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Editorial on the Research Topic

Past, Present, and Future Impacts of Climate on Infrastructure

Climate change is one of the biggest challenges that the global community faces. The changing
climate may lead to the infrastructure bring exposed to unprecedented climate with an increase
in the frequency and intensity of extreme weather events, such as more intense rain events and
flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage
and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause

fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure
owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic
impacts to the governments.

Infrastructure systems are primarily located in urban areas. The urban climate is often different
from the surrounding rural climate. It is generally warmer, rainier, less windy, and more polluted.
This means that more drastic effects of changing climate will be experienced by the urban
infrastructure systems than the surrounding areas (Krayenhoff et al., 2018). The cities and
infrastructure systems will also be overburdened in the future due to ongoing rapid urbanization.
It is predicted that by the 2050s, 66% of the world’s population will live in urban areas, up from
about 50% living in the urban areas in the year 2007, making the infrastructure systems increasingly
strained in the future also due to increases in urban population (UN, 2014).

To design urban infrastructure systems considering the non-stationarity in climate, it is essential
to assess the impacts of past, current, and future climate on the infrastructure systems. This will
entail developing approaches to reliably model the extreme climate hazards and their interactions
with the complex urban systems. The papers part of this Research Topic aims to provide new
knowledge in these areas.

Saha and Ghosh study the relative impacts of future projected climate and land-use change
on the hydrological response of the Ganga river basin in India. The complex chain of analysis
performed included: generation of future climate projections following different global warming
scenarios and socioeconomic pathways, preparation of future land-use scenarios using a land
allocation model and performing hydrologic simulations using a semi-distributed hydrologic
model, followed by application of Bodyko framework to understand the relative impacts of climate
and land-use changes on the basin characteristics. The study found that as a consequence of global
warming, the Ganga river basin will become more arid in the future. However, the basin’s future
hydrologic response will mostly be governed by projected changes in climate. Land-use changes
will have minimal effect on its hydrologic response.

Yan et al. provided a review of a recently developed science-driven engineering product:
next-generation Intensity-Duration-Frequency (NG-IDF) curve to establish a consistent IDF
design methodology for both rain-dominated and snow-dominated regions. The NG-IDF
captures multiple flood-generating mechanisms, including rainfall, snowmelt, and rain-on-snow
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as opposed to the typical precipitation-based IDF curves (PREC-
IDF), which only captures flood occurrences due to extreme
rainfall. NG-IDF is the outcome of a coordinated effort from
climate scientists developing necessary climate information
with global and regional scale climate models, hydrologists
simulating snow processes and estimating water available for
runoff using hydrologic models, the civil engineering community
on integrating the snow processes into the IDF design process.
Recent developments toward validating the NG-IDF curves on a
larger spatiotemporal domain and incorporating future projected
effects of climate change more accurately in them are discussed.

Bondank and Chester advocate that infrastructure systems
and not merely complicated systems that contain many
parts and there is uncertainty included in the system, they
are complex systems characterized by “unpredictability and
the presence of unknown unknowns,” and so the common
cause-and-effect approach of managing the uncertainty
of the failure of infrastructure systems in the face of
climate change hazards may not be best suited to model
them. They recommend that best practices from complex
system sciences such as Decision Making Under Deep
Uncertainty and Safe-to-Fail frameworks should be used to
improve the decision-making when managing the complex
infrastructure systems. Besides, it is highlighted that the
communication and coordination between managers of
different infrastructure systems need to be enhanced to better
implement strategies.

Data is central in the climate change debate. Especially
data that is multidimensional and explores the societal impacts
are crucial for informed decision making. Using information
as evidence to derive social vulnerability is much needed.
Barankin et al. describe this in their work on an evidence-
driven approach for assessing social vulnerability during extreme
events. A novel data-driven predictive approach is forwarded that
overcomes over-generalization or aggregation in the indicator-
based method. Using the case of Hurricane Sandy in the
State of New Jersey, the authors demonstrate variability in the
vulnerability among the Minorities” is substantial, with a low
approval rate in the insurance claims. The study successfully
showed that using the need-based, evidence-driven method

provides a validation route for vulnerability assessments and is
scalable across geographies. The universality of the process is
worth reproducing. It can be considered the new direction of
research on climate-related vulnerability measurements unbiased
from the statistical inflation of indicators.

Markolf et al., while exploring the opportunities and
challenges for artificial intelligence applications in infrastructure
management to combat climate change, emphasizes that
handling rapid technological transitions is the primary challenge.
The magnanimity and the complexity of the problem make
it incognisable for any individual or organization to handle.
Artificial intelligence offers a seamless ability to manage
complexity while providing insightful feedback. Although the
authors underscore that while AI provides potential benefits
which outweighs the drawbacks of over-reliance on reliable data,
they are cautious inmentioning that an open dialogue is required.

A similar understanding is put forward by Nawroz Tonmoy
et al., where the potential of utilizing smart city frameworks for
disaster resilience in coastal cities is reviewed. The authors use a
unique infrastructural lens to review the academic literature that
focuses on smart systems’ new development in coastal disaster
management. The findings are interesting as they point out
that while IoT and crisis informatics offer considerable potential
for disaster resiliency, it remains understudied for coastal cities
which need disaster resiliency that their inland counterparts.

The topic editorial team of this Research Topic on Past,
Present, and Future Impacts of Climate on Infrastructure would
like to thank all of the authors for considering this Research
Topic for submitting their scholarly work. Thanks to the
reviewers’ hard work who provided their expert reviews under
very tight schedules, the quality of the final papers presented in
this Research Topic have dramatically improved. Without their
contributions, this Research Topic would not have been so timely
and successful.
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Sea-level rise, storm surges, and floods in coastal cities have already threatened large

population and infrastructure with potential to increase significantly in future as climate

changes. Therefore, increasing disaster resilience has become a major priority for

coastal cities. At the same time, recent development in information and communication

technology, ubiquitous sensors, and advanced data science allow us to generate insights

that were unimaginable before and can assist in better managing coastal disaster risks.

In this paper, using an infrastructure resilience lens, we critically review a set of academic

literature that focus on the new development of smart systems in coastal disaster

management and a set of use cases that focus on their practical application in different

coastal cities. We find that smart city technologies such as internet of things (IoT) and

crisis informatics have significant potential and have been increasingly used in academic

studies but their city-scale applications in coastal disaster management have been

limited. We discuss the challenges and opportunities of using smart city frameworks

for increasing disaster resilience of coastal communities.

Keywords: coastal disaster, smart city, resilience, vulnerability, internet of things, crisis informatics

INTRODUCTION

Natural hazard events have been an ongoing element in the coastal regions around the world.
Flooding and erosion episodes in the coastal margins during storms, hurricanes or cyclones are
putting a significant amount of assets, infrastructures, and communities at risk. Seventy-two
percentage of the 63 most populated cities (with 5 million or more inhabitants in 2011) are located
on or near the coast (United Nations, 2019). In one hand, population density in the hazard-prone
coastal areas and megacities is expected to grow by 25% by 2050 (Hallegatte et al., 2013). On the
other hand, a rise in sea level is likely to increase the frequency and impacts of these episodic
coastal hazard events. In 2005, average global flood losses in the world’s largest 131 coastal cities was

approximately US$6 billion per year with the potential to increase to US$52 billion per year by 2050
due to sea level rise (Hallegatte et al., 2013). As a result, global investment and maintenance costs of
protecting the coast from sea level rise estimated to be US$ 12–71 billion per year in 2100 (Hinkel
et al., 2014). Therefore, increasing resilience of our coastal cities, their infrastructure systems and
community in general to these episodic natural disasters is very critical.

6
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Cities are inherently complex with interactions among
multiple systems (e.g., supply chains and transportation
networks, water and energy networks, housing and business
infrastructures, social networks), agents (individuals, businesses
etc.) and institutes that manage or influence these systems
and agents (Tyler and Moench, 2012). The impacts of natural
disasters in a coastal city therefore stems from complex
interactions among a potentially damaging physical event (e.g.,
flood, erosion, storm) and the vulnerability of these systems,
agents, and institutes (Birkmann, 2006; Tonmoy et al., 2014).
Therefore, increasing disaster resilience of a coastal city needs
an understanding of inherent stresses and vulnerabilities of
these multiple systems. Specifically disruption in vulnerable
critical infrastructure systems such as water supply network,
transportation network, electricity production and distribution
systems, health care facilities etc. that are located in the hazard
prone areas of a coastal city can result in significant social and
economic disruption. Therefore major coastal cities around the
world are putting emphasis on increasing disaster resilience of
their critical infrastructure systems (Aerts et al., 2014). Here
critical infrastructure refers to any infrastructure that provides
a service to the maintenance of the well-being of the population
and something that if disrupted might cause serious harm to the
well-being of the community (Attwood et al., 2011).

On the other hand, information and communications
technology (ICT) has seen significant advancements in recent
years with different types of smart and connected technologies
capable to generate real-time information at an unprecedented
scale. Alongside there has been significant improvement in
computational power to manage and analyse big datasets.
Specifically, rapid advancements in artificial intelligence,
ubiquitous sensing technology, smart city/infrastructure,
availability of big data sources such as social media, mobile
devices, infrastructure management systems (e.g., SCADA)
allow us to collect and analyse data with details and coverage
unimaginable before (Kitchin, 2014; Gupta and Gupta, 2016;
Murayama et al., 2017). These advancements offer opportunities
to develop data-driven decision support tools for a better
understanding and management of coastal disasters in cities
with a substantial potential to increase the resilience of coastal
communities. Deploying these advanced ICT infrastructures
within a city context to improve citizen services is often referred
as “smart city” and has become the latest trend in urbanization
(Hollands, 2008; Batty et al., 2012; Kitchin, 2015; Wiig, 2015).

The definition of a “smart city” is diverse and so are
its applications. Two distinct understandings of smart cities
are prevalent in the literature. First, smart cities are viewed
as urban places with ubiquitous computing and digitally
instrumented devices built into the very fabric of urban
environments. Examples include wireless telecom networks,
digitally controlled utility services and transport infrastructure,
sensor and camera networks, building management systems,
smart phones producing data about resident’s location, and
activity etc. (Kitchin, 2014). These can make a city “knowable
and controllable” and ultimately improve the performance and
delivery of public services. A second view of smart cities is
broader: this is seen as the development of knowledge economy

within a city driven by ICT as a central platform. This notion
of smart cities is based on the fact that embedding ICT in
urban infrastructure on its own does not make a city smart;
rather its entire ecosystem (economy, community, infrastructure,
environment) should be managed having ICT as one of the
central platform (Hollands, 2008). A similar view is presented by
Batty et al. (2012) where authors sketched the fundamentals of
what constitutes a smart city and argued that smart cities should
include smart economy (competitiveness and entrepreneurship),
smart people (social and human capital), smart governance
(participation in decisionmaking), smart mobility (transport and
ICT), smart environment (sustainable resource management and
smart living (quality of life). In both schools of thought, however,
a common theme is the need to enhance the sustainability and
resilience of the city as a whole. This paper adopts the former
definition in order to investigate to what extent smart city
frameworks have been used around the world toward increasing
coastal disaster resilience of critical infrastructure systems.

Disaster resilience of a city is often characterized in three
distinct stages of a hazard event namely preparedness of multiple
systems of the city to reduce potential impact of the hazard,
ability to manage and respond during the event to minimize loss,
and finally the ability to manage recovery of the affected systems
from the hazard impacts (i.e., bringing the system to its normal
state). A review of the use of communications technology during
disasters in recent years shows that while it has played a positive
role, its full potential has not yet been realized (Diane and Meier,
2009; Dunaway et al., 2017). Different smart city features have
been implemented around the world for better management of all
these three phases of disasters. City specific case studies have been
released highlighting how cities have implemented smart features
in their urban margins [e.g., (Caragliu et al., 2011; Bakici et al.,
2013; Scuotto et al., 2016)] but not all of them attempted to tackle
coastal disasters. Furthermore, some of these case studies do not
appear in the peer reviewed literature as they are often published
as project reports. On the other hand, there has been a number
of academic peer reviewed research publications reporting on
the innovative development and implementation of smart city
features for disaster management of cities from a range of natural
and man-made hazards (e.g., Alazawi et al., 2011, 2012, 2014;
Ancona et al., 2015; Choi and Bae, 2015; Kumar et al., 2015; Lo
et al., 2015; Hernández-Nolasco et al., 2016; Shalini et al., 2016).
This peer reviewed literature often reports a specific application
or innovation of using smart features in disaster management.
Therefore, it is difficult to understand from this body of literature
to what extent new innovations are infiltrating in practical
applications and what are the major challenges and opportunities
of implementing smart city features for increasing coastal disaster
resilience. There are several review papers that highlight the
broader application of smart city features, but mainly focusing
on different aspects of the discipline e.g., review of definitions
and terminologies of smart cities used around the globe, review
of smart city governance, review of enabling technologies, review
of IBM smart city projects etc. (Caragliu et al., 2011; Cocchia,
2014; Anthopoulos, 2015; Yin et al., 2015; Meijer and Bolívar,
2016). However, to the best of our knowledge, none of the review
papers investigated both gray literature application case studies
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and academic peer reviewed literature to analyse the variety of
development and application of smart city features in coastal
disaster management. This knowledge gap makes it difficult to
anticipate future research directions and major development
trends within the field of coastal disaster management.

To this end, the objectives of this study are: (1) to describe
the broad characteristics of coastal disasters and their potential
impacts on the resilience of city infrastructures; (2) to investigate
a sample of case studies around the world to identify how
coastal disaster resilience has been tackled using smart city
features in those cities; (3) to analyse a sample of peer
reviewed literature on disaster management and smart city to
identify new innovation and development trends; (4) discuss
current challenges, opportunities, and potential future research
directions for this sector.

CHARACTERISTICS OF COASTAL

DISASTER RESILIENCE IN CITIES

A number of coastal hazards can trigger a natural disaster in the
coastal zone. Here it is important to make a distinction between
“Coastal Hazards” and “Hazards in the coastal zone.” Where the
first one is about hazards that are introduced by the action of
sea and its interaction with the coast, the second one includes all
hazards that are relevant for the coastal zone regardless whether
they are due to action of sea or not (e.g., heatwave, landslide
etc.). The scope of his paper is limited to the former. Different
coastal hazards such as coastal flooding, erosion, sea level rise etc.
propagate and have impact on coastal systems at a different time
scale. As an example, while coastal flooding during a storm or
cyclone is a rapid event with immediate impacts (in the order
of hours and days), sea level rise has a slow onset with longer-
term impacts (in the order of decades to centuries). Similarly,
coastal erosion can have a rapid onset when a coastal storm
or cyclone swept away significant part of the sand of a beach
(in the order of days), but erosion can also have a moderate-
term onset as a result of long-shore sediment transport where
sediments are transported by waves from one beach to the other
resulting in sediment deficit and erosion (in the order of seasons)
and a longer-term onset where erosion of the coast increases as
sea level gradually rises (in the order of decades and century)
(Table 1). These time scales of coastal hazard govern the hazard
impacts on coastal infrastructure. On top of temporal variation,
these hazards also vary spatially as intensity of these hazards are
amplified with specific geographic and geomorphic formation of
the coastal area (e.g., low lying areas, erodible shoreline etc.).

In order to make coastal infrastructure systems robust against
hazards that vary temporally and spatially, the concept of
“resilience” is becoming increasingly popular among disaster
management professionals and researchers. The definitions of
resilience emanate from multiple disciplines (e.g., ecology,
disaster management, engineering) and therefore are quite
diverse in the literature (Cimellaro et al., 2010). In general,
resilience is defined as the ability of a system to resist and/or
to recover from a shock. Scholars use other terminologies as a
measure of resilience such as flexibility and the ability tomaintain

the status quo or to reorganize after stress or shock (Manyena,
2006; Bhamra et al., 2011). Resilience is also considered as
an emergent property of a system to manage high variability
and uncertainty in order to continuously pursue successful
performance of a system (Cimellaro et al., 2010; Francis and
Bekera, 2014; Kong and Simonovic, 2019; Kong et al., 2019). Tyler
and Moench (2012) argued that the application of the concept
of resilience to urban climate adaptation and hazard mitigation
practice would help to address some of the “predict and prevent”
approach and allow preparing infrastructure systems for climate
change even under high uncertainty.

Disaster Risk Management (DRM) includes all activities,
programmes, and measures which can be taken up before, during
and after a disaster with the purpose to avoid a disaster, reduce
its impact or recover from its losses (Khan et al., 2008). Figure 1
shows the characteristics of a resilient infrastructure system in
these three distinct phases of DRM. To better prepare for any
future hazard, in the preparedness stage, several steps can be
conducted such as understanding the characteristics of coastal
hazards though modeling and engineering analysis, developing
early warning systems, installing hazard mitigation measures,
educating and informing communities about hazards etc. When
a disaster is unfolding (e.g., crossing of a cyclone/hurricane
over a coastal area) a resilient infrastructure system should be
able to absorb physical stresses from the hazard and maintain
serviceability even with reduced capacity and should have the
capacity to restore the system to full operation mode once the
stress from the hazard is over (e.g., providing backup, restore
function etc.). Finally, a resilient system uses its learnings from
an event, policies are implemented and capacity increased so that
in the face to future disaster stress, the system can better cope
and fight back quickly. For any critical infrastructure operator it
is crucial to reduce the time the system spend between t1 and t2.

INCREASING COASTAL DISASTER

RESILIENCE IN CITIES USING ICT

Due to technological advancements as well as increased trend
in natural and man-made disasters, the importance and
scope of information and communication technology (ICT) in
increasing disaster resilience have increased in recent years.
Different phases of disaster management of infrastructure
systems that are discussed in the earlier section (Figure 1),
are benefitting from the recent advancement of ICT. Examples
can be drawn from the use of early warning systems (in the
preparedness phase), collection and analysis of real-time hazard
information for effective coordination of disaster management
and recovery operation (during the disaster), setting up of
long-term monitoring systems for understanding trend of the
coastal or climatic variable that are responsible for creating the
hazard (during the post disaster state). At a global, regional,
and national scale advanced information and communication
technologies have been implemented for the generation and
distribution of disaster alerts and warnings (be it coastal or not)
(see Table 2). Among these, Common Alerting Protocol (CAP)
and Emergency Data Exchange Language (EDEL) messaging
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TABLE 1 | Characteristics of coastal disasters in cities.

Coastal hazards Potential cause Time scale of the hazard Potential impacts to coastal cities

Coastal flooding Coastal storms, cyclones,

king tide etc.

Short-term with fast onset Destruction of assets, infrastructure, and lives. Disruption of business,

supply chain, and have negative impact on economy.

Coastal erosion Soft and erodible

geomorphology sometimes

coupled with destabilization

of the shoreline due to

human intervention.

It can be short, medium and

long term

Damage to nearby private properties and public infrastructure. Loss of sand

on beach can also have negative impact on beach tourism.

Concurrent effect

of catchment and

coastal flooding

Excessive rainfall in the

upper catchment coincide

with coastal storm and/or

king tide

Short term with fast onset Due to coincidence of both catchment and coastal flood events, upper

catchment flood waters are unable to escape in the coast. This often extend

the impact of coastal flood beyond the coastal zone causing disruption in

lives and economic activities.

Sea level rise Increase global average

temperature as a result of

climate change

Longer term with slow onset Permanent inundation in low lying areas, frequent inundation during high

and king tide events. These can lead to loss of coastal properties and

assets, decrease in property values, conflict between affected city residents

and city authorities in terms of deciding “who to pay” for the increased

requirement of coastal protection measures.

FIGURE 1 | Characteristics of a resilient infrastructure system in three distinct phases of disaster risk management.

standards have been adopted by developed nations such as
in Canada, Australia, Japan and Taiwan etc. These systems
allow these countries to facilitate automatic notification of
certain natural hazards by sensor systems, analyse, and exchange
results between emergency information systems and services.
CAP and EDEL are international standards for exchanging
emergency alerts in a digital format that allows a consistent
alert message to be disseminated simultaneously over many

different communications systems. These consistent formats
allowed development of critical services such as Google Alert,
European public warning systems etc.

These global and regional alert systems act as early warning
systems for coastal disasters and assist national, regional
authorities to communicate the risk of the cyclones, hurricanes,
flooding etc. to coastal communities so that they can take
necessary measures to reduce their loss from the disaster. Owner
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TABLE 2 | Example of ICT based global and regional disaster alert systems.

Global and regional disaster alert systems References

CAP: Common Alerting Protocol, V1.2 http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

EDXL-DE: Emergency Data Exchange Language Distribution Element http://www.oasisopen.org/committees/download.php/17227/EDXL-DE_Spec_v1.0.

html

IPAWS-OPEN (Integrated Public Alert and Warning System—Open Platform

for Emergency Networks used in the US)

http://www.fema.gov/integratedpublic-alert-warning-system

GDACS: Global Disaster Alert and Coordination System https://www.gdacs.org/

European Public Warning System (EU-Alert) Using Cell Broadcast https://ec.europa.eu/programmes/horizon2020/en/news/emergency-alert-system-

europe

Google Public Alerts https://support.google.com/publicalerts/?hl=en

and operators of critical infrastructure systems also use these
early warning systems to inform their disaster management
activities. However, these global and regional alerts alone are
not sufficient for managing disaster risks of critical infrastructure
systems within a city. These critical systems often have complex
and interdependent networks and increasing disaster resilience
of such networks requires finer scale real-time information that
goes beyond just the disaster alert systems.

