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An important aspect of neuroscience is to 
characterize the underlying connectivity 
patterns of the human brain (i.e., human 
connectomics). Over the past few years, 
researchers have demonstrated that 
by combining a variety of different 
neuroimaging technologies (e.g., structural 
MRI, diffusion MRI and functional MRI) 
with sophisticated analytic strategies such 
as graph theory, it is possible to non-
invasively map the patterns of structural 
and functional connectivity of human 
whole-brain networks. With these novel 
approaches, many studies have shown 
that human brain networks have non-
random properties such as modularity, 
small-worldness and highly connected 
hubs. Importantly, these quantifiable 

network properties change with age, learning and disease. Moreover, there is growing evidence 
for behavioral and genetic correlates. Network analysis of neuroimaging data is opening 
up a new avenue of research into the understanding of the organizational principles of the 
brain that will be of interest for all basic scientists and clinical researchers. Such approaches 
are powerful but there are a number of challenging issues when extracting reliable brain 
networks from various imaging modalities and analyzing the topological properties, e.g., 
definitions of network nodes and edges and reproducibility of network analysis. We assembled 
contributions related to the state-of-the-art methodologies of brain connectivity and the 
applications involving development, aging and neuropsychiatric disorders such as Alzheimer’s 
disease, schizophrenia, attention deficit hyperactivity disorder and mood and anxiety 
disorders. It is anticipated that the articles in this Research Topic will provide a greater range 
and depth of provision for the field of imaging connectomics.

MAGNETIC RESONANCE IMAGING 
OF HEALTHY AND DISEASED BRAIN 
NETWORKS

Cover Legend: The brain network includes 
nodes representing brain regions and edges 
representing connections linking regions. This 
figure was visualized by using the BrainNet 
Viewer software (www.nitrc.org/projects/bnv). 
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An important aspect of neuroscience is to characterize the under-
lying connectivity patterns of the human brain. Recent advances
in magnetic resonance imaging (MRI) techniques (e.g., struc-
tural MRI, diffusion MRI, and functional MRI) and network
analysis approaches such as graph theory have allowed to inves-
tigate the patterns of structural and functional connectivity of
human brain (i.e., human connectome, Sporns et al., 2005).
Using imaging connectomics, many studies have demonstrated
that large-scale human brain networks have many non-trivial
topological properties such as small-worldness, modular struc-
ture, and highly connected hubs. Moreover, these quantifiable
network properties significantly correlate with behavioral, envi-
ronmental, and genetic factors, and change with age, learn-
ing, and disease. Network analysis of neuroimaging data is
opening up a new avenue of research into the understand-
ing of the organizational principles of the brain that will be
crucial for all basic scientists and clinical researchers. Such
approaches are fascinating but there are a number of challeng-
ing issues in the extraction of reliable brain networks from
various imaging modalities and the analyses of the topologi-
cal properties, such as the definitions of network nodes and
edges, and the reproducibility of the network analysis results.
Nonetheless, the field of imaging connectomics has signifi-
cantly advanced in the past several years, largely due to the
rapid development of network models, tools and methodolo-
gies, and their widespread applications in cognitive and clinical
research.

In this research topic, we aimed at compiling works represent-
ing the state of the art in structural and functional brain networks
in healthy and disease populations using neuroimaging data. We
collected 29 articles that were from a number of internationally
recognized scientists who have made significant contributions to
this field. The article types are diverse and the topics covered
various research directions including imaging techniques, com-
putational modeling, network analysis approaches and tools, and
applications.

(i) We assembled one hypothesis and theory article, one per-
spective article, and four review articles. In the hypoth-
esis and theory article, Horwitz et al. (2013) highlighted
recent efforts toward using large-scale neural modeling to
explore the relationship between structural connectivity and

functional/effective connectivity. Structural connectivity and
functional/effective connectivity are the most fundamen-
tal concepts for the descriptions of brain networks, but
their relationship is elusive. Horwitz et al. (2013) empha-
sized that the alteration of structural connectivity known in
models does not necessarily result in matching changes in
functional/effective connectivity and vice versa, suggesting
that caution should be taken in the result interpretation of
structural-functional connectivity relationship. Upon sum-
marizing three commonly used strategies of imaging con-
nectomics as biomarkers of brain diseases, Kaiser (2013)
presented a novel fourth option for future disease biomarker
studies, i.e., dynamic connectomes that use computational
models of simulated brain activity based on structural con-
nectivity rather than the structural connectome itself. Among
the four review articles, Li et al. (2014) summarized brain
connectivity studies related to the default-mode network
(DMN) in the fields of social understanding: emotion per-
ception, empathy, theory of mind, and morality, and sug-
gested the vital roles of the DMN in this domain; Hoff et al.
(2014) reviewed resting fMRI studies representing develop-
mental changes in the functional brain networks from 20
weeks of gestation onwards, highlighting different devel-
opmental rates of network connectivity in different brain
systems; De La Fuente et al. (2013) provided a systematic
review regarding brain connectivity studies in attention-
deficit/hyperactivity disorder and proposed that the roles
of the subcortical structures and their structural/functional
pathways in this developmental disorder should be further
studied; Bernhardt et al. (2013) reviewed the application
of multi-modal imaging techniques and brain connectivity
approaches in temporal lobe epilepsy, specifically highlight-
ing findings from graph-theoretical analysis that assessed the
topological organization of brain networks. Together, these
articles suggest that the combination of multi-modal imag-
ing techniques and advanced network analysis approaches
such as computational modeling and graph theory pro-
vides unique opportunities to enrich our understanding of
biological mechanisms in healthy and diseased brains. In
these articles, a number of important research directions
were proposed for future brain network studies based on
neuroimaging data.
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(ii) We assembled 23 original research articles, which can be
roughly classified into imaging and analysis methodologies,
tools, and applications in various domains.

