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Research on economic decision-making seeks to 
understand how subjects choose between plans 
of action (lotteries, gambles, prospects) that have 
economic consequences. The key difficulty in making 
such decisions is that typically no plan of action 
available to the decision-maker guarantees a specific 
outcome, rather, consequences are risky or uncertain. 
More recently, researchers in psychology, behavioral 
and computational neuroscience and psychology 
have started to apply these theoretical principles to 
studying choice behavior and its neural basis in the 
laboratory, for instance in electrophysiological studies 
of animals making choices for primary reward such 
as juice and neuroimaging studies of humans making 
choices for money. Moreover, researchers across all 
these fields are, in parallel, studying how decisions 
are guided by learning and how the computations 

relevant to decisions and choices are represented neurally. This emerging field of theoretically 
grounded decision neuroscience is now known as “neuroeconomics.” 
With this Research Topic, we aim to solicit contributions from researchers from the fields of 
neurobiology, behavioral and computational neuroscience and economics which discuss the 
neural computations underlying decision-making and adaptive behavior.
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concerned with the discounting of future rewards, as opposed to 
smaller rewards that may be preferred when available immediately 
(Ray and Bossaerts, 2011).

Bayesian decision theory describes how to select between pos-
sible courses of action on the basis of a specified loss function, e.g., 
expected utility, in many circumstances (Pezzulo and Rigoli, 2011).

However, during most decision tasks, neither the outcomes 
associated with different plans of actions, nor the probability of 
their occurrence is available to the decision-maker prior to mak-
ing the decision. Under these conditions, it is necessary to learn 
about the available outcomes from trial-and-error experience 
(Stoloff et al., 2011). The field of reinforcement learning (e.g., 
Sutton and Barto, 1998; Balleine et al., 2008; Niv and Montague, 
2008) extends decision-theoretic accounts to situations involving 
learning. This theoretical framework, and its underlying statis-
tical principles, have been used to explain the role of learning 
both in traditional choice tasks (e.g., Behrens et al., 2007; Dayan 
and Daw, 2008), and in sensorimotor adaptation (e.g., Körding 
et al., 2007).

Reinforcement learning theories also play an important role in 
another key area of current work in decision-making: the study 
of the neural processes underlying these functions. Notably, this 
system is involved both in motivated decisions (Kurniawan et al., 
2011) and in movement, though how these functions relate is a 
subject of ongoing research and controversy. In addition to dopa-
minergic recordings, monkey work on learning about decisions 
from rewards has focused on frontal cortex (e.g., Lee and Seo, 2007) 
and also posterior parietal cortex, which is classically thought to 
be involved in the so-called dorsal visual processing stream.

Besides the underlying theoretical parallels between the two 
fields, and the growing interest in both fields in similar learning 
processes and common neural mechanisms, two recent develop-
ments make the time ripe to begin building a bridge between 
research on decision-making and the research on optimal motor 
control. The first is the availability of new experimental tools such 
as functional MRI to assess and measure the neural processes 
underlying human and non-human decision behavior, during 
the decision process and following choice (Hansen et al., 2011; 
Santos et al., 2011). The second are new analytical tools, specifi-
cally the growing application of behavioral and computational 
methods from psychophysics and Bayesian decision theory in 
the context of decision-making (Baldassi and Simoncini, 2011). 
This has created a situation in which researchers across fields 
have started to use a common set of conceptual tools for defining 
problems, building computational models, and designing and 
analyzing experiments.

Research on economic decision-making seeks to understand 
how subjects choose between plans of action (lotteries, gam-
bles, prospects) that have economic consequences. The key 
difficulty in making such decisions is that typically no plan 
of action available to the decision-maker guarantees a specific 
outcome, rather, consequences are risky or uncertain. More 
recently, researchers in psychology, behavioral and computa-
tional neuroscience, and psychology have started to apply these 
theoretical principles to studying choice behavior and its neu-
ral basis in the laboratory, for instance in electrophysiological 
studies of animals making choices for primary reward such as 
juice, and neuroimaging studies of humans making choices 
for money. Moreover, researchers across all these fields are, in 
parallel, studying how decisions are guided by learning and 
how the computations relevant to decisions and choices are 
represented neurally.

This Frontiers Research Topic on The Neurobiology of Choice 
combines contributions from researchers from the fields of neuro-
biology, behavioral, and computational neuroscience that discuss 
the neural computations underlying decision-making and adaptive 
behavior.

Placing motor and cognitive decisions in a common theoreti-
cal framework brings into sharp relief one apparent difference 
between them. Researchers have long argued that humans and 
animals mostly make choices in sensorimotor tasks that are nearly 
 optimal – in the sense of approaching maximal expected utility – or 
complying with principles of statistical inference. In contrast, work 
in traditional economic decision-making tasks often focuses on 
situations in which participants violate the predictions of expected 
utility theory, for instance by misrepresenting the frequency of 
rare events or due to interference with emotional factors (Kirk 
et al., 2011).

More recently, researchers in psychology and neuroscience have 
started to apply these theoretical principles to studying choice 
behavior and its neural basis in the laboratory, for instance in elec-
trophysiological studies of animals making choices for primary 
reward such as juice (Milstein and Dorris, 2011; Opris et al., 2011) 
and neuroimaging studies of humans making choices for money 
(Delgado et al., 2011).

Meanwhile, a largely different group of researchers, working 
in the field of sensorimotor control, have also recently drawn on 
statistical decision theory and reinforcement learning in order 
to reformulate the problem of hand and eye movement control 
(Stoloff et al., 2011). An important area of current research in 
both areas is how decisions are impacted by learning (Delgado 
et al., 2011) and when reward is delayed. The latter type of task is 
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Reward sharpens orientation coding independently of 
attention
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It has long been known that rewarding improves performance. However it is unclear whether 
this is due to high level modulations in the output modules of associated neural systems or 
due to low level mechanisms favoring more “generous” inputs? Some recent studies suggest 
that primary sensory areas, including V1 and A1, may form part of the circuitry of reward-based 
modulations, but there is no data indicating whether reward can be dissociated from attention 
or cross-trial forms of perceptual learning. Here we address this issue with a psychophysical 
dual task, to control attention, while perceptual performance on oriented targets associated with 
different levels of reward is assessed by measuring both orientation discrimination thresholds 
and behavioral tuning functions for tilt values near threshold. We found that reward, at any rate, 
improved performance. However, higher reward rates showed an improvement of orientation 
discrimination thresholds by about 50% across conditions and sharpened behavioral tuning 
functions. Data were unaffected by changing the attentional load and by dissociating the feature 
of the reward cue from the task-relevant feature. These results suggest that reward may act 
within the span of a single trial independently of attention by modulating the activity of early 
sensory stages through a improvement of the signal-to-noise ratio of task-relevant channels.
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been widely studied as a variable affecting the later stages, closer to 
mechanisms related to visual-motor transformations (Schultz et al., 
2000), to the decision-making modules (Glimcher and Rustichini, 
2004; Hampton and O’doherty, 2007), and to the overt behavior 
(Behrens et al., 2007). More recently a number of studies have shifted 
the focus backward attempting to determine the effect of reward 
to purely sensory areas and opening new doors for re-framing the 
functional properties of the early visual modules (Shuler and Bear, 
2006; Serences, 2008; Seitz et al., 2009). However, since reward con-
stitutes a key tool in each neurophysiological paradigm of attention, 
studies on the early effect of reward cannot easily disentangle the 
effects of reward with those of attention (Maunsell, 2004). Indeed, 
recent proposals have raised the idea that perceptual performance 
can be modulated by reward through its action on the attentional 
system (Della Libera and Chelazzi, 2006; Peck et al., 2009), implying 
that attention has a monopoly over the modulation of perception. 
So, when dealing with early modulation of sensory coding, what 
are the functional relationships between reward, on one hand, and 
attention and learning, on the other hand? Is it possible to dissoci-
ate the modulatory effects of reward from those of attention and 
of learning? Here we try to answer these questions by investigating 
whether the probability of obtaining a given reward can yield a 
change in perceptual performance when attention is engaged in a 
concurrent task and learning is prevented by making the reward 
value associated to specific stimuli contingent on a trial-to-trial 
base. We have used a recently introduced psychophysical paradigm 
(Baldassi et al., 2006) to measure orientation discrimination acu-
ity for a simple peripheral target (a task assumed to summon early 
mechanisms; Regan and Beverley, 1985; Bradley et al., 1987) and to 

IntroductIon
The activity of the visual channels, both at the neuronal and at the 
overall behavioral level, can be modulated by several sources of 
influence. Many modulatory activities depend on the global behav-
ioral state of the organism, driven by cognitive, emotional or moti-
vational factors. Since these states have a profound impact on the 
behavioral performance of the individuals, determining successes 
or failures of goal-directed behavior, their associated mechanisms of 
action have attracted the interests of psychologists, cognitive neuro-
scientists, and neurophysiologists for long time. Attention, learning, 
and reward are probably the most studied modulating factors of 
the sensory systems and of perceptual performance. In general, 
the idea of attention typically reflects fast, short-term modulation 
based on exogenous or endogenous cues to bias processing power 
toward specific spatial location or stimulus features. Perceptual 
learning instead reflects positive changes in the ability to detect or 
discriminate a stimulus as an effect of repeated presentations of the 
same stimulus (Gilbert et al., 2009). On the other hand, reward of 
specific actions or classes of stimuli is typically investigated assum-
ing that it exerts long-term effects on sensory channels and that 
these effects would result in learning of specific stimuli, classes of 
stimuli, and/or specific responses.

Moreover, visual selective attention is mainly studied in its 
relations to changes of the early stages of the input-output flow 
of information processing, with a focus on the Visual Area V4 
(McAdams and Maunsell, 1999; Reynolds et al., 1999; Ghose and 
Maunsell, 2008), V2 (Reynolds et al., 1999; Fang et al., 2009), V1 
(Watanabe et al., 1998a,b; Kamitani and Tong, 2006), and as early 
as on the LGN (McAlonan et al., 2006, 2008). Instead, reward has 

http://www.frontiersin.org/Neuroscience/
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/decision_neuroscience/10.3389/fnins.2011.00013/abstract
http://www.frontiersin.org/decision_neuroscience/archive
http://www.frontiersin.org/


Frontiers in Neuroscience  |  Decision Neuroscience  February 2011 | Volume 5 | Article 13 | 7

Baldassi and Simoncini Reward influences orientation without attention

obtain at once a quantitative estimate of the observer’s noisy internal 
response distributions for any physical value of the target, that in 
this article we will be referred to as behavioral tuning functions. 
Attention was controlled through the use of a concurrent task of var-
ying difficulty, that has the key potential of showing independence 
of resources (Lavie, 2005; Alais et al., 2006), while learning could 
be excluded based on the fact that the same stimulus and the same 
response could be associated to one of two probabilities of obtaining 
reward (low reward probability, LRP, equal to 0.1 or high reward 
probability, HRP, equal to 0.9) unpredictably at each trial based on 
a precue (see Figure 1). We found that a higher likelihood of earn-
ing credit to obtain a Scratch-and-Win ticket, a highly efficient and 
effective reward even in non-gamblers, improved performance. In 
particular, higher reward rates produced finer orientation acuity, 
as revealed by lower thresholds (about 50% decrease), and this was 
possibly due to a significant change of the channel’s signal-to-noise 
ratio (SNR), as revealed by sharper behavioral tuning functions 
when the reward was more likely to be achieved. The reward-based 
modulation of the peripheral target was unaffected by the difficulty, 
or load, of an interfering task at fixation. Moreover, the effect was 
dissociated from the nature of the cue, as it remained stable when 
the cue was modulated in the color domain and the task in the 
orientation domain. Our results are coherent with the possibility 
that reward may modulate  perceptual performance independently 
of both attention and learning and offers novel insight for studying 
reward and attention by measuring their effects independently in 
the context of the same experimental paradigm.

MaterIals and Methods
observers
A total of six observers participated in this research. Two of them 
to the main experiment and the X-cue experiment, two to the 
 feature-independent cue experiment, and two to all the experiments. 
They were undergraduate students of the Faculty of Psychology of 
the University of Florence, all naïve to the purpose of the study. 
Informed consent was obtained from all the subjects involved prior 
to the start of the experiment. They were also non-gamblers based 
on the criterion according to which subjects involved in gambling 
activities (including purchase of lottery tickets) more than once a 
month were excluded. They all had normal or correct-to-normal 
vision. Three of the subjects completed 600 trials for condition 
to reach a stable threshold measure, while three were selected to 
complete 2000 to 2400 trials per condition in order to achieve a 
reliable sample size to measure both thresholds and behavioral 
tuning functions. For the X-cue experiment we collected 600 trials 
per observer allowing only threshold analysis.

apparatus
Stimuli were created on a G4 Power Macintosh using the 
Psychophysics Toolbox v. 2.55 (Brainard, 1997; Pelli, 1997) and 
displayed on a 17″ gamma-corrected CRT monitor (Mitsubishi 
Diamond Pro) with average luminance equal to 29 cd/m2.

desIgn and stIMulI
Experimental trials in different experiments were structured com-
bining five different segments: (A) a foveal task that consisted 
in the count of briefly flashed disks at fixation, devised to load 

attention for the (B) peripheral task, an orientation task devised 
to probe the main effects of reward sought in the study, (C) a 
reward cue, actually shown at the beginning of the sequence, that 
informed the observers about the upcoming peripheral stimu-
lus feature that yielded the highest reward rate, (D) a response 
page(s), in which observers could give a response through the 
use of a mouse, and (E) a feedback page updating observers about 
the outcome of each trial and the accumulation of reward-based 
credit. Figure 1A schematizes a trial of the main experiment and 
its temporal structure.

Stimuli of the foveal task were disks with a diameter of 0.5° 
of visual angle flashed foveally for 150 ms. In order two vary the 
attentional load of the task, which in turn would impact the relative 
difficulty of the two main tasks, we administered two attentional 
conditions, a light load (LL) condition and a heavy load (HL) con-
dition. The two conditions differed in the contrast of the disks, 
which was varied from a level of 80%, at which the stimulus was 
well visible, to a level ranging from 4 to 8% (adjusted in different 
subjects to match detection threshold), for the LL and the HL condi-
tion, respectively. The attention loading task required observers to 
count the number of a sequence of serially presented disks flashed 
a variable number of times (3–14 on a random base). In order to 
maintain attention foveally between consecutive flashes, the inter-
val between two consecutive disks was jittered between 0.4 and 
4 s to avoid predictability about the timing of the upcoming disk. 
Counting accuracy remained stable at around 95 and 55% respec-
tively for the LL and HL condition, respectively. In order to ensure 
maximum attentional load with the central task, wrong counting 
voided the trial; for any voided trial a new trial was appended at 
the end of the block.

Stimuli of the peripheral task were Gabor patches (2 cpd sinu-
soidal gratings vignetted by a 2D Gaussian modulation of contrast 
with a space constant [σ] of 0.5°) displayed at a contrast of 80% at 
an eccentricity of 7° to the left or to the right of fixation. The periph-
eral patch was delivered for 150 ms in complete synchrony with 
one of the central disks. The disk containing the peripheral target 
was fully unpredictable. Only the first and last disk were excluded 
from the pool of disks that could be accompanied by the periph-
eral stimulus in order to maximize that attention was well focused 
on the central task and that it continued to be allocated foveally 
after the peripheral stimulus had appeared. In all the experiments 
subjects were asked to report the direction and the magnitude of 
a tilt offset of the Gabor patch. The tilt was given randomly clock-
wise (CW) or counterclockwise (CCW) and its amount varied in 
octaves from ±2° to ±32° in the main experiment and in the X-cue 
experiment (see later for details on the experimental conditions) 
and ±0.5° to ±16° in the feature-independent cue experiment to 
yield a complete psychometric function. The reference axis around 
which the target was tilted was +45° or −45°, randomly, in the main 
and the X-cue experiment, while it was always 0° (i.e., vertical) 
in the feature-independent cue experiment. The stimulus space is 
exemplified in Figure 1B.

The stimulus acting as reward cue varied in three different 
experiments but in all cases it consisted of one of two possible 
configurations. Note that this segment of the trial, when present, 
was always the very first stimulus displayed; we are explaining it 
after the two tasks only for the sake of clarity. In all conditions 
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the cue might exert on peripheral stimuli of close orientation. The 
feature-independent cue experiment differed in two aspects: the 
reward cue consisted in one of two combination of colors of the 
bars of a grating and the main axis of orientation was no ver-
tical, not oblique. Accordingly, the orientation response page of 
this experiment contained only one set of probes (see Figure 5). 
The baseline conditions consisted in the measure of the peripheral 
threshold in the absence of counting task and in the main experi-
ment without reward.

reward pattern
In the rewarded conditions the probability of achieving credit for 
the Scratch-and-Win ticket was equal to 0.9 (HRP condition) if the 
main axes of cue and stimulus (in the main experiment), if the ori-
entation of the bright axis of an X (in the X-cue experiment) or if 
their color (in the feature-independent cue experiment) coincided. 
In the opposite case reward was granted with a probability of 0.1 
(LRP condition). These reward probabilities were conditional to 
correct orientation discriminations; wrong discriminations gave 
no reward. In other words, we awarded subjects in the joint pres-
ence of (1) correct counting and, (2) correct identification of the 
direction of tilt off +45° or −45° (CW or CCW), implying no 
extra gain in the presence of identification of the exact probe in 
the response page. HRP and LRP trials were fully randomized, 
thus observers could not predict the reward probability until the 
peripheral target was shown. Data analysis. The orientation mag-
nitude matching paradigm used here allowed us to analyze the data 
in two fundamental ways. The first is in terms of binary accuracies, 
with correct and wrong responses based on the direction of tilt of 
the clicked probe. For example, if the signal is sampled from the 
left side of any of the two “fans” of Figure 1B (a CCW signal) and 
the response is a click on any one of the response probes to the 
left, this will result in a correct response, while a click to any CW 
probe will result to a wrong response. This allowed us to provide 
standard psychometric measures, such as thresholds, out of con-
ventional psychometric functions. The second scoring is based 
on the matching of each physical signal to individual response 
probes and is achieved by plotting the histogram representing 
the distribution of reported tilts for each physical signal displayed 
(Baldassi et al., 2006). We will call the two measures orientation 
discrimination and orientation identification, respectively. Trials 
in which counting was wrong were discarded for the main data 
analysis. Hence, data were analyzed separately for orientation dis-
crimination and identification. Orientation discrimination data 
formed psychometric functions fitted by cumulative normal cdf. 
Each function was bootstrapped (Efron and Tibshirani, 1994) and 
refitted 100 times and the threshold was calculated (75% accu-
racy of the fitted function) for each bootstrap sample in order to 
have a reliable estimate of the threshold and its standard error. 
Orientation identification data fed the behavioral tuning functions 
(histograms representing the proportion of reported, or perceived 
tilt in the presence of a given physical tilt). We generated one 
such function for each physical angle used in the experiment and 
bootstrapped it 100 times to estimate the reliability of individual 
points. Each bootstrap sample was fitted with a normal pdf in 
order to provide a statistically reliable estimate of the Gaussian 
parameters (μ and σ).

the reward cue signaled that the match of its main feature with a 
key feature of the peripheral target implied a high probability of 
earning a reward (90%), identifying HRP trials, while the lack of 
match implied that the reward rate was as low as 10%, identifying 
LRP trials. In the main experiment the reward cue was a foveal 
oblique line subtending 3° of visual angle, visualized for 500 ms 
before the stimulus array (see later) and tilted either 45° CW or 
CCW from vertical. In this case the match had to be established 
between the cue and the axis of reference of the peripheral patch. 
In the X-cue experiment the cue consisted in a X made of two seg-
ments similar to that of the main experiment but being one white 
and one black. A positive match, thus a HRP trial, occurred if the 
main axis of the peripheral stimulus coincided with the orienta-
tion of the white segment of the X, while a match with its black 
segment corresponded with a LRP trial. In the feature-independent 
cue experiment the line was replaced by a Gabor patch equal to the 
target but modulated along the red-green (RG) or the blue-yellow 
(BY) axes, on a fully random base. The match that cued the reward 
rate was based on the Gabor’s color, while the peripheral stimulus 
and task were still confined in the orientation domain, hence the 
feature of the reward cue and that of the reward effective, peripheral 
task, were dissociated.

Five hundred milliseconds after the offset of the last foveal disk 
two different response pages were shown in sequence, one for the 
foveal counting task and the other for the peripheral orientation 
identification and matching task. The counting response page, 
automatically shown 500 ms after the last disk, displayed the list 
of digits corresponding to the number of tracked flashes and 
observers were asked to click within the square patch contain-
ing the digit. The orientation response page allowed the orienta-
tion discrimination/identification response. It contained Gabor 
probes representing the entire set of CW and CCW tilts from both 
the −45° and the +45° axis, (5 tilts × 2 directions × 2 axes), and 
observers were asked to click on the probe that matched more 
closely the perceived tilt. In the feature-independent cue experi-
ment only one line of CW and CCW probes modulated around 
vertical were shown.

Finally, at the end of the sequence of each trial the feedback page 
indicated the success of the trial and the accumulation of credit 
for obtaining the reward (a lottery Scratch-and-Win ticket was 
awarded for any 20 rewarded trials). The feedback page displayed 
two bars, a white bar that was elongated if the outcome of the trial 
led to reward and a black bar that was elongated in the presence 
of a wrong identification. The white bar was fully elongated, and 
a ticket donated, after any 20 correct identifications. Unrewarded 
trials (in the presence of correct discrimination) were signaled by 
no change in either bars. The change to the bars was clearly visible 
to each subject. When a Scratch-and-Win ticket was awarded both 
bars were reset to the initial position.

experIMental condItIons and procedure
We executed three main experiments and two baseline conditions. 
In the main experiment, reported in Figure 1A, we have used a 
reward cue consisting of a single line. The X-cue experiment was 
identical to the main experiment (in HL mode) except for the 
use of X-like cues made up of lines at opposite polarities. It was 
designed to exclude the effects of priming that the orientation of 
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tion responses, for the two types of trials, LRP (left gray points) 
and LRP (right black points), for the two attentional conditions, 
LL (circles) and HL (squares), and for the two type of cues, single 
line (filled symbols) and X-like cue (crossed squares). The two 
horizontal lines plot average thresholds the peripheral target was 
displayed without the counting task (lower gray line) and with the 
dual task but without reward (upper black line) and provide the 
basic demonstration that the two tasks used here share the same, 
limited-capacity system (t-test; p < 0.001). In all conditions ori-
entation acuity was larger than in standard studies of orientation 
discrimination, where they typically span around 1–2° (see also 
the feature-independent cue experiment below). This is simply 
due to the fact that the reference axes for the discrimination were 
tilted by 45°, reflecting the so-called oblique effect (Campbell et al., 
1966), i.e., a rougher and noisier encoding of orientation relative 
to the horizontal and the vertical axis. All the reward rates, load 
conditions, and cue types showed significantly lower orientation 
discrimination thresholds than for the dual task without reward 
(black horizontal line) that were of about 9°. However, in the pres-
ence of reward, average thresholds decreased substantially, span-

results
Two important features of our paradigm should be highlighted 
here. The first is that, because the two references axes were orthogo-
nal and the least angular distance between the most CW tilt from 
−45° (i.e., the rightmost probe of the left “fan” of Figure 1B) and 
the more CCW tilt from +45° (i.e., the leftmost probe of the right 
“fan” of Figure 1B) was equal to 26°, there was no confusability 
between tilts around the two different axes. This was confirmed 
in all experiments. The second, related to the first, is that because 
the reward cues are set at neutral orientations, they therefore carry 
no task-relevant signal and do not provide any cue either for the 
discrimination or the identification task. It is worth noting that 
although the timing/counting feature of our experiment implies 
a broad range of intervals between the peripheral stimulus and 
the subsequent response, in pilot analyses we found no differ-
ence in counting nor in orientation performance when compar-
ing the data of the lowest vs. the highest quartile of durations. In 
other words none of the results we present below can attributed 
to memory effect.

orIentatIon thresholds
We measured orientation discrimination thresholds and behavioral 
tuning functions for three reward levels, two attentional load levels 
and two different reward cues. Figure 2 shows average thresholds, 
i.e., the orientation offset leading to 75% of correct discrimina-

Figure 1 | Temporal structure of a trial (A), stimulus space (B), and reward 
patterns (C). (A) A trial began with a foveal line (subtending 3° of visual angle) 
displayed for 500 ms and tilted either 45° clockwise (CW) or counterclockwise 
(CCW) from vertical. Then the central attention loading task started. It consisted 
in a sequence of 3 to 14 flashes (100 ms, random) of a foveal disks with a 
random inter-disk interval of 0.4–4 s. Subjects were asked to track the exact 
number of flashes. During one of the flashes (excluding first and last), the target 
was shown 7° to the left or to the right of fixation in synchrony with the 
corresponding disk. It was tilted CW or CCW relative to either 45° or −45°. Then 
the first response page was displayed; it contained all the digits corresponding to 
the range of possible disk numbers and subjects had to report to the tracked 
number of disks with a mouse click. The following display contained the 
orientation identification and discrimination page. It contained 20 Gabor probes, 
one for each possible tilt around both the +45° (upper line) and the −45° axis 
(lower line). The five probes to the left, in each line, corresponded to CW tilts 
relative to the reference line, while the five to the right corresponded to CCW 
tilts. Observers had to click on the response probe that best matched the 
orientation of the peripheral target. After the orientation response, the last page 
of the trial sequence was shown. It contained a white and a black bar providing 
feedback about whether or not a trial led to reward, based on a visually salient 
size increase of the white or the black bar, respectively, and about the amount of 
rewarded identification needed to achieve another Scratch-and-Win ticket. The 
white bar was completed, and a ticket donated, after any 20 correct 
discriminations. (B) “Fan” diagram of the stimulus space. Peripheral targets were 
oriented Gabor patches whose exact orientation was determined by tilt offset 
around either a −45°, CCW reference axis (left fan) or a +45° CW reference axis 
(right fan). The two black arrows in each side represent the two reference axes as 
well as the two possible cues, one of which was randomly selected and 
displayed at the beginning of the trial. Notice that (1) the signal was never equal 
to the axis and, (2) the rightmost item of the left-hand fan is too tilted off-vertical 
to be confused with the leftmost tilt of the right-hand fan, implying independent 
coding of the two sets of signals. (C) Different lines of the table indicate, from 
top to bottom, the probability of each cue type, of each target type given the cue 
type, and the probability of earning reward given the combination of cues and 
targets. It has to be clear that: (1) there was an even probability (0.5/0.5) that any 
of the two cues were shown, (2) there was an even probability (0.5/0.5) that the 
target was tilted around the −45° or the +45° angle, and this in turn implies that 
there was no advantage whatsoever in biasing the response toward the cued 
axis; and finally (3) the probability of earning a reward depended on whether the 
main axes of cue and target matched or not, according to a 0.9 vs. 0.1 pattern, 
respectively. Consider that correct counting was the underlying condition for 
reward, as wrong counting voided the trial, making p(reward) = 0.
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attentional resources allocated  peripherally in the HRP condition. 
Indeed, the counting performance did not depend at all on the 
reward rate, which remained stable at about 95% in the LL and 
55% in the HL condition for both the LRP and HRP condition 
(t-test; p = 0.769), ruling out the possibility of response shifts a 
posteriori. Importantly, the 55% rate of correct counting shown in 
the HL, dual task coincided with the preliminary measures that we 
took in each observer for the counting task alone, in the absence of 
peripheral task, implying that this was an absolute limit introduced 
by the task and that the peripheral task did not shift resources, 
as otherwise counting performance should have worsened in the 
dual task. It is noteworthy that this effect was obtained when the 
reference axis of the peripheral target was tilted in the same direc-
tion of the cue, and that it worked also when the orthogonal axis 
(signaling a LRP trial) was physically part of the cue, in the X-like 
control experiment. This suggests that the higher likelihood of 
achieving a reward improved the representation of the cued axes 
according to a top-down mechanism.

behavIoral tunIng functIons
We then inspected the difference between behavioral tuning func-
tions obtained in different conditions to probe the nature of the 
mechanism solicited by higher reward rates. In particular, we com-
pared the tuning functions obtained by two of the observers who 
collected a larger dataset for the purpose of the present analysis 
(CG and SM) for the target tilts of 4° and 8°, as they are near 
threshold and are more informative for containing identification 
errors (Baldassi et al., 2006). Each of the four panels of Figure 3 
reports two pairs of behavioral tuning functions, for the LRP and 
the HRP condition, in gray and black respectively, and for the 
angle at 4° and 8° (pointed by the small gray arrows), to the left 
and to the right, respectively. The two observers are reported in the 
two columns, while the two attentional loads, light and heavy, are 
reported in the two rows. The bar plots inside each panel plot the 
σ of the functions according to the same color code and spatial 
arrangement of the main graphs. The points in each graph show 
the proportion of responses to each response probe for the physical 
tilt considered (4° to the left of each panel, 8° to the right), with 
positive angles reporting correct discrimination (i.e., CW for CW 
tilts and CCW for CCW tilts) and negative angles indicating wrong 
discriminations (CW when CCW and vice versa). The smooth 
curves are Gaussian fits to the data-points, continuous black and 
dashed gray for the HRP and the LRP condition, respectively; they 
were in all cases describing the data well, with R2 values of the fit 
of 0.78 or higher. The main result, clearly evident across observ-
ers and conditions, is that a higher likelihood of earning a bonus 
makes all the curves narrower and sharper, indicating a more reli-
able representation of the physical angle at the perceptual level. In 
the LRP condition the range of confusability over the orientation 
domain was substantially broader, as indicated by the significant 
differences in the σ of the Gaussian fits (based on a Student’s t-test 
on the bootstrap samples; p < 0.01 in all cases except for SM LL 
angle 8° and GC HL angle 4°, for which p < 0.05) observed for 
all conditions and observers. Importantly, this effect takes place 
with a comparable strength in both the LL and the HL condition, 
as confirmed by the bar plots embedded in Figure 3, confirming 
that we can reduce drastically the possibility that the peripheral 

ning from about 8°–6° for LRP trials to about 4°–3° for HRP trials 
(Figure 2, left vs. right points). It is noticeable that introducing 
reward to the task, even in 10% of the trials, reduced thresholds 
substantially, but it is even more surprising that when the reward 
probability was as high as 90%, perceptual performance was lower 
than for the peripheral task alone (lower gray horizontal line) 
for both the LL and the HL condition. Again, differential learn-
ing cannot adequately explain these results as all the conditions 
(except the HL condition that was ran later, as a separate control 
experiment) were executed in the same block or in different blocks 
interleaved across conditions. Comparing the two reward rates of 
our experiment, orientation discrimination thresholds in LRP tri-
als were about 50% higher than in HRP trials (t-test; p < 0.01 for 
LL and X-cue; p < 0.001 for HL). This difference was not affected 
by the attentional load devoted to the central counting task, as 
shown by the parallel functions of Figure 2, suggesting that the 
difference between reward rates could not be attributed to spare 

Figure 2 | Average orientation discrimination thresholds (N = 4), 
corresponding to the 75% correct point of the psychometric function. The 
points represent the different reward rates (LRP, gray, and HRP, black) and 
different symbols represent different attentional conditions (light load, circles; 
heavy load, squares; X-cue, crossed squares). The straight horizontal lines 
marks the average orientation discrimination threshold for the peripheral 
target alone in the absence of attentional loading task (gray line, bottom) and 
for the dual task without reward (black line, top). Plotted data include only the 
analysis of trials in which the central task was successful (accurate counting). 
Error bars plot the SEM. The order of conditions (blocks) was shuffled 
throughout the experiment for all but the Heavy Load condition, executed later 
as a control experiment, which explains the slight (but not significant) 
reduction of thresholds (that leaves the pattern of results unaffected). 
Rewarding correct orientation discrimination responses, though as rarely as in 
10% of the cases, sets performance of the main tasks to a level comparable 
to when there was no central task, whereas highly frequent rewards show an 
additional advantage of the same magnitude (about a factor of 1.5, p < 0.01). In 
the presence of an X-like cue thresholds are slightly higher for both reward 
rates, which may be due to a sub-optimal use of the cue. Importantly, the 
modulation of performance obtained by increasing the reward probability is of 
the same amount across attentional load sand cue types, suggesting that the 
effect cannot be explained by the use of spare attentional resources allocated 
to the peripheral task. Notice that the absolute value of threshold is high as 
discrimination is performed around the oblique axes, where orientation coding 
is rougher (Campbell et al., 1966).
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looking” (Solomon, 2002; Mareschal et al., 2006), i.e., the strategy 
of relying on orientation channel more tilted than the stimulus to 
optimize performance in orientation discrimination tasks.

Model
In order to verify the possibility that the mechanism supporting 
the reward-based modulation of orientation discrimination was a 
reduction of SNR at an early level, we ran a Monte Carlo simula-
tion using the same stimuli of our experiment that, at each trial, 
were convolved with a bank of noisy filters of optimal spatial fre-
quency and phase. The filters’ set was formed by selecting all the 
orientations that were used as stimuli and that could be selected 
in the response page (i.e., 10 tilts from −32° to 32°). Each filter was 
perturbed by an independent source of noise that was recalculated 
at each iteration (trial) and whose amount was modulated in dif-
ferent runs. The sum of the squares of each pixel of the convolu-
tion matrix was taken as a measure of response of each filter. The 
filter yielding maximum output in each iteration was taken as the 

task can depend on “spare” attentional resources saved from the 
central task demand and allocated to the peripheral task. In fact, 
if the results of the LL condition were attributable to leaking of 
attentional resources, a full load to the central task would have 
annulled or strongly decreased any difference between LRP and 
HRP trials. Indeed, wrong counting made the p(reward) = 0, and 
the counting performance was around 55% for all observers in the 
HL task (with no difference across reward rates whatsoever); there-
fore, as confirmed by personal reports, they always had to put a 
great attentional effort to keep their counting performance as high 
as they could. The suggestion that reward makes perception more 
veridical is confirmed, at a visual inspection, by the position of the 
means (peaks, μ) of the behavioral tuning functions. In the HRP 
condition, this parameter matches more closely the physical tilt of 
the stimulus in all cases, but more clearly (and more reliably from 
a quantitative analysis) in observer SM. The mispositioning of the 
distribution peaks to tilt values higher than the actual stimulus for 
the discrimination, is well known in literature as “off-orientation 

Figure 3 | Behavioral tuning functions obtained by two observers (Cg, 
left, and SM, right) in the two attentional load conditions (light load, top, 
and heavy load, bottom). Each table cells reports two pairs of graphs, for the 
two physical angles around threshold (4° and 8°, indicated by the gray arrows), 
that is the histogram of reported angles given an angle of 4° and of 8°, to the 
left and to the right of each panel, respectively. Each graph plots the functions 
measured for HRP trials (black symbols) and LRP trials (gray symbols), fitted 
with Gaussian pdfs (straight black and dashed gray, respectively; R2 ≥ 0.78). 
The abscissae report negative angles for reported tilts yielding to errors, i.e., 
CCW identifications with CW signals and CW identifications for CCW signals 
collapsed together, and positive angles for correct discriminations. The error 
bars of each symbol represent the SEM of the estimate calculated by a 
bootstrap procedure (Efron and Tibshirani, 1994). The framed bar plots show 
the σ of the Gaussian fits with the error bars representing the SEM of the 
bootstrap estimates and the asterisks showing the significance level 

(*p < 0.05; **p < 0.01) of the Student’s t-test comparing the distributions of 
bootstrap samples for LRP an HRP trial of individual observers and tilts (4° and 
8°). The main effect, coherent with the threshold measurements shown in 
Figure 2, is that the width of the tuning functions of the HRP condition is 
considerably narrower than the LRP condition in all conditions, as directly 
shown by the embedded bar plots. This implies a more precise representation 
of the target’s orientation when the task was more likely rewarded. The 
second effect is that lower reward rates shift the peaks of the functions 
toward tilt values larger than the physical angle, implying a general non-
veridical representation of orientation (usually explained as off-orientation 
looking Solomon, 2002; Mareschal et al., 2006); however, higher reward rates 
restore the peaks to more veridical value close to the physical angle of the 
stimulus. The overall change in both the μ and the σ of the behavioral tuning 
functions indicates that reward sharpens significantly the internal 
representation of the orientation of a stimulus.
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act independently, even at early processing stages. However, our 
data could be alternatively explained as an effect of some sort of 
feature cueing dependent on a priming effect of the reward cue 
to the subsequent orientation task, independently on the central 
counting task. In other word, the presence of a cue line tilted at 
+45° or −45° might have enhanced the representation of angles 
around that value at the expense of the orthogonal tilts. Thus, in 
order to rule out more directly this effect, we decided to carry a 
different experiment in which the feature of the cue and that of 
the task were independent. In this experiment we cued the reward 
probability using the association between reward cue and target 
on color, while the task still required an orientation judgment. The 
reward cues were Gabor patches modulated around two independ-
ent color axes, BY or RG. The structure of the trial matched that of 
the main experiment and is summarized in Figure 5A (see Materials 
and Methods for details). Figure 5B reports average thresholds of 
four observers (two of which new to the experiment) and shows 
clearly that even if the cue did not contain any information to 
prime the processing of orientation signals, a color coincidence 
between cue and target improved threshold by about 50%, which 
is in strict consistence with the results of the main experiment. As 
expected, orientation sensitivity measured around the main axis 
was much finer than around the oblique axis, because it discounted 
the oblique effect (Campbell et al., 1966) and, for the same reason, 
the behavioral tuning functions were sharper. Figure 5C reports 
the σ of the tuning functions, plotted in Figure 5D, for two of 
the four observers (one new to the experiment). A Student’s t-test 
comparing the two distributions of bootstrapped functions for LRP 
(gray bars) and HRP trials showed significant difference in both 
observers. Again, tuning functions were sharper and the mean was 
more veridical when the chance of obtaining reward increased, in 
HRP trials, suggesting that the effect of reward found in this study 
is not an epi-phenomenon of feature-based attention. However, it 
has been known that when observers deploy attention to specific 
features of a visual object all the unattended features of the same 

magnitude matching probe selected at each trial of the real experi-
ment and was used to determine correct and wrong responses in 
the simulated-orientation discrimination task. If, for example, in 
a given iteration a stimulus of 4° produced the maximum output 
in the −8° filter, the latter angle was counted for generating the 
tuning function and the discrimination response was wrong. We 
ran 2000 trial for each of the 10 angles and used four SNRs (cal-
culated as S/S + N), from 0.5 to 0.35 (where lower numbers imply 
stronger noise). We reasoned that if our simple SNR hypothesis 
was correct, then we should be able to reproduce the results of our 
experiment, i.e., the difference between the LRP and HRP trials 
could be reproduced by finding two appropriately different SNRs. 
Figure 4 shows that this simple simulation reproduced very closely 
the entire pattern of results, both qualitatively and quantitatively. 
Thresholds increased from 4.5° to 6.8° when the SNR moved from 
0.5 to 0.43. More importantly, the two noise levels reproduced very 
well the behavioral tuning functions found empirically: decreasing 
SNR not only increased the σ of the distribution, but it also moved 
its peak in both the 4° and the 8° angle to tilt values larger than 
the stimulus tilt. This simulated form of off-orientation looking 
(Solomon, 2002; Mareschal et al., 2006), is simply due to the fact 
that in the presence of higher level of noise, it is computationally 
favorable to solve similar binary tasks by using channels with larger 
deviations from the reference. Thus, the entire pattern of results 
of our experiment are well explained by the behavior of a simple 
model of orientation discrimination/identification whose decision 
rule is based on the maximum output of a bank of linear, noisy 
filters tuned to the possible signals.

feature-Independent cue experIMent
In the main experiment we modulated the attentional load by 
summoning the observers’ attentional resources to a central task 
with two levels of difficulty and found that different attentional 
loads did not alter quantitatively nor qualitatively the results. This 
may imply that the modulatory channels of reward and attention 

Figure 4 | Simulated thresholds (left) and behavioral tuning functions for 
the same angles considered in Figure 3 (right). The simulation compares at 
each iteration the output of noisy filters having different tilts (in the range from 
−32° to +32° relative to a 45° axis) convolved with the stimuli used in the 
experiment and chooses the best filter, i.e., the one with the strongest 
response. Two SNRs are shown here (0.5 and 0.43) whose values reproduce 
very well our data in the two reward probability conditions. The left panel shows 
the simulated thresholds, which differ by a factor of about 1.5 in the two SNRs. 

The tuning functions for the two stimulus angles at 4° and 8° are reported in the 
right panel. The simulation captures all the features of our data: increasing the 
SNR not only sharpens the tuning functions, decreasing their σ (shown by the 
embedded bar graph), but also it reduces the tilt-overestimation effect by 
moving the peaks (μ) toward the value of the physical angle. In other words, 
higher SNRs makes the representation of orientation less precise and veridical 
even in the simplest model based on the noisy output of independent, 
early filters.
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times higher than HRP trials in different observers. We think the 
results of these two control experiments rules out convincingly the 
idea that the effects measured in this study were due to some sort 
of implicit priming provided by the tilted cue.

dIscussIon
In this study we present converging measures to show that the preci-
sion of orientation judgment is modulated by the probability that a 
positive response leads to a reward (in the form of offbeat and cost-
efficient Scratch-and-Win lottery tickets). This occurs independ-
ently of whether or not attention is engaged elsewhere and even 
occurs when the reward cue provides absolutely no information 

object may enjoy attentional priority (e.g., Melcher et al., 2005) 
and, even though the experimental setup is different, this might 
explain the advantage observed here. Therefore, we have made a 
final control in which the reward cue was drawn with both axes 
(+45° and −45°), resulting in an X-like cue in which one oblique 
bar was black while the other was white and we have instructed the 
observers that an HRP trial was signaled by a match of the stimulus 
axis with the white line of the X-cue, whereas an LRP trial was sig-
naled by a match of the black line of the cue with the stimulus. The 
polarity of the two axes was randomly established and the results 
confirmed completely the trend obtained by visually showing only 
one of the axes, with threshold in LRP trials that were 1.6 to 1.8 

Figure 5 | Feature-independent cue experiment procedure (A) and results 
(B–D). (A) The reward cue was now a Gabor patch modulated either along the 
blue-yellow (rBY) or along the red-green (rRG) color axis. The task remained an 
orientation discrimination/identification task of either a color matching (HRP 
condition) or of a differently colored patch (LRP condition). For both colors, we 
asked to judge tilt offsets from a unique, vertical reference axis. (B) Orientation 
discrimination thresholds of four observers follow closely the pattern shown by 

the main experiment and the model, decreasing by a factor of about 1.5 when 
the color of the cue and the target gratings matched (p < 0.001). (C,D) The 
behavioral tuning functions obtained by two observers (MB and GC) by 
collapsing the two near-threshold tilts (1° and 2°) confirm the results of the 
previous experiments showing narrower σ and more veridical μ in the HRP 
condition. Error bars and reliability of the effects are based on a bootstrap 
procedure (see Materials and Methods).
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(Regan and Beverley, 1985; Ringach, 1998) and it has been recently 
found to be modulated by the reward rate in animals (Shuler and 
Bear, 2006) as well as by the reward history in human observ-
ers (Seitz et al., 2009). This is consistent with recent accounts of 
perceptual learning in psychophysical hyperacuity tasks, which is 
explained by the action of feedback mechanisms acting on the 
receptive fields properties of V1 neurons (Fahle, 2004). We have not 
studied the interocular transfer (as the study by Fahle did), but we 
have examined the concept of orientation channels in a way consist-
ent with the properties of orientation tuning within the primary 
visual cortex. Interestingly, a recent, elegant behavioral study that 
has found effects of training and reward on orientation process-
ing even in unconsciously processed stimuli (Figure 1D in Seitz 
et al., 2009), the control condition testing orientation processing 
in untrained eyes and unrewarded orientations exhibited a sensibly 
higher variability of the psychometric functions, possibly implying 
lower SNRs. The two sets of results are difficult to compare directly, 
but in their study this may imply sharper coding for the trained eye 
and/or rewarded orientations being reflected in the narrower confi-
dence limits of their psychometric functions. If this were true, then 
we may have tapped into similar reward-dependent early mecha-
nisms of sensory coding. Platt and Glimcher (1999) have observed 
LIP neurons, with projections that feedback to V1 (Barone et al., 
2000), whose levels of activity are positively correlated with the 
reward value of different stimuli independent of motor factors. 
The reward value biases also caudate neurons speeding up saccadic 
latencies (Lauwereyns et al., 2002). It is hence plausible to speculate 
that similar structures may be involved in our results. However, 
while these experiments either set a constant association between 
each stimulus and the amount of reward associated or involve many 
trials before changing such associations, our experiment overcame 
this by showing reward effects based on a trial-by-trial, unpredict-
able coincidence between a cue and the target stimulus. As such the 
present findings are novel and may open many questions for further 
investigations on the physiological mechanisms and anatomical 
circuitries of reward, that until very recently were not assumed to 
involve primary sensory areas at all (Schultz, 2000). The distinctive 
feature of our task of relying on trial-wide effects makes it differ-
ent from recent studies showing reward-based modulation in V1 
(Shuler and Bear, 2006; Serences, 2008) or A1 (Beitel et al., 2003). 
In those cases the modulation depends on the reward history asso-
ciated to each stimulus, while in our experiment integrating past 
trials does not provide any additional cue to succeed in the task 
and earn reward. The direct involvement of early sensory stages 
within the network of reward-related neuromodulatory activities, 
and in particular the involvement of dopaminergic activity in our 
results, may fit with the presence of D1 receptors in the striate 
cortex (Eickhoff et al., 2007). Fast, phasic responses by dopamine 
neurons have been found for reward probabilities lower than one, 
but not when the reward was always acknowledged (Mirenowicz 
and Schultz, 1994; Schultz, 2000). Further research using similar 
behavioral paradigms in animals may shed light on this question.

These results provide insight into the basic computations per-
formed by the elementary visual channels involved in such tasks, 
but some important points will need to be addressed and expanded 
in future studies. A point to resolve would be to discern whether 
the modulation of the SNR is due to some form of gain control 

about the response. Perceptual learning or associations that extend 
over the span of a single trial cannot explain our results as the same 
stimuli and the same responses could be associated unpredictably 
with HRP or LRP trials. We have modulated the “motivational” 
state (Kawagoe et al., 1998) on a trial-to-trial basis and found quick 
modulations of the perceptual representation of features encoded 
at an early stage, such as orientation. A possible leakage of attention 
to the peripheral locations cannot explain the results. Indeed, even 
though we took measures at different central loads and in different 
setups (i.e., the control experiments), the positive effect of higher 
reward rates remained stable at about 50%. If the effect were due to 
leakage of attention, the LL condition should have shown a much 
greater effect, but this was not the case.

The reward cue we have used is different from any previous 
cues used in attentional literature, in that it is not a predictive cue. 
In other words, it is always neutral, uninformative with respect to 
the feature that leads to a correct response in the peripheral task. 
Within the context of Bayesian models of visual performance, it 
does not affect the prior as feature and location cues do. In the main 
experiment there are residual possibilities that the cue enhanced 
the representation and/or the decisional weighting of the class of 
orientations around the cued axis, leading to better performance. 
This does not hold for the feature-independent cue, in which the 
axis of reference is the same for HRP and LRP trials. Another factor 
that is unlikely to explain the present results is arousal, as the two 
reward schemes were interleaved within each trial and observers 
needed to keep their alertness high at least until the peripheral 
target appeared, as it implicitly signaled the level of reward prob-
ability of each given trial. We can also exclude the effect of memory 
on our data, that is the potential reward-based difference between 
trials in which there was a long wait between stimuli and responses 
(as the time between peripheral stimulus and response could be 
longer than 20 s) and trials with shorter waits. Indeed, prelimi-
nary analyses showed that neither HRP nor LRP trials perform-
ance showed correlation with the temporal distance between the 
stimulus and response. All our observers reported that they made 
a decision on the probe to click on at the time of the presentation 
of the peripheral stimulus, not at the response page. Moreover, the 
data of the LRP condition show performances comparable to those 
obtained in the absence of the central attention task (horizontal line 
of Figure 2). Finally, the counting performance was unaffected by 
the reward probability (i.e., the same number of counting errors 
were done within HRP with LRP trials) and dependent only on 
the central disk contrast, suggesting that alertness was constant 
across conditions. Importantly, the data were convincingly fit by a 
model based on the modulation of SNRs of early linear, noisy filters 
whose individual output is compared with a max rule to make a 
decision at each trial.

In summary, the results suggest that the reward likelihood 
may affect the SNR of individual orientation-selective channels 
at early stages of the visual system independently of attention to 
the rewarded task or the stimuli. We have used a psychophysi-
cal measure that probes orientation coding, an elementary visual 
function. The primary visual cortex (V1) is a good candidate for 
such an effect, as most of its cells have orientation-tuned recep-
tive fields (Hubel and Wiesel, 1968; Hubel et al., 1978), it has been 
evoked to account for psychophysical orientation discrimination 
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of the signal (Carrasco et al., 2004; Reynolds and Heeger, 2009) or 
to a mechanism of noise reduction (Lu et al., 2002). Our simula-
tion cannot distinguish between these two possibilities, as what 
we change is the ratio of the signal to the noise. We are currently 
running new experiments to draw such a distinction seeing how 
reward affects the contrast (Carrasco et al., 2004) and how external 
noise impacts on performance across reward and attentional con-
ditions. An additional point that deserves further consideration 
is whether we actually probed a change at the sensory level, as we 
proposed earlier in this paper, or whether differential weighting 
at decisional stages may explain the same effect. Changes of the 
relative weighting of inputs at the decisional level have successfully 
explained a number of attentional phenomena (see Eckstein et al., 
2009 for a review)in the context of studies relying of predictive 
cues and tasks to be performed on one out of N signals (with 
N > 1). In this study we use a cue that is not predictive (or, better, 
it predicts only the rate of reward given correct responses) and 
a unique peripheral signal. Yet, especially for the main experi-
ment, there is a possibility that the two populations of channels 
coding orientation values around the two oblique axes may have 
been weighted (or monitored) differentially. This possibility is less 
plausible for the feature-independent cue modulation. Another 
interesting finding lies in the reduction of the “off- orientation 
looking” effect of orientation discrimination (Solomon, 2002; 
Mareschal et al., 2006) with high reward rates. It seems that the 
reward-based modulation makes orientation discrimination more 
efficient by allowing the use of matched filters (i.e., filters with 
orientation tuning more ideal for the physical signal) that in neu-
tral conditions would be performing less efficiently because of a 
negative trade-off between signal and noise associated with this 
specific task. In other words, we may assume that similar tasks are 
based on the discrimination between two directions of orientation 
(CW and CCW) relative to a reference axis are accomplished by 
comparing the output of channels tuned to tilt in one direction 
(i.e., CW) with channels tuned to the opposite direction (i.e., 
CCW; Baldassi and Verghese, 2002). Off-orientation looking 
would then occur when lower SNRs would cause the behavioral 
tuning function to “invade” the negative side corresponding to 
wrong discrimination. If this occurs too often, then the system 

mediates by using a channel that is less optimal but more certain 
about the tilt side. When similar top-down modulations intervene 
by reducing the spread of the response to the given signal (that is 
increasing the SNR), the system recognizes the improvement and 
selects the best matching filter for the orientation discrimination 
task. It has been argued that most of the findings on perceptual 
and decisional modulations by reward are contaminated by some 
form of visual attention, and that reward and attention cannot be 
easily disentangled empirically (Maunsell, 2004). Attention has 
also been found to spread to task-irrelevant features if bound to 
task-relevant features (Melcher et al., 2005), possibly explaining 
our feature-independent reward experiment, but the two tasks 
are very different and any feature-binding effect would not rule 
out our main conclusion. However, as long as attention is opera-
tionally defined as the limited amount of resources available to 
process task-relevant information, being thus withdrawn by more 
primary tasks (such as our counting task), our study provides 
novel insight into the mechanisms of reward-based modulation 
as well as exemplifying a useful methodological template for both 
single neuron and brain imaging studies aimed at disentangling 
the two behavioral factors.

conclusIon
What are the broad implications of these findings? At a more gen-
eral level we found that when one’s performance is rewarded, this 
will not only affect the output of goal-directed behavior, as one 
would intuitively expect, but it will also improve the quality of the 
signals on which motor responses are based. To use an analogy, the 
archer’s shot will succeed not only because of a superior adjustment 
to his aim, but also because the target is better seen. This in turn 
has implications for training and education in numerous areas, in 
particular for competitive sport, where sensory-based performance 
is fundamental, but momentary motivation may be variable.
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Money is a secondary reinforcer commonly used across a range of disciplines in experimental 
paradigms investigating reward learning and decision-making. The effectiveness of monetary 
reinforcers during aversive learning and associated neural basis, however, remains a topic of 
debate. Specifically, it is unclear if the initial acquisition of aversive representations of monetary 
losses depends on similar neural systems as more traditional aversive conditioning that involves 
primary reinforcers. This study contrasts the efficacy of a biologically defined primary reinforcer 
(shock) and a socially defined secondary reinforcer (money) during aversive learning and its 
associated neural circuitry. During a two-part experiment, participants first played a gambling game 
where wins and losses were based on performance to gain an experimental bank. Participants 
were then exposed to two separate aversive conditioning sessions. In one session, a primary 
reinforcer (mild shock) served as an unconditioned stimulus (US) and was paired with one of 
two colored squares, the conditioned stimuli (CS+ and CS−, respectively). In another session, a 
secondary reinforcer (loss of money) served as the US and was paired with one of two different 
CS. Skin conductance responses were greater for CS+ compared to CS− trials irrespective of 
type of reinforcer. Neuroimaging results revealed that the striatum, a region typically linked with 
reward-related processing, was found to be involved in the acquisition of aversive conditioned 
response irrespective of reinforcer type. In contrast, the amygdala was involved during aversive 
conditioning with primary reinforcers, as suggested by both an exploratory fMRI analysis and a 
follow-up case study with a patient with bilateral amygdala damage. Taken together, these results 
suggest that learning about potential monetary losses may depend on reinforcement learning 
related systems, rather than on typical structures involved in more biologically based fears.

Keywords: fear conditioning, striatum, amygdala, reinforcement, aversive learning, reward, insula

integrity of the amygdala (for review see Phelps and LeDoux, 2005). 
Although potential monetary losses can modulate decision-making 
under risk (Kahneman and Tversky, 1979), it is unclear if the initial 
acquisition of aversive representations of monetary losses depends 
on overlapping systems as more traditional aversive conditioning 
that involves primary reinforcers. The goal of this study is to pro-
vide a direct comparison between a biologically defined primary 
reinforcer (i.e., shock) and a socially defined secondary reinforcer 
(i.e., money) and their respective influences in the neural circuits 
and expression of aversive learning.

The human striatum has been linked to reward-related learning 
with both primary (e.g., juice; O’Doherty et al., 2004) and second-
ary (e.g., money; Kirsch et al., 2003) reward in several investigations 
where either one type of reinforcer or another are presented (for 
review see Knutson and Cooper, 2005; Delgado, 2007). More recently, 
blood oxygenation level dependent (BOLD) responses in the dorsal 
striatum have been shown to correlate with prediction errors in a 
task involving multiple types of reward presented within the same 
experiment (juice and money reinforcers; Valentin and O’Doherty, 
2009). With respect to aversive conditioning, striatum BOLD signals 
have been found to correlate with learning in separate tasks that using 
either primary (shock) or secondary (money) reinforcers (For review 

INTRODUCTION
Monetary rewards are a common reinforcer used in experimental 
paradigms across a range of disciplines, from behavioral econom-
ics to neuropsychological investigations of learning (e.g., Knutson 
et al., 2003; Delgado et al., 2006; Vohs et al., 2006). Money is a 
secondary reinforcer (i.e., reinforcers which acquire their proper-
ties through association with a primary reinforcer) that in many 
circumstances within human society could have similar or even 
stronger effects on behavior than more well characterized primary 
reinforcers (i.e., reinforcers that are innate to the organism and 
elicit a reaction) such as liquids and food. The use of monetary 
reinforcers are of particular interest in experiments that probe the 
neural correlates of learning and decision-making, since the value 
of money can be positive or negative depending on the context 
in which it is presented. Across such studies, the human striatum 
has been identified as a key region involved in reward-related pro-
cessing that facilitates reward learning and goal-directed behaviors 
(Montague and Berns, 2002; Knutson and Cooper, 2005; Delgado, 
2007; Rangel et al., 2008). Less is known about the effectiveness of 
money during aversive processing and its neural basis, particularly 
aversive conditioning in humans, which has mostly relied on pri-
mary reinforcers such as shock and found to be  dependent on the 
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was not analyzed because of a lack of behavioral responses. An 
additional six participants only showed conditioning during the 
session with shock, while five participants only showed responses 
during the conditioning session with monetary loss. Thus, final 
analysis was performed on 15 participants (7 F/8 M; mean age 
22.13, SD = 3.09) who showed evidence of affective learning dur-
ing both primary and secondary aversive conditioning sessions. 
Participants responded to posted advertisement and all participants 
gave informed consent. The experiments were approved by the 
University Committee on Activities Involving Human Subjects.

PROCeDURe
The experiment consisted of three experimental blocks (Figure 1). 
First, participants were exposed to a gambling session (adapted 
from Delgado et al., 2000) in order to acquire a financial endow-
ment, or an “experimental bank.” Participants were then involved 
in two separate aversive conditioning sessions (adapted from 
Delgado et al., 2006) which were counterbalanced with respect to 
order of presentation across participants. In one block, referred 
to as the primary session due to the nature of the reinforcer, the 
US was a mild shock to the wrist and resembled traditional aver-
sive conditioning human paradigms (e.g., Phelps et al., 2004). In 
another block, referred to as secondary session, a monetary loss 
served as the US and would be extracted from their experimental 
bank. In the gambling session, participants were told they were 
playing a “card-guessing” game, where the objective was to deter-
mine if the value of a given card was higher or lower than the 
number five. During each trial, a question mark was presented in 
the center of the “card,” indicating that participants had 2 s to make 
a response. Using a MRI compatible response unit, participants 
made a 50/50 choice regarding the potential outcome of the trial. 
The outcome was either higher (6, 7, 8, 9) or lower (1, 2, 3, 4) than 
five. The outcome was then displayed for 500 ms, followed by a 
feedback arrow (which indicated positive or negative feedback) 
for another 500 ms and an inter-trial interval of 13 s before the 
onset of the next trial. A correct guess led to the display of a green 
upward arrow indicating a monetary reward of $4.00 (reward tri-
als), while an incorrect guess led to the display of a red downward 

see Delgado et al., 2008). Thus, it is plausible that the human striatum 
may be involved in the acquisition of a conditioned response irrespec-
tive of type of reinforcer. The direct comparison of striatum signals 
within aversive conditioning with multiple aversive unconditioned 
stimuli, however, has not yet been investigated.