To this end, recent development of sensors, their web
of networks with ability to communicate via internet (i.e.,
internet of things) provide a tremendous opportunity to make
better and real-time disaster management decisions for critical
interdependent infrastructure systems. Specific opportunities of
using ICT at a local scale coastal disaster management includes:

• Supplementing early warning systems with near-real-time to
real-time analysis of hazard information. This will allow more
pro-active decisionmaking due to any disruption and recovery
effort of a critical infrastructure failure.

• Opportunity to know more about how different infrastructure
systems perform under stress during disasters (e.g., maintain
physical integrity, cope with increased demand, cope with
reduced capacity as result of disruption of connected services
etc.), so that system vulnerabilities can be identified and
initiatives can be taken to make them more resilient.

• Opportunity to use of data enabled decision support systems
to prepare, manage, and recover from coastal disasters.
Visualization and analysis of near-real-time information from
sensors about the extent of the hazard, performance of the
infrastructure etc. provides an opportunity to make informed
decision about where and how resources should be allocated
to recover lost infrastructure services

EMERGENCE OF THE SMART CITY

CONCEPT AND ITS USE IN COASTAL

DISASTER MANAGEMENT AT A CITY

SCALE

The term “smart cities” has gained significant attention in
academia, businesses and government in the last decade,
especially in cities where ICT has been embraced as a
development strategy. Cities that are embedding digital

infrastructure in the urban fabric for providing better service
to its citizens through web access services, to better manage
facilities and to promote entrepreneurship are often termed as
“smart cities,” “intelligent cities,” “connected cities” etc. (Kitchin,
2014).

What Does a Smart City Framework Look

Like?
There are four main layers in a smart city framework (Figure 2).
A perception layer which includes range of sensors that can
collect real-time or “near real time” data. This also includes a
sensor or device management component to handle registration
of new devices, assignment of unique identifiers, format data,
etc. A network of sensors provides interfaces to interconnect
heterogeneous information sources in a secure way and a data
storage services to persistently store collected data. Finally this
includes a layer which analyses and visualizes stored and real-
time data stream. Visualization services include different formats
like visual diagrams, reports, graphs, etc. Some of the specialized
type of application also include analysis of georeferenced data
and dissemination of alarms and notifications. This is beyond the
scope of this paper to present detailed smart city frameworks and
for more information readers are directed to following references
(Alazawi et al., 2014; Sanchez et al., 2014; Scuotto et al., 2016).
Rather, we investigate how this generic framework has been used
for the coastal disaster management in cities.

Development Trend in Peer Reviewed

Academic Literature
Selection of Peer Reviewed Academic Literature
In order to identify relevant academic papers we conducted
an extensive search in the “Web of Science” database in early
2018. Initial search was conducted using key words “smart” AND
“disaster management” within topics for the entire database and
it yielded 223 papers (Type-1). This included papers related to
disaster planning and management of all hazards which goes
beyond the scope of the paper. We then refined the search by
adding “coast” in the search term and it yielded only 6 papers. It
was quite clear that these search terms are very narrow therefore
we then expanded the scope of the search by making it “smart”
AND “disaster management” AND “flood” which yielded 33
papers (type-2). Often flooding in the coastal city is a big issue
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FIGURE 2 | Different layers of a smart city framework (a generic view).

and used as a topic in the academic papers. However, by reading
through the abstracts of this list it was evident that this list
includes studies that are non-coastal in nature. In order to get a
representative sample of coastal studies we replaced “flood” with
“coast OR flood” and also included “IoT” (internet of things)
along with our initial search term “smart.” Type 3 search criteria
was “smart OR IoT” AND “disaster management” AND “coast
OR flood” which yielded 18 papers. IoT has been one of the main
driver of smart city developments and its inclusion in our search
criteria allowed capturing technical papers that not necessarily
use the term “smart” rather report their development using a
more technical terms. A clear trend is visible in all these three
sets that research on smart and innovative disaster management
systems have been growing exponentially since 2010 (Figure 3).
It is possible that we may have missed few papers, but our
aim was not to find every paper that deals with smart city and
coastal disaster, rather to find a representative sample of papers
to understand major trend within this emerging body of work.

Analysis of Peer Reviewed Literature
Analysis of this final type-3 set of papers revealed two clear
branches. First, a set of papers developed innovative IoT based
smart systems for better identification and communication of
hazard information (flooding, Tsunami etc.). Table 3 shows key
feature of these studies. Table 3maps seven studies from the type
3 sample (which specifically used IoT based smart systems) across
their application, type of hazards they addressed, resilience stage
which they aimed to cover and technologies used across four
layers of smart city framework that are described in Figure 2.
It shows that application of IoT based major innovations in our
study samples mainly focused on managing two types of coastal

hazards, flood and Tsunami. While investigating the technologies
that are used across different layers the smart city framework,
it was found that in the “perception layer” along with different
types of sensors, CCTV camera and smart phones are used for
collection of real-time information. Collected information of the
perception layer is transmitted by various mediums e.g., Wi-
Fi, cellular, internet. Studies which conducted further analysis
to generate insights often stored the data either in cloud based
systems of local servers. Choice of storage was primarily guided
by the size of data generated by the perception layer and analysis
method that were used by the authors.

The second group of papers, often categorized as “crisis
informatics,” reported use of different advanced analysis
techniques (optimization, social media or crowd sourced
information etc.) or advanced technologies such as virtual reality
for better preparing and managing coastal disasters. As an
example, Basu et al. (2016), collected situational information
through interactive crowd-sourcing using SMS from the “crowd”
present at the disaster site, and analyzed them to develop
situational awareness to support appropriate decision-making
regarding damage or need assessment during coastal disasters
in India. Ai et al. (2016) combined a geographical information
system and social media to develop a dynamic decision support
system (GIS-SM-DDSS) that integrates geographical information

with Twitter technology to enable self-organized information
networks to support decision making and collective actions in
emergency situations. Ogie et al. (2017) used network analysis
to determine optimal sensor locations in developing countries,
so that a low cost early warning system of coastal flooding can
be implemented. Anbalagan and Valliyammai (2016) used real
time social media contents such as micro blogs, tweets, posts
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FIGURE 3 | Yearly distribution of publication that appeared in different search sets.

and multimedia content along with geographical location tags
(geo-tags) to map the severity of the disaster. Kawai et al. (2015)
developed a smart Tsunami drill system using virtual reality
technologies to educate and increase awareness of Tsunami
disaster among school children.

Implementation Trend at a City Scale
After investigating the development trends in the academic
literature, we investigated, how cities are embracing some of
these smart city features for managing their coastal disasters.
Smart city projects are often reported as case studies to showcase
city’s progress in embracing new technology to serve its citizens.
Among many other information, these case studies generally

highlight key technical features of the implemented smart city
projects. Analyzing a sample of such case studies can provide a
sense about how new developments in the academic literature are
translated into practical project implementation.

Selection of the Case Study Sample
A google search was conducted using key words “smart city”
AND “Case study” to generate a sample of city specific case
studies from the unpublished gray literature that document how
city’s smart city projects are implemented. Initial screening of the
sample documents revealed that not all smart city case studies
have disaster management related content. This is mainly due
to the fact that some cities do not include disaster management
as their focus while implementing their smart city, be it coastal
or not, or the case study document that we selected may not
have included the disaster management component of the city.
Whichever is the case, our analysis discarded those case studies
and retain only those that report any disaster management
related features. In the next step some of the non-coastal
city specific case studies were eliminated to ensure that our

final sample only consists of case studies that include coastal
disaster management.

Table 4 shows the final list of the sample case studies. It
should be noted that this list is not exhaustive and it is likely to
miss some. However, the aim of this paper is not to develop an
exhaustive list of case studies rather analyzing a sample in order
to understand major trends.

Analysis of Selected Case Studies
Six sample case studies were analyzed to identify what types of
coastal disasters were tackled by cities using smart systems, at
what stages of the disaster were they used (e.g., early warning,
during disaster, disaster recovery etc.), and what smart city
features and systems were implemented in the city (Table 4).
Flooding (coastal and riverine), cyclone (typhoon, hurricane,
tornado, and thunderstorm), tsunami, and landslide have been
tacked by these cities. Early warning systems of these hazards
were most benefited as information about these hazards were
collected, analyzed and communicated to citizens for better
preparation. As an example, Tokyo’s smart disaster early warning
system covers a range of hazards, not just coastal, including
earthquake. Technology vendor NEC has developed Tokyo’s
disaster resilience solution which includes observation systems,
information gathering capabilities, data analysis and decision-
making aids, together with an intelligent warning system, all
linked together in an interoperable manner.

Another example is from Rio De Janeiro, which has a central
disaster coordination and operation center. Since opening, the
Rio Operations Center has integrated information and processes
from across 30 different city agencies into a single operations
center that provides a holistic view of how the city is functioning
on a 24 h basis. The Operations Center serves as the nerve center
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TABLE 3 | Example of studies reporting IoT based coastal disaster management systems.

Example Type of application Type of

hazard

Resilience

stage

Perception layer Network

layer

Storage layer Application and

information management

layer

Hernández-

Nolasco et al.

(2016)

Use sensors to measure

water level in rivers, lakes,

lagoons and streams.

Flood Preparedness and

management of

hazard

Sensor Wi-Fi No storage Netduino apps are written

using C# language and

suitable for mobile

applications

Shalini et al. (2016) Use sensors to measure

water level and send SMS

to alert

Flood Management of

hazard

Sensor Cellular Cloud

Lo et al. (2015) Use CCTV to collect

imagery and process them

via machine learning

algorithms to automate real

time flood monitoring

Flood Management of

hazard

Visual imagery

collected using

CCTV

Internet Cloud Image detection and

processing using machine

learning algorithms

Kumar et al. (2015) Early flood detection SMS

service

Flood Management of

hazard

Sensor Cellular Local storage Machine to machine

processing

Ancona et al.

(2015)

Early detection of flood

using low power consuming

sensors

Flood Management of

hazard

Ultra-Low Power

Micro Controller

together with rain

gauge sensors

Internet Cloud IoT platform Thingworx

Aimmanee et al.

(2016)

Adaptable devices such as

foldable flood barriers and

hydrodynamically supported

temporary banks

Flood

and

Tsunami

Mitigation of

hazard

composite

cylindrical shell

structure

embedded with

piezoceramic

sensor

Cellular No storage Bio-mimicking column

structures capable of

high-velocity water

interception and velocity

detection in the case of

tsunami.

Kitada et al. (2017) Dessiminate disaster

information to smart phone

users even after the failure

of transmission systems

Flood,

Tsunami

Management of

hazard

Smart phones Internet Local storage Disaster servers designed

using Java and MySQL

for the city, applying analytical models developed by IBM tomore
effectively predict and coordinate disaster management.

DISCUSSION

Increased potential of natural disaster events as a result of climate
change along with rapid development and population growth
in coastal cities have created significant risks and challenges
for disaster management authorities. Rapid improvement in
IT systems has fuelled growing interest in designing and
implementing disaster management systems which can predict
climatic conditions based on near real-time information, analyse
them and communicate with citizens so that disaster impacts can
beminimized. To this end a range of innovative systems, tools etc.
are developed by the research and academic sector and some of
them are making their way to practical city scale implementation.
Among these, “smart-city” concept or framework is growing in
interest among disaster management professionals, specifically
in developed countries. A “smart-city” concept uses embedded
sensors, live camera, radar to collect near real-time information
and further analyse them to generate valuable insights for disaster
management professionals. In the earlier part of the paper, our
analysis of a selected sample of peer reviewed academic papers
as well as gray unpublished literature revealed some interesting

facts about using ICT based smart city frameworks in disaster
management and resilience.

Trends and Gaps
The present review highlights the lack of scalable smart city
technologies for improving coastal disaster resilience, and as
a result, the lack of at scale implementation of smart city
frameworks from a coastal disaster resilience perspective. Our
findings are summarized below:

• Various smart city technologies, platforms, analysis techniques
and applications that are relevant to coastal disaster resilience
have been identified. It is clear that the choice and
appropriateness of the technology should be judged under the
decision-making contexts for which it is developed (i.e., early
warning or pre-disaster stage, disaster management when the
disaster is unfolding or post disaster recovery etc.). Future
applications and/or further development of a smart city tool
for coastal disaster resilience depend on the specific decision-
making context. Thus, the lens of decision-making contexts is
absolutely necessary to assess the appropriateness of a smart
city technology.

• While comparing the analysis findings of both peer reviewed
literature and city scale case studies, it is clear that while
peer reviewed literature is testing and trialing new approaches
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TABLE 4 | Analysis of Smart city case studies for identifying key features of coastal disaster management.

City Hazards Stages of

disaster

addressed

Key smart city features

Tainan,

Taiwan

Coastal and

riverine flood

Early warning and

disaster

management

1. 48 remotely controlled pumping station to pump out flood water. They are controlled and monitor in real-time using

4G network.

2. 20 Wearable real time video monitoring sets for outdoor use during typhoon seasons. They provide real-time video

stream to disaster coordination center. Image recognition algorithms are used for water level automatic recognition.

3. Water disaster management platform for coordination.

4. Mobile app for disaster information access to citizens.

Barcelona,

Spain

Coastal and

riverine flood

Early warning and

disaster

management

1. Flash flooding early warning system which composed on a high-tech radar, a city wide network of sensors for

monitoring rainfall in the catchment.

2. Early warning system detect and forecast flooding and provide a series of reliable, understandable and timely warning

messages to people at risk and to people in charge of managing that risk.

3. Smart platform for information dissemination such as COWAMA tool in coastal cities and iBeach App for

smartphones. They include information on wave, wind, tide and temperature as well as weather forecasts for all

beaches of Barcelona. This app also allows the public to proactively warn others about the presence of jellyfish,

establishing a means of collaboration between the public and the city council.

Tokyo,

Japan

All hazard

(including

tsunami,

typhoon etc.)

Early warning,

disaster

management and

recovery

1. Tsunami is a major coastal hazard in Tokyo and therefore it has smart Tsunami warning and management systems in

place.

2. The Japan Meteorological Agency (JMA) and the central government are responsible for developing national

emergency solution. On the other hand, when a coastal disaster strikes, cities such as Tokyo become the central

coordination and response unis.

3. Key technical features of the coastal disaster management systems are:

• nine Ocean Bottom Observation Systems that connect 5,000km of submarine cable,

• 150 undersea seismometers, and seismometers in strategic locations in building foundations and other structures

across the cities,

• Rain and water level gauges are equipped with sensors and transmit real time data using telecom networks.

• These data are analyzed and potential hazards are transmitted to cell phone users through cell broadcasting.

• Mobile users can update their status i.e., whether affected or not, locations etc. in a central system so that if

required they can be assisted in their recovery.

Songdo,

Korea

Riverine

flooding, land

subsidence

Early warning and

disaster

management

Songdo U-disaster prevention system is in charge of spreading information when disaster occurs, monitoring

for land subsidence, flooding, and corresponding to fires etc. Main functions include civil defense,

spreading situation information to the National Disaster Management System, monitor weak lands for

subsidence/flooding, monitor using CCTVs with high magnification during fires, and corresponding to fires.

Because Songdo is built upon reclaimed land, monitoring for land subsidence and flooding is important.

Key technical features of the disaster management systems are:

• One satellite dish to receive and transmit data

• 3 water level monitoring camera for flood monitoring

• 3 flood sensors to detect changes in water level and to detect ground safety according to water pressure levels

with in grounds.

Rio de

Janeiro,

Brazil

Coastal and

riverine

flooding and

associated

land slides

Early warning,

disaster

management and

recovery

The automated alert system notifies city officials and emergency personnel in the disaster operation center

when a flood is forecasted. As opposed to a previous system in which notifications were manually relayed,

the new alert system is expected to drastically reduce the reaction times to emergency situations by

using instantaneous mobile communications, including automated email notifications and instant messaging,

to reach emergency personnel and citizens. This forecasting system pulls data from the river basin,

topographic surveys, the municipality’s historical rainfall logs, and radar feeds and process them using

a unified mathematical model. This model then predicts rain and possible flash floods, and has also

evaluate the effects of weather incidents on other city situations such as city traffic or power outages.

Key smart infrastructure behind this system are:

• 1 weather radar with operating range of 250 km

• 164 rainfall stations that generate data automatically every 15min,

• 26 gauged stations

• 164 audible alert stations with sirens

• 200 points of support to high-risk.

Orlando,

USA

Coastal

flooding,

hurricane,

tornadoes,

thunderstorms

Early warning,

disaster

management and

recovery

OCAlert is an alert system with nearly 14,000 registered subscribers that allows Orange County Government to

contact citizens during an emergency by immediately sending message to email account, cell phone and smartphone

with real-time updates, instructions on where to go, what to do, or what not to do, who to contact, open

shelters, water distribution centers, evacuation routes and other important information under emergency situation.

Key smart features are:

• Feeds from Doppler radar and satellite for weather data

• Flood sensors in critical coastal locations

• Live camera feeds from expressways

• GIS based water management system fitted with sensors

• Automatic Vehicle Location (AVL) function that enables the staffs to track the movement of police cars, fire

trucks, emergency medical vehicles etc. during disasters.
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and techniques, city scale applications are leaning toward
more matured approaches and technologies. As an example,
in our study sample of the academic literature an innovative
CCTV enabled and machine learning based visual monitoring
system was used for automating and process real time
flood monitoring using image processing. Whereas, this
approach did not proliferate in our city scale case studies as
cities mostly used conventional sensors. While, conventional
sensing networks can only offer one-dimensional physical
parameters measured by gauge sensors, visual sensors can
acquire dynamic image information of monitored sites
and provide disaster prevention agencies with actual field
information for decision-making to relieve flood hazards (Lo
et al., 2015).

• At present, there is a scarcity of studies investigating
and applying smart city technologies for managing coastal
hazards at a local government scale. However, coastal local
governments commonly face such issues related to the
management and planning for potential coastal hazards. As
sea-level rises, this issue is likely to become more critical for
coastal local governments (Torabi et al., 2017; Tonmoy et al.,
2018).

• In peer reviewed literature “Crisis informatics” has become
an emerging smart city framework that develops analytics
approaches to extract, analyze, and predict online activities
(e.g., tweets and Facebook posts) to address challenges in
disaster warning, response, and recovery operations (Palen
and Anderson, 2016). For instance, during a disaster,
disseminating information effectively and timely plays a
critical role in spreading awareness in a community. It
requires a range of delivery techniques to reach the target
audience using different media and communication means.
Online social media (such as Facebook, Twitter) can serve
as alternative channels to disseminate information to a wider
audience. Applications of such crisis informatics can be
found in many recent studies using social media data during
disasters (Kryvasheyeu et al., 2015; Thom et al., 2016; Sadri
et al., 2018). Since crisis informatics is a relatively new
field investigating the role of social media during disasters,
most studies commonly focus on high-level correlations
among the variables of interest when analyzing large-scale
data sets (Palen and Anderson, 2016). However, many
other questions (Gladwin et al., 2007; Murray-Tuite and
Wolshon, 2013) about behavioral and social phenomena,
critical to achieving disaster resilience, still remain open. These
questions include: how to use social media communications to
rapidly identify infrastructure disruption issues and monitor
disaster responses and recovery efforts; or how to measure the
effectiveness of the available information sources in warning
message propagation using the topological properties of the
social network observed?

• In city scale implementation case studies:

a) different types of early warning systems are developed
for communicating detected coastal hazard (e.g., flood,
cyclone) warnings to public through variety of mechanisms
such as SMS alerts, social media, sirens etc.

b) different types of remote sensing technologies such as
water sensors, radar imagery etc. are used to monitor water
levels in flood, tide and rain gauges or to continuously
measure the water level variation within a large area (e.g.,
flood monitoring systems). As an example, flash flood
alarming systems require a dense network of rain gauges
for monitoring intense local rain storms both to ensure its
survival in case of extreme weather and to have a more
accurate collection of data. However, those data have to be
interpreted using empirical models by correlating in real
time the river level and the flow intensity for early flood
forecasting and consequent anticipated alarming (Ancona
et al., 2015).

c) application of other types of sensors such as temperature
sensors, pressure sensors in this domain remain limited.

• One common theme emerged as IoT based software platforms
are used in both academic literature and city specific case
studies for deploying sensors, communicating collected near-
real time data, their storage and analysis.

Lack of Use in Erosion Management
Although coastal erosion has been a major coastal hazard, but
it did not appear neither in academic literature nor in city
scale case studies. Long-term monitoring of shoreline changes
is of significant importance for coastal erosion prediction
and coastal planning. Using drones or fixed CCTV camera
in combination with image analysis techniques can provide
opportunity to implement coastal erosion monitoring of city’s
most erosion prone beaches (Turner et al., 2016). However,
this lack of application of smart city frameworks in coastal
erosion management brought up a critical point that time
scale of coastal hazard governs the choice of ICT in disaster
management. Coastal hazards not only vary in space (e.g.,
lower areas get inundated in coastal flooding) but also vary in
time (e.g., while cyclones can cause inundation of coastal areas
within days, increase in sea level rise may cause inundation
gradually over decades). The time scale of coastal hazards
often determines the choice and characteristics of the ICT
feature that are to be used for risk management. As an
example, for managing longer-term coastal hazards such as
sea level rise, it is important to understand trends and
therefore monitoring tides, sea levels, sediment transport etc.
are critical with relevant ICT features such as implementation
of monitoring systems with sensors being used (Harley et al.,
2015). On the other hand, ICT features for managing coastal
storms and cyclones require real-time information to feed
early warning systems therefore relevant ICT features and
sensors with capability to transmit real time information
are used.