METHODOLOGIES AND TOOLS
One compelling imaging technique study done by Mandl et al.
(2013) showed that functional diffusion tensor imaging (fDTI)
method is capable to robustly detect neuronal activity of human
brain networks within a practically feasible time period. Using
an interesting meta-analytic clustering (MaC) approach, Torta
et al. (2013) found that the cingulate cortex, an important brain
hub, can be parcellated into three clusters, and that the cluster-
ing pattern of this region changes across different levels of task
complexity. Importantly, two resting fMRI studies by Hayasaka
(2013) and Yan et al. (2013) performed comprehensive valida-
tion analyses on the effects of global signal and head motion
on brain network analysis and highlighted remarkable differ-
ences between the networks with or without these corrections.
Another resting fMRI study by Kollndorfer et al. (2013) showed
the reproducibility of functional connectivity patterns in four
frequently used scanning conditions (i.e., fixation of a black
crosshair on a white screen; fixation of the center of a black
screen; eyes-closed and fixation of the words “relax”), suggesting
that intrinsic brain connectivity measurements are reliable across
these conditions and confirmed its potential in assessing brain
networks in clinical settings. Lastly, Cui et al. (2013) developed
a novel MATLAB toolbox named “Pipeline for Analyzing braiN
Diffusion imAges” (PANDA) for fully automated processing of
diffusion MRI data of the human brain, which substantially sim-
plifies the image processing and facilitates imaging connectome
studies.

TASK MODULATION AND INDIVIDUAL DIFFERENCES
Three papers utilized network analysis to study task-related
modulation and individual differences. An important issue in
connectomics is to understand how brain networks measured
during resting state are reorganized by various task performances.
Di et al. (2013) addressed this issue by studying meta-analytic
coactivation patterns among regions based upon published neu-
roimaging studies and compared with those derived from rest-
ing fMRI data. They observed that the coactivation network
showed greater global efficiency, smaller clustering coefficient,
and lower modularity than the resting-state network, indicat-
ing a more efficient global information transmission during task
performing. These findings highlighted topological reconfigura-
tion of large-scale brain networks between task and resting-state
conditions. Using cortical thickness covariance analysis of struc-
tural MRI data, Krishnadas et al. (2013) examined the associa-
tion between neighborhood level deprivation and brain network
structure, and found that the most deprived group showed mod-
ular patterns different from the least deprived group. These
results provide preliminary evidence that the structural networks
of the human brain might be associated with socioeconomic
deprivation. Another interesting fMRI study done by Gao et al.
(2013) demonstrated the association between the topological
organization of whole-brain functional networks and individual
differences such as extraversion and neuroticism.

NORMAL DEVELOPMENT AND AGING
Four papers directly examined age-related changes in structural
brain networks. Using DTI, Mishra et al. (2013) investigated the
relationship between 10 major white matter tracts with distinc-
tive functions in neonates and children around puberty: Stronger
microstructural inter-tract correlations were observed during
development from birth to puberty, indicating heterogeneous but
organized myelination processes. Using DTI data of a large sample
(n = 180), Chen et al. (2013b) specifically examined the topologi-
cal organization of white matter networks in typically-developing
participants, including early childhood (6.0–9.7 years), late child-
hood (9.8–12.7 years), adolescence (12.9–17.5 years), young adult
(17.6–21.8 years), and adult (21.9–29.6 years). They showed that
most prominent changes in the topological efficiencies of devel-
oping brain networks occur at late childhood and adolescence.
Using structural MRI, Li et al. (2013) exclusively examined eight
structural covariance networks in 240 healthy participants aged
18–89 years, and charted the age-related network reorganiza-
tion involving language-related speech and semantics processing,
executive control network (ECN) and the DMN network. In a
longitudinal structural MRI study, Wu et al. (2013) illustrated
age-related dynamic changes in network connectivity: The struc-
tural covariance networks develop into a fast distribution from
young to middle age (∼50 years old) and eventually become a fast
localization in the old age. These studies significantly increased
our understanding of structural substrates underlying normal
development and aging.