Aversive conditioning studies in humans typically use primary 
reinforcers and depend on the integrity of the amygdala (for review 
see Phelps and LeDoux, 2005). In contrast, the use of monetary 
reinforcers in aversive paradigms has yielded less consistent results. 
For instance, some fMRI studies have reported changes in amyg-
dala activation in response to, or expectation of, monetary losses 
(e.g., Breiter et al., 2001; Yacubian et al., 2006; Smith et al., 2009), 
while others have failed to do so (e.g., Seymour et al., 2007; see 
Delgado et al., 2008 for review). These findings are in accordance 
with neuropsychological investigations of risky decision-making 
involving monetary losses which have also reached mixed results. 
In such studies, amygdala lesions have been shown to affect loss 
aversion (De Martino et al., 2010), and lead to a lack of anticipa-
tory skin conductance responses (SCRs) in a risky gambling task 
(Bechara et al., 1999), while sparing biases to increase risk seeking 
behaviors when monetary gambles are framed as losses (Talmi et al., 
2009). One way to potentially understand the mixed contributions 
of monetary reinforcers in aversive contexts is to probe the use of 
monetary loss as an unconditioned stimulus (US) during a purely 
aversive conditioning paradigm, with the goal of understanding if 
conditioning via monetary loss will depend on similar mechanisms 
used for the acquisition of fears derived from more biologically 
meaningful stimuli such as shocks.

We conducted an event-related fMRI study to investigate com-
mon and distinct neural substrates underlying aversive condition-
ing with primary and secondary reinforcers. In this experiment, 
participants were first instructed to play a gambling game where 
they could win or lose money based on their performance. The 
purpose of the game was to give participants a monetary endow-
ment, ensuring that each participant had an experimental bank. 
Immediately following the gambling game, participants were 
then subjected to two separate aversive conditioning sessions. In 
one session, a primary reinforcer (i.e., mild shock to the wrist) 
served as an US and was paired with one of two colored squares, 
the conditioned stimuli (sCS+ and sCS−, respectively). In another 
session, a secondary reinforcer (i.e., loss of money, −$6.00, which 
was extracted from their experimental bank) served as the US and 
was paired with one of two different colored squares. This design 
allowed for the extraction of a conditioned response for each type 
of reinforcer in its separate learning context, thus allowing for the 
isolation of the independent effect of each reinforcer on affective 
learning within an individual (Delgado et al., 2006).

MaTeRIals aND MeThODs
PaRTICIPaNTs
Thirty-two participants were enrolled in this study (19 F/13 M; 
mean age 22.81, SD = 3.58). Participants’ inclusion in final data 
analysis for neuroimaging purposes was dependent on their behav-
ioral performance a priori, that is, their ability to demonstrate suc-
cessful conditioning with both primary and secondary reinforcers 
as assessed by SCR (see Physiological Set-up, Assessment, and 
Behavioral Analysis). Using this criteria, data from 6 participants 

Figure 1 | Depiction of aversive conditioning components of 
experimental paradigm. Participants are presented with two 
counterbalanced aversive conditioning sessions following a gambling game 
where they earn a monetary endowment. (A) In the first session, the 
unconditioned stimulus is a mild electric shock (primary reinforcer) which is 
paired with a colored square (sCS+). (B) In the second session, the 
unconditioned stimulus is a monetary loss (−$6.00), which is paired with a 
different colored square (mCS+) and detracted from the total sum earned 
during the gambling game.
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 stimulator charged by a stabilized current was used. The level of 
shock was set by the participants via a work up procedure that 
ensured the shocks were “uncomfortable,” but not painful. Within 
this procedure, participants were first given a mild shock (10 V, 
200 ms, 50 pulses/s) and gradually increased until the participant 
signaled so (maximum level of 60 V).

The order of the aversive conditioning sessions, as well as the 
color of the squares across all four CSs, was counterbalanced across 
participants. At the end of the experiment, participants filled out 
post-experimental questionnaires that assessed subjective feelings 
of intensity and valence toward all CSs. Specifically, participants 
were given a seven point likert scale and asked how intense their 
emotion or experience was upon seeing the particular colored 
square (seven being the most intense) and how bad a colored 
square was (seven being the worst). Participants were also given 
a questionnaire containing several gambles with the purpose of 
assessing individual differences in risk preferences (Holt and Laury, 
2002).

PhysIOlOgICal seT-UP, assessMeNT, aND BehavIORal aNalysIs
Skin conductance responses were acquired from the participant’s 
middle phalanges of the second and third fingers in the left hand 
via shielded Ag–AgCl electrodes which were grounded through an 
RF filter panel. Data acquisition was performed with a BIOPAC 
systems skin conductance module and AcqKnowledge software 
was used to analyze SCR waveforms. The level of SCR response 
was assessed as the base to peak difference for an increase in the 
0.5 to 4.5-s window following the onset of a CS, the blue or yel-
low square (see LaBar et al., 1995). A minimum response criterion 
of 0.02 μS was used with lower responses scored as 0. Responses 
were square-root transformed prior to statistical analysis to reduce 
skewness (LaBar et al., 1998). Responses that were three SD from 
the individual participant’s mean responses were excluded due to 
concerns of excessive motion. Acquired SCRs through the two aver-
sive conditioning sessions were then averaged per participant, per 
type of trial (e.g., CS+, CS−). Trials in which the CS+ was paired 
with a shock or monetary loss were separated from analysis so only 
SCRs to the CS+ (without US) were included.

A repeated measures ANOVA with type of aversive condition-
ing session (primary or secondary reinforcer) and type of CS (CS+ 
and CS−) as within subjects factor was then conducted. Two-tailed 
paired t-tests were used to compare activity of CS+ versus CS− trials 
within session post hoc to demonstrate effective conditioning within 
a specific aversive conditioning session. Participants’ inclusion in 
final data analysis was dependent on their behavioral performance, 
that is, their ability to demonstrate successful conditioning with 
both primary and secondary reinforcers as assessed by SCRs. More 
specifically, participants had to show a greater response for CS+ 
compared to CS− trials during both sessions. Fifteen participants 
met this criterion and were included in the final analysis.

Additional behavioral analysis was conducted by scoring the 
subjective ratings of intensity and valence across type of session 
and type of CS using a repeated measures ANOVA and post hoc two-
tailed paired t-tests. Analysis of the gambling session was limited 
since (a) the main purpose of the gambling session was to allow 
the participant to earn an experimental bank and (b) results for the 
card-guessing game have been previously published with respect to 

arrow indication a monetary loss of −$2.00 (punishment trials). 
Each trial was 16 s and participants played one block of the game 
containing 17 trials for each condition (reward and punishment). 
Unbeknownst to participants, the outcomes were predetermined 
ensuring a 50% reinforcement rate and a fixed profit across par-
ticipants. Participants were initially told they were guaranteed $25 
for performance in the scanner and that anything they would earn 
in the game was theirs to keep. At the end of the gambling session, 
a screen appeared congratulating the participant for their total 
earnings of $59.00 ($25 guaranteed amount plus the additional 
sum of $34 earned during the game) and informing them that the 
second part was about to start.

Following the gambling game, participants were exposed to 
two aversive conditioning sessions with either shock or monetary 
reinforcers (Figure 1). One session was referred to as primary ses-
sion because it involved a primary reinforcer (shock). The other 
was referred to as secondary session because it involved a second-
ary reinforcer (money). In the primary session, participants were 
presented with two colored squares (e.g., red and opaque) which 
served as the CS. Both CS were presented for 6 s, followed by a 12-s 
inter-trial interval. The US was a mild shock to the wrist, which 
lasted 200 ms and co-terminated with the CS. In this partial rein-
forcement design, one colored square (e.g., red) was paired with 
the shock (CS+) on about 33% of the CS+ trials, while another 
colored square (e.g., opaque) was never paired with the US (CS−). 
Participants were instructed that they would see different colored 
squares and occasionally receive a mild shock. Participants were 
not told about the contingencies and had to demonstrate successful 
affective learning (as assessed by SCRs) to be included in the final 
analysis. There were 30 total trials broken down into 12 CS− trials 
and 18 CS+ trials, of which 6 were paired with the US.

The secondary session was similar to the primary one, except 
that the US was a monetary loss. During this session, participants 
were exposed to two different colored squares (e.g., blue and yellow) 
which served as the CS. One colored square (e.g., blue) was paired 
with the monetary loss (CS+) on about 33% of the CS+ trials, while 
another colored square (e.g., opaque) was never paired with the US 
(CS−). The monetary loss was depicted by the symbol −$6.00 writ-
ten in red font and projected inside the square for the last 500 ms. 
Participants were instructed that they would see different colored 
squares and occasionally an additional −$6.00 sign indicating that 
$6.00 were to be deducted from their “experimental bank” acquired 
in the gambling session. Participants were not told about the con-
tingencies and had to demonstrate successful affective learning (as 
assessed by SCRs) to be included in the final analysis. There were 
30 total trials broken down into 12 CS− trials and 18 CS+ trials, of 
which 6 were paired with the US. Finally, the monetary penalties 
accumulated in the aversive conditioning session resulted in a total 
loss of $36.00. To ensure that each participant was paid $60.00 
in compensation following post-experimental questionnaires and 
debriefing, participants performed a final round of the gambling 
game (with similar structure to the first game).

Delivery of the US varied according to the type of aversive 
conditioning session. In the secondary session, the monetary loss 
was conveyed visually. In the primary session, the mild shock was 
administered through a stimulating bar electrode attached with 
a Velcro strap to the right wrist. A Grass Medical Instruments 
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There were no differences between reward (M = 0.38, SE = 0.08) 
and  punishment (M = 0.40, SE = 0.09) trials during the session 
[t(14) = 0.77, p = 0.45]. Participants were motivated during perfor-
mance in the gambling game, however, as assessed by one sample 
t-tests during both reward [t(14) = 5.06, p < 0.0005] and punish-
ment [t(14) = 4.68, p < 0.0005] trials.

PhysIOlOgICal assessMeNT Of aveRsIve CONDITIONINg sessIONs
A repeated measures ANOVA was conducted with the SCR data 
to measure the success of aversive conditioning with both shock 
and monetary reinforcers in a group of 15 participants that 
showed physiological responses during both aversive condition-
ing sessions (Figure 2A). A main effect of CS (CS+ and CS−) was 
observed, suggesting that participants were able to learn the con-
tingencies irrespective of type of reinforcer used [F(1, 14) = 34.35, 
p < 0.0001]. This is supported by post hoc t-tests showing dif-
ferential responses between CS+ and CS− trials during both 
primary [t(14) = 3.88, p < 0.005] and secondary [t(14) = 4.83, 
p < 0.0005] sessions. Given the nature of the US properties and 
delivery, a main effect of session (primary and secondary) was 
also observed [F(1, 14) = 7.61, p < 0.05]. Importantly, however, 
no interaction was apparent [F(1, 14) = 0.18, p < 0.68; Figure 2B], 
suggesting that the conditioned response was strong irrespective 
of type of session.

sUBjeCTIve RaTINgs
Participants were administered likert scale questionnaires at the 
end of the experiment assessing their subjective perception of both 
the intensity and valence of the four CSs (sCS+, sCS−, mCS+, and 
mCS−). For intensity ratings, a repeated measures ANOVA revealed 
a main effect of CS [F(1, 14) = 105.64, p < 0.0001], with post hoc 
t-tests confirming differences during both primary [t(14) = 9.13, 
p < 0.0005] and secondary [t(14) = 8.26, p < 0.0005] sessions. 
No main effect of session [F(1, 14) = 0.01, p = 0.95], or inter-
action [F(1, 14) = 3.06, p = 0.10], were observed. For valence 
ratings, a repeated measures ANOVA revealed a main effect of 
CS [F(1, 14) = 12.22, p < 0.005], with post hoc t-tests showing 
differences during both the primary [t(14) = 3.85, p < 0.005] and 
secondary [t(14) = 3.04, p < 0.01] sessions. No main effect of ses-
sion [F(1, 14) = 0.22, p = 0.65], or interactions [F(1, 14) = 3.20, 
p = 0.10], were observed.

NeUROIMagINg ResUlTs: sIMIlaRITIes IN NeURal CIRCUITRy
The main statistical map of interest was a conjunction analysis 
that investigated voxels commonly recruited during aversive con-
ditioning with primary and secondary reinforcers. Specifically, this 
contrast looked for voxels activated by a CS+ – CS− contrast which 
overlapped across both types of sessions. This contrast led to the 
identification of several regions (Table 1), including the medial 
frontal gyrus (BA 6), anterior insula, and the striatum bilaterally 
showing greater responses during trials that predicted a potentially 
aversive outcome (CS+ trials). Of particular interest was the activa-
tion of the striatum, a region typically involved in reward-related 
processing, which was recruited during aversive learning with both 
primary and secondary reinforcers. Mean beta weights extracted 
from the striatum ROIs revealed no interactions between type of 
session (primary or secondary) and CS (CS+, CS−) in both the 

neuroimaging (for review see Delgado, 2007) and SCR (Delgado 
et al., 2006). Nevertheless, SCRs were collected and analyzed for both 
reward and punishment trials using one sample t-tests to examine 
participants’ levels of engagement during the gambling session.

fMRI aCqUIsITION aND aNalysIs
A 3T Siemens Allegra head-only scanner and a Siemens standard 
head coil were used for data acquisition at NYU’s Center for Brain 
Imaging. Anatomical images were acquired using a T1-weighted 
protocol (256 × 256 matrix, 176 one-mm sagittal slices). Functional 
images were acquired using a single-shot gradient echo EPI sequence 
(TR = 2000 ms, TE = 20 ms, FOV = 192 cm, flip angle = 75°, 
bandwidth = 4340 Hz/px, echo spacing = 0.29 ms). Thirty-five 
contiguous oblique-axial slices (3 mm × 3 mm × 3 mm voxels) 
parallel to the AC-PC line were obtained. Analysis of imaging data 
was conducted using Brain Voyager software (Brain Innovation, 
Maastricht, The Netherlands). The data were initially corrected 
for motion (using a threshold of 2 mm or less), and slice scan time 
using sinc interpolation was applied. Further, spatial smoothing 
was performed using a three-dimensional Gaussian filter (4-mm 
FWHM), along with voxel-wise linear detrending and high-pass 
filtering of frequencies (three cycles per time course). Structural and 
functional data of each participant was then transformed to stand-
ard Talairach stereotaxic space (Talairach and Tournoux, 1988).

A random-effects analysis was performed on the aversive learn-
ing functional data using a general linear model (GLM) on 15 par-
ticipants. There were six different regressors, including four at the 
level of the CS that covered the primary session (sCS+ and sCS−) 
and the secondary session (mCS+ and mCS−) as well as two at US 
onset (shock or loss of money). The main statistical map of inter-
est was a conjunction analysis that investigated voxels commonly 
recruited during aversive conditioning with primary and secondary 
reinforcers. The conjunction analysis tests the conjunction null 
hypothesis where the requirement is simply that all comparisons or 
included contrasts are individually significant. Specifically, this con-
junction analysis contrasted all CS+ trials with CS− trials for both 
primary and secondary sessions separately and then produced a 
statistical parametric map (SPM) that represented commonly acti-
vated voxels between the two contrasts. This map was thresholded 
at p < 0.005 and used a cluster threshold with an extent of eight, 
suggesting that only clusters which are associated with a cluster level 
false positive rate of α = 0.05 are sufficient to remain in the analysis 
(Forman et al., 1995; Goebel et al., 2006). Mean beta weights were 
extracted from whole ROIs identified in this contrast for post hoc 
analysis and graphing for visualization purposes. Differences within 
sessions were assessed by probing the interaction of CS (CS+ and 
CS−) and session (primary and secondary) using the same thresh-
old criteria and correction method. Finally, an exploratory analysis 
was conducted to functionally identify an amygdala ROI using the 
contrast of sCS+ and sCS− during early acquisition of fear and an 
uncorrected threshold of p < 0.01.

ResUlTs
PhysIOlOgICal assessMeNT Of gaMBlINg sessION
Skin conductance responses were acquired during the gambling 
session for reward and punishment trials to assess the overall 
level of engagement by participants in the card-guessing game. 
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reinforcers was not observed in either ROI. No interactions or 
correlations with individual risk preferences were observed with 
the medial frontal gyrus (BA 6) and anterior insula ROIs also 
identified in this analysis.

NeUROIMagINg ResUlTs: DIffeReNCes IN NeURal CIRCUITRy
To examine differences in neural circuitry underlying aversive 
conditioning with primary and secondary reinforcers, we investi-
gated voxels in the whole-brain that showed an interaction of CS 
(CS+ and CS−) and session (primary and secondary). This contrast 
yielded activity in regions such as the cingulate gyrus, anterior 
and posterior insula and the somatosensory cortex (Table 2). All 
regions identified by the interaction showed a greater response to 
sCS+ compared to mCS+.

left ventral striatum ROI [F(1, 14) = 0.15, p = 0.7] and the larger 
right striatum ROI [F(1, 14) = 1.98, p = 0.18] which extended from 
ventral to more dorsal medial striatum.

Interestingly, the differential response between mCS+ and 
mCS− mean beta weights, that is the conditioned response dur-
ing the aversive conditioning session with secondary reinforcers 
(Figure 3), correlated with a measure of risk preference that was 
acquired outside the scanner (Holt and Laury, 2002). A Pearson’s 
correlation suggested that the greater the conditioning response 
in the monetary session, the greater the risk aversion in the par-
ticipant in the right striatum ROI (r = 0.602, p < 0.05) which also 
manifested as a trend approaching significance in the left striatum 
ROI (r = 0.496, p = 0.07). The same correlation for conditioned 
responses in the aversive conditioning session with primary 

Figure 2 | Skin conductance responses (SCrs) during aversive conditioning sessions. (A) SCR data suggests successful aversive conditioning with primary 
and secondary reinforcers such as monetary losses. (B) Similar conditioned responses (CS+ – CS−) are observed for both shock and money sessions.

Table 1 | Conjunction analysis investigating voxels commonly recruited during aversive conditioning with primary and secondary reinforcers 

(p < 0.005).

  Talairach coordinates  

region of activation Laterality x y z Voxels t-Stat

Paracentral lobule (BA 7) R 7 −34 55 175 −3.51

Medial frontal gyrus (BA 6) R 7 6 53 298 3.72

Medial frontal gyrus (BA 6) L −24 14 47 170 −3.45

Postcentral gyrus R 39 −20 47 265 −3.54

Precentral gyrus (BA 4) R 56 −9 26 761 −3.67

Cingulate gyrus (BA 23) L −1 −58 15 323 −3.48

Superior temporal gyrus (BA 42) R 58 −10 10 579 −3.72

Insula R 36 19 3 1157 3.65

Striatum R 10 4 5 241 3.67

Striatum L −8 3 3 149 3.77

BA, Brodmann area; L, left; R, right.
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NeUROPsyChOlOgICal Case sTUDy: BIlaTeRal aMygDala DaMage
A neuropsychological case study of a patient with bilateral amygdala 
damage was conducted to further investigate the involvement of 
the amygdala in aversive conditioning with loss of money as an US. 
Patient SP is a 62-year old, right-handed woman who underwent a 
temporal lobe resection to alleviate partial seizures originating in 
the right temporal lobe at age 48. Prior to the surgery, patient SP was 
also diagnosed with a lesion in her left amygdala (see Phelps et al., 
1998 for a detailed description of SP). The patient shows normal 
general intelligence according to the Weschsler Adult Intelligence 
Scale (WAIS-R: Verbal IQ = 100; Performance IQ = 92; Full Scale 
IQ = 97), but characteristic of patients with amygdala lesions, she 

Given the well characterized role of the amygdala in aversive condi-
tioning with primary reinforcers, we conducted an additional, explor-
atory, analysis aimed at identifying a functional ROI in the amygdala. 
Specifically, we performed a contrast of sCS+ and sCS− trials during 
the early phases of learning (the first half of trials only) using a leni-
ent threshold of p < 0.01 uncorrected and probed activity only in the 
amygdala (Figure 4). Parameter estimates extracted from this ROI 
revealed no effect of conditioning in the aversive conditioning session 
with secondary reinforcers [t(14) = −0.62, p = 0.54]. Although these 
results must be taken with caution due to the exploratory nature of 
this null result, it suggests that in this specific paradigm, the amygdala 
is not involved in acquiring a conditioned response to monetary losses.

Table 2 | Probing differences in neural circuitry underlying aversive conditioning with primary and secondary reinforcers with an interaction of CS 

(CS+ and CS−) and session (primary and secondary; p < 0.005).

  Talairach coordinates  

region of activation Laterality x y z Voxels t-Stat

Postcentral gyrus (BA 7) L −2 −49 67 417 13.01

Precentral gyrus (BA 4) L −22 −21 59 249 20.46

Medial frontal gyrus (BA 6) L −3 −8 49 426 14.07

Cingulate gyrus (BA 24) L −3 3 38 718 14.37

Insula L −47 −29 20 356 14.23

Insula L −39 −6 4 1157 13.87

Insula R 40 −1 −4 235 13.47

Uncus (BA 36) R 15 −9 −27 222 14.67

Cerebellum R 16 −46 −27 337 15.68

BA, Brodmann area; L, left; R, right.

Figure 3 | Bilateral activation of the striatum identified during both conditioning sessions using a conjunction analysis. The graphs are included for 
visualization only. Error bars reflect SE from the mean.
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the  monetary US session were well within one SD of the fMRI 
participants (M = 0.18, SD = 0.14). These results suggest SP shows 
impaired aversive conditioning with a shock US, but intact aversive 
conditioning with a monetary US in this experimental paradigm.

Patient SP was also administered a likert scale questionnaire 
(1–7) at the end of the experiment assessing her subjective per-
ception of both the intensity and valence of the four CSs (sCS+, 
sCS−, mCS+, and mCS−). For intensity ratings, Patient SP rated 
both mCS+ (4) and mCS− (5) higher than sCS+ (2) and sCS− (1). 
For valence ratings, she rated both mCS− (7) and sCS− (7) higher 
than mCS+ (1) and sCS+ (1). These results suggest that she “liked” 
the CS that predicted a safe, rather than negative outcome, while 
experiencing greater intensity upon seeing CS in the money rather 
than the shock session.

DIsCUssION
The goal of this study was to provide a direct comparison between 
a biologically defined primary reinforcer (i.e., shock) and a learned 
secondary reinforcer (i.e., money) and their respective influences 
in the neural circuits and expression of learning about fears. Using 
a modified Pavlovian fear conditioning paradigm (Delgado et al., 
2006), participants acquired the value of different CS during sepa-
rate learning sessions that used a primary or secondary reinforcer 
which were subjectively perceived as equally intense. The use of 
money as an US during aversive conditioning led to the expression 
of a conditioned response, similar to responses elicited by shock, 
as measured by SCRs. Irrespective of the type of reinforcer used 
during aversive learning, the striatum was found to be commonly 
involved in the acquisition of such conditioned response, suggesting 
a general role for the striatum in affective learning. In contrast, the 
amygdala was found to be more involved in aversive condition-
ing with primary compared to secondary reinforcers both in an 

demonstrates difficulties with measures of emotional processing 
including fear conditioning (e.g., Phelps et al., 1998; Anderson and 
Phelps, 2002).

Patient SP underwent the same procedure as previously described 
(Figure 1). First, she performed a gambling session to earn a mon-
etary bank. She was then exposed to two aversive conditioning 
sessions with the monetary loss session being administered first. As 
in the fMRI experiment, SCRs were acquired continuously during 
the conditioning sessions as a measure of sympathetic arousal to 
the CS presented, while subjective ratings of intensity and valence 
were collected at the end of the paradigm using a Likert scale from 
1 to 7. The level of SCR response was assessed as the base to peak 
difference for an increase in the 0.5 to 4.5-s window following the 
onset of a CS (see LaBar et al., 1995), with no minimum response 
criterion used and lack of responses being scored as 0. Responses 
were square-root transformed prior to statistical analysis to reduce 
skewness (LaBar et al., 1998).

As in previous reports (Phelps et al., 1998), patient SP failed 
to show a conditioned response during aversive conditioning 
with a shock US. Her conditioned response (CS+ SCR minus CS− 
SCR) was slightly less than zero (M = −0.01) indicating similar 
responding to the two CS stimuli. In contrast, when a monetary 
US was used, SP showed evidence for a stronger SCR to the CS+ 
than the CS−, indicating the acquisition of a conditioned response 
(M = 0.11; Figure 5). Although it is not possible to conduct reli-
able tests of significance with this case study, one can contrast 
SP’s data with the younger, neurologically intact participants of 
our fMRI study. Consistent with previous reports in patients with 
amygdala damage (Bechara et al., 1995; LaBar et al., 1995; Phelps 
et al., 1998), SP’s conditioned response during aversive conditioning 
with shock was more than a SD lower than the fMRI participants 
(M = 0.21, SD = 0.20). However, SP’s conditioned responses on 

Figure 4 | Blood oxygenation level dependent signals in the amygdala during early acquisition reveal a differential response between CS+ and CS− 
during the primary, but not the secondary aversive conditioning session.
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type of reinforcer (primary, secondary). It is also possible that 
 distinct regions within the striatum code for such valence differ-
ences (see Seymour et al., 2007). Within this context, a potential 
role for the striatum in aversive learning may be to participate in a 
circuitry responsible for updating value representations in order to 
change learned fears (Schiller and Delgado, 2010) and actively cope 
with the aversive context (LeDoux and Gorman, 2001).

Compared to other studies investigating aversive learning with 
secondary reinforcers (Kim et al., 2006; Seymour et al., 2007; 
Schlund and Cataldo, 2010), one key feature of this paradigm is the 
use of an experimental bank prior to the aversive conditioning ses-
sion (Delgado et al., 2006; Tom et al., 2007). This manipulation has 
the potential effect of increasing the significance of the monetary 
loss, in fact framing the loss as a real negative consequence since 
it is deducted from the participant’s own endowment. In contrast, 
in paradigms where participants do not have a sense of earning 
the monetary endowment, a loss may be experienced as a missed 
opportunity for a reward or the lesser of two outcomes. In support 
of this argument, striatum activity has been found to be stronger 
when participants earn the outcomes (Tricomi et al., 2004; Zink 
et al., 2004) and further modulated by changes in expected value 
in the context of a reference point (De Martino et al., 2009). This 
difference in the framing prior to the aversive conditioning session 
merits further investigation as a plausible mechanism responsible 
for differences in striatal responses to CS predicting monetary losses 
observed across different studies.

How money begins to acquire its conditioned reinforcer proper-
ties in humans could be akin to the process of second-order con-
ditioning typically studied in non-human animals. In Pavlovian 
second-order conditioning, a CS acquires conditioned properties 
(either positive or negative) due to an association with a first-order 

exploratory fMRI analysis and a follow-up case study with a patient 
with bilateral amygdala damage, suggesting that learning to “fear” 
a potential monetary loss may not depend on typical structures 
involved in more biologically based fears.

The human striatum has been identified as a critical struc-
ture for reward-related processing (Montague and Berns, 2002; 
Knutson and Cooper, 2005; Delgado, 2007; Rangel et al., 2008), 
with BOLD signals correlating with both the anticipation (e.g., 
Knutson et al., 2003) and receipt (e.g., Delgado et al., 2000) of 
reward, which is often attributed to a general role in reward-related 
learning and decision-making (for review see Montague and Berns, 
2002; O’Doherty, 2004; Rangel et al., 2008). Some observations of 
increases in BOLD signals to the anticipation of potentially aversive 
primary (Jensen et al., 2003) and secondary (Delgado et al., 2008) 
reinforcers have been observed, while a decrease in BOLD responses 
is sometimes reported at the receipt of monetary losses (Delgado 
et al., 2000) that resembles a prediction error signal (McClure et al., 
2003; O’Doherty et al., 2003). Similar fMRI responses in the stria-
tum have been observed when processing prediction errors during 
learning with primary (juice) and secondary (money) reinforcers 
in the same appetitive task (Valentin and O’Doherty, 2009). The 
current paper extends these results and demonstrates the involve-
ment of the human striatum during aversive learning with both 
primary (shock) and secondary (money) reinforcers.

The potential role of the human striatum in aversive learning, a 
region typically associated with reward processing, is unclear. There 
is evidence of striatum signals correlating with prediction errors 
when the context is aversive using both primary (Seymour et al., 
2004; Delgado et al., 2008) and secondary reinforcers (Seymour 
et al., 2007). It is possible that the striatum is involved in general 
affective learning irrespective of valence (appetitive, aversive) or 

Figure 5 | Skin conductance responses during aversive conditioning sessions with primary and secondary reinforcers in one patient with bilateral 
amygdala damage.
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CS which elicits a conditioned response (Holland and Rescorla, 
1975). The basolateral nucleus of the amygdala has been identified 
as a critical structure for the acquisition of a second-order condi-
tioned response (Hatfield et al., 1996; Gewirtz and Davis, 1997). 
However, this role appears limited to the acquisition of information 
about the motivational value of the first-order CS rather than the 
maintenance or expression of information already learned. This 
is illustrated by lesions of the basolateral nucleus of the amygdala 
after first-order, but before second-order training having no effect 
on the expression of second-order conditioned behaviors (Setlow 
et al., 2002). In the current experiment, money itself may be the 
first-order conditioned reinforcer, while the aversive conditioning 
session with money as the US would be an example of second-order 
conditioning. Since the acquisition of motivational information 
about the first-order CS, money, is well established, the second-
order expression may not be dependent on the integrity of the 
amygdala in humans.

Several investigations of the human amygdala support the 
assertion of a vast literature in non-human animals linking the 
amygdala with Pavlovian fear conditioning when primary rein-
forcers such as shock are used (for review see Phelps and LeDoux, 
2005; Hartley and Phelps, 2010). Although the amygdala has been 
linked with attaching value to purely social reinforcers such as 
faces (Davis et al., 2010), there is more uncertainty with respect 
to the role of the human amygdala and the processing of second-
ary reinforcers such as money. While some neuroimaging studies 
find changes in BOLD signals in the amygdala correlating with 
the expectation or actual receipt of monetary losses (e.g., Breiter 
et al., 2001; Yacubian et al., 2006; Smith et al., 2009), or to cues 
that predict monetary losses in an instrumental context where 
they are avoidable (Schlund and Cataldo, 2010), there have also 
been null findings (see Delgado et al., 2008 for review), particu-
larly when attempting to isolate regions of the brain involved 
in loss aversion (Tom et al., 2007). This inconsistency extends 
to neuropsychological investigations, as patients with bilateral 
amygdala damage have been shown to be sensitive to monetary 
loss aversion (De Martino et al., 2010), in contrast to neuroimag-
ing findings (Tom et al., 2007), with these results demonstrating 
an overall deficit in amygdala patients in decisions under risk 
(Bechara et al., 1999; Brand et al., 2007). The current study adds 

to this literature by suggesting that in a Pavlovian aversive con-
ditioning session analogous to second-order conditioning, the 
expression of a conditioned response does not appear to depend 
on the amygdala.

A few important features of the Pavlovian aversive conditioning 
paradigm with monetary reinforcers may contribute to the discrep-
ancy in findings with respect to the amygdala results. First, unlike 
tasks that probe loss aversion via active decision-making processes 
(Bechara et al., 1999; Brand et al., 2007; De Martino et al., 2010), 
this paradigm involves passive learning of associations which are 
less salient in human experiments. Second, although this paradigm 
aimed to equate the intensity of both primary and secondary rein-
forcers used in this task (as supported by subjective ratings), this 
was done at a group, not individual level as the monetary loss was 
uniform across the study. Third, the differences in delivery of the 
reinforcer could have accounted for much of the observed changes 
in the amygdala. That is, shock is immediately delivered and per-
ceived through somatosensory pathways. In contrast, monetary loss 
did not physically take place till the end of the experiment and was 
conveyed visually. Perhaps the shock could have been accumulated 
in the experiment creating a “bank of shocks” to be delivered later. 
However, the intention of the experiment was to try to replicate 
previous instances of fear conditioning in humans. In addition, it 
is unclear how delayed reinforcement would affect the acquisition 
of an aversive response with either type of reinforcer. Finally, it is 
worth noting that the amygdala ROI was defined in an exploratory 
fMRI analysis and the neuropsychological investigation involved 
only one participant. More work is needed to fully understand 
the role of the amygdala in aversive conditioning with monetary 
losses, this study suggests important differences in the neural cir-
cuitry involved in the acquisition of fear from a biologically defined 
primary reinforcer (i.e., shock) and a socially defined secondary 
reinforcer (i.e., money).
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It is well known that people take advantage of prior knowledge to bias decisions. To investigate 
this phenomenon behaviorally and in the brain, we acquired fMRI data while human subjects 
viewed ambiguous abstract shapes and decided whether a shape was of Category A (smoother) 
or B (bumpier). The decision was made in the context of one of two prior knowledge cues, 80/20 
and 50/50. The 80/20 cue indicated that upcoming shapes had an 80% probability of being of 
one category, e.g., B, and a 20% probability of being of the other. The 50/50 cue indicated that 
upcoming shapes had an equal probability of being of either category. The ideal observer would 
bias decisions in favor of the indicated alternative at 80/20 and show zero bias at 50/50. We 
found that subjects did bias their decisions in the predicted direction at 80/20 but did not show 
zero bias at 50/50. Instead, at 50/50 the subjects retained biases of the same sign as their 80/20 
biases, though of diminished magnitude. The signature of a persistent though diminished bias 
at 50/50 was also evident in fMRI data from frontal and parietal regions previously implicated 
in decision-making. As a control, we acquired fMRI data from naïve subjects who experienced 
only the 50/50 stimulus distributions during both the pre-scan training and the fMRI experiment. 
The behavioral and fMRI data from the naïve subjects reflected decision biases closer to those 
of the ideal observer than those of the prior knowledge subjects at 50/50. The results indicate 
that practice making decisions in the context of non-equal prior probabilities biases decisions 
made later when prior probabilities are equal. This finding may be related to the “anchoring 
and adjustment” strategy described in the psychology, economics, and marketing literatures, 
in which subjects adjust a first approximation response – the “anchor” – based on additional 
information, typically applying insufficient adjustment relative to the ideal observer.

Keywords: choice, experience, expectation

Inverse prior knowledge conditions are convenient for counter-
balancing experimental factors in the laboratory. In the real-world, 
however, inverse prior knowledge conditions are rarely experienced 
during a time period as short as that of a typical experiment. In 
a more common real-world scenario, a certain prior knowledge 
condition can be relevant to a decision at one time, indicating that 
a bias is then appropriate, but cease to be relevant to a decision at a 
later date. People often fail to adopt the appropriate bias of zero in 
the later decision, presumably because they have difficulty ignor-
ing the previously learned but no longer relevant prior knowledge. 
This phenomenon is familiar to us all. In fact, although decision 
researchers use the word bias to refer to an optimizable quantity, 
the common English usage connotes an undesirable influence that 
ideally should be set aside. Thus, the typical laboratory approach 
of inverting prior knowledge conditions within subjects does not 
adequately reflect real-world constraints.

To address this problem experimentally, we probed the behav-
ioral and fMRI responses of human subjects viewing ambiguous 
abstract shapes and deciding whether a shape was of Category A 
(smoother) or B (bumpier). The decision was made in the context 
of one of two prior knowledge cues, 80/20 and 50/50. The 80/20 cue 
meant that upcoming shapes had an 80% probability of being of 

INTRODUCTION
When making decisions, people take advantage of available prior 
knowledge to bias their choices (Green and Swets, 1966). This 
common-sense behavior increases the chance that decisions will 
be correct. In the laboratory, researchers study the effects of prior 
knowledge on decision bias by asking subjects to make choices 
in the context of two or more prior knowledge conditions. For 
example, consider a prior knowledge condition indicating that 
Alternative 1 has an 80% and Alternative 2 has a 20% chance of 
being the correct choice; we will call this an 80/20 prior knowledge 
condition. In many experiments (Green and Swets, 1966; Healy and 
Kubovy, 1978, 1981; Maddox, 2002), subjects trained and tested on 
an 80/20 prior knowledge condition are also trained and tested on 
the inverse condition: 20/80, in which Alternative 1 has an 20% 
and Alternative 2 has an 80% chance of being the correct choice. 
In some cases the 50/50 condition, in which each alternative has 
a 50% chance of being the correct choice, is also tested. Under 
such experimental conditions, the performance of human subjects 
approximates that of the ideal observer, who would bias decisions 
in favor of the indicated alternatives at 80/20 and 20/80 and exhibit 
zero bias at 50/50 (Green and Swets, 1966; Healy and Kubovy, 1978, 
1981; Maddox, 2002).
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distorted circle stimuli were created in MATLAB (Version 7.31) 
according to and adapted from equations from Wilkinson et al. 
(1998). The shape contour of each stimulus, r(q), was created by 
sinusoidally modulating the radius of a circle:

r r A( ) ( sin( ))θ ωθ φ= + +mean 1  (1)

where r and q (in radians) are the polar coordinates of the contour, 
r

mean
 is its mean radius and A, w, f are, respectively, the amplitude 

(expressed as a proportion of the radius), radial frequency, and 
phase of the modulation. Setting A to 0 defines a perfect circle. The 
cross-sectional profile of each stimulus, c, was modified by blurring 
the shape contour exponentially:

c r r= − −e ( ( ) / )θ σ 2

 (2)

where r is the set of all distances between the central point and the 
image edge, r(q) is as defined in Eq. 1, and s determines the peak spa-
tial frequency of the output image (peak spatial  frequency = √2 / ps). 

one category, e.g., B, and a 20% probability of being of the other; we 
refer to the 80 and 20% categories as indicated and contraindicated 
respectively. The 50/50 cue meant that upcoming shapes had an 
equal probability of being of either category. Subjects learned the 
meaning of the cues in pre-scan training runs. During training, the 
80/20 and 50/50 cues were accompanied by 80/20 and 50/50 target 
distributions, respectively; the training distributions were created 
by manipulating the prior probability of occurrence of the physical 
targets themselves, rather than changing the category boundary. No 
subject experienced inverse prior knowledge conditions; for exam-
ple, a subject who learned that 80/20 indicated Category A never 
had to relearn the task with a 20/80 cue contraindicating Category 
A. We found that subjects’ decisions made in the context of both the 
80/20 cue and the 50/50 cue were biased in the direction indicated 
by the 80/20 cue. In the 50/50 condition, the magnitude of the bias 
was diminished relative to the 80/20 condition, but failed to reach 
the zero bias predicted for the ideal observer. The persistent bias 
suggested that even when the chance of either target type was equal, 
the targets were processed at some level by the prior knowledge 
subjects as indicated or contraindicated. Therefore, we predicted 
that, in some brain areas, differences in fMRI activation elicited 
by indicated vs. contraindicated targets in the 80/20 runs would 
be persistent, though perhaps diminished, in the 50/50 runs. This 
hypothesis found confirmation in fMRI data from frontal and pari-
etal regions previously implicated in decision-making. As a control, 
we acquired fMRI data from naïve subjects who experienced only 
the 50/50 stimulus distributions during both the pre-scan training 
and the fMRI experiment. The behavioral and fMRI data from these 
naïve subjects reflected decision biases closer to those of the ideal 
observer than those of the prior knowledge subjects at 50/50. These 
findings have important implications for understanding decision-
making under ambiguity in real-world conditions.

MATERIALS AND METHODS
PARTICIPANTS
In this study, we acquired fMRI and behavioral data from 58 sub-
jects, all of whom provided informed consent before the experi-
ment. All procedures were approved by the National Institute of 
Mental Health Institutional Review Board. All subjects were right-
handed and had normal or corrected-to-normal vision. Here we 
present the data from 45 subjects (22 male) of mean age 25 years 
(range 20–41). Data from the remaining subjects were excluded 
because of a report that uncomfortably dry eyes prevented the 
subject from focusing on the stimuli, a broken shim coil, unac-
ceptably low estimates of d′ or patterns of random button presses 
that led to poor fits to psychometric functions.

STIMULI AND TASk
Targets were distorted circles (Wilkinson et al., 1998) whose sinu-
soidal modulation ranged linearly from 4 to 22% of the mean 
radius, with step size 0.5%. The smoothest target was defined as 
the Category A prototype, and the bumpiest as the Category B 
prototype (Figure 1). Distributions of Category A and B shapes 
were Gaussian and overlapping (Healy and Kubovy, 1981; Maddox, 
2002). The overlapping distributions made intermediate targets 
ambiguous, so that the targets alone would not contain sufficient 
information for subjects to classify them with perfect accuracy. The 

Figure 1 | Target distributions and visual appearance. (A) The distributions 
of Category A and B shapes shown during all fMRI runs were Gaussian and 
overlapping. Curvature levels between 9 and 17% of the radius were 
ambiguous, i.e., shapes of these curvature levels could be of either category. 
(B) The visual appearance of all curvature levels used. Neighboring shapes 
were difficult or impossible to discriminate from one another, preventing 
subjects from using a visual memorization strategy to perform the task. (C) In 
the experiment, the shapes were jittered in size, position, and orientation, as 
in the examples shown here.

1www.mathworks.com
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knowledge conditions could be attributed only to the cue and not 
to stimulation differences. Second, subjects did not receive feedback 
during scanning. Third, one-third of the trials in each scanning 
run were catch trials, in which a blank screen took the place of 
the target and subjects were instructed to make no response. The 
inclusion of catch trials permitted us to obtain estimates of activity 
during decisions vs. catch trials within each priors cue condition.

The remaining 23 subjects underwent pre-scan behavioral 
training at the 50/50 distribution only and experienced the sham 
cue (OO/OO) during both the training and the fMRI experiment. 
These naïve subjects were never exposed to the 80/20 distribu-
tions experienced during training by the prior knowledge subjects, 
and were not informed explicitly that the underlying distributions 
were always 50/50. In other respects, the instructions, training, and 
fMRI experiment were identical for the naïve subjects and the prior 
knowledge subjects.

The order of trial types (Category A target, Category B target 
or catch trial) for the scanning runs was determined by assigning 
each run a different ternary m-sequence. M-sequences are effi-
cient in terms of signal per time, especially for relatively short scan 
durations, and are exactly counterbalanced over time, minimizing 
any uncontrolled adaptation or expectation effects (Sutter, 2001; 
Buračas and Boynton, 2002). M-sequences were generated using 
code written by G. Buračas (Buračas and Boynton, 2002). Each run-
length m-sequence was length 34 − 1 = 80, consisting of 27 Category 
A stimulus trials, 27 Category B stimulus trials, and 26 catch trials; 
thus 33% of the trials were catch trials. Each trial lasted 2.5 s. A 
blank grayscale screen was shown for 10 s at the beginning of each 
run to allow the magnetic field to reach equilibrium and for 12.5 s 
at the end of each run to allow for the delay in the hemodynamic 
response. The cue was 50/50 on six runs and 80/20 on six runs, 
with the cue type alternating pseudorandomly from run to run.

IMAgINg DATA ACqUISITION AND PREPROCESSINg
All MRI data were collected on a GE 3-Tesla scanner with a GE 
whole-head 8-channel coil. For fMRI we used an echo-planar imag-
ing (EPI) sequence with repetition time (TR) = 2.5 s per shot (=2.5 s 
per acquired brain volume), echo time (TE) = 30 ms, field of view 
22 cm by 22 cm, resolution 64 × 64 voxels per slice (in-plane voxel 
size 3.4 mm × 3.4 mm), and slice thickness 3.0 mm. Each fMRI 

The color of the distorted circles was converted to black and the 
background was converted to gray. Stimuli were presented with the 
Presentation software (Version 10.22) and projected onto a translu-
cent screen placed at the foot of the scanner bed. Subjects viewed a 
reflection of the back-projected stimuli.

The task (Figure 2) was to decide whether a shape was Category 
A or B. The shapes were presented one at a time with random 
sizes, orientations, and locations to encourage the use of stimulus 
shape to make decisions and to prevent subjects from relying on 
retinotopic location or spatial attention in order to perform well. 
No part of any shape subtended more than two radial degrees, and 
the location of the fixation cross was inside each shape. Before each 
shape a cue was presented; the same cue was used throughout each 
run. To ensure that the subject did not forget the prior knowledge 
condition during the run, the cue was repeated at the beginning 
of each trial.

Before entering the scanner, 22 subjects underwent behavioral 
training that included explicit prior knowledge cues, 80/20 and 
50/50. The indicated target category – that is, the category indicated 
by 80 in the 80/20 training runs – was A for 8 subjects and B for 
14 subjects. In the training, two 80/20 and two 50/50 runs were 
interleaved. For each subject, the order was 50/50 run 1, 80/20 
run 1, 50/50 run 2, 80/20 run 2. The 80/20 training runs were 
comprised of 80% indicated (i.e., having curvature smoother than 
the mean sinusoidal modulation of 13% if the indicated category 
was A, or bumpier than 13% if the indicated category was B) and 
20% contraindicated targets. The 50/50 runs were comprised of 
50% of each target type. Thus, during training, the explicit prior 
knowledge cues reflected the implicit prior probability distribu-
tions of the targets. Subjects received feedback after each training 
trial. These 22 subjects were informed explicitly that the target 
distributions were 80/20 and 50/50, and their understanding of 
this concept was confirmed by their answers to questions during 
pre-training instruction. For these subjects, the scanning runs dif-
fered from training runs in three respects. First, all scanning runs 
were comprised of 50% indicated and 50% contraindicated targets, 
such that the targets in each 80/20 run were identical to the targets 
in a 50/50 run. This control ensured that differences between prior 

Figure 2 | Trial structure during training and scanning. For decision trials, subjects were instructed to decide whether each target was of Category A or B. For 
catch trials, subjects were instructed to continue fixating and await the next trial. A small fixation dot was present during the stimulus epoch of each trial and during 
the delay and response epochs of both decision and catch trials.

2www.neurobs.com
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by 3dvolreg. The GLM analysis was performed using 3dDeconvolve. 
Outputs were voxelwise beta weights representing the percent signal 
change vs. baseline attributable to each regressor. Signal variability 
attributable to head motion estimates was assigned to the baseline.

For each subject, the ROIs derived from the contraindicated 
vs. indicated analysis on the 80/20 data were converted to indi-
vidual brain space. The betas corresponding to each subject’s 
fMRI responses to each of the nine curvature bins at 80/20 and 
50/50, respectively, were sampled from and averaged within each 
individual ROI. The grand means and SE across subjects were 
calculated for each bin and prior knowledge condition, and the 
results were plotted as tuning curves across the dimension of 
curvature bins.

RESULTS
BEHAvIOR
The behavioral data acquired during fMRI data acquisition indi-
cate that training with the prior knowledge cues induced a deci-
sion bias during the fMRI experiment. In this paper we refer to 
subjects trained that the 80/20 cue indicated smoother targets as 
Group A prior knowledge subjects and to subjects trained that the 
80/20 cue indicated bumpier targets as Group B prior knowledge 
subjects. During the fMRI experiment, Group A (or B) prior knowl-
edge subjects responded “A” (or “B”) for a given shape during the 
80/20 runs more often than did the naïve subjects making deci-
sions about the same shapes (Figure 3; orange for Group A prior 
knowledge, red for Group B prior knowledge, black for naïve). 
The decision bias observed in the prior knowledge subjects during 
80/20 runs was retained (although diminished in magnitude) when 
the cue was 50/50. That is, during the fMRI experiment, Group 
A (or B) prior knowledge subjects responded “A” (or “B”) for a 
given shape during the 50/50 runs more often than did the naïve 
subjects making decisions about the same shapes (Figure 3; light 
blue for Group A prior knowledge, dark blue for Group B prior 
knowledge, black for naïve). The magnitude of the persistent bias 
at 50/50 was diminished relative to the magnitude of the bias at 
80/20. In Figure 3, the diminishment is shown as a shift to the left 
or right between the 80/20 curves and 50/50 curves within each 
prior knowledge subject group (orange to light blue for Group A, 
red to dark blue for Group B). If the bias had diminished to zero 
in the 50/50 runs for the prior knowledge subjects, this would 
have appeared as overlapping report curves in the naïve subjects 
and in the 50/50 runs from all prior knowledge subjects, but such 
was not the case.

Criterion values for all subject groups and prior conditions, 
as well as criterion values expected from the ideal observer, are 
presented in Table 1. Subjects in the 80/20 condition set their 
criterion values closer to the optimal value for 50/50 than would 
the ideal observer, as is seen in the Figure 3 curves. Table 1 also 
demonstrates that the converse was true: Subjects in the 50/50 
condition set their criterion values closer to the optimal value for 
80/20 than would the ideal observer. Thus, it appears that previous 
experience not only prevented subjects from setting aside previ-
ously learned non-zero biases when a zero bias would have been 
appropriate, but also prevented subjects from attaining adequate 
non-zero bias when a condition with a smaller optimal bias had 
been previously learned.

brain volume consisted of 38 axial slices. For anatomical images 
we used an magnetization prepared rapid acquisition gradient 
echo (MP-RAGE) sequence with field of view 24 cm by 24 cm, 
128 locations per slab and slice thickness 1.2 mm. Unless otherwise 
noted, preprocessing and subsequent analysis of the MRI data was 
performed with the AFNI software package (Cox, 1996; Cox and 
Hyde, 1997). Italics indicate AFNI function names. The first four 
brain volumes of every fMRI run were removed and brain volumes 
were time-shifted to account for the acquisition time of each slice. 
Data from each run were registered and motion-corrected using 
3dvolreg. Each subject’s T1-weighted anatomical dataset was warped 
via 12-parameter affine transform to a single template volume (the 
N27 “Colin” brain) in Talairach space using @auto_tlrc.

ROI IDENTIfICATION
To identify regions of interest (ROIs), we first estimated fMRI 
responses in the 80/20 runs to the presentation of targets indi-
cated and contraindicated by the 80/20 cue. Two sequences of 0s 
and 1s, where the 1s represented indicated and contraindicated 
targets respectively, were convolved with a model hemodynamic 
function using waver to create the regressors for the analysis. 
Other inputs to the GLM were the estimates of head motion 
produced by 3dvolreg. The GLM analysis was performed using 
3dDeconvolve. Outputs were voxelwise beta weights represent-
ing the percent signal change vs. baseline attributable to each 
regressor. Signal variability attributable to head motion estimates 
was assigned to the baseline. A random effects analysis (random 
effect of subject) was performed on the betas produced by the 
individual GLMs. using 3dAnova2 to calculate the mean responses 
to indicated and contraindicated targets and to obtain indicated 
vs. contraindicated differences.

From the group analysis results, a mask was derived identify-
ing voxels where indicated vs. contraindicated differences, as well 
as either the indicated or contraindicated mean activity levels, 
exceeded uncorrected p < 0.01. Taking account of the mean activ-
ity levels ensured that the results would reflect differences between 
activations, not differences between deactivations. The smooth-
ness of each group analysis result was calculated using 3dFWHMx 
with an input of s = m/t, where m is the coefficient or mean value 
and t is the t-statistic. A cutoff for significant cluster size (cor-
rected p-value 0.05) was determined using AlphaSim with inputs 
of derived smoothness, connectivity 5.9 mm (the distance between 
voxel vertices), and a p-value of 0.01 (the uncorrected p-value). 
Clusters exceeding cutoff were identified using 3dmerge. Talairach 
coordinates for the ROIs were determined by affine registration to 
the TT-N27 brain template, and Brodmann area equivalents were 
derived from the Talairach–Tournoux atlas (TT-Daemon).

TUNINg CURvES
To derive tuning curves from the within-ROI data, we sorted the trials 
by curvature level into nine bins ranging from smoothest to bumpi-
est. We performed a separate GLM analysis for each subject and prior 
knowledge condition, estimating fMRI responses to the presentation 
of targets within each bin. Nine sequences of 0s and 1s, where the 1s 
represented targets in a given bin, were convolved with a model hemo-
dynamic function using waver to create the regressors for the analysis. 
Other inputs to the GLM were the estimates of head motion produced 
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Group A prior knowledge subjects, the p-values by paired t-test for 
differences between indicated vs. contraindicated RTs were less than 
0.00001 at 80/20 and less than 0.05 at 50/50. For the Group B prior 
knowledge subjects, the p-values by paired t-test for differences 
between indicated vs. contraindicated RTs were less than 0.00001 
at 80/20 and less than 0.01 at 50/50.

fMRI ACTIvITy
The persistent though diminished behavioral bias at 50/50 sug-
gested that even when the chance of either target type was equal, 
the targets were processed at some level by the prior knowledge 
subjects as indicated or contraindicated. Therefore, we predicted 
that, in some brain areas, differences in fMRI activation elicited 
by indicated vs. contraindicated targets in the 80/20 runs would 
be persistent, though perhaps diminished, in the 50/50 runs. This 
general prediction led to three hypotheses. The first hypothesis was 
that in brain regions with a different pattern of fMRI activation to 
indicated vs. contraindicated targets in the prior knowledge sub-
jects at 80/20, a similar though perhaps diminished pattern would 
be observed in the prior knowledge subjects at 50/50. The second 
hypothesis was that the observed indicated vs. contraindicated pat-
tern would be consistent across both the Group A and the Group B 
prior knowledge subjects. This hypothesis predicts a reversed pat-
tern of fMRI activation to smoother vs. bumpier targets in Group 
B relative to Group A, because the indicated/contraindicated targets 
were smoother/bumpier for Group A and bumpier/smoother for 
Group B. The third hypothesis was that the fMRI activations in the 
naïve subjects, plotted in terms of smoother vs. bumpier targets, 
would be intermediate to those of the Group A vs. Group B prior 
knowledge subjects in the 50/50 runs.

To test these predictions, we first identified ROIs where a sub-
traction between the activation to the set of all indicated targets 
at 80/20 vs. the activation to the set of all contraindicated targets 
at 80/20 produced significant results. After correction for multiple 
comparisons, the surviving clusters were right middle frontal gyrus 
(MFG), bilateral inferior frontal junction (IFJ), bilateral medial 
frontal gyrus (MedFG), bilateral anterior insula (AI), and bilat-
eral inferior parietal lobule and intraparietal sulcus (IPL/IPS), as 
illustrated in Figure 5. For coordinates, Brodmann area equivalents 
and ROI volumes, see Table 3.

We performed t-tests to test for significance of the differences 
between mean criterion values across subject groups and prior 
knowledge conditions (Table 2). In most cases, the differences 
were highly significant (p < 0.0001). The differences did not attain 
significance in only one case, naïve vs. Group B 50/50 (p > 0.14).

The persistent bias at 80/20 was evident not only in the response 
categories but also in the response times (RTs). RTs in the prior 
knowledge subjects were faster, even at 50/50, for indicated than 
contraindicated targets (Figure 4, diamonds vs. squares). For the 

Figure 3 | Priors training biases decision reports at 50/50 relative to 
naïve subjects. Orange and light blue: reports from Group A subjects, who 
were trained on both 80/20 and 50/50 stimulus distributions and who learned 
that 80/20 meant 80% probability of A and 20% probability of B. Black: reports 
from naïve subjects, who were trained on the 50/50 stimulus distributions 
only and who were not explicitly informed of the probability ratio. Red and 
dark blue: reports from Group B subjects, who were trained on both 80/20 and 
50/50 stimulus distributions and who learned that 80/20 meant 80% 
probability of B and 20% probability of A. The dotted horizontal line indicates 
chance performance. The shift in the curves from orange to red indicates that 
given the same target, Group A subjects responded “A” more often than 
Group B subjects when the cue was 80/20. The shift in the curves from light 
to dark blue indicates that given the same target, Group A subjects also 
responded “A” more often than Group B subjects when the cue was 50/50. 
The black curve is intermediate to the light and dark blue curves, indicating 
that the naïve subjects’ responses were intermediate to the Group A and B 
subjects’ responses at 50/50.

Table 1 | Criterion and d′ values.

Cue, subject group Criterion, ideal Criterion, observed Criterion, observed d′, ideal d ′, observed d ′, observed

 observer mean SD observer mean SD

80/20, Group A 1.2 0.98 0.20 2.0 1.31 0.31

50/50, Group A 0.0 0.33 0.18 2.0 1.44 0.12

80/20, Group B −1.2 −0.86 0.35 2.0 1.47 0.24

50/50, Group B 0.0 −0.38 0.37 2.0 1.34 0.15

OO/OO, naïve 0.0 −0.16 0.26 2.0 1.16 0.24

Criterion values were calculated as λ = −1/2 [Z(f) + Z(h)] (Wickens, 2002), where Z is z-score calculated from p-values on a standard Gaussian distribution, f stands for 
false alarm rate and refers to the proportion of smoother than average targets incorrectly classified as bumpier than average, and h stands for hit rate and refers to 
the proportion of bumpier than average targets correctly classified as smoother than average. A criterion value of zero corresponds to the midpoint target; negative 
and positive values correspond to smoother and bumpier targets respectively. The criterion values reported for the ideal observer would produce response ratios 
equivalent to the ratio of expected target types, i.e., 80/20 or 50/50. Values of d′ were calculated as d′ = Z(f) + Z(h); Z, f, and h defined above. The d′ values reported 
for the ideal observer were determined by the degree of overlap between the indicated and contraindicated target distributions.
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ROI, the 50/50 activation magnitude at that bin was significantly 
(p < 0.01 via a t-test across subjects) greater than the mean 50/50 
activation across all bins.

To further quantify these observations, we identified the peak 
ambiguous bin in each individual prior knowledge subject at 80/20 
and at 50/50. The across-subject medians of these values are plotted 
in Figure 6B. Consistent with our hypotheses, in all ROIs the 50/50 
Group A and B medians fell on the same side of the midpoint as 
the 80/20 Group A and B medians respectively.

