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Editorial on the Research Topic
 Past, Present, and Future Impacts of Climate on Infrastructure



Climate change is one of the biggest challenges that the global community faces. The changing climate may lead to the infrastructure bring exposed to unprecedented climate with an increase in the frequency and intensity of extreme weather events, such as more intense rain events and flooding, extreme winds, landslides, and other hazards, that could result in infrastructure damage and failure (Stocker et al., 2013). The consequences of failure can be quite significant and cause fatalities, injuries, and illnesses, disruption or loss of service, increased costs to infrastructure owners, and unforeseen costs to infrastructure users, and considerable negative socioeconomic impacts to the governments.

Infrastructure systems are primarily located in urban areas. The urban climate is often different from the surrounding rural climate. It is generally warmer, rainier, less windy, and more polluted. This means that more drastic effects of changing climate will be experienced by the urban infrastructure systems than the surrounding areas (Krayenhoff et al., 2018). The cities and infrastructure systems will also be overburdened in the future due to ongoing rapid urbanization. It is predicted that by the 2050s, 66% of the world's population will live in urban areas, up from about 50% living in the urban areas in the year 2007, making the infrastructure systems increasingly strained in the future also due to increases in urban population (UN, 2014).

To design urban infrastructure systems considering the non-stationarity in climate, it is essential to assess the impacts of past, current, and future climate on the infrastructure systems. This will entail developing approaches to reliably model the extreme climate hazards and their interactions with the complex urban systems. The papers part of this Research Topic aims to provide new knowledge in these areas.

Saha and Ghosh study the relative impacts of future projected climate and land-use change on the hydrological response of the Ganga river basin in India. The complex chain of analysis performed included: generation of future climate projections following different global warming scenarios and socioeconomic pathways, preparation of future land-use scenarios using a land allocation model and performing hydrologic simulations using a semi-distributed hydrologic model, followed by application of Bodyko framework to understand the relative impacts of climate and land-use changes on the basin characteristics. The study found that as a consequence of global warming, the Ganga river basin will become more arid in the future. However, the basin's future hydrologic response will mostly be governed by projected changes in climate. Land-use changes will have minimal effect on its hydrologic response.

Yan et al. provided a review of a recently developed science-driven engineering product: next-generation Intensity-Duration-Frequency (NG-IDF) curve to establish a consistent IDF design methodology for both rain-dominated and snow-dominated regions. The NG-IDF captures multiple flood-generating mechanisms, including rainfall, snowmelt, and rain-on-snow as opposed to the typical precipitation-based IDF curves (PREC-IDF), which only captures flood occurrences due to extreme rainfall. NG-IDF is the outcome of a coordinated effort from climate scientists developing necessary climate information with global and regional scale climate models, hydrologists simulating snow processes and estimating water available for runoff using hydrologic models, the civil engineering community on integrating the snow processes into the IDF design process. Recent developments toward validating the NG-IDF curves on a larger spatiotemporal domain and incorporating future projected effects of climate change more accurately in them are discussed.

Bondank and Chester advocate that infrastructure systems and not merely complicated systems that contain many parts and there is uncertainty included in the system, they are complex systems characterized by “unpredictability and the presence of unknown unknowns,” and so the common cause-and-effect approach of managing the uncertainty of the failure of infrastructure systems in the face of climate change hazards may not be best suited to model them. They recommend that best practices from complex system sciences such as Decision Making Under Deep Uncertainty and Safe-to-Fail frameworks should be used to improve the decision-making when managing the complex infrastructure systems. Besides, it is highlighted that the communication and coordination between managers of different infrastructure systems need to be enhanced to better implement strategies.

Data is central in the climate change debate. Especially data that is multidimensional and explores the societal impacts are crucial for informed decision making. Using information as evidence to derive social vulnerability is much needed. Barankin et al. describe this in their work on an evidence-driven approach for assessing social vulnerability during extreme events. A novel data-driven predictive approach is forwarded that overcomes over-generalization or aggregation in the indicator-based method. Using the case of Hurricane Sandy in the State of New Jersey, the authors demonstrate variability in the vulnerability among the Minorities” is substantial, with a low approval rate in the insurance claims. The study successfully showed that using the need-based, evidence-driven method provides a validation route for vulnerability assessments and is scalable across geographies. The universality of the process is worth reproducing. It can be considered the new direction of research on climate-related vulnerability measurements unbiased from the statistical inflation of indicators.

Markolf et al., while exploring the opportunities and challenges for artificial intelligence applications in infrastructure management to combat climate change, emphasizes that handling rapid technological transitions is the primary challenge. The magnanimity and the complexity of the problem make it incognisable for any individual or organization to handle. Artificial intelligence offers a seamless ability to manage complexity while providing insightful feedback. Although the authors underscore that while AI provides potential benefits which outweighs the drawbacks of over-reliance on reliable data, they are cautious in mentioning that an open dialogue is required.

A similar understanding is put forward by Nawroz Tonmoy et al., where the potential of utilizing smart city frameworks for disaster resilience in coastal cities is reviewed. The authors use a unique infrastructural lens to review the academic literature that focuses on smart systems' new development in coastal disaster management. The findings are interesting as they point out that while IoT and crisis informatics offer considerable potential for disaster resiliency, it remains understudied for coastal cities which need disaster resiliency that their inland counterparts.

The topic editorial team of this Research Topic on Past, Present, and Future Impacts of Climate on Infrastructure would like to thank all of the authors for considering this Research Topic for submitting their scholarly work. Thanks to the reviewers' hard work who provided their expert reviews under very tight schedules, the quality of the final papers presented in this Research Topic have dramatically improved. Without their contributions, this Research Topic would not have been so timely and successful.
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Sea-level rise, storm surges, and floods in coastal cities have already threatened large population and infrastructure with potential to increase significantly in future as climate changes. Therefore, increasing disaster resilience has become a major priority for coastal cities. At the same time, recent development in information and communication technology, ubiquitous sensors, and advanced data science allow us to generate insights that were unimaginable before and can assist in better managing coastal disaster risks. In this paper, using an infrastructure resilience lens, we critically review a set of academic literature that focus on the new development of smart systems in coastal disaster management and a set of use cases that focus on their practical application in different coastal cities. We find that smart city technologies such as internet of things (IoT) and crisis informatics have significant potential and have been increasingly used in academic studies but their city-scale applications in coastal disaster management have been limited. We discuss the challenges and opportunities of using smart city frameworks for increasing disaster resilience of coastal communities.

Keywords: coastal disaster, smart city, resilience, vulnerability, internet of things, crisis informatics


INTRODUCTION

Natural hazard events have been an ongoing element in the coastal regions around the world. Flooding and erosion episodes in the coastal margins during storms, hurricanes or cyclones are putting a significant amount of assets, infrastructures, and communities at risk. Seventy-two percentage of the 63 most populated cities (with 5 million or more inhabitants in 2011) are located on or near the coast (United Nations, 2019). In one hand, population density in the hazard-prone coastal areas and megacities is expected to grow by 25% by 2050 (Hallegatte et al., 2013). On the other hand, a rise in sea level is likely to increase the frequency and impacts of these episodic coastal hazard events. In 2005, average global flood losses in the world's largest 131 coastal cities was approximately US$6 billion per year with the potential to increase to US$52 billion per year by 2050 due to sea level rise (Hallegatte et al., 2013). As a result, global investment and maintenance costs of protecting the coast from sea level rise estimated to be US$ 12–71 billion per year in 2100 (Hinkel et al., 2014). Therefore, increasing resilience of our coastal cities, their infrastructure systems and community in general to these episodic natural disasters is very critical.

Cities are inherently complex with interactions among multiple systems (e.g., supply chains and transportation networks, water and energy networks, housing and business infrastructures, social networks), agents (individuals, businesses etc.) and institutes that manage or influence these systems and agents (Tyler and Moench, 2012). The impacts of natural disasters in a coastal city therefore stems from complex interactions among a potentially damaging physical event (e.g., flood, erosion, storm) and the vulnerability of these systems, agents, and institutes (Birkmann, 2006; Tonmoy et al., 2014). Therefore, increasing disaster resilience of a coastal city needs an understanding of inherent stresses and vulnerabilities of these multiple systems. Specifically disruption in vulnerable critical infrastructure systems such as water supply network, transportation network, electricity production and distribution systems, health care facilities etc. that are located in the hazard prone areas of a coastal city can result in significant social and economic disruption. Therefore major coastal cities around the world are putting emphasis on increasing disaster resilience of their critical infrastructure systems (Aerts et al., 2014). Here critical infrastructure refers to any infrastructure that provides a service to the maintenance of the well-being of the population and something that if disrupted might cause serious harm to the well-being of the community (Attwood et al., 2011).

On the other hand, information and communications technology (ICT) has seen significant advancements in recent years with different types of smart and connected technologies capable to generate real-time information at an unprecedented scale. Alongside there has been significant improvement in computational power to manage and analyse big datasets. Specifically, rapid advancements in artificial intelligence, ubiquitous sensing technology, smart city/infrastructure, availability of big data sources such as social media, mobile devices, infrastructure management systems (e.g., SCADA) allow us to collect and analyse data with details and coverage unimaginable before (Kitchin, 2014; Gupta and Gupta, 2016; Murayama et al., 2017). These advancements offer opportunities to develop data-driven decision support tools for a better understanding and management of coastal disasters in cities with a substantial potential to increase the resilience of coastal communities. Deploying these advanced ICT infrastructures within a city context to improve citizen services is often referred as “smart city” and has become the latest trend in urbanization (Hollands, 2008; Batty et al., 2012; Kitchin, 2015; Wiig, 2015).

The definition of a “smart city” is diverse and so are its applications. Two distinct understandings of smart cities are prevalent in the literature. First, smart cities are viewed as urban places with ubiquitous computing and digitally instrumented devices built into the very fabric of urban environments. Examples include wireless telecom networks, digitally controlled utility services and transport infrastructure, sensor and camera networks, building management systems, smart phones producing data about resident's location, and activity etc. (Kitchin, 2014). These can make a city “knowable and controllable” and ultimately improve the performance and delivery of public services. A second view of smart cities is broader: this is seen as the development of knowledge economy within a city driven by ICT as a central platform. This notion of smart cities is based on the fact that embedding ICT in urban infrastructure on its own does not make a city smart; rather its entire ecosystem (economy, community, infrastructure, environment) should be managed having ICT as one of the central platform (Hollands, 2008). A similar view is presented by Batty et al. (2012) where authors sketched the fundamentals of what constitutes a smart city and argued that smart cities should include smart economy (competitiveness and entrepreneurship), smart people (social and human capital), smart governance (participation in decision making), smart mobility (transport and ICT), smart environment (sustainable resource management and smart living (quality of life). In both schools of thought, however, a common theme is the need to enhance the sustainability and resilience of the city as a whole. This paper adopts the former definition in order to investigate to what extent smart city frameworks have been used around the world toward increasing coastal disaster resilience of critical infrastructure systems.

Disaster resilience of a city is often characterized in three distinct stages of a hazard event namely preparedness of multiple systems of the city to reduce potential impact of the hazard, ability to manage and respond during the event to minimize loss, and finally the ability to manage recovery of the affected systems from the hazard impacts (i.e., bringing the system to its normal state). A review of the use of communications technology during disasters in recent years shows that while it has played a positive role, its full potential has not yet been realized (Diane and Meier, 2009; Dunaway et al., 2017). Different smart city features have been implemented around the world for better management of all these three phases of disasters. City specific case studies have been released highlighting how cities have implemented smart features in their urban margins [e.g., (Caragliu et al., 2011; Bakici et al., 2013; Scuotto et al., 2016)] but not all of them attempted to tackle coastal disasters. Furthermore, some of these case studies do not appear in the peer reviewed literature as they are often published as project reports. On the other hand, there has been a number of academic peer reviewed research publications reporting on the innovative development and implementation of smart city features for disaster management of cities from a range of natural and man-made hazards (e.g., Alazawi et al., 2011, 2012, 2014; Ancona et al., 2015; Choi and Bae, 2015; Kumar et al., 2015; Lo et al., 2015; Hernández-Nolasco et al., 2016; Shalini et al., 2016). This peer reviewed literature often reports a specific application or innovation of using smart features in disaster management. Therefore, it is difficult to understand from this body of literature to what extent new innovations are infiltrating in practical applications and what are the major challenges and opportunities of implementing smart city features for increasing coastal disaster resilience. There are several review papers that highlight the broader application of smart city features, but mainly focusing on different aspects of the discipline e.g., review of definitions and terminologies of smart cities used around the globe, review of smart city governance, review of enabling technologies, review of IBM smart city projects etc. (Caragliu et al., 2011; Cocchia, 2014; Anthopoulos, 2015; Yin et al., 2015; Meijer and Bolívar, 2016). However, to the best of our knowledge, none of the review papers investigated both gray literature application case studies and academic peer reviewed literature to analyse the variety of development and application of smart city features in coastal disaster management. This knowledge gap makes it difficult to anticipate future research directions and major development trends within the field of coastal disaster management.

To this end, the objectives of this study are: (1) to describe the broad characteristics of coastal disasters and their potential impacts on the resilience of city infrastructures; (2) to investigate a sample of case studies around the world to identify how coastal disaster resilience has been tackled using smart city features in those cities; (3) to analyse a sample of peer reviewed literature on disaster management and smart city to identify new innovation and development trends; (4) discuss current challenges, opportunities, and potential future research directions for this sector.



CHARACTERISTICS OF COASTAL DISASTER RESILIENCE IN CITIES

A number of coastal hazards can trigger a natural disaster in the coastal zone. Here it is important to make a distinction between “Coastal Hazards” and “Hazards in the coastal zone.” Where the first one is about hazards that are introduced by the action of sea and its interaction with the coast, the second one includes all hazards that are relevant for the coastal zone regardless whether they are due to action of sea or not (e.g., heatwave, landslide etc.). The scope of his paper is limited to the former. Different coastal hazards such as coastal flooding, erosion, sea level rise etc. propagate and have impact on coastal systems at a different time scale. As an example, while coastal flooding during a storm or cyclone is a rapid event with immediate impacts (in the order of hours and days), sea level rise has a slow onset with longer-term impacts (in the order of decades to centuries). Similarly, coastal erosion can have a rapid onset when a coastal storm or cyclone swept away significant part of the sand of a beach (in the order of days), but erosion can also have a moderate-term onset as a result of long-shore sediment transport where sediments are transported by waves from one beach to the other resulting in sediment deficit and erosion (in the order of seasons) and a longer-term onset where erosion of the coast increases as sea level gradually rises (in the order of decades and century) (Table 1). These time scales of coastal hazard govern the hazard impacts on coastal infrastructure. On top of temporal variation, these hazards also vary spatially as intensity of these hazards are amplified with specific geographic and geomorphic formation of the coastal area (e.g., low lying areas, erodible shoreline etc.).


Table 1. Characteristics of coastal disasters in cities.

[image: Table 1]

In order to make coastal infrastructure systems robust against hazards that vary temporally and spatially, the concept of “resilience” is becoming increasingly popular among disaster management professionals and researchers. The definitions of resilience emanate from multiple disciplines (e.g., ecology, disaster management, engineering) and therefore are quite diverse in the literature (Cimellaro et al., 2010). In general, resilience is defined as the ability of a system to resist and/or to recover from a shock. Scholars use other terminologies as a measure of resilience such as flexibility and the ability to maintain the status quo or to reorganize after stress or shock (Manyena, 2006; Bhamra et al., 2011). Resilience is also considered as an emergent property of a system to manage high variability and uncertainty in order to continuously pursue successful performance of a system (Cimellaro et al., 2010; Francis and Bekera, 2014; Kong and Simonovic, 2019; Kong et al., 2019). Tyler and Moench (2012) argued that the application of the concept of resilience to urban climate adaptation and hazard mitigation practice would help to address some of the “predict and prevent” approach and allow preparing infrastructure systems for climate change even under high uncertainty.

Disaster Risk Management (DRM) includes all activities, programmes, and measures which can be taken up before, during and after a disaster with the purpose to avoid a disaster, reduce its impact or recover from its losses (Khan et al., 2008). Figure 1 shows the characteristics of a resilient infrastructure system in these three distinct phases of DRM. To better prepare for any future hazard, in the preparedness stage, several steps can be conducted such as understanding the characteristics of coastal hazards though modeling and engineering analysis, developing early warning systems, installing hazard mitigation measures, educating and informing communities about hazards etc. When a disaster is unfolding (e.g., crossing of a cyclone/hurricane over a coastal area) a resilient infrastructure system should be able to absorb physical stresses from the hazard and maintain serviceability even with reduced capacity and should have the capacity to restore the system to full operation mode once the stress from the hazard is over (e.g., providing backup, restore function etc.). Finally, a resilient system uses its learnings from an event, policies are implemented and capacity increased so that in the face to future disaster stress, the system can better cope and fight back quickly. For any critical infrastructure operator it is crucial to reduce the time the system spend between t1 and t2.


[image: Figure 1]
FIGURE 1. Characteristics of a resilient infrastructure system in three distinct phases of disaster risk management.




INCREASING COASTAL DISASTER RESILIENCE IN CITIES USING ICT

Due to technological advancements as well as increased trend in natural and man-made disasters, the importance and scope of information and communication technology (ICT) in increasing disaster resilience have increased in recent years. Different phases of disaster management of infrastructure systems that are discussed in the earlier section (Figure 1), are benefitting from the recent advancement of ICT. Examples can be drawn from the use of early warning systems (in the preparedness phase), collection and analysis of real-time hazard information for effective coordination of disaster management and recovery operation (during the disaster), setting up of long-term monitoring systems for understanding trend of the coastal or climatic variable that are responsible for creating the hazard (during the post disaster state). At a global, regional, and national scale advanced information and communication technologies have been implemented for the generation and distribution of disaster alerts and warnings (be it coastal or not) (see Table 2). Among these, Common Alerting Protocol (CAP) and Emergency Data Exchange Language (EDEL) messaging standards have been adopted by developed nations such as in Canada, Australia, Japan and Taiwan etc. These systems allow these countries to facilitate automatic notification of certain natural hazards by sensor systems, analyse, and exchange results between emergency information systems and services. CAP and EDEL are international standards for exchanging emergency alerts in a digital format that allows a consistent alert message to be disseminated simultaneously over many different communications systems. These consistent formats allowed development of critical services such as Google Alert, European public warning systems etc.


Table 2. Example of ICT based global and regional disaster alert systems.
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These global and regional alert systems act as early warning systems for coastal disasters and assist national, regional authorities to communicate the risk of the cyclones, hurricanes, flooding etc. to coastal communities so that they can take necessary measures to reduce their loss from the disaster. Owner and operators of critical infrastructure systems also use these early warning systems to inform their disaster management activities. However, these global and regional alerts alone are not sufficient for managing disaster risks of critical infrastructure systems within a city. These critical systems often have complex and interdependent networks and increasing disaster resilience of such networks requires finer scale real-time information that goes beyond just the disaster alert systems.