BRAIN DISORDERS
Various kinds of brain disorders were investigated using network
analysis approaches. Using combined resting fMRI and structural
MRI, Chen et al. (2013a) demonstrated that the insular module in
the cognitively normal group broken down to pieces in patients
with Alzheimer’s disease and that the corresponding gray mat-
ter concentration was significantly lower in the patient group.
Importantly, they proposed a quantitative index by integrating
the functional connectivity changes and structural changes in this
brain module, which shows potential as diagnostic biomarkers of
Alzheimer’s disease at the single-subject level. Using an indepen-
dent component analysis (ICA) and a dual regression technique,
Rytty et al. (2013) found that patients with behavioral variant
of frontotemporal dementia showed abnormally increased rest-
ing fMRI connectivity in the dorsal attention network and DMN
network, which might provide neuronal basis for impairments in
executive functions and attention in patients.

Two fMRI studies directly examined schizophrenic brain net-
works. Using a monetary incentive delay experimental task, White
et al. (2013) observed dysregulated but not decreased func-
tional activities in the salience network (SN) in schizophrenia,
which offers physiological explanations for the delusional thought
formation in this disease. Using resting fMRI data, Anderson
and Cohen (2013) showed that patients with schizophrenia had
disrupted functional network topology as characterized by less
clustering and lower small-world connectivity. Specifically, a sup-
port vector machine classifier based on these connectivity fea-
tures could discriminate individuals with schizophrenia patients
from healthy controls with 65% accuracy. Worth noting is that
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Ottet et al. (2013) investigated topological patterns of DTI-
based structural brain networks in the 22q11.2 deletion syndrome
(22q11.2DS), usually considered to be a homogeneous genetic
sub-type of schizophrenia. They showed a loss of global degree
connectivity in brain hubs of the patients (∼58%) and the associ-
ation between local efficiency of several key regions (the Broca’s
area, the Wernicke area and the dorsolateral prefrontal cortex)
and symptom severity. These results provide evidence for the
targeted alterations of specific brain hubs associated with lan-
guage and thought regulation in individuals with a genetic risk
for schizophrenia, which may help to understand the biological
mechanism underlying hallucination.

Three studies highlighted brain network dysfunctions in mood
disorders. Using resting fMRI data and high-model order ICA,
Doll et al. (2013) examined the interactions across three major
intrinsic networks of the human brain (i.e., SN, DMN, and ECN)
in borderline personality disorder. They observed disrupted intra-
network connectivity in all three networks and a strong shift
of inter-network connectivity from networks involved in cogni-
tive control to those in motion processing, potentially reflect-
ing the persistent instability of emotion regulation in patients.
Also using the ICA approach, Manoliu et al. (2014) reported
decreased intra-network connectivity within the SN in patients
with major depressive disorder and that the extent of decrease was
associated with severity of symptoms. Moreover, inter-network
connections were decreased between the DMN and ECN, and
were increased between the SN and DMN. These findings sug-
gest an important link between aberrant salience mapping and
network coordination involving cognitive processes and psy-
chopathology in depression. Using graph theoretical analysis
based on cortical thickness from structural MRI, Kim et al. (2013)
provided direct evidence for disparity between dorsal and ven-
tral networks in cortico-striato-thalamic circuit in patients with
obsessive-compulsive disorder.

Network abnormalities were also demonstrated in other brain
disorders including traumatic brain injury and pathological gam-
bling. Combining task-related fMRI functional connectivity with
DTI structural connectivity, Caeyenberghs et al. (2013) for the
first time examined topological correlations of structural and
functional brain networks in patients with traumatic brain injury
and healthy controls. They found that graph metrics and hubs
of brain networks showed no agreement in both groups, suggest-
ing that the topological properties of functional networks could
not be solely accounted for by the structural networks. However,
prediction accuracy in switching performance could be improved
by combining brain connectivity information from both imaging
modalities. Using graph-based network analysis of resting fMRI,
Tschernegg et al. (2013) reported that at the nodal level, patholog-
ical gambler had reduced clustering coefficient and local efficiency
in the left paracingulate cortex and the left supplementary motor
area, but an increased node betweenness for these regions, sug-
gesting that regions in the reward system show reduced functional
segregation but enhanced functional integration. These findings
provide direct evidence for the topological abnormalities of the
brain networks associated with pathological gambling.

Overall, the wealth of methods and applications covered
by this research topic shows the exciting recent advances of

