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Editorial on the Research Topic

Towards the Next Generation of Deep Brain Stimulation Therapies: Technological

Advancements, Computational Methods, and New Targets

Deep Brain Stimulation (DBS) has matured into a staple of modern therapeutics for movement
disorders and is considered a promising tool toward the treatment of psychiatric conditions
(Vedam-Mai et al., 2021). More importantly, DBS has been the engine propelling the development
of a diverse ecosystem of technological innovations, ranging from surgical navigation systems
that incorporate connectome data (Li et al., 2020) to algorithms that predict the therapeutic
outcomes of brain stimulation (Gonzalez-Escamilla et al., 2019; Reich et al., 2019), and implantable
neurostimulators that integrate chronic monitoring and real-time modulation of neural activity
(Stanslaski et al., 2018; Topalovic et al., 2020).

With the wealth of technological advancements accrued in recent years, two key questions
have rapidly gained interest: (1) How do stimulation targets and settings affect the therapeutic
efficacy of DBS? and (2) How can weminimize the burden associated with DBS programming while
maximizing the clinical efficacy? In this Research Topic we gathered original research studies from
experts in the field who addressed these questions and provided cutting-edge solutions toward the
next generation of DBS therapies.

Despite advancements in neuro-navigation and planning, the decision about
precisely where to stimulate (i.e., which electrode contact should be activated on a
DBS array?) remains challenging, in part because intraoperative feedback on lead
placement often relies on expert interpretation of intra-operative multiunit recordings.
To cope with this limitation, Ozturk et al. reported a double-blinded pilot study that
showed the potential of novel intra-operative analyses based on local field potentials.
The authors demonstrated that the analysis can be done online in the operating
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room and enhanced the therapeutic outcomes of DBS through
improved target localization compared to current methods using
multiunit recording. Li andMcConnell reported interesting work
in rats that mapped the heterogeneity of the electrophysiology in
the substantia nigra (SNr) and the ventral tegmental area, which
are promising new targets for DBS. The authors reported the
existence of distinct electrophysiological features in these areas
and showed how these features can help precisely target SNr
subregions during DBS surgery.

To further enhance the therapeutic outcomes of DBS,
Anderson et al. developed a novel directional DBS lead
with thousands of microscale contacts. The new design
dramatically increased the spatial resolution of stimulation
steering and improved the selectivity in targeting small
diameter fibers, which promises to significantly widen the
window of therapy for DBS. Furthermore, Zheng et al.
investigated the effects that can be induced on the therapeutic
outcomes of DBS by changing the appearance order of the
intervals between consecutive pulses. They showed that a
random arrangement of inter-pulse intervals (IPI) can recruit
more neurons to fire in synchrony following specific sub-
sequences of pulses compared to gradual IPI, thus providing
a paradigm to widen the neuronal recruitment in response
to DBS.

A general consensus has been that the burden of DBS
programming will be lowered by introducing closed-loop control
algorithms. However, studies so far have mainly assessed
the feasibility of closed-loop DBS over short periods (Little
et al., 2013; Arlotti et al., 2018) and have been limited to
control algorithms that lack sensitivity and specificity over
long durations. Because symptom fluctuations are a hallmark
of various movement disorders, occurring on multiple time
scales, there is an unmet need for algorithms that can self-
adapt as symptoms and biomarkers evolve with time. In
this Research Topic, we presented work related to this need
with respect to the fluctuations of pathological beta-band
in Parkinson’s disease (PD). Fleming, Dunn, et al. evaluated
the resilience of traditional PI controllers against beta-band
fluctuations, and Fleming, Orlowski, et al. proposed a novel,
self-tuning controller that tracks beta-band fluctuations over
time and adjusts the closed-loop DBS strategy accordingly.
Also, Su et al. proposed a hierarchical control architecture,
where the closed-loop DBS is based on an autoregressive (AR)
model of the input-output relationship between DBS pulses and
pathological beta-band oscillations. As the AR model is updated
periodically through the day, the control strategy is automatically
adjusted to efficiently cope with the daily fluctuations of beta-
band oscillations. Finally, Cutsuridis expanded the model-based

framework to develop DBS strategies for chronic memory
loss treatment.

With regard to PD, DBS therapies have been traditionally
focused on motor symptoms such as akinesia (Moro et al., 2010),
even though cognitive symptoms are a significant contributor
to the severe disability imposed by the disease, diminishing
the individual’s quality of life. An emerging trend suggests that
DBS therapies should be used to satisfy multiple therapeutic
goals simultaneously and address both motor and non-motor
symptoms. This may necessitate the investigation of new targets,
stimulation patterns, and feedback signals. In Bentley et al.,
authors capitalized on the positive cognitive outcomes of
intermittent theta-burst stimulation (iTBS, a TMS paradigm) of
the dorsolateral prefrontal cortex (DLPFC) and delivered DBS
with iTBS pulse sequences to the globus pallidus of PD patients.
They documented the effects of GPi iTBS vs. regular GPi DBS
on the neuronal activity in the DLPFC, which is a center for
PD cognitive symptoms, and reported evidence of the cognitive
effects of DBS. Wickramasuriya et al., on the other hand,
proposed the use of sympathetic arousal as a potential biomarker
of non-motor symptoms. The authors specifically focused
on neuropsychiatric symptoms and developed an innovative
approach to efficiently decode psychological arousal from neural
activity underlying skin conductance signal variations. Finally,
Guo et al. investigated hybrid stimulation protocols to treat
disorders of consciousness (DOC) and proposed a combination
of deep stimulation and high-density transcranial direct current
stimulation of the precuneus to rehabilitate DOC patients.

Altogether, these contributions showed that the next
generation of DBS therapies will aim to expand the range of
clinical applications and boost therapeutic outcomes through
a rapid integration in the design process of wearable sensing
modalities, electronic miniaturization, control methods, and
electrophysiological exploration.
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Transcranial direct current stimulation (tDCS) recently was shown to benefit rehabilitation
of patients with disorders of consciousness (DOC). However, high-Definition tDCS
(HD-tDCS) has not been applied in DOC. In this study, we tried to use HD-tDCS protocol
(2 mA, 20 min, the precuneus, and sustaining 14 days) to rehabilitate 11 patients
with DOC. Electroencephalography (EEG) and Coma Recovery Scale–Revised (CRS-R)
scores were recorded at before (T0), after a single session (T1), after 7 days’ (T2),
and 14 days’ HD-tDCS (T3) to assess the modulation effects. EEG coherence was
measured to evaluate functional connectivity during the experiment. It showed that
9 patients’ scores increased compared with the baseline. The central-parietal coherence
significantly decreased in the delta band in patients with DOC. EEG coherence might be
useful for assessing the effect of HD-tDCS in patients with DOC. Long-lasting HD-tDCS
over the precuneus is promising for the treatment of patients with DOC.

Keywords: disorders of consciousness, high-definition transcranial direct current stimulation,
electroencephalography, Coma Recovery Scale–Revised scores, coherence

INTRODUCTION

Chronic disorders of consciousness (DOC) consist of vegetative state/ unresponsive wakefulness
syndrome (VS/ UWS) and minimally conscious state (MCS) (Giacino et al., 2014). MCS is
characterized by minimal but definite behavioral evidence of self or environmental awareness
(Giacino et al., 2014). Recently, MCS was subcategorized into MCS− describing low-level
behavioral responses and MCS+ describing high level behavioral responses (Bruno et al.,
2012). Even though many pharmacological (i.e., amantadine, zolpidem) and non-pharmacological
interventions (i.e., deep brain stimulation, spinal cord Stimulation, transcranial magnetic
stimulation, median nerve electrical stimulation) have been assessed in the last decade, there remain
few effective therapies for patients with DOC (Schiff et al., 2007; Giacino et al., 2012; Della Pepa
et al., 2013; Yamamoto et al., 2013; Cossu, 2014; Thibaut et al., 2014; Tucker and Sandhu, 2016).
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Transcranial direct current stimulation (tDCS) is a promising
non-invasive brain stimulation technique for treatment of
patients with DOC, which is safe, less uncomfortable and easy
to handle (Zhang and Song, 2018). tDCS modulates cortical
excitability at stimulation sites via weak current which flows
through the brain from the anode to the cathode. Anodal tDCS
boost neuronal activation via sub-threshold neuronal membrane
polarization, and cathodal tDCS can reduce cortical excitability
(Lefaucheur et al., 2017). The effects of tDCS stimulation can be
long-lasting, and are connected with the duration of stimulation
and current intensity (Zhao et al., 2017). Previous studies
illustrated the residual capacity for neural plasticity and recovery
of consciousness in some patients with DOC. Our group showed
that tDCS can effectively modulate the cortical excitability of
patients with DOC, especially in patients with MCS (Bai et al.,
2017a,c). Martens et al. found that 4 weeks of home-based tDCS
moderately improved the recovery of signs of consciousness in
patients with MCS (Martens et al., 2018). Similarly, Zhang and
his colleagues reported 20 sessions of tDCS can improve CRS-
R scores and modulate the P300 amplitude in patients with
MCS. The P300 has been commonly used to detect residual
awareness in patients with DOC (Giacino et al., 2018). Several
studies have also showed that patients with MCS can benefit
from tDCS over the left dorsolateral prefrontal cortex (DLPFC)
(Angelakis et al., 2014; Thibaut et al., 2014, 2015, 2017; Dimitri
et al., 2017). Except the treatment effect of tDCS in patients
with DOC, tDCS induced changes in cortical connectivity and
excitability is useful in differentiating MCS from UWS patients
(Naro et al., 2015). However, another study discovered that tDCS
of the left DLPFC did not have remarkable clinical and EEG
effects in patients with DOC (Estraneo et al., 2017). A critical
problem of tDCS in patients with DOC is stimulated area. The left
DLPFC is common in traumatic brain injury, Huang et al. (2017)
chose the posterior parietal cortex as the site of stimulation.
Researchers found tDCS of the posterior parietal cortex improves
the recovery of clinical signs of consciousness in some patients
with MCS (Huang et al., 2017). For researching the mechanism of
change of tDCS in patients with DOC, a more focal stimulation
is important. However, The main disadvantage of conventional
tDCS is that it produces diffuse brain current flow. It is difficult
to interpret whether produced effects are due to stimulation of
the targeted cortical region or neighboring anatomical area (Bai
et al., 2014; To et al., 2016).

High-Definition tDCS using the 4 × 1 smaller compact
scalp electrodes, instead of the two large pad electrodes, is a
new neuromodulation technique. HD-tDCS improves the spatial
precision, resulting in focal neural and specific behavioral
changes (Dmochowski et al., 2011; Villamar et al., 2013;
Shekhawat and Vanneste, 2018). HD-tDCS has been previously
reported to improve motor function, verbal learning, working
memory, and pain and tinnitus control (Borckardt et al., 2012;
Caparelli-Daquer et al., 2012; Kuo et al., 2013; Donnell et al.,
2015; Nikolin et al., 2015; Shekhawat et al., 2016). It has been
shown to reliably target specific brain areas and produce plastic
changes that may outlast conventional tDCS (Kuo et al., 2013;
Hogeveen et al., 2016). There is no study has examined the impact
of HD-tDCS on DOC to date.

The CRS-R is a standardized behavioral assessment measure
that has been widely used for diagnostic assessment and
outcome measurement in patients with DOC (Gerrard et al.,
2014). However, the rate of clinical misdiagnosis based on the
CRS-R remains high (Xie et al., 2017). Previous results have
demonstrated EEG can detect and analyze brain activity in
clinical practice (Lehembre et al., 2012; Bai et al., 2017a,b). Our
previous research has found the quantitative EEG was useful for
assessment of the effect of tDCS and rTMS in patients with DOC
(Bai et al., 2017a,c; Xia et al., 2017). EEG coherence has been
applied to evaluate the effective connectivity of DOC, a high
coherence hints at an increased functional interplay between the
underlying neuronal networks (Rampil, 1998; Davey et al., 2000;
Bai et al., 2017a,c).

We applied resting state EEG and CRS-R scores for assessing
the effect in patients with DOC treated with long-lasting HD-
tDCS. We aim to confirm that HD-tDCS applied to the precuneus
on patients with DOC could produce clinically useful behavioral
modifications. We also want to find direct EEG evidence to
demonstrate the efficacy of HD-tDCS in patients with DOC.

MATERIALS AND METHODS

Patients
We enrolled medically stable 18 patients with DOC hospitalized
in Department of Neurosurgery, Zhengzhou Central Hospital
Affiliated to Zhengzhou University, between October 2016 and
June 2017. Due to pulmonary infection, phlebothrombosis, and
other clinical interferences, 11 patients (5 VS and 6 MCS, mean
age:52.8 years, range: 30.0–71.0 years, 4 females, and 7 males)
completed the entire experiment (Table 1). Inclusion criteria
were VS/UWS or MCS patients, according to the JFK CRS-R
scores. We excluded patients with DOC who had precuneus
lesions, have had tDCS treatment before or last less than 3 months
to avoid the spontaneous recovery period. Participants who
had pacemakers, aneurysm clips, other devices implanted or
other treatments and drugs which modifying cortical-excitability
were also eliminated. The present study was approved by the
ethics committee of the Zhengzhou Central Hospital Affiliated to
Zhengzhou University.

Design and HD-tDCS:
Stimulation Protocol
All patients received HD-tDCS modulation (2 mA, 20 min,
anode centered over the precuneus) for two session per day over
14 consecutive days (Figure 1). The CRS-R assessments were
conducted at four time points: before the experiment (T0), after
a single session of HD-tDCS (T1), after the treatment of 7 days
(T2), and 14 days (T3). In this study, any side effects of HD-tDCS
were monitored and reported.

HD-tDCS
4 x1-Ring high-definition electrodes with an anode center
electrode overlying the targeted brain area surrounded by four
cathodal electrodes were used to deliver direct current to the
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TABLE 1 | Demographic details of the patients included in the study.

Duration

Patient Age Etiology MRI findings (months) CRS-R

A V M OM C Ar Total

MCR1 66–70 Hemorrhage Left frontal-parietal lesions, diffuse atrophy 3 2 3 3 1 0 2 11

MCR2 51–55 Hemorrhage Left frontal-temporal lesion 3 2 2 2 1 0 1 8

MCR3 56–60 Hemorrhage Left hemisphere lesion, diffuse cortical atrophy 3 2 3 2 1 0 2 10

MCR4 26–30 Hemorrhage Left parietal-temporal-thalamus lesion 6 1 2 2 1 0 1 7

MCR5 71–75 Hemorrhage Left frontal-temporal-parietal lesions 4 2 2 3 1 0 2 10

MCR6 51–55 Hemorrhage Right frontal-parietal-thalamus lesions 3 1 2 2 1 0 2 8

VS1 36–40 Hemorrhage Left frontal -temporal cortical atrophy 6 1 1 2 0 0 2 6

VS2 61–65 Hemorrhage Left hemisphere lesion 3 1 1 2 1 0 1 6

VS3 51–55 Hemorrhage Right frontal-temporal cortical atrophy 3 1 1 2 1 0 1 6

VS4 36–40 TBI Bilateral frontal and diffuse cortical atrophy. 8 1 1 2 1 0 1 6

VS5 51–55 TBI Left frontal-temporal, diffuse cortical atrophy 6 1 0 2 0 0 1 4

CRS-R, Coma Recovery Scale–Revised scores; A, auditory; V, visual; M, motor; OM, oromotor; C, communication; Ar, arousal.

FIGURE 1 | Protocol of the study. HD-tDCS, high-definition transcranial direct current stimulation; CRS-R, Coma Recovery Scale–Revised scores; EEG,
electroencephalography.

scalp with the application of Ag/AgCl ring electrodes (Model
4x1-C2: Soterix Medical Inc., New York, NY, United States).
HD-tDCS enables a more restricted cortical neuromodulation
and leads to higher electric fields. Electrodes were held in place
by specially designed plastic casings embedded in a 32-channel
EEG recording cap. The center electrode (anode) was placed at
Pz according to the international 10–20 EEG system, and four
cathodal electrodes were placed approximately 3.5 cm radially
from Pz; corresponding roughly to locations Cz, P3, P4, and
POz (Figure 3A).

EEG Recording and Pre-processing
We used 32 EEG recorder (Nicolet EEG V32, Natus,
United States). EEG recorded at four time points: before
the experiment (T0), after a single session of HD-tDCS (T1),
after the treatment of 7 days (T2), and 14 days (T3). EEG signals
were continuously recorded from 32 channels at positions of
the International 10/20 system. The electrodes with the setting
of a band-pass filtered at DC to 1000 Hz in the recorder. The
EEG signal was digitized at a sampling rate of 2.5 kHz. The skin
impedance was maintained below 5 k�. EEG recordings were
carried out while patients were behaviorally awake.

Off-line analysis was carried out using EEGLAB 12.0.2.5b,
running in a MATLAB environment (version 2013b, Math
Works Inc., Natick, Massachusetts, United States). The 50-Hz
power signal was removed by a notch filter. The independent
component analysis function was used to identify and remove the
artifact-relevant components. The EEG data were down-sampled
to 500 Hz and average referenced. Then, the EEG date were
divided into epochs of 10 s with 50% overlap in each patient.

EEG Analysis
Coherence was measured using spectral cross-correlation and
normalized power spectra of signals obtained from two electrodes
with the following equation:
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was the cross-power spectral density and
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(
f
)

and Pyy
(
f
)

were the respective auto-power spectral
densities of the signals.

As shown in Figure 2A, the frontal region included electrodes
Fp1, Fp2, Fz, F3, F4, Fc5, Fc6, Fc1, FC2, F7, and F8; the central
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FIGURE 2 | Effects of long-lasting HD-tDCS treatments evaluated with
CRS-R in patients with DOC. Asterisk indicates significant differences
(∗P < 0.05, ∗∗P < 0.01).

region included electrodes CZ, C3,C4,Cp1,Cp2,Cp5, and Cp6; the
parietal region included electrodes Pz, P3, P4, and Poz. Central-
parietal coherence was calculated using pairwise electrodes from
the central and parietal regions. The frontal inter-hemisphere and
central inter-hemisphere coherences were also calculated.

Statistics
The statistics were performed via SPSS for Windows, version 17.0.
The Wicoxon signed-rank test was used to analyze the effects
of HD-tDCS on CRS-R. And the Kolmogorov–Smirnov test was
utilized to observe the coherence between different regions at the
delta bands. Bonferroni correction was conducted after multiple
comparisons. P < 0.05 was regarded as statistically significant.

RESULTS

Effects of the HD-tDCS Treatment as
Measured by CRS-R
Eleven (6 MCS and 5 VS) patients with chronic DOC completed
the treatment, with no specific side effects, such as redness of
the skin, signs of discomfort or epilepsy. 9/11 (72%) patients
(54% of responders, 6 MCS and 3 VS) showed the CRS-R scores
increased after 14 days of stimulation (Table 2). The CRS-R
scores increased with the treatment going on, compared with
the baselines, and the CRS-R score at the 7 day was significantly
higher than the baseline (Figure 2, P < 0.05). It demonstrated
that long-lasting HD-tDCS treatment can improve the recovery
of consciousness in patients with DOC, whereas behavioral
changes were not observed at just one session of stimulation.

Effects of the HD-tDCS Treatment as
Measured by EEG
The coherence in the delta bands between the defined central
and parietal regions was calculated (Figure 3B). Results showed
that it decreased with the treatment going on, and the coherence

TABLE 2 | Clinical evaluation of the patients on day 7 and 14.

CRS-R improvement

Patient (day 7/14) Changes of diagnosis

A V M OM C Ar Total

MCR1 0/1 0/0 0/0 0/0 0/0 0/0 0/1 MCS− elevated to MCS+

MCR2 0/0 1/1 1/1 0/0 0/0 1/1 3/3 Remained MCS−

MCR3 0/1 0/0 1/2 0/1 0/1 0/0 1/5 MCS− elevated to MCS+

MCR4 0/2 1/1 0/1 0/0 0/1 1/1 2/6 MCS− elevated to MCS+

MCR5 0/0 0/1 0/0 0/0 0/0 0/0 0/1 Remained MCS−

MCR6 1/2 1/1 1/1 1/2 0/0 0/0 4/6 MCS− elevated to MCS+

VS1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 Remained VS

VS2 0/0 1/1 0/0 0/0 0/0 0/1 1/2 Remained VS

VS3 0/0 0/1 0/0 0/0 0/0 0/0 0/1 Remained VS

VS4 0/0 0/0 0/0 0/0 0/0 1/1 1/1 Remained VS

VS5 0/0 0/0 0/0 0/0 0/0 0/0 0/0 Remained VS

CRS-R, Coma Recovery Scale–Revised scores; A, auditory; V, visual; M, motor;
OM, oromotor; C, communication; Ar, arousal.

index at T3 was higher significantly than that at T0 (P < 0.05).
Figure 3C showed behavioral improvement was not discovered
after the first stimulation. But the delta band coherence changed
in the frontal inter -hemisphere regions in some patients with
DOC. Besides, it reduced remarkably at day 7 (P < 0.05).
Similarly, as shown in Figure 3D, the coherence between the
central inter- hemisphere regions reduced after stimulation, and
especially on day 7 and 14 (P < 0.05).

DISCUSSION

Several studies have reported effectiveness of conventional
tDCS over the left DLPFC in patients with DOC (Angelakis
et al., 2014; Thibaut et al., 2014, 2015, 2017; Dimitri et al.,
2017). Patients with MCS but not VS are more easily benefit
from tDCS at the left DLPFC. Recently, a sham-controlled
randomized clinical trial investigated that 9/37 (27%) patients
with MCS showed improvements after conventional tDCS over
the posterior parietal cortex (Huang et al., 2017). A randomized
double-blinded sham-controlled cross-over study didn’t support
effectiveness of conventional tDCS over the left DLPFC in
patients with DOC (Estraneo et al., 2017). Estraneo et al.’s (2017)
study didn’t observe relevant behavioral and EEG changes in
the single or repeated stimulation over the left DLPFC. What’s
more, owing to low spatial resolution of conventional tDCS,
it was difficult to explain causality between stimulation of target
brain region and the behavioral changes (Kuo et al., 2013).
In addition, many studies only used CRS-R to evaluate treatment
effects of conventional tDCS. In fact behavioral changes are not
always observed in patients with DOC, particularly in short-term
modulation. The precuneus as known to be involved in conscious
processes plays an important role in consciousness recovery
(Laureys and Schiff, 2012). Therefore, we targeted anodal HD-
tDCS at the precuneus to evaluated modulation clinical effects
and EEG oscillation in patients with DOC. We found that
long-lasting HD-tDCS improved the recovery of consciousness
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FIGURE 3 | The coherence between different regions in the delta bands. (A) Defined different regions of brain. (B) The coherence between central and parietal
regions. (C) The frontal inter-hemisphere coherence. (D) The central inter-hemisphere coherence. Asterisks indicate statistically significant differences (∗P < 0.05).

in patients with MCS and some patients in VS. Resting state
EEG showed a significant reduction of the coherence between
the central and parietal region at the delta band. Significant
decreasing of coherence was also found at inter-hemisphere of
frontal and central. These changes occurred in different time
windows and brain regions for patients with DOC. No side effects
such as discomfort, skin burn, and seizures were observed after
any of the stimulation.

High-Definition tDCS delivery system was developed to
enhance the spatial accuracy of tDCS, which is believed to
enhance the clinical effects of this therapeutic tool. HD-tDCS uses
the 4 × 1 montage of stimulating electrodes, which generates in
maximal focused electric field strength under the target electrode
with brain current flow constrained by the ring radius (Kuo
et al., 2013; Gbadeyan et al., 2016; Hogeveen et al., 2016).
Thus, it produced more spatially restricted electric field, as
compared to the conventional electrode placement. HD-tDCS
has the characteristics of high spatial resolution and more focused
electric field than conventional tDCS protocols, which may
offer the opportunity to explore the contribution of stimulation
cortical target to consciousness. The efficacy of HD-tDCS for
investigating motor cortex excitability, conscious movement
intention, fibromyalgia, pain, tinnitus, verbal learning, and

memory functioning have been reported (Borckardt et al., 2012;
Caparelli-Daquer et al., 2012; Kuo et al., 2013; Donnell et al.,
2015; Nikolin et al., 2015; Shekhawat et al., 2016). To our
knowledge, there is no study has examined the impact of HD-
tDCS on DOC. Targeting the precuneus using HD-tDCS will help
probably to understand the recovery mechanisms of clinical sign
of consciousness better.

The site of stimulation is also a critical scientific issue
(Xia et al., 2017). The left DLPFC, cerebellum and the
posterior parietal cortex were selected as the stimulation sites
in DOC frequently. Cerebellum involves in short- and long-
term habituation of unconditioned responses (Naro et al., 2016;
Bocci et al., 2018), but it is not essential for consciousness.
Cerebellar tDCS may be useful for ameliorating the level of
consciousness (Naro et al., 2016). Both Left DLPFC and the
precuneus are involved in conscious processes (Schiff, 2010; Xia
et al., 2017). Conventional tDCS of the DLPFC have shown
promising results in patients with MCS, which requires gray
matter integrity (Thibaut et al., 2015). The probability of damage
in DLPFC is higher than the posterior parietal cortex in DOC,
the latter seems a better stimulation site in clinic (Pandya
and Seltzer, 1982). The precuneus is associated with memory
retrieval, controlling spatial aspects of behavior and Visual-spatial
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visualization (Wenderoth et al., 2005; Ionta et al., 2014; Blanke
et al., 2015; Kragel and Polyn, 2016; Rissman et al., 2016). The
precuneus plays an important role in the mesocircuit model.
Thibaut et al. (2015) found the precuneus metabolism and
behavioral level supporting the fronto-parietal network correlate
with outcomes in DOC (Thibaut et al., 2015). Moreover, the
precuneus seems to be a brain region that can differentiate
patients with MCS from VS.

As mentioned in the introduction, a single session of tDCS
over the left DLPF transiently improves CRS-R total scores in
patients with MCS (Giacino et al., 2012). Results of another
study suggest that repeated tDCS improves the recovery of
consciousness in 56% patients with DOC (Thibaut et al.,
2017). In this study, We didn’t observe any patient showed
behavioral response to HD-tDCS after the first session of
stimulation. Interestingly, we observed that 6/11 patients (54% of
responders,4 MCS and 2 VS) showed the CRS-R scores significant
improvement after 7 days of stimulation. The improvement was
observed in 6 patients with MCS and 3 patients with VS after
14 days of stimulation. Four patients with MCS – rose from
MCS − to MCS +. These results suggested that repeated HD-
tDCS daily could promote consciousness level in MCS, whereas
all VS remained previous consciousness state. These results
suggested that the first session is not predictive of a future
positive effect of the stimulation on the level of consciousness.
Stimulation term is another critical issue, long-lasting stimulation
possible improves neuroplasticity and strengthen the effect of
the stimulation. In the future, longer-term stimulations (such as
20,30, or 60 days) should be considered to discover the potential
of recovery effects in patients with DOC. MCS patients have
more prominent potential of neural plasticity, which attain more
benefit from HD-tDCS.

To reveal the mechanism of action and clinical effects of
HD-tDCS over the precuneus of patients with DOC, functional
connectivity of coherence was investigated using based resting
state EEG. Previous studies have shown that the severity of DOC
was correlated with increased low-frequency band power and
decreased high-frequency band power (Bai et al., 2017a,b,c; Xia
et al., 2017). Our data showed the significant reduction of short-
range central-parietal coherence at the delta band after long-
lasting HD-tDCS modulation. The long-range frontal-parietal
coherence in the delta band did not decrease. But the frontal
inter-hemisphere coherence significantly decreased in the delta
band with increasing stimulation sessions. Besides, remarkably
decrease compared to baseline was first shown at day 7. Similar
results were observed in the central inter-hemisphere. Behavioral
improvement was not discovered after the first stimulation.
But the delta band coherence changes in brain implied a
cortical response to the stimulation. Some patients who had no
response to the first stimulation CRS-R scores improved after
the whole stimulation session. These indicated that HD-tDCS
could effectively alter the brain electrical activity. Accordingly,
HD-tDCS induced variation of delta band coherence negatively
correlated with the patients’ CRS-R scores to some extent.

Studies demonstrated that the degree of DOC may be
correlated with increased low-frequency band power in EEG
patients (Bai et al., 2017a,b,c; Xia et al., 2017). The alteration of

delta oscillations is accompanied by function alterations in the
brain (Cavinato et al., 2015). The rationale for performing HD-
tDCS in consciousness recovery remains unclear, but we found
the trend of changes in the delta band in the frontal central
and parietal regions. These changes can be summarized in a
modulation of cortical coherence in short-range central-parietal
and long-range frontal-parietal areas within a delta frequency
range. Therefore, we considered that the changes occurring in the
delta bands may provide evidence for supporting the modulating
effects of HD-tDCS in patients with DOC.

Our study has several limitations. Firstly, the sample size was
small. In the following research, we need recruit more patients
with DOC to confirm and validate tDCS effectiveness. Secondly,
this study lacked a randomized cross-over design and follow-up
assessment, for long-term effect needs to be verified to determine
its clinical effect. Thirdly, initial level of consciousness varied
from VS/UWS to MCS. Therefore, future clinical trials should set
up MCS and VS groups based on larger samples. In addition, we
did not utilize neurophysiological and neuroimaging technology
(e.g., event-related potential ERP, mainly the P300 component,
functional MR), which would allow to better understand the
treatment effects and mechanisms of HD-tDCS in patients
with DOC (Zhang et al., 2017; Ragazzoni et al., 2019). What’s
more, P300 recording reflecting residual levels of awareness
can assist in prognostication regarding 12-month recovery of
consciousness for patients with DOC (Giacino et al., 2018).
In future study, Multi-Modality technology should be applied
together to provide a broader and more holistic evaluation of
therapeutic efficacy.

CONCLUSION

In this study, we found that Long-lasting HD-tDCS over the
precuneus could improve the recovery of consciousness in
patients with DOC. EEG changes in the delta band were observed
in fronta-central-parietal cortex, which provides direct evidence
of the HD-tDCS protocol effects on the patients with DOC.
Further studies are needed to verify the clinical effect of HD-tDCS
on larger numbers of patients and expound the mechanism of the
recovery of consciousness of HD-tDCS protocol.
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Memory loss, one of the most dreaded afflictions of the human condition, presents

considerable burden on the world’s health care system and it is recognized as a

major challenge in the elderly. There are only a few neuromodulation treatments for

memory dysfunctions. Open loop deep brain stimulation is such a treatment for

memory improvement, but with limited success and conflicting results. In recent years

closed-loop neuroprosthesis systems able to simultaneously record signals during

behavioral tasks and generate with the use of internal neural factors the precise timing

of stimulation patterns are presented as attractive alternatives and show promise in

memory enhancement and restoration. A few such strides have already been made

in both animals and humans, but with limited insights into their mechanisms of action.

Here, I discuss why a deep neuromimetic computing approach linking multiple levels

of description, mimicking the dynamics of brain circuits, interfaced with recording and

stimulating electrodes could enhance the performance of current memory prosthesis

systems, shed light into the neurobiology of learning and memory and accelerate the

progress of memory prosthesis research. I propose what the necessary components

(nodes, structure, connectivity, learning rules, and physiological responses) of such a

deep neuromimetic model should be and what type of data are required to train/test its

performance, so it can be used as a true substitute of damaged brain areas capable

of restoring/enhancing their missing memory formation capabilities. Considerations

to neural circuit targeting, tissue interfacing, electrode placement/implantation, and

multi-network interactions in complex cognition are also provided.

Keywords: deep learning, neuromimetic architecture, neuromimetic computing, closed loop stimulation, memory

implants

Memory is important in our lives. It is our brain’s filing system. Without memory we are unable
to remember our past experiences and our loved ones, yet be able to think about the future.
Without memory we cannot learn anything. Loss of ability to remember is one of the most dreaded
afflictions of the human condition and presents considerable and rising social and economic costs
on the world’s health and social care systems in the context of the increasing aging of the world’s
population. Brain disorders such as Alzheimer’s disease (AD) and Traumatic Brain Injury (TBI)
lead to profound memory deficits and are recognized as major challenges and one of the most
important causes of disability in the elderly.

Unfortunately, there are only a few non-pharmacological neuromodulation treatments
(Guo et al., 2002; Sjögren et al., 2002; Solé-Padullés et al., 2006; Mannu et al., 2011;
Suthana et al., 2012) which alter the course and symptoms of these brain disorders.
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Direct deep-brain stimulation (DBS) has emerged in the last
decade as a neuromodulation technique to treat memory
dysfunctions (Hu et al., 2009; Arrieta-Cruz et al., 2010; Laxton
et al., 2010; Stone et al., 2011; Boggio et al., 2012; Lyketsos et al.,
2012; Suthana et al., 2012; Fell et al., 2013; Hardenacke et al.,
2013; Hescham et al., 2013a, 2015; Lee D. J. et al., 2013; Suthana
and Fried, 2014; Sweet et al., 2014; Lee et al., 2015; Sankar et al.,
2015; Zhang et al., 2015; Jacobs et al., 2016; Lozano et al., 2016;
Rezai et al., 2016), but with limited success and contradicting
results. A review of all DBS studies is beyond the scope of this
article. Interested readers should refer to Bick and Eskandar
(2016); Khan et al. (2019); Curot et al. (2017); Ezzyat and Rizzuto
(2018) for excellent extensive reviews of the effects of DBS on
all memory-related brain areas. Below I briefly review a few of
these conflicting studies. In one study DBS at 50Hz applied to
human entorhinal cortex (EC) enhanced spatial memory, while
hippocampal stimulation did not affect performance (Suthana
et al., 2012), whereas in another study DBS at 50Hz application
to both human EC and hippocampus (HC) disrupted spatial and
verbal memory (Jacobs et al., 2016). In both studies DBS was
applied during the encoding phase, and recall performance was
tested when stimulation was off. In another study when 50Hz
DBS was applied between the encoding and recall periods in the
left medial temporal lobe (MTL) of patients, then memory recall
was impaired (Merkow et al., 2017). Direct electrical stimulation
at 50Hz in HC, parahippocampal regions, prefrontal cortex and
lateral temporal cortex (LTC) found that high gamma activity
induced by word presentation was decreased in regions where
stimulation decreased memory performance, and increased in
LTC where memory enhancement was observed (Kucewicz et al.,
2018). In other studies, memory impairment was observed
when both hippocampi were stimulated simultaneously (Lacruz
et al., 2010), but the type of impairment depended on which
hippocampus was stimulated (Coleshill et al., 2004). Theta-burst
micro-stimulation with physiologic level currents in the right
EC during learning significantly improved memory specificity
for novel portraits as well as recognition of previously-viewed
photos, but not for similar lures (Titiz et al., 2017). On the other
hand, theta-burst stimulation of human MTL resulted in spatial
memory retrieval impairment (Kim et al., 2018). Theta-burst
stimulation in amygdala or fornix (FX) in humans led to visuo-
spatial memory enhancement (Miller et al., 2015; Inman et al.,
2018). Chronic DBS at 130–450Hz for several months showed
no significant or subtle improvement in memory (Velasco et al.,
2007; McLachlan et al., 2010; Boëx et al., 2011; Miatton et al.,
2011). Bilateral 20Hz DBS of nucleus basalis of Meynert (NBM)
showed memory improvement when stimulation was applied at
an earlier stage of dementia and a younger age cohort (Kuhn
et al., 2015). Bilateral DBS of anterior thalamic nucleus (ATN)
of an epilepsy patient cohort showed greater subjective memory
impairment when the stimulation was on and improved word
fluency and verbal memory (Fisher et al., 2010; Oh et al., 2012).

Similar conflicting results have been observed in animal
studies. Intermittent stimulation in NBM in adult monkeys
enhanced working memory, but continuous stimulation led to
memory impairment (Liu et al., 2017). EC stimulation in rats
promoted neurogenesis in dentate gyrus and enhanced spatial

memory in a water maze task in a manner dependent on
neurogenesis (Stone et al., 2011). Chronic DBS in Alzheimer’s
disease (AD) mice improved performance in Morris water
maze task with AD-DBS mice spending more time at the
novel object and location than with AD-no stimulation mice
(Mann et al., 2018). EC, FX, and region CA1 stimulation
during a spatial memory study restores performance in a
rat scopolamine injection dementia model (Hescham et al.,
2013b, 2015), whereas in another study DBS of EC and FX
showed significant HC-dependent spatial memory improvement
in Morris water maze than in ATN DBS (Zhang et al., 2015).
HC-independent recognition memory was also enhanced by EC
and FX DBS, but not with ATN DBS (Zhang et al., 2015). Low-
current stimulation of rostral intralaminar thalamic nuclei in
rats just prior to memory retrieval in a delayed match-to-sample
task improved performance, whereas high-current stimulation
impaired it (Mair and Hembrook, 2008).

These conflicting results are due to methodological
differences across human and animal studies including but
not limited to details in participants (age, cognitive, and
neurologic abnormalities), animal species (rats, mice, monkeys),
behavioral task design, electrode characteristics (e.g., electrode
geometry), electrode placements (location), stimulation
parameters (amplitude, impedance, frequency, duration,
charge density), timing of stimulation (during encoding phase,
during retrieval phase, in-between encoding, and retrieval),
mode of stimulation (intermittent, chronic, continuous) and
statistical analysis methods (Montgomery and He, 2016; Suthana
et al., 2018). Open-loop DBS generates only pre-programmed
high frequency electrical stimulations without being able to
receive feedback from the current brain state. Because of its
therapeutic effectiveness, clinical innervations have so far
preceded the scientific understanding of its mechanisms of
action (McIntyre et al., 2004).

Future advances inmemory prosthesis technology should thus
address fundamental questions on its therapeutic mechanisms
of action. They should also be closed-loop (i.e., receive
feedback from the current brain state), capable of online self-
adaptation to time-varying environments, and amenable to low-
power hardware implementations for memory restoration and
rehabilitation (Senova et al., 2018). They should be able to
simultaneously record neural signals during behavioral tasks
and then with the use of internal factors of the neural state
determine the precise timing of stimulation (e.g., stimulating
at a particular phase of an ongoing endogenous neural
oscillation), or make the decision whether to stimulate at all
(Hampson et al., 2013; Deadwyler et al., 2017; Ezzyat et al.,
2018). Developments toward the latter direction have already
been attempted (Berger et al., 2008, 2011; Deadwyler et al.,
2017; Ezzyat et al., 2017, 2018). The Ramp project (Ramp
project)1 examined the efficacy of a biohybrid architecture of
tightly coupled natural and neuromorphic hardware neurons.
CoroNet (Coronet FP7 project)2 developed the scientific and
technological foundations for future “bio-hybrid” devices that

1Ramp project. Available online at: http://www.rampproject.eu
2Coronet FP7 Project. Available online at: http://www.coronet-project.eu
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will combine biological and artificial nervous tissues. DARPA’s
RAM project (DARPA RAM project)3 aims to develop and
test a wireless, fully implantable neural-interface medical device
for human clinical use. The Human Brain Project (Human
Brain Project)4 although not directly contributing in the
biohybrid/implant direction, it indirectly contributes to it with
its neuromorphic hardware (1Mio cores Spinnaker machine) and
brain simulation platform.

The first stride toward a closed-loop implantable memory
prosthesis system was conducted by Berger et al. (Song et al.,
2009; Berger et al., 2010, 2011; Hampson et al., 2012) as
an artificial bridge between the chemically lesioned CA3 and
CA1 synaptic connections in a rat’s hippocampus, when the
animal was trained to perform a delayed non-matched sample
(DNMS) task. The chip consisted of three components: (1)
a recording multi-electrode array (MEA), (2) a very large
scale integration (VLSI) implemented multi-input multi-output
(MIMO) prediction model of neural activity based on the
recorded neural signals, and (3) a stimulating MEA driven by
the MIMO predicted neural activities. The MIMO predicted
spiking neural activity was based on five electrophysiological
mechanisms: (i) a feedforward process transforming the input
MEA recorded spike train to a synaptic potential, (ii) a feedback
process generating an after-potential caused by the output spike,
(iii) an intrinsic neuronal noise, (iv) a subthreshold potential
dynamics, and (v) a threshold function to generate each output
spike. When the chip was tested against the damaged CA3-CA1
connection in the lesioned rat, the animal was able to successfully
perform the DNMS task with a success rate of over 90% (the
success rate for a lesioned rat without the prosthetic device was
<50%), demonstrating the chip as a viable memory enhancement
device. A second stride towardmemory improvement by the chip
was made by the same group in non-human primates trained
in a delayed match-to-sample (DMS) task (Deadwyler et al.,
2017). Despite the chip’s successes, it had several limitations.
First, it was tested against a single behavioral task on a well-
trained animal. That meant the model was “trained” to perform
a single input-output mapping. Furthermore, the model was
non-adaptive (hard-wired), unable to improve its performance
through experience according to a prescribed learning rule.
Initial attempts toward the latter direction have been recently
made by the same group by incorporating a phenomenological
spike timing-dependent plasticity (STDP) rule in an updated
MIMO model (Song et al., 2014). However, its synaptic plasticity
rule was far too simplistic to capture the complex molecular and
biochemical dynamics of synaptic plasticity in vivo (Froemke
and Dan, 2002; Froemke et al., 2005; Wang et al., 2005). Both
MIMOmodels were completely blind to the CA3 circuit memory
computations and processes during their therapeutic courses
of action.

A third stride toward a closed-loop memory
enhancement/restoration stimulation system was recently

3DARPA’s RAM project. Available online at: http://www.darpa.mil/program/

restoring-active-memory
4Human Brain Project. Available online at: https://www.humanbrainproject.eu/

en/

made by Ezzyat et al. (2017, 2018) using a machine learning
(ML) approach. A set of stimulation-free trials with neural
data and labels indicating memory performance was collected
from 25 neurosurgical patients undergoing clinical monitoring
for epilepsy while they participated in a delayed free recall
memory task. A multivariate classifier model was then trained to
discriminate patterns of neural activity during encoding for each
particular participant. The resulting weight codes from training
were then used during testing to map features of iEEG activity to
an output probability value, which in turn generated appropriate
stimulation patterns during a later word recall phase. Improved
memory recall performance was demonstrated particularly when
stimulation was timed to periods of poor memory function.
Despite its memory improvement success, the closed-loop
stimulation system was completely “blind” to the neurobiology
of learning and memory offering no insights into the biophysical
mechanisms of action of DBS stimulation of the human lateral
MTL when participants perform a memory recall task.

With the advent of new and more advanced experimental
techniques (Boyden, 2015; Grosenick et al., 2015; Grossman et al.,
2017; Kim et al., 2017; Chen et al., 2018; Hardt and Nadel,
2018; Lee and Brecht, 2018), a wealth of knowledge about the
anatomical, physiological, molecular, synaptic and connectivity
properties of the various cell types in memory-related circuits
has accumulated (Cutsuridis et al., 2010a, 2019; Prager et al.,
2016; Sprekeler, 2017; Lucas and Clem, 2018). Apart from the
numerous different identified classes of interneurons targeting
specific parts of excitatory cells (Freund and Buzsáki, 1996;
Markram et al., 2004; Klausberger and Somogyi, 2008; Ehrlich
et al., 2009; Karnani et al., 2014; Prager et al., 2016; Tremblay
et al., 2016; Sprekeler, 2017; Krabbe et al., 2018) and a complex set
of intra- and extra-areal excitatory inputs targeting them (Witter,
2019) there is also increasing evidence on the important role of
inhibition between interneurons (Chamberland and Topolnik,
2012) in sculpting their activity and entraining them to fire with
respect to ongoing network oscillations (Somogyi et al., 2013;
Roux and Buzsáki, 2015; Cardin, 2018). Synapses on excitatory
and inhibitory cells have been shown to undergo various forms
of long-term plasticity (LTP/LTD/STDP, branch potentiation,
clustered plasticity, metaplasticity) across different timeframes
(ms, seconds, minutes, hours, days, longer) (Govindarajan et al.,
2006; Citri and Malenka, 2008; Losonczy et al., 2008; Froemke,
2015; Hattori et al., 2017; Hennequin et al., 2017; Lamsa
and Lau, 2019). Hippocampal oriens interneurons display anti-
Hebbian long term potentiation, which depends on cholinergic
modulation via nicotinic acetylcholine receptors (Griguoli et al.,
2013; Rozov et al., 2017). Experimental investigations and
compartmental modeling has predicted inhibition of dendritic
Ca2+ transients modulate the sign and magnitude of synaptic
plasticity like long-term potentiation (LTP) or long term
depression (LTD) (Cutsuridis, 2011, 2012, 2013; Gidon and
Segev, 2012; Jadi et al., 2012; Camiré and Topolnik, 2014) The
interaction mechanisms of such molecular, synaptic and cellular
components form complex neural circuitries firing at different
phases of neuronal oscillations, externally paced or internally
generated (Cobb et al., 1995; Buzsaki, 2002; Montgomery et al.,
2009), which support different functionalities in health and
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disease of memory and learning (Marín, 2012; Hangya et al.,
2014; Wester and McBain, 2014; Caroni, 2015; Prager et al.,
2016; Maffei et al., 2017; Villette and Dutar, 2017; Lucas and
Clem, 2018; Vargova et al., 2018). Only by linking this wealth
of information into coherent theoretical frameworks (Cutsuridis
and Wenneckers, 2009; Cutsuridis et al., 2010b, 2011; Cutsuridis
and Hasselmo, 2012; Pendyam et al., 2013; Bezaire et al., 2016)
light will be shed into the therapeutic mechanisms of action
of any memory enhancement/improvement system. Thus, with
the recent exponential increase in computational power, it is
thus imperative for the experimental including medical and
computational communities to communicate with each other
more closely, in order to decipher the molecular, synaptic,
cellular, circuit, and systems mechanisms by which closed-loop
neuromodulation system operates in memory enhancement,
restoration, and rehabilitation and accelerate the progress in
memory prosthesis research.

Below, I provide few guidelines on how to construct such
a system. I propose that a computational deep (multi-layered)
neuromimetic circuit approach empowered with biophysically
realistic learning rules mimicking the neural dynamics of
memory related circuits amenable to neuromorphic VLSI
hardware driven by in-vivo MEA recordings, able to decode
memory engrams and stimulate memory related populations
of neurons should be adopted to move forward the memory
prosthesis research. Model components (nodes, synapses,
connectivity) should have to mimic the operations of real
neurons, synapses and circuits. Several strides toward this
direction have already been made (Cutsuridis and Wenneckers,
2009; Cutsuridis et al., 2010b, 2011; Cutsuridis and Hasselmo,
2012; Schneider et al., 2012; Pendyam et al., 2013; Bezaire
et al., 2016; Sanjay and Krothapalli, 2019; Yu et al., 2019).
One such stride was the Cutsuridis et al. (2010b) microcircuit
model of region CA1 dynamics in encoding and retrieval of
memories. The study explored the functional roles of somatic,
axonic and dendritic inhibition during these processes. It
showed how theta modulated inhibition separated encoding
and retrieval of memories in the hippocampus into two
functionally independent processes. The study predicted: (1)
somatic inhibition allowed generation of dendritic calcium spikes
that promoted synaptic LTP, while minimizing cell output, (2)
proximal dendritic inhibition controlled both cell output and
suppressed dendritic calcium spikes, thus preventing LTP, and (3)
distal dendritic inhibition removed interference from spurious
memories during recall. Some of the Cutsurdis et al. study’s
predictions have been recently verified by experimental studies
(Siegle and Wilson, 2014). The model should also be empowered
with biophysically realistic learning rules (LTP/LTD/STDP,
branch potentiation, clustered plasticity, metaplasticity, error
driven Hebbian learning, etc) mimicking the processes and
operations of synaptic plasticity across different timeframes (ms,
seconds, minutes, hours, days, longer) in neural cells (Kastellakis
et al., 2015, 2016; Li et al., 2016). Once the model’s neural
dynamics has been extensively validated against experimental
data from multiple levels of detail (molecular, synaptic, cellular,
dendritic, micro-, meso- and macro-circuit), thus casting it
as a faithful representation of a real human/animal tissue

(memory circuit), then the model should be trained with
real MEA recording and stimulation data from humans or
animals while they are performing memory-related behavioral
tasks and with verified memory restoration/enhancement effects.
Deficits should be in the encoding and/or retrieval of declarative
memories (or specific types of declarative memories). Behavioral
memory tasks should assess performance metrics across various
timeframes (hours, days, weeks, or longer) testing different
memory specificities (e.g., memory of an object, event, or
context in which it occurs, or high-level semantics of sets of
objects/events, or an association of an object and an event linked
to one another in a memory occurring either simultaneously or
in a temporal sequence). MEA data should be split in training,
cross-validation and testing datasets. Model’s performance must
be tested across individual participants and/or the whole
participant population and it must be able to retain functionality
across time, situational contexts, and/or experimental settings
(tasks). Model robustness and generalization should be validated
within and across individual human participant and/or animal
and should be demonstrated by the ability of the model to
restore memory function when applied to different human
participants/animals and in different situational contexts.

Once the model has been computationally trained and its
performance have been extensively tested across individuals,
experimental settings, memory types and situational contexts,
then its structure and weight codes can be transferred to a
neuromorphic chip to be implanted or interfaced with indwelling
probes for recording and stimulation of human and/or animal
neural activity. At this point a number of other outstanding
technical difficulties need to be overcome and questions to
be answered:

• Electrode Placement and Implantation: The exact placement
and trajectory path for the recording and simulation electrodes
is of paramount importance to any successful implantable
neuroprosthesis system. Any slight deviation from the optimal
path to the target due to lead migration or misplacement
may result in adverse effects such as hemorrhage, seizures,
abnormal sensations, etc or tissue damage (Edwards et al.,
2017). Electrode location thus must be adjusted to maximize
therapeutic effects, while minimize adverse ones (Edwards
et al., 2017). Intra/post-operative imaging (e.g., MRI or CAT)
scans can confirm electrode placement (Edwards et al., 2017).

• Neural Circuit Targeting: The electrical field generated by a
DBS macroelectrode affects the three-dimensional geometry
of the surrounding to the electrode neural processes (i.e.,
axons and dendrites) (McIntyre et al., 2004). Knowing
the anatomical distribution of the DBS electric field and
controlling its shape is of utmost importance to maximize the
therapeutic effect of stimulation, minimize its adverse effects,
and get a deeper understanding of the DBS mechanisms of
action (Klooster et al., 2016; Edwards et al., 2017). Electrode
design (size, diameter, number of contacts) and directional
steering is an active experimental and theoretical research
area (Klooster et al., 2016). Mathematical models using finite
difference or finite element methods model the electric field
induced in the brain during DBS as a function of different
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stimulation parameters and delineate the effects the electric
field has on the neural tissue. The importance of specific
conductivities, encapsulation layers and steering toward the
stimulation target are some of the main focuses of these
studies (Wei and Grill, 2005; Johnson and McIntyre, 2008;
Vasques et al., 2009; Schmidt and van Rienen, 2012a,b;
Lempka and McIntyre, 2013). Recently developed neural
probes have provided precision in shaping the electrical
field generated during stimulation (Klooster et al., 2016).
One such probe is the “SureSTIM” (Martens et al., 2011),
a 64 disc-shaped electrode array arranged in 16 equally-
spaced rows, which allows for both long-term stimulation
and local field potential recording, while diminishes the
induction of adverse effects by stimulating tissue beyond the
stimulation target.

• Neural Tissue Interfacing and Longevity: Brain-chip interfaces
allow for chips and nerve tissue to establish a close physical
interaction thus allowing the transfer of information in one
or both directions (Vassanelli et al., 2012). Major operations,
like cognition including memory, are sustained by the
concurrent activity of a large number of neurons in complex
neural networks located in several interconnected brain
structures. To better understand neural circuit operations
and to develop powerful brain-machine interfaces, then an
interface between a semiconductor chip or an ensemble
of chips and the neural tissue of a living animal allowing
for bi-directional communication (not only to record but
also to control neuronal activity) and high-spatiotemporal
resolution sampling of a large number of neurons over the
networks, and simultaneously from multiple regions of the
brain is needed (Vassanelli et al., 2012). Usually small CMOS
chips featuring stimulation and recording sites integrated
at high-density implanted in one or in several brain areas,
either independently or simultaneously, can lead to an
unprecedented control of neuronal activity in the mammalian
brain (CyberRat ICT 2007 project)5 Obtaining such high
spatiotemporal resolution enables to explore and control brain
information processing with unprecedented detail. The chips
are either directly implanted into the tissue or connected
through leads that reside permanently in the brain. Wireless
transmission is desired to simplify chips connectivity with the
monitoring system and to remove interference with animals’
movements (Vassanelli et al., 2012). Several bottlenecks are
usually faced: power dissipation induced heat generation of
the chips, biocompatibility and mechanical-electrical stability,
particularly for chronic implantation in the freely behaving
animal, chip implantation (and chip design) to match at best
the 2D architecture of the array with the 3D architecture of the
neuronal networks in the brain while limiting to the minimum
tissue damage (Vassanelli, 2018).

5CyberRat ICT 2007 project. Available online at: https://www.vassanellilab.eu/

projects/cyberrat/

• Multi-Network Interactions in Complex Cognition: For a
long time, it was hypothesized that DBS worked either via
functional ablation by suppressing or inhibiting the structure
being stimulated or via activation of the stimulated structure
(McIntyre et al., 2004). It is currently accepted that DBS
changes network-wide oscillations and theremay be coherence
between cortical and subcortical brain signals (Wagle Shukla
and Okun, 2012; Lee H. et al., 2013). Are these changes
though due to a widespread DBS electric field affecting
circuits/areas/regions well beyond the stimulated one (global
effects) or due to a localized electric field affecting only the DBS
brain circuit/region/area, which in turn drives other connected
with it brain circuits/regions/areas (local effects)? A notable
study on uncovering themechanisms of whole-brain dynamics
of deep brain stimulation has shown that DBS shifts global
brain dynamics of patients toward a healthy regime with
the effect more pronounced in specific brain areas (Saenger
et al., 2017). Higher communicability and coherence in brain
areas were measured when DBS was on than then it was
off (Saenger et al., 2017).