To this end, recent development of sensors, their web of networks with ability to communicate via internet (i.e., internet of things) provide a tremendous opportunity to make better and real-time disaster management decisions for critical interdependent infrastructure systems. Specific opportunities of using ICT at a local scale coastal disaster management includes:

• Supplementing early warning systems with near-real-time to real-time analysis of hazard information. This will allow more pro-active decision making due to any disruption and recovery effort of a critical infrastructure failure.

• Opportunity to know more about how different infrastructure systems perform under stress during disasters (e.g., maintain physical integrity, cope with increased demand, cope with reduced capacity as result of disruption of connected services etc.), so that system vulnerabilities can be identified and initiatives can be taken to make them more resilient.

• Opportunity to use of data enabled decision support systems to prepare, manage, and recover from coastal disasters. Visualization and analysis of near-real-time information from sensors about the extent of the hazard, performance of the infrastructure etc. provides an opportunity to make informed decision about where and how resources should be allocated to recover lost infrastructure services



EMERGENCE OF THE SMART CITY CONCEPT AND ITS USE IN COASTAL DISASTER MANAGEMENT AT A CITY SCALE

The term “smart cities” has gained significant attention in academia, businesses and government in the last decade, especially in cities where ICT has been embraced as a development strategy. Cities that are embedding digital infrastructure in the urban fabric for providing better service to its citizens through web access services, to better manage facilities and to promote entrepreneurship are often termed as “smart cities,” “intelligent cities,” “connected cities” etc. (Kitchin, 2014).


What Does a Smart City Framework Look Like?

There are four main layers in a smart city framework (Figure 2). A perception layer which includes range of sensors that can collect real-time or “near real time” data. This also includes a sensor or device management component to handle registration of new devices, assignment of unique identifiers, format data, etc. A network of sensors provides interfaces to interconnect heterogeneous information sources in a secure way and a data storage services to persistently store collected data. Finally this includes a layer which analyses and visualizes stored and real-time data stream. Visualization services include different formats like visual diagrams, reports, graphs, etc. Some of the specialized type of application also include analysis of georeferenced data and dissemination of alarms and notifications. This is beyond the scope of this paper to present detailed smart city frameworks and for more information readers are directed to following references (Alazawi et al., 2014; Sanchez et al., 2014; Scuotto et al., 2016). Rather, we investigate how this generic framework has been used for the coastal disaster management in cities.


[image: Figure 2]
FIGURE 2. Different layers of a smart city framework (a generic view).




Development Trend in Peer Reviewed Academic Literature


Selection of Peer Reviewed Academic Literature

In order to identify relevant academic papers we conducted an extensive search in the “Web of Science” database in early 2018. Initial search was conducted using key words “smart” AND “disaster management” within topics for the entire database and it yielded 223 papers (Type-1). This included papers related to disaster planning and management of all hazards which goes beyond the scope of the paper. We then refined the search by adding “coast” in the search term and it yielded only 6 papers. It was quite clear that these search terms are very narrow therefore we then expanded the scope of the search by making it “smart” AND “disaster management” AND “flood” which yielded 33 papers (type-2). Often flooding in the coastal city is a big issue and used as a topic in the academic papers. However, by reading through the abstracts of this list it was evident that this list includes studies that are non-coastal in nature. In order to get a representative sample of coastal studies we replaced “flood” with “coast OR flood” and also included “IoT” (internet of things) along with our initial search term “smart.” Type 3 search criteria was “smart OR IoT” AND “disaster management” AND “coast OR flood” which yielded 18 papers. IoT has been one of the main driver of smart city developments and its inclusion in our search criteria allowed capturing technical papers that not necessarily use the term “smart” rather report their development using a more technical terms. A clear trend is visible in all these three sets that research on smart and innovative disaster management systems have been growing exponentially since 2010 (Figure 3). It is possible that we may have missed few papers, but our aim was not to find every paper that deals with smart city and coastal disaster, rather to find a representative sample of papers to understand major trend within this emerging body of work.
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FIGURE 3. Yearly distribution of publication that appeared in different search sets.




Analysis of Peer Reviewed Literature

Analysis of this final type-3 set of papers revealed two clear branches. First, a set of papers developed innovative IoT based smart systems for better identification and communication of hazard information (flooding, Tsunami etc.). Table 3 shows key feature of these studies. Table 3 maps seven studies from the type 3 sample (which specifically used IoT based smart systems) across their application, type of hazards they addressed, resilience stage which they aimed to cover and technologies used across four layers of smart city framework that are described in Figure 2. It shows that application of IoT based major innovations in our study samples mainly focused on managing two types of coastal hazards, flood and Tsunami. While investigating the technologies that are used across different layers the smart city framework, it was found that in the “perception layer” along with different types of sensors, CCTV camera and smart phones are used for collection of real-time information. Collected information of the perception layer is transmitted by various mediums e.g., Wi-Fi, cellular, internet. Studies which conducted further analysis to generate insights often stored the data either in cloud based systems of local servers. Choice of storage was primarily guided by the size of data generated by the perception layer and analysis method that were used by the authors.


Table 3. Example of studies reporting IoT based coastal disaster management systems.
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The second group of papers, often categorized as “crisis informatics,” reported use of different advanced analysis techniques (optimization, social media or crowd sourced information etc.) or advanced technologies such as virtual reality for better preparing and managing coastal disasters. As an example, Basu et al. (2016), collected situational information through interactive crowd-sourcing using SMS from the “crowd” present at the disaster site, and analyzed them to develop situational awareness to support appropriate decision-making regarding damage or need assessment during coastal disasters in India. Ai et al. (2016) combined a geographical information system and social media to develop a dynamic decision support system (GIS-SM-DDSS) that integrates geographical information with Twitter technology to enable self-organized information networks to support decision making and collective actions in emergency situations. Ogie et al. (2017) used network analysis to determine optimal sensor locations in developing countries, so that a low cost early warning system of coastal flooding can be implemented. Anbalagan and Valliyammai (2016) used real time social media contents such as micro blogs, tweets, posts and multimedia content along with geographical location tags (geo-tags) to map the severity of the disaster. Kawai et al. (2015) developed a smart Tsunami drill system using virtual reality technologies to educate and increase awareness of Tsunami disaster among school children.




Implementation Trend at a City Scale

After investigating the development trends in the academic literature, we investigated, how cities are embracing some of these smart city features for managing their coastal disasters. Smart city projects are often reported as case studies to showcase city's progress in embracing new technology to serve its citizens. Among many other information, these case studies generally highlight key technical features of the implemented smart city projects. Analyzing a sample of such case studies can provide a sense about how new developments in the academic literature are translated into practical project implementation.


Selection of the Case Study Sample

A google search was conducted using key words “smart city” AND “Case study” to generate a sample of city specific case studies from the unpublished gray literature that document how city's smart city projects are implemented. Initial screening of the sample documents revealed that not all smart city case studies have disaster management related content. This is mainly due to the fact that some cities do not include disaster management as their focus while implementing their smart city, be it coastal or not, or the case study document that we selected may not have included the disaster management component of the city. Whichever is the case, our analysis discarded those case studies and retain only those that report any disaster management related features. In the next step some of the non-coastal city specific case studies were eliminated to ensure that our final sample only consists of case studies that include coastal disaster management.

Table 4 shows the final list of the sample case studies. It should be noted that this list is not exhaustive and it is likely to miss some. However, the aim of this paper is not to develop an exhaustive list of case studies rather analyzing a sample in order to understand major trends.


Table 4. Analysis of Smart city case studies for identifying key features of coastal disaster management.
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Analysis of Selected Case Studies

Six sample case studies were analyzed to identify what types of coastal disasters were tackled by cities using smart systems, at what stages of the disaster were they used (e.g., early warning, during disaster, disaster recovery etc.), and what smart city features and systems were implemented in the city (Table 4). Flooding (coastal and riverine), cyclone (typhoon, hurricane, tornado, and thunderstorm), tsunami, and landslide have been tacked by these cities. Early warning systems of these hazards were most benefited as information about these hazards were collected, analyzed and communicated to citizens for better preparation. As an example, Tokyo's smart disaster early warning system covers a range of hazards, not just coastal, including earthquake. Technology vendor NEC has developed Tokyo's disaster resilience solution which includes observation systems, information gathering capabilities, data analysis and decision-making aids, together with an intelligent warning system, all linked together in an interoperable manner.

Another example is from Rio De Janeiro, which has a central disaster coordination and operation center. Since opening, the Rio Operations Center has integrated information and processes from across 30 different city agencies into a single operations center that provides a holistic view of how the city is functioning on a 24 h basis. The Operations Center serves as the nerve center for the city, applying analytical models developed by IBM to more effectively predict and coordinate disaster management.





DISCUSSION

Increased potential of natural disaster events as a result of climate change along with rapid development and population growth in coastal cities have created significant risks and challenges for disaster management authorities. Rapid improvement in IT systems has fuelled growing interest in designing and implementing disaster management systems which can predict climatic conditions based on near real-time information, analyse them and communicate with citizens so that disaster impacts can be minimized. To this end a range of innovative systems, tools etc. are developed by the research and academic sector and some of them are making their way to practical city scale implementation. Among these, “smart-city” concept or framework is growing in interest among disaster management professionals, specifically in developed countries. A “smart-city” concept uses embedded sensors, live camera, radar to collect near real-time information and further analyse them to generate valuable insights for disaster management professionals. In the earlier part of the paper, our analysis of a selected sample of peer reviewed academic papers as well as gray unpublished literature revealed some interesting facts about using ICT based smart city frameworks in disaster management and resilience.


Trends and Gaps

The present review highlights the lack of scalable smart city technologies for improving coastal disaster resilience, and as a result, the lack of at scale implementation of smart city frameworks from a coastal disaster resilience perspective. Our findings are summarized below:

• Various smart city technologies, platforms, analysis techniques and applications that are relevant to coastal disaster resilience have been identified. It is clear that the choice and appropriateness of the technology should be judged under the decision-making contexts for which it is developed (i.e., early warning or pre-disaster stage, disaster management when the disaster is unfolding or post disaster recovery etc.). Future applications and/or further development of a smart city tool for coastal disaster resilience depend on the specific decision-making context. Thus, the lens of decision-making contexts is absolutely necessary to assess the appropriateness of a smart city technology.

• While comparing the analysis findings of both peer reviewed literature and city scale case studies, it is clear that while peer reviewed literature is testing and trialing new approaches and techniques, city scale applications are leaning toward more matured approaches and technologies. As an example, in our study sample of the academic literature an innovative CCTV enabled and machine learning based visual monitoring system was used for automating and process real time flood monitoring using image processing. Whereas, this approach did not proliferate in our city scale case studies as cities mostly used conventional sensors. While, conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards (Lo et al., 2015).

• At present, there is a scarcity of studies investigating and applying smart city technologies for managing coastal hazards at a local government scale. However, coastal local governments commonly face such issues related to the management and planning for potential coastal hazards. As sea-level rises, this issue is likely to become more critical for coastal local governments (Torabi et al., 2017; Tonmoy et al., 2018).

• In peer reviewed literature “Crisis informatics” has become an emerging smart city framework that develops analytics approaches to extract, analyze, and predict online activities (e.g., tweets and Facebook posts) to address challenges in disaster warning, response, and recovery operations (Palen and Anderson, 2016). For instance, during a disaster, disseminating information effectively and timely plays a critical role in spreading awareness in a community. It requires a range of delivery techniques to reach the target audience using different media and communication means. Online social media (such as Facebook, Twitter) can serve as alternative channels to disseminate information to a wider audience. Applications of such crisis informatics can be found in many recent studies using social media data during disasters (Kryvasheyeu et al., 2015; Thom et al., 2016; Sadri et al., 2018). Since crisis informatics is a relatively new field investigating the role of social media during disasters, most studies commonly focus on high-level correlations among the variables of interest when analyzing large-scale data sets (Palen and Anderson, 2016). However, many other questions (Gladwin et al., 2007; Murray-Tuite and Wolshon, 2013) about behavioral and social phenomena, critical to achieving disaster resilience, still remain open. These questions include: how to use social media communications to rapidly identify infrastructure disruption issues and monitor disaster responses and recovery efforts; or how to measure the effectiveness of the available information sources in warning message propagation using the topological properties of the social network observed?

• In city scale implementation case studies:

a) different types of early warning systems are developed for communicating detected coastal hazard (e.g., flood, cyclone) warnings to public through variety of mechanisms such as SMS alerts, social media, sirens etc.

b) different types of remote sensing technologies such as water sensors, radar imagery etc. are used to monitor water levels in flood, tide and rain gauges or to continuously measure the water level variation within a large area (e.g., flood monitoring systems). As an example, flash flood alarming systems require a dense network of rain gauges for monitoring intense local rain storms both to ensure its survival in case of extreme weather and to have a more accurate collection of data. However, those data have to be interpreted using empirical models by correlating in real time the river level and the flow intensity for early flood forecasting and consequent anticipated alarming (Ancona et al., 2015).

c) application of other types of sensors such as temperature sensors, pressure sensors in this domain remain limited.

• One common theme emerged as IoT based software platforms are used in both academic literature and city specific case studies for deploying sensors, communicating collected near-real time data, their storage and analysis.


Lack of Use in Erosion Management

Although coastal erosion has been a major coastal hazard, but it did not appear neither in academic literature nor in city scale case studies. Long-term monitoring of shoreline changes is of significant importance for coastal erosion prediction and coastal planning. Using drones or fixed CCTV camera in combination with image analysis techniques can provide opportunity to implement coastal erosion monitoring of city's most erosion prone beaches (Turner et al., 2016). However, this lack of application of smart city frameworks in coastal erosion management brought up a critical point that time scale of coastal hazard governs the choice of ICT in disaster management. Coastal hazards not only vary in space (e.g., lower areas get inundated in coastal flooding) but also vary in time (e.g., while cyclones can cause inundation of coastal areas within days, increase in sea level rise may cause inundation gradually over decades). The time scale of coastal hazards often determines the choice and characteristics of the ICT feature that are to be used for risk management. As an example, for managing longer-term coastal hazards such as sea level rise, it is important to understand trends and therefore monitoring tides, sea levels, sediment transport etc. are critical with relevant ICT features such as implementation of monitoring systems with sensors being used (Harley et al., 2015). On the other hand, ICT features for managing coastal storms and cyclones require real-time information to feed early warning systems therefore relevant ICT features and sensors with capability to transmit real time information are used.



Not All Smart City Projects Include Smart Disaster Management

ICT have been used for providing early warning to coastal hazards at both global and local scale (Application of local scale mostly in developed countries). Analysis of a sample of smart city gray literature case studies suggest that not all smart city projects around the world have incorporated smart ICT features for managing coastal hazards. There is a chance that not all features get reported in case studies therefore this needs to be further investigated.





FUTURE DIRECTIONS AND CHALLENGES

Major Research Questions

Major Research Questions That Need to Be Addressed Include.

• How can we design and implement a smart city decision support system for coastal hazards which includes the vast range of stakeholder concerns and decision-making contexts related to disaster management?

• How can we develop models to better understand infrastructure interdependency at a local government or city scale and integrate them with smart city platforms?

• Will it be possible or effective to develop one smart city tool that can satisfactorily address all the key disaster management issues in coastal areas, or will it be more effective to create an ensemble of smart city platforms with properly designed interfaces allowing information and decision exchange among various platforms?

• How can we create a smart city platform with linked models and data interoperability for modeling coastal hazards and use them for the development of smart decision making under different types of disaster management contexts (pre disaster, during disaster, and post disaster) in coastal areas?



Opportunities for Implementing Smart City Framework for Coastal Disaster Management

Use of a smart city framework provides a basis for monitoring coastal activities and there are significant opportunities to integrate them with computational models of floods (coastal, riverine, Tsunami) and erosion. These models are developed and validated and used for identifying hazard prone areas. Combining these models with real-time information using smart city frameworks can provide opportunity to disaster managers' to dynamically characterize coastal hazards as they unfold. This is especially critical for cyclone or hurricane as their track changes dynamically and so does areas that are likely to get affected by the cyclone or hurricane. Combining validated numerical hydrodynamic model of coastal inundation with real-time information of cyclone track can assist disaster managers to prioritize evacuation dynamically as cyclone changes its track. Not only cyclones, flood models can also be integrated with smart systems to understand concurrent events of catchment flooding and coastal surge. All of this knowledge can then be integrated with socioeconomic and demographic information (i.e., location of vulnerable populations, critical infrastructure, old structure etc.) to better inform disaster management.



Challenges for Implementing Smart City Framework for Coastal Disaster Management

One of the main driving factors of this framework is power and communication systems which are vulnerable to any man-made or natural disasters including coastal ones. If we lose either we will lose the effectiveness of the whole system. Use of these smart systems will increase in future in managing different infrastructure layers and the connectivity will only increase. Smart city technologies will make different city functions more interdependent. Emergency services depending on data analytics or artificial intelligence will have to depend on the availability of the sensors. However, these interdependencies will be a major challenge in future as there are gaps in our understanding about infrastructure interdependency at a local scale that are arising from these smart infrastructures (Tonmoy and El-Zein, 2013; Hasan et al., 2015; Ersoy, 2017).

Although academic literature is developing innovative new smart systems and analysis techniques, they are often designed and tested in isolation. Integration of these systems to serve a common goal such as disaster management at a city scale across different city systems still remains an unresolved challenge. Transferring a newly developed prototype of smart technology for disaster management into a real-life city scale implementation to inform existing disaster management (DM) decision-making protocol is difficult. DM sector is often very hierarchical and often can be resistant toward getting information from different sources that might affect central command under emergency situation. At the same time, multi-asset integration of disaster management is challenged by data sharing although some progress has been made. As an example, safe data sharing initiative has been initiated and implemented across multiple infrastructure operators in Australia to support managing critical infrastructure during disaster events (Australian Government: Department of Infrastructure, 2018).

Because of the complexity of the disaster management issues in the coastal region and a diverse range of stakeholders and available smart systems, it will be a nearly impossible task to build a super-smart city platform to support a wide range of disaster management related decision-makers. Instead, a more pragmatic approach will be to build interfaces amongst different aspects of the problem linking models, platforms and their outputs. Such an interoperable approach of decision support system will be able to fit different smart technologies, analysis techniques in the decision support platform depending on the disaster management decision context. Also, there is a need for a consistent benchmark of relevant data sets to be able to integrate them within smart city compatible decision support systems.