multi-modal neuroimaging and network analysis as powerful
approaches to study the neuronal circuits of healthy and diseased
populations. We anticipate that these works will provide criti-
cal insights into the field of imaging brain networks. Lastly, we
would like to thank all of the authors, reviewers and the Frontiers
editorial office for their important contributions to this Research
Topic.
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Recently, there have been a large number of studies using resting state fMRI to
characterize abnormal brain connectivity in patients with a variety of neurological,
psychiatric, and developmental disorders. However, interpreting what the differences
in resting state fMRI functional connectivity (rsfMRI-FC) actually reflect in terms of
the underlying neural pathology has proved to be elusive because of the complexity
of brain anatomical connectivity. The same is the case for task-based fMRI studies.
In the last few years, several groups have used large-scale neural modeling to help
provide some insight into the relationship between brain anatomical connectivity and
the corresponding patterns of fMRI-FC. In this paper we review several efforts at
using large-scale neural modeling to investigate the relationship between structural
connectivity and functional/effective connectivity to determine how alterations in structural
connectivity are manifested in altered patterns of functional/effective connectivity.
Because the alterations made in the anatomical connectivity between specific brain
regions in the model are known in detail, one can use the results of these simulations
to determine the corresponding alterations in rsfMRI-FC. Many of these simulation
studies found that structural connectivity changes do not necessarily result in matching
changes in functional/effective connectivity in the areas of structural modification.
Often, it was observed that increases in functional/effective connectivity in the altered
brain did not necessarily correspond to increases in the strength of the anatomical
connection weights. Note that increases in rsfMRI-FC in patients have been interpreted
in some cases as resulting from neural plasticity. These results suggest that this
interpretation can be mistaken. The relevance of these simulation findings to the
use of functional/effective fMRI connectivity as biomarkers for brain disorders is also
discussed.

Keywords: neural modeling, fMRI, functional connectivity, brain disorders, human brain

INTRODUCTION
In the past few years, brain connectivity analyses have become
important tools in the investigation of brain disorders [besides
the articles in this Special Issue, see, for example, the Frontiers
in Systems Neuroscience Special Issue on Brain Connectivity
Analysis: Investigating Brain Disorders (Horovitz and Horwitz,
2012; Horwitz and Horovitz, 2012)] 1 . Probably the most com-
mon connectivity studies have used diffusion tensor imaging

1Please note that we use the term “brain disorder” quite loosely. In particu-
lar, because there are both structural and functional changes during normal
development and normal aging, studies of either of these processes can be
considered here, since many of the issues that come about when comparing
patients and healthy subjects would also be present when comparing subjects
in different age groups.

(DTI) 2 to investigate brain anatomical connectivity and func-
tional magnetic resonance imaging (fMRI) to examine functional
and/or effective connectivity. Although there still exists some
confusion in the literature as to the definition of the latter two
terms (Horwitz, 2003), for the purposes of this article we follow
Friston (1994) and take functional connectivity to denote a sta-
tistical relationship between the functional neuroimaging signals
in two or more brain regions (e.g., a correlation coefficient or
a regression coefficient), and effective connectivity to mean the
direct effect of one brain region’s activity on another during a
specified experimental condition (e.g., the functional strength of
the directed anatomical link from one region to another during a
particular task).

2See Appendix for a list of all abbreviations used in this paper.

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 649 |

HUMAN NEUROSCIENCE

10

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/journal/10.3389/fnhum.2013.00649/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BarryHorwitz&UID=7972
http://community.frontiersin.org/people/JeffAlstott/35999
mailto:horwitzb@nidcd.nih.gov
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Horwitz et al. Neural modeling and neuroimaging

The earliest functional connectivity neuroimaging studies that
used positron emission tomographic (PET) data were acquired
during the so-called resting state (e.g., Horwitz et al., 1984), but
gave way a few years later to task-based studies (Horwitz et al.,
1992), especially when fMRI became available (e.g., Friston et al.,
1997; Bokde et al., 2001). Thus, there developed a substantial
literature on activation studies of patients with brain disorders
employing functional/effective brain connectivity analysis meth-
ods (e.g., Horwitz et al., 1995; Bokde et al., 2006; Just et al., 2007;
Rytsar et al., 2011). However, during the past decade or so, there
has been an explosion in the number of studies using resting state
fMRI (rsfMRI) to characterize functional brain connectivity in
normal subjects (e.g., Biswal et al., 1995; Yeo et al., 2011) and in
patients with a variety of neurological, psychiatric, and develop-
mental disorders (e.g., Cherkassky et al., 2006; Wang et al., 2006;
Alexander-Bloch et al., 2010; Lynall et al., 2010; Damoiseaux et al.,
2012; Venkataraman et al., 2012; Lynch et al., 2013). The liter-
ature on functional neuroimaging connectivity studies in brain
disorder patients is now huge, and obviously difficult to summa-
rize. It is possible to generalize, however, and say that almost all
published studies have found differences in functional (or effec-
tive) connectivity between patients and healthy control subjects.
Often, the differences correspond to a decreased connectivity in
the patients, although in many instances, increased interregional
connectivity has been reported; sometimes, both types of differ-
ences are found together (e.g., Horwitz et al., 1995; Damoiseaux
et al., 2012; Venkataraman et al., 2012). Note also that it has
become widely appreciated that neuroimaging studies of brain
connectivity, both functional and structural, have the potential
for generating useful biomarkers for the detection and diagnosis
of brain disorders and for the assessment of their treatment [for
example, for Alzheimer’s disease (AD), see (Horwitz and Rowe,
2011; Damoiseaux, 2012)].