Overall, to accelerate progress in memory prosthesis
technologies then a closed-loop deep neuromimetic
circuit computing approach empowered with biophysically
realistic learning rules mimicking the neural dynamics
of memory related circuits amenable to neuromorphic
VLSI hardware driven by in-vivo MEA recordings, able
to decode memory engrams and stimulate memory
related populations of neurons should be adopted. Such
software novelties along with multimodal neuroimaging,
electrophysiological and electrochemical monitoring
technologies and innovative neural probe engineering
advances (e.g., SureSTIM) could then act as true substitutes
(bridges) of damaged memory-related brain areas capable
of restoring/enhancing their missing memory formation
capabilities as well as deciphering their mechanisms
of action.
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Markers from local field potentials, neurochemicals, skin conductance, and hormone

concentrations have been proposed as a means of closing the loop in Deep Brain

Stimulation (DBS) therapy for treating neuropsychiatric and movement disorders.

Developing a closed-loop DBS controller based on peripheral signals would require:

(i) the recovery of a biomarker from the source neural stimuli underlying the peripheral

signal variations; (ii) the estimation of an unobserved brain or central nervous system

related state variable from the biomarker. The state variable is application-specific. It

is emotion-related in the case of depression or post-traumatic stress disorder, and

movement-related for Parkinson’s or essential tremor. We present a method for closing

the DBS loop in neuropsychiatric disorders based on the estimation of sympathetic

arousal from skin conductance measurements. We deconvolve skin conductance via

an optimization formulation utilizing sparse recovery and obtain neural impulses from

sympathetic nerve fibers stimulating the sweat glands. We perform this deconvolution

via a two-step coordinate descent procedure that recovers the sparse neural stimuli

and estimates physiological system parameters simultaneously. We next relate an

unobserved sympathetic arousal state to the probability that these neural impulses

occur and use Bayesian filtering within an Expectation-Maximization framework for

estimation. We evaluate our method on a publicly available data-set examining the effect

of different types of stress on peripheral signal changes including body temperature, skin

conductance and heart rate. A high degree of arousal is estimated during cognitive tasks,

as are much lower levels during relaxation. The results demonstrate the ability to decode

psychological arousal from neural activity underlying skin conductance signal variations.

The complete pipeline from recovering neural stimuli to decoding an emotion-related

brain state using skin conductance presents a promising methodology for the ultimate

realization of a closed-loop DBS controller. Closed-loop DBS treatment would additionally

help reduce unnecessary power consumption and improve therapeutic gains.

Keywords: skin conductance (SC), deep brain stimulation (DBS), deconvolution analysis, arousal, state-space (SS)
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INTRODUCTION

Deep Brain Stimulation (DBS) is a type of therapy involving
the application of high frequency electrical stimulation, usually
at ∼130 Hz, to specific anatomical structures deep within the
brain (Oluigbo et al., 2012; Carron et al., 2013). While the
precise mechanics of the therapy are yet to be fully understood,
it has been hypothesized that DBS mimics the effect of ablative
lesions without causing any tissue damage (Dostrovsky and
Lozano, 2002). A second hypothesis suggests that stimulation
from the implanted electrodesmodulates electrical circuit activity
within dysfunctional brain regions (Oluigbo et al., 2012; Cleary
et al., 2015). DBS has been approved by the Food and Drug
Administration (FDA) for the treatment of Parkinson’s disease
and essential tremor in the United States. Humanitarian device
exemptions have also been granted by the FDA for the use of
DBS in the treatment of severe obsessive compulsive disorder and
dystonia (Grahn et al., 2014). Meanwhile, the therapy has also
been investigated as a treatment option for a host of othermedical
conditions including major depression (Puigdemont et al., 2012;
Merkl et al., 2013), chronic pain (Boccard et al., 2015; Lempka
et al., 2017), drug-resistant epilepsy (Vesper et al., 2007; Fisher
et al., 2010), anorexia nervosa (Lipsman et al., 2013; Wu et al.,
2013), and substance abuse (Zhou et al., 2011; Müller et al., 2013).

Commercially-available DBS systems currently function in an
open loop manner. In open-loop DBS, stimulation is delivered
continuously until manually re-adjusted. In contrast, a closed-
loop DBS (CLDBS) system automatically adjusts stimulation
parameters based on sensor feedback recorded from the patient
(Herron et al., 2017). The feedback signal is usually based on
a symptom-related biomarker (Bouthour et al., 2019). Open-
loop systems can require multiple post-operative visits in the
months following surgery (Grahn et al., 2014). During visits,
different parameters of the electrical stimulation including
frequency, amplitude, and pulse width are adjusted for improving
therapeutic benefit (Bronstein et al., 2011). Manual adjustment of
the parameters in a trial-and-error fashion is time consuming. It
is also challenging to explore the complete stimulation parameter
space during brief patient visits. Moreover, open-loop DBS
systems apply stimulation even if not strictly required. Consider,
for instance, two common movement disorders—essential
tremor and Parkinson’s disease. Motor symptoms for both
disorders include rhythmic involuntary movements (tremors). In
essential tremor, the tremors occur during volitional movement
(Plumb and Bain, 2007) and stimulation may be unnecessary
when a patient is not using an affected limb (Herron et al.,
2017). The tremors occur at rest in Parkinson’s (Chou et al.,
2011). However, motor symptoms can fluctuate continually
(Rosin et al., 2011; Little et al., 2013). Evidence suggests that
local field potential (LFP) β-band oscillations in the subthalamic
nucleus correlate with motor impairment in Parkinson’s (Little
and Brown, 2012). CLDBS systems switching on control based
on LFP threshold crossings were shown to have superior
performance in treating Parkinson’s patients and had substantial
gains in reducing stimulation time (Little et al., 2013, 2016).
The effectiveness of CLDBS over an open-loop stimulation in
Parskinson’s was also shown in non-human primates (Rosin et al.,

2011). CLDBS systems have thus arisen gradually to eliminate
part of the inefficiencies of their open-loop predecessors.

In a recent work describing a theoretical framework for the
design of a CLDBS system for treating chronic pain, Shirvalkar
et al. (2018) point out two important elements of closing the loop:
(i) the extraction of an accurate, relevant, and timely biomarker
of the underlying state variable of interest; (ii) a control-
theoretic (e.g., state-space) representation of the system relating
the biomarker to the unobserved state variable. In their specific
application, they suggest using LFPs from the somatosensory
cortex, the dorsal anterior cingulate cortex and the orbitofrontal
cortex for tracking a multidimensional pain state. Others have
similarly suggested neurochemical biomarkers, skin conductance
features, and hormone concentrations as a means of feedback
for treating a broad range of neuropsychiatric disorders (Grahn
et al., 2014; Bina and Langevin, 2018). Following the suggestion
of Shirvalkar et al. (2018), we present a proof-of-principle state-
space framework that can be used for CLDBS therapy.

DBS has recently emerged as a potentially successful treatment
option for patients diagnosed with post-traumatic stress disorder
(PTSD) (Koek et al., 2014; Langevin et al., 2016). PTSD
is a type of psychiatric disorder that can occur in patients
who have experienced traumatic or stressful events in the
past. Distressing memories or dreams often persist long after
the event (Jetly et al., 2015). Symptoms of PTSD include
changes in psychological arousal, reactivity and mood, and are
evidenced by factors such as hypervigilance and exaggerated
startle responses (American Psychiatric Association, 2013). This
state of hyperarousal or hypervigilance in PTSD has been noted
in multiple studies (Woodward et al., 2000; Risser et al., 2006;
Hellmuth et al., 2012). While the method we present here
could find broader applicability to a range of neuropsychiatric
disorders, it seems particularly suited to address PTSD with its
hyperarousal symptoms.

Bina and Langevin (2018) suggest the possibility of
monitoring skin conductance changes as a potential biomarker
in a CLDBS system for treating PTSD. Sympathetic nerve fibers
innervate the sweat glands (Low, 2012). Consequently, changes
in the conductivity of the skin owing to perspiration provide
a measure of sympathetic drive or arousal (Critchley et al.,
2002). Heightened responsivity in terms of skin conductance
has been noted in PTSD patients compared to controls (Orr
and Roth, 2000). In a three-group study of Vietnam combat
veterans with PTSD, psychiatric Vietnam combat veterans,
and psychiatric non-combat Vietnam-era veterans, McNally
et al. (1987) reported that PTSD subjects had the largest skin
conductance responses (SCRs) in response to combat-related
words. In a similar study comprising of Vietnam combat veterans
with PTSD, Vietnam combat veterans, and non-combat controls,
Goldfinger et al. (1998) reported that PTSD veterans had
the highest baseline skin conductance levels. In an affect-toned
Rorschach test conducted in the same study, arousal, as measured
by skin conductance, was highest in the PTSD group as well.
Pole (2007) also noted higher skin conductance baselines, larger
SCRs and slower skin conductance habituation in startle and
trauma-cue studies in PTSD patients in a meta-analysis study
of adults with and without PTSD. Skin conductance changes
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also occur in depression. Ward and Doerr (1986) measured skin
conductance in patients with depression, parents of firstborn
one- to three-month old infants and control subjects, and found
that depressed patients had significantly lower skin conductance
levels than the other groups. Lin et al. (2011) examined the
effects of stress and depression using a series of physiological
measures. Participants were first categorized into the normal,
low-risk and high-risk depression groups and were assigned
to one of two stress treatments. Percentage change in skin
conductance between baseline and during the stress treatment
periods were significantly dependent on and correlated positively
with depression. Both PTSD and depression are potential
candidates for DBS therapy when other treatment options have
been exhausted. Skin conductance additionally has the advantage
of being easily measured with wearable devices such as the
Empatica E4 (Koskimäki et al., 2017). Wearable devices afford
convenience, seamless integration into clothing and do not
involve the risks of surgically implanted sensors.

We develop a state-space model to track an unobserved
sympathetic arousal state from skin conductance measurements.
The relationship between arousal and skin conductance has
been attested to in multiple studies (Boucsein, 2012). Individual
SCRs are a notable feature in a skin conductance signal.
SCRs accompany psychologically arousing stimuli as the skin’s
conductivity increases momentarily. We relate arousal to the
rate at which SCRs occur. Current methods for detecting SCRs
in a skin conductance signal rely on detecting peaks above a
threshold set between 0.01 and 0.05 µS (Benedek and Kaernbach,
2010). Inter-subject variability in skin conductance signals is
a known phenomena (Dawson et al., 2007). We therefore
use a deconvolution strategy for extracting the physiological
parameters related to sweat secretion for each individual and
detect neural impulses to the eccrine sweat glands that generate

the SCRs rather than relying on heuristic peak detection. The
following section describes our two-part methodology. We first
describe the deconvolution approach that utilizes its own state-
space formulation for detecting neural impulses based on sweat
diffusion and evaporation dynamics. We next describe the
state-space formulation for the CLDBS system that relates the
probability of neural impulses to a latent sympathetic arousal
state. We present our results thereafter and finally conclude with
a discussion of our results, and how our methodology could be
used in an experimental CLDBS prototype (e.g., such as in the
conceptual architecture depicted in Figure 1).

1. MATERIALS AND METHODS

1.1. Data
We use the Non-EEG Dataset for Assessment of Neurological
Status (Birjandtalab et al., 2016). The data is publicly available
through the PhysioNet database (Goldberger et al., 2000). The
data-set contains skin conductance recordings from 20 healthy
college students who were exposed to physical, emotional,
and cognitive stress during three different time periods. Skin
conductance was recorded using the wrist-worn Affectiva
Q Curve device. Skin conductance can be contaminated
by noise sources such as motion artifacts, range saturation
and amplification factor changes (Boucsein, 2012). Many of
the signals had to be discarded owing to motion artifact
contamination and noise due to bad skin contact. Hence, we only
used the data from six subjects. We re-labeled the original subject
numbers with corresponding participant numbers (Table 1). The
physical, cognitive, and emotional stress periods each lasted 5
min and were interspersed by 5 min intervals of relaxation.
Subjects were made to stand, walk and jog during the physical
stress part of the experiment. We excluded data from this portion

FIGURE 1 | A CLDBS System based on Skin Conductance Measurements. A conceptual CLDBS architecture for treating neuropsychiatric disorders based on

tracking a neural state from peripheral skin conductance measurements. Koek et al. (2014) and Langevin et al. (2016) applied stimulation to the amygdala in

treatment-refractory PTSD patients. The amygdala plays an important role in emotion processing. In particular, the basolateral nucleus of the amygdala contains cells

that are responsive to both fear acquisition and fear extinction (Lüthi and Lüscher, 2014). Koek et al. (2014) and Langevin et al. (2016) targeted this area owing to the

partially dysfunctional fear extinction mechanism for trauma-related cues in PTSD patients.
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TABLE 1 | Subject information for selected participants.

Participant Subject ID Age Gender BMI (kgm-2)

1 1 30 M 30.00

2 5 30 M 24.75

3 8 27 M 19.32

4 9 25 M 21.70

5 12 32 F 20.20

6 16 24 M 16.66

of the experiment and focus only on the psychological aspects.
The cognitive stress portion consisted of two separate tasks. In
the first task, subjects had to count backwards in 7’s beginning at
2,485 for 3 min and then perform the Stroop test for a further
2 min. In a Stroop test, a subject is shown a word denoting a
color and is asked to read it out. However, the color in which
the text is written may not necessarily correspond to what it
means. A buzzer notified subjects of any errors they made.
Emotional stress was induced by means of a horror movie clip.
The authors of the data-set noted that many of the volunteers
participating in the experiment showed a stress response that
was visible to the experiment administrator while they were just
being given instructions regarding the cognitive tasks. Hence,
they categorized the 40 s interval just prior to the counting task
and the Stroop test as a stress period.

1.2. Skin Conductance Deconvolution
Using Compressed Sensing
1.2.1. Skin Conductance Model Formulation
A skin conductance signal ySC(t) consists of two distinct parts.
The comparatively slow varying part, also known as the tonic
level, is primarily related to thermoregulation and is a function
of ambient temperature and humidity. The other part, also
known as the phasic component, fluctuates much faster and
is generated by sympathetic nerve fibers stimulating the sweat
glands. Therefore,

ySC(t) = y(t)+ yT(t), (1)

where y(t) and yT(t) represent the constituent phasic and tonic
components, respectively.

The phasic component y(t) can be extracted from ySC(t) using
an algorithm such as cvxEDA (Greco et al., 2016). The physiology
leading to the generation of the phasic component—namely the
diffusion of sweat from the sweat duct to the stratum corneum,
and its subsequent evaporation thereafter—can be modeled
using first order dynamics (Alexander et al., 2005; Benedek and
Kaernbach, 2010; Boucsein, 2012), and mathematically expressed
via the following pair of differential equations:

ẋ1(t) = −
1

τr
x1(t)+

1

τr
u(t) (diffusion) (2)

ẋ2(t) =
1

τd
x1(t)−

1

τd
x2(t) (evaporation) (3)

where x1(t) is an internal variable, x2(t) is the phasic component,
and u(t) is the neural stimuli to the sweat glands. x1(t) is related
to the amount of sweat and pressure within the sweat duct. The
phasic component consists of a series of SCRs, each of which
results from a single neural impulse burst. τr and τd are the rise
and decay times of a single SCR.

The number of SCRs in a phasic skin conductance signal is
typically much smaller than the total number of acquired data
samples. Consequently, the number of underlying neural impulse
bursts causing the SCRs is also small. This enables us to employ
a sparsity constraint when solving for u(t). We model u(t) as a
finite sum of weighted, shifted delta functions

u(t) =

N
∑

i=1

uiδ(t − 1i), (4)

where ui represents the amplitude of an impulse occurring at 1i,
and N is the number of samples in the neural stimuli signal. N is
proportional to the recording durationTd and the input sampling
frequency fu (N = Td · fu). 1i = iTu where Tu = f−1

u . ui is
positive if there is an impulse at time instance1i and 0 otherwise.
The continuous-time phasic skin conductance y(t) contaminated
by measurement noise ν(t) is

y(t) = x2(t)+ ν(t). (5)

If the signal is periodically sampled at Ty intervals to yield a total
of M measurements, we can define the equivalent discrete-time
observation yk as

yk = x2(kTy)+ νk (6)

where νk is Gaussian noise. Given all the discrete measurements
yk for k = 1, 2, . . . ,M, we would like to recover u(t) and estimate
τr and τd. We take x1(0) = 0 as an initial condition assuming that
the sweat duct is empty at the beginning. The state-space solution
for x2(kTy) leads us to (Faghih et al., 2015b)

yk = aky0 + bku+ νk, (7)

where ak = e
−

kTy
τd , bk =

[
1

(τr−τd)
(e−

kTy
τr − e

−
kTy
τd )

1
(τr−τd)

(e−
kTy−Tu

τr − e
−

kTy−Tu
τd ) 1

(τr−τd)
(e−

kTy−2Tu
τr − e

−
kTy−2Tu

τd )

· · ·
1

(τr−τd)
(e−

Tu
τr − e

−
Tu
τd ) 0 · · · 0

︸ ︷︷ ︸

N−
kTy
Tu

]

and u =

[u1 u2 · · · uN]
⊤ represents a sparse vector containing all

the neural stimuli over the entire signal duration (i.e., very few of
the ui’s are non-zero). Concatenating all the measurements into a
single vector y = [y1 y2 · · · yM]⊤ we have,

y = Aτ y0 + Bτu+ ν (8)

where Aτ = [a1 a2 · · · aM]⊤, Bτ =

[b⊤1 b⊤2 · · · b⊤M]⊤, ν = [ν1 ν2 · · · νM]⊤ and y0
is the initial condition of the phasic skin conductance signal.
Here, Ty is an integer multiple of Tu.
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1.2.2. Deconvolution
We set the sampling interval for the phasic skin conductance
signal and neural stimuli to Ty = 0.5 s and Tu = 0.25 s,
respectively. Equation (8) hasM < N and represents an ill-posed
problem with multiple solutions. The sparsity constraint on u

however, makes it possible to solve the equation via compressed
sensing. An l1-norm penalization term is typically added to the
objective function to impose sparsity (Faghih, 2018).We consider
lp-norm penalization in this particular formulation. We further
constrain the rise and decay times to 0.1 ≤ τr ≤ 1.4 and
1.5 ≤ τd ≤ 6 similar to Amin and Faghih (2018, 2019). We
impose these constraints based on prior work in the literature
to ensure that the solution is identifiable and physiologically
plausible (Alexander et al., 2005; Benedek and Kaernbach, 2010;
Greco et al., 2016). Letting τ = [τr τd]

⊤, we formulate the
following constrained optimization problem based on Equation
(8) to estimate τ and u

argmin
τ , u

Cτ≤b, u≥0

J(τ , u) =
1

2
||y− Aτ y0 − Bτu||

2
2 + λ||u||

p
p, (9)

where C =

[

−1 1 0 0
0 0 −1 1

]⊤

, b =
[

−0.1 1.4 −1.5 6
]⊤

and

λ is the lp-norm regularization parameter for imposing sparsity
on u. λ is chosen to provide a balance between exploiting
sparsity and accounting for signal fluctuations (Faghih, 2018).
This optimization problem is challenging.We therefore decouple
it into two sub-problems. A coordinate descent approach can be
formulated similar to Faghih (2014, 2018), Faghih et al. (2014,
2015a,b) by solving the following sub-problems iteratively (for
l = 0, 1, 2, · · · ) until convergence:

1. u(l+1)
= argmin

u
s.t. u≥0

Jλ(τ
(l), u)

2. τ
(l+1)

= argmin
τ

s.t. Cτ≤b

J(τ , u(l+1))

The first step represents a sparse recovery problem with a
constrained convex optimization formulation. Many different
approaches exist to solve this. One of the popular approaches
is the iterative re-weighted least squares (IRLS) method. We
solve this sparse recovery problem using two IRLS methods
called FOCUSS+ (Murray, 2005) and GCV-FOCUSS+ (Zdunek
and Cichocki, 2008). FOCUSS+ uses a heuristic approach for
increasing λ at each IRLS step. We use FOCUSS+ for obtaining a
suitable initialization of u. GCV-FOCUSS+ uses the Generalized
Cross-Validation (GCV) technique to update λ at each step
(Golub et al., 1979). We initialize GCV-FOCUSS+ with the
result from FOCUSS+ and then run the IRLS until convergence.
We finally constrain the minimum amplitude of any detected
neural impulse to be 0.01 to reduce noisy detections. The
second step in the coordinate descent approach represents a
system identification problem with a constrained non-convex
optimization formulation. We use the interior point method to
solve this step.

The overall deconvolution algorithm begins by extracting
the phasic skin conductance component using cvxEDA (Greco

et al., 2016), then randomly initializing τ and performing the
initialization step for u using FOCUSS+. Thereafter, we proceed
with coordinate descent using GCV-FOCUSS+ and the interior
point method. We perform the deconvolution on a small 3
min segment (taken from close to the opening portion of the
experimental data we consider) of the signal to obtain the rise
and decay times. Once we obtain these parameters, we use them
to perform sparse recovery with GCV-FOCUSS+ on the entire
skin conductance signal.

1.3. Sympathetic Arousal State Estimation
The autonomic nervous system contains both a sympathetic and
a parasympathetic branch. The sympathetic branch mediates the
body’s “fight or flight" response and causes increases in blood
pressure, perspiration and heart rate (Silverthorn, 2009). As
pointed out earlier, sympathetic nerve fibers innervate the sweat
glands (Low, 2012) and consequently skin conductance provides
an index of sympathetic arousal (Critchley et al., 2002). Multiple
skin conductance features such as tonic levels, rates of SCR
appearance, SCR amplitudes and decay rates have been examined
in the context of various behavioral interventions (Dawson et al.,
2007; Boucsein, 2012). The rate at which SCRs occur has been
shown to be related to cognitive task load (Jennings, 1986; Munro
et al., 1987) and is thus a useful biomarker of autonomic arousal
(Aikins et al., 2009). Here, we describe our approach of estimating
an unobserved sympathetic arousal state based on the appearance
of neural impulses underlying SCR generation.

We develop a state-space model relating arousal to the
probability that the neural impulses occur (Wickramasuriya
et al., 2018). The model is inspired by an earlier work relating
a sequence of binary response variables to a latent cognitive
learning state (Smith et al., 2004). We first divide the time-axis
into bins of Tu duration indexed over j and assign sj = 1 or
sj = 0 based on whether or not a neural impulse occurs at the
jth time instance. Similar to Smith et al. (2004), we assume that
sympathetic arousal zj follows a random walk with time,

zj = zj−1 + ǫj ; ǫj ∼ N (0, σ 2
ǫ ). (10)

The appearance of neural impulses sj is a Bernoulli distributed
random variable with probability pj and is taken to be related to
zj via a sigmoid function (Smith et al., 2004),

log
( pj

1− pj

)

= α + zj H⇒ pj =
1

1+ e−(α+zj )
. (11)

The choice of the sigmoid function follows from the theory
of generalized linear models (McCullagh and Nelder, 1989).
Such logarithmic or exponential transformations are frequently
encountered in count or frequency type data. Assuming that a
subject’s sympathetic arousal state z0 ≈ 0 at the outset of the
experiment, α = log[p0(1 − p0)

−1] can be calculated by taking
p0 as the probability that a neural impulse occurs randomly in a
time bin for each individual (Smith et al., 2004; Wickramasuriya
et al., 2018).

Given the observations S1 : J = {s1, s2, . . . , sJ} we wish
to estimate zj ∀j. We use Bayesian filtering and Expectation-
Maximization (EM) for estimating the arousal states zj
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and recovering the unknown model parameters z0 and
σ 2

ǫ . The algorithm iterates between the E-step and M-step
until convergence.

1.3.1. Expectation Step
The E-step consists of two parts—a forward filter and a backward
smoother. The filter first calculates a state estimate zj|j using the
observations S1 : j available up to the jth time index. The backward
smoother determines a second estimate zj|J given all the available
observations S1 : J . A Gaussian approximation is made at the filter
formulation step and leads to the following equations at the lth
EM iteration (Smith et al., 2004):
Predict:

zj|j−1 = zj−1|j−1 (12)

σ 2
j|j−1 = σ 2

j−1|j−1 + σ 2(l)
ǫ (13)

Update:

zj|j = zj|j−1 + σ 2
j|j−1

[

sj −
1

1+ e−(α+zj|j )

]

(14)

σ 2
j|j =

{

1

σ 2
j|j−1

+
eα+zj|j

[

1+ eα+zj|j
]2

}−1

. (15)

One should note that zj|j appears on both sides of Equation (14)
and therefore is numerically solved using Newton’s method. We
next obtain the smoothed state and variance estimates zj|J and σ 2

j|J

as follows (Mendel, 1995):

Aj =

σ 2
j|j

σ 2
j+1|j

(16)

zj|J = zj|j +Aj

(

zj+1|J − zj+1|j

)

(17)

σ 2
j|J = σ 2

j|j +A
2
j

(

σ 2
j+1|J − σ 2

j+1|j

)

. (18)

1.3.2. Maximization Step
We maximize the complete data likelihood at the M-step to
estimate the two unknown model parameters σ 2

ǫ and z0. The
parameter updates for the (l+1)th iteration are as follows (Smith
et al., 2004):

σ 2(l+1)
ǫ =

2

J + 1

[
J

∑

j=2

(σ 2
j|J + z2j|J)−

J
∑

j=2

(Ajσj|J + zj|Jzj−1|J)

]

(19)

+
1

J + 1

[

3

2
z21|J + 2σ 2

1|J − (σ 2
J|J + z2J|J)

]

(20)

z
(l+1)
0 =

1

2
z1|J . (21)

Following a criteria similar to Smith et al. (2004), we take the
parameters to have converged once their absolute difference
between consecutive iterations does not exceed 10−8.

1.3.3. High Arousal Index
Similar to Smith et al. (2004), we calculate the probability that
sympathetic arousal state zj exceeds a specific threshold. We
name this the High Arousal Index (HAI). HAI helps express
how aroused a person is above a certain baseline. After the EM
algorithm has converged, the state zj at each time instance is
taken to be Gaussian distributed zj ∼ N (zj|J , σ

2
j|J) and we define

HAI as follows:

HAI = Pr(zj > zT), (22)

where the threshold zT is set to each subject’s median state value
across the whole experiment. Recall that the experiment acquired
data from subjects during episodes of both stress and relaxation.
The high stress induced during the experiment corresponds
to a state of high arousal and the relaxation corresponds
to low arousal. Therefore, we selected zT as the median
value as an approximation of normal arousal in between the
two extremes.

2. RESULTS

2.1. Skin Conductance Deconvolution
Figure 2 shows the skin conductance signals and deconvolution
results for the selected participants during the backward
counting task. In each sub-figure, the upper sub-panel shows
the separation of the tonic and phasic components using
cvxEDA (Greco et al., 2016). The lower sub-panel in each
sub-figure shows the corresponding neural stimuli recovered
using our deconvolution approach along with the reconstructed
signal. It is the timings of these neural impulses that are used
for estimating sympathetic arousal. Our method detects all
significant impulses though it misses a few small ones that
are comparable to noise. The number of detected impulses
and the estimated SCR rise and decay times τr and τd are
given in Table 2. Recall that these numbers are calculated based
on data acquired during the backward counting task of the
experiment. The τr and τd values estimated from this portion
of the experiment are finally used to solve for the neural
impulses over the entire signal. Also given in Table 2 are the
squared multiple correlation coefficients R2 for the participants.
R2 is an indication of goodness-of-fit and expresses how much
of the variance of the data is captured by the model. R2 is
above 0.93 for everyone indicating a good fit to the data. The
number of impulses varies considerably from person to person.
This is likely due to the fact that each participant responds
to stress uniquely, despite being exposed to the same type of
external stressor.

To further validate our deconvolution approach, we generated
a second set of synthetic data using the τ and u already estimated
for each participant. We added 25 dB SNR Gaussian noise
to corrupt this new simulated phasic skin conductance data
and performed deconvolution yet again. Figure 3 shows the
results along with the ground truth. Table 3 shows the estimated
parameters and their errors. Again, all R2 values are above 0.98
indicating a very good fit to the data.
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FIGURE 2 | Estimated deconvolution of the experimental skin conductance data. For each of the participants, (i) the upper sub-panel depicts the raw skin

conductance data (blue curve) and the separated tonic component of the skin conductance data using cvxEDA (green curve); (ii) the lower sub-panel depicts the

separated phasic component (blue stars), the estimated reconstructed signal (red curve), the estimated neural stimuli timings and amplitudes (black vertical lines).

TABLE 2 | Experimental results.

Participant τr (second) τd (second) ||u||0 R2

1 0.681 2.591 20 0.9629

2 1.398 1.568 17 0.9707

3 1.159 1.505 14 0.9868

4 0.965 1.880 8 0.9399

5 0.604 3.018 35 0.9788

6 0.663 2.617 28 0.9686

The estimated model parameters and the squares of the multiple correlation coefficients

(R2 ) for the fits of the experimental skin conductance time series.

2.2. Sympathetic Arousal State Estimation
Figure 4 shows the sympathetic arousal state estimation results.
For participant 1, arousal as measured by HAI remains above
90% during the cognitive tasks and reduces significantly during
relaxation. HAI then increases around the start of emotional
stress. Participant 2 has a similar response although the increase
in arousal at the start of emotional stress is much less. There
is also a notable, though not significantly high, increase right
in the middle of the relaxation period. The arousal profile for
participant 3 is almost identical to that of participant 1 with a

high level at the start, a significant drop during relaxation and a
moderate increase at the starting point of emotional stress.

The HAIs are somewhat different for the remaining
participants. For participant 4, arousal increases up to or above
the 90% threshold a few times during the cognitive tasks, but
does not remain high continuously. There is a significant drop
during relaxation and an increase above 90% when the horror
movie begins. HAI for participant 5 remains high during the
cognitive tasks and then drops during relaxation. There are
several notable increases during emotional stress, though none
of them increase above the 90% threshold. None of the increases
however, exceed 90% in this period. Participant 6 is closest to
participant 4 althoughHAI remains more consistently above 90%
during cognitive stress with only a slight drop in the middle.
Arousal thereafter drops during relaxation and increases above
90% for a brief period at the start of emotional stress. The
estimated arousal states zj|J also follow the general trend of the
corresponding HAIs for all participants.

3. DISCUSSION

3.1. Skin Conductance Deconvolution
Our method successfully recovers neural impulses associated
with phasic SCRs. Between-subject variability in the estimated
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FIGURE 3 | Estimated deconvolution of the simulated phasic skin conductance data in six participants. For each of the participants, (i) the upper sub-panel depicts

the simulated phasic component of the skin conductance data samples with 25 dB SNR Gaussian noise (blue stars), the estimated reconstructed signal (red curve); (ii)

the lower sub-panel depicts the estimated neural stimuli timings and amplitudes (black vertical lines) and the ground truth of the neural stimuli (red vertical lines) for

each of the participants.

TABLE 3 | Results from simulated data.

Participant τ̂r (second) τ̂d (second) ||û||0 R2 |τ̂r−τr |
τr

× 100%
|τ̂d−τd|

τd
× 100% |||u||0 − ||û||0|

1 0.664 2.627 19 0.9921 2.49 1.39 1

2 1.348 1.573 16 0.9919 3.58 0.32 1

3 1.128 1.503 11 0.9806 2.67 0.13 3

4 1.139 1.510 7 0.9891 18.03 19.68 1

5 0.5514 3.230 34 0.9936 8.71 7.02 1

6 0.650 2.672 27 0.9918 2.00 2.10 1

The estimated model parameters and the squares of the multiple correlation coefficients (R2 ) for the fits of the experimental skin conductance time series.

rise and decay times and the number of impulses is to be
noted. The tonic levels also show considerable variations from
person to person. These variations clearly highlight the need
for determining the physiological parameters τr and τd on an
individual basis rather than relying on fixed values for everyone.

Deconvolution using simulated data (Figure 3 and Table 3)
also shows that most impulses are accurately recovered. Only
impulses that are comparable to noise peaks aremissed. The error
percentages in estimating τr and τd are less than 10% for five
of the participants. Participant 4 has a much higher percentage

error. Recall that our problem formulation for estimating the
rise and decay times is not convex. Consequently, there exists
the possibility of stagnating at a local minimum. While we
attempt to mitigate this problem through multiple initializations,
and then taking the solution with the smallest squared error,
there still exists a finite possibility of stagnating at a location
other than the global minimum. The number of neural impulses
for participant 4 is also much lower than for the others.
Consequently, there are less SCRs to fit to and the result is more
error-prone.
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FIGURE 4 | Sympathetic arousal state estimation. For each of the participants, (i) the top sub-panel depicts the skin conductance signal; (ii) the 2nd sub-panel

depicts the recovered neural impulses; (iii) the 3rd sub-panel depicts the smoothed sympathetic arousal state zj|J and its confidence intervals; (iv) the 4th sub-panel

depicts the smoothed impulse occurrence probability pj|J and its confidence intervals; (v) the lower sub-panel depicts the high arousal index (HAI) with the region

above 90% probability highlighted in red. The color-coded backgrounds correspond to the instruction period for the cognitive tasks (red), the backward counting task

(green), the Stroop test (cyan) (both the counting task and the Stroop test make up the cognitive stress portion), relaxation (light brown) and emotional stress (violet).

Small green rectangles above 3rd and 4th sub-panels depict neural impulse location timings.

Each SCR, resulting from a single neural impulse, is
mathematically modeled as a bi-exponential function. Estimating
the rise and decay times of an SCR in the presence of noise is
challenging due to this sensitive exponential nature. More than
one pair of rise and decay times exist that can closely approximate
an experimental SCR shape. Results are also heavily dependent on
the removal of the tonic part. cvxEDA (Greco et al., 2016) models
the tonic part with cubic B-spline basis functions with a 10 s
knot size. Greco et al. (2016) used l2-norm penalization on the
cubic spline basis function coefficients to avoid overfitting. They
selected the regularization parameter to the penalization term

based on prior data they had analyzed. This parameter depends
on how the data is scaled in reality and how much of the tonic
part it contains. Here, we set the regularization parameter related
to the smoothness of the tonic component in cvxEDA at 0.001
instead of the 0.01 default to obtain a better separation of the
tonic and phasic components.

Our current implementation of skin conductance
deconvolution comprises of the two-step coordinate descent
algorithm described earlier. Although it performs well in terms
of accuracy, a faster implementation is necessary for a real-time
CLDBS system. The physiological parameters τr and τd usually
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remain stable over a prolonged period of time. Therefore, we
can perform only the sparse recovery procedure on windows of
incoming data after an initial parameter estimation is complete,
and thereafter estimate τr and τd in the background from
time-to-time. A faster implementation of the sparse recovery
step (e.g., using Greedy algorithms or Bayesian approaches)
could further help improve time complexity.

3.2. Sympathetic Arousal State Estimation
A general trend is to be observed in the participant arousal
levels in Figure 4. In the case of cognitive stress, the subjects’
arousal states and HAI remain almost constantly high with
the exception of participant 4. In contrast, there is only a
moderate increase that dies down at the start of the emotional
stress phase. The cognitive tasks required active engagement,
i.e., mathematical calculations and active concentration, on the
part of the participants. Meanwhile, the emotional stress period
only involved passive engagement—the subjects just had to
watch a horror movie clip without any significant cognitive
effort. The varying level of cognitive activity is a likely reason
for the difference in arousal between cognitive and emotional
stress. Birjandtalab et al. (2016) used a clip from the horror
movie entitled the “The Horde" to generate emotional stress.
It is also possible that the movie was insufficient to generate
significant emotional stress. The desired stress-generating effect
may not have been realized if, for instance, a participant had
already watched the movie. A visual inspection of the sub-
panels depicting skin conductance in Figure 4 does not show
a significant number of SCRs during emotional stress. It is
likely PTSD patients may experience more emotional rather than
cognitive stress. However, the emotions they experience may not
necessarily be those evoked in healthy subjects for the very same
stimuli. For instance, scenes of blood and dead bodies in a horror
movie may evoke traumatic memories in PTSD patients leading
to higher levels of stress. Further experimentation with a patient
population would help validate ourmethods in detecting elevated
levels of arousal in PTSD.

Sympathetic arousal information is not only encoded in
how frequently neural impulses to the sweat glands occur, but
also in the skin conductance signal amplitudes. Consequently,
the amplitude of individual SCRs are taken as indicators of
arousal (Bach et al., 2010). The tonic skin conductance level
also contains emotion-related information (Braithwaite et al.,
2013). Our current state-space formulation only considers the
rate at which neural impulses (i.e., binary events) occur. Future
work would incorporate the additional amplitude features for
estimating sympathetic arousal using augmented state-space
models that include both binary and continuous observations
(Prerau et al., 2009; Coleman et al., 2011). The addition of heart
rate could also help obtain an improved sympathetic arousal
estimate (Wickramasuriya and Faghih, 2019).

The current EM approach is also offline and therefore requires
modification if it is to be used in real-time in an experimental
CLDBS prototype. We suggest running the forward filter in
the E-step continuously and performing the full EM procedure
in the background from time to time. This is very similar to
the approach proposed for deconvolution when adapting to

the needs of real-time computation. This may also permit the
model parameters to change in adaption to disease progression
and changing environmental conditions over time. The steps
could also be run in parallel in a multicore processor. Several
smartphones are now enabled with multicore processors and
one option could be to perform the CLDBS computations on
a wearer’s phone. Another option would be to stream the
data to the internet and perform computations in the cloud.
Developing a custom hardware device to accompany the CLDBS
implant is yet another option for performing skin conductance
deconvolution and arousal state estimation in real-time.

3.3. Study Limitations
As noted earlier, many of the skin conductance recordings

were contaminated with noise and had to be discarded. In-
band motion artifacts such as those seen in the data-set usually
contaminate a signal nonlinearly. Adaptive filtering (Mathews,
1991; Zaknich, 2005) and multi-level wavelet-based thresholding
(Chen et al., 2015) are some of the options for suppressing
motion artifacts. It is likely that skin conductance will indeed be
contaminated with such artifacts in a real-world setting.We leave
the development of an accelerometer-based adaptive filter for
removing motion artifacts in skin conductance for future work.
In another work, Amin and Faghih (2018) illustrated a way of
performing concurrent deconvolution from multi-channel skin
conductance data to obtain an estimate from noisy data. They
included weights in different channels based on the standard
deviation of noise in each channel while estimating the neural
stimuli. They showed that the multi-channel approach could be
more reliable for noisy skin conductance data. Multi-channel
approach could potentially be used to achieve a more reliable
CLDBS system.Moreover, factors other than sympathetic arousal
can also influence skin conductance (e.g., body temperature,
hydration, physical activity, and electrolytes). Variations induced
by these factors may thus confound sympathetic arousal
estimates; this is a limiting factor of using skin conductance
alone. Such factors could be taken into account in a real-
world setting and their effect canceled to obtain an improved
arousal estimate. This would require an extended state-space
model incorporating body temperature and hydration levels, for
instance, as additional observations.

The present work is a proof-of-principle framework for using
skin conductance in closing the DBS loop. As skin conductance
relates to sympathetic arousal, and moreover as PTSD patients
frequently show symptoms of hyperarousal, we note the
suitability of using skin conductance as a CLDBS biomarker.
The data-set used here however, does not include any PTSD
patients and is a limitation of this study. Further investigation
is therefore necessary to validate the use of skin conductance
in an experimental CLDBS prototype for PTSD patients. Recall
that differences in skin conductance have been reported in the
literature between individuals with and without PTSD. The
coefficients of the differential equations (τ ) in Equations (2) and
(3) governing sweat secretion dynamics are determined on a per
subject basis. Thus, even if τ were significantly different between
healthy and patient populations, our deconvolutionmethodology
would still adapt to each individual. Furthermore, we only track
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a single skin conductance feature—the occurrence of neural
impulses. The α coefficient in Equation (11) is calculated from
the baseline probability of impulses on a per subject basis. The
process noise variance σ 2

ǫ in Equation (10) is also estimated for
each subject individually via the EM algorithm. Therefore, our
Bayesian filter for sympathetic arousal estimation is also able to
adapt to each individual. Although the present study did not
include data from a patient population, we would however expect
our methods to generalize to them nevertheless due to the ability
of the framework to adapt to each individual.

3.4. Effect of DBS on Skin Conductance
The neural substrates underlying skin conductance have been
examined in studies involving functional imaging, brain lesions
and direct electrical stimulation (Critchley, 2002). Mangina and
Beuzeron-Mangina (1996) applied electrical stimulation to the
limbic structures of a group of subjects with intractable epilepsy
and measured bilateral skin conductance. When the left sides
of the amygdala, posterior hippocampus, anterior hippocampus
and cingulate gyrus were stimulated, higher SCR amplitudes
on the left hand were observed compared to the right. The
reverse was also true when the right sides of the same interior
structures were stimulated. They also reported that stimulation
intensity increased SCR amplitudes. Lanteaume et al. (2006)
examined the effect of electrical stimulation of the amygdala on
self-reported emotions and SCRs in a group of patients with
drug-resistant partial epilepsy. SCR amplitudes were larger when
the stimulation caused a positive emotional change as opposed
to a negative change or no change. Our methodology does not
make use of the SCR amplitudes but rather the rates at which
they occur. Further research would be necessary to quantify the
effect on SCR rates when applying direct stimulation via a DBS
implant to the limbic structures. A correction for the effect due to
the stimulation could be incorporated into the state-space model
in this case.

3.5. Closing the DBS Loop
Developing a complete CLDBS system is a challenge. Our
approach demonstrates the ability to recover sympathetic
arousal from skin conductance measurements using state-space
methods. Neural stimuli to the sweat glands originating from the
sympathetic nerve fibers encode emotion-related information in
how frequently they fire. By relating the probability of neural
impulse occurrence to sympathetic arousal through a state-space
model, we are able to estimate a continuous state trajectory across
different episodes of relaxation and stress.

Different biomarkers have been suggested for closing the
loop in DBS therapy. Ideally, the biomarker should enable
the real-time tracking of an unobserved brain state. Here,
we investigate skin conductance as a viable alternative for
a CLDBS as a means of treating neuropsychiatric disorders
such as PTSD. While we have sought to address how to
estimate an emotion-related state trajectory from peripheral
skin conductance measurements, there remains the problem
of determining the mapping from the state variable back into
the CLDBS stimulation parameter space (i.e., the amplitude,
frequency, and width of the electrical stimuli). Determining

this mapping will enable sympathetic arousal to be controlled
in realtime. Grahn et al. (2014) proposed a novel means of
addressing this mapping problem in a CLDBS system they
developed for maintaining stable dopamine levels in rodents.
They first varied the frequency, amplitude, and pulse width of the
electrical stimulation andmeasured the corresponding dopamine
level responses for different parameter combinations. We too
could similarly vary the electrical stimulation parameters of a
DBS system while measuring skin conductance changes and
estimate the corresponding arousal levels. Grahn et al. (2014)
next characterized the dopamine responses using a combination
of 7th order polynomials and 2nd order exponentials. This
required a total of 12 model coefficients. They next trained
a neural network having the frequency, amplitude and pulse
width as the inputs and the 12 model coefficients as the outputs.
Likewise, we could train a neural network mapping stimulation
parameters to arousal responses. Thereafter, Grahn et al. (2014)
trained a second neural network having the model coefficients
as inputs and the frequency, amplitude and pulse width as
the outputs. They used this inverse model for predicting the
stimulation parameters necessary for maintaining specific extra-
cellular dopamine levels. Therefore, a CLDBS system utilizing
our method for arousal estimation could utilize a similar neural
network characterizing the inverse relationship back into the
stimulation parameter space in its feedback path.

A simpler option would be to use on/off control instead of
adjusting the stimulation parameters in a continuous manner.
Herron et al. (2017) developed an on/off CLDBS controller for
a patient suffering from tremor. The controller applied electrical
stimulation when β-band power recorded from invasively
acquired electroencephalography (EEG) dropped below a certain
(manually-tuned) threshold, and switched it off when the power
exceeded yet another threshold. Preliminary on/off control could
be applied in the case of neuropsychiatric disorders too, for
instance when sudden angry outbursts or bouts of depression
as detected by abnormally elevated or diminished arousal
levels occur.

Wewish to point out that not all elevated arousal levels need to
be controlled (e.g. high arousal levels due to positive excitement).
When proposing a CLDBS framework for the treatment of
chronic pain, Shirvalkar et al. (2018) too noted that they did not
wish to avoid all feelings of pain per se, as pain itself provides a
warning of potential tissue damage. Therefore, a fully closed-loop
system for the treatment of neuropsychiatric disorders should
be able to recognize the positive–negative aspect of emotion as
well. This positive–negative or pleasure–displeasure dimension
is known by the term emotional valence (Russell, 1980). The
CLDBS would ideally need to estimate a vector zj containing
both arousal and valence. Emotional valence information can be
decoded using physiological signals such as scalp EEG, heart rate,
electromyography and skin conductance (Koelstra et al., 2012;
Soleymani et al., 2012). Stimulation can then be turned on, for
instance, only if high arousal is detected and valence is negative.

Finally a control algorithm is necessary in the CLDBS feedback
loop when progressing beyond preliminary on/off stimulation.
Our state estimation approach relies on a rate of neural firing.
Azgomi et al. (2019) developed a fuzzy feedback controller
based on the rate of SCR appearances for increasing arousal
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during relaxation and decreasing it during periods of cognitive
stress. The controller was based on the model proposed in
Wickramasuriya et al. (2018) and can directly be used with the
method presented here. In a review of CLDBS therapy, Carron
et al. (2013) mention two different other works, namely those
by Grant and Lowery (2013) and Pasillas-Lépine et al. (2013),
that propose a control mechanism based on the rate of neural
firing for estimating a state variable. Pasillas-Lépine et al. (2013)
proposed a proportional control based on the firing rates of
the subthalamic nucleus and global pallidus. Grant and Lowery
(2013) developed a similar CLDBS controller based on β-band
oscillations in LFPs. An adaptation of one of these methods could
also be used for developing a control law for regulating emotion
based on peripheral skin conductance measurements.

3.6. Conclusion
DBS has met with success in treating a host of disease conditions
where other therapeutic measures have been exhausted. CLDBS
systems have been proposed as the future of DBS due to their
inherent advantages over the previous generation of open-
loop systems. Closing the DBS loop is a challenge. In this
work, we present a method for estimating sympathetic arousal
from skin conductance measurements as a potential mechanism
that could be deployed within a CLDBS system for treating
neuropsychiatric disorders. The methodology consists of two
parts: (i) the deconvolution of phasic skin conductance to obtain
the neural impulses that generate SCRs; (ii) a state-space model
for tracking sympathetic arousal based on the frequency at
which the SCRs appear. Results are demonstrated on a publicly
available data-set. We finally discuss possibilities for developing
a controller that could map the state estimates back into the
stimulation parameter space for automated closed-loop control.
While we mention PTSD as an example scenario here, our
approach could be generalized to other disease conditions where

any type of impulse-like or pulsatile signal is a biomarker. For
instance, if neural spiking or pulsatile cortisol secretions are
clinically-relevant features for a particular disease condition,
then the Bayesian filter described here could also be used as
part of closing the loop. Additionally, the methods presented
here are personalized, i.e., the model parameters are estimated
for each individual. Differences in skin conductance have been
reported in the literature between healthy subjects and patients
with anorexia nervosa (Tchanturia et al., 2007) and depression
(Ward and Doerr, 1986). If skin conductance biomarkers can
be determined for each of these conditions (based on SCR
amplitudes, rates of SCR occurrence, skin conductance levels
etc.), then an extended state-space model could be developed
to track a symptom-related neural state that incorporates both
binary and continuous-valued observations (Prerau et al., 2009;
Coleman et al., 2011).
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High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is

effective in suppressing the motor symptoms of Parkinson’s disease (PD). Current

clinically-deployed DBS technology operates in an open-loop fashion, i.e., fixed

parameter high-frequency stimulation is delivered continuously, invariant to the needs

or status of the patient. This poses two major challenges: (1) depletion of the

stimulator battery due to the energy demands of continuous high-frequency stimulation,

(2) high-frequency stimulation-induced side-effects. Closed-loop deep brain stimulation

(CL DBS) may be effective in suppressing parkinsonian symptoms with stimulation

parameters that require less energy and evoke fewer side effects than open loop

DBS. However, the design of CL DBS comes with several challenges including the

selection of an appropriate biomarker reflecting the symptoms of PD, setting a suitable

reference signal, and implementing a controller to adapt to dynamic changes in the

reference signal. Dynamic changes in beta oscillatory activity occur during the course

of voluntary movement, and thus there may be a performance advantage to tracking

such dynamic activity. We addressed these challenges by studying the performance

of a closed-loop controller using a biophysically-based network model of the basal

ganglia. The model-based evaluation consisted of two parts: (1) we implemented a

Proportional-Integral (PI) controller to compute optimal DBS frequencies based on

the magnitude of a dynamic reference signal, the oscillatory power in the beta band

(13–35Hz) recorded from model globus pallidus internus (GPi) neurons. (2) We coupled

a linear auto-regressive model based mapping function with the Routh-Hurwitz stability

analysis method to compute the parameters of the PI controller to track dynamic

changes in the reference signal. The simulation results demonstrated successful tracking

of both constant and dynamic beta oscillatory activity by the PI controller, and the PI

controller followed dynamic changes in the reference signal, something that cannot be

accomplished by constant open-loop DBS.

Keywords: closed-loop deep brain stimulation, Parkinson’s disease, beta band activity, proportional-integral

controller, Routh-Hurwitz stability analysis
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INTRODUCTION

Parkinson’s disease (PD) is characterized by degeneration of
dopaminergic neurons in the substania nigra pars compacta
(SNc) resulting in motor symptoms including bradykinesia, rest
tremor, postural instability, and rigidity (Davie, 2008; Jankovic,
2008). High-frequency deep brain stimulation (DBS) of the
subthalamic nucleus (STN) or globus pallidus internus (GPi) is a
well-established surgical therapy to treat the motor symptoms of
PD (Krack et al., 2003; Rodriguez-Oroz et al., 2005; Odekerken
et al., 2016). Current clinical DBS technology is open loop—
stimulation is always on and the stimulation parameters are
tuned periodically through manual adjustments by health care
professionals. The process of selection of DBS parameters is
challenging due to the large number of parameters (Kuncel and
Grill, 2004). Therefore, the efficacy of current open-loop DBS
may be suboptimal and patients can experience side effects,
including speech deficits and cognitive dysfunction (Deuschl
et al., 2006; Okun and Foote, 2010; Massano and Garrett, 2012;
Cyron, 2016).

Recent clinical studies suggest that closed-loop DBS (CL DBS)
may be more efficient at suppressing PD motor symptoms with
reduced side effects as compared to continuous high-frequency
STNDBS (Rosin et al., 2011; Carron et al., 2013; Hebb et al., 2014;
Rossi et al., 2016). However, the design of CL DBS controllers
comes with several challenges including selection of a feedback
signal reflecting PD symptoms and the capacity of the controller
to adapt to dynamic changes in the reference signal (Hebb et al.,
2014; Arlotti et al., 2016a; Parastarfeizabadi and Kouzani, 2017).
Concurrent neuronal recordings and behavioral assessments
from PD patients and animal models of PD showed a strong
correlation between beta band oscillations (13–35Hz) and PD
motor symptoms, especially bradykinesia (Zaidel et al., 2010;
Jenkinson and Brown, 2011; Little and Brown, 2012; Hoang et al.,
2017), and beta band activity may be an appropriate feedback
signal for CL DBS. However, beta oscillations in the basal ganglia
desynchronize in preparation and during voluntary movement
(Levy et al., 2002; Brittain and Brown, 2014). Therefore, a fixed
beta power reference may not be appropriate for control of DBS,

FIGURE 1 | (A) The CL DBS framework. The spike times of model neurons in the GPi were calculated, and the beta band power of these spike times was used as the

feedback signal y (k). The error term e (k) between the desired beta power ysp (k) and actual value y (k) was input to the PI controller to calculate the stimulation

frequency u (k). The stimulation signal Idbs (t) delivered to the cortex-basal ganglia-thalamus network model was subsequently determined. (B) The transformed linear

system of the CL DBS system. This transformed linear system was used to determine the appropriate parameters for the PI controller, and the PI parameters were

constant once calculated.

and it may be beneficial to include in the controller design the
ability to adapt to dynamic changes in the reference signal.

The objective of this study was to design a controller for
CL DBS that can adapt to dynamic changes in the reference
signal. We evaluated the performance of a proportional integral
(PI) controller using a network model of the basal ganglia (BG)
(Kumaravelu et al., 2016). The parameters of the PI controller
were tuned by coupling a linear controlled auto-regressive
(CAR) model with Routh-Hurwitz stability analysis. The PI
controller was successful in adapting to dynamic changes in the
reference signal, and such a control scheme may be suitable for
implementation in CL DBS systems.

METHODS

A block diagram of the proposed CL DBS framework is shown
in Figure 1A. The signal power of model neuron activity in
the beta band was used as the feedback signal y

(

k
)

, and the
error e

(

k
)

between the actual beta power and the desired beta
power ysp

(

k
)

was sent to the PI controller to calculate the
stimulation frequency u

(

k
)

. Thus, the PI controller calculated
the DBS frequency according to the variation of beta oscillatory
power. The calculated DBS frequency determined the time of the
next stimulation pulse Idbs (t) delivered to a biophysical network
model of the parkinsonian cortex-basal ganglia-thalamus (CTx-
BG-Th) network. The selection of appropriate PI controller
parameters was required for the actual beta power to track
dynamic variations in the desired power. Below we propose
a stability analysis method to calculate automatically the
PI parameters.

Computational Model of the Cortex-Basal
Ganglia-Thalamus Network
We used a model of the CTx-BG-Th network as a test bed
to evaluate the performance of the closed-loop control scheme
(Kumaravelu et al., 2016), and a implementation of this model in
MATLAB can be downloaded from ModelDB (https://senselab.
med.yale.edu/modeldb/). The CTx-BG-Th model included the
cortex, striatum, STN, globus pallidus externus (GPe), GPi
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and a thalamic nucleus, and each region was comprised
of 10 single-compartment Hodgkin-Huxley type neurons. In
the original publication, the model was validated extensively,
including matching the responses evoked in the basal ganglia
by cortical stimulation in rats (Kita and Kita, 2011), model
neuron firing rates and patterns that were consistent with
parkinsonian rats (Mallet et al., 2008), and responses to STN
DBS at different frequencies that matched those measured
experimentally (McConnell et al., 2012; So et al., 2012).Model BG
neurons exhibited exaggerated low-frequency oscillatory activity
in the parkinsonian state compared to the healthy condition,
similar to that seen in vivo. Since, beta oscillatory activity
is well-correlated with PD symptoms (Leventhal et al., 2012;
Stein and Bar-Gad, 2013), we chose the beta band (13–35Hz)
power present in the activity of the GPi neurons as the model-
based proxy for symptoms (Brocker et al., 2013) to evaluate
the effectiveness of the CL DBS controller. There is a strong
correlation between single unit firing and LFPs in the beta
band in the STN (Levy et al., 2002; Kühn et al., 2005) and
in the GP (Goldberg et al., 2004), and the power spectrum
calculated from the single unit spike times of GP neurons was
correlated with motor symptoms of parkinsonism (McConnell
et al., 2012). Simulations were implemented in MATLAB R2016a
and equations were solved using the forward Euler method with a
time step of 0.01ms; spectral analyses were performed using the
“mtspecgrampt” function of the Chronux neural signal analysis
package (chronux.org) (sliding 1 s window, 0.1 s step size and [3
5] tapers (3 is the time-bandwidth product and 5 is the number
of tapers)). The spectrum of all 10 GPi neurons spike time series
was calculated using the multi-taper spectral estimation method.