Not All Smart City Projects Include Smart Disaster

Management
ICT have been used for providing early warning to coastal
hazards at both global and local scale (Application of local scale
mostly in developed countries). Analysis of a sample of smart
city gray literature case studies suggest that not all smart city
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projects around the world have incorporated smart ICT features
for managing coastal hazards. There is a chance that not all
features get reported in case studies therefore this needs to be
further investigated.

FUTURE DIRECTIONS AND CHALLENGES

Major Research Questions
Major Research Questions That Need to Be Addressed Include.

• How can we design and implement a smart city decision
support system for coastal hazards which includes the vast
range of stakeholder concerns and decision-making contexts
related to disaster management?

• How can we develop models to better understand
infrastructure interdependency at a local government or
city scale and integrate them with smart city platforms?

• Will it be possible or effective to develop one smart city tool
that can satisfactorily address all the key disaster management
issues in coastal areas, or will it be more effective to create
an ensemble of smart city platforms with properly designed
interfaces allowing information and decision exchange among
various platforms?

• How can we create a smart city platform with linked models
and data interoperability for modeling coastal hazards and use
them for the development of smart decision making under
different types of disaster management contexts (pre disaster,
during disaster, and post disaster) in coastal areas?

Opportunities for Implementing Smart City

Framework for Coastal Disaster

Management
Use of a smart city framework provides a basis for monitoring
coastal activities and there are significant opportunities to
integrate them with computational models of floods (coastal,
riverine, Tsunami) and erosion. These models are developed
and validated and used for identifying hazard prone areas.
Combining these models with real-time information using
smart city frameworks can provide opportunity to disaster
managers’ to dynamically characterize coastal hazards as they
unfold. This is especially critical for cyclone or hurricane
as their track changes dynamically and so does areas that
are likely to get affected by the cyclone or hurricane.
Combining validated numerical hydrodynamic model of coastal
inundation with real-time information of cyclone track can
assist disaster managers to prioritize evacuation dynamically
as cyclone changes its track. Not only cyclones, flood models
can also be integrated with smart systems to understand
concurrent events of catchment flooding and coastal surge. All
of this knowledge can then be integrated with socioeconomic
and demographic information (i.e., location of vulnerable
populations, critical infrastructure, old structure etc.) to better
inform disaster management.

Challenges for Implementing Smart City

Framework for Coastal Disaster

Management
One of the main driving factors of this framework is power
and communication systems which are vulnerable to any man-
made or natural disasters including coastal ones. If we lose
either we will lose the effectiveness of the whole system. Use of
these smart systems will increase in future in managing different
infrastructure layers and the connectivity will only increase.
Smart city technologies will make different city functions more
interdependent. Emergency services depending on data analytics
or artificial intelligence will have to depend on the availability
of the sensors. However, these interdependencies will be a major
challenge in future as there are gaps in our understanding about
infrastructure interdependency at a local scale that are arising
from these smart infrastructures (Tonmoy and El-Zein, 2013;
Hasan et al., 2015; Ersoy, 2017).

Although academic literature is developing innovative new
smart systems and analysis techniques, they are often designed
and tested in isolation. Integration of these systems to
serve a common goal such as disaster management at
a city scale across different city systems still remains an
unresolved challenge. Transferring a newly developed prototype
of smart technology for disaster management into a real-
life city scale implementation to inform existing disaster
management (DM) decision-making protocol is difficult. DM
sector is often very hierarchical and often can be resistant
toward getting information from different sources that might
affect central command under emergency situation. At the
same time, multi-asset integration of disaster management
is challenged by data sharing although some progress has
been made. As an example, safe data sharing initiative has
been initiated and implemented across multiple infrastructure
operators in Australia to support managing critical infrastructure
during disaster events (Australian Government: Department of
Infrastructure, 2018).

Because of the complexity of the disaster management issues
in the coastal region and a diverse range of stakeholders and
available smart systems, it will be a nearly impossible task to
build a super-smart city platform to support a wide range of
disaster management related decision-makers. Instead, a more
pragmatic approach will be to build interfaces amongst different
aspects of the problem linking models, platforms and their
outputs. Such an interoperable approach of decision support
system will be able to fit different smart technologies, analysis
techniques in the decision support platform depending on
the disaster management decision context. Also, there is a
need for a consistent benchmark of relevant data sets to be
able to integrate them within smart city compatible decision
support systems.

CONCLUSIONS

A disaster resilience framework has been presented to assess
current state of research and application of smart city
frameworks in disaster management within coastal cities. A
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set of academic literature and city specific application case
studies were reviewed. We find that smart city technologies
such as internet of things (IoT) and crisis informatics have
significant potential and have been increasingly used in academic
studies but their city-scale applications in coastal disaster
management have been limited. We have identified critical gaps,
RandD needs and practical challenges to foster development

of smart city oriented decision support systems for coastal
disaster management.
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The Ganga river basin, being one of the largest river basins in South-East Asia, with

area over 1 million Km2 and population over 400 million, is highly vulnerable to water

scarcity due to climate change and rapid growth in agriculture, industrialization, and

urbanization. To understand the potential impact of climate and land use changes

on regional terrestrial water balance has become crucial for ensuring appropriate

water management strategies for adaptation and mitigation purposes. In this study we

employ an RCP-SSP (Representative Concentration Pathways—Shared Socioeconomic

Pathways) scenario framework (1.5 and 2◦C warming scenarios and SSP1–5) to explore

the relative impacts of projected twenty-first century climate and land use changes on the

surface hydrology of the Ganga river basin. By statistically comparing the hydrological

responses of each combination of socioeconomic and climate mitigation pathways

against a control scenario, we distinguish between the impacts of each scenario. We

also analyze our data in a conceptual framework to understand how climatic and land

use factors impact the basin characteristics and which one among them is projected to

be the dominant factor in our study region. Our results show that, in terms of hydrologic

impact assessment, climate change mitigation pathways are the dominant factor and

the land use changes associated with socio-economic pathways contribute little to the

projected future changes.

Keywords: climate change, shared socioeconomic pathways, low-warming scenarios, Budyko framework,

integrated assessment

INTRODUCTION

India has a population of more than 1.3 billion, which is around 17% of the world’s population,
but only 1,121 Km3 of estimated utilizable water resources, about 4% of global freshwater
resources [Central Water Commission (CWC), 2013; United Nations (UN), 2019]. In the last few
decades the country has experienced a continuous rise in population along with economic growth
and increased food, energy, and water consumption [Global Water Partnership (GWP), 2013].
Rapid growth in agriculture, industrialization, and urbanization has led to increasing demand
for freshwater throughout the country. In terms of water usage, agriculture is the dominating
sector, with about 80% share of the total water demand (Bhat, 2014). The water availability and
the agricultural and economic productivity of India are heavily dependent on the south-west
monsoon (Krishna Kumar et al., 2004; Gadgil and Gadgil, 2006). More than 80% of annual rainfall
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in India occurs during the monsoon months (June-September,
JJAS), which totals to 904mm on average, compared to 294mm
of rainfall during the rest of the year (Amarasinghe et al., 2005).
However, climate changes associated with increased atmospheric
carbon dioxide (CO2) level are impacting water availability by
changing the spatial and temporal distribution of monsoon
rainfall, both globally and at regional level (Wang and Ding,
2006; Kundzewicz et al., 2008; Turner and Annamalai, 2012;
Kim et al., 2016). The Ganga river basin, being one of the most
populated river basins in the world, is highly vulnerable to water
scarcity, due to the changing pattern of the Indian summer
monsoon rainfall in a warmer climate (Misra, 2013). The water
management practices in the Ganga basin are not sustainable
and over-reliance on groundwater withdrawal for irrigation is
leading to imminent water crisis (Briscoe and Malik, 2006).
Hence reliable hydro-meteorological projections for the twenty-
first century at a regional scale are important for water resources
planning and policy making.

As the future greenhouse gas emissions and land uses are
highly uncertain, typically they are represented by a group of
plausible scenarios. The current state-of-the-art Earth System
Models (ESM), from Coupled Model Intercomparison Project
phase 5 (CMIP5) (Taylor et al., 2012), use emission based
Representative Concentration Pathways (RCP) (Van Vuuren
et al., 2011) as future scenarios to project the changing climate
over the twenty-first century. However, in 2015, the Paris
Agreement was signed at the twenty-first Conference of parties
(COP21) of the United Nations Framework Convention on
Climate Change (UNFCCC), and two new temperature based
scenarios were introduced. The aim of this agreement was to limit
the global mean air temperature increase, below 2◦C above pre-
industrial condition, by the end of the twenty-first century, and
further attempt to limit it within 1.5◦C (UNFCCC, 2015). To
achieve the goal of 1.5◦C scenario, we need a global emission
rate reduction of 5%/year and a substantial effort to develop
negative carbon emission technologies (Sanderson et al., 2017).
Irrespective of the achievability of these goals, it is important
to quantify their impacts on regional climate and hydrology, for
future climate negotiations.

Apart from the climate scenarios, the Shared Socioeconomic
Pathways (SSP), which represent a range of substantially
different plausible socioeconomic conditions, are also important
for impact assessment. Each SSP scenario describes the
characteristics of societal development, such as population
growth, economic development, energy and land use,
technological development, environmental protection etc.
At a fundamental level, each scenario depicts a narrative of
challenges on adaptation and mitigation to climate change
(O’Neill et al., 2017). In principle, SSPs can be combined with
climate mitigation pathways to generate a scenario matrix.
However, some SSP-RCP combinations can be unrealistic and
are ignored in impact assessment analysis.

In this study, using an ensemble of model outcomes, we
analyze the projected impacts for an SSP-RCP scenario matrix
on the hydrometeorology of the Ganga River basin. There are
several studies assessing the hydrologic responses of river basins
under climate change (Nijssen et al., 2001; Raje et al., 2014)

or land use changes (Cruise et al., 2010; Zheng et al., 2012).
Multiple studies have been performed in order to distinguish
between their impacts as well, using different approaches such
as regression analysis (Wang et al., 2012), hydrologic simulations
(Bao et al., 2012; Zhang et al., 2012), Budyko framework (Li et al.,
2007; Wang and Hejazi, 2011), or a combined approach (Jiang
et al., 2011; Ahn and Merwade, 2014). However, most of these
studies either focus on the historical changes, or estimate the
projected future changes using climate mitigation pathways only.
By incorporating the projected changes in land use associated
with SSPs, we explore the relative impacts of both climate and
land use on the hydrologic variables, in future scenarios.

We also explore the relative contributions of climate and land
use change on the basin characteristics parameter of Budyko
framework (Budyko, 1974; Choudhury, 1999), a conceptual
framework for modeling terrestrial water balance. In scientific
literature, it is a common practice to assume that basin
characteristics is independent of climate change and affected
by other factors, such as land use, vegetation dynamics, soil,
topography, and human water management (Donohue et al.,
2006; Wang and Hejazi, 2011; Xu et al., 2013). However, impacts
of climatic variables such as seasonality and intra-seasonal
variability of rainfall, number of precipitation events and their
intensity, phase shift between rainfall and evapotranspiration
etc. on the basin characteristics parameter have also been
documented (Milly, 1994; Potter et al., 2005; Padrón et al.,
2017). Even though vegetation is considered one of the most
important factors controlling the basin characteristics (Donohue
et al., 2006), Padrón et al. (2017) and Abatzoglou and Ficklin
(2017) didn’t find any significant relation between Normalized
Difference Vegetation Index (NDVI) and the variability of basin
characteristics parameter. As there is not enough consensus on
which factors dominate the basin characteristics, in this study
we compare the relative impact of two factors, climate and land
use change. Our analysis helps us gain a better understanding of
the factors influencing river basin scale terrestrial hydrology, to
better prepare us for adaptation and mitigation.

METHODS

In Figure 1 we represent the overall methodological framework
of our study. The hydrological projections are performed
using the model Variation Infiltration Capacity (VIC) (Liang
et al., 1994). Climate model simulations associated with
various warming scenarios have gone through a statistical
bias correction and downscaling methodology (Kannan and
Ghosh, 2013) to provide meteorological forcing for VIC. Land
use projections associated with various SSP-RCP combined
scenarios, from the land allocation model Asia-Pacific Integrated
Model/integration Platform for Land-Use and Environmental
Modeling (AIM/PLUM) (Hasegawa et al., 2017), are used as
vegetation input data in VIC.

Study Area
Our study is performed over the region of Ganga river basin,
within the political boundary of India. The Ganga river basin
is located within geographical coordinates of 73.5◦E−89◦E
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FIGURE 1 | Methodological framework of the study.

longitude and 22.5◦N−31.5◦N latitude. The basin consists of
mountainous region at the northwest side, and the remaining
area is plain encompassing northern and eastern India. The
majority of the land in the Ganga basin plain is used for
agriculture. The basin receives most of its rainfall over the
summer monsoon season (June–September). Based on the
Watershed Atlas of India, provided by the Central GroundWater
Board (Ministry of Water Resources, Government of India), the
basin is divided into 15 sub-basins, as shown in Figure 2.

Scenario Matrix
In our study, 1.5 and 2◦C warming scenarios are considered
as climate change mitigation pathways, and SSP1, SSP2, SSP3,
SSP4, and SSP5 are considered as socio-economic pathways.
SSP1 (sustainability) represents low challenges for adaptation
and mitigation, with low population growth, higher growth
in per capita income and high environmental awareness.
On the other hand SSP3 (regional rivalry) represents high
challenges for adaptation and mitigation, due to increasing
regional conflicts, less international trade, low income growth
among the general population and low effort for environmental
protection. SSP2 (middle of the road) represents medium
challenges for both adaptation and mitigation, with modest
population and economic growth with a slow pace of trade

liberalization. SSP4 (inequality) represents high challenges
in adaptation, due to increasing disparities in economic
development among population, coupled with low challenges in
mitigation due to technological advancement. Lastly SSP5 (fossil-
fueled development) pushes for overall economic and social
growth of general population by exploiting fossil fuel resources,
depicting high challenges in mitigation with low challenges
in adaptation. Apart from the aforementioned scenarios, a
climate scenario with historical emissions (HIST) and a control
socio-economic scenario with land use classes kept constant at
year 2005 level (CTL) are also considered with the purpose
of comparison. The overall scenario matrix for our study is
presented in theTable 1. Each combined scenario in thismatrix is
named after the socio-economic scenario and warming scenario
it belongs to. For example, the CTL_HIST scenario represents
the control (CTL) socio-economic scenario and historical (HIST)
emission scenario.

Climate Model Simulations
The climate model projections are obtained from CESM low-
warming runs, performed using Community Earth System
Model version 1 (CESM1) with Community Atmosphere Model
version 5.2 (CAM5.2) and the Greenhouse gas (GHG) emission
associated with 1.5 and 2◦C warming scenarios, obtained from
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FIGURE 2 | Study area: Ganga river basin divided into 15 sub-basins. Inlet is representing location of the basin within India. Location of streamflow measurement

stations, Bhimaghoda and Ankinghat are marked with dots.

Minimal Complexity Earth Simulator (MiCES) (Sanderson et al.,
2017). The historical climate scenario outcomes are obtained
from CESM Large Ensemble (LENS) simulation (Kay et al.,
2015), which are performed with the same CESM version and
model parameters as the low-warming runs. Five ensembles of
each simulation: Historical (HIST) (1951–2005), 1.5◦C (2006–
2100), and 2◦C (2006–2100) were chosen for our study and bias
correction and statistical downscaling methodologies are applied
on each of them independently.

Statistical Downscaling
The outputs of CESM LENS and low-warming simulations are
of coarse resolution (1◦ horizontal resolution) and not suitable
for regional hydrological modeling. To use the model outcomes
as meteorological forcing in hydrological model, they need to
go through a bias correction and downscaling procedure. In
this study, we have used a non-parametric regression-based
multisite statistical downscaling method (Kannan and Ghosh,
2013; Salvi et al., 2013), where a statistical relationship is
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TABLE 1 | Scenario matrix used in the study.

Climate

mitigation

pathways

Socio-economic pathways

CTL SSP1 SSP2 SSP3 SSP4 SSP5

HIST CTL_HIST X X X X X

1.5◦C CTL_1.5◦C SSP1_1.5◦C SSP2_1.5◦C X X X

2◦C CTL_2◦C SSP1_2◦C SSP2_2◦C SSP3_2◦C SSP4_2◦C SSP5_2◦C

FIGURE 3 | Performance of statistical downscaling model. (A) Difference between mean projected JJAS rainfall and observed JJAS rainfall for validation period

(1981–2005) (B) Difference between projected standard deviation of JJAS rainfall and observed standard deviation of JJAS rainfall for validation period (1981–2005).

established between observed coarse resolution predictors (1◦

horizontal resolution) and fine resolution observed rainfall
(0.25◦ horizontal resolution); and the derived relation is
applied on the bias-corrected model-simulated predictors to
obtain a better projection of future rainfall. In this study,
for the development of statistical relationship between the
predictors and rainfall, we have used daily reanalysis data
from National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) (Kalnay
et al., 1996), as proxy for observed predictors; and observed
daily rainfall data from APHRODITE, Monsoon Asia (Yatagai
et al., 2009), both for the period 1951–2005. The data from
1951 to 1980 is used for training the statistical model and
the rest of the data is used for validation. The following
climate variables have been used as predictors: air temperature,
zonal and meridional wind at surface level; mean sea level
pressure; air temperature, zonal and meridional wind, specific
humidity at 850 hPa pressure level; and air temperature and
geopotential height at 500 hPa pressure level. The downscaling
methodology is performed for the entire landmass of India,
by applying it separately for 7 meteorological homogeneous
zones, suggested by India Meteorological Department (IMD)
(Parthasarathy et al., 1996) and four seasons: June–September
(JJAS), October–November (ON), December–February (DJF),
and March–May (MAM). For each homogeneous zone, we have
used a separate zone of predictors, as suggested by Salvi et al.
(2013).

TABLE 2 | Datasets used in hydrological modeling or validation.

Data Time

period

Resolution Source

Meteorological

forcing

1951–

2100

Downscaled

or

Upscaled

to 0.5◦

CESM LENS and

Low-warming simulations

(processed by bias

correction and statistical

downscaling method)

Elevation map N/A 0.5◦ U.S. Geological Survey

Vegetation data

(Land Use)

1951–

2100

0.5◦ AIM/PLUM Land allocation

model

Vegetation

parameters

N/A N/A Global Land Data

Assimilation Systems

(GLDAS)

Soil data N/A 0.5◦ Food and Agriculture

Organization, USA

Streamflow data at

Ganga river basin

1998–

2009

N/A Central Water Commission,

India

Soil moisture 2000–

2009

0.5◦ European Space Agency

Climate Change Initiative

Global Terrestrial

Evapotranspiration

2000–

2009

0.5◦ Moderate Resolution

Imaging Spectroradiometer

(MODIS)

The downscaling methodology essentially involves four
steps: bias correction, dimensionality reduction, rainfall state
estimation, and rainfall value estimation through regression.
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FIGURE 4 | Calibration and Validation of hydrologic model VIC. (A) Time series of monthly observed (blue) and model simulated (red) streamflow at Ankinghat station.

(B) Time series of monthly observed (blue) and model simulated (red) streamflow at Bhimaghoda station. (C) Correlation of observed and model simulated

evapotranspiration during JJAS season at 95% significance level. (D) Correlation of observed and model simulated soil moisture during JJAS season at 95%

significance level.

First, we have bilinearly interpolated the model-simulated
predictors to the same grids as reanalysis predictors and used
a quantile mapping method proposed by Li et al. (2010), for
correcting the bias in the model data. A distribution is fitted to
all the grids separately for both reanalysis and model data. We
have fitted Normal distribution for wind and specific humidity
and Gamma distribution for rest of the predictors. Then, for
the historical period (1951–2005), the Cumulative Distribution
Function (CDF) of the reanalysis and the model-simulated data
are compared and the biased model data at each grid and
time step is replaced by the reanalysis data with same CDF.
For future (2006–2100), additionally, the shift between model-
simulated historical and future data with same CDF is added
to the replacement value, to account for the climate change.
Apart from the predictors used in the statistical downscaling of
precipitation, we have also bias-corrected daily minimum and
maximum temperature, which are later used as meteorological
forcing in the hydrological model. Next, in order to get rid of
the multidimensionality and multicollinearity of the predictors,
we have used principal component analysis (PCA) on the
reanalysis predictors. We have sorted the principal components
in the descending order based on their explained variance and
taken the first few of them till the sum of explained variance
reached 80%. The same coefficients were used to transform the
model simulated predictors also. We have classified the observed
rainfall into 3 states using unsupervised K-means clustering and
apply Classification and Regression Tree (CART) to establish
a relationship between reanalysis predictor PCs and observed
rainfall states. We have then applied the derived relation on
Model predictor PCs to estimate the rainfall state. For each

rainfall state, we have applied Kernel Regression on the predictor
PCs to obtain the projected daily rainfall amounts. We have
used the Nadaraya-Watson estimator for kernel density estimates
(Nadaraya, 1964) and asymptotic mean integrated square error
(AMISE) criteria for bandwidth selection (Wand and Jones, 1995;
Scott, 2015). The final resolution of the downscaled rainfall is
same as that of the observed rainfall, which is 0.25◦ in our case.
After downscaling is performed, rainfall and other meteorlogical
variables for the grids belonging to Ganga basin region are
extracted to be used as an input to the hydrological model.