To test our third hypothesis – namely, that the fMRI activations 
in the naïve subjects, plotted in terms of smoother vs. bumpier 
targets, would be intermediate to those of the Group A vs. Group 
B prior knowledge subjects in the 50/50 runs – we then examined 
the tuning curves from the naïve subjects (Figure 6A, bottom, and 
Figure 6B, black). Consistent with our hypothesis, in no ROI did 

We then plotted the within-ROI data from both cue condi-
tions in the prior knowledge subjects and from the naïve sub-
jects as tuning curves along the dimension of target curvature 
(Figure 6). To produce the tuning curves, the targets were first 
sorted by curvature level into nine bins. Activations were then 
calculated for each individual subject via a multiple regression 
analysis, with nine regressors each representing all of the targets in 
one bin. For the prior knowledge subjects the multiple regression 
analysis was performed twice, once for the 80/20 data and once 
for the 50/50 data. Within each individual subject, cue condition 
and ROI, the average activation elicited by each target bin was 
calculated. These results were averaged across subjects to obtain 
within-ROI grand means and SE. By plotting grand means and 
SE, we obtained within-ROI tuning curves along the dimension 
of smooth to bumpy target curvature.

The 80/20 tuning curves for each ROI are plotted in Figure 6A. 
Within the parts of the 80/20 tuning curves corresponding to 
ambiguous targets, every tuning curve peaked at a contraindi-
cated bin (bumpier for Group A subjects, smoother for Group 
B subjects). In every ROI, the 80/20 activation magnitude at 
that bin was significantly (p < 0.0001 via one-tailed t-test across 
subjects) greater than the mean 80/20 activation across all bins. 
To test our first and second hypotheses – namely, that a similar 
though perhaps diminished pattern of fMRI activation would 
be observed in the prior knowledge subjects at 50/50 relative to 
80/20, and that the pattern of fMRI activation to smoother vs. 
bumpier targets would be reversed in Group B relative to Group 
A at both 80/20 and 50/50 – we then examined the 50/50 tuning 
curves from Group A and Group B (Figure 6A, middle). The 
results were consistent with our hypotheses. Within the parts 
of the 50/50 tuning curves corresponding to ambiguous targets, 
every tuning curve peaked at a contraindicated bin (bumpier for 
Group A subjects, smoother for Group B subjects), and in every 

Table 2 | Criterion and d′ differences across conditions and subject 

groups.

Subject Criterion, Criterion,  d′,  d′,  d.f.

group p-value t-value p-value t-value

Group 0.000008 6.9 0.30  1.1 14  

A 80 vs 50

Group 0.002 3.5 0.10 1.7 26 

B 80 vs 50

80 Group 0.00000000001 13.6  0.19 1.4 20 

A vs 80B

50 Group 0.00006 5.0 0.15 1.5 20 

A vs 50B

80 Group 0.000000000007 11.4 0.17 1.4 27 

A vs naïve

50 Group 0.00003 5.0 0.004 3.1 27 

A vs naïve

80 Group 0.00000009 6.8 0.0006 3.8 33 

B vs naïve

50 Group 0.053 2.0 0.016 2.5 33 

B vs naïve

All p-values were determined by t-test across subjects.

Figure 4 |  Priors training slows response time at 50/50 relative to naive 
subjects. (A) Group A vs. naive subjects. Colors and x-axis are as in Figure 3. 
Diamonds: Targets indicated as likely in the 80/20 training. Circles: Targets 
presented to naive subjects. Responses to indicated targets were faster than 
responses to contraindicated targets, even when the cue was 50/50: 
p < 0.00001 at 80/20, p < 0.05 at 50/50. (B) Group B vs. naive subjects. Format 
as in (A); p < 0.00001 at 80/20, p < 0.01 at 50/50. All p-values were determined 
by paired t-test.
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an 80% chance of Category A, and for Group B subjects, who were 
trained that the 80/20 cue indicated an 80% chance of Category 
B. Thus, the behavioral data demonstrate compellingly that even 
when subjects were made explicitly aware that the condition was 
50/50 – i.e., that the appropriate bias was zero – they were not able 
to set aside the previously learned bias. (2) In a network of frontal 
and parietal brain regions, the largest activity levels were evoked 
during decisions about contraindicated targets close to the extreme 
contraindicated prototype at 80/20, and about contraindicated 
targets closer to the midpoint at 50/50. Like the behavioral data, 
this observation held for both Group A and Group B subjects. (3) 
Behavioral and fMRI results from naïve subjects, who experienced 
only the 50/50 stimulus distributions during both the training and 
the experiment, were intermediate to results from the Group A 
and Group B subjects. Our observations indicate that the effects 
of a previously learned prior knowledge condition on decision 
behavior and frontoparietal fMRI activity do not disappear when 
that prior knowledge condition no longer applies, as would be 
predicted by simple signal detection models of decision-making. 
Instead, the behavior and brain activity reflect persistency of the 
contraindicated vs. indicated classifications learned in the earlier 
prior knowledge training.

These findings may be related to the “anchoring and adjust-
ment” strategy described in the psychology, economics, and mar-
keting literatures. Anchoring and adjustment is often observed in 
subjects choosing a value, for example a price, from a continuum 
of possible values. In this strategy, subjects adjust a first approxi-
mation response – the “anchor” – based on additional informa-
tion, typically applying insufficient adjustment relative to the 
ideal observer. Anchoring and adjustment has been observed in 
numerous experimental and real-world scenarios (Kahneman 
and Tversky, 1973; Payne et al., 1992), but the underlying brain 
mechanism is unknown. The anchor in such scenarios appears to 
be analogous to the 80/20 bias in our study. In both cases, when 
new information renders an earlier response irrelevant, subjects 
respond with a behavioral change in the appropriate direction but 
of less than optimal magnitude. We suggest that the underlying 
brain mechanism in anchoring and adjustment scenarios may be 
similar to that observed here. Specifically, in this study we identified 
a network of frontal and parietal regions as persistently selective 
for the previously learned classification contraindicated by prior 
knowledge. We predict that the same regions can be shown to be 
persistently selective for many other kinds of previously learned 
classifications, including the classic anchoring and adjustment 
example – a previously experienced price.

The frontal and parietal regions we identified are consistent with 
human fMRI and monkey neurophysiology studies of the experi-
mental factors we manipulated. The MFG and the parietal ROIs 
overlap ROIs previously identified in human subjects as respond-
ing during decision tasks using stimuli and behavioral responses 
of various modalities (Milham et al., 2003; Grinband et al., 2006; 
Huettel et al., 2006; Preuschoff et al., 2008). These regions have also 
been shown to exhibit preferential responses to unexpected stimuli 
(McCarthy et al., 1997; Huettel et al., 2002; Derrfuss et al., 2005; 
Melcher and Gruber, 2006); in the current study, the appearance 
of contraindicated stimuli may be unexpected. The AI, MedFG, 
and IFJ have been implicated in measures of cognitive control such 

the naïve median fall outside the range between the Group A and 
B medians at 50/50. Thus, the results supported each of our three 
hypotheses, confirming that the signature of a persistent though 
diminished bias at 50/50 was evident in the fMRI data from the 
identified frontal and parietal ROIs.

We also searched for overall differences in activation across 
all targets between prior knowledge subjects at 80/20 vs. 50/50, 
between prior knowledge subjects at 80/20 vs. naïve subjects, 
and between prior knowledge subjects at 50/50 vs. naïve subjects. 
However, in none of these comparisons did a cluster anywhere in 
the brain survive correction for multiple comparisons. We con-
clude that the persistent bias at 50/50 did not occur because the 
80/20 training caused parts of the brain to be more or less active 
overall in the prior knowledge subjects than in the naïve subjects. 
Instead the 80/20 training induced a dynamic pattern in the frontal 
and parietal data that was retained in the 50/50 condition and not 
experienced by the naïve subjects.

DISCUSSION
This study produced three main findings. (1) After subjects were 
trained on an 80/20 prior knowledge condition, they continued to 
exhibit a decision bias in favor of the learned indicated alternative, 
even when explicitly informed that the current prior knowledge 
condition was 50/50. At 50/50, the bias diminished in magnitude 
relative to 80/20 but did not reach zero. This observation held both 
for Group A subjects, who were trained that the 80/20 cue indicated 

Figure 5 | regions of interest locations. Locations are defined from 
observations of a significant difference in fMRI signal between indicated and 
contraindicated targets in the 80/20 prior knowledge condition.

Table 3 | regions of interest locations and volumes.

rOi X Y Z Brodmann Volume, 
    area(s) mm3

MidFG (R) 41.7 30.8 23.3 46, 9 93

AntIns (R) 35.1 17.3 6.3 13 117

AntIns (L) −31.9 17.2 7.1 13 111

MedFG (bi) 1.1 11.8 43.4 6, 32 220

IFJ (R) 46.4 4.6 29.6 9, 6 83

IPL/IPS (L) −40.2 −44.7 42.4 40 172

IPL/IPS (R) 36.8 −50.3 38.9 40 153
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et al., 2006). Each phenomenon may be related to the current study. 
Changing between prior knowledge conditions may have engaged 
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rienced incorrect behavior, or the potential for incorrect behavior 
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Figure 6 | Frontal and parietal selectivity at 80/20 for contraindicated 

shapes is persistent at 50/50. (A) Colors and x-axis are as in Figure 3. 
Curvature levels were binned into 9 bins; the curves show mean within-ROI 
fMRI signal level vs. baseline at each bin. Shading indicates ±1 SE across 
subjects. Gray shading indicates bins in which the targets were not ambiguous. 
Colored dots above the curves show the median curvature level, across 
subjects, of the maximum fMRI response within the ambiguous portion of the 
stimulus set. Stars indicate significance levels of the difference between the 
activity at these levels vs. the mean activity level across all ambiguous bins, 

calculated by one-tailed t-test; ***p < 0.001; **p < 0.01; *p < 0.05. The 
estimated significance levels indicate that the peaks are in fact peaks; that is, 
the curves are not flat. (B) Colors are as in (A); x-axis represents the ambiguous 
portion of the stimulus set. The median curvature levels of the maximum fMRI 
responses from (A) are grouped together here for easy comparison. Error bars 
represent ±1 SE across subjects. In all ROIs, the 50/50 Group A and B medians 
fell on the same side of the midpoint as the 80/20 Group A and B medians 
respectively. In no ROI did the naïve median fall outside the range between the 
Group A and B medians at 50/50.

http://www.frontiersin.org/decision_neuroscience/
http://www.frontiersin.org/decision_neuroscience/archive


www.frontiersin.org  March 2011 | Volume 5 | Article 29 | 35

Hansen et al. Persistency of priors-induced bias

Huettel, S. A., Mack, P. B., and McCarthy, 
G. (2002). Perceiving patterns in ran-
dom series: dynamic processing of 
sequence in prefrontal cortex. Nat. 
Neurosci. 5, 485–490.

Huettel, S. A., Stowe, C. J., Gordon, E. M., 
Warner, B. T., and Platt, M. L. (2006). 
Neural signatures of economic prefer-
ences for risk and ambiguity. Neuron 
2, 765–775.

Huk, A. C., and Shadlen, M. N. (2005). 
Neural activity in macaque parietal 
cortex reflects temporal integration 
of visual motion signals during per-
ceptual decision making. J. Neurosci. 
25, 10420–10436.

Kahneman, D., and Tversky, A. (1973). On 
the psychology of prediction. Psychol. 
Rev. 80, 237–257.

Kiani, R., Hanks, T. D., and Shadlen, M. N. 
(2008). Bounded integration in parietal 
cortex underlies decisions even when 
viewing duration is dictated by the envi-
ronment. J. Neurosci. 28, 3017–3029.

Maddox, W. T. (2002). Toward a unified 
theory of decision criterion learning in 
perceptual categorization. J. Exp. Anal. 
Behav. 78, 567–595.

McCarthy, G., Luby, M., Gore, J., and 
Goldman-Rakic, P. (1997). Infrequent 

events transiently activate human pre-
frontal and parietal cortex as measured 
by functional MRI. J. Neurophysiol. 77, 
1630–1634.

Melcher, T., and Gruber, O. (2006). 
Oddball and incongruity effects 
during Stroop task performance: a 
comparative fMRI study on selective 
attention. Brain Res. 1121, 136–149.

Milham, M. P., Banich, M. T., and Barad, 
V. (2003). Competition for priority in 
processing increases prefrontal cortex’s 
involvement in top-down control: an 
event-related fMRI study of the Stroop 
task. Cogn. Brain Res. 17, 212–222.

Muhammad, R., Wallis, J. D., and Miller, 
E. K. (2006). A comparison of abstract 
rules in the prefrontal cortex, premo-
tor cortex, inferior temporal cortex, 
and striatum. J. Cogn. Neurosci. 18, 
974–989.

Payne, J. W., Bettman, J. R., Coupey, E., 
and Johnson, E. J. (1992). A construc-
tive process view of decision making: 
multiple strategies in judgment and 
choice. Acta Psychol. 80, 107–141.

Platt, M. L., and Glimcher, P. W. (1999). 
Neural correlates of decision  variables 
in parietal cortex. Nature 400, 
233–238.

Preuschoff, K., Quartz, S. R., and Bossaerts, 
P. (2008). Human insula activation 
reflects risk prediction errors as well 
as risk. J. Neurosci. 28, 2745–2752.

Roberts, A. C., and Wallis, J. D. (2000). 
Inhibitory control and affective 
processing in the prefrontal cortex: 
neuropsychological studies in the 
common marmoset. Cereb. Cortex 
10, 252–262.

Summerfield, C., and Koechlin, E. (2008). 
A neural representation of prior infor-
mation during perceptual inference. 
Neuron 59, 336–347.

Sutter, E. E. (2001). Imaging visual func-
tion with the multifocal m-sequence 
technique. Vision Res. 41, 1241–1255.

Wallis, J. D., and Miller, E. K. (2003). From 
rule to response: neuronal processes in 
the premotor and prefrontal cortex. J. 
Neurophysiol. 90, 1790–1806.

White, I. M., and Wise, S. P. (1999). Rule-
dependent neuronal activity in the 
prefrontal cortex. Exp. Brain Res. 126, 
315–335.

Wickens, T. D. (2002). Elementary Signal 
Detection Theory. New York: Oxford 
University Press, 24–28.

Wilkinson, F., Wilson, H. R., and Habak, 
C. (1998). Detection and recognition 

of radial frequency patterns. Vision 
Res. 38, 3555–3568.

Yang, T., and Shadlen, M. N. (2007). 
Probabilistic reasoning by neurons. 
Nature 447, 1075–1080.

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial 
or financial relationships that could be 
construed as a potential conflict of interest.

Received: 15 December 2010; accepted: 23 
February 2011; published online: 08 March 
2011.
Citation: Hansen KA, Hillenbrand SF and 
Ungerleider LG (2011) Persistency of priors-
induced bias in decision behavior and the 
fMRI signal. Front. Neurosci. 5:29. doi: 
10.3389/fnins.2011.00029
This article was submitted to Frontiers 
in Decision Neuroscience, a specialty of 
Frontiers in Neuroscience.
Copyright © 2011 Hansen, Hillenbrand and 
Ungerleider. This is an open-access article 
subject to an exclusive license agreement 
between the authors and Frontiers Media SA, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided 
the original authors and source are credited.

http://www.frontiersin.org/
http://www.frontiersin.org/decision_neuroscience/archive


www.frontiersin.org  April 2011 | Volume 5 | Article 49 | 36

a cooperative social environment (Fehr and Gachter, 2002; de 
Quervain et al., 2004). Although this may be so, the strategy of 
measuring one’s own gains against others also has a downside. In 
wealthy societies, a comfortable income can become unsatisfac-
tory if compared to an extravagant one: the millionaire envies 
the billionaire, and the billionaire envies still richer billionaires. 
This arms race of reward can in itself lead to inequity and social 
unrest, as in the rapid escalation of corporate executive compensa-
tion in recent years, which led to a backlash of widespread public 
indignation (Ariely, 2008).

The human tendency to see rewards in socially relative terms 
may therefore be a mixed blessing. If so, the question arises as 
to whether some people are capable of ignoring social considera-
tions and assessing a reward based on its intrinsic qualities alone. 
The willingness to sacrifice money to punish an unfair proposer is 
associated with affective responses, as measured by skin conduct-
ance responses (van’t Wout et al., 2006). These affective responses 
have specific neural correlates, identified in neuroimaging stud-
ies of social exchange. Unfair offers elicit greater activation in the 
anterior insula (Rilling et al., 2002; Sanfey et al., 2003; King-Casas 
et al., 2008), an area linked to interoceptive function (Craig, 2002, 
2009; Critchley et al., 2004), and in particular to the emotion 
of disgust (Calder et al., 2001). Anterior insula activation scales 
inversely with offer size, and predict whether an unfair offer will 

IntroductIon
In rational accounts of human behavior, if a person is offered the 
choice of gaining a reward versus gaining nothing, they should 
always choose the reward. While this is typically true in a non-
social context, this account often breaks down during social interac-
tions. In the classic example of the Ultimatum Game, a “proposer” 
offers to split a sum of money with a “responder” in a two- person 
exchange. If the responder rejects the offer, both players get  nothing 
– hence, according to rational choice theory, responders should 
accept all non-zero offers. In reality, players are rarely so magnani-
mous. Responders typically reject offers in which the proposer’s 
share exceeds 80% of the total, preferring to gain nothing rather 
than accept an inferior share of the winnings (Guth et al., 1982; 
Bolton and Zwick, 1995). This sensitivity to fairness may be a 
uniquely human trait (Fehr and Fischbacher, 2003). For example, 
chimpanzees play the Ultimatum Game according to the dictates 
of rational choice theory, and are content with all non-zero offers 
irrespective of fairness (Jensen et al., 2007).

So why do human beings turn a perfectly good reward into 
a disappointment when others are getting more? One proposal 
is that the superficially “irrational” rejection of inferior shares 
is a costly but effective means of enforcing social norms (Boyd 
et al., 2003). Ultimately, the costs of giving up inferior shares are 
presumably outweighed by the long-term benefits of establishing 
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be rejected (Sanfey et al., 2003). These results suggest that rejec-
tion of unfair offers in the Ultimatum Game is driven by negative 
emotional reactions.

If some individuals had expertise in uncoupling such emotional 
reactions from their actual behavior, they might be better equipped 
to assess a reward on its own merits. Such individuals could poten-
tially be found among experienced practitioners of mindfulness 
meditation. Mindfulness meditation has its roots in a 2500-year-old 
Buddhist tradition, and has grown increasingly popular in Western 
societies over the last few decades. A central technique in mindful-
ness is to attend to the events in the present moment, on purpose, 
in a spirit of observation rather than judgment.

Meditation has been conceptualized as complex emotional regu-
latory training techniques developed for cultivation of well-being 
and emotional balance (Lutz et al., 2008a). Previous research on 
emotion regulation show that humans are able to exert a degree 
of control by reducing or enhancing emotional reactions elicited 
by various categories of stimuli and events in the world (Jackson 
et al., 2000; Ochsner et al., 2002; Ochsner and Gross, 2005; Eippert 
et al., 2007). Based on these previous studies we hypothesized that 
successful regulation of negative emotional reactions would lead 
to increased acceptance rates of unfair offers in the Ultimatum 
Game. In line with this hypothesis, we expected that meditators 
would exhibit greater acceptance rates for highly asymmetric offers.

Recent neuroimaging studies suggest some convergence between 
the neural correlates of social exchange and mindfulness medita-
tion. Voxel-based morphometry studies demonstrate higher gray 
matter volumes in the anterior insula of meditators versus age-
matched controls, suggesting long-term effects of meditation (Lazar 
et al., 2005; Holzel et al., 2008; Luders et al., 2009). The mid and 
posterior aspects of the insular cortex are activated during medita-
tive states (Farb et al., 2007; Lutz et al., 2008b, 2009). In addition, 
even a short course of mindfulness training is effective in decou-
pling the activity of the insula from the activity of other regions 
involved in social decision-making, such as the medial prefrontal 
cortex (Farb et al., 2007; Tang et al., 2009). Taken together, these 
findings suggest that experienced mindfulness meditators could be 
capable of regulating emotional and social considerations in their 
evaluation of rewards in the Ultimatum Game.

Specifically, we hypothesized that the key anatomical locus 
for such regulation would be attenuation of the anterior insula 
responses toward unfair offers in meditators compared with controls. 
Furthermore, we expected that meditators would attend to internal 
bodily states in order to successfully regulate negative emotional reac-
tions to unfair monetary offers. In accordance with previous studies 
we expected that elevated interoceptive awareness would involve brain 
regions such as the posterior parts of the insula and somatosensory 
cortices (Farb et al., 2007; Lutz et al., 2008b, 2009; Tang et al., 2009). 
Conversely, we expected that non-meditator controls might rely more 
on medial cortical areas linked to prospection and theory of mind, 
in line with previous studies (Rilling et al., 2002; Sanfey et al., 2003).

To test these hypotheses, we recruited a group of experienced 
mindfulness meditators and a control group of non-meditators. 
We enrolled subjects in the study to play the role of responders in 
an anonymous version of the Ultimatum Game (Figure 1), while 
undergoing fMRI. We report both the behavioral and the neuroim-
aging findings resulting from the experiment.

MaterIals and Methods
subjects
Sixty-six subjects participated in the study. Subjects were 
recruited in two groups. One group (n = 40) consisted of con-
trols (21 females/19 males). The second group (n = 26) consisted 
of expert meditators (10 females/16 males). Practitioners had 
various degrees of regular experience ranging from 6 month to 
24 years. Common to all practitioners were that they practiced 
Buddhist meditation while maintaining a secular life incorpo-
rating a career, family, and friends. See Table 5 for comparison 
of demographic variables. It should be emphasized that hav-
ing more control subjects (n = 40) than meditators (n = 26) 
does not compromise the validity of the behavioral or neural 
tests, on the contrary, this improves our power for detecting 
any between group differences by decreasing the standard error 
on the characterization of the response profile for controls. All 
subjects had normal or corrected-to-normal vision, and none 
had a history of neurological or psychiatric disorders, and no 
current use of psychoactive medications. All procedures were 
conducted in accordance with the Institutional Review Board 
at Baylor College of Medicine. Both groups completed pre-scan 
questionnaires to assess potential differences between groups. 
There were no significant differences between groups on Beck 
Anxiety Inventory (two sample t = −1.63; df = 64; p < 0.1), and 
Beck Depression Inventory (two sample t = 0.67; df = 64; p < 0.5). 
As expected significant differences emerged between groups 
as assessed by two mindfulness questionnaires: Mindfulness 
Attention Awareness Scale (MAAS; Brown and Ryan, 2003; two 
sample t = 2.70; df = 64; p < 0.008), and Kentucky Inventory of 
Mindfulness Skills (KIMS; Baer et al., 2004; two sample t = 2.47; 
df = 64; p < 0.01).

experIMental procedures
Participants played responders during 45 rounds of an anonymous 
version of the Ultimatum Game. Prior to scanning, participants 
were instructed in the task and were subsequently given a test to 
ensure that the nature and rules of the game were comprehen-
sible to all participants. The offers were splits of $20. On each 
round, the participants saw a bar graph with an offer (e.g., “Tom 
proposes: $9 you $11 Tom”; Figure 1B). The offer screen had a 
duration of 6 s. Next the participants were presented with the 
choice: “Accept ($9) Reject ($0),” which was presented for 3 s in 
which subjects made a response using a button-box. A red box 
placed around one of the choices indicated that a decision was 
made. Finally, a jittered inter-trial interval was presented (2–4 s). 
Participants had a button-box in each hand and were instructed 
to press with either left or right hand corresponding to the pre-
ferred choice, which was presented on left and right side of the 
screen. Position of the “accept” and “reject” choices on either left or 
right side was held constant within subjects, and counterbalanced 
across subjects. Thirty rounds were played with human partners 
and 15 with computer partners. Participants received offers in a 
predetermined fashion: 6 × $19:1, 6 × $18:2, 6 × $17:3, 6 × $16:4, 
6 × $15:5, 3 × $14:6, 3 × $13:7, 3 × $12:8, 3 × $11:9, 3 × $10:10. 
The sequence of offer presentations was randomized across par-
ticipants. Participants were presented with an identical range of 
offers in human and computer rounds.
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by participants indeed had consequences for partners on each 
round of the game. In reality, all the proposals were predetermined 
similar to other neuroimaging studies using the Ultimatum Game 
(Sanfey et al., 2003; Knoch et al., 2006; Koenigs and Tranel, 2007; 
Crockett et al., 2008).

A categorization of fair and unfair offers was made based 
on empirical data from previous studies of Ultimatum Game 
responses showing that offer sizes above 30% of the total sum 
are typically accepted (Guth et al., 1982; Thaler, 1988; Novak 
et al., 2000). The data in the present study displayed similar 
acceptance ratios. Proposals of 30% of the total sum (corre-
sponding to the $14:6 offer sizes in the present study) displayed 
acceptance rates of 88% (std = 5.04) for meditators, and 95% 

The stimuli were presented at a screen resolution of 1024 × 768 
pixels. Stimuli were presented and responses collected using NEMO 
(Human Neuroimaging Lab, Baylor College of Medicine). The stim-
uli were back-projected via an LCD projector onto a transparent 
screen positioned over the subjects’ head and viewed through a 
tilted mirror fixed to the head coil.

Prior to the experiment participants were told that the offers 
presented in the human rounds had been made by proposers 
in a previous experiment, i.e., that the offers were real, and that 
proposers would be paid according to the decision made by the 
participants. It was made explicit to participants that they would 
play a different person on each round. This served as a cover story 
to enhance the ecology of the game, i.e., that the choices made 

FIguRe 1 | (A) 40 controls and 26 meditators played responders in the 
Ultimatum Game. Subjects choose on each round to accept or reject a monetary 
split of $20 made by a new partner on each round. (B) Trial outline for the 
Ultimatum Game. Each trial started with a jittered fixation period (2–4 s) followed 
by an offer to split $20 (6 s). Finally subjects indicated the decision to accept or 

reject the offer (3 s). A red box highlighted the choice being made on each trial. 
(C) Behavioral results from the Ultimatum Game – meditators (red) displayed 
significantly higher acceptance rates for the most asymmetric offers from 
human partners ($19:1 and $18:2) compared to controls (blue). The mean and 
SEM are plotted.
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were based on a single-voxel t-statistic or cluster-level corrected 
corresponding to p < 0.05 corrected for multiple comparisons 
with an extent threshold of >10 voxels (unless otherwise stated). 
Where cognitive conjunctions were used a threshold of p < 0.001, 
uncorrected was applied. The coordinates of all activations are 
reported in MNI space.

A ROI analysis in bilateral anterior insula was identified using 
the coordinates provided by a previous study (Sanfey et al., 2003). 
Coordinates from this study were transformed from Talairach space 
to MNI space (www.mrc-cbu.cam.ac.uk). A spherical mask with 
a 5-mm radius centered at [35 15 4] and [−33 14 0] was used to 
extract the time-series from bilateral anterior insula for human tri-
als. A correlation analysis was computed to explore if the anterior 
insula co-varied with individual differences in terms of the percent 
acceptance rates for the most unfair offer conditions ($19:1 and 
$18:2) for each group separately. The first-level beta values using the 
regressors of interest ($19:1 and $18:2) were averaged and entered 
into a regression analysis at the second level.

A second ROI analysis was performed for bilateral anterior insula 
using identical parameters as in the previous ROI except that both 
fair (i.e., $10:10–$14:6) and unfair offer sizes (i.e., $19:1–$15:5) 
were included in the analysis. Consistent with previous models 
the offer onset was modeled as single impulse response functions 
including the 6-s epoch following the offer. Beta values within this 
ROI were extracted and mean ± SE were computed for each group 
and plotted in fair and unfair bins.

In order to explore if unfair human offers differed according to the 
decision to accept or reject an unfair offer, we separated the data into 
subsequent decision to accept or reject unfair human offers. Specifically, 
using the coordinates from the interaction analysis for human trials 
[Meditators Unfair > Meditators Fair] > [Controls Unfair > Controls 
Fair] centered in the right posterior insula [48 −28 20] constituting 
29 voxels, we extracted the mean ± SE beta values within this region 
according to subsequent decision.

We performed a linear regression (separately for the two groups) 
to explore individual differences in trait mindfulness levels as 
measured by the MAAS and the KIMS. We regressed a behavioral 
measure of the size of the MAAS and KIMS for each individual 
on a neural measure of the impact on posterior insula activity. 
Specifically, the neural measure was given by the estimated beta 
value at peak voxels from the right posterior insula derived from 
the contrast [Meditators Unfair > Meditators Fair] > [Controls 
Unfair > Controls Fair]. Each individual was an observation.

behavIoral results
We first asked whether meditators were less likely than controls to 
reject opportunities for monetary gain during asymmetric offers 
in the Ultimatum Game when playing with human partners. In 
accordance with previous findings (Guth et al., 1982; Bolton and 
Zwick, 1995; Sanfey et al., 2003), both meditators and controls 
tended to accept offers that were relatively symmetrical ($10:10–
$14:6; Figure 1C). Likewise, both groups showed an increasing 
tendency to reject monetary rewards as the offers became more 
asymmetric, overall ($15:5–$19:1). However, the two groups 
showed a bifurcation of acceptance rates for the most asymmetric 
offers ($18:2 and $19:1). Compared to controls, meditators were 
significantly less likely to reject opportunities for monetary gain 

(std = 2.99) for controls for human conditions. These two lines 
of evidence support a categorization of fair ($10:10–$14:6) and 
unfair ($19:1–$15:5) offers.

At the end of the experiment, participants were paid according 
to the decisions they made on one randomly selected round. In 
addition participants were paid a flat fee of $20 (to cover park-
ing expenses and compensation for completing paperwork). 
Participants were informed about this payment method prior to 
the experiment.

fMrI data acquIsItIon
The anatomical and functional imaging was performed using 
3 Tesla Siemens Trio scanners. High-resolution T1 weighted scans 
were acquired using an MPRAGE sequence (Siemens). Functional 
imaging used an EPI sequence with a repetition time (TR) of 
2000 ms, echo time (TE) = 25 ms, flip angle = 90°, 220 mm field 
of view (FOV), 64 × 64 matrix. Functional slices were oriented 30° 
superior–caudal to the plane through the anterior and posterior 
commissures in order to reduce signal drop-out due to magnetic 
field in-homogeneities (Deichmann et al., 2003). Each functional 
image was acquired in an interleaved way, comprising thirty-
seven 4 mm axial slices for measurement of the blood oxygena-
tion level-dependent (BOLD) effect (Ogawa et al., 1990), yielding 
3.4 mm × 3.4 mm × 4.0 mm voxels.

fMrI data analysIs
Image pre-processing and data analysis was performed using SPM2 
(Wellcome Department of Imaging Neuroscience, London, UK). 
Motion correction to the first functional scan was performed using 
a six parameter rigid-body transformation (Friston et al., 1996). 
The average of the motion-corrected images was co-registered to 
each individuals structural MRI using a 12 parameter affine trans-
formation. Slice timing artifact was corrected, after which images 
were spatially normalized to the Montreal Neurological Institute 
(MNI) template provided in SPM2. Images were then spatially fil-
tered with an 8-mm isotropic Gaussian kernel and for the analysis 
a high pass filter with a cut-off frequency at 1/128 Hz was applied.

Following pre-processing a general linear model (GLM) was 
applied to the fMRI time-series that time-locked single impulse 
response functions at offer onset including the 6-s epoch following 
the offer. The model included 20 regressors, which modeled the 
10 human offer conditions and the 10 computer offer conditions. 
Results from the computer conditions will be summarized in a 
separate paper. Residual effects of head motion were corrected for 
by including the six estimated motion parameters for each subject 
as regressors of no interest. The model was convolved with the 
canonical hemodynamic response function (HRF; Friston et al., 
1998). The mean images from the first-level analysis were entered 
into a second-level, random effects (RFX) analysis accounting for 
the between subject variance. An ANOVA model using the beta 
estimates of the regressors of interest was used. Equal variance 
was not assumed, thus SPM2’s options for non-sphericity cor-
rection was applied (Glaser and Friston, 2004). Using t-contrasts 
allowed us to test for correlations of the fMRI BOLD signal and 
the parameters of interest. The resulting t maps were subsequently 
transformed to the unit normal z-distribution to create a statisti-
cal parametric map for each contrast. The statistical results given 
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occipital gyrus (Figure 2; Table 1). Conversely, meditators showed 
significantly greater activity than controls in bilateral mid- and 
posterior insula and bilateral posterior parietal cortex (PPC; 
Figure 2; Table 1).

We next performed a contrast to identify brain regions showing 
a significant interaction between group (meditator versus control) 
and offer type (unfair versus fair). In this contrast, meditators dis-
played a different response profile from controls in the right post-
central gyrus and right posterior insula (Figure 3A; Table 4). Mean 
beta values for the activation in the right posterior insula scale lin-
early with unfairness in meditators (Figure 3C), but not in controls 
(Figure 3D). Furthermore, in meditators only, right posterior insula 
activity was predictive of the subsequent decision to accept or reject 
an unfair offer (Figure 3B). Meditators showed significantly greater 
activity in this region when unfair offers were later rejected (paired 
t = 4.8; p < 10–6). In controls, no such distinction was apparent 
(paired t = 0.3; p < 0.7). The converse interaction displayed activity 
in the right supramarginal gyrus (Table 4). We estimated a linear 
regression of the impact of right posterior insula against a behavioral 
measure of each individual’s score on two mindfulness scales. We 
employed the MAAS and KIMS as both of these scales has in previ-
ous studies been applied as a measure of trait levels of mindfulness 
(Brown and Ryan, 2003; Baer et al., 2004; Creswell et al., 2007). We 
performed the correlation separately for meditators and controls. 
The analysis showed that right posterior insula correlated with indi-
vidual differences in trait mindfulness levels in the meditator group 
(MAAS; R = 0.55, p = 0.001. KIMS; R = 0.6, p = 0.001; Figures 3E,F). 
This correlation was absent in controls (MAAS; R = 0.18, p = 0.1. 
KIMS; R = 0.21, p = 0.1; Figure not shown).

Previous studies have associated activity in the anterior insula 
with responders’ negative emotional response to an unfair offer 
(Sanfey et al., 2003). We therefore performed an ROI analysis in 

for the two most asymmetric offer conditions ($19:1; two sample 
t = 2.44, df = 64, p < 0.01. $18:2; two sample t = 2.39, df = 64, 
p < 0.01). In absolute terms, meditators were willing to accept a 
$19:1 split on 54% of trials, while controls were willing to accept 
this same division on only 28% of trials. Similarly, meditators were 
willing to accept an $18:2 split on 61% of trials, while controls were 
willing to accept this split on only 42% of trials. Hence, for the most 
asymmetric offers, meditators were more likely than controls to 
accept an opportunity for personal monetary gain, notwithstanding 
the larger gains accruing to their partners on these trials.

neuroIMagIng results
Our behavioral findings suggested a difference between meditators 
and controls in the response to asymmetric (unfair) offers. For 
each group, we therefore began by identifying the brain areas that 
showed a difference in activity during the offer period for unfair 
($15:5–$19:1) versus fair ($10:10–$14:6) offers. In meditators, 
greater activation for unfair offers appeared in the bilateral poste-
rior insula, right postcentral gyrus, ACC (BA 32), left mid- anterior 
insula, thalamus, and cerebellum (Table 2). By contrast, controls 
displayed greater activity in bilateral anterior insula/inferior frontal 
gyrus (IFG), bilateral medial frontal gyrus (BA 9/10), bilateral ACC 
(BA 24/32), bilateral middle temporal gyrus, right supramarginal 
gyrus, and cerebellum (Table 3). To test for common areas activated 
by unfairness in both meditators and controls, we performed a 
conjunction analysis. This analysis revealed a common response 
to unfairness in the left ACC (BA 24/32).

Having established the neural correlates of unfairness in each 
group, we performed a direct contrast of the neural responses to 
unfair offers between the two groups. In this contrast, controls 
showed significantly greater activity than meditators in the left 
dorsal striatum, left lingual gyrus, bilateral precuneus, and middle 

FIguRe 2 | Within group (A,B) and across group (C,D) main effects of unfair 
offers. (A) Controls (Ctr) displayed more activity in bilateral superior temporal 
sulcus (STS), anterior cingulate cortex (ACC), bilateral inferior frontal gyrus (IFG)/
anterior insula (AIns), and superior frontal gyrus (MPFC) for unfair offers relative 
to fair offers by human partners. (B) Significant activity to unfair versus fair offers 
was found in meditators (Medi) in the thalamus (Thal), bilateral posterior insula 

(PIns), left mid-anterior insula, and ACC. Direct comparison between unfair offers 
across groups: (C) Left precuneus (Prc), left dorsal striatum (DStr), and 
lingual-occipital gyri (LG) are shown overlaid on coronal and sagittal sections. 
(D) Bilateral mid insula (MIns) and bilateral posterior insula (PIns) are shown on 
separate coronal sections. The activations are FDR-corrected. The ACC is 
displayed at p < 0.001, uncorrected to illustrate the extent of the activation.
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controls versus rational meditators we found elevated activity in 
bilateral DLPFC (Left: z = 3.15; −32 48 28; p < 0.001, uncorrected. 
Right: z = 3.09; 36 48 20; p < 0.001, uncorrected; Figure 5, left 
panel). In the opposite contrast [meditators > controls] we did 
not observe activity in the DLPFC, but found activity in the left 
postcentral gyrus extending into the posterior insula (z = 4.51; −52 
−20 40; p < 0.001, uncorrected), the left posterior superior temporal 
cortex (pSTC; z = 3.65; −48 −56 12; p < 0.001, uncorrected), and 
bilateral parahippocampal gyrus (Left: z = 3.91; 32 −40 −16. Right: 
z = 3.73; −28 −40 −16, p < 0.001, uncorrected; Figure 5, right panel).

dIscussIon
A rational economic agent, homo economicus, should in theory 
accept all non-zero offers in the Ultimatum Game, since any amount 
of reward is better than nothing. However, in reality, human beings 
have a strong tendency to measure their rewards against the rewards 
of their peers. This tendency is often described as a characteristically 
human form of irrational behavior (Fehr and Fischbacher, 2003). 
Yet in this study, we identified a population of human beings who 
play the Ultimatum Game more like homo economicus. Experienced 
meditators were willing to accept even the most asymmetrical offers 
on more than half of the trials, whereas control members of homo 
sapiens did so just over one-quarter of the trials.

In dual-process accounts of human decision-making, sepa-
rate “rational,” and “emotional” systems compete to control the 
outcome of human decisions (Tversky and Kahneman, 1981; St. 
Evans, 2008). Neuroimaging studies have suggested that these 
two systems may have distinct neural correlates. For example, 
intuitive or  emotion-driven decisions tend to be associated with 
greater activity in medial prefrontal and medial orbitofrontal cor-
tical areas and their striatal counterparts, while more rational 
or deliberative decisions tend to be associated with a shift in 
activity toward more lateral prefrontal and parietal areas and 
their striatal counterparts (Goel and Dolan, 2003; Greene et al., 
2004; McClure et al., 2004). Hence, when comparing medita-
tors to control subjects, we might have expected to see a shift 
in activity from medial to lateral prefrontal cortical areas in 
 meditators playing the Ultimatum Game. In reality, the neuroim-
aging results showed quite a different pattern. During decision-
making, control subjects activated a network of areas including 
medial prefrontal cortex, anterior cingulate cortex, and superior 
temporal sulcus (Figure 2A; Table 3). This network was largely 
consistent with that seen in previous neuroimaging studies of 
the Ultimatum Game, and other tasks involving social cognition 
and theory of mind (Sanfey et al., 2003; Amodio and Frith, 2006; 
Adolphs, 2009). In sharp contrast, meditators showed activity 
in an entirely separate network, which comprised  primarily the  
mid- and posterior insula and ventral posterior thalamus 
(Figure 2B; Table 2). Rather than social cognition and theory of 
mind, these areas are more typically associated with interoception: 
the representation of the body’s internal state (Craig, 2002, 2009). 
Specifically, a representation of the body’s internal state is mapped 
by afferents through the ventromedial thalamic nucleus to the 
sensorimotor cortex and the mid/posterior insula (Craig, 2002).

Strikingly, there was very little overlap in activity between medi-
tators and controls. The left ACC (BA 24/32) was the only region 
activated in a conjunction analysis between controls and medi-

this region to assess its response to unfair offers in meditators and 
controls. Using the coordinates of the study cited above, we placed 
a 5-mm spherical ROI in the bilateral anterior insula and extracted 
beta estimates for fair and unfair offers in each group. In controls, 
the right and left anterior insula showed significantly higher activ-
ity for unfair versus fair offers (Left: paired t = 3.4, p < 10−4. Right: 
paired t = 2.6, p < 0.008). However, no such differences were seen 
in meditators (Left: paired t = 1.3, p < 0.2. Right: paired t = 0.7, 
p < 0.4; Figures 4D,E). Furthermore, left anterior insula displayed 
a significant difference between unfair offers in controls compared 
to meditators (two sample t = 1.9, p < 0.05). There were, however 
no such difference between unfair offers in controls compared to 
meditators in the right anterior insula (two sample t = 0.8, p < 0.4). 
Importantly, there was no difference in bilateral anterior insula 
between fair offers in the two groups.

We also sought to determine whether neural activity in the 
anterior insula ROIs could predict individual subjects’ acceptance 
rates for the most unfair offers ($19:1 and $18:2). Control subjects 
with stronger anterior insula activation for unfair offers showed 
lower acceptance rates for these offers (Left: R = −0.41, p = 0.004, 
one-tailed. Right: R = −0.45, p = 0.002, one-tailed; Figure 4B). 
However, in meditators, this was not the case. Neural activity in the 
anterior insula did not predict acceptance rates for unfair offers in 
the meditator group (Left: R = −0.23, p = 0.12, one-tailed. Right: 
R = −0.31, p = 0.06, one-tailed; Figure 4C).

We finally made a comparison between the participants who on 
average accepted >85% of the most unfair offers ($19:1 and $18:2). 
This process yielded a subdivision of the most rational participants 
from the control group (n = 9) and meditator group (n = 14). We 
expected that rational controls would recruit the DLPFC as previ-
ous studies have demonstrated that the DLPFC reduces subjects’ 
willingness to reject unfair offers in the Ultimatum Game (Sanfey 
et al., 2003; Knoch et al., 2006). In a contrast between rational 

Table 1 | Between-group main effects of unfair offers for human 

conditions.

Region Voxels t-Value MNI

   x  y  z

[MeDITAToRs uNFAIR > CoNTRoLs uNFAIR]

Right mid/posterior insula 14 4.20 44  −4  8

Left mid/posterior insula 40 4.15 −44  −4  8

Right posterior insula 16 3.97 36  −28  20

Left posterior insula 62 4.51 −44  −24  20

Right posterior parietal cortex (PPC) 23 4.05 20  −64  40

Left posterior parietal cortex (PPC) 33 4.52 −32  −69  32

[CoNTRoLs uNFAIR > MeDITAToRs uNFAIR]

Right middle occipital gyrus 46 5.86 24  −96  4

Left middle occipital gyrus 63 6.30 −28  −92  0

Left lingual gyrus 21 4.94 −16  −64  −4

Right precuneus 11 4.38 16  −76  28

Left precuneus 13 4.60 −4  −52  56

Left dorsal striatum  11 4.11 −12  4  12

Activations are displayed at p < 0.05, FDR-corrected. Extent threshold > 10 
voxels.
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Instead, they drew upon the posterior insula and thalamus: areas 
usually linked to visceral, emotional rather than rational, delibera-
tive functions.

The behavioral difference between meditators and controls was 
significant for the most asymmetric offers (Figure 1C). Focusing on 
unfair trials, a direct contrast of activation between the two groups 
showed illuminating differences in neural activity (Figures 2C,D). 

tators. So, when playing the Ultimatum Game,  meditators were 
distinct from controls not only in their decision-making behavior, 
but also in its underlying neural correlates. However, although the 
meditators played the game more like the rational homo economi-
cus, they did not draw upon the network of lateral prefrontal and 
parietal regions typically seen for mathematical and logical reason-
ing (Duncan et al., 2000; Goel and Dolan, 2003; Lee et al., 2006). 

FIguRe 3 | Meditation-specific activity in posterior insula. (A) Significant 
interaction effect in meditators compared with controls in response to unfair 
offers ($19:1–$15:5) relative to fair offers ($10:10–$14:6). Activity was significant 
in right posterior insula for this contrast. (B) Average beta estimates from 29 
voxels in the right posterior insula during the 6-s period following the offer are 
plotted according to subsequent decision to accept or reject unfair offers 
($19:1–$15:5). Activity in this region is driven by unfair offers that are rejected 
relative to accepted in meditators. In contrast, no such response is significant in 

controls. (C,D) Average beta estimates from the voxels in the right posterior 
insula. The plots display a linear scaling with size of unfairness in meditators, 
which is not present in controls. Mean ± SE are plotted in increments of $2 bins. 
Activity within the right posterior insula in meditators is significantly correlated 
with individual differences in trait mindfulness levels as measured by (e) the 
Mindfulness Attention Awareness Scale (MAAS) and (F) the Kentucky Inventory 
of Mindfulness Skills (KIMS). The Pearson correlation coefficient (R) is given in 
the plot. Each data point represents a subject.
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FIguRe 4 | RoI analysis in anterior insula. (A) Plots of beta estimates drawn 
from 5 mm ROIs in left anterior insula based on coordinates from a previous study 
(Sanfey et al., 2003). Activity within the left anterior insula is plotted against 
acceptance rates for the most unfair offer sizes ($19:1–$18:2) for each participant 
separately for (B) controls and (C) meditators. The Pearson correlation coefficient 

(R) is given in the plot. Each data point in the plot represents a subject. A similar 
correlation pattern was found for right anterior insula in both groups (not shown). 
(D) Controls display a significant difference between fair ($10:10–$14:6) and unfair 
($19:1–$15:5) offers in the left anterior insula. (e) The meditator group shows no 
significant differences between fair and unfair responses in the left anterior insula.

FIguRe 5 | Comparison between a subset of participants that play the 
ultimatum game like rational agents; controls (n = 9) and meditators 
(n = 14). The main effect [Controls > Meditators] display elevated activity in 
bilateral DLPFC, whereas in the opposite contrast [Meditators > Controls] the 
left postcentral gyrus (PCG) and left posterior superior temporal cortex (pSTC) 
are displayed.

Controls responded to asymmetric offers by engaging the precuneus 
and a dorsal region of the caudate nucleus. This specific region of 
the precuneus figures prominently in studies of episodic memory 
and prospection (the construction of imaginary or future personal 

scenarios; Buckner and Carroll, 2007; Addis et al., 2009; Spreng 
et al., 2009). The dorsal caudate region also appears as a specific 
neural correlate of “fictive error,” or the difference between actual 
and optimal reward, during financial decision-making (Lohrenz 
et al., 2007). Hence, control subjects may be assessing asymmetric 
offers in terms of past or hypothetical future scenarios and fictive 
losses. Furthermore, the dorsal striatum is elevated during altruistic 
punishment of defectors in an economic exchange (de Quervain 
et al., 2004), presumably reflecting signals to punish norm violators, 
which in the current study may explain controls’ increasing rejec-
tion rates to the most asymmetric offers, compared with meditators. 
In contrast, meditators showed greater activity in the insula and 
PPC: areas more closely linked to interoception and attending to 
the present moment (Critchley et al., 2004; Farb et al., 2007). There 
exist physiological evidence from previous meditation studies that 
the left insula is predominantly responsible for parasympathetic 
control (Lutz et al., 2009; Tang et al., 2009), whereas the right insula, 
which we observed in the interaction between group (meditator 
versus control) and offer type (unfair versus fair; Figure 3), has in 
several studies been proposed to play a role in attending to internal 
bodily states (Craig, 2003). Previous meditation studies have found 
right insula involvement in focused attention to internal experi-
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Table 2 | Within group main effects of unfairness for human conditions 

[meditators unfair > meditators fair].

Region Voxels t-Value MNI

   x  y  z

Left ACC (BA 32) 24 3.80 −4  44  8

Left mid/anterior insula 12 3.55 −36  4  8

Right posterior insula 83 4.58 32  −24  16

Left posterior insula 89 4.13 −32  −24  16

Right postcentralgyrus 11 4.02 20  −44  68

Thalamus: 28  

Right ventroposterior lateral nucleus  3.80 16  −20  4

Right ventral lateral nucleus  3.43 16  −16  12

Right/left medial dorsal nucleus  3.65 4  −12  4

Left cerebellum 20 4.82 −8  −52  −8

Activations are displayed at p < 0.05, FDR-corrected. Extent threshold > 10 
voxels. AAC, anterior cingulate cortex; BA, Brodmann area.

ences (Holzel et al., 2008), and momentary self-reference (Farb 
et al., 2007). Based on these findings it is likely that meditators 
particularly during unfair offers were better able than controls to 
maintain interoceptive awareness, e.g., attending to internal bodily 
states. This interpretation is further supported by the finding that 
posterior insula is significantly correlated with behavioral measures 
of mindfulness trait levels in meditators in the direction of being 
more engaged in those meditators with higher mindfulness scores 
as measured by the MAAS and KIMS.

In the subset of participants who tended to accept the most 
unfair offers we found increased activity in bilateral DLPFC for 
controls, presumably reflecting the higher cognitive demands in 
order to overcome the emotional tendency to reject an unfair 
offer (Figure 5). The involvement of the DLPFC in playing the 
Ultimatum Game like homo economicus is well known (Sanfey et al., 
2003; Knoch et al., 2006). This result is also consistent with recent 
studies associating the DLPFC with self-control (Hare et al., 2009) 
which provide an anatomical base for successful self-regulation in 
rational controls. Yet the subset of rational meditators displayed 
activity in a different set of regions suggesting that they were not 
motivated by economic self-interest. This group recruited the 
somatosensory cortex, pSTC, and the parahippocampal gyrus. The 
somatosensory cortex is reported in studies requiring mapping of 
subjective feeling states arising from bodily responses (Critchley 
et al., 2004; Lutz et al., 2008b, 2009). Whereas the pSTC is involved in 
shifting attention to focus on another’s perspective (Behrens et al., 
2008; Hampton et al., 2008) as well as related to altruistic behavior 
(Harbaugh et al., 2007; Tankersley et al., 2007).

Table 3 | Within group main effects of unfairness for human conditions 

[controls unfair > controls fair].

Region Voxels t-Value MNI

   x  y  z

Right IFG/anterior insula 49 4.29 32  20  −8

Left IFG/anterior insula 50 3.83 −44  24  −8

Right medial frontal gyrus (BA 9/10) 22 5.44 8  60  16

Left medial frontal gyrus (BA 10) 11 5.16 −8  60  20

Right ACC (BA 24/32) 21 4.40 8  28  24

Left ACC (BA 32) 15 4.22 −4  36  24

Right superior frontal gyrus (BA 8) 18 4.82 16  32  56

Right superior temporal sulcus (STS) 69 4.52 48  −28  −8

Left superior temporal sulcus (STS) 44 4.37 −52  −40  −4

Right supramarginal gyrus 75 5.70 60  −52  28

Right cerebellum 14 4.52 24  −76  −32

Activations are displayed at p < 0.05, FDR-corrected. Extent threshold > 10 voxels. 
IFG, inferior frontal gyrus; AAC, anterior cingulate cortex; BA, Brodmann area.

Table 4 | group × offer type (unfair, fair) interactions for human conditions.

Region Voxels t-Value MNI

   x  y  z

[MeDITAToRs uNFAIR > MeDITAToRs FAIR] > [CoNTRoLs uNFAIR > CoNTRoLs FAIR]

Right posterior insula 29 3.82 48  −28  20

Right postcentral gyrus (BA 3) 16 3.79 20  −44  72

[CoNTRoLs uNFAIR > CoNTRoLs FAIR] > [MeDITAToRs uNFAIR > MeDITAToRs FAIR]

Right supramarginal gyrus 38 4.06 48  −56  32*

Activations are displayed at p < 0.001, uncorrected. Extent threshold > 10 voxels. *Significant at p < 0.05 after whole brain cluster correction with a t-threshold of 
3.1 and an extent of 36 voxels.

Table 5 | Demographic variables of controls and meditators.

 Controls (n = 40) Meditators (n = 26)

Age 36.8 (10.1) 40.4 (10.4)

Female:male 21:19 10:16

SES 49.9 (8.4) 48.3 (12.1)

Meditation experience (years) – 9.5 (7.8)

Mean demographic variables were compared using two-sample t-tests assuming 
unequal variance. SD in parentheses. No significant differences (p < 0.05) 
between controls and meditators were found. SES; social economic status.
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free dollar over no money at all, rather than reject the reward due 
to its unfavorable social context. Proximately, meditators seem to 
avoid generating aversive responses in the anterior insula during 
unfair offers. In controls, such responses are powerful predictors of 
rejecting offers during social interaction, but in meditators, these 
responses are largely absent during the Ultimatum Game. Future 
studies should assess whether blunting of the high-level emotional 
representation of the anterior insula is an automatic interoceptive 
response based on acquired mindfulness skills. Our results suggest 
that the lower-level interoceptive representation of the posterior 
insula is recruited based on individual trait levels in mindfulness. 
When assessing unfair offers, meditators seem to activate an almost 
entirely different network of brain areas than do normal controls. 
Controls draw upon areas involved in theory of mind, prospec-
tion, episodic memory, and fictive error. In contrast, meditators 
instead draw upon areas involved in interoception and attention 
to the present moment.

The rejection of asymmetric rewards is often seen as an impor-
tant tool for enforcing social norms and encouraging cooperative 
behavior (Fehr and Gachter, 2002). Unfortunately, it can also have 
the opposite effect. Siblings, schoolchildren, and CEOs have all 
been known to worry more about their competitors’ rewards than 
their own – with unhappy social consequences for everyone else. 
This study suggests that the trick may lie not in rational calculation, 
but in steering away from what-if scenarios, and concentrating on 
the interoceptive qualities that accompany any reward, no matter 
how small.
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Meditators and controls also showed a marked difference in the 
activity of the anterior insula during the Ultimatum Game. The ante-
rior insula has previously been linked to the emotion of disgust (Calder 
et al., 2001), and plays a key role in social norm violations, rejection, 
betrayal, and mistrust (Rilling et al., 2002; Spitzer et al., 2004; King-
Casas et al., 2005; Montague and Lohrenz, 2007). In previous studies 
of the Ultimatum Game, anterior insula activity was higher for unfair 
offers, and the strength of its activity predicted the likelihood of an offer 
being rejected (Sanfey et al., 2003). In the present study, this was true 
for controls, but not for meditators. In control subjects, the anterior 
insula became active in response to unfair offers, and individuals with 
higher anterior insula activity tended to reject more of such offers 
(Figures 4B,D). However, in meditators, the anterior insula showed 
no significant activation for either fair or unfair offers, and there was 
no significant relationship between anterior insula activity and offer 
rejection (Figures 4C,E). Hence, meditators were able to uncouple the 
negative emotional response to an unfair offer, presumably by attend-
ing to internal bodily states reflected by activity in the posterior insula. 
This relationship was not apparent in control subjects. Meditators may 
not experience unfair offers as social norm violations, as suggested by 
their higher acceptance rates for asymmetric offers.

One limitation of the present study is that it employed a cross-
sectional rather than longitudinal design. Hence, it was not possible 
to compare the behavior of the subjects before and after they started 
practicing meditation. Without this information, we cannot yet deter-
mine whether the meditators actually acquired a different behavioral 
profile through meditation experience, or whether the meditation 
group is simply a highly selected subset of a rare behavioral phenotype 
within the general population. Future work may help to determine 
whether a structured program of meditative training can produce the 
observed changes in social cognition and decision-making.

To summarize, we have identified a population of human beings 
with an unusual tendency to behave more like rational economic 
agents in the Ultimatum Game. Specifically, these experienced 
meditators are roughly twice as likely as controls to say yes to a 
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Dopamine and effort-based decision making
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Motivational theories of choice focus on the influence of goal values and strength of reinforcement 
to explain behavior. By contrast relatively little is known concerning how the cost of an action, 
such as effort expended, contributes to a decision to act. Effort-based decision making addresses 
how we make an action choice based on an integration of action and goal values. Here we 
review behavioral and neurobiological data regarding the representation of effort as action 
cost, and how this impacts on decision making. Although organisms expend effort to obtain 
a desired reward there is a striking sensitivity to the amount of effort required, such that the 
net preference for an action decreases as effort cost increases. We discuss the contribution 
of the neurotransmitter dopamine (DA) toward overcoming response costs and in enhancing 
an animal’s motivation toward effortful actions. We also consider the contribution of brain 
structures, including the basal ganglia and anterior cingulate cortex, in the internal generation 
of action involving a translation of reward expectation into effortful action.

Keywords: basal ganglia, vigor, effort, ACC, dopamine, apathy

2005). Thus, ducks choose between walking or flying depending 
on optimal solution of net gain between energy requirements in 
walking or flying and the food gained (Bautista et al., 2001).

In what follows we discuss a literature that has endeavored to 
understand the neural mechanisms of effort and reward integra-
tion, including the involvement of dopamine (DA) in effort-based 
behavior. This literature points to the basal ganglia, particularly 
dorsal and ventral striatum, and anterior cingulate cortex (ACC) as 
the principal substrates in both representing and integrating effort 
and action implementation. Finally, we suggest that pathologies in 
effort expenditure, the paradigmatic instance being the clinical phe-
nomenon of apathy, can be characterized behaviorally as impair-
ment in representing action–outcome association and neurally as 
a disruption of core cortico-subcortical circuitry.