CONCLUSIONS

A disaster resilience framework has been presented to assess current state of research and application of smart city frameworks in disaster management within coastal cities. A set of academic literature and city specific application case studies were reviewed. We find that smart city technologies such as internet of things (IoT) and crisis informatics have significant potential and have been increasingly used in academic studies but their city-scale applications in coastal disaster management have been limited. We have identified critical gaps, RandD needs and practical challenges to foster development of smart city oriented decision support systems for coastal disaster management.
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The Ganga river basin, being one of the largest river basins in South-East Asia, with area over 1 million Km2 and population over 400 million, is highly vulnerable to water scarcity due to climate change and rapid growth in agriculture, industrialization, and urbanization. To understand the potential impact of climate and land use changes on regional terrestrial water balance has become crucial for ensuring appropriate water management strategies for adaptation and mitigation purposes. In this study we employ an RCP-SSP (Representative Concentration Pathways—Shared Socioeconomic Pathways) scenario framework (1.5 and 2°C warming scenarios and SSP1–5) to explore the relative impacts of projected twenty-first century climate and land use changes on the surface hydrology of the Ganga river basin. By statistically comparing the hydrological responses of each combination of socioeconomic and climate mitigation pathways against a control scenario, we distinguish between the impacts of each scenario. We also analyze our data in a conceptual framework to understand how climatic and land use factors impact the basin characteristics and which one among them is projected to be the dominant factor in our study region. Our results show that, in terms of hydrologic impact assessment, climate change mitigation pathways are the dominant factor and the land use changes associated with socio-economic pathways contribute little to the projected future changes.

Keywords: climate change, shared socioeconomic pathways, low-warming scenarios, Budyko framework, integrated assessment


INTRODUCTION

India has a population of more than 1.3 billion, which is around 17% of the world's population, but only 1,121 Km3 of estimated utilizable water resources, about 4% of global freshwater resources [Central Water Commission (CWC), 2013; United Nations (UN), 2019]. In the last few decades the country has experienced a continuous rise in population along with economic growth and increased food, energy, and water consumption [Global Water Partnership (GWP), 2013]. Rapid growth in agriculture, industrialization, and urbanization has led to increasing demand for freshwater throughout the country. In terms of water usage, agriculture is the dominating sector, with about 80% share of the total water demand (Bhat, 2014). The water availability and the agricultural and economic productivity of India are heavily dependent on the south-west monsoon (Krishna Kumar et al., 2004; Gadgil and Gadgil, 2006). More than 80% of annual rainfall in India occurs during the monsoon months (June-September, JJAS), which totals to 904 mm on average, compared to 294 mm of rainfall during the rest of the year (Amarasinghe et al., 2005). However, climate changes associated with increased atmospheric carbon dioxide (CO2) level are impacting water availability by changing the spatial and temporal distribution of monsoon rainfall, both globally and at regional level (Wang and Ding, 2006; Kundzewicz et al., 2008; Turner and Annamalai, 2012; Kim et al., 2016). The Ganga river basin, being one of the most populated river basins in the world, is highly vulnerable to water scarcity, due to the changing pattern of the Indian summer monsoon rainfall in a warmer climate (Misra, 2013). The water management practices in the Ganga basin are not sustainable and over-reliance on groundwater withdrawal for irrigation is leading to imminent water crisis (Briscoe and Malik, 2006). Hence reliable hydro-meteorological projections for the twenty-first century at a regional scale are important for water resources planning and policy making.

As the future greenhouse gas emissions and land uses are highly uncertain, typically they are represented by a group of plausible scenarios. The current state-of-the-art Earth System Models (ESM), from Coupled Model Intercomparison Project phase 5 (CMIP5) (Taylor et al., 2012), use emission based Representative Concentration Pathways (RCP) (Van Vuuren et al., 2011) as future scenarios to project the changing climate over the twenty-first century. However, in 2015, the Paris Agreement was signed at the twenty-first Conference of parties (COP21) of the United Nations Framework Convention on Climate Change (UNFCCC), and two new temperature based scenarios were introduced. The aim of this agreement was to limit the global mean air temperature increase, below 2°C above pre-industrial condition, by the end of the twenty-first century, and further attempt to limit it within 1.5°C (UNFCCC, 2015). To achieve the goal of 1.5°C scenario, we need a global emission rate reduction of 5%/year and a substantial effort to develop negative carbon emission technologies (Sanderson et al., 2017). Irrespective of the achievability of these goals, it is important to quantify their impacts on regional climate and hydrology, for future climate negotiations.

Apart from the climate scenarios, the Shared Socioeconomic Pathways (SSP), which represent a range of substantially different plausible socioeconomic conditions, are also important for impact assessment. Each SSP scenario describes the characteristics of societal development, such as population growth, economic development, energy and land use, technological development, environmental protection etc. At a fundamental level, each scenario depicts a narrative of challenges on adaptation and mitigation to climate change (O'Neill et al., 2017). In principle, SSPs can be combined with climate mitigation pathways to generate a scenario matrix. However, some SSP-RCP combinations can be unrealistic and are ignored in impact assessment analysis.

In this study, using an ensemble of model outcomes, we analyze the projected impacts for an SSP-RCP scenario matrix on the hydrometeorology of the Ganga River basin. There are several studies assessing the hydrologic responses of river basins under climate change (Nijssen et al., 2001; Raje et al., 2014) or land use changes (Cruise et al., 2010; Zheng et al., 2012). Multiple studies have been performed in order to distinguish between their impacts as well, using different approaches such as regression analysis (Wang et al., 2012), hydrologic simulations (Bao et al., 2012; Zhang et al., 2012), Budyko framework (Li et al., 2007; Wang and Hejazi, 2011), or a combined approach (Jiang et al., 2011; Ahn and Merwade, 2014). However, most of these studies either focus on the historical changes, or estimate the projected future changes using climate mitigation pathways only. By incorporating the projected changes in land use associated with SSPs, we explore the relative impacts of both climate and land use on the hydrologic variables, in future scenarios.

We also explore the relative contributions of climate and land use change on the basin characteristics parameter of Budyko framework (Budyko, 1974; Choudhury, 1999), a conceptual framework for modeling terrestrial water balance. In scientific literature, it is a common practice to assume that basin characteristics is independent of climate change and affected by other factors, such as land use, vegetation dynamics, soil, topography, and human water management (Donohue et al., 2006; Wang and Hejazi, 2011; Xu et al., 2013). However, impacts of climatic variables such as seasonality and intra-seasonal variability of rainfall, number of precipitation events and their intensity, phase shift between rainfall and evapotranspiration etc. on the basin characteristics parameter have also been documented (Milly, 1994; Potter et al., 2005; Padrón et al., 2017). Even though vegetation is considered one of the most important factors controlling the basin characteristics (Donohue et al., 2006), Padrón et al. (2017) and Abatzoglou and Ficklin (2017) didn't find any significant relation between Normalized Difference Vegetation Index (NDVI) and the variability of basin characteristics parameter. As there is not enough consensus on which factors dominate the basin characteristics, in this study we compare the relative impact of two factors, climate and land use change. Our analysis helps us gain a better understanding of the factors influencing river basin scale terrestrial hydrology, to better prepare us for adaptation and mitigation.



METHODS

In Figure 1 we represent the overall methodological framework of our study. The hydrological projections are performed using the model Variation Infiltration Capacity (VIC) (Liang et al., 1994). Climate model simulations associated with various warming scenarios have gone through a statistical bias correction and downscaling methodology (Kannan and Ghosh, 2013) to provide meteorological forcing for VIC. Land use projections associated with various SSP-RCP combined scenarios, from the land allocation model Asia-Pacific Integrated Model/integration Platform for Land-Use and Environmental Modeling (AIM/PLUM) (Hasegawa et al., 2017), are used as vegetation input data in VIC.


[image: Figure 1]
FIGURE 1. Methodological framework of the study.



Study Area

Our study is performed over the region of Ganga river basin, within the political boundary of India. The Ganga river basin is located within geographical coordinates of 73.5°E−89°E longitude and 22.5°N−31.5°N latitude. The basin consists of mountainous region at the northwest side, and the remaining area is plain encompassing northern and eastern India. The majority of the land in the Ganga basin plain is used for agriculture. The basin receives most of its rainfall over the summer monsoon season (June–September). Based on the Watershed Atlas of India, provided by the Central Ground Water Board (Ministry of Water Resources, Government of India), the basin is divided into 15 sub-basins, as shown in Figure 2.


[image: Figure 2]
FIGURE 2. Study area: Ganga river basin divided into 15 sub-basins. Inlet is representing location of the basin within India. Location of streamflow measurement stations, Bhimaghoda and Ankinghat are marked with dots.




Scenario Matrix

In our study, 1.5 and 2°C warming scenarios are considered as climate change mitigation pathways, and SSP1, SSP2, SSP3, SSP4, and SSP5 are considered as socio-economic pathways. SSP1 (sustainability) represents low challenges for adaptation and mitigation, with low population growth, higher growth in per capita income and high environmental awareness. On the other hand SSP3 (regional rivalry) represents high challenges for adaptation and mitigation, due to increasing regional conflicts, less international trade, low income growth among the general population and low effort for environmental protection. SSP2 (middle of the road) represents medium challenges for both adaptation and mitigation, with modest population and economic growth with a slow pace of trade liberalization. SSP4 (inequality) represents high challenges in adaptation, due to increasing disparities in economic development among population, coupled with low challenges in mitigation due to technological advancement. Lastly SSP5 (fossil-fueled development) pushes for overall economic and social growth of general population by exploiting fossil fuel resources, depicting high challenges in mitigation with low challenges in adaptation. Apart from the aforementioned scenarios, a climate scenario with historical emissions (HIST) and a control socio-economic scenario with land use classes kept constant at year 2005 level (CTL) are also considered with the purpose of comparison. The overall scenario matrix for our study is presented in the Table 1. Each combined scenario in this matrix is named after the socio-economic scenario and warming scenario it belongs to. For example, the CTL_HIST scenario represents the control (CTL) socio-economic scenario and historical (HIST) emission scenario.


Table 1. Scenario matrix used in the study.
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Climate Model Simulations

The climate model projections are obtained from CESM low-warming runs, performed using Community Earth System Model version 1 (CESM1) with Community Atmosphere Model version 5.2 (CAM5.2) and the Greenhouse gas (GHG) emission associated with 1.5 and 2°C warming scenarios, obtained from Minimal Complexity Earth Simulator (MiCES) (Sanderson et al., 2017). The historical climate scenario outcomes are obtained from CESM Large Ensemble (LENS) simulation (Kay et al., 2015), which are performed with the same CESM version and model parameters as the low-warming runs. Five ensembles of each simulation: Historical (HIST) (1951–2005), 1.5°C (2006–2100), and 2°C (2006–2100) were chosen for our study and bias correction and statistical downscaling methodologies are applied on each of them independently.



Statistical Downscaling

The outputs of CESM LENS and low-warming simulations are of coarse resolution (1° horizontal resolution) and not suitable for regional hydrological modeling. To use the model outcomes as meteorological forcing in hydrological model, they need to go through a bias correction and downscaling procedure. In this study, we have used a non-parametric regression-based multisite statistical downscaling method (Kannan and Ghosh, 2013; Salvi et al., 2013), where a statistical relationship is established between observed coarse resolution predictors (1° horizontal resolution) and fine resolution observed rainfall (0.25° horizontal resolution); and the derived relation is applied on the bias-corrected model-simulated predictors to obtain a better projection of future rainfall. In this study, for the development of statistical relationship between the predictors and rainfall, we have used daily reanalysis data from National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) (Kalnay et al., 1996), as proxy for observed predictors; and observed daily rainfall data from APHRODITE, Monsoon Asia (Yatagai et al., 2009), both for the period 1951–2005. The data from 1951 to 1980 is used for training the statistical model and the rest of the data is used for validation. The following climate variables have been used as predictors: air temperature, zonal and meridional wind at surface level; mean sea level pressure; air temperature, zonal and meridional wind, specific humidity at 850 hPa pressure level; and air temperature and geopotential height at 500 hPa pressure level. The downscaling methodology is performed for the entire landmass of India, by applying it separately for 7 meteorological homogeneous zones, suggested by India Meteorological Department (IMD) (Parthasarathy et al., 1996) and four seasons: June–September (JJAS), October–November (ON), December–February (DJF), and March–May (MAM). For each homogeneous zone, we have used a separate zone of predictors, as suggested by Salvi et al. (2013).

The downscaling methodology essentially involves four steps: bias correction, dimensionality reduction, rainfall state estimation, and rainfall value estimation through regression. First, we have bilinearly interpolated the model-simulated predictors to the same grids as reanalysis predictors and used a quantile mapping method proposed by Li et al. (2010), for correcting the bias in the model data. A distribution is fitted to all the grids separately for both reanalysis and model data. We have fitted Normal distribution for wind and specific humidity and Gamma distribution for rest of the predictors. Then, for the historical period (1951–2005), the Cumulative Distribution Function (CDF) of the reanalysis and the model-simulated data are compared and the biased model data at each grid and time step is replaced by the reanalysis data with same CDF. For future (2006–2100), additionally, the shift between model-simulated historical and future data with same CDF is added to the replacement value, to account for the climate change. Apart from the predictors used in the statistical downscaling of precipitation, we have also bias-corrected daily minimum and maximum temperature, which are later used as meteorological forcing in the hydrological model. Next, in order to get rid of the multidimensionality and multicollinearity of the predictors, we have used principal component analysis (PCA) on the reanalysis predictors. We have sorted the principal components in the descending order based on their explained variance and taken the first few of them till the sum of explained variance reached 80%. The same coefficients were used to transform the model simulated predictors also. We have classified the observed rainfall into 3 states using unsupervised K-means clustering and apply Classification and Regression Tree (CART) to establish a relationship between reanalysis predictor PCs and observed rainfall states. We have then applied the derived relation on Model predictor PCs to estimate the rainfall state. For each rainfall state, we have applied Kernel Regression on the predictor PCs to obtain the projected daily rainfall amounts. We have used the Nadaraya-Watson estimator for kernel density estimates (Nadaraya, 1964) and asymptotic mean integrated square error (AMISE) criteria for bandwidth selection (Wand and Jones, 1995; Scott, 2015). The final resolution of the downscaled rainfall is same as that of the observed rainfall, which is 0.25° in our case. After downscaling is performed, rainfall and other meteorlogical variables for the grids belonging to Ganga basin region are extracted to be used as an input to the hydrological model.

The performance of the downscaling model is presented in Figure 3. The difference between mean observed and projected JJAS rainfall for validation period (1981–2005) doesn't exceed 3 mm for majority (98%) of the grids. Standard deviation is underestimated in the projected rainfall. For more than 96% of the grids, difference between standard deviation of projected and observed JJAS rainfall is within 6 mm/day. Overall, we find the performance of the model satisfactory. More discussion on the performance of the model can be found on Salvi et al. (2013).


[image: Figure 3]
FIGURE 3. Performance of statistical downscaling model. (A) Difference between mean projected JJAS rainfall and observed JJAS rainfall for validation period (1981–2005) (B) Difference between projected standard deviation of JJAS rainfall and observed standard deviation of JJAS rainfall for validation period (1981–2005).




Land Allocation Model

The gridded land use projections are obtained from the impact model Asia-pacific Integrated Model (AIM). The computable general equilibrium (AIM/CGE) component is a recursive-dynamic general equilibrium model, which takes population, gross domestic product (GDP), consumption, technological progress, pollution level etc. associated with socio-economic pathways into account and provides regionally aggregated emission, energy, and land use information for each scenario in SSP-RCP scenario matrix (Fujimori et al., 2017). This aggregated land use projections are then regionally disaggregated into 0.5° × 0.5° gridded land use data by the land allocation model AIM/PLUM. Land allocations are performed to maximize the economic efficiency for a given biophysical land productivity (Hasegawa et al., 2017). The outcomes of AIM/PLUM are available globally for the year 2005 and then every 10 years from 2010 onwards, which we have extracted for our study region. It should be noted that the outcomes of this model are available for emission based RCPs, not temperature based climate scenarios we are using in our study. However, RCP1.9 and RCP3.4 have been used among climate mitigation pathways for AIM; even though they are not part of the originally proposed pathways (Van Vuuren et al., 2011), today they are widely used as analogous to 1.5 and 2°C warming scenarios (Fujimori et al., 2018).



Hydrologic Simulation

The projected meteorological data and land use data are forced grid-wise into a semi-distributed mesoscale hydrological model (VIC), which balances water and surface energy budgets. The key characters of the VIC model includes representation of multiple land cover types on a single grid, spatial variability of soil moisture capacity, multiple soil layers, and interactions between them, non-linear base flow and clumped vegetation formulation with time-varying spacing between plants (Bohn and Vivoni, 2016). A list of datasets used as an input to the hydrological model is presented in Table 2. The elevation map for VIC is acquired from U.S. Geological Survey (USGS) HYDRO1K dataset (Raje et al., 2014). Vegetation parameters, such as leaf area index, are collected from Global Land Data Assimilation Systems (GLDAS) dataset (Rodell et al., 2004). Soil data is extracted from a global database from Food and Agriculture Organization (FAO) at 0.5° resolution. Certain soil parameters, such as soil depth, are obtained by calibrating the model at two stations, Ankinghat and Bhimaghoda. The observed streamflow for these two stations are collected from Central Water Commission (CWC), India at monthly scale (Chawla and Mujumdar, 2015; Joseph et al., 2018). After calibration, the comparison of observed and VIC simulated streamflow is presented in Figures 4A,B. We have also calculated Nash-Sutcliffe efficiency (NSE) of the model in each station. The model simulated streamflow matches the observed flow reasonably well at Bhimaghoda station (NSE = 0.75), but overestimated at the Ankinghat station (NSE = 0.09). It should be noted that the flow is highly regulated at downstream, which may have contributed to the relatively poor performance of the model at Ankinghat station. We have tried to minimize the impact of human water management in the streamflow data, by incorporating data from water diversion structures and canals. We have validated our model against an observed evapotranspiration data collected from Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 Global Terrestrial Evapotranspiration Data Set and a satellite based soil moisture data from European Space Agency Climate Change Initiative, for the time period 2000–2009, results of which are presented in Figures 4C,D, respectively. Overall the simulated evapotranspiration and soil moisture show high positive correlation for majority of the grids in our study area.


Table 2. Datasets used in hydrological modeling or validation.
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[image: Figure 4]
FIGURE 4. Calibration and Validation of hydrologic model VIC. (A) Time series of monthly observed (blue) and model simulated (red) streamflow at Ankinghat station. (B) Time series of monthly observed (blue) and model simulated (red) streamflow at Bhimaghoda station. (C) Correlation of observed and model simulated evapotranspiration during JJAS season at 95% significance level. (D) Correlation of observed and model simulated soil moisture during JJAS season at 95% significance level.