Nonetheless, the question does arise as to how these alter-
ations in functional/effective connectivity should be interpreted.
For example, some researchers have suggested that an increased
functional/effective connectivity may reflect some type of com-
pensatory change that helps maintain normal function in spite
of aberrant function in other parts of the brain. Also, can one
attribute, as is often done, a reduced functional/effective connec-
tivity to a decreased structural link between two brain regions? A
decreased structural link may manifest itself as a reduced axonal
input (either fewer axons or less effective synaptic inputs) from
one neural population to another. How can we determine if these
interpretations of functional brain connectivity analyses are jus-
tified? With respect to human brain disorders, it is obviously
hard (indeed impossible at present) to actually do this using
experimental data, since invasive techniques cannot be employed.
Furthermore, the complexity of the mammalian brain mostly
precludes any sort of direct comparison between measures of
interregional neuronal connectivity and fMRI based measures in
non-human animals, although some recent efforts in this direc-
tion (Logothetis, 2012), including using optogenetic approaches
(Lee, 2011), show some promise. Rather, these issues have started
to be addressed using computational neural modeling.

In this paper, we will discuss a few of these neural mod-
eling efforts in the section entitled Simulated fMRI Data and

Functional/Effective Connectivity, focusing especially on what
has been learned about how to interpret differences in func-
tional/effective connectivity between patients and healthy sub-
jects in Simulating the Effect of Altered Anatomical Connectivity
on Functional/Effective Connectivity. We will conclude in The
Role of Simulation in the Development of fMRI Biomarkers with
some thoughts on the role that neural modeling can play in devel-
oping fMRI functional/effective connectivity based biomarkers
for various aspects related to the detection and treatment of brain
disorders.

SIMULATED fMRI DATA AND FUNCTIONAL/EFFECTIVE
CONNECTIVITY
There have been a number of investigators who have developed
multi-region network models that can simulate functional neu-
roimaging data. These models vary with respect to how “biologi-
cally realistic” are the elements that comprise each model. Efforts
of this sort that deal with the kind of task-related flow/metabolic
neuroimaging data generated by PET and fMRI began in the
mid-to-late 90s (Arbib et al., 1995; Tagamets and Horwitz, 1998;
Horwitz and Tagamets, 1999), and have increased dramatically
since then (e.g., Corchs and Deco, 2004; Deco et al., 2004, 2008;
Husain et al., 2004; Edin et al., 2007; Marreiros et al., 2008; Smith
et al., 2013). Recently, a number of groups have developed model-
ing platforms for examining simulated rsfMRI data (for instance,
Alstott et al., 2009; Honey et al., 2009; Cabral et al., 2011, 2012b;
Smith et al., 2011; Ritter et al., 2013). Although some of these
modeling efforts have focused on examining differences between
healthy subjects and patients, others have used the computa-
tional models to address how specific tasks are implemented at
the neural level. Relevant to the discussion that will follow, we
will illustrate three of these modeling efforts.

The model developed by Tagamets and Horwitz (1998),
although initially applied to regional cerebral blood flow (rCBF)
PET data, was soon extended to blood oxygenation level depen-
dent (BOLD) fMRI (Horwitz and Tagamets, 1999). The model
was designed to simulate a short-term memory task for visual
objects. It consisted of a number of distinct neuronal popula-
tions along the ventral visual processing stream arranged in the
following brain regions (see Figure 1): primary and secondary
visual cortex (V1), extrastriate visual cortex (V4 and IT), and
prefrontal cortex (PFC). The visual feature that was modeled
was object shape, and thus the V1 neurons were configured to
respond to line orientation (for simplicity, the orientations were
restricted to horizontal and vertical). The basic neuronal element
in each module was a modified Wilson–Cowan unit (Wilson and
Cowan, 1972), which consists of an excitatory-inhibitory pair
that can be thought of as representing an extremely simplified
cortical column. Each model population contained 81 basic ele-
ments. The populations were connected together based, as much
as possible, on known primate neuroanatomy. For example, con-
nectivity was such that the spatial receptive field increased as
one moved down the object processing pathway. The PFC region
contained four distinct simulated neuronal populations whose
activities were designed to correspond to the experimental data
of Funahashi et al. (1990), obtained from monkeys during the
performance of a delayed response task. The model simulated
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FIGURE 1 | Large-scale neural network models of the visual and

auditory object processing pathways (Tagamets and Horwitz, 1998;

Husain et al., 2004). Shown are the modules specific to the visual model
(LGN, V1-V2, V4, IT) in black-bold and those specific to the corresponding
auditory model (MGN, Ai, Aii, ST, PFC) in gray-italics. Within each module
are sub-modules. The PFC module is common to both models and shown
are its sub-modules. Each sub-module contains 81 basic neural elements
consisting of an interacting pair of excitatory and inhibitory units (Wilson
and Cowan, 1972). Connections between modules are display (solid:

excitatory-to-excitatory; dashed: excitatory to inhibitory). Models perform a
delayed match-to-sample task for either visual objects (combinations of
horizontal and vertical lines) or auditory objects (combinations of pure
tones and up- and down-frequency sweeps. Abbreviations: LGN, lateral
geniculate nucleus; MGN, medial geniculate nucleus; V1-V2, primary and
secondary visual cortex; V4, extrastriate visual cortex; IT, inferior-temporal
cortex; Ai, primary auditory cortex; Aii, secondary auditory cortex; ST,
superior temporal gyrus-sulcus; PFC, prefrontal cortex. Taken from Horwitz
and Smith (2008).