The regulaTory role of dopamine in efforT
Over the past three decades, theories concerning the role of midbrain 
DA on behavior have changed dramatically. The hedonic hypothesis 
of DA (Wise, 1980) is now challenged by empirical evidence revealing 
that global DA depletion (including within the accumbens, a major 
recipient for DA) does not impair hedonic (‘liking’) responses to pri-
mary rewards such as orofacial reactions, the preference for sucrose 
over water, or discrimination among reinforcement (Berridge et al., 
1989; Cousins and Salamone, 1994; Cannon and Palmiter, 2003). 
On the other hand the same lesions profoundly impair performance 
of instrumental tasks necessary to obtain rewards that are liked 
(Berridge and Robinson, 1998). These observations have led to 
a formulation that the contribution of DA includes an effect on 
motivated behaviors toward desired goals, a concept referred to as 
“wanting” (Berridge and Robinson, 1998). “Wanting” (Table 1) can 
be expressed in simple instrumental responses, such as button or 
lever presses or in a more expanded form of behaviors which require 
an agent to overcome action costs. As demonstrated unequivocally 
by Salamone and colleagues (Salamone and Correa, 2002; Salamone 

“So she was considering in her own mind […], whether the pleasure 
of making a daisy-chain would be worth the trouble of getting up 
and picking the daisies…”
Alice in “Alice’s Adventures in Wonderland,” Carroll, (1865, p. 11)

Effort is commonly experienced as a burden, and yet we readily 
expend effort to reach a desired goal. Many classical and contem-
porary studies have assessed the effect of effort expenditure on 
response rates, by varying experimental parameters such as the 
weight of a lever press, the height of a barrier to scale, or the num-
ber of handle turns needed to generate a unit of reward (Lewis, 
1964; Collier and Levitsky, 1968; Kanarek and Collier, 1973; Collier 
et al., 1975; Walton et al., 2006; Kool et al., 2010). There is general 
agreement that animals, including humans, are disposed to avoid 
effortful actions. It is paradoxical then that effort is not always 
treated as a nuisance, and there are instances where its expenditure 
enhances outcome value as observed in food palatability (Johnson 
and Gallagher, 2010), likability (Aronson, 1961), and indeed the 
propensity to choose a previously effortful option (Friedrich and 
Zentall, 2004). What is most surprising is the observation that effort 
often biases future choice toward effortful actions (Eisenberger 
et al., 1989).

Laboratory results show that if reward magnitude is held con-
stant then high-effort tasks tend to be avoided (Kool et al., 2010). 
Yet, in daily life most organisms seem superficially indifferent to 
the varying costs of action and readily choose challenging tasks 
to achieve a desired goal (Duckworth et al., 2007). Such observa-
tions point to the presence of a mechanism that integrates effort 
costs with benefits in order to implement desired actions (see 
Floresco et al., 2008b for review on various cost–benefit analyses 
and Salamone et al., 2007 for an earlier review on dopamine and 
effort). This perspective has been addressed by optimal foraging 
theory. It is known that animals will strive to maximize gain whilst 
minimizing energy expenditure (Bautista et al., 2001; Stevens et al., 
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reinforcement learning (Sutton and Barto, 1998). Reinforcement 
learning offers ways to formalize the process of reward maximiza-
tion through learned choices and has a close resonance with the 
neuroscience of decision making (Montague et al., 1996; Montague 
and Berns, 2002; Niv et al., 2005; Daw and Doya, 2006). In particular, 
phasic responses of macaque and rodent midbrain dopaminergic 
neurons to rewards, and reward-associated stimuli, are akin to a 
reward prediction error signal within reinforcement learning algo-
rithms, responding to unexpected rewards and stimuli that predict 
rewards but not to fully predicted rewards (Schultz et al., 1997; 
Bayer and Glimcher, 2005; Morris et al., 2006; Roesch et al., 2007). 
Moreover, functional magnetic resonance imaging (fMRI) studies 
report that the BOLD signal in the striatum, a major target of the 
dopaminergic system, correlates with the prediction error signals 
derived from fitting subject’s behavior to a reinforcement learning 
model (Mcclure et al., 2003; O’Doherty et al., 2003, 2004). In support 
of such a role for dopamine in reinforcement learning processes, 
stimulation of the substantia nigra (using intracranial self-stimula-
tion paradigm) has been shown to induce a potentiation within cor-
ticostriatal synapses at the site where nigral output cells terminate, 
with these effects in turn being blocked by systemic administration 
of a DA D1/D5 antagonist (Reynolds et al., 2001). Importantly, the 
magnitude of potentiation is negatively correlated with the time 
taken by an animal to learn the self-stimulation paradigm.

Dopamine is also proposed to signal stimulus salience, as opposed 
to reward prediction error (Redgrave et al., 1999). Redgrave et al. 
(1999) have discussed the stereotypical latency and duration of  phasic 
bursts of nigral dopaminergic neurons, as well as the  connectivity 

et al., 2003; Salamone, 2007), accumbens DA depletion disrupts 
instrumental responding if the responses require an energetic 
cost such as climbing a barrier (Salamone et al., 1994), but leaves 
reward preference intact when effort is minimal. This has led to an 
hypothesis that DA plays a role in overcoming “costs” (Salamone 
and Correa, 2002; Phillips et al., 2007).

alTernaTive views on The role of dopamine in 
decision making
There are several alternative views to dopamine which we summa-
rize in Figure 1. Aside from a role in the expression of motivated 
behavior, DA is also involved in its acquisition through learning. An 
influential view on how dopamine influences behavior comes from 

Figure 1 | The figure illustrates a range of views regarding the role of 
dopamine in facilitating motivated behavior. Clockwise from top left 
corner: a wealth of evidence shows that DA acts to invigorate an agent’s 
effortful action, integrating ideas about overcoming effort costs, agents’ 
choice for high-effort options as well as modeling work on vigor. Another 
influential view pertains to DA acting as a signal for a prediction in reward as 
exemplified by its role in reinforcement learning. An alternative view interprets 
this signal as a saliency signal which allows agents to implement associative 
learning. Finally, dopamine may facilitate flexible switching and re-engagement 
in relation to reward-driven behavior. The summarized perspectives are not 
mutually exclusive, nor do they represent the entire literature on dopamine, 
but are useful in understanding what determines motivated behavior.

Table 1 | Key concepts.

Key word Definition/related concepts

Effort Strenuous physical or mental exertion typically 

with the aim of achieving a desired outcome or 

goal.

Liking A set of behaviors driven by hedonic or 

pleasurable properties of a stimulus, such as the 

smell or taste of a valued food item. Typical liking 

responses in rodents include orofacial reactions 

while in humans likability is operationalized 

through degrees of attractiveness measured on 

a Likert scale. A characteristic of likability is that it 

needs not be motivational nor sensitive to 

devaluation procedures.

Wanting A set of behaviors driven by salient properties of 

a stimulus often manifests in a disposition to 

overcome costs in order to obtain an incentive. 

Wanting often entails actions such as lever 

pressing in rodents or non-human primates to 

obtain a goal object. One influential hypothesis 

regarding dopamine function highlights a role in 

mediating wanting, but not liking.

Cost-benefit integration The process of deriving a value of an action 

based on a combination between potential utility 

in attaining and disutility incurred in so doing. 

There is evidence that this type of integration 

takes place when one is judging whether an 

action is worth taking, although the mechanisms 

by which costs and benefits are integrated 

remain unclear. 

Apathy A mental or behavioral state devoid of motivation 

with a core feature of lack of self-initiated 

actions.

Invigoration To vitalize or increase strength. One hypothesis 

regarding the role of dopamine formalizes its role 

as facilitating motivated behavior by invigorating 

an organism when faced with increasing 

demands of effort. This is supported by studies 

that highlight the effects of a dopaminergic 

manipulation on effort expenditure.
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of cortico-subcortical networks for cost–benefit decision making 
as highlighted in depletion effects (Cousins and Salamone, 1994; 
Aberman and Salamone, 1999; Salamone et al., 2007). In these 
experiments, rats are trained on a T-maze that requires choosing 
between two actions; one yields high reward (four pellets of food) 
but requires higher effort (climb a 30-cm barrier or higher lever 
press fixed-ratio schedule), the other yields low reward (two pellets 
of food) but requires less effort. DA depletion in the NAc changes a 
rat’s preference away from the high-effort/high reward option, but 
does not impact on reward preference when it is readily available, 
nor does it alter response selection based on reward alone (Cousins 
and Salamone, 1994; Salamone et al., 1994). This finding has been 
replicated in other laboratories with a variety of depletion meth-
ods (Denk et al., 2005; Floresco et al., 2008a), where some studies 
point to a stronger effect from depletion in the core as opposed to 
shell of the NAc (Ghods-sharifi and Floresco, 2010; Nicola, 2010).

The impact of DA elevation on effort is much less conclusive. 
Enhancing DA function is commonly realized through injection 
of amphetamine, an indirect DA agonist that increases synaptic 
DA levels (but also that of other neuromodulators). Floresco et al. 
(2008a) revealed a dose-dependent effect of amphetamine such 
that low-doses of amphetamine increased effortful choice, but high 
dose decreased it. This dose-dependent effect is difficult to inter-
pret. First of all, it is unclear what the precise effect of a high dose 
of amphetamine is on DA concentration level since amphetamine 
also results in increased extracellular serotonin and noradrenaline 
(Salomon et al., 2006). Moreover, it is unclear whether a low dose of 
amphetamine acts by increasing the value of the reward, decreasing 
the cost of an action, modifying the integration of both, or by affect-
ing other components of behavioral control such as impulsivity 
(see Pine et al., 2010 in relation to the latter). Nevertheless, the data 
suggest that increasing DA levels per se does not invariably enhance 
preference for a high reward/high-effort option, ruling out a simple 
monotonic relationship between DA and effort.

Another study showed an interactive effect of haloperidol, a DA 
receptor blocker, and amphetamine. While an injection of halo-
peridol 48 h before treatment, followed by saline 10 min before 
test, significantly reduced preference for high reward/high-effort 
arm, giving the same haloperidol injection followed by ampheta-
mine 10 min before testing blunted the effect of haloperidol, and 
completely recovered preference for high reward/high-effort arm 
(Bardgett et al., 2009). Evidence therefore points to amphetamine’s 
ability to overcome the effects of DA blockade induced by halo-
peridol. However, as indicated amphetamine also increases the 
levels of serotonin and noradrenaline as well as DA levels, making 
it difficult to completely outrule a possibility that the effect might 
relate to elevations of other amines aside from DA. We also know 
that amphetamine increases locomotor activity (Salomon et al., 
2006) and it is impossible to dismiss the possibility that a recovered 
preference for the high-effort arm found might be due to enhanced 
locomotion.

Recent advances in neurochemical assay techniques, particularly 
in vivo fast scan cyclic voltammetry, allow detection of DA tran-
sients with a temporal resolution of milliseconds in awake behaving 
animals (Robinson et al., 2003; Roitman et al., 2004). Gan et al. 
(2010) performed in vivo voltammetry while rats selected between 
two options in a task where there was an independent  manipulation 

between nigral dopaminergic neurons and sensory subcortical 
structures such as the superior colliculus. They argue that activity of 
dopamine neurons can be interpreted as reporting biological salient 
events, either due to novelty or unpredictability. From this perspec-
tive, salient events generate short-latency bursts of dopaminergic 
activity that reinforce actions occurring immediately preceding the 
unpredictable event. This signal allows an agent to learn that an 
action caused the salient event (see Redgrave and Gurney, 2006 for an 
elegant discussion on signal transmission in tecto-nigral and cortico-
subcortical pathways for learning of action–outcome associations). 
According to this view, unpredictable rewarding events are just one 
among many exemplars of a salient event.

Finally, Nicola (2010) recently suggested that DA is required to 
flexibly initiate goal-directed instrumental responses. This view is 
based on observations that the effects of DA depletion in the rat 
nucleus accumbens (NAc) are dependent on inter-trial interval, 
such that when this is short instrumental responses are not affected 
but disruption increases as a function of increasing time between 
responses. Detailed behavioral analysis shows these effects of time 
are explained by the fact that as the duration between responses 
increases animals tend to engage with behaviors different from 
the required instrumental response, with depleted animals unable 
to flexibly reinitiate execution of the instrumental responses. On 
the other hand, depleted rats can perform complex sequences of 
behavior in situations where these are not interrupted. Such find-
ings suggest that rather than impairing lever presses, dopamine 
depletion disrupts an animal’s ability to flexibly re-engage with a 
task after engaging in a task-irrelevant behavior.

exTending reinforcemenT learning To accounT for 
dopamine involvemenT in efforT
The most compelling attempt to link the known role of DA in reward 
learning to effort is that of Niv et al. (2007) who have developed 
a model that specifies the vigor (defined as the inverse latency) of 
action. This model realizes a trade-off between two costs: one stem-
ming from the harder work assumed necessary to emit faster actions 
and the other from the opportunity cost inherent in acting more 
slowly. The latter arises out of the ensuing delay to the next, and 
indeed to all subsequent, rewards. Niv et al. (2007) suggested that 
agents should choose latencies (and actions) to maximize the rate 
of accumulated reward per unit time, and showed that the result-
ing optimal latencies would be inversely proportional to the aver-
age reward rate. Based on a review of experimental evidence, Niv 
et al. (2007) proposed that tonic levels of DA report the average rate 
of reward, thus tying together prediction error (Montague et al., 
1996; Schultz et al., 1997; Mcclure et al., 2003), incentive salience 
(Berridge and Robinson, 1998), and invigoration (Salamone and 
Correa, 2002) theories of DA. As defined by Niv et al. (2007), vigor 
can be thought of as a specific manifestation of effort expenditure in 
the time domain. Future work might usefully extend this temporal 
computational concept of vigor into other aspects of physical effort.

dopamine and iTs role in overcoming efforT cosTs
Considerable evidence points to midbrain DA depletion discourag-
ing animals from choosing effortful actions (Cousins and Salamone, 
1994; Aberman and Salamone, 1999; Denk et al., 2005; Phillips et al., 
2007). A series of experiments in rats has pointed to the crucial role 
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BG output nuclei (Alexander and Crutcher, 1990; Frank et al., 2004; 
Frank, 2005; Frank and Fossella, 2011). Under basal conditions, the 
output nuclei of the BG have a high level of firing and maintain 
thalamic inhibition that serve to dampen activity in corticostriatal 
loops (Frank, 2005). The distinct connectivity of direct and indirect 
pathways (see Figure 2) results in opposite effects: the direct pathway 
promotes inhibition of BG output nuclei and release of inhibition in 
thalamic activity whereas the indirect pathway promotes excitation 
of BG output structure and drives thalamic inhibition.

Neurons within the direct pathway express D1 dopamine recep-
tors, promoting cell activity and long-term potentiation (LTP), 
whereas neurons of the indirect pathway mainly express D2 dopa-
mine receptors which promote cell inhibition (when activated) and 
long-term depression (LTD). This scheme means that an increase 
in striatal DA tends to promote activity in the direct pathway and 
inhibition of the indirect pathway, resulting in net disinhibition of 
the thalamo-cortical connections and the generation of behavioral 
output. On the other hand a decrease in striatal DA promotes exci-
tation of the indirect pathway resulting in dampening of activity 
in thalamo-cortical loops and behavioral inhibition. A segregation 
between striatal neurons that form the direct and indirect pathway 
means increases in dopamine potentiate the direct pathway while 
inhibiting the indirect pathway, thus facilitating thalamic output 
and corticostriatal flow. On the other hand a decrease in dopamine 
promotes inhibition of the direct pathway and an excitation of the 
indirect pathway, dampening thalamic output and shutting down 
corticostriatal information flow. Finally, to complete a picture of 
the BG circuitry we need to include reference to an hyperdirect 
pathway from inferior frontal cortex to the STN, a circuit that sends 
excitatory projections to output nuclei of the BG (Frank, 2006). 

of the amount of reward and effort. These authors found that rats 
had the expected preference for higher magnitude of reward when 
costs were held constant and higher preference for options which 
require less effort when reward magnitude was constant. This study 
also included a separate set of trials which offered rats either option, 
while measuring the amount of DA released in the core of the NAc 
elicited by cues predicting reward and effort. By having this set 
of non-choice trials the authors ensured that the dopaminergic 
response was not confounded by the presentation of the second 
option. Whereas DA release reliably reflected the magnitude of the 
reward available in these trials, the amount of effort required to 
obtain the goal was not coded in the amount of DA released in the 
core of the NAc. This lack of evidence for an integration between 
costs and benefits in the dopaminergic signal was surprising given 
the extent of prior evidence (discussed above) pointing to a link 
between DA and the expenditure of effort in overcoming costs.

Overall, there is evidence that DA is required to overcome costs 
when high levels of effort are necessary to obtain a desired goal. 
However, the precise mechanism by which DA supports a cost-over-
coming function, and how effort is integrated into a dopaminergic 
modulation of the striatum and prefrontal cortex, is much less clear. 
In addition, dopamine depleted animals can engage in high-effort 
responding given a limited, inflexible set of possible responses but 
exhibit difficulties and are slower in re-engaging with simple one-
lever presses where multiple responses are allowed (Nicola, 2010). 
Whilst dopamine may be key to the computation and execution of 
highly effortful tasks, its role in strategic flexibility (Nicola, 2010) 
suggests it exerts a more subtle contribution to the complex rela-
tionship between task demands and the integration of task-relevant 
and task-irrelevant behavior.

We next consider the likely contribution of basal ganglia (BG) 
and ACC, and the formation of action–outcome association neces-
sary for motivated behavior.

Basal ganglia: anaTomy and physiology
The basal ganglia are a set of subcortical nuclei comprising dorsal 
(putamen and caudate nucleus) and ventral aspects (often syn-
onymous with NAc), the internal (GPi) and external (GPe) seg-
ments of globus pallidus, substantia nigra pars compacta (SNc), 
and reticulata (SNr) as well as the subthalamic nucleus (STN). The 
BG receives afferents from almost all cortical areas, especially the 
frontal lobe. Information processed within the BG network is sent 
via output nuclei (the internal segment of the globus pallidus and 
substantia nigra pars reticulata) to the thalamus, which eventu-
ally feeds back to frontal cortex (Alexander and Crutcher, 1990; 
Bolam et al., 2002). This basic circuitry is reproduced in differ-
ent parallel and integrative corticostriatal loops, with their origin 
in different frontal domains, and is held to play a critical role in 
cognitive functions that span motor generation to more cognitive 
aspects of causal learning, executive function and working memory 
(Frank et al., 2001; Frank, 2005; Haber and Knutson, 2010; Vitay 
and Hamker, 2010).

Neurons in the striatum project either to output nuclei of the BG 
(GPi and SNr) or to an intermediate relay involving GPe neurons 
which ultimately project to BG output nuclei. These two populations 
provide the origin of BG direct and indirect pathways which funnel 
information, conveyed in parallel to striatum by cortical afferents, to 

Figure 2 | A schematic model of direct and indirect pathways of Bg 
(adapted from Frank et al., 2004). The principal input of BG is the striatum, 
receiving excitatory inputs from most cortical areas. The output nuclei of BG 
are GPi/SNr, which direct processed information to the thalamus to eventually 
feed back an excitatory projection to the cortex. Within this circuitry, there are 
two pathways: a direct pathway expresses D1 receptors and indirect pathway 
expresses D2 receptors. D1 striatal neurons inhibit GPi/SNr cells forming the 
direct pathway. D2 striatal cells inhibit an intermediate relay, the GPe which 
ultimately provides inhibition to GPi/SNr. Under basal conditions, GPi/SNr cells 
fire at high level and maintain inhibition of the thalamus which in turn dampens 
corticostriatal loops activity. The different direct/indirect connectivity results in 
opposite effects: inhibitory effect on GPi/SNr and release of inhibition in 
thalamic activity by the direct pathway and excitatory effect on GPi/SNr and 
inhibitory effect on thalamus by the indirect pathway.
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pared to the rest of striatum. First, it is involved in unconditioned 
responding in the appetitive and aversive domains, spanning feeding 
(Kelley et al., 2005), and maternal behavior (Li and Fleming, 2003) 
to defensive treading (Reynolds and Berridge, 2002). Moreover, the 
NAc shell is involved in invigorating effects of dopamine on con-
ditioned behaviors controlled by the NAc core (Parkinson et al., 
1999). Second, the shell is the only striatal subdivision project-
ing to lateral hypothalamus (Pennartz et al., 1994, and reviewed 
by Humphries and Prescott, 2010), a key structure in an “action–
arousal” network. Note lateral hypothalamus also exerts an influ-
ence over autonomic function and contains orexin-producing cells 
which influence arousal and energy balance control (see Ikemoto, 
2007 for a comprehensive review). Third, whereas amygdala has 
extensive projections to both the core and shell (Humphries and 
Prescott, 2010), the NAc shell is the only recipient of hippocampal 
afferents within the striatal complex (Wickens et al., 2007; Haber 
and Knutson, 2010). This restricted projection from hippocampus 
has generated extensive discussion concerning the unique role of 
ventral BG in spatial navigation, fear-modulated free-feeding, and 
acquisition of stimulus value through stimulus–outcome pairings 
(Humphries and Prescott, 2010). These lines of evidence point to 
the shell as critical in forming linkages between an object/event in 
the environment and the agent’s natural response toward it.

An alternative interpretation of the anatomical and physiological 
organization of the BG is a selection and control model (Gurney 
et al., 2001). In this model inputs for selection and control are 
received separately by striatal D1 receptors and D2-like receptors, 
respectively. D1 transmission is then projected as inhibition to GPi/
SNr which acts as an action selection output, whereas D2 trans-
mission inhibits GPe which acts as an output layer for a control 
mechanism. The control output layer, in turn modulates action 
selection: GPe inhibits activity GPi/SNr output nuclei. Akin to 
inhibitory mechanisms described in the direct/indirect BG model, 
this selection/control BG model also describes inhibitory relation-
ships between nuclei in BG. It is not clear what the thalamic inhibi-
tory/excitatory impacts are on movement. Nevertheless this model 
highlights an important role for BG in action selection and control. 
More recently, Nicola (2007) has discussed the potential role of 
NAc in such a model, particularly in disinhibiting motor efferents 
for one action and inhibiting motor efferents for another, thereby 
allowing action selection.

Basal ganglia and efforT-relaTed processes
To facilitate execution of motivated behavior, one needs to inter-
nally represent action costs and benefits. Using fMRI, Croxson et al. 
(2009) investigated where in the human brain effort and reward are 
represented. Participants saw a discriminative stimulus signaling an 
action with a particular cost and benefit and then completed a series 
of finger movements using a computer mouse, to gain secondary 
reinforcers. The cost, in terms of effort and time, increased as more 
finger movements were completed, whilst the benefit increased 
as the secondary reinforcer was larger. When anticipating these 
actions, striatum activity correlated with both anticipated costs 
and anticipated reward of effortful actions.

More recent fMRI studies have replicated an involvement of 
striatum in effort-related processes, reporting higher dorsolateral 
striatal activity for choosing low compared to high-effort options 

The contribution of this pathway to behavioral control has been 
discussed extensively (Aron and Poldrack, 2006; Frank, 2006) and 
is beyond the scope of the present review.

anaTomical and funcTional gradienTs in The 
sTriaTum
The functional organization of BG along the direct and indirect 
pathways, as described above, applies to the full extent of the stria-
tum, forming an integral re-iterated processing matrix which per-
forms common operations across different subdivisions (Wickens 
et al., 2007). Although there are suggestions of a dorsal–ventral seg-
regation, the consensus favors a dorsolateral–ventromedial gradient 
(Voorn et al., 2004) with no sharp anatomical distinction between 
dorsal–ventral areas. Indeed, based on the cytology of spiny pro-
jection neurons, dopaminergic inputs, and dopamine-modulated 
plasticity and inhibition, dorsal and ventral striatum are strikingly 
similar (Wickens et al., 2007). However, there is evidence for a func-
tional segregation such that dorsolateral striatum, receiving senso-
rimotor afferents, supports habitual, stimulus–reward associations. 
This contrasts with ventromedial striatum, receiving afferents from 
orbito and medial prefrontal cortex, hippocampus, and amygdala, 
which supports formation of stimulus–action–reward associations 
(Voorn et al., 2004; Haber and Knutson, 2010).

A functional gradient in dopamine signaling is also described in 
BG (Wickens et al., 2007). DA release is determined by density of 
DA innervation (densities reduce the distance between release and 
receptor sites), such that higher innervation densities are necessary 
for rapid DA signaling. DA clearance is regulated by density of 
DA transporters (DAT), hence affecting distance and time course 
of volume transmission. Wickens et al. (2007) has documented 
greater DA innervation and higher DAT densities in dorsolateral 
striatum with these densities decreasing along a ventromedial gra-
dient (also Haber and Knutson, 2010). High densities of release sites 
and DAT result in fast clearance in dorsolateral striatum, which 
may be related to encoding of discrete events involving reinforced 
responding, or even automatized and habitualized behaviors. 
Ventromedially, lower densities of DA innervation and DAT result 
in slow clearance in NAc core, and even slower clearance in NAc 
shell, which may be related to slower time course of action–outcome 
evaluation (Wickens et al., 2007; Humphries and Prescott, 2010).

Moreover, it is noteworthy that within the ventromedial subdivi-
sions of the striatum, the NAc has interesting particularities. The 
NAc is subdivided, on the basis of anatomical and histochemical 
features, into the core and the shell, with the latter more medial and 
ventral in location than the former (Voorn et al., 2004; Ikemoto, 
2007; Humphries and Prescott, 2010). This core/shell distinction 
is particularly important when considering the role of BG in moti-
vated behavior.

The NAc core is similar to dorsal striatum (Humphries and 
Prescott, 2010, but see Nicola, 2007 on role of dorsal–ventral stria-
tum in temporal predictability). Functionally, NAc core seems criti-
cal in the translation of raw, unconditioned stimulus value, into a 
conditioned response. Thus, NAc core plays an important role in 
conditioned behavior (Ikemoto, 2007), such as autoshaping in classi-
cal conditioning paradigms and conditioned reinforced responses in 
instrumental learning paradigms. On the other hand, the NAc shell, 
the most ventromedial aspect of striatum, has unique features com-
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visual discrimination task, but instead was specific to an inability to 
utilize reward–action association to make the correct response. In a 
different experiment, monkeys with ACC lesion were impaired in 
selecting a set of response when the correct responses were deter-
mined by an integration across past contingencies between action 
and reward (Kennerley et al., 2006). In addition, using fMRI, human 
ACC was found to be most active when participants had to simulta-
neously internally generate a sequence of actions whilst monitoring 
the outcome of their actions (Walton et al., 2004).

Lesions studies with rodents using the T-maze consistently show 
impairments in effort-based decision making following removal 
of ACC. As with dopamine depletion experiments, these lesions 
result in a shift of preference away from an option with a larger 
food reward that requires scaling a high barrier, thus requiring 
more effort. This reduced preference for larger/effortful arm was 
not due to lethargy or immobility as it is immediately restored 
when both arms have equal effort costs (Denk et al., 2005; Floresco 
and Ghods-Sharifi, 2007; Walton et al., 2009, but see Floresco et al., 
2008b for a discussion the extent to which ACC plays a role in 
effort-based tasks).

Human ACC lesions provide a more subtle interpretation for 
the role of ACC in effort processing. Naccache et al. (2005) tested 
a patient with a large lesion to left mesial frontal region including 
the left ACC using a, cognitively demanding, Stroop task (Stroop, 
1935). This patient could not verbally recognize nor express dis-
criminatory skin conductance responses in difficult trials where 
greater mental effort was required, but could perform as well as 
healthy controls. This case study suggests dissociability of objective 
cognitive performance from a physiological response and from 
the subjective appraisal of mental effortfulness (Naccache et al., 
2005, but see McGuire and Botvinick, 2010 for the involvement 
of lateral prefrontal cortex, instead of ACC, in a closer inspection 
of subjective experience of mental effort through intentional and 
behavioral avoidance from mentally challenging tasks).

The ACC is implicated in a host of cognitive processes, ranging 
from cognitive control to suppression of prepotent responses such 
as in Stroop or go–nogo tasks, tasks that induce negative emotions, 
and tasks that predict delivery of painful stimuli (see a review 
by Shackman et al., 2011). Shackman et al. (2011) discussed a 
challenge in advancing knowledge of its functional organization 
being the complexity of its anatomical organization and vari-
ability across individuals. For example, a tertiary sulcus in dorsal 
ACC, the paracingulate sulcus, is present in one-third of the popu-
lation, and its presence causes location change of architectonic 
Brodmann area 32′, and a volumetric reduction of Brodmann 
areas 24a′ and 24b′. Consequently, spatially normalized cingu-
late premotor regions differ across subjects, and an unmodeled 
cingulate sulcal variability may inflate the spread of activation 
clusters found across studies, rendering complex a clear functional 
dissociation within ACC.

Bush et al. (2000) proposed the rostro-ventral cingulate could 
be functionally segregated into cognitive and affective components 
located to dorsal and ventral ACC, respectively. This segregation 
seems too broad. Shackman et al. (2011) using a sample of almost 
200 neuroimaging experiments that included negative affect, pain, 
and cognitive control reported strongly overlapping activation 
clusters in dorsal ACC, or what they termed as middle cingulate 

in a physical effort task (Kurniawan et al., 2010) and higher ventral 
striatal activity in a low cognitive demand block compared to a 
high cognitive demand block in a mental effort task (Botvinick 
et al., 2009). Whilst, it is still unclear whether physical and cogni-
tive mechanisms of effortful actions reflect similar psychological 
and neural processes, together these studies provide support for 
the importance of striatum in effort-related processes. In the fol-
lowing section, we assess the type of association formed when an 
organism performs a motivated goal-directed behavior.

encoding acTion and iTs ouTcomes
Linking a chosen action to its outcome is central for optimal goal-
directed behavior. When a monkey travels a distance to forage for 
food, not only does it need to link contextual cues to food consump-
tion, for example associating a tree full of ripe fruits with eating 
fruits, it also needs to associate the action (climbing a tree) with 
the consequences of the action, namely the energetic cost of climb-
ing. Neurons in primate dorsal striatum, can be categorized into 
those that encode the action made by the monkey (direction of sac-
cade made) and neurons sensitive to the outcome of the monkey’s 
choice (reward/unrewarded; Lau and Glimcher, 2007). However, 
these neurons do not appear to support the kind of action–outcome 
association required for goal-directed behavior.

Using reinforcement learning models, similar to those used to 
characterize activity in DA neurons, Samejima et al. (2005) reported 
neurons in the striatum whose activity correlated with the value 
of an action. These action value neurons are important because 
they track the value of say, a left handle turn in a probabilistic two-
choice task, independent of whether the monkey ultimately selects 
the action, and thus provide input information for action selec-
tion. Furthermore, in a subsequent study, Lau and Glimcher (2008) 
found action value neurons, including neurons which traced the 
value of the chosen action, in the striatum. These chosen value neu-
rons show enhanced activity when the tracked action has a higher 
value and, on this basis, was subsequently chosen. Using similar 
reinforcement learning models, human fMRI studies also report 
that BOLD signal in the dorsal striatum correlate with the rela-
tive advantage of taking one action over an alternative (O’Doherty 
et al., 2004).

efforTful Behavior, acTion and iTs ouTcomes: 
implicaTion of The acc
These action and chosen value representations in the striatum 
are precisely the kind of association between action and outcome 
required for goal-directed behavior. However, the unanswered 
question is where does the information needed for this compu-
tation come from? One possibility is ACC, a region suggested to 
represent this action–outcome association (Rushworth et al., 2007). 
For example, Hadland et al. (2003) trained macaque monkeys to 
pull a joystick upward after receiving a type of food, say a peanut, 
in order to obtain a second peanut and to turn a joystick to the 
side after obtaining a different food type, say a raisin, to receive a 
second raisin. They found that while control monkeys could select 
an action based on this reward–response association, monkeys with 
a lesion to ACC were impaired in selecting the correct response. 
Interestingly, the impairment was not due to an inability to make 
an association between visual cues and reward as tested in a second 
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severely impaired in execution of real-life events such as holding a 
job, although various measures of logical reasoning, general knowl-
edge, planning, and social and moral judgments proved intact. The 
authors discussed how the lesion did not impact on pure action 
execution, but on the analysis and integration of the costs and 
benefits pertaining to real-life situations.

apaThy and The execuTion of efforTful responding
Several distinct types of brain insult are associated with apathy in 
humans. For example, bilateral ACC lesions can present with aki-
netic mutism, a wakeful state characterized by prominent apathy, 
indifference to painful stimulation, lack of motor and psychological 
initiative (Tekin and Cummings, 2002). Apathy is also often pre-
sent in patients with subcortical brain lesions (involving BG), but 
is more commonly found in those with prefrontal, mainly ACC, 
lesions (van Reekum et al., 2005). In this section we draw upon 
findings with apathy to understand cost benefit integration and 
implementation of effortful choices.

Effort is a salient variable in individuals with apathy who lack 
the ability to initiate simple day-to-day activities (van Reekum et al., 
2005; Levy and Dubois, 2006). This lack of internally generated 
actions may stem from impaired incentive motivation: the ability 
to convert basic valuation of reward into action execution (Schmidt 
et al., 2008). Patients with auto-activation deficit (AAD), the most 
severe form of apathy, are characterized by lack of self-initiated 
action (van Reekum et al., 2005) or a quantitative reduction in self-
generated voluntary behaviors (Levy and Dubois, 2006). Thus, the 
key feature in AAD is an inability to internally generate goal-based 
actions, a deficit that may variously reflect an ability to (1) encode 
the consequence of an action as pleasurable or as having hedonic 
value (e.g., to attain reward, “liking”); (2) execute the action; and (3) 
represent the association between action and reward. We now discuss 
a proposal that the behavioral and neural mechanisms underlying 
AAD are mostly intimately linked to the third sub-process.

Auto-activation deficit is not associated with impaired “liking” 
as patients with AAD have a normal skin conductance response 
to receipt of rewards and verbally distinguish between different 
magnitudes of monetary reward (Schmidt et al., 2008). In addi-
tion, the most prominent damage in AAD pertains to BG and the 
dopaminergic system. Secondly, AAD is probably not linked to spe-
cific impairments of action execution. Schmidt et al. (2008) tested 
patients with bilateral BG lesions with the history of AAD and 
found that, compared to normal and Parkinson’s disease control 
groups, patients with AAD are worse when generating voluntary 
vigorous actions based on contingent reward, but are equally able to 
generate the same motor response if based on external instructions. 
This provides evidence against AAD being explicable in terms of 
an impairment in pure motor action execution.

We suggest that AAD reflects an impairment in linking reward 
anticipation to action. Damage to BG in AAD most commonly 
involves a focal bilateral insult to the internal portion of pallidum 
(Levy and Dubois, 2006). Pessiglione et al. (2007) investigated 
the role of ventral pallidum in incentive motivation employing 
a task where individuals voluntarily squeezed a handgrip device 
in response to different reward magnitudes. Notably, the amount 
of voluntary force during squeezing was proportional to reward 
magnitude, suggesting that participants were able to identify a 

cortex (MCC), challenging a strict segregationist view of ACC (see 
Figure 3). These authors also pointed to evidence that the dorsal 
ACC might be involved in affective control, including autonomic 
regulation (Critchley et al., 2003) and pain processing, suggesting 
these findings may reflect an agent’s need for behavioral control 
when habitual responses are not sufficient under uncertain action–
outcome contingencies.

Anatomically, the ACC projects to striatum, particularly the 
caudate nucleus and portions of ventral striatum (Haber and 
Knutson, 2010). Moreover, ACC has bilateral connections to motor 
and prefrontal cortex fulfilling a role as a hub where action and 
outcome associations might be represented. In human and non-
human primates, the ventral cingulate have strong interconnections 
with ventral striatum including the NAc, whilst the dorsal cingu-
late connects more strongly to dorsal striatum including putamen 
and caudate (Kunishio and Haber, 1994; Beckman et al., 2009), 
potentially facilitating transmission of reward-related information. 
Furthermore, dorsal ACC is interconnected with premotor cortex 
and a more posterior part constitutes the cingulate motor area 
(Beckman et al., 2009) implicated in action selection (Picard and 
Strick, 2001). Shima and Tanji (1998) reported that cingulate motor 
areas in monkeys respond to selection of voluntary movement 
based on reward, supporting a role in linking internally generated 
action to reward. Indeed, a working hypothesis is that ACC could 
support adaptive control, integrating aversive, biologically relevant 
information in order to bias motor regions toward a contextually 
appropriate action (Shackman et al., 2011).

This wide-ranging anatomical connectivity between BG, ACC, 
and other cortical regions provide a neuroanatomical foundation 
for establishing action and outcome representations, of a type 
needed for motivated behavior. Normal function of this circuitry 
can be inferred to facilitate willingness to execute effortful actions. 
On the other hand, disruption of this circuitry, as in people with 
apathy, would discourage execution of such actions. This account 
has a resemblance to phenomena in a case study of a patient with 
a lesion to mesial prefrontal cortex (which included ACC) that led 
to profound apathy (Eslinger and Damasio, 1985). This patient was 

Figure 3 | Views on the psychological function of ACC. Left: ACC function 
has been suggested as anatomically segregated into a dorsal cognitive division 
and a ventral affective division (Bush et al., 2000). Right: more than a decade 
later, a meta-analysis on almost 200 fMRI experiments suggested a strong 
overlap in clusters of activation in studies of cognitive control, negative affect, 
and pain (Shackman et al., 2011). Figures adapted from Shackman et al. (2011).
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reward context where it was advantageous to produce more physi-
cal effort. Furthermore, ventral pallidal activity correlated with 
outcome context, providing a neural basis for enhanced effort as 
a response to increased payoff. Similarly, damage to BG in AAD 
may have caused a failure to recognize an advantageous context 
to make an adaptive action (Walton et al., 2004; Levy and Dubois, 
2006). These data suggest that bilateral BG damage, at least in 
AAD, produces a syndrome that arises out of a deficit in translat-
ing reward cues into appropriate action selection and execution.

In light of Schmidt et al.’s (2008) findings that AAD patients were 
mostly impaired in the execution of actions, when an internal link 
between a reward and action is required, it is noteworthy that AAD 
may cause impairments beyond simple abstract action–reward asso-
ciation. In other words, AAD may cause impairments in the actual 
execution of reward-based actions. This highlights the importance 
of BG in energizing individuals to persevere with acting, a deficit 
commonly found in patients with Parkinson’s disease (which is 
largely associated with a dysfunction in BG). Schneider (2007) tested 
Parkinson’s disease patients in solving a difficult cognitive task, and 
found that the patients were making significantly fewer attempts to 
solve the task than normal controls, pointing to a deficit in mental 
persistence in such patients. It may well be that persistence is linked 
to a higher tendency to generate internal motivation or arousal which 
then energizes individuals to persevere (Gusnard et al., 2003), or 
perhaps lessens a tendency to distraction (see Nicola, 2010).

Taken together, apathy, as a manifestation of impaired motiva-
tion to overcome the cost of an action, is associated with damage 
to a cortico-subcortical network (either lesions in the ACC or BG) 
that generates internal association between action and its conse-
quences. This highlights a key involvement of the ACC and BG in 
the anticipation and execution of effortful actions.
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Choosing the option with the highest expected value (EV; reward probability × reward mag-
nitude) maximizes the intake of reward under conditions of uncertainty. However, human
economic choices indicate that our value calculation has a subjective component whereby
probability and reward magnitude are not linearly weighted. Using a similar economic
framework, our goal was to characterize how subjective value influences the generation of
simple motor actions. Specifically, we hypothesized that attributes of saccadic eye move-
ments could provide insight into how rhesus monkeys, a well-studied animal model in
cognitive neuroscience, subjectively value potential visual targets. In the first experiment,
monkeys were free to choose by directing a saccade toward one of two simultaneously
displayed targets, each of which had an uncertain outcome. In this task, choices were
more likely to be allocated toward the higher valued target. In the second experiment,
only one of the two possible targets appeared on each trial. In this task, saccadic reaction
times (SRTs) decreased toward the higher valued target. Reward magnitude had a much
stronger influence on both choices and SRTs than probability, whose effect was observed
only when reward magnitude was similar for both targets. Across EV blocks, a strong rela-
tionship was observed between choice preferences and SRTs. However, choices tended
to maximize at skewed values whereas SRTs varied more continuously. Lastly, SRTs were
unchanged when all reward magnitudes were 1×, 1.5×, and 2× their normal amount,
indicating that saccade preparation was influenced by the relative value of the targets
rather than the absolute value of any single-target. We conclude that value is not only an
important factor for deliberative decision making in primates, but also for the selection and
preparation of simple motor actions, such as saccadic eye movements. More precisely, our
results indicate that, under conditions of uncertainty, saccade choices and reaction times
are influenced by the relative expected subjective value of potential movements.

Keywords: oculomotor-capture, motor preparation, utility, prospect theory, neuroeconomics, reaction time, reward,
probability

INTRODUCTION
Choosing under conditions of uncertainty requires estimating the
value of each alternative and then selecting the option whose value
is highest. Choosing based on expected value (EV), the product of
reward magnitude and probability, maximizes the intake of reward
over time. However, subjectivity in the valuation process results in
choices that deviate from the EV prediction (Dayan and Abbott,
2001; Glimcher, 2003, 2011; Rolls, 2005; Milstein and Dorris, 2007;
Rolls et al., 2008). For example, behavioral economic studies in
humans have shown that both reward magnitude and probability
are non-linearly weighted before being combined (Gonzalez and
Wu, 1999; Trepel et al., 2005; Paulus and Frank, 2006; Hsu et al.,
2009).

Recently, value has also been shown to influence choice behav-
ior and underlying neural processes in the well-studied rhesus
monkey model (McCoy and Platt, 2005; Padoa-Schioppa and
Assad, 2006; So and Stuphorn, 2010). The influence of value on
reaction time,however,has not been fully characterized. Therefore,

our goal was to examine the relationship between choice and sac-
cadic reaction times (SRTs), another common behavioral measure
of a wide variety of decision factors, under conditions of chang-
ing value. If such a relationship exists, then SRT can be used to
study the moment-to-moment neural activations underlying the
valuation process with invasive electrophysiological techniques
particularly under conditions in which speeded responses are
favored.

The behavioral economic studies that measure subjective value
rely mainly on methodologies that are largely incompatible with
the non-human primate model such as verbal or written com-
munication. For example, experimenters typically present human
subjects with the choice between a risky, high-reward gamble (the
prospect), and a lower, but guaranteed, reward (the certain out-
come). Varying the reward magnitude of the certain outcome until
the subject is indifferent to the prospect and the certain outcome
provides the researchers with a certainty equivalent (Tversky and
Kahneman, 1992). This certainty equivalent provides an estimate
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of how the reward magnitude is subjectively valued under risk.
Recently these techniques have been modified in monkey subjects
to examine the valuation process on choice using abstract symbols
to indicate reward magnitude or probability (Yang and Shadlen,
2007; Rorie et al., 2010; So and Stuphorn, 2010; Cai et al., 2011).

In an effort to yield speeded responses, we did not present
value cues that had to be assessed on each trial, but allowed ani-
mals to estimate the value of targets through experience across
blocks of fixed value (e.g., Dorris and Munoz, 1998; Lauwereyns
et al., 2002; Takikawa et al., 2002; Ikeda and Hikosaka, 2003; Ding
and Hikosaka, 2007). Specifically, monkeys made simple saccadic
eye movements to visual targets whose values were manipulated
through changing the probability and reward magnitude they
yielded. Two behavioral measures assessed subjective value across
these prospects – the proportion of choices and SRT. Allocation of
choices provides us with an established measure of the monkeys’
preferences (Samuelson, 1938) and this was compared with the
latency with which monkeys responded during the same prospects.
Our findings suggest that, when faced with uncertainty, monkeys
estimate the relative expected subjective value (RESV) of potential
actions similarly when both choosing and preparing simple motor
actions.

MATERIALS AND METHODS
GENERAL METHODOLOGY
Two male rhesus monkeys (Macaca mulatta) that weighed between
9 and 13.5 kg each performed saccadic eye movement tasks for
liquid reward. All procedures were approved by the Queen’s Uni-
versity Animal Care Committee and complied with the guide-
lines of the Canadian Council on Animal Care. Animals were
under the close supervision of the university veterinarian. Surgi-
cal procedures have been described previously (Munoz and Istvan,
1998).

Behavioral paradigms, visual displays, delivery of liquid reward,
and storage of eye movement data were under the control of a PC
running a real-time data acquisition system (Gramalkn – Ryklin
Software). Red and green visual stimuli (11 cd/m2) were pro-
duced by a digital projector (Duocom InFocus SP4805, refresh rate
100 Hz) and back-projected onto a translucent screen that spanned
50˚ horizontal and 40˚ vertical of visual space. Left eye position was
recorded at 500 Hz with a resolution of 0.1˚ using an infra-red eye
tracking system (Eyelink II, SR Research). Data analysis was per-
formed offline using MATLAB version 2007a (MathWorks Inc.,)
on a Pentium 4 personal computer.

BEHAVIORAL PARADIGMS
Subjects received liquid reward for successfully completing one
of three simple oculomotor tasks sharing the same root structure
(Figure 1). In each trial type, subjects were required to acquire,
then hold their gaze on, a centrally placed fixation point for
800 ms. After this epoch, the fixation point was removed and
subjects were required to maintain central fixation for an addi-
tional 400 ms before targets were presented 10˚ to the left and/or
10˚ to the right. We referred to this 400 ms epoch as the “uncer-
tainty period” because at this point in time subjects did not know
which specific trial type they were engaged in. The fixed duration
of this period provided timing information which promoted the

FIGURE 1 | Experimental paradigms. Each window represents what the
monkey sees chronologically ordered from top to bottom. Red filled circles
represent targets, green filled circles represent distractors, and unfilled
green circles represent potential distractor locations. (A) Two-target trials.
Both targets are displayed but the reward outcome for choosing a target is
probabilistic (%). (B) Single-target trials. Only one of the two potential
targets appears, but reward is certain. Note that during a particular prospect
block, the probability of target presentation at a particular location in
single-target trials equals the probability of receiving a reward for choosing
that target during two-target trials. (C) Distractor trials. These trials follow
the same pattern as single-target trials, with the addition of an irrelevant
green distractor being displayed prior to target appearance. Directing a
saccade toward a distractor aborts the trial and reward is withheld.

advanced preparation of upcoming saccades (Saslow, 1967; Dorris
et al., 1997). Subjects had to direct a saccade toward a target and
maintain fixation on it for 300 ms for the possibility of receiving a
liquid reward. The inter-trial interval was fixed at 1000 ms.

To receive a liquid reward, subjects were required to initiate a
saccade toward a displayed target within 70–1000 ms of its presen-
tation. The value of the two possible target locations was varied
across 49 blocks of trials which we will refer to as prospects. The
details of how these prospects were structured are provided for
single-, two-target, and oculomotor-capture trials below and in
Table 1. Each prospect block consisted of 100 ± 15 trials and block
transitions were not signaled.

Two-target trials
The purpose of the two-target trials (Figure 1A) was to assess
which of the two valued targets the subject preferred. These tri-
als followed the aforementioned task structure with the following
exceptions. At the end of the uncertainty period, both left and
right targets were displayed simultaneously and subjects were free
to saccade toward either. Receipt of reward was probabilistic. We
refer to this measure of probability as reward probability. Reward
probability and their associated magnitudes were fixed for each
target for a block of trials. The prospect for the next block was
randomly selected without replacement from Table 1.

Single-target trials
Single-target trials (Figure 1B) were used to assess how saccade
preparation was allocated across prospects. Compared to discrete
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Table 1 | Relative expected value of left target across 49 prospect blocks*.

Magnitude of reward

for the left target (mL)

Probability (%)** Magnitude of reward

for the right target (mL)

10 25 40 50 60 75 90

0.050 0.02 0.05 0.10 0.14 0.20 0.33 0.60 0.300

0.050 0.04 0.10 0.18 0.25 0.33 0.50 0.75 0.150

0.075 0.06 0.17 0.29 0.38 0.47 0.64 0.84 0.125

0.100 0.10 0.25 0.40 0.50 0.60 0.75 0.90 0.100

0.125 0.16 0.36 0.53 0.63 0.71 0.83 0.94 0.075

0.150 0.25 0.50 0.67 0.75 0.82 0.90 0.96 0.050

0.300 0.40 0.67 0.80 0.86 0.90 0.95 0.98 0.050

For the oculomotor-capture task, only the shaded blocks were used. For the relative versus absolute value task, only the bold cells were used.

*The relative expected value of the right target is 1 − relative expected value of left target.

**For single-target trials, probability indicates the probability of the left target appearing. For two-target trials, probability indicates the probability of a reward being

delivered when the left target is selected. For both trials, the right target probability is 1 − probability of left target.

choices during two-target trials, SRTs were a more continuous
measure. These trials followed the general framework of the two-
target trials, except that only one target was presented on each
trial. Unlike two-target trials, reward was guaranteed if the mon-
key made a correct saccade to the target, but the probability of the
target appearing in one of two locations varied between blocks.
We refer to this measure of probability as target probability. Target
probability and reward magnitude for each target were fixed for
a block of trials and were randomly selected without replacement
from Table 1.

Oculomotor-capture trials
Oculomotor-capture trials (Figure 1C) probed the level of sac-
cade preparation at specific locations in the visual field. These
trials were identical to single-target trials, except that an irrele-
vant circular green distractor, equiluminant to the red stimuli,
flashed for 70 ms halfway through the uncertainty period. If sub-
jects looked to the distractor (i.e., oculomotor-capture), the trial
was immediately aborted and reward was withheld, followed by
the inter-trial interval. Saccade preparation was indexed by the
proportion of oculomotor captures triggered by the presentation
of abrupt-onset visual distractors at particular locations.

Experiment 1: Prospect Task
This experiment combined two-target (25% of trials) and single-
target (75% of trials) trials together, to compare choice preferences
during two-target trials with the SRTs during single-target trials for
each prospect. Monkeys performed 49 different prospects, using
seven different reward magnitude and seven different probability
levels (Table 1). The same prospect was used for both single-target
and two-target trials during a given block. Monkeys completed,
on average, 12 blocks per day until satiated, and data from mul-
tiple experimental days were combined together for subsequent
analysis.

Experiment 2: Oculomotor-capture task
We interleaved single-target and oculomotor-capture trials
together (50% of each) to determine how monkeys allocated sac-
cade preparation to specific locations across the visual field. A

subset of 11 prospects that spanned the range of values were used
in this experiment (Table 1, shaded cells). Distractors were equally
likely to be presented at the location of one of the two possible tar-
gets or orthogonal to the target (10˚ upward). This latter distractor
allowed us to assess levels of saccade preparation in non-valued
areas of the visual field.

Experiment 3: Relative versus Absolute Value task
To examine the contribution of relative value versus absolute value
to saccade preparation, monkeys performed blocks of trials with
target reward magnitudes set at 1.0×, 1.5×, and 2.0× their normal
magnitudes. Only three blocks of trials that spanned the range of
prospects were tested (Table 1, bold cells). Our goal was to deter-
mine whether changes in absolute value contributed to SRT effects
beyond those observed for relative value.

DATA ANALYSIS
Trials were aborted online if eye position was not maintained
within a 3˚ diameter circle centered on the appropriate spatial
location or if saccades were initiated outside a 70- to 1000-ms tem-
poral window following target presentation. Oculomotor captures
were defined as saccades initiated toward a 6˚ diameter spatial win-
dow centered on the distractor within a 70- to 200-ms temporal
window following distractor appearance. The spatial window was
relaxed due to the tendency of oculomotor-capture saccades to be
hypometric (Theeuwes et al., 1998; Milstein and Dorris, 2007). The
first 20 trials from all blocks were discarded from offline analysis to
allow subjects time to adjust to the new EV condition. Computer
software determined the beginning and end of each saccade using
velocity and acceleration criteria and accuracy was verified by the
experimenter. SRT was defined as the time when eye velocity first
surpassed 20˚/s following target presentation.

We defined relative EV as:
[
p (T1) × r (T1)

]

[
p (T1) × r (T1)

] + [
p (T2) × r (T2)

] (1)

Where p(T 1) and p(T 2) denote the proportion with which target
1 and target 2 appeared (single-target trials) or yielded a reward

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Frontiers in Neuroscience  |  Decision Neuroscience  October 2011 | Volume 5 | Article 122 | 60

Milstein and Dorris Subjective value influences saccade generation

(two-target trials), respectively, during a block of trials. r(T 1) and
r(T 2) denote the reward magnitude in milliliter of water allocated
to each of the two targets, respectively.

We determined whether linear or logistic functions provided
superior fits to our data using the model selection criterion derived
from Akaike’s Information Criterion (Akaike, 1973; Sakamoto
et al., 1986). In general, logistic fits provided superior fits for choice
data and linear fits were superior for SRT data. The one-parameter
logistic function we used was:

f (x) = eβx

1 + eβx
(2)

Where β > 0 is the shape parameter. The data was fit with least
squares regression.

RESULTS
THE EXPECTED VALUE OF UNCERTAIN OUTCOMES INFLUENCES CHOICE
PREFERENCES
In experiment 1, we examined the allocation of choices made dur-
ing two-target trials across 49 prospects (Figure 1A; Table 1). The
two-target trials (25%) analyzed here were interspersed with a
majority of single-target trials (75%). We hypothesized that EV
will influence choice preferences in two-target trials. In a repre-
sentative equal EV block (Figure 2A), approximately the same
number of saccades were directed to each target. Conversely, in
a block with a higher valued left target, more leftward saccades
were chosen (Figure 2B). Across all 49 prospects, we found that
the EV of the targets was correlated to the allocation of choices
(Figure 2C; logistic fits: Monkey B; R = 0.67 and Figure 2D;
Monkey H; R = 0.58, p < 0.05, respectively). Furthermore, ani-
mals tended to maximize, or choose one target exclusively, when
EV was highly skewed. When we analyzed each decision factor
independently, we found that probability of reward had no influ-
ence on the allocation of choices (Figures 2E,F, p > 0.05), but
reward magnitude (Figure 2G; logistic fits; Monkey B; R = 0.88
and Figure 2H; Monkey H; R = 0.94, p < 0.01, respectively) had
a strong influence on choice behavior. Furthermore, we found
that reward magnitude exerted a significantly stronger effect
on choice allocation than relative EV (p < 0.02, Fisher r-to-z
transformation).

Although it is clear that, in this task, monkeys weighed reward
magnitude more heavily than probability, additional analysis indi-
cated that probability did have an effect when reward magnitudes
were similar (Figure 3). We re-plotted the data from Figures 2C,D
to highlight how choices were allocated within each specific proba-
bility and reward magnitude condition. Reward magnitude always
had a strong effect on choice behavior, regardless of its associated
outcome probability (Figures 3A,B). Probability, however, had an
effect only when reward magnitudes were approximately equal
(e.g., cyan lines, Figures 3C,D) and had negligible effect when
reward magnitudes became skewed.

THE EXPECTED VALUE OF UNCERTAIN MOVEMENTS INFLUENCES
SACCADE PREPARATION
We examined changes in SRT during single-target trials of exper-
iment 1. We hypothesized that changes in EV would lead to a bias

FIGURE 2 | Influence of decision factors on choice preference during
two-target trials. All data is taken from the two-target trials of Experiment
#1. (A,B) Individual eye traces for equal value (50% left probability/50% left
reward magnitude) and skewed value (50% left probability/62% left reward
magnitude) blocks of trials. Each line represents horizontal eye position on a
single trial. (C,D) Influence of relative expected value on saccadic choices.
Each dot represents 50–75 trials of a particular prospect collapsed over two
to three blocks of trials. Correlation coefficients (R) are based on least
square fits of a logistic function (black lines). The large gray dot indicates the
equal value prospect. (E,F) Influence of relative reward probability on
saccadic choices. (G,H) Influence of relative reward magnitude on saccadic
choices.

in saccade preparation, in turn leading to skewed SRTs. Figure 4A
shows a representative block with equal EVs for the two targets.
Saccades were initiated with similar latencies regardless of which
target was ultimately presented. Conversely, when EV was skewed
in favor of the rightward target, SRTs were shorter to the right and
longer to the left (Figure 4B). Across all 49 prospects, we found
that SRTs were significantly correlated to relative EV (Figure 4C;
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FIGURE 3 | Contribution of reward and probability of choice. Each point
represents 50–75 trials of a specific prospect. Same data as Figures 2C,D.
(A,B) Contribution of reward magnitude. Each color indicates a group of
prospects with the same probability. Within each color, each point represents
a different reward magnitude condition. In order, red was the lowest

probability, followed by green, blue, cyan, yellow, magenta, and black was the
highest. SeeTable 1 for exact values. (C,D) Contribution of reward probability.
Each color indicates a group of prospects with the same reward magnitude
and each point within the colored groups represents a different reward
probability.

R = −0.67, p < 0.05; Figure 4D; R = −0.52, p < 0.05). When we
analyzed each decision factor independently we found that, sim-
ilar to choice allocation, there was no correlation found between
SRT and the probability of target appearance (Figures 4E,F). How-
ever, a significant correlation between SRTs and reward magnitude
(Figure 4G; R = −0.80, p < 0.05; Figure 4H; R = −0.90, p < 0.05)
was found. We also found that reward magnitude was signifi-
cantly more correlated to SRTs than relative EV in both monkeys
(p < 0.05, Fisher r-to-z transformation).

Whereas we found, using the model selection criterion derived
from Akaike’s Information Criterion (Akaike, 1973; Sakamoto
et al., 1986), that logistic functions provided significantly better
fits than linear regressions for the effects of value on choice data
(p < 0.05), the opposite was true for the effects of value on SRTs
(p < 0.05). This suggests that the influence of value on choice

quickly leads to maximization of binary responses whereas the
effects of value on SRTs are more continuous.

Saccadic reaction times were longer on average across the 49
prospects for two-target trials compared to single-target trials
(Figures 4C,D; 31 ms for monkey B, 67 ms for monkey H). This
slowing is consistent with competitive inhibition resulting from
the simultaneous presentation of two targets (Munoz and Istvan,
1998). Furthermore, the effects of value on SRT in two-target trials
were attenuated, as shown by the shallower slopes of the linear fits
when compared to single-target trial data. These correlations were
also significantly worse than those found between value and SRT in
single-target trials (p < 0.05, Fisher r-to-z transformation). Lastly,
these effects were less consistent in two-target trials compared
to single-target trials, with one monkey showing a slight positive
slope and the other showing a slight negative slope between value
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FIGURE 4 | Influence of decision factors on SRT during single-target
trials. (A,B) Individual eye traces for equal value (50% left probability/50%
left reward magnitude) and skewed value (10% left probability/38% left
reward) blocks of trials. (C,D) Relationship between relative expected value
of the left target and SRT for each monkey. Each black point represents
150–225 single-target trials of a specific prospect collapsed across two to
three blocks of trials. Each blue point represents 50–75 two-target trials
collapsed across two to three blocks of trials. (E,F) Relationship between
probability and SRT for each monkey. (G,H) Relationship between reward
magnitude and SRT for each monkey.

and SRT (Figure 4C; Monkey B; R = −0.47, Figure 4D; Monkey
H; R = 0.36).