The performance of the downscaling model is presented in
Figure 3. The difference between mean observed and projected
JJAS rainfall for validation period (1981–2005) doesn’t exceed
3mm for majority (98%) of the grids. Standard deviation is
underestimated in the projected rainfall. For more than 96% of
the grids, difference between standard deviation of projected and
observed JJAS rainfall is within 6 mm/day. Overall, we find the
performance of the model satisfactory. More discussion on the
performance of the model can be found on Salvi et al. (2013).

Land Allocation Model
The gridded land use projections are obtained from the impact
model Asia-pacific Integrated Model (AIM). The computable
general equilibrium (AIM/CGE) component is a recursive-
dynamic general equilibrium model, which takes population,
gross domestic product (GDP), consumption, technological
progress, pollution level etc. associated with socio-economic
pathways into account and provides regionally aggregated
emission, energy, and land use information for each scenario in
SSP-RCP scenario matrix (Fujimori et al., 2017). This aggregated
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FIGURE 5 | Changes in downscaled precipitation from HIST to 1.5◦C (A) and from HIST to 2◦C (B) for CTL scenario over Ganga river basin for JJAS season.

Hatched regions denote areas with statistically significant changes.

FIGURE 6 | Time evolution of percentage area of (A) cropland, (B) forest, and (C) pasture land at Ganga river basin, for each combination of RCP-SSP scenario over

twenty-first century, as projected by AIM/PLUM model.

land use projections are then regionally disaggregated into 0.5◦

× 0.5◦ gridded land use data by the land allocation model
AIM/PLUM. Land allocations are performed to maximize the
economic efficiency for a given biophysical land productivity
(Hasegawa et al., 2017). The outcomes of AIM/PLUM are
available globally for the year 2005 and then every 10 years from
2010 onwards, which we have extracted for our study region. It
should be noted that the outcomes of this model are available for
emission based RCPs, not temperature based climate scenarios
we are using in our study. However, RCP1.9 and RCP3.4 have
been used among climate mitigation pathways for AIM; even
though they are not part of the originally proposed pathways
(VanVuuren et al., 2011), today they are widely used as analogous
to 1.5 and 2◦C warming scenarios (Fujimori et al., 2018).

Hydrologic Simulation
The projected meteorological data and land use data are forced
grid-wise into a semi-distributed mesoscale hydrological model
(VIC), which balances water and surface energy budgets. The
key characters of the VIC model includes representation of
multiple land cover types on a single grid, spatial variability
of soil moisture capacity, multiple soil layers, and interactions
between them, non-linear base flow and clumped vegetation
formulation with time-varying spacing between plants (Bohn

and Vivoni, 2016). A list of datasets used as an input to
the hydrological model is presented in Table 2. The elevation
map for VIC is acquired from U.S. Geological Survey (USGS)
HYDRO1K dataset (Raje et al., 2014). Vegetation parameters,
such as leaf area index, are collected from Global Land Data
Assimilation Systems (GLDAS) dataset (Rodell et al., 2004).
Soil data is extracted from a global database from Food and
Agriculture Organization (FAO) at 0.5◦ resolution. Certain soil
parameters, such as soil depth, are obtained by calibrating the
model at two stations, Ankinghat and Bhimaghoda. The observed
streamflow for these two stations are collected from Central
Water Commission (CWC), India at monthly scale (Chawla
and Mujumdar, 2015; Joseph et al., 2018). After calibration,
the comparison of observed and VIC simulated streamflow
is presented in Figures 4A,B. We have also calculated Nash-
Sutcliffe efficiency (NSE) of the model in each station. The model
simulated streamflow matches the observed flow reasonably well
at Bhimaghoda station (NSE = 0.75), but overestimated at the
Ankinghat station (NSE= 0.09). It should be noted that the flow
is highly regulated at downstream, which may have contributed
to the relatively poor performance of the model at Ankinghat
station. We have tried to minimize the impact of human water
management in the streamflow data, by incorporating data from
water diversion structures and canals. We have validated our
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FIGURE 7 | Changes in VIC simulated evapotranspiration associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B)

SSP1_1.5◦C scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C

scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.

model against an observed evapotranspiration data collected
fromModerate Resolution Imaging Spectroradiometer (MODIS)
MOD16 Global Terrestrial Evapotranspiration Data Set and a
satellite based soil moisture data from European Space Agency
Climate Change Initiative, for the time period 2000–2009,
results of which are presented in Figures 4C,D, respectively.
Overall the simulated evapotranspiration and soil moisture
show high positive correlation for majority of the grids in our
study area.

Budyko Framework
Budyko (1974) proposed a deterministic non-parametric
framework to model the long-term water budget constrained
by atmospheric water supply and water demand limit.
According to this framework, the evaporative fraction (ratio
of evapotranspiration to precipitation) can be expressed as a
function of aridity index (ratio of potential evapotranspiration
to precipitation). However, the relationship between evaporative
fraction and aridity changes among catchments and to account
for that various functional forms of Budyko equation has been
proposed in scientific literature (Fu, 1981; Choudhury, 1999).
In these Budyko equations, basin characteristics parameter is
introduced, which, by definition, explains the combined effect of
all factors other than aridity on the terrestrial water balance. In
this study we use the following functional form of the Budyko

equation, known as the Mezentsev equation.

E

P
=

(

1+

(

E0

P

)−n
)

−1
n

(1)

Where P is the precipitation, E is the evapotranspiration,
E0 is potential evpotranspiration and n is the basin
characteristics parameter.

One assumption of Budyko framework is that the long term
change in mean water storage is negligible and the whole
incoming precipitation either evaporates or contributes to runoff.
However, our study focuses on the long term mean of seasonal
(JJAS) rainfall, this assumption does not hold true. In order to
apply the Budyko framework to long-term mean of seasonal
rainfall, we have introduced the change in storage (1S) in
the equation.

E

P − 1S
=

(

1+

(

E0

P − 1S

)−n
)

−1
n

(2)

In this study, we apply the Equation 2 on the hydrological
outcomes obtained from VIC for each of the 15 sub-basins and
each scenario to estimate the basin characteristics parameter, in
order to understand the relative impacts of climate and land use
changes on the basin characteristics.
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FIGURE 8 | Changes in VIC simulated total runoff associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B) SSP1_1.5◦C

scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C scenario over

Ganga river basin. Hatched regions denote areas with statistically significant changes.

RESULTS

In Figure 5 we have presented the projected climate change at
the Ganga river basin in terms of mean precipitation during
monsoon (JJAS). The changes are calculated between last 25 years
of each century (1976–2000 for HIST and 2076–2100 for future
scenarios), which remains true throughout this study, unless
otherwise mentioned. We have found an east–west asymmetry
in the projected rainfall changes. The eastern part of the basin
shows an increase in rainfall in the twenty-first century, where
the western part, which is part of the core monsoon zone, is
projected to have a declining trend in the warming scenario. The
extent of this asymmetry is higher in the 2◦C warming scenario
comparatively. As a similar spatial pattern has been found in
the present day observed rainfall trend (Das et al., 2014), this
asymmetry can be considered a characteristic climatic response
of the Ganga basin region to global warming.

In Figure 6 we have shown the time evolution of various land
use classes throughout the twenty-first century, as projected by
AIM/PLUM model for the Ganga basin region. The outputs of
the land allocation model are provided at 0.5◦ × 0.5◦ grids,
which are aggregated to prepare the projection for the whole
basin. Figure 6A shows the changes in cropland, which covers
the majority of the lands in our study area. In every scenario
the cropland area increases during the first few decades and
then starts declining throughout the century. The SSP3_2◦C
scenario, which is the least sustainable among all, doesn’t feature

this decline in cropland area and roughly maintain its peak
throughout the century. Figure 6B depicts the projected area
of unmanaged forests, which shows a decline at the beginning,
but gets reversed into an increasing trend for some scenarios.
For the scenarios associated with low challenges for mitigation
(i.e., SSP1 and SSP4) we find this increasing trend in forest land
in the latter part of the century; however the others scenarios
continue to show decline throughout the century. In Figure 6C

we have shown the projected changes associated with pasture
lands, which are comparatively smaller than the previous two
land classes. Overall, pasture land area is projected to increase
after an initial decrease. In most cases the direction of changes
are closely tied with and opposite to the changes in cropland for
that specific scenario.

In Figures 7–10, we have compared the relative
impacts of projected climate and land use changes on the
hydrometeorological variables at Ganga river basin, as captured
by the VIC simulations. Even though the impacts of these changes
are not perfectly linearly additive, we can roughly estimate them
by subtracting the outcomes of various VIC experiments from
each other. For example, subtracting the outcomes of CTL_HIST
experiment from CTL_1.5◦C experiment will give us an estimate
of the impact of 1.5◦C warming scenario. On the other hand, the
impacts of land use change associated with SSP1_1.5◦C scenario
can be estimated by subtracting the outcomes of CTL_1.5◦C
experiment from that of SSP1_1.5◦C experiment. The statistical
significance of these differences are estimated using t-test with
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FIGURE 9 | Changes in VIC simulated potential evapotranspiration associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for

(B) SSP1_1.5◦C scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I)

SSP5_2◦C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.

a 95% significance level and the sub-basins showing significant
differences are highlighted in the figures. We have found a few
notable patterns consistent across the hydrologic variables. In
Figures 7A,D, 8A,D, 9A,D, 10A,D we have shown the impacts
of 1.5 and 2◦C warming on evapotranspiration, total runoff
(surface runoff and baseflow), potential evapotranspiration,
and aridity index at the Ganga river basin, respectively. As
evapotranspiration and runoff are correlated with precipitation,
the spatial patterns of their changes closely resemble the
projected precipitation trend. The east-west asymmetries are still
present here. On the other hand potential evapotranspiration
is correlated with temperature and projected to increase almost
uniformly throughout the basin. In case of aridity of the basin,
even though the asymmetry in changes can still be noticed,
majority of the sub-basins show an increase in the warming
scenario, implying increased water stress as a result of global
warming. Figures 7B,C, 8B,C, 9B,C, 10B,C show the impact
of land use changes associated with SSP1-2 and 1.5◦C warming
and Figures 7E–I, 8E–I, 9E–I, 10E–I represent the same for
SSP1-5 and 2◦C warming for evapotranspiration, total runoff,
potential evapotranspiration, and aridity index, respectively. We
have found that hardly any changes associated with land use are
visible in the figures, which suggests that the impacts of projected
land use changes are negligible compared to its climate change
counterpart. Neither of these hydrologic variable changes shows
any significant contribution from the projected land use changes
for most of the basins. However, there are a few exceptions in

some of the sub-basins. For example, the Bhagirathi sub-basin
gets more arid in few SSP scenarios, but doesn’t show any
significant change when only climate change is considered.
These exceptions are a result of potential evapotranspiration
increasing proportionately with precipitation due to climate
change, but not being impacted significantly because of land
use change.

From the VIC simulated hydrologic variables, we have
calculated the value of basin characteristics parameter (n) for
each sub-basin using Budyko framework (Equation 2). The result
is presented in Table 3. We have found two notable patterns in
this data. Firstly, the basin characteristics is influenced by climate
change. As the warming goes higher fromHIST to 1.5–2◦C,many
sub-basins show a consistent increase or decrease in the projected
basin characteristics parameter. Secondly, the impact of projected
land use changes is not as prominent. For the majority of the sub-
basins there is hardly any difference between SSP scenarios and
their CTL counterpart for the same level of warming. However,
there are a few exceptions to this pattern. In certain scenarios,
the land use changes have been found to have some impact
in Bhagirathi, Tons, Sone, Damodar, and Gandak and others
sub-basins, although not as high as the climate impact in most
cases. The reasons behind these exceptional cases are unclear, and
require further examinations to be uncovered. Given that all of
these sub-basins are located at the east side of the basin, it can
be speculated to be related to the east-west asymmetry of climate
change response.
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FIGURE 10 | Changes in VIC simulated aridity index associate with climate change for (A) 1.5◦C warming, (D) 2◦C warming and land use change for (B) SSP1_1.5◦C

scenario, (C) SSP2_1.5◦C scenario, (E) SSP1_2◦C scenario, (F) SSP2_2◦C scenario, (G) SSP3_2◦C scenario, (H) SSP4_2◦C scenario, (I) SSP5_2◦C scenario over

Ganga river basin. Hatched regions denote areas with statistically significant changes.

DISCUSSIONS

There are multiple sources of uncertainty present in our
modeling framework. Our choices of climate change mitigation
pathways as well as parameterizations in climate model
simulations and their internal climate variability (Knutti and
Sedláček, 2013) are major sources of uncertainties, although it is
partly mitigated by considering multi-ensemble mean of climate
model outcomes. Our choices of socioeconomic pathways,
the impact model (AIM) and the statistical downscaling
methodology, all contribute substantially to the uncertainty of
the climate and land use projections. The assumption of linear
responses of land use and climate change to the hydrologic
variables imposes some uncertainties as well. The parameter
uncertainty in the hydrologic model is also responsible for a
significant portion of the overall uncertainties (Chawla and
Mujumdar, 2018), although they are relatively lower than the
uncertainties resulting from climate models and downscaling
methods (Joseph et al., 2018). However, we believe that the
presence of these uncertainties in the projections do not affect
the key findings of our study. The hydrologic changes associated
with climate change are significantly higher than that of land
use change, close to one magnitude of order in many cases.
This pattern is also consistent across hydrologic variables,
scenarios and sub-basins. Our finding is consistent with Chawla
and Mujumdar (2015)’s analysis on Upper Ganga basin for
historical climate and land use changes. Analyzing our data in

the Budyko framework also shows that the climatic variables
have a significant impact on the basin characteristics, while
vegetation has lesser impact, which is contrary to the traditional
assumption. This finding is consistent with Padrón et al.
(2017) and Abatzoglou and Ficklin (2017)’s global analyses with
observed datasets in historical time period. The methodology
used in our study is generic and can be applied to other river
basins as well. However, the conclusion of this analysis may vary
depending on the climate and land use of the basin. Worldwide,
there have been multiple attempts to distinguish between climate
and land use change impacts on basin-scale hydrology, even
though majority of the studies are for historical period and
very few studies consider projections for future scenarios. The
conclusions drawn in these studies are mixed; while some studies
have found significant contributions from land use changes
(Schilling et al., 2008; Wang and Hejazi, 2011), others have found
it to be negligible (Gupta et al., 2015).

CONCLUDING REMARKS

In this study we have explored the impacts of projected climate
change as well as land use changes on the terrestrial water balance
at river basin scale. We have found that a major part of the Ganga
river basin is projected to become significantly more arid in
the warming scenarios. However, the projected land use changes
hardly contributes to or counteracts climate change impacts. In
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TABLE 3 | Calculated basin characteristics parameter for all sub-basins and scenarios.

HIST 1.5◦C 2◦C

CTL CTL SSP1 SSP2 CTL SSP1 SSP2 SSP3 SSP4 SSP5

Ganga (Above Ramganga Confluence) 1.42 1.46 1.46 1.46 1.53 1.52 1.53 1.53 1.53 1.52

Middle Yamuna 1.18 1.13 1.13 1.13 1.11 1.11 1.11 1.11 1.11 1.11

Gomti 1.43 1.48 1.47 1.48 1.45 1.45 1.45 1.44 1.46 1.43

Ganga (Upstream of Gomti Confluence) 1.51 1.48 1.47 1.47 1.43 1.43 1.42 1.43 1.44 1.42

Gandak and others 1.38 1.36 1.44 1.36 1.33 1.36 1.36 1.37 1.33 1.33

Damodar 1.36 1.40 1.37 1.37 1.44 1.43 1.43 1.44 1.43 1.43

Upper Yamuna 1.09 1.11 1.11 1.11 1.16 1.18 1.18 1.16 1.18 1.18

Ghaghara 1.32 1.37 1.36 1.36 1.37 1.37 1.36 1.36 1.37 1.36

Ramganga 1.48 1.60 1.59 1.60 1.68 1.67 1.67 1.67 1.67 1.65

Chambal 1.11 1.08 1.07 1.06 1.10 1.10 1.09 1.09 1.10 1.09

Lower Yamuna 1.16 1.13 1.12 1.12 1.09 1.09 1.09 1.08 1.10 1.08

Ganga (Gomti Confluence to Ghaghara Confluence) 1.48 1.47 1.48 1.48 1.44 1.46 1.44 1.44 1.46 1.46

Bhagirathi 1.11 1.06 1.11 1.07 1.02 1.05 1.05 1.06 1.02 1.01

Tons 1.30 1.25 1.22 1.22 1.18 1.19 1.16 1.15 1.19 1.14

Sone 1.43 1.43 1.42 1.39 1.41 1.42 1.37 1.36 1.41 1.36

contrast with the traditional assumption, climatic variables are
found to have significantly more impacts on basin characteristics
compared to land use and vegetation. Overall, our results show
that, in terms of hydrologic impact assessment, climate change
mitigation pathways are the dominant factor and the land use
changes associated with socio-economic pathways contribute
little to alleviate the impacts of climate change.
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The loss of infrastructure services under extreme weather events from climate change

emerges from complex interactions between the social, environmental, and technological

system variables which drive the behavior of infrastructure systems. The complexity

of interactions causes failures to cascade in unpredictable ways, often between

different infrastructure systems. A common approach to managing this unpredictability

is to attempt to characterize the cause-and-effect relationships of infrastructure

interdependencies, whether it be related to the resource flows, geographic proximity,

logical connections, or the common use of cyber infrastructure. We posit that though

a reductive approach toward characterization of interdependencies produces useful

insights, it is an insufficient strategy by itself due to the complexity and unpredictability

involved in the occurrence and magnitude of cascades of failure across systems. We

present historical case studies which demonstrate that cascades from interdependencies

display essential tenets of complexity—namely non-linearities, path dependence, and

emergence. The Cynefin decision-making framework suggests that management of

systems that are in the complex domain include strategies such as Decision Making

Under Uncertainty and Safe-to-Fail, which address uncertainty by probing, testing,

collecting and analyzing data, and lastly deploying solutions with a commitment to

reassessing the systems as conditions change. We therefore recommend that in order

to mitigate the surprise from cascades of failure across systems from extreme weather

events, infrastructure managers supplement their planning efforts with these types

of strategies.

Keywords: interdependencies, complexity, management strategies, historical case studies, climate—impact of

INTRODUCTION

Extreme weather events caused by climate change often exceed infrastructure capacities and design
standards and initiate infrastructure hardware and institutional failures which can cascade to
service outages (Pederson et al., 2006). Cascades of failures are the result of the many interactions
between social, environmental, and technological system variables (Leveson, 2002; Grabowski
and Miller, 2017; Markolf et al., 2018; Oughton et al., 2018; Chester and Allenby, 2019). These
interactions are part of the complexity of infrastructure systems, a domain of systems characterized
by unpredictable behaviors when perturbed (Snowden and Boone, 2007). An example of an
emergent cascade of failures initiated by a climate event is the 2003 Northeast blackout. An outage
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of power to around 50 million people resulted from
the confluence of several critical variables including an
abnormally hot summer day (environmental), high demand
(social/technological), ineffective management of vegetation
(environmental/social), limited redundancy (technological), and
ineffective operational communication (social) (North American
Electric Reliability Council, 2004). During the event, the cascade
of failure was surprising to managers and it was only until a task
force retrospectively studied the event that causes of failure were
identified and understood (North American Electric Reliability
Council, 2004).

A significant variable that contributes to failures is the
connection between infrastructure systems, or infrastructure
interdependencies (Rinaldi et al., 2001; Wilbanks et al., 2015). As
described by Rinaldi et al. (2001), interdependencies can exist in
many different forms, including the exchange of material outputs
(physical), the influence of spatially proximal hardware failures
(geographic), the shared dependency on communications
systems for operation (cyber), and the influence of institutional
decisions (logical). In the 2003 Northeast Blackout example,
failures cascaded through physical interdependencies between
different power systems and between power and water systems,
resulting in a greater extent of power outages and the occurrence
of water outages, respectively (Bella et al., 2004). Through
the increase in frequency of similar events spurred by climate
change, infrastructure mangers are recognizing the effect that
interdependencies can have on reliability and they are developing
strategies to mitigate these effects (Bella et al., 2004). Since
the existence of interactions has been recognized and defined
for interdependencies, a reductive approach to understanding
them is attractive, and many studies suggest characterizing and
modeling interdependencies to anticipate how cascades might
occur in the future. Though this strategy can provide useful
and necessary insights, we posit that it must be accompanied by
other strategies which directly address the inherent complexity
of modern infrastructure. Through review of historical cases of
failures from interdependencies, we find that there is complexity
inherent in the dynamics of cascades of failure across systems
which is not conducive to purely reductionist approaches. We
therefore recommend that managers augment their methods of
planning with strategies which are appropriate in the complex
domain of the Cynefin framework including decision making
under uncertainty, and safe-to-fail (Leavitt et al., 2006; Snowden
and Boone, 2007; Ilic, 2014; Derrible, 2017; Kim et al., 2017;
Chester and Allenby, 2019). Without including strategies such
as these, the surprise from the emergent cascading failures
from climate change and other hazards will continue to strain
institutions managing infrastructure systems and the customers
they serve.