a delayed match-to-sample task, in which a simulated object is
presented for a short period of time, there is a delay period, and a
second object is presented. The goal was to determine if the sec-
ond object was the same as the first. An intertrial interval then
occurred, and another trial began. The entire simulation corre-
sponded to multiple trials, as would occur during an actual PET
or fMRI study. The properties of the simulated neurons were con-
figured so that their firing patterns were similar to those obtained
from electrophysiological monkey studies. The spatiotemporal
integrated synaptic activities (absolute value of the excitatory and
inhibitory neuronal inputs) were assumed to represent the rCBF
in each area for PET (Tagamets and Horwitz, 1998). For fMRI, the
integrated synaptic activities were calculated for a time period of
about 50 ms (the time needed to acquire a single MRI slice), con-
volved with a function representing the hemodynamic response,
and then downsampled each TR (e.g., TR = 2 s) to represent
simulated BOLD-fMRI (Horwitz and Tagamets, 1999). Good
agreement was obtained between the simulated PET data and
the experimental PET data of Haxby et al. (1995) (see Tagamets
and Horwitz, 1998 for details). This model was later modified
by Husain et al. (2004) to produce a simulation model for audi-
tory object processing. Both the visual and auditory models were
subsequently employed to simulate fMRI-functional connectiv-
ity data (time-series correlations) (Horwitz et al., 2005; Kim and
Horwitz, 2008).

It is important to notice that these kinds of multiregion
large-scale simulations require a combination of three compo-
nent models. The first component is a structural model that
indicates how the simulated brain regions are anatomically
linked, and what are the strengths of the linkages. The sec-
ond component is a neuronal model. The third component is a

hemodynamic response model that converts the neural activity
into a neuroimaging signal. In the simulations just discussed, the
structural model was based on primate neuroanatomy, the neu-
ronal model was the Wilson-Cowan unit, and the hemodynamic
model was a simple Poisson convolution function acting on the
integrated synaptic activity.

An example of simulating human rsfMRI data was provided
by Honey et al. (2009). They used a structural model based on
diffusion spectrum imaging (DSI) data obtained from five nor-
mal human participants originally described by Hagmann et al.
(2008) (see Figure 2A) 3. The structural connections were eval-
uated from streamline tractography values between each pair of
998 cortical regions. The neural model assigned to each of these
regions employed the neural mass model of Breakspear et al.
(2003), which represents an ensemble of excitatory and inhibitory
neurons possessing both ligand-gated and voltage-gated mem-
brane channels. A non-linear hemodynamic model was used to
convert simulated neural activity into simulated BOLD fMRI
data (Friston et al., 2000) (see Figure 2B). Honey et al. (2009)
used this formulation to compare simulated rsfMRI data against
actual fMRI data obtained in the same subjects from whom the
DSI data were acquired. Their main conclusion was that in both
the simulated and experimental data, the underlying structural
connectivity constrained the pattern of resting state functional
connectivity, although some functional connectivity between
non-anatomically connected regions was also present. These

3The two matrices shown in Figure 2 were generated by the current authors
using the structural, neural, and hemodynamic models originally employed
by Honey et al. (2009) and Alstott et al. (2009).
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FIGURE 2 | Brain connectivity matrices. (A) Structural connectivity matrix
among the set of 998 ROIs of the average of the DSI data of five normal
subjects of Hagmann et al. (2008). (B) Functional connectivity matrix of
Pearson correlations from the computational model used by Honey et al.
(2009) and Alstott et al. (2009) for the averaged structural matrix of (A),
showing relatively high simulated rsfMRI-FC within lobes, and lower
rsfMRI-FC between hemispheres.

findings were supported by a resting state fMRI functional con-
nectivity (rsfMRI-FC) study in monkey by Adachi et al. (2012),
who also performed a simulation study employing the modeling
framework of an earlier Honey et al. paper (2007).

Gustavo Deco and his colleague have used a comparable mod-
eling approach to that of Honey et al. (2009) to investigate other
aspects of rsfMRI data (Deco et al., 2009; Cabral et al., 2011).
For instance, Cabral et al. (2011) found that slow power fluc-
tuations in gamma (60 Hz) oscillations at the local neural level
could result in long-range interregional resting state synchrony
at very low frequencies (<0.1 Hz), indicating that local neural
dynamics can have an important effect on network connectivity
patterns [see Hlinka and Coombes (2012) for a similar find-
ing]. Cabral and colleagues employed the same structural model
as used by Honey et al. [although downsampled to 66 regions
of interest (ROIs) from the full set of 998 of the original], as
well as the same hemodynamic model. However, they utilized
a simpler neural model: the Kuramoto oscillator (Kuramoto,
1984), which has been used extensively to examine the behav-
ior of coupled oscillatory systems. Other component models were
employed in other studies by this group. For example, in Deco
et al. (2009), the structural model was that of the macaque
monkey obtained using anatomical connectivity values from the
CoCoMac database (Kotter, 2004), and the neural model uti-
lized the Wilson-Cowan formulation (Wilson and Cowan, 1972).
An important insight they found was the critical role that con-
duction delays between connected brain regions play in allowing
synchrony to emerge.