Identification of Relationship Between
Stimulation Frequency and Beta Band
Power of GPi Model Neurons Spike Times
The oscillations within the CTx-BG-Th network were similar
across the different parts of the loop (Kumaravelu et al., 2016), for
STN, GPi, and GPe both single neuron and local field potentials
(LFPs) exhibited excessive beta band oscillation in the PD state,
while for thalamus and cortex single neuron oscillation were not
dominant (Stein and Bar-Gad, 2013). The beta band power of GPi
model neurons spike times was chosen to characterize the model
state. The dynamics of the CTx-BG-Th network were highly
non-linear and therefore it was inappropriate to use the linear
PI controller to control directly the network model of PD. A
linear model of the plant between the stimulation frequency and
the beta band power of GPi model neuron spike times was first
identified using a CARmodel. The structure of a CARmodel was

(

1+ a1z
−1

+ a2z
−2

+ · · · + anaz
−na

)

y
(

k
)

=
(

b0 + b1z
−1

+ b2z
−2

+ · · · + bnbz
−nb

)

u
(

k
)

+ ε
(

k
)

(1)

where z was the lag operator, u
(

k
)

was the input signal
(stimulation frequency) and y

(

k
)

was the output signal (beta
power of GPi model neuron spike times), nb and na were the
order of input and output sequences, respectively, and ε

(

k
)

was
assumed to be white noise. The identification process included
the following steps:

1. Collect input and output data from the CTx-BG-Th
network model.

2. Estimate model parameters a1 · · · ana and b0 · · · bnb .
3. Choose appropriate order parameters na and nb.
4. Quantify the prediction accuracy of the CAR model.

The identification accuracy of the CAR model was highly
dependent on the input output data that were selected, because
not all data provided an equal amount of information (Ljung,
1999). The designed stimulation sequence was delivered to the
CTx-BG-Th model (in the open loop), and the corresponding
output data (beta band power) was calculated. To obtain more
informative input/output data to identify the CAR model, the
frequencies (input data) of the stimulation waveform were
chosen randomly between 5 and 200Hz. Figure 2A illustrates
the stimulation sequence from 12 to 16 s, illustrating that
each frequency continued for 0.4 s to ensure that at least
two pulses were delivered for each random frequency. The
simulation duration was 400 s, resulting in responses to 1,000
frequency samples. The stimulation sequence was delivered to the
computational model of the CTx-BG-Th network, and spiking
activity was recorded fromGPimodel neurons. The time window
used to bin the beta power of GPi spike times was sensitive
to the temporal dynamics of beta power when the stimulation
frequencies were randomly changed (Figure 2C). Differences in
beta power across time window bins were compared using one-
way ANOVAwith post-hocTukey’s honestly significant difference
(HSD) test, and statistical significance was defined as α = 0.05.
The beta power varied across different time window bins (F =

252.54, p < 0.0001). When the time window bin was larger than
0.1 s, the calculated beta power was no <1.6 times the value with
time window bin equaled to 0.1 s. The choice of the short 0.1 s bin
enabled capture of small dynamic changes in beta power, as our
objective was to implement a controller that responded to such
changes. Bin sizes of 0.2 s or longer did not reflect the dynamic
variation of the beta power, as indicated by the invariance to bin
size. Since each frequency was delivered for 0.4 s and the bin
used to calculate beta power was 0.1 s, the beta power obtained
in Figure 2B was the average of four values within 0.4 s.

We used the recursive least squares (RLS) method
(Ljung, 1999) to estimate the CAR model parameters.
The CAR model was transformed into a standard LS form
(Ljung, 1999),
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T was the known sequence of input and output data, and
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a1, a2, · · · , ana , b0, b1, · · · , bnb
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was the vector of unknown
model parameters. From Equation (2), the current value of the
output signal was correlated with the past input and output
signals as well as the current input signal. Then, unknown model
parameters were estimated by the RLS method,
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FIGURE 2 | The stimulation sequence (A) and beta band power (B) obtained

from the CTx-BG-Th network model to train the CAR model. Only data from

12 to 16 s are presented to improve visualization. (A) The stimulation

frequency was randomly selected from 5 to 200Hz, and for each frequency

the corresponding stimulation sequence lasted for 0.4 s. (B) Circles represent

the beta power value in each 0.1 s, the collected beta power within 0.4 s was

the average of four values. (C) Mean ± standard deviation of beta power of

GPi model neuron spike times plotted as a function of time window bin (50

trials). The mean value of beta power varies across different time window bin

values, and values not sharing the same letter were significantly different (p <

0.05, Tukey’s HSD).

where θ̂ was the estimated parameter vector calculated using the
following equations:
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The root mean square error (RMSE) between the actual output
signal and the CAR model predicted output signal was used to
quantify the prediction accuracy of the CAR model,

eRMSE =

√

1

N

∑N

k=1
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− ye
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))2

(5)

The eRMSE declined as the CAR model order (na and nb) was
increased (Figure 3A). Since the purpose of the identified CAR

model was to design the PI controller but not to substitute for the
original CTx-BG-Th network model, we were not interested in
higher-order dynamics. Akaike’s information criterion (AIC) was
used to select the model order (McQuarrie and Chih-Ling, 1998),

AIC =
2K − 2L
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(6)

where K = na + nb + 1 was the number of parameters to
be estimated, N was the length of predicted data, and L =
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2 . When na = 3 and nb = 3

the valued of AIC was minimized, thus, the structure of the CAR
model was
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and the corresponding estimated CAR model parameters in each
iteration are shown in Figure 3B.

Selection of PI Controller Parameters
Although a common Proportional-Integral-Differential (PID)
controller has three control terms (P, I, and D), we only chose
the P and I terms, because the D action is sensitive to the model
prediction accuracy (Aström and Hägglund, 1995). With the
selected CAR model, eRMSE = 27.9, there were still prediction
error, and the D term was not used due to these inaccuracies
of the CAR model. The transformed system with the CAR
model substituted for the network model was used to choose the
parameters of the PI controller (Figure 1B).

The structure of a discrete PI controller was (Aström and
Hägglund, 1995),
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and the aim was to select the P term and I term coefficients,
kp and ki. The Routh-Hurwitz stability criterion (Gopal, 2002)
was used to calculate automatically the PI parameters, where the
selected PI controller must ensure the stability of the system. The
forward transfer function of this system (Figure 1B) is given by
Equation (9).
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The closed-loop transfer function was

Φ (z) =
G (z)

1+ G (z)
(10)
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FIGURE 3 | (A) The relationship between the CAR model order parameters (na and nb) and the RMS error (eRMSE) between the actual output signal and the CAR

model predicted output signal. (B) The estimated CAR model parameters across iterations to minimize eRMSE.

The characteristic equation of this system was
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According to the Routh-Hurwitz stability criterion, we
substituted z with w, where z =

w+1
w−1 , and the variable of

the characteristic equation became w.
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Combining Equations (11) and (12),m4 = 1+b0
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Then multiplying both sides of Equation (12) by (w− 1)4, such
that, (w− 1)4 D (w) = n4w
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that is,
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where n4 = m0+m1+m2+m3+m4, n3 = −4m0−2m1+2m3+

4m4, n2 = 6m0 − 2m2 + 6m4, n1 = −4m0 + 2m1 − 2m3 + 4m4,
n0 = m0 −m1 +m2 −m3 + m4.

The stability of this system was equivalent to the
following conditions:

ni > 0 (i = 0, 1, 2, 3, 4) , n3n2 > n4n1, n3n2n1 > n4n
2
1 + n23n0

(14)

Combining Equations (11)–(13), nicould also be described as
a function of kp and ki, and to ensure that all conditions in
Equation (14) were satisfied, we chose kp = 0.80, ki = 0.05.

Closed-Loop Frequency Modulation
Considering the established physiological responses to different
pulse repetition frequencies of DBS (Birdno and Grill, 2008),

we constrained the calculated stimulation frequency to between
5 and 200Hz. When the calculated frequency was larger than
200Hz, it was set to 200Hz; when the calculated frequency was
<5Hz, it was set to 5 Hz.
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The stimulation frequency was calculated using the PI controller,
which required knowledge of the beta power at the kth and
(k-1)th time points. The beta power of the kth time point was
calculated from (t−0.1) s to t s, the beta power of the (k-1)th time
point was calculated from (t1-0.1) s to t1 s. The time difference
between t and t1 was 0.008 s. Note this was not the time step for
the controller to update the DBS frequency, and the controller
updated the DBS frequency only after the former interpulse
interval ended.

RESULTS

Prediction Performance of the CAR Model
The performance of the CAR model during the model training
process is shown in Figure 4A. The correlation coefficient
between the actual and estimated data in the model training
process was r

(

y, ye
)

= 0.84. In addition, we generated different
sequences of random stimulation frequencies, and delivered
the corresponding stimulation signals to the network model
to calculate the resulting sequences of beta power. The same
sequences of stimulation frequencies were also delivered to
the trained CAR model. The prediction performance of the
trained CAR model on two example data sequences is shown
in Figures 4B,C. In this testing phase, the correlation coefficient
between the two outputs were r

(

y, ye
)

= 0.82 and r
(

y, ye
)

=

0.80. Thus, the prediction accuracy of the CARmodel was∼80%.
To create a quantitative comparator for the prediction

accuracy of the identified CAR model, we delivered an identical
test stimulation signal to the CTx-BG-Th network model five
times. The mean correlation coefficient among any two output
datasets was 0.95. Since the CTx-BG-Th was highly non-linear,
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FIGURE 4 | The prediction performance of the CAR model during model training (A) and testing (B,C). The datasets used to train and test the CAR model were

generated as described in section Computational Model of the Cortex-Basal Ganglia-Thalamus Network. The black line represented the beta power calculated from

the original CTx-BG-Th network model, and the red line represented the beta power data predicted by the identified CAR model.

FIGURE 5 | The relationship between DBS frequency and the beta band power of GPi model neuron spike times. Standard error bars are shown for 50 trials. The

dotted line labels the 110 target beta power value.

while the structure of the CAR model presented here was linear,
the difference between 0.95 and 0.8 may reflect the unmodeled
non-linear dynamics between the stimulation frequency and the
beta power. However, since our aim in identifying the CARmodel
was as a tool to design the PI controller, the 80% accuracy was
deemed sufficient.

Tracking of Constant Beta Power
The relationship between the DBS pulse repetition frequency and
the beta power of GPi model neuron spike times in the CTx-
BG-Th model is shown in Figure 5. The beta band power in
the healthy and PD states of the CTx-BG-Th model were 162
and 222.5, respectively. Similar to the effects of DBS frequency

on motor symptoms (Birdno and Grill, 2008), reductions in
beta band oscillatory activity were observed only for higher
frequencies of DBS. The target beta power was selected to be
110, which was approximately the value generated by DBS at
115Hz. When the stimulation frequency was larger than 100Hz,
the variations of beta power with changes in frequency were quite
small, and the selection of a specific beta power target level had
no particular impact on the results.

The spectrograms of the spike times from model GPi, GPe,

and STN neurons in the parkinsonian condition, during 115Hz
DBS, and during CL DBS are shown in Figure 6. Under the

parkinsonian condition, the model neurons in these three nuclei
exhibited oscillatory activity around 20Hz. During the 115Hz
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FIGURE 6 | Spectrograms of the spike times from model GPi, GPe, and STN neurons in the normal (A), parkinsonian condition (B), during 115Hz DBS (C), and

during CL DBS (D). In the parkinsonian condition, all neurons exhibited excessive oscillatory activity compared with the normal condition. The 115Hz DBS and CL

DBS began at t = 2 s, and greatly reduced the beta band oscillatory activity.

DBS and CL DBS cases, stimulation began at t = 2 s, after which
the oscillatory activity rapidly diminished. CL DBS produced
intermittent oscillatory activity in model STN neurons in the low
frequency band (3–12Hz), which was 6.2 times larger than the
lower frequency power present during open loop DBS (OL DBS)
at 115Hz. The dynamic sequence of stimulation frequencies
during CL DBS (Figure 7A) exhibited peaks in the power
spectrum both around 115Hz and between 3 and 12Hz. DBS
(Figure 7D). The stimulation signal power 3–12Hz generated
oscillatory activity in model STN neurons in the low frequency
band that was larger than during 115Hz OL DBS. Thus, although
both stimulation methods reduced the power in the beta band,
they may act through different mechanisms.

The variations of DBS frequency and the corresponding
changes in beta band power in model GPi neurons during CL

DBS are shown in Figures 7A,B, respectively. The stimulation
began at t = 2 s, the initial stimulation frequency was set
to 5Hz, and the CL DBS system calculated the subsequent
frequencies automatically to drive the beta band power to the
target of 110. The mean stimulation frequency from 2 to 30 s
was 118.7Hz, and the mean beta power from 2 to 30 s was
114.3, while the mean beta power during OL DBS from 2 to
30 s was 111.3 (Figure 7C). Compared to OL DBS at 115Hz,
the CL DBS controller generated a wider distribution of power
in the stimulation frequency sequence (Figure 7D), and the
power present in the low frequency band of the stimulation
signal generated low frequency power in STN model neurons
during CL DBS (Figure 6D). The response time was shorter
for open loop 115Hz DBS (0.09 s) than for CL DBS (0.66 s);
however, the response time was strongly dependent on the initial
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FIGURE 7 | Variations of DBS frequency (A) and beta power of spike times from model GPi neurons during CL DBS (B) and regular 115Hz DBS (C). The stimulation

signal began at t = 2 s, and the beta power converged to the target of 110 at t = 2.66 s in (B) and at t = 2.09 s in (C). (D) The corresponding spectral power of the

stimulation sequence for this CL DBS example. (E) The relationship between the initial frequency of the CL controller and response time in the CL DBS system. The

initial frequency of CL DBS was randomly selected from a uniform distribution between 5 and 200Hz, and the corresponding response time was calculated across

200 trials.

value of frequency during CL DBS (Figure 7E). As the initial
frequency was increased the response time decreased, and when
the initial frequency was ≥60Hz, the response time for CL DBS
was <0.15 s.

To assess the robustness of the PI controller, we changed the
target beta power while keeping the PI parameters unchanged
(Figure 8A). Figures 8B–E illustrate the stimulation frequency
and beta power variation when the desired beta power was 140
and 180, respectively. When the target beta power was 140, the
response time was 0.89 s, and the mean stimulation frequency
was 74Hz. When the target beta power was 150, the response
time was 1.15 s, and the mean stimulation frequency was 56Hz.
When the target beta power was larger than 160, the tracking

performance declined. Thus, as the desired beta power was larger,
the convergence time of GPi beta power became longer. When
the target beta power was set to 60 (i.e., a value not achievable
with OL DBS, Figure 5), the calculated stimulation frequency
varied between 155 and 200Hz (mean= 177.8Hz), themean beta
power from 2 to 30 s was 82.3, and with OL DBS at 177.8Hz, the
mean beta power was 87.91.

Tracking of Dynamic Changes in Target
Beta Power
Beta power in the BG exhibits dynamic changes prior to and
during voluntary movement and a fixed target beta power may
not be appropriate for functional control of DBS.
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FIGURE 8 | Performance of the PI controller across different levels of target beta power. (A) The dotted line represented the value of desired beta power, and the solid

line represented the value of controlled beta power; standard error bars are shown for 50 trials. The variation of DBS frequency and beta power of model GPi neuron

spike times when the desired beta power was 140 (B,C) and 180 (D,E), respectively. The red solid line in (C,E) are the desired beta power value. The red dotted line

in (C,E) indicate the time when the controlled beta power reached the desired beta power.

Therefore, we tested the performance of the control system
with time-varying beta power. According to Figure 5, when
the stimulation frequency of regular DBS increased from 50
to 130Hz, the GPi beta band power decreased gradually from
220 to 110, and the beta band power tended to saturate at
DBS frequencies larger than 130Hz. Therefore, the target values
randomly selected from a uniform distribution between 110
and 220. The duration of the target value varied from 10 to
1 s (Figures 9a1–h1). The correlation coefficient between the
target beta power and actual beta power between 3.5 and 30 s
was calculated, as this mitigated the confounding effects of the
initial stimulation frequency. The tracking performance of the
CL DBS declined with the duration of the target value, and
when the duration was 10, 5, 2, 1, and 0.5 s, the correlation
coefficients were 0.83, 0.82, 0.71, 0.69, and 0.49, respectively.
Sinusoidal trajectories of target beta power with frequencies
ranging from 0.05 to 1 Hz were also tested. The BG model can
generate beta power between 90 and 200 during regular DBS, and
the minimum and maximum amplitude of the target sinusoidal
trajectories were therefore set to be 90 and 200, respectively.
The tracking performance and variation of stimulation frequency
of the CL DBS system are shown in Figures 9a2–h2, and the
correlation coefficient between the actual beta power and the
target trajectory was used to quantify the tracking accuracy.
The tracking performance declined with the increase in target
sinusoidal frequency, and the correlation coefficient was 0.85,
0.65, 0.49, and 0.17 for sinusoidal frequencies of 0.05, 0.3, 0.5,
and 1 Hz, respectively.

DISCUSSION

Beta band oscillatory activity in the BG is correlated with motor
symptoms in PD and may be a suitable biomarker for CL
DBS in PD (Little and Brown, 2012; Hoang et al., 2017). For
example, Arlotti et al. (2016b) and Little et al. (2013) used the
beta oscillation amplitude to control the on time of DBS. DBS
was delivered only when the beta-band oscillation amplitude
was larger than a pre-set threshold, which reduced energy
consumption compared to continuous DBS, while increasing the
therapeutic effects on motor symptoms. Subsequently, Dan et al.
demonstrated that this approach was also effective in a PD patient
with chronically implanted DBS (Piña-Fuentes et al., 2017). In
complementary modeling studies, Grant and Lowery designed a
CL DBS system to modulate the amplitude of DBS based on beta
band oscillations of LFPs, where the coupling strength within the
cortico-basal ganglia network was altered to illustrate the ability
of CL DBS to respond to changes in network activity (Grant and
Lowery, 2013).

However, beta oscillatory activity exhibits dynamic changes

(desynchronization) during movement, and Johnson et al. found

that a constant beta set point may not be suitable as CL DBS

performed poorly during reaching behavior (Johnson et al.,
2016). Therefore, if beta power is to be used as a feedback control
signal, a constant reference value might not be appropriate. In
more recent studies, DBS voltage was adjusted proportionally to
the STN LFP beta power, and this adaptive DBS reduced side
effects compared to traditional open-loop DBS (Rosa et al., 2015;
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FIGURE 9 | (a1–h1) The performance of the PI controller tracking dynamic changes in target beta power and the corresponding variation in stimulation frequency by

the CL DBS system. The duration of the target beta power was 10 s (a1), 5 s (c1), 2 s (e1) and 1 s (g1), respectively. The black line represents the desired beta power,

and the red line represents the actual beta power during CL DBS. (b1,d1,f1,h1) show the respective variations in stimulation frequency during CL DBS. When the

duration of target beta power declined from 10 to 0.5 s, the correlation coefficients between the desired and actual beta power were 0.83, 0.82, 0.71, 0.69, 0.49,

respectively. (a2–h2) The performance of the PI controller tracking sinusoidal trajectories at different frequencies and the associated DBS frequencies determined by

the CL controller. The black line in (a2,c2,e2,g2) represented the desired beta power, and the red line represented the actual beta power. When the frequency of

target sinusoidal trajectories increased from 0.05 to 1Hz, the correlation coefficients between the desired and actual beta power were 0.85, 0.65, 0.49, and 0.17,

respectively. Sinusoidal trajectories of target beta power with frequencies ranging from 0.05 to 1Hz were also tested. The BG model can generate beta power

between 90 and 200 during regular DBS, and the minimum and maximum amplitude of the target sinusoidal trajectories were therefore set to be 90 and 200,

respectively. The tracking performance and variation of stimulation frequency of the CL DBS system are shown in (a2–h2), and the correlation coefficient between the

actual beta power and the target trajectory was used to quantify the tracking accuracy. The tracking performance declined with the increase in target sinusoidal

frequency, and the correlation coefficient was 0.85, 0.65, 0.49, and 0.17 for sinusoidal frequencies of 0.05, 0.3, 0.5, and 1Hz, respectively.

Arlotti et al., 2018). In another alternative to simply reducing
oscillatory activity below a fixed threshold, Santaniello et al.
automatically adjusted the stimulation voltage in a mathematical
model to match a desired profile of oscillatory neuronal activity
(Santaniello et al., 2011). During go/no-go voluntary movements,
dynamic changes in beta band power occur at 0.3–1Hz (Sanes
and Donoghue, 1993; Zaepffel et al., 2013). The proposed
controller could track dynamic changes slower than 1Hz, and
thus such an approach may account for the dynamic changes
in beta oscillatory power that occur during movement. Instead
of simply switching the stimulation on and off, or adjusting the
stimulation amplitude, the controller regulated the stimulation
frequency in real time. If the variation in beta band power
during a wide range of movements was known a priori, such a
closed-loop system that modulates stimulation frequency to track
dynamic beta oscillatory activity may facilitate a wide range of
individual patient motor behaviors.

The proposed closed-loop stimulation algorithm was
simulated using a validated CTx-BG-Th model (Kumaravelu
et al., 2016). There are several other potential models of the

network effects of DBS, which might be used for development
and evaluation of closed-loop controllers. Hahn and McIntyre
developed a network model of the effects of DBS in the STN of
the parkinsonian non-human primate, and demonstrated that
effective DBS suppressed burst activity in the GPi (Hahn and
McIntyre, 2010). Subsequently, Holt and Netoff implemented
a mean field version of this model and analyzed the effects of
different frequencies of DBS (Holt and Netoff, 2014). Similarly,
Santaniello et al. (2015) implemented a network model of
the effects of STN DBS in the parkinsonian non-human
primate and demonstrated the importance of both antidromic
and orthodromic activation. We selected the Kumaravelu
et al. network model because it replicated a wide range of
electrophysiological data from the unilateral 6-OHDA lesioned
rat model of PD (Kumaravelu et al., 2016) thereby facilitating
subsequent in vivo evaluation of the controller.

The proposed CL DBS controller was successful at regulating
the beta oscillatory activity of spike times of model GPi
neurons to track different beta reference values. The stimulation
frequency was automatically calculated by the PI controller, and
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PI parameters were calculated using stability analysis of the
system rather than trial-and-error adjustment (Gorzelic et al.,
2013). However, there were several potential limitations of the
proposed CL DBS method. The identified linear CAR model
described only 80% of the relationship between the stimulation
frequency and the beta power. Therefore, although the PI
controller was robust to changes in the reference beta power,
the dynamic changes in beta power could be tracked well only
at frequencies of ≤1Hz. When the target beta power changed
faster than 1Hz, the tracking error increased, likely as a result of
the unmodeled dynamics. In subsequent trial-and-error tuning,
it appeared that the best PI controller parameters were different
for different beta power targets. Thus, adaptive controllers that
modulate the PI controller parameters with the variation of
target beta power may improve the tracking performance for
dynamic reference signals. The CTx-BG-Th network was highly
non-linear, and performance might also be improved using a
non-linear controller. The beta oscillatory power was selected
as the biomarker in this study, however, other biomarkers
such as the spike time entropy (Dorval et al., 2008) and
phase amplitude coupling (de Hemptinne et al., 2015) are also
correlated with parkinsonian symptoms, and might be suitable
feedback control signals. The application of other biomarkers
or multiple biomarkers in the design of closed-loop stimulation
for PD is worth exploring (Hoang et al., 2017). The controller
regulated the stimulation frequency, but the effects of DBS are
also dependent on the pulse amplitude, pulse duration, and
stimulation pattern (Kuncel and Grill, 2004; Grill, 2018). Further,
Holt et al. demonstrated that the effects of burst DBS in a network
model of the basal ganglia (Hahn and McIntyre, 2010) were
strongly dependent on timing relative to the phase of oscillatory
activity (Holt et al., 2016).

We demonstrated successful tracking of different dynamic
beta power reference signals, and the simulated dynamic
targets could represent different movements of PD patients.
Thus, an important challenge to implement the proposed CL

DBS approach experimentally or clinically is to determine

the relationship between reference beta oscillation power and
the movement. In addition to real-time electrophysiological
recording, movement sensors might also be useful to establish the
dynamic reference signal.

CONCLUSION

CL DBS was proposed to reduce energy consumption and
alleviate side effects compared to continuous fixed-parameter
DBS. This requires design of a suitable closed-loop system that
can account for dynamic changes in the feedback signal that
occur during voluntary movement. We used the beta oscillatory
power of GPi model neuron spike times as a biomarker of
model state, and used a PI controller to calculate the DBS
frequency according to dynamic variations in the beta power.
This closed-loop adjustment of stimulation frequency approach
was tested in a computational model of the CTx-BG-Th network
and was able to track constant as well as dynamic beta
oscillatory activity.
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Directional deep brain stimulation (DBS) leads have recently been approved and used
in patients, and growing evidence suggests that directional contacts can increase
the therapeutic window by redirecting stimulation to the target region while avoiding
side-effect-inducing regions. We outline the design, fabrication, and testing of a novel
directional DBS lead, the µDBS, which utilizes microscale contacts to increase the
spatial resolution of stimulation steering and improve the selectivity in targeting small
diameter fibers. We outline the steps of fabrication of the µDBS, from an integrated
circuit design to post-processing and validation testing. We tested the onboard digital
circuitry for programming fidelity, characterized impedance for a variety of electrode
sizes, and demonstrated functionality in a saline bath. In a computational experiment,
we determined that reduced electrode sizes focus the stimulation effect on small, nearby
fibers. Smaller electrode sizes allow for a relative decrease in small-diameter axon
thresholds compared to thresholds of large-diameter fibers, demonstrating a focusing
of the stimulation effect within small, and possibly therapeutic, fibers. This principle of
selectivity could be useful in further widening the window of therapy. The µDBS offers a
unique, multiresolution design in which any combination of microscale contacts can
be used together to function as electrodes of various shapes and sizes. Multiscale
electrodes could be useful in selective neural targeting for established neurological
targets and in exploring novel treatment targets for new neurological indications.

Keywords: deep brain stimulation, directional electrodes, electrode fabrication, computational modeling, neural
targeting

INTRODUCTION

Deep brain stimulation (DBS) is a widely accepted therapy for several movement disorders and
an emerging therapy for psychiatric disorders and additional movement disorders. From its first
FDA approval for essential tremor in 1997, the physical design of DBS leads has remained largely
unchanged (Eisinger et al., 2019). A cylindrical shaft with four cylindrical electrode contacts

Frontiers in Neuroscience | www.frontiersin.org 1 October 2019 | Volume 13 | Article 115251

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01152
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01152
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01152&domain=pdf&date_stamp=2019-10-29
https://www.frontiersin.org/articles/10.3389/fnins.2019.01152/full
http://loop.frontiersin.org/people/248672/overview
http://loop.frontiersin.org/people/831601/overview
http://loop.frontiersin.org/people/76903/overview
http://loop.frontiersin.org/people/803318/overview
http://loop.frontiersin.org/people/33795/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01152 October 25, 2019 Time: 17:22 # 2

Anderson et al. Multiresolution, Directional Deep Brain Stimulation

defines the classic lead design. In this manuscript, we present
a novel neurostimulation device that assembles multiresolution
electrodes from microscale contacts to enable fine control of
the stimulation volume and an improved capability to target
small-diameter fibers.

In recent years, the FDA has approved more lead designs from
major neuromodulation companies, however, these leads differ
minimally from the classic quadripolar lead design. Moderate
advances to the classic lead design involve contacts capable of
directionally focusing stimulation, typically by having two of
the four contacts subdivided into three smaller contacts each.
These smaller, directional contacts allow for directional steering
of the activation field to, ideally, activate the target structure
while avoiding side-effect-inducing regions that might reduce the
window of therapy.

Directional stimulation has already been clinically
demonstrated to widen the therapeutic window by steering
stimulation away from regions that may be responsible
for inducing side effects (Steigerwald et al., 2016; Dembek
et al., 2017). Other experimental lead designs have further
subdivided contacts to allow for finer directional control and
have shown promising results at widening the therapeutic
window (Contarino et al., 2014; Pollo et al., 2014). However,
the fundamental limitation in repeatedly subdividing contacts
is enclosing enough wires for each contact within the lead shaft
without increasing the width of the lead. With the technology
available today, the ability to increase the number of stimulation
electrodes will remain limited without further advances in
lead technology.

We propose a novel directional DBS device, the µDBS,
with hundreds of individually controllable contacts capable
of stimulation and recording. Using onboard circuitry, the
lead can stimulate using any combination of contacts at
7 independent voltage states with only 12 input wires.
Multiresolution electrode sizes and complex monopolar and
bipolar configurations are achievable by grouping contacts
according to the desired stimulation bus lines. Such flexibility
enables electrodes to scale in size from the ∼6.0 mm2

of the classic clinical electrode down to the ∼0.02 mm2

of a single µDBS contact. Here, we outline the design
steps, fabrication, and bench testing of this novel, multi-
resolution DBS device.

We aim to create a DBS device with the capability of
stimulating through variously sized electrodes composed of
contacts that are orders of magnitude smaller than those
currently available in the clinic. In many instances, the
side-effect-inducing regions comprise larger fibers than those
most associated with therapeutic benefit (Lang et al., 1999;
Chaturvedi et al., 2010). In this paper, we expand upon
our recent computational work that smaller electrodes more
efficiently activate small diameter fibers over large diameter
fibers (Anderson et al., 2019). Smaller contacts may also
widen the therapeutic window by preferentially activating
smaller, therapeutic fibers over larger, side effect-inducing fibers.
The present work supports that multiresolution stimulation
devices can substantially improve neuromodulation efficiency
and selectivity, and demonstrates the practicality of building

one such device, the µDBS, as part of the next generation of
neuromodulation therapy.

MATERIALS AND METHODS

We designed a novel DBS lead, the µDBS, as a microelectrode
array appropriate for deep brain stimulation. This new lead
has a similar scale to those used clinically, but comprises 864
microscale contacts instead of 4 large contacts. This design
expands upon our first iteration of the µDBS (Willsie and Dorval,
2015b) with an improved fabrication process, slightly larger
stimulation contacts, and increased stimulation flexibility via the
incorporation of seven (cf. three) stimulation bus lines. The novel
lead is fabricated using silicon wafer-based technology, and its
on-board digital circuitry allows for full control to open or close
any combination of the 864 contacts using only 12 input wires.
The small contact size on the µDBS—0.0225 mm2 compared
to the 6 mm2 for the clinical electrode (Lanotte et al., 2002)—
allows for the µDBS to have 864 total contacts and still match
the overall size of clinically available leads, having a width of
1.27 mm (Figure 1A). A complete lead is assembled from four
silicon chips consisting of 216 contacts each: two pairs of flat
chips are assembled front-to-back, and the two pairs are slid
past each other to form a plus-shaped cross section (Figure 1B).
Through our redesign of DBS lead technology, the µDBS is
the first DBS lead of similar size to the clinical leads capable
of stimulating through multiresolution electrodes made up of
hundreds of microscale contacts.

Design and Fabrication
In order to achieve hundreds of individually controllable
contacts, the µDBS must have on-board digital circuitry, unlike
modern DBS leads that have a single wire to power each
conductive contact. Each µDBS contact is programmable to
eight possible states using three-bit digital logic (23 = 8). Seven
of the eight states tie the contact to bus lines that can be
used to stimulate or record, and the last state is reserved
as an unconnected, floating state. Each bus line active state
is independent from the others, which allows for flexibility
in stimulation, frequency, pulse width, and waveform shape
for each electrode used on the lead. Having these multiple
independent sources allows for greater spatial and temporal
flexibility in stimulation shaping since electrodes could take
on various shapes, be used in complex multipolar and bipolar
configurations, and deliver unique stimulation waveforms.

Programming the device requires transmitting a serial
program of three-bit “words,” where each word determines the
bus line to which the contact will be tied. Each contact stores three
bits of information across a shift register (serial cascade of three
flip flops) and advances each bit during the falling phase of a clock
signal until all contacts have been programmed to the intended
state (Figure 2A). We tested whether contact states could be
theoretically programmed using three-bit digital logic through
the simulation of a single contact circuit prior to fabrication by
X-FAB (Figure 2B). Given the presence of onboard circuitry and
the serial nature of the circuit design, all contacts are controllable
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FIGURE 1 | (A) Clinical deep brain stimulation electrode (left) with four contacts, and the µDBS (right) with hundreds of contacts. (B) The µDBS electrode is
assembled from four total flat chips, with two flat chips paired back to back. The paired chips are assembled together to form a “+” shape when viewed from above.

FIGURE 2 | Design and simulation of a single contact unit on the µDBS. (A) Single contact circuit diagram with three-bit digital logic for the gating of seven bus lines.
(B) Simulation demonstrating programming of different bus lines on a single contact in Cadence ADE XL. With the example bit stream, 011101000, we demonstrate
programming the flip flop states at the falling phase of the clock signal. (C) Integrated circuit layout design of a single contact used in the simulation (left),
post-fabrication view of the VLSI design (middle), and view of contact after gold application in post-processing (right). Note that for any moment in time, at most 1 of
the 7 bus lines can be connected to a contact (large, bright gold square at right) through one of its three subcontact conduits (small, dull white squares shown in the
middle panel).

with a minimal number of wires using five inputs (input program,
clock, power, ground, power switch) and up to seven different
bus line inputs.

A layout design was made in Cadence Virtuoso using the
XC06 (0.6 µm) technology package from X-FAB foundry (X-FAB,
Erfurt, Germany). Circuitry for a single contact unit can be found
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in the left panel of Figure 2C, and the VLSI design was validated
using the Cadence ADE XL package. Images of the single
contact post-fabrication and post-processing can be found in
Figure 2C, in the middle and right panels, respectively. Circuitry
associated with one contact resides within a 165 µm × 165 µm
patch, enabling a total contact size of 150 µm × 150 µm with
15 µm spacing between contacts. The primary fabrication of the
design was performed by X-FAB, and post-processing fabrication
work was performed in the Utah Nanofab Cleanroom at the
University of Utah.

The foundry-fabricated chips include three small subcontact
pads per contact unit that underwent further processing to be
linked into a single contact (see Figure 2C). Additionally, the
unprocessed contact pads used Al contacts (0.5% Cu) which
are not biocompatible. Chips from the foundry were sputtered
with a titanium adhesion layer (∼30 nm), followed by ∼270 nm
of gold, which is non-toxic and non-reactive to tissue (Merrill
et al., 2005). Afterward, the chips underwent photolithography
and patterning of negative photoresist (AZ nLoF 2020) in the
shape of the desired contact size, at 150 µm × 150 µm (Figure 3).
We exposed the patterned chips to a gold etch (8% I2, 21% KI,
71% DI) and a titanium etch (20:1:1 DI:HF:H2O2) to clear the
titanium/gold layer from non-contact areas. Afterward, we diced
the test structures placed during fabrication along the edge of
the chip to match the width of the clinical electrode sizing of
1.27 mm using a diamond blade saw 70 µm in width. Following
the post-processing and cutting of the device, we mounted and
wirebonded the chips using aluminum wire onto a custom-
printed PCB to enable µDBS programming through a computer.
An interface piece of silicon with gold traces was used to facilitate
wirebonding from the µDBS chip to the PCB.

The design and fabrication steps discussed in this section
outline novel technology necessary to build DBS leads capable
of multiresolution electrode sizes for unprecedented stimulation
flexibility. The onboard circuitry and three-bit programming
logic enables each contact to be individually controllable, and full
functionality of the device can be achieved through only twelve
wires. In the following section, we demonstrate functionality of
the µDBS design through a series of programming, impedance,
and stimulation bench tests.

Validation
We assessed our ability to program the µDBS through a series
of bench tests. In the scope of this section, we examined the
functionality of the µDBS by fabricating and testing single flat
chips that have 216 contacts each. The first instance of testing
determined the accuracy of programming an intended contact
configuration (Figure 4A). We measured the success rate of
programming each contact state during the falling phase of
the clock cycle. A numerically randomized series of 648 binary
numbers (i.e., ones and zeros) was generated to program three
bits on each of the 216 contacts using an Arduino programming
setup, repeated five times per chip at six different clock speeds.
Programming errors were quantified on a total of ten chips by
comparing the fidelity of the bit program after it had passed
through the chip to the series of bits that were programmed into
the chip. The Arduino setup — essentially serving as the analog

to an implanted pulse generator — was used to simultaneously
power the device, generate the randomized programming file
used to set contact states, and verify programming fidelity
of the µDBS.

Additionally, we measured changes in impedances in a saline
bath based on the number of contacts recruited. Increasing
the number of contacts recruited to a single bus line increases
the surface area of the effective electrode. The total electrode
impedance was expected to vary with approximate inverse
proportionality to the electrode surface area. To test proper
contact recruitment, we prepared a saline solution (0.1 w/v%
NaCl)—with approximately the conductivity of brain tissue
(0.2 S/m)—to simulate the expected impedance of the electrode
when exposed to a biological environment. Impedances were
measured on a commercial electrochemical test system (Gamry
Instruments PC4 Potentiostat, Warminster, PA, United States)
across a Ag/AgCl reference electrode, a Pt wire counter electrode,
and active contacts of the µDBS as the working electrode
(Figure 4B). Impedances were quantified over a frequency range
of 10 Hz to 10 kHz with a sinusoidal input voltage of 10 mV. The
number of active contacts constituting the active µDBS electrode
varied from 1 to 108, and each configuration was repeated three
times for each of three chips.

Finally, we experimentally measured the stimulation field
produced by the µDBS for two electrode configurations using
a Ag/AgCl voltage probe manipulated by a computer numerical
control (CNC) machine in a saline bath that matched the
conductance of neural tissue (Figure 4C). The CNC machine
moved the probe at a 0.5 mm resolution in a 20 mm × 10 mm
grid in front of the µDBS chip in the saline solution, and voltage
profiles were recorded by a separate recording Arduino setup
linked to the CNC machine. The purpose of this experiment was
to verify that stimulation can be done with simultaneous bus
lines at different settings. The chip was functionally split in two,
with 48 contacts on one half of the chip tied to bus line A and
another 48 contacts on the other half tied to bus line B. For one
condition, bus line A was 1.5 V and bus line B was 3.0 V with
100 µs, charge-balanced pulses; for a second condition, the bus
lines were swapped. Stimulation profiles were collected for one
chip in three trials for both conditions to evaluate whether the
measured fields generated by the contacts were consistent with
their bus line assignments.

Computational Model
To support the need for a multiresolution device with contacts
as small as 150 µm × 150 µm, we simulated computational
axon models to assess the influence of varying electrode sizes
on neuronal activity. Each vertical column on the µDBS
comprises 36 contacts. We ran bioelectric field solutions in
SCIRun 4.7 (Scientific Computing and Imaging (SCI), Institute,
University of Utah, Salt Lake City, UT, United States) for 1–36
adjacent contacts within a column set to −1 V each with the
surrounding box set to 0 V. These configurations resulted in
electrode sizes from 150 µm × 150 µm to 150 µm × 6 mm.
We implemented a high-resolution submesh with 0.1 mm
spacing around the electrode, as we have described previously
(Anderson et al., 2018b, 2019), and we set tissue conductivity
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FIGURE 3 | Design architecture for µDBS post-processing. Fabricated chips (0) undergo gold deposition (1) and are covered with AZ nLoF 2020 negative
photoresist (2). Photoresist is exposed to UV light according to the desired contact layout through a photolithography mask and regions of photoresist not exposed
to light are removed (3). Gold and titanium layers are etched away from regions not covered by photoresist to define the gold contacts (4). Remaining photoresist is
washed off (5) and the chips are diced to the appropriate size (6). Connection pads are wirebonded to test PCBs (7) to enable device programming and functionality
testing. Silicone was used to insulate non-contact regions from water exposure during the validation experiments.

FIGURE 4 | µDBS experimental and computational setup. (A) Experimental setup for programming requires only input/output information from the µDBS chip
interfaced with the Arduino and computer. (B) Impedance testing requires a potentiostat connected to one bus line of the µDBS, a Pt counter wire, and an Ag/AgCl
reference wire in a saline bath. (C) Bath testing uses a CNC machine to move a voltage probe in the saline bath around the µDBS. Voltage recordings run through a
peak detection circuit and on to the Arduino for recording. (D) A lead-in-the-box model was used to simulate the voltage spread; multicompartment models were
used to measure the effects of contact size on activation for 2.0, 5.7, and 10.0 µm diameter axons.

to 0.2 S/m (Figure 4D). Non-contact regions of the µDBS were
modeled as ideal insulators, and the contacts were modeled
as ideal conductors. Axons of various diameters — 2.0, 5.7,
and 10.0 µm — were placed parallel to the lead in 0.1 mm
increments, from 0.1 to 10 mm away. The vertical axonal
orientation was chosen to match that of the active electrode on
the µDBS, to explore the effects of electrode size on neuron
activation patterns. Simulations were run in NEURON 7.4 using
the MRG neuron model (McIntyre et al., 2002), on which
modeled extracellular potentials were mapped directly onto node,

paranode, and internode segments. Thresholds were identified
for a 90 µs charge-balanced pulse at ∼0.01 V resolution to
quantify the role of electrode size on neural selectivity as a
function of fiber diameter.

RESULTS

We conducted bench testing to evaluate the functionality of
the fabricated and post-processed µDBS chips. We determined
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whether chips met our design specifications, as well as
whether contacts could be programmed and recruited into
larger electrodes through programming testing and testing
in a saline bath.

Design Verification
A series of sixteen chips were slated for post-processing and
subsequent testing. Of those, six were irrevocably damaged,
primarily at the wirebonding post-processing step. Table 1
summarizes the design specifications and results retrieved for
the ten surviving chips. Final chip widths were ∼1.29 mm, and
well within 5% tolerance of 1.27 mm design specification used
to match the clinical lead. Most devices (7/10) met our form-
factor and bus line acceptance criteria. In the other devices
(3/10), wirebonding failed to connect all seven bus lines; but
note that these chips could still be used with somewhat reduced
flexibility through their 4–6 functioning bus lines. We attempted
gold contact patterning on eight of the ten chips, and they all
met acceptance criteria. On average, the gold contact widths
and heights measured slightly smaller than designed, possibly
because of chemical undercutting from the gold and titanium
etch during photolithography. To accommodate this undercut
in future iterations, we will simply enlarge the contacts in the
photolithography mask. In summary, gold contact patterning
was universally successful, and the majority of chips met all
acceptance criteria; for chips that did not meet acceptance
criteria, wirebonding was the most common failure point.

Programming Testing
We tested ten µDBS chips for programming fidelity (Figure 5):
chips must be programmed properly in order to stimulate
properly. We randomized a series of (216 contacts × 3
bits/contact =) 648 bits for each programming trial, to give
a diverse range of maximally disordered configurations. The
minimal programming duration for a single chip was limited
to ∼2.7 s by the maximal clock rate of the Arduino device we
used for programming. Since a complete µDBS lead comprises
four flat chips, programming an entire lead with this device

would take ∼10.8 s in total. Programming times of 2.7–14.3 s
at six different clock speeds were tested five times each, for
a total of thirty programming sessions per chip. Some chips
exhibited no mutation errors in any session, and there was no
significant relationship between programming time and error
rate (Figure 5C, p = 0.97, ANOVA). Thus, chips could likely
be programmed in much less than 2.7 s, given appropriately
high-clock rate controllers.

Figure 5A reports that three chips (#’s 8–10) did not have
any errors regardless of settings, and four others (#’s 4–7)
had relatively rare and/or constrained errors. In one of its
thirty trials, chip #7 encountered a single deletion error, where
one missed bit initiated a cascade effect resulting in many
improperly set contacts in that one trial. However, most of the
errors were programming mutations, where one bit was toggled
inappropriately. Because individual contacts are so small and
operate in parallel with the other contacts composing a shared
electrode, lone mutation errors would not substantially impact
functionality. Across all randomized trials, >95% of errors arose
from a mutation toggling one bit from a low to a high state, which
indicates possible crosstalk between programming connections.
Contact errors are summarized in heat maps on each chip
in panel Figure 5B. Most errors on any given chip recurred
at similar locations — denoted with yellow-to-red coloring —
which may indicate circuit damage that could have occurred
during handling.

Electrode Testing
The programming tests verified that each contact received an
appropriate bus line command, but verifying that the contacts
successfully link to the intended bus line requires electrical
testing of the electrodes. For electrical testing, we submerged
µDBS chips in a saline bath and programmed them. In separate
experiments, we measured the effective impedance of electrodes
built from various numbers of contacts, and assessed the spatial
voltage profile generated by two separate electrodes driven by two
separate bus lines on the same chip.

TABLE 1 | Design verification to determine whether devices met design specifications.

Design
Specification

Median Mean ± Standard Error Distribution Acceptance
Criteria

Criteria
Achieved

Chip width 1.27 1.2935 1.2928 ± 0.001861 (±5%) 10/10

Number of buslines 7 7 6.3 ± 0.37 (7/7) 7/10

Number of contacts 216 215 213.5 ± 1.55 200/216 8/8

Contact width, µm 150 142.5 141.75 ± 1.19 (±10%) 8/8

Contact height, µm 150 140.5 141.375 ± 1.28 (±10%) 8/8

I/O Contact width, µm 165 158 157.5 ± 1.9 (±10%) 8/8

I/O Contact height, µm 200 196.5 196.875 ± 1.3 (±10%) 8/8
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FIGURE 5 | Programming validation of µDBS chips. (A) Characterization of contact errors for 10 µDBS chips across 30 trials each, with incorrectly programmed
contacts denoted as a dot (top), and as percentage distribution intervals (95/75/50/25/5) of contact errors (middle) and bit errors (bottom). Programming errors are
largely chip-specific, with 3 chips (#’s 8–10) not displaying any programming errors. (B) Heatmaps of programming contact errors for each chip demonstrate that
errors cluster on similar regions for each chip. (C) There was no significant trend that programming time affected programming error rate, indicating that chip-specific
programming errors are independent of the clock rate.

Three chips were submerged into saline solution and
connected to a computer for programming and a potentiostat
for impedance testing according to Figure 4B. Impedances were
recorded on each chip for electrodes programmed to range from
1 to 108 contacts, for a range of frequencies. Each recording was
repeated three times, and the resulting impedance magnitude and
phase spectra are shown in Figure 6A. Consistent with studies
of other electrodes, impedances were higher at lower frequencies
due to capacitance at the electrode-tissue interface.

As expected, impedance was inversely proportional to the
electrode surface area — i.e., the number of active contacts—
supporting that the contacts were properly programmed and
linked to the appropriate bus line. Figure 6B summarizes
impedance values at 1 kHz, the frequency most commonly used
to report impedances of clinical DBS devices. At 1 kHz, a single
contact has an impedance of ∼180 k�, yielding an effective
electrode impedance of ∼180 k� divided by the number of
constitutive contacts. Thus, an electrode comprising 90 contacts
has a surface area of ∼2.0 mm2 and an impedance of ∼2.0 k�,
matching (to within a few percent) the corresponding parameters
of clinically approved directional electrodes (Butson et al., 2006;
Rebelo et al., 2018).

Finally, the field-testing experiment from Figure 4C was
performed on one chip to validate stimulation fields generated
from two simultaneously active bus lines (Figure 6C). Two
groups of 48 contacts on each half of the chip were tied to one

of the two bus lines. In the two conditions tested, either bus line
A was greater than bus line B, or vice versa. The voltage probe,
traveling in a 20 mm × 10 mm grid in front of the stimulation
electrodes, recorded a shift in the peak voltage based on which
side of the µDBS lead was tied to the larger amplitude bus line
(p < 0.00001, two-sample t-test). Although our experimental
configuration did not allow for a comprehensive mapping of the
voltage field, these results demonstrate that the distinct electrodes
on opposite sides of a µDBS chip are capable of properly
stimulating with separate voltage signals.

Computational Experiment
Our final experiment demonstrates a possible advantage to a
multiresolution device like the µDBS. We modeled individual
axons in NEURON responding to voltage fields generated via
µDBS electrodes as simulated in SCIRun. Initial electrodes were
modeled as 9 vertically stacked contacts, or a 1.47 mm electrode
height, to approximate the extent of standard cylindrical DBS
electrodes. Modeling axons of three diameters—2.0, 5.7, and
10.0 µm—running parallel to the electrode, we positioned each
fiber to its threshold distance at which a −1 V stimulation elicited
an action potential. We then varied the number of active contacts
within the electrode from 1 to 36, and determined the threshold
voltage at which each axon fired (Figure 7).

The distance from the electrode surface at which larger axons
can be activated is greater than the activation distance for
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FIGURE 6 | Impedance and bath testing validation. (A) Magnitude and phase of impedance for 1 through 108 contacts activated. Impedance decreased at higher
frequencies. (B) Impedance was inversely proportional to surface area. Average impedance for a single contact was 178.4 k�, with a trend toward increasing with
the number of active contacts. (C) Bath testing demonstrates a directional shift in the normalized voltage field depending on the relative amplitudes of the electrode
voltages.
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FIGURE 7 | (A) Multicompartment axon models were run with diameters of 2.0, 5,7, and 10.0 µm in response to stimulation from 1 to 36 contacts on the µDBS.
(B) Maximum activation distance (mm) for each fiber size based on electrode size at –1 V (top) and –3 V (bottom). Large-diameter fibers can be activated at greater
distances away from the electrode. For smaller diameter fibers, larger electrode sizes reduce activation spread. (C) Firing threshold was normalized to –1 V amplitude
at 9 contacts on, which is approximately the height of classic DBS contact of 1.5 mm. A multi-resolution device may be useful to target different diameter fibers; as
shown in the right panel, smaller contacts activate small diameter fibers at 65.75% efficiency over 5.7 µm fibers, and require about 113.1% additional voltage to
activate the same 10.0 µm fibers. Larger contact sizes preferentially activate large diameter fibers, with about 50% lower thresholds relative to 5.7 µm fibers.

smaller axons for all electrode sizes. Initially, as the electrode
size increases, activation spread increases, however, for smaller
diameter fibers the extent of activation reduces as electrode
size continues to increase, especially with 2.0 µm fibers. When
considering relative activation across different fiber sizes, smaller
electrodes preferentially excited smaller axons. In the extreme
case of a single-contact electrode (i.e., 150 µm), 2.0 µm fibers
were activated at 66 and 58% of the 5.7 and 10.0 µm fiber
thresholds, respectively (Figure 7C, right). Conversely, larger
electrodes preferentially excited larger axons. In the extreme case
of a 36-contact electrode (i.e., ∼6 mm), 10.0 µm fibers were
activated at 50 and 36% of the 5.7 and 2.0 µm fiber thresholds,
respectively. Thus, the ability to use smaller electrodes may
open the therapeutic window by increasing the activation of
small, nearby, and likely therapeutic fibers, while decreasing the
activation of large, distant, and likely side-effect inducing ones.

DISCUSSION

This manuscript discusses fabrication and testing of the µDBS
device, a novel DBS lead with hundreds of individually
controllable contacts. We proposed a novel approach to DBS lead
design and assembly using silicon-based wafer technology that
incorporates onboard circuitry capable of recruiting electrodes
in essentially innumerable shapes, sizes, and configurations.
A complete µDBS device is composed of four silicon chips,
each with 216 contacts, assembled in a plus-shaped configuration
(Figure 1B). The manuscript reports on validation tests on
flat chips, of which four are needed for the full µDBS device.

However, additional work is required to package the complete
device and ensure its longevity in tissue and future tests must
be conducted to quantify tissue damage during lead insertion
to evaluate safety of this novel lead geometry. Assembly of the
full µDBS device was not done in this manuscript, but we have
previously shown mechanical stability in the 3D configuration
(Willsie and Dorval, 2015b). For the chips tested, silicone was
used to encase wirebonds and traces exposed on the PCB in the
saline bath, but better packaging is necessary for chronic animal
studies. In this manuscript, we have demonstrated feasibility of
a novel DBS device design and have highlighted the benefits of
leads that can stimulate through multiresolution electrodes.

The inclusion of onboard circuitry enables full control of the
hundreds of contacts on the µDBS with a minimal numbers
of input wires. Clinically approved devices (Medtronic, Boston
Scientific, and Abbott Laboratories) require a separate wire for
each contact that must fit in the lead shaft and pass under the
skin to a pulse generator in the chest; such a design limits the
manufacturing feasibility of increasing the number of contacts
on a device. Other silicon-based neural probes, such as those
created by NeuroNexus, do not use onboard circuitry and would
be similarly limited in the total number of wires capable of being
connected to a lead. The incorporation of onboard circuitry,
however, adds possible failure modes to the lead design, as
demonstrated in our programming testing, in which not all of the
ten chips tested could be reliably programmed, with damage to
the onboard circuitry being the likely culprit. The programming
experiment in Figure 5 demonstrates that errors, which could
arise and incorrectly assign contacts to bus lines, are device
dependent and cluster together on the chips, however, some
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chips did not display any programming errors regardless of
programming time. Specifically, we found that the transition
from 0 bit to 0 bit states was the most common mutation error
(95%) during randomized bit programming. It may be possible
in the future to reduce these programming errors by reducing
the noise in the onboard circuitry with improvements in the
integrated circuit design. Finally, inclusion of onboard circuitry
increases the energy demands of the lead, and in the current
iteration, the µDBS must be powered during programming and
stimulation. It may be possible, however, to improve circuit
efficiency and explore strategies to reduce energy usage by
powering the device only during stimulation pulses and not
during the interpulse period.