Budyko Framework

Budyko (1974) proposed a deterministic non-parametric framework to model the long-term water budget constrained by atmospheric water supply and water demand limit. According to this framework, the evaporative fraction (ratio of evapotranspiration to precipitation) can be expressed as a function of aridity index (ratio of potential evapotranspiration to precipitation). However, the relationship between evaporative fraction and aridity changes among catchments and to account for that various functional forms of Budyko equation has been proposed in scientific literature (Fu, 1981; Choudhury, 1999). In these Budyko equations, basin characteristics parameter is introduced, which, by definition, explains the combined effect of all factors other than aridity on the terrestrial water balance. In this study we use the following functional form of the Budyko equation, known as the Mezentsev equation.

[image: image]

Where P is the precipitation, E is the evapotranspiration, E0 is potential evpotranspiration and n is the basin characteristics parameter.

One assumption of Budyko framework is that the long term change in mean water storage is negligible and the whole incoming precipitation either evaporates or contributes to runoff. However, our study focuses on the long term mean of seasonal (JJAS) rainfall, this assumption does not hold true. In order to apply the Budyko framework to long-term mean of seasonal rainfall, we have introduced the change in storage (ΔS) in the equation.

[image: image]

In this study, we apply the Equation 2 on the hydrological outcomes obtained from VIC for each of the 15 sub-basins and each scenario to estimate the basin characteristics parameter, in order to understand the relative impacts of climate and land use changes on the basin characteristics.




RESULTS

In Figure 5 we have presented the projected climate change at the Ganga river basin in terms of mean precipitation during monsoon (JJAS). The changes are calculated between last 25 years of each century (1976–2000 for HIST and 2076–2100 for future scenarios), which remains true throughout this study, unless otherwise mentioned. We have found an east–west asymmetry in the projected rainfall changes. The eastern part of the basin shows an increase in rainfall in the twenty-first century, where the western part, which is part of the core monsoon zone, is projected to have a declining trend in the warming scenario. The extent of this asymmetry is higher in the 2°C warming scenario comparatively. As a similar spatial pattern has been found in the present day observed rainfall trend (Das et al., 2014), this asymmetry can be considered a characteristic climatic response of the Ganga basin region to global warming.


[image: Figure 5]
FIGURE 5. Changes in downscaled precipitation from HIST to 1.5°C (A) and from HIST to 2°C (B) for CTL scenario over Ganga river basin for JJAS season. Hatched regions denote areas with statistically significant changes.


In Figure 6 we have shown the time evolution of various land use classes throughout the twenty-first century, as projected by AIM/PLUM model for the Ganga basin region. The outputs of the land allocation model are provided at 0.5° × 0.5° grids, which are aggregated to prepare the projection for the whole basin. Figure 6A shows the changes in cropland, which covers the majority of the lands in our study area. In every scenario the cropland area increases during the first few decades and then starts declining throughout the century. The SSP3_2°C scenario, which is the least sustainable among all, doesn't feature this decline in cropland area and roughly maintain its peak throughout the century. Figure 6B depicts the projected area of unmanaged forests, which shows a decline at the beginning, but gets reversed into an increasing trend for some scenarios. For the scenarios associated with low challenges for mitigation (i.e., SSP1 and SSP4) we find this increasing trend in forest land in the latter part of the century; however the others scenarios continue to show decline throughout the century. In Figure 6C we have shown the projected changes associated with pasture lands, which are comparatively smaller than the previous two land classes. Overall, pasture land area is projected to increase after an initial decrease. In most cases the direction of changes are closely tied with and opposite to the changes in cropland for that specific scenario.


[image: Figure 6]
FIGURE 6. Time evolution of percentage area of (A) cropland, (B) forest, and (C) pasture land at Ganga river basin, for each combination of RCP-SSP scenario over twenty-first century, as projected by AIM/PLUM model.


In Figures 7–10, we have compared the relative impacts of projected climate and land use changes on the hydrometeorological variables at Ganga river basin, as captured by the VIC simulations. Even though the impacts of these changes are not perfectly linearly additive, we can roughly estimate them by subtracting the outcomes of various VIC experiments from each other. For example, subtracting the outcomes of CTL_HIST experiment from CTL_1.5°C experiment will give us an estimate of the impact of 1.5°C warming scenario. On the other hand, the impacts of land use change associated with SSP1_1.5°C scenario can be estimated by subtracting the outcomes of CTL_1.5°C experiment from that of SSP1_1.5°C experiment. The statistical significance of these differences are estimated using t-test with a 95% significance level and the sub-basins showing significant differences are highlighted in the figures. We have found a few notable patterns consistent across the hydrologic variables. In Figures 7A,D, 8A,D, 9A,D, 10A,D we have shown the impacts of 1.5 and 2°C warming on evapotranspiration, total runoff (surface runoff and baseflow), potential evapotranspiration, and aridity index at the Ganga river basin, respectively. As evapotranspiration and runoff are correlated with precipitation, the spatial patterns of their changes closely resemble the projected precipitation trend. The east-west asymmetries are still present here. On the other hand potential evapotranspiration is correlated with temperature and projected to increase almost uniformly throughout the basin. In case of aridity of the basin, even though the asymmetry in changes can still be noticed, majority of the sub-basins show an increase in the warming scenario, implying increased water stress as a result of global warming. Figures 7B,C, 8B,C, 9B,C, 10B,C show the impact of land use changes associated with SSP1-2 and 1.5°C warming and Figures 7E–I, 8E–I, 9E–I, 10E–I represent the same for SSP1-5 and 2°C warming for evapotranspiration, total runoff, potential evapotranspiration, and aridity index, respectively. We have found that hardly any changes associated with land use are visible in the figures, which suggests that the impacts of projected land use changes are negligible compared to its climate change counterpart. Neither of these hydrologic variable changes shows any significant contribution from the projected land use changes for most of the basins. However, there are a few exceptions in some of the sub-basins. For example, the Bhagirathi sub-basin gets more arid in few SSP scenarios, but doesn't show any significant change when only climate change is considered. These exceptions are a result of potential evapotranspiration increasing proportionately with precipitation due to climate change, but not being impacted significantly because of land use change.


[image: Figure 7]
FIGURE 7. Changes in VIC simulated evapotranspiration associate with climate change for (A) 1.5°C warming, (D) 2°C warming and land use change for (B) SSP1_1.5°C scenario, (C) SSP2_1.5°C scenario, (E) SSP1_2°C scenario, (F) SSP2_2°C scenario, (G) SSP3_2°C scenario, (H) SSP4_2°C scenario, (I) SSP5_2°C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.
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FIGURE 8. Changes in VIC simulated total runoff associate with climate change for (A) 1.5°C warming, (D) 2°C warming and land use change for (B) SSP1_1.5°C scenario, (C) SSP2_1.5°C scenario, (E) SSP1_2°C scenario, (F) SSP2_2°C scenario, (G) SSP3_2°C scenario, (H) SSP4_2°C scenario, (I) SSP5_2°C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.
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FIGURE 9. Changes in VIC simulated potential evapotranspiration associate with climate change for (A) 1.5°C warming, (D) 2°C warming and land use change for (B) SSP1_1.5°C scenario, (C) SSP2_1.5°C scenario, (E) SSP1_2°C scenario, (F) SSP2_2°C scenario, (G) SSP3_2°C scenario, (H) SSP4_2°C scenario, (I) SSP5_2°C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.
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FIGURE 10. Changes in VIC simulated aridity index associate with climate change for (A) 1.5°C warming, (D) 2°C warming and land use change for (B) SSP1_1.5°C scenario, (C) SSP2_1.5°C scenario, (E) SSP1_2°C scenario, (F) SSP2_2°C scenario, (G) SSP3_2°C scenario, (H) SSP4_2°C scenario, (I) SSP5_2°C scenario over Ganga river basin. Hatched regions denote areas with statistically significant changes.


From the VIC simulated hydrologic variables, we have calculated the value of basin characteristics parameter (n) for each sub-basin using Budyko framework (Equation 2). The result is presented in Table 3. We have found two notable patterns in this data. Firstly, the basin characteristics is influenced by climate change. As the warming goes higher from HIST to 1.5–2°C, many sub-basins show a consistent increase or decrease in the projected basin characteristics parameter. Secondly, the impact of projected land use changes is not as prominent. For the majority of the sub-basins there is hardly any difference between SSP scenarios and their CTL counterpart for the same level of warming. However, there are a few exceptions to this pattern. In certain scenarios, the land use changes have been found to have some impact in Bhagirathi, Tons, Sone, Damodar, and Gandak and others sub-basins, although not as high as the climate impact in most cases. The reasons behind these exceptional cases are unclear, and require further examinations to be uncovered. Given that all of these sub-basins are located at the east side of the basin, it can be speculated to be related to the east-west asymmetry of climate change response.


Table 3. Calculated basin characteristics parameter for all sub-basins and scenarios.
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DISCUSSIONS

There are multiple sources of uncertainty present in our modeling framework. Our choices of climate change mitigation pathways as well as parameterizations in climate model simulations and their internal climate variability (Knutti and Sedláček, 2013) are major sources of uncertainties, although it is partly mitigated by considering multi-ensemble mean of climate model outcomes. Our choices of socioeconomic pathways, the impact model (AIM) and the statistical downscaling methodology, all contribute substantially to the uncertainty of the climate and land use projections. The assumption of linear responses of land use and climate change to the hydrologic variables imposes some uncertainties as well. The parameter uncertainty in the hydrologic model is also responsible for a significant portion of the overall uncertainties (Chawla and Mujumdar, 2018), although they are relatively lower than the uncertainties resulting from climate models and downscaling methods (Joseph et al., 2018). However, we believe that the presence of these uncertainties in the projections do not affect the key findings of our study. The hydrologic changes associated with climate change are significantly higher than that of land use change, close to one magnitude of order in many cases. This pattern is also consistent across hydrologic variables, scenarios and sub-basins. Our finding is consistent with Chawla and Mujumdar (2015)'s analysis on Upper Ganga basin for historical climate and land use changes. Analyzing our data in the Budyko framework also shows that the climatic variables have a significant impact on the basin characteristics, while vegetation has lesser impact, which is contrary to the traditional assumption. This finding is consistent with Padrón et al. (2017) and Abatzoglou and Ficklin (2017)'s global analyses with observed datasets in historical time period. The methodology used in our study is generic and can be applied to other river basins as well. However, the conclusion of this analysis may vary depending on the climate and land use of the basin. Worldwide, there have been multiple attempts to distinguish between climate and land use change impacts on basin-scale hydrology, even though majority of the studies are for historical period and very few studies consider projections for future scenarios. The conclusions drawn in these studies are mixed; while some studies have found significant contributions from land use changes (Schilling et al., 2008; Wang and Hejazi, 2011), others have found it to be negligible (Gupta et al., 2015).



CONCLUDING REMARKS

In this study we have explored the impacts of projected climate change as well as land use changes on the terrestrial water balance at river basin scale. We have found that a major part of the Ganga river basin is projected to become significantly more arid in the warming scenarios. However, the projected land use changes hardly contributes to or counteracts climate change impacts. In contrast with the traditional assumption, climatic variables are found to have significantly more impacts on basin characteristics compared to land use and vegetation. Overall, our results show that, in terms of hydrologic impact assessment, climate change mitigation pathways are the dominant factor and the land use changes associated with socio-economic pathways contribute little to alleviate the impacts of climate change.
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The loss of infrastructure services under extreme weather events from climate change emerges from complex interactions between the social, environmental, and technological system variables which drive the behavior of infrastructure systems. The complexity of interactions causes failures to cascade in unpredictable ways, often between different infrastructure systems. A common approach to managing this unpredictability is to attempt to characterize the cause-and-effect relationships of infrastructure interdependencies, whether it be related to the resource flows, geographic proximity, logical connections, or the common use of cyber infrastructure. We posit that though a reductive approach toward characterization of interdependencies produces useful insights, it is an insufficient strategy by itself due to the complexity and unpredictability involved in the occurrence and magnitude of cascades of failure across systems. We present historical case studies which demonstrate that cascades from interdependencies display essential tenets of complexity—namely non-linearities, path dependence, and emergence. The Cynefin decision-making framework suggests that management of systems that are in the complex domain include strategies such as Decision Making Under Uncertainty and Safe-to-Fail, which address uncertainty by probing, testing, collecting and analyzing data, and lastly deploying solutions with a commitment to reassessing the systems as conditions change. We therefore recommend that in order to mitigate the surprise from cascades of failure across systems from extreme weather events, infrastructure managers supplement their planning efforts with these types of strategies.

Keywords: interdependencies, complexity, management strategies, historical case studies, climate—impact of


INTRODUCTION

Extreme weather events caused by climate change often exceed infrastructure capacities and design standards and initiate infrastructure hardware and institutional failures which can cascade to service outages (Pederson et al., 2006). Cascades of failures are the result of the many interactions between social, environmental, and technological system variables (Leveson, 2002; Grabowski and Miller, 2017; Markolf et al., 2018; Oughton et al., 2018; Chester and Allenby, 2019). These interactions are part of the complexity of infrastructure systems, a domain of systems characterized by unpredictable behaviors when perturbed (Snowden and Boone, 2007). An example of an emergent cascade of failures initiated by a climate event is the 2003 Northeast blackout. An outage of power to around 50 million people resulted from the confluence of several critical variables including an abnormally hot summer day (environmental), high demand (social/technological), ineffective management of vegetation (environmental/social), limited redundancy (technological), and ineffective operational communication (social) (North American Electric Reliability Council, 2004). During the event, the cascade of failure was surprising to managers and it was only until a task force retrospectively studied the event that causes of failure were identified and understood (North American Electric Reliability Council, 2004).

A significant variable that contributes to failures is the connection between infrastructure systems, or infrastructure interdependencies (Rinaldi et al., 2001; Wilbanks et al., 2015). As described by Rinaldi et al. (2001), interdependencies can exist in many different forms, including the exchange of material outputs (physical), the influence of spatially proximal hardware failures (geographic), the shared dependency on communications systems for operation (cyber), and the influence of institutional decisions (logical). In the 2003 Northeast Blackout example, failures cascaded through physical interdependencies between different power systems and between power and water systems, resulting in a greater extent of power outages and the occurrence of water outages, respectively (Bella et al., 2004). Through the increase in frequency of similar events spurred by climate change, infrastructure mangers are recognizing the effect that interdependencies can have on reliability and they are developing strategies to mitigate these effects (Bella et al., 2004). Since the existence of interactions has been recognized and defined for interdependencies, a reductive approach to understanding them is attractive, and many studies suggest characterizing and modeling interdependencies to anticipate how cascades might occur in the future. Though this strategy can provide useful and necessary insights, we posit that it must be accompanied by other strategies which directly address the inherent complexity of modern infrastructure. Through review of historical cases of failures from interdependencies, we find that there is complexity inherent in the dynamics of cascades of failure across systems which is not conducive to purely reductionist approaches. We therefore recommend that managers augment their methods of planning with strategies which are appropriate in the complex domain of the Cynefin framework including decision making under uncertainty, and safe-to-fail (Leavitt et al., 2006; Snowden and Boone, 2007; Ilic, 2014; Derrible, 2017; Kim et al., 2017; Chester and Allenby, 2019). Without including strategies such as these, the surprise from the emergent cascading failures from climate change and other hazards will continue to strain institutions managing infrastructure systems and the customers they serve.



COMPLEX SYSTEMS DIFFER FROM COMPLICATED SYSTEMS

Complex systems share characteristics with complicated systems, but there are important differences which are critical for managers to recognize. Complicated systems contain many parts and there is uncertainty included in the system, however, cause-and-effect relationships can be understood by characterizing the uncertainty via methods such as statistical distributions (Chester and Allenby, 2019). In contrast, complex systems are characterized by “unpredictability and the presence of unknown unknowns,” or uncharacterizable uncertainty, making it impossible to establish cause and effect relationships (Snowden and Boone, 2007). An example of a complicated system is the process of water treatment. Though there are many interacting parts including sedimentation rate, concentrations of chemicals and organics in the water, and the communities of microbes treating the water, the interactions are well-characterized and the outcomes, the pathogens removed, is predictable (Reynolds and Richards, 1982). Conversely, infrastructure systems which form networks and span across cities have unknown interactions with other aspects of cities, society, and the environment and thus become unpredictable. The essential tenets of complex systems, according to the overview provided by Turner and Baker, are path dependence where outcomes are sensitive to initial conditions, system history where past events influence future outcomes, non-linearity where changes to the system produce disproportionate outcomes, emergence where “the interactions from the system components tend to lead to new states, contributing to the system's unpredictability,” and irreducibility where “higher-order states cannot be reduced to their original lower-level states” (Turner and Baker, 2019).

Literature outlining the needs for future design and management of infrastructure systems recommends applying different management approaches for complex systems vs. complicated systems. Knowledge management researchers and consultants, Snowden and Boone, developed the Cynefin framework to help leaders choose strategies which align with their specific context. Through reviewing their experience with consulting they “sorted the issues facing leaders into five contexts defined by the nature of the relationship between cause and effect”—simple, complicated, complex, chaotic, and disorder (Snowden and Boone, 2007). Chester and Allenby adapt the Cynefin framework to infrastructure, and state that “knowing whether you are working in the complicated vs. complex domain when it comes to infrastructure is critical because each domain requires fundamentally different approaches” (Chester and Allenby, 2019). For complicated systems, it is appropriate to primarily use data collection and analysis techniques because experts have the ability to identify the majority of cause-and-effect relationships in the system (Chester and Allenby, 2019). For complex systems, however, analysis techniques are by themselves insufficient (Chester and Allenby, 2019) because hidden or unknown factors contribute significantly to the cause-and-effect dynamics (Park et al., 2013). Therefore, it is recommended that modeling and analysis is only one of a suite of approaches necessary for managing complex systems. Given the unpredictability of complex systems, navigating through their dynamics requires approaches primarily focused on probing and testing, then collecting and analyzing data, and lastly deploying solutions, with a commitment to reassessing the systems as conditions change.