COMPLEX SYSTEMS DIFFER FROM

COMPLICATED SYSTEMS

Complex systems share characteristics with complicated systems,
but there are important differences which are critical for
managers to recognize. Complicated systems contain many parts

and there is uncertainty included in the system, however, cause-
and-effect relationships can be understood by characterizing
the uncertainty via methods such as statistical distributions
(Chester and Allenby, 2019). In contrast, complex systems
are characterized by “unpredictability and the presence of
unknown unknowns,” or uncharacterizable uncertainty, making
it impossible to establish cause and effect relationships (Snowden
and Boone, 2007). An example of a complicated system is the
process of water treatment. Though there are many interacting
parts including sedimentation rate, concentrations of chemicals
and organics in the water, and the communities of microbes
treating the water, the interactions are well-characterized and the
outcomes, the pathogens removed, is predictable (Reynolds and
Richards, 1982). Conversely, infrastructure systems which form
networks and span across cities have unknown interactions with
other aspects of cities, society, and the environment and thus
become unpredictable. The essential tenets of complex systems,
according to the overview provided by Turner and Baker, are path
dependence where outcomes are sensitive to initial conditions,
system history where past events influence future outcomes, non-
linearity where changes to the system produce disproportionate
outcomes, emergence where “the interactions from the system
components tend to lead to new states, contributing to the
system’s unpredictability,” and irreducibility where “higher-order
states cannot be reduced to their original lower-level states”
(Turner and Baker, 2019).

Literature outlining the needs for future design and
management of infrastructure systems recommends applying
different management approaches for complex systems vs.
complicated systems. Knowledge management researchers
and consultants, Snowden and Boone, developed the Cynefin
framework to help leaders choose strategies which align with
their specific context. Through reviewing their experience
with consulting they “sorted the issues facing leaders into five
contexts defined by the nature of the relationship between
cause and effect”—simple, complicated, complex, chaotic, and
disorder (Snowden and Boone, 2007). Chester and Allenby
adapt the Cynefin framework to infrastructure, and state
that “knowing whether you are working in the complicated
vs. complex domain when it comes to infrastructure is
critical because each domain requires fundamentally different
approaches” (Chester and Allenby, 2019). For complicated
systems, it is appropriate to primarily use data collection
and analysis techniques because experts have the ability to
identify the majority of cause-and-effect relationships in the
system (Chester and Allenby, 2019). For complex systems,
however, analysis techniques are by themselves insufficient
(Chester and Allenby, 2019) because hidden or unknown factors
contribute significantly to the cause-and-effect dynamics (Park
et al., 2013). Therefore, it is recommended that modeling
and analysis is only one of a suite of approaches necessary
for managing complex systems. Given the unpredictability
of complex systems, navigating through their dynamics
requires approaches primarily focused on probing and testing,
then collecting and analyzing data, and lastly deploying
solutions, with a commitment to reassessing the systems as
conditions change.

Frontiers in Water | www.frontiersin.org 2 August 2020 | Volume 2 | Article 2134

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Bondank and Chester Cascading Infrastructure Failures Are Complex

LIMITATIONS OF CHARACTERIZING

INTERDEPENDENCIES

In an effort to manage the complexity of interdependent
infrastructure systems, the predominant approach has been to
employ modeling and analysis to elucidate the interdependencies
between systems. Many studies cite modeling as the most
appropriate approach (Haimes and Jiang, 2001; Ghorbani and
Bagheri, 2008; Lauge et al., 2015), or dive into a modeling
approach without justification (Rinaldi et al., 2001; Smith,
2002; Barton et al., 2004; Visarraga, 2005; Pederson et al.,
2006). The assumption present in these studies is that though
interdependencies are responsible for contributing to complexity
in systems, the dynamics of how they impact systems through
cascades can reasonably be understood through modeling,
and thus are only complicated in nature. The basic tenets of
complexity are not well-represented in the studies. Many studies
have modeled the physical resource flow connections between
different infrastructure systems and the exchange of resources
across systems (Lall and Mays, 1981; Haimes and Jiang, 2001;
Veselka et al., 2001; Barrett et al., 2003; Panzieri et al., 2003;
Barton et al., 2004; Eidson and Ehlen, 2005; Zhang et al., 2005;
Pederson et al., 2006; Bagheri et al., 2007; Donzelli and Setola,
2007; Pate et al., 2007; Johansson and Hassel, 2010; Pye and
Warren, 2011; Rübbelke and Vögele, 2011; Birol and Olerjarnik,
2012; Rheinheimer et al., 2012; Shahid, 2012; Wang et al., 2012,
2013; Bartos and Chester, 2014; Carter, 2014; Lubega and Farid,
2014a; Moini and Asce, 2014; Hwang and Lansey, 2015; Loggins
andWallace, 2015; Berardy and Chester, 2017; Clark et al., 2018).
This information can be useful for long-term resource planning,
where utilities can plan for the generation of enough resources to
support the connected infrastructure system. When interpreting
these studies for understanding vulnerability to cascading failures
across systems, however, the assumption is often that cascades
are linearly related to the amount of resources exchanged
between systems. Other studies identify specific places in the
infrastructure networks where resources might be exchanged
and evaluate how flows of resources might be disrupted if the
point of exchange were to be disrupted (Panzieri et al., 2003;
Visarraga, 2005; Pederson et al., 2006; Wang et al., 2013; Lubega
and Farid, 2014b; Lauge et al., 2015). This information is useful
for identifying the impacts of cascades. However, these studies
assume that the existence of a potential connection between
components determines the occurrence of a cascade. Moreover,
while each types of interdependency study contributes particular
insights about connected systems, no studies include all of the
socio-eco-technical interactions and dynamics between time and
space that would be necessary to fully predict the occurrence and
magnitude of cascades from interdependencies.

COMPLEXITY OF CASCADES OF FAILURE

FROM INTERDEPENDENCIES

Historical events of cascades of failure across infrastructure
systems reveal that interdependencies are complex in nature
instead of complicated—where the occurrence of cascades

emerges from the confluence of many contextual factors in
addition to possible connections through interdependencies
(Bella et al., 2004; Chang et al., 2007; Rong et al., 2010; Markolf
et al., 2018). The following review of select historical events shows
that the dynamics of cascading failure from interdependencies
display essential tenets of complexity including non-linearity,
emergence, and path dependence.

There are non-linearities in the outcomes from cascades due
to interdependencies. The occurrence and magnitude of cascades
are not directly related to only the magnitude of resource flows
between systems (in the case of physical interdependencies)
or the existence of a connection (for geographic, cyber, and
logical types of interdependencies). Other factors contribute
significantly to the cascade outcomes. For example, in the 2003
Northeast Blackout, the amount of power resources each of the
connected water systems required for their pumping stations
did not dictate the number of water outages which occurred.
All systems required power and are similar in size, but the
water outages seemed to occur more for systems which had
less backup water storage or backup power generation (Bella
et al., 2004). Clifton, New Jersey was able to avoid having
any outages because they had 3 days-worth of water storage
(Bella et al., 2004). Thus, the characterization of interdependency
connections in terms of the magnitude of resource exchanged,
or existence of a connection, provides limited capability for
understanding the potential of cascades across systems. The non-
linearity of occurrences and magnitudes of cascades is consistent
with the vaguely defined “tightness or looseness” aspect of
interdependencies described in Rinaldi et al. (2001).

Interactions of social, ecological, and technological systems
over time contribute to the path dependency of the occurrence
of cascades from interdependencies. It is known that these
interactions create path dependencies in infrastructure systems
operations (Leveson, 2002; Grabowski and Miller, 2017; Markolf
et al., 2018; Oughton et al., 2018; Chester and Allenby, 2019), but
the occurrence of path dependencies which affects the behavior
of cascades across systems is less well-recognized. A historical
example is that Clifton, New Jersey evolved to be more prepared
for power outages than surrounding cities during the 2003
Northeast Blackout because they prepared for the possible fallout
of Y2K ahead of time by installing dual electric feeds and making
agreements with their public electric company that they would
“run three peaking generators in order to sustain their main
treatment plants” (Bella et al., 2004). An additional example
presented by Markolf et al. (2018) regards Miami’s approach
to managing their “sunny-day floods,” which are initiated by
sea level rise and extreme precipitation events, and result
in service losses of transportation infrastructure through the
transportation system’s interdependency with the deteriorating
stormwater infrastructure. They posit that the resulting failures
may cause additional interdependency-related failures in the
future because the City of Miami may end up encouraging
development into the area to raise taxes for the roadway pumps
they are installing to mitigate the stormwater vulnerability,
which may outpace the pump development and in turn increase
the number of people vulnerable to flooding in the future
(Markolf et al., 2018). In a general sense, because infrastructure
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systems are designed to last decades, the historical design of
infrastructure systems will always be a factor in the behavior of
current systems, and therefore also in the occurrence of cascades
from interdependencies from extreme weather events. Thus,
characterizations of interdependencies that omit the effects of
historical interactions of social, ecological, and technical systems
provide a limited understanding of the potential for cascades
across systems.

Interdependent infrastructure systems in different locations
vary in characteristics which determine cascades, leading to
unpredictability of outcomes, or the emergence of outcomes for
different cases. For example, two studies which look empirically
at the impacts of power outages from similar extreme ice
storms in two different cases—in Canada in 1998 (Chang et al.,
2007) and China in 2008 (Rong et al., 2010)—show that even
though both power systems were connected to the same set of
infrastructure, the connected systems that had the greatest extent
of cascades and impact from cascades differed. Chang et al.
(2007) found that the greatest impact and extent of cascades
in Canada from the power sector was to business retail and
production, whereas Rong et al. (2010) found that the greatest
impact and extent of cascades in China from the power sector
was to the mobile telephone sector. This implies that there
were contextual aspects in each case that contributed to the
occurrence and extent of cascades across specific infrastructure
systems. Thus, characterizing generalized rules of cascades
from interdependencies provides limited capacity for predicting
outcomes of different contexts.

DISCUSSION

Since cascades from interdependencies are complex in nature,
managers should not rely on the characterization or modeling
of interdependencies alone in their climate change adaptation
strategies, but should follow best practices recommended by
complex systems science. For example, the Cynefin framework
recommends that for complex systems, strategies including
probing and testing, collecting and analyzing data, and lastly
deploying solutions, with a commitment to reassessing the
systems as conditions change should be employed (Snowden
and Boone, 2007). Decision-making frameworks which would
be appropriate include (but are not limited to) Decision Making
Under Deep Uncertainty, and Safe-to-Fail (Leavitt et al., 2006;
Ilic, 2014; Derrible, 2017; Kim et al., 2017; Chester and Allenby,
2019). These frameworks tend to establish principles that
recognize complexity and call for designing and operating by
recognizing uncertainty, testing, and a commitment to long-
term reassessment of the asset and its performance under
changing conditions.

Decision Making Under Deep Uncertainty is relevant for
managing types of uncertainty that are largely unknown and
which cannot necessarily be characterized through probability
distributions (Helmrich and Chester, 2019). It involves a cyclical
process of framing the analysis, performing an exploratory
uncertainty analysis, choosing initial actions and contingent
actions, and iteration and re-examination (Decision Making
Under Deep Uncertainty, 2019). There are multiple approaches

suggested within this framework including Robust Decision-
making, and Dynamic Adaptive Planning. Robust Decision-
making includes using exploratory modeling to test strategies
over possible futures (DecisionMaking Under Deep Uncertainty,
2019). Dynamic Adaptive Planning focuses on the adaptation
of plans overtime when new information is available (Park
et al., 2013; Decision Making Under Deep Uncertainty,
2019). Modeling interdependencies could thus be an aspect
of exploring future scenarios, but the assumptions and inputs
into the model would need to be updated when new
information becomes available. Information that might surface
overtime regarding interdependencies might include changes in
connections between systems, climate hazards, demand profiles,
and infrastructure hardware and institutions.

The Safe-to-Fail framework bypasses the need to characterize
uncertainty and instead assumes that assets will fail if designed
for rigidity in changing conditions. The framework recommends
designing with potential failure in mind, and incorporating
alternative service delivery approaches to make the system
more adaptable (Kim et al., 2017). In the case of managing
interdependencies, this might mean that managers would assume
that the other infrastructure systems they rely on will fail at
some point, and would prioritize providing backup systems (e.g.,
generators, storage tanks, etc.) to maintain critical services.

Improving the communication and coordination between
managers of different infrastructure systems could increase
managers’ capacity to implement strategies for complex systems
(Leavitt et al., 2006; Ilic, 2014; Derrible, 2017; Chester and
Allenby, 2019). Though appropriate in the past, literature
suggests that separate management of infrastructure systems
may limit the capacity to prepare systems for disturbances.
Derrible (2017) states that the “dichotomy of responsibility” was
developed due to “the global push toward safety, accountability,
and higher efficiency.” “The mechanistic approach has been
shown to be. . . effective in environments that require routine
operation and little change. In these environments high-level
management possesses the appropriate amount of knowledge
to make decisions and organize work” (Chester and Allenby,
2018). This implies that in environments with high change,
one organization might not be in possession of all relevant
knowledge. Because infrastructure organizations have evolved
without the acute need to coordinate or consider uncertainty,
“sharing of knowledge and resources across groups to address
interdisciplinary challenges is typically infeasible and solutions
to challenges are often prescribed with little opportunity for
deviation” (Chester and Allenby, 2019). Without information
sharing, flawed expectations about the behavior of the change
may lead to undesired consequences (Leveson, 2002; Park et al.,
2013). Thus, coordination across organizations would provide
the capacity to develop more realistic expectations about the
behavior of infrastructure systems and would allow for effective
adaptations to be more easily made.

CONCLUSION

A common approach to managing the uncertainty of the failure
of infrastructure systems in the face of climate change hazards
has been to try to characterize the cause-and-effect behavior
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of interdependencies. Historical examples of failures from
interdependencies show that the occurrence and extent of
cascades of failure from one infrastructure system to another
is unpredictable because the systems display essential tenets
of complexity—namely non-linearities, path dependence,
and emergence. Thus, in order to better prepare for an
uncertain future including climate change, managers should
consider the complexity of cascades and implement additional
strategies which are appropriate for the complex domain
of the Cynefin framework. Ultimately, if the complexity of
the behavior of cascades of interdependencies is overlooked
and additional strategies are not included, the surprise
from the emergent cascading failures will continue to strain
institutions managing infrastructure systems and the customers
they serve.
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National and international security communities (e.g., U.S. Department of Defense) have

shown increasing attention for innovating critical infrastructure and installations due to

recurring high-profile flooding events in recent years. The standard infrastructure design

approach relies on local precipitation-based intensity-duration-frequency (PREC-IDF)

curves that do not account for snow process and assume stationary climate,

leading to high failure risk and increased maintenance costs. This paper reviews the

recently developed next-generation IDF (NG-IDF) curves that explicitly account for

the mechanisms of extreme water available for runoff including rainfall, snowmelt,

and rain-on-snow under nonstationary climate. The NG-IDF curve is an enhancement

to the PREC-IDF curve and provides a consistent design approach across rain- to

snow-dominated regions, which can benefit engineers and planners responsible for

designing climate-resilient facilities, federal emergency agencies responsible for the flood

insurance program, and local jurisdictions responsible for developing designmanuals and

approving subsequent infrastructure designs. Further, we discuss the recent advances in

climate and hydrologic science communities that have not been translated into actional

information in the engineering community. To bridge the gap, we advocate that building

climate-resilient infrastructure goes beyond the traditional local design scale where

engineers rely on recipe-basedmethods only; the future hydrologic design is amulti-scale

problem and requires closer collaboration between climate scientists, hydrologists, and

civil engineers.

Keywords: NG-IDF curves, snowmelt, rain-on-snow, floods, nonstationarity, extreme events, atmospheric river,

DHSVM

INTRODUCTION

Recurring high-profile flooding events (e.g., 2017 California) has led to major public
safety concerns and motivated national security communities to explore new methods
to innovate critical infrastructure (ESTCP, 2018). Currently, infrastructure design to
withstand extreme flooding relies largely on precipitation-based intensity-duration-frequency
(PREC-IDF) curves developed at the local scale, which is then coupled with single-event
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rainfall-runoff models such as the Technical Release 55 (TR-
55) for estimating flood peaks, the so-called “standard IDF
design workflow” (Cronshey et al., 1986; Chow et al., 1988). This
PREC-IDF approach assumes that precipitation is in the form
of rainfall that immediately starts the rainfall-runoff process.
This assumption, however, can lead to significant underdesign
risk in areas where snowmelt/rain-on-snow (ROS) are the
dominant flood-generating mechanisms (e.g., the 2017 Oroville
Dam crisis). Further, federal atlas’s of PREC-IDF curves, such as
the National Oceanic and Atmospheric Administration (NOAA)
Atlas 14 (Bonnin et al., 2011), assume stationary climate, that
is, the occurrence probability of extreme hydrometeorological
events is not expected to change significantly within the service
life of infrastructure. Given the strong evidence that climate-
related hazards, including common engineering design criteria
such as the 25-year storm magnitude and frequency, are no
longer stationary over time (Wuebbles et al., 2014), the current
hydrologic design standards are insufficient in the 21st century
(Ragno et al., 2018; Wright et al., 2019).

In design practices, many surface water design manuals in the
U.S. are based on the NOAA PREC-IDF curves, even in snow-
dominated regions (SMMEW, 2004; SCDM, 2016). The earliest
NOAA Atlas 14 product appeared for Ohio in 2004 and the latest
product was for Texas in 2018 (Lopez-Cantu and Samaras, 2018).
At present, the NOAA Atlas 14 is not available for the Pacific
Northwest (PNW); Technical Paper 40 (Hershfield, 1961) is used
instead and was developed from observations ending in the
1950s. Given the observed rapid increase in extreme precipitation
(Kunkel et al., 2020), these products are becoming obsolete. For
critical infrastructure with a design life often exceeding 30 years,
even the latest 2018 atlas has become problematic because of
the projected significant changes in extreme precipitation by
2050 (Prein et al., 2017). Currently, systematic, coordinated, and
consistent surface water design manuals explicitly addressing
snowmelt and nonstationary climate are not available. The
recent federal guideline for flood frequency analysis, Bulletin
17C, acknowledges the significant implications of snowmelt
and nonstationarity; however, it provides no explicit guidance
(England et al., 2018). On the other hand, deficiencies of the
standard PREC-IDF approach are well-known issues in climate
and hydrologic science communities and coupled physically-
based hydrologic and climate models have been applied to
investigate multi-scale extreme hydrometeorological events and
runoff generation mechanisms (Tohver et al., 2014). Despite
significant advances made in science communities in the past
decades, the current state of science has not translated into
actionable information for engineers, and a gap still exists
between science and engineering communities (ASCE, 2015).

This paper addresses the emerging need for a next-
generation design tool by providing a review of the recently
developed, science-driven “next-generation IDF” (NG-IDF)
approach. In the following, Section “NG-IDF Curves vs.
PREC-IDF Curves” describes the NG-IDF curves and Section
“Physics-Based Hydrologic Modeling: Extending and Validating
NG-IDF Curves” describes the physically-based hydrologic
modeling approach to extend and validate NG-IDF curves”
(i.e., advances in hydrologic science). Section “Nonstationary

NG-IDF Curves Under Climate Change” describes the general
circulation model (GCM) modeling approach to develop
nonstationary NG-IDF curves (i.e., advances in climate science).
Finally, Section “Discussion” discusses future opportunities and
technology transfer.

NG-IDF CURVES VS. PREC-IDF CURVES

The authors (Yan et al., 2018) proposed the NG-IDF curves
that characterize the actual amount of water reaching the land
surface or “water available for runoff (W).” The W is estimated
through land surface water balance as W = P − 1SWE,
where P indicates precipitation, and 1SWE indicates changes
in snow water equivalent (SWE). The W can be associated
with multiple mechanisms, including rainfall on the snow-
free ground, snowmelt without precipitation, ROS, and mixed
rainfall and snowfall. By comparing the NG-IDF value with
the PREC-IDF value for events with a specified duration and
average recurrence interval (ARI), they evaluated the current
design risk as (1) underdesign when the NG-IDF value is
greater than the PREC-IDF value, (2) overdesign when the
PREC-IDF value is greater than the NG-IDF value, and (3)
proper design when the differences between the two values
are trivial. Underdesign occurs when ROS/snowmelt intensity
exceeds precipitation intensity (W > P), overdesign occurs when
snowfall intensity exceeds snowmelt intensity (W < P), and
proper design occurs when the snow has minor effects (W ≈ P).

The authors (Yan et al., 2018) first compared PREC-IDF
and NG-IDF curves using Snowpack Telemetry (SNOTEL)
measurements as a proof-of-concept, as even the most
sophisticated hydrologic models cannot replace the observation
record. SNOTEL is an automated system of snowpack and
climate sensors installed in open mountainous areas of the
western U.S. (WUS) and operated by the Natural Resources
Conservation Service. They developed long-term bias-corrected
quality-controlled (BCQC) P and SWE measurements from
nearly 400 SNOTEL stations across the WUS to develop and
compare PREC-IDF and NG-IDF curves. They found that the
use of PREC-IDF curves can lead to underdesign at 45% of the
sites. Most of the sites found to be underdesigned were in the
PNW and continental regime that feature deeper snowpack and
longer snow accumulation seasons. At these sites, the authors
(Yan et al., 2019a) further compared the peak design flood
estimates using NG-IDF and PREC-IDF curves coupled with the
TR-55 rainfall-runoff model. They found that after the nonlinear
runoff generation process, 70% of the sites were subject to
underdesign and the PREC-IDF method underestimated peak
design flood by as much as 324%.