We further examined the effects of probability and reward mag-
nitude on SRT by replotting the data from Figures 4C,D with each
reward magnitude and probability condition highlighted. Simi-
lar to choice, we found that reward magnitude exhibits a strong

FIGURE 5 | Contribution of reward magnitude and probability to SRT.
Each point represents 150–225 trials of a specific prospect collapsed across
two to three blocks of trials. Same single-target data as Figures 4C,D. (A,B)
Contribution of reward magnitude. Each color indicates a group of
prospects with the same probability. Within each color, each point
represents a different reward magnitude condition. In order, red was the
lowest probability, followed by green, blue, cyan, yellow, magenta, and
black was the highest. SeeTable 1 for exact values. (C,D) Contribution of
reward probability. Each color indicates a group of prospects with the same
reward magnitude and each point within the colored groups represents a
different reward probability.

effect on SRT, regardless of probability (Figures 5A,B). Probability
exhibits little, if any, effect, except, perhaps, when reward magni-
tude was less biased between the two-target locations (Figure 5C;
cyan lines, R = −0.76, p < 0.05; Figure 5D; cyan lines, R = −0.63,
p > 0.05).

We have previously shown that mean SRTs were modulated by
changes in EV in humans (Milstein and Dorris, 2007). Here we
examined the relative contribution of increasing and decreasing
saccade latencies across prospects by examining SRT distributions
in more detail. Similar SRT distributions were observed during
an equal value block (Figure 6A) with the majority of saccades
centered around 200 ms. These distributions changed when the
EV of the two targets was skewed (Figure 6B) with the length-
ening of SRTs for the low-valued targets becoming particularly
pronounced. The overall effect of value on SRTs was quite pow-
erful when one considers that monkeys were simply required to
look to a single-target that suddenly appeared in a darkened room.
The SRT differences spanned 348 ms for monkey B and 460 ms in
monkey H across prospects. Across all prospects (Figures 6C,D),
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FIGURE 6 |The influence of value on SRT distributions. (A,B)
Histograms for equal value (50% left probability/50% left reward
magnitude) and skewed value (10% left probability/38% left reward
magnitude) blocks of trials. Black bars represent SRTs to the right target,
gray bars represent SRTs to the left target. The mean of each distribution is
indicated by the solid vertical lines. (C,D) Same single-target data set as
Figures 4C,D. Each data point represents one of the 49 different prospects,
composed of 150–225 individual trials collapsed over two to three blocks of
the same prospect. Blocks are not sorted on value, but on the difference in
SRTs between the left and right targets. Enlarged points are blocks in which
the value was equal to the left and right targets. The relative expected value
of each point is indicated by the heat map legend on the right.

the differences in SRT were more heavily influenced by length-
ening of SRTs to the low value target. Shortening of SRTs to the
high-valued target displayed a floor effect.

INFLUENCE OF VALUE ON OCULOMOTOR CAPTURES
In experiment 2, we probed the spatial allocation of saccade prepa-
ration more closely by occasionally presenting a distractor at one
of three locations (Figure 1C). Oculomotor captures were directed
toward left and right distractors in roughly equal proportion
when the targets were of equal value (Figure 7A) but became
biased in favor of locations associated with targets of higher
value (Figure 7B). Across prospects, there was a positive corre-
lation between the relative EV of the targets and the proportion
of oculomotor captures directed to distractors at those locations
(Figure 7C – R = 0.48, p < 0.05; Figure 7D – R = 0.77, p < 0.05).
Both monkeys rarely, if ever, looked toward distractors presented at
the valueless upward location (Figures 7C,D, open circles). Lastly,
oculomotor captures were compared with an established measure
of saccade preparation, SRT (Figures 4C,D). Strong correlations
were found to exist between oculomotor captures and SRT differ-
ences across the same prospects (Figure 7E: Monkey B – R = 0.94;
p < 0.05; Figure 7F: Monkey H – R = 0.93, p < 0.05).

RELATIONSHIP BETWEEN SRTs AND CHOICES ACROSS PROSPECTS
We capitalized on the interleaved two-target (Figure 1A; 25% of
trials) and single-target trial (Figure 1B; 75% of trials) structure of

FIGURE 7 | Influence of expected value on oculomotor captures. (A,B)
Individual eye traces for equal value (50% left probability/50% left reward
magnitude) and skewed value (50% left probability/62% left reward
magnitude) blocks of trials. Red lines indicate target-directed saccades,
green indicate distractor-directed saccades. Thick lines indicate time of
distractor (green) and target (red) appearance, respectively. (C,D) Each
point is calculated from approximately 700 trials with data collapsed for left
and right oculomotor captures for the same prospects. Filled circles
represent oculomotor captures to distractors that appeared at potential
target locations. Unfilled circles represent oculomotor captures to vertical
distractors where no target was ever presented. (E,F) Relationship
between relative SRT and proportion of oculomotor captures on each block.
Same data as in (C,D).

experiment 1 to examine the relationship between SRTs and choice
preference across prospects. We hypothesized that revealed choice
preferences from two-target trials, an established index of relative
subjective value (Gonzalez and Wu, 1999; Trepel et al., 2005; Paulus
and Frank, 2006; Hsu et al., 2009; Glimcher, 2011), would correlate
with SRTs from single-target trials. The differences in single-target
SRTs lawfully reflected choice preferences during two-target trials
(Figures 8A,B). Both of these metrics are influenced by relative
EV, in that overall, there is a gradual transition from blue to
red points on this graph along both the abscissa and ordinate.
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FIGURE 8 |The relationship between saccadic choices and reaction times
when target value is manipulated. (A,B) Relative SRT from single-target
trials is plotted against the proportion of choice from two-target trials across

all 49 prospects. Each point represents ∼300 trials in Monkey B and ∼200
trials in Monkey H of a specific prospect whose relative expected value is
indicated by the heat map legend on the right.

More likely, however, the relationship between choice and SRT is
shaped by subjective value as evident by certain prospects whose
ordering does not follow a smooth transition from blue to red.
Putatively, the majority of this subjectivity arises because reward
magnitude is over weighted relative to probability in our task (see
Figures 2–5).

The relationship between SRT difference and choice was well
described by a logistic function (Figure 8A; R = 0.98 Monkey B
and Figure 8B; R = 0.99 Monkey H, p < 0.05, respectively). This
logistic function reflects how subjective value influences the selec-
tion and preparation of saccades. Importantly, the correlation
between SRT and choice allocation across prospects is significantly
stronger than the correlation observed with choice or SRT with
any other decision factor (i.e., probability, reward magnitude, rel-
ative EV). This suggests that both choices and SRTs are influenced
by subjective value more than any objective decision factor alone
(p < 0.01, Fisher r-to-z transformation).

SACCADE PREPARATION IS INFLUENCED BY THE RELATIVE, NOT
ABSOLUTE, VALUE OF TARGETS
Up to this point, it is unclear whether the modulations in SRT are
caused by changes in the absolute value of reward magnitude avail-
able on each trial, or by changes in the value of one target relative to
the other. This confound arises because blocks with highly skewed
relative values also tend to be blocks in which monkeys receives
higher overall rates of reward (see Eq. 1). Here we consider absolute
value to be similar to previous definitions of motivation (Stellar
and Stellar, 1985) defined as the average reward harvested per trial
during a given prospect. To distinguish between these two possibil-
ities we multiplied the reward magnitudes at both target locations,
which had the effect of increasing the absolute EV of each target
while leaving the relative EV of each target unchanged. SRTs were
influenced by changes in relative EV across blocks (p < 0.001, 1
way RM ANOVA) but not absolute changes in reward magnitude
values (Figures 9; p > 0.05 for both monkeys, 1 way RM ANOVA).

DISCUSSION
Our findings suggest that the selection and preparation of saccadic
eye movements are strongly influenced by the relative expected
subjective value (RESV; Glimcher, 2011) of targets under condi-
tions of uncertainty. To establish the EV component of RESV, we
allowed monkeys to freely choose between prospects, in addition
to recording two other behavioral measures; SRT and oculomo-
tor captures. When monkeys were allowed to choose between
prospects, they tended to choose the prospect of higher EV
(Figure 2). Furthermore, the time to initiate saccades (Figure 4),
as well as the spatial allocation of oculomotor captures (Figure 7),
were influenced by EV. To establish the subjectivity (S) component
of RESV we examined interleaved single-target and two-target tri-
als. SRTs from single-target trials were correlated with the revealed
preferences from the two-target trials (Figure 8), suggesting a
relationship between subjective preferences and the allocation of
saccade preparation under conditions of uncertainty. In additional
support of this subjectivity, reward magnitude was more heavily
weighted than probability when monkeys were choosing where to
look (Figures 2 and 3) and when preparing saccades (Figures 4
and 5). To establish the relativity (R) component of RESV, reward
magnitudes for all targets were increased by multiples. SRTs were
influenced by changing relative value of the two targets between
prospects but not changes in absolute value that accompanied
multiples of reward magnitude (Figure 9).

RELATIVE CONTRIBUTION OF REWARD MAGNITUDE AND PROBABILITY
Previous research has shown that saccade generation is influenced
by probability and reward magnitude (Basso and Wurtz, 1998;
Dorris and Munoz, 1998; Leon and Shadlen, 1999; Platt and Glim-
cher, 1999; Lauwereyns et al., 2002; Takikawa et al., 2002; Ikeda
and Hikosaka, 2003; Ding and Hikosaka, 2007; Milstein and Dor-
ris, 2007). In those studies, one decision factor was held constant
while the other was manipulated. However, the current results, and
our previous work in humans (Milstein and Dorris, 2007), suggest
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FIGURE 9 | Comparative effects of relative and absolute expected value
on SRT. Each data point represents 200–300 individual trials of a separate task
comprised of 100% single-target trials. Three conditions were performed that

had the same relative expected values (indicated by the bold cells inTable 1),
however, all reward magnitudes were increased by the stated multiples
between conditions (i.e., different absolute expected value at each location).

that some weighted combination of these two factors influences
saccade generation rather than either factor alone.

Reward magnitude exerted a stronger effect than reward prob-
ability in influencing choice in both monkeys (Figures 2 and 3)
to the extent that probability only had a modest influence when
rewards were nearly equal. Our findings are consistent with previ-
ous research in monkeys showing an effect of reward probability
under equal reward magnitude conditions (Basso and Wurtz, 1998;
Dorris and Munoz, 1998). Our findings provide an important
extension to this previous work by demonstrating that reward
magnitude dominates reward probability across a wide range of
saccade target values.

This seemingly “risk seeking” behavior has been demonstrated
in monkeys in other contexts (Baum, 1979; Anderson et al., 2002;
Davison and Baum, 2003; Lau and Glimcher, 2005; McCoy and
Platt, 2005; So and Stuphorn, 2010). Evidence from other animal
models has shown that animals may behave differently based on
their physiological state (Caraco, 1981). In the case of these ani-
mals, their powerful thirst may drive them to seek the risky option
in the chance that it will satiate them more rapidly, rather than
the more probable, but smaller reward. An additional factor is the
time in between each trial. Monkeys only had to wait 1 s for the
next trial to begin, and thus, may be more willing to gamble for the
larger reward, knowing that they will get to have another chance
right after. Previous work has shown that if monkeys are forced
to wait for longer periods of time in between trials, they tend to
choose the less risky option (Hayden and Platt, 2007). The imme-
diacy of reward is clearly an important factor in the valuation of
choice for monkeys (Mazur, 1987; Frederick et al., 2002; Green
and Myerson, 2004; Kalenscher and Pennartz, 2008; Hwang et al.,
2009; Cai et al., 2011), and the task in this study may not ade-
quately tease apart risk from the temporal discounting of rewards.
Another potential reason for a larger reward magnitude contribu-
tion is that thirsty monkeys were given reward immediately upon
successful completion of a trial rather than abstract feedback to be

delivered later in the experiment as is typical of human economic
experiments. Potentially contributing to this, probability had to
be updated slowly through experience over many trials whereas
reward magnitude was sensed immediately on the tongue. How-
ever, we did not notice any appreciable changes in the influence
of probability on choices throughout as trial blocks progressed (t -
test comparing choice allocation at beginning and end of blocks,
p > 0.10).

ESTABLISHING THE EXPECTED VALUE (EV) COMPONENT OF RESV
Throughout these experiments, EV was correlated to several
behavioral measures. First, EV influenced the allocation of choices
between targets (Figures 2C,D). This is an important first step
because revealed preference is a classic behavioral measure of sub-
jective value (Samuelson, 1938). However, simply relying on choice
allocation has limitations. Choice is a discrete measure and thus
better suited for assessing which option is more valuable or pre-
ferred rather than the degree to which an option is more valuable
than another as reflected in the maximizing of choices at highly
skewed values (Figures 2C,D). EV also influenced the continu-
ous measure of SRTs during single-target trials (Figures 4C,D).
The difference in SRTs across prospects was 348 ms in monkey
B and 460 ms in monkey H, effects that greatly exceed other
well-studied SRT phenomena (e.g., repetition effects = 7 ms, Dor-
ris et al., 2000; attention = 30 ms, Fecteau et al., 2004; motiva-
tion = 3 ms, Roesch and Olson, 2004; inhibition of return = 20 ms,
Dorris et al., 2002; Pro- versus anti-saccades = 41 ms, Everling and
Munoz, 2000).

The influence of EV on saccade preparation resulted in an
asymmetric distribution of SRTs (Figure 5). These were char-
acterized by relatively narrow SRTs distributions toward high-
valued targets and broad SRT distributions toward low-valued
targets. Overall, the majority of the SRT differences were the
result of lengthening to low-valued targets rather than shorten-
ing toward high-valued targets. Presumably the floor effect for
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speeding of SRTs is dictated by physiological limits of conduction
within visuosaccadic circuits (i.e., express saccades – Munoz et al.,
2000).

Although EV exerted an influence on single-target trials,
this effect was both slowed and attenuated in two-target trials
(Figures 4C,D, blue points). This is likely caused by competitive
inhibition between the two targets, which appear in opposite hemi-
fields of visual space (Koch and Ullman, 1985; Munoz and Istvan,
1998). Furthermore, the SRTs in two-target trials were uncorre-
lated to the difficulty of the selection process (i.e., how close the
two prospects on a given trial were in value), which would be
characterized by an inverted “U” shaped function centered on
equally valued targets (p > 0.05). These results show that SRT
may not be an accurate behavioral measure of value in tasks that
are not speeded or allow the subjects to choose between multiple
prospects.

The proportion of oculomotor captures correlated with the EV
of targets at particular locations (Figure 7). Importantly, very few
oculomotor captures were directed to the valueless distractors pre-
sented at a location orthogonal to the valued targets. These results
mirror human work demonstrating that saccade preparation is
spatially allocated based on the relative value of potential targets
(Milstein and Dorris, 2007).

In summary, we established the EV of RESV in three steps.
First, discreet choice preferences correlated with the relative EV
of the two targets. Second, continuous SRTs were correlated with
the EV of single targets. Third, the pattern of oculomotor captures
demonstrated that saccade preparation is spatially allocated based
on the EV of saccadic targets.

ESTABLISHING THE SUBJECTIVE (S) COMPONENT OF RESV
We examined the subjective component of the value process out-
lined by behavioral economics (Kahneman and Tversky, 1979;
Tversky and Kahneman, 1992; Gonzalez and Wu, 1999; Trepel
et al., 2005; Paulus and Frank, 2006; Hsu et al., 2009) by relating
SRTs to free choices during interleaved single and two-target tri-
als. There was a lawful relationship between SRTs and preferences
(Figure 8). More specifically, the logistic function that describes
this relationship is important because it suggests that the process
that transforms value into action follows a “soft-max” decision
rule. The soft-max rule transforms the difference in value distrib-
utions between available options into a probability of choosing an
action (Daw et al., 2006). This contrasts with a step-function, that
characterizes an ε-greedy decision rule, in which the higher valued
target is always selected or, in our case, to which all saccade prepa-
ration is allocated. Moreover, our data suggest that SRTs capture
the subjectivity associated with estimating value because they more
strongly reflect choice preferences (Figure 8) compared to EV, as
well as account for blocks in which the monkeys chose the target of
lower EV (Figures 2C,D). Interestingly, this soft-max decision rule
has been seen in other studies that use choice instead of SRT as a
measure of value (McCoy and Platt, 2005; So and Stuphorn, 2010).
Our choice results were in between a soft-max and ε-greedy func-
tion relative to these previous studies. Perhaps this reflects a differ-
ence in using abstract symbols to represent prospects on each trial,
whereas our prospects were learned by experience over a block of
trials.

In other contexts, subjective value has been measured from
maps of indifference curves constructed across a range of prospects
(Gonzalez and Wu, 1999; Kording et al., 2004; Padoa-Schioppa and
Assad, 2006; Paulus and Frank, 2006). An added benefit of SRTs
is that, in addition to providing an aggregate measure of value for
a given prospect, their variability may provide insight into how
subjective value is dynamically updated with trial by trial expe-
rience (Thevarajah et al., 2010). Indeed our preliminary analyses
suggest trial by trial SRTs in single-target trials closely track trial by
trial estimates of action value derived from reinforcement learning
models (Milstein et al., 2010).

ESTABLISHING THE RELATIVE (R) COMPONENT OF RESV
Both relative and absolute value play a role in decision making
theories. Economic models of choice, such as prospect theory
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; Tre-
pel et al., 2005) posit that the value, or utility, of an action can only
be determined relative to other available options. Absolute value,
however, is thought to influence choice by increasing motivation;
the more reward available on a given trial, the more motivated
the subject is to respond (Stellar and Stellar, 1985; Roesch and
Olson, 2003, 2004; Ravel and Richmond, 2006). In this context,
experiment 3 examined how saccade preparation was influenced
by the relative and absolute value of available options. We found
that motivation, defined as the average reward harvested per trial
during a given prospect (Roesch and Olson, 2004; Milstein and
Dorris, 2007) had no effect on SRTs whereas RESV had a large
effect across prospects (Figure 9). Although the effects of motiva-
tion have been observed in other tasks (Roesch and Olson, 2003,
2004; Ravel and Richmond, 2006), it appears to play a small role in
tasks such as this, where saccade preparation can be biased across
visual space based on the learned value of target locations. Perhaps
motivation is more influential to whether the subject decides to
complete the task or not. For example, as the animal becomes sati-
ated, he lacks the motivation to participate in the task; however
if he does participate, his saccade preparatory processes should
follow RESV.

CONCLUSION
We conclude that RESV is not only an important factor for delib-
erative decision making in primates, but also for the selection
and advanced preparation of simple motor actions, such as sac-
cadic eye movements. RESV is subjective in the sense that it is
computed by each subject’s internal weightings of probability and
reward magnitude and relative in that behavior was influenced by
the difference in value of available actions rather than the absolute
value of any action alone.

ACKNOWLEDGMENTS
This research was supported by the Canadian Institutes of Health
Research. D.M. Milstein is supported by a Queen’s University grad-
uate fellowship and an Ontario Graduate Scholarship. M.C. Dorris
is supported by the Canadian Research Chairs program. We thank
S. Hickman, M. Lewis for technical assistance and E. Ryklin for
the customization of the data acquisition program. We thank J.
Green for animal care, training, and help with the collection of
behavioral data.

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


www.frontiersin.org  October 2011 | Volume 5 | Article 122 | 67

Milstein and Dorris Subjective value influences saccade generation

REFERENCES
Akaike, H. (1973). “Information the-

ory and an extension of the max-
imum likelihood principle,” Second
International Symposium of Informa-
tion Theory, eds B. N. Petrof and F.
Csazi (Budapest: Akademiai Kiado),
199–214.

Anderson, K. G., Velkey, A. J., and
Woolverton, W. L. (2002). The gen-
eralized matching law as a predictor
of choice between cocaine and food
in rhesus monkeys. Psychopharma-
cology (Berl.) 163, 319–326.

Basso, M. A., and Wurtz, R. H. (1998).
Modulation of neuronal activity in
superior colliculus by changes in
target probability. J. Neurosci. 18,
7519–7534.

Baum, W. M. (1979). Matching, under-
matching, and overmatching in
studies of choice. J. Exp. Anal. Behav.
32, 269–281.

Cai, X., Kim, S., and Lee, D. (2011).
Heterogeneous coding of temporally
discounted values in the dorsal and
ventral striatum during intertempo-
ral choice. Neuron 69, 170–182.

Caraco, T. (1981). Energy budgets, risk
and foraging preferences in dark-
eyed juncos (Junco hyemalis). Behav.
Ecol. Sociobiol. (Print) 8, 213–217.

Davison, M., and Baum, W. M. (2003).
Every reinforcer counts: reinforcer
magnitude and local preference. J.
Exp. Anal. Behav. 80, 95–129.

Daw, N. D., O’Doherty, J. P., Dayan, P.,
Seymour, B., and Dolan, R. J. (2006).
Cortical substrates for exploratory
decisions in humans. Nature 441,
876–879.

Dayan, P., and Abbott, L. (2001). The-
oretical Neuroscience. Cambridge:
MIT Press.

Ding, L., and Hikosaka, O. (2007). Tem-
poral development of asymmetric
reward-induced bias in macaques. J.
Neurophysiol. 97, 57–61.

Dorris, M. C., Klein, R. M., Everling, S.,
and Munoz, D. P. (2002). Contribu-
tion of the primate superior collicu-
lus to inhibition of return. J. Cogn.
Neurosci. 14, 1256–1263.

Dorris, M. C., and Munoz, D. P.
(1998). Saccadic probability influ-
ences motor preparation signals and
time to saccadic initiation. J. Neu-
rosci. 18, 7015–7026.

Dorris, M. C., Pare, M., and Munoz, D. P.
(1997). Neuronal activity in monkey
superior colliculus related to the ini-
tiation of saccadic eye movements. J.
Neurosci. 17, 8566–8579.

Dorris, M. C., Pare, M., and Munoz,
D. P. (2000). Immediate neural plas-
ticity shapes motor performance. J.
Neurosci. 20, RC52.

Everling, S., and Munoz, D. P. (2000).
Neuronal correlates for preparatory

set associated with pro-saccades and
anti-saccades in the primate frontal
eye field. J. Neurosci. 20, 387–400.

Fecteau, J. H., Bell, A. H., and Munoz,
D. P. (2004). Neural correlates of the
automatic and goal-driven biases in
orienting spatial attention. J. Neuro-
physiol. 92, 1728–1737.

Frederick, S., Loewenstein, G., and
O’Donoghue, T. (2002). Time dis-
counting and time preference: a crit-
ical review. J. Econ. Lit. 351–401.

Glimcher, P. W. (2003). The neuro-
biology of visual-saccadic decision
making. Annu. Rev. Neurosci. 26,
133–179.

Glimcher, P. W. (2011). Foundations of
Neuroeconomic Analysis. New York:
Oxford University Press.

Gonzalez, R., and Wu, G. (1999). On
the shape of the probability weight-
ing function. Cogn. Psychol. 38,
129–166.

Green, L., and Myerson, J. (2004). A dis-
counting framework for choice with
delayed and probabilistic rewards.
Psychol. Bull. 130, 769–792.

Hayden, B. Y., and Platt, M. L. (2007).
Temporal discounting predicts risk
sensitivity in rhesus macaques. Curr.
Biol. 17, 49–53.

Hsu, M., Krajbich, I., Zhao, C., and
Camerer, C. F. (2009). Neural
response to reward anticipation
under risk is nonlinear in probabili-
ties. J. Neurosci. 29, 2231–2237.

Hwang, J., Kim, S., and Lee, D. (2009).
Temporal discounting and inter-
temporal choice in rhesus mon-
keys. Front. Behav. Neurosci. 3:9.
doi:10.3389/neuro.08.009.2009

Ikeda, T., and Hikosaka, O. (2003).
Reward-dependent gain and bias of
visual responses in primate superior
colliculus. Neuron 39, 693–700.

Kahneman, D., and Tversky, A. (1979).
Prospect theory: an analysis of deci-
sion under risk. Econometrica 47,
263–291.

Kalenscher, T., and Pennartz, C. M.
(2008). Is a bird in the hand
worth two in the future? The
neuroeconomics of intertemporal
decision-making. Prog. Neurobiol.
84, 284–315.

Koch, C., and Ullman, S. (1985).
Shifts in selective visual attention:
towards the underlying neural cir-
cuitry. Hum. Neurobiol. 4, 219–227.

Kording, K. P., Fukunaga, I., Howard,
I. S., Ingram, J. N., and Wolpert,
D. M. (2004). A neuroeconom-
ics approach to inferring utility
functions in sensorimotor control.
PLoS Biol. 2, e330. doi:10.1371/jour-
nal.pbio.0020330

Lau, B., and Glimcher, P. W. (2005).
Dynamic response-by-response
models of matching behavior in

rhesus monkeys. J. Exp. Anal. Behav.
84, 555–579.

Lauwereyns, J., Watanabe, K., Coe, B.,
and Hikosaka, O. (2002). A neural
correlate of response bias in mon-
key caudate nucleus. Nature 418,
413–417.

Leon, M. I., and Shadlen, M. N. (1999).
Effect of expected reward magni-
tude on the response of neurons
in the dorsolateral prefrontal cor-
tex of the macaque. Neuron 24,
415–425.

Mazur, J. (1987). “Quantitative analy-
ses of behavior,” The Effect of Delay
and of Intervening Events on Rein-
forcement Value,Vol. 5 (Hillsdale, NJ:
Erlbaum), 55–73.

McCoy, A. N., and Platt, M. L. (2005).
Risk-sensitive neurons in macaque
posterior cingulate cortex. Nat. Neu-
rosci. 8, 1220–1227.

Milstein, D., Webb, R., and Dorris,
M. (2010). Reinforcement learning
algorithms predict changes in activ-
ity within the superior colliculus in
response to changes in saccade value.
Soc. Neurosci.

Milstein, D. M., and Dorris, M. C.
(2007). The influence of expected
value on saccadic preparation. J.
Neurosci. 27, 4810–4818.

Munoz, D. P., Dorris, M. C., Pare,
M., and Everling, S. (2000). On
your mark, get set: brainstem cir-
cuitry underlying saccadic initia-
tion. Can. J. Physiol. Pharmacol. 78,
934–944.

Munoz, D. P., and Istvan, P. J. (1998).
Lateral inhibitory interactions in the
intermediate layers of the monkey
superior colliculus. J. Neurophysiol.
79, 1193–1209.

Padoa-Schioppa, C., and Assad, J. A.
(2006). Neurons in the orbitofrontal
cortex encode economic value.
Nature 441, 223–226.

Paulus, M. P., and Frank, L. R. (2006).
Anterior cingulate activity modu-
lates nonlinear decision weight func-
tion of uncertain prospects. Neu-
roimage 30, 668–677.

Platt, M. L., and Glimcher, P. W. (1999).
Neural correlates of decision vari-
ables in parietal cortex. Nature 400,
233–238.

Ravel, S., and Richmond, B. J. (2006).
Dopamine neuronal responses in
monkeys performing visually cued
reward schedules. Eur. J. Neurosci.
24, 277–290.

Roesch, M. R., and Olson, C. R. (2003).
Impact of expected reward on neu-
ronal activity in prefrontal cortex,
frontal and supplementary eye fields
and premotor cortex. J. Neurophys-
iol. 90, 1766–1789.

Roesch, M. R., and Olson, C. R.
(2004). Neuronal activity related to

reward value and motivation in pri-
mate frontal cortex. Science 304,
307–310.

Rolls, E. (2005). Emotion Explained.
Oxford: Oxford University Press.

Rolls, E. T., McCabe, C., and Redoute,
J. (2008). Expected value, reward
outcome, and temporal difference
error representations in a probabilis-
tic decision task. Cereb. Cortex 18,
652–663.

Rorie, A. E., Gao, J., McClelland, J. L.,
and Newsome, W. T. (2010). Inte-
gration of sensory and reward infor-
mation during perceptual decision-
making in lateral intraparietal cortex
(LIP) of the macaque monkey. PLoS
ONE 5, e9308. doi:10.1371/jour-
nal.pone.0009308

Sakamoto, Y., Ishigura, M., and Kita-
gawa, G. (1986). Akaike Informa-
tion Criterion Statistics. Dordrecht:
Reidel.

Samuelson, P. (1938). A note on the
pure theory of consumers’ behav-
iour. Economica 5, 61–71.

Saslow, M. G. (1967). Latency for sac-
cadic eye movement. J. Opt. Soc. Am.
57, 1030–1033.

So, N. Y., and Stuphorn, V. (2010). Sup-
plementary eye field encodes option
and action value for saccades with
variable reward. J. Neurophysiol. 104,
2634–2653.

Stellar, J., and Stellar,E. (1985). The Neu-
robiology of Motivation and Reward.
New York: Springer-Verlag.

Takikawa, Y., Kawagoe, R., Itoh, H.,
Nakahara, H., and Hikosaka, O.
(2002). Modulation of saccadic eye
movements by predicted reward
outcome. Exp. Brain Res. 142,
284–291.

Theeuwes, J., Kramer, A., Hahn, S.,
and Irwin, D. (1998). Our eyes
do not always go where we want
them to go: capture of the eyes
by new objects. Psychol. Sci. 9,
379–385.

Thevarajah, D., Webb, R., Ferrall,
C., and Dorris, M. C. (2010).
Modeling the value of strategic
actions in the superior collicu-
lus. Front. Behav. Neurosci. 3:57.
doi:10.3389/neuro.08.057.2009

Trepel, C., Fox, C. R., and Poldrack,
R. A. (2005). Prospect theory on
the brain? Toward a cognitive neu-
roscience of decision under risk.
Brain Res. Cogn. Brain Res. 23,
34–50.

Tversky, A., and Kahneman, D. (1992).
Advances in prospect theory:
cumulative representation of
uncertainty. J. Risk Uncertain. 5,
297–323.

Yang, T., and Shadlen, M. N. (2007).
Probabilistic reasoning by neurons.
Nature 447, 1075–1080.

http://dx.doi.org/10.3389/neuro.08.009.2009
http://dx.doi.org/10.1371/journal.pbio.0020330
http://dx.doi.org/10.1371/journal.pone.0009308
http://dx.doi.org/10.3389/neuro.08.057.2009
http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Frontiers in Neuroscience  |  Decision Neuroscience  October 2011 | Volume 5 | Article 122 | 68

Milstein and Dorris Subjective value influences saccade generation

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence
of any commercial or financial
relationships that could be con-
strued as a potential conflict of
interest.

Received: 14 June 2011; accepted: 22 Sep-
tember 2011; published online: 17 Octo-
ber 2011.
Citation: Milstein DM and Dor-
ris MC (2011) The relationship
between saccadic choice and reaction
times with manipulations of target

value. Front. Neurosci. 5:122. doi:
10.3389/fnins.2011.00122
This article was submitted to Frontiers
in Decision Neuroscience, a specialty of
Frontiers in Neuroscience.
Copyright © 2011 Milstein and Dorris.
This is an open-access article subject to a

non-exclusive license between the authors
and Frontiers Media SA, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and
other Frontiers conditions are complied
with.

http://dx.doi.org/10.3389/fnins.2011.00122
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


www.frontiersin.org  May 2011 | Volume 5 | Article 61 | 69

Although reward probability is an important factor in shaping 
animal’s behavior (Herrnstein, 1961; Sugrue et al., 2004), it is not 
well understood how the cortico-striatal circuits translate reward 
probability into the vigor of movement. We hypothesized that the 
dorsal striatum (Putamen and Caudate Nucleus) of primates is 
part of the system that modulates the movement vigor (i.e., RT 
and speed), depending on the probability of the expected reward. 
This hypothesis is supported by the finding that changes in dorsal 
striatal activity occur shortly after go-cues and clearly earlier than 
the movements (100–200 ms before movements). Therefore, it is 
possible that changes in reward expectation are processed by the 
neostriatum (NS), which biases both motor planning and prepara-
tion (Mirenowicz and Schultz 1994; Shidara et al., 1998; Lauwereyns 
et al., 2002; Simmons and Richmond 2008). Dorsal striatum may 
be responsible for enhancing movement vigor when rewards are 
certain and decreasing the vigor when rewards become uncertain 
(Seideman et al., 1998; Ditterich, 2006; Wittmann et al., 2008; Van 
der Meer and Redish, 2009; Machens et al., 2010).

To elucidate NS modulations that putatively mediate the transla-
tion of reward probability into the changes of movement vigor, we 
trained two rhesus monkeys in a RT task in which they produced 
wrist flexions or extensions in response to vibratory and visually 
cues (Lebedev and Nelson 1999). Trial outcome was made uncertain 
by rewarding the monkeys for correct performance only in 75% of 
the trials. Monkeys were uncertain about an upcoming reward in 
all trials except for the trials that immediately followed withheld 
rewards. In these trials the monkeys were certain about the outcome 
because they were always rewarded. Given these trial to trial changes 

INTRODUCTION
The primate fronto-striatal system, which plays an important role 
in temporal coordination of goal-directed behavior, consists of 
a network of neuronal circuits that integrate spatial and timing 
information for behavioral purpose (Alexander and Crutcher 1990; 
Hoshi and Tanji, 2000; Staddon 2001; Miller and Phelps, 2010). 
Previous studies have demonstrated that pre-movement firing in 
fronto-parietal cortex and basal ganglia mediates preparation and 
initiation of both sensory guided and self-initiated movements 
(Horak and Anderson, 1984; Gardiner and Nelson 1992; Romo 
et al., 1992; Turner and Anderson, 1997; Lee and Assad 2003; 
Churchland et al., 2006a; Tsujimoto et al., 2010). In particular, it 
has been suggested that basal ganglia modulate motor performance 
(“dynamics” or “movement vigor”) under the effect of motivational 
factors quantified as context-specific cost/reward functions (for 
review see Hayden et al., 2008; Turner and Desmurget, 2010). Motor 
planning involves programming of the direction of movement, the 
kinematics, and the goal of movement (Kalaska and Crammond, 
1995; McCoy and Platt, 2005; Platt and Huettel, 2008; for review 
Opris and Bruce, 2005). Motor areas of the brain also specify move-
ment vigor which is overtly represented by the reaction time (RT) 
and the speed with which a movement is performed. The choice 
of these behavioral parameters is mediated by the activation of 
midbrain’s dopaminergic projections to fronto-parietal cortex 
and dorsal striatum that track successful and erroneous behaviors 
and the contingencies between the behaviors and rewards (Romo 
and Schultz, 1990; Gaspar et al., 1992; Kiyatkin, and Rebec, 1996; 
Fiorillo et al., 2003).
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in reward probability, we determined if the activity of dorsal striatal 
neurons that was associated with motor preparation, varied as a 
function of reward expectation and whether it was correlated with 
changes in movement timing and wrist kinematics.

MATERIALS AND METHODS
ExpERIMENTAL AppARATUS AND bEHAvIORAL pARADIgM
Two adult male rhesus monkeys (Macaca mulatta: E, N) were 
trained to make wrist flexion and extension movements in response 
to vibratory or visual go-cues (Lebedev and Nelson 1995, 1999; 
Liu et al., 2008). The monkeys were cared for in accordance with 
the National Research Council Guide for the Care and Use of 
Laboratory Animals. Experimental protocols were approved by the 
Animal Care and Use Committee of The University of Tennessee 
Health Science Center, Memphis. Detailed descriptions of the 
experimental apparatus have been provided elsewhere (Lebedev 
and Nelson, 1995, 1999; Liu et al., 2005). A brief description is 
provided below.

Experimental apparatus
Each monkey sat in an acrylic monkey chair, with its right palm on 
a movable plate. One end of the plate was attached to the axle of a 
brushless D.C. torque motor (Colburn and Evarts, 1978). A load of 
0.07 Nm was applied to the plate. The load assisted wrist extensions 
and opposed wrist flexions. Feedback of current wrist position was 
provided by a visual display consisting of 31 light-emitting diodes 
(LEDs), located 35 cm in front of the animal. The middle, red LED 
corresponded to a centered wrist position. Yellow LEDs above and 
below the middle LED indicate successive angular deviations of 
1°. Two instructional LED were located in the upper left corner of 
the visual display. When the first, red LED was illuminated at the 
start of a trial, it indicated that extension movements should be 
made; otherwise flexions were required. When the second, green 
LED was illuminated, it informed the monkey that the go-cue for 
that trial would be palmar vibration; otherwise, the go-cue was 
the illumination of one of two LEDs which were each 5° from the 
center. Neuronal activity was triggered by vibratory cues at 57 Hz 
or by visual go-cues.

Behavioral task
The behavioral paradigm is illustrated schematically in Figure 1A. 
Monkeys made vibratory and visually cued wrist flexion and 
extension movements after holding a steady position during an 
instructed delay period lasting 0.5–2.0 s. Wrist movements were 
guided by either vibratory cues (VIB-trials) or visual cues (VIS-
trials). For vibratory stimulus (VIB) trials, movements were trig-
gered by vibration to the monkey’s palm. For the visual stimulus 
(VIS) trials, movements were initiated by the appearance of a visual 
target that indicated the movement endpoint. Trials began when the 
monkey centered the plate. Each task trial had three basic phases: 
the instructed delay phase, reaction phase (partition of RT is shown 
in Figure 1B) and movement phase. Correct performance in the 
task was rewarded pseudo-randomly in only 75% of the trials, with 
the unrewarded trials never being imposed sequentially.

Our pseudo-random reward schedule used the following types 
of trials: (i) unrewarded trials, (ii) trials immediately follow-
ing the unrewarded ones called after trials (“A” trials), and (iii) 

rewarded trials, for which the current and the preceding trial were 
rewarded, called regular (R) trials). We grouped individual trials by 
the number of previously rewarded trials that preceded each trial 
in the group, as well as, by the direction of the movement made in 
that trial. In some instances there were trials in which the animal 
failed to perform properly (i.e., made a movement in the wrong 
direction). These error trials are conceptually different from the A 
trials since rewards were withheld because of incorrect perform-
ance rather than arbitrarily. These were marked separately in the 
data stream, not being under consideration here. For analyses of 
sequential effects, we required that each group from the records 
of a neuron have at least four valid trials. If any single group of 
records had fewer than four trials, the data from that group were 
not included in the analyses.

Reward probability
The probability of reward was not indicated to the animal except 
via prior experience. The key manipulation in the task was to distin-
guish between “certain” rewards that occurred only in trials follow-
ing withheld rewards (25% of trials), and the “uncertain” rewards 
occurring in the subsequent 50% of the trials. In Figure 2A we show 
two blocks of trials with unrewarded (U) and rewarded (“A” being 
the first rewarded trial and R the subsequent rewards) trials. The 
unrewarded U trial acts as a cue indicating a certain reward, coded 

Figure 1 | (A) Schematic description of the behavioral paradigm. The direction 
cue was given by a red LED that was illuminated during extension trials, but not 
during flexion trials. The modality cue was a green LED that was illuminated 
during vibratory cued trials but not during visually cued trials. The onset of 
instructional cues was coincident with the onset of the hold period. They 
remained lit until the end of the trial, coincident with reward delivery. Go-cues 
that signaled the monkeys could initiate wrist movements were presented 
after a variable time delay of 0.5, 1.0, 1.5, or 2.0 s (pseudo-randomized). (B) 
Divisions of the reaction time (RT) interval. RT has been split into two intervals: 
R1, the latency from cue onset (COS) to pre-movement activity onset (AOS), 
and R2, the time from AOS until movement onset (MOS).
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deeply anesthetized with sodium pentobarbital and transcardially 
perfused with 10% buffered formol-saline. The brain was removed 
from the skull, and cut on a freezing microtome into 50 μm thick 
coronal sections. Histological sections of the basal ganglia were 
stained for Nissl substance. Recording sites were reconstructed 
based on the depth of each electrode penetration and its location 
with respect to the marking lesions.

DATA ANALySIS
Neuronal activity data, recorded on-line (Lebedev and Nelson, 
1995, 1996, 1999), were processed by off-line analysis programs 
and displayed as rasters, peri-event histograms (PEH), cumulative 
sum plots (CUSUM), and traces of position, aligned on the task 
events. The changes of neuronal activity associated with wrist move-
ment were analyzed using PEHs and raster displays. In addition, 
the CUSUM plots (see, e.g., Lebedev and Nelson, 1995) in which 
mean firing rates are given by the plot’s slopes, illustrate the onset 
of significant increase in discharge before movement onset (MOS). 
The baseline activity (Bkg) of each recorded neuron was calculated 
as its mean firing rate during the 250 ms prior to the presentation 
of cues, while the animal held his wrist in a centered position. The 
first change in the CUSUM of more than 3 SDs, lasting for at least 
40 ms, was designated as the activity onset (Onset or AOS). The 
total number of spikes occurring from AOS until MOS divided by 
the interval divided by the number of trials was designated as the 
cell’s pre-movement response (Resp). The period between AOS and 
MOS is the pre-movement time (R2) defined in Figure 1B. The 
time between the presentations of go-cue (Cue onsets, COS) and 
MOS represents the RT and the time between MOS and movement 
offset (MOF) is defined as the movement time (MT). Both MOS and 
MOF were determined from the position traces during movement 
as the times of significant changes in the wrist position, matching 
the wrist velocity onset or offset, respectively.

RESULTS
DATAbASE
A total of 236 neurons were recorded, of these 149 (∼63%) were 
selected for further analysis, because each neuron: (i) had pre-
movement activity (PMA) changes following the vibratory or visual 
go-cue onset and prior to MOS, (ii) had a PMA firing rate that 
was at least 3 SDs different from the baseline firing rate, and (iii) 
was held long enough to record at least 25 trials for each move-
ment direction. Of these, 99/149 (∼66%) also had a complete set of 
recordings during visually cued trials. Of the selected NS neurons, 
104/149 (∼70%) neurons were located in Putamen, 20/149 (∼13%) 
in the Caudate Nucleus, 18/149 (∼12%) in the cellular bridges in 
between these structures and 7/149 neurons were localized in the 
nearby regions. The total number of neostriatal cells categorized by 
the cue modality to which they responded (vibratory, VIB; visual, 
VIS), movement direction (flexions, Flex, extensions, Ext) and 
reward sequence (A, S-1, S-2, S-3) is shown in Table 1.

NEOSTRIATAL CELL fIRINg fOR CERTAIN AND UNCERTAIN REwARDS
A significant proportion of neurons in dorsal striatum modulated 
their firing during this task. Figure 3A shows an example of a 
striatal neuron with increased modulations in trials with certain 
rewards (“A” trials). This neuron was recorded from the cellular 

as “A” trial. In order to properly address the temporal aspect of 
movement planning under certain vs. uncertain reward, trials were 
re-coded to reflect the number of previously rewarded trials that 
occurred, in sequence, prior to the trial in question. Trials belong-
ing to these groups had been preceded by none, one, two, or three 
previously rewarded trials in sequence (“A,” S-1, S-2, or S-3). The 
next trial groups in the sequence usually contain less than four trials, 
that are not enough to be considered for statistical analyses Thus, 
as it is shown in Figure 2B (depicting the probability of reward 
in each group), reward was certain in group “A,” and uncertain in 
the groups S-1 to S-3 (with reward uncertainty increasing as trials 
advanced from group S-1 to S-3).

ELECTROpHySIOLOgICAL RECORDINgS AND HISTOLOgy
Once an animal reached a stable daily performance level (∼2000 
rewarded trials per experimental session), it was prepared for 
recording. A stainless steel recording chamber was surgically 
implanted over the skull to allow for extracellular recordings of 
the activity of basal ganglia neurons by using platinum–iridium 
microelectrodes with impedances of 1–2 MΩ (see Gardiner and 
Nelson, 1992; Liu et al., 2008). Transdural penetrations began no 
sooner than 1 week after the chamber implantation. In each record-
ing session, a microelectrode was lowered into the striatum and the 
activity of single units was amplified, discriminated, and stored in 
a computer by conventional means (Lebedev and Nelson, 1995; 
Liu et al., 2008). Neuronal receptive fields (RFs) were examined by 
lightly touching punctuate skin surfaces, manipulating joints, and 
palpating muscles. On the last recording day, electrolytic lesions 
were made to mark some recording locations by passing 10 μA of 
current for 10–20 s. These lesions provided references for the his-
tological reconstruction of the recording sites. The animal was then 

Figure 2 | (A) Sequential grouping of rewarded trials. Each block of 10 trials 
contained rewarded (R) and unrewarded (U) trials and rewarded trials (with A 
being the first rewarded trial following the no-reward trial). Trials are grouped 
based the number of previously rewarded. Trials belonging to these groups 
had been preceded by none, one, two, or three previously rewarded trials in 
sequence (A, S-1, S-2, or S-3). (B) Reward probability for trial groups. Trials are 
split in certain rewarded trials (A group) and uncertain rewarded trials (S-1, S-2, 
and S-3). The gray shadow suggests the progression from certain (white) to 
uncertain (gray) rewards.
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bridge between caudate and putamen. Pre-movement firing is 
illustrated for vibratory cued trials. The PETHs and spike rasters 
are aligned on MOS. COS are indicated by blue dots, and reward 
delivery by red dots. Wrist flexion trials with certain rewards (“A” 
trials) and the subsequent trials with uncertain rewards (S-1 to 
S-3) are shown. The PEHs indicate that this neuron’s activity was 
modulated during both the RT epoch (from COS to MOS) and 
during movements. Wrist trajectories are shown in Figure 3B. It 
can be seen that in “A” trials the monkey initiated flexions earlier 
and moved faster and that the activity of the illustrated neuron 
was higher during these trials.

Modulation of pre-movement activity by reward uncertainty
It has been suggested that reward probability biases neural activity 
by altering either the rate or the duration of cell firing (Lauwereyns 
et al., 2002). Figure 4 illustrates these features for our experi-
ment. Average RT was the shortest for “A” trials, and as the RT 
“rubber-band” (Renoult et al., 2006) got shorter, so did the tim-
ing of the illustrated striatal neuron. For the illustrated striatal 
neuron, the duration of PMA (i.e., the interval between activity 
onset, AOS, and MOS) decreased, from 147, 139, and 157 ms in 
S-1, S-2, and S-3 trials, respectively, to 102 ms in “A” trials. Thus, 
the change in movement vigor manifested itself as change in RT 

Table 1| Neurons having sufficient trials for timing and activity analyses 

as a function of reward (un)certainty.

Sensory Movement  reward
modality direction

 Certain uncertain

  A S-1 S-2 S-3

VIB Flex 147 149 140 117

 Ext 149 146 139 126

VIS Flex 99 98 94 86

 Ext 99 97 95 85

Figure 3 | example of dorsal striatal cell recorded under unpredicted 
reward schedule. (A) Each peri-event histogram illustrates neuronal activity 
expressed as mean firing rate (in spikes/s), together with raster displays 
aligned on MOS. The left panel display the NS activity during certain reward 
trials and the next panels represent the activity during uncertain reward 

trials. In the raster display, rows represent individual trials, dots represent 
single spikes, while the left and right bold dots represent vibratory cue onset 
and reward delivery, respectively. Bin width was equal to 5 ms. (B) Wrist 
position traces for each flexion trial are presented at the bottom of each 
panel.

Figure 4 | Movement plans as a function of the probability of expected 
reward. Smoothed peri-event histograms (on the left), aligned on movement 
onset, represent the pre-movement activity epochs (from the yellow 
line-corresponding to activity onset to MOS) as a function of reward 
probability (with the certain reward A on top and the sequence of uncertain 
rewards S-1 to S-3 following bellow). On the right we show hand position 
trajectories and movement velocity profiles (averaged across trials) that depict 
the vigor of movements when reward is certain (top traces) and when reward 
becomes uncertain (bottom). Abbreviations: MOS, movement onset; AOS, 
activity onset; COS, cue onset; and MOF, movement offset.

and wrist velocity and accompanying changes in the timing of a 
striatal neuron’s activity. Note also that the slope of rate change 
in the striatal neuron increased in “A” trials (compare with similar 
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Modulation of activity timing by reward uncertainty
To quantify pre-movement timing at the population level for trials 
with certain and uncertain rewards, we partitioned the RT period 
(see Figure 1B) into latency (R1) and pre-movement epochs (R2; 
see Table 2).

Pre-movement activity duration. Pre-movement durations, 
R2s, increased significantly with the increase in the number 
of consecutively rewarded trials in vibratory cued trials 
(Figures 6A,B), for both flexion and extension movements 
(for all conditions p < 0.001; post hoc test, except for A vs. S-2 
extensions the level of significance was p < 0.01, post hoc test). 
R2s increased less with the increase in the number of consecu-
tively rewarded trials for visually cued trials (Figures 6C,D), but 
significantly (p < 0.05; post hoc test) for flexions and for “A” vs. 
S-3 extension movements (see Table 2). The general trend in 
PMA following withheld rewards was that the duration of pre-
movement time became shorter when reward was certain (“A” 
trials), and longer when reward was uncertain (in the subse-
quent trials S-1 to S-3). Moreover, we found increased slopes of 
rate changes in “A” trials (p < 0.01, post hoc test). Thus, changes 
in reward probability caused both changes in characteristics of 
behavior (RT and movement speed) and in NS modulations.

findings in Lebedev et al., 2008). When the reward was certain, 
RT shortened, wrist velocity increased, the duration of striatal 
pre-movement firing contracted and the slope of pre-movement 
modulation increased in the striatum.

Changes in activity onset time
We observed several types of neuronal modulations. To describe 
these types of neuronal patterns, neuronal responses of each cell 
were sorted by activity onset time (see Figure 1B) and grouped into 
three categories: short, normal and long latencies. In Figure 5 we 
compared pre-movement and baseline firing of each latency group 
for certain (“A” trials) and uncertain rewards (S-1 trials). The short 
latency group responded with higher pre-movement firing rate 
(Resp) under VIB and VIS conditions (p < 0.01 for “short” latency 
and p < 0.05 for “normal” latencies; post hoc test), while the “long” 
latency group responds with a lower mean firing rate. The baseline 
firing (Bkg) increased slightly (p < 0.05, post hoc test) in “normal” 
latency group, compared to the other two groups. For visual cues, 
the short latency group “A” trials had higher pre-movement firing 
rate (by ∼5 spk/s) during flexion trials than the S-1 trials (p < 0.01; 
post hoc test) but not for vibratory cues. These results indicate that 
modulations in NS neurons reflected changes in movement vigor, 
as well as movement direction and cue type.

Figure 5 | Pre-movement firing activity as a function of onset time. Mean 
firing rate for pre-movement activity and baseline are compared between certain 
reward “A” trials and uncertain reward S-1 trials under vibratory cues [(A) VIB–
Flex and (B) VIB–Ext] and visual cues [(C) VIS–Flex and (D) VIS–Ext]. Pre-
movement activity (Resp) and baseline (Bkg) are in red and blue color lines, 

respectively. The abscissa category “latency R1” is split into three unequal time 
intervals: short, normal, and long containing equal neuron numbers. The ordinate 
is showing the mean firing rate in spikes per second (spk/s) for each category 
group. Asterisks (*p < 0.05, **p < 0.01) indicate significant differences in mean 
firing rates for A vs. S-1 trials.
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Table 2 | Activity onset timing. The reaction time interval was divided into R1, which was the time from go-stimulus onset to significant activity change, and 

R2 (the pre-movement epoch) form activity change until MOS.

Sensory Movement Certain uncertain reward 

modality direction reward

  A S-1 S-2 S-3

Pre-MoveMeNT DurATioNS (MS)

VIB Flex 149.414 ± 4.340 172.872 ± 6.067 177.707 ± 6.666 187.830 ± 7.958

 Ext 143.166 ± 3.746 159.328 ± 4.750 156.423 ± 5.052 164.169 ± 5.512

VIS Flex 188.081 ± 5.201 207.781 ± 6.278 203.073 ± 6.714 204.103 ± 7.509

 Ext 162.011 ± 3.511 163.862 ± 4.031 166.203 ± 3.970 172.255 ± 5.025

LATeNCy (MS)

VIB Flex 141.592 ± 3.031 150.954 ± 3.874 146.559 ± 4.012 150.438 ± 5.198

 Ext 142.128 ± 3.055 147.771 ± 3.804 144.676 ± 3.699 143.553 ± 4.332

VIS Flex 178.168 ± 3.398 176.877 ± 3.540 184.252 ± 4.481 181.824 ± 4.990

 Ext 164.018 ± 3.224 170.922 ± 3.670 171.282 ± 3.651 167.389 ± 4.862

Figure 6 | Latency and pre-movement activity durations as a function of 
reward sequence. Left: Pre-movement durations (mean ± SEM) are plotted for 
vibratory cues [(A) flexions sequence trials and (B) extensions). Similarly, R2s for 
visual cues [(C) flexions and (D) extensions). Right: Neural latencies R1s 
(mean ± SEM) are plotted for vibratory cues [(e) flexions and (F) extensions) and 
for visual cues [(g) flexions and (H) extensions]. The horizontal gray lines 

represent the temporal bias reference lines [Bias Line in (B)]. Temporal selection 
bias (Bias) is represented on the Time axis in panel b together with the key 
events: activity onset (AOS) and movement onset (MOS). Numerical values of 
R1s and R2s are shown in Table 2. Asterisks (*p < 0.05, **p < 0.001) indicate 
significant differences in mean pre-movement times for A vs. S-1, S-2, and S-3 
trials.

Neural latency. The time epoch in the PETH from cue onset to the 
onset of firing modulation is called here “neural latency” and cor-
responds to R1 in Figure 1B. R1s increased slightly with the increase 
in the number of consecutively rewarded trials in  vibratory cued tri-
als (Figures 6E,F), for both flexion and extension movements (for 

all conditions, p < 0.05, post hoc test, except for “A” vs. S-1 flexions 
in which the level of significance was p < 0.001). Under visual cues 
(Figures 6G,H), R1s increased with the increase in the number of 
consecutively rewarded trials for several conditions (p < 0.05; post 
hoc test for “A” vs. S-2 and S-3, flexions and also for “A” vs. S-1 and 
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visual sessions and in 139/296 (47%) sessions. Of these, flexion 
trials errors occurred in 94/247 (38%) sessions and extension trial 
errors in 91/247 (37%) sessions. Thus, animals were more than 
twice likely to make errors in VIB-trials in which the vibratory cue 
did not provide a directional instruction than in VIS-trials in which 
the visual cue clearly indicated such instruction.

Wrist movement velocity varies with reward uncertainty
The changes in wrist velocity with reward probability are shown in 
Figures 7A–D that depicts the distribution of mean wrist move-
ment velocities across reward conditions. Wrist movements were 
performed with higher velocities in trials with certain rewards (“A” 
trials) than in trials with uncertain rewards (S-1 to S-3 trials) for 
all modalities and directions (p < 0.05; unpaired two-tails t-test, 
post hoc test). Across modalities (VIS vs. VIB) wrist Flex velocities 
(Figures 7A,C) were slower with ∼2–4°/s than for Ext velocities 
(Figures 7B,D; p < 0.001; unpaired two-tails t-test, post hoc test).

Correlation between pre-movement time and wrist velocity
Pre-movement changes in duration were correlated with RTs, MTs, 
and hand wrist velocity (Figures 8 and 9).

Correlation between reaction time and pre-movement activ-
ity duration. As shown in Figure 6, both components of the 
RT: latency R1 and pre-movement duration R2 show a clear 
dependency on reward probability which followed the  previously 

S-3 extensions; see Table 2). This suggests that reward uncertainty 
mediated a “rubber-band” temporal effect (Renoult et al., 2006) for 
the RT period: when RTs increased, R1s and R2s increased, as well.

Comparison of pre-movement modulations across modality
The parameters of movements and neuronal modulations in the 
striatum depended on the sensory modality of the go-cue (VIB vs. 
VIS go-cues). Comparisons of pre-movement times R2s between 
visual and vibratory cues showed significantly longer R2s (∼20–
40 ms) for flexions cued by visual VIS stimuli (“A” trials: p < 0.001, 
unpaired two-tails t-test; S-1, S-2, and S-3 trials: p < 0.01, post hoc 
test) than those cued by VIB stimulation. Also, R2s for extension 
were slightly longer (∼5–20 ms) when cued by VIS stimuli (“A” trials, 
p < 0.001, unpaired two-tails t-test and p < 0.01, post hoc test; S-1, S-2, 
and S-3 trials: p < 0.01, post hoc test) compared to vibratory VIB cues.

On the other hand, comparisons of R1s across sensory modality 
showed significantly longer latencies for flexions (VIB vs. VIS cues; 
“A” to S-3 conditions: p < 0.001, unpaired two-tails t-test; “A” and 
S-1 trials: p < 0.01, post hoc test) and extensions under vibratory 
cues (“A” to S-3 conditions: p < 0.001, unpaired two-tails t-test) 
compared to visual cues. Thus, the temporal bias caused by the 
changes in reward probability varied differentially with the sensory 
modality, occurring faster for visual cues than for vibratory stimuli.

The modality effect was reflected also by the monkeys’ behavior 
in the error trials. The animals made more than four error trials per 
session (required to be considered for analysis) in 46/198 (23%) 

Figure 7 | Distribution of mean wrist velocity across reward probabilities. Mean wrist velocity are compared under vibratory cues [(A) VIB–Flex and (B) 
VIB–Ext] and visual cues [(C) VIS–Flex and (D) VIS–Ext]. Movements were performed with higher velocities under certain rewards (A trials) than under uncertain 
rewards (S-1 to S-3 trials).
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Figure 8 | Correlation between movement and pre-movement times. Comparison of Pearson correlation coefficients are shown for vibratory cues [(A) VIB Flex] 
and for visual cues [(B) VIS Flex]. Pearson correlation coefficients are statistically significant for S-1 to S-3 trials (p < 0.05) and not significant for A trials.

reported “rubber-band” relationship (Renoult et al., 2006). 
These changes in neural timing were found for both VIB and 
VIS stimuli. Pearson correlations of R2s with RTs varied between 
r = 0.52 and 0.87 with  significant p-values (p < 0.001; two-tailed). 
The correlation coefficients for R1s vs. RTs were slightly lower 
(between r = 0.22 and 0.67) and the p-values also significant 
(p < 0.01; two-tailed).