It is worth noting that the main reason different component
models are used in different studies is because each study is
attempting to understand just a few aspects of the data. So, a
neural oscillator model was used when the goal of the study was
to relate high frequency neural activity to low frequency BOLD
activity, as was the case in the Cabral et al. paper (2011). Some of
the other studies that were mentioned placed more emphasis on
neural realism, and so models more directly inspired by neurons
were employed. In all cases, because there are so many interacting

neural units in these large-scale simulations, the simplest neural
model that embodied the crucial features of the data was chosen.
As more such studies appear in the future, it will be important
to determine the degree to which the simulated results depend
on the exact nature of the component models that are used. For
example, resting state studies may well be somewhat insensitive
to the exact neural and metabolic models that are employed,
whereas task-based studies may show a strong dependence on the
composition of the neural model that is used.

An important issue to mention here is that because these large-
scale models can produce multiregional simulated fMRI data that
are comparable to experimental data, many of the same analy-
sis techniques that are applied to the experimental data can be
applied as well to the simulated data. This is important, given
that network analysis techniques, especially graph theory, are
commonly employed in MRI studies of structural and func-
tional connectivity (Achard et al., 2006; Bassett and Bullmore,
2006; Bullmore and Sporns, 2009; Sporns, 2012), and as we shall
see, these network metrics can be utilized for investigating brain
disorders.

Finally, even though the current paper is focused on fMRI
functional/effective connectivity, it is worth noting that there
also is a vast literature in which brain connectivity analyses are
performed on EEG/MEG data (e.g., Gevins and Bressler, 1988;
Gross et al., 2001; Daunizeau et al., 2009; Brookes et al., 2011;
Rong et al., 2011), and large-scale neural modeling has been
employed to help interpret experimental findings (for example,
see Wendling et al., 2009; Banerjee et al., 2012).

SIMULATING THE EFFECT OF ALTERED ANATOMICAL
CONNECTIVITY ON FUNCTIONAL/EFFECTIVE CONNECTIVITY
One important application of these large-scale simulation models
has been the investigation of the effects of various types of brain
alterations on functional/effective connectivity. As we pointed out
in the Introduction, interpreting the results of a brain alteration
in real experimental data is difficult because of the complexity of
the underlying neural architecture, coupled with neuroplasticity
that can occur in real brains subsequent to the alteration. In a
large-scale simulation, however, everything is under the control
of the researcher, and, in principle, everything that goes on during
a simulation can be tracked and evaluated.

Cabral and colleagues published a study that nicely illustrates
what can be learned about bran disorders from simulations of
rsfMRI (Cabral et al., 2012b). In this investigation, the effects
of structural disconnection on rsfMRI-FC was examined using
a large-scale neural modeling framework. The structural model
that was employed consisted of 90 ROIs derived from DTI data
acquired from 21 healthy participants; the neural model for each
ROI, based on the dynamical equations of Mattia and Del Giudice
(2002), generated spontaneous neural activity; and the hemody-
namic model that the authors used was the Balloon-Windkessel
model of Friston et al. (2000). The simulated rsfMRI-FC was eval-
uated as the temporal correlation between ROI time series, and
graph theoretic measures (Bassett and Bullmore, 2006; Bullmore
and Sporns, 2009) were employed to characterize the pattern of
connectivity among all the ROIs. Two types of structural dis-
connection were simulated—global and local. In the equations
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relating the change in neural activity (firing rate) in one region
(region n) to that in other regions, there exists a term kCnp, where
k is the global excitatory coupling between all regions and Cnp is
the structural coupling strength from region p to region n. For
the global disconnection simulations, k was uniformly reduced. It
was found that a number of the graph theoretic metrics changed,
resulting in a less globally correlated and globally integrated set
of BOLD values. The second kind of structural disconnection
that they simulated was a more localized type, in which Cabral
and colleagues successively removed randomly 1% of the possible
links (what they termed “pruning the matrix”). The results for
this case were similar to that for the global disconnection case—
a reduction in functional connectivity leading to reduced global
integration.

Cabral et al. (2012a) went on to explicitly compare simulated
rsfMRI-FC with experimental data acquired from patients with
schizophrenia (Lynall et al., 2010). The experimental data showed
that, compared to healthy control subjects, the schizophrenia
patients had weakened functional connectivity and an increased
diversity of functional connections. Cabral and colleagues tested
the hypothesis that these disrupted functional networks in the
patients could be explained by a global decrease in structural cou-
pling between cortical regions. They found that a small decrease
in the global structural coupling parameter, k, yielded a reduced
functional connectivity that resulted in graph theoretic changes
similar to those documented by Lynall et al. (2010).