The impedances reported for individual contacts were around
180 k� on average for three chips, but single contact impedances
varied on a chip-by-chip basis, which may be the result of slight
variations in the post-processing of chips shown in Figure 3.
FDA safety standards of charge density would need to be
followed during stimulation parameter selection, especially for
small electrodes sizes. For small electrodes, resulting volumes
of tissue activated would be small since very little charge could
be injected into the tissue while staying within safety limits.
Alternative processing techniques in future work could decrease
the impedance of individual contacts to facilitate stimulation of
tissue. These techniques could include the deposition of other
metals, such as iridium oxide, with an increased effective contact
surface area through its coral-like structure (Negi et al., 2010),
or platinum iridium, as used in clinically approved devices.
As shown in Table 1, our gold contact sizes were slightly
smaller than originally intended, contributing to the higher
impedance values, however, compensating for underetching by
using larger contact masks in future iterations will decrease the
contact impedances.

The novel design of the µDBS does not merely enable
smaller electrode contacts, but also offers the ability to combine
individual contacts into larger electrodes, even larger than what
is clinically available. The total surface area of a stimulation
electrode depends on how many contacts are tied to the same
bus line, which is demonstrated in Figures 4A,B. Contacts
grouped together function as larger electrodes and can mimic
the size of clinical contacts, having similar impedances to
those recorded in the clinic. The differing impedance levels
recorded based on surface area demonstrates that contacts can
be recruited appropriately for larger electrodes. Multiresolution
stimulation contact sizing affords the µDBS an unprecedented
level of flexibility, which could be useful in both research and
clinical applications. Multiresolution electrodes can be especially
beneficial in the customization of volumes of tissue activated
based on patient-specific brain imaging and neural targets.
Finally, flexibility in electrode sizes could be useful as more
neurological disorders, especially psychiatric disorders with fiber
tracts as targets, are being investigated for DBS therapy. Given
that it would be impossible to manually choose optimal contact
configurations for such a device, we have previously published
an optimization algorithm that can identify optimal contact
amplitudes and configurations in near real-time based on patient-
specific imaging and neural structures (Anderson et al., 2018b).

The large number of electrode configurations and the seven
possible voltages states through the seven bus lines on the µDBS
allow for highly precise activation field shaping. We tested field
shaping through recorded voltage profiles in a saline bath with
two groups of contacts tied to one of two active bus lines, with
one bus line set to twice the amplitude of the other. When the
bus lines were swapped, there was a notable shift in the voltage
field, and this demonstrates how the µDBS is able to recruit
contacts to separate bus lines simultaneously (Figure 6C). We
have previously shown through computational modeling that
the µDBS is capable of precise field steering given instances
where lead placement error has resulted in suboptimal lead
placement off from its target by a few millimeters (Willsie and
Dorval, 2015a). Our directional steering work using the µDBS
corroborates other studies for different directional lead designs
which have shown that smaller, directional contacts are able
to activate neural structures while avoiding side-effect-inducing
regions (Contarino et al., 2014; Pollo et al., 2014; Steigerwald
et al., 2016; Dembek et al., 2017). Additionally, we have found that
the use of smaller contacts goes beyond improved field shaping
capability: smaller electrodes increase the selectivity of smaller
axons compared to larger axons (Figure 7). Mechanistically,
we believe that this selectivity is due to the smaller internode
spacing of small-diameter axons which can more readily detect
the spatially fine changes in the voltage field cased by smaller
sized contacts. An increased selectivity for smaller diameter fibers
could be used to improve therapeutic DBS since smaller fibers are
typically associated with clinical benefit whereas larger fibers are
more associated with side effects (Lang et al., 1999; Chaturvedi
et al., 2010). For the computational selectivity experiments in this
manuscript, we limited our study to vertical neurons to match
the orientation of the contacts on the µDBS we studied, but as we
previously have shown, different neuron orientations can change
the activation profiles (Anderson et al., 2018a).

CONCLUSION

The µDBS is a novel DBS device with hundreds of microscale
contacts and seven independent voltage states capable of fine
control of stimulation fields through multipolar and complex
bipolar configurations. This device lays the groundwork for
the technology required to increase lead complexity that will
allow for more stimulation contacts without the addition of
more wires, and may enable the field of DBS technology
to move from the initial DBS design that has been used
for decades toward directional leads with a much greater
number of smaller contacts. This device is the first of
its kind that features multiresolution electrodes, which can
be used to morph stimulation fields to the often irregular
size and shape of neural targets and can offer stimulation
flexibility in novel applications of DBS where stimulation
targets are still being explored. Finally, we present novel
evidence that smaller, directional contacts may be even more
advantageous for stimulation therapy than currently thought:
not only is there greater field shaping flexibility with directional
contacts, but smaller contacts also improve targeting of
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smaller diameter fibers, which may lead to increases in the
therapeutic window.
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Introduction: Cognitive symptoms from Parkinson’s disease cause severe disability and
significantly limit quality of life. Little is known about mechanisms of cognitive impairment
in PD, although aberrant oscillatory activity in basal ganglia-thalamo-prefrontal cortical
circuits likely plays an important role. While continuous high-frequency deep brain
stimulation (DBS) improves motor symptoms, it is generally ineffective for cognitive
symptoms. Although we lack robust treatment options for these symptoms, recent
studies with transcranial magnetic stimulation (TMS), applying intermittent theta-burst
stimulation (iTBS) to dorsolateral prefrontal cortex (DLPFC), suggest beneficial effects
for certain aspects of cognition, such as memory or inhibitory control. While TMS
is non-invasive, its results are transient and require repeated application. Subcortical
DBS targets have strong reciprocal connections with prefrontal cortex, such that iTBS
through the permanently implanted lead might represent a more durable solution. Here
we demonstrate safety and feasibility for delivering iTBS from the DBS electrode and
explore changes in DLPFC electrophysiology.

Methods: We enrolled seven participants with medically refractory Parkinson’s disease
who underwent DBS surgery targeting either the subthalamic nucleus (STN) or globus
pallidus interna (GPi). We temporarily placed an electrocorticography strip over DLPFC
through the DBS burr hole. After placement of the DBS electrode into either GPi (n = 3)
or STN (n = 4), awake subjects rested quietly during iTBS (three 50-Hz pulses delivered
at 5 Hz for 2 s, followed by 8 s of rest). We contrasted power spectra in DLPFC local
field potentials during iTBS versus at rest, as well as between iTBS and conventional
high-frequency stimulation (HFS).

Results: Dominant frequencies in DLPFC at rest varied among subjects and along the
subdural strip electrode, though they were generally localized in theta (3–8 Hz) and/or
beta (10–30 Hz) ranges. Both iTBS and HFS were well-tolerated and imperceptible. iTBS
increased theta-frequency activity more than HFS. Further, GPi stimulation resulted in
significantly greater theta-power versus STN stimulation in our sample.

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 14 | Article 4162

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00041
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00041
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00041&domain=pdf&date_stamp=2020-01-31
https://www.frontiersin.org/articles/10.3389/fnins.2020.00041/full
http://loop.frontiersin.org/people/746844/overview
http://loop.frontiersin.org/people/842176/overview
http://loop.frontiersin.org/people/866246/overview
http://loop.frontiersin.org/people/822131/overview
http://loop.frontiersin.org/people/842167/overview
http://loop.frontiersin.org/people/819628/overview
http://loop.frontiersin.org/people/844109/overview
http://loop.frontiersin.org/people/271/overview
http://loop.frontiersin.org/people/842227/overview
http://loop.frontiersin.org/people/654313/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00041 January 30, 2020 Time: 16:53 # 2

Bentley et al. Subcortical iTBS Increases DLPFC Theta-Power

Conclusion: Acute subcortical iTBS from the DBS electrode was safe and well-
tolerated. This novel stimulation pattern delivered from the GPi may increase theta-
frequency power in ipsilateral DLPFC. Future studies will confirm these changes
in DLPFC activity during iTBS and evaluate whether they are associated with
improvements in cognitive or behavioral symptoms from PD.

Keywords: deep brain stimulation, intermittent theta-burst stimulation, subthalamic nucleus, globus pallidus
interna, Parkinson’s disease, cognition

INTRODUCTION

Deep brain stimulation (DBS) is an established therapy for
Parkinson’s disease (PD) and other movement disorders (Deuschl
et al., 2006; Starr et al., 2006; Baizabal-Carvallo et al., 2014).
However, standard DBS is not generally considered effective
for the cognitive impairments associated with PD (Cernera
et al., 2019), which can be a source of overwhelming disability
(Duncan et al., 2014). A small number of studies have
suggested that novel DBS paradigms may address this issue in
PD and other diseases. For example, theta-range (5–8 Hertz
[Hz]) DBS appears to improve measures of inhibitory control
and interval timing accuracy (Kelley et al., 2018; Scangos
et al., 2018). DBS in other neural targets, such as the fornix,
is also under investigation for the cognitive symptoms of
Alzheimer’s disease (Lozano et al., 2016, 2019). Support for
the possibility of DBS affecting cortical cognitive networks
is in part derived from studies showing DBS effects on
primary motor areas. Clinically effective high-frequency DBS
at subcortical targets for movement disorders [subthalamic
nucleus (STN), globus pallidus interna (GPi)] results in beta-
oscillation desynchronization and reduced phase-amplitude
coupling (Asanuma et al., 2006; De Hemptinne et al., 2015).
However, much less is known about possible interactions
with prefrontal cortical areas using novel parameters. If
these interactions occur, it would serve as a foundation for
optimization of next-generation devices aimed at improving
not only motor symptoms, but also cognitive effects of the
disease as well.

Previous studies investigating the potential role of stimulation
for cognition have primarily used theta-frequency pulses, which
underlies many cognitive processes, especially in prefrontal
cortex (Canolty et al., 2006; Cavanagh and Frank, 2014;
Helfrich and Knight, 2016). Among the various prefrontal
regions involved, the dorsolateral prefrontal cortex (DLPFC,
Brodmann areas 9 and 46) is of special interest in PD as
it is active during reward learning, set-shifting, action
selection (Ridderinkhof et al., 2004), and inhibitory control
(MacDonald et al., 2000; Harrison et al., 2005; Oldrati et al.,
2016), which PD patients have particular difficulty with
(Manza et al., 2017). The DLPFC has direct connections
to the STN (Haynes and Haber, 2013) and GPi (Middleton
and Strick, 2002), as well as widespread connections to the
caudate nucleus and to the orbitofrontal, cingulate, pre-
motor, and pre-supplementary motor cortices (Ridderinkhof
et al., 2004). In PD patients, functional magnetic resonance
imaging (fMRI) studies reveal reduced DLPFC activity

during inhibitory control tasks, with increased activity after
administration of anti-Parkinsonian medications correlating to
improved inhibitory control task performance (Trujillo et al.,
2019). Furthermore, EEG studies show that theta-frequency
activity is decreased in PD patients performing these tasks
(Singh et al., 2018).

It follows that increasing theta-power in impaired individuals
may improve cognitive function. Recent studies from the
transcranial non-invasive stimulation literature are providing
some insight into how this might be achieved. For example, theta-
frequency transcranial alternating-current stimulation (tACS)
improved working memory in healthy older adults (Reinhart and
Nguyen, 2019). An emerging therapy that shows promise for
improving cognition that is now Food and Drug Administration
(FDA) approved for depression (Blumberger et al., 2018)
is intermittent theta-burst stimulation (iTBS), delivered via
transcranial magnetic stimulation (TMS) to the prefrontal
cortex (Hoy et al., 2016; Lowe et al., 2018). This form
of therapy is thought to mimic natural brain activity, and
in addition to enhancing memory in healthy adults (Hoy
et al., 2016; Reinhart and Nguyen, 2019), it may also have
effects on cognitive function in PD (Benninger et al., 2011;
Dinkelbach et al., 2017; Trung et al., 2019). However, the
effects of TMS are transient, requiring frequent re-application.
Delivery of iTBS through a DBS lead implanted in subcortical
sites which are already approved for therapy could represent
a more durable solution. To this end, it is important to
determine whether DBS at these sites can modulate DLPFC
activity, whether through iTBS or standard high-frequency
stimulation (HFS).

Here, we implant unilateral DBS electrodes into GPi or
STN in PD patients, deliver both conventional high-frequency
stimulation (>100 Hz) and iTBS, and record intracranial
local field potentials (LFPs) from DLPFC with a subdural
strip electrode. We report on the safety and feasibility of
this approach and describe changes in theta and alpha/beta
power in DLPFC between stimulation conditions, from both
GPi and STN.

MATERIALS AND METHODS

Patient Selection
Participants were diagnosed with PD by a movement disorders
neurologist and deemed candidates for DBS surgery after
consensus review at a multi-disciplinary conference of
neurologists, neurosurgeons, neuropsychologists, and nurse
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practitioners. Stimulation target (STN or GPi) was chosen based
on clinical features. All research procedures were approved by
the University of Alabama at Birmingham Institutional Review
Board with written informed consent.

Surgical Procedure
All participants underwent three Tesla MR imaging (Magnetom
PRISMA, Siemens Healthcare GmbH, Erlangen, Germany) with
the exception of Subject 4 who instead had high resolution CT
imaging because of a contraindication to MRI (metal implant).
DBS surgery was performed in the awake, off-medication
state, at least 12 h following medication administration.
A stereotactic headframe was placed (Cosman-Roberts-Wells,
Integra LifeSciences, Plainsboro, NJ, United States), and an
intraoperative 3D fluoroscopic image was obtained (O-arm 2,
Medtronic, Minneapolis, MN, United States) and merged to pre-
operative MRI. The prescribed target was identified according to
standard techniques. To localize the DLPFC, we identified the
mid-portion of the middle frontal gyrus along its longitudinal
axis anterior to the pre-motor area (Trujillo et al., 2019), and
designated this point as the midpoint for the subdural electrode.
A radiopaque marker (18G needle) was placed at this point using
the stereotactic headframe for localization.

After creating the burr hole and opening the outer dural
layer but prior to DBS lead placement, we placed a 6-contact
subdural strip electrode (Ad-tech Medical, Oak Creek, WI,
United States) over the cortical surface, guided toward the
scalp marker under X-ray fluoroscopic guidance. We then
continued with the DBS procedure as routinely performed,
beginning with microelectrode recordings. After defining the
optimal location for the DBS, we performed 3D fluoroscopy to
confirm our location. This image was merged intra-operatively
to the pre-operative planning MRI to confirm subdural strip
placement. We placed the DBS lead at its final position, then
performed clinical testing for side effects and efficacy. Following
this, the research paradigm began. After completion of the
research testing (approximately 10–15 min), we removed the
subdural strip electrode and proceeded with securing of the DBS
lead and closure.

DLPFC Recordings
We recorded local field potentials from the subdural strip
electrode over DLPFC with an actiCHamp active channel
amplifier (BrainVision, Morrisville, NC, United States), sampling
at 25 kHz with an analog 7.5 kHz low-pass filter and no
further digital filters. We placed ground and reference EEG
electrodes on the on the forehead and contralateral mastoid,
respectively, and recorded muscle activity from the contralateral
hand and forearm with bipolar EMG pad electrodes to screen for
unwanted, incidental movements during recordings. Recordings
were obtained with subjects awake, quiet, and at rest, first without
stimulation, then with HFS and iTBS.

Subcortical Stimulation
Biphasic square waves were delivered through the DBS lead
via an external pulse generator (STG4008, MultiChannel
Systems, Reutlingen, Germany) following routine clinical

macrostimulation, typically with a bipolar configuration of
contacts 3 and 0, and amplitude and pulse width that conferred
robust clinical benefit during behavioral testing with DBS
at 160 Hz. To mark stimulus times, the STG4008 delivered
a TTL pulse for each stimulus to the recording amplifier.
During HFS, stimuli were delivered continuously at 125 Hz for
2 min (Figure 1, bottom). We delivered iTBS using standard
parameters from the TMS literature (10 bursts of 3 stimulus
pulses at 50 Hz, each burst separated by 200 ms [5 Hz], repeated
over 2 s followed by an 8 s period of rest. This pattern was then
repeated over 2 min (Figure 1, top). Pulse widths were based on
the TMS literature for Subject 2 (300 µs) and were decreased
to standard DBS pulse widths for all subsequent participants
(60 µs). In one participant (Subject 4, bilateral hemispheres) we
administered 4 Hz continuous stimulation for comparison to
iTBS, in lieu of HFS (Kelley et al., 2018).

Post-operative Electrode Localization
We visualized DLPFC by first extracting a 3D model of the
cortical surface from pre-operative MRI with FreeSurfer (Fischl,
2012). DLPFC was then identified as the combination of the
rostral and caudal middle frontal regions, as labeled by FreeSurfer
based on the Desikan-Killiany atlas. To localize the subdural
strip electrodes, the intra-operative CT, pre-operative MRI, and
3D cortical model were imported into 3D Slicer (Fedorov et al.,
2012). CT images were co-registered with the MRI and cortical
model using an affine transform in the “General Registration
(BRAINS)” module. Virtual fiducial markers then were manually
placed in the center of the artifact of each strip contact. All
contacts could be easily identified in each case and reconstructed,
with the exception of Subject 4 who did not have an MRI available
for reconstruction.

Signal Processing and Local Field
Potential Analysis
All signal processing and statistical analyses were performed
in MATLAB R2018b (MathWorks, Natick, MA, United States).
Signals recorded from the subdural strip were downsampled to
400 Hz after applying a second order 1.5–75 Hz Butterworth
filter. Individual channels (referenced to the contralateral
mastoid) displaying high noise and/or overwhelming electrical
artifacts were excluded from further analysis. The remaining
channels were then re-referenced to a common average montage.

FIGURE 1 | Illustration of iTBS and HFS paradigms. iTBS consists of ten
bursts of three pulses at 50 Hz (lasting 2 s), repeated at 10 s intervals. HFS
consisted of a constant 125 Hz stimulation.
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Power spectra were estimated as a global wavelet spectrum
from each channel with and without stimulation, by averaging
the continuous wavelet transform (CWT) across time during
HFS and iTBS. For all analyses utilizing the CWT, the following
parameters were used: complex morse wavelets, time-bandwidth
product of 120, and 20 voices per octave.

To measure changes in spectral power during stimulation
while allowing for inter-subject differences in frequency
distributions and contact locations, ECoG contacts were first
grouped into three general locations: anterior (contacts 1 and
2), middle (contacts 3 and 4), or posterior (contacts 5 and
6). The power spectra of the two component contacts in each
group were then averaged together, and peaks in either the
theta or alpha/beta frequency ranges were identified in the
stimulation period using the “findpeaks” function in MATLAB.
The width of the maximum peak was estimated as the point
of half-prominence on either side, as determined by the same
function. The mean power in this band was then computed by
averaging the continuous wavelet transform across the band
and across time. Finally, this mean power was converted to
a Z-score by subtracting the mean of the same band during
the corresponding no-stimulation baseline period and dividing
by the standard deviation. Thus, we were able to quantify the
impact of stimulation across subjects, DBS targets, and contact
location groups.

RESULTS

Patient Demographics and Stimulation
Parameters
Patient demographics and stimulation parameters are
summarized in Table 1. Seven subjects underwent awake
unilateral DBS surgery for Parkinson’s disease, one of whom
underwent contralateral DBS implantation in a subsequent
surgery, for a total of eight DBS electrodes placed either in STN
(n = 5) or GPi (n = 3). Resting DLPFC LFPs were recorded from
all subjects (n = 8 hemispheres), and we delivered HFS from the
DBS electrode in four participants (n = 4 hemispheres), 4-Hz
continuous stimulation in 1 participant (n = 1 hemisphere) and
iTBS in six participants (n = 7 hemispheres). Mean age at surgery
was 69.4 years (S.D. 7.3, range 55–76 years). Mean duration of
disease was 7.7 years (S.D. 3.7, range 5–15 years), with 71.4%
(5/7) right-handed individuals and 1 ambidextrous subject.
The right hemisphere was targeted in 62.5% of recordings.
In all patients, a 6-contact subdural strip was placed over
DLPFC without adverse effects. Stimulation was delivered as
previously described, with HFS delivered at 125 Hz with bipolar
contact pairs, at 60 µs pulse widths, and ranging from 2.0 to
6.0 milliamperes (mA), as summarized in Table 1. We delivered
iTBS from the same bipolar contact pair, and at the same current
and pulse width, that was used for HFS. In participant 2, in
whom HFS was not applied, we applied the current at which
clinical benefit was seen. The pulse width was the same as used
in TMS studies of iTBS, though for subsequent participants we
used a narrower pulse width to reduce charge density.

Resting Peak Frequencies in DLPFC
Varies Across Subjects and Across
Contacts
DLPFC power spectra at rest typically displayed prominent peaks
in theta (3–8 Hz) (Subjects 1, 3, 4-left, 5, and 6; Figure 2) and/or
alpha/beta range (10–30 Hz) (all subjects; Figure 2). Spectral
power varied systematically across the subdural strip, with more
prominent theta at the rostral and/or caudal extremes versus the
middle contacts (e.g., subjects 1 and 3 in Figure 2). Alpha/beta
peaks were more variably distributed across the strip, but tended
to have highest power in the more caudal contacts, nearest
pre-motor cortex (e.g., subjects 4-L, 4-R, and 7 in Figure 2).
Theta and alpha/beta peaks appeared to arise from different
contacts, although in two subjects the maximal peaks for these
two frequency bands were in the same contacts.

iTBS From the GPi Modulates DLPFC
Theta-Frequency LFP
When iTBS was delivered subcortically, temporally related
changes were seen in the DLPFC (Figure 3). This finding was
most pronounced in Subjects 2 and 3, with Subject 7 having
little clear change. These increases in theta band power were
delayed by approximately 30 s relative to the start of iTBS
(Figures 3A,B). When the LFPs recorded during each set of 10
iTBS bursts within a subject were averaged together to create a
mean event-related wavelet spectrogram, the increase in theta
power was delayed by approximately 0.5 s and time-locked to
the burst onset (Figures 3A,B, insets). Notably, we did not
see significant activity evoked by single pulses at either target,
and high-frequency stimulation did not elicit these changes
(Supplementary Figure S1).

When comparing DLPFC changes by target, iTBS increased
DLPFC theta-frequency activity to a greater extent during GPi
(n = 3) versus STN (n = 4) stimulation when normalized
versus rest (Figure 4, p = 0.0286 at the posterior contact group,
Wilcoxon rank-sum test). This difference was most pronounced
in the contacts over posterior DLPFC. Less pronounced changes
in theta-power occurred in contacts over anterior and middle
DLPFC, though theta-power still generally increased to a greater
extent with GPi versus STN stimulation. Although a small
effect, STN stimulation may have even decreased cortical theta
power slightly in 1-2 subjects (Figure 4D). No clear differences
in alpha/beta-power changes were observed between targets
(Figure 4, p = 0.314 at the posterior contact group, Wilcoxon
rank-sum test), though power decreased in several subjects
and in several contact locations. Since only two GPi subjects
underwent both HFS and iTBS, we did not similarly contrast
LFPs during HFS between targets. However, in both cases, HFS
increased DLPFC theta-frequency power less than did iTBS
(Supplementary Figure S2).

DISCUSSION

New DBS technologies for movement disorders are developing at
a rapid pace, with directional leads capable of current steering
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TABLE 1 | Patient demographics and stimulation parameters.

Subject Age at Disease Target Hemisphere Stimulation Stimulation Stimulation pulse
No. surgery* (yrs) Duration (yrs) type amplitude (mA) width (us)

1 70–75 5 STN Right None

2 70–75 6 GPi Right iTBS† 4.5 300

3 70–75 5 GPi Left iTBS, HFS‡ 2.0 60

4§ 75–80 9 STN Left/Right iTBS, 4-Hz 4.6/4.0 60

5 75–80 15 STN Right iTBS, HFS 5.0 60

6 55–60 5 STN Left iTBS, HFS 3.2 60

7 65–70 9 GPi Right iTBS, HFS 6.0 60

*Ages presented as ranges to avoid identifiable participant data. † iTBS frequency parameters: Three 50 Hz pulses at 5 Hz for 2 s, followed by 8 s of rest; repeated
over 2 min. ‡HFS frequency parameters: Continuous 125 Hz. §Participant 4 initially had DBS implanted in the left STN and subsequently had the right STN implanted
2.5 months later. DLPFC recording and iTBS were performed in both surgeries. STN, subthalamic nucleus; GPi, Globus pallidus interna; iTBS, intermittent theta-burst
stimulation; HFS, high-frequency stimulation; mA, milliamperes; µs, microseconds.

FIGURE 2 | Resting DLPFC local field potentials recorded from each subject. The 3D reconstruction of each subject’s cortical surface (except Subject 4), with
localized subdural strip contacts (circles colored according to contact number) and DLPFC region colored red. All subjects displayed prominent peaks in theta
(3–8 Hz) and/or alpha/beta (10–30 Hz) ranges. In some subjects, particularly Subject 1, theta and alpha/beta activity had clearly different distributions along the strip,
possibly indicating separate neural sources.

(Pollo et al., 2014; Dembek et al., 2017) and recording and
sensing devices under investigation for closed-loop control
(Rosin et al., 2011; Priori et al., 2013; Swann et al., 2018).
Given this pace of device development, it may be possible
that future iterations can incorporate multiple stimulation

patterns addressing multiple symptoms of these diseases.
In PD, non-motor cognitive symptoms are highly prevalent
and disabling (Hely et al., 2008), with pronounced deficits
in attention, memory, visuospatial processing, and response
inhibition (Williams-Gray et al., 2009; Antonini et al., 2012;
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FIGURE 3 | (A) Continuous wavelet transform scalogram showing an example of the effects of iTBS on DLPFC LFPs in Subject 3 (contact 6, the most caudal
contact on the subdural strip). Red lines mark stimulus times, and the start of stimulation is aligned at zero. Increased theta activity is prominent during iTBS,
increasing after a delay of ∼30 s. The inset shows the LFP activity averaged across each 2 s block of theta bursts (n = 20 blocks). Here, the theta increase is clearly
time-locked to the stimulation, appearing to build up over a period of ∼0.5 s. (B) Scalogram showing the effects of iTBS on DLPFC LFPs averaged over all three GPi
subjects. Each subject’s scalogram was converted to a Z-score based on that subject’s baseline recordings before being averaged. The most caudal contact,
contact 6, was used for each subject. Again, the inset shows the activity averaged over each 2 s block of theta bursts (n = 59 blocks), demonstrating that
time-locking is preserved across subjects. (C) Average power spectra for all contacts in each GPi subject during no-stimulation, HFS, and iTBS periods, showing
that iTBS increases theta activity more than does HFS on the same contacts. Subject 3 had the largest response to stimulation, but Subject 2 displayed a clear rise
in 5 Hz activity. Subject 7 had minimal response to any stimulation condition.

Svenningsson et al., 2012; Duncan et al., 2014; Manza et al.,
2017). Medical treatments fail to improve cognitive symptoms
in many patients (Svenningsson et al., 2012), and cognitive
outcomes following conventional high-frequency DBS are mixed
(Okun et al., 2009; Combs et al., 2015; Wang et al., 2016),
with a recent meta-analysis finding that STN-DBS patients
experienced decrements in multiple cognitive domains compared
to medically-treated controls (Cernera et al., 2019). Ideally, next-
generation therapies would address both motor and cognitive
aspects of the disease, but will likely require alternative patterns
of stimulation.

Efficient cognitive processing likely involves coordinated
signaling across multiple areas in distributed networks (Medaglia
et al., 2015; Helfrich and Knight, 2016), with the prefrontal

cortex acting as a major hub for many of these processes (Aron,
2007; Voytek and Knight, 2015). In particular, the DLFPC is
consistently activated in cognitive tasks, including set-shifting,
action selection, reward learning (Ridderinkhof et al., 2004) and
tasks of inhibitory control (MacDonald et al., 2000; Harrison
et al., 2005; Oldrati et al., 2016). As PD patients have deficits in
several of these cognitive domains (Obeso et al., 2011; Manza
et al., 2017), it is hypothesized that DLPFC function is correlated
to impairment in these individuals. This is supported by both
fMRI and EEG studies that reveal hypoactivity in the DLPFC
of these patients (Schmiedt-Fehr et al., 2007; Singh et al., 2018;
Trujillo et al., 2019).

Mechanistically, aberrant function of the DLPFC may be
due to abnormal theta-frequency activity, which is thought to
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FIGURE 4 | (A,B) Resting and iTBS power spectra for each contact location group, averaged across all GPi (A) and STN (B) subjects. There was a clear trend
toward higher theta facilitation caudally on the strip in the GPi subjects and there was minimal evidence of facilitation in the STN group. (C) Time series of theta
activity in each contact location group during iTBS, averaged across GPi (blue) and STN (red) subjects. Each subject’s activity was first converted to a Z-score based
on the baseline theta activity prior to being averaged. Stimulation starts at time 0. Traces show high variability typical of neural data, but clearly show the differences
in changes induced by iTBS delivered in GPi versus STN. (D) Group data for all subjects (n = 3 GPi; n = 4 STN) undergoing iTBS. In the posterior contact group,
there was a significant difference in facilitation of theta power (compared to baseline) when iTBS was delivered in GPi versus STN (p = 0.0286, Wilcoxon rank-sum
test). Conversely, the theta facilitation did not reach significance in any other contact group. There was no statistical difference in facilitation of beta activity in any
contact group, and there was clearly less change overall compared to theta activity. Subject numbers appear next to each point.

underlie intact cognitive processes (Cavanagh and Frank, 2014).
Notably, patients with PD have reduced theta-rhythms during
cognitive tasks, particularly those involving inhibitory control
(Schmiedt-Fehr et al., 2007; Singh et al., 2018). Therefore,
restoring “normal” theta activity may result in improved task
performance. To this end, several DBS studies have investigated
subcortical delivery of continuous theta-frequency stimulation.
For example, 4-Hz and 5-Hz continuous DBS is associated
with improvement in interval timing (Kelley et al., 2018)
and Stroop tasks (Scangos et al., 2018), respectively, and
fornix stimulation is currently under investigation for memory
improvement in Alzheimer’s disease (Lozano et al., 2016). Non-
invasive techniques are also becoming more widely studied. In
transcranial magnetic stimulation (TMS), in which magnetic

pulses are delivered through the scalp to interact with neural
firing, several modes of theta-stimulation have been tried,
including continuous and intermittent bursting patterns (Viejo-
Sobera et al., 2017; Lowe et al., 2018). Theta-burst stimulation
is thought to mimic naturally occurring brain rhythms (Huang
and Rothwell, 2004) and in intermittent theta-burst stimulation,
three pulses are delivered at 50-Hz every 200 ms for 2 s, followed
by 8 s of rest (Huang et al., 2005). Initial effects were seen
when delivered over motor cortex (Huang and Rothwell, 2004;
Huang et al., 2005), and since then, it has been increasingly
used to modulate cognitive networks (Hoy et al., 2016; Chung
et al., 2018; Ji et al., 2019; Trung et al., 2019). However, a
recent study of iTBS in PD showed failure to improve frontal
executive function and memory when delivered via TMS, which
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suggests a single session of therapy is not sufficient (Hill et al.,
2020). Multiple sessions may provide benefit (Trung et al.,
2019), but frequent re-application may not be logistically feasible
for patients (Dinkelbach et al., 2017). In addition, the field of
spread of the TMS pulse is variable due to tissue inhomogeneity,
reducing the precision and predictability of this technique (Opitz
et al., 2011). For these reasons, further studies of delivering iTBS
patterns using deep brain stimulation are warranted.

Theta-burst patterns have previously been delivered via deep
brain stimulation, primarily in the context of stimulation for
memory improvement (Suthana et al., 2012; Titiz et al., 2017).
Suthana et al. performed double-blinded theta-burst stimulation
in the entorhinal cortex and hippocampus of 7 epilepsy patients
and found improvement in a spatial learning task (Suthana et al.,
2012). Similarly, in a double-blinded study of four patients,
Miller et al. delivered theta-burst stimulation to the fornix of
the hippocampus via depth electrodes, with overall improved
performance (Miller et al., 2015), replicating prior results in
animal models (Sweet et al., 2014).

In order to test the feasibility of subcortical iTBS, we delivered
this pattern of stimulation in 7 PD patients undergoing routine
DBS surgery. We show for the first time in humans that iTBS
can be safely delivered and further show that GPi, but not
STN, stimulation appears to modulate DLPFC theta activity,
though responses across subjects and across anatomic areas
were variable. Our results also indicate that high-frequency
stimulation itself does not clearly modulate theta-power, and
neither iTBS nor HFS had a substantial effect on other frequency
bands. Due to the increase of theta power seen in the DLPFC of
some PD patients, the implication is that subcortical iTBS may be
useful for enhancing oscillatory activity and potentially correlate
with cognitive improvement in impaired individuals.

Overall, this study provides evidence for the safety and
feasibility of this approach, and provides some indication that
iTBS may prove useful for modulating prefrontal cognitive
networks. Further investigation is required to determine if
increased theta-power correlates to behavioral changes in
cognitive domains. If supported, this could serve as a foundation
for developing next-generation DBS technologies for addressing
non-motor cognitive and behavioral symptoms of Parkinson’s
disease and other disorders.

Limitations
Due to the small sample size, statistical tests were limited.
However, placement of the strip electrode over DLPFC and
iTBS were well-tolerated in all subjects, and our results reached
statistical significance with regard to changes in theta-power
during iTBS by stimulation target. A larger sample is required
to form conclusion about connectivity between DLPFC and
subcortical networks, especially given the variation in responses
to stimulation within and across GPi implants. Although we did
not correlate theta-activity with behavioral measures, these types
of studies represent an important next step for this research.
Finally, artifacts are always of consideration when interpreting
recorded brain activity. It may be argued that the observed
increased theta-power is an artifact of volume conduction from
subcortical stimulation. However, we believe this is not the case

since high-frequency stimulation did not result in analogous
artifacts. Additionally, the electrical artifacts from the stimulation
were limited to frequencies >100 Hz and would not have
impacted theta-frequency activity.

CONCLUSION

Here, we show that iTBS, a type of patterned stimulation that
is increasingly being investigated for cognitive and behavioral
therapies via TMS, can be safely delivered from subcortical
structures routinely targeted for DBS therapy in Parkinson’s
disease. As far as we are aware, this is the first demonstration
of subcortical iTBS in humans. In our sample, we also show
that iTBS from the GPi, but not the STN, appears to drive
theta-frequency activity in the DLPFC. This is of interest since
theta oscillatory activity may play a role in aberrant cognitive
processing in PD. Further studies are required to confirm this
result and determine if increasing theta activity in the DLPFC
correlates with behavioral changes.
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FIGURE S1 | Power spectra for each stimulation condition performed in each
subject. Contact 1 is the most anterior and contact 6 is the most posterior
in all subjects.

FIGURE S2 | Comparison of iTBS versus HFS in all GPi subjects. Only Subjects 3
and 7 underwent both protocols.
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Simulation of Closed-Loop Deep
Brain Stimulation Control Schemes
for Suppression of Pathological Beta
Oscillations in Parkinson’s Disease
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Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin,
Ireland

This study presents a computational model of closed-loop control of deep brain
stimulation (DBS) for Parkinson’s disease (PD) to investigate clinically viable control
schemes for suppressing pathological beta-band activity. Closed-loop DBS for PD has
shown promising results in preliminary clinical studies and offers the potential to achieve
better control of patient symptoms and side effects with lower power consumption
than conventional open-loop DBS. However, extensive testing of algorithms in patients
is difficult. The model presented provides a means to explore a range of control
algorithms in silico and optimize control parameters before preclinical testing. The
model incorporates (i) the extracellular DBS electric field, (ii) antidromic and orthodromic
activation of STN afferent fibers, (iii) the LFP detected at non-stimulating contacts
on the DBS electrode and (iv) temporal variation of network beta-band activity within
the thalamo-cortico-basal ganglia loop. The performance of on-off and dual-threshold
controllers for suppressing beta-band activity by modulating the DBS amplitude were
first verified, showing levels of beta suppression and reductions in power consumption
comparable with previous clinical studies. Proportional (P) and proportional-integral (PI)
closed-loop controllers for amplitude and frequency modulation were then investigated.
A simple tuning rule was derived for selecting effective PI controller parameters to
target long duration beta bursts while respecting clinical constraints that limit the rate
of change of stimulation parameters. Of the controllers tested, PI controllers displayed
superior performance for regulating network beta-band activity whilst accounting for
clinical considerations. Proportional controllers resulted in undesirable rapid fluctuations
of the DBS parameters which may exceed clinically tolerable rate limits. Overall, the PI
controller for modulating DBS frequency performed best, reducing the mean error by
83% compared to DBS off and the mean power consumed to 25% of that utilized by
open-loop DBS. The network model presented captures sufficient physiological detail to
act as a surrogate for preclinical testing of closed-loop DBS algorithms using a clinically
accessible biomarker, providing a first step for deriving and testing novel, clinically
suitable closed-loop DBS controllers.

Keywords: closed-loop deep brain stimulation, Parkinson’s disease, beta-band activity, proportional-integral
controller, computational model, control schemes, adaptive
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INTRODUCTION

In recent years, there has been growing interest on the potential
offered by “closed-loop” deep brain stimulation (DBS). In
a closed-loop DBS configuration, the patient’s clinical state
is quantified and utilized to alter stimulation parameters as
necessary, so the required stimulation to minimize their disease
symptoms is delivered, thus reducing potential stimulation
induced side-effects while controlling symptoms. A critical step
in the development of such systems is the identification of signal
features or “biomarkers” which have the potential to quantify
the clinical state. One of the most promising features examined
for closed-loop control of DBS in PD is the level of beta-
band (13 – 30 Hz) oscillatory activity within the subthalamic
nucleus (STN) and cortico-basal ganglia network. Pathological
exaggerated activity within this frequency band is correlated
with motor impairment and its suppression, due to medication
or DBS, with motor improvement (Silberstein et al., 2005a,b;
Kühn et al., 2008, 2009). This oscillatory activity, however, is
not continuously elevated, but rather fluctuates between long,
greater than 400 ms, and short duration bursts of beta activity,
with only long burst durations being positively correlated with
motor impairment in PD (Tinkhauser et al., 2017a,b, 2020). These
features, in combination with the potential to record LFP activity
during stimulation from non-stimulating contacts on the DBS
electrode, render LFP beta band activity an appealing biomarker
for closed-loop DBS.

Closed-loop DBS for PD utilizing LFP derived measures of
beta-band oscillatory activity has been successfully tested in
small cohorts of PD patients over relatively short timescales
(Little et al., 2013, 2016; Rosa et al., 2015; Arlotti et al., 2018;
Velisar et al., 2019). These studies have examined amplitude
modulation of the DBS waveform in response to changes in the
LFP beta-band activity. “On-off” stimulation strategies, where
DBS is triggered on or off as the measured oscillatory activity
crosses a desired threshold value, were the first closed-loop
strategies tested in patients (Little et al., 2013, 2016). Although
these strategies offer benefits with respect to traditional open-
loop stimulation, they rely on optimal stimulation parameters
that are identified during open-loop, continuous DBS. If these
stimulation parameters are no longer effective, for example, due
to diurnal changes in beta activity, variations in the electrode
impedance, or as the disease progresses, the controller is unable
to adapt and delivers suboptimal performance. Velisar et al.
(2019) proposed an alternative “dual-threshold” algorithm where
the amplitude of the DBS waveform is systematically increased,
decreased or kept constant as the measured LFP beta-band
activity remains above, below or within a desired target range.
Although the strategy can maintain the beta activity within
a target range, it remains a relatively simple form of control
where the DBS amplitude is varied at a fixed rate if the beta-
band activity lies outside the target range. Rosa et al. (2015);
Arlotti et al. (2018) investigated an alternative approach where
the DBS waveform was linearly modulated in response to the
measured LFP beta-band activity in freely moving PD patients.
Proportional amplitude modulation stimulation strategies such
as this, where the DBS amplitude is varied proportionally to the

measured LFP beta-band activity, potentially offer more benefits
than on-off and dual-threshold strategies, in theory, because they
ideally only deliver the stimulation required to reduce beta-band
LFP activity to suppress PD symptoms.

In conjunction with the amplitude modulation stimulation
strategies that have been investigated so far, control theory offers
a wealth of control schemes which may potentially offer better
control of patient symptoms and side effects, whilst minimizing
battery consumption, over the current state-of-the-art strategies.
The development of novel, effective control schemes for DBS,
however, is challenging and trialing in humans or animals is
difficult due to its invasive nature. Computational modeling
provides an alternative approach for designing and testing
more complex forms of closed-loop DBS control. Although
computational models have been previously used to investigate
closed-loop control strategies for DBS (Santaniello et al., 2011;
Carron et al., 2013; Gorzelic et al., 2013; Grant and Lowery, 2013;
Pasillas-Lepine et al., 2013; Haidar et al., 2016; Liu et al., 2017a;
Popovych and Tass, 2019; Su et al., 2019), they typically do not
relate well to clinically relevant parameters and, in particular,
rarely incorporate both simulation of the LFP and extracellular
application of DBS. Simulation of the LFP is desirable for
developing computational models that can be readily translated
to patients as LFP derived features, such as frequency and time
domain features, are currently the most accessible biomarkers
for closed-loop DBS in PD (Priori et al., 2013). In addition,
simulation of the electric field and extracellular application of
DBS to axons and branching afferents is necessary to enable
variations in DBS amplitude to be simulated. To bridge the link
between computational approaches and clinically viable closed-
loop approaches it is thus necessary to develop a model which
captures the dynamics of the relevant neural system, the electric
field generated by DBS, and the resulting LFP recording.

To address this, the aim of this study was to develop a
physiologically based model of the cortico-basal ganglia network,
which incorporates extracellular DBS and simulation of the
STN LFP, that can be utilized to test clinically relevant closed-
loop DBS control strategies. The developed model captures
increased network beta-band oscillatory activity and simulates
the synaptically generated STN LFP and extracellular application
of DBS to STN afferent fibers, including antidromic activation of
cortical pathways. The performance of on-off and dual-threshold
amplitude modulation strategies are verified in the model before
the feasibility of proportional (P) and proportional-integral (PI)
control schemes for modulating DBS amplitude or frequency
are investigated. The model provides an in silico testbed for
developing new closed-loop DBS control strategies using STN
LFP-derived features in PD.

MATERIALS AND METHODS

The structure of the network model of DBS is presented in
Figure 1 and includes the closed loop formed between the cortex,
basal ganglia and thalamus (Parent and Hazrati, 1995a,b; Nambu
et al., 2002; McHaffie et al., 2005). The model extends previous
network models of the parkinsonian cortico-basal ganglia during
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FIGURE 1 | Schematic diagram of cortical basal ganglia network model. (A) Network diagram of cortical basal ganglia neuron populations. Excitatory and inhibitory
synaptic connections within the network are represented as solid red arrow and blue dotted arrows, respectively. (B) Electric field distribution due to monopolar
stimulation electrode. Cortical collaterals, represented as black dots, are oriented perpendicular to the page. The electrode bipolar recording contacts are
represented by + and –, respectively. (C) Schematic diagram of the closed-loop stimulator utilizing an LFP derived measured of network beta-band activity. Contacts
1 and 3 represent the bipolar recording electrode contacts on the DBS electrode. The recorded LFP is bandpass filtered, rectified and averaged to calculate the
average rectified value of the LFP beta-band activity. The beta average rectified value is used as input to a controller which determines an updated value for the DBS
parameter being modulated. The updated DBS waveform is subsequently simulated at electrode contact 2 and varies the electric field distribution.

DBS (Terman et al., 2002; Rubin and Terman, 2004; Hahn
and McIntyre, 2010; Kang and Lowery, 2013, 2014; Kumaravelu
et al., 2016) by (i) incorporating the extracellular DBS electric
field (ii) simulating antidromic and orthodromic activation of
cortical and globus pallidus efferent fibers to the STN and (iii)
simulating the LFP detected at non-stimulating contacts on the
DBS electrode due to STN synaptic activity and (iv) mimics
temporal variation of network beta activity within the thalamo-
cortico-basal ganglia loop. The model was used to investigate the
performance of closed-loop amplitude and frequency modulation
strategies using an LFP derived measure of the network beta-band
oscillatory activity.

Network Structure
The major model components include single compartment,
conductance-based biophysical models of cortical interneurons,
STN, globus pallidus externa (GPe), globus pallidus interna
(GPi), and thalamus neurons. Cortical Layer V pyramidal
neurons, with axons projecting to the STN through the
hyperdirect pathway, were simulated using multi-compartment,

conductance-based biophysical models to enable extracellular
application of DBS to cortical axon collaterals. The individual cell
models have been validated and employed in previous modeling
studies (Terman et al., 2002; Otsuka et al., 2004; Rubin and
Terman, 2004; Pospischil et al., 2008; Hahn and McIntyre,
2010; Kang and Lowery, 2013, 2014; Kumaravelu et al., 2016).
Six hundred cells consisting of one hundred STN, GPe, GPi,
thalamic, cortical interneuron and cortical pyramidal neurons
were connected through excitatory and inhibitory synapses,
AMPA and GABAa, respectively, as described below, Figure 1A.
While the type and direction of connections between the nuclei
of the thalamo-cortico-basal ganglia network are well established,
it is more difficult to ascertain the exact number of connections
between individual neurons, and their relative strengths, in
different nuclei. Input to a single neuron was therefore assumed
to be from one or two neurons in each of the connected
presynaptic nuclei, with the exception of the STN, which receives
substantial direct cortical input (Nambu et al., 2002), with
increased functional connectivity between the cortex and STN
in the dopamine depleted state (Litvak et al., 2011; Moran et al.,
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2011; West et al., 2018). Connections between neurons in the
cortico-basal ganglia network followed a random connectivity
pattern. Each STN neuron received excitatory input from five
cortical neurons and inhibitory input from two GPe neurons
(Smith et al., 1990; Bevan et al., 1995). Each GPe neuron received
inhibitory input from one striatal neuron, and one other GPe
neuron, and excitatory input from two STN neurons (Shink
and Smith, 1995; Chan et al., 2004; Sadek et al., 2007). Each
GPi neuron received excitatory input from a single STN neuron
and inhibitory input from a single GPe neuron (Shink and
Smith, 1995). Thalamic neuron received inhibitory input from a
single GPi neuron (Sidibé et al., 1997). Cortical neurons received
excitatory input from a single thalamic neurons and inhibitory
input from ten interneurons (Kayahara and Nakano, 1996; Packer
et al., 2013). Interneurons received excitatory input from ten
cortical neurons (Packer et al., 2013). The values for all model
parameters are provided as Supplementary Material.

Pathological beta oscillations in the cortico-basal ganglia
network were modeled based on the hypothesis that beta activity
entering the network from the cortex is enhanced locally within
the reciprocally coupled STN-GPe loop and propagates through
the closed-loop network from the cortex through the basal
ganglia, thalamus and back to cortex (Mallet et al., 2008;
Tachibana et al., 2008, 2011; Nambu and Tachibana, 2014).
This hypothesis is supported by observations from primate
studies, where oscillations in the STN, GPe and GPi were
investigated while inputs to each population were systematically
blocked (Tachibana et al., 2008, 2011). Nambu and Tachibana
summarized their findings in Nambu and Tachibana (2014),
where the authors articulate that oscillatory activity in the GPe
and GPi were generated mainly due to glutamatergic inputs
from the STN, while oscillations in the STN were mainly due
to glutamatergic inputs from the cortex, with STN GABAergic
inputs from the GPe potentially increasing the oscillatory activity.
Furthermore, Litvak et al. (2011) observed that beta activity
in the cortex led beta activity in the STN in parkinsonian
patients (Litvak et al., 2011), while Sharott et al. (2005) found
that in a parkinsonian rat model dopamine depletion increased
the power and coherence of beta oscillations in the cerebral
cortex and STN (Sharott et al., 2005). Further evidence of
this hypothesis is supported by investigations of directional
connectivity within the dopamine depleted cortico-basal ganglia,
inversion of biophysical models using electrophysiological data
from rats and patients (Moran et al., 2011; Marreiros et al., 2013;
West et al., 2018), and functional imaging studies in individuals
with Parkinson’s disease (PD) (Lalo et al., 2008; Baudrexel et al.,
2011; Fernández-Seara et al., 2015).

The strength of synaptic connections between the cortex
and STN, between the STN and GPe, and the thalamus cortex
were increased to induce beta oscillations within the network
and the STN LFP, similar to that observed experimentally
(West et al., 2018). Previous simulation studies have similarly
increased the strength of connections between nuclei to simulate
the effects of dopamine depletion on basal ganglia network
activity in PD resulting in the emergence of oscillatory
activity in conductance-based models (Rubin and Terman,
2004; Humphries et al., 2006; Hahn and McIntyre, 2010;

Kang and Lowery, 2013; Kumaravelu et al., 2016) and mean-field
models (Nevado-Holgado et al., 2010; Davidson et al., 2016;
Liu et al., 2017b, 2020).

Neuron Models
The compartmental membrane voltage of each neuron in the
network is described by

Cmxi

dvmxi

dt
= −

Jx∑
jx

IIonxi
−

Kxi∑
kxi

I
kxi
synxi
+

Mxi∑
mxi

IAppxi
(1)

where x specifies the neuron population, i is the ith neuron
in population x, Cmxi

is the membrane capacitance of the ith
neuron in population x, vmxi

is the membrane potential of the
ith neuron in population x. The membrane potential of the ith
neuron in population x was calculated as the summation of the
J ionic currents of population x’s neuron model, IIonxi

, the Kx
synaptic currents which project to the ith neuron in population
x, Isynxi

, and the M intracellularly applied currents, IAppxi
. Further

details regarding the neuron models are included below, and in
the Supplementary Material.

Cortex
The cortex was represented by a network of interneurons
and cortical pyramidal neurons. The cortical neuron model,
based on a layer V pyramidal tract neuron, comprised a soma,
axon initial segment (AIS), main axon, and axon collateral
as described by Kang and Lowery (2014). To summarize, the
cortical neuron soma and interneuron models were based on
the regular spiking neuron model developed in Pospischil et al.
(2008), while the model used to simulate the AIS, main axon,
and axon collateral was based on results from the experimental
modeling study in Foust et al. (2011). The model compartments
include leak, sodium, and three potassium ionic currents and
an intracellular bias current for setting the neuron firing rate.
The cortical soma compartment model excluded the D-type
potassium current, while the AIS, main axon, and axon collateral
compartments excluded the slow, voltage dependent potassium
current. Cortical interneurons excluded both the D-type and
slow, voltage dependent potassium currents.

Subthalamic Nucleus
The STN model incorporated a physiological representation
of STN neurons developed by Otsuka et al. (2004) and
implemented by Hahn and McIntyre (2010) that captures the
generation of plateau potentials which have been identified as
playing an important role in generating STN bursting activity
that is observed during PD (Beurrier et al., 1999). The STN
model included leak, sodium, three potassium, two calcium
ionic currents and an intracellular bias current for setting the
neuron firing rate. Further details regarding the parameter
values used can be found in the Supplementary Material
and in Otsuka et al. (2004), Hahn and McIntyre (2010),
Kang and Lowery (2013, 2014).
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Globus Pallidus and Thalamus
GPe, GPi, and thalamic neurons were represented using the
model developed in Rubin and Terman (2004) and implemented
by Hahn and McIntyre (2010). The GPe and GPi neuron models
included leak, sodium, two potassium, and two calcium ionic
currents and an intracellular bias current for setting the neuron
firing rates. GPe neurons included an additional intracellularly
injected current to simulate the application of DBS to the GPe
neuron model, assuming that an equivalent proportion of GPe
neurons were stimulated to the proportion of extracellularly
stimulated cortical neurons during DBS. Further details on the
application of DBS to GPe neurons is included below in the
Application of DBS section. Thalamic neurons were modeled
similarly, with the exception of excluding one of the calcium
and one of the potassium currents. Striatal synaptic input to
GPe neurons was modeled as a population of Poisson-distributed
spike trains at 3 Hz.

Synapses
Synaptic connections between neurons were modeled by spike
detectors in presynaptic neurons, coupled to synapses in
postsynaptic neurons by a time delay. Individual synaptic
currents, Ik

syn, were described by

Ik
syn = Rk (Vm − Erev) (2)

where Ik
syn is the kth synaptic current, Rk represents the

kinetics of the onset decay of current following a presynaptic
spike for synapse k, and Erev is the reversal potential for the
appropriate synapse type, excitatory AMPAergic synapses or
inhibitory GABAergic synapses, respectively (Destexhe et al.,
1994). The topology of synaptic connections between the network
populations followed a random connectivity pattern, where the
number of connections between each population and their
associated synaptic transmission delay are detailed in Table 13
of Supplementary Material. Full details regarding the synapse
models and their parameter values can also be found in their
original publication (Destexhe et al., 1994).

Application of DBS
The DBS electrode was modeled with three point source
electrodes located in a homogeneous, isotropic medium of
infinite extent and conductivity, σ, where a single point source
was used to represent the application of extracellular DBS in
a monopolar configuration, while the remaining two point
source electrodes were used for simulating recording the local
field potential with a bipolar, differential recording electrode.
Propagation, inductive, and capacitive effects were assumed to
be negligible, in accordance with the quasi-static approximation
(Plonsey and Heppner, 1967; Bossetti et al., 2008).

The extracellular potential due DBS, Vei (t), at each point
located on the cortical collateral, i, located a distance ri from the
monopolar electrode was calculated as

Vei (t) =
IDBS (t)
4πσri

(3)

where σ is the conductivity of gray matter, with the specified
value 0.27 S/m (Latikka et al., 2001), IDBS is the DBS current,
simulated as a series of periodic cathodic rectangular current
pulses of variable amplitude, frequency, and duration.

Cortical collaterals were randomly distributed around the
monopolar electrode in a 6 mm by 6 mm square, using uniformly
distributed random variables for their cartesian coordinates.
The collaterals were oriented perpendicular to the cross-section,
parallel to one another, and were not permitted to lie within
the area covered by the cylindrical electrode lead of radius of
0.7 mm, Figure 1B.