Correlation between movement time and pre-movement activ-
ity duration. To examine whether PMA duration was correlated 
with movement parameters, we calculated Pearson correlation 
coefficients between these two variables. Figure 8A shows a lin-
ear dependence of Flex MTs on R2s under VIB cues reflected in 
the correlation coefficients r = 0.259 for S-1, r = 0.336 for S-2, 
r = 0.385 for S-3. Similarly under VIS cues (Figure 8B), the coef-
ficients values were r = 0.265 for S-1, r = 0.335 for S-2, r = 0.250 

for S-3. Pearson’s coefficients were statistically significant for S-1 
to S-3 trials (p < 0.05) in both modalities (VIB and VIS), but not 
significant for “A” trials in which R2s were more stable.

Correlation between mean wrist velocity and pre-movement 
time across sensory modality and movement direction. We 
found a consistent correlation between wrist velocity and pre-
movement time in NS neurons across sensory modalities and 
movement directions (shown in Figure 9) and clustered within 
the same modality/direction category. This relationship was 
noticeable when Pearson correlation between pre-movement 
duration and average wrist movement velocity (Figure 9) were 
examined across reward groups (n = 4) under both VIB and 
VIS cued flexions (r = −0.999, p = 0.001; two-tailed). Extension 
movements performed under VIB cues (r = −0.989, p = 0.011), 
and VIS cues (r = −0.991, p = 0.009) revealed this effect. Thus, 
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in a consistent manner, average wrist velocity decreased in 
cohort with the increase in the pre-movement duration across 
modalities.

Variability in movement planning induced by reward unpredictability
The coefficient of variation (CV) represents the ratio between SD 
and the mean. We compared the degree of variability in neural/
behavioral measures (latency, PMA time, RT, and MT) between 
certain and uncertain rewards. Figure 10A shows a sequence of 
spike rasters indicating the increase in variability of event timing as 
a function of reward uncertainty. The CVs in Figure 10B indicate 
that variability in pre-movement time (R2) tended to be higher 
than that in latency (R1) and MT. Such increase in CVs may be 
explained by variations in reward unpredictability.

DISCUSSION
In the present study we recorded the activity of neostriatal neu-
rons in two rhesus monkeys performing wrist movements in a 
pseudo-random reward task. We analyzed the PMA and behavioral 
data under three conditions: (a) certain vs. uncertain rewards, (b) 
vibratory vs. visual go-cues, and (c) flexion vs. extension move-
ments. Our results show that both PMA of most dorsal striatal 
neurons and wrist movement parameters changed as a function 
of reward contingency (results published in abstract form, Nelson 
et al. 1996, 1997).

Pre-movement modulations in dorsal striatal neurons have been 
hypothesized to be related to movement planning (Alexander and 
Crutcher 1990; Hoshi and Tanji, 2000; Hori et al., 2009). In our experi-
ments, the magnitude of pre-movement firing did not change sub-
stantially across reward conditions, likely because monkeys produced 
movement of similar amplitude. What changed instead were the RTs, 
the onsets of the modulation in the firing rates of dorsal striatal neu-
rons and the slopes of their rate changes. These changes in neural 
timing also manifested themselves as alterations of neural latency 
and pre-movement time, in agreement with Mirenowicz and Schultz 
(1994) and Blazquez et al. (2002). Thus, reward probability affected 
both bottom up sensory processing reflected by neural latency and 
the top down flow of information through the basal ganglia-thalamo-
cortical loops expressed as pre-movement time, rate, and rate slope.

UNpREDICTAbLE REwARD AND THE ACTION/MOvEMENT pLAN
Does reward expectation modulate the temporal and kinematic 
parameters represented by a movement plan? It is well documented 
that reward schedule is a key factor in the shaping of animal’s behav-
ior (Herrnstein, 1961; Staddon 2001; Sugrue et al., 2004). According 
to Herrnstein’s matching rule, an animal’s choice optimizes rein-
forcement probability, so that the choice matches the probability 
of reinforcement (Herrnstein, 1961; Sugrue et al., 2004; Lau and 
Glimcher, 2008; Platt and Huettel, 2008). To modulate the timing 
of a movement plan the brain evaluates the utility of each option 
and selects the most valuable action (Seideman et al., 1998; Schall, 
2003; Samejima et al., 2005; Maimon and Assad, 2006; O’Shea et al., 
2007; Pasquereau et al., 2007; Hori et al., 2009), by activating neuro-
nal circuits in fronto-parietal cortex, striatum, and the subcortical 
regions in the brain (Simmons and Richmond, 2008; Opris et al., 
2009; Hikosaka and Isoda, 2010; Tsujimoto et al., 2010; Turner and 
Desmurget, 2010).

Figure 9 | Correlation between mean wrist velocity and pre-movement 
time across sensory modality and movement directions. Scatter plot of 
mean wrist velocity vs. pre-movement activity duration for vibratory cues 
(violet) VIB–Flex and (pink) VIB–Ext) and visual cues (blue) VIS–Flex and (red) 
VIS–Ext) shows a consistent trend across movement direction and sensory 
modalities under reward uncertainty.

Figure 10 | variability under reward uncertainty. (A) Example of a 
sequence raster with event timing variability. Events relevant to the task are: 
cue onset (COS), significant activity onset (AOS), movement onset (MOS) and 
movement offset (MOF). (B) Coefficients of variation (CVs). CVs for latency 
(R1), pre-movement time (R2), reaction time (RT), and movement time are 
plotted as a function reward sequence for both flexions (F) and extensions (E) 
cued by vibratory (VIB) and visual (VIS) cues.
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2003; Schall, 2003; O’Shea et al., 2007). The difference between 
the selection and temporal bias is that selection involves choosing 
between discrete options whereas the temporal bias represents a 
continuous modulation of motor preparation.

ANALOgIES bETwEEN TEMpORAL bIAS AND COvERT CHOICE
Consistent with the free choice hypothesis, a decision mechanism may 
select an option based on (i) reward value, (ii) knowledge from previous 
experience, and (iii) the accumulation of sensory evidence (for review 
see Schall, 2003; Opris and Bruce, 2005; Padoa-Schioppa and Assad, 
2006; Beck et al., 2008; Platt and Huettel, 2008). In our experiment 
there are faster or slower movements and certain vs. uncertain rewards, 
with the certain reward having a higher value than the uncertain one. 
Also, the previous “no-reward” trial acts as a cue indicating a certain 
reward in the current trial, thus providing the prior information. Since 
reward availability/probability is not indicated by an instruction cue, 
no sensory accumulation occurs and the choice is covert.

COMpARISON wITH OTHER STUDIES
Previously, Lauwereyns et al. (2002) identified neurons in the pri-
mate Caudate Nucleus that create a spatially selective “response 
bias.” Their response bias was associated to the spatial location 
of the visual target. In our case the bias signal (triggered by the 
uncertainty of reward) is associated to the temporal dimension 
because it affects the onset of movement initiation and the velocity 
of wrist movements (Seideman et al., 1998; Frederick et al., 2002; 
Ditterich, 2006; Machens et al., 2010). Looking from the value of 
the action perspective (Samejima et al., 2005; Lau and Glimcher, 
2008; Hori et al., 2009) a certain reward has a higher value and it is 
likely to activate the selection circuitry of faster movements, while 
an uncertain reward carries a lower value and will activate the cir-
cuitry for slower movements (Samejima et al., 2005; O’Shea et al., 
2007; Shadmehr et al., 2010). The difference in timing between fast 
and slow pre-movement times is 30–60 ms, but long enough for a 
decision to take place (Schall, 2003; Stanford et al., 2010).

Another aspect of movement planning under uncertain reward 
deals with pre-movement variability (Figure 10). Movements are 
planned such that their variability gets minimized (Harris and 
Wolpert, 1998; Mohr and Nagel, 2010). Churchland et al. (2006b) 
argues that variability in arm movements originates mostly in central 
movement planning. In our experiments, the sources of variability 
for RTs, especially of pre-movement times (as shown in Figure 10B) 
are coming from changes in reward probability. These results sup-
port the idea that reward contingency contributes to the variability 
in movement planning and in wrist movement trajectories.

RELEvANCE TO NEUROECONOMICS
Our study is relevant to the neuroeconomics field for the dissocia-
tion of movement planning (“vigor” and temporal bias) in dorsal 
striatum under certain vs. uncertain rewards. A vigorous (force-
ful) movement can be viewed as a “valuable investment,” being 
engaged only when the monkey is sure about a trial’s outcome. 
Indeed, fast movements are somewhat more expensive since they 
involve more muscle contraction, probably more brain and energy 
resources. In other cases the monkey moves slowly, because the 
animal has “invested” less in that action (Kim et al., 2008; Shadmehr 
et al., 2010).

Our results show changes in pre-movement firing (Figure 5) 
and timing (Figure 6) in dorsal striatum with reward expectation, 
suggesting that NS is involved in the modulation of movement 
vigor (Mirenowicz and Schultz, 1994; Blazquez et al., 2002; Turner 
and Desmurget, 2010). Manipulations of reward probability pro-
duced both types of changes (in motor parameters and in neuro-
nal modulations) in our experiments. When reward was uncertain 
MOS shifted in time (away from COS) and movement was initiated 
after a delay of ∼30–60 ms (depending on sensory modality and 
movement direction; Figure 6). Conversely, when reward becomes 
certain wrist movements were initiated sooner. The velocity of wrist 
movements increased when reward was certain and decreased when 
reward became uncertain, showing evidence for a role of reward 
contingency in movement “vigor” modulation (Figures 4 and 7). 
These changes in movement parameters were linked to changes 
in dorsal striatal activity as a function of reward probability. Our 
results show that changes in PMA and movement velocity were 
correlated (Figure 9). Thus, such correlation provides evidence for 
a linkage between movement vigor and the optimization (discount-
ing) of action-based reward value in time (Shadmehr et al., 2010).

ROLE Of bASAL gANgLIA ACTIvITy IN MOvEMENT vIgOR AND 
TEMpORAL bIAS
Horak and Anderson (1984) and more recently Turner and 
Desmurget (2010) have suggested that basal ganglia influence the 
“vigor” of movements.

Relationship to movement vigor
It is reasonable to suggest that when a monkey is expecting a reward 
it becomes more “excited” and moves more quickly toward the goal 
than when the reward becomes uncertain. An uncertain reward, on 
the other hand, will only reduce animal’s vigor. Dorsal striatum likely 
has a role in the modulation of movement vigor, as suggested by the 
study showing that it mediates cortical signals necessary for behavio-
ral switching (Hikosaka and Isoda, 2010). Thus, dorsal striatal circuits 
may modulate movement vigor through a switch that is related to the 
reward mechanism and differentially biases movements (Ding and 
Hikosaka, 2007). Therefore, based on the pre-movement timing, dor-
sal striatum cells may modulate movement vigor before the pallidal 
cells do (Horak and Anderson, 1984; Turner and Desmurget, 2010).

Temporal bias
We define temporal bias as a temporal shift in movement initia-
tion with respect to the cue onset. Such bias may have a role in the 
“proactive timing of action” (Maimon and Assad, 2006). Our data 
(Figures 5A–D) show a temporal bias in the pre-movement timing 
as a function of reward expectation. When the reward was certain, 
a temporal shift in MOS caused the movement to occur sooner, 
and when it was uncertain the MOS came later. Consequently, the 
velocity of movement became faster in trials with certain rewards 
or slower when the reward was uncertain. Changes in temporal bias 
and accompanying changes in striatal activity that we observed 
here are somewhat analogous to the well-known modulations of 
behavioral choices and selections by caudate-putamen and other 
components of the basal ganglia-thalamo-cortical loops that act as 
switches between the representations of many behavioral degrees 
of freedom (Redgrave et al., 1999; Salinas et al., 2000; Kimura et al., 
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Traditional theories of decision-making assume that utilities are based on the intrinsic value 
of outcomes; in turn, these values depend on associations between expected outcomes 
and the current motivational state of the decision-maker. This view disregards the fact that 
humans (and possibly other animals) have prospection abilities, which permit anticipating future 
mental processes and motivational and emotional states. For instance, we can evaluate future 
outcomes in light of the motivational state we expect to have when the outcome is collected, 
not (only) when we make a decision. Consequently, we can plan for the future and choose 
to store food to be consumed when we expect to be hungry, not immediately. Furthermore, 
similarly to any expected outcome, we can assign a value to our anticipated mental processes 
and emotions. It has been reported that (in some circumstances) human subjects prefer to 
receive an unavoidable punishment immediately, probably because they are anticipating the 
dread associated with the time spent waiting for the punishment. This article offers a formal 
framework to guide neuroeconomic research on how prospection affects decision-making. 
The model has two characteristics. First, it uses model-based Bayesian inference to describe 
anticipation of cognitive and motivational processes. Second, the utility-maximization process 
considers these anticipations in two ways: to evaluate outcomes (e.g., the pleasure of eating 
a pie is evaluated differently at the beginning of a dinner, when one is hungry, and at the end of 
the dinner, when one is satiated), and as outcomes having a value themselves (e.g., the case of 
dread as a cost of waiting for punishment). By explicitly accounting for the relationship between 
prospection and value, our model provides a framework to reconcile the utility-maximization 
approach with psychological phenomena such as planning for the future and dread.

Keywords: prospection, model-based, Bayesian, goal-directed, anticipatory planning, dread, anticipation, forward model

linked to planning, which requires the mental generation and 
exploration of possible alternative courses of actions (or more 
generally future events).

It has been reported that the brain (e.g., the orbitofrontal 
cortex) represents subjective reward values during goal-directed 
decision-making (Padoa-Schioppa and Assad, 2006, 2008; Kable 
and Glimcher, 2007). However, why values are assigned to certain 
outcomes remains unclear. Recent computational models suggest 
that animals’ motivations are responsible for assigning specific 
utilities to outcomes. It follows that different motivational states 
may correspond to different utility functions. In this regard, Niv 
et al. (2006) define motivation as the mapping between outcomes 
and their utilities, and refer to “motivational states” (e.g., hunger 
or thirst) as indices of such different mappings, as one in which 
foods are mapped to high utilities, and another in which liquids 
are mapped to high utilities. This means that valuation is influ-
enced by both external factors, such as outcomes and their prob-
ability of occurrence, and the internal context (i.e., the motivational, 
emotional, and cognitive state) of the decision-maker. However, 
in this framework, only the external factors are explicitly repre-
sented by the decision-maker during planning; internal context 
influences utility assignment only indirectly, as it determines the 
utility function.

1 IntroductIon
In line with the expected utility theory (EUT), most economic and 
neuroeconomic models view decision-making as aimed at the 
maximization of expected utility (von Neumann and Morgenstern, 
1944). With regard to the computational processes involved in util-
ity assignment and choice, it has been proposed that the brain can 
use at least two instrumental controllers: a habitual mechanism, 
which retrieves the cached values of actions that have successfully 
led to reward in similar contexts, and a goal-directed mechanism, 
which explicitly calculates and compares the costs of actions and 
the values of their outcomes. Both mechanisms have been stud-
ied within the reinforcement learning (RL) framework (Sutton 
and Barto, 1998). Habitual and goal-directed controllers have 
been described with model-free and model-based RL methods, 
respectively (Daw et al., 2005). Both controllers (aim to) maximize 
reward, but the former (learns and) uses action–value associa-
tions, whereas the latter (learns and) uses action–outcome and 
outcome–value associations. Although these two systems co-exist 
and compete, the former tends to be selected only in simple envi-
ronments and after sufficient experience is acquired, whereas the 
latter is mostly selected in novel or more dynamic environments 
(Daw et al., 2005). Because they represent action–outcome transi-
tions explicitly, goal-directed controllers have been  traditionally 
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The aforementioned phenomena are surprising from the 
 perspective of economic theories that consider the utility of pros-
pects as depending only on the intrinsic value of outcomes. In this 
article, we propose a computational model that extends utility- 
maximization theories of decision-making to the case of agents 
provided with prospection abilities. Our key proposal is that the 
anticipation of future motivations, emotions, and, more generally, 
cognitive processes influences the “utility assignment” process, in 
two ways. First, anticipated future cognitive processes can affect 
the values of future outcomes (e.g., food will be rewarding only if 
we are hungry). Second, anticipated cognitive processes can have 
a value in themselves (e.g., dread has a negative value). In other 
words, on the one hand the ability of anticipating motivations 
permits evaluating future outcomes in relation to future internal 
contexts. On the other hand, anticipated emotions associated with 
prospects, such as fear, dread, and regret, can be treated by the 
decision-maker as “outcomes” themselves.

We explore these two aspects of the theory from a computa-
tional viewpoint, starting from the computational (Bayesian) 
model of decision-making proposed by Botvinick and collabora-
tors (Botvinick and An, 2008; Solway and Botvinick, submitted; see 
Section 2) and extending it with two critical features. In Section 3, we 
extend the model with a component for anticipating motivational 
dynamics (called motivational forward model), and test it in three 
scenarios in which utility related to future motivations has to be 
considered in the maximization of reward. This model highlights 
how the same utility-maximization framework can explain present-
directed and future-directed choices as dependent on considerations 
about current and expected motivations, respectively. In Section 
4 we extend the model by including the ability to assign a value 
to anticipated emotional states, and test it in a scenario in which 
choice has future negative emotional effects (dread) that have to be 
avoided in order to maximize reward. This model shows that, for an 
agent provided with prospection abilities, the influence of antici-
pated emotional factors on decision-making can be incorporated 
in an utility-maximization framework, rather than considered as an 
irrational phenomenon. In Section 5, we discuss the implications of 
our theory for neuroeconomics, and how our computational models 
can guide the study of the brain mechanisms implied in prospection 
abilities and associated decision-making processes.

2 the “baselIne model”: a bayesIan model of goal-
dIrected decIsIon-makIng
The computational models we present extend the Bayesian model of 
goal-directed decision-making proposed by Botvinick and collabo-
rators (Botvinick and An, 2008; Solway and Botvinick, submitted; 
hereafter, the baseline model; see Figure 1), which we will introduce 
here. The authors use the formalism of Dynamic Bayesian Networks 
(Murphy, 2002) to represent the goal-directed computational pro-
cesses involved in solving Markov Decision Problems. In particular, 
they adopt a model-based approach, in which (stochastic) action–
outcome and outcome–utility transitions are represented explicitly.

Each node represents a discrete random variable and each arrow 
represents the conditional dependence between two random vari-
ables. The model shown in Table 1 and Figure 1 represents the 
unfolding of three time slices (time indexes are omitted), but the 
Dynamic Bayesian Networks formalism can be used to design 

This approach is successful in the case of outcomes collected 
immediately after choice, since the internal (e.g., motivational) 
context usually remains the same during the time between choice 
and delivery of reward. However, in the case of choices that involve 
delayed outcomes, the decision-maker’s motivation may change 
during the interval between choice and delivery, hence the value of 
outcomes may in turn change drastically when they are collected 
compared to when the choice is made. If an agent does not consider 
how contextual factors change, it risks obtaining less reward than 
expected (Loewenstein et al., 2003). For example, consider the fol-
lowing case: when you order a piece of pie at the beginning of a 
dinner, you are evaluating the pleasure you will receive on the basis 
of your current hunger, disregarding the fact that at the end of the 
meal you will be satiated. Eating the pie risks being far less reward-
ing than expected before, because there is an asymmetry between 
the value of the pie when you make the choice and when you eat it. 
To correctly evaluate future events, an agent must simulate future 
internal (motivational and cognitive) context as well as the future 
external environment (future outcomes).

Numerous researchers have investigated how humans (and pos-
sibly even some non-human animals) anticipate future internal 
contexts, specifically those related to future mental processes, such 
as motivational and emotional states. These abilities have been 
related to various concepts, including “mental time travel,” “epi-
sodic time travel,” “self-projection,” “prospection,” and “foresight.” 
For instance, prospection has been described as the ability to project 
the self into the future, connected to the episodic memory ability 
(Buckner and Carroll, 2007; Schacter et al., 2007); see also (Gilbert 
and Wilson, 2009) for a taxonomy of potential flaws in decision-
making associated with prospection abilities. In a similar vein, 
Suddendorf and Corballis (1997) describe mental time travel as 
combining prediction and episodic memory; see also Suddendorf 
(2006). This ability underlies prospective planning, or planning for 
future needs and circumstances that are independent of the current 
motivational and perceptual context. For example, we go to the 
supermarket even when we are not hungry, because we anticipate 
that we will be hungry at a later stage.

A second way prospection abilities affect decision-making is 
through anticipation of emotions. First, humans seem able to 
anticipate pleasure or displeasure associated with a future out-
come just by imagining it. This ability has been called pre-feeling 
(Gilbert and Wilson, 2007). Second, not only pre-feeling is trig-
gered by imagining future outcomes; emotions are also generated 
by imagining future cognitive processes associated to prospects 
that are unrelated to outcomes. For instance, we can choose not 
to achieve a desired goal because we anticipate that it will make us 
feel guilty, or that we will regret it. Recent neuroscientific research 
has focused on how anticipated emotions unrelated to outcomes 
change the utility of prospects. Coricelli et al. (2005) have stud-
ied how anticipating regret influences choice. Along similar lines, 
Berns et al. (2006) reported that subjects preferred to receive an 
electric shock immediately rather than after a given amount of 
time; in some cases, subjects preferred a stronger electric shock 
immediately rather than waiting for a weaker one. According to 
the experimenters, the subjects assigned negative utility to waiting, 
because they anticipated their negative emotional state during the 
waiting time.
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more details). For instance, in a double T-maze, which has the 
highest reward in its upper right corner, the selected policy will 
encode “go right twice.”

The baseline model successfully replicates data from many ani-
mal experiments, including devaluation (Balleine and Dickinson, 
1998), labyrinth navigation, latent learning, and detour behavior 
(Tolman, 1948), all of which are hallmarks of goal-directed behav-
ior. The authors of the model discuss how each of its components 
can be related to a brain subsystem. They propose that the policy 
system is implemented by the dorsolateral prefrontal cortex, the 
action system is implemented by the premotor cortex and the sup-
plementary motor area, the state system by the medial temporal 
cortex, the medial frontal/parietal cortex and the caudate nucleus, 
and, finally, the reward system is associated with the orbitofrontal 
cortex and the basolateral amygdala.

Following an approach that is typical of RL architectures, the 
baseline model assigns values to outcomes based on the current 
motivational state of the agent. When the motivational state 
changes, the utility function changes accordingly and new utility 
values are assigned; see also Niv et al. (2006). However, the agent is 
unable to anticipate its future motivational states. In the next sec-
tion, we describe an extension of the baseline model that can take 
both present and future motivational states into account during 
the utility-maximization process.

3 antIcIpatIng motIvatIons
In order to describe how anticipating motivation influences 
decision-making, our proposal extends the baseline model (see 
Table 2; Figure 2) by considering both future and current motiva-
tional states. To do this, our model includes a novel component, a 

models of arbitrary length. The variables adopted by the baseline 
model are presented in Table 1: state (s) variables represent the set 
of world states; action (a) variables represent the set of available 
actions; policy (p) variables represent the set of actions associ-
ated with a specific state; finally, utility (u) variables represent the 
utility function corresponding to a given state. Rather than view-
ing utility as a continuous variable, the baseline model adopts an 
approach introduced by Cooper (1988) in which utility is repre-
sented through the probability of a binary variable. The following 
linear transformation maps from scalar reward values to p(u/s

i
)

p u s
R s

r
r max R si

i

max

max j j/
( )

, ( )( ) = +
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(1)

In situations involving sequential actions, this model uses a 
technique proposed by Shachter and Peot (1992) which allows 
integrating all rewards in a single representation. This is achieved 
by introducing a global utility (u

G
) variable:

p u
N

p uG i
i

( ) = ( )∑1

 
(2)

where N is the number of u nodes.
Within this model, the utility of alternative courses of action 

(e.g., a navigation episode in a labyrinth with different rewards 
in its branches) can be calculated and maximized by a form of 
probabilistic inference called reward query. In short, the aggregated 
utility node u

G
 is set to one (its maximum value). Then, a standard 

probabilistic inference algorithm (belief propagation, Pearl, 2000) 
is used to compute the posterior probabilities of the policy nodes p. 
This process is iterated by replacing the prior probability of p with 
the posterior probability and repeating the inference procedure. 
The result of reward query is that the optimal policy is computed 
(see Botvinick and An, 2008; Solway and Botvinick, submitted for 

Figure 1 | The Bayesian model of goal-directed decision-making 
proposed by Botvinick and An (2008); Solway and Botvinick (submitted), 
which we use as our “baseline model.” See main text for explanation.

Figure 2 | Bayesian model of anticipated motivation. The motivational 
forward model is inside the box. See main text for explanation.

Table 1 | List of variables used in Figure 1.

Node Variable Values

p Policy [p1,…, pn]

a Actions [a1,…, an]

s States [s1,…, sn]

u Utilities [0, 1]

uG Aggregated utility [0, 1]

Table 2 | List of variables used in Figure 2.

Node Variable Values

p Policy [p1,…, p15] (state × action)

a Actions [left, right, straight]

s Spatial states [S1,…, S5]

d Detection states [0,…, 4] (no reward,…, max. reward)

i Internal states [0,…, 4] (no drive,…, max. drive)

u Utilities [0, 1]

uG Aggregated utility [0, 1]
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nodes for each time step: u
H
 and u

T
, for hunger and thirst, respec-

tively. All utility nodes at all time steps are summed in the global 
utility node (u

G
), as in the baseline model.

Considering hunger as a paradigmatic example, “internal state 
nodes” can assume five values: 0, 1, 2, 3, 4 (0 indicates no hunger 
and 4 maximum hunger). Similarly “detection nodes” can assume 
five values: 0, 1, 2, 3, 4 (0 indicates no food detected and 4 maximum 
food detected). Spatial state values represent positions in a maze 
and can assume five values in the experiments (S

1
 to S

5
). Action 

values are: “left,” “right,” and “straight.” Policy values correspond to 
the combination between action and state values. The conditional 
probabilities of all nodes are deterministic, except p(u/i,d). This 
implies that if the agent is in a certain position in the maze and 
makes a certain action, it will go deterministically to another given 
position. Similarly, if the agent is in a certain position and follows a 
given policy, it will always make a certain action. The relationship 
between spatial states and actions depends on the maze configura-
tion (see below).

The value of the nodes in the motivational forward model 
(of each motivation) are calculated as follows: the value of a 
detection state depends deterministically on the associated spa-
tial state at that time step (i.e., specifically on the amount of 
potential reward present in the corresponding position of the 
maze, see below). The value of the internal state is the difference 
between the value of the internal state at the previous time-step 
minus the value of the detection state at the previous time step 
(if the former is greater than the latter; otherwise it is zero). This 

motivational forward model that represents explicitly motivational 
dynamics, which permits an agent to anticipate its motivational 
states.

In short, the agent is provided with a simplified homeostatic sys-
tem (or a system that monitors internal variables that are significant 
for the survival of the agent), which includes one or more drives, 
such as hunger, thirst, or sex (Hull, 1943). The motivational forward 
model explicitly represents the dynamics of the agent’s homeostatic 
system. Specifically, future motivational states depend jointly on the 
previous motivational state and on whether (and to what extent) 
the agent has been satiated or not at the previous time steps.

In the model of anticipated motivation, state nodes are broken 
down into sub-nodes: spatial states (s), which represent the spatial 
position, internal states (i) which represent the motivational state, 
and detection states (d), which record the presence of potential 
rewards. Different motivations, such as hunger and thirst, have 
separate motivational state nodes and detection state nodes. For 
each motivation, the spatial state influences the detection state. In 
other words, if the food is in a given place, the agent must be in that 
place (spatial state) to detect it (detection state). The detection state, 
together with the internal state, influences the internal state at the 
following time step. For example, at t

1
 the agent is hungry (internal 

state) and is in the food place (spatial state). Once the agent detects 
(detection state) and eats the food, at t

2
 it is less hungry (inter-

nal state at time t
2
 is lowered). The motivational forward models 

explicitly represent these transitions, permitting us to infer that, 
for instance, if at t

x
 I am hungry (internal state) and I see and eat 

a certain amount of food (detection state), than at t
x+1

 I am going 
to be less hungry (proportionally to the amount of food eaten).

Compared to standard RL models, in the model of anticipated 
motivation the ability to anticipate motivations changes the way 
utility is assigned. At each time step, utility u depends jointly on the 
motivational state i and on the potential reward detected d. Each 
motivation has its own associated utility node u. As in the baseline 
model, utility is represented as the conditional probability of the 
binary variable p(u/i,d).

It is worth noting that although the baseline model could in 
principle account for motivational dynamics by adding motiva-
tional variables to the state s, the substantial difference in factoring 
the graph in the way we propose is that it results in different implied 
conditional dependence relationships between the parts of the (fac-
torized) state: spatial state versus detection and internal states. Not 
only does this factorization influence how inference is performed in 
the graphical model, it also makes explicit claims about the mutual 
dependencies among components, which is essential for mapping 
formal models into psychological and neural hypotheses.

3.1 experIments: methods and results
We tested the model of anticipated motivation in three simu-
lated scenarios. Because we considered the case of an agent with 
two motivations (hunger and thirst), the model includes two 
separate sets of nodes for internal states [hunger (h) and thirst 
(t)] and detection states [food (f) and water (w)]; see Table 3 
and Figure 3.

At every time step, the internal node and the detection node 
of each motivation jointly influence the corresponding utility, as 
described in the general model. Thus, the model has two utility 

Table 3 | List of variables used in Figure 3.

Node Variable Value

p Policy [p1,…, p15 (state × action)]

a Actions [left, right, straight]

s Spatial states [S1,…, S5]

f Food detection states [0,…, 4] (no food,…, max. food)

h Hunger internal states [0,…, 4] (no hunger,…, max. hunger)

w Water detection states [0,…, 4] (no water,…, max. water)

t Thirst internal states [0,…, 4] (no thirst,…, max. thirst)

uH Utility for hunger [0, 1]

uT Utility for thirst [0, 1]

uG Aggregated utility [0, 1]

Figure 3 | The model of anticipated motivations adopted in the 
simulations, which includes two drives, that is, hunger and thirst, and 
two motivational forward models.
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3.1.1 Experiment 1: strategic planning
Humans and other animals can act impulsively or strategically. In 
the former case, they assign outcome values only according to their 
current preponderant motivational state. In the latter case, they 
consider a complex prospect of future motivational states and cor-
responding future rewards. The ability to choose “reflexive” strate-
gies might be more advantageous in complex environments. We 
argue that a motivational forward model might underlie the ability 
to assign values according to future motivations, which in turn 
might lead to selecting courses of actions that maximize reward 
in the long run.

To test this idea, we designed a simulated experiment in which 
an agent has to choose between two alternatives: a smaller reward, 
which satisfies its immediate preponderant motivation (e.g., hun-
ger), and a larger reward, which also satisfies the weaker motivation 
(e.g., thirst) by postponing the satisfaction of the preponderant 
one. We hypothesized that in this condition an agent provided 
with the motivational forward model would be able to maximize 
its reward, whereas an agent without such a mechanism would 
select less rewarding, impulsive behavior aimed at satisfying only 
the preponderant motivation.

The experimental design is illustrated by the T-maze shown in 
Figure 4A. We considered three time steps: at t

0
 the agent is in S

1
; 

at t
1
 it can go left to S

2
 or right to S

3
; at t

2
 it goes from S

2
 to S

4
 and 

from S
3
 to S

5
. In each of the five positions of the T-maze, a certain 

accounts for the fact that hunger is decreased by eating (to the 
same degree as the value of the food eaten). When the value of 
the internal state at the previous time step is zero, the successive 
value is raised by 2; this represents the increased hunger associ-
ated with the passage of time. Finally, the value of internal state 
and detection state jointly determine the conditional probabil-
ity of the utility corresponding to that motivation. Because we 
model potential rewards that have only positive values in our 
experiments, utilities range from neutral [p(u = 1/i,d) = 0] and 
maximally positive [p(u = 1/i,d) = 1]. Nevertheless, it is possible 
to model a continuum of negative and positive utilities, as in the 
baseline model, in which negative utilities range between 0 and 
0.5, and positive utilities between 0.5 and 1. In our experiments 
the probability p(u = 1/i,d) is the lowest one between the detec-
tion state and the internal state, over 4. For example, if potential 
reward detected is 2 and motivation is 0, then p(u = 1/i,d) = 0/4; 
if motivation is 1, then p(u = 1/i,d) = 1/4; if motivation is 2 and 
potential reward is 4, then p(u = 1/i,d) = 2/4.

Anticipating motivations provides several advantages to an 
agent. Below we describe three simulated experiments that are 
intended to test three abilities: (1) strategic planning, or disregard-
ing currently available rewards in favor of higher future ones; (2) 
considering future motivational switches in the planning process; 
(3) planning for the future, such as storing food in view of future 
needs.

Figure 4 | experiment 1. (A) T-maze. Symbols represent values of detection 
states and internal states that are computed during the inference process by the 
agent that anticipates motivation. Potential reward pattern (corresponding to 
potential reward in each position of the maze) and initial motivational states 
(corresponding to motivational states in S2 and S3) are set by the experimenter, all 
further information is computed by reward query. Red forms indicate motivational 

values that are satiated by consumption of potential rewards in the corresponding 
position of the maze. Graphically, optimal behavior corresponds with choosing the 
path with the largest number of red forms. (B,C) Results of the first experiment 
(B) agent with anticipated motivations; (C) baseline model. The graph represents 
the probability assigned to the policy associated to “going right” (red) and “going 
left” (green), respectively, at each iteration of the reward query.
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our model, because we modeled only the goal-directed aspects of 
choice. However, they would be necessary in more sophisticated 
models that include multiple cognitive controllers that interact and 
compete (Daw et al., 2005; Rigoli et al., 2011).

3.1.2 Experiment 2: considering future motivational switches
The ability to predict future motivations permits taking future 
changes of motivations into account during the planning process. 
In turn, this permits predicting that a future outcome will be more 
or less rewarding, depending on the future motivational context. In 
keeping with our previous assumptions, we argue that the motiva-
tional forward model could be a key mechanism for maximizing 
reward in situations in which the internal motivational context can 
change before the outcome is delivered.

To test this idea, we designed a simulated experiment in which 
an agent has to choose between two alternatives: a path in which 
the cumulative reward is higher given the current motivation, and 
a path in which the cumulative reward is higher if one considers 
how its motivations will change. We hypothesized that an agent 
provided with the motivational forward model would be able to 
maximize its reward, whereas an agent without such mechanism 
would tend to choose the path associated with higher rewards for 
its current motivation.

The T-maze in Figure 5, left, illustrates the set-up. Here poten-
tial reward has the following pattern: food 3 in S

2
 and S

3
; food 4 

in S
4
; water 2 in S

5
. The initial internal states were: H

1
 = 4; T

1
 = 0. 

According to our hypothesis, if a hungry agent (H
1
 = 4) predicts 

that in the near future it will be satiated (i.e., it will collect food = 3), 
it can choose future potential rewards that at the moment seem 

amount of food, water, or both can be found. The configuration 
chosen in our simulation is the following: food 3 in S

2
, water 2 in S

3
, 

food 3 in S
4
, and food 3 in S

5
. Then we set the initial internal states 

as follows: H
1
 = 4, T

1
 = 2.

The agent provided with anticipatory motivations is imple-
mented using the graphical model shown in Table 3 and Figure 3. 
In the experiment, it is compared with the baseline model (shown 
in Table 1 and Figure 1) in which utility is assigned only to rewards 
that are congruent with the highest of the actual motivational states 
of the agent (hunger in this case).

Figures 4B,C, shows the results of the experiment (Figure 4B 
agent with anticipated motivations; Figure 4C baseline model). 
The two graphs show that, for the agent provided with anticipated 
motivations, the probability of selecting the “going right” policy 
increases monotonically toward one at every iteration of the reward 
query. By going right, the agent satisfies both thirst (at the second 
step) and hunger (at the third step). On the contrary, the base-
line model, which takes into account only its present motivational 
state (in this case hunger is higher than thirst), selects an impulsive 
behavior and goes left toward the immediate maximum amount of 
reward corresponding to its actual motivation.

Our first simulation describes the motivational forward model 
as an essential element for the goal-directed ability of shifting 
from impulsive strategies to more “reflexive” ones. Note however 
that strategic planning plausibly requires additional mechanisms 
to exert cognitive control and inhibit prepotent responses (dic-
tated by habitual or Pavlovian mechanisms) before the goal-
directed utility-maximization process is completed (Barkley, 2001; 
Botvinick et al., 2001). These mechanisms are not implemented in 

Figure 5 | experiment 2. (A) T-maze. (B,C) Results [(A) agent with anticipated motivations; (B) baseline model], “going right” = red; “going left” = green.
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suggesting that they are able to flexibly account for their future 
motivational states (although it is unclear if they use the same 
mechanisms as humans, see below).

Our third simulation is conceptually similar to the study of Raby 
et al. (2007), which aimed to assess the ability of scrub-jays to store 
potential rewards in view of future motivational states. The authors 
report that scrub-jays cached food only when they expected future 
deprivation, suggesting that they consider their future motivations 
and plan for the future.

The scenario is illustrated in the T-maze of Figure 6: at t
0
 the 

agent is in S
1
; at t

1
 it can go left (to S

2
) or right (to S

3
); at t

2
 it goes 

from S
2
 to S

4
 and from S

3
 to S

5
. Once a potential reward is detected, 

the agent has two options: to consume it immediately or to consume 
it later, that is, at the following time steps. Crucially, in our model 
of anticipated motivation, once the agent detects potential rewards 
but is not motivated, and at the same time it anticipates that it will 
be motivated in the future, it stores them (as represented by the 
padlock symbol in Figure 6). We positioned the following potential 
rewards: food 3 in S

2
 and water 1 in S

3
, and set the initial internal 

state values to H
1
 = 0 and T

1
 = 1 (as shown in Figure 6, left). By 

going right, an agent can collect a small reward immediately (water). 
Instead, by going left and storing food (which is automatic in our 
model if the agent is not currently motivated and anticipates its 
future hunger) it can collect a higher reward at the next time step, 
when it will be hungry (note that in our model if a motivational 
state value is 0 at t

i
 it becomes 2 at t

i+1
).

Performance of our model of anticipated motivation is shown 
in Figure 6B. According to our prediction, the agent chooses 
to go left, storing a large amount of food and eating it later, 

lower (water = 2 rather than food = 4) but that will be higher when 
the agent is satiated (remember that in our model if a motivational 
state value is 0 at t

i
 it will be 2 at t

i+1
). Our results show that the 

agent provided with anticipatory motivations maximizes utility.
Note that our set-up is conceptually similar to the experiment 

conducted by Naqshbandi and Roberts (2006), in which squirrel 
monkeys could eat either four dates or one date. Given that eat-
ing dates makes monkeys thirsty, experimenters manipulated the 
delay between the meal and the availability of water. In the one 
date case, water was available sooner with respect to the four dates 
case. Although the monkeys chose four dates at the beginning, they 
gradually shifted their preference toward one date. It should be 
noted, however, that the interpretation of this experiment is contro-
versial, as it is still unclear whether the choice was goal-directed or 
induced by simpler mechanisms (Suddendorf and Corballis, 2008).

3.1.3 Experiment 3: planning for the future
According to the Bischof-Kohler’s hypothesis (Suddendorf and 
Corballis, 1997), only humans act in a complex and flexible way to 
achieve rewards in view of future motivations, even if not motivated 
at the present moment (e.g., going to the supermarket even when 
not hungry). Contrary to this idea, Raby et al. (2007) argued that 
even some other animals such as western scrub-jays (Aphelocoma 
californica) have this ability. In this work, experimenters taught 
scrub-jays to foresee conditions in which they would receive no 
food and thus be hungry; after this learning phase, experimenters 
unexpectedly gave the scrub-jays the chance to cache food. As a 
result, scrub-jays cached a larger amount of food when they foresaw 
a future condition of deprivation compared to other conditions, 

Figure 6 | experiment 3. (A) T-maze. (B,C) Results [(A) agent with anticipated motivations; (B) baseline model], “going right” = red; “going left” = green.
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In relation to this debate, our proposed model of anticipated 
motivation describes both human and animal foresight abilities in 
terms of a motivational forward model. This mechanism, which 
projects only some internal states (motivation variables) in the 
future, could be a rudimental ability of “mental time travel” shared 
by some animals. Nevertheless, unlike the animal brain the human 
brain might project other internal variables and possibly episodic 
information into the future and, thus, obtain a more accurate esti-
mate of the self in the future. Enhanced prospection abilities could 
then determine qualitative (and perhaps phenomenological) differ-
ences between humans and animals, and at the same time maintain 
continuity from the simpler control architectures of our remote 
ancestors to our more sophisticated cognitive abilities (Pezzulo and 
Castelfranchi, 2007, 2009; Cisek and Kalaska, 2010).

Regarding the neural mechanisms involved in foresight, we 
hypothesize that variables in the model of anticipated motivation 
might be related to two distinct brain processes. The former process 
may be related to more abstract mechanisms of generating future 
prospects (linked to sensorimotor and motivational forward model 
nodes) and inhibiting preponderant responses triggered by reac-
tive systems (not implemented in our model), and might be con-
nected to areas such as dorsolateral prefrontal cortex and cingulate 
cortex. The latter process (associated with utility nodes) might be 
linked to the activation of “as-if” motivations (Damasio, 1994) 
and hence may involve cortico-limbic structures directly related to 
motivations themselves, such as the amygdala, orbitofrontal cortex, 
parahippocampal gyrus, and anterior fusiform gyrus (LaBar et al., 
2001). These two processes may be connected as follows: cortical 
anterior structures may modulate the activation of cortico-limbic 
structures related to simulated motivations. In other words, antici-
pation of future needs might partially activate brain structures 
associated to those needs and motivations. For instance, even if 
my homeostatic system does not currently require food intake, 
thinking about the next Christmas dinner triggers my hunger. As 
the ability to imagine future hunger may be similar to hunger itself, 
it might activate the same brain areas activated when desiring food 
in a hungry state.

4 antIcIpatIng cognItIve and emotIonal processes
In addition to motivational processes, cognitive, and emotional 
processes in general can be anticipated during decision-making. 
Indeed, a central point of theories of prospection and mental time 
travel is that an agent can project itself into the future, possibly 
with the same level of detail as episodic memory. Therefore, not 
only it can simulate future events, but also what it will think, pay 
attention to and feel in these future events. In turn, the value of 
these simulated cognitive and emotional states can be considered 
in the reward-maximization process of decision-making.

Although it is still unclear how the evaluation of simulated cog-
nitive and emotional states is implemented in the brain, recent 
research suggests that the simulation of future events elicits at least 
two kinds of affective processes. First, just imagining a reward or 
punishment is sufficient to elicit a feeling congruent to the one elic-
ited by the occurrence of that reward or punishment, a so called pre-
feeling (Breiter et al., 2001; Gilbert and Wilson, 2007). For instance, 
when one imagines the joy associated with a future event (e.g., 
winning a match) it can pre-feel joy. Rick and Loewenstein (2008) 

instead of immediately drinking a bit of water. In other words, 
rather than selecting the prepotent response of consuming the 
immediate reward (water, because it is a little thirsty), it is able 
to choose the action sequence that leads to higher reward in the 
future. On the contrary, the baseline agent (Figure 6C) behaves 
impulsively. The fact that the probability of going right increases 
toward one indicates that the baseline agent is attracted only 
by the immediate reward, and is unable to plan instrumental 
actions leading to the future consumption of a larger amount 
of reward.

3.2 dIscussIon
In this section, we have presented a Bayesian model of goal-directed 
behavior that accounts for future motivations during planning. 
Our model includes a motivational forward model that permits 
evaluating outcomes as related to future rather than only current 
motivations, as is common in RL models (Sutton and Barto, 1998). 
Indeed, within the RL framework, it has been proposed that moti-
vations change the utility function (Niv et al., 2006). By contrast, 
in our model motivations are explicitly represented and influence 
the value of future potential rewards. Specifically, utility values of 
outcomes depend jointly on potential reward amount and on moti-
vation at the corresponding time, rather than only on the former. 
Another aspect that distinguishes our model from most RL models 
is the consideration of multiple motivational dynamics integrated 
in a unitary utility-maximization process.

In three simulated scenarios, in which choices had distal impli-
cations, we show that an agent that anticipates its motivational 
dynamics is able to gain more reward than an agent that only con-
siders its current motivational state. We propose that the compu-
tational mechanism responsible for the prediction of motivational 
dynamics, the motivational forward model, could be an essential 
(though not sufficient) element for the implementation of complex 
prospection abilities such as planning for the future.

The debate on how human and non-human brains represent 
future motivations during planning is still controversial. Both Raby 
et al. (2007) and Osvath and Osvath (2008) report evidence suggest-
ing that animals have foresight abilities (but see Suddendorf and 
Corballis, 2008 for concerns relative to these results). The former 
study shows that scrub-jays cached food only when they expected a 
future condition of deprivation. The latter study shows that chim-
panzees and orangutans flexibly chose a tool for future use taking 
future needs into account.

Despite these demonstrations that, at least in some circum-
stances, some animals plan in view of future needs, whether or 
not they adopt the same mechanisms as humans is still con-
troversial. Suddendorf and Corballis (1997, 2007) proposed the 
“mental time travel hypothesis” to interpret the human ability 
to anticipate motivations. According to that hypothesis, only 
humans can mentally simulate past and future circumstances 
from a subjective perspective in a vivid and flexible manner; 
other animals might use simpler methods, which include some 
anticipation of motivations but lack the vividness and richness 
of human experience. While mental time travel might be linked 
to episodic memory, animals rudimental ability to anticipate 
future motivations might be linked to semantic memory (Raby 
and Clayton, 2009).
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processes connected to pain modulation, the authors hypothesized 
that dread involves attentional phenomena as well as emotional 
ones. Nevertheless, how attentional and emotional processes are 
integrated in planning processes related to utility-maximization 
is still unknown.

In keeping with (Loewenstein, 1987), we argue that subjects 
use prospection abilities to anticipate their cognitive and emo-
tional processes while they wait for the punishment (see Caplin 
and Leahy, 2001 for a related view). The effects of dread on choice 
can be explained by two processes: the anticipation of directing 
future attention toward punishment and the emotional reaction 
to this anticipation (dread), which in turn may influence the util-
ity values of prospects. The influence of these two processes may 
be proportional to delay, namely to how long the agent believes it 
will pay attention to the outcome and pre-feel dread2. Following 
this logic, in Berns et al.’s (2006) experiment, subjects might not 
only pre-feel dread, but also anticipate that they will pre-feel the 
same way until they receive the shock, because they will be aware 
and pay attention to the feared outcome (the incoming pain) for 
the entire time preceding punishment. Considering a prospect 
characterized by these future cognitive and emotional states, all of 
which are negative, the cost of waiting sums up to the shock pre-
feeling, proportionally to delay of its occurrence. This is where a 
cost for waiting comes from. This anticipation of future attention 
processes might activate areas of posterior pain matrix linked to 
attention modulation, such as caudal cingulate cortex and posterior 
insula, which in turn might increase pre-feeling (dread), possibly 
causing the activation of areas associated with the perception of 
pain, namely SI and SII.

As we have discussed, dread is just one of the many examples of 
how anticipated cognitive and emotional processes affect decision-
making. Indeed, the anticipation of cognitive and emotional states 
is a multifaceted process, which plausibly involves several brain 
areas. However, we argue that it is possible to identify common 
(computational-level) principles for studying how anticipated 
cognitive and emotional states are elicited and how in turn they 
affect choice. In particular, the projection of the self in the future, 
the anticipation of cognitive and emotional factors and the focus 
on salient events might also play a role besides dread when behav-
ior is influenced by anticipated emotion. For example, we tend to 
overestimate the happiness or sadness caused by a future event, say 
winning a lottery or becoming paraplegic (Ubel et al., 2003; Gilbert 
and Wilson, 2009). The fact that we overestimate the time we will 
spend in a positive or negative emotional state might be one cause 
of this phenomenon. A third example is that of anticipated regret 
(Coricelli et al., 2007). It has been reported that subjects can decide 

argued that the reason why pre-feelings are elicited automatically 
is that they can be used as proxies when making decisions in which 
it is impossible to calculate action outcomes or associated rewards 
exactly. When action effects are difficult to predict or “intangi-
ble,” people can, instead, use more tangible anticipated emotions 
to decide among alternative options (see also Damasio, 1994 for 
a similar view on how pre-feelings are used as proxies to evaluate 
an imagined situation).

Second, anticipating prospects can trigger different emotions 
from those elicited by outcomes, but strictly related to them. For 
instance, the anticipation of a future loss can elicit frustration, dis-
appointment or regret, and the anticipation of pain can elicit fear 
or rage1. The adaptive value of such anticipatory emotions could be 
related to preparatory processes aimed at approaching or avoiding 
salient outcomes; for instance, fear could help in preparing to deal 
with future dangers (e.g., predators).

As prospection elicits pre-feelings and anticipatory emotions, 
the value of the latter becomes part of the decision-making pro-
cess. The fact that anticipation of emotions influences decision-
making is incompatible with economic theories that disregard 
psychological variables in modeling value assignment. This fact 
has recently been acknowledged by different areas of research that 
aim to develop novel theories of decision-making that incorporate 
the role of anticipated emotions within EUT (see e.g., Caplin and 
Leahy, 2001; Mellers and McGraw, 2001; Coricelli et al., 2007).

One condition in which anticipated emotions influence 
 decision-making is intertemporal choices. Traditional intertem-
poral choice models (such as discounted utility theory, an extension 
of EUT) assume that human and non-human animals exponen-
tially discount the utility assigned to outcomes as a function of 
their delayed presentation. As a consequence, agents should pre-
fer immediate rewards to delayed ones and vice versa in the case 
of punishment. Contrary to this hypothesis, Loewenstein (1987) 
found that, at least in some circumstances, participants preferred 
to receive shock immediately rather than wait a few more seconds 
for a postponed shock of the same voltage. Furthermore, the more 
participants were asked to wait, the more they were affected by 
the (negative) pre-feelings, suggesting that they were assigning a 
(negative) value to the passage of time.

The same scenario was studied in an fMRI experiment (Berns 
et al., 2006). This study reveals the existence of neural bases of 
dread, or the anticipated neural representation of punishment, 
which might be located in the posterior elements of the cortical 
pain matrix (SI, SII, the posterior insula, and the caudal cingulate 
cortex). The activity of these brain areas is proportional to time 
delay of the shock. Furthermore, “extreme dreaders,” or participants 
whose subjective feeling of dread was particularly significant, pre-
ferred receiving a higher voltage rather than waiting, which shows 
that the cost of waiting was higher than the cost associated with 
the difference in voltage. As the posterior pain matrix, that is, the 
brain area associated with dread, is usually involved in attentional 

2Although here we assume that self-projection is relative to all future states preceding 
the electric shock, in general simulations of future events need not be complete, but 
more likely focus on selected, salient events. This aspect is captured in our model in 
two ways: first, the granularity of states can be arbitrary; second, not all states are 
considered in the computation of utility, only those having higher valence. Although 
simulating only salient events is more parsimonious, at the same time it could de-
termine biases about how the imagined situation is evaluated, causing misbehavior 
(Gilbert and Wilson, 2009). In addition, it can produce different evaluations depen-
ding on when the future event is simulated. For instance, the effects of dread can be 
mitigated in the case of outcomes that are far away in time, because the imagined 
event is not judged as salient, and increase when it approaches; for example, this 
could be true for exam fear, which increases as the exam date approaches.

1A third potential mechanism could be a “cold” anticipation that an emotion will 
result from a choice; for instance, one can anticipate that it will regret a decision 
without actually feeling regret. We do not discuss this issue here; (see Castelfranchi 
and Miceli, 2011) for a more detailed analysis of the relations between anticipation 
and emotional processes.

http://www.frontiersin.org/decision_neuroscience/archive
http://www.frontiersin.org/


Frontiers in Neuroscience  |  Decision Neuroscience  June 2011 | Volume 5 | Article 79 | 90

Pezzulo and Rigoli The value of foresight

Once imagined states are introduced, they can be associated 
with utilities (as real states are). At every time step, both real state 
nodes and imagined state nodes have a corresponding utility 
node, respectively called (utility of) feelings (u

F
) and (utility of) 

pre-feelings (u
P
). Both can range between 0 and 1, as in baseline 

model (values between 0 and 0.5 correspond to punishments). 
In other words, anticipating both real and fictitious experience 
influences the estimated values of prospects. All utility nodes are 
summed up by u

G
.

Similarly to baseline model, this model maximizes expected 
utility by computing the optimal policy through reward query.

4.2 experIments: methods and results
4.2.1 Experiment 4: dread
To test our model, we designed an experimental scenario that is 
conceptually similar to that in Berns et al.’s (2006) study. These 
authors found that people prefer immediate electric shock rather 
than a postponed shock at the same (or even minor) level of inten-
sity, and linked this preference to the anticipation of pain. The 
scenario is schematized in Figure 8.

Similar to the previous experiments, we represented the deci-
sion-making scenario as a T-maze in which punishment is posi-
tioned in one branch at the beginning and in the other branch at 
the end (see Figure 8A). Like in previous simulations, all transi-
tions are deterministic except for utility assignment. We consider 
three time steps: at t

0
 the agent is in S

1
; after 5 s (t

1
) it can go left 

to S
2
 or right to S

3
; after 20 s (t

2
) it goes to S

4
 from S

2
 and to S

5
 

from S
3
. We positioned two punishments with the same felt value 

F = −5, one in S
2
 (at t

1
 = 5) the other in S

5
 (at t

2
 = 20). As stated 

above, at every time step, the imagined state value is equal to the 
following real state value associated to the maximum absolute 
value of punishment compared to all other future states. Indeed, 
at t

0
, if the agent imagines going left, is

0
 is influenced by s

1
 node 

because punishment is found at t
1
 (the value of is

0
 is influenced 

by the position in the maze S
2
). If the agent imagines going right, 

is
0
 is influenced by s

2
 node because punishment is found at t

2
 (the 

value of is
0
 is influenced by the position in the maze S

5
). Finally, 

at t
1
, is

1
 node is influenced by s

2
: going left, the value of is

1
 is 

influenced by the position in the maze S
4
; going right, the value 

of is
1
 is influenced by the position in the maze S

5
. Pre-felt values 

associated to every imagined state are a function of F and time 
to punishment [P = f(F,t)]. We adopted Loewenstein’s (1987) 
model to calculate the pre-felt values. Given the instantaneous 
intensity of dread (a = 0.05) as constant, the pre-felt value during 
the interval t

j
–t

j−1
 is:

P F t tj j= −( )−a 1  
(3)

Going left, during t
1
 − t

0
, P1 5 0 05 5 0 1 25= − ⋅ ⋅ − =. ( ) , ; during 

t
2
 − t

1
, P2 0 0 05 20 5 0= ⋅ ⋅ − =. ( ) . Going right, during t

1
 − t

0
, P

1
 is the 

same as going left; but during t
2
 − t

1
, P2 5 0 05 20 5 3 75= − ⋅ ⋅ − =. ( ) , .  

Total dread (D = ΣP) is respectively D
left

 = 1,25, D
right

 = 4.
Results of the simulation are shown in Figure 8B. In accordance 

with Berns et al.’s (2006) findings, the agent chooses to go left and 
to receive the shock as early as possible, in order to avoid the “costs 
of waiting” (i.e., the pre-feelings associated to the states in which 
it self-projects).

not to pursue a given course of actions because they anticipate they 
will regret it if it results in a loss. In this case, they might anticipate 
ruminating on the decision-making process itself, being attentive 
to the alternative choices they discarded, which might also elicit 
an uncomfortable emotional state (regret).

In the rest of this section, we will propose a computational model 
that extends the baseline model by incorporating the anticipation of 
cognitive and emotional processes along the lines we have sketched 
here; then, we will test it in the paradigmatic case of dread.

4.1 computatIonal model
In order to account for the ability to project oneself into the future, 
so as to anticipate cognitive and emotional processes, we have added 
an additional set of nodes to the baseline model: imagined states (is). 
The resulting model is shown in Table 4 and Figure 7. Imagined 
states represent salient information the agent expects to focus on. 
In other words, the agent anticipates that at time t it will focus its 
cognitive and attentive resources on the state of the world repre-
sented by the imagined state is

t
.

Imagined states depend on the value of one or more real states 
(s), specifically the ones associated with the higher reward or pun-
ishment value. In this way, we implicitly assume that people antici-
pate paying attention to states having strong emotional value. These 
can be future states, as in the case of dread or anticipation of future 
punishment, meaning that is

t
 corresponds to a future real state s

t+n
. 

Or they can be past states, as in the case of regret, meaning that is
t
 

corresponds to a past real state s
t−n

.

Table 4 | List of variables used in Figure 7.

Node Variable Value

p Policy [p1,…, p15 (state × action)]

a Actions [left, right, straight]

s Spatial states [S1,…, S5]

is Imagined state [IS1,…, IS5]

f Feeling [0, 1]

p Pre-feeling [0, 1]

uG Aggregated utility [0, 1]

Figure 7 | Bayesian model of anticipated emotions.
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of dread. Finally, because dread requires the ability to project com-
plex information about the self into the future (e.g., anticipation 
of the focus of cognitive and attention resources) in our model, 
we expect that non-human animals will not be prone to dread.

We have suggested that our model captures common compu-
tational mechanisms across several anticipatory emotional phe-
nomena, such as dread, the anticipation of regret, and the (mis)
judgment of how happy or sad we will be in the future. The core 
mechanism is the anticipation of internal, cognitive, and emo-
tional states, in particular those associated with the more salient 
real states that one expects to face in the future. In turn, these 
anticipations assume a value themselves, and elicit associated pre-
feelings. However, anticipatory emotions can be extremely variable, 
ranging from fear associated with a future punishment to complex 
emotions involving personality and social and cultural aspects, such 
as frustration over being unable to pursue a goal, the shame of 
being exposed in public, and the sense of impotence in the face of 
death; in this case, anticipation involves a constellation of cognitive 
and hedonic states, (see, e.g., Castelfranchi and Miceli, 2011). For 
this reason, applying our model to all these circumstances requires 
making specific assumptions about which environmental, cogni-
tive, and emotional states are represented and anticipated during 
planning and their associated valence.

Furthermore, it is still unclear in which circumstances and to 
what extent the ability to anticipate emotional, motivational, and 
cognitive processes affects decision-making. In this regard, it is 
worth noting that our model accounts for anticipation of both 
negative and positive emotions. However, although clear results 
have emerged for dread, it is currently unclear whether symmetrical 
effects exist in the case of anticipated rewards. In this regard, some 
studies have detected anticipatory activity in the ventral striatum 
and the orbitofrontal cortex during expectancy of rewards; nev-
ertheless, it is difficult to ascertain whether this activity depends 
on time delays (Breiter et al., 2001). Furthermore, it is still unclear 
whether dread is present during the anticipation of punishments 
that are more complex than electric shocks, such as monetary losses.