LIMITATIONS OF CHARACTERIZING INTERDEPENDENCIES

In an effort to manage the complexity of interdependent infrastructure systems, the predominant approach has been to employ modeling and analysis to elucidate the interdependencies between systems. Many studies cite modeling as the most appropriate approach (Haimes and Jiang, 2001; Ghorbani and Bagheri, 2008; Lauge et al., 2015), or dive into a modeling approach without justification (Rinaldi et al., 2001; Smith, 2002; Barton et al., 2004; Visarraga, 2005; Pederson et al., 2006). The assumption present in these studies is that though interdependencies are responsible for contributing to complexity in systems, the dynamics of how they impact systems through cascades can reasonably be understood through modeling, and thus are only complicated in nature. The basic tenets of complexity are not well-represented in the studies. Many studies have modeled the physical resource flow connections between different infrastructure systems and the exchange of resources across systems (Lall and Mays, 1981; Haimes and Jiang, 2001; Veselka et al., 2001; Barrett et al., 2003; Panzieri et al., 2003; Barton et al., 2004; Eidson and Ehlen, 2005; Zhang et al., 2005; Pederson et al., 2006; Bagheri et al., 2007; Donzelli and Setola, 2007; Pate et al., 2007; Johansson and Hassel, 2010; Pye and Warren, 2011; Rübbelke and Vögele, 2011; Birol and Olerjarnik, 2012; Rheinheimer et al., 2012; Shahid, 2012; Wang et al., 2012, 2013; Bartos and Chester, 2014; Carter, 2014; Lubega and Farid, 2014a; Moini and Asce, 2014; Hwang and Lansey, 2015; Loggins and Wallace, 2015; Berardy and Chester, 2017; Clark et al., 2018). This information can be useful for long-term resource planning, where utilities can plan for the generation of enough resources to support the connected infrastructure system. When interpreting these studies for understanding vulnerability to cascading failures across systems, however, the assumption is often that cascades are linearly related to the amount of resources exchanged between systems. Other studies identify specific places in the infrastructure networks where resources might be exchanged and evaluate how flows of resources might be disrupted if the point of exchange were to be disrupted (Panzieri et al., 2003; Visarraga, 2005; Pederson et al., 2006; Wang et al., 2013; Lubega and Farid, 2014b; Lauge et al., 2015). This information is useful for identifying the impacts of cascades. However, these studies assume that the existence of a potential connection between components determines the occurrence of a cascade. Moreover, while each types of interdependency study contributes particular insights about connected systems, no studies include all of the socio-eco-technical interactions and dynamics between time and space that would be necessary to fully predict the occurrence and magnitude of cascades from interdependencies.



COMPLEXITY OF CASCADES OF FAILURE FROM INTERDEPENDENCIES

Historical events of cascades of failure across infrastructure systems reveal that interdependencies are complex in nature instead of complicated—where the occurrence of cascades emerges from the confluence of many contextual factors in addition to possible connections through interdependencies (Bella et al., 2004; Chang et al., 2007; Rong et al., 2010; Markolf et al., 2018). The following review of select historical events shows that the dynamics of cascading failure from interdependencies display essential tenets of complexity including non-linearity, emergence, and path dependence.

There are non-linearities in the outcomes from cascades due to interdependencies. The occurrence and magnitude of cascades are not directly related to only the magnitude of resource flows between systems (in the case of physical interdependencies) or the existence of a connection (for geographic, cyber, and logical types of interdependencies). Other factors contribute significantly to the cascade outcomes. For example, in the 2003 Northeast Blackout, the amount of power resources each of the connected water systems required for their pumping stations did not dictate the number of water outages which occurred. All systems required power and are similar in size, but the water outages seemed to occur more for systems which had less backup water storage or backup power generation (Bella et al., 2004). Clifton, New Jersey was able to avoid having any outages because they had 3 days-worth of water storage (Bella et al., 2004). Thus, the characterization of interdependency connections in terms of the magnitude of resource exchanged, or existence of a connection, provides limited capability for understanding the potential of cascades across systems. The non-linearity of occurrences and magnitudes of cascades is consistent with the vaguely defined “tightness or looseness” aspect of interdependencies described in Rinaldi et al. (2001).

Interactions of social, ecological, and technological systems over time contribute to the path dependency of the occurrence of cascades from interdependencies. It is known that these interactions create path dependencies in infrastructure systems operations (Leveson, 2002; Grabowski and Miller, 2017; Markolf et al., 2018; Oughton et al., 2018; Chester and Allenby, 2019), but the occurrence of path dependencies which affects the behavior of cascades across systems is less well-recognized. A historical example is that Clifton, New Jersey evolved to be more prepared for power outages than surrounding cities during the 2003 Northeast Blackout because they prepared for the possible fallout of Y2K ahead of time by installing dual electric feeds and making agreements with their public electric company that they would “run three peaking generators in order to sustain their main treatment plants” (Bella et al., 2004). An additional example presented by Markolf et al. (2018) regards Miami's approach to managing their “sunny-day floods,” which are initiated by sea level rise and extreme precipitation events, and result in service losses of transportation infrastructure through the transportation system's interdependency with the deteriorating stormwater infrastructure. They posit that the resulting failures may cause additional interdependency-related failures in the future because the City of Miami may end up encouraging development into the area to raise taxes for the roadway pumps they are installing to mitigate the stormwater vulnerability, which may outpace the pump development and in turn increase the number of people vulnerable to flooding in the future (Markolf et al., 2018). In a general sense, because infrastructure systems are designed to last decades, the historical design of infrastructure systems will always be a factor in the behavior of current systems, and therefore also in the occurrence of cascades from interdependencies from extreme weather events. Thus, characterizations of interdependencies that omit the effects of historical interactions of social, ecological, and technical systems provide a limited understanding of the potential for cascades across systems.

Interdependent infrastructure systems in different locations vary in characteristics which determine cascades, leading to unpredictability of outcomes, or the emergence of outcomes for different cases. For example, two studies which look empirically at the impacts of power outages from similar extreme ice storms in two different cases—in Canada in 1998 (Chang et al., 2007) and China in 2008 (Rong et al., 2010)—show that even though both power systems were connected to the same set of infrastructure, the connected systems that had the greatest extent of cascades and impact from cascades differed. Chang et al. (2007) found that the greatest impact and extent of cascades in Canada from the power sector was to business retail and production, whereas Rong et al. (2010) found that the greatest impact and extent of cascades in China from the power sector was to the mobile telephone sector. This implies that there were contextual aspects in each case that contributed to the occurrence and extent of cascades across specific infrastructure systems. Thus, characterizing generalized rules of cascades from interdependencies provides limited capacity for predicting outcomes of different contexts.



DISCUSSION

Since cascades from interdependencies are complex in nature, managers should not rely on the characterization or modeling of interdependencies alone in their climate change adaptation strategies, but should follow best practices recommended by complex systems science. For example, the Cynefin framework recommends that for complex systems, strategies including probing and testing, collecting and analyzing data, and lastly deploying solutions, with a commitment to reassessing the systems as conditions change should be employed (Snowden and Boone, 2007). Decision-making frameworks which would be appropriate include (but are not limited to) Decision Making Under Deep Uncertainty, and Safe-to-Fail (Leavitt et al., 2006; Ilic, 2014; Derrible, 2017; Kim et al., 2017; Chester and Allenby, 2019). These frameworks tend to establish principles that recognize complexity and call for designing and operating by recognizing uncertainty, testing, and a commitment to long-term reassessment of the asset and its performance under changing conditions.

Decision Making Under Deep Uncertainty is relevant for managing types of uncertainty that are largely unknown and which cannot necessarily be characterized through probability distributions (Helmrich and Chester, 2019). It involves a cyclical process of framing the analysis, performing an exploratory uncertainty analysis, choosing initial actions and contingent actions, and iteration and re-examination (Decision Making Under Deep Uncertainty, 2019). There are multiple approaches suggested within this framework including Robust Decision-making, and Dynamic Adaptive Planning. Robust Decision-making includes using exploratory modeling to test strategies over possible futures (Decision Making Under Deep Uncertainty, 2019). Dynamic Adaptive Planning focuses on the adaptation of plans overtime when new information is available (Park et al., 2013; Decision Making Under Deep Uncertainty, 2019). Modeling interdependencies could thus be an aspect of exploring future scenarios, but the assumptions and inputs into the model would need to be updated when new information becomes available. Information that might surface overtime regarding interdependencies might include changes in connections between systems, climate hazards, demand profiles, and infrastructure hardware and institutions.

The Safe-to-Fail framework bypasses the need to characterize uncertainty and instead assumes that assets will fail if designed for rigidity in changing conditions. The framework recommends designing with potential failure in mind, and incorporating alternative service delivery approaches to make the system more adaptable (Kim et al., 2017). In the case of managing interdependencies, this might mean that managers would assume that the other infrastructure systems they rely on will fail at some point, and would prioritize providing backup systems (e.g., generators, storage tanks, etc.) to maintain critical services.

Improving the communication and coordination between managers of different infrastructure systems could increase managers' capacity to implement strategies for complex systems (Leavitt et al., 2006; Ilic, 2014; Derrible, 2017; Chester and Allenby, 2019). Though appropriate in the past, literature suggests that separate management of infrastructure systems may limit the capacity to prepare systems for disturbances. Derrible (2017) states that the “dichotomy of responsibility” was developed due to “the global push toward safety, accountability, and higher efficiency.” “The mechanistic approach has been shown to be…effective in environments that require routine operation and little change. In these environments high-level management possesses the appropriate amount of knowledge to make decisions and organize work” (Chester and Allenby, 2018). This implies that in environments with high change, one organization might not be in possession of all relevant knowledge. Because infrastructure organizations have evolved without the acute need to coordinate or consider uncertainty, “sharing of knowledge and resources across groups to address interdisciplinary challenges is typically infeasible and solutions to challenges are often prescribed with little opportunity for deviation” (Chester and Allenby, 2019). Without information sharing, flawed expectations about the behavior of the change may lead to undesired consequences (Leveson, 2002; Park et al., 2013). Thus, coordination across organizations would provide the capacity to develop more realistic expectations about the behavior of infrastructure systems and would allow for effective adaptations to be more easily made.



CONCLUSION

A common approach to managing the uncertainty of the failure of infrastructure systems in the face of climate change hazards has been to try to characterize the cause-and-effect behavior of interdependencies. Historical examples of failures from interdependencies show that the occurrence and extent of cascades of failure from one infrastructure system to another is unpredictable because the systems display essential tenets of complexity—namely non-linearities, path dependence, and emergence. Thus, in order to better prepare for an uncertain future including climate change, managers should consider the complexity of cascades and implement additional strategies which are appropriate for the complex domain of the Cynefin framework. Ultimately, if the complexity of the behavior of cascades of interdependencies is overlooked and additional strategies are not included, the surprise from the emergent cascading failures will continue to strain institutions managing infrastructure systems and the customers they serve.
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National and international security communities (e.g., U.S. Department of Defense) have shown increasing attention for innovating critical infrastructure and installations due to recurring high-profile flooding events in recent years. The standard infrastructure design approach relies on local precipitation-based intensity-duration-frequency (PREC-IDF) curves that do not account for snow process and assume stationary climate, leading to high failure risk and increased maintenance costs. This paper reviews the recently developed next-generation IDF (NG-IDF) curves that explicitly account for the mechanisms of extreme water available for runoff including rainfall, snowmelt, and rain-on-snow under nonstationary climate. The NG-IDF curve is an enhancement to the PREC-IDF curve and provides a consistent design approach across rain- to snow-dominated regions, which can benefit engineers and planners responsible for designing climate-resilient facilities, federal emergency agencies responsible for the flood insurance program, and local jurisdictions responsible for developing design manuals and approving subsequent infrastructure designs. Further, we discuss the recent advances in climate and hydrologic science communities that have not been translated into actional information in the engineering community. To bridge the gap, we advocate that building climate-resilient infrastructure goes beyond the traditional local design scale where engineers rely on recipe-based methods only; the future hydrologic design is a multi-scale problem and requires closer collaboration between climate scientists, hydrologists, and civil engineers.

Keywords: NG-IDF curves, snowmelt, rain-on-snow, floods, nonstationarity, extreme events, atmospheric river, DHSVM


INTRODUCTION

Recurring high-profile flooding events (e.g., 2017 California) has led to major public safety concerns and motivated national security communities to explore new methods to innovate critical infrastructure (ESTCP, 2018). Currently, infrastructure design to withstand extreme flooding relies largely on precipitation-based intensity-duration-frequency (PREC-IDF) curves developed at the local scale, which is then coupled with single-event rainfall-runoff models such as the Technical Release 55 (TR-55) for estimating flood peaks, the so-called “standard IDF design workflow” (Cronshey et al., 1986; Chow et al., 1988). This PREC-IDF approach assumes that precipitation is in the form of rainfall that immediately starts the rainfall-runoff process. This assumption, however, can lead to significant underdesign risk in areas where snowmelt/rain-on-snow (ROS) are the dominant flood-generating mechanisms (e.g., the 2017 Oroville Dam crisis). Further, federal atlas's of PREC-IDF curves, such as the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (Bonnin et al., 2011), assume stationary climate, that is, the occurrence probability of extreme hydrometeorological events is not expected to change significantly within the service life of infrastructure. Given the strong evidence that climate-related hazards, including common engineering design criteria such as the 25-year storm magnitude and frequency, are no longer stationary over time (Wuebbles et al., 2014), the current hydrologic design standards are insufficient in the 21st century (Ragno et al., 2018; Wright et al., 2019).

In design practices, many surface water design manuals in the U.S. are based on the NOAA PREC-IDF curves, even in snow-dominated regions (SMMEW, 2004; SCDM, 2016). The earliest NOAA Atlas 14 product appeared for Ohio in 2004 and the latest product was for Texas in 2018 (Lopez-Cantu and Samaras, 2018). At present, the NOAA Atlas 14 is not available for the Pacific Northwest (PNW); Technical Paper 40 (Hershfield, 1961) is used instead and was developed from observations ending in the 1950s. Given the observed rapid increase in extreme precipitation (Kunkel et al., 2020), these products are becoming obsolete. For critical infrastructure with a design life often exceeding 30 years, even the latest 2018 atlas has become problematic because of the projected significant changes in extreme precipitation by 2050 (Prein et al., 2017). Currently, systematic, coordinated, and consistent surface water design manuals explicitly addressing snowmelt and nonstationary climate are not available. The recent federal guideline for flood frequency analysis, Bulletin 17C, acknowledges the significant implications of snowmelt and nonstationarity; however, it provides no explicit guidance (England et al., 2018). On the other hand, deficiencies of the standard PREC-IDF approach are well-known issues in climate and hydrologic science communities and coupled physically-based hydrologic and climate models have been applied to investigate multi-scale extreme hydrometeorological events and runoff generation mechanisms (Tohver et al., 2014). Despite significant advances made in science communities in the past decades, the current state of science has not translated into actionable information for engineers, and a gap still exists between science and engineering communities (ASCE, 2015).

This paper addresses the emerging need for a next-generation design tool by providing a review of the recently developed, science-driven “next-generation IDF” (NG-IDF) approach. In the following, Section “NG-IDF Curves vs. PREC-IDF Curves” describes the NG-IDF curves and Section “Physics-Based Hydrologic Modeling: Extending and Validating NG-IDF Curves” describes the physically-based hydrologic modeling approach to extend and validate NG-IDF curves” (i.e., advances in hydrologic science). Section “Nonstationary NG-IDF Curves Under Climate Change” describes the general circulation model (GCM) modeling approach to develop nonstationary NG-IDF curves (i.e., advances in climate science). Finally, Section “Discussion” discusses future opportunities and technology transfer.



NG-IDF CURVES VS. PREC-IDF CURVES

The authors (Yan et al., 2018) proposed the NG-IDF curves that characterize the actual amount of water reaching the land surface or “water available for runoff (W).” The W is estimated through land surface water balance as W = P−ΔSWE, where P indicates precipitation, and ΔSWE indicates changes in snow water equivalent (SWE). The W can be associated with multiple mechanisms, including rainfall on the snow-free ground, snowmelt without precipitation, ROS, and mixed rainfall and snowfall. By comparing the NG-IDF value with the PREC-IDF value for events with a specified duration and average recurrence interval (ARI), they evaluated the current design risk as (1) underdesign when the NG-IDF value is greater than the PREC-IDF value, (2) overdesign when the PREC-IDF value is greater than the NG-IDF value, and (3) proper design when the differences between the two values are trivial. Underdesign occurs when ROS/snowmelt intensity exceeds precipitation intensity (W > P), overdesign occurs when snowfall intensity exceeds snowmelt intensity (W < P), and proper design occurs when the snow has minor effects (W ≈ P).

The authors (Yan et al., 2018) first compared PREC-IDF and NG-IDF curves using Snowpack Telemetry (SNOTEL) measurements as a proof-of-concept, as even the most sophisticated hydrologic models cannot replace the observation record. SNOTEL is an automated system of snowpack and climate sensors installed in open mountainous areas of the western U.S. (WUS) and operated by the Natural Resources Conservation Service. They developed long-term bias-corrected quality-controlled (BCQC) P and SWE measurements from nearly 400 SNOTEL stations across the WUS to develop and compare PREC-IDF and NG-IDF curves. They found that the use of PREC-IDF curves can lead to underdesign at 45% of the sites. Most of the sites found to be underdesigned were in the PNW and continental regime that feature deeper snowpack and longer snow accumulation seasons. At these sites, the authors (Yan et al., 2019a) further compared the peak design flood estimates using NG-IDF and PREC-IDF curves coupled with the TR-55 rainfall-runoff model. They found that after the nonlinear runoff generation process, 70% of the sites were subject to underdesign and the PREC-IDF method underestimated peak design flood by as much as 324%.

By differentiating the precipitation phase using the change in SWE, the authors (Yan et al., 2018) also identified the dominant mechanism of extreme W at these sites, and found significant regional differences in flood-generating mechanisms across the WUS, e.g., the maritime regime is ROS dominated, and the continental regime is snowmelt dominated. The authors (Yan et al., 2019b) confirmed that this regional variability is associated with climate variability across the WUS, which includes air temperature, solar radiation, and atmospheric humidity. In the maritime regime that features high humidity, latent energy can warm the falling precipitation through condensation, leading to more frequent ROS events (Harpold and Brooks, 2018). In the continental regime that features high elevations, the late onset of above-freezing temperatures results in snowmelt in late spring, leading to high solar radiation (high solar angles) and large snowmelt events (Musselman et al., 2017).



PHYSICS-BASED HYDROLOGIC MODELING: EXTENDING AND VALIDATING NG-IDF CURVES

The inclusion of snow processes in hydrologic design vastly increases the complexity of the problem over the PREC-IDF approach. Canopy interception and release of snowfall is significantly more complicated than for rainfall. The SNOTEL observations are limited in space and time and only available for the open condition. In this regard, Hamlet (2018) and the authors (Yan et al., 2020) advocated a need for well-validated physics-based model simulations to extend snow data in space, time, and for different land covers to provide comprehensive NG-IDF products that can be adapted to the standard IDF design workflow. A well-validated model is also critical for validating the NG-IDF approach in design flood estimates because streamflow in snow-dominated regions is poorly observed due to inherent difficulties of access (Lundquist et al., 2016).