By differentiating the precipitation phase using the change
in SWE, the authors (Yan et al., 2018) also identified the
dominant mechanism of extreme W at these sites, and found
significant regional differences in flood-generating mechanisms
across the WUS, e.g., the maritime regime is ROS dominated,
and the continental regime is snowmelt dominated. The authors
(Yan et al., 2019b) confirmed that this regional variability
is associated with climate variability across the WUS, which
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includes air temperature, solar radiation, and atmospheric
humidity. In the maritime regime that features high humidity,
latent energy can warm the falling precipitation through
condensation, leading to more frequent ROS events (Harpold
and Brooks, 2018). In the continental regime that features
high elevations, the late onset of above-freezing temperatures
results in snowmelt in late spring, leading to high solar
radiation (high solar angles) and large snowmelt events
(Musselman et al., 2017).

PHYSICS-BASED HYDROLOGIC
MODELING: EXTENDING AND VALIDATING
NG-IDF CURVES

The inclusion of snow processes in hydrologic design vastly
increases the complexity of the problem over the PREC-
IDF approach. Canopy interception and release of snowfall is
significantly more complicated than for rainfall. The SNOTEL
observations are limited in space and time and only available
for the open condition. In this regard, Hamlet (2018) and the
authors (Yan et al., 2020) advocated a need for well-validated
physics-based model simulations to extend snow data in space,
time, and for different land covers to provide comprehensive NG-
IDF products that can be adapted to the standard IDF design
workflow. A well-validatedmodel is also critical for validating the
NG-IDF approach in design flood estimates because streamflow
in snow-dominated regions is poorly observed due to inherent
difficulties of access (Lundquist et al., 2016).

To extend NG-IDF curves for different land covers beyond
the bare ground of SNOTELs, the authors (Sun et al., 2018)
enhanced the capability for modeling complex snow-canopy
interactions within the framework of the Distributed Hydrology
Soil Vegetation Model (DHSVM) (Wigmosta et al., 1994,
2002). In an extensive review of 30 hydrologic models, Beckers
et al. (2009) showed that DHSVM is the best for hydrologic
modeling in forest environments because of the detailed process
representation of topographic and canopy control of the energy
andmass exchange in a spatially distributed manner. The authors
(Sun et al., 2018) enhanced DHSVM capability in featuring
a subgrid representation of snow-canopy dynamics in canopy
gaps by explicitly accounting for the impact of the surrounding
canopy on the gap energy balance and generating spatially varied
irradiance. The enhanced model was validated at the University
of Idaho Experimental Forest and showed good agreement with
subhourly SWE observations at open, dense canopy, and canopy
gap sites, e.g., correlation of determinations (R2) were >0.9.
This validated model lays the foundation for developing NG-IDF
curves in complex land cover conditions (e.g., consistent with
TR-55 land cover classification).

To extend NG-IDF curves in time and space beyond the
limited coverage of the SNOTEL data, the authors (Sun et al.,
2019) developed and validated regionally coherent DHSVM
snow parameters. By using the BCQC SNOTEL data at 246
sites over the WUS, the authors (Sun et al., 2019) performed
a generalized sensitivity test for the DHSVM snow model and
identified sensitive snow parameters that control daily SWE
evolution under diverse climate regimes. Regional parameters

were then developed for these sensitive snow parameters for eight
ecoregions (CEC, 2009) characterized by a distinct hydroclimatic
regime across the WUS. The regional snow parameters were
evaluated at individual SNOTEL sites and the validation results
ensured that regional snow parameters were able to capture
daily variations in SWE obversions, e.g., the simulation of daily
SWE had Nash-Sutcliffe efficiency (NSE) >0.8 at 83% of the
sites. These regional snow parameters lay the foundation for
developing NG-IDF curves at ungauged sites at regional to
continental scale.

To validate the NG-IDF approach in design flood estimates,
the authors (Yan et al., 2020) developed an experimental
hillslope appropriate for mountainous topography to allow
direct comparison between the DHSVM continuous simulation
and NG-IDF approach. They applied the same experimental
hillslope at these 246 SNOTEL sites to examine and compare the
performances of the NG-IDF approach across the WUS under
various hydroclimate conditions. They used the aforementioned
well-validated DHSVM continuous streamflow simulations as a
performance benchmark with explicit uncertainty quantification.
By comparing the design flood estimates from NG-IDF curves
coupled with the TR-55 model and DHSVM streamflow
frequency statistics, they suggested that the NG-IDF approach
provided a satisfactory performance in design flood estimates in
different hydroclimate regimes of the WUS, e.g., the averaged
error over the WUS in design flood estimates was <15%. This
validation study facilitates NG-IDF technology transfer and
implementation practice.

NONSTATIONARY NG-IDF CURVES
UNDER CLIMATE CHANGE

Instead of focusing on changes in extreme precipitation only,
nonstationary NG-IDF curves further require an understanding
of changes in extreme snowmelt and ROS events. Global
warming will lead to a shift in rain-snow ratio and increase soil
freeze-thaw cycles, resulting in more frequent ROS events and
higher flood risk at higher elevations in the future (Beniston and
Stoffel, 2016; Musselman et al., 2018; Li et al., 2019). Using the
BCQC SNOTEL data, the authors (Yan et al., 2019b) examined
the changes in snow process and frequency of ROS events over
1979–2017. They found statistically significant trends toward
declining and earlier snowmelt over the WUS. Specifically,
annual maximum snowmelt decreased by 21% averaged across
the snowy regions of the WUS, and the frequency of ROS
events increased by 32% averaged in the northwestern U.S.
The changes in snowpack and extreme W events under future
climate can be better understood with the use of climate
model projections.

Despite GCMs providing useful information at global and
climatic scales, they cannot present some fine-scale weather
systems that are critical in the formation of precipitation given
their relatively coarse resolution. To make these projections
useful in hydrological design, they need to be downscaled to
a finer resolution, through either a statistical or dynamical
process. Statistical downscaling is computationally efficient
but depends upon choices of predictors and suffers from
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the possible change of predictor-predictand relationship under
future climate (Fowler et al., 2007). On the contrary, dynamical
downscaling uses regional climate simulation to resolve the
atmospheric processes but is computationally intense (Chen
et al., 2018). Currently, there are two approaches to develop
nonstationary NG-IDF curves: (1) top-down method using
GCMs and hydrologic models (Clark et al., 2016; Hou et al.,
2019) and (2) statistical modeling with time-varying parameters
(Cheng and AghaKouchak, 2014; Ren et al., 2019). The first
approach physically simulates both climate and hydrological
processes; however, the outcome is subject to a cascade of
uncertainties that arise from assumptions in each step of the
modeling chain. The second approach is straightforward, yet
the extrapolation of parameter trends into the future should be
cautious because it is not known when or where the change point
may occur.

Figure 1A presents the top-down end-to-end modeling chain
that connects emission scenarios to next-generation design
tools and Figures 1B,C present the associated steps to develop
both stationary and nonstationary PREC-IDF and NG-IDF
curves. The top-down modeling chain includes eight uncertainty
sources: (1) climate change scenario, (2) global model structure,
(3) internal climate variability, (4) downscaling method, (5)
hydrologic model structure, (6) hydrologic model parameter, (7)
statistical model structure, and (8) statistical model parameter.
Characterizing and reducing uncertainties remains challenging
and requires improving process understanding and increasing
computational resources.

Based on the top-down method, the authors (Hou et al., 2019)
developed nonstationary NG-IDF curves for two Department of
Defense (DoD) mountainous sites: Fort Carson in Colorado and
Marine Corps Mountain Warfare Training Center in California.
Using the Weather Research and Forecasting (WRF) model
(Skamarock et al., 2008) to dynamically downscale phase 5 of the
Coupled Model Intercomparison Project (CMIP5) Community
Earth System Model (CESM), the authors (Hou et al., 2019)
developed nonstationary NG-IDF curves at the two DoD
sites through the end of 21 century under the representative
concentration pathway RCP4.5 and RCP8.5 scenarios. If NG-
IDF curves are used while ignoring climate nonstationarity, the
resulting projections showed that the two DoD installations are
at risk for underdesign by up to 80% through the end of the
century. This result, however, has large uncertainty because it
was based on one GCM using one initial condition. Dynamically
downscaled ensemble simulation is desired and undergoing in
our next study.

DISCUSSION

Currently, a systematic and consistent local surface water design
manual is not available for snow-dominated regions of the U.S.
The documented “recipe-based” methods vary from the “blind
method” of simply using the PREC-IDF curves to the “tuning
factor method” of adding a snowmelt factor to the PREC-
IDF curves. For example, Snohomish County in Washington

State extends from the Puget Sound lowland to the crest of
the Cascade Range. Despite Snohomish County’s large portion
of snow-dominated regions, the Snohomish County Drainage
Manual still recommends the use of NOAA PREC-IDF curves for
hydrologic design such as wetpool treatment facilities (SCDM,
2016). Chelan County in Washington State, located in the snow-
dominated regions of the Eastern Cascade Ranges, follows the
turning factor method in the Stormwater Management Manual
for Eastern Washington (SMMEW, 2004). Data to support this
method, however, are only available for nine sites and are
based on several implicit assumptions (e.g., snow will melt
during a 72-h ROS). Alternatively, the federal Unified Facilities
Criteria (UFC) recommends using PREC-IDF curves for small
infrastructure design such as detention pond and using a
hydrologic model such as the Storm Water Management Model
for large, high-risk design projects (UFC, 2013).

Despite significant efforts that have been made in physics-
based climate and hydrologic modeling over the past decades,
advances in hydrologic and climate science communities have
not been broadly translated into actionable information in
engineering communities. One possible reason is that the use
of a physics-based, coupled hydrologic and climate model can
be cost-prohibitive in the design of local smaller infrastructure,
such as highway culverts or residential drainage systems. Another
more important reason is the required adherence to local surface
water design manuals. Updating design manuals is a complex
process that may take years to accomplish. Therefore, technology
transfer is critical to bridge the gap and a new science-driven
engineering tool that can be adapted to the current standard
codes is most likely to be implemented and considered in the
following updated design manual.

To provide a consistent IDF design method for both rain-
dominated and snow-dominated regions, we proposed the NG-
IDF curves that captured multiple flood-generating mechanisms
including rainfall, snowmelt, and ROS. The NG-IDF curve is
a science-driven engineering product from the collaboration
between climate scientists, hydrologists, and civil engineers.
Climate scientists used theWRFmodel to dynamically downscale
GCM simulations and understand the atmospheric mechanism
of extreme precipitation; hydrologists used DHSVM to simulate
snow process and understand dominant mechanisms of extreme
water available for runoff and also worked with civil engineers
on technology transfer such as adaption to the standard IDF
design flow by including snow process into IDF curves (i.e., NG-
IDF) and validation sites selection (i.e., the aforementioned two
DoD sites).

Looking forward, there is an increasing awareness that
hydrologic design under nonstationary climate is a multi-scale
problem and requires the linkage across scales, such as linking
global-scale atmospheric circulation to regional-sale water flux,
linking watershed-scale hydrological processes to design-scale
flood response (Figure 2A). This process-oriented hydrologic
design will require a shift in thinking from a purely statistical
inference problem to a broader understanding of physical flood-
generating mechanisms at both watershed and synoptic scales
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FIGURE 1 | (A) Top-down approach to develop nonstationary next-generation hydrologic design toolbox. To make the projection actionable to engineers, deliberate

approaches are necessary to characterize and reduce uncertainties in each step. The final nonstationary design toolbox should be probabilistic (i.e., projections of the

most likely, the least, and worst cases) and adapted to the standard risk management design framework. (B) Developing stationary PREC-IDF and NG-IDF curves

following the top-down approach. (C) Developing nonstationary PREC-IDF and NG-IDF curves following the top-down approach.

(Milly et al., 2008; Mailhot and Duchesne, 2010; Arnbjerg-
Nielsen et al., 2013; Chester et al., 2020; Cook et al., 2020).

In Figure 2B, the authors (Chen et al., 2018) suggested that
atmospheric rivers (ARs), a long and narrow band of intense

moisture transport, is a key predictor of extreme precipitation
occurrence and magnitude in the WUS watersheds. The authors
(Chen et al., 2019a) also found out that ARs are the main driver
of ROS events and responsible for 11–20% of intense snowmelt

Frontiers in Water | www.frontiersin.org 5 December 2020 | Volume 2 | Article 54505143

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Yan et al. Next-Generation IDF Curves

FIGURE 2 | (A) Illustration of hydrologic design under nonstationary climate: a multi-scale problem that links climate scientists, hydrologists, and engineers. (B) An

example of a flooding event at the Sierra Nevada caused by rain-on-snow at watershed-scale and atmospheric river at global-scale.

events in Pacific Coast Ranges. Further, the authors (Chen et al.,
2019b) provided a comprehensive evaluation of land surface
energy and hydrologic responses to ARs over the WUS. They
identified that strong radiation and warm air temperature during
ARs enhanced snow ablation and increased the likelihood and
strength of ROS. Therefore, projecting future design floods for
Pacific Coast Ranges not only requires a better understanding of
extreme precipitation change but also the interacted change of
AR storms on snowpack.
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Climate change adaptation policy requires assessing a community’s vulnerability

based on its socio-economic characteristics. A predominant approach to vulnerability

assessment is indicator-based, wherein variables are aggregated to assess the

vulnerability of units in a system (e.g., neighborhoods in a city). Here we show that a

particular evidence-based predictive statistics approach can address two shortcomings

of the most commonly-used indicator-based approach: lack of a means of validation

and problematic weighting of individual indicators. We demonstrate how robust

evidence-based models can produce frameworks that overcome these limitations.

Using the case study of Hurricane Sandy in the State of New Jersey, we conducted

two-pronged validated vulnerability assessments, based on insurance claim payouts

and assistance grants. The latter needs-based assessment shows that “Minorities” are

substantially more vulnerable than others based on a significant negative association

with assistance approval rate (approved claims divided by all claims). Our findings

highlight issues discussed in the literature within the context of climate justice and equity.

Such an approach is helpful locally, but also when adaptation plans are developed

over broad scales of time and space considering disparities between regions or across

multiple jurisdictions.

Keywords: climate change, social vulnerability assessment, social vulnerability, indicator-based assessment,

climate adaptation, climate policy

BACKGROUND

Climate change is one of the most pressing issues of our time, one that puts many communities at
risk from multiple types of catastrophic hazards (O’Neill et al., 2017). For example, sea level rise
puts coastal communities at risk, especially when combined with intensive storms and high tides,
which create storm surge and flooding (Walsh et al., 2016). Mitigating these risks requires new and
proven ways of adaptation planning.

There are several challenges inherent to the adaptation planning process that require significant
improvement, including dealing with uncertainties in climatic system forecasting (Nicholls and
Cazenave, 2010; Walsh et al., 2016) while incorporating physical, ecological, and socio-economic
aspects of human activities within coastal zones (Nicholls et al., 2015; Shao et al., 2017).
Socio-economic aspects of adaptation planning involve consideration of social vulnerability and
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environmental justice issues related to climate change; both
need to be addressed for efficient adaptation planning (Kim
et al., 2018; van den Berg and Keenan, 2019). Despite its
urgency, the practicalities of assessing the vulnerability of human
communities and populations, which lays the foundation for
designing adaptation plans and for allocating the resources
necessary to make plans a reality, need further investigation.

A commonly used vulnerability assessment approach uses
indicators (hereafter “indicator-based assessment”) (Zhang
et al., 2018). This approach has been widely implemented
by governments as part of adaptation policy efforts (e.g.,
Rowan et al., 2013; Boston, 2016). In the social vulnerability
domain, using socio-economic variables (social indicators),
such as age, race, and income, the predominant indicator-
based vulnerability assessment should enable the prediction of
the susceptibility of communities to the negative effects of
climate-driven events, whether they be physical, financial, or
psychological (Benevolenza and DeRigne, 2019). However, such
assessments are based largely on theoretical assumptions of what
is perceived to reflect vulnerability and therefore are less accurate
than they would be if they were based on empirical findings.

Evidence-based approaches to vulnerability assessment
could supplement and improve the standard “indicator-based”
approach and thus lead to better allocation of resources for
adaptation. Here we show that an evidence-based predictive
statistics approach, often claimed infeasible in the past (Hinkel,
2011), can indeed be used as a possible solution for two
shortcomings of the most commonly-used indicator-based
approach: (1) the lack of a means of validation, and (2)
problematic weighting (Tonmoy et al., 2014; Nguyen et al.,
2016).

Due to the availability of large quantities of socio-economic
data to choose from as indicators (e.g., as a result of increased
data from national census programs), it is a common practice
to remove correlating indicators, or to perform some type of
dimension reduction statistical technique. The most common of
these methods is the Principal Component Analysis (PCA). As
a case in point, one of the most influential works in the field of
indicator-based vulnerability assessments introduced the PCA-
based social vulnerability index over a decade and a half ago and
trademarked SoVi (R)—the Social Vulnerability Index.

Methods, such as PCA, minimize redundancy, and produce
a lower and more manageable number of indicators (alias,
“components” in PCA) for the assessment. While the PCA
approach is sometimes mistaken to be a predictive data-
driven approach, in practice it only analyzes variability in
the explanatory dataset while offering no evaluation of its
predictive power. Like other works over the years, the original
introduction of the social vulnerability index approach explicitly
acknowledged the problematic nature of indicator equal-weights
practices back in 2003 (Cutter et al., 2003). Now, with new types
of information and with the relative abundance and accessibility
of big data, previously unforeseen research opportunities have
become available and can be used to remedy this situation.

We propose validation of common theoretical assumptions
by utilizing harm indicators, i.e., harm experienced by subjects
during a climate-related event (e.g., heat waves or hurricanes),

in robust predictive statistical models. PCA and other dimension
reduction techniques are an important first step in analyses
that utilize an initially large number of variables (especially
correlating variables), however, these unsupervised approaches
(i.e., for which there is no outcome/dependent variable) only
analyze the explanatory data (social indicators in this case). They
do not analyze how these social indicators come into play in real
events which can themselves be analyzed by using a supervised
predictive approach, i.e., ones that use an outcome variable.

Predictive supervised statistical models (as opposed to,
for example, the unsupervised PCA) tell us whether certain
vulnerability indicators are appropriate for predicting de facto
vulnerability, always measured based on harm indicators.
Furthermore, the results of such predictive models denote the
relative importance of each vulnerability indicator and thus can
help in (a) deciding on the final set of indicators to include in
the assessment (e.g., that are the social indicators shown to be
significant in predicting the outcome), and (b) assigning different
weights to each indicator in that set.

Such ideas have been addressed in the literature in the past (see
Discussion), however, indicator-based vulnerability assessments
in general and particularly indicator-based social vulnerability
assessments, have rarely used a predictive approach based
on empirical observation of outcomes (i.e., harm indicators).
Furthermore, they usually employ equal-weighted aggregation,
wherein indicators are considered equally important without
justification (Tonmoy et al., 2014; Nguyen et al., 2016). As a
result, quantitative vulnerability assessments that are available
to policy-makers today are largely not based on real-world
experience; they are not sufficiently modified or improved based
on recent and actual climate events, and thus they remain limited.

The methodology we present here follows several evidence-
based predictive statistics studies while addressing some technical
and practical limitations of these studies (see Discussion). We
demonstrate, using a case study, how robust predictive statistical
analysis can produce a validated evidence-based vulnerability
assessment. Our case study is based on the impact of Hurricane
Sandy (2012) on the State of New Jersey (NJ), USA. We
analyzed the relationship between observed harm as reflected by
insurance payout data, FEMA assistance data and using various
social indicators while controlling for environmental factors. We
hypothesize that certain indicators are significant in predicting
harm and that the level of impact varies across indicators.

METHODS

Data and Variables
Harm Indicators (Outcome Variables)
Harm indicators (the outcome/dependent variables) were
derived from two main datasets (Figure 1). The first, containing
data related to insurance payouts after Hurricane Sandy was
provided by the NJ Department of Banking and Insurance at the
zip code level in NJ (Request Number: C115955). It reflects over
four billion US dollars paid to subjects who experienced financial
damage as a result of Hurricane Sandy. The second dataset
contains information about the Federal Emergency Management
Agency’s (FEMA) Individual and Housing Assistance Program
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FIGURE 1 | Datasets used in the study to derive harm indicators (US $).

(IHP) of over 400 million US Dollars during Hurricane Sandy
(hereinafter: “FEMA assistance” or “government assistance”)
which is also available at the zip code level (FEMA, 2014).

IHP provides assistance to those who had necessary expenses
and significant needs, and only if they are unable to meet
those needs through other means. It provides temporary housing
assistance as well as other grant money that assists in activities,
such as the replacement of lost furniture and clothing (Lindsay,
2017). Some typos were identified in the FEMA dataset’s zip
code numbers (invalid numbers or numbers outside the relevant
states) and were subsequently removed from the database before
it was used in the analysis.