4.3 dIscussIon
In this section, we have presented a theoretical and computational 
model of how the ability to anticipate emotions and cognitive pro-
cesses influences choice. Specifically, we have focused on a par-
ticular case that has been widely studied, namely, dread. Different 
from previous mathematical characterizations aimed at behavioral 
description (Loewenstein, 1987), we have focused on the possible 
computational mechanisms behind this phenomenon, and have 
related them to neural processes. In particular, we have argued that 
dread depends on anticipation of future cognitive and emotional 
processes, such as continuous attention to the future shock (asso-
ciated with the posterior cingulate cortex and posterior insula), 
which – once anticipated – produces a prospect of negative future 
pre-feelings (connected to SI and SII). Both processes are propor-
tional to time delay of the shock.

Our model permits advancing some specific hypotheses about 
dread. First, because we described the anticipation of cognitive 
processes, such as attention, as an important feature of the model, 
we hypothesize that the effect of dread should not be present when 
an agent cannot anticipate those cognitive processes, or when it 
thinks that attention will be focused on other information. Second, 
we hypothesize that both lesions of the posterior cingulate cortex 
and the posterior insula, on one hand, and SI and SII, on the other 
hand, may impair dread effects. However, as we believe that the 
activation of the former causes the activation of the latter, we expect 
that during anticipation of punishment lesioning of the posterior 
cingulate cortex and the posterior insula may prevent the activation 
of SI and SII, but not vice versa. Third, we argue that the differ-
ence between extreme and mild dreaders might be linked to the 
ability to modulate perception through attention, connected with 
the functioning of the posterior cingulate cortex. Indeed, subjects 
that are more able to enhance or attenuate perceptive stimuli via 
attention might be more prone to dread, because they anticipate 
paying more attention to outcomes, increasing activation of the 
posterior cingulate cortex (Villemure and Bushnell, 2002). In this 
case, having weaker prospection abilities might mitigate the effects 

Figure 8 | experiment 4. (A) T-maze. (B) Results, “going right” = red; “going left” = green.
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5.1 ImplIcatIons for neuroeconomy
The possibility to use computational models to connect formal 
methods in economics and machine learning with neural descrip-
tions, and to use the former to derive predictions for the latter, is one 
of the strengths of the new field of neuroeconomy (Glimcher and 
Rustichini, 2004; Glimcher et al., 2009), which is also connected to a 
large body of studies in computational motor control (Kording and 
Wolpert, 2006; TrommershŠuser, 2009; Diedrichsen et al., 2010). So 
far, however, most studies in neuroeconomy have focused on tasks 
that involve model-free controllers associated with habitual com-
ponents of behavior, leveraging on the striking similarities between 
learning signals in the brain and formal methods used in machine 
learning. For instance, it has been noted that temporal difference 
learning signals used in model-free methods of RL (Sutton and 
Barto, 1998) have characteristics that are similar to the burst pattern 
of striatal dopamine neurons (Schultz et al., 1997).

It has been proposed, however, that although model-free 
methods adequately describe habitual behavior, the more flexible 
mechanisms underlying goal-directed choice are better formalized 
using model-based methods. This analysis suggests the importance 
of pursuing a new perspective in neuroeconomic experiments that 
focuses on goal-directed decision-making and aims at formally 
describing its neural mechanisms. Indeed, the neural underpin-
nings of model-based methods (associated with goal-directed con-
trollers) are not completely known (but see Glascher et al., 2010; 
Simon and Daw, 2011). A key element distinguishing model-based 
from model-free methods is that the former learn and use explicit 
state predictions; however, it is still unknown which tasks require 
explicit state predictions and which can be accomplished also with 
model-free methods. We believe that studying the more flexible, 
goal-directed forms of decision-making is an important goal for 
future research and that this research initiative could benefit from 
a cross-fertilization of neuroscience and model-based machine 
learning methods, as in studies using model-free methods.

In keeping with this view, the models we have proposed extend 
the model-based computational framework of Botvinick and collab-
orators (Botvinick and An, 2008; Solway and Botvinick,  submitted; 
the baseline model) with future-directed actions, such as the ability 
to anticipate future cognitive processes during planning. In particu-
lar, we have added two components, a motivational forward model 
and a mechanism for generating and evaluating imaginary states, 
both of which explicitly represent future states, that is, internal and 
imagined states and associated utilities. In other words, prospec-
tion abilities are represented as model-based processes. We hypoth-
esize that a model-based implementation of prospection abilities 
is advantageous for agents that act in complex environments in 
which rewards are volatile. Although model-free models are also 
capable of learning future-oriented actions, they produce rigid out-
puts and exploit a slow trial-and-error learning procedure, which 
requires a stable environment. Furthermore, during the learning 
of future-oriented actions, model-free models collect the learning 
signal (reward or punishment) with a delay with respect to when the 
action is executed, and it is unclear how the brain solves the credit 
assignment problem necessary to reinforce remote actions. For this 
reason, we argue that future-oriented actions that are so flexible, 
rapidly learned, and ready for use in volatile environments are likely 
to depend on model-based computations (see Pezzulo, 2007, 2011 
for a discussion of implicit and explicit predictions).

5 conclusIon
In this article, we have presented a theoretical and computational 
proposal on how prospection abilities in human and (at least 
partially) non-human animals affect decision-making, focusing 
on the role of anticipation of cognitive processes, motivations, 
and emotions. It is still not clear which computational mecha-
nisms the brain exploits in these processes. We have proposed 
that, in general, the anticipation of future cognitive processes 
influences decision-making via two processes: first, the value of 
future outcomes is weighted in relation to the internal context 
at the time of the occurrence of those outcomes; second, future 
internal states are treated as outcomes, hence a value is directly 
assigned to them.

We have investigated the general issue of prospection abili-
ties in two specific problems, namely, the anticipation of moti-
vation and dread. In our model of anticipated motivation, 
we propose a mechanism that represents future motivational 
states and future potential rewards and permits determining 
the latter based on prediction of the former. In our model of 
dread, we propose that anticipating future attention toward 
an unavoidable shock and associated pre-feelings may lead 
people to choose to receive punishment as soon as possible. 
However, the framework we have proposed is more general in 
that it describes how the anticipation of contextual factors and 
of internal variables can influence decision-making. For this 
reason, we believe that the mechanisms we have described so 
far apply to a wide range of phenomena linked to prospection 
abilities, such as the anticipation (and evaluation) of ones 
own emotional states following a decision. In this respect, our 
model can be considered as an extension of EUT that takes 
psychological considerations into account and uses them in 
the utility-maximization process.

Assigning utility in view of future cognitive processes is a com-
plex ability, which has been linked to concepts such as prospec-
tion and mental time travel. Further investigations are necessary to 
identify the circumstances in which the complex decision-making 
strategies we have discussed (as opposed to simpler, myopic alterna-
tives suggested in earlier RL studies) are really used. Furthermore, it 
is still unclear whether or not non-human animals have prospection 
abilities, and if they do use similar brain mechanisms (Raby et al., 
2007; Clayton et al., 2009).

Regarding which brain mechanisms underlie prospection abili-
ties, we propose a common neural implementation of anticipated 
motivational, cognitive, and emotional processes. This mechanism 
has two components: the former one related to prospect explo-
ration, and the other related to value assignment. First, during 
planning, frontal areas, such as the dorsolateral prefrontal cortex, 
the cingulate cortex, and the hippocampus may be responsible 
for the anticipation of future cognitive processes related to pros-
pects. In turn, these areas may activate cortico-limbic and sensory 
structures, such as the amygdala, the orbitofrontal cortex, and the 
somatosensory cortex (SI and SII in the case of dread), related to 
imagined feelings and emotions associated with the anticipation of 
future cognitive processes, thus assigning utility to those processes. 
Although this view is speculative, it has generated some specific 
testable hypotheses and, indeed, some findings are in accordance 
with it (Breiter et al., 2001; Berns et al., 2006; van der Meer and 
Redish, 2010).
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or replaced by Pavlovian processes, which drive innate responses 
that can produce undesired effects (Daw et al., 2005; Niv et al., 
2006; Rangel et al., 2008; Dayan, 2009). Furthermore, the condi-
tions in which the competition of multiple controllers is adaptive 
(Livnat and Pippenger, 2006) or maladaptive (Dayan et al., 2006) 
are still unknown. Elucidating the interactions between multi-
ple controllers, and the resulting effects for (optimal) behavior, 
remains as an open objective for future research.

6 the model of antIcIpated motIvatIon and eut
Botvinick and An (2008) demonstrated that the inferential method 
adopted in the baseline model guarantees maximization of expected 
utility. In this section, we show how EUT concepts and procedures 
adopted to maximize expected utility are translated in our model of 
anticipated motivation, which introduces additional elements with 
respect to the baseline model (This is unnecessary for our second 
model, in which the way utilities are assigned and maximized is 
not substantially different from the baseline model). Specifically, we 
are going to explain how scalar rewards are assigned and mapped 
into conditional probability distributions in our model and how 
finding the policy that maximizes expected utility corresponds to 
reward query, the method adopted in the baseline model and our 
model to infer the optimal policy.

Consider i
t
 node as a stochastic variable representing the moti-

vational state at time 0 < t ≤ T. Each value of i
t
 is x

ij
 ∈ xt, such that 

0 ≤ x
ij
 ≥ X

max
, where X

max
 > 0 is the maximum motivational need. 

The corresponding detection node represents the variable d
t
. Each 

value of d
t
, y

tk
 ∈ yt  such that 0 ≤ y

tk
 ≥ X

max
, represents the value of 

the potential reward detected. Given all combinations of values (i
t
, 

d
t
), it is possible to compute the scalar reward vector R

t
, as defined 

within the EUT framework. It is also possible to compute p(u
t
 = 1/

i
t
,d

t
), the conditional probability distribution of binary node u

t
, as 

represented in our model. Thus, ∀ j ∈ J and ∀ k ∈ K:

if y x R i d x p u i x d y x Xtk tj tjk tj tk tj t t tj t tk tj max≥ , , , / , /( ) = = = =( ) =1

 (4)

if y x R i d y p u i x d y y Xtk tj tjk tj tk tk t t tj t tk tk max< , , , / , /( ) = = = =( ) =1
 

 (5)

From the previous equation it is easy to see that:

p u i d R t Tt t t t=( ) ∝ ∀ < ≤1 0/ , ,
 

(6)

Suppose that a certain number of motivational systems are 
implemented, hence there are M nodes i

m
 and d

m
 at each time step. 

Also in this case, scalar rewards and conditional probabilities of u
m
 

are calculated as in Eqs 4 and 5 for each motivational system. We 
know that, in sequential decisions, being the present state (i

0
, d

0
) 

at t = 0, EUT defines expected utility at time T, given policy p, as 
depending on future Rewards:

U i d E R i d
t

T

mt mt
m

M
p

0 0
1 1

, ,( ) = ( )









= =
∑ ∑

 
(7)

where E is the expectancy, or the probability of obtaining rewards. 
Note that in the previous equation the discounting factor is g = 1. 
From EUT, we know that maximizing expected utility corresponds 
with choosing the optimal policy, which we call p

optEU
:

Overall, we have proposed a formal framework for studying 
prospection abilities and their influence on decision-making within 
a model-based approach. Specifically, in this study decision-making 
is framed as a (computational and neural) process aimed at maxi-
mizing the probability of expected utility using model-based meth-
ods. The first implication of this view is that phenomena such as the 
choice to receive punishments as early as possible (Berns et al., 2006) 
should not be considered as violations of the utility-maximization 
process, but should be considered within a formal framework that 
extends EUT with the effects of prospection.

Besides a computational-level description of how optimization 
of reward can incorporate prospection abilities, the use of proba-
bilistic models permits making explicit claims about their mecha-
nistic implementation in the brain. In this sense, our models have 
implications at the psychological and neural levels, which mainly 
concern the factorization of the state space, the causal relations 
among variables, the use of explicit representations of (internal, 
imagined) states and associated values to implement prospection 
abilities, as well as the nature of dynamics of the computations 
performed (e.g., the reward query). Although our knowledge is still 
incomplete regarding the neural underpinnings of the processes we 
have described, our model could help in formulating hypotheses, 
as in the work of Botvinick and An, (2008), Solway and Botvinick 
(submitted).

Another assumption, which is common of Bayesian systems, is 
that the brain encodes relevant variables, such as state and action 
variables, probabilistically (Doya et al., 2007). All these assumptions 
deserve rigorous empirical validation through novel experimental 
paradigms that explore anticipatory dynamics during choice.

In keeping with the baseline model, we have adopted a “reward 
query” and exact Bayesian inference to describe how computa-
tions are performed. As discussed in Botvinick and An’s (2008) 
study, this method guarantees maximization of expected util-
ity (see Section 6 for a discussion of how our extensions of the 
model maintain the same characteristics). Although this prop-
erty is appealing and has the advantage of linking our model to 
mathematical descriptions of EUT, which are more common in 
neuroeconomy, prudence is necessary to apply this normative 
model to real-world economic scenarios. Indeed, many factors 
could limit optimality in these situations. First, the quality of 
choice depends on the knowledge available to the decision-maker. 
Uncertain or limited knowledge potentially leads to sub-maxi-
mal decisions or choosing exploration rather than exploitation 
(Cohen et al., 2007). Furthermore, it is likely that prospection 
involves the simulation of few salient events or the elicitation of 
incomplete and erroneous simulations, and this limits the amount 
of (future) knowledge incorporated in decision-making. Second, 
the need to use bounded computational and cognitive resources 
can lead to sub-optimal use of available knowledge. Note that 
this does not necessarily mean that the Bayesian scheme is inap-
plicable; a possible alternative, which is currently pursued in 
many studies, is to explain these phenomena using approximate 
rather than exact Bayesian inferences (Chater et al., 2006; Daw 
and Courville, 2008; Sanborn et al., 2010; Dindo et al., 2011). 
Finally, a recent view is that decision-making and behavior result 
from the interaction between different controllers. In some cir-
cumstances goal-directed and habitual controllers, which tend to 
optimize performance (using different methods), are influenced 
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At the same time, with regard to the probabilistic framework 
adopted by the baseline model and our model, the probability dis-
tribution of node u
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where N is the total number of u nodes. Within this probabilistic 
framework, reward query is a method for computing the policy 
p
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 according to this equation:
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time perception. The neurobiological mechanism behind the bio-
logical clock has recently become a topic of intense study (Buhusi 
and Meck, 2005).

We start from the preposition that discounting is exponential, 
as required for time-consistent choice. At the same time, we posit 
that the internal representation of time (under which discounting 
occurs) varies stochastically (randomly) from calendar time. This is 
illustrated in Figure 1: two events at times 0 and ∆ in calendar are 
experienced to occur at t

0
 = F(0) and t∆ = F(∆) in biological time, 

where F is some stochastic (random) transformation F.
Now consider two events at a later time s and s + ∆, separated 

by the same amount of (calendar time) delay ∆. The times s and 
s + ∆ are transformed to t

s
 = F(s) and t

s + ∆ = F(s + ∆) in biological 
time. Although the delay between the pair of events is the same 
in calendar time, the corresponding delay between the events in 
biological time, t∆ − t

0
 and t

s + ∆ − t
s
 are generally different.

We assume that the biological clock is positive quadrant depend-
ent (Esary et al., 1967). Intuitively, this means that if t

s
 is small, the 

chance increases that the subsequent interval t∆ − t
s
 is small too. It 

implies positive autocorrelation, i.e., cov(t
s
, t

s + ∆ − t
s
) > 0. And cru-

cially, it implies that discount factors are positive autocorrelated: 
cov(exp(−t

s
), exp(−(t

s + ∆ − t
s
))) > 0. We also assume that increments 

in biological time are stationary: the distribution of time changes 

1 IntroductIon
Suppose we are asked to choose between $10 now or $11 tomorrow. 
We may prefer the $10 immediately rather than the $11 received 
after a day. However, if we are offered to choose between $10 to 
be received after 364 days, or $11 after 365 days, we often prefer to 
wait the additional day for the extra dollar. After waiting 364 days, 
the latter choice becomes one between an immediate $10 or $11 
tomorrow. Now we would want to reverse it, asking for the $10 
immediately, rather than waiting the extra day we seemed to have 
been willing to accept in the past. This time inconsistency can be 
modeled using hyperbolic discounting of future rewards (Laibson, 
1997). To avoid inconsistencies, rewards should be discounted 
exponentially over time (Sutton and Barto, 1998).

Here, we conjecture that hyperbolic discounting has a rational 
explanation, based on the generally accepted principal that the 
animal and human biological clocks tick at a different rate from the 
calendar clock. Animals and humans are indeed known to main-
tain an internal representation of time that differs from standard 
calendar time and whose properties change with time scale, from 
microseconds up to years, with representations of (calendar) time 
at larger scales showing the highest variability (Buonomano, 2007). 
In humans, drugs (Meck, 1998; Wittmann et al., 2007), and age 
(Mischel et al., 1989), among other things, are known to influence 
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late (3 units under the biological clock) is weighted less, because it 
occurs farther in time; it is discounted with exp(−3); the weighted 
value in that case is exp(−3)*0.538 = 0.027. In expectation, the value 
of receiving K at s + ∆ equals (0.538 + 0.027)/2 = 0.283.

Compare this to getting $1 at s = 2. There is no loss or gain (one 
always gets $1). With 50% probability, the dollar arrives early (1 unit 
in biological time), and its discounted value is exp(−1) = 0.368, and 
with 50% chance the dollar arrives late (3 units under the biological 
clock), and its discounted value is exp(−3) = 0.050. In expectation, 
the value equals (0.368 + 0.050)/2 = 0.209. This is strictly less than 
the value of getting K delayed (0.283).

Hence, while K was set to be indifferent between receiving $1 
now and K dollars at ∆, the promise of K at s + ∆ is worth more 
than getting $1 at s.

The astute reader will have noticed that the positive dependence 
of the biological clock is not really needed to get time inconsist-
encies. They occur also with negative dependence. However, with 
positive dependence, the decision maker will always prefer to wait 
when comparing options in the future for which she is indifferent 
now. That is, she looks more patient when deciding about payoffs 
in the future. This is the classical time inconsistency that has led 
to modeling of intertemporal choice using hyperbolic discount-
ing. With negative dependence, the decision maker looks more 
patient in the immediate future than when considering options 
in the far future.

2 SImulatIonS
We now illustrate that hyperbolic discounting provides a good fit to 
the choices resulting from positive temporal dependence of biologi-
cal time. To model biological time, we choose the lognormal dis-
tribution (Jaynes, 2003), which has a continuous positive support. 
Under the biological clock, any two time increments, such as t∆ − t

0
 

and t
s + ∆ − t

s
, are jointly lognormal. When the time increments are 

positively correlated, they will also be positive quadrant depend-
ent (this follows from Pitt, 1983), and hence, the corresponding 
discount factors will be positively correlated as well.

To make the example concrete, consider the choice between a 
payoff of 1 at time 0, and 1 + K at a delay (in calendar time) of 
∆ = 0.5. We compare this to a pair of later options equally distanced 
in calendar time, at s = 2 and at s + ∆ = 2.5. In biological time, 
these events are at t

0
 = 0 and t∆ for the first pair, t

s
 and t

s + ∆, for the 
second pair. The time of payoff delivery under the biological clock 
is a random variable.

We obtain the values of the options by Monte Carlo sampling. 
To generate the samples, we consider n increments in biological 
time, t

1
,…, t

n
, that correspond to time increments of 0.5 units in 

calendar time. The n increments in biological time are drawn from 
a multivariate lognormal distribution with common mean 0.5 and 
unit variance. The correlations between the increments are posi-
tive, but decrease exponentially as they are farther apart in time. 
We encode the correlation structure as a covariance matrix with 
diagonals equal to 1, and covariances equal to r, r2,…, rn − 1 in the 
off-diagonal spots (see Appendix). We obtain instances in biological 
time by adding increments: t∆ = t

1
, t s i i= ∑ =1

4 t , and t s i i+ == ∑∆ 1
5 t . 

These formulae reflect the fact that the biological expiration time of 
the delayed early option occurs after one increment, while the two 
later options mature after four and five increments, respectively.

does not depend on when they occur; the distribution of t∆ − t
0
 

is the same as that of t
s + ∆ − t

s
. The following theorem states the 

main result.

theorem: PoSItIve dePendence In bIologIcal tIme ImPlIeS 
temPoral choIce InconSIStency
The rigorous proof of the theorem is provided in the Section 
“Appendix,” that the reader is encouraged to peruse. Here we aim to 
provide the intuition with a simple numerical example. We envisage 
delivery of $1 now or K dollars at ∆ (a point in calendar time). K is 
to be chosen so that there is indifference. We then compare delivery 
of $1 at s = 2 with delivery of K dollars at s = 2 + ∆.

The biological clock is as follows. Either s feels like it takes 1 unit 
of (biological) time, or it takes 3 units, with an average of 2 units. 
∆ is on average half the length; it feels either short (0.5 units) or 
long (1.5), with an average of 1 unit.

The biological clock is positive quadrant dependent. We will 
make the dependence perfect, to simplify the argument. When s 
feels like it takes 1 unit, the subsequent ∆ will take 0.5 unit; when s 
feels long (2 units), the subsequent ∆ is long as well, at 1.5 units.

As mentioned, K is set so that there is indifference between 
getting $1 now and K dollars at ∆. Today’s value of K is 0.5*exp
(−0.5) + 0.5*exp(−1.5)*K, because with 50% probability, delivery 
is felt like taking place in 0.5 units of (biological) time, and with 
50% chance, it feels like it takes place 1.5 time units in the future. 
We set K so that today’s value equals $1. So, K = 2/(exp(−0.5) + 
exp(−1.5)) = 2.411.

Essentially, K is set so that the gain of having to wait a short time 
(only 0.5 units of biological time) is offset by the loss in value for 
having to wait a long time (1.5 units). The former gain (relative 
to today’s $1) is 2.411*exp(−0.5) − 1 = 0.462, or 46.2%; the latter 
loss equals 1 − 2.411*exp(−1.5) = (1 − 0.538) = 46.2%. The gains 
and losses offset.

As for delivery of K at s + ∆, notice that, while the gain and loss 
from waiting an extra ∆ beyond s have equal probability of occur-
ring, they are discounted differently. The gain occurs when s = 2 
arrives early under the biological clock (1 unit); this is weighted 
more heavily, because it is discounted with only exp(−1); its 
weighted value is exp(−1)*1.462 = 0.538. The loss when s = 2 arrives 

Figure 1 | The calendar time and biological time evolve at different 
rates. Two equal intervals (0, ∆) and (s, s + ∆) in calendar time (horizontal axis) 
translate into unequal intervals (t0, t∆) and (ts, ts + ∆) in biological time (vertical 
axis). The function F(·) depicts one possible realization of the (stochastic) 
transformation from calendar to biological time.
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For the first option pair, the value of the immediate option is 
1, and the option with payoff at (calendar time) ∆ = 0.5, is val-
ued at E e Kt[ ( )],− +∆ 1  assuming a unit discount rate (in biological 
time). Monte Carlo analysis based on N(=106) samples of t∆ esti-
mates this to be (1/N e Ki

N ti

) ( ).∑ +=
−

1 1∆  For K = 0.78, we find that 
E e Kt[ ( )] ,− + ≈∆ 1 1  i.e., the decision maker is approximately indiffer-
ent between immediate delivery of $1 and a payoff of $1.78 after a 
delay of ∆ = 0.5 units of calendar time.

For the pair of options at the more distant future, the values 
of the early and later options are estimated to remain approxi-
mately equal when time increments are independent, i.e., r = 0 
( [ ( )] [ ( )] . ).E e E e Kt ts s− −≈ + ≈+1 1 0 056∆  When time increments are 
positively correlated, i.e., r > 0, the later option is valued more 
highly, in accordance with our Theorem. For example, when r = 0.5, 
the early option has value E e ts[ ( )] . ,− ≈1 0 091  and the later option 
has value E e Kts[ ( )] . .− + + ≈∆ 1 0 104  So the decision maker prefers to 
wait to receive $1.78 later, while he was indifferent between an 
immediate $1 and $1.78 after an equally long delay of ∆ = 0.5. We 
thus have obtained a temporal inconsistency.

We can obtain a discounting curve by evaluating payoffs at 
various delays, as in the previous example. We generated n(=10) 
increments, t

1
,…, t

n
, of length ∆ = 0.5. The time indicated by 

the biological clock at calendar time s is given by t s i
s

i= =Σ 1t .  The 
value of a payoff of $1 at time 0 is 1, and at (calendar) time s is 
E e ts[ ( )]− 1  (we continue to use a unit discount rate.) The values 
obtained for each point in calendar time can then be compared to 
valuation with hyperbolic discounting (in calendar time), assum-
ing a discount factor is 1/(1 + ks). We find the best-fitting value of 
k by minimizing the squared error between the theoretical values 
under the hyperbolic function, and that generated by our Monte 
Carlo procedure. Similarly, we can also obtain a comparison with 
valuation (in calendar time) assuming exponential discounting, 
where the discount factor equals e−ds. The discount rate d is also 
obtained by minimizing the squared error.

We are interested, in particular, in the effect of the correlation 
parameter r of the biological clock on the shape of the discounting 
curve. When autocorrelation equals zero (r = 0), the discounting 
curve is pretty much exponential, as shown in Figure 2 (Top). The 
best-fitting exponential curve has d = 0.3; this differs from the true 
discount rate (1) because the latter only applies to biological time. 
The hyperbolic curve has k = 2.75, but its fit is worse. Figure 2 
(Bottom) illustrates how, when the autocorrelations are very high 
(r = 0.97), hyperbolic discounting provides the better fit. The best-
fitting exponential discount rate equals d = 0.45, and the hyperbolic 
discount rate is estimated at k = 1.75.

Variability in the mapping from calendar to biological time 
also plays a role. In the limit, when the biological clock is accu-
rate (i.e., the mapping is deterministic, and, because we assume 
a constant speed for the biological clock, linear), we of course 
obtain exponential discounting in calendar time. Section A3 in 
Appendix shows how variability induces increased convexity in 
the  discounting curve.

3 dIScuSSIon
Time inconsistencies, like the ones that led to modeling time prefer-
ences with hyperbolic discounting, arise when the biological clock 
advances randomly in calendar time, and increments in biological 
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Figure 2 | (Top) No autocorrelation of biological time (r = 0). The 
discounting curve in biological time is exponential with discount rate equal  
to 1. It generates the dotted discounting curve in calendar time (“ZeroCorr”). The 
best exponential (“Exp”) fit in calendar time produces a discount rate of 0.30, 
and the best hyperbolic fit (“Hyp”) has a discount rate equal to 2.75. (Bottom) 
Very high autocorrelation of biological time (r = 0.97). The discounting curve 
in biological time is exponential with discount rate equal to 1. It generates the 
dotted discounting curve in calendar time (“HighCorr”). The best exponential 
(“Exp”) fit in calendar time produces a discount rate of 0.45, and the best 
hyperbolic fit (“Hyp”) in calendar time has discount rate equal to 1.75.

time are positively dependent. When measured in calendar time, 
discounting becomes increasingly hyperbolic as the biological clock 
becomes more highly correlated and more variable.

Prior to our result, hyperbolic discounting emerged in a norma-
tive (i.e., fully rational) model because discount rates were assumed 
to be stochastic (Farmer and Geneakopolos, 2009). Our rational 
explanation of hyperbolic discounting does not rely on random 
discounting, but on randomness in the transformation between 
calendar time (which determines payoff times) and biological time 
(which is relevant for decision making). The two explanations can 
be shown to be related mathematically, but they are biologically 
very different. Specifically, stochastic time perception is biologi-
cally plausible, while stochastic discounting is rarely considered 
outside the arcane world of mathematical finance. An exception 
is Skog (1997).
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of temporal dependence of the biological clock is novel, however, 
and may elucidate timing anomalies that an independent clock 
cannot explain (Machado and Keen, 1999). Positive temporal cor-
relation in the internal clock is neurobiologically plausible; it may 
be supported by the positive autocorrelations recently discovered 
in human brain activity oscillations, displaying slow decreases 
even over thousands of cycles (Linkenkaer-Hansen et al., 2001, 
2004), not unlike those generated by fractional Brownian motions 
(Mandelbrot and Van Ness, 1968). It is unknown to what extent 
this generalizes to longer time horizons, however.

Our theoretical framework provides a potentially unifying 
account for recorded time preferences. This is fortunate, because 
hyperbolic discounting is known to not be universal, with the shape 
(and level) of discounting changing with context (Scholten and 
Read, 2010). Context-dependence is consistent with our theory, 
which implies exponential discounting when the speed of the 
internal clock is expected to be constant, and the relation between 
calendar time and biological time accurate, or increments in biolog-
ical time uncorrelated. Hyperbolic discounting emerges when the 
biological clock exhibits temporal dependence, or when its speed 
is expected to decrease in the more distant future. Future research 
should clarify which features of the biological clock can account 
for the observed context-dependence of discounting. In Scholten 
and Read (2010), intertemporal preferences were observed to be 
different depending on whether a time interval is divided up, or 
time is extended by adding intervals. In principle, our theory could 
accommodate such differences, but it may require the biological 
clock to not be self-similar (Mandelbrot and Van Ness, 1968); that 
is, its temporal properties may have to change as one moves from 
coarser to finer sub-divisions of time.

Our theorem provides a new, unifying framework to study time 
perception and how it relates to impulsivity in temporal decision 
making (Wittmann and Paulus, 2008). Our linking the phenom-
ena of biological time and intertemporal discounting should lead 
to novel studies of the symptoms and causes of many disorders 
involving anomalous time perception, such as attention-deficit 
hyperactivity syndrome, borderline personality disorder, anxiety 
disorder, and schizophrenia.
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Other rational explanations of hyperbolic discounting focus on 
specific forms of uncertainty about the ability of the payer to deliver 
the future payment (because he is bankrupted) or of the payee to 
receive it (because she may have deceased beforehand). When the 
hazard rate is stochastic, the apparent discount rate can be shown to 
become stochastic (see Sozou, 1998; Azfar, 1999; Sozou and Seymour, 
2003). However, payment uncertainty cannot provide a comprehen-
sive explanation. In particular, it fails to explain hyperbolic discount-
ing in experiments where design precludes bankruptcy and where the 
time horizon is too short for significant effects from sudden inability 
of the payee to take delivery (e.g., Kable and Glimcher, 2007).

Our explanation of hyperbolic discounting assumes that dis-
counting is exponential in biological time. Consistent with this, 
temporal discounting has empirically been shown to have an expo-
nential form when subjective estimates of time elapsed are taken 
into account (Zauberman et al., 2009). Other work has shown that 
discounting is hyperbolic if subjects perceive realizations of future 
events to be uncertain (Dasgupta and Maskin, 2005).

The importance of perceived time in discounting has been 
pointed out before (Kim and Zauberman, 2009; Nakahara and 
Kaveri, 2010), but because random time changes were never con-
sidered, some type of misperception had to be invoked to generate 
hyperbolic discounting and the associated choice inconsistencies. 
Specifically, in Kim and Zauberman (2009), Nakahara and Kaveri 
(2010), the mapping from calendar to biological time is concave, 
so that increments farther in calendar time are expected (under the 
biological clock) to become shorter, inconsistent with the actual 
experience once the future arrives. In contrast, in our case, the speed 
of the biological clock is in tune with the calendar time, on average. 
Our approach relies on variability in the estimates.

Still, we can emulate the misperception of Kim and Zauberman 
(2009), Nakahara and Kaveri (2010) by increasing the expected 
speed of the biological clock for time farther into the future, or 
equivalently, decreasing the drift in the mapping from calendar to 
biological time. This generates concavity in the (random) map-
ping from calendar to biological time, and hyperbolic discounting 
adequately captures the resulting intertemporal choices; see Section 
A4 in Appendix. Positive dependence in the biological clock is no 
longer needed; nor is variability. As such, our framework encom-
passes explanations that rely on concavity in the mapping from 
calendar to biological time.

Stochasticity in time perception has long been accepted in psy-
chology. Gibbon et al. (1984), e.g., uses a random clock process to 
explain response accuracy in animal timing tasks. Consideration 
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The biological time after s increments is given by: t s i
i s= ∑ =
=

1 ti .

a3. IncreaSed randomneSS In the maPPIng from calendar to 
bIologIcal tIme
Simulations are performed as for Figure 2. We set the autocorrela-
tion of the biological clock (r) equal to 0.3, and increase variability 
(variances of the multivariate lognormal distribution of biological 
time intervals) from 0.50 to 1 and 4 (the middle case is the value 
used to generate Figure 2). Variability generates increased convexity 
in the discounting curve in calendar time. See Figure A1.

a4. concave maPPIng from calendar tIme to bIologIcal tIme
The time increments t

1
,
 
t

2
,…, t

n,
 are generated according to a multi-

variate lognormal distribution. To generate concavity (on average) in 
the (stochastic) mapping from calendar to biological time, we let the 
drift in the mapping from calendar to biological time decrease with 
time. The expected length of the kth interval in biological time equals: 
E[t

k
] = (0.5k)g − (0.5(k−1))g, where g < 1 (e.g., g = 0.5). The covariance 

matrix is identity, thus assuming no correlation across increments. As 
before, the biological time after s increments is given by: t s i

i s
i= ∑ =

=
1 t .
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We set g = 0.5. In Figure A2 we find that the discounting curve 
generated by the concavity in the relation between calendar and 
biological time is best modeled as hyperbolic.

aPPendIx
a1. Proof of the maIn theorem
Theorem: positive correlation in biological time implies temporal 
choice inconsistency
Proof. To prove this theorem, we start with setting the exponential 
discount rate (in biological time) equal to 1. This is without loss 
of generality; any other discount rate would work. Now pick an 
amount K so that the decision maker is indifferent between an 
immediate (at time 0) payoff of 1 and a payoff of 1 + K after a delay 
∆(>0). Again without loss of generality, we set the initial biological 
time t

0
 = 0 (although at times we will keep t

0
 explicit, for clarity). 

Let t∆ be the time that will have passed according to the biological 
clock by the time the calendar clock indicates ∆. Because of the 
preference of our decision maker, the valuations corresponding to 
the immediate option (left-hand side) and to the delayed option 
(right-hand side) are equal:

 1 10= +− −E e Kt t[ ( )]( )∆

 (1)

Now consider the valuation of 1 at some later time s, as well 
as that of 1 + K at the same time s plus the delay ∆. The cor-
responding times according to the biological clock are t

s
 and 

t
s + ∆ respectively. The increment from s to s + ∆ equals t

s + ∆ − t
s
 

in biological time. The (time 0) value of the payoff of 1 at (cal-
endar time) s equals E e ts[ ],−  and the value of the payoff of 1 + K 
at s + ∆ equals

 E e K E e e Kt t t ts s s s[ ( )] [ ( )]( )− − − −+ ++ = +∆ ∆1 1  (2)

We assume that calendar time increments are perceived to be 
positive quadrant dependent. Hence, cov e et t ts s s( , ) ,( )− − −+ >∆ 0  or, 
applying the definition of covariance,

 cov e e E e e E e E et t t t t t t ts s s s s s s s( , ) [ ] [ ] [( ) ( ) (− − − − − − − − −+ + += −∆ ∆ ∆ tt s )] .> 0  (3)

We can use the latter inequality to obtain a lower bound for the 
value of the later option:

 E e e K E e E e Kt t t t t ts s s s s s[ ( )] [ ] [ ( )].( ) ( )− − − − − −+ ++ > +∆ ∆1 1  (4)

Our assumption that time increments are stationary implies, 
in particular, that

 E e K E e Kt t t ts s[ ( )] [ ( )].( ) ( )− − − −+ + = +∆ ∆1 10

 (5)

But we picked K so that the latter equals 1. Combining this with 
the above, we conclude that the later option is worth more than:

 E e e K E et t t ts s s s[ ( )] [ ].( )− − − −+ + >∆ 1  (6)

But the right-hand side is the value of the earlier option. As 
a result, the decision maker is no longer indifferent between the 
earlier and later options as she was when the earlier option was 
immediate; she now strictly prefers the later option, which is a time 
inconsistency. 

a2. generatIng tIme IncrementS
Biological time increments t

1
, t

2
,…, t

n
 are generated according 

to a multivariate lognormal distribution. The mean of the time 
intervals is fixed at 0.5. The covariance matrix encodes first-order 
autocorrelation, with correlation parameter r.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time

V
al

ue

 

 

Var = 0.5
Var = 1
Var = 4

Figure A1 | impact of increased variability onto shape of discounting 
under mild autocorrelation of the biological clock (r = 0.3). As variability 
(“Var”) increased from 0.5 over 1 to 4, the discounting function becomes 
more convex.
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Figure A2 | Time intervals generated from concavity in the mapping 
from calendar to biological time, induced by decreasing the speed of the 
biological clock for time intervals further into the future (g = 0.5). The 
biological clock does not exhibit autocorrelation (r = 0). The discounting curve 
in biological time is exponential with discount rate equal to 1. The dashed-
dotted line depicts the resulting discounting curve in calendar time 
(“Concav”). The best exponential (“Exp”) fit in calendar time produces a 
discount rate of 0.40, and the best hyperbolic fit (“Hyp”) has a discount rate 
equal to 2.20.
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The ventromedial prefrontal cortex (vmPFC) is believed to be important in everyday preference 
judgments, processing emotions during decision-making. However, there is still controversy in 
the literature regarding the participation of the vmPFC. To further elucidate the contribution of 
the vmPFC in brand preference, we designed a functional magnetic resonance imaging (fMRI) 
study where 18 subjects assessed positive, indifferent, and fictitious brands. Also, both the 
period during and after the decision process were analyzed, hoping to unravel temporally the 
role of the vmPFC, using modeled and model-free fMRI analysis. Considering together the 
period before and after decision-making, there was activation of the vmPFC when comparing 
positive with indifferent or fictitious brands. However, when the decision-making period was 
separated from the moment after the response, and especially for positive brands, the vmPFC 
was more active after the choice than during the decision process itself, challenging some of 
the existing literature. The results of the present study support the notion that the vmPFC may 
be unimportant in the decision stage of brand preference, questioning theories that postulate 
that the vmPFC is in the origin of such a choice. Further studies are needed to investigate in 
detail why the vmPFC seems to be involved in brand preference only after the decision process.

Keywords: neuromarketing, brands, emotion, preference, multivariate analysis, FMRI

in the vmPFC persisted in their original choice, ignoring brand 
 information, showing that the vmPFC is also necessary in the inte-
gration of information in the decision-making process.

In addition the vmPFC was found to be important in signaling 
risk probabilities (Tom et al., 2007; Rangel et al., 2008). Fellows and 
Farah (2007) again working with patients with vmPFC impairment, 
suggested that this brain region is necessary for all sorts of choice 
tasks, either uncertain (including risky or ambiguous situations), 
or certain.

However, there is still controversy in the literature regarding the 
function of the vmPFC in decision-making in general, and in brand 
preference in particular. For example, Schaefer and Rotte (2007) did 
not report activations in this brain region when sport and luxury 
car brands (rewarding stimuli) were compared with rational choices 
of car brands. In another study, using fNIRS to compare luxury 
and common handbags assessed individually, Lin et al. (2010) sug-
gest that the cognitive subprocesses that underlie the assessment of 
branded handbags were only important after the choice was made.

To further elucidate the contribution of the vmPFC in brand 
preference, we designed a functional magnetic resonance imaging 
(fMRI) study where subjects assessed positive, indifferent and ficti-
tious brands, testing the participation of the vmPFC in the process-
ing of these different hedonic categories of brands. Moreover, both 
the period during and after the decision process were analyzed, 
hoping to unravel temporally the role of the vmPFC.

IntroductIon
In the last few years several articles were published involving a new 
approach to the study of brands using neuroscientific techniques. 
One of these first studies used photographs of soft drinks where 
brands figured explicitly, inducing preference judgments (Paulus 
and Frank, 2003). These authors hypothesized that a specific 
area in the prefrontal cortex, the ventromedial prefrontal cortex 
(vmPFC), was critical for everyday preference judgments. In fact, 
they found important activations in this brain region when par-
ticipants selected preferred soft drinks in contrast with a visual 
discrimination task of the same stimuli (liquids contained in bottles 
or glasses). Also investigating brands, Deppe et al. (2005), largely 
based on the work of Damásio, Bechara, and co-workers (Damásio, 
1994; Bechara et al., 1997, 1999; Bechara and Damásio, 2005), pro-
posed a dichotomic theory in economic decision-making, “(…) one 
chain involving emotional experience (…) and another one based 
on reasoning strategies” (p. 180). Deppe et al. (2005) propose the 
vmPFC to be central in the processing of emotions during decision-
making, whereas brain regions associated with working memory 
could sustain reasoning.

Koenigs and Tranel (2008) recruited patients with a specific 
damage of the vmPFC to select soft drinks in two conditions: 
blinded or brand-cued. While healthy controls and patients with 
damage in other brain areas changed their soda preference from 
the blinded drinks to the brand-cued ones, patients with a lesion 
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non-emotIonal words
The fourth stimulus (a second baseline) was non-emotional words: 
determiners, conjunctions, prepositions, or adverbs. Importantly, 
nouns or verbs that could evoke emotions, objects, or actions were 
not used. With this stimulus we hoped to avoid meditation during 
the fMRI task (Gusnard and Raichle, 2001; Beckmann and Smith, 
2005; De Luca et al., 2006), that could cloud possible self-reflexive 
processes elicited by brands (Yoon et al., 2006).

structurIng the paradIgm
The structure of the paradigm was the same for all participants. The 
paradigm sequences were programmed with SuperLab 4.0 software 
(version 4.0.6b; Cedrus Corporation, USA)3.

InstructIons for the scannIng sessIon
Depending on the type of stimulus visualized, the participants were 
instructed to either rate hedonically the brand (as positive, negative, 
indifferent, or unknown), to read covertly non-emotional words, or 
just to fixate a cross. Participants made their choices using a but-
ton box (model Lumina LU400-PAIR; Cedrus Corporation, USA)4.

human subjects
The participants were 18, 7 healthy male and 11 healthy female 
volunteers, right handed, with neither history of neurological nor 
psychiatric disturbances (mean age 28.2 ± 6.9 years, 19–41 years). 
Informed consent was obtained in all cases. A safety form for 
magnetic resonance imaging was filled by every participant. After 
each session the participants were debriefed. This research project 
was performed according to the Declaration of Helsinki and was 
approved by the local Ethics Committee.

data acquIsItIon
Functional images with axial orientation were obtained using a 
T2*-weighted EPI sequence in a Siemens® Magnetom Trio high 
field (3 T) MRI scanner (Siemens AG, Germany; TR = 3000 ms, 
TE = 30 ms, 64 × 64 matrix, FOV = 192 mm, 3.0 mm axial slices). 
The order of acquisition of the slices was interleaved, and they 
covered the whole brain. The study consisted in one session where 
407 volumes were acquired. The first four volumes were discarded 
to ensure pulses stabilization.

The designation vmPFC is ambiguous in the literature. The  present 
study relies on the probabilistic atlases Harvard-Oxford Cortical 
Structural Atlas and Harvard-Oxford Subcortical Structural Atlas pro-
vided by the Harvard Centre for Morphometric Analysis1. We have 
considered the vmPFC to include the ventral medial frontal pole, 
frontal medial cortex, ventral paracingulate gyrus, ventral anterior 
cingulate gyrus, and subcallosal cortex, limited dorsally by the plane 
z = +10, and laterally by the planes x = ±20 (MNI152 coordinates).

materIals and methods
general structure
To explore the research question, an event-related fMRI experiment 
was designed. There were four different stimuli categories, plus the 
interstimuli interval. Each category was composed by 35 slides (6 s 
each). The interstimuli interval ranged from 4 until 9 s, in 0.5 s 
steps. The experiment duration was 1200 s, plus 9 s added in the 
end to ensure that all of the hemodynamic response was included. 
The sequence was optimized with Optseq2 software (Athinoula A. 
Martinos Center for Biomedical Imaging, USA)2.

Three of the four stimuli were brands’ logos grouped in the fol-
lowing categories: positive, indifferent, and fictitious brands. The 
fourth stimulus was non-emotional words. During the interstimuli 
interval participants fixated a cross.

brand selectIon
In order to select the logos for the positive and indifferent brand 
categories, participants completed an electronic survey in which 
were shown 200 brand logos, that they had to rate using the pleasure 
and arousal dimensions of the PAD – pleasure, arousal, dominance 
scale (Russell and Mehrabian, 1977; Mehrabian and De Wetter, 1987; 
Mehrabian, 1995), and the SAM – self assessment manikin, explained 
in detail elsewhere (Morris, 1995; Bradley and Lang, 2007). Self-
reporting emotions is a complex task for most individuals, mainly 
due to the difficulty in verbalizing such inner states (Chamberlain 
and Broderick, 2007). SAM is a non-verbal pictorial assessment tech-
nique designed to represent each dimension of the PAD scale associ-
ated with a person’s affective reaction to a certain stimuli. Dominance 
was not included in the brand assessment because with static pictures 
this dimension correlates with pleasure (Bradley and Lang, 2007).

After this task, the responses were screened and categorized 
according to the following criteria: positive brands if the score 
was ≥7 in the pleasure dimension, and ≥5 in the arousal dimen-
sion; indifferent brands if the score was ≥4 and ≤6 in the pleasure 
dimension, and ≤5 in the arousal dimension. With this procedure 35 
positive and 35 indifferent brands were chosen for each participant, 
and were randomized to enter the fMRI paradigm.

fIctItIous logos
The fictitious brands were brands’ logos that did not exist in the 
market. Each logo was designed by a marketer made to resemble a 
real one, making it plausible for the consumer. The fictitious brands 
did not represent a particular type of product. Instead, logos with 
assorted shapes, colors, and fonts suggesting different products and 
services were used (examples in Figure 1).

FIguRe 1 | examples of some of the logos used as fictitious stimuli.

1http://www.cma.mgh.harvard.edu
2http://surfer.nmr.mgh.harvard.edu/optseq/

3http://www.superlab.com
4http://www.cedrus.com
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At the individual level two different strategies of analysis were 
used for comparison. The first strategy was a traditional approach 
where the hemodynamic response was investigated during the 
 complete time window of the stimulus (6 s). In the second approach 
the stimulus duration was divided in two: the period before the 
response (decision-making), and the period after the response 
( passive period; see Figure 2).

General linear model analysis – conventional stimulus analysis
Before the scanning session, participants assessed a set of 200 brand 
logos, from which the positive and indifferent stimuli were extracted. 
Then, during the scanning, participants rated again the brands. In the 
first model, in which the whole of the stimulus duration was consid-
ered, 13 EVs were included: the three types of stimulus (positive, indif-
ferent, and fictitious logos) times the four possible ratings (positive, 
indifferent, negative, and unknown), and the non-emotional words.

Most of the assessments were consistent between the two study 
sessions, before and during the scanning (see Brand Selection), but 
some of the possible combinations received little or even no rat-
ings. Although all the possibilities were modeled with EVs aiming 
to explain most of the variance, only those that were consistent 
between sessions, i.e., positive brands that were rated as positive 
during the scanning session (PosPos), indifferent brands that were 
rated as indifferent (IndInd), or fictitious logos that were rated as 
unknown inside the scanner (NoBUnk) were considered in the anal-
ysis. Hence, at the individual level analysis, stimuli, and baseline were 
compared, resulting in the following contrasts: positive > indifferent, 
positive > unrecognized logos, and indifferent > unrecognized logos.

General linear model analysis – stimulus detailed analysis
In the second model, 25 EVs were considered: the three types of 
stimulus (positive, indifferent, and fictitious logos), times the four 
possible ratings (positive, indifferent, negative, and unknown), 
times the two epochs (before and after button pressing), and the 
non-emotional words.

At the individual level and as before, stimuli and baseline 
were subtracted, resulting in the following six contrasts (ar: after 
response; br: before response): positive br > indifferent br, positive 

A whole brain anatomical structural scan was acquired also for 
each volunteer, using a T1-weighted MPRAGE protocol (256 × 256 
matrix, FOV = 256 mm, 3.0 mm axial slices), for co-registration 
purposes. Gradient field mapping was additionally acquired for 
image quality control.

Image analysIs
Functional magnetic resonance imaging data processing was car-
ried out using FEAT (FMRI Expert Analysis Tool) version 5.98, 
a model-based GLM (general linear model) analysis tool, and 
also using probabilistic independent component analysis (PICA; 
Beckmann and Smith, 2004) as implemented in MELODIC 
(Multivariate Exploratory Linear Decomposition into Independent 
Components) version 3.09, a model-free analysis tool, both part 
of FSL – FMRIB’s Software Library5 (Smith et al., 2004; Woolrich 
et al., 2009).

General linear model analysis – common procedures
In the FEAT analysis, the following pre-statistics processing was 
applied: motion correction using MCFLIRT (Jenkinson et al., 
2002); slice-timing correction using Fourier-space time-series 
phase-shifting; non-brain removal using BET (Smith, 2002); 
spatial smoothing using a Gaussian kernel of FWHM 5 mm; 
grand-mean intensity normalization of the entire 4D dataset 
by a single multiplicative factor; high pass temporal filtering 
(Gaussian-weighted least-squares straight line fitting, with 
sigma = 30.0 s). Stimuli were convolved with a gamma func-
tion with canonical values (phase 0 s, SD 3 s, and mean lag 6 s). 
To account for variations, temporal derivatives were added for 
every explanatory variable (EV), in order to achieve a better 
fit between the signal and the stimuli convolved hemodynamic 
responses. Time-series statistical analysis was performed using 
FILM with local autocorrelation correction (Woolrich et al., 
2001). Registration to high-resolution structural and/or stand-
ard space images was done using FLIRT (Jenkinson and Smith, 
2001; Jenkinson et al., 2002).

FIguRe 2 | Splitting the duration of the stimulus for one subject. The figure represents the splitting of the first five stimuli of each category (positive, indifferent, 
and fictitious logos). Lighter areas represent the period until the response (during decision), and darker areas represent the period after the response (passive 
visualization of the stimulus).

5http://www.fmrib.ox.ac.uk/fsl
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results
consIstency In the assessments between sessIons
Most of the ratings were coherent from one session to the other. 
Results are summarized in Table 1. Five hundred fifty-four fictitious 
brands’ logos out of 630 (87.9%) were rated as unknown, 590 posi-
tive brands out of 630 (93.7%) were rated as positive, and 427 indif-
ferent brands out of 630 (67.8%) were again rated as indifferent.

response tIme
The graph in Figure 4 depicts the distribution of the subjects’ 
choices by response time. Response times were shorter with positive 
ratings (1546 ms) than indifferent (2370 ms) or fictitious ratings 
(2334 ms), suggesting a delayed decision process with the last two 
ratings. These differences are significant between positive and indif-
ferent ratings (F

426,589,0.01
 = 1.702 – p-value < 0.000001), and posi-

tive and fictitious ratings (F
553,589,0.01

 = 1.708 – p-value < 0.000001), 
but not significant between indifferent and fictitious ratings 
(F

553,426,0.01
 = 1.004 – p-value = 0.969508).

general lInear model analysIs
In the conventional GLM analysis (the whole of the stimulus dura-
tion), the vmPFC was significantly and extensively activate for the 
contrasts positive versus indifferent or fictitious logos (Figure 5).

Figure 6 represents the stimulus detailed analysis for the same 
contrasts. For the period before the response (decision stage) the 
vmPFC tendentiously deactivated. Conversely, after button press-
ing, i.e., after the decision was made and while subjects were pas-
sively visualizing the stimulus, the vmPFC was active.

Four local maxima from the cluster in the vmPFC in the contrast 
positive versus indifferent in the conventional analysis were selected 
for further analysis. The parameter estimates of these voxels are rep-
resented in Figure 7 both for the conventional analysis and for the 
stimulus detailed analysis. For the conventional GLM analysis, all 
the four local maxima significantly activated when positive brands 
were involved. On the contrary, in the stimulus detailed analysis 
there were deactivations, more prominent in the anterior subre-
gions (ventral paracingulate gyrus and ventral medial frontal pole). 
After the response, however, the vmPFC was extensively activate.

probabIlIstIc Independent component analysIs
The 164 ICs yielded by PICA account for 86.95% of the variability.

To select the relevant ICs the criteria were: the z statistics of the 
contrast between the parameter estimates of the positive brands 
versus the parameter estimates of the indifferent brands, the 

br > unrecognized logos br, indifferent br > unrecognized logos br, 
positive ar > indifferent ar, positive ar > unrecognized logos ar, and 
indifferent ar > unrecognized logos ar.

General linear model analysis – group analysis
For both models, group analysis was performed with FLAME 
(FMRIB’s Local Analysis of Mixed Effects) stage 1 and stage 2 with 
automatic outlier detection (Beckmann et al., 2003; Woolrich et al., 
2004; Woolrich, 2008). At this level, group means were calculated 
from the individual level contrasts.

Z (Gaussianized T/F) statistic images were thresholded using 
clusters determined by z > 2.3 and a (corrected) cluster significance 
threshold of p = 1.00 (Worsley, 2001). Only clusters with more than 
50 voxels survived the threshold.

Probabilistic independent component analysis
The following data pre-processing was applied: masking of non-
brain voxels, voxel-wise de-meaning of the data, and normaliza-
tion of the voxel-wise variance. Pre-processed data were whitened 
and projected into a 164-dimensional subspace using probabilistic 
Principal Component Analysis where the number of dimensions 
was estimated using the Laplace approximation to the Bayesian 
evidence of the model order (Minka, 2000; Beckmann and Smith, 
2004). The whitened observations were decomposed into sets of 
vectors, which describe signal variation across the temporal domain 
(time-courses), the session/subject domain and across the spatial 
domain (maps) by optimizing for non-Gaussian spatial source 
distributions using a fixed-point iteration technique (Hyvärinen, 
1999). Estimated component maps were divided by the SD of the 
residual noise and thresholded by fitting a mixture model to the 
histogram of intensity values (Beckmann and Smith, 2004).

The EVs basic shapes convolved with a gamma function and 
including temporal derivatives were concatenated for all the par-
ticipants in the same order that time-courses were entered in 
MELODIC, and the same contrasts used in FEAT were computed. 
The parameter estimates of each spatial independent component 
(164 total) were then calculated and tested using GLM for each case 
(see Figure 3), and so the selection of significant spatial independ-
ent components was based on statistical criteria.

Table 1 | Assessments made during the scanning sessions separated 

according to the type of stimuli.

 Recorded ratings

Stimuli
 Positive Indifferent Negative unknown No 

Total 

     answer

Positive 590 29 3 6 2 630

Indifferent 82 427 74 44 3 630

Fictitious 33 36 2 554 5 630

Total 705 492 79 604 10 1890

FIguRe 3 | Illustration of the application of a gLM analysis to each of the 
164 independent components yielded by MeLODIC. For each IC, 25 
independent variables were modeled: the three types of stimulus (positive, 
indifferent, and fictitious logos), times the four possible ratings (positive, 
indifferent, negative, and unknown), times the two epochs (before and after 
button pressing), and the non-emotional words.
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Neither before the response nor after the response there were 
ICs with z value inferior to −2.3. On the contrary, two ICs (#17 and 
#152) had all the considered z values superior to 2.3 in the situation 
before the response, and four other (#24, #49, #96, and #135) had 
z values superior to 2.3 in the situation after the response. Only IC 
#24 included brain activations in the vmPFC. The z values for the 

 fictitious logos, and the non-emotional words had to be superior 
to 2.3 in all the three cases, or inferior to −2.3 in all three cases. This 
procedure was implemented in the two situations, before and after 
the response. In this way it was guaranteed that the ICs selected 
would be significantly more active or more deactivated for positive 
brands than in the remaining cases.

FIguRe 4 | Relative frequency of response times obtained during the scanning session grouped in 500 ms intervals.

FIguRe 5 | Statistical z maps (unthresholded in the upper row and thresholded in the lower row) for the contrasts positive versus indifferent brands and 
positive versus fictitious logos in a conventional gLM analysis. In the unthresholded images the significant clusters are outlined in white (for z > 2.3), and the 
vmPFC is outlined in green. Sagittal views for x = −04 (MNI152 coordinates).
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ICs #15 and #22 were significantly positive for the situation after the 
response in the contrast with other logos (indifferent or fictitious). 
In the situation before the response, IC #132 had significantly nega-
tive z values for the contrasts with logos.

dIscussIon
Most of the neuroimaging studies involving brands use paradigms 
consisting of choices between pairs of brands or products, i.e., both 
stimuli are presented simultaneously and subjects have to choose 
one or the other. However, the structure adopted in our study is 
different, we believe closer to everyday life; each brand is presented 
one at a time, meaning that subjects decide about the hedonic value 
of a particular brand not by comparison. For example, when a 
consumer chooses a product from a supermarket shelf, s/he does 
not collect first all the available items and then choose. On the 
contrary, there is a previous intention summarized in a concept 
named consideration set, or evoked set (Roberts and Lattin, 1991; 
Shocker et al., 1991; Petrof and Daghfous, 1996). The consumer 
confronts each possibility in the shelf against the consideration 
set until one brand/product is preferred. Thus, the process is not 
a simple choice among several options, but instead an assessment 
of the fit between one option and the inner expectations that were 
previously constructed.

Damásio (1994) from his observations in neurologically 
impaired patients, proposed that the prefrontal cortex is a crucial 
structure in decision-making; the vmPFC in particular is thought 
to be important in decisions of preference including preference for 
certain brands (Paulus and Frank, 2003; Deppe et al., 2005; Knutson 
et al., 2007; Koenigs and Tranel, 2008; Luu and Chau, 2009). The 
results of our conventional GLM analysis, which included data 
acquired both before and after decision of brand preference, cor-
roborate these findings: activation of the vmPFC was found when 
comparing positive with indifferent or fictitious brands. However, 
when we dissected the subjects’ responses and isolated the decision-
making period from the moment after the response, we found that, 
especially for positive brands, the vmPFC was more active after the 
choice than during the decision process itself, challenging some of 
the existing literature. And this result was supported both by the 
GLM time-split analysis and by the PICA analysis.