To extend NG-IDF curves for different land covers beyond the bare ground of SNOTELs, the authors (Sun et al., 2018) enhanced the capability for modeling complex snow-canopy interactions within the framework of the Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta et al., 1994, 2002). In an extensive review of 30 hydrologic models, Beckers et al. (2009) showed that DHSVM is the best for hydrologic modeling in forest environments because of the detailed process representation of topographic and canopy control of the energy and mass exchange in a spatially distributed manner. The authors (Sun et al., 2018) enhanced DHSVM capability in featuring a subgrid representation of snow-canopy dynamics in canopy gaps by explicitly accounting for the impact of the surrounding canopy on the gap energy balance and generating spatially varied irradiance. The enhanced model was validated at the University of Idaho Experimental Forest and showed good agreement with subhourly SWE observations at open, dense canopy, and canopy gap sites, e.g., correlation of determinations (R2) were >0.9. This validated model lays the foundation for developing NG-IDF curves in complex land cover conditions (e.g., consistent with TR-55 land cover classification).

To extend NG-IDF curves in time and space beyond the limited coverage of the SNOTEL data, the authors (Sun et al., 2019) developed and validated regionally coherent DHSVM snow parameters. By using the BCQC SNOTEL data at 246 sites over the WUS, the authors (Sun et al., 2019) performed a generalized sensitivity test for the DHSVM snow model and identified sensitive snow parameters that control daily SWE evolution under diverse climate regimes. Regional parameters were then developed for these sensitive snow parameters for eight ecoregions (CEC, 2009) characterized by a distinct hydroclimatic regime across the WUS. The regional snow parameters were evaluated at individual SNOTEL sites and the validation results ensured that regional snow parameters were able to capture daily variations in SWE obversions, e.g., the simulation of daily SWE had Nash-Sutcliffe efficiency (NSE) >0.8 at 83% of the sites. These regional snow parameters lay the foundation for developing NG-IDF curves at ungauged sites at regional to continental scale.

To validate the NG-IDF approach in design flood estimates, the authors (Yan et al., 2020) developed an experimental hillslope appropriate for mountainous topography to allow direct comparison between the DHSVM continuous simulation and NG-IDF approach. They applied the same experimental hillslope at these 246 SNOTEL sites to examine and compare the performances of the NG-IDF approach across the WUS under various hydroclimate conditions. They used the aforementioned well-validated DHSVM continuous streamflow simulations as a performance benchmark with explicit uncertainty quantification. By comparing the design flood estimates from NG-IDF curves coupled with the TR-55 model and DHSVM streamflow frequency statistics, they suggested that the NG-IDF approach provided a satisfactory performance in design flood estimates in different hydroclimate regimes of the WUS, e.g., the averaged error over the WUS in design flood estimates was <15%. This validation study facilitates NG-IDF technology transfer and implementation practice.



NONSTATIONARY NG-IDF CURVES UNDER CLIMATE CHANGE

Instead of focusing on changes in extreme precipitation only, nonstationary NG-IDF curves further require an understanding of changes in extreme snowmelt and ROS events. Global warming will lead to a shift in rain-snow ratio and increase soil freeze-thaw cycles, resulting in more frequent ROS events and higher flood risk at higher elevations in the future (Beniston and Stoffel, 2016; Musselman et al., 2018; Li et al., 2019). Using the BCQC SNOTEL data, the authors (Yan et al., 2019b) examined the changes in snow process and frequency of ROS events over 1979–2017. They found statistically significant trends toward declining and earlier snowmelt over the WUS. Specifically, annual maximum snowmelt decreased by 21% averaged across the snowy regions of the WUS, and the frequency of ROS events increased by 32% averaged in the northwestern U.S. The changes in snowpack and extreme W events under future climate can be better understood with the use of climate model projections.

Despite GCMs providing useful information at global and climatic scales, they cannot present some fine-scale weather systems that are critical in the formation of precipitation given their relatively coarse resolution. To make these projections useful in hydrological design, they need to be downscaled to a finer resolution, through either a statistical or dynamical process. Statistical downscaling is computationally efficient but depends upon choices of predictors and suffers from the possible change of predictor-predictand relationship under future climate (Fowler et al., 2007). On the contrary, dynamical downscaling uses regional climate simulation to resolve the atmospheric processes but is computationally intense (Chen et al., 2018). Currently, there are two approaches to develop nonstationary NG-IDF curves: (1) top-down method using GCMs and hydrologic models (Clark et al., 2016; Hou et al., 2019) and (2) statistical modeling with time-varying parameters (Cheng and AghaKouchak, 2014; Ren et al., 2019). The first approach physically simulates both climate and hydrological processes; however, the outcome is subject to a cascade of uncertainties that arise from assumptions in each step of the modeling chain. The second approach is straightforward, yet the extrapolation of parameter trends into the future should be cautious because it is not known when or where the change point may occur.

Figure 1A presents the top-down end-to-end modeling chain that connects emission scenarios to next-generation design tools and Figures 1B,C present the associated steps to develop both stationary and nonstationary PREC-IDF and NG-IDF curves. The top-down modeling chain includes eight uncertainty sources: (1) climate change scenario, (2) global model structure, (3) internal climate variability, (4) downscaling method, (5) hydrologic model structure, (6) hydrologic model parameter, (7) statistical model structure, and (8) statistical model parameter. Characterizing and reducing uncertainties remains challenging and requires improving process understanding and increasing computational resources.


[image: Figure 1]
FIGURE 1. (A) Top-down approach to develop nonstationary next-generation hydrologic design toolbox. To make the projection actionable to engineers, deliberate approaches are necessary to characterize and reduce uncertainties in each step. The final nonstationary design toolbox should be probabilistic (i.e., projections of the most likely, the least, and worst cases) and adapted to the standard risk management design framework. (B) Developing stationary PREC-IDF and NG-IDF curves following the top-down approach. (C) Developing nonstationary PREC-IDF and NG-IDF curves following the top-down approach.


Based on the top-down method, the authors (Hou et al., 2019) developed nonstationary NG-IDF curves for two Department of Defense (DoD) mountainous sites: Fort Carson in Colorado and Marine Corps Mountain Warfare Training Center in California. Using the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) to dynamically downscale phase 5 of the Coupled Model Intercomparison Project (CMIP5) Community Earth System Model (CESM), the authors (Hou et al., 2019) developed nonstationary NG-IDF curves at the two DoD sites through the end of 21 century under the representative concentration pathway RCP4.5 and RCP8.5 scenarios. If NG-IDF curves are used while ignoring climate nonstationarity, the resulting projections showed that the two DoD installations are at risk for underdesign by up to 80% through the end of the century. This result, however, has large uncertainty because it was based on one GCM using one initial condition. Dynamically downscaled ensemble simulation is desired and undergoing in our next study.



DISCUSSION

Currently, a systematic and consistent local surface water design manual is not available for snow-dominated regions of the U.S. The documented “recipe-based” methods vary from the “blind method” of simply using the PREC-IDF curves to the “tuning factor method” of adding a snowmelt factor to the PREC-IDF curves. For example, Snohomish County in Washington State extends from the Puget Sound lowland to the crest of the Cascade Range. Despite Snohomish County's large portion of snow-dominated regions, the Snohomish County Drainage Manual still recommends the use of NOAA PREC-IDF curves for hydrologic design such as wetpool treatment facilities (SCDM, 2016). Chelan County in Washington State, located in the snow-dominated regions of the Eastern Cascade Ranges, follows the turning factor method in the Stormwater Management Manual for Eastern Washington (SMMEW, 2004). Data to support this method, however, are only available for nine sites and are based on several implicit assumptions (e.g., snow will melt during a 72-h ROS). Alternatively, the federal Unified Facilities Criteria (UFC) recommends using PREC-IDF curves for small infrastructure design such as detention pond and using a hydrologic model such as the Storm Water Management Model for large, high-risk design projects (UFC, 2013).

Despite significant efforts that have been made in physics-based climate and hydrologic modeling over the past decades, advances in hydrologic and climate science communities have not been broadly translated into actionable information in engineering communities. One possible reason is that the use of a physics-based, coupled hydrologic and climate model can be cost-prohibitive in the design of local smaller infrastructure, such as highway culverts or residential drainage systems. Another more important reason is the required adherence to local surface water design manuals. Updating design manuals is a complex process that may take years to accomplish. Therefore, technology transfer is critical to bridge the gap and a new science-driven engineering tool that can be adapted to the current standard codes is most likely to be implemented and considered in the following updated design manual.

To provide a consistent IDF design method for both rain-dominated and snow-dominated regions, we proposed the NG-IDF curves that captured multiple flood-generating mechanisms including rainfall, snowmelt, and ROS. The NG-IDF curve is a science-driven engineering product from the collaboration between climate scientists, hydrologists, and civil engineers. Climate scientists used the WRF model to dynamically downscale GCM simulations and understand the atmospheric mechanism of extreme precipitation; hydrologists used DHSVM to simulate snow process and understand dominant mechanisms of extreme water available for runoff and also worked with civil engineers on technology transfer such as adaption to the standard IDF design flow by including snow process into IDF curves (i.e., NG-IDF) and validation sites selection (i.e., the aforementioned two DoD sites).

Looking forward, there is an increasing awareness that hydrologic design under nonstationary climate is a multi-scale problem and requires the linkage across scales, such as linking global-scale atmospheric circulation to regional-sale water flux, linking watershed-scale hydrological processes to design-scale flood response (Figure 2A). This process-oriented hydrologic design will require a shift in thinking from a purely statistical inference problem to a broader understanding of physical flood-generating mechanisms at both watershed and synoptic scales (Milly et al., 2008; Mailhot and Duchesne, 2010; Arnbjerg-Nielsen et al., 2013; Chester et al., 2020; Cook et al., 2020).


[image: Figure 2]
FIGURE 2. (A) Illustration of hydrologic design under nonstationary climate: a multi-scale problem that links climate scientists, hydrologists, and engineers. (B) An example of a flooding event at the Sierra Nevada caused by rain-on-snow at watershed-scale and atmospheric river at global-scale.


In Figure 2B, the authors (Chen et al., 2018) suggested that atmospheric rivers (ARs), a long and narrow band of intense moisture transport, is a key predictor of extreme precipitation occurrence and magnitude in the WUS watersheds. The authors (Chen et al., 2019a) also found out that ARs are the main driver of ROS events and responsible for 11–20% of intense snowmelt events in Pacific Coast Ranges. Further, the authors (Chen et al., 2019b) provided a comprehensive evaluation of land surface energy and hydrologic responses to ARs over the WUS. They identified that strong radiation and warm air temperature during ARs enhanced snow ablation and increased the likelihood and strength of ROS. Therefore, projecting future design floods for Pacific Coast Ranges not only requires a better understanding of extreme precipitation change but also the interacted change of AR storms on snowpack.
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Climate change adaptation policy requires assessing a community's vulnerability based on its socio-economic characteristics. A predominant approach to vulnerability assessment is indicator-based, wherein variables are aggregated to assess the vulnerability of units in a system (e.g., neighborhoods in a city). Here we show that a particular evidence-based predictive statistics approach can address two shortcomings of the most commonly-used indicator-based approach: lack of a means of validation and problematic weighting of individual indicators. We demonstrate how robust evidence-based models can produce frameworks that overcome these limitations. Using the case study of Hurricane Sandy in the State of New Jersey, we conducted two-pronged validated vulnerability assessments, based on insurance claim payouts and assistance grants. The latter needs-based assessment shows that “Minorities” are substantially more vulnerable than others based on a significant negative association with assistance approval rate (approved claims divided by all claims). Our findings highlight issues discussed in the literature within the context of climate justice and equity. Such an approach is helpful locally, but also when adaptation plans are developed over broad scales of time and space considering disparities between regions or across multiple jurisdictions.
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BACKGROUND

Climate change is one of the most pressing issues of our time, one that puts many communities at risk from multiple types of catastrophic hazards (O'Neill et al., 2017). For example, sea level rise puts coastal communities at risk, especially when combined with intensive storms and high tides, which create storm surge and flooding (Walsh et al., 2016). Mitigating these risks requires new and proven ways of adaptation planning.

There are several challenges inherent to the adaptation planning process that require significant improvement, including dealing with uncertainties in climatic system forecasting (Nicholls and Cazenave, 2010; Walsh et al., 2016) while incorporating physical, ecological, and socio-economic aspects of human activities within coastal zones (Nicholls et al., 2015; Shao et al., 2017). Socio-economic aspects of adaptation planning involve consideration of social vulnerability and environmental justice issues related to climate change; both need to be addressed for efficient adaptation planning (Kim et al., 2018; van den Berg and Keenan, 2019). Despite its urgency, the practicalities of assessing the vulnerability of human communities and populations, which lays the foundation for designing adaptation plans and for allocating the resources necessary to make plans a reality, need further investigation.

A commonly used vulnerability assessment approach uses indicators (hereafter “indicator-based assessment”) (Zhang et al., 2018). This approach has been widely implemented by governments as part of adaptation policy efforts (e.g., Rowan et al., 2013; Boston, 2016). In the social vulnerability domain, using socio-economic variables (social indicators), such as age, race, and income, the predominant indicator-based vulnerability assessment should enable the prediction of the susceptibility of communities to the negative effects of climate-driven events, whether they be physical, financial, or psychological (Benevolenza and DeRigne, 2019). However, such assessments are based largely on theoretical assumptions of what is perceived to reflect vulnerability and therefore are less accurate than they would be if they were based on empirical findings.

Evidence-based approaches to vulnerability assessment could supplement and improve the standard “indicator-based” approach and thus lead to better allocation of resources for adaptation. Here we show that an evidence-based predictive statistics approach, often claimed infeasible in the past (Hinkel, 2011), can indeed be used as a possible solution for two shortcomings of the most commonly-used indicator-based approach: (1) the lack of a means of validation, and (2) problematic weighting (Tonmoy et al., 2014; Nguyen et al., 2016).

Due to the availability of large quantities of socio-economic data to choose from as indicators (e.g., as a result of increased data from national census programs), it is a common practice to remove correlating indicators, or to perform some type of dimension reduction statistical technique. The most common of these methods is the Principal Component Analysis (PCA). As a case in point, one of the most influential works in the field of indicator-based vulnerability assessments introduced the PCA-based social vulnerability index over a decade and a half ago and trademarked SoVi (R)—the Social Vulnerability Index.

Methods, such as PCA, minimize redundancy, and produce a lower and more manageable number of indicators (alias, “components” in PCA) for the assessment. While the PCA approach is sometimes mistaken to be a predictive data-driven approach, in practice it only analyzes variability in the explanatory dataset while offering no evaluation of its predictive power. Like other works over the years, the original introduction of the social vulnerability index approach explicitly acknowledged the problematic nature of indicator equal-weights practices back in 2003 (Cutter et al., 2003). Now, with new types of information and with the relative abundance and accessibility of big data, previously unforeseen research opportunities have become available and can be used to remedy this situation.

We propose validation of common theoretical assumptions by utilizing harm indicators, i.e., harm experienced by subjects during a climate-related event (e.g., heat waves or hurricanes), in robust predictive statistical models. PCA and other dimension reduction techniques are an important first step in analyses that utilize an initially large number of variables (especially correlating variables), however, these unsupervised approaches (i.e., for which there is no outcome/dependent variable) only analyze the explanatory data (social indicators in this case). They do not analyze how these social indicators come into play in real events which can themselves be analyzed by using a supervised predictive approach, i.e., ones that use an outcome variable.

Predictive supervised statistical models (as opposed to, for example, the unsupervised PCA) tell us whether certain vulnerability indicators are appropriate for predicting de facto vulnerability, always measured based on harm indicators. Furthermore, the results of such predictive models denote the relative importance of each vulnerability indicator and thus can help in (a) deciding on the final set of indicators to include in the assessment (e.g., that are the social indicators shown to be significant in predicting the outcome), and (b) assigning different weights to each indicator in that set.

Such ideas have been addressed in the literature in the past (see Discussion), however, indicator-based vulnerability assessments in general and particularly indicator-based social vulnerability assessments, have rarely used a predictive approach based on empirical observation of outcomes (i.e., harm indicators). Furthermore, they usually employ equal-weighted aggregation, wherein indicators are considered equally important without justification (Tonmoy et al., 2014; Nguyen et al., 2016). As a result, quantitative vulnerability assessments that are available to policy-makers today are largely not based on real-world experience; they are not sufficiently modified or improved based on recent and actual climate events, and thus they remain limited.

The methodology we present here follows several evidence-based predictive statistics studies while addressing some technical and practical limitations of these studies (see Discussion). We demonstrate, using a case study, how robust predictive statistical analysis can produce a validated evidence-based vulnerability assessment. Our case study is based on the impact of Hurricane Sandy (2012) on the State of New Jersey (NJ), USA. We analyzed the relationship between observed harm as reflected by insurance payout data, FEMA assistance data and using various social indicators while controlling for environmental factors. We hypothesize that certain indicators are significant in predicting harm and that the level of impact varies across indicators.



METHODS


Data and Variables
 
Harm Indicators (Outcome Variables)

Harm indicators (the outcome/dependent variables) were derived from two main datasets (Figure 1). The first, containing data related to insurance payouts after Hurricane Sandy was provided by the NJ Department of Banking and Insurance at the zip code level in NJ (Request Number: C115955). It reflects over four billion US dollars paid to subjects who experienced financial damage as a result of Hurricane Sandy. The second dataset contains information about the Federal Emergency Management Agency's (FEMA) Individual and Housing Assistance Program (IHP) of over 400 million US Dollars during Hurricane Sandy (hereinafter: “FEMA assistance” or “government assistance”) which is also available at the zip code level (FEMA, 2014).


[image: Figure 1]
FIGURE 1. Datasets used in the study to derive harm indicators (US $).


IHP provides assistance to those who had necessary expenses and significant needs, and only if they are unable to meet those needs through other means. It provides temporary housing assistance as well as other grant money that assists in activities, such as the replacement of lost furniture and clothing (Lindsay, 2017). Some typos were identified in the FEMA dataset's zip code numbers (invalid numbers or numbers outside the relevant states) and were subsequently removed from the database before it was used in the analysis.



Social Indicators (Explanatory Variables)

Initially, 15 social indicators (explanatory variables) were considered (see Table 1). These were consistent with the literature and were obtained from the US Census Bureau's American Community Survey (ACS) aggregated for the years of 2008–2012. Since Hurricane Sandy occurred toward the end of 2012, it was assumed that the majority of samples are relevant for the pre-event conditions as required for the analysis.


Table 1. Social indicators considered in the initial analysis.

[image: Table 1]



Exposure Indicators (Explanatory/Control Variables)

Three exposure indicators were used: distance from the storm track, maximum wind speed, and flood extent, as presented in Figure 2 (see Supplementary Material for additional information).


[image: Figure 2]
FIGURE 2. Physical exposure in New Jersey during Hurricane Sandy and income by zip code.




Spatial Resolution

The availability of data at the zip code level offers a sufficient number of observations (a sample size of 516–583 areas) at a relatively fine geospatial resolution for implementing predictive statistical modeling. Consequently, the association between socio-economic characteristics (indicators) of different communities (based on zip codes) and observed harm (insurance payouts and FEMA assistance) could be empirically explored.