Social Indicators (Explanatory Variables)
Initially, 15 social indicators (explanatory variables) were
considered (see Table 1). These were consistent with the
literature and were obtained from the US Census Bureau’s
American Community Survey (ACS) aggregated for the years of
2008–2012. Since Hurricane Sandy occurred toward the end of
2012, it was assumed that the majority of samples are relevant for
the pre-event conditions as required for the analysis.

Exposure Indicators (Explanatory/Control Variables)
Three exposure indicators were used: distance from the
storm track, maximum wind speed, and flood extent, as

presented in Figure 2 (see Supplementary Material for
additional information).

Spatial Resolution
The availability of data at the zip code level offers a sufficient
number of observations (a sample size of 516–583 areas)
at a relatively fine geospatial resolution for implementing
predictive statistical modeling. Consequently, the association
between socio-economic characteristics (indicators) of different
communities (based on zip codes) and observed harm (insurance
payouts and FEMA assistance) could be empirically explored.

Statistical Methodologies
General
Harm indicators derived from the two aforementioned datasets
(insurance and FEMA assistance) were used as dependent
(outcome) variables in various predictive statistical models
in order to explore socio-economical risk and vulnerability
patterns. Three main statistical methodologies were used. First,
Partial Least Squares Regression (known as PLS or PLSR) was
implemented for selecting the relevant social indicators. PLS is
a methodology that performs dimension reduction, like PCA but
considering an outcome variable(s) in addition to the explanatory
variables. Then, multivariate linear regression (hereinafter:
“simple regression”), as well as spatial autoregressive regression
(hereinafter: “spatial regression” or “spatial lag regression”) was
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TABLE 1 | Social indicators considered in the initial analysis.

Indicator Date source Variable type

Per capita income (Income) ACS B19301_001 Mean

Income over $75 k ACS B19001_013-017 Ratio of households

Income below poverty (Poverty) ACS B17017_002 Ratio of households

Household size ACS B25010_001 Mean

Social security receivers (Social security) ACS B19055_002 Ratio of households

Unemployment (Unemployed) ACS HC04_EST_VC24 Ratio of population

Age dependency -under 6 (Under 6) ACS B23008_002 Ratio of population

Age dependency—over 64 (Over 64) ACS B11007_002 Ratio of households

Women who had birth (Women had birth) ACS B13012_002 Ratio of population

Single-parent women (Single Moms) ACS B11001_006 Ratio of households

High school diploma—age over 25 (Diploma) ACS B15003_017-025 Ratio of population

International migrants (Migration) ACS B07201_014 Ratio of population

Minorities African American or Hispanic (Minorities) ACS B02009_001, 003 Ratio of population

Renter occupied housing units (Renters) ACS B25003_003 Ratio of housing units

FIGURE 2 | Physical exposure in New Jersey during Hurricane Sandy and income by zip code.

used to explore the relationship between the indicators in the
models (i.e., the direction and estimate of coefficients—weight).

Following the results of the statistical models, further analysis
was performed to explore potential disparities in approval
rates (i.e., approved claims divided by number of claims). The
models’ results were used to create weighted vulnerability indices
as described below. Furthermore, the weighted vulnerability
index that was based on the FEMA dataset analysis was
validated using available data concerning other neighboring
states that experienced harm as a result of Hurricane Sandy

(New-York, Connecticut, Rhode Island, andMaryland). Notably,

the insurance data were only available for NJ and thus could not

be validated in a similar manner. The study workflow is presented

in Figure 3.

PLS: Reducing the Number of Social Indicators
A total of 19 PLS models were created by a combination of

various harm indicators and different datasets. The pre-selected

social indicators were used as the independent variables among
all models.
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FIGURE 3 | Study workflow.

Seven harm indicators were used as outcome (dependent)
variables in the different models:

- Reported claims (the total claims that were reported in
the dataset).

- Reported claims per household.
- Approved claims (the total claims that were approved

for payment).
- Approved claims per household.
- Approval rate (approved claims divided by the

reported claims).
- Total amount paid.
- Total amount paid per household.

Each of these indicators was used in several separated models,
using different datasets, as follows:

1. All claims aggregated by zip code.
2. Only FEMA assistance claims.
3. Only private insurance’s residential property claims.
4. Private insurance’s residential property claims and FEMA

assistance claims aggregated.

All variables were log-transformed to fulfill the assumptions
of normality and linearity and centered by their means for
the PLS analysis. The PLS models’ results demonstrated several
dominant social indicators that thus were selected to be used in
the linear and spatial regression models as discussed below (see
Supplementary Material for detailed results).

Multivariate Linear Regression: Finding Weights
Linear regression models were used to assess the direction
(indicate by plus or minus) and relative weight or importance
(thorough standardized coefficients) of the social indicators. The
social indicators selected through the PLS analysis were used as
the independent (explanatory) variables in the regressionmodels.
The three exposure indicators described above were also added
to the regression models as independent variables, as well as
an additional variable: the number of households. The latter
indicator was added in order to control for various sizes of areas
captured in a single zip code.

Two outcome (dependent) variables were used in
several models: number of approved claims and actual
payouts/assistance amounts. These variables were assumed
to reflect experienced harm (harm indicators). Approval rate was
used in a post-analysis discussed separately below.

The two dependent variables weremodeled using four datasets
(a total of 8 linear and 8 spatial regression models):

- All aggregated.
- FEMA assistance only.
- Residential—insurance only.
- Private insurance’s residential property and FEMA

assistance aggregated.

Similar to what was done for the PLS analysis, the socio-
economical independent variables and the outcome variables
were log-transformed. The exposure indicators were not
transformed since two of them are categorical and it was
not necessary to transform them to satisfy the regression
model assumptions. Furthermore, Variance Inflation Factor
(VIF) analysis indicated that multicollinearity did not occur in
the model.

Spatial Regression: Correcting for Autocorrelation
The regression models were tested for spatial autocorrelation
(Moran I test) and their results were compared with the results
of the spatial lag regression models. These analyses revealed
that spatial autocorrelation was present in all the regular (non-
spatial) models.

To solve this problem, we used spatial lag regression models
with a log-likelihood function. For the application of this
method, spatial weights are assigned to each observation and
considered in generalized linear regression models. The weights
list is created through two steps. First, a neighbors list is
built based on regions with contiguous perimeters that are
sharing one or more boundary points. Then the weighting
list is created based on the neighbor list, by summing row-
standardized values over links among regions. Detailed results
and additional details about the methodologies are provided in
the Supplementary Material section.
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FIGURE 4 | Social indicators’ weights according to the predictive model results. These weights were used to create the example vulnerability assessments. Notably,

the minority indicator had a negative coefficient for payouts and a significant negative coefficient for assistance approval rate.

RESULTS

General
The results of the main spatial regression models (standardized

coefficients) are presented in Figure 4, wherein the upper graph

represents the overall payouts as the dependent variable and the

lower graph approval-rate as the dependent variable. The main

influential social indicators, as selected through PLS, were mean

income, density, and rates of poverty, unemployment, minority

population, and immigration.

Using these coefficients as aggregation weights (Table 2) of
the actual values by zip code (modified as discussed below),
we demonstrate the creation of two vulnerability assessments
(Figure 5): net-value based (meaning, that the models used the
net paid claims) and need-based (meaning, that the models used
the FEMA assistance paid grants), with the former based on
all payouts and the latter using only FEMA assistance data.
Beyond their general importance for setting adaptation policy,
net-value may be of use to entities such as insurance companies
and real-estate organizations for anticipating losses and for
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planning investments. Need-based vulnerability will likely be
most useful for governments and aid organizations seeking to
assist communities at high risk.

From the needs-based assessment, it became clear that the
variable “Minorities,” which had a negative coefficient in the
FEMA payouts model, actually reflects a substantially higher
vulnerability than others since this indicator also demonstrated

TABLE 2 | Indicator weights for the vulnerability indexes aggregation.

Indicator Weight

NET-VALUE INDEX

Income 0.20

Migration −0.01

Poverty 0.02

Minority −0.05

Unemployed −0.07

Density −0.08

Households 0.65

NEED-BASED INDEX

Poverty 0.15

Minority 0.07

Households 0.32

a significant negative relationship with approval rate (Figure 4,
lower graph).

Validation
An important part of the study presented here and an aspect
that directly addresses one of the two shortcomings of the
most commonly used indicator-based approaches mentioned in
the introduction of this paper is the facilitation of validation.
Thus, as another means of validating the methodology used in
our study (and thus the vulnerability indexes we produced),
we extrapolated the selected social indicators’ weights (Table 2,
Need-based index) to create a need-based vulnerability index for
neighboring states that were also affected by Hurricane Sandy.

We used the need-based vulnerability index for these other
states in regression models to investigate the index’s predictive
power and did the same using the traditional PCA-based equal-
weights approach. In the latter, we used the same initial list of
indicators, selected a smaller number of indicators according
to the result of a PCA model (four factors), and aggregated
their values into a single index (using equal weighs). Three
spatial regression models were produced, in all of them the
dependent variable was FEMA assistance and the explanatory

variables were the physical exposure variables along with the
newly produced indexes as follows: one using our proposed
need-based vulnerability index, one using the PCA equal-weights
vulnerability index, and one using both.

FIGURE 5 | Vulnerability maps: net (Left) for net financial terms and need (Right) for communities in need of assistance. The darker the shade the higher the

vulnerability.
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TABLE 3 | Linear regression results.

Dependent variable:

FEMA IHP (log US $)

(1) Including the weighted

vulnerability index

(2) Including PCA-based index (3) Including both

Weighted Vulnerability index 1.66*** [0.24] 1.61*** [0.23]

(0.20) (0.22)

Regular Vulnerability index

(PCA-based)

0.07*** [0.10] 0.01 [0.01]

(0.02) (0.02)

Surge level 6.05*** 5.97*** 6.08***

(0.31) (0.33) (0.32)

Wind Level: High 1.14*** 1.36*** 1.14***

(0.15) (0.15) (0.15)

Track Distance −0.87*** −1.33*** −0.88***

(0.17) (0.16) (0.17)

Constant 10.95*** 11.99*** 10.99***

(0.37) (0.36) (0.37)

Observations 616 614 614

R2 0.57 0.53 0.57

Adjusted R2 0.57 0.53 0.57

Residual Std. Error 1.64 (df = 611) 1.71 (df = 609) 1.64 (df = 608)

F Statistic 200.83*** (df = 4; 611) 172.31*** (df = 4; 609) 160.29*** (df = 5; 608)

[] = Standardized coefficients. *,**,***p < 0.01.

Subsequently, we found that our proposed method can better
predict harm using fewer variables, as shown inTable 3. This may
signal to researchers and policy-makers that there is higher value
in monitoring specific social indicators over others.

DISCUSSION

The shortcomings of the common indicator-based
methodological approaches often used to conduct vulnerability
assessments, such as lack of validation frameworks and the
unjustified equal-weighting approach, have been acknowledged
in the literature as described above. Only a few studies have
taken on the task of validating the relationship between social
indicators and observed climate change-driven impact (harm
indicators) using robust predictive statistical models (Tonmoy
et al., 2014). Even fewer use the results of such models to
modify how vulnerability is assessed (i.e., what weight is given
to individual indicators in the assembly of the vulnerability
index). However, the grave consequences of lethal climate events
recently experienced lead us to contend that these common
indicator-based methodological limitations must be addressed
and that methods can and should be improved. We demonstrate
how robust evidence-based models can produce frameworks that
overcome these limitations.

Two explanations for not using studies that are based on
evidence and predictive statistics are usually offered. The
first explanation highlights the lack of proper data at the
required geographic resolution used for analysis (Hinkel, 2011).

The second explanation originates in the difficulties related
to communicating the results of complex methodologies
(Beccari, 2016), an argument which renders simplistic
approaches preferable over those that could provide more
accurate results.

The few studies that implemented predictive statistical
techniques that we reviewed (e.g., Burton, 2010) introduce
some statistical shortcomings that may bias results.
Particularly methodological issues include: not including
environmental/exposure as possible predictors in the model
(e.g., Finch et al., 2010; Burton, 2015); lack of transparency
or misreporting of model results, such as missing information
concerning model results and the preprocessing of the data
(e.g., Flanagan et al., 2011); not accounting for geographic
dependencies in the data (spatial autocorrelation) (e.g., Myers
et al., 2008; Fekete, 2009); reliance on correlation without
considerations to causation (e.g., Borden et al., 2007; Finch
et al., 2010); use of spatial units that may be too large to reflect
socio-economic variability (e.g., Fekete, 2009); use of simulated
results (e.g., Schmidtlein et al., 2011) or political decisions as
outcome variables (e.g., Borden et al., 2007), both which do
not serve as evidence of vulnerability; and other statistical
assumption violations.

The first shortcoming mentioned above, which is particularly
grave and common, results in a particularly low explanatory
power of the model. This leads to biases, especially when
performing an analysis based on a single climatic event
with its unique physical features. The physical exposure
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(e.g., flood level) would carry a high explanatory power of
the climatic event’s consequences. Thus, including exposure
in the statistical model allows a better examination of
the other factors (socio-economic indicators/variables) that
impact vulnerability.

Some limitations of this work are that it used only one
case study. It also used similar datasets (though with different
variables) for the first (supervised dimension reduction)
and second (regression) steps of the study due to relatively
small sample size (though with different target variables
to overcome this limitation), and it explored only a single
statistical approach for variable weighing (standardized
coefficients). We therefore recommend additional evidence-
based regional vulnerability assessments use data from several
hurricane/flooding events and explore possible modifications
to the model design by using additional statistical techniques,
including those incorporating interactions between variables and
standardizing model coefficients differently. Furthermore,
we suggest exploring the normalization of indicators
within a spatial unit using additional types of data from
myriad sources, keeping in mind that the interpretability
of models is especially important in such cases for driving
adaptation policy.

In any case it is important to point out that a crucial aspect
of this study that is seldom performed in other studies in this
field is the validation of the proposed vulnerability index using
a different geographical area. Other methods of validation can
be explored, such as holding off some of the internal units
(zip codes in this case) for validation when there is a sufficient
sample size.

Perhaps most notable in our analysis results is the negative

coefficient associated with the minority indicator for approval

rate (i.e., successful assistance application rate). This result

highlights issues that have been discussed in the literature,

particularly within the context of justice and equity when

facing the consequences of climate change (Rydin, 2006;

Kim et al., 2018). These could be helpful on a local
scale, but also when climate change adaptation plans are
developed over broader scales of time (i.e., for long-term
planning) and space considering disparities between regions or
across multiple jurisdictions (Barbier, 2014; van den Berg and
Keenan, 2019).

CONCLUSION

Our analysis suggests a strong association between social
indicators and observed vulnerability, empirically demonstrating
that some indicators are more meaningful than others.
Consequently, adaption planning should consider and
prioritize the most vulnerable communities, as reflected by
the indicators, with consideration to the indicators’ weights.
Most importantly, this work sets another steppingstone for
methodological advancement for the assessment of hurricane-
related vulnerability to climate change. Moving consideration
of social vulnerability to climatic events forward, and especially
with regard to events related to storm surge and flooding, is of
vast importance as new data reveals increased risk of damage
to extensive areas and the crucial consequences such damage
involves, especially among already vulnerable communities
(Flavelle et al., 2020).

Researchers, policy-makers, and other climate change
adaptation practitioners should promote additional evidence-
based predictive statistics approach implementations, thus
expanding knowledge for adaptation planning and increasing
the likelihood that appropriate and supportive policies for such
planning to be put in place. In view of this position, we call
on others to build upon, as well as to question, the proposed
vulnerability assessment methodology, consequently improving
adaptation planning and mitigating harm caused by climate
change to communities at risk.
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Pervasive and accelerating climatic, technological, social, economic, and institutional

change dictate that the challenges of the future will likely be vastly different and more

complex than they are today. As our infrastructure systems (and their surrounding

environment) become increasingly complex and beyond the cognitive understanding of

any group of individuals or institutions, artificial intelligence (AI) may offer critical cognitive

insights to ensure that systems adapt, services continue to be provided, and needs

continue to be met. This paper conceptually links AI to various tasks and leadership

capabilities in order to critically examine potential roles that AI can play in themanagement

and implementation of infrastructure systems under growing complexity and uncertainty.

Ultimately, various AI techniques appear to be increasingly well-suited to make sense

of and operate under both stable (predictable) and chaotic (unpredictable) conditions.

The ability to dynamically and continuously shift between stable and chaotic conditions

is critical for effectively navigating our complex world. Thus, moving forward, a key

adaptation for engineers will be to place increasing emphasis on creating the structural,

financial, and knowledge conditions for enabling this type of flexibility in our integrated

human-AI-infrastructure systems. Ultimately, as AI systems continue to evolve and

become further embedded in our infrastructure systems, we may be implicitly or explicitly

releasing control to algorithms. The potential benefits of this arrangement may outweigh

the drawbacks. However, it is important to have open and candid discussions about the

potential implications of this shift and whether or not those implications are desirable.

Keywords: climate change, infrastructure, artificial intelligence, complexity, anthropocene

INTRODUCTION

If future infrastructure resembles that of the past, or even of today, it will represent a profound
failure on the part of engineers and infrastructure managers. Pervasive and accelerating climatic,
technological, social, economic, and institutional change signal that the challenges of the future
will likely be vastly different and more complex than they are today (Allenby, 2011; Marchant
et al., 2011; Markolf et al., 2018). The relationship of the human species to the planet is changing
dramatically given a rapidly urbanizing global population of roughly 7.7 billion, and a parallel
growing middle class with changing consumption and food demands. These dynamics play a
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key role in driving and accelerating the integration of human,
natural, and built systems to create complex, interlinked, and
rapidly evolving systems at all scales—from local infrastructure
to regional and global systems (Lo and Yeung, 1998; NRC (US
National Research Council)., 2003; Chester et al., 2019).

The need for infrastructure to adapt, transform, and perform
competently under conditions of complexity and accelerating
change is increasingly beingmet by integrating infrastructure and
information systems [including various artificial intelligence (AI)
capabilities] into infrastructure design, construction, operation,
and maintenance. However, successfully implementing this
strategy requires a clear and concise understanding of relevant
information, communication, and computational frameworks,
as well as how they functionally couple together in practice—
a particularly difficult task in today’s environment. Therefore,
it is not surprising that the rise of a new global infrastructure
with profound implications for humans, their institutions, and
their planet has gone both unperceived and unremarked. This
is the cognitive infrastructure, and it already permeates virtually
every aspect of our world (Allenby, 2019). In particular, each
infrastructure system and sector has its own companies, experts,
investors, and users. But what is often not recognized is thatmany
of these infrastructures and technologies are not only coherent
entities themselves, but also being integrated into an emergent
infrastructure that includes integrated functionality from many
sources: the “cognitive infrastructure.”

Taking a functional definition of “cognition” (i.e., information
processing, reasoning, remembering, learning, problem-solving,
decision-making, etc.) (Squire, 2009), the accelerating rise of
cognitive infrastructure becomes evident. For example, machine-
to-machine connections are anticipated to increase from 6.1
billion in 2018 to 14.7 billion in 2023 (Cisco, 2020). Similarly,
spending on sensors and other technologies related to the
Internet-of-Things (IoT) is expected to reach $1.2 Trillion in
2022 (Columbus, 2018). Most of these sensors and devices will
generate vast amounts of data and integrate some cognitive
capability via accelerating deployment of AI technology such
as neural nets (Lee, 2018). In short, accelerating capability and
capacity across a number of apparently unrelated infrastructures
and technologies is generating an infrastructure, tied together by
AI and a vast array of institutional structures, that (1) contains
the functional components of cognition and ever-more powerful
networks operationally linking them together, (2) is distributed
around the world, and (3) contains evolving and emergent
systemic and behavioral capabilities. Simply put, we are building
a pervasive cognitive infrastructure without fully recognizing it,
and we are doing so rapidly and at global scale.

Cognitive infrastructure offers challenges that more
traditional infrastructure systems do not. For one, it operates at
a level that humans can neither fully understand nor perceive—
people are relatively low bandwidth cognitive mechanisms
in a world where even contemporary cognitive infrastructure
operates at far higher bandwidths, much faster speeds, and
higher levels of complexity than individuals can access. This
can unfortunately be seen in the tragic Lion Air Flight 610
and Ethiopian Airlines Flight 302 incidents. Although many
factors appeared to have been at play, the disconnect between
the development of the automated flight control systems in the

Boeing 737-MAX planes and the training and implementation
by the pilots was a key element in the accidents (Gelles, 2019;
Wise, 2019; Herkert et al., 2020; U.S. House Committee on
Transportation Infrastructure., 2020). Thus, determining
how to effectively integrate human and machine cognition
into infrastructure systems becomes a significant professional
challenge that, so far, appears to have not been adequately and
effectively considered.

Integrating cognitive infrastructure is a critical capability
as engineers, technologists, and policymakers try to develop
infrastructure systems that are as resilient, agile, and adaptive
as current (and future) conditions demand. But knowing
that incorporating sensor and AI-driven adaptability into
infrastructure can make it more efficient and responsive to
changing conditions is only the beginning. Understanding the
cognitive infrastructure as a whole is required to fully and
responsibly meet the demands for better infrastructure.
For example, designers of IoT devices embed sensors
and communication capabilities in their products as a
matter of required functionality. But, absent a systemic
perspective on security and the devices’ place within the
overarching cognitive infrastructure, there is the potential for
underappreciating/misunderstanding issues like the vulnerability
to adversarial attacks that the embrace of AI technologies can
create. These potential drawbacks are ultimately a symptom of
understanding a few of the constituent technologies (e.g., AI)
in isolation, but failing to understand that it is the cognitive
infrastructure, not just those individual technologies, that their
infrastructure design is integrating.

