. The MCell and the standard Markov
stochastic models exemplify a runtime an order of magnitude
higher. The number of operations is also higher for the
MCell and the standard Markov models compared to the
multinomial Markovmodel. The standardMarkov case generates
a pseudorandom number for each molecule and each timestep,
so nPRNG is equivalent to the number of molecules multiplied by
the number of timesteps, nVDCCt. In the multinomial Markov
simulation, a pseudorandom number is generated for each
occupied state and possible branching points at each timepoint,
which gives (bs)VDCCt in the worst-case scenario. Therefore,
nPRNG is smaller for the multinomial case as long as (bs)VDCC <

nVDCC, which is always the case here.
For the calbindin model, the multinomial Markov method

is again an order of magnitude faster than the MCell model
although it is also an order of magnitude slower than the
deterministic model. The standard Markov model is an order of
magnitude slower than the multinomial model. The operations
are also fewer for the multinomial case than the standard
case. Again, the standard Markov case gives nPRNG equal to
ncalbt while the multinomial Markov simulation is (bs)calbt.
Again we see a smaller nPRNG in the mulinomial case because
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TABLE 1 | Benchmarks for different simulation types for both voltage-dependent calcium channel and calbindin binding simulations.

VDCC Runtime (sec) No. Pseudorandom number generator calls (nPRNG) Total floating-point operations (FLOPs)

MCell 139.20 1.5 x 109 1.7 x 1011

Standard markov 109.16 6.5x 105 7.0 x 107

Muttinomial markov 9.40 1.0 x 105 1.3x 107

ODE (Euler) 10.05 0 7.7 x 106

Calbindin Runtime No. Pseudorandom number generator calls (nPRNG) Total floating-point operations (FLOPs)

MCell 29.34 6.9 x 107 8.7 x 109

Standard Markov 76.78 2.7 x 108 1.4 x 1010

Muttinomial Markov 2.37 3.6 x 105 2.7 x 107

ODE (Euler) 0.72 0 1.6 x 106

(bs)calb < ncalb even in the worst-case scenario where b is at
its maximum value. Simulations are not currently optimized
on hardware suggesting opportunities for further decreases in
runtime. Overall, the multinomial Markov simulation provides
a computationally efficient alternative to stochastic MCell
simulations while maintaining the biological accuracy.

3.5. Neuromorphic Implementation
Thermodynamic foundations of neuromorphic engineering
suggest direct biophysical implementation of populations of ion
channels with individual stochastic opening and closing of gating
variables driven by thermal noise fluctuations (Mead, 1989). So it
seems only natural to consider implementations using stochastic
ODEs describing the rates of reaction kinetics under additive
white Gaussian noise (AWGN):

dXi,t

dt
=

∑

j

kij Xj,t + ξi,t (5)

where ξi,t is normally distributed with zero mean and variance
dependent on the magnitude of Xi,t . Fully parallel, continuous-
time analog implementation of reaction kinetic rate equations
of the type (Equation 5) have been demonstrated in micropower
integrated circuits, e.g.,cytomorphic chips in BiCMOS integrated
silicon technology (Woo et al., 2018). Abundant intrinsic noise
present in these micropower cytomorphic circuits can serve
as AWGN, although its magnitude is determined by thermal
processes that are hard to control and other non-white Gaussian
sources of intrinsic noise contribute strongly colored low-
frequency spectra. Thus, discrete-time implementation of the
ODEs (Equation 5) through Euler integration on a digital
computer offers greater control over the shape and amplitude of
the AWGNdistribution, limited by the quality of pseudo-random
number generation by deterministic algorithms.

Although purely digital algorithmic implementations go
against foundational principles of neuromorphic engineering
rooted in the physics of computation (Mead, 1989), the
convenience of their programmability and reproducibility have
made ODE-based digital emulation platforms such as Loihi a
popular choice among more software-focused neuromorphic
computer scientists (Davies et al., 2018). The computation
involved in such discrete-time ODEs (Equation 5) can be

performed at varying degrees of parallelism in custom or
reconfigurable digital hardware, with the variables Xi being
updated in sequence through time-multiplexing a single
processing core in one extreme case, or all Xi updated in parallel
with dedicated processing elements for each in the other extreme
case. Ultimately in practice, the energy efficiency is relatively
independent of the compute implementation, and depends more
critically on the availablememory bandwidth in accessing the rate
parameters defining network connectivity (Pedroni et al., 2020).
In essence, discrete-time Euler-integration ODE implementation
of Equation (5) amounts to sampling from a normal distribution

Xi,t+1t ∼ N (ni,t+1t , σi,t) (6)

with mean and standard deviation

ni,t+1t =
∑

j

Pij nj,t (7)

σi,t =
√

ni,t (n− ni,t) (8)

incurring computational complexityO(bst) (section 3.3).
More fundamentally, the main disadvantage of implementing

stochastic ODEs (Equation 5) or their discrete-time digital
versions (Equation 6) is that they are primarily based on the
Central Limit Theorem for very large number of variables,
n → ∞. As such, they have limited accuracy in approximating
the reaction kinetics in systems with smaller numbers of
molecular variables. While one may be tempted to assume
that molecules are always excessively abundant, this is not
typically the case since reactions are rate limited by the least
abundant of reagents. Low numbers in molecular dynamics
are prevalent in biologically relevant settings, giving rise to
significant amounts of biological noise that are critical in
neural dynamics, e.g., the highly stochastic quantal release of
neurotransmitter in synaptic transmission. Thus, there is need for
a mathematical description of stochastic synaptic transmission
dynamics able to capture the accuracy in simulations with
relatively small numbers of variables. Here we have shown that
our multinomial Markov alternative, which directly samples
the variables from the multinomial distribution (Equation 4)
rather than the limiting normal distribution (Equation 6),
produces accurate results for any value of n while offering
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TABLE 2 | Space and time complexity for the various simulation strategies.