Statistical Methodologies
 
General

Harm indicators derived from the two aforementioned datasets (insurance and FEMA assistance) were used as dependent (outcome) variables in various predictive statistical models in order to explore socio-economical risk and vulnerability patterns. Three main statistical methodologies were used. First, Partial Least Squares Regression (known as PLS or PLSR) was implemented for selecting the relevant social indicators. PLS is a methodology that performs dimension reduction, like PCA but considering an outcome variable(s) in addition to the explanatory variables. Then, multivariate linear regression (hereinafter: “simple regression”), as well as spatial autoregressive regression (hereinafter: “spatial regression” or “spatial lag regression”) was used to explore the relationship between the indicators in the models (i.e., the direction and estimate of coefficients—weight).

Following the results of the statistical models, further analysis was performed to explore potential disparities in approval rates (i.e., approved claims divided by number of claims). The models' results were used to create weighted vulnerability indices as described below. Furthermore, the weighted vulnerability index that was based on the FEMA dataset analysis was validated using available data concerning other neighboring states that experienced harm as a result of Hurricane Sandy (New-York, Connecticut, Rhode Island, and Maryland). Notably, the insurance data were only available for NJ and thus could not be validated in a similar manner. The study workflow is presented in Figure 3.


[image: Figure 3]
FIGURE 3. Study workflow.




PLS: Reducing the Number of Social Indicators

A total of 19 PLS models were created by a combination of various harm indicators and different datasets. The pre-selected social indicators were used as the independent variables among all models.

Seven harm indicators were used as outcome (dependent) variables in the different models:

- Reported claims (the total claims that were reported in the dataset).

- Reported claims per household.

- Approved claims (the total claims that were approved for payment).

- Approved claims per household.

- Approval rate (approved claims divided by the reported claims).

- Total amount paid.

- Total amount paid per household.

Each of these indicators was used in several separated models, using different datasets, as follows:

1. All claims aggregated by zip code.

2. Only FEMA assistance claims.

3. Only private insurance's residential property claims.

4. Private insurance's residential property claims and FEMA assistance claims aggregated.

All variables were log-transformed to fulfill the assumptions of normality and linearity and centered by their means for the PLS analysis. The PLS models' results demonstrated several dominant social indicators that thus were selected to be used in the linear and spatial regression models as discussed below (see Supplementary Material for detailed results).



Multivariate Linear Regression: Finding Weights

Linear regression models were used to assess the direction (indicate by plus or minus) and relative weight or importance (thorough standardized coefficients) of the social indicators. The social indicators selected through the PLS analysis were used as the independent (explanatory) variables in the regression models. The three exposure indicators described above were also added to the regression models as independent variables, as well as an additional variable: the number of households. The latter indicator was added in order to control for various sizes of areas captured in a single zip code.

Two outcome (dependent) variables were used in several models: number of approved claims and actual payouts/assistance amounts. These variables were assumed to reflect experienced harm (harm indicators). Approval rate was used in a post-analysis discussed separately below.

The two dependent variables were modeled using four datasets (a total of 8 linear and 8 spatial regression models):

- All aggregated.

- FEMA assistance only.

- Residential—insurance only.

- Private insurance's residential property and FEMA assistance aggregated.

Similar to what was done for the PLS analysis, the socio-economical independent variables and the outcome variables were log-transformed. The exposure indicators were not transformed since two of them are categorical and it was not necessary to transform them to satisfy the regression model assumptions. Furthermore, Variance Inflation Factor (VIF) analysis indicated that multicollinearity did not occur in the model.



Spatial Regression: Correcting for Autocorrelation

The regression models were tested for spatial autocorrelation (Moran I test) and their results were compared with the results of the spatial lag regression models. These analyses revealed that spatial autocorrelation was present in all the regular (non-spatial) models.

To solve this problem, we used spatial lag regression models with a log-likelihood function. For the application of this method, spatial weights are assigned to each observation and considered in generalized linear regression models. The weights list is created through two steps. First, a neighbors list is built based on regions with contiguous perimeters that are sharing one or more boundary points. Then the weighting list is created based on the neighbor list, by summing row-standardized values over links among regions. Detailed results and additional details about the methodologies are provided in the Supplementary Material section.





RESULTS


General

The results of the main spatial regression models (standardized coefficients) are presented in Figure 4, wherein the upper graph represents the overall payouts as the dependent variable and the lower graph approval-rate as the dependent variable. The main influential social indicators, as selected through PLS, were mean income, density, and rates of poverty, unemployment, minority population, and immigration.


[image: Figure 4]
FIGURE 4. Social indicators' weights according to the predictive model results. These weights were used to create the example vulnerability assessments. Notably, the minority indicator had a negative coefficient for payouts and a significant negative coefficient for assistance approval rate.


Using these coefficients as aggregation weights (Table 2) of the actual values by zip code (modified as discussed below), we demonstrate the creation of two vulnerability assessments (Figure 5): net-value based (meaning, that the models used the net paid claims) and need-based (meaning, that the models used the FEMA assistance paid grants), with the former based on all payouts and the latter using only FEMA assistance data. Beyond their general importance for setting adaptation policy, net-value may be of use to entities such as insurance companies and real-estate organizations for anticipating losses and for planning investments. Need-based vulnerability will likely be most useful for governments and aid organizations seeking to assist communities at high risk.


Table 2. Indicator weights for the vulnerability indexes aggregation.

[image: Table 2]


[image: Figure 5]
FIGURE 5. Vulnerability maps: net (Left) for net financial terms and need (Right) for communities in need of assistance. The darker the shade the higher the vulnerability.


From the needs-based assessment, it became clear that the variable “Minorities,” which had a negative coefficient in the FEMA payouts model, actually reflects a substantially higher vulnerability than others since this indicator also demonstrated a significant negative relationship with approval rate (Figure 4, lower graph).



Validation

An important part of the study presented here and an aspect that directly addresses one of the two shortcomings of the most commonly used indicator-based approaches mentioned in the introduction of this paper is the facilitation of validation. Thus, as another means of validating the methodology used in our study (and thus the vulnerability indexes we produced), we extrapolated the selected social indicators' weights (Table 2, Need-based index) to create a need-based vulnerability index for neighboring states that were also affected by Hurricane Sandy.

We used the need-based vulnerability index for these other states in regression models to investigate the index's predictive power and did the same using the traditional PCA-based equal-weights approach. In the latter, we used the same initial list of indicators, selected a smaller number of indicators according to the result of a PCA model (four factors), and aggregated their values into a single index (using equal weighs). Three spatial regression models were produced, in all of them the dependent variable was FEMA assistance and the explanatory variables were the physical exposure variables along with the newly produced indexes as follows: one using our proposed need-based vulnerability index, one using the PCA equal-weights vulnerability index, and one using both.

Subsequently, we found that our proposed method can better predict harm using fewer variables, as shown in Table 3. This may signal to researchers and policy-makers that there is higher value in monitoring specific social indicators over others.


Table 3. Linear regression results.

[image: Table 3]




DISCUSSION

The shortcomings of the common indicator-based methodological approaches often used to conduct vulnerability assessments, such as lack of validation frameworks and the unjustified equal-weighting approach, have been acknowledged in the literature as described above. Only a few studies have taken on the task of validating the relationship between social indicators and observed climate change-driven impact (harm indicators) using robust predictive statistical models (Tonmoy et al., 2014). Even fewer use the results of such models to modify how vulnerability is assessed (i.e., what weight is given to individual indicators in the assembly of the vulnerability index). However, the grave consequences of lethal climate events recently experienced lead us to contend that these common indicator-based methodological limitations must be addressed and that methods can and should be improved. We demonstrate how robust evidence-based models can produce frameworks that overcome these limitations.

Two explanations for not using studies that are based on evidence and predictive statistics are usually offered. The first explanation highlights the lack of proper data at the required geographic resolution used for analysis (Hinkel, 2011). The second explanation originates in the difficulties related to communicating the results of complex methodologies (Beccari, 2016), an argument which renders simplistic approaches preferable over those that could provide more accurate results.

The few studies that implemented predictive statistical techniques that we reviewed (e.g., Burton, 2010) introduce some statistical shortcomings that may bias results. Particularly methodological issues include: not including environmental/exposure as possible predictors in the model (e.g., Finch et al., 2010; Burton, 2015); lack of transparency or misreporting of model results, such as missing information concerning model results and the preprocessing of the data (e.g., Flanagan et al., 2011); not accounting for geographic dependencies in the data (spatial autocorrelation) (e.g., Myers et al., 2008; Fekete, 2009); reliance on correlation without considerations to causation (e.g., Borden et al., 2007; Finch et al., 2010); use of spatial units that may be too large to reflect socio-economic variability (e.g., Fekete, 2009); use of simulated results (e.g., Schmidtlein et al., 2011) or political decisions as outcome variables (e.g., Borden et al., 2007), both which do not serve as evidence of vulnerability; and other statistical assumption violations.

The first shortcoming mentioned above, which is particularly grave and common, results in a particularly low explanatory power of the model. This leads to biases, especially when performing an analysis based on a single climatic event with its unique physical features. The physical exposure (e.g., flood level) would carry a high explanatory power of the climatic event's consequences. Thus, including exposure in the statistical model allows a better examination of the other factors (socio-economic indicators/variables) that impact vulnerability.

Some limitations of this work are that it used only one case study. It also used similar datasets (though with different variables) for the first (supervised dimension reduction) and second (regression) steps of the study due to relatively small sample size (though with different target variables to overcome this limitation), and it explored only a single statistical approach for variable weighing (standardized coefficients). We therefore recommend additional evidence-based regional vulnerability assessments use data from several hurricane/flooding events and explore possible modifications to the model design by using additional statistical techniques, including those incorporating interactions between variables and standardizing model coefficients differently. Furthermore, we suggest exploring the normalization of indicators within a spatial unit using additional types of data from myriad sources, keeping in mind that the interpretability of models is especially important in such cases for driving adaptation policy.

In any case it is important to point out that a crucial aspect of this study that is seldom performed in other studies in this field is the validation of the proposed vulnerability index using a different geographical area. Other methods of validation can be explored, such as holding off some of the internal units (zip codes in this case) for validation when there is a sufficient sample size.

Perhaps most notable in our analysis results is the negative coefficient associated with the minority indicator for approval rate (i.e., successful assistance application rate). This result highlights issues that have been discussed in the literature, particularly within the context of justice and equity when facing the consequences of climate change (Rydin, 2006; Kim et al., 2018). These could be helpful on a local scale, but also when climate change adaptation plans are developed over broader scales of time (i.e., for long-term planning) and space considering disparities between regions or across multiple jurisdictions (Barbier, 2014; van den Berg and Keenan, 2019).



CONCLUSION

Our analysis suggests a strong association between social indicators and observed vulnerability, empirically demonstrating that some indicators are more meaningful than others. Consequently, adaption planning should consider and prioritize the most vulnerable communities, as reflected by the indicators, with consideration to the indicators' weights. Most importantly, this work sets another steppingstone for methodological advancement for the assessment of hurricane-related vulnerability to climate change. Moving consideration of social vulnerability to climatic events forward, and especially with regard to events related to storm surge and flooding, is of vast importance as new data reveals increased risk of damage to extensive areas and the crucial consequences such damage involves, especially among already vulnerable communities (Flavelle et al., 2020).

Researchers, policy-makers, and other climate change adaptation practitioners should promote additional evidence-based predictive statistics approach implementations, thus expanding knowledge for adaptation planning and increasing the likelihood that appropriate and supportive policies for such planning to be put in place. In view of this position, we call on others to build upon, as well as to question, the proposed vulnerability assessment methodology, consequently improving adaptation planning and mitigating harm caused by climate change to communities at risk.
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Pervasive and accelerating climatic, technological, social, economic, and institutional change dictate that the challenges of the future will likely be vastly different and more complex than they are today. As our infrastructure systems (and their surrounding environment) become increasingly complex and beyond the cognitive understanding of any group of individuals or institutions, artificial intelligence (AI) may offer critical cognitive insights to ensure that systems adapt, services continue to be provided, and needs continue to be met. This paper conceptually links AI to various tasks and leadership capabilities in order to critically examine potential roles that AI can play in the management and implementation of infrastructure systems under growing complexity and uncertainty. Ultimately, various AI techniques appear to be increasingly well-suited to make sense of and operate under both stable (predictable) and chaotic (unpredictable) conditions. The ability to dynamically and continuously shift between stable and chaotic conditions is critical for effectively navigating our complex world. Thus, moving forward, a key adaptation for engineers will be to place increasing emphasis on creating the structural, financial, and knowledge conditions for enabling this type of flexibility in our integrated human-AI-infrastructure systems. Ultimately, as AI systems continue to evolve and become further embedded in our infrastructure systems, we may be implicitly or explicitly releasing control to algorithms. The potential benefits of this arrangement may outweigh the drawbacks. However, it is important to have open and candid discussions about the potential implications of this shift and whether or not those implications are desirable.
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INTRODUCTION

If future infrastructure resembles that of the past, or even of today, it will represent a profound failure on the part of engineers and infrastructure managers. Pervasive and accelerating climatic, technological, social, economic, and institutional change signal that the challenges of the future will likely be vastly different and more complex than they are today (Allenby, 2011; Marchant et al., 2011; Markolf et al., 2018). The relationship of the human species to the planet is changing dramatically given a rapidly urbanizing global population of roughly 7.7 billion, and a parallel growing middle class with changing consumption and food demands. These dynamics play a key role in driving and accelerating the integration of human, natural, and built systems to create complex, interlinked, and rapidly evolving systems at all scales—from local infrastructure to regional and global systems (Lo and Yeung, 1998; NRC (US National Research Council)., 2003; Chester et al., 2019).

The need for infrastructure to adapt, transform, and perform competently under conditions of complexity and accelerating change is increasingly being met by integrating infrastructure and information systems [including various artificial intelligence (AI) capabilities] into infrastructure design, construction, operation, and maintenance. However, successfully implementing this strategy requires a clear and concise understanding of relevant information, communication, and computational frameworks, as well as how they functionally couple together in practice—a particularly difficult task in today's environment. Therefore, it is not surprising that the rise of a new global infrastructure with profound implications for humans, their institutions, and their planet has gone both unperceived and unremarked. This is the cognitive infrastructure, and it already permeates virtually every aspect of our world (Allenby, 2019). In particular, each infrastructure system and sector has its own companies, experts, investors, and users. But what is often not recognized is that many of these infrastructures and technologies are not only coherent entities themselves, but also being integrated into an emergent infrastructure that includes integrated functionality from many sources: the “cognitive infrastructure.”

Taking a functional definition of “cognition” (i.e., information processing, reasoning, remembering, learning, problem-solving, decision-making, etc.) (Squire, 2009), the accelerating rise of cognitive infrastructure becomes evident. For example, machine-to-machine connections are anticipated to increase from 6.1 billion in 2018 to 14.7 billion in 2023 (Cisco, 2020). Similarly, spending on sensors and other technologies related to the Internet-of-Things (IoT) is expected to reach $1.2 Trillion in 2022 (Columbus, 2018). Most of these sensors and devices will generate vast amounts of data and integrate some cognitive capability via accelerating deployment of AI technology such as neural nets (Lee, 2018). In short, accelerating capability and capacity across a number of apparently unrelated infrastructures and technologies is generating an infrastructure, tied together by AI and a vast array of institutional structures, that (1) contains the functional components of cognition and ever-more powerful networks operationally linking them together, (2) is distributed around the world, and (3) contains evolving and emergent systemic and behavioral capabilities. Simply put, we are building a pervasive cognitive infrastructure without fully recognizing it, and we are doing so rapidly and at global scale.

Cognitive infrastructure offers challenges that more traditional infrastructure systems do not. For one, it operates at a level that humans can neither fully understand nor perceive—people are relatively low bandwidth cognitive mechanisms in a world where even contemporary cognitive infrastructure operates at far higher bandwidths, much faster speeds, and higher levels of complexity than individuals can access. This can unfortunately be seen in the tragic Lion Air Flight 610 and Ethiopian Airlines Flight 302 incidents. Although many factors appeared to have been at play, the disconnect between the development of the automated flight control systems in the Boeing 737-MAX planes and the training and implementation by the pilots was a key element in the accidents (Gelles, 2019; Wise, 2019; Herkert et al., 2020; U.S. House Committee on Transportation Infrastructure., 2020). Thus, determining how to effectively integrate human and machine cognition into infrastructure systems becomes a significant professional challenge that, so far, appears to have not been adequately and effectively considered.

Integrating cognitive infrastructure is a critical capability as engineers, technologists, and policymakers try to develop infrastructure systems that are as resilient, agile, and adaptive as current (and future) conditions demand. But knowing that incorporating sensor and AI-driven adaptability into infrastructure can make it more efficient and responsive to changing conditions is only the beginning. Understanding the cognitive infrastructure as a whole is required to fully and responsibly meet the demands for better infrastructure. For example, designers of IoT devices embed sensors and communication capabilities in their products as a matter of required functionality. But, absent a systemic perspective on security and the devices' place within the overarching cognitive infrastructure, there is the potential for underappreciating/misunderstanding issues like the vulnerability to adversarial attacks that the embrace of AI technologies can create. These potential drawbacks are ultimately a symptom of understanding a few of the constituent technologies (e.g., AI) in isolation, but failing to understand that it is the cognitive infrastructure, not just those individual technologies, that their infrastructure design is integrating.

It is premature to consider tantalizing questions such as how humans should respond as critical cognitive functions migrate to higher level techno-human systems embedded in a global cognitive infrastructure. However, it is not premature to recognize that this new infrastructure, itself a reflection and driver of the complexity and challenges of the Anthropocene, is already emergent. Additionally, trying to perceive and understand some of these implications is an increasingly imperative and necessary professional responsibility. Without that first step, ethical, rational, and appropriate infrastructure design, construction, operation, maintenance (as well as the educational and institutional structures to support them) will remain beyond reach. As such, this paper provides a broad discussion about what AI is and how it relates to infrastructure. We then explore various tasks and services within infrastructure systems that may be enhanced and/or replaced by AI. Finally, we conclude with a discussion of some of the broader implications that may emerge as AI and infrastructure systems become increasingly entwined in the coming decades.



AI AND INFRASTRUCTURE LEADERSHIP IN THE CONTEXT OF COMPLEXITY

“AI” is a fuzzy term. As the U. S. National Science and Technology Council says in its 2016 report, “There is no single definition of AI that is universally accepted by practitioners. Some define AI loosely as a computerized system that exhibits behavior that is commonly thought of as requiring intelligence. Others define AI as a system capable of rationally solving complex problems or taking appropriate actions to achieve its goals in whatever real world circumstances it encounters.” Herein, we use “AI” to include big data and analytics dimensions, but ultimately describe the leadership and intelligence capabilities that are needed to replace or augment people. In doing so we envision a future where humans employ AI to make sense of an increasingly complex world.