It is premature to consider tantalizing questions such as
how humans should respond as critical cognitive functions
migrate to higher level techno-human systems embedded in a
global cognitive infrastructure. However, it is not premature to
recognize that this new infrastructure, itself a reflection and
driver of the complexity and challenges of the Anthropocene,
is already emergent. Additionally, trying to perceive and
understand some of these implications is an increasingly
imperative and necessary professional responsibility. Without
that first step, ethical, rational, and appropriate infrastructure
design, construction, operation, maintenance (as well as the
educational and institutional structures to support them) will
remain beyond reach. As such, this paper provides a broad
discussion about what AI is and how it relates to infrastructure.
We then explore various tasks and services within infrastructure
systems that may be enhanced and/or replaced by AI. Finally, we
conclude with a discussion of some of the broader implications
that may emerge as AI and infrastructure systems become
increasingly entwined in the coming decades.

AI AND INFRASTRUCTURE LEADERSHIP
IN THE CONTEXT OF COMPLEXITY

“AI” is a fuzzy term. As the U. S. National Science and
Technology Council says in its 2016 report, “There is no single
definition of AI that is universally accepted by practitioners.
Some define AI loosely as a computerized system that exhibits
behavior that is commonly thought of as requiring intelligence.
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Others define AI as a system capable of rationally solving complex
problems or taking appropriate actions to achieve its goals in
whatever real world circumstances it encounters.” Herein, we
use “AI” to include big data and analytics dimensions, but
ultimately describe the leadership and intelligence capabilities
that are needed to replace or augment people. In doing so we
envision a future where humans employ AI to make sense of an
increasingly complex world.

In managing dynamic and complex systems and
environments, several leadership capabilities are needed to
address continually changing conditions (Uhl-Bien et al., 2007).
Administrative Leadership, what we largely practice today, is
well-suited for stable conditions and is made up of bureaucracies
that formalize the structure and function of organizations.
However, in the changing or chaotic conditions that define
complex environments, Adaptive Leadership is preferred.
Under this approach, adaptability, creativity, and learning are
emphasized in order to make sense of and navigate complex and
uncertain conditions. Perhaps of most importance is Enabling
Leadership, the ability to shift between Administrative and
Adaptive Leadership practices as conditions shift from stable
to chaotic. Enabling Leadership involves creating structural,
financial, and knowledge conditions for flexibility (Uhl-Bien
et al., 2007). In assessing the AI landscape, evaluating which
techniques are best positioned to support each leadership style is
increasingly useful.

Given this context, there are several tasks for which AI
applications in infrastructure are well-suited, including pattern
recognition, classification, clustering, categorization, system
control, function approximation (e.g., regression analysis),
optimization, and prediction/forecasting (Chen et al., 2008;
Brynjolfsson and Mcafee, 2017; Eggimann et al., 2017). In
order to accomplish these tasks, a variety of techniques and
approaches can be applied, such as rule-based systems (RBS),
genetic algorithms, cellular automata, Fuzzy Systems, Multi-
agent systems, Swarm Intelligence, Case-based reasoning (CBR),
and Artificial Neural Networks (ANN) (Chen et al., 2008). For
example, AI (particularly genetic algorithms, Artificial Neural
Networks, and Deep Learning) has been applied in a variety
of civil engineering contexts including optimum design of
structures (Hajela and Berke, 1991; Adeli and Park, 1995; Camp
et al., 2003; Hadi, 2003), concrete strength modeling (Yeh, 1999;
Ni and Wang, 2000; Lee and Ahn, 2003; Al-Salloum et al., 2012),
predicting geotechnical settlement and liquefaction (Shahin et al.,
2002; Young-Su and Byung-Tak, 2006), earthquake engineering
(Lee and Han, 2002; Arslan, 2010; Yilmaz, 2011), concrete design
mix (Jayaram et al., 2009), prediction and forecasting of water
resources and flooding (Maier and Dandy, 2000; Mitra et al.,
2016; Alexander et al., 2018; Lin et al., 2018; Yu et al., 2018;
Zamanisabzi et al., 2018; Li et al., 2019), water quality and
sedimentmodeling (Nagy et al., 2002; Zhang et al., 2010; Barzegar
et al., 2016; Sabouri et al., 2016), irrigation and water-delivery
scheduling (Nixon et al., 2001; Karasekreter et al., 2013), rainfall-
runoff modeling (Minns and Hall, 1996; Tokar and Johnson,
1999; Cheng et al., 2005, 2017; Dixon, 2005; Jeong and Kim,
2005; Abrahart and See, 2007; Young et al., 2017), and evapo-
transpiration modeling (Tabari et al., 2010; Kumar et al., 2020)—
additional examples can also be found in Figure 1 (e.g., Liu et al.,

2016; Mounce et al., 2016; Amanollahi et al., 2017; Beh et al.,
2017; Conniff, 2017; Ghalehkhondabi et al., 2017; Matias, 2017;
Rezaeianzadeh et al., 2017; Yang et al., 2017; Zhang et al., 2017,
2018; Corominas et al., 2018; Pisa et al., 2019; Rastegaripour
et al., 2019; Suh, 2019). The scope and purpose of this article
is not to provide a comprehensive overview and discussion of
these different techniques. For that, we refer the readers to works
by Flood and Kartam, 1994a,b; Kartam et al., 1997; Adeli, 2001;
Flood, 2001; Flintsch and Chen, 2004; Chandwani et al., 2013;
Ye et al., 2019); and (Falcone et al., 2020). Nonetheless, a brief
discussion about the ways in which various AI techniquesmay (or
may not) support infrastructure leadership in stable and chaotic
environments appears warranted and is included below.

Some AI techniques may be well-suited for enhancing
operations during stable conditions, while others may be more
appropriate for supporting leadership during unstable times
(e.g., extreme events, funding uncertainty, pandemics, etc.). For
example, techniques that establish algorithms to solve novel
problems by recalling and referencing similar problems from
the past (e.g., CBR) are particularly suitable for the well-defined
and stable conditions endemic of Administrative Leadership.
In this context, these approaches can be particularly useful
for applications related to system control, planning, prediction,
and diagnosis (Chen et al., 2008). Conversely, techniques that
mimic the manner in which human brains process information
via a series of layered and interconnected processing units
(e.g., ANN) are increasingly well-suited for the complex, data-
intensive, multivariable, and dynamic conditions (i.e., instability)
that warrant Adaptive Leadership. In this context, AI can help
make predictions (based on a series of input patterns) and/or
intuit relationships between various inputs—even in situations
where the underlying rules and structure of the problem may
be unknown or hard to express (Chen et al., 2008). Overall,
various forms of AI appear poised to greatly complement (or even
in some cases replace) Administrative and Adaptive Leadership
activities and roles within our infrastructure systems. In turn,
the humans and institutions that interact with and govern
our infrastructure systems may play an increasingly important
role as the primary source of Enabling Leadership within our
systems. Thus, it will be crucial for humans and institutions to
recognize the benefits and tradeoffs among the different types of
leadership, roles, and services provided by various AI. Perhaps
most importantly, additional consideration appears warranted
regarding the frameworks, resources, structures, and knowledge
systems that may be needed to facilitate the smooth and agile
transition between leadership approaches as future conditions
continually fluctuate between stable and chaotic. The following
section explores this issue further by examining some of the
various roles and tasks AI may fill in infrastructure systems
moving forward.

AI INTELLIGENCES AND TASKS WITHIN
INFRASTRUCTURE SYSTEMS

Evaluating the potential for AI to augment or replace existing
capabilities requires a critical examination of the intelligences
involved. Huang and Rust (2018) assert that AI job replacement
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fundamentally occurs at the task level, and that “lower”
intelligence tasks (e.g., repetitive, routine tasks) are easier
for AI to replace than “higher” intelligence tasks (e.g.,
highly emotional/empathetic tasks). Given that, at their core,
infrastructure systems are service providers, we adapt Huang
and Rust’s framework to (1) link various infrastructure services
to the four types of intelligences described by Huang and Rust
(i.e., Mechanical, Analytical, Intuitive, and Empathetic), and (2)
outline cases (and examples where possible) of howAI has and/or
could potentially replace various infrastructure-related tasks at
each level of intelligence—see Figure 1.

Mechanical Intelligence
The “lowest” level of intelligence is Mechanical, which is defined
by routine and repeated tasks, minimal creativity, and an
emphasis on efficiency and consistency (Huang and Rust, 2018).
AI at this level are rule-based and are well-suited for homogenous
tasks that are repetitive, performed often, and unsophisticated
(Sawhney, 2016; Huang and Rust, 2018). As a result, AI at
this level often have an advantage over humans with respect to
consistency, reliability, and work-rate (Huang and Rust, 2018).

One of the primary challenges associated with Mechanical AI
is that it can be difficult to scale to the systems level, which in
turn can limit its applicability to the large-scale and dynamic
infrastructure systems typical of modern cities. Mechanical tasks
are typically conducted by a single unit (or small, tightly
integrated group of components). As a result, this type of AI is
best suited for well-bounded and tightly constrained situations.
Thus, increasing the network, scale, and/or state of operations
adds complexity that can eventually overwhelm the system.
Under these circumstances, AI at higher levels of intelligence will
likely be more appropriate and effective.

Analytical Intelligence
The second level of intelligence is Analytical, which relies on
the ability to process information, make decisions, problem
solve, and adjust to new information (Huang and Rust, 2018).
Analytical Intelligence is defined by tasks that can be complex
(often data-intensive), yet consistent and predictable. AI at this
level use algorithms to iteratively learn and gain insights from
large and/or continuous data sets. Analytical AI increasingly
consist of networked units rather than a stand-alone machine.
Human interpretation and intuition are still vital complements
to AI at this level. AI provides increasingly varied and valuable
decision support, but humans are still the ones ultimately making
the decision.

One of the biggest potential challenges with Analytical AI
is that it is likely not well-suited for problems that do not
have similar analogs from the past (Chen et al., 2008). This
drawback is particularly important to consider in the context
of managing infrastructure systems under a changing climate.
Non-stationarity, the concept that past conditions and data are
not indicative of future trends and conditions, is increasingly
a reality for urban and infrastructure systems (Milly et al.,
2008; Koutsoyiannis, 2011; Lins, 2012). Thus, Analytical AI
should not be treated as an “off-the-shelf ” or “plug-and-
play” solution for a wide range of problems. Engineers and

infrastructure managers should take great care to understand
the nuances, strengths, and weaknesses of AI when applying it
to infrastructure that has significant interaction with climatic
variables (e.g., weather prediction, stormwater systems, flood
management systems, etc.).

Intuitive Intelligence
The next level of intelligence is Intuitive, which relies on
experience-based thinking and creativity. Tasks related to
Intuitive Intelligence are contextual, chaotic, complex, and
idiosyncratic (Huang and Rust, 2018). AI at this level function
in a more human-like manner by learning and adapting based
on previous experience and new information. Understanding a
problem or situation based on context and prior experience is a
hallmark characteristic of Intuitive Intelligence in both humans
and AI.

One potential challenge with Intuitive AI is that the problems
to which it may be applied are often “wickedly complex”
and do not have one “right” solution (e.g., the allocation and
management of natural resources) (Chester and Allenby, 2019a).
The algorithms supporting this type of AI often learn from
human-defined data as to what the outcome should be. Thus,
the training of and learning by the AI can be severely inhibited
in situations where the outcome/solution is not clear (Meserole,
2018). Under these circumstances, AI can still be very helpful in
generating, exploring, and analyzing various scenarios. However,
human stakeholders will ultimately be responsible for deciding
on the final outcomes or course of action.

Another potential challenge associated with Intuitive AI is
that there can be a “black-box” element to the analysis and
outcomes due to the fact that it provides solutions and insights
with minimal knowledge of the underlying systems and processes
(Chen et al., 2008). For example, the AI may produce outputs
that are non-intuitive and/or fail to converge on a solution, and
it may be difficult to ascertain why. Ultimately, some level of this
“black box” is likely unavoidable. Presumably, one of the main
reasons to deploy Intuitive AI is because the system in question
is already operating at a scale and/or level of complexity beyond
human cognitive capabilities. If total understanding and mastery
of system dynamics and complexity (i.e., elimination of the “black
box”) is achievable, then Intuitive AI was likely not needed in
the first place. Thus, the critical question is not “how do we
eliminate the black-box?,” but rather, “what degree of black-box
are we comfortable with?” As AI systems continue to evolve and
become further embedded in our infrastructure systems, we may
be implicitly or explicitly releasing control of our infrastructure
systems to software and algorithms. The potential benefits of
this arrangement may very well outweigh the drawbacks in
certain circumstances. However, it is important for communities,
policy-makers, and infrastructure managers to have open and
candid discussions about the potential implications of this shift
in control and whether or not those implications are desirable.

Empathetic Intelligence
The “highest” level of intelligence is Empathetic, which relies
on empathy, social interaction, and communication. Empathetic
tasks relate to the ability to understand emotions, appropriately
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respond to emotions in others, and influence other’s emotions
(Huang and Rust, 2018). AI at this level “relates to, arises
from, or influences emotions (Picard, 1995),” and behaves
as if it has feeling. Empathetic AI are still in the nascent
stages of development, with initial applications tending to
relate to emotional analytics (Abou-Zeid and Ben-Akiva, 2010;
Quercia et al., 2014). Nonetheless, the high level of social and
communication skills needed for Empathetic Intelligence seem
to indicate that humans will remain integral at this level for the
foreseeable future.

Similar to Intuitive AI, aspects of wicked complexity and
wicked problems can be especially challenging for Empathetic
AI. One of the elements of a wickedly complex problem is the
presence of a wide degree of norms and values among the various
stakeholders within the system. These values/interests may not
always be clearly stipulated or coded in anyway. Additionally,
they can shift and fluctuate over time. As a result, it is very
difficult for the AI to understand the different (and often
conflicting) values among the stakeholders, let alone “train” the
AI around a centrally agreed upon solution/outcome (Baum,
2020).

Related to the issue above, Empathetic AI can be particularly
susceptible to various biases. The biases may be implicit or
explicit, and can be the result of the individuals who wrote the
algorithms or the data from which the algorithm was trained
(Tomer, 2019). For example, facial recognition AI has been found
to contain racial bias (Grother et al., 2019). It is unlikely that
biases can fully be eliminated from Empathetic (and other) AI
systems. Thus, similar to the “black box” issue, perhaps the best
approach is for citizens, decision makers, and AI developers
to have open and candid discussions about the appropriate
applications of Empathetic AI given the potential unintended
consequences that may result from these biases.

Figure 1 provides a summary of the key elements of
each intelligence, examples from infrastructure systems, and
current/potential applications of AI in infrastructure across each
level of intelligence.

How Might AI Disrupt Infrastructure
Services and Introduce New Capabilities?
Exploration of the four levels of intelligences in the context
of infrastructure systems reveals a few key insights. First, it
appears that AI (or at least automation) has already been widely
implemented for Mechanical tasks. Although there is still some
potential for AI growth and evolution at this level, it appears
that we may have already reached a saturation point, thereby
making fundamental transformations less likely. This outcome
further underscores the potential for AI to complement and
supplementAdministrative Leadership roles within infrastructure
systems. On the other hand,Analytical tasks are where AI appears
poised to have the largest disruption (at least in the near-to-
medium term). As AI capabilities continue to improve (especially
due to the combination of ever-increasing data availability, ever-
decreasing computing costs, and advancements in techniques
like ANNs), Analytical tasks (and Adaptive Leadership roles)
will increasingly be accomplished by AI. Considering that

the vast majority of engineering and infrastructure jobs are
analytical by nature, the augmentation and/or replacement
of Analytical tasks by AI is likely to have a fundamental,
profound, and transformative impact on infrastructure systems
as we know them. Thus, moving forward, a key adaptation
for engineers and infrastructure managers will be to strengthen
and place increasing emphasis on Intuitive and Empathetic
tasks/intelligences, which in turn should strengthen Enabling
Leadership capabilities. This is particularly important, because
even though humans exhibit much higher levels of Intuitive and
Empathetic Intelligence than AI (and are likely to remain that
way for quite a while), there is still room for improvement.
Human error is always a concern when operating under
both mundane and surprise conditions. Similarly, Empathetic
Intelligence currently does not appear to be widely incorporated
or considered in the development of engineered/infrastructure
systems. Thus, in order tomost effectively balance theMechanical
(i.e., Administrative Leadership) and Analytical (i.e., Adaptive
Leadership) advantages of AI with the Intuitive and Empathetic
(i.e., Enabling Leadership) advantages of humans, we (humans)
will need to continually learn from past mistakes and develop
skills to make effective decisions under surprise conditions.
Additionally, substantial and continual efforts should be made
toward enhancing our ability to incorporate social, emotional,
and equity dynamics into engineering/infrastructure planning
and implementation.

DISCUSSION AND CONCLUSION

It is useful to consider how AI technologies in infrastructure
are likely to create new capabilities that, if leveraged correctly,
can help us adapt to the rapidly changing conditions in which
infrastructure systems must thrive. As evidence emerges of
the accelerating and increasingly uncertain conditions that
characterize infrastructure environments (Steffen et al., 2015),
design and management must be able to respond to these
conditions with agility and flexibility (Chester and Allenby,
2019b; Gilrein et al., 2019). With any new technology, control
processes are created to harness and guide the new capabilities
toward the goals of the managing institution (Beniger, 1989).
For example, the advent of engines and novel processes during
the industrial revolution released energy at rates and scales
never before seen. In turn, these technological advancements
required new institutions and processes to channel this power.
Whether AI follows historical patterns of technological control
is questionable. AI technologies are fundamentally focused on
augmenting and replacing cognition. Cognitive infrastructure
that learns and makes decisions for us implies that control may
not be fully attainable (like it was for the steam engines in the
industrial era). Instead, our control efforts may need to focus
on establishing relationships with AI that recognize that cyber-
technologies will be guiding us in ways that we may not always
fully understand.

AI may be uniquely positioned to help us learn about
and navigate increasingly complex environments. In designing
knowledge systems, institutions enable sensing and analytical
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FIGURE 1 | Summary of the “Four Intelligences,” examples from infrastructure systems, and current/potential applications of AI to infrastructure systems across each

level of intelligence.
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capabilities (coupled with different leadership styles) to operate
in both calm and chaotic environments (Miller and Munoz-
Erickson, 2018). As our systems, and the environments in
which they operate, become increasingly complex and beyond
the cognitive understanding of any group of individuals or
institutions, AI may offer critical cognitive insights to ensure
that systems adapt, services continue to be provided, and needs
continue to be met.

Themapping of AI applications to intelligences and leadership
roles appears to support the varying approaches needed to
address domains of complexity. The Cynefin framework classifies
systems as simple, complicated, complex, or chaotic, and as
we transition from one domain to another, disorder governs
(Snowden and Boone, 2007; Chester and Allenby, 2019a). Each
domain requires a fundamentally different approach to address
challenges. Infrastructure have historically been complicated
systems and are now increasingly viewed as complex (Chester
and Allenby, 2019b). A complicated system calls for data
collection, analyzing and decision-making, while a complex
system shifts toward probing, testing, and a commitment
to adaptability and transformation. The intelligence mapping
presented in Figure 1 provides a useful set of AI applications
that can be applied to infrastructure in complicated and complex
environments. The Mechanical and Analytical Intelligences
appear to align well with complicated situations where the
emergent behaviors of systems are predictable and their
environments somewhat stable. The Intuitive and Empathetic
Intelligences appear to align with complex systems, where
perturbations can result in unpredictable emergent behaviors,
and “satisficing” is needed to manage wicked problems across
technical and social requirements (Chester and Allenby, 2019a).
While all intelligences are needed at various times during the
operation of a system, the development and deployment of
Intuitive and Empathetic Intelligences (and Enabling Leadership)
in humans and institutions, as well as the development and
deployment of Administrative and Adaptive Leadership via AI
appears necessary to address the growing complexity and non-
stationarity of our systems and the environments in which
they operate.

Ultimately, we are in the nascent stages of AI development
and application to infrastructure systems. The topics in this
paper are intended to be an initial discussion of some of the key

opportunities and challenges associated with AI in infrastructure

systems—especially in the context of the leadership and skills
needed to face the complex challenges of the Anthropocene.
Avenues for future work that can build on this endeavor
include interviews and surveys aimed at gaining a better
understanding of infrastructure practitioner’s current thoughts
and expectations about the possible benefits and downsides
of AI. Additionally, it would be beneficial to further explore
which level of intelligence appears most appropriate for specific
problems/contexts, as well as a more detailed assessment of the
specific AI techniques likely to be most effective/appropriate in
these circumstances. Finally, in conjunction with (if not prior
to) these efforts, open, candid, and iterative discussions are
required amongst society writ large to debate what level of
cognitive infrastructure we are comfortable with and the level
of “control” (or at least perceived control) we are comfortable
offloading to cognitive infrastructure. By doing so, engineers and
infrastructure users/managers can hopefully ensure that they are
striking the right balance between human and AI capabilities
required to effectively and equitably navigate our increasingly
complex world.
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