Complexity Time complexity Space complexity

MCell O(b n t) O(b n log2s)

Standard markov O(b n t) O(b n log2s)

Multinomial markov O(b s t) O(b s log2n)

ODE (Euler) O(b s t) O(b s log2n)

n (total number of molecules), s (total number of states), b (number of branching states),

t (number of timepoints).

nearly identical implementation complexity O(bst) (section
3.3). Hence we see the Markov chain abstractions of reaction
kinetics not only as a means to approach biophysical realism
in modeling molecular cellular dynamics without molecular-
scale representation, but also as a means toward efficient
neuromorphic hardware without biophysical compromise. The
key point is that the computational complexity of implementing
our multinomial Markov model is essentially identical to that
of stochastic ODEs (see Table 2), whether in software executing
serially on a von Neumann programmable digital computer
or in massively parallel digital or analog hardware. Hence,
the neuromorphic circuit designer tasked to implement brain-
inspired models of information processing faces an easy choice:
more bio-realistic models that account for detailed stochasticity
in reaction kinetics incur the same resource utilization and
energy costs, and use similar design principles, as their stochastic
ODE approximations.

In addition to field-programmable gate array (FPGA)
reconfigurable (Pedroni et al., 2020) or custom-integrated
neuromorphic programmable (Davies et al., 2018) instantiations
in digital hardware, we envision physically neuromorphic
instantiations in micropower analog continuous-time compute-
in-memory hardware that obviate sampling from posterior
distributions and directly implement Markov state transitions
through parallel implementation of sum-product rules with
self-normalizing probabilities (Chakrabartty and Cauwenberghs,
2004, 2005), at throughput density and energy efficiency that
are orders of magnitude higher than today’s most advanced
general-programmable computational platforms.

4. DISCUSSION

The goal of this work was to create a more computationally
efficient model of biologically realistic synaptic transmission
for use in large-scale neuromorphic systems. We created a
multinomial MCMC sampling strategy for capturing the internal
states of vital molecules in the system in response to stimulus
where transition probabilities could be voltage- or concentration-
dependent, and the next timestep could be predicted solely
using the current timestep. This scheme was implemented to
capture the dynamics of the stochastic opening and closing of
VDCCs through multiple internal states as well as the resulting
calcium influx into the presynaptic bouton through the open
VDCCs. Once calcium has entered the presynaptic terminal, we
also simulated calcium binding to the calbindin buffer which

modulates calcium levels in the bouton, directly impacting the
amount of calcium that reaches the calcium sensors in the active
zone. This amount impacts the neurotransmitter release from the
presynaptic side and the resulting effects on the postsynaptic side.

All simulations were modeled using the multinomial Markov
sampling method as well as a typical Markov sampling method
and compared to highly detailed 3D geometric stochastic
reaction-diffusion simulations done using MCell. The Markov
simulations show agreement with the MCell simulations for the
system dynamics including the number of open VDCCs and
calcium influx in response to an action potential stimulus as well
as the binding of calcium to the calbindin buffer. Differences
are observed from the deterministic solution to the stochastic
simulations implying the importance of stochasticity in these
simulations to capture more biologically-realistic systems.

Exemplified by runtime and total number of operations, the
multinomial MCMC method of simulations was shown to be
more efficient than the standard Markov model while also being
faster than the MCell equivalents. This is hopeful for scaling
these biologically-realistic models to large-scale systems while
maintaining biological tunability.

Next steps involve modeling the remaining kinetics in a
similar fashion including the binding and removal of calcium by
the plasmamembrane calcium (PMCA) pumps as well as binding
to the calcium sensors. In addition, to capture the diffusion of
calcium through the presynaptic terminal but specifically to the
calcium sensors at the active zone, a diffusive kernel must be
included to the system. Upon inclusion of these elements, the
entire process from stimulus to neurotransmitter release can
be captured as a series of Markov chains leading to powerful
implications for synaptic transmission modeling. The whole
synapse can be included as well with the inclusion of a diffusive
kernel across the synaptic cleft as well as downstream effects on
the postsynaptic side, of which many mirror similar kinetics and
dynamics as the presynaptic side leading to a natural extension
of this modeling framework. The resulting system would be
a biologically tunable model of synaptic transmission for any
stimulus input in a highly efficient manner. This opens the door
for large-scale implementations of synaptic transmission and
learning readily implementable into neuromorphic architectures
with strong biological realism.

Through the utilization of Markov-based abstractions
applied to biophysically realistic 3D reaction-diffusion
models of a chemical synapse, we have created a compact
and efficient internal state space representation of synaptic
transmission. This is in response to the challenge presented
by the high dimensionality and complex nature of molecular-
scale interactions in synapses and across scales making
implementation in very large-scale systems previously
unattainable. The model is directly amenable to efficient
emulation in parallel neuromorphic hardware systems
while maintaining biophysically relevant and interpretable
parameters that are readily tunable. This opens the door
toward neuromorphic circuits and systems on very large
scale that strike a greater balance between integration density
and biophysical accuracy in modeling neural function at the
whole-brain level.
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