In managing dynamic and complex systems and environments, several leadership capabilities are needed to address continually changing conditions (Uhl-Bien et al., 2007). Administrative Leadership, what we largely practice today, is well-suited for stable conditions and is made up of bureaucracies that formalize the structure and function of organizations. However, in the changing or chaotic conditions that define complex environments, Adaptive Leadership is preferred. Under this approach, adaptability, creativity, and learning are emphasized in order to make sense of and navigate complex and uncertain conditions. Perhaps of most importance is Enabling Leadership, the ability to shift between Administrative and Adaptive Leadership practices as conditions shift from stable to chaotic. Enabling Leadership involves creating structural, financial, and knowledge conditions for flexibility (Uhl-Bien et al., 2007). In assessing the AI landscape, evaluating which techniques are best positioned to support each leadership style is increasingly useful.

Given this context, there are several tasks for which AI applications in infrastructure are well-suited, including pattern recognition, classification, clustering, categorization, system control, function approximation (e.g., regression analysis), optimization, and prediction/forecasting (Chen et al., 2008; Brynjolfsson and Mcafee, 2017; Eggimann et al., 2017). In order to accomplish these tasks, a variety of techniques and approaches can be applied, such as rule-based systems (RBS), genetic algorithms, cellular automata, Fuzzy Systems, Multi-agent systems, Swarm Intelligence, Case-based reasoning (CBR), and Artificial Neural Networks (ANN) (Chen et al., 2008). For example, AI (particularly genetic algorithms, Artificial Neural Networks, and Deep Learning) has been applied in a variety of civil engineering contexts including optimum design of structures (Hajela and Berke, 1991; Adeli and Park, 1995; Camp et al., 2003; Hadi, 2003), concrete strength modeling (Yeh, 1999; Ni and Wang, 2000; Lee and Ahn, 2003; Al-Salloum et al., 2012), predicting geotechnical settlement and liquefaction (Shahin et al., 2002; Young-Su and Byung-Tak, 2006), earthquake engineering (Lee and Han, 2002; Arslan, 2010; Yilmaz, 2011), concrete design mix (Jayaram et al., 2009), prediction and forecasting of water resources and flooding (Maier and Dandy, 2000; Mitra et al., 2016; Alexander et al., 2018; Lin et al., 2018; Yu et al., 2018; Zamanisabzi et al., 2018; Li et al., 2019), water quality and sediment modeling (Nagy et al., 2002; Zhang et al., 2010; Barzegar et al., 2016; Sabouri et al., 2016), irrigation and water-delivery scheduling (Nixon et al., 2001; Karasekreter et al., 2013), rainfall-runoff modeling (Minns and Hall, 1996; Tokar and Johnson, 1999; Cheng et al., 2005, 2017; Dixon, 2005; Jeong and Kim, 2005; Abrahart and See, 2007; Young et al., 2017), and evapo-transpiration modeling (Tabari et al., 2010; Kumar et al., 2020)—additional examples can also be found in Figure 1 (e.g., Liu et al., 2016; Mounce et al., 2016; Amanollahi et al., 2017; Beh et al., 2017; Conniff, 2017; Ghalehkhondabi et al., 2017; Matias, 2017; Rezaeianzadeh et al., 2017; Yang et al., 2017; Zhang et al., 2017, 2018; Corominas et al., 2018; Pisa et al., 2019; Rastegaripour et al., 2019; Suh, 2019). The scope and purpose of this article is not to provide a comprehensive overview and discussion of these different techniques. For that, we refer the readers to works by Flood and Kartam, 1994a,b; Kartam et al., 1997; Adeli, 2001; Flood, 2001; Flintsch and Chen, 2004; Chandwani et al., 2013; Ye et al., 2019); and (Falcone et al., 2020). Nonetheless, a brief discussion about the ways in which various AI techniques may (or may not) support infrastructure leadership in stable and chaotic environments appears warranted and is included below.
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FIGURE 1. Summary of the “Four Intelligences,” examples from infrastructure systems, and current/potential applications of AI to infrastructure systems across each level of intelligence.


Some AI techniques may be well-suited for enhancing operations during stable conditions, while others may be more appropriate for supporting leadership during unstable times (e.g., extreme events, funding uncertainty, pandemics, etc.). For example, techniques that establish algorithms to solve novel problems by recalling and referencing similar problems from the past (e.g., CBR) are particularly suitable for the well-defined and stable conditions endemic of Administrative Leadership. In this context, these approaches can be particularly useful for applications related to system control, planning, prediction, and diagnosis (Chen et al., 2008). Conversely, techniques that mimic the manner in which human brains process information via a series of layered and interconnected processing units (e.g., ANN) are increasingly well-suited for the complex, data-intensive, multivariable, and dynamic conditions (i.e., instability) that warrant Adaptive Leadership. In this context, AI can help make predictions (based on a series of input patterns) and/or intuit relationships between various inputs—even in situations where the underlying rules and structure of the problem may be unknown or hard to express (Chen et al., 2008). Overall, various forms of AI appear poised to greatly complement (or even in some cases replace) Administrative and Adaptive Leadership activities and roles within our infrastructure systems. In turn, the humans and institutions that interact with and govern our infrastructure systems may play an increasingly important role as the primary source of Enabling Leadership within our systems. Thus, it will be crucial for humans and institutions to recognize the benefits and tradeoffs among the different types of leadership, roles, and services provided by various AI. Perhaps most importantly, additional consideration appears warranted regarding the frameworks, resources, structures, and knowledge systems that may be needed to facilitate the smooth and agile transition between leadership approaches as future conditions continually fluctuate between stable and chaotic. The following section explores this issue further by examining some of the various roles and tasks AI may fill in infrastructure systems moving forward.



AI INTELLIGENCES AND TASKS WITHIN INFRASTRUCTURE SYSTEMS

Evaluating the potential for AI to augment or replace existing capabilities requires a critical examination of the intelligences involved. Huang and Rust (2018) assert that AI job replacement fundamentally occurs at the task level, and that “lower” intelligence tasks (e.g., repetitive, routine tasks) are easier for AI to replace than “higher” intelligence tasks (e.g., highly emotional/empathetic tasks). Given that, at their core, infrastructure systems are service providers, we adapt Huang and Rust's framework to (1) link various infrastructure services to the four types of intelligences described by Huang and Rust (i.e., Mechanical, Analytical, Intuitive, and Empathetic), and (2) outline cases (and examples where possible) of how AI has and/or could potentially replace various infrastructure-related tasks at each level of intelligence—see Figure 1.


Mechanical Intelligence

The “lowest” level of intelligence is Mechanical, which is defined by routine and repeated tasks, minimal creativity, and an emphasis on efficiency and consistency (Huang and Rust, 2018). AI at this level are rule-based and are well-suited for homogenous tasks that are repetitive, performed often, and unsophisticated (Sawhney, 2016; Huang and Rust, 2018). As a result, AI at this level often have an advantage over humans with respect to consistency, reliability, and work-rate (Huang and Rust, 2018).

One of the primary challenges associated with Mechanical AI is that it can be difficult to scale to the systems level, which in turn can limit its applicability to the large-scale and dynamic infrastructure systems typical of modern cities. Mechanical tasks are typically conducted by a single unit (or small, tightly integrated group of components). As a result, this type of AI is best suited for well-bounded and tightly constrained situations. Thus, increasing the network, scale, and/or state of operations adds complexity that can eventually overwhelm the system. Under these circumstances, AI at higher levels of intelligence will likely be more appropriate and effective.



Analytical Intelligence

The second level of intelligence is Analytical, which relies on the ability to process information, make decisions, problem solve, and adjust to new information (Huang and Rust, 2018). Analytical Intelligence is defined by tasks that can be complex (often data-intensive), yet consistent and predictable. AI at this level use algorithms to iteratively learn and gain insights from large and/or continuous data sets. Analytical AI increasingly consist of networked units rather than a stand-alone machine. Human interpretation and intuition are still vital complements to AI at this level. AI provides increasingly varied and valuable decision support, but humans are still the ones ultimately making the decision.

One of the biggest potential challenges with Analytical AI is that it is likely not well-suited for problems that do not have similar analogs from the past (Chen et al., 2008). This drawback is particularly important to consider in the context of managing infrastructure systems under a changing climate. Non-stationarity, the concept that past conditions and data are not indicative of future trends and conditions, is increasingly a reality for urban and infrastructure systems (Milly et al., 2008; Koutsoyiannis, 2011; Lins, 2012). Thus, Analytical AI should not be treated as an “off-the-shelf” or “plug-and-play” solution for a wide range of problems. Engineers and infrastructure managers should take great care to understand the nuances, strengths, and weaknesses of AI when applying it to infrastructure that has significant interaction with climatic variables (e.g., weather prediction, stormwater systems, flood management systems, etc.).



Intuitive Intelligence

The next level of intelligence is Intuitive, which relies on experience-based thinking and creativity. Tasks related to Intuitive Intelligence are contextual, chaotic, complex, and idiosyncratic (Huang and Rust, 2018). AI at this level function in a more human-like manner by learning and adapting based on previous experience and new information. Understanding a problem or situation based on context and prior experience is a hallmark characteristic of Intuitive Intelligence in both humans and AI.

One potential challenge with Intuitive AI is that the problems to which it may be applied are often “wickedly complex” and do not have one “right” solution (e.g., the allocation and management of natural resources) (Chester and Allenby, 2019a). The algorithms supporting this type of AI often learn from human-defined data as to what the outcome should be. Thus, the training of and learning by the AI can be severely inhibited in situations where the outcome/solution is not clear (Meserole, 2018). Under these circumstances, AI can still be very helpful in generating, exploring, and analyzing various scenarios. However, human stakeholders will ultimately be responsible for deciding on the final outcomes or course of action.

Another potential challenge associated with Intuitive AI is that there can be a “black-box” element to the analysis and outcomes due to the fact that it provides solutions and insights with minimal knowledge of the underlying systems and processes (Chen et al., 2008). For example, the AI may produce outputs that are non-intuitive and/or fail to converge on a solution, and it may be difficult to ascertain why. Ultimately, some level of this “black box” is likely unavoidable. Presumably, one of the main reasons to deploy Intuitive AI is because the system in question is already operating at a scale and/or level of complexity beyond human cognitive capabilities. If total understanding and mastery of system dynamics and complexity (i.e., elimination of the “black box”) is achievable, then Intuitive AI was likely not needed in the first place. Thus, the critical question is not “how do we eliminate the black-box?,” but rather, “what degree of black-box are we comfortable with?” As AI systems continue to evolve and become further embedded in our infrastructure systems, we may be implicitly or explicitly releasing control of our infrastructure systems to software and algorithms. The potential benefits of this arrangement may very well outweigh the drawbacks in certain circumstances. However, it is important for communities, policy-makers, and infrastructure managers to have open and candid discussions about the potential implications of this shift in control and whether or not those implications are desirable.



Empathetic Intelligence

The “highest” level of intelligence is Empathetic, which relies on empathy, social interaction, and communication. Empathetic tasks relate to the ability to understand emotions, appropriately respond to emotions in others, and influence other's emotions (Huang and Rust, 2018). AI at this level “relates to, arises from, or influences emotions (Picard, 1995),” and behaves as if it has feeling. Empathetic AI are still in the nascent stages of development, with initial applications tending to relate to emotional analytics (Abou-Zeid and Ben-Akiva, 2010; Quercia et al., 2014). Nonetheless, the high level of social and communication skills needed for Empathetic Intelligence seem to indicate that humans will remain integral at this level for the foreseeable future.

Similar to Intuitive AI, aspects of wicked complexity and wicked problems can be especially challenging for Empathetic AI. One of the elements of a wickedly complex problem is the presence of a wide degree of norms and values among the various stakeholders within the system. These values/interests may not always be clearly stipulated or coded in anyway. Additionally, they can shift and fluctuate over time. As a result, it is very difficult for the AI to understand the different (and often conflicting) values among the stakeholders, let alone “train” the AI around a centrally agreed upon solution/outcome (Baum, 2020).

Related to the issue above, Empathetic AI can be particularly susceptible to various biases. The biases may be implicit or explicit, and can be the result of the individuals who wrote the algorithms or the data from which the algorithm was trained (Tomer, 2019). For example, facial recognition AI has been found to contain racial bias (Grother et al., 2019). It is unlikely that biases can fully be eliminated from Empathetic (and other) AI systems. Thus, similar to the “black box” issue, perhaps the best approach is for citizens, decision makers, and AI developers to have open and candid discussions about the appropriate applications of Empathetic AI given the potential unintended consequences that may result from these biases.

Figure 1 provides a summary of the key elements of each intelligence, examples from infrastructure systems, and current/potential applications of AI in infrastructure across each level of intelligence.



How Might AI Disrupt Infrastructure Services and Introduce New Capabilities?

Exploration of the four levels of intelligences in the context of infrastructure systems reveals a few key insights. First, it appears that AI (or at least automation) has already been widely implemented for Mechanical tasks. Although there is still some potential for AI growth and evolution at this level, it appears that we may have already reached a saturation point, thereby making fundamental transformations less likely. This outcome further underscores the potential for AI to complement and supplement Administrative Leadership roles within infrastructure systems. On the other hand, Analytical tasks are where AI appears poised to have the largest disruption (at least in the near-to-medium term). As AI capabilities continue to improve (especially due to the combination of ever-increasing data availability, ever-decreasing computing costs, and advancements in techniques like ANNs), Analytical tasks (and Adaptive Leadership roles) will increasingly be accomplished by AI. Considering that the vast majority of engineering and infrastructure jobs are analytical by nature, the augmentation and/or replacement of Analytical tasks by AI is likely to have a fundamental, profound, and transformative impact on infrastructure systems as we know them. Thus, moving forward, a key adaptation for engineers and infrastructure managers will be to strengthen and place increasing emphasis on Intuitive and Empathetic tasks/intelligences, which in turn should strengthen Enabling Leadership capabilities. This is particularly important, because even though humans exhibit much higher levels of Intuitive and Empathetic Intelligence than AI (and are likely to remain that way for quite a while), there is still room for improvement. Human error is always a concern when operating under both mundane and surprise conditions. Similarly, Empathetic Intelligence currently does not appear to be widely incorporated or considered in the development of engineered/infrastructure systems. Thus, in order to most effectively balance the Mechanical (i.e., Administrative Leadership) and Analytical (i.e., Adaptive Leadership) advantages of AI with the Intuitive and Empathetic (i.e., Enabling Leadership) advantages of humans, we (humans) will need to continually learn from past mistakes and develop skills to make effective decisions under surprise conditions. Additionally, substantial and continual efforts should be made toward enhancing our ability to incorporate social, emotional, and equity dynamics into engineering/infrastructure planning and implementation.




DISCUSSION AND CONCLUSION

It is useful to consider how AI technologies in infrastructure are likely to create new capabilities that, if leveraged correctly, can help us adapt to the rapidly changing conditions in which infrastructure systems must thrive. As evidence emerges of the accelerating and increasingly uncertain conditions that characterize infrastructure environments (Steffen et al., 2015), design and management must be able to respond to these conditions with agility and flexibility (Chester and Allenby, 2019b; Gilrein et al., 2019). With any new technology, control processes are created to harness and guide the new capabilities toward the goals of the managing institution (Beniger, 1989). For example, the advent of engines and novel processes during the industrial revolution released energy at rates and scales never before seen. In turn, these technological advancements required new institutions and processes to channel this power. Whether AI follows historical patterns of technological control is questionable. AI technologies are fundamentally focused on augmenting and replacing cognition. Cognitive infrastructure that learns and makes decisions for us implies that control may not be fully attainable (like it was for the steam engines in the industrial era). Instead, our control efforts may need to focus on establishing relationships with AI that recognize that cyber-technologies will be guiding us in ways that we may not always fully understand.

AI may be uniquely positioned to help us learn about and navigate increasingly complex environments. In designing knowledge systems, institutions enable sensing and analytical capabilities (coupled with different leadership styles) to operate in both calm and chaotic environments (Miller and Munoz-Erickson, 2018). As our systems, and the environments in which they operate, become increasingly complex and beyond the cognitive understanding of any group of individuals or institutions, AI may offer critical cognitive insights to ensure that systems adapt, services continue to be provided, and needs continue to be met.

The mapping of AI applications to intelligences and leadership roles appears to support the varying approaches needed to address domains of complexity. The Cynefin framework classifies systems as simple, complicated, complex, or chaotic, and as we transition from one domain to another, disorder governs (Snowden and Boone, 2007; Chester and Allenby, 2019a). Each domain requires a fundamentally different approach to address challenges. Infrastructure have historically been complicated systems and are now increasingly viewed as complex (Chester and Allenby, 2019b). A complicated system calls for data collection, analyzing and decision-making, while a complex system shifts toward probing, testing, and a commitment to adaptability and transformation. The intelligence mapping presented in Figure 1 provides a useful set of AI applications that can be applied to infrastructure in complicated and complex environments. The Mechanical and Analytical Intelligences appear to align well with complicated situations where the emergent behaviors of systems are predictable and their environments somewhat stable. The Intuitive and Empathetic Intelligences appear to align with complex systems, where perturbations can result in unpredictable emergent behaviors, and “satisficing” is needed to manage wicked problems across technical and social requirements (Chester and Allenby, 2019a). While all intelligences are needed at various times during the operation of a system, the development and deployment of Intuitive and Empathetic Intelligences (and Enabling Leadership) in humans and institutions, as well as the development and deployment of Administrative and Adaptive Leadership via AI appears necessary to address the growing complexity and non-stationarity of our systems and the environments in which they operate.

Ultimately, we are in the nascent stages of AI development and application to infrastructure systems. The topics in this paper are intended to be an initial discussion of some of the key opportunities and challenges associated with AI in infrastructure systems—especially in the context of the leadership and skills needed to face the complex challenges of the Anthropocene. Avenues for future work that can build on this endeavor include interviews and surveys aimed at gaining a better understanding of infrastructure practitioner's current thoughts and expectations about the possible benefits and downsides of AI. Additionally, it would be beneficial to further explore which level of intelligence appears most appropriate for specific problems/contexts, as well as a more detailed assessment of the specific AI techniques likely to be most effective/appropriate in these circumstances. Finally, in conjunction with (if not prior to) these efforts, open, candid, and iterative discussions are required amongst society writ large to debate what level of cognitive infrastructure we are comfortable with and the level of “control” (or at least perceived control) we are comfortable offloading to cognitive infrastructure. By doing so, engineers and infrastructure users/managers can hopefully ensure that they are striking the right balance between human and AI capabilities required to effectively and equitably navigate our increasingly complex world.
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