The application of DBS to the model was simulated by
stimulating afferent STN projections resulting in antidromic
activation of the cortex and GPe and orthodromic activation
of excitatory and inhibitory afferent projections to the STN.
This resulted in disruption of activity in the cortex and GPe
and net inhibition of the STN, consistent with experimental
observations (Filali et al., 2004; Li et al., 2012; Milosevic et al.,
2018). The extracellular potential due to DBS was applied to
cortical collaterals projecting to the STN from descending layer V
pyramidal tract fibers (Kang and Lowery, 2014). It was assumed
that an equal percentage of cortical and GPe neurons were
activated during stimulation. During DBS, the percentage of
activated cortical neurons was calculated and an intracellular DBS
current was injected to the corresponding percentage of activated
GPe neurons, where cortical neurons were labeled as activated
during 130 Hz DBS if their collateral firing rate increased above
60 Hz. The entrainment order of the GPe neurons was generated
as a randomized sequence from the first to the hundredth neuron
in the population, where ten percent activation corresponded to
the intracellular DBS current being delivered to the first ten GPe
neurons in the entrainment order.

Local Field Potential Simulation
The STN LFP recorded at the bipolar, recording electrode was
estimated as the summation of the extracellular potentials due
to the spatially distributed synaptic currents across the STN
population (Rall and Shepherd, 1968; Lindén et al., 2011; Bedard
and Destexhe, 2012; Einevoll et al., 2013). The x and y locations
of STN neurons were randomly assigned as described previously,
where the excitatory and inhibitory synapses for a given STN
neuron were positioned at its x and y location, 250 µm from the
bipolar electrode in the z direction. Assuming conduction within
a purely resistive homogenous medium of infinite extent, the LFP
at the bipolar electrode contacts was estimated as

LFPi (t) =
1

4πσ

M∑
j=1

N∑
k=1

Ik
synj

rij
(4)

Where LFPi (t) is the LFP recorded by the ith bipolar, electrode
contact at time t, Ik

synj
is the kth synaptic current of the jth STN

neuron, and rij is the distance from the ith electrode contact to
the kth synapse of the jth STN neuron assuming M neurons, each
with N synapses.
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Beta-Band LFP Activity
The average rectified value (ARV) of the beta-band LFP was
calculated by full-wave rectifying the filtered LFP signal using a
fourth order Chebyshev band-pass filter with an 8 Hz bandwidth,
centered about the peak in the LFP power spectrum. The last
100 ms epoch of the rectified signal was discarded to remove
filtering artifact before taking the mean value of the last 100 ms
epoch of the resulting signal. A target value for the beta ARV
was estimated as the 20th percentile of the beta ARV signal
estimated for a thirty second epoch with DBS off. Cortical soma
bias currents were modulated to vary the duration of beta activity
within the network and simulated periods of high beta activity,
or “beta bursts” periods, and low frequency activity. The duration
of the beta burst periods were varied to simulate short, “healthy
bursts” of beta activity, THB, and prolonged, “pathological bursts”
of beta activity, TPB. Healthy burst periods were defined as 100 ms
in duration while the duration of pathological bursts were drawn
from a uniform distribution between 600 and 1000 ms to capture
variability of pathological burst durations (Tinkhauser et al.,
2017a; Anidi et al., 2018). The time between beta bursts, the
interburst period, was fixed at 300 ms. The beta modulation signal
was generated by selecting a random number at the start of each
beta burst. If the random number was less than, or equal to
0.5 the burst was labeled healthy and its duration assigned as
the healthy burst duration. If the random number was greater
than 0.5 it was labeled pathological and its duration was set
appropriately, selecting a value from the uniform distribution
of pathological burst durations. The probability of pathological
burst occurrence in the model was a simplified representation of
beta burst activity observed in PD. Research has observed that
the probability of pathological burst occurrence is modulated
in PD patients by factors such as medication and motor tasks
(Tinkhauser et al., 2017a, 2020). Although not considered in
this study, future studies may incorporate modulation of the
burst probabilities to emulate variations in burst probabilities
induced by these factors. During controller simulations, a beta
ARV above the target corresponded to pathological beta activity,
while a beta ARV below the target represented fluctuations of
healthy beta activity. In practice, the target could be chosen based
on an appropriate balance between symptom suppression and
device power consumption. The controller input, e, at time t was
calculated as the normalized error between the measured beta
ARV, bmeasured, and the target beta ARV, btarget , according to

e (t) =
bmeasured (t)− btarget

btarget
(5)

The controller operated with a sampling interval, Ts, of 20 ms,
updating the modulated DBS parameter at each controller call.
During amplitude modulation, the DBS frequency and pulse
duration were fixed at 130 Hz and 60 µs, respectively, with the
amplitude varying between 0 – 3 mA, where the upper amplitude
bound was selected as the amplitude which minimized the beta
ARV. During frequency modulation, the DBS amplitude and
pulse duration were fixed at 1.5 mA and 60 µs, respectively, with
the frequency varying between 0 – 250 Hz.

It has been observed in clinical studies of closed-loop DBS
amplitude modulation that rapid changes in the stimulation
amplitude can potentially induce stimulation induced side-
effects, or paresthesia. To avoid unintentional paresthesia
Little et al. (2013) ramped their DBS amplitude from its
minimum to maximum value over a 250 ms period during
closed-loop DBS. Following this approach, the maximum
tolerable rate limit for the modulated DBS parameter during
closed-loop DBS was defined as

RL =
umax − umin

TRamp
⇒ u1RL

∼=
Ts (umax − umin)

TRamp
(6)

where RL is the rate limit of the DBS parameter per second,
TRamp is the duration of the ramping period, Ts is the controller
sampling period, u1RL

is the maximum tolerable variation of
the DBS parameter per controller call, and umax and umin are
the maximum and minimum bounds of the modulated DBS
parameter. Utilizing this, the maximum rate limit for DBS
amplitude modulation was calculated as RL = 0.012 A/s and
RL = 1000 Hz/s for frequency modulation.

Closed-Loop Control
On-off, dual-threshold, P and PI controllers were investigated for
closed-loop control of the DBS amplitude as detailed below. P and
PI control were also used to investigate closed-loop control of the
DBS frequency. The closed-loop DBS methodology simulated by
the model is summarized in Figure 1C.

On-Off Controller
The on-off controller utilized a single target and increased or
decreased the stimulation amplitude toward its upper or lower
bounds if the beta ARV was measured above or below the target,
respectively. The on-off controller is defined as

u (t) =

{
u (t − 1)+ u1RL

if e (t) > 0
u (t − 1)− u1RL

if e (t) < 0

where umin ≤ u (t) ≤ umax (7)

where u(t) is the modulated DBS parameter value, i.e., the
stimulation amplitude, at time t, u1RL

is the rate limit of the DBS
parameter at each controller call, and e(t) is the controller error
input signal at time t.

Dual-Threshold Controller
The dual-threshold controller utilized a target range where
the upper bound of the target range was selected as the 20th
percentile and the lower bound was selected as the 10th percentile
of the beta ARV with DBS off. If the beta ARV was greater than
the upper bound of the target range, the error was calculated with
respect to the upper bound, while if it was less than the lower
target range bound, the error was calculated with respect to the
lower bound. The behavior of the dual-threshold controller is
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defined as follows

u (t) =


u (t − 1)+ u1RL

if e (t) > 0
u (t − 1) if e (t) = 0
u (t − 1)− u1RL

if e (t) < 0

where umin ≤ u (t) ≤ umax (8)

where the parameters are as described for the on-off controller.

PI and P Controllers
The PI controller utilized a single target and is defined as

u (t) = Kp

(
e (t)+

1
Ti

∫
e (τ) dτ

)
(9)

where u(t) is the modulated DBS parameter value at time t, Kp is
the controller proportional gain and Ti is the controller integral
time constant. The PI proportional component contributes
to the modulated DBS parameter at time t by scaling the
current controller measured error while the integral component
contributes to the controller output at time t by scaling the
integrated history of the controller measured errors up to time
t. Conditional integration of the integral component was used
to prevent integral wind-up, where integration of the integral
component was paused if the modulated DBS parameter reached
its upper or lower parameter bounds. Inclusion of a derivative
gain, which would make the controller a PID controller rather
than a PI controller, was deemed undesirable because below target
fluctuations in beta-band activity, which occur during healthy
beta bursts, would contribute to the modulated stimulation
parameter through the derivative term. The P controller was
simulated by omission of the integral term in (9).

PI Controller Gain Tuning
The performance of PI controllers is heavily dependent on
selection of appropriate values for the proportional gain, Kp, and
integral time constant, Ti. The tuning process here is complicated
by the constraint that the controller should not exceed the
maximum tolerable rate limit of the modulated DBS parameter
and that controller should act only on pathological beta bursts,
while minimally effecting healthy beta bursts. The following
tuning rules were thus designed for selecting PI controller
parameters which adhere to these requirements.

Selection of Integral Time Constant
The duration of beta bursts in the model varied between healthy
and pathological durations, THB and TPB respectively. It was
thus desirable to select the integral time constant longer than
the duration of healthy bursts and shorter than the duration of
pathological beta bursts. Therefore, the integral time constant, Ti,
was selected as 0.2 s, so

THB ≤ Ti ≤ TPB (10)

Selection of Proportional Gain
The proportional gain, Kp, was selected so that the rate limit of the
modulated DBS parameter was not exceeded. This was calculated

by differentiation of Eq. (9) and setting the DBS parameter rate
limit, RL, as an inequality constraint

du (t)
dt
= Kp

(
de (t)

dt
+

1
Ti

e (t)
)
≤ RL (11)

Rearranging, Kp was defined as

Kpmax ≤
RL

max
[

de(t)
dt

]
+

1
Ti

max [e (t)]
(12)

The maximum value of e(t) and de(t)
dt were estimated from a 30 s

simulation with no DBS. Substituting in the corresponding values
allows the calculation of an upper bound value for Kp, Kpmax .
Using these rules, the PI controller parameters were calculated
as (Kp, Ti) = (0.23, 0.20) for the PI amplitude controller and (Kp,
Ti) = (19.30, 0.20) for the PI frequency controller.

A parameter sweep was conducted to select the proportional
gain term for the P controllers, where the gain selected minimized
the resulting mean controller error. The Kp parameters were
selected as 5.0 and 417 for the amplitude and frequency P
controllers, respectively.

Simulation Details
The behavior of the model during continuous open-loop DBS
was initially investigated with a constant level of beta activity
within the network to characterize the relationship between the
DBS waveform parameters and (i) the antidromic spike rate
of cortical neurons detected at the cortical soma (ii) the beta-
band power measured from the STN LFP and (iii) the firing
rate of STN neurons. Ten simulations were conducted with
initial random seeds varied between each simulation. Following
this, a parameter sweep of the stimulation amplitude and
frequency values was conducted to characterize the effect of
parameter values on the LFP beta ARV. The parameter space
was divided into 1024 linearly spaced sample points between
the minimum and maximum bounds of the DBS amplitude,
0 – 3 mA, and frequency, 0 – 250 Hz. Each sample point
corresponded to a 10 s simulation of open-loop DBS with the
DBS parameters specified at that sample point. The performance
of each closed-loop controller was then investigated in ten
30 s simulations where network beta activity was modulated
as described in section 2.5. Ten independent beta modulation
signals were generated, with each controller simulated for each
modulation signal.

Controller performance was quantified in terms of the mean
error of the half-wave rectified error signal, the mean power
consumed by the controller and the controller suppression
efficiency in each simulation. The mean power consumed by the
controller was calculated as

Power Consumed =
ZE ∫

Tsim
0 I2

DBS (t) dt
Tsim

(13)

where ZE is the electrode impedance, assumed to be 0.5 K�,
Tsim is the simulation duration and IDBS is the DBS current.
The suppression efficiency of the controller was quantified as the
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percentage beta suppression per unit power consumed, with units
%/µW. The controller suppression efficiency was thus defined as

Suppression Efficiency

= 100×

(
1− 1

Tsim
∫

Tsim
0

bDBSOff (t)−bController(t)
bDBS Off (t)

dt
)

Power Consumed
(14)

where bDBS Off is the beta ARV signal measured in the simulation
when DBS was off, bController is the beta ARV signal measured
from each controller simulation, and power consumed is the
power consumed by the controller in the simulation, as defined
in (13). The performance of the controllers was averaged over
ten controller simulations, where each simulation utilized an
independent cortical beta modulation signal.

A parameter sweep of the PI amplitude controller parameters
was also conducted to investigate the effect of each parameter on
the controller behavior. The sweep was conducted for Kp values
linearly spaced between (0,6) and Ti values logarithmically spaced
between (0,6). All simulations were run from the model steady
state, where an initial model simulation was run for 6 s to allow
the network behavior to reach steady state, before the controller
performance was then evaluated on the following 10 s. The initial
model parameters in steady state were saved and used as the
starting point for all subsequent simulations.

The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented in
Python using the PyNN API package (Davison, 2008). The model
was numerically integrated using the Crank-Nicholson method
with a 0.01 ms timestep for all simulations. Simulations were
run on the UCD Sonic high-performance computing cluster.
Post-processing and signal analysis were done using custom
scripts developed in MATLAB (The MathWorks, Inc., Natick,
MA, United States).

RESULTS

The behavior of the model was first examined and compared with
key features of the network behavior identified in experimental
data from animal and human studies. Beta activity within
the STN LFP, antidromic activation of cortical neurons and
STN neural firing rates during continuous DBS with constant
stimulation parameters were investigated. The firing rates of the
cortical neurons were then modulated to simulate bursts of beta
activity within the network and the performance of closed-loop
DBS controllers to modulate either the DBS pulse amplitude or
frequency were evaluated.

Network Behavior During Open-Loop
DBS
Cortical desynchronization and GPe entrainment were observed
in the model during open-loop stimulation, after 0 s in
Figures 2D,F, where this behavior was qualitatively similar
to these DBS effects reported in experimental studies of the
parkinsonian rat model (Li et al., 2012; McConnell et al., 2012).
Cortical antidromic firing rates matched well the observations

of Li et al. (2012) where the rate of cortical antidromic spiking
increased with increasing stimulation frequency to a maximum
antidromic spike rate of 36.8± 0.6 Hz at a stimulation frequency
of approximately 130 Hz, Figure 2A. Antidromic firing rate
was defined as the number of successful stimulation-evoked
antidromic activations detected at the soma of reliably stimulated
cortical neurons where cortical collaterals were deemed to be
“reliably” stimulated when they were activated by at least 90% of
DBS pulses at the stimulation frequency. Further increasing the
stimulation frequency resulted in a reduction in antidromic spike
rate (Li et al., 2012), Figure 2A. In the model, DBS influenced
the cortical interneurons as the antidromic activation spread
through the cortical network through branching collaterals. This
altered activation of inhibitory interneurons through antidromic
activation of the cortical neurons is consistent with the hypothesis
proposed by Li et al., where this behavior was suggested as a
potential mechanism for the failure of frequency following at
higher frequencies (Li et al., 2012).

Increasing the frequency of DBS resulted in a gradual
reduction of the average STN neuron firing rate, Figure 2B.
Complete suppression of STN neurons was observed in the
model at 100 Hz and is consistent with STN firing rate behavior
reported by Milosevic et al. (2018) during DBS in parkinsonian
patients, Figures 2B,E. In the model, differences in the properties
of excitatory, AMPAergic, and inhibitory, GABAergic, synapses
leads to a net inhibition of STN neurons at higher frequencies.
In experimental studies, it has been suggested that inhibitory
GABAergic afferents comprising the majority of terminals on
the STN soma, in combination with differing rates of synaptic
depletion, may explain observations of a reduction in STN firing
rates during high frequency stimulation (Milosevic et al., 2018).

The beta-band power in the LFP power spectrum decreased
non-linearly with increasing DBS amplitude, Figure 2C. This
relationship is similar to the reduction in LFP beta-band
activity with increasing amplitude observed in clinical data
from parkinsonian patients which can be well-described by
higher order models (Davidson et al., 2016). Low stimulation
amplitudes had little influence on LFP beta-band activity with
amplitudes less than 1.1 mA unable to suppress beta-band
power in the LFP power spectrum regardless of the stimulation
frequency. Suitable stimulation amplitude and frequency values
reduced the amplitude of LFP beta-band oscillations during
DBS, Figure 2G, with the corresponding variation in the
LFP power illustrated in Figure 2H. Prior to the application
of DBS, there exists a narrowband peak in the LFP power
spectrum at 25 Hz. During stimulation, the 25 Hz peak
is suppressed, whilst a peak emerges in the LFP power
spectrum at the 130 Hz stimulation frequency, Figure 2H.
The sensitivity of the amplitude of beta-band oscillations to
the stimulation parameters is presented in Figure 3, where
stimulation amplitudes above 1.1 mA reduced the beta-band
power in the LFP power spectrum by at least 50% for a
broad range of stimulation frequencies above 40 Hz. This
behavior is comparable with experimental data where Blumenfeld
et al. reported the improvement of bradykinetic symptoms in
freely moving parkinsonian patients during 60 Hz stimulation
(Blumenfeld et al., 2016). Stimulation frequencies below 20 Hz

Frontiers in Neuroscience | www.frontiersin.org 8 March 2020 | Volume 14 | Article 16679

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00166 March 4, 2020 Time: 15:43 # 9

Fleming et al. Closed-Loop Control of DBS

FIGURE 2 | Cortico-basal ganglia network behavior during open-loop DBS. (A) Antidromic cortical spike rate during DBS with 2 mA amplitude, 60 µs pulse duration
and varying frequency. (B) Normalized STN firing rate during DBS with 3 mA amplitude, 60 µs pulse duration, and varying DBS frequency. (C) Normalized STN LFP
beta-band (22 – 30 Hz) power during DBS with 130 Hz frequency, 60 µs pulse duration, and varying DBS amplitude. (D–F) Cortical soma, STN and GPe population
raster plots when DBS is off and during open-loop DBS with 2.5 mA amplitude, 130 Hz and 60 µs pulse. At time 0 s, DBS is applied to the network causing
desynchronization of cortical somas, STN suppression and GPe entrainment (G) Simulated beta-band filtered LFP before and during stimulation with 2.5 mA
amplitude, 130 Hz frequency and 60 µs pulse duration. DBS is turned off prior to time 0 s and switched on at 0 s. (H) STN LFP power spectral densities when DBS
is off (gray line) and during DBS with 2.5 mA amplitude, 130 Hz frequency and 60 µs pulse duration (black line). When DBS is off the LFP has a peak at 26 Hz in the
beta frequency band. When DBS is applied to the network the 26 Hz beta-band peak is suppressed and a peak appears in the LFP power spectrum at the
stimulation frequency, 130 Hz.

resulted in less than 30% reductions in beta-band power in the
LFP power spectrum, indicating that low frequency stimulation
is not effective at suppressing beta-band activity in the model,
Figure 3A. Similar behavior was observed in Eusebio et al.
(2008) where low frequency stimulation led to small performance
improvements in a finger tapping task in PD patients if their
baseline performance was below normal limits. Eusebio et al.
(2008) also reported that when baseline performance was within
normal limits low frequency stimulation resulted in worsened
performance. This suggests that when beta-band activity is high,

low frequency stimulation may not lead to a worsening of
motor performance.

Closed-Loop Control of LFP Beta-Band
Activity
Open-Loop DBS
Model simulations with DBS off demonstrated modulation of the
STN LFP beta-band activity, with varying periods of short and
prolonged beta, Figure 4A. The simulations without DBS were
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FIGURE 3 | Effect of open-loop DBS parameters on STN LFP beta-band power. (A) The STN LFP beta-band power was calculated during DBS with fixed 60 µs
pulse duration and varying stimulation amplitude and frequency. The LFP beta-band power was normalized against the LFP beta-band power recorded when was
DBS off. Stimulation amplitude and frequency values of 0 corresponded to the condition where DBS is off, resulting in an LFP beta-band power value of 1. (B–E)
Examples of the STN LFP for varying stimulation amplitude and frequency values.

used to set a reference performance mean error value of 100% for
the controller. Reference values for the mean power consumption
and the suppression efficiency of the controllers were obtained
from simulations with open-loop, constant DBS at 2.5 mA,
130 Hz, and 60 µs pulse duration. The mean power consumption
value was used to set a reference mean power consumption value
of 100%, with a corresponding mean error value of approximately
zero (0.4%) and a suppression efficiency of 1.7%/µW, Figure 4B.
These baseline performance values were used to compare the
closed-loop DBS control strategies for keeping the beta ARV
below the target ARV value.

Amplitude Modulation Controllers
The on-off controller resulted in a suppression efficiency of
8.3%/µW, a 63% reduction in mean error compared to the
DBS off condition, and a 60% reduction in mean power
consumed when compared with constant DBS. The dual-
threshold controller resulted in a 5.9%/µW suppression efficiency
and showed greater reduction in mean error, with a 70% decrease,
but had a smaller mean power consumed reduction, with a 50%
decrease, Figures 5, 8.

The P controller displayed a 7.1%/µW suppression efficiency
with 62% and 53% reductions in the mean error and mean
power consumed, while the PI controller showed a 9.8%/µW
suppression efficiency with 79% and 68% decreases in the mean
error and mean power consumed respectively, Figures 6, 8.

Frequency Modulation Controllers
The P controller showed a 3.5%/µW suppression efficiency, with
72% reduction in the mean error, but only a 1% decrease in
the mean power consumed when compared with continuous
DBS. Better performance was obtained using the PI controller
with a 12.5%/µW suppression efficiency, and reductions in
the mean error and mean power consumed of 83% and 75%,
respectively, Figures 7, 8.

The controller performances are summarized in Figure 8.

Effect of Varying PI Parameter Values
Having examined the PI controller using the derived parameters
from the rule-tuning method, a sensitivity analysis was conducted
to explore the parameters effect on controller performance.
All the PI parameter value combinations tested as part of
the controller parameter sensitivity analysis resulted in an
approximately 55% reduction in the mean error compared to
DBS off. The mean power consumed showed a reduction of
at least of 40% for all combinations. A region of parameter
space between Kp = (0.25, 1) and Ti = (0.02, 0.8) showed the
greatest reduction in the mean error of 96% and a 60% reduction
in power consumed at Kp = 0.75 and Ti = 0.19, Figure 9.
A controller with relatively long Ti and low Kp resulted in
slow performance, where the integral term slowly accumulated
the error history and the modulated parameter varies slowly
through the proportional term, Figure 9C. In comparison, a
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FIGURE 4 | DBS off and open-loop DBS. (A) Example of a 30 s simulation with DBS off. The cortical bias current signal, top panel, represents the temporal
modulation of the intracellular cortical bias current applied to the cortical neuron somas to generate activity in the beta frequency band. The raw LFP, beta-band
filtered LFP and beta ARV are displayed in the next three panels. The target level for the beta ARV is represented by the red dotted line in the beta ARV figure panel.
(B) 10 s simulation period of DBS off and open-loop DBS with 2.5 mA amplitude, 130 Hz frequency and 60 µs pulse duration. The panels correspond to the 10 –
20 s simulation period from the panel (A). DBS off is represented as the gray lines in the filtered LFP and beta ARV panels, while open-loop DBS is displayed in black.

controller with short Ti and relatively large Kp resulted in a
fast controller response, where the error history accumulated
quickly and the modulated parameter varied quickly between
minimum and maximum values, Figure 9E. PI parameter values
selected using the tuning rule presented in this study resulted
in a controller response which maintained the beta activity at
the target level while adhering to rate constraints on the DBS
amplitude, Figure 9D.

DISCUSSION

A computational model is presented as an in silico testbed
for developing and testing closed-loop DBS controllers
designed to control LFP beta activity in PD. The model
developed extends previous models by (i) incorporating the
extracellular DBS electric field, (ii) captures both antidromic
and orthodromic activation of afferent STN projections,
(iii) simulates the synaptically generated STN LFPs and (iv)
mimics temporal variation of network beta activity within the

thalamo-cortico-basal ganglia loop. The model was first used
to validate the performance of on-off and dual-threshold DBS
amplitude closed-loop control schemes which have been tested
clinically. P and PI controllers for modulating either the DBS
amplitude or frequency were then investigated. PI controllers
were found to outperform current clinically tested closed-loop
controllers, displaying the greatest reductions in the controller
mean error and power consumed during closed-loop DBS of the
controllers examined.

Closed-Loop Control of DBS
The observed reduction in power during on-off control within
the model is consistent with clinical studies which have reported
a 50% reduction in mean power when compared with open-
loop DBS (Little et al., 2013, 2016). This corresponded to a
6.6%/µW greater suppression efficiency value than open-loop
DBS. In terms of the mean error, the dual-threshold controller
performed better than on-off control, reducing the mean error
by a further 7%, Figure 8. This resulted in a 50% reduction in
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FIGURE 5 | On-off and dual-threshold amplitude control, fixed 130 Hz frequency and 60 µs pulse duration. (A) On-off DBS amplitude controller. During simulation,
the on-off controller increases or decreases the DBS amplitude by a fixed amount at each controller call, toward its upper or lower amplitude bounds, if the beta ARV
is measured above or below the target value, the dotted red line in the beta ARV panel. (B) Dual-threshold amplitude controller. The dual-threshold controller uses a
target beta ARV range, represented by the two dotted red lines. If the beta ARV is measured above the upper target range value or below the lower target range
value the stimulation amplitude is increased or decreased, respectively, by a fixed amount toward the upper or lower bounds of the stimulation amplitude. If the beta
ARV lies in the target range the stimulation amplitude remains constant.

the mean power consumed compared to open-loop DBS which
is again in-line with the clinically reported 56.86% reduction in
energy delivered (Velisar et al., 2019). The improved performance
maintaining the target beta level, at the cost of greater power
consumption, resulted in a smaller suppression efficiency than
on-off control and was due to the dual-threshold controller’s
ability to maintain a fixed stimulation amplitude when the beta
ARV remained within its target bounds, Figure 5B. Without this,
the on-off controller results in a higher error but consumes less
power during stimulation, Figures 5, 8.

The mean error of P amplitude control was comparable to on-
off control, while its mean power consumed was comparable to
that of dual-threshold control, with an intermediate suppression
efficiency value between both on-off and dual threshold control,
Figures 6A, 8. However, to achieve this performance, the P
controller exceeded the prespecified rate limit of 0.012 A/s with
a maximum rate observed of 0.150 A/s, exceeding clinically
recommended limits to avoid side-effects. The P controller
behaved similar to on-off control without rate limiting, or “bang-
bang” control, switching between its maximum and minimum
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FIGURE 6 | P and PI amplitude control, fixed 130 Hz frequency and 60 µs pulse duration. (A) P amplitude controller. At each controller call, the stimulation
amplitude is calculated as the current measured error value scaled by the controller gain, Kp. The controller stimulation amplitude is bounded between 0 – 3 mA,
thus, negative error values correspond to turning DBS off. (B) PI amplitude controller. At each controller call, the stimulation amplitude is calculated as the
summation of an integral term, i.e., the integration of the measured errors at previous controller calls, and the current measured error value, scaled by the integral
time constant, Ti , and the proportional gain, Kp, respectively.

values when the beta ARV was above or below the target. If a rate
limiter is implemented on the P controller, it will behave similar
to the on-off controller presented in this study, where deviations
of the control variable from the target result in the amplitude
varying by the maximum tolerable rate at each controller call.
Rosa et al. (2015) and Arlotti et al. (2018) varied the stimulation
voltage linearly, or proportionally, in response to slow variations
in LFP beta-band power, rather than with respect to the error
between the instantaneous beta activity and a target as examined
here. In that study, the control signal will not fall below zero,
while the control signal in this study is negative when beta activity

is below the target. Due to the controller output bound at zero,
DBS switches off when the control signal is negative here, while
this behavior would not be observed when directly measuring
the LFP beta-band power as the control signal. This distinction
between using slow variations in beta activity or the error of the
instantaneous beta activity to a target is important to consider for
clinical implementations of P controllers as this subtlety leads to
disparate performances of the P controller.

The behavior of the P frequency controller was qualitatively
similar to its amplitude counterpart, with the P frequency
controller rapidly switching between its maximum and minimum
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FIGURE 7 | P and PI frequency control, fixed 1.5 mA amplitude and 60 µs pulse duration. (A) P frequency controller. At each controller call, the stimulation
frequency is calculated as the current measured error value scaled by the controller gain, Kp. The controller stimulation frequency is bounded between 0 – 250 Hz,
thus, negative error values correspond to turning DBS off. (B) PI frequency controller. At each controller call, the stimulation frequency is calculated as the
summation of an integral term, i.e., the integration of the measured errors at previous controller calls, and the current measured error value, scaled by the integral
time constant, Ti , and the proportional gain, Kp, respectively.

values, Figures 7A, 8. Although the P frequency controller
reduced the mean error by 72%, the mean power consumed
during stimulation was reduced by just 1% with only a 1.8%/µW
increase in suppression efficiency when compared to open-loop
DBS. The negligible change in mean power consumption was
due to periods where the controller modulated the stimulation
frequency between the minimum and maximum values of
0 Hz and 250 Hz. During these periods, the stimulation was
either switched off or delivered close to double the number
of stimulation pulses as during open-loop DBS or amplitude
modulation, where the stimulation frequency was fixed at 130 Hz.
With the stimulation amplitude fixed at 1.5 mA during frequency
control this results in the same mean power consumed as

open-loop DBS, Figure 8. The stimulation amplitude value
selected for frequency control was chosen to allow use of
the full span of stimulation frequencies, however it should be
emphasized that by simply reducing this amplitude value or the
controller’s upper frequency bound would result in the controller
consuming less power.

The PI controllers for amplitude and frequency performed
with 79% and 83% reductions in mean error, and a 68 and 75%
decrease in mean power consumed for amplitude and frequency
modulation, respectively, Figures 6B, 7B, 8. The behaviors of
both PI controllers were qualitatively similar, with the integral
term increasing the modulated stimulation parameter to a value
where it was effective at maintaining the beta ARV around
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FIGURE 8 | Summary of performance of closed-loop controllers. The normalized mean error (±std), normalized mean power consumed (±std) and suppression
efficiency (±std), averaged across ten 30 s simulations with ten independent beta modulation signals, of each closed-loop controller is presented. The mean error
and mean power consumed are normalized against the mean error and mean power consumed when DBS is off or applied in open-loop with 2.5 mA amplitude,
130 Hz frequency and 60 µs pulse duration for each cortical beta modulation signal. The PI frequency controller performed best overall with a suppression efficiency
of 12.5%/µW, reducing the mean error by 83% and the mean power consumed during stimulation by 75%.

FIGURE 9 | Effect of PI parameters on amplitude controller performance. (A) Normalized PI controller error vs. PI parameters. (B) Normalized PI controller power
consumed vs. PI parameters. (C–E) Beta ARV and DBS amplitude due to varying Ti and Kp controller parameter values.

the target level with 9.8%/µW and 12.5%/µW suppression
efficiency values for the amplitude and frequency controllers
respectively, Figures 6B, 7B. Once at this value, fluctuations
in the beta ARV resulted in proportional variation of the
stimulation parameter to maintain the beta level. The integral
term essentially overcomes the initial non-linearity between the
DBS parameter and the beta ARV, where a minimal value must
be reached before the stimulation becomes effective. This is
achieved by increasing the stimulation parameter to a region
of parameter space where its relationship with the beta ARV
is approximately linear, Figures 2C, 3A. The integral term
varies the modulated stimulation parameter based on the error
history in the system, whereas the on-off, dual-threshold and P

controllers act only on the current error of the system at each
controller call and thus have no memory of previous errors.
For the on-off and dual-threshold controllers this can result in
slow performance when the beta ARV exceeds the target and
DBS is off. When this occurs, the DBS parameter must increase
beyond the non-linear region of its parameter space before
stimulation becomes effective, which may take several controller
calls. The gain of each P controller was selected as the gain
value which minimized the mean error in a parameter sweep
over the proportional gain values. The resulting P controllers
were fast and essentially avoided the non-linear region of the
stimulation parameter space by quickly switching the stimulation
parameter between its maximum and minimum values but did
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so at a rate that may be greater than is clinically desirable,
Figures 6A, 7A.

Overall, the PI frequency controller performed best, yielding
superior suppression efficiency and the greatest reductions in
mean error and mean power consumed of the controllers
examined. Interestingly, the controller settled around a mean
stimulation frequency of 125 Hz, which is in line with
high frequency stimulation values utilized clinically. When
modulating about this point the stimulation frequency varied
between 80 – 160 Hz over the course of the simulation, with
DBS remaining effective throughout the simulation, Figure 7B.
Clinical research has observed similar behavior where a 60 Hz
DBS frequency was able to improve bradykinesia in PD
patients (Blumenfeld et al., 2016). The authors hypothesized that
140 Hz high frequency stimulation and the lower frequency
60 Hz stimulation signals effectively decoupled the cortico-
STN hyperdirect pathway during stimulation. The model
presented in this study supports this hypothesis, with cortical
desynchronization and STN firing rate suppression occurring
during effective DBS, Figures 2D,E. It is again important to
note however, that due to the non-linear relationship between
DBS parameters and network beta activity there is a threshold
stimulation amplitude value which must be reached before
DBS frequency modulation becomes effective, in the model at
approximately 1.1 mA, Figure 2C.

All closed-loop controllers tested yielded greater beta
suppression efficiency values than open-loop DBS in this study.
This metric suggests that closed-loop DBS provides better
performance than open-loop DBS for maintaining beta-band
activity in the STN LFP. However, how well this metric
corresponds to actual symptom suppression would need to be
examined further in vivo as suppression of beta-band activity
in the model may not directly relate to in vivo symptom
suppression. Another point of consideration for the controller
results presented is that although the duration of LFP beta
activity has been tested as a control variable for the on-off
controller (Tinkhauser et al., 2017a), it has not been tested for
either the dual-threshold or proportional controllers to date.
Clinical studies investigating the dual-threshold and proportional
controllers were limited to utilizing LFP beta band power as
their control variables due to delays in the neurostimulator used
during their studies (Arlotti et al., 2018; Velisar et al., 2019). This
limitation is anticipated to be overcome in the next generation
of neurostimulator devices and thus it will be feasible to utilize
the duration of LFP beta activity as a control variable in the
future (Velisar et al., 2019). With this in mind, the sampling
frequency of controllers used in this study was selected so that
fluctuations in the network beta band activity could be observed,
with the controllers attempting to target only prolonged duration
network beta activity.

PI Controller Parameters
Suitable control parameters were identified using a rule-tuning
approach which takes advantage of features of the biomarker that
can be readily estimated clinically to derive suitable PI controller
parameters, i.e., the threshold duration of pathological beta-band
activity and constraints on the rate-of-change of stimulation

parameters. When clinically tuning a PI controller for closed-
loop DBS, the presented tuning rule could be used initially to
coarsely tune the controller, before further fine-tuning is achieved
by varying the controller parameters using visual feedback of
the modulated stimulation parameter. The intention here is to
allow the clinician to further fine-tune the controller response
if necessary, for example slowly increasing Kp to increase the
speed of the controller. Identifying suitable controller parameters
could also be achieved in the model by utilizing an optimization
technique and a suitable objective function, where the objective
function captures the clinical considerations of the system. This
approach, however, would require sampling multiple points in
the parameter space which may not be practical clinically. An
alternative controller design approach is to linearize the input-
output relationship of the system using a model and subsequently
design a controller which meets the required closed-loop system
response (Santaniello et al., 2011; Liu et al., 2017a; Yang et al.,
2018; Su et al., 2019). This approach was used by Santaniello et al.
(2011), Liu et al. (2017a), and Su et al. (2019) where autoregressive
models were derived from spiking neuron models. To normalize
aberrant neural activity during parkinsonian tremor, Santaniello
et al. (2011) designed a minimum variance controller, while
Liu et al. (2017a) implemented a generalized predictive control
algorithm. In contrast, Su et al. (2019) optimized the parameters
of a discrete PI controller to track a dynamic target of beta-
band power which may be associated with fluctuations of the
oscillatory activity during voluntary movement. Haddock et al.
(2017) illustrated the potential of the approach by deriving an
autoregressive model of the relationship between DBS amplitude
and parkinsonian tremor from patient data, using the identified
model as part of a model predictive controller for parkinsonian
tremor (Haddock et al., 2017). The benefit of the autoregressive
model approach is that derived models can be simulated
in real-time and thus facilitate the use of advanced control
techniques which require use of an internal model (Francis
and Wonham, 1976). The disadvantage, however, is that it does
not provide insight into the underlying physiological behavior
of the system or its dynamics. Another drawback is that the
identified model is valid only for the system operating region at
which it was identified. Due to the dynamic, non-linear nature
of the parkinsonian neuromuscular system, identified models
or controller parameters which were initially suitable during
controller tuning may become unsuitable or provide suboptimal
performance during different tasks, times throughout the day
or as the disease progresses. Advanced adaptive techniques
which automatically update autoregressive model coefficients or
controller gains may be required to overcome this limitation
(Cameron and Seborg, 1984; Santaniello et al., 2011; Chaillet
et al., 2017). Nevertheless, the PI parameter rule-tuning approach
presented in this study provides improved performance over
currently tested closed-loop controllers, is simple to implement
in a clinical setting and adheres to clinical considerations.

Model Considerations
Previous modeling studies of closed-loop DBS have investigated
LFP derived measures of network beta-band activity
(Daneshzand et al., 2018; Popovych and Tass, 2019). However,
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only a small number of models have simulated the coupled
DBS electric field and network model during stimulation
(Santaniello et al., 2011; Grant and Lowery, 2013). In the
absence of a description of the electric field in the surrounding
tissue during DBS, modeling studies are limited to simulating
frequency modulation where the DBS waveform is injected as
an intracellular current (Kang and Lowery, 2013; Holt et al.,
2016; Popovych and Tass, 2019; Su et al., 2019). To develop
clinically relevant closed-loop algorithms requires a model which
captures modulation of the targeted networks behavior due to
variations in both stimulation amplitude and frequency. The
thalamocortical population model presented by Santaniello
et al. (2011) incorporates both the DBS electric field and LFP
simulation for investigating aberrant neural activity during
parkinsonian tremor, but does not incorporate synaptic coupling
between the neuron population, injecting a suprathreshold
intracellular stimulus to neurons to drive spiking activity. As
this modeling approach does not capture network interactions
due to DBS it would, therefore, be unsuitable for modeling
the full cortico-basal ganglia loop included here. Previous
modeling studies of the cortico-basal ganglia during DBS
have investigated network and DBS effects separately. Kang and
Lowery (2013) and Kumaravelu et al. (2016) modeled the cortico-
basal ganglia using networks of single compartment neuron
models, however, these models did not include simulation of
extracellular DBS, the LFP or antidromic stimulation of afferent
STN inputs. Grant and Lowery (2013) simulated extracellular
DBS and the STN LFP, where the cortico-basal ganglia was
modeled using a single compartment neuron model for the
STN population and neural mass type models for the remaining
network neuron populations. The model thus, does not capture
complex network interactions such as antidromic activation of
afferent STN inputs during stimulation. Antidromic activation
of cortical afferent STN inputs and extracellular DBS was
captured in a network model in Kang and Lowery (2014),
however, the model did not capture antidromic activation of
GPe neurons during stimulation or simulation of the LFP.
The model presented in this study builds on these previous
modeling studies by incorporating extracellular DBS, STN
LFP simulation, antidromic and orthodromic DBS effects and
temporal variation of beta-band activity in a network model of
the cortico-basal ganglia.

The controllers examined in this study represent the current
landscape of clinically tested closed-loop DBS algorithms. The
PI controller investigated is a natural extension of current state
of the art closed-loop DBS research, and is the most commonly
used control algorithm in industrial applications due to its robust
performance in a wide range of operating conditions and its
functional simplicity. PID-type controllers have been investigated
in previous modeling studies of closed-loop DBS for PD (Gorzelic
et al., 2013; Su et al., 2019). However, these studies utilized
control variables which are not readily accessible during clinical
studies, where Gorzelic et al. (2013) investigated using both
thalamic reliability and GPi synaptic conductance as control
variables and Su et al. (2019) used the beta-band power of GPi
neuron spike times. Thus, direct comparisons between these
studies and clinical research is difficult. The model presented here

utilizes an LFP derived measure of network beta-band oscillatory
activity analogous to that employed during clinical closed-loop
DBS research, and thus facilitates a direct comparison between
the performance of controllers tested in the model and in
clinical research.

The purpose of the model is to provide an in silico testbed
for developing and testing closed-loop DBS strategies which
can be directly related to clinical closed-loop DBS research.
Although this study focused on using an LFP derived measure
of network beta-band activity for closed-loop DBS there is
extensive research in identifying alternative biomarkers for PD
symptoms and stimulation side-effects, such as entropy (Dorval
et al., 2010; Dorval and Grill, 2014; Anderson et al., 2015;
Syrkin-Nikolau et al., 2017; Fleming and Lowery, 2019), phase-
amplitude coupling (de Hemptinne et al., 2013; De Hemptinne
et al., 2015), coherence (Al-Fatly, 2019) and gamma-band activity
(Swann et al., 2016, 2018) based measures. A restriction of
the presented model is that it does not capture the neural
mechanisms which lead to parkinsonian tremor, a hallmark
symptom of PD, and is thus unsuited for investigating tremor-
based closed-loop DBS (Hirschmann et al., 2017; Helmich,
2018). However, with this in mind, it is anticipated that future
controllers which employ alternative methods or advanced
techniques, such as low frequency stimulation (Fasano and
Lozano, 2014; Blumenfeld et al., 2016) or phase-based (Tass,
2003; Tass et al., 2012; Holt et al., 2016, 2019), linear-
delayed feedback (Popovych and Tass, 2019) and optogenetic
stimulation methods (Detorakis et al., 2015), may still be
applicable when alternative biomarkers are implemented as
control variables.

Limitations
While the model captures several key features of the parkinsonian
cortico-basal ganglia during DBS, it remains an approximation
of the true system. Due to the limited access to the cortico-basal
ganglia structures and data available in literature, the individual
neuron models and their overall network behavior was based on
parameters and observations recorded from both parkinsonian
animal models and human patients from separate studies.
Antidromic activation of cortical neurons and GPe neuron
entrainment during DBS were fitted to data from experiments
using parkinsonian rat models (Li et al., 2012; McConnell
et al., 2012). Indirect evidence of antidromic activation and
desynchronization of cortical neurons has also been observed
in PD patients during STN DBS (Kuriakose et al., 2010; Weiss
et al., 2015). The STN firing rate suppression and LFP beta-band
power reduction during DBS were based observations in patient
data (Davidson et al., 2016; Milosevic et al., 2018. In the model,
antidromic propagation of cortical neurons was simulated and
an equivalent proportion of GPe neurons were antidromically
activated by the injection of an intracellular current. In practice,
the level of antidromic activation of cortical and GPe neurons
may differ, potentially altering DBS efficacy. In contrast to the
model presented, Kumaravelu et al. (2016) used experimental
data from 6-OHDA lesioned rats to parameterize their network
model. In the presented model, synaptic coupling was tuned,
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and the cortical population was biased to induce increased beta-
band oscillatory activity within the network, with striatal input
to the basal ganglia network being simplified as a population
of poisson-distributed spike trains. Omission of a physiological
model of the indirect pathway, and thus striatal input to the
basal ganglia network, is a limitation of the presented model
with research suggesting that the striatum may also play a key
role in the development of pathological oscillations in the basal
ganglia network during PD (McCarthy et al., 2011; Feingold
et al., 2015; Corbit et al., 2016). As the primary focus of
this study, however, was not the role of the striatum in the
generation of network pathological oscillations, its contribution
to the network was simplified. A recent study investigating
the role of exogenous cortical and striatal beta inputs to the
STN-GPe network using detailed multi-compartment models
of STN and GPe showed that resonant beta-band oscillatory
activity within the STN-GPe loop becomes phase-locked to
exogenous cortical beta inputs and that this behavior can be
further promoted by striatal input to the loop with the correct
phase (Koelman and Lowery, 2019). The network presented
here captures the exogenous cortical patterning of the STN-GPe
loop but omits possible further amplification of the beta-band
oscillatory activity due to the striatum. This behavior could
be incorporated into the model through the inclusion of the
indirect pathway.

Two consequences of the simplification of the cortical
and cortico-striatal networks, and the inability to accurately
capture all of the complex network interactions which lead
to elevated beta-band activity in PD is that the oscillatory
activity does not fully represent the activity observed in clinical
studies, with this activity also reemerging relatively quickly
post-stimulation in the model. In clinical studies, elevated STN
beta-band power is observed as a broad peak which shows long-
lasting attenuation post-stimulation, with attenuation dependent
on the stimulation duration (Temperli et al., 2003; Bronte-
Stewart et al., 2009). This behavior is not captured by the
model, where beta-band activity appears as a narrow-band
peak in the LFP power spectrum, Figure 2H, which reemerges
quickly when DBS is off or ineffective. Finally, the electrode
was simulated as a point source electrode within an ideal
homogeneous resistive volume conducting medium of infinite
extent. Computational studies have previously utilized the
quasi-static approximation and demonstrated the point source
approximation to be a valid prediction of the activation of
a population of neurons during DBS when calculating the
number and spatial distribution of neurons activated around
the electrode (Zhang and Grill, 2010). However, in reality, the
electrode geometry, its encapsulation tissue, and the capacitive
and dispersive electrical properties of the tissue can have a
substantial effect on the electric field distribution, on the DBS
waveform shape in the surrounding tissue and the activation
thresholds of target neurons during DBS (McIntyre et al., 2004;
Grant and Lowery, 2010). These limitations may be mitigated
by incorporating more realistic geometrical, anatomical and
electrical properties of the tissues through coupling of the
model to anatomically realistic finite element models. In keeping
with studies regarding the spatial reach of the LFP, it was

assumed that the LFP signal was dominated by synaptic currents
from neurons in a plane in the vicinity of the recording
electrode (Lindén et al., 2011), however, in reality these synaptic
currents would be distributed as a three-dimensional cloud
around the recording electrode (Lempka and McIntyre, 2013),
with a contribution from more distal neurons outside of the
STN network also being possible. The spatial distribution of
synapses within the dendritic structures and neuron morphology
can further influence the LFP, however, these were not
considered here.

CONCLUSION

A computational model of closed-loop control of DBS for PD
is presented that simulates (i) the extracellular DBS electric
field, (ii) antidromic and orthodromic activation of STN afferent
fibers, (iii) the LFP detected at non-stimulating contacts on
the DBS electrode and (iv) temporal variation of beta-band
activity within the cortico-basal ganglia network. The model
captures experimentally reported network behavior during open-
loop DBS and provides an in silico testbed for developing
novel, clinically relevant closed-loop control strategies for
updating either the amplitude or frequency of DBS. Clinically
tested on-off and dual-threshold amplitude controllers were
examined and exhibited reductions in power consumption
comparable with their clinically reported performance. A new
rule-tuning method for selecting PI controller parameters to
target prolonged, pathological duration beta-band oscillatory
activity whilst adhering to clinical constraints was developed.
The resulting performance of both amplitude and frequency PI
controllers outperformed the current clinically investigated on-
off and dual-threshold closed-loop amplitude control strategies
in terms of both power consumption and their ability
to maintain the LFP derived measure of network beta-
band activity at a target value. As the available technology
progresses toward a new generation of closed-loop or adaptive
stimulators, it is likely that testing novel control algorithms
in computational models, such as those presented here,
will become a valuable first step prior to clinical testing
in patients.
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The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation
(DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning
the DBS electrode within the SNr is critical for the development of preclinical models of
SNr DBS to investigate underlying mechanisms. However, a complete characterization
of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement
is lacking. In this study, we recorded extracellular single-unit activity in anesthetized
rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral
Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were
used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the
time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity,
spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the
frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude
decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude,
signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI
correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased
versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band. No
significant differences were observed between structures for any other feature analyzed.
Our results shed light on the heterogeneity of the SNr and suggest electrophysiological
features to promote precise targeting of SNr subregions during stereotaxic surgery.

Keywords: deep brain stimulation, Parkinson’s disease, intraoperative microelectrode recordings, action
potentials, Substantia Nigra pars reticulata

INTRODUCTION

Deep brain stimulation (DBS) is an effective treatment for tremor, rigidity, and bradykinesia
in Parkinson’s disease (PD). Although these distal symptoms are reliably treated by DBS and
dopaminergic medication, the axial symptoms of gait and postural disturbances continue to worsen
5 years after implant (St George et al., 2010). The gait and postural disturbances are difficult to treat
by either medication (Curtze et al., 2016) or DBS at the Subthalamic Nucleus (STN) (St George
et al., 2010). Substantia Nigra pars reticulata (SNr) is a promising DBS target to treat the gait and
postural disturbances in PD (Chastan et al., 2009; Weiss et al., 2011, 2013; Brosius et al., 2015;
Scholten et al., 2017; Valldeoriola et al., 2019). Location of the DBS electrode within the SNr may
play a crucial role in effective treatment, but the neural mechanisms for the location dependence of
SNr DBS are not clear. Studies in rats (McConnell and Grill, 2013), cats (Takakusaki et al., 2003),
and humans (Scholten et al., 2017) suggest that stimulation at lateral SNr (lSNr) sites is less effective
at treating the gait disturbances of PD compared to stimulation at medial SNr (mSNr) sites.
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The lateralization of SNr DBS may stem from the anatomical
and functional heterogeneity of the SNr. The mSNr and lSNr
receive different projections from the sensorimotor and limbic
striatum, respectively (Deniau et al., 1996; Mailly et al., 2001).
GABAergic neurons of mSNr and lSNr have a differential
change of firing activity in PD (Wang et al., 2010). Ablation
of the mSNr results in contralateral turning behavior, while
ablation of the lSNr results in ipsilateral turning behavior in rats
(Franklin and Wolfe, 1987).

Intraoperative microelectrode recordings (MERs) are
commonly used to verify and refine targeting of DBS electrode
placement during STN DBS surgery for PD. MERs employ
extracellular recordings of action potentials along preplanned
trajectories (Benazzouz et al., 2002) to minimize misplacement
of the DBS electrode, which may result in unwanted side effects
(Chan et al., 2009; Valsky et al., 2017). We hypothesized that
the waveform shape and neuronal firing patterns of spikes
detected from MERs within the SNr differ depending on the
location of the electrode within SNr subregions. In addition to
characterizing MERs in the mSNr and the lSNr, we investigated
the capability of MERs to define structures surrounding the
SNr including the Substantia Nigra pars compacta (SNc;
dorsal to SNr) and Ventral Tegmental Area (VTA; medial to
SNr). We recorded the subregions and surroundings of the
SNr, namely the mSNr, the lSNr, the SNc and the VTA, in an
anesthetized healthy rat model. MERs in anesthetized healthy
rats is consistent with the future application of SNr DBS or SNr
electrophysiology in parkinsonian rats by chronically implanting
a cannula for 6-hydroxydopamine (6-OHDA) infusion to later
render the rats parkinsonian (McConnell et al., 2016). Each
recording site was confirmed postmortem by identification of
the electrode track and immunohistochemistry to compare
electrophysiological features of action potentials recorded in the
mSNr, the lSNr, and the VTA.

METHODS

Electrode Preparation
Each tungsten microelectrode (MicroProbes; diameter = 75 µm;
impedance = 0.5 M�) was oriented vertically, dipped 10 times
into DiI (Molecular Probes, 50 mg/ml solution concentration)
and allowed to dry in air 5 s between dips (DiCarlo et al.,
1996). Following the dip-coating procedure, each electrode was
inspected under a microscope to confirm that it was undamaged
and uniformly coated to the tip of the electrode.

Surgery
All animal care and experimental procedures were approved
by the Stevens Institute of Technology Institutional Animal
Care and Use Committee. Stereotaxic (Stoelting) surgery was
conducted in anesthetized Long-Evans female rats (250–300 g)
(n = 13). Anesthesia was induced at 7% Sevoflurane (Piramal
Petrem) and maintained under 4% Sevoflurane. A craniotomy
was made over the SNr and the electrode was lowered
into the brain at the coordinates: anterior/posterior: 5.5 mm;
medial/lateral (ML) 1.5 mm from the midline for mSNr and ML

2.3 mm from the midline for lSNr. Data were recorded from 6.0
to 9.0 mm from the cortical surface in 0.1 mm steps for 30 s
at each location for a total of 31 recordings per insertion track.
One mSNr and one lSNr insertion track was made in each brain
hemisphere. The recorded anatomical structure was confirmed
by postmortem histology. A Grapevine Scout neural recording
system (Ripple) was used to record the raw data, which was
sampled at 30 kHz.

Immunohistochemistry
Immediately following the surgery, rats were intracardially
perfused with Phosphate-buffered saline prewash followed by
10% formalin. Following perfusion, brains were extracted and
fixed in 10% formalin overnight, followed by 30% sucrose
solution until the brain sank to the bottom. The left side of the
cortical surface was marked with green dye (Triangle Biomedical
Science) to determine the left and right hemispheres under
bright field microscopy. The brain samples were cryoprotected
with Optimal Cutting Temperature (O.C.T.) compound and
stored in −80◦C overnight. Samples were then sectioned
using a cryostat (Thermo Scientific CryoStar NX50) at −23◦C
(thickness = 40 µm). Tissue sections containing the SNr
were immunostained for Tyrosine Hydroxylase (TH) (Sigma-
Aldrich) for dopaminergic neurons and cover-slipped using
DAPI Fluoromount-G (Southern- Biotech) for all cell nuclei.
TH immunostaining confirmed the microelectrode tip location
by visualizing the SNc to aid in identification of the SNr
(McConnell et al., 2012, 2016; So et al., 2017). Only recordings of
tracks confirmed to pass through the SNr and/or the VTA were
further analyzed.

Data Analysis
Spike Sorting
Action potentials were obtained by 4th order Butterworth
bandpass filtering the raw neural data from 300–5000 Hz and
sorted using the Wave_clus toolbox (Quiroga et al., 2004)
in MATLAB (Mathworks). The detection threshold was set
within the background noise (threshold type: negative, minimal
threshold for detection STD = 5, maximal threshold for detection
STD = 50, minimal size of cluster = 60, sampling rate = 30 kHz) in
order to include the background noise as one sorted cluster and
facilitate visualization of a spike cluster. Background noise was
defined as the amplitude of the noise cluster after spike sorting.
While Principal Component Analysis (PCA) is more generally
applied for spike sorting, wavelet transform can outperform
PCA in some datasets (Pavlov et al., 2007). Therefore, wavelet
transform was used as the spike sorting method to identify spikes
for feature extraction.