During the decision process itself, i.e., before the response, the 
vmPFC was less active for positive brands than for indifferent or 
fictitious logos. Conversely, the vmPFC was more active after the 
brand choice was made. Considering the four local maxima in 
the vmPFC (the subcallosal cortex, the frontal medial cortex, the 
ventral paracingulate gyrus, and the ventral medial frontal pole), 
although they were also involved in the conventional analysis when 
it corresponded to all the period when the stimulus was present, 
the same voxels of the vmPFC were deactive during the decision 
period until the response, but active after the response. This pattern 
was not found with indifferent brands (that subjects recognized 
as having some meaning to them, but that were not preferred), 
with fictitious logos (visualized for the first time and about which, 
likewise, subjects could not have a preformed opinion), and also 
with non-emotional words.

One of the ICs obtained with the multivariate model-free analy-
sis (PICA) was significantly more relevant in the choice of positive 
brands than indifferent brands, fictitious logos, or non-emotional 

FIguRe 6 | Statistical z maps (unthresholded and thresholded) for the 
contrasts between positive versus indifferent brands and positive versus 
fictitious logos in the stimulus detailed analysis. The two top row maps 
represent the decision stage (before the response), and the two bottom row 
maps represent the period after the response (passive visualization). In the 
unthresholded images the significant clusters are outlined in white (for 
z > 2.3), the vmPFC is outlined in green. Sagittal views for x = −04 (MNI152 
coordinates).

three cases are reported in Table 2. Three slices of IC #24 are repre-
sented in Figure 8. Besides the vmPFC activation this network also 
includes active voxels in the precuneus, posterior cingulate gyrus, 
right and left anterior divisions of the middle temporal gyrus, and 
deactivation in the occipital fusiform gyrus.

Table 2 also reports the z values for all the ICs that encompass 
at least one of the local maxima voxels considered in Figure 7 (acti-
vated or deactivated). Only IC #24 has this statistic consistently and 
significantly positive (for the situation after response). However, 
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Table 2 | Statistic z for all the ICs that had at least one voxel activated or deactivated among those considered in Figure 7.

 IC

 15 22 24 41 50 89 104 110 132

Pos > Ind br −0.967 0.227 −1.876 −1.940 −1.588 0.476 −1.581 −0.239 −3.143

Pos > Fic br −2.560 0.329 1.441 2.296 0.471 0.573 −0.463 3.269 −2.497

Pos > NEW br −7.146 −1.021 0.275 2.961 1.417 0.388 0.413 −0.358 −1.753

Pos > Ind ar 4.805 3.136 2.562 −2.241 0.819 3.103 −0.173 1.348 −1.353

Pos > Fic ar 4.423 5.432 5.169 2.282 0.520 1.389 2.588 1.487 −0.448

Pos > NEW ar −4.001 0.693 2.892 −1.790 −1.562 −3.278 −4.711 3.839 −3.542

Pos, positive; Ind, indifferent; Fic, fictitious; NEW, non-emotional words (baseline); br refers to the participation of the voxel before the response (decision stage); ar 
refers to the participation after the decision instant but before the stimulus offset.

FIguRe 7 | Parameter estimates for the stimuli in four local maxima in the 
vmPFC (subcallosal cortex: −6, 32, −10; frontal medial cortex: 2, 36, −14; 
ventral paracingulate gyrus: −2, 48, −2; ventral medial frontal pole: −2, 58, 
4). The bar graphs identified with the suffix 6 s are the conventional GLM-based 
analysis of fMRI data. The bar graphs identified with the suffix br refer to the 

participation of the voxel before the response (decision stage). The bar graphs 
identified with the suffix ar refer to the participation after the decision instant but 
before the stimulus offset. Pos: positive; Ind: indifferent; Fic: fictitious; NEW: 
non-emotional words (baseline). MNI152 coordinates. Error bars correspond to 
confidence intervals of 95%.

FIguRe 8 | Two views of the network that constitutes the independent 
component #24: sagittal (x = −04), and axial (z = −12). The vmPFC is 
outlined in green. Radiological convention. MNI152 coordinates.

words. IC 24 showed extensive activations in the vmPFC, among 
other brain structures (Figure 8). This network was significantly 
more active with preferred brands than with indifferent brands, 
fictitious logos, or non-emotional words only after the response, 
which reinforces the fact that although important in decisions of 
preference, the vmPFC is only so after the decision-making pro-
cess itself. The analysis of the participation of the vmPFC in brain 
networks represented in other ICs corroborates this hypothesis, 
because none of the ICs had consistent or significant statistics 
to support the participation of the vmPFC in the period before 
the response.

The results of the present study seem to contradict some 
of the existing theories on the role of the vmPFC in the deci-
sion process. On the other hand, our data are supported by 
Lin et al., (2010) work in which the brand stimuli were also 
presented one at a time, suggesting as well a late participation 
of the vmPFC in preference decision-making; or by Li et al. 
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In summary, the results of the present study converge in 
 supporting the notion that the vmPFC may be unimportant in the 
decision stage concerning brand preference, questioning theories 
that postulate that the vmPFC is in the origin of brand choice. To 
complement our findings, further studies that challenge as well 
conventional research design and neuroimaging methodologies are 
need to investigate in detail why the vmPFC seems to be involved 
in brand preference only after the decision process.

(2010) study that used fMRI and the Iowa Gambling Task to 
investigate the neural correlates of decision-making. They 
have demonstrated a group of brain regions that included the 
dorsolateral prefrontal cortex for working memory, and the 
insula and posterior cingulate cortex for representations of 
emotional states. However, the vmPFC was not part neither 
of the memory nor the emotional networks, but instead was 
coupling the two processes.
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Effect of reinforcement history on hand choice in an 
unconstrained reaching task
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Choosing which hand to use for an action is one of the most frequent decisions people make in 
everyday behavior. We developed a simple reaching task in which we vary the lateral position of 
a target and the participant is free to reach to it with either the right or left hand. While people 
exhibit a strong preference to use the hand ipsilateral to the target, there is a region of uncertainty 
within which hand choice varies across trials. We manipulated the reinforcement rates for the 
two hands, either by increasing the likelihood that a reach with the non-dominant hand would 
successfully intersect the target or decreasing the likelihood that a reach with the dominant hand 
would be successful. While participants had minimal awareness of these manipulations, we 
observed an increase in the use of the non-dominant hand for targets presented in the region 
of uncertainty. We modeled the shift in hand use using a Q-learning model of reinforcement 
learning. The results provided a good fit of the data and indicate that the effects of increasing 
and decreasing the rate of positive reinforcement are additive. These experiments emphasize 
the role of decision processes for effector selection, and may point to a novel approach for 
physical rehabilitation based on intrinsic reinforcement.

Keywords: motor control, decision making, action selection, reinforcement learning, reaching

presence of multiple response options, pointing to the parallel 
preparation of candidate movements, with the final selection of 
a single action dependent on a threshold process (Cisek, 2006).

These studies have generally been restricted to experimental 
tasks in which a single effector is used (e.g., point to the chosen 
object) or effector selection is used to indicate the chosen object 
(e.g., use the left hand to chose object on the left). Work in humans 
(Medendorp et al., 2005; Beurze et al., 2007) and non-human pri-
mates (Hoshi and Tanji, 2000) has demonstrated that target and 
body-part information are integrated in premotor cortex and the 
PPC. However, an external cue is typically used in these studies to 
specify the target and effector. Few studies have been conducted 
in which the participant must self-select which effector to use to 
reach for a single target. One exception here has been the work 
of Schieber and colleagues. When monkeys are free to use either 
hand to retrieve a food reward, their choice is strongly biased by 
hand preference (Lee and Schieber, 2006). However, this bias can 
be modulated by other factors such as the location of the stimulus, 
with the animals exhibiting a preference to reach to eccentric targets 
with the ipsilateral hand (Schieber, 2000; Gabbard and Helbig, 2004; 
Gardiner et al., 2006), and head position (Dancause and Schieber, 
2010). Interestingly, hand/target choices were more closely linked 
with prior success for particular head/hand/location pairs rather 
than with movement speed, indicating that hand choice may be 
related to reinforcement history.

In the present pair of experiments, we examine the role of rein-
forcement on effector selection during reaching. Reinforcement 
is likely related to hand preference: We are more likely to be suc-
cessful in producing a skilled action when using our dominant 

IntroductIon
Reaching to grasp an object is one of our most common actions. 
In the process of planning a reaching movement, people have two 
principle decisions (Horowitz and Newsome, 1999): Where to reach 
(target selection) and which limb to reach with (effector specifi-
cation). Target selection decisions are often dictated by a desired 
goal. If we want to take a break from our writing, we may decide 
to reach for the cup of coffee. The decision processes underlying 
effector selection are less clear. While people prefer to use their 
dominant hand, we also show impressive flexibility in hand choice 
in our everyday behavior (Johansson et al., 2006). For example, we 
sometimes use the left hand to pick up the cup and other times use 
the right hand. Similar flexibility is observed in a variety of behav-
iors such as pointing out directions to a lost traveler or pressing 
the elevator call button.

A substantial literature has focused exclusively on the problem 
of target selection, or more generally, decisions that require the 
person to make a choice between different objects. This literature 
has explored the relative importance of cost and reward in decision 
making (Rudebeck et al., 2006), the neural representation of the 
value of competing perceptual targets (Sugrue et al., 2004; Cisek and 
Kalaska, 2005; Churchland et al., 2008), and the effector-specific 
nature of these representations (Tosoni et al., 2008; Gershman et al., 
2009). Goal-related activity in posterior parietal cortex (PPC) has 
been modeled as an accumulation process, resulting in the selection 
of one action over another (Batista and Anderson, 2001; Huk and 
Shadlen, 2005; Churchland et al., 2008; Seo et al., 2009). Similar 
patterns of activation have been observed in frontal motor areas. 
Interestingly, activity in dorsal premotor cortex may reflect the 
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limb. Of course this is a bit of a chicken-and-egg question. Do we 
become more skilled with one hand because of an intrinsic prefer-
ence for one hand over the other? Or do we choose the preferred 
hand because it is, intrinsically more coordinated? Ontologically, 
the answer is probably a bit of both, with handedness constituting 
a self-reinforcing process. Nonetheless, over a shorter time scale, 
people exhibit flexibility in hand choice and their choices here may 
reflect recent reinforcement history. You can imagine that if you 
spilled your coffee when last using the left hand to pick up the cup, 
you would become more likely to use the right hand the next time. 
However, if you are holding something with the right hand, you 
might still choose to use your left hand to pick up the coffee cup.

In this way, hand choice can be viewed as a decision process, 
with relative costs and rewards being assigned to competing action 
alternatives. Given that the likelihood of reward involves the effort 
of a particular action and the accuracy or proficiency of that action, 
we hypothesized that the competitive process underlying effector 
choice would be influenced by limb-dependent task success. To 
investigate the effect of reinforcement on hand choice, we varied 
limb-dependent task success in a target interception task. We first 
established a psychometric function describing hand choice as a 
function of target location in a task in which participants were free 
to use either their right or left hand. We then introduced an experi-
mental manipulation in which we modified the reinforcement rate. 
Exploiting the fact that right-handed participants show an overall 
right-hand bias, we either increased the rate of positive reinforce-
ment for the left hand, decreased the rate of positive reinforcement 
for the right hand, or simultaneously applied both manipulations. 
We compare the effectiveness of these manipulations in producing 
a shift in hand choice. Given this reinforcement-learning frame-
work, we applied a Q-learning model to characterize the change 
in behavior over time.

MaterIals and Methods
PartIcIPants
Fifty-six participants (27 females; age range 18–24) participated 
in Experiment 1 and received course credit for their participa-
tion. Twenty-seven (16 females; age range 19–30) participated 
in Experiment 2 and were paid for their participation. All par-
ticipants were right-handed. Data from six participants (three for 
each experiment) were excluded. Five participants were excluded 
because they almost always used one hand (right only = 4; left 
only = 1). One participant from Experiment 2 did not return for 
the second session. The protocol was approved by the UC Berkeley 
Institutional Review Board and all participants provided informed 
written consent at the start of the test session.

desIgn and Procedures
Experiment 1
The experiment was performed in a virtual environment that inter-
faced with a 3-D robotic manipulandum (PHANToM 1.5 System, 
SensAble Technologies). A mirrored projection system was used 
to display the visual stimuli (Figure 1). The participants’ task was 
to reach through a target that appeared at one of seven locations 
along a semicircular array. The participant held a robotic manipu-
landum in each hand and moved this device to reach through the 
target location. Movements were confined to the horizontal plane.

Two green squares (2 cm × 2 cm) centered 4.5 cm apart indi-
cated the starting location for the hands. At the beginning of each 
trial, participants were instructed to move two spherical cursors, 
corresponding to the positions of the two hands, into these start 
squares. After the start positions were maintained for 200 ms, the 
blue cursors disappeared and a red target appeared at one of seven 
locations along a semicircular array approximately 9 cm from the 
start positions. The exact radius of the array was scaled to each 
individual’s arm length. The participants were instructed to reach 
with one hand until they saw the target explode, indicating a hit, 
or heard a tone (242 ms), indicating a miss. Vision of their hands 
was occluded by the mirror and the hand cursor was not displayed 
during the reaching movement. Thus, participants could not make 
online corrections to their movements.

The participants were trained to move at a comfortable speed. 
Auditory feedback was also used to indicate if the movement time 
fell outside a criterion window of approximately 300–700 ms. The 
precise time window depended on the arm-length scaled target 
distance. One sound was played if the movement time was too short 
(duration: 232 ms) and another sound was played if the movement 
time was too long (duration: 1200 ms). A high pitched beep was 
played if subjects stopped reaching before they hit the target (dura-
tion: 135 ms). These reaches were coded as errors and accounted 
for less than 3% of the trials.

Participants completed 12 experimental blocks of 100 trials each 
(1200 trials total). Within a block of 100 trials, the target appeared at 
the ±55° locations on eight trials, the ±30° and ±17.4° locations on 
16 trials, and at the center location on 20 trials. This distribution was 
chosen to increase the sampling rate at locations in which partici-
pants were expected to use both hands (ambiguous locations). The 
eccentric, 55° locations, were included to decrease the likelihood that 
participants would adopt a strategy of using one hand to reach to 
all of the targets. The sequence of target locations was randomized.

Across the 12 blocks, we manipulated the target reward rate. The 
first four blocks served as the baseline phase. During these blocks, 
the target reward rate was set to 68% for each hand (see below 
for description of how we controlled the reward rate). Blocks 5–8 
constituted the manipulation phase. During these blocks, the target 

Monitor

Mirror

A B

Figure 1 | (A) A computer monitor projected stimuli onto a mirror, creating 
the impression that the stimuli were in the same plane as the participant’s 
hands. The robotic device restricted movement to this plane. (B) Stimuli 
appeared in one of seven locations in Experiment 1 (shown here) and one of 
nine locations in Experiment 2. While the visible size of the targets remained 
constant, a staircase algorithm adjusted the radius of a virtual target region 
that was used to achieve a specified reward rate.
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 locations on six trials, at the three intermediary locations (±30°, 
±17.4°, ±8.6°) on 12 trials each, and at the midline location on 
16 trials. Third, approximate reach lengths were 11 cm compared 
to 9 cm in Experiment 1 (again scaled to arm length). Slightly 
longer reaches were possible given the new apparatus configuration. 
Fourth, a variable delay (50–250 ms) was introduced between the 
time the participants positioned their hands in the start squares 
and the onset of the target. Fifth, the point counter was not vis-
ible during the experimental blocks; summary feedback was only 
presented between blocks.

The design of Experiment 2 involved two primary changes in 
the experimental design. First, to obtain a better understanding of 
the differences in the effects of increasing and decreasing positive 
reinforcement on hand choice, a within-subject design was adopted 
with testing limited to the BOOST and TAX conditions. Second, 
we modified the target reward rates so they were identical for the 
BOOST and TAX conditions in the manipulation phase. For the 
BOOST condition, the target reward rate was 70% for each hand in 
the baseline and post-manipulation phases. During the manipula-
tion phase, the reward rate for the left hand was set to 84% and 
the right hand remained at 70%. For the TAX condition, the target 
reward rate was 84% for both hands during the baseline and post-
manipulation blocks. During the manipulation phase, the reward 
rate dropped to 70% for the right hand and remained at 84% for the 
left hand. Thus, the manipulation phase always involved a change 
in the reward rate of 14% for one hand, and resulted in target rates 
of 70 and 84% for the right and left hands, respectively. We again 
used a staircase procedure to produce the desired reward rates. The 
base step size was increased to 3 mm in Experiment 2, given the 
increase in reach distance and pilot work that indicated this would 
provide better experimental control of the reward rates.

The BOOST and TAX conditions were tested in separate ses-
sions, separated by 1 day. Within each session, the participants 
completed 12 experimental blocks with 100 trials each (1200 trials 
total), divided into four baseline blocks, four manipulation blocks, 
and four post-manipulations blocks. Half of the participants started 
with BOOST and the other half started with TAX.

As in Experiment 1, participants completed a practice block of 
100 trials at the start of the test session.

Awareness. We again included a debriefing survey to assess par-
ticipants’ awareness of the experimental manipulation. This survey 
was only given at the end of the second session. Participants were 
informed that they had been randomly assigned to one of two 
groups: Group A in which the reward rate for each hand was con-
sistent throughout the experiment or Group B in which the reward 
rate changed in a way that corresponded to their particular condi-
tion. They were asked to indicate their perceived group assignment.

analysIs
Percent right hand use
To measure hand preference, we calculated the total percent right 
hand use across all targets for each block. This value was also cal-
culated for each target to obtain a psychometric function of hand 
choice as a function of target location. By fitting a logistic regression 
to this curve, we estimated the point of subjective equality (PSE), 
the theoretical point where the participant was equally likely to use 

reward rate was adjusted differently for four participant groups: 
BOOST (n = 12): The left hand reward rate was increased to 86% 
while the right hand reward rate remained at 68%; TAX (n = 14): 
Right hand reward rate was reduced to 50% while the left hand 
reward rate was maintained at 68%; BOTH (n = 13): The reward 
rates for the left and right hands were adjusted to 86 and 50%, 
respectively; NOMANIP: (n = 14): The target reward rates for both 
hands remained at 68%. The final four blocks served as the post-
manipulation phase. Here the reward rate for all four groups was 
set to 68% for both hands.

The desired target reward rate was experimentally controlled 
using a variable ratio staircase procedure (Garcia-Perez, 1998) in 
which the size of the virtual target was adjusted. The target displayed 
to the subjects was a consistent visual size (radius 4 mm). However, 
we also defined a virtual target region; the hand had to pass within 
this region for the trial to result in a successful reach (i.e., a hit). The 
staircase procedure was used to adjust the size of the virtual target 
region. The size was decreased after a hit and increased after a miss. 
Following a miss, the radius of the virtual target region was always 
increased by 1.5 mm. Following a hit, the radius was reduced, with 
the amount of the reduction a function of the target reward rate. 
Reductions of 0.3, 0.6, and 1.5 mm were used for target reward 
rates of 86, 68, and 50%, respectively. Note that the radius of the 
virtual target was limb specific since the target reward rate for the 
two hands could differ during the manipulation phase.

To increase subject motivation, a point counter at the center 
of the screen kept a running tally on the number of hits. Between 
each block, the score for that block, as well as the total current 
score, were displayed.

Before the start of the experimental blocks, participants per-
formed one practice block of 100 trials. During the practice blocks, 
participants had online feedback of their hand position during the 
reaches (i.e., the spherical cursors remained visible). The virtual 
target and visible target were identical in this block and reinforce-
ment was based on whether or not the participant’s hand passed 
through the target. We also provided 10 practice trials with online 
feedback at the start of each of the 12 experimental blocks. These 
practice trials were included so that the participants remained cali-
brated throughout the experiment.

Awareness. We included a debriefing survey to assess participants’ 
awareness of the experimental manipulation. Participants were 
asked if they had noticed any change over the course of the experi-
ment. Specifically they were asked if the task got easier, harder, or 
stayed the same for the right and left hand. Additionally they were 
asked if they used one hand more than the other, and if this changed 
over the course of the experiment.

Experiment 2
The apparatus and stimulus displays were slightly modified in 
Experiment 2. First, we updated the virtual environment to include 
angled mirrors, providing for better 3-D vision. Movements were 
again confined to the horizontal plane. Second, the density of tar-
gets near the midline was increased such that a target could also 
appear at ±8.6°, increasing the number of target locations from 
seven to nine. The eccentric target was moved in to ±45° from 
±55°. In a 100-trial test block, targets appeared at the eccentric ±45° 
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On each trial, the probability of a particular action given by the 
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The Q values were initialized using the average percent right hand 
use (PER) over the baseline phase (first four blocks). The Q values 
were set to PER − 0.5, bounding them between −0.5 and 0.5.

The model was fit to the data from the manipulation and post-
manipulation phases (Blocks 5–12). We compared three models: 
Alpha_4: For this model, we allowed alpha to have a different value 
for each condition (Experiment 1: αBOOST, αTAX, αBOTH, αNOMANIP; 
Experiment 2: αBOOST-Day1, αTAX-Day1, αBOOST-Day2, αTAX-Day2); Alpha_1: 
Alpha was constrained to take on a single value for each experi-
ment; No_Learn: A reinforcement-free model in which alpha was 
fixed at zero. The No_Learn model serves as a null model. Here, 
hand choice is restricted to the biases exhibited during the base-
line phase and does not depend on changes in reinforcement 
history. In contrast, hand choice can vary with reinforcement 
history in the Alpha_1 and Alpha_4 models. For the former, hand 
choice will vary with reward rate in the same manor in all four 
types of manipulations. For the latter, the learning rates may 
vary as a function of the type of manipulation. In particular, we 
included the Alpha_4 model to ask whether learning rate differed 
for changes related to increasing the rate positive reinforcement, 
decreasing the rate of reinforcement, or, in Experiment 1, both 
manipulations.

To obtain the best fitting values for the free parameter alpha in 
these Alpha_1 and Alpha_4 models, we minimized the negative log 
likelihood (−LL). For each value of alpha, the average percent hand 
use for each block, calculated from the data, was compared to the 
model prediction. The alpha values ranged from 0.01 to 0.49 and 
was incremented in steps of 0.01.

We used a bootstrapping (Fisher, 1993) procedure to determine 
the best fit learning rate (alpha) for each of the models Alpha_1 and 
Alpha_4. We generated 1000 group averaged data sets by randomly 
resampling with replacement from the original participant pool 
and fit the models to each data set. To evaluate the model fits, we 
used the likelihood ratio test statistic (LR):

LR
Model1 vs Model2

 − 2(LL
Model1

 − LL
Model2

) (6)

We also calculated the Pearson correlation coefficient (R2). To com-
pare Alpha_4 and Alpha_1 to No_learn models, we calculated a 
pseudo-R2 statistic defined as (R − Q)/R where R is the −LL for the 
No_learn model and Q is the −LL for the Alpha_4  and Alpha_1 
(Gershman et al., 2009).

We explored models with more parameters. These included 
models in which different learning rates were set for the right 
and left hands, different learning rates were set for the chosen 

his/her right or left hand. This procedure was performed separately 
for the three phases. To obtain estimates of the PSE values when 
performance was relatively stable, we limited the data set to the 
final two blocks of each phase (baseline: Blocks 3–4; manipula-
tion: Blocks 7–8; post-manipulation: Blocks 11–12). These values 
were entered into an ANOVA to determine the effectiveness of the 
experimental manipulations of reward rate.

Sequential effects
We quantified sequential effects by calculating the probability of 
using the right hand at the center target on trial t given that the 
previous trial t − 1 was either a right hand hit, a right hand miss, a 
left hand hit, or a left hand miss. Given the small amount of data for 
each pair of locations, the data were collapsed over the experimental 
phases and conditions. We also combined the data over all previous 
t − 1 locations in an ANOVA designed to assess the probability of 
choosing the right hand on the current trial as a function of the hand 
(right or left) and outcome (hit or miss) from the previous trial.

Reaction time
Reaction time was defined as the interval between the onset of the 
target and the time at which the chosen hand left the start box. Our 
primary focus with these data was to compare the reaction time to 
targets at the center location to those at the more peripheral locations 
(±30°, ±17.4° in Experiment 1 and ±30°, ±17.4°, ±8.6° in Experiment 
2). We did not include the data from the most eccentric locations in 
the RT analysis since these locations were used much less frequently. 
We excluded the data from the first block since we observed that 
participants’ generally showed a considerable reduction in RT over 
the first 100 trials as they became familiar with the task. In order 
to have the same amount of data in each phase, we also excluded 
the first block for the manipulation and post-manipulation phases.

Reinforcement learning model
A reinforcement learning model based on a temporal difference 
(TD) algorithm was fit to the data (Watkins and Dayan, 1992; 
Kaelbling et al., 1996; Sutton and Barto, 1998; Gershman et. al., 
2009). The model assigns a value to each state–action pair where 
the state (s) is the target location and the action (a) is a right or left 
hand reach. The action values are learned and updated each trial t 
using the following update rule:

Q a s Q a st
c

t t
c

t t+ +( ) = ( ) −( ) +1 1 1, , α αδ  (1)

Q a s Q a st
u

t t
u

t t+ +( ) = ( ) −( ) −1 1 1, , α αδ  (2)

where s
t
 represents the target location at the current trial t, and for 

the action, a, the superscript c or u refers to chosen and unchosen 
hand, respectively. The learning rate α is a free parameter. δ is the 
prediction error defined by the following equation:

δt t t tr Q a s= − ( ),  (3)

The probability by which a particular action is chosen on trial t 
is a function of the current action–state value Q and is given by a 
“softmax” (logistic) rule:
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and unchosen hand, and models in which a temperature param-
eter that dictated how exclusively choices were restricted to the 
highest valued action was allowed to vary. These models did not 
significantly improve the obtained fits and introduced consider-
able variability in the parameter selection. While a more complex 
model may capture nuances in the data, we focus on a simplistic 
model that can capture the way in which recent reinforcement 
history affects hand choice.

results
exPerIMent 1
Reward rates
The observed reward rates were close to the desired target reward 
rates (Figure 2A). Participants were rewarded slightly more often 
during the baseline and post-manipulation blocks than expected 
(69.3% compared to target rate of 68%). During the manipulation 
phase, the reward rate increased to 83.1 ± 0.3% for the left hand 
in the BOOST condition and fell to 49.9 ± 0.1% for the right hand 
in the TAX condition. Thus, while the experiment was designed 
to produce an 18% shift for both the BOOST and TAX condi-
tions, the actual changes were approximately 14 and 19%. For the 
BOTH condition, the observed reward rates during the manipula-
tion phase were 83.3 ± 0.3% and 50.7 ± 0.2% for the left and right 
hands, respectively.

Percent right hand use/PSE
The psychometric function for hand choice was very steep 
(Figure 3A). Participants almost always used the right hand to 
reach for the three target locations in the right visual field, even 
during the manipulation phase when the reward rates favored left 
hand use. The left hand was selected for the majority of left visual 
field targets, but there were some trials in which the right hand 
was selected. More variability was evident at the center location, 
both within and across subjects. During the baseline phase, the 
right hand was used on 82.3 ± 1.9% (across all 53 participants) of 
the trials to reach to the center location. Right hand use decreased 
during manipulation phase for the BOOST, TAX, and BOTH con-
ditions (Figure 3B). This shift was not evident in the control, 
NOMANIP condition.

To quantify these effects, PSE values were estimated for each phase. 
As can be seen in Figure 3C, the PSE values were all negative during 
the baseline phase, consistent with the right hand bias evident in 
the psychometric functions. During the manipulation phase, these 
values became less negative, indicative of greater left hand use. The 
main effect of phase was significant [F(2,98) = 13.89, p < 0.0001], 
and this factor interacted with condition [F(6,294) = 2.80, p = 0.02]. 
When compared to the NOMANIP condition, the decrease in right 
hand use was reliable for all three conditions: BOOST [t(23) = 2.30, 
p = 0.01], TAX [t(25) = 2.24, p = 0.02], and BOTH [t(24) = 3.50, 
p < 0.001]. Furthermore, changing the reward rate simultaneously 
for both hands had a larger effect on right hand use than either 
increasing the reward rate for the left hand [BOOST vs BOTH: 
t(23) = 1.90, p = 0.04] or decreasing the reward rate for the right 
hand [TAX vs BOTH: t(25) = 1.98, p = 0.03]. There was no differ-
ence between the shift in hand use between the BOOST and TAX 
conditions [t(24) = 0.03, p = 0.49].

This decrease in right hand use was maintained during the post-
manipulation phase, and correspondingly, the PSEs during the 
post-manipulation phase were less negative than the PSEs during 
the baseline phase. In a series of pair-wise comparisons between 
the baseline PSE and the post-manipulation PSE, reliable effects 
were observed for the BOOST [t(11) = 2.90, p < 0.01] and BOTH 
[t(12) = 3.60, p = 0.02] conditions. The effect for the TAX condition 
was marginally significant [t(13) = 1.75, p = 0.052]. Again, there 
was no change in right hand use for the NOMANIP condition 
[t(12) = 0.32, p = 0.38].

Sequential analysis
Given that hand choice was influenced, albeit in a subtle manner, 
by the change in reinforcement rate, we performed a sequential 
analysis, asking if the cause of these shifts might be evident in 
the local reinforcement history. We note at the outset that this 
analysis is problematic because the shift in hand choice was most 
pronounced at the central location and targets only appeared at 
this location on 20% of the trials. As such, the trial-by-trial pairs 
involving non-central targets on trial t involve reaches where hand 
choice was dominated by target location.
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likely to use their right hand if that hand had successfully inter-
cepted a target on the previous trial (79.1 ± 2.5%) compared to 
a right-hand miss (77.7 ± 3.2%). In an ANOVA collapsing across 
t − 1 target location, there was no main effect of the hand used 
on the previous trial [F(1,49) = 1.50, p = 0.23] nor on the out-
come (hit or miss) of the previous trial [F(1,49) = 0.93, p = 0.34]. 
However, these two factors did interact [F(1,49) = 5.12, p = 0.03], 
consistent with the hypothesis that hand choice was more likely 
to switch after a miss.

Reaction time
Figure 5 plots the RT data as a function of target position. 
We combined the data for targets at −30° and −17.4° using 
only left hand reaches and the data for the +30° and +17.4° 
targets using only right hand reaches. For the central target, 
the data are divided into right and left hand reaches. Note the 
number of observations is not equal for the two hands given the 
hand choice biases. Two trends are evident in the figure. First, 
right hand reaches were initiated faster than left hand reaches 
[F(1,49) = 30.29, p < 0.001, main effect of hand]. Second, RTs 
to the center location were slower than RTs to more peripheral 
locations [F(1,49) = 68.12, p < 0.001, main effect of target]. The 

Nonetheless, we focus here on a qualitative analysis of reaches 
to the more ambiguous, center location, asking if hand choice 
on these trials is influenced by the location of the target, hand 
choice, and outcome on trial t − 1. If hand choice was impervi-
ous to local history, then these functions would be flat. As can be 
seen in Figure 4A, sequential effects are evident in hand choices 
made to central targets. First, there is a bias for participants to 
use the same hand as was selected on the previous trial. This is 
most evident when the target on trial t − 1 was also at the center 
location, but is also evident at the other locations (e.g., right 
hand at center location is greater after a right visual field target 
compared to a left visual field target). Second, there is a “contrast” 
effect in the sequential data. The more eccentric a target was on 
trial t − 1, the more likely the participant was to switch hands 
when the target on trial t appeared at the center location. This 
effect was present for both hands.

The functions in Figure 4A indicate a modest effect of rein-
forcement on hand choice. Participants were more likely to use 
their right hand to reach to the center target if the left hand had 
missed a target on the previous trial (77.0 ± 2.7%) compared to 
when the left hand has successfully reached a target on the previ-
ous trial (73.9 ± 2.7%). Conversely, the participants were more 
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Figure 3 | Hand choice results for experiment 1 in the BOOST (green), TAX 
(cyan), BOTH (magenta), NOMANiP (black) conditions. (A) Mean probability 
of right hand use as a function of target location. Solid lines are for data from the 
last two blocks of the manipulation phase (Blocks 7–8) and dotted lines are for 
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reported it got harder). While the participants in the NOMANIP 
group distributed their responses across the three choices with 
near-identical frequencies for the right hand, they were more likely 
to report that left hand reaches became easier (39%) compared 

hand by location interaction was also reliable [F(1,49) = 15.73, 
p < 0.001] due to the fact that the peripheral advantage was more 
pronounced for right hand reaches.

Awareness
No participants spontaneously reported being aware of the experi-
mental manipulation. Two participants in BOOST, two in TAX, 
eight in BOTH, and three in the NOMANIP condition commented 
that they used their left hand more over the course of the experi-
ment. In general, these participants reported being concerned about 
the accuracy of their left hand initially, but became more confident 
over time. They tended to attribute the increase in left hand use to 
intrinsic factors. One subject remarked that they might have used 
their left hand more than they would have expected because they 
spend a lot of time playing video games, while another subject 
reported that over the course of the experiment they “put a little 
more faith” in their left hand.

When directly asked whether the task became easier, harder, 
or stayed the same for the right and left hands, participants in the 
TAX and BOOST conditions were nearly equally likely to say that 
the difficulty remained the same across the experimental session 
as they were to state that the difficulty changed in accordance with 
their particular experimental manipulation. For example, 42% of 
the participants in the BOOST condition reported that the task 
got easier for the left hand, compared to 25% who reported it got 
harder. However, for the TAX condition, 46% also reported that 
the task got easier for the right hand! Participants were more sensi-
tive to the experimental manipulations in the BOTH condition. 
Here 57% reported that the task became harder for the right hand 
(compared to 14% who reported it got easier) and 64% reported 
that the task became easier for the left hand (compared to 0% who 
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Figure 5 | Left (blue) and right (red) hand reaction time data for 
experiment 1. For each condition, the data are plotted separately for the 
three phases (baseline: left cluster; manipulation: center cluster; 
post-manipulation: right cluster). Within each cluster, the data were 
combined for eccentric targets at ±30° and ±17.4° for the left and right 
hands (EL and ER). Data for the central target (C) is depicted separately for 
right and left hand reaches.
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hand bias was again observed at the center location (71.5 ± 2.6%), 
although there were a significant number of left hand reaches 
to this location during the baseline phase. The inclusion of tar-
get locations just off-center (±8.6°) increased the occurrence of 
off-center ambiguity, with the right-hand being used to cross the 
midline on 20.2 ± 1.8% of the trials during the baseline phase. 
Interestingly, the inclusion of these locations may have reduced 
participants’ willingness to use the right hand to reach to the −17.4° 
target (left of midline): The percentage of right hand reaches to 
this location during the baseline phase was only 5.8 ± 1.3%, com-
pared to 16.1 ± 1.7% in Experiment 1. We did not analyze this 
effect given the various methodological differences between the 
two experiments.

Figures 6B,C depict the shift in right hand use and cor-
responding changes in PSEs over the course of the experi-
ment. In the ANOVA of the PSE data (within-subject factors: 
phase and condition, between-subject factor: order of con-
ditions), we observed a marginally reliable main effect of 
phase [F(2,44) = 2.57, p = 0.09]. The main effects of condi-
tion [F(1,22) = 0.03, p = 0.87] and test order were not reliable 
[F(1,22) = 0.15, p = 0.70], nor did any of the two-way or three-
way interactions approach significance. In pair-wise compari-
sons of the scores between baseline and manipulation phases, we 
observed a marginal shift in the PSEs during the manipulation 
phase for BOOST [t(22) = 1.52, p = 0.07] and a reliable shift 
for TAX [t(22) = 2.92, p < 0.01]. Unlike Experiment 1, this shift 
was not maintained in the post-manipulation phase for either 
condition, relative to baseline [BOOST: t(22) = −0.59, p = 0.28; 
TAX: t(22) = −0.002, p = 0.50].

Sequential effects
Figure 4B shows the sequential analysis for Experiment 2, again 
restricted to trials in which the target on trial t appeared at the 
center location. As in Experiment 1, participants exhibited a bias 
to reach with the hand used on the last trial (on top of an overall 
bias to use the right hand). Moreover, hand switches were more 
likely to occur when the center location was preceded by a target 
at a more eccentric location, an effect that was especially pro-
nounced after hits.

Unlike Experiment 1, we did not observe a win-stay/lose-
shift strategy. There was a main effect of the hand used on the 
previous trial [F(1,23) = 6.85, p < 0.01] and an effect of the 
outcome of the last trial [F(1,23) = 13.14, p = 0.001]. However, 
these factors did not interact [F(1,23) = 0.01, p = 0.92]. Rather, 
there was an unexpected outcome-related sequential effect in 
Experiment 2: Independent of whether the last reach was with 
the right or left hand, participants were more likely to use their 
right hand after a miss compared to a hit. The probability of 
using the right hand at the center target after a left miss was 
65.7 ± 4.7% compared to 59.7 ± 4.5% after a left hand hit. 
Surprisingly, the probability of using the right hand at the 
center target after a right hand hit was 76.1 ± 3.6% compared 
to 70.5 ± 3.6% after a right hand miss. One interpretation of 
this effect is that participants became more reliant on their 
dominant hand after an error, independent of which hand has 
produced the error.

to harder (15%). Thus, this control condition suggests that par-
ticipants experienced a general practice effect when using their 
non-dominant limb.

Summary
The results of Experiment 1 indicate that hand choice was sensi-
tive to reinforcement. Regardless of whether we reduced the rein-
forcement rate for the right hand, increased the rate for the left 
hand, or introduced both manipulations, participants exhibited 
a spontaneous increase in the use of their left hand. The shift was 
generally restricted to regions in which hand choice exhibited some 
ambiguity in the baseline phase, and was of comparable values for 
the TAX and BOOST conditions. The increase in left hand use for 
these conditions occurred despite the participants’ lack of aware-
ness of the experimental manipulation.

Our interpretation of this finding is that the change in reward 
rates led to a change in the value state associated with left and right 
hand choices, thus influencing the outcome of a competitive proc-
ess underlying hand choice. The RT data are in accord with this 
hypothesis: Participants were slower to initiate responses when the 
target appeared at the ambiguous, central location.

exPerIMent 2
Although we did not observe a differential effect of increasing and 
decreasing the rate of positive reinforcement in Experiment 1, the 
data showed a trend for a larger effect of BOOST in the post-
manipulation phase, the condition in which the left hand reward 
rate was increased. However, Experiment 1 might not provide a fair 
contrast of BOOST and TAX since the absolute reinforcement rates, 
as well as change in reinforcement rates, differ for the two condi-
tions during the manipulation phase. Moreover, despite our efforts 
to use a constant size shift (18%), the observed changes in reward 
rates differed for the two conditions. To better compare the effects 
of increasing and decreasing the rate of positive reinforcement, 
we used a more powerful within-subject design in Experiment 2. 
In addition, we equated the reward rates in the BOOST and TAX 
conditions during the manipulation phase and added target loca-
tions at ±8.6°, close to the central location, to more densely sample 
the ambiguous area.

Reward rates
In Experiment 2, the average reward rates during the last three 
blocks of baseline and last three blocks of post-manipulation 
were 69.5 ± 0.1% and 69.6 ± 0.1% for the right and left hands, 
respectively in the BOOST condition. For the TAX condition, the 
observed reward rates were 83.7 ± 0.2% for each hand over these 
two phases. These values are very close to the desired values of 
70 and 84% (Figure 2B). During the manipulation phase, the 
reward rates for the two groups were near-identical [BOOST: 
69.8 ± 0.1% (right), 83.5 ± 0.2% (left); TAX: 69.7 ± 0.3% (right), 
83.6 ± 0.2% (left)].

Percent right hand use/PSE
As in Experiment 1, the psychometric functions were very steep, 
with participants overwhelmingly preferring to use the ipsilateral 
hand when reaching to peripheral targets (Figure 6A). A right-
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the reinforcement rates were altered for one of the two hands, 
although these effects were only marginally reliable in the overall 
ANOVA. We had hoped to observe more ambiguous target loca-
tions in Experiment 2 by including a denser sampling of midline 
targets (targets at ±8.6°). However, the inclusion of this target may 
have reduced the (small) ambiguity observed at more eccentric 
locations, and as such, effectively reduced the range of ambiguity 
compared to Experiment 1. The smaller sample of ambiguous 
targets could account for the smaller shift in hand choice observed 
in Experiment 2, as well as the lack of persistence of the hand 
choice shift during the post-manipulation phase (see Discussion).

As in Experiment 1, we failed to observe any obvious differential 
effect of increasing or decreasing the rate of positive reinforcement. 
We examine this issue in more detail in the following section in 
which we apply a reinforcement learning model.

reInforceMent learnIng Model
We fit the hand choice data to a Q-learning model. We used 
the data from the baseline phase to establish initial Q values 
at each location. These data capture the biases of the partici-
pants to respond to eccentric targets with the ipsilateral hand 
and to prefer the dominant over the non-dominant hand (for 

Reaction time
The reaction time data were very similar to those observed in 
Experiment 1 (Figure 7). Participants were faster to initiate reaches 
with the right hand [F(1,22) = 16.20, p = 0.001] and showed an RT 
cost when the target appeared at the center location compared to 
the more peripheral locations [F(1,22) = 14.46, p = 0.001]. Unlike 
Experiment 1, the hand by target interaction was not reliable 
[F(1,22) = 0.42, p = 0.52].

Awareness
As in Experiment 1, participants did not spontaneously report 
becoming aware of the experimental manipulations during either 
session of the experiment. Due to a filing error, the survey data 
were not retained for nine participants. For the other 18, 11 judged 
that they had been in a group in which the reward rate remained 
unchanged over the course of the experiment, with the percentage 
similar for the BOOST and TAX conditions.

Summary
In Experiment 2 we equated the TAX and BOOST manipulations 
by employing different reward rates during the baseline phase. In 
both conditions, we observed an increase in left hand use when 
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Figure 6 | Hand choice results for experiment 2 for participants 
who were tested on BOOST in day 1 (left side) or TAX on day 1 
(right side). BOOST is shown in green and TAX in cyan. (A) Mean 
probability of right hand use as a function of target location. Solid lines 
are for data from the last two blocks of the manipulation phase (Blocks 

7–8) and dotted lines are for data from the last two blocks of the baseline 
phase (Blocks 3–4). (B) Percent right hand use across all targets as a 
function of block number. (C) PSE values, calculated from the data for the 
last two blocks of each phase (B, baseline; M, manipulation; 
P, post-manipulation).
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Experiments 1 and 2, respectively. Thus, while the effect of rein-
forcement was relatively modest in the group-averaged data of 
hand choice, recent reinforcement history had a significant impact 
on hand choice preferences. The R2 values are also very high for 
each condition in the Alpha_4 models.

It should be noted that the improved fit for Alpha_4 as compared 
to the corresponding null model holds even for the NOMANIP 
condition in Experiment 1, where we did not vary reinforcement 
rate. Thus, the effect of reinforcement history on hand choice does 
not require that the system be perturbed with a change in reinforce-
ment rate: The current data suggest that hand choice preferences 
are constantly being updated as a function of success rates, at least 
when reaching to ambiguous locations. This observation is consist-
ent with the fact that the participants exhibited minimal awareness 
of the experimental manipulation of reinforcement rates, yet altered 
their hand choice preferences.

The goodness-of-fit was similar for the Alpha_1 and Alpha_4 
models. A Chi-square test of the likelihood ratios did not show a 
reliable difference between the two alpha models in Experiment 
1 [χ2(3) = 2, p = 1]. While the Alpha_4 model did provide a 
significant improvement over the Alpha_1 model in Experiment 
2 [χ2(3) = 24, p < 0.0001]. This effect is relatively modest, and 
likely reflects the fact that the alpha values were different for the 
two subject groups, and not for the two reinforcement manipula-
tions. Thus, the modeling results confirm that participants were 
equally sensitive to reinforcement changes that either increased 
the success rate of the left hand or decreased the success rate for 

most participants) for central locations. We then fit the data for 
the manipulation and post-manipulation phases. By comparing 
three models, we addressed two questions. First, is a better fit 
obtained when the model reflects recent reinforcement history? 
To address this question, we compared models that included a 
learning rate parameter, alpha, to a model in which hand choice 
preferences remained invariant over the course of the experiment 
(null model). Note that if reinforcement history modifies hand 
choice, we may observe an improved fit with the alpha model 
even in the condition in which we did not alter the success rate 
(NOMANIP in Experiment 1). Second, we compared two classes 
of models, one in which a single alpha value was set for all of the 
experimental conditions compared to one in which alpha was 
free to vary across experimental conditions. In this way, we could 
ask if hand choice was differentially affected by increasing or 
decreasing the rate of positive reinforcement, as well as whether 
choice behavior changed at a different rate when the success rate 
for both hands was simultaneously adjusted.

The model fits and free parameter estimates are presented in 
Table 1. For both experiments, the Alpha_1 models provide a much 
better fit than the null model. A likelihood-ratio test as approxi-
mated by Chi-square test of the log likelihood ratios showed that 
the fit was much better for the Alpha_1 model compared to the 
null model in both experiments [Experiment 1: χ2(1) = 1191, 
p < 0.0001; Experiment 2: χ2(1) = 1358, p < 0.0001]. Indeed, the 
percentage of variance accounted for (R2) was low for the set of 
null models, but rose to 94 and 97% for the Alpha_1 models in 
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Figure 7 | Left (blue) and right (red) hand reaction time data for 
experiment 2. The data are plotted for the three phases (baseline: left cluster; 
manipulation: center cluster; post-manipulation: right cluster). Within each 

cluster, the data were combined for eccentric targets at ±30°, ±17.4°, and ±8.6° 
for the left and right hands (EL and ER). Data for the central target (C) is depicted 
separately for right and left hand reaches.
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In summary, a reinforcement learning model provided an excel-
lent fit to the data in both experiments. Participants altered their 
hand choice preferences for each location (Q values) as a func-
tion of their recent success or failure in reaching to targets at that 
location. Moreover, the modeling results indicate that participants 
were equally sensitive to manipulations that increased or decreased 
the rate of positive reinforcement. Not only were the estimates of 
alpha similar across conditions in Experiment 1 and within con-
ditions in Experiment 2, but a model with a single learning rate 
performed essentially as well as one with separate learning rates 
for each condition.

dIscussIon
The pair of experiments reported here demonstrate that hand 
choice in an unconstrained reaching task can be influenced by 
limb-dependent task success. Both decreasing the rate of positive 
reinforcement for the dominant hand and/or increasing the rate 
of positive reinforcement for the non-dominant hand increased 
the likelihood that participants would use their non-dominant to 
reach to ambiguous target locations. We were able to account for 
these transient changes in performance within a reinforcement 
learning framework using a Q-learning model.

hand choIce as a coMPetItIve Process
Previous work on the behavioral and neural correlates of decision 
making during reaching has focused on target selection (Sugrue 
et al., 2004; Cisek and Kalaska, 2005; Churchland et al., 2008). The 
current studies suggest that hand choice may also be viewed as 

the right hand. While our manipulation confounds the form of 
reinforcement and hand, the results suggest that increasing or 
decreasing the rate of positive reinforcement operate through a 
common mechanism.

In terms of the estimates of learning rate, the alpha values for 
the four conditions in Experiment 1 were not reliably different 
from one another as estimated by a bootstrapping procedure 
(p > 0.055, significance criterion p < 0.0125 to correct for multiple 
comparisons) and were quite similar to the alpha value obtained 
for the Alpha_1 model. Of note here is that the estimate of the 
alpha rate for the BOTH condition is similar to the estimates for 
the TAX and BOOST conditions. Thus, it appears that simultane-
ously increasing and decreasing reinforcement rates has an additive 
effect on behavior.

The alpha estimates are more problematic for Experiment 2. 
Here we observed a much larger estimate of alpha for the partici-
pants who were tested in the BOOST condition on day 1 compared 
to those who were first tested in the TAX condition. While this 
might suggest greater sensitivity to positive reinforcement (or a 
manipulation targeted at the non-dominant hand), two features of 
the data suggest that this difference may be idiosyncratic to these 
particular groups of individuals. First, these differences were also 
evident in the estimates obtained from the day 2 data. Second, the 
actual reinforcement rates are identical for the BOOST conditions 
in Experiments 1 and 2 (shift from 70/70 reinforcement rates dur-
ing baseline to 85/70 during the manipulation phase). Nonetheless, 
the estimates of alpha were much larger in Experiment 2 for the 
BOOST data on day 1.

Table 1 | reinforcement learning model fits.

 Model Condition α −LL Pseudo-R 2 R 2

Experiment 1 No_Learn BOOST – 340 ± 37 – −0.03 ± 0.13

  TAX – 392 ± 39 – 0.21 ± 0.14

  BOTH – 557 ± 67 – 0.39 ± 0.07

  NOMANIP – 419 ± 42 – 0.24 ± 0.06

  SUM – 1708 ± 184 – 0.20 ± 0.05

 Alpha_1 ALL CONDiTiONS 0.28 ± 0.09 1113 ± 14 0.35 0.94 ± 0.01

 Alpha_4 BOOST 0.22 ± 0.05 253 ± 4 0.26 0.91 ± 0.03

  TAX 0.24 ± 0.15 310 ± 13 0.21 0.89 ± 0.05

  BOTH 0.25 ± 0.01 276 ± 2 0.50 0.95 ± 0.01

  NOMANIP 0.24 ± 0.12 273 ± 2 0.35 0.94 ± 0.02

  SUM – 1112 ± 21 0.35 0.94 ± 0.01

Experiment 2 No_Learn BOOST – day 1 – 387 ± 31 – 0.44 ± 0.13

  TAX – day 1 – 412 ± 34 – 0.48 ± 0.16

  BOOST – day 2 – 379 ± 13 – 0.75 ± 0.15

  TAX – day 2 – 486 ± 116 – 0.62 ± 0.30

  SUM – 1665 ± 194 – 0.64 ± 0.18

 Alpha_1 ALL CONDiTiONS 0.38 ± 0.07 998 ± 6 0.40 0.97 ± 0.01

 Alpha_4 BOOST – day 1 0.37 ± 0.08  258 ± 9 0.33 0.96 ± 0.02

  TAX – day 2 0.36 ± 0.12 273 ± 2 0.34 0.97 ± 0.01

  TAX – day 1 0.23 ± 0.02 226 ± 2 0.40 0.98 ± 0.01

  BOOST – day 2 0.25 ± 0.01 229 ± 4 0.53 0.97 ± 0.02

  SUM – 986 ± 17 0.41 0.97 ± 0.01
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environments that augment feedback (Merians et al., 2002; Piron 
et al., 2010). However, the benefits of such interventions are modest 
and the mechanisms underlying such benefits remain unknown 
(Wolf, 2007). The limited success of guided therapeutic interven-
tions such as constraint-induced therapy may, in part, be related to 
their reliance on extrinsic manipulations of behavior. The person is 
physically restrained from using the affected limb. Such procedures, 
while producing improvements within the therapeutic setting, may 
not generalize well when the contextual cue is absent. Our implicit, 
reinforcement manipulation is designed to alter behavior through 
intrinsic processes. Altering the person’s internal sense of success 
may prove to be an important component of inducing long-term 
changes in behavior.

reInforceMent valence
We did not find a reliable difference in the efficacy of increasing and 
decreasing the rate of positive reinforcement for inducing changes 
in hand choice preference. The modeling results also suggest that 
the learning rate is comparable for conditions in which the rate 
of positive reinforcement is increased compared to conditions in 
which the rate of positive reinforcement is decreased. This suggests 
that a common underlying mechanism may be sensitive to these 
two types of reinforcement. It is important to note that, although 
we describe our experimental manipulations in terms of varying 
the rates of positive reinforcement, we did not test models in which 
we allowed different alpha values for updating the Q-values fol-
lowing hits vs misses.

The neural mechanisms involved in limb selection, and 
how this process is influenced by reinforcement, remain to be 
explored. Using a similar task to that employed here, Oliveira 
et al. (2010) observed that stimulation of PPC of the left hemi-
sphere increased left hand use, an effect especially pronounced 
around the PSE. This effect suggests that activity in PPC con-
tributes to effector selection. Other studies point to a role for 
premotor cortex in such decisions (Beurze et al., 2007, 2009). 
Here we show that shifts in hand use can also be induced by 
short-term changes in reinforcement rates. The dopaminergic 
system has been implicated as facilitating learning for both posi-
tive and negative reinforcement. Dopamine bursts are associated 
with positive reinforcement, and through associative mecha-
nisms, with prediction errors to a stimulus that foreshadows 
an unanticipated reward (Schultz et al., 1997; O’Doherty et al., 
2003; O’Doherty, 2004). Although the evidence is less compel-
ling, a drop in the firing rate of dopaminegeric neurons can be 
observed when an expected reward is withheld (Schultz et al., 
1997; O’Doherty et al., 2003; O’Doherty, 2004). Similarly, high 
amounts of dopamine facilitate learning from positive reinforce-
ment, while low amounts of dopamine facilitate learning from 
negative reinforcement (Frank et al., 2004). The modulatory 
effect of dopamine is especially pronounced under conditions 
of uncertainty (Cooper and Knutson, 2008; Koch et al., 2008), 
something that should be prominent in our experimental task 
given the relatively high error rates. Future studies can directly 
address the role of dopamine in modulating hand choice pref-
erences, designed to ask if the effects on effector selection are 
similar to those observed in tasks examining goal selection.

a competitive process. Participants exhibited between-trial vari-
ability in hand choice at locations near the midline. Moreover, 
RTs at these ambiguous locations(s) were slower than RTs to tar-
gets at neighboring locations, an effect we interpret as a signa-
ture of a competitive process. This RT cost is not observed when 
the responses are limited to a single hand (Oliveira et al., 2010). 
Interestingly, participants were faster when using their right hand 
in the current studies, whereas they showed a surprising left hand 
advantage in Oliveira et al. (2010). This difference may reflect 
the accuracy requirements used here. RTs were approximately 
200 ms slower in the current experiments, likely due to the fact 
that accuracy constraints had to be incorporated in trajectory 
planning processes given that online corrections were precluded 
(Sainburg and Kalakanis, 2000).

By viewing hand choice as a competitive process, it is reasonable 
to think that this simple decision might be affected by recent rein-
forcement history. An increase in the rate of positive reinforcement 
for the non-dominant limb or decrease in the rate for the dominant 
limb led to an increase in the use of the non-dominant limb. The 
small size of the shift likely arises from at least two factors. First, 
hand choice was strongly constrained by target position – the par-
ticipants showed a large bias to use their ipsilateral hand to reach 
to eccentric targets, an effect that may be especially pronounced 
when head position and fixation are centered near the midline 
(Dancause and Schieber, 2010). Thus, the effects of reinforcement 
are intermixed with other constraints determining hand choice. 
Second, the change in reinforcement rates was relatively subtle, 
an increase or decrease of around 20%, changes that are much 
smaller than those used in many studies of reinforcement learn-
ing (Daw et al., 2006; Seymour et al., 2007). We opted to use these 
values so that we could examine the effects of reinforcement in 
the absence of awareness. Indeed, none of the participants in the 
TAX and BOOST conditions of either experiment reported being 
aware of the experimental manipulation. Those who had a sense 
of increasing their left hand use tended to attribute the change in 
their behavior to intrinsic factors.

The implicit nature of the changes observed here may have 
important implications for physical rehabilitation after neurologi-
cal injury. Patients with hemiparesis frequently exhibit compensa-
tory strategies, using the arm on their unaffected side to accomplish 
tasks previously performed with the affected limb. This shift may 
persist even after the individual exhibits considerable recovery with 
the affected limb, creating a significant loss of functional recovery. 
This effect has come to be referred to as learned non-use (Taub, 
1980) and has been attributed to behavioral factors such as atten-
tion, motivation, and sense of effort (Sterr et al., 2002). That is, the 
patient’s internal assessment, at least during the first months after 
the stroke, may be that use of the affected limb is not only much 
more effortful, but also less likely to be behaviorally successful. 
This experience is reinforcing, increasing the likelihood that the 
individual will continue to use the unaffected limb at the expense 
of the affected limb.

Clinical trials have been designed to counteract the effects of 
learned non-use. One approach is to force the individual to use 
the affected limb through constraint induced movement therapy 
(Taub et al., 1993; Wolf et al., 2006) and/or with virtual reality 
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conclusIon
Goal-oriented behavior requires the operation of decision proc-
esses at multiple levels. Fluid behavior involves that we success-
fully operate in a variable environment that presents a stream 
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The Q-learning model was successful in capturing the gradual 
shifts in hand choice preferences as a function of reinforcement. 
However, the model fails to account for some of the trial-by-
trial effects observed in the data (see Figure 4). First, when the 
target appeared at the same location on two successive trials, par-
ticipants exhibited a pronounced bias to repeat the reach with 
the same hand. In its current form, location biases are estab-
lished by choices exhibited in the baseline phase. Similarly, the 
model cannot account for the fact that the likelihood of a hand 
switch was greater when the distance between successive targets 
increased. The updating of the Q-values following reinforcement 
was restricted to the pair of values associated with actions to 
the target location for that trial. Additional parameters would 
be required to impose additional biases related to repetition or 
“contrast” effects.

Reinforcement learning should decrease the likelihood that a 
given action will be chosen following an error (and conversely, 
increase the likelihood of that action following a hit). Of course 
this does not mean that behavior will exhibit win-stay/lose-shift 
tendencies. The reinforcement-related changes may be insuf-
ficient to alter preferences to use one hand or the other at a 
given location. A win-stay/lost-shift tendency was observed in 
Experiment 1. However, we observed an unexpected sequential 
effect in Experiment 2: Participants were more likely to use the 
right hand after an error, regardless of whether that error was 
produced with the left or right hand. We hypothesize that the 
decrease in positive feedback may have biased the participants 
to resort to their dominant hand, reflecting a greater comfort 
level in using this hand to make accurate movements. It remains 
unclear why we observed different sequential effects in the 
two experiments.

A second difference between the two experiments was observed 
in the post-manipulation phase. On average, participants in 
Experiment 1 continued to use their non-dominant limb more 
often than during the baseline phase, whereas those in Experiment 
2 returned to baseline choice preferences. Given that the patterns 
within an experiment were quite consistent across experimen-
tal conditions, we expect the difference is related to the meth-
odological changes introduced in Experiment 2. For example, 
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