Feature Extraction
Following spike sorting, single-unit activity was analyzed using
custom MATLAB software to extract features in both the
time and frequency domains. Action potentials recorded in
the VTA, the mSNr, and the lSNr, based on histology, were
analyzed for feature extraction. In the time domain, firing
temporal features and waveform shape features were investigated.
Firing temporal features included: (1) firing rate – number of
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FIGURE 1 | Time domain features of action potentials. (A) Waveform shape features. Amplitude: voltage from valley to peak; Latency: time from valley to the 2nd
peak; Half-width: width at half amplitude; Asymmetry: ratio of amplitude of the 1st peak and the 2nd peak. (B) Firing pattern features. Firing regularity: the logarithm
of the shape factor κ of the gamma distribution fitted to the interspike intervals (ISIs). A spike train was considered Poisson random if its ISIs were exponentially
distributed (κ = 1 or log κ = 0), whereas it was considered regular if log κ > 0 or bursting if log κ < 0; ISI correlation: the Spearman’s rank-order correlation calculated
for sequentially paired ISIs indicated whether consecutive ISIs were positively correlated or negatively correlated.

spikes per second [Hz]; (2) ISI correlation – the Spearman’s
rank-order correlation computed for sequentially paired ISIs
indicates whether consecutive ISIs are positively correlated or
negatively correlated; (3) ISI variance – the variance of ISIs; (4)
firing regularity – logarithm of the shape factor of the gamma
distribution fitted to the ISIs resulting in classification of spike
trains as Poisson random if its ISIs are exponentially distributed
(i.e., regularity = 0), regular (i.e., regularity >0), or bursting (i.e.,
regularity <0) (Mochizuki et al., 2016; Figure 1B). Waveform
shape features included: (5) spike amplitude - measured from the
negative peak to the positive peak of the spike waveform [µV];
(6) signal-to-noise ratio – spike amplitude divided by background
noise amplitude; (7) half-width – width when amplitude equals
to half of the amplitude [ms]; (8) asymmetry – the ratio of
the amplitude of 2nd positive peak and the 1st positive peak;
(9) latency – time from negative peak to the 2nd positive
peak [ms] (Figure 1A). For each electrode track, density was
calculated as percentage of recording locations with spiking
activity compared with the total number of recording locations
[%]. In the frequency domain, the power of spike trains was
evaluated by Chronux with sampling rate = 30 kHz, win = 5 s,
tapers = [3 5], pad = 0, and frequency calculation band = [0
200] (Mitra and Pesaran, 1999). Band power was calculated as
the sum of the spectral power over frequencies in the bands of
interest: delta (1.5–4 Hz), theta (4–10 Hz), low beta (10–20 Hz),
high beta (20–30 Hz), Gamma (30–40 Hz, 40–50 Hz, 50–60 Hz,
60–70 Hz, and 70–80 Hz).

Feature Comparison
Time domain: After each time domain feature was extracted,
firing temporal features (firing rate, amplitude, ISI correlation,
ISI variance, firing regularity) and waveform shape features
(amplitude, signal-to-noise ratio, half-width, asymmetry, latency)
from the mSNr, the lSNr and the VTA were compared.

Frequency domain: After power spectrum at each depth
was calculated, power of each frequency was calculated and
compared between the mSNr, the lSNr and the VTA. Contiguous
frequencies with statistically significant differences in power were
considered as a frequency band of interest.

Statistical Analysis
Statistical inferences were made between differing conditions
using one-way ANOVA. When we found a significant factor,
we performed the Fisher’s protected least significant difference
(PLSD) post hoc test to identify pairwise differences. Student’s
t-test were used where indicated. All results are presented as the
mean ± SEM and were considered significant at p < 0.05.

RESULTS

Histology
Thirteen rats were recorded with 28 electrode insertions spanning
the mSNr, the lSNr, and the VTA. Six insertions using bare
electrodes confirmed that the quality of recordings was not
altered by the DiI coating (data not shown). Twenty two tracks
were made by DiI coated electrodes. DiI remained intact after
insertion (Figures 2A,B). Sixteen out of the 22 DiI coated
electrode tracks could be visualized by fluorescence microscopy.
Dopaminergic neurons in the SNc and the VTA were visualized
by TH immunohistochemistry. The dorsal border of the SNr was
defined by an absence of TH staining and immediately ventral
to the SNc. The midline in the medial/lateral direction within
SNr was defined as the border line of the mSNr and the lSNr
(Figure 2C). Out of 16 tracks, 8 tracks passed through mSNr,
5 tracks passed through the lSNr, and 4 tracks passed through
the VTA (Figure 3A). One out of the 4 tracks that passed
through the VTA also passed through the mSNr (Figure 3A). The
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FIGURE 2 | Methods used to validate electrode location. (A) An example of DiI coated electrode before brain insertion. (B) The same electrode after brain insertion.
(C) Coronal brain section showing DiI coated electrodes in mSNr and lSNr. Red indicates electrode tracks coated with DiI; green indicates dopaminergic neurons in
SNc and VTA stained by anti-tyrosine hydroxylase. Borders of SNr are indicated by the white solid line. mSNr and lSNr (separated by dashed white line) were defined
by evenly dividing the SNr in the medial/lateral direction. Arrows indicate locations of the electrode tracks. Abbreviations: M, medial Substantia Nigra pars reticulata
(mSNr); L, lateral Substantia Nigra pars reticulata (lSNr); C, Substantia Nigra pars compacta (SNc); V, ventral tegmental area (VTA).

mSNr dorsal border was approximately 6.4 mm from the cortical
surface according to histology compared to 8.0 mm according to
the stereotaxic atlas (Paxinos and Watson, 2007). The lSNr border
was approximately 6.1 mm from the cortical surface according to
histology compared to 7.3 mm according to the stereotaxic atlas
(Paxinos and Watson, 2007).

Spike Sorting
Neural recordings from electrode tracks confirmed by histology
were further analyzed. The total number of recordings with
histological confirmation was 496 (Figure 3). Following spike

sorting, the total recordings with isolated single-unit activity
was 72 with the remainder of recordings containing multi-
unit activity and/or background noise. Fluorescent images were
overlayed with the corresponding atlas panel (Paxinos and
Watson, 2007), and all recording sites with single-unit activity
were marked (Figure 3). Thirty out of 72 recording sites were
in the mSNr, 26 out of 72 recording sites were in the lSNr,
and 16 out of 72 recording sites were in the VTA. Single-unit
activity was observed only in VTA, mSNr and lSNr; no spikes
were detected dorsal or ventral to the VTA, dorsal to the SNc,
or within the SNc.
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FIGURE 3 | Summary of position of electrode tracks based on histology. (A) Electrode tracks in coronal section corresponding to AP 5.52 mm (Paxinos and Watson,
2007). (B) Electrode tracks in coronal section corresponding to AP 5.40 mm. Black squares indicate recording sites with no sorted single units. Red dots indicate
recording sites with sorted single units.

Feature Comparison
VTA vs. mSNr
In the time domain, the significantly different features between
VTA and mSNr were spike amplitude, signal-to-noise ratio
(Figures 4A,B). Amplitude was significantly greater in the VTA
compared to the mSNr (p = 0.0007) (Figure 4A). Signal-to-noise
ratio was significantly greater in the VTA compared to the mSNr
(p = 0.0028) (Figure 4B). In the frequency domain, the 20–
30 Hz band was significantly decreased in the mSNr compared
to the VTA (p = 0.0197) (Figures 4D,E). Thus, the VTA and the
mSNr differed in waveform shape and neuronal firing pattern. No
significant differences were observed between the VTA and the
mSNr for any other feature analyzed (Supplementary Table S1).

VTA vs. lSNr
In the time domain, the significantly different feature between the
VTA and the lSNr was ISI correlation (Figures 4A,C). The ISI
correlation was positive in VTA but negative in lSNr (p = 0.0156)
(Figure 4C). In the frequency domain, the 20–40 Hz band
was significantly decreased in the lSNr compared to the VTA
(p = 0.0118) (Figures 4D,E). Thus, the VTA and lSNr differed
only in measures of neuronal firing pattern, with no significant
differences were observed between the VTA and the lSNr for any
other feature analyzed (Supplementary Table S1).

mSNr vs. lSNr
In the time domain, the significantly different features between
the mSNr and the lSNr were spike amplitude and ISI correlation
(Figures 4A,C). The spike amplitude in the mSNr decreased
compared to the lSNr (p = 0.0224) (Figure 4A). The ISI
correlation of mSNr increased compared to the lSNr (p = 0.0338)
(Figure 4C). In the frequency domain, there were no significant
differences between brain regions in any continuous frequency
band (Figures 4D,E and Supplementary Table S1). Thus, the
mSNr and the lSNr differed only in the time domain, for
both waveform shape and neuronal firing pattern features. No

significant differences were observed between the mSNr and lSNr
for any other feature analyzed (Supplementary Table S1).

DISCUSSION

SNr DBS is a promising approach to treat the gait and postural
disturbances of PD, but the neural basis is not clear. The
position of the electrode within the SNr appears to play a role
in effectively treating gait regularity in PD (McConnell and
Grill, 2013; Scholten et al., 2017). In this study, we characterized
intraoperative MERs of the SNr as an approach to improve
the accuracy and precision of the stereotaxic placement of SNr
DBS electrodes to study the underlying neural mechanisms. We
characterized MERs across the SNr spanning medial and lateral
subregions to compare both temporal and spectral features in
the medial and lateral SNr, and the nearby VTA. Fluorescently
labeled microelectrodes were used to map neuroanatomical
position to MERs. Our results suggest that spike amplitude,
signal-to-noise ratio and firing pattern differ depending on
brain regions. These electrophysiological features may be
useful markers to guide either SNr recording or stimulation
microelectrode array placement in healthy rats, which could later
be rendered parkinsonian via infusion of 6-OHDA in the medial
forebrain bundle (Dorval and Grill, 2014). In this way, our results
could improve the reliability of a parkinsonian rat model of SNr
DBS for behavioral studies to investigate stimulation parameters
and underlying neural mechanisms.

The location dependence of SNr DBS on the efficacy of
treating gait may be attributed to several factors. Connections
with Pedunculopontine Nucleus (PPN) of the brainstem suggest
that SNr DBS modulates the descending network linking the
SNr to the PPN (Pahapill and Lozano, 2000), which support the
involvement of the SNr in gait and postural disturbances of PD.
Also, it is possible that SNr DBS may increase SNc neuronal
activity, because SNc is dorsal to, and interdigitated among the
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FIGURE 4 | Electrophysiological results in mSNr, lSNr and VTA. (A) Spike amplitudes in mSNr, lSNr and VTA. (B) Signal-to-noise ratio in mSNr, lSNr and VTA. (C) ISI
correlation in mSNr, lSNr and VTA. (D) Spectral power in mSNr, lSNr and VTA. Mean (colored lines) ± SEM (gray filled area surrounding colored lines) are shown.
(E) Sum of power in 20–30 Hz and 30–40 Hz frequency bands. Mean ± SEM (SEM indicated by gray filled area surrounding lines) are shown. Features that showed
statistically significant differences are indicated with *p < 0.05.

SNr. If so, high frequency stimulation induced excitation of
SNc axons could induce dopaminergic release in the striatum
and thereby improve PD symptoms (McIntyre et al., 2004;
Zheng et al., 2011). In addition to the effects of SNr DBS
location, frequency is another parameter that warrants more
careful attention regarding mechanisms. Low stimulation SNr
DBS (63 Hz) combined with high frequency STN DBS (130 Hz)
was reported to improve freezing of gait in humans with PD
(Valldeoriola et al., 2019). The mechanisms for these observed
location and frequency effects of SNr DBS warrant further study
in animal models of PD.

Although PPN is another promising DBS target for gait and
postural disturbances in PD, PPN is a small midbrain region
in comparison to the spatial extent of the stimulation effect
produced by the microelectrode (Hamani et al., 2011). The
lack of clarity of PPN contributes to the difficulty in targeting
and determining the exact localization of the electrodes. It is
likely that DBS in the PPN region affects neighbor structures.
In humans the PPN overlaps with the posterior part of the
Substantia Nigra (SN), so that it is presumably impossible to

constrain stimulation to the PPN without also altering the SN.
Hence, the observed effects on discrimination performance may
at least to some degree stem from a modulation of activity in
the SN (Strumpf et al., 2016). Because of the location, PPN DBS
poses additional risk compared to other DBS surgeries (Welter
et al., 2015). Stimulation-related adverse events during LFS PPN
DSB include paresthesia, pain and temperature sensation, and
some patients develop oscillopsia (a visual disturbance) during
LFS PPN DBS (Fraix et al., 2010; Moro et al., 2010). One study
reported that two out of six patients that received PPN DBS
developed several adverse effects (Welter et al., 2015). For these
reasons, there is growing interest in alternative DBS targets for
gait and postural disturbances including the SNr.

Our results highlight the increased accuracy for electrode
placement when using intraoperative MERs compared to
stereotaxic coordinates from a rat brain atlas to localize deep
brain structures. Previous studies of STN DBS in rodents reported
a discrepancy between the dorsal/ventral coordinate predicted
by MERs compared to the stereotaxic atlas (Gradinaru et al.,
2009; McConnell et al., 2012, 2016). Here, the location of mSNr
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and lSNr according to histology and MERs was approximately
0.5–1.0 mm dorsal to the stereotaxic atlas coordinates. Thus,
MERs may be advantageous for targeting compared to using a
stereotaxic atlas alone. Future stereotaxic surgeries may consider
adding intraoperative recordings in tandem with the traditional
atlas to target deep brain structures with higher accuracy. It is
common that during stereotaxic surgeries edema occurs due to
drilling, which could contribute to the decreased accuracy the
dorsal/ventral stereotaxic coordinates. The maximum swelling or
denting of the cortex we observed was approximately 0.5 mm,
which could result in missed targeting of a deep brain structure
in the absence of MERs.

Our rationale for recording single-unit activity was to confine
the measurement of extracellular potentials to the immediate
vicinity of the microelectrode given the small dimensions of
the SNr subregions in the rat. One limitation of single-unit
recordings, however, is that sorted spikes are not observed at all
depths along an electrode track. In some instances, single-unit
activity was observed at only one recording site along the dorsal-
ventral direction of an insertion track and the majority of the
recordings we collected were excluded from this study due to
an absence of sorted spikes. Local field potential (LFPs) to target
SNr and its subregions could provide an alternative measure or
additional measure to spiking activity relevant to SNr position
(Li and McConnell, 2019). Unlike action potentials in SNr, LFPs
can be measured at every recording site and thereby provide
a more consistent measure but at a lower spatial resolution
compared to single-unit recordings. Because a complete analysis
of LFPs was beyond the scope of this study, we are at this time
unable to correlate our histological results to features of LFPs.
An additional limitation was the use of anesthetized healthy
rats and not awake or parkinsonian rats. The 6-OHDA lesion
model is the most commonly used pre-clinical parkinsonian rat
model to investigate PD. The procedure to study DBS in 6-
OHDA rats typically is to implant the electrode and cannula in
anesthetized healthy rat brain (McConnell et al., 2016). Following
a period of baseline healthy recordings, the cannula is then
used to infuse 6-OHDA. In this way, longitudinal studies of
DBS are possible with healthy and parkinsonian behavior and
neural recordings from the same animal. Another limitation
is that although each electrode was dye coated before surgery,
with the same amount times of dipping and drying, only 16
out of 22 tracks were able to be visualized from histology. It is
possible that the brain sections containing the electrode tracks
were not saved during the sectioning procedure or torn during
the immunohistochemistry protocol.

No spiking activity dorsal or ventral to the SNr suggests that
it is feasible to use intraoperative recordings to delineate the
dorsal and ventral borders of the SNr when using anesthetized
healthy rat model. Electrophysiological features that showed
significant differences between mSNr and VTA in the time
domain were amplitude and signal-to-noise ratio. ISI correlation
in VTA was positive while it was negative in both the mSNr
and the lSNr. More specifically, the consecutive ISIs in VTA
were positively correlated but the ISIs in mSNr and lSNr were
negatively correlated. This suggests that VTA has a different
firing pattern than either subregion of SNr. When targeting

SNr, amplitude, signal-to-noise ratio, and ISI correlation could
minimize misplacement in the medial direction. The power
of spikes in mSNr and VTA were significantly different in
the high beta band (20–30 Hz), which could be an additional
electrophysiological marker to distinguish mSNr and VTA in the
frequency domain. Extracellular recording features that differed
between mSNr and lSNr in the time domain were spike amplitude
and ISI correlation. The difference in amplitude may be due to
the density of neurons, thereby reducing the distance between the
electrode tip and a nearby neuron. A difference in ISI correlation
indicates a difference in firing pattern between the mSNr and
lSNr. Interestingly, no changes in firing rate were observed
between the mSNr and lSNr despite changes in firing pattern.
Taken together, these results support a model of heterogeneity
within the SNr due to differences not in in firing rate, but rather
in firing pattern.

We speculate that differences in neuronal type may explain
the lack of single-unit activity in SNc, but some in the VTA,
even though electrode tracks did penetrate the SNc prior to
passing through the mSNr and the lSNr. Dopaminergic neurons
are highly heterogeneous and not always spontaneously active
both in vivo and ex vivo (Dai and Tepper, 1998; Marinelli and
McCutcheon, 2014). The VTA is composed of dopaminergic
and GABAergic neurons (Merrill et al., 2015), in comparison
to the SNc comprised entirely of dopaminergic neurons. The
SNr contains dopaminergic neurons and GABAergic neurons
with GABAergic the predominant neuronal type (Zhou and Lee,
2011). Our finding of differential firing patterns and waveform
shapes in the mSNr and the lSNr parallel previous studies
showing the SNr contains distinct GABAergic subpopulations
(Yung et al., 1999).

There exists a paucity of studies in the literature using SNr
recordings in animal models. In healthy rats, SNr neurons fired at
19.4 ± 1.2 spikes/s, while 71% of neurons had a tonic discharge,
29% fired randomly, and 0% showed a bursting firing pattern
(Breit et al., 2008). One study specifically recorded from the
subregions of the SNr and isolated the GABAergic neurons
(Wang et al., 2010). The mean firing rate was 21.98 ± 1.27
spikes/s in the lSNr and 23.15 ± 1.33 spikes/s in the mSNr.
In the lSNr, the firing pattern distribution was 54.00% regular,
40.00% irregular, and 6.00% bursting neurons. In the mSNr,
the firing pattern distribution was 58.97% regular, 33.33%
irregular, and 7.70% bursting neurons. Similar to our findings,
no differences were observed in firing rate between the mSNr
and the lSNr. In contrast to our results, however, no significant
difference was found in neuronal firing patterns between the
mSNr and the lSNr in healthy rats (Wang et al., 2010). These
contradictory results may be explained by differences in the
sex of the rats, the type of anesthesia delivered, spike sorting
methodology, standard for excluding data points, and the features
used to classify firing pattern. It is important that future studies
reporting MERs in the SNr include the medial/lateral atlas
coordinates used to allow investigators to properly interpret and
reproduce the results.

In summary, changes in spike amplitude and firing pattern
may be useful measures for the analysis of MERs to more
reliably locate the SNr and its subregions. These findings suggest
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that mapping MERs to electrode position using the combined
fluorescently dyed microelectrode and immunohistochemistry
technique described can facilitate targeting of other deep brain
targets, rather than relying on stereotaxic atlas coordinates per se.
We suggest that LFPs in tandem with spiking activity may further
facilitate MERs to promote precise targeting of microelectrodes.
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Electrical pulse stimulation in the brain has shown success in treating several brain
disorders with constant pulse frequency or constant inter-pulse interval (IPI). Varying
IPI may offer a variety of novel stimulation paradigms and may extend the clinical
applications. However, a lack of understanding of neuronal responses to varying IPI
limits its informed applications. In this study, to investigate the effects of varying IPI,
we performed both rat experiments and computational modeling by applying high-
frequency stimulation (HFS) to efferent axon fibers of hippocampal pyramidal cells.
Antidromically evoked population spikes (PSs) were used to evaluate the neuronal
responses to pulse stimulations with different IPI patterns including constant IPI,
gradually varying IPI, and randomly varying IPI. All the varying IPI sequences were
uniformly distributed in the same interval range of 10 to 5 ms (i.e., 100 to 200 Hz).
The experimental results showed that the mean correlation coefficient of PS amplitudes
to the lengths of preceding IPI during HFS with random IPI (0.72 ± 0.04, n = 7 rats)
was significantly smaller than the corresponding correlation coefficient during HFS with
gradual IPI (0.92 ± 0.03, n = 7 rats, P < 0.001, t-test). The PS amplitudes induced
by the random IPI covered a wider range, over twice as much as that induced by the
gradual IPI, indicating additional effects induced by merely changing the appearance
order of IPI. The computational modeling reproduced these experimental results and
provided insights into these modulatory effects through the mechanism of non-linear
dynamics of sodium channels and potassium accumulation in the narrow peri-axonal
space. The simulation results showed that the HFS-induced increase of extracellular
potassium ([K+]o) elevated the membrane potential of axons, delayed the recovery
course of sodium channels that were repeatedly activated and inactivated during HFS,
and resulted in intermittent neuronal firing. Because of non-linear membrane dynamics,
random IPI recruited more neurons to fire together following specific sub-sequences of

Frontiers in Neuroscience | www.frontiersin.org 1 May 2020 | Volume 14 | Article 397103

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00397
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00397
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00397&domain=pdf&date_stamp=2020-05-19
https://www.frontiersin.org/articles/10.3389/fnins.2020.00397/full
http://loop.frontiersin.org/people/797752/overview
http://loop.frontiersin.org/people/482570/overview
http://loop.frontiersin.org/people/675474/overview
http://loop.frontiersin.org/people/434040/overview
http://loop.frontiersin.org/people/967224/overview
http://loop.frontiersin.org/people/4761/overview
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00397 May 25, 2020 Time: 14:43 # 2

Zheng et al. Novel HFS Effects of Neuronal Modulation

pulses than gradual IPI, thereby widening the range of PS amplitudes. In conclusion,
the study demonstrated novel HFS effects of neuronal modulation induced by merely
changing the appearance order of the same group of IPI of pulses, which may inform
the development of new stimulation patterns to meet different demands for treating
various brain diseases.

Keywords: high-frequency stimulation, inter-pulse interval, in vivo experiment, computational modeling,
hippocampal pyramidal cell, membrane dynamics, non-linearity, population spike

INTRODUCTION

Deep brain stimulation (DBS) generally refers to utilizing
sequences of electrical pulses to treat neurological and psychiatric
disorders in the brain (Lozano and Lipsman, 2013). In theory,
electrical stimulations on the neuronal membrane could generate
various modulation effects on neuronal activity to treat various
brain diseases. However, current DBS therapy has only been
popularized in treating a few diseases such as movement
disorders and refractory epilepsy (Bergey, 2013; Wichmann
and DeLong, 2016; Cury et al., 2017). Besides the lack of
understanding of the exact pathophysiological mechanisms of
many brain diseases, extending DBS treatment to other diseases is
limited by a lack of versatility in stimulation paradigms, as well as
a lack of understanding of various stimulation effects on neurons
and their mechanisms.

Major parameters involved in the design of pulse stimulation
paradigms include pulse amplitude, pulse width, and pulse
repetition rate (frequency). In particular, the efficiency and
efficacy of DBS therapy are strongly dependent on the pulse
frequency [or inter-pulse interval (IPI)]. Common DBS therapy
utilizes pulse sequences with a constant frequency of around
130 Hz (Cagnan et al., 2017; Dandekar et al., 2018), termed
as high-frequency stimulation (HFS). For example, a frequency
in 90–185 Hz was proven effective in suppressing tremor of
Parkinson’s disease in clinic (Rizzone et al., 2001; Bittar et al.,
2005; Dayal et al., 2017). Frequencies in a similar range have also
been applied to control epileptic seizures (Cukiert et al., 2011;
Fisher and Velasco, 2014; Laxpati et al., 2014).

Besides constant IPI, irregular temporal patterns of
stimulation (i.e., sequences with varying IPI) have been
exploited to improve the DBS therapies as well as to probe
the underlying mechanisms of DBS (Grill, 2018). For example,
stimulations with random IPI have emerged as a strategy
to suppress the epileptic activity of neural networks (Cota
et al., 2009; Mesquita et al., 2011; Medeiros et al., 2012;
Santos-Valencia et al., 2019) and to affect central nervous
system arousal (Quinkert et al., 2010; Quinkert and Pfaff,
2012; Tabansky et al., 2014). These studies demonstrated a
significant effect of temporally random IPI on behavioral
outcomes of seizure suppression or CNS arousal evaluated on
experimental animals. Also, stimulations with varying IPI of
different patterns have been used to suppress tremor (Birdno
et al., 2007; Kuncel et al., 2012; Swan et al., 2016). However, the
effects of stimulations and mechanisms of action with varying
IPI are uncertain yet, limiting the application and development
of irregular HFS in clinic.

Previous studies have shown that HFS with constant IPI
can only intermittently generate action potentials in neurons
because the HFS-induced depolarization block on the neuronal
membrane prevents the neurons from firing in response to
each stimulation pulse (Jensen and Durand, 2009; Feng et al.,
2013; Rosenbaum et al., 2014). Intermittent activation of
individual neurons may generate asynchronous firing in neuronal
populations (Popovych and Tass, 2014; Feng et al., 2017; Wang
et al., 2018). Pulses with a higher frequency (i.e., a shorter
IPI) cause a deeper depolarization block, allowing less neurons
to be recruited to fire by every pulse, as indicated by smaller
evoked population spikes (PSs) during steady-state period of HFS
(Feng et al., 2013, 2014). However, a recent study has shown
that even with higher instantaneous frequencies for all pulses,
stimulations of varying IPI with a random order can occasionally
recruit more, rather than less, neurons to fire simultaneously than
stimulations with constant IPI (Feng et al., 2019). This suggests
that the recruitment of neuronal firing could be affected not
only by pulse frequencies but also by the temporal orders of
varying IPI. However, the underlying mechanisms are not clear.
The purpose of this study is to unveil the cellular mechanisms
of neuronal responses to HFS with different temporal orders
of varying IPI, which may promote the development of novel
stimulation paradigms of DBS for treating more diseases.

Membrane dynamics of ionic channels, such as Na+
and K+ channels, change non-linearly with time and with
transmembrane potential (Hodgkin and Huxley, 1952).
We hypothesize that a random arrangement of varying IPI
could introduce additional effects of stimulation on neuronal
population due to non-linear responses of the neuronal
membrane to stimulation. To investigate the relationship
between dynamic responses of neurons and instantaneous
IPI lengths, we performed both rat experiments in vivo and
computational modeling on stimulations of efferent axon fibers
of hippocampal pyramidal cells with HFS of gradually varying
and randomly varying IPI. Antidromically evoked unit spikes
and PSs were used to evaluate the neuronal responses directly to
pulse stimulations without involving synaptic transmission.

Hippocampal structure contains high density of neurons
with clear lamellar organization of neuronal elements, allowing
manipulation of distinct stimulation and recording from local
cells and their axons as well as evaluation of responses of neuronal
populations. Additionally, the hippocampus plays an important
role in brain diseases such as epilepsy and Alzheimer’s disease
(Fisher and Velasco, 2014; Deeb et al., 2019). Therefore, the
responses of hippocampal neurons to electric stimulation have
gained increasing attention in DBS research and in clinic. In
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addition, we investigated the neuronal responses initiated from
axons because axons are more prone to excitation by extracellular
pulses than other structural elements of neurons (Nowak and
Bullier, 1998). The results of this study provide new clues
to design effective novel stimulation paradigms with temporal
arrangement of IPI for extending the application of DBS.

MATERIALS AND METHODS

Animal Experiments
The animal experiment was approved by the Institutional
Animal Care and Ethics Committee, Zhejiang University.
Seven adult Sprague-Dawley rats (250–350 g) were anesthetized
with urethane (1.25 g/kg, i.p.) and placed in a stereotaxic
apparatus (Stoelting Co., United States). Details of surgical
procedures and electrode placements have been reported
previously (Feng et al., 2013, 2014). Briefly, a 16-channel array
of recording electrodes (#Poly2, NeuroNexus Technologies,
United States) was inserted into the hippocampal CA1 region
[anterior–posterior, −3.5; medio-lateral, 2.7; dorso-ventral, 2.5].
A stimulation electrode (#CBCSG75, a concentric bipolar
electrode, FHC Inc., United States) was inserted in the CA1 alveus
[anterior–posterior, −4.8; medio-lateral, 2.7; dorso-ventral, 2.3]
for antidromically activating the neurons upstream in the
recording site. Based on the clear lamellar organizations of
neuronal structures in the hippocampus, the recordings of both
unit activity and the specific waveforms of evoked potentials
along the 16 channels were used to correct the final positions of
the two electrodes. The channel closest to the pyramidal layer that
was able to record an evoked-PS with a maximum amplitude was
used to analyze the changes of evoked potential during HFS.

Electrical signals collected by the recording electrode were
amplified by a 16-channel extracellular amplifier (Model 3600,
A-M Systems Inc., United States) with a frequency range of
0.3–5000 Hz. The amplified signals were then sampled by an
ML880 Powerlab 16/30 data acquisition system (ADInstruments
Inc., Australia) at a sampling rate of 20 kHz/channel. PSs were
extracted by a high-pass digital filter with a cutoff of 50 Hz.

Stimulations were sequences of biphasic current pulses with
a strength of 0.3 mA and a width of 0.1 ms per phase. To
compare the steady-state neuronal responses with those of two
temporal arrangements of varying IPI, we utilized two patterns of
pulse sequences: a same prelude 20-s period of 100-Hz HFS with
constant IPI of 10 ms allowing the neuronal responses to reach
steady state, followed by a 10-s period of 100–200 Hz varying
IPI either quasi-linearly decreasing from 10 to 5 ms or randomly
varying in the range of 5–10 ms. The mean frequency of varying
IPI was 133 Hz, similar to the most used DBS frequency 130 Hz.
The deceasing IPI was “quasi-linear” because it was designed to
have a uniform distribution of IPI counts but not with an exact
linear relationship between IPI lengths and time course.

The 10-s sequences of gradually varying IPI and randomly
varying IPI were composed of the same set of 1,334 IPIs in the
range of 5–10 ms with a sampling resolution of 0.05 ms, that
is, 20 kHz, same as the sampling rate of the signal recordings
in the experiments. Under this resolution, the 5- to 10-ms

range was divided into 101 different lengths of IPI. With a
uniform distribution, each IPI length was repeated 13 times in
the sequences with an addition of one IPI in every five IPI lengths
to get a total of 1,334 IPIs (101 × 13 + 21) with a duration
of 10.005 s. The 1,334 IPIs were arranged from the longest to
the shortest in the sequence of gradual IPI or were randomized
by the MATLAB function randperm() to get the sequence of
random IPI. Four different sequences of random IPI were used
in the rat experiments, and one of the sequences was used in the
computational simulation.

Simulation Models
The computational model includes a population of pyramidal
neurons in hippocampus with the mechanisms of potassium ion
accumulation and clearance in the narrow peri-axonal space,
distributed application of stimulation currents induced by a
bipolar electrode, and recording of extracellular potential. The
simulation was performed by using the NEURON simulation
package (Hines and Carnevale, 1997).

Model of Pyramidal Neurons
Morphology
The pyramidal neuron consisted of a cell body, an axonal
initial segment (AIS), dendrites, and a long myelinated axon
(Figure 1A). The cell body was an asymmetric spindle with a
length of 20 µm (Migliore et al., 1999), consisting of 10 cylinder
segments with a maximum diameter of 20 µm in the center that
linearly decreased to 5 µm to the dendrite side and to 1.7 µm
to the AIS side. The AIS was 50 µm long with a diameter of
1.22 µm (Hu et al., 2009). The dendrites were simplified as
five separate cylinder segments, each with 20-µm length and
5-µm diameter. The myelinated axon consisted of 20 Ranvier
nodes (abbreviated as Node) and 20 internode segments with
detailed structures similar to those of a previous axon model
(Bellinger et al., 2008; Guo et al., 2018). The outside diameter of
axon was ∼1 µm wrapped by 15 layers of myelin membranes.
The internode segments were made up of paranodal junction
(PNJ), juxtaparanode (JXP), and internode (IND). Details of
sizes and morphologic parameters of each neuronal element are
shown in Table 1.

Electrical properties
The neuronal membrane consisted of both passive and active
electrical properties. The parameters of passive electrical
properties include membrane capacitance, leakage conductance,
leakage reverse potential, and intracellular resistivity. The
capacitance and leakage conductance were distributed on the
entire membrane of the neuron including the myelin. The
intracellular resistivity was 300� cm in cell body and 70� cm in
axon (McIntyre et al., 2004). The details of the passive electrical
parameters are shown in Table 2.

The parameters of active electrical properties including
sodium, potassium, and calcium channels are distributed in
different membrane sections (Table 2 and Figure 1A). The
ion channels distributed on the neuronal membrane include
the followings: voltage-gated Na+, non-inactivating K+ (M
current) channel, voltage-gated K+ channel, Ca2+-dependent K+
channel, and high-voltage activated Ca2+ channel for cell body
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FIGURE 1 | Schematic diagram of the simulation model. (A) The neuron consisting of a cell body, simplified dendrites, an axonal initiation segment (AIS) and a long
myelinated axon. The axon consisted of 20 Ranvier nodes (Node) and 20 internode sections including paranodal junction (PNJ), juxtaparanode (JXP), and internode
(IND). Voltage-gated channels of K+ (Kv7) and Na+ (Nav1.6) are on the membrane of Node, whereas fast K+ channels (Kv1.1) are on the JXP membrane. The green
lines denote the outwards flow of K+ through Kv1.1 channels, accumulating in the peri-axonal space, back through NaK pump, and diffusing to the outside of Node.
(B) Simulation of the electric field generated by the negative phase of a stimulation pulse in COMSOL. A layer of 256 neurons are arranged in parallel with small axial
shifts randomly distributed within 20 µm. The stimulation electrode is located 10 µm over the surface of neuronal layer above the central node (Node10) of all
neurons, delivering biphasic current pulses (0.1 ms, 0.3 mA). A mimic recording electrode is set at the center of cell body end.
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TABLE 1 | Morphologic parameters of the neuron model.

Parameter Value

Cell body

Soma length 20 µm

Soma maximum diameter 20 µm

Axonal initial segment (AIS) length 50 µm

Axonal initial segment diameter 1.22 µm

Dendrites

Dendritic (five segments) length 100 µm

Dendritic diameter 5 µm

Myelinated axon

Axon diameter 1 µm

Number of myelin lamella 15

Node length 1 µm

Node diameter 0.7 µm

Internode segment length 100 µm

PNJ length and diameter 3 and 1 µm

JXP length and diameter 5 and 1 µm

IND length and diameter 83 and 1 µm

Peri-axonal space width outside PNJ 0.004 µm

Peri-axonal space width outside JXP and IND 0.012 µm

PNJ, paranodal junction; JXP, juxtaparanode; IND, internode.

TABLE 2 | Electrical parameters of the cell body, dendrite, and axon.

Parameter Value

General

Membrane capacitance 1 µF/cm2

Leakage reversal potential −65 mV

Na+ Nernst potential 45 mV

K+ Nernst potential (without K+ accumulation) −90 mV

Ca2+ Nernst potential 140 mV

Soma and dendrite

Max voltage-gated Na+ conductance 80 pS/µm2

Max slow non-inactivating K+ conductance 0.3 pS/µm2

Max fast voltage-gated K+ conductance 20 pS/µm2

Max Ca2+-dependent K+ conductance 3 pS/µm2

Max high-voltage activated Ca2+ conductance 0.3 pS/µm2

Leakage conductance 0.5 pS/µm2

Axonal initial segment (AIS)

Max fast voltage-gated Na+ conductance 1,100–3,200 pS/µm2

Max fast voltage-gated K+ conductance 200–1,000 pS/µm2

Leakage conductance 0.5 pS/µm2

Axon internode section

Myelin conductance 10 pS/µm2

Myelin capacitance 0.1 µF/cm2

PNJ leakage conductance 1 pS/µm2

JXP leakage conductance 1 pS/µm2

JXP max fast K+ conductance 300 pS/µm2

IND leakage conductance 1 pS/µm2

Axon node

Max voltage-gated Na+ conductance 6,000 pS/µm2

Max slow voltage-gated K+ conductance 150 pS/µm2

Leakage conductance 1 pS/µm2

PNJ, paranodal junction; JXP, juxtaparanode; IND, internode.

and dendrites; voltage-gated K+ channel (Kv) and voltage-gated
Na+ channel (Nav1.2 and Nav1.6) for the AIS (Hu et al., 2009);
fast K+ channel (i.e., Kv1.1) for the membrane of JXP in the
internode sections; and voltage-gated Na+ channel (Nav1.6) and
slow K+ channel (Kv7) for the Node. Specifically, the Nav1.2
subunit was present in proximal AIS, whereas Nav1.6, although
present in proximal AIS, was dominant in distal AIS and the
axonal Node. The Kv density increased linearly with distance in
the AIS to a maximum value of 1,000 pS/µm2. A previous model
(Hu et al., 2009) may be referred to for the detailed distribution
of Na+ and K+ channels in the AIS. On the Node membrane,
the density of Nav1.6 channels was about 6,000 pS/µm2 (Lorincz
and Nusser, 2010) and the K+ channel density was 150 pS/µm2

(Röper and Schwarz, 1989; Battefeld et al., 2014).

Accumulating and Clearing Mechanisms of
Potassium Ions in the Model
Potassium accumulated in the narrow peri-axonal space during
stimulation because of the outflow of K+ from the intracellular
space through K+ channels in JXP (Bellinger et al., 2008; Guo
et al., 2018). The accumulated K+ was cleared by NaK pumps
distributed uniformly on the membrane of internode sections
and by axial diffusion of K+ from the peri-axonal space to the
extracellular space outside Nodes (indicated by the green arrow
in Figure 1A). The axial diffusion of K+ followed the Fick law:

J = D× A×
d[K+]o

dx
(1)

where J is the diffusion flux; D is the diffusion coefficient
(1.85 µm2/ms); A is the cross-sectional area of the peri-axonal
space of 0.025, 0.076, and 0.076 µm2 outside PNJ, JXP, and IND,
respectively; [K+]o is the K+ concentration in peri-axonal space;
and x is the diffusion distance. The concentration of potassium
ion outside the Node (extracellular concentration) was 3 mM.

The clearance of K+ by NaK pump, which pumped out three
Na+ and pumped in two K+ per ATP hydrolyzed, was described
as follows:

INaK = INaK max

(
[K+]o

[K+]o + KmK

)

×

(
[Na+]1.5i

[Na+]1.5i + KmNa1.5

)(
V + 150
V + 200

)
(2)

where V is the membrane potential; [Na+]i is intracellular Na+
concentration; INaKmax is the maximum transport current per
unit area, set as 2.46 µA/cm2; and KmK and KmNa are the
equilibrium binding constants of K+ and Na+, set as 5.3 and
27.9 mM, respectively.

Models of Stimulation and Recording
Pulse sequences were applied by a stimulation electrode located
10 µm above the top surface of the axial center of an axon
layer or approximately over the center Nodes (Node10) of axons
(Figure 1A). The layer included 256 axons distributed uniformly
in an array of 8 × 32 in a cross section of 70 µm × 310 µm
with an inter-axon distance of 10 µm in both spatial orientations
(Figure 1B). The axial positions of the parallel axons shifted
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randomly within a range of −10 to +10 µm, mimicking the
lamellar organization of alveus axons. The cell bodies of the
neurons were distributed uniformly in an array of 16 × 16 in a
cross section of 300 µm × 300 µm and in random one-to-one
correspondence with the 256 axons.

The electrical field generated by biphasic pulses was simulated
with finite element software COMSOL Multiphysics 5.3
(COMSOL Inc., Sweden), thereby determining the stimulation
potentials imposing immediately outside every Ranvier node
(Node) of the axonal fibers. Both the electrode parameters (size
and material) and stimulation parameters (current biphasic
pulses) used in COMSOL simulation were consistent with
experimental settings. The stimulation sequences applied in
the model were similar to those used in rat experiments, that
is, following a prelude of 100-Hz HFS with constant IPI by
100–200 Hz varying IPI of either gradual IPI or random IPI.
A recording site was located in the center of the cell body layer
to record extracellular potential (Ep) including the extracellular
action potentials either from a specific single neuron (i.e., unit
spike, abbreviated as spike) or from a population of neurons (i.e.,
PS). The equation for Ep was as follows (Varona et al., 2000;
Guo et al., 2018):

Ep =
1

4πσ

∑ I
r

(3)

where σ is the extracellular conductivity (0.286 S/m), I is
the transmembrane current, and r is the distance between
the recording site and each neuronal element generating I,
including the compartments of cell body and AISs. Although
the transmembrane currents from dendrites may contribute to
the shape of the PS waveforms (Varona et al., 2000), we did
not take into account the dendrite currents because the exact PS
waveform was not critical for the study. We only utilized the PS
amplitude, especially the relative changes of PS amplitudes during
an HFS sequence, to estimate the relative changes in the number
of firing neurons. The major contributions from cell body and
AIS were adequate.

Other signals such as intracellular membrane potentials
(Vm), concentration of K+ in peri-axonal spaces ([K+]o),
and dynamics of Na+ channels (e.g., inactivation variable of
Na+ channel, h_Na) were extracted directly from simulation
results in NEURON.

Data Analyses for Both Rat Experiments
and Modeling
The amplitude of PS was used to evaluate the number of neurons
simultaneously generating action potentials (Kloosterman et al.,
2001). The PS amplitude was normalized by the mean PS
amplitude induced during steady-state of HFS with constant
IPI of 10 ms. The mean value of normalized PS amplitudes
induced by each pulse during varying IPI was calculated by
dividing the sum of PS amplitudes by the pulse number. The
range (maximum–minimum) of normalized PS amplitudes was
used to describe the variation of PS amplitudes. Because the
history of IPIs plays a role in how many neurons are recruited
in the PS, the two IPIs immediately preceding a stimulus (“1-
back IPI” and “2-back IPI,” termed as IPI1 and IPI2, respectively)
were examined. Correlation analysis was implemented to analyze

the relationships between the PS amplitude and the preceding
IPIs (including IPI1 and 1IPI = IPI1−IPI2). Student t-test was
used to show the statistical significance of the difference between
data groups. Additionally, in simulation, the threshold of h_Na
at the center node (Node10) for a specific neuron was defined
as the minimal value of h_Na at the onset of a pulse that
was able to induce an action potential successfully propagating
to the cell body.

RESULTS

Different Neuronal Responses to
High-Frequency Stimulation With
Gradually and Randomly Varying
Inter-Pulse Interval in Rat Hippocampus
in vivo
Stimulations applied in the alveus of hippocampal CA1 region
can antidromically excite a population of CA1 pyramidal neurons
without involving synaptic transmissions (Figure 2A1). A single
pulse evoked a large PS (Figure 2A2) with a short latency of
1.27 ± 0.09 ms and an amplitude 9.1 ± 1.9 mV (n = 7 rats),
just as that evoked by the very first pulse in any pulse sequences.
However, after seconds of prolonged 100-Hz HFS with constant
IPI, during the steady state, each pulse only evoked a small PS
with an amplitude ∼20% of the original amplitude. Afterward,
when the IPI gradually decreased from 10 ms (100 Hz) to
5 ms (200 Hz) in a 10-s period, the PS amplitude decreased
further to ∼6% of the original amplitude (Figure 2B1). The PS
amplitudes induced by gradual IPI were compared with those
with constant IPI in a 10-s period immediately before the gradual
IPI (Figure 2B2, the switch moment of the two IPI patterns
is set as time “0,” with the time duration of −10 to 0 s for
constant IPI and 0–10 s for gradual IPI). The normalized PS
amplitude decreased from 1 to 0.3 during the 10-s period of
gradual IPI. During this period, the IPI decreased quasi-linearly
and distributed uniformly in the range of 5–10 ms (Figure 2B3).
The PS amplitude significantly correlated with its 1-back IPI
(IPI1) with a correlation coefficient of 0.94 (Figure 2B4). When
the above stimulation was followed by a pulse sequence with a
reverse change of IPI from 5 to 10 ms, a reverse change of PS
increase was observed, as expected. For simplicity, the data are
not repeatedly presented here.

When the varying IPI of a gradual order was replaced by a
random order, the normalized amplitudes of evoked PS varied
randomly in a much wider range from 0 (no PS) to ∼2.4
(Figures 2C1,C2), as compared with the range of 0.3–1 induced
by gradual IPI. Although the random IPI was in the same range
of 5–10 ms and with the same uniform distribution (Figure 2C3),
the correlation coefficient (0.73) between the PS amplitudes and
the preceding IPI1 of random IPI was smaller than that of
gradual IPI. The less correlation was caused by a lot of small
PSs appearing following the longer IPIs (Figure 2C4). However,
the correlation coefficient between the PS amplitudes and 1IPI
(=IPI1−IPI2) increased to 0.88 (Figure 2C4), indicating that a
longer IPI1 accompanied by a short IPI2 (2-back IPI) would result
in a larger PS with a higher probability.
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FIGURE 2 | Neuronal responses to stimulations with different inter-pulse interval (IPI) sequences in rat hippocampal CA1 region in vivo. (A) A1: Schematic diagram of
the locations of a recording electrode in pyramidal layer and a stimulation electrode at alveus to antidromically activate the pyramidal cells. A2: A population spike
(PS) evoked by a single pulse (0.3 mA). (B) PS evoked by pulses with gradually decreasing IPI. B1: A typical PS recording during 30-s HFS consisted of 20 s of
constant IPI (10 ms, 100 Hz) followed by 10 s of gradually decreasing IPI (10 to 5 ms, i.e., 100 to 200 Hz). B2: Changes of normalized PS amplitudes during 10 s of
constant IPI and 10 s of gradual IPI. The switch moment from constant IPI to gradual IPI is set as time “0.” B3: IPI curve along stimulation time (left) and distribution
probability of gradual IPI (right). B4: Correlation between normalized PS amplitude and preceding IPI during 10-s period with gradual IPI. (C) PS evoked by pulses
with random IPI. C1–C4: Corresponding to B1–B4. Bottom of C4: Correlation between the normalized PS amplitude and the difference of IPI1–IPI2.

Statistical data (n = 7 rats) showed that the mean normalized
PS amplitude during 10-s period of random IPI was similar to
that of gradual IPI (Table 3), whereas the range of normalized

PS amplitude with random IPI was significantly greater than
the value with gradual IPI. However, because of the same pulse
number and similar mean of normalized PS amplitude, the sums
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TABLE 3 | Normalized PS amplitudes distribution during gradually and randomly varying IPI.

IPI patterns Normalized PS amplitude Correlation coefficient (PS amplitude vs. IPI)

Range Mean Preceding IPI1 Preceding IPI1−IPI2

Experiment (n = 7 rats)

Gradual 0.92 ± 0.05 0.72 ± 0.06 0.92 ± 0.03 –

Random 2.49 ± 0.43** 0.77 ± 0.06 0.72 ± 0.04** 0.84 ± 0.03##

Simulation

Gradual 1.12 0.62 0.92 –

Random 2.95 0.73 0.73 0.8

PS, population spike; IPI, inter-pulse interval. **P < 0.001, gradual IPI vs. random IPI, t-test, n = 7 rats. ##P < 0.001, random IPI1-IPI2 vs. random IPI1, t-test, n = 7 rats.

of normalized PS amplitude during gradual IPI and random IPI
were approximately equal, indicating similar amounts of total
neuronal firing. Additionally, the mean correlation coefficient
between the PS amplitude and the preceding IPI1 (or IPI1−IPI2)
was significantly smaller with random IPI than with gradual IPI.
The results of large PS indicated that pulses with random order of
varying IPI could occasionally recruit a larger fraction of neurons
to fire together.

Previous studies with constant IPI have shown that prolonged
HFS can extend the refractory periods of the neuronal
membranes owing to accumulation of extracellular potassium,
leading to the intermittent firing of individual neurons and a
decrease of PS amplitude with higher frequency (i.e., shorter IPI)
(Feng et al., 2014; Guo et al., 2018). We hypothesize that the
same mechanism of potassium accumulation in the narrow peri-
axonal space together with non-linear dynamics of ionic channels
may generate the irregular neuronal responses with simultaneous
recruitment of a larger fraction of neurons by pulses with
random order of varying IPI. Because current techniques of
in vivo experiments have limitations in simultaneous intracellular
recordings of individual axons, we next tested the hypothesis by
a modeling study.

Simulated Neuronal Responses to
High-Frequency Stimulation With Varying
Inter-Pulse Interval of Gradual and
Random Orders
The simulated evoked PS (Figure 3) closely matched the
experimental recordings (Figure 2). At the onset of a pulse
sequence, the evoked PS was also as large as a PS evoked by a
single pulse (Figures 3A,B1). Following seconds of prolonged
100-Hz HFS, during the steady-state period, the PS amplitude
decreased to ∼20% of the original amplitude. Afterward, when
IPI gradually decreased from 10 to 5 ms in a 10-s period, the
PS amplitude further decreased to∼4% of the original amplitude
(Figure 3B1). The normalized PS amplitude decreased from ∼1
at the start (corresponding to 10-ms IPI) to ∼0.2 at the end
(corresponding to 5-ms IPI) during the 10-s period with gradual
IPI (Figure 3B2). In addition, the PS amplitude was significantly
correlated with its preceding IPI with a correlation coefficient of
0.92 (Figure 3B3 and Table 3).

Similar to the experimental results, when the varying IPI
in a gradually decreasing order was replaced with a random

order, the normalized PS amplitude varied in a much wider
range from 0 to 2.95 (Figures 3C1,C2), more than double of
the value with gradual IPI (2.95 vs. 1.12, Table 3). However,
the mean normalized PS amplitudes during the periods with
two different orders of varying IPI were relatively close (0.62
vs. 0.73). Additionally, the correlation coefficient between the
PS amplitude and the preceding IPI1 was smaller with random
order IPI than with gradual IPI (0.73 vs. 0.92); but the correlation
coefficient between the PS amplitude and the 1IPI increased to
0.8 (Figures 3C3,C4 and Table 3).

The PS only reflects the summation of firing from a population
of neurons. To investigate the underlying mechanisms, we next
examined unit spike firing of individual neurons.

Simulated Membrane Dynamics of
Individual Neurons During High
Frequency Stimulation With Different
Inter-Pulse Interval Patterns
Neurons at different distances from the stimulation electrode had
different periodical firing patterns because they received different
stimulation intensities (Guo et al., 2018). We took one neuron
as an example, with its middle axonal node (Node10) located at
a distance 104.4 µm (30 µm below and 100 µm left) from the
stimulation center (Figure 4A). During the steady state of 100 Hz
of constant HFS, the inter-spike interval (ISI) of the neuronal
firing kept constant at two times the IPI as the neuron fired a spike
at every other pulses (Figure 4B). During the period of gradually
decreasing IPI, the firing ISI exhibited two alternating stages:
gradually decreasing stage and jumping stage (Figure 4C). At a
gradually decreasing stage, the ISI decreased gradually following
the decrease of IPI as the neuron fired steadily at every n-th
pulses. The stage was interrupted by sporadic and short jumping
stages when the ISI increased by one or more IPI. Therefore,
during most of the stimulation period with gradual IPI, the firing
of individual neurons was similar to the firing under constant
IPI. However, during the entire 10-s stimulation period with
random IPI, the firing ISI changed randomly in a wider range
(14.5–64.5 ms) (Figure 4D).

To analyze the mechanisms underlying the behaviors of
individual neurons during HFS with gradual IPI and random IPI,
we extracted the following variables from the simulation results:
the accumulated [K+]o in peri-axonal space near Node10, the
membrane potential (Vm) on Node10, the inactivation variable
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FIGURE 3 | Simulation of neuronal responses to stimulations with different inter-pulse interval (IPI) sequences. (A) Schematic diagram of the locations of stimulation
electrode and recording electrode together with a population spike (PS) waveform evoked by a single pulse. (B) Simulated PS evoked by pulses with gradual IPI. B1:
Simulated PS signal during 30-s HFS including 20 s of constant IPI (10 ms, 100 Hz) followed by 10 s of gradually decreasing IPI (10 to 5 ms, i.e., 100 to 200 Hz). B2:
Changes of normalized PS amplitudes during 10 s of constant IPI and 10 s of gradual IPI. The switch moment from constant IPI to gradual IPI is set as time “0.” B3:
Correlation between normalized PS amplitude and its preceding IPI during 10-s period with gradual IPI. (C) Simulated PS evoked by pulses with random IPI. C1–C3:
Corresponding to B1–B3. C4: Correlation between the normalized PS amplitude and the difference of IPI1–IPI2.
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FIGURE 4 | Simulation of the response firing of a typical neuron to different pulse sequences. (A) Schematic diagram of the neuron’s location with its axon center
(Node10) 104.4 µm (30 µm below and 100 µm left) from the bottom center of the stimulation electrode. (B) During the steady-state period of constant inter-pulse
interval (IPI) of 10 ms, the neuron fires with a constant inter-spike interval (ISI) of 20 ms. (C) During the stimulation period with gradual IPI, the ISI of neuronal firing
gradually decreases along with the decrease of IPI in most time except several jumping stages (denoted by shadows) to elevate the ISI in stairs by adding one or
more IPI into ISI. (D) During the stimulation period with random IPI, the ISI of neuronal firing changes irregularly all the time.

(h_Na) of Na+ channel on Node10, and the extracellular spike
signal of the soma (Figure 5A).

Following the prelude 20-s period of 100-Hz HFS with
constant IPI of 10 ms, the [K+]o had increased from original
3 to above 12 mM. The accumulated K+ elevated Vm from
original −70 to around −60 mV, thereby inactivating Na+
channel as h_Na declining from baseline value 0.95 to below
0.5. Nodal membrane depolarized upon each incoming pulse and
repolarized during the interval before the incoming of next pulse.

During most of the period with gradual IPI, pulses of HFS
changed the membrane dynamics of the neuron periodically.
Figure 5B1 shows an episode of gradually decreasing IPI of
∼10 ms. At every other pulse, an action potential (AP) was
generated and then resulted in a pronounced elevation of
[K+]o as well as a pronounced decline of h_Na, consequently.
Accordingly, the Vm, [K+]o and h_Na changed periodically. At
the onset moment of each pulse, Vm on Node10 was either
−59.0 or −60.6 mV, [K+]o 12.9 or 12.4 mM, and h_Na 0.330
or 0.454, respectively corresponding to a subthreshold state or a
suprathreshold state of firing. The alternation between the two
states gave rise to an intermittent and regular firing of spikes with
an ISI of∼20 ms, two times the IPI.

In contrast, HFS with random IPI (5–10 ms) induced irregular
firing of spikes in the same neuron owing to the non-linear
dynamics of the membrane excitation. Because the inactivation
of Na+ channel (h_Na) has a much longer time constant than
the activation of Na+ channel (Hodgkin and Huxley, 1952), the
excitability of Na+ channels during HFS was mainly determined
by the recovery of h_Na. A small difference in h_Na could change
the membrane excitability and flip its state from subthreshold
to suprathreshold or vice versa, thereby drastically changing
the firing pattern of the neuron (Figure 5B2). For instance,
for the three firing patterns of type 1, type 2, and type 3
illustrated in Figures 5B2,C1, one, three, and four pulses failed
to activate spikes in soma and resulted in an ISI of 16.0, 27.1,
and 34.8 ms, respectively. Failed pulses still caused the membrane
depolarization that delayed the recovery course of h_Na. In this
case, the h_Na threshold for generating a spike at soma was 0.386
(Figure 5B2). For the type 2 firing pattern shown in Figure 5C1,

with a preceding pulse P2 (a failed pulse), a recovery of h_Na to
0.370 at the onset moment of pulse P3 only allowed the pulse to
generate an AP at Node10, but the AP failed to activate the soma
to fire a spike. Otherwise, in a case without the preceding failed
pulse P2, the h_Na would have recovered to 0.421 to exceed the
threshold, thereby driving the soma to fire a spike (Figure 5C2).

It should be noted that a fraction of AP induced at axonal
nodes were not strong enough to travel to the soma and
generate an AP (i.e., a spike) at soma (see Figures 5B2,C1).
Nevertheless, the failed AP would decrease h_Na substantially,
delaying the recovery of h_Na and possibly preventing the
next pulse from generating a spike (denoted by hollow
triangles in Figures 5B2,C1). The repeated delays of h_Na
recovery resulted in a prolonged interval between two adjacent
spikes (Figure 5C3).

These simulation results indicated that stimulations with
regular IPI (including most of the period with gradually varying
IPI) can generate AP with regular ISI in individual neurons.
However, stimulations with a random order of varying IPI can
postpone the firing of individual neurons and generate AP with
various ISI. The different patterns of ISI could result in different
numbers of neurons to fire spikes simultaneously. Therefore, we
next investigated the firing of neuron populations by modeling.

Comparing Firing of Neuronal Population
Induced by High-Frequency Stimulation
With Regular and Random Inter-Pulse
Interval
During episodes of stimulation with gradually varying IPI,
individual neurons fired spikes in a fixed periodical pattern. For
example, five neurons with different distances (at Node10) to the
stimulation center of 28, 70, 104, 117, and 130 µm had different
periodical patterns of spike firing (Figure 6A1). Neurons located
nearer to the stimulation electrode received a greater stimulation
intensity and had a lower h_Na threshold for firing. Because of
the overstimulation received, the nearest neuron (Neuron-1) was
not able to fire spike, with its h_Na at Node10 only fluctuating
below the firing threshold at the onset of each incoming pulse.
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FIGURE 5 | Simulated dynamics of neuronal membrane during high-frequency stimulation (HFS) with different patterns of inter-pulse interval (IPI). (A) Schematic
diagram of simulated signals collected from a neuron, including K+ concentration in peri-axonal space near Node10 ([K+]o), membrane potentials of Node10 (Vm),
inactivation variable of Na+ channels on Node10 (h_Na), and spike recording near soma. (B) Dynamics of four signals during stimulations with gradually varying IPI
(B1) and randomly varying IPI (B2). Circles on the curves of Vm, [K+]o and h_Na denote the values at the onset of stimulation pulses. Thin horizontal lines on the three
curves denote thresholds for neuronal firing. Three typical IPI sequences (shadowed) generate different lengths of inter-spike interval (ISI) of 16.0, 27.1, and 34.8 ms.
(C) Generation of different ISI. C1: The three examples of IPI sequences from B2 show that the levels of inactivation variable h_Na at the onset of pulses determine
whether AP can be induced at Node10 and whether the AP can successfully propagate to soma. The red dots and cyan numbers on the h_Na curves denote h_Na
values at the onset of pulses inducing AP at Node10. C2: A pulse (P2) failing to induce AP can decrease h_Na and delay the recovery course of h_Na, thereby
causing no spike at soma following the next pulse (P3). A spike would otherwise be evoked by P3 in the situation without P2. C3: Even an AP is induced on Node10

immediately under the stimulation electrode, due to an inadequate recovery of h_Na, the AP may not be strong enough to propagate along the axon to generate a
spike at soma. Hollow triangles in B2 and C1 denote that the APs of Node10 fail to generate a somata spike but can cause a substantial decrease of h_Na.
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FIGURE 6 | Simulated responses of multiple neurons to form population spikes (PSs) during stimulations with different patterns of inter-pulse interval (IPI). (A) Somata
spikes and inactivation variable h_Na curves of five neurons with different distances (28–130 µm) from the stimulation electrode. Thin horizontal lines on the h_Na
curves denote spike thresholds of individual neurons (0.280–0.538). A1: During an episode of stimulation with gradually decreasing IPI, except that Neuron-1 does
not fire spikes, the other four neurons generate spikes regularly with h_Na regularly switching between suprathreshold and subthreshold levels (denoted by green
and black dots, respectively) upon a pulse incoming. A2: During stimulation with random IPI, all of the five neurons generate spikes irregularly with h_Na surpassing
threshold occasionally upon a pulse incoming. (B) During an episode of stimulation with gradually decreasing IPI, regular firing of individual neurons with different
induction ratios (ratio of spike number to pulse number) produces uniform PS. (C) During stimulation with random IPI, a large PS formed by synchronous neuronal
firing is induced by a typical IPI sequence. C1: Different spike sequences of individual neurons integrate into PS sequences with various PS amplitudes including a
large PS (yellow zone) with surrounding silent periods of no PS (gray zones). C2: Inactivation variable h_Na curves show the recovery course of h_Na before
synchronous firing of neurons following an IPI sequence including two shorter IPI (6.75 and 6.35 ms) and one longer IPI (9.6 ms). The thickening and dark-blue
segments of h_Na curves show that the series of preceding pulses fail to generate somata spikes in individual neurons before the generation of the large PS.
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The three neurons at other distances, Neuron-2, Neuron-3, and
Neuron-4 fired spikes at a same induction ratio of 50% (i.e.,
every other pulse induced a spike), but Neuron-2 and Neuron-3
followed the same pulses whereas Neuron-4 followed the others.
The farthest neuron (Neuron-5) had an induction ratio of 33%.

However, during the stimulation with random IPI, the five
neurons all fired spikes irregularly with their h_Na at Node10
exceeding respective threshold occasionally (Figure 6A2).
Interestingly, Neuron-1 changed from no firing with gradual IPI
into intermittent firing with random IPI.

The differences in spike firing of individual neurons resulted
in different responses of a neuronal population to different
patterns of varying IPI. During an episode of stimulation with
gradually varying IPI (Figure 6B), the periodical spikes of
individual neuron firing were integrated to form PSs with similar
amplitudes following every pulse. However, during stimulation
with random IPI, owing to the irregular firing of individual
neurons, the amplitudes of integrated PS varied randomly in a
large range (Figure 6C1). Repeatedly decreasing h_Na by several
successive pulses with shorter IPI could postpone the time for
h_Na to recover to its threshold (Figure 6C2, thick blue lines in
h_Na curves), finally giving rise to simultaneous firing of a large
number of neurons to form a large PS following a longer IPI (the
yellow zone in Figure 6C). The large PS was accompanied by very
small PS induced by neighboring pulses (the two gray zones in
Figure 6C). The mean PS amplitudes induced by gradual IPI and
by random IPI were similar (Table 3 simulation), indicating that
randomization of IPI could only redistribute the firing timing of
neurons but not significantly change their firing amount.

These simulation results indicated that the stimulation pulses
with random IPI could recruit neurons to fire at specific moments
because of the occasional occurrence of specific sub-sequences
of pulses, thereby generating extremely large and extremely
small PS events.

DISCUSSION

The novel finding of the present study with experiments and
computation is that the HFS pulses with varying IPI in random
order had additional recruitment effects on the firing of neuronal
population. Possible mechanisms underlying the experimental
finding are unveiled by our simulation study and analyzed below.

Possible Cellular Mechanisms
Underlying the Firing Patterns of
Neurons Induced by Different Patterns of
Varying Inter-Pulse Interval
Previous experiment studies both in vitro and in vivo have shown
that HFS with a constant frequency over 50 Hz can induce partial
depolarization block of axons in the brain regions such as the
hippocampus and subthalamus (Jensen and Durand, 2009; Zheng
et al., 2011; Rosenbaum et al., 2014). Our previous study has
shown that with a substantial decrease of antidromic PS induced
by HFS applied to efferent fibers of CA1 neurons as shown in
the present study, the neuronal somata preserved the capacity

to respond to an orthodromic stimulus with large PS (Feng
et al., 2013), thereby confirming the HFS-caused failures in the
axons, not in the soma. In vitro studies have shown that repeated
pulse stimulation can elevate [K+]o, thereby causing a decreased
speed of axonal conduction until a complete block. Artificially
increasing [K+]o can also lead to axonal block (Förstl et al.,
1982; Poolos et al., 1987). Computational models on HFS with
constant IPI suggest the underlying mechanisms of the block: the
outflow of K+ during stimulations may be trapped in the narrow
peri-axonal space and increasing [K+]o, thereby prolonging
depolarization of membrane and inactivation of Na+ channels
and leading to intermittent depolarization block (Bellinger et al.,
2008; Guo et al., 2018). HFS at the commonly used frequency
range (∼100–200 Hz) for DBS can only induce partial but not
complete axonal block. The axons can still intermittently generate
action potentials to form PS events (Jensen and Durand, 2009;
Feng et al., 2013, 2014). During an HFS sequence with a higher
frequency (i.e., shorter IPI), each pulse can recruit fewer neurons
to fire, thereby only generating a smaller PS (Guo et al., 2018).

The above mechanisms may explain the IPI-dependent PSs
evoked by pulses with gradually varying IPI in the present study,
as shown by the highly linear correlation between PS amplitudes
and lengths of immediate preceding IPI (1-back IPI) in both the
experiment and simulation results (Figures 2B, 3B and Table
3). Based on these mechanisms, it seems reasonable to speculate
that the IPI-dependent PSs would have also appeared with IPI
arrangements in any other orders as long as the IPI set was the
same. However, our study shows that even with the same set of
IPI varying only in a small range of 5–10 ms (i.e., 200–100 Hz),
substantially different responses of population neurons appeared
during HFS with random IPI (Figures 2C, 3C and Table 3). Here,
we reveal the mechanisms of these different neuronal responses
by the recovery course of Na+ channel with non-linear dynamics.

Owing to the much longer time constant of Na+ channel
inactivation than that of Na+ activation (Hodgkin and Huxley,
1952), under the situation of intermittent depolarization block,
the excitability of Na+ channels in response to HFS pulses
would be mainly determined by the non-linear recovery of Na+
inactivation (h_Na). An IPI in the range of 5–10 ms was not
long enough for a complete recovery of h_Na after a firing spike
under the situation of HFS. It took several IPIs for h_Na to
recover to a suprathreshold level. In addition, each failed pulse
would also lower the h_Na and postpone the recovery of h_Na
(Figures 5, 6). The firing history of a neuron, the lengths of
several preceding IPIs, and the pulse impulses following the
previous firing affect the non-linear recovery course of h_Na,
hence the next firing of the neuron.

During HFS periods with regular IPI (e.g., gradually varying
IPI or constant IPI), although the number of IPI cycles needed
for the h_Na recovery varied for neurons at various distances
from the stimulation point, the firing of individual neurons was
regular at most time because of the approximately fixed IPI
length within a relative short episode. The integration of regular
firing from a large population of neurons remained steady over
time (Figures 6A1,B). However, when the varying IPI appeared
randomly, the number of IPI cycles as well as the sum of IPI
lengths for h_Na to recover to suprathreshold was uncertain,
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and the firing of individual neurons became irregular, thereby
occasionally generating extremely large and extremely small PSs
as a result of the firing integration of a neuronal population
(Figures 6A2,C).

Taken together, through the mechanisms of intermittent
[K+]o elevation and Na+ channel inactivation induced by HFS, as
well as the non-linear recovery course of Na+ channel, HFS with
different patterns of varying IPI in a small range can modulate the
firing of neuronal populations differently. To our knowledge, this
is the first simulation study addressing the effect of irregular pulse
patterns on the neuronal firing by incorporating the mechanism
of submyelin K+ accumulation and non-linear gating dynamics
of Na+ channel activation.

Implications of the Neuronal Firing
Induced by Different Patterns of Varying
Inter-Pulse Interval
Pulse frequency is the most commonly used parameter to adjust
the effects of DBS applications. For example, different temporal
patterns of stimulation with varying frequency (IPI) have been
investigated to modulate central nervous system arousal in intact
mice (Quinkert et al., 2010; Quinkert and Pfaff, 2012) and in
mice with traumatic brain injury (Tabansky et al., 2014) and to
suppress epileptogenesis (Santos-Valencia et al., 2019). Irregular
temporal patterns of stimulation clearly offer the opportunity
to improve the efficacy and efficiency of DBS therapies (Grill,
2018). However, the vast design space for arbitrary sequences of
varying IPI poses a clear challenge in designing irregular temporal
patterns of stimulation. It is not clear how patterns of stimulation
should be selected for therapeutic advantage in treating various
diseases. In this study, we find that even rearranging the order of
the same set of varying IPI can change the effect of stimulation
pulses substantially. Notably, the IPIs need to vary only in a
small range such as 5–10 ms (i.e., 200–100 Hz) with a mean
pulse frequency of∼130 Hz, a commonly used frequency in DBS
therapy. In addition, the changes in the orders of varying IPI
did not significantly change the total amount of neuronal firing
during HFS (Table 3) but only redistributed the firing timing of
individual neurons.

Furthermore, our investigation of the neuronal responses
to specific IPI episodes in a random IPI sequence provides
clues to designing novel temporal patterns of stimulation. The
salient changes in the ability of a pulse sequence to recruit
a population of neurons by the specific IPI episodes (several
shorter IPIs followed by a longer IPI as in Figure 6C) may exert
stronger effects on neurons than regular and mild impulses from
stimulation with constant IPI. This suggests that adjusting the
amount of such IPI episodes may quantitatively regulate the
stimulation effect, which acts as a “dose” of stimulation. The
recruitment of a large population of neurons may be beneficial
for treating diseases caused by excessive suppression of neuronal
activity, such as disorders of consciousness after traumatic brain
injury. In another perspective, the enhanced effects by random
IPI suggest a potential to lower the electrical energy consumption,
because only a decreased strength of stimulation may be needed
to obtain a similar level of effect as constant IPI. Therefore,

the present study with random IPI may inform the design of
novel temporal patterns of stimulation that provide therapeutic
advantage, less energy consumption, and more safety over
regular stimulation for extending DBS applications in treating
more brain diseases.

Limitations of the Study
In the study, the effects of varying IPI were generated from
the direct action of stimulation on the neuronal membrane, not
involving specific synaptic transmission or neuronal network.
Because the mechanisms of action involving the non-linear
dynamics of ion channels are universal to the membrane of
various neurons in brain, the effects of varying IPI may also
apply to neurons in other brain regions directly activated by
stimulations. However, synaptic and network involvements may
complicate these effects and impose additional modulation to
projection neurons in orthodromic propagations, which needs
further investigations. Furthermore, even for the antidromic
situation, in addition to the depolarization block of axons
investigated here, sustained HFS might induce changes in other
features along the axon to soma. Also, the stochastic network
activity received by soma and the complexity of axonal structures
might affect soma’s responses to the axonal HFS. Therefore, more
accurate modeling with considerations of these factors is needed
to further confirm the results of the present study.

In addition, the rat experiments were performed under
anesthesia. The anesthetic urethane could reduce the synaptic
responses, elevate the threshold of action potential firing, and
decrease the firing rate of neurons (Mercer et al., 1978; Shirasaka
and Wasterlain, 1995). Although the antidromic activation
paradigm used in the present study did not involve synaptic
transmissions, the excitability of soma may be changed by the
anesthetic, thereby possibly affecting the responses of neurons to
the stimulation. Therefore, further studies are needed to duplicate
the results in awake animals.

CONCLUSION

The present study suggests that with the same amount of
pulses together with the same distribution of IPI, only changing
the order of varying IPI can introduce substantial changes
in neuronal responses to HFS. Non-linear recovery course
of membrane excitability might be the underlying cellular
mechanisms resulting in the differences in neuronal responses.
The finding provides a new strategy for developing novel
stimulation paradigms to modulate the firing patterns of neuron
populations, which may improve the DBS efficacy and extend the
application of DBS therapy to more brain diseases.
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Background: The efficacy of deep brain stimulation (DBS) therapy in Parkinson’s
disease (PD) patients is highly dependent on the precise localization of the target
structures such as subthalamic nucleus (STN). Most commonly, microelectrode single
unit activity (SUA) recordings are performed to refine the target. This process is heavily
experience based and can be technically challenging. Local field potentials (LFPs),
representing the activity of a population of neurons, can be obtained from the same
microelectrodes used for SUA recordings and allow flexible online processing with less
computational complexity due to lower sampling rate requirements. Although LFPs
have been shown to contain biomarkers capable of predicting patients’ symptoms and
differentiating various structures, their use in the localization of the STN in the clinical
practice is not prevalent.

Methods: Here we present, for the first time, a randomized and double-blinded pilot
study with intraoperative online LFP processing in which we compare the clinical
benefit from SUA- versus LFP-based implantation. Ten PD patients referred for bilateral
STN-DBS were randomly implanted using either SUA or LFP guided targeting in
each hemisphere. Although both SUA and LFP were recorded for each STN, the
electrophysiologist was blinded to one at a time. Three months postoperatively, the
patients were evaluated by a neurologist blinded to the intraoperative recordings to
assess the performance of each modality. While SUA-based decisions relied on the
visual and auditory inspection of the raw traces, LFP-based decisions were given
through an online signal processing and machine learning pipeline.

Results: We found a dramatic agreement between LFP- and SUA-based localization
(16/20 STNs) providing adequate clinical improvement (51.8% decrease in 3-month
contralateral motor assessment scores), with LFP-guided implantation resulting in
greater average improvement in the discordant cases (74.9%, n = 3 STNs). The selected
tracks were characterized by higher activity in beta (11–32 Hz) and high-frequency (200–
400 Hz) bands (p < 0.01) of LFPs and stronger non-linear coupling between these
bands (p < 0.05).
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Conclusion: Our pilot study shows equal or better clinical benefit with LFP-based
targeting. Given the robustness of the electrode interface and lower computational
cost, more centers can utilize LFP as a strategic feedback modality intraoperatively,
in conjunction to the SUA-guided targeting.

Keywords: Parkinson’s disease, subthalamic nucleus, single unit activity, local field potentials,
electrophysiological targeting

INTRODUCTION

Deep brain stimulation (DBS) is an effective treatment option
for patients suffering from various neurological disorders such
as Parkinson’s disease (PD) (Benabid et al., 2008; Groiss et al.,
2009; Schiefer et al., 2011; Hariz, 2012, 2014; Odekerken et al.,
2013; Gunduz et al., 2017; Lee et al., 2018). Although the exact
mechanism of DBS remains to be explored, it is well-established
that stimulation of the subthalamic nucleus (STN) alleviates
the cardinal symptoms of PD (Limousin et al., 1998; Krack
et al., 2003; Herzog et al., 2004; Benabid et al., 2009). However,
stimulation can also result in side effects arising from unintended
activation of structures surrounding the STN (Krack et al., 2001;
Okun et al., 2003; Deuschl et al., 2006; Guehl et al., 2006; Wojtecki
et al., 2007; Benabid et al., 2009; Groiss et al., 2009; Richardson
et al., 2009; Zhang et al., 2016). Moreover, a multi-center study
has reported that the sub-optimal positioning of DBS electrodes
accounts for 46% of cases with inadequate clinical improvement
postoperatively (Okun et al., 2005). Thus, the clinical efficacy of
DBS therapy depends critically on accurate localization of the
STN (Zonenshayn et al., 2000; Sterio et al., 2002; Amirnovin et al.,
2006; Gross et al., 2006; Campbell et al., 2019).

Precise placement of the DBS lead can be challenging due to
the small size and the anatomical variability in the human STN
(Patel et al., 2008; Richardson et al., 2009). While MRI-guided
asleep DBS is being performed by some centers (Aziz and Hariz,
2017; Brodsky et al., 2017; Chen et al., 2018; Ho et al., 2018; Wang
et al., 2019; Liu et al., 2020), intraoperative electrophysiology
remains to be an important technique for localizing the STN,
despite the variations in the surgical procedure between medical
centers (Zonenshayn et al., 2000; Sterio et al., 2002; Amirnovin
et al., 2006; Gross et al., 2006; Abosch et al., 2013; Campbell
et al., 2019). A worldwide survey involving 143 DBS centers
reported that 83% of them use single unit activity (SUA)
recordings for DBS lead implantation (Abosch et al., 2013).
Typically, up to five microelectrodes are advanced toward the
target structure to obtain a 3-dimensional perspective (Gross
et al., 2006; Benabid et al., 2009; Abosch et al., 2013). SUA
is used to identify cells with firing characteristics consistent
with STN neurons and response characteristics confirming the
motor sub-territory of the STN based on a variety of visual
and auditory cues (Hutchison et al., 1998; Magnin et al., 2001;
Rodriguez-Oroz et al., 2001; Abosch et al., 2002; Benazzouz et al.,
2002). This procedure is subjective, heavily experience-based and
depends critically on the neurosurgeon’s or electrophysiologist’s
ability to recognize the STN (Benazzouz et al., 2002; Benabid
et al., 2009; Marceglia et al., 2010; Abosch et al., 2013). Aside
from difficulties in interpreting the data and small number

of neurons sampled by 1–5 microelectrodes, challenges in
interface stability (e.g., necessity of turning lights or other
devices off in the operating room) and high bandwidth/sampling
frequency requirements may complicate the collection and real-
time analysis of SUA (Novak et al., 2011; Rouse et al., 2011;
Thompson et al., 2014).

Local field potentials (LFPs), which represent the aggregated
synaptic potentials of a population of neurons (Priori et al., 2004;
Gross et al., 2006; Buzsáki et al., 2012), can be obtained from
the shaft of the same microelectrode used for SUA recordings.
Although LFPs have been shown to contain biomarkers capable
of predicting Parkinsonian symptoms (Foffani et al., 2003; Ray
et al., 2008; Lopez-Azcarate et al., 2010; Özkurt et al., 2011; Little
and Brown, 2012; Oswal et al., 2013; Priori et al., 2013; Brittain
and Brown, 2014; Ozturk et al., 2019) and differentiating basal
ganglia structures (Chen et al., 2006; Telkes et al., 2016; Kolb et al.,
2017) only a handful of centers around the world rely on LFPs for
the localization of the STN (Abosch et al., 2013).

Here, we present, for the first time, a randomized, double-
blinded study comparing the targeting performance of SUA- vs
LFP-based implantation. While SUA was interpreted by visual
and auditory inspection of the raw traces as done in clinical
practice, we employed real-time intraoperative processing of
LFPs to facilitate the selection of the implantation track.

Patients and Methods

Patients
Ten patients (four females, six males) with PD undergoing
bilateral STN-DBS implantation at Baylor St. Luke’s Medical
Center were included in the study. Their ages ranged between
40 to 64 (mean ± standard deviation = 55 ± 8.8) with
disease duration ranging from 4 to 16 years (mean ± standard
deviation = 9 ± 3.9). Nine patients were implanted with
Medtronic lead model 3389, and one was with model 3387
(Medtronic, Ireland). The study protocol was approved by
the Institutional Review Boards of Baylor College of Medicine
and University of Houston. All patients provided written
informed consent.

Study Design
This study investigates the functional utility of LFP versus
SUA in targeting the STN with an online processing pipeline
(Figure 1A) and compares both modalities in terms of clinical
outcomes postoperatively. The implantation modality for each
hemisphere (SUA vs. LFP) was randomly identified prior to
the surgery. If one hemisphere was implanted using LFP, the
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FIGURE 1 | Randomized double-blinded paradigm and the processing pipeline for LFPs. (A) The decision modality for each hemisphere was determined in the
beginning of the operation randomly. Intraoperative recordings included both SUA and LFP activity. However, only the decision modality, either SUA or LFP, was made
available to the electrophysiologist. After the implantation site was selected, the final position was confirmed with intraoperative imaging and clinical testing for motor
improvement and side effects, which was performed by a neurologist blinded to the electrophysiological recordings. (B) Signal processing and machine learning
pipeline for LFP-based decision making. The raw traces are de-correlated using least mean square (LMS) algorithm with the steepest descent update. Then, the LFP
traces were analyzed in the spectral domain using modified Welch periodogram with a 1 s Hamming window and 50% overlap. Individual spectra across depths
were combined to generate a 2D depth-frequency map (DFM) representing the depth-varying power spectrum of the LFPs. The track selection was performed
automatically using a linear discriminant analysis (LDA) classifier developed by Telkes et al. (2016), using the power in beta and HFO bands as input features.

other one was implanted using SUA. Three track MER was
performed with only the guiding waveform provided to the
electrophysiologist for decision making, while the other signal
was recorded in the background (blinded recordings) for off-
line comparison. After DBS lead placement in the selected
track, an intraoperative computed tomography (CT) fused
with preoperative magnetic resonance imaging (MRI) was used
to verify lead location. Finally, a neurologist blinded to the
recordings tested the patients for clinical benefit and side effects
intraoperatively and 3-months postoperatively (blinded testing).
To prevent possible interference induced by inter-rater variability

on the paired statistics performed in this study, the rating
neurologists (authors JS and AT, both MDS-UPDRS certified)
performed the clinical assessment for each patient consistently
(the same rater performed both OFF and ON assessments
of a patient, for both the left and right hemispheres). The
systematic testing done at 3-months postoperatively was used
to assess the clinical improvement by stimulation (medication
OFF/DBS ON). The clinical scores were computed as the sum of
Movement Disorders Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) Part-III items 3.3–3.8, 3.15–3.17 of the side
contralateral to the implant.
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Intraoperative Recordings
Patients were requested to stop medication at least 12 h prior
to surgery and all recordings were obtained in the awake state
using local anesthesia. On the morning of the surgery, all
patients obtained a head CT after application of the stereotactic
head frame. The stereotactic coordinates and trajectories to
the STN were identified by fusing preoperative MRI and
CT scans on a neuro-navigational platform (StealthStation,
Medtronic, Ireland). In each hemisphere, awake recordings
were performed using a set of three parallel microelectrodes
separated by 2 mm (center-to-center) using the 5-cannula
BenGun with “+” configuration. The preoperative planning
using direct targeting methods determined the “center” track.
Among “anterior, posterior, lateral and medial” tracks, two
other tracks were selected by the neurosurgeon on a patient
specific basis by taking into account the subject’s anatomy.
The microelectrodes (NeuroProbe, AlphaOmega, Israel) were
initially placed at least 15 mm above the stereotactic target
and advanced deeper with 0.5–1 mm steps using NeuroOmega
drive (AlphaOmega, Israel), in order to refine the radiographic
target. At each depth, by using the cannula as reference, at
least 20 s of SUA from the high-impedance tungsten tip (0.6–
0.8 M�) and LFP from the low impedance stainless-steel ring
(<10 K�, 3 mm above the tip) on the shaft were obtained
simultaneously. The entire data was recorded with Grapevine
Neural Amplifier (Ripple Neuro, UT) at 30 KHz and 16-bit
A/D resolution, and LFPs were down-sampled to 2 KHz before
further processing.

Signal Processing
The signals were recorded and visualized in real-time with
an in-house built Simulink model and processed with custom
MATLAB scripts using version R2014a (Mathworks, Natick, MA,
United States) and gHiSys high-speed online processing library
(gTec, Austria). The entire online processing was performed on
a 17” laptop with quad-core (2.4 GHz) processor and 12 GB
memory. The SUA data were high-pass filtered at 300 Hz with
a second order infinite-impulse response filter and presented
to the electrophysiologist in visual and auditory format, similar
to the commercially available devices. After the mapping was
completed, the SUA traces were plotted depth by depth from
all three tracks for reviewing and final decision. The entry
to and exit from the STN was determined by an experienced
neurophysiologist by listening to and visually observing the firing
patterns of neurons. The entry to the STN was identified with
a prominent increase in the background activity and discharge
rates (Figure 2A), as reported previously (Hutchison et al., 1998;
Novak et al., 2007). Among three, the track with the longest span
of cell firing and background activity was selected for the chronic
DBS electrode implantation (Abosch et al., 2002; Benazzouz
et al., 2002; Gross et al., 2006). In those hemispheres where the
implantation was performed based on LFPs, the same procedures
were used to process SUA data offline, following the implantation
of the DBS electrode.

The LFPs were processed intraoperatively with the real-time
implementation of the signal processing pipeline (Figure 1B)

provided by Telkes et al. (2016). Specifically, LFP raw traces were
visualized initially and it was noted that tracks were difficult to
distinguish, due to common activity coming from the reference
contact (cannula) masking spatially localized patterns. In order
to eliminate the common activity without affecting the localized
neural activity, the LFP from tracks were de-correlated using a
least mean square (LMS) algorithm with the steepest descent
update. Explicitly, each track was predicted by using a linear
weighted combination of other two channels and the residual
was used for the further processing. With this adaptive approach,
the common activity was eliminated across tracks and only
spatially specific information was preserved (Telkes et al., 2016).
LFP traces were then analyzed in the spectral domain using
a modified Welch periodogram. A fast Fourier transform was
computed at each depth with a 1 s Hamming window and
50% overlap and presented to the electrophysiologist in near
real-time in the form of online spectrograms (Supplementary
Video S1). After the mapping was completed, a median spectrum
was calculated from the spectra to eliminate localized artifacts
at each depth. Then, spectra across depths were combined
to generate a 2D depth-frequency map (DFM) representing
the depth-varying power spectrum of the LFPs of each track
(Telkes et al., 2016, 2018). The maps were then normalized
with the average baseline of three tracks and transformed into
log scale (Figure 1B). The tracks were not normalized by their
own baseline but by the mean of all three tracks in order to
compare the signal power between them. The baseline used
for normalization was selected as the highest depths which are
assumed to be in the white matter. The STN was identified
by distinct LFP activity in beta (11–32 Hz) and HFO (200–
400 Hz, high-frequency oscillations) ranges. The track containing
the largest beta and HFO bandpower for the longest span was
selected as the implantation site for the DBS electrode (Zaidel
et al., 2010; Wang et al., 2014; Telkes et al., 2016; van Wijk
et al., 2017). This selection was performed automatically using
a linear discriminant analysis (LDA) classifier developed by
Telkes et al. (2016). Specifically, after obtaining the normalized
depth-frequency maps, the beta and HFO sub-band powers were
extracted for each track and depth from these maps. Then, the
sub-band power features were normalized between zero and one
with a Min-Max normalization method for the minimization
of inter-subject variability in LFP power, and a binary LDA
classifier was applied for classification. This classifier was trained
by contrasting the LFP sub-band features coming from selected
and non-selected tracks using the data from the 24 PD patients
analyzed in Telkes et al. (2016). During online classification, the
neural data in each track and at each depth were fed to the
classifier. Therefore, each electrode trajectory received a vote at
each depth from the classifier. The decision distance of the LDA
classifier was plotted to give visual feedback regarding the votes
and related confidence of the classifier (Figure 1B). The track that
received the longest span of decision distances voting for in-STN
was selected for the final DBS electrode implantation (Figure 1B).
Once again, in those hemispheres where the implantation was
performed based on SUA, the same signal processing pipeline was
executed offline to process LFPs, following the implantation of
the DBS electrode.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 611122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00611 June 10, 2020 Time: 20:45 # 5

Ozturk et al. Intraoperative LFPs for Targeting of STN

FIGURE 2 | Representative SUA and LFP raw traces and depth-frequency maps (DFM) from two STNs where the suggested track by SUA and LFP overlapped (left
panel) and did not overlap (right panel). (A,B) SUA raw traces presented from 5 mm above down to 5 mm below the dorsal border of the STN, with 0.5 mm steps.
The dorsal border is marked by an increased spiking and background activity. Red asterisks denote suggested track by the corresponding modality and black
asterisk next to the track name denotes the implanted track. (C,D) The decorrelated LFP traces are provided in a similar fashion to SUA traces. Although it can be
observed that the oscillatory activity increases after crossing the dorsal border, the nature of the change can be visualized better in the spectral domain where (E,F)
DFMs of the corresponding LFPs are presented. The entry to STN is characterized with increased activity in both beta and HFO ranges. (G,H) Decision plots of the
classifier voting whether each track is in- or out-STN at each traversed depth. The track with the longest in-STN vote is selected as the implanted track, as indicated
with the black arrows. The SUA activity was stronger in the lateral track (A) and the corresponding LFPs agreed (G) in the left panel. On the right panel, SUA (B),
which was the decision modality, suggested the medial track. However, after intraoperative imaging validation the lead was placed in the center track, which agreed
with the LFP-based decision (H).

Additional offline analysis was performed postoperatively to
investigate the cross-frequency coupling (CFC) between beta
and HFO bands. The comodulograms representing CFC were
computed using the phase-locking principle (Penny et al., 2008)
with amplitude frequency axis from 150 to 450 Hz with 10 Hz
steps and 50 Hz filter bandwidth, and phase frequency axis from
6 to 40 Hz with 1 Hz steps and 3 Hz filter bandwidth.

Statistics
Normality of all distributions was tested using Anderson-Darling
test and it was found that most of them are non-normal
(p < 0.05). Statistical tests were performed in a paired fashion
using non-parametric Wilcoxon signed rank test to compare the
clinical scores in the OFF- and ON- DBS states, the beta and
HFO bandpowers and the coupling strength between them. The
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sample size and significance levels are provided throughout the
text, when referred.

RESULTS

A total of 60 microelectrode tracks from 20 STNs were
included in this study. Figure 2 illustrates offline comparison of
representative LFP and SUA data from two STNs, where both
modalities suggested the same track in one (Pt5, left hemisphere)
and different tracks in another (Pt10, right hemisphere). The
SUA-predicted tracks were determined by the longest span of
background and spiking activity (Figures 2A,B) whereas the
longest span of in-STN votes of the classifier were considered in
LFP-based selection (Figures 2C–F). The decision distance (y-
axis of Figures 2G,H) represented the confidence of the classifier
which used the power in beta and HFO bands of LFP as input
features. Note that, although the randomized decision modality
was SUA for the right hemisphere of patient 10 (Figure 2, right
panel) suggesting implantation in the medial track, intraoperative
CT favored the center track as the target, which was used as the
final implantation location. The offline analysis of LFPs agreed
with the radiographic decision as well.

Distribution of decisions for all hemispheres given by each
modality as well as their randomization is provided in Figure 3A.
In 16/20 hemispheres, the SUA and LFP recordings were
concordant in their prediction of implantation track. In those
four discordant hemispheres, the LFP was the decision modality
in only one of them and the final implantation validated by
intraoperative CT and clinical testing agreed with LFP-suggested
track. In remaining three STNs where SUA was the decision
modality, the lead had to be repositioned based on intraoperative
CT validation and/or stimulation testing. For two STNs (Pt6, left;
Pt10 right), the track suggested by the SUA, did not agree with
the track residing within the target confirmed radiographically
(according to intraoperative CT scans merged with preoperative
MRI). Therefore, the DBS electrode was placed into the most
likely track suggested by the radiography. Interestingly, for these
two STNs, the track suggested by the imaging agreed with
LFPs. In one STN (Pt1, left), the lead was moved to posterior
track due to stimulation side-effects during intraoperative testing
and imaging considerations, without the use of microelectrode
recordings. This STN was excluded from further analysis. The
repositioned hemispheres are marked with a star on Figure 3A.
Overall, the track favored by SUA was implanted in a total of
16 chronic lead placements whereas LFP-favored track was used
in 19. In addition to intraoperative radiographic validation, all
20 implantations were visualized postoperatively by merging the
preoperative MRI and postoperative CT images using LeadDBS
(Horn and Kühn, 2015). It was observed that at least one contact
of the DBS lead was within the STN (Figure 3B).

The mean lateralized MDS-UPDRS part III improvement for
19 STNs was 51.8% at 3-month postoperative programming
(mean ± standard deviation OFF score = 16.3 ± 5.4, ON
score = 6.5 ± 4.6, Figure 3C). When the track decisions were
compared across modalities in terms of outcome measures, the
16 STNs where both modalities agreed had average clinical

improvement of 55.5%. Of the tracks with LFP-SUA mismatch,
the mean improvement in three LFP-concordant implantations
was 74.9% (Figure 3D).

The average DFMs and CFC comodulograms of selected vs
other tracks from 19 STNs are presented in Figure 4. The left
hemisphere of patient 1 was excluded since the electrode was
repositioned due to side effects observed during intraoperative
stimulation testing without neural recordings. The STN was
characterized by exaggerated activity in the beta and HFO ranges
in the selected track while the average map of the non-selected
tracks contained weaker beta and HFO activity, as presented
in Figure 4A. The power of these two bands were significantly
higher in the selected track, both in dorsal and ventral regions
(Figure 4B, p < 0.01, n = 19). Although three patients had
localized HFO activity above the STN border (see representative
DFMs in Figures 2E,F), there was no significant difference in
HFO bandpower between selected and other tracks at this depth
range. The dorsal half of STN demonstrated CFC between the
phase of beta and the amplitude of slow HFO (200–280 Hz)
oscillations whereas the ventral half was coupled with fast HFO
(280–400 Hz) band as illustrated in Figure 4C. Amongst all
selected tracks, the beta-HFO coupling strength was significantly
higher in both dorsal and ventral territories, when compared to
other tracks (Figure 4D, p < 0.05, n = 19).

DISCUSSION

In this blinded study, we compared the functional utility of LFPs
for the implantation of DBS electrode against the widely used
method, SUA (Benabid et al., 2009; Przybyszewski et al., 2016;
Valsky et al., 2017). We observed an overall agreement in track
prediction between both modalities (16/20 hemispheres) with
adequate clinical benefit (55.5%) from chronic DBS, comparable
to previous reports (Limousin et al., 1998; Krack et al., 2003;
Walter and Vitek, 2004). In the three discordant cases, our
findings suggest that the mean improvement in motor symptoms
with LFP guided implantation may be greater.

The large overlap between optimal tracks predicted by both
SUA and LFP is not a surprise as firing activity and field potentials
have shown to be linked (Kühn et al., 2005; Buzsáki et al., 2012;
Telkes et al., 2016; Meidahl et al., 2019), and supports the use
of LFP-guided lead placement. A possible explanation for the
mismatched hemispheres could be the stability issues in the
electrode tip - tissue interface (Amirnovin et al., 2006; Hill et al.,
2011; Harris et al., 2016). In one STN presented in Figure 2B,
although the background activity in center track SUA increases
after the border (0 mm), a potential tip failure (i.e., bending
or damage to the fine tip of microelectrode that could reduce
the high impedance, which is essential to capture SUA) could
have prevented the isolation of individual neurons. Since the
LFP traces (Figure 2D) and DFM (Figure 2F) of the same STN
show strong activity correlated with intraoperative CT, a technical
or hardware issue specific to the tip of the microelectrode is a
distinct possibility. Even without any damage, the SUA tip may
not necessarily isolate single neurons at every site (Benazzouz
et al., 2002; Weinberger et al., 2006; Sharott et al., 2014) by
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FIGURE 3 | The distribution of selected tracks by SUA and LFP, and the corresponding motor improvement. (A) The BenGun representation of suggested and
implanted tracks for individual STNs. For each hemisphere, the randomized implantation modality is written at the bottom. There were three cases where the
decision modality was SUA, but the lead had to be repositioned (denoted by asterisk): left hemisphere of patient 1 moved to posterior track due to intraoperative
stimulation side effects, without use of electrophysiology (excluded from further analysis); left hemisphere of patient 6 and right hemisphere of patient 10 repositioned
due to discrepancy with the intraoperative imaging. In the latter two cases, the LFP suggested track agreed with the final decision. (B) The illustration of implanted
DBS leads generated by merging preoperative MRI and intraoperative CT using Lead DBS toolbox (Horn and Kühn, 2015). In all hemispheres, at least one contact
was observed to be in STN. (C) The distribution of total contralateral motor UPDRS scores in the DBS OFF and DBS ON states for 19 hemispheres. There was a
significant clinical motor improvement (51.8%) after DBS treatment (p < 0.01, n = 19). (D) The tracks suggested by SUA and LFP overlapped for 16 STNs, with
average improvement of 55.5%. When there was a disagreement and the implant location agreed with LFP (n = 3), the average improvement was 74.9%. Individual
data points are presented with circles to emphasize the unequal sample size between groups.

being too far to the cells or by damaging them (Buzsáki, 2004;
Harris et al., 2016). In such instances, the electrophysiologist faces
the uncertainty of missing the target or missing the neurons.
By contrast, the stainless-steel ring on the shaft where LFPs
are recorded has more structural integrity, larger surface and
smaller impedance (Lenz et al., 1988; Gross et al., 2006), and
captures the oscillatory activity from a population of neurons

(Priori et al., 2004; Gross et al., 2006; Buzsáki et al., 2012), thereby
limiting the chances of missing the electrophysiological activity
(Buzsáki et al., 2012; Priori et al., 2013; Thompson et al., 2014).
Supporting the favorability of LFP recordings, we found that
among three cases where SUA was the deciding modality but the
implantation track had to be modified, two of the final locations
agreed with the LFP-based track selection (Figure 3A).
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FIGURE 4 | LFP patterns of selected and non-selected (other) tracks. (A) DFM averages of LFPs recorded from selected and other tracks 5 mm above and below
the dorsal border of 19 STNs. One hemisphere which was repositioned due to side effects without recordings was excluded from the electrophysiological averages.
The white dashed lines represent the dorsal border and, the dorsal and ventral regions of STN. Upon entry to the STN, there was a marked increase in the beta and
HFO activity. The dorsal half was dominated with slow HFOs (200–280 Hz) whereas the ventral half had HFOs in the 280–400 Hz range. (B) The beta and HFO
bandpowers are contrasted between selected and other tracks in three spatial regions: above (5–0 mm), dorsal (0 to -2 mm) and ventral (-2 to -5 mm) STN. There
was significant difference in both beta and HFO bandpower in dorsal and ventral regions (p < 0.01, n = 19). (C) The CFC patterns contrasted from the same depth
regions revealed beta-slow HFO coupling in the dorsal territory, whereas there was beta-fast HFO coupling in the ventral territory of the selected track. (D) The mean
beta-HFO coupling strength was significantly higher in both dorsal and ventral territories (p < 0.05, n = 19).

Intraoperative electrophysiological recordings for the accurate
localization of STN have been a vital step for DBS electrode
implantation (Zonenshayn et al., 2000; Sterio et al., 2002;
Amirnovin et al., 2006; Gross et al., 2006; Abosch et al., 2013;
Campbell et al., 2019). SUA has been the most commonly
used electrophysiological signal for targeting (Gross et al.,
2006; Abosch et al., 2013; Campbell et al., 2019), which
strongly relies on subjective interpretation of single unit firings
(Benazzouz et al., 2002; Benabid et al., 2009; Marceglia et al.,
2010; Abosch et al., 2013). Recently, there have been reports
to ameliorate this disadvantage by identifying and clustering
firing types (Kaku et al., 2019, 2020) or by detecting entry
and exit of the STN automatically (Wong et al., 2009; Zaidel
et al., 2009; Pinzon-Morales et al., 2011; Valsky et al., 2017;
Thompson et al., 2018). However, the volatile interface stability
and increased computational power requirement arising from
higher sampling rates might still favor LFPs (Rouse et al.,
2011; Buzsáki et al., 2012; Priori et al., 2013; Thompson
et al., 2014). Growing literature supports the utility of LFPs in
intraoperative mapping (Chen et al., 2006; Przybyszewski et al.,
2016; Telkes et al., 2016; Kolb et al., 2017; Lu et al., 2019).
Our results also support the use of LFPs intraoperatively for
DBS lead implantation. The processing pipeline and real-time
visualization tool (Supplementary Video S1) presented here can
facilitate this process.

The exploration of disease biomarkers for the development
of novel technologies such as closed loop DBS have been of
great interest lately (Little and Brown, 2012; Priori et al., 2013;
Meidahl et al., 2017; Hell et al., 2019). In this regard, LFPs
can provide variety of non-binary patterns including power of
distinct oscillatory bands and their nonlinear interactions. There
is an abundance of studies reporting the response of LFP-derived
biomarkers to medication (Foffani et al., 2003; Priori et al.,
2004; Marceglia et al., 2006; Kane et al., 2009; Lopez-Azcarate
et al., 2010; Özkurt et al., 2011; Ozturk et al., 2019) and DBS

(Kühn et al., 2008; Eusebio et al., 2011; McConnell et al., 2012)
therapies, as well the correlation between these biomarkers and
cardinal symptoms of PD (Kühn et al., 2006; Weinberger et al.,
2006; Ray et al., 2008; Lopez-Azcarate et al., 2010; Oswal et al.,
2013; Brittain and Brown, 2014; Ozturk et al., 2019). We and
others have previously shown that these patterns can provide
utility in contact selection (Ince et al., 2010; Connolly et al.,
2015) or targeting the optimal location for DBS implantation
(Chen et al., 2006; Thompson et al., 2014; Telkes et al., 2016;
Kolb et al., 2017; Lu et al., 2019). Specifically, oscillations in
the beta and HFO range and their cross-frequency interactions
have been used to pinpoint the “sweet spot” for DBS (Wang
et al., 2014; Connolly et al., 2015; Telkes et al., 2016; Horn
et al., 2017; van Wijk et al., 2017; Hell et al., 2019). When
comparing the selected track with others, we have observed that
the bandpowers of beta and HFO oscillations were significantly
higher in both dorsal and ventral parts of the STN. Postoperative
analyses revealed that the coupling pattern between phase of beta
and amplitude of HFO differed in dorsal and ventral territories,
similar to previous reports distinguishing both regions with
electrophysiology (Rodriguez-Oroz et al., 2001; Theodosopoulos
et al., 2003; Zaidel et al., 2009; Telkes et al., 2018). This difference
is expected as the dorsolateral STN has been associated with
motor functions and exhibited distinct oscillatory/bursting single
unit firings whereas ventromedial STN is associated with limbic
functions and tonic firings (Abosch et al., 2002; Gross et al.,
2006; Zaidel et al., 2010; Thompson et al., 2018; Campbell
et al., 2019; Kaku et al., 2020). Interestingly, we also noted
HFOs above STN in three patients (see Figure 2E). This activity
could be originating from other structures such as thalamus or
zona incerta (ZI) (Thompson et al., 2014; Yang et al., 2014; Lu
et al., 2019; Meidahl et al., 2019). Previous work has shown
that dorsolateral STN and ZI stimulation provides the greatest
improvement in PD motor symptoms (Gourisankar et al., 2018),
which correlates with our observation. However, lack of activity
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in the bulk of our recordings begs for further investigation
regarding the out-of-STN oscillatory activity in more patients.

CONCLUSION

In this report, we assessed the functional utility of LFP-
based lead implantation against the gold standard SUA method
using intraoperative online signal processing and compared
these modalities in terms of clinical outcomes. Our results
suggest that the LFP oscillations can be a more stable, less
processing-intensive method that can be integrated in the
intraoperative workflow together with SUA-based mapping,
without affecting the surgical procedure. In addition to the
functional role of LFPs in intraoperative target mapping, the
fact that LFPs can also be recorded from the chronic DBS
lead after the surgery is another potential advantage that
might guide therapeutic programming to a higher efficacy and
efficiency. Here, we provided results of a pilot study with
ten patients. Future clinical trials with more subjects will be
needed to establish if LFPs can become the standard of care for
intraoperative mapping.
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Closed-loop control strategies for deep brain stimulation (DBS) in Parkinson’s disease

offer the potential to provide more effective control of patient symptoms and fewer

side effects than continuous stimulation, while reducing battery consumption. Most of

the closed-loop methods proposed and tested to-date rely on controller parameters,

such as controller gains, that remain constant over time. While the controller may

operate effectively close to the operating point for which it is set, providing benefits

when compared to conventional open-loop DBS, it may perform sub-optimally if the

operating conditions evolve. Such changesmay result from, for example, diurnal variation

in symptoms, disease progression or changes in the properties of the electrode-tissue

interface. In contrast, an adaptive or “self-tuning” control mechanism has the potential

to accommodate slowly varying changes in system properties over a period of days,

months, or years. Such an adaptive mechanism would automatically adjust the controller

parameters to maintain the desired performance while limiting side effects, despite

changes in the system operating point. In this paper, two neural modeling approaches

are utilized to derive and test an adaptive control scheme for closed-loop DBS, whereby

the gain of a feedback controller is continuously adjusted to sustain suppression of

pathological beta-band oscillatory activity at a desired target level. First, the controller is

derived based on a simplified firing-rate model of the reciprocally connected subthalamic

nucleus (STN) and globus pallidus (GPe). Its efficacy is shown both when pathological

oscillations are generated endogenously within the STN-GPe network and when they

arise in response to exogenous cortical STN inputs. To account for more realistic

biological features, the control scheme is then tested in a physiologically detailed

model of the cortical basal ganglia network, comprised of individual conductance-based

spiking neurons, and simulates the coupled DBS electric field and STN local field

potential. Compared to proportional feedback methods without gain adaptation, the

proposed adaptive controller was able to suppress beta-band oscillations with less

power consumption, even as the properties of the controlled system evolve over time

due to alterations in the target for beta suppression, beta fluctuations and variations in

the electrode impedance.

Keywords: deep brain stimulation, self-tuning, Parkinson’s disease, beta-band oscillations, closed-loop, adaptive

control
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1. INTRODUCTION

Deep brain stimulation (DBS) is a clinically effective treatment
used in patients with advanced Parkinson’s disease (PD) to
supplement or replace pharmacological treatment of symptoms.
It consists of high-frequency stimulation of neurons within the
basal ganglia, with the subthalamic nucleus and globus pallidus
being the most common targets, using a chronically implanted
electrode and a subcutaneous pulse generator. At present, DBS
is delivered clinically in an open-loop fashion where stimulation
parameters remain fixed over time. This approach, however, may
lead to overstimulation, inducing side effects and shortening
battery life. Regular retuning of parameters is also required,
involving a time-consuming trial and error process (Lozano et al.,
2019).

The search for new approaches to improve the attenuation
of patient symptoms and minimize side effects while increasing
battery life has motivated a growing interest in closed-loop
DBS over the last several years (Santaniello et al., 2010; Rosin
et al., 2011; Santos et al., 2011; Carron et al., 2013; Beuter
et al., 2014; Shah et al., 2018; Eitan et al., 2019). In a closed-
loop paradigm, the stimulation waveform is modified based on
specific biomarkers which are used as a surrogate measure of
symptom severity. To date, beta-band (13–30 Hz) activity in the
STN local field potential (LFP) has been one of the most widely
investigated biomarkers for closed-loop DBS during Parkinson’s
disease (Parastarfeizabadi and Kouzani, 2017). Increased beta-
band power in the STN LFP is correlated with motor impairment
symptoms in Parkinson’s disease, and its suppression, due
to medication or high frequency DBS, with improved motor
performance (Kühn et al., 2006, 2008; Hammond et al., 2007;
Eusebio et al., 2011).

Closed-loop stimulation utilizing LFP beta-band power has
been experimentally validated in patients for short periods
(Rosin et al., 2011; Little et al., 2013, 2016; Rosa et al., 2015;
Arlotti et al., 2018; Velisar et al., 2019), however, longer term
investigations have yet to be conducted. The improvement in
symptoms has been comparable to that with conventional open-
loop DBS while the energy required has been substantially
reduced. In a number of studies, the stimulation signal has been
delivered in an “on-off” fashion, switching the stimulation on
or off depending on whether or not the biomarker exceeded a
specified threshold (Little et al., 2013, 2016). Using this approach,
suitable stimulation parameters must be first identified, as in
the case of open-loop DBS. Using two thresholds, Velisar et al.
(2019) increased or decreased stimulation amplitude to maintain
the biomarker within a given range. Proportional feedback
approaches, where the stimulation amplitude is proportional
to the measured biomarker, have also shown potential in both
clinical (Rosa et al., 2015; Arlotti et al., 2018) and computational
studies (Tukhlina et al., 2007; Chaillet et al., 2017; Popovych
and Tass, 2019). Clinical studies in patients have confirmed
that proportional stimulation responding to slowly changing
beta-band LFP activity is not only effective and well-tolerated
by patients, but might also help avoid stimulation-induced
dyskinesia when patients are on medication (Rosa et al., 2015;
Arlotti et al., 2018).

Similar to on-off strategies, which utilize fixed stimulation
parameters, proportional feedback requires a fixed controller
gain parameter to be identified where the stimulation amplitude
at a given time is controlled by this gain and an estimated
biomarker value. Identification of the controller gain parameter
is a potentially complicated and time-consuming postoperative
process. Furthermore, although the selected gain may be suitable
for the operating point at which it was initially set, it may provide
suboptimal performance and require retuning when properties of
the system change, for example in response to disease progression
or changes in the properties of the electrode-tissue interface.

To address this problem, we propose a self-tuning control
strategy inspired by adaptive control theory, where the value of
the controller gain evolves based on the measured pathological
activity. The controller gain automatically increases until the
detected pathological oscillations are sufficiently suppressed and
then begins to dissipate when the oscillation amplitude is low
enough. In this manner, the proportional controller self-adapts
its gain to the lowest value that guarantees suppression of the
oscillations to the desired level. Using tools from control theory,
namely Lyapunov-Krasovskii analysis, we mathematically show
in a firing-rate model that the proposed controller guarantees
disruption of the pathological oscillations provided that the
internal coupling within the GPe is sufficiently weak. The
controller is derived first under the assumption of endogenously
generated oscillations, arising from increased coupling within
the STN-GPe network, and is then extended to the case where
oscillatory activity arises in the STN-GPe loop due to exogenous
cortical inputs.

While firing-rate models provide a means to represent
the activity of the network in a mathematically tractable
manner, they lack the physiological detail that enables them
to be easily related to the underlying processes at the cellular
level. To overcome this limitation, we computationally test its
performance in a more physiologically relevant context, by
implementing it in a network of conductance-based neuron
models.We first demonstrate through simulations that the firing-
rate and conductance-based network models studied here have
similar characteristics in terms of the emergence of oscillations
as a function of connection strength between STN and GPe, and
that both models have similar qualitative frequency responses.
Firing-rate model parameters are then identified based on data
obtained from simulations of the conductance-based model to
link the two models and demonstrate that the latter fulfills the
theoretical criterion of low internal GPe connectivity. Finally, the
ability of the adaptive controller to “self-tune” to maintain the
suppression of pathological oscillations is assessed numerically in
three different scenarios: changing the target suppression level,
modifying the background beta activity in the network, and
varying the electrode impedance.

2. MATERIALS AND METHODS

2.1. Firing-Rate Model
The firing-rate model, which we derive the self-tuning DBS
strategy and mathematically prove its efficacy, is inspired by the
STN-GPe loop model originally proposed in Nevado-Holgado
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et al. (2010) to study the emergence of pathological beta
oscillations observed in the parkinsonian basal ganglia. The
model is defined as follows:

τ1ẋ1(t) = −x1(t)+ S1
(

c11x1(t − δ11)− c12x2(t − δ12)+ b1u1(t)
)

(1a)

τ2ẋ2(t) = −x2(t)+ S2
(

c21x1(t − δ21)− c22x2(t − δ22)− b2u2(t)
)

.
(1b)

The instantaneous firing activities (in pulses per second) of the
STN and GPe, are respectively represented by x1(t) and x2(t).
τ1, τ2 > 0 are time constants. For each i, j ∈ {1, 2}, the
constant cij ≥ 0 represents the synaptic connection strength from
population j to population i and δij ≥ 0 is a time delay that
occurs due to finite velocity of axonal and synaptic transmission
from population j to population i. u1 and u2 represent the
influence of cortical (into STN) and striatal (into GPe) inputs
to the system, respectively, modulated by the synaptic weights
b1 ≥ 0 and b2 ≥ 0. All the coupling constants cij and bj
being non-negative, the sign represents whether the neurons in
the presynaptic population have excitatory (STN and cortex)
or inhibitory (GPe and striatum) effect on the postsynaptic
one. The activation functions S1 and S2 encode the response
of the neuronal populations to their input. Although they were
considered in Nevado-Holgado et al. (2010) as sigmoids, the
theoretical analysis provided below allows them to be any
increasing function with bounded derivative.

2.1.1. Self-Tuning Controller Derivation
It was shown in Nevado-Holgado et al. (2010) and Pasillas-
Lépine (2013) that if the coupling weights c12 and c21 between
STN and GPe are sufficiently high, the model exhibits sustained
endogenous oscillations, which fall in the beta frequency band for
appropriate values of themodel parameters. The controller is first
derived and assessed under that assumption and is then further
explored in the case where oscillations within the loop arise from
exogenous inputs to the STN-GPe network.

Under the assumption that the cortical and striatal inputs are
constant (u(t) = (u1(t), u2(t))

T
= ū), consider the change of

variables u ←[ u − ū, and x ←[ x − x̄, where x̄ is an equilibrium
value of x = (x1, x2)

T for the input ū, whose existence is
guaranteed by Pasillas-Lépine (2013). Adding a feedback µ(t)
representing the influence of artificial stimulation (DBS) on STN
and shifting the activation functions Sj such that Sj(0) = 0 for
j ∈ {1, 2}, we obtain the following dynamics:

τ1ẋ1(t) = −x1(t)+ S1
(

c11x1(t − δ11)− c12x2(t − δ12)+ µ(t)
)

(2a)

τ2ẋ2(t) = −x2(t)+ S2
(

c21x1(t − δ21)− c22x2(t − δ22)
)

. (2b)

The model described by (2) has been studied by Pasillas-
Lépine et al. (2013) and Haidar et al. (2016), who showed
that a proportional feedback acting only on STN is capable of
disrupting exaggerated oscillations and stabilizing the system.
More precisely, assuming that the inner GPe interconnections are
sufficiently weak, namely:

c22ℓ2 < 1, (3)

where ℓ2 denotes the maximum slope of the GPe activation
function S2, it was demonstrated in those papers that the system
(2) is asymptotically stable under proportional feedback from the
STN to itself, namely:

µ(t) = −θx1(t), (4)

where the proportional gain θ > 0 should be chosen to be
sufficiently large.

The original result was obtained using linearization
techniques. Since then, it has been extended to take full
account of the nonlinear effects induced by the activation
functions Sj (Chaillet et al., 2017, 2019). In particular, it was
shown in Chaillet et al. (2019), using Lyapunov-Krasovskii
methodology, that the network described in (2) in closed loop
with (4) is globally exponentially stable, provided that θ is above
some minimum value θ∗ > 0 and condition (3) is satisfied.
Global exponential stability of the origin means that there exist
η, γ > 0 such that the solutions of (2) satisfy

|x(t)| ≤ η‖x0‖e
−γ t , ∀t ≥ 0, (5)

for any initial state x0. The model being a delay differential
equation, the state here is not a point in R

2, but rather a history
function defined as xt(s) = x(t + s) for all s ∈ [−δ, 0], where
δ denotes the maximum delay δij involved in the dynamics. This
state (hence, the initial state) belongs to the set of all continuous
functions from [−δ, 0] to R

2 and we employ the norm ‖xt‖ =
maxs∈[−δ,0] |x(t + s)| on this functional set. Global exponential
stability is thus a very strong stability property, as it imposes
an exponential convergence to the equilibrium and a transient
overshoot proportional to the magnitude of the initial state, no
matter where the system initially lies. Imposing such a property
on the firing-rate model (2) impedes the existence of steady-
state pathological oscillations. Global exponential stability is also
known to induce robustness properties with respect to exogenous
inputs for a wide class of systems (Yeganefar et al., 2008), which
may prove useful for the problem considered here due to the
inherent imprecision and variability of biological models.

One of the major limitations of the stimulation strategy
proposed above is that we do not know a priori the value of the
minimum effective gain θ∗. In Chaillet et al. (2019), the following
estimate of θ∗ was proposed:

θ∗ ≤ 8

(

c211 +
4c221c

2
12

(1− c22)2

)

,

but it is a conservative approximation. Moreover, this value
depends on the connection parameters cij that would be very hard
to estimate accurately in practical applications, due to the high
level of abstraction of the considered model.

The alternative to pure proportional control that we propose
here is inspired from adaptive control theory and involves
updating the gain parameter θ based on the measured state of
the system, namely:

µ(t) = −θ(t)x1(t) (6a)

τθ θ̇(t) = |x1(t)| − σθ(t), (6b)
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where σ , τθ > 0 are control parameters governing how fast the
control gain reacts to changes in the system.

First note that, similar to (4), this control law requires
recording of the STN activity only. In the same way, it involves
only stimulation of the STN. In practice, these constitute
important features in terms of limited insertion of measurement
and stimulation electrodes.

The idea behind the adaptive law (6) is simple. As long as
x1 is not at zero (meaning that STN activity has not reached its
equilibrium), the term |x1(t)| ≥ 0 increases the proportional
gain θ . With that, θ(t) will eventually overpass θ∗ (no matter
what its precise value is) and cause the state to converge to zero
exponentially. On the other hand, the dissipation (or leakage)
term −σθ(t) decreases the value of θ whenever σθ(t) ≥ |x1(t)|,
due to either a too high value reached by the gain θ or because
x1 has reached a sufficiently low value (as desired). These
balanced effects are designed in such a way that the control law
automatically adjusts its gain around the (unknown) value θ∗.

The dissipation term −σθ(t) present in (6b) is in the
spirit of what is known in the control theory literature as
the “σ -modification” (Ioannou and Kokotovic, 1984). It was
introduced to increase robustness of adaptive control to external
disturbances and unmodeled dynamics. It has been shown to
guarantee that all the closed-loop signals are bounded and that
their mean values converge to a residual set, whose size can be
made arbitrarily small with an appropriate choice of σ (Ioannou
and Fidan, 2006), even for certain classes of nonlinear systems
(Fradkov et al., 1999). Until recently, this methodology was
confined to delay-free systems but, for the purpose of the present
study, we have extended it to nonlinear time-delay systems
(Orłowski, 2019). More precisely, we have the following result
(the interested reader is referred to Orłowski, 2019 for more
details on the mathematical aspects of this result).

Proposition. Let ℓi denote the maximum slope of the activation
functions Si and let θ̃0 = θ0 − θ∗. Under the condition that
ℓ2c22 < 1, there exists q > 0 such that, for any σ ≥ 0 small
enough and any initial conditions x0 and θ0, the solution of system
(2) in closed loop with (6) is bounded and satisfies the following
property for all t,T ≥ 0:

1

T

∫ t+T

t
|x(τ )|dτ ≤

q

T

(

‖x0‖ +min{θ̃0; 0}θ̃0 + 1
)

+ qσ .

This statement ensures that solutions are bounded and the system
is “stable in the mean.” This latter property guarantees that
the mean value of the solution, taken over a sufficiently long
time window T, converges to a neighborhood proportional to
σ , regardless of the initial state. Since σ is a tunable parameter
in our controller, this means we can arbitrarily decrease the
average amplitude of steady-state oscillations by picking a
sufficiently small σ (picking σ as zero would annihilate steady-
state oscillations, but would impede the ability to decrease the
proportional gain θ whenever possible). The key assumption
under which this stabilization is made possible is that ℓ2c22 < 1,
meaning that the GPe self-coupling should be reasonably low.
More discussion on this assumption and its biological meaning
is provided in section 4.2.

In order to selectively attenuate pathological oscillations,
with moderate effect on other frequency bands, we propose the
following frequency-sensitive version of (6):

µ(t) = −θ(t)x1(t) (7a)

τθ θ̇(t) = β(x1t)− σθ(t), (7b)

where β(x1t) ≥ 0 is a biomarker detection function. β is
implemented as the peak-to-peak amplitude of a bandpass-
filtered signal (Butterworth filter, order 5, 15–30 Hz) from t−500
ms to t.

This version is similar in spirit to the self-tuning controller (6),
but the increase of the gain θ depends only on the STN activity
within the targeted frequency band (beta). In a situation when
no beta activity is present in the STN, the leakage term −σθ(t)
would cause the gain θ(t) to converge to zero, in which case no
DBS signal would be delivered.

2.1.2. Endogenous and Exogenous Generation of

Beta Oscillations
The mathematical derivations in section 2.1.1 assume that
external inputs into the STN-GPe loop are constant and
pathological oscillations arise in an endogenous manner due to
too strong synaptic coupling between STN and GPe (Plenz and
Kital, 1999; Nevado-Holgado et al., 2010; Pavlides et al., 2012).
However, the origin of beta oscillations is still a subject of much
debate and there is increasing evidence supporting a role for an
exogenous mechanism in which oscillations originating in the
cortex or striatum are transmitted to the STN-GPe network and
amplified within the network (Magill et al., 2001; Sharott et al.,
2005; Mallet et al., 2008; Tachibana et al., 2011; Corbit et al.,
2016).

To simulate oscillations arising due to exogenous inputs to the
STN, the synaptic coupling between STN and GPe were taken as
sufficiently low such that the firing-rate model is not only stable
but also incrementally stable (Chaillet et al., 2013) which implies
that its steady-state solutions in response to any T-periodic
inputs are themselves T-periodic. Thus, any oscillatory input
(from cortex or striatum) can entrain the STN-GPe network
and cause it to oscillate at the same frequency. This observation
enables us to identify the frequency characteristics of the STN-
GPe network (despite its nonlinear nature) and which frequency
bands, if any, are preferably amplified (see section 3.1.2).

In the firing-rate model, the exogenous and endogenous
hypotheses of beta oscillations generation thus correspond to
two distinct dynamical behaviors: instability for the former
and incremental stability (entrainment) for the latter. Both
mechanisms are studied in the simulations presented in this
paper (Figures 2–5), using the parameter values presented in
Table 1. Additionally, the time constants of the populations were
set to τ1 = 6 ms, τ2 = 14 ms, and the delays in the system were
set to δ12 = δ21 = 6 ms and δ22 = 4 ms. The functions Si were
implemented as sigmoids with slope 1

Si(x) =
MiBi

Bi + exp(−4x/Mi)(Mi − Bi)
, (8)
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TABLE 1 | Parameters of the firing-rate model (1) used in numerical simulations to

obtain Figures 2A, 3A, 4, 5.

c12 c21 c22 b1 b2

Figure 2A (endogenous) 0–4 0–32 4 8 139.4

Figure 3A (exogenous) 1.12 19 0.9 2.42 15.1

Figure 4 (endogenous) 3 10 0.9 5 139.4

Figure 5 (exogenous) 1.12 19 0.9 2.42 15.1

where the constants were set to M1 = 300, M2 = 400, B1 = 17,
B2 = 75.

2.2. Conductance-Based Model
2.2.1. Model and Controller Implementation
In view of its self-tuning capacities, induced robustness and
limited requirements in terms of recording and stimulation
electrodes, the proposed adaptive closed-loop DBS strategy is
promising. Nevertheless, the strong abstraction of the model
considered, which summarizes the activity of an entire neuronal
population by a unique variable (its firing rate), makes it difficult
to assess whether this strategy would be effective clinically. To
address this, the performance of the proposed controller was
assessed in a biophysically realistic network model of the cortical
basal ganglia network comprised of conductance-based neurons.
The model is presented in Fleming et al. (2020) and consists of
a population of multicompartment cortical pyramidal neurons
and single compartment models of cortical interneurons as well
as STN, GPe, GPi, and thalamic neurons which have been
previously validated and used in other modeling studies (Terman
et al., 2002; Otsuka et al., 2004; Rubin and Terman, 2004;
Pospischil et al., 2008; Hahn and McIntyre, 2010; Foust et al.,
2011; Kang and Lowery, 2013, 2014; Kumaravelu et al., 2016).
Each population was comprised of 100 neurons, where synaptic
connections between neurons were modeled by spike detectors in
presynaptic neurons coupled to synapses in postsynaptic neurons
by a time delay. Synaptic connections in the model were either
excitatory (AMPAergic) or inhibitory (GABAergic) depending
on the synapse type (Destexhe et al., 1994). Striatal input to the
network was represented as Poisson-distributed spike trains to
GPe neurons with a mean firing rate of 3 Hz. An overview of the
model structure is presented in Figure 1.

The model captures key features of the cortical basal ganglia
network required for simulating clinical implementations of
closed-loop DBS including: (i) the extracellular DBS electric
field, which is required to accurately model changes in the
DBS amplitude, (ii) antidromic and orthodromic activation of
STN afferent fibers, and (iii) the STN LFP detected at non-
stimulating contacts of the DBS electrode. In Fleming et al.
(2020), the model parameters were tuned to match key features
observed during experimental investigations of DBS including
cortical desynchronization (Li et al., 2012), GPe entrainment
(McConnell et al., 2012), and a gradual suppression of beta-
band power detected in the STN LFP for increasing stimulation
amplitude (Davidson et al., 2016). The model is described in
full detail in its original publication (Fleming et al., 2020) and

available to download fromModelDB (https://senselab.med.yale.
edu/modeldb/) at ascension number 262046.

The oscillatory properties of the model’s STN-GPe network
were first examined to explore the duality between its oscillatory
behavior and that of the firing-rate model. Beta-band activity
was then configured to remain fixed, or was varied according to
the three numerical scenarios detailed below which may require
controller adaptation in vivo.

In line with (7), the proposed self-tuning controller was
implemented in the conductance-based model to adapt the
amplitude of the stimulation waveform as follows:

µ(t) = θ(t)x1(t) (9a)

τθ θ̇(t) = |e(t)| − σθ(t), (9b)

where µ(t) is the controller output and represents the
instantaneous stimulation amplitude, θ(t) is the controller gain,
x1(t) is the biomarker measurement [i.e., the average rectified
value (ARV) of a 100 ms epoch from the beta-band filtered
STN LFP, which was filtered using a fourth order Chebyshev
band-pass filter with an 8 Hz bandwidth, centered on 25 Hz
as described in Fleming et al., 2020], |e(t)| is the half-wave
rectified error signal calculated as the difference between the
measured biomarker and the desired target suppression level, and
τθ and σ represent tuning parameters which were fixed at 100
ms and 0.00875, respectively, for all controller simulations in the
conductance-based model.

A key difference with (7) is that the DBS in (9) is
delivered as a positive feedback on the biomarker [as indicated
by the positive sign in µ(t)]. This difference is due to
the implementation of DBS in the conductance-based model,
whereby increasing DBS amplitude results in a stronger
suppression of pathological oscillations.

The model was simulated in the NEURON simulation
environment (Hines and Carnevale, 1997) and implemented
in Python using the PyNN API package (Davison et al.,
2009). The model was numerically integrated using the Crank-
Nicholson method with a 0.01 ms timestep for all simulations.
Simulations were run on the UCD Sonic high-performance
computing cluster.

2.2.2. Numerical Scenarios
The self-tuning controller (9) was tested in three independent
scenarios to simulate practical situations in which adaptation of
controller parameters in vivo may be required to maintain the
biomarker (the ARV of LFP beta activity) at a target value. All
scenarios were simulated for a 130 s duration.

In the first scenario, background beta-band activity in the
model was set to its maximum value for the duration of the
simulation while the target level for beta suppression was varied.
The beta-band activity (prior to DBS activation) was set by fixing
the firing rates of cortical neurons to 26 pulses per second, which
resulted in a peak in the LFP power spectrum at 26 Hz. Target
values of 10, 0.2, 0.05, 0.15, and 10 µV were then considered
over the time intervals 0–10, 10–40, 40–70, 70–100, and 100–
130 s, respectively.
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FIGURE 1 | Cortical Basal ganglia network structure. Excitatory and inhibitory populations in the network model are represented in red and blue, respectively.

Synaptic connections in the population model are represented by solid black lines. The firing-rate model, representing only a subnetwork of the population model, is

highlighted by a green box. White lines correspond to connections which are common to both the population and the firing-rate model.

In the second scenario, the target value for the LFP biomarker
was fixed at 0.1 µV for the duration of the simulation while
background beta-band activity in the model was modulated to
be low during the 0–10, 40–70, and 100–130 s time intervals
and high during the 10–40 and 70–100 s time intervals.
The intracellular cortical neuron bias current was varied to
shift the mean cortical neuron firing rate between 14 and 26
pulses per second during the low and high beta-band activity
periods, respectively. Thus, beta-band activity in the model was
modulated to display a 14 Hz peak in the LFP power spectrum
during the low beta-band activity periods, which shifted to 26
Hz during the high beta-band activity periods. As the bandwidth
of the biomarker filter was centered at 25 Hz, modulation of the
background beta-band activity in this manner led to lower beta
ARV measurements during the low beta-band activity periods.

The third scenario considered a linear variation of the
electrode impedance over the simulation period, while
background beta-band activity in the model was fixed at its
maximum value and the beta ARV target value remained
constant at 0.1 µV. In the simulation, the electrode impedance
remained constant at 0.5 k� up to t = 30 s, after which it was
linearly increased to a maximum value of 2.5 k� at t = 130 s.

2.2.3. Performance Measures
Controller performance was quantified using two measures:
the error while tracking the target value and the mean power
consumption. The mean squared error (MSE) was utilized to
measure the controller’s ability to track the target level. It is

defined as

MSE =
1

Tsim

∫ Tsim

0
e(t)2 dt, (10)

where Tsim is the simulation duration (Tsim = 130 s) and e(t) is
the normalized error signal between the measured LFP beta ARV
and the target value, as used in (9). For simplicity, the MSE value
for the controllers in each scenario are reported as a percentage
of the MSE value that was measured in each respective scenario
when DBS was off. Power consumption (PC) was measured as

PC =
1

Tsim

∫ Tsim

0
ZE(t)IDBS(t)

2 dt, (11)

where ZE is the electrode impedance, assumed to be 0.5 k� in
the non-varying electrode impedance scenarios, and IDBS is the
delivered DBS current.

2.3. Parameter Identification
One of the necessary conditions for practical stabilization
using the adaptive controller, as recalled in section 2.1.1,
is that the internal connections within GPe are weak, as
expressed by c22ℓ2 < 1 in the firing-rate model. It was,
therefore, first checked whether this condition was fulfilled in the
conductance-based model.

The value of c22 from the firing-rate model is related to the
maximum conductance of the GPe-GPe synapses ḡGPeGPe, in the
conductance-based model, which was set to 0.015 µS. ℓ2 is the
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maximum slope of the GPe activation function S2. Thus, in order
to verify the stabilizability criterion, we need to identify the slope
of the GPe activation function in the conductance-based model,
as well as the value of c22 corresponding to the value of ḡGPeGPe
used in the conductance-based model.

To that aim, the GPe neurons of the conductance-based
model were disconnected from the rest of the network, the only
remaining connections being the excitatory projections from
STN to GPe. In the firing-rate model, this translates in the
following dynamics:

τ2ẋ2(t) = −x2(t)+ S2
(

u(t)+ c22x2(t − δ22)
)

, (12)

where u(t) represents synaptic inputs to GPe from STN. Setting
ḡGPeGPe = 0 in the conductance-based model leads to c22 = 0 in
the firing-rate model, thus yielding

τ2ẋ2(t) = −x2(t)+ S2(u(t)). (13)

We conducted a series of simulations for different values of
cortical input to STN and we estimated the firing rate u(t) of
STN and the firing rate x2(t) of GPe. We have rescaled the data
to obtain a slope 1, by fitting a linear function and dividing the
values by the obtained slope a = 1.29. We then fitted a sigmoid
of the form (8) to the obtained data and rescaled it by the same
factor a, to obtain an estimate of the activation function S2.

Next, we obtained a similar set of data for ḡGPeGPe = 0.015µS.
Using the activation function S2 determined in the previous step,
we found the equilibrium of (12) for different values of c22 and
constant STN input u using a numerical solver. We compared
the curves obtained for the different values of c22 with the steady-
state data from the conductance-based model, to identify the
value that minimized the normalized square error:

nLSQ(c22; STN,GPe) =

∑

i

(

fc22 (STN[i])− GPe[i]
)2

∑

i GPe[i]
2

, (14)

where STN[i] andGPe[i] represent the firing rate of STN andGPe
taken from simulation i, and fc22 (STN[i]) is the solution of

x = S2(u+ c22x)

for a given c22 with u = STN[i], meaning the steady-state
solution of (12) for these generated inputs from STN. The best fit
was reached for c22 = 0.35. Since the GPe activation S2 identified
in (8) has maximum slope ℓ2 = 1.29, the stabilizability criterion
(3) is satisfied.

3. RESULTS

3.1. Qualitative Comparison Between the
Two Models
3.1.1. Endogenous Oscillations
For constant striatal and cortical inputs, beta-band oscillations
emerged in the firing-rate model when the STN-GPe and GPe-
STN connectivity strength was sufficiently increased (Figure 2A).
In the conductance-based model, the intensity of beta power in
the spectra of the cumulative STN and GPe population spike

trains similarly increased with increasing STN-GPe and GPe-
STN connectivity strengths (Figure 2B). The increase in beta
power within the STN and GPe was accompanied by an increase
in synchronization of the two populations within the beta band.
The beta-band coherence of the STN and GPe neural spike
trains increased similarly with increased connectivity strengths
(Supplementary Figure 1).

Both models exhibited beta-band oscillations as STN-GPe
and GPe-STN connectivity increased, indicating that the firing-
rate abstraction well captures the oscillatory dynamics of
the conductance-based model. Differences between the two
models are, however, observed. In particular, in the firing-
rate model, the transition from non-oscillatory to oscillatory
behavior occurs more abruptly than in the conductance-based
model and oscillatory conditions are associated with a relatively
stronger coupling from STN to GPe than from GPe to STN.
Also, in the conductance-based model, fluctuations in the
frequency and amplitude of the beta oscillations are apparent
as GPe-STN connectivity increases. Nevertheless, the overall
behavior of the models is qualitatively similar with oscillations
emerging in bothmodels as STN-GPe connectivity and GPe-STN
connectivity increase.

3.1.2. Exogenous Oscillations
When synaptic coupling between STN and GPe is sufficiently
low, the firing-rate model of the STN-GPe loop is not only
stable but also entrainable, meaning that any T-periodic input
(whether cortical or striatal) generates T-periodic steady-state
solutions (Chaillet et al., 2013). While this feature is guaranteed
for stable linear systems, the nonlinear nature of the firing-
rate model makes it less straightforward. This entrainability is
a fundamental requirement for constructing frequency profiles
of the STN-GPe network. By considering a sinusoidal input at a
given frequency, it is indeed possible tomeasure themagnitude of
the resulting steady-state oscillations, and thus the amplification
of the network at this specific frequency (Pavlov et al., 2007).
Repeating this procedure across a range of input frequencies,
we obtained the nonlinear Bode plots depicted as solid lines in
Figure 3A.

When DBS is off (solid curves), a clear resonance is
observed in the beta frequency band, thus indicating that the
network preferably amplifies beta components of the cortical
input. This resonance can therefore be interpreted as the beta
generation mechanism in the exogenous hypothesis. Due to
the nonlinear nature of the firing-rate model, this resonance
strength depends on the amplitude of the applied cortical input
with more pronounced resonance occurring for stronger mean
cortical input.

Akin to the resonance behavior in the firing-rate model, the
influence of an external cortical oscillatory input to the STN-GPe
network was investigated in the conductance-based model. The
connectivity strengths between the STN and GPe populations
were selected to lie below the threshold for which the network
generated endogenous beta-band oscillations (at 0.11 µS for
both), analogous to the entrainable state in the firing-rate model.
The frequency of cortical inputs to the STN were varied from
3 to 100 pulses per second, while striatal input to the network
remained fixed at 3 pulses per second.
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FIGURE 2 | Normalized endogenous beta-band activity in the firing rate and conductance-based models for varying STN and GPe coupling strengths. (A) Beta-band

oscillation amplitude in the (i) STN and (ii) GPe of the firing rate model. The beta-band oscillation amplitude in each population was estimated for each combination of

connectivity parameters (c12 and c21) by band-pass filtering the firing rate signals using a fifth order Butterworth filter with 8 Hz bandwidth centered on 20Hz. The

oscillation amplitude in each population was normalized between 0 and 1 in each panel separately. (B) Beta-band activity of the (i) STN and (ii) GPe populations in the

conductance-based model. Beta-band activity was quantified in each population by integrating the power spectra of the cumulative spike trains for each population

between 16 and 24 Hz. The power for each population was normalized between 0 and 1 in each panel separately.

The frequency response of the STN-GPe network due to
synchronous cortical inputs through the hyperdirect pathway
was examined by estimating the power of the cumulative
population spike trains and the spike train coherence between
STN and GPe populations within a 4 Hz window centered on
the mean frequency of the cortical input. Additionally, resonant
network activity was calculated by estimating the power in the
simulated STN LFP at the cortical input frequency. Resonance
effects were examined as the strength of cortical connectivity
to the STN was systematically increased from 0.03 to 0.12 µS
(Figure 3B).

As the strength of the hyperdirect pathway was increased, a
beta-band resonance emerged in the STN and GPe populations
and in the power spectrum of the STN LFP. This was

accompanied by synchronization across the STN and GPe
populations, as evidenced by a peak in the coherence between
STN and GPe spike trains for cortical inputs in the beta
frequency range (Figure 3B). Further strengthening of the
hyperdirect pathway led to a broadening of the frequency
band at which resonance occurred in the cumulative spike
trains of the STN and GPe populations and the STN LFP,
extending beyond the beta-band. Synchronous cortical inputs
to the STN at low connectivity strengths in the beta band
and at frequencies outside this range resulted in coherent
activity in the subnetwork, but with relatively low power
(Figure 3B). Consistent with the firing-rate model (Figure 3A),
the beta-band resonance was more pronounced for stronger
cortical inputs.
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FIGURE 3 | Resonance behavior of the firing rate and conductance-based models in response to synchronous cortical drives. (A) Bode plot illustrating amplification

of cortical input signals of varying frequency by the (i) STN and (ii) GPe populations in the firing rate model. The amplitude ratio is defined as the amplitude of the input

oscillation (the cortical input signal) to the amplitude of the steady state oscillation in the (i) STN and (ii) GPe populations at each cortical input frequency. Solid lines

represent the frequency response of each population when DBS is off. Dashed lines represent the frequency response of each population when the self-tuning DBS

(7) is implemented with σ = 0.1 and τθ = 50 ms. Two mean values of the cortical input signal are represented. (B) Resonance plot of the power centered at the

cortical input frequency in the (i) STN and (ii) GPe cumulative spike trains, (iii) the STN LFP power spectrum and (iv) the coherence between the STN and GPe

populations for varying cortical input frequencies. Power at the cortical input frequency was estimated in the cumulative spike trains and LFP power spectra by

integrating the power in a 4 Hz window centered on the input frequency in the respective power spectra. The coherence between the STN and GPe populations at the

cortical input frequency was estimated from pairs of composite spike trains randomly chosen from the STN and GPe populations (Farina et al., 2014; McManus et al.,

2019). The spike trains in the STN and GPe were summed to obtain two composite spike trains. The magnitude squared coherence between the two composite

spike trains was then calculated with 1 s overlapping Hamming windows. This was repeated for 200 randomly chosen combinations of spike trains from the STN and

GPe populations, as each combination will generate a slightly different coherence estimate. The coherence between the populations was then estimated as the

median coherence spectrum over all 200 combinations. The coherence at the cortical input frequency was determined by integrating the resulting coherence

spectrum in the 4 Hz window centered on the input frequency. Four cortical to STN connectivity strengths are represented, where the resonance responses are

normalized between 0 and 1 in each panel separately.

3.2. Self-Tuning Controller Assessment
3.2.1. Firing-Rate Model

3.2.1.1. Endogenous oscillations with beta-band activity

variation
Suppression of endogenous beta oscillations during DBS was
assessed first in the firing-rate model, with synaptic weights

c12 and c21 between STN and GPe increased to generate beta
oscillations within the network. A performance comparison
between self-tuning DBS (6) and proportional DBS (4) is

presented in Figure 4. Both strategies successfully disrupt

pathological oscillations between 200 and 750 ms. At t = 750ms,
an additional increase of the cortical input to STN was artificially
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FIGURE 4 | Performance comparison of self-tuning and proportional controllers on endogenous oscillations in the firing-rate model. During simulation, DBS was

initially off and then switched on at t = 200 ms, where either the (A) self-tuning controller or (B) proportional controller was implemented. At t = 750 ms, the

magnitude of the constant cortical input to STN was artificially increased by from 27 to 42, amplifying the endogenous oscillations present in the STN and GPe. The

cortical input is presented in green at the top of the figure, aligned with respect to the simulation time with the plots underneath. Left panels illustrate the firing rate

behavior of the STN and GPe populations and the right panels correspond to the instantaneous peak-to-peak oscillation amplitude of each population (measured with

a sliding window of 100 ms) due to either (A) the self-tuning controller (7) with τθ = 75 ms and σ = 0.19 or (B) the proportional controller (4) with θ = 2.

introduced to simulate an increase in beta oscillations. While the
self-tuning DBS automatically adapts the proportional gain θ to
maintain the attenuation of beta oscillations, pure proportional
DBS is unable to do so, resulting in strong beta oscillations
that cannot be counteracted without manual tuning of the
proportional gain. The self-tuning controller thus outperforms
the proportional controller in terms of robustness to disease
evolution in the simulated endogenous mechanism scenario.

3.2.1.2. Exogenous oscillations with beta-band activity

variation
Selective disruption of pathological beta oscillations generated
through exogenous inputs to the STN using the self-tuning
controller (7) was then confirmed. With the self-tuning DBS
(dashed curves) (Figure 3A) the beta-band resonance was
eliminated in the firing-rate model, while the frequency profile

of the STN-GPe network remained essentially unaltered in other
frequency bands, as DBS remains off when beta activity is
not detected within the STN. Figure 5 illustrates that, similar
to the endogenous case, self-tuning DBS (6) outperforms
proportional DBS (4) when faced with changes in the exogenous
oscillations. After the stimulation is turned on at t = 200
ms, both controllers successfully decrease the amplitude of the
pathological oscillations. After themean level of the cortical input
as well as the amplitude of oscillations is increased at t = 750
ms, the self-tuning controller achieves higher damping of the
oscillations than the proportional controller.

3.2.2. Conductance-Based Model

3.2.2.1. Scenario 1: beta-band target variation
The self-tuning controller maintained the LFP beta ARV
around the desired target values between 10 and 100 s,
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FIGURE 5 | Performance comparison of self-tuning and proportional controllers on exogenous 20 Hz oscillations in the firing-rate model. During simulation, DBS was

initially off and then switched on at t = 200 ms, where either the (A) self-tuning controller or (B) proportional controller was implemented. At t = 750 ms, the amplitude

of the cortical oscillations was increased from 10 to 60 and the mean level of the oscillations is raised from 50 to 60, amplifying the exogenous oscillations present in

the STN and GPe. The cortical input is presented in green at the top of the figure, aligned with respect to the simulation time with the plots underneath. Left panels

illustrate the firing rate behavior of the STN and GPe populations and the right panels correspond to the instantaneous peak-to-peak oscillation amplitude of each

population (measured with a sliding window of 100 ms) due to either (A) the self-tuning controller (7) with τθ = 5 ms and σ = 0.01 or (B) the proportional controller (4)

with θ = 25.

and turned off from 0 to 10 and 100 to 130 s, where
the target value was high and stimulation was not required
(Figure 6A). The self-tuning controller resulted in a mean
power consumption of 11.0 µW and a 82.1% reduction in
the MSE. Proportional controllers with fixed gain were able
to maintain beta ARV at a single target value, however
they were unsuitable for target values other than the one
for which they were tuned and resulted in either under
or over stimulation when attempting to maintain beta ARV
(Figures 6B–D). Proportional controllers with fixed gains at 7,
10 and 26 resulted in mean power consumption values of 6.9,
9.3, and 28.2 µW and reductions in the MSE of 79.4, 85.1, and
81.1%, respectively.

3.2.2.2. Scenario 2: beta-band activity variation
The LFP beta ARV was maintained at the target value by the
self-tuning controller as the background beta activity was varied

between low and high activity periods (Figure 7A). The self-
tuning controller consumed 17.9 µW and resulted in a 91.4 %
reduction of the MSE. The proportional controller with a fixed
gain value of 10 was able to maintain the LFP beta ARV at the
target value during low background beta activity periods, but did
not provide sufficient stimulation to suppress to the target value
during periods of high background beta activity (Figure 7B). The
proportional controller with a fixed gain value of 40 maintained
the LFP beta ARV at the target value during both low and high
background beta activity periods (Figure 7C). The proportional
controllers with fixed gain values of 10 and 40 resulted in MSE
reductions of 73.4 and 95.0 % and power consumption values
of 6.6 and 34.8 µW, respectively. When maintaining the LFP
beta activity at the target value, the proportional controller with
a fixed gain value of 40 resulted in over stimulation during the
low background activity periods, consuming more power than
necessary to maintain the LFP beta ARV.
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FIGURE 6 | Performance comparison of self-tuning and proportional controllers in response to beta ARV target variations in the conductance-based model.

Background beta-band activity in the model was fixed to its maximum value for the duration of the simulation while the target value was modulated to 10, 0.20, 0.05,

0.15, and 10 µV during the 0–10, 10–40, 40–70, 70–100, and 100–130 s time periods, respectively. The target value for each time period is highlighted by the red

segmented bar at the top of the figure. Left panels illustrate the target value (dashed red), the beta ARV measured from the STN LFP when DBS was off (gray) or on

(black), where the DBS amplitude is modulated by the corresponding controller. Right panels illustrate the time evolution of the DBS amplitude (black) and controller

gain θ (blue) during simulation. (A) Self-tuning DBS controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with a fixed gain value of θ = 7. (C)

Proportional controller with a fixed gain value of θ = 10. (D) Proportional controller with a fixed gain value of θ = 26.
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FIGURE 7 | Performance comparison of self-tuning and proportional controllers in response to background beta-band activity variations in the conductance-based

model. The beta ARV target value was fixed to 0.1µV for the duration of the simulation while the background beta-band activity was modulated to be at its maximum

value during the 10–40 and 70–100 s time periods and at its minimum value during the 0–10, 40–70, and 100–130 s time periods, respectively. The mean ARV of the

background beta-band activity measured in the LFP when DBS was off is highlighted by the gray segmented bar at the top of the figure. Left panels illustrate the

target value (dashed red), the beta ARV measured from the STN LFP when DBS was off (gray) or on (black), where the DBS amplitude was modulated by the

corresponding controller. Right panels illustrate the time evolution of the DBS amplitude (black) and controller gain θ (blue) during simulation. (A) Self-tuning DBS

controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with a fixed gain value of θ = 10. (C) Proportional controller with a fixed gain value of θ = 40.

3.2.2.3. Scenario 3: electrode impedance variation
The self-tuning controller maintained the LFP beta ARV at the
target level as the electrode impedance was linearly increased
over the course of the simulation to five times its initial
impedance value, i.e., from an initial value of 0.5–2.5 k�
(Figure 8A). Background beta activity and the target value of
0.1 µV remained fixed over the course of the simulation.
The self-tuning controller resulted in a MSE reduction of
93.5% and a power consumption of 11.2 µW. Proportional
controllers with fixed gain values of 10 and 40 lead to MSE

reductions of 77.0 and 96.0 % while consuming 6.2 and 27.7
µW, respectively. Similar to scenarios 1 and 2, the self-tuning
controller was able to tune its gain to the required level to
maintain beta ARV at the target level. Proportional control
with fixed gain of 10 became less effective over the course
of the simulation, while proportional control with fixed gain
of 40 was effective throughout the simulation, but consumed
more power than necessary (Figures 8B,C). A summary of the
controller performance under the different scenarios considered
is presented in Table 2.
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FIGURE 8 | Performance comparison of self-tuning and proportional controllers in response to electrode impedance variations in the conductance-based model. The

beta ARV target value was fixed to 0.1µV and the background beta-band activity was fixed to its maximum value for the duration of the simulation. The electrode

impedance was fixed at 0.5 K� during the 0–30 s period and was then linearly increased from 0.5 to 2.5 K� over the 30–130 simulation period. The electrode

impedance variation is illustrated by the purple bar at the top of the figure. Left panels illustrate the target value (dashed red), the beta ARV measured from the STN

LFP when DBS was off (gray) or on (black), where the DBS amplitude was modulated by the corresponding controller. Right panels illustrate the time evolution of the

DBS amplitude (black) and controller gain θ (blue) during simulation. (A) Self-tuning DBS controller with τθ = 100 ms and σ = 0.00875. (B) Proportional controller with

a fixed gain value of θ = 10. (C) Proportional controller with a fixed gain value of θ = 40.

4. DISCUSSION

4.1. Firing-Rate and Conductance-Based
Models
The proposed firing-rate model facilitated the derivation of a

robust control law capable of disrupting pathological beta-band

oscillations in the STN-GPe network in Parkinson’s disease and

the analytic establishment of its efficiency. Firing-rate models

capture the average behavior of neural populations and facilitate
tractable mathematical analysis of network behavior (Destexhe
and Sejnowski, 2009). These models, however, summarize the
neuronal population to a single variable: the number of spikes
it emits per unit time. They are thus unable to capture
cellular-level features such as sub-threshold activity, LFP activity,
specific responses induced by bursting, antidromic activation
of STN afferent inputs or the interaction between neurons and
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TABLE 2 | Summary of controller performance in the three considered scenarios.

Target variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 7.9 11.0

Proportional controller (θ = 7) 20.6 6.9

Proportional controller (θ = 10) 14.9 9.3

Proportional controller (θ = 26) 18.9 28.2

Beta variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 8.6 17.9

Proportional controller (θ = 10) 26.6 6.6

Proportional controller (θ = 40) 5.0 34.8

Electrode impedance variation: MSE (%) Power consumed (µW)

DBS Off 100 0

Self-tuning controller 6.5 11.2

Proportional controller (θ = 10) 23.0 6.2

Proportional controller (θ = 40) 4.0 27.7

In each scenario, the MSE value is reported as a percentage of the DBS Off case, where

the DBS Off case corresponds to a 100% MSE.

the induced extracellular potential. In contrast, networks of
conductance-based neuron models offer the ability to capture
more complex network dynamics and interactions, but are
usually too complex to analyze mathematically.

While recent approaches have attempted to bridge the gap
between these two types of models (di Volo et al., 2019),
we have empirically assessed the similarities and discrepancies
between them and shown that key features needed to analyze
and control pathological oscillations in Parkinson’s disease
are indeed captured by both models (Figures 2, 3). We also
demonstrated in section 2.3 the possibility to check the
theoretical stabilization condition (3), derived on the firing-rate
model, using observations from the conductance-based model.
By utilizing both modeling approaches, the limitations of each
model are complemented by the strengths of the other. The
joint analysis of these two models also supports the relevance of
abstract firing-rate models for the derivation of advanced DBS
strategies aiming at counteracting a targeted brain oscillation,
which can then be validated in computationally detailed models
before preclinical investigations.

4.2. Physiological Interpretation of the
Stabilizability Condition
The theoretical condition obtained on the firing-rate model to
ensure stabilizability by the self-tuning DBS signal reads ℓ2c22 <

1 (see Proposition). In other words, the synaptic weights from
GPe to itself should be sufficiently low. This condition ensures
that the GPe does not act as a pacemaker on its own, as low
internal coupling is a standard sufficient condition for stability of
a neuronal population (see for instance Faye and Faugeras, 2010).
The necessity to impose that GPe does not generate pathological
oscillations on its own is quite reasonable: considering the
extreme case when STN is not connected to the GPe, it would

be impossible to attenuate self-generated GPe oscillations by
stimulating STN only.

It is worth noting that the proposed condition precludes
GPe self-oscillatory activity no matter the value of its internal
delay. This constitutes a noteworthy feature of our mathematical
result as this delay does not need to be estimated. Nevertheless,
for realistic values of internal GPe delays (of the order of few
milliseconds), no such self-oscillatory GPe activity is observed
even if the condition is violated, at least for reasonable values of
the striatal input. This was confirmed in numerical simulations of
the conductance-based model in which the internal GPe synaptic
weights were artificially increased by two orders of magnitude.
Even in that case, GPe was unable to autonomously generate
oscillations and the proposed self-tuning DBS successfully
disrupted network beta oscillations (data not shown).

4.3. Endogenous and Exogenous
Generation of Oscillations
Beyond employing two modeling approaches of the structures
involved, the paper also investigated two possible mechanisms
of pathological oscillations generation: the emergence of
endogenous oscillations, in which the STN-GPe network acts
as a pacemaker, and the generation of oscillations through the
interaction of the network with inputs originating from other
structures such as the cortex.

The ability of the STN-GPe network to endogenously generate
beta-band oscillations was consistent across both the firing-
rate and conductance-based models (Figure 2). The STN-GPe
network has been proposed as a potential source of pathologically
increased beta-band oscillations in Parkinson’s disease, where
connectivity changes in the reciprocally connected network
leads to the endogenous generation of beta-band oscillations.
This behavior has been previously explored in modeling studies
utilizing firing-rate models where the progression of Parkinson’s
disease is represented as an increase in the synaptic coupling
strengths between the STN and GPe neuron populations
(Nevado-Holgado et al., 2010; Pavlides et al., 2012; Pasillas-
Lépine, 2013). The firing-rate model presented here is consistent
with these previous studies in which a Hopf bifurcation
occurs and leads to beta-band oscillations in the network
when the synaptic coupling strengths are sufficiently increased
(Figure 2A). This behavior is well-matched in the conductance
model, where increases in the synaptic coupling strengths
between the two populations also leads to the endogenous
emergence of beta-band oscillations in the network (Figure 2B).

Although modeling studies support the hypothesis that
the reciprocally connected STN-GPe network is capable of
generating the beta-band oscillatory activity, investigations of
isolated STN-GPe cell cultures in vitro have observed the
emergence of endogenous oscillations at much lower frequencies
(Plenz and Kital, 1999). Furthermore, increasing evidence from
experimental studies in patients and animal models suggest
that external inputs to the STN-GPe loop may play a key
role in the generation of elevated beta-band oscillations in the
parkinsonian cortex and basal ganglia. The STN-GPe network
occupies a crucial location in the cortical basal ganglia network
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receiving inputs from both cortical and striatal structures
through the hyperdirect and indirect pathways, respectively.
Due to connectivity changes in the STN-GPe loop during
Parkinson’s disease, it is thus hypothesized that exogenous beta
oscillations are locally amplified by the loop, with subsequent
oscillations then propagating throughout the full cortical basal-
ganglia network (Magill et al., 2001; Mallet et al., 2008; Corbit
et al., 2016; West et al., 2018). Consistent with this, Sharott et al.
(2005) observed that the power and coherence of beta oscillations
in the cortex and STN were elevated during dopamine depletion
in a parkinsonian rat model, while Litvak et al. (2011) observed
cortical beta activity leading to STN beta activity in parkinsonian
patients. In primate studies, oscillatory activity in the GPe
was observed to be mainly due to excitatory activity from the
STN, while oscillatory activity in the STN was primarily due to
excitatory cortical input (Tachibana et al., 2008, 2011).

Both the firing-rate and conductance-based models in the
present study demonstrated the STN-GPe network’s ability to
entrain to an external cortical rhythm (Figure 3). A Bode
plot of the input-output relationship in the firing-rate model
showed a marked peak in the beta frequency band, with this
peak increasing in magnitude and broadening with increasing
strength of the inputs to the STN (Figure 3A). This behavior
was consistent with the conductance-based model behavior,
where the STN-GPe network displayed a resonant peak in the
beta frequency band for low connectivity strength between the
cortex and STN (Figure 3B). Increasing the strength of the
hyperdirect pathway led to increased resonance in the model
and also to a widening of the frequency bands where resonance
was observed (Figure 3B). This observed resonance is consistent
with other modeling investigations of the STN-GPe network,
where firing-ratemodels (Nevado-Holgado et al., 2014; Detorakis
and Chaillet, 2017; Liu et al., 2017, 2020) and conductance-
based neuron models (Ahn et al., 2016; Shouno et al., 2017;
Koelman and Lowery, 2019) were used to investigate the behavior
of STN-GPe network in response to external drives. Although
those studies have illustrated the resonant capabilities of the
STN-GPe network of both firing-rate and conductance-based
models separately, this study is the first to demonstrate that both
modeling approaches lead to comparable results (Figure 3).

4.4. Self-Tuning DBS Controller
Having established qualitative consistency in the behavior of
the firing-rate and conductance-based models, the performance
of the proposed self-tuning DBS controller was first proven
mathematically and validated in the firing-rate model where
the controller was capable of disrupting both exogenously and
endogenously generated beta-band activity in the STN-GPe
network (Figures 3A, 4, 5). The simulations confirmed that the
self-tuning controller autonomously adapts its gain value to the
minimal value required to counteract pathological oscillations,
thus avoiding over-stimulation and allowing for adaptation to
possible changes in the system properties associated with disease
progression (Figures 4, 5).

The performance of the controller to maintain network
beta-band oscillations at a target level was then assessed in
the conductance-based model in three example conditions,

which emulated practical situations in which gain adaptation
may be required in vivo: modification of the beta-level target,
variation of the beta oscillations intensity, and alteration of the
electrode impedance.

4.4.1. Adaptation to Target-Level Changes
The self-tuning controller adapted the controller gain in response
to changes in the target value (Figure 6A). For each target
value, the controller identified the necessary gain to maintain the
biomarker at the target level. In contrast, proportional controllers
with fixed gain were unable to track target changes and resulted
in less reduction in the MSE than the self-tuning controller
(Figures 6B–D, Table 2). The self-tuning controller consumed
more power than the controllers with low fixed gain and less
power than the controller with high fixed gain, but was able to
maintain low error as the target changed (Table 2).

Similar issues were identified by Su et al. (2019) who
investigated the ability of a proportional-integral controller to
modulate DBS frequency to track dynamic changes in a target
signal during closed-loop DBS using a conductance-basedmodel.
While the proportional-integral controller considered in that
study was able to successfully track dynamic changes in the
target beta signal, it required different controller gain values for
each beta-band target level considered. The adaptive controller
proposed here overcomes this issue as the controller self-tunes
its gain value to find the gain necessary for maintaining the beta
ARV at the target values (Figure 6A).

4.4.2. Adaptation to Beta Oscillation Fluctuations
The self-tuning controller was able to maintain the biomarker
at the target level while beta activity in the network varied
(Figure 7A). Between t = 0 and t = 10 s, the self-tuning
controller adapted its gain value to the low beta activity. Once
beta activity in the network increased, during the 10–40 s period,
the controller increased its gain to suppress the beta activity to the
target level. The proportional controller with low fixed gain value
(θ = 10) was able to maintain the biomarker at the target level
during low beta activity periods, but was unable to during high
beta periods (Figure 7B). In contrast, the proportional controller
with a high fixed gain value (θ = 40) was able to maintain the
biomarker close to the target during both low and high beta
activity periods (Figure 7C), but at the cost of increased power
consumption (Table 2).

In line with the power consumption in scenario 1, the
controllers with low and high fixed gain resulted in the lowest
and highest power consumption, respectively, and the power
consumption of the self-tuning controller lay between these
values (Table 2). Essentially, the self-tuning controller identified
the gain required to maintain the beta ARV at the target level in
both the high and low beta activity periods and consumed the
necessary power to maintain beta at the target.

Clinical investigations of proportional control strategies in
patients with Parkinson’s disease (Rosa et al., 2015; Arlotti et al.,
2018), have observed attenuation of DBS when subjects were
on and off medication, motivating the need for self-tuning in
response to varying background beta activity. Arlotti et al. (2018)
investigated proportional control over an 8 h period and showed
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a 30–45 % improvement in patient UPDRS III motor scores.
Although these clinical studies showed promising results, we
hypothesize that additional benefits may result from using the
self-tuning controller proposed here. The proportional control
scheme implemented in Rosa et al. (2015) and Arlotti et al. (2018)
utilized a fixed gain value, and thus may lead to under or over
stimulation if a suitable gain is not selected.

4.4.3. Adaptation to Electrode Impedance Variations
Clinical measurements of electrode impedance usually vary
between 0.5 and 1.5 k� (Obeso et al., 2001; Volkmann et al.,
2002). However, many factors contribute to the electrode
impedance, and its variability between subjects. These factors
include the surface properties of the electrodes, electrical double
layer, conductivity of the bulk tissue medium and thickness of
the surrounding encapsulation layer (Butson et al., 2006). The
electrode impedance plays a crucial role in determining the
current delivered to tissue during voltage-controlled stimulation.
Clinical investigations of closed-loop DBS have not yet
investigated the impact of electrode impedance variations on
DBS efficiency as the timescales at which these variations take
place are much longer than the current timescales at which
closed-loop DBS has been investigated clinically. For closed-
loop DBS to remain effective when chronically implemented, it
is necessary to utilize controllers which can accommodate such
changes and avoid a need for clinical retuning of the controller
parameters. This third scenario, therefore, aimed to assess this
robustness to electrode impedance variations. In response to the
simulated changes, the self-tuning controller gradually increased
the controller gain to maintain the biomarker at the target level
(Figure 8A).

In contrast, the proportional controller with low fixed gain
was able to maintain the beta ARV at the target up until t =
60 s, but became less effective thereafter (Figure 8B). With a
higher fixed gain value, the proportional controller was able to
accommodate changes in the electrode impedance and remained
effective at suppressing the beta ARV to the target for whole the
duration of the simulation (Figure 8C).

In line with the other examples, the power consumption of the
self-tuning controller was greater than that of the proportional
controller with low fixed gain and less than the proportional
controller with the high fixed gain (Table 2). Although both the
proportional controller with high fixed gain and the self-tuning
controller successfully maintained beta activity at its target level,
more power consumption was needed for the former than for
the latter.

4.5. Clinical Implementation of the
Self-Tuning DBS
The self-tuning controller presented here offers several
advantages for experimental implementation. First, it relies
only on data from the STN, no additional recording electrodes
in other brain structures are required. Moreover, although
the firing-rate model utilized the number of STN pulses
per second, the simulations conducted in the conductance-
based model showed the efficiency of the approach when
only STN LFP is accessible. More importantly, the self-tuning

controller relies on very limited information regarding the
system parameters. The theoretical result of Proposition simply
requires that the GPe internal synaptic weights are sufficiently
low. This condition, also present in theoretical investigations
on fixed-gain proportional DBS (Chaillet et al., 2017), does
not require precise knowledge on the exact shape of activation
functions, or the values of the time constants, synaptic weights,
or delays.

Nonetheless, experimental validation of the self-tuning
controller also comes with challenges. First, both the stimulation
and the recording are assumed to be within the STN. This
would lead to stimulation artifacts that should be removed.
Several techniques are available to address this issue (Rossi
et al., 2007; Stanslaski et al., 2012; Basir-Kazeruni, 2017)
The proposed controller also requires some embedded
computational capabilities in order to filter the STN LFP
and implement the control law (7). While more demanding
than classical open-loop DBS, the required computational
power is comparable to the algorithms employed for
proportional or on-off stimulation. In addition, the upper
and lower bounds on the applied current or voltage would
be the same as those used during conventional stimulus
parameter setting.

Despite its self-tuning nature, the control law (7) requires two
parameters to be chosen: the time constant τθ and the dissipation
parameter σ . Both these parameters have a strong impact on
the beta attenuation performance. For the sake of illustration,
these parameters have been chosen here to demonstrate quick
adaptation of the gain over the simulation duration. In an
experimental setting, τθ should be chosen on the order of
the timescale at which the targeted variations occur. Generally
speaking, a large value of τθ is more convenient for adaptation to
slow variations. σ should be chosen as a compromise between
rapid decrease of the gain when the beta level is low (high
σ ) and limited gain overshoot in response to an increase of
the beta level (low σ ). In practice, the controller parameters
could also be obtained through an optimization process, such
as the dual-loop framework outlined in Grado et al. (2018),
though an optimization approach would itself also require the
identification of appropriate objective functions which may
be non-trivial.

In summary, the proposed self-tuning DBS controller
offers increased robustness to variations in system properties
including changes in the strength of beta oscillations and
or the electrode-tissue interface, and can accommodate
alterations in the desired beta level. Compared to fixed-
gain proportional control, it provides a better compromise
between power consumption and efficient attenuation of beta
oscillations, with little additional computational complexity or
technological requirements.
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