Other simulation studies have examined the effects of focal
lesions on rsfMRI-FC, including investigations that employed
structural models based on macaque connectivity (Honey and
Sporns, 2008) and those that used structural data from humans
(Alstott et al., 2009). We will discuss the latter of these. The
structural, neural, and hemodynamic models used by Alstott
et al. (2009) were the same ones as those employed by Honey
et al. (2009): a DSI data set from 5 healthy human participants
(Hagmann et al., 2008), the neural model of Breakspear et al.
(2003) and the Friston et al. balloon model (Friston et al., 2000).
A number of important findings were reported, including one
showing that lesions along the cortical midline, in the temporo-
parietal junction and in frontal cortex resulted in large and
widely distributed reductions in rsfMRI-FC; some of these alter-
ations involved regions outside the lesion site. In contrast, lesions
of sensory and motor regions produced functional connectivity
changes that were more localized to the area of the lesion (see
Figure 3).

The studies involving alterations in anatomical connectivity
that we have so far mentioned involved simulating rsfMRI data.
Task-based fMRI also has been examined using large-scale model-
ing, and one such paper by Kim and Horwitz (2009) investigated
the effect of decreased structural connectivity on task-related
effective connectivity. The general question that this study asked
was: how should one interpret a significant difference between
patients and controls in the effective connectivity between two
nodes? In particular, does such a difference imply that there
is a corresponding alteration in the underlying structural con-
nectivity between the nodes? Kim and Horwitz used the large-
scale neural model of Tagamets and Horwitz (1998), discussed
in Simulated fMRI Data and Functional/Effective Connectivity,

to address these questions. They reduced the strength of the
structural connection from IT to PFC (see Figure 4, upper) by
an average of 80% in 20 simulated “patients,” and compared
the simulated fMRI obtained during the DMS task with com-
parable data from 20 “normal control” simulations. Structural
equation modeling (SEM) (McIntosh et al., 1994) was used to
evaluate effective connectivity for all the connections between
all regions in the network. As shown in Figure 4 (lower), the
effective connection from IT to PFC (FS) indeed was signifi-
cantly reduced in the patients relative to the controls. So, this
simulation result suggests that reduced structural connectivity
can be reflected as reduced fMRI effective connectivity. Figure 4
also shows that the effective connectivity downstream from the
induced structural disconnection (i.e., the connectivity within
the PFC) also was generally reduced. This result is not unex-
pected: the disruption in the IT-FS connection leads to incorrect
neural processing in downstream parts of the PFC network.
The third result from this simulation is, at first glance, unex-
pected: the increased effective connectivity “upstream” (e.g., the
V1–V4 effective linkage) in patients relative to controls. As men-
tioned in Introduction, numerous groups have reported increased
patient functional/effective connectivity (e.g., for AD, Horwitz
et al., 1995; Damoiseaux et al., 2012), and in many cases, this
increase is attributed to some type of neural plasticity. The sim-
ulation produced by Kim and Horwitz (2009) indicates that this
interpretation may not always be warranted. In the simulation,
no structural alteration in the V1–V4 connections weights took
place. Rather, the increased effective connectivity resulted from
a reduced feedback effective connection from PFC to V4, which
in turn led to V4 being more influenced by V1 activity than
was the case in the normal subjects. A major conclusion from
the Kim and Horwitz study was that interpretation of fMRI
functional/effective connectivity changes in patients relative to
controls requires a careful consideration of the entire network
mediating the task under study.

What about the situation for rsfMRI-FC? Would similar find-
ings as illustrated by the Kim–Horwitz study (Kim and Horwitz,
2009) occur, or are those interpretational problems found only
in task-based fMRI studies? As Alstott et al. (2009) showed, both
increases and decreases in rsfMRI-FC occurred following cortical
lesions. For example, as illustrated in Figure 3B, a lesion cen-
tered in the left temporo-parietal junction resulted in strength-
ened rsfMRI-FC in the contralesional hemisphere. Some of these
increases are due to direct loss of inputs from the lesioned area,
resulting in greater functional connectivity between right hemi-
sphere nodes. As was the case with the Kim-Horwitz example,
these increases are not the result of any change in the strength
of the anatomical connection weights.

The studies discussed above obviously did not consider all
the complexities that are likely to be found in investigations of
brain disorders. Future neural modeling efforts will be needed
to address such issues as how the various kinds of neuroplas-
ticity, which can operate over multiple time scales, even ones
whose duration are within the time frame of a single scan,
affect the functional/effective connectivity of relevant networks.
Some of these neuroplastic changes may occur due to changes in
anatomical connectivity.
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FIGURE 3 | Functional connectivity changes following simulated brain

lesions (Alstott et al., 2009). Dorsal (middle) and left and right hemisphere
views of significant changes between lesioned and normal groups in
simulated resting state functional connectivity (all in the dorsal view;
hemisphere specific in the lateral views) between 66 anatomical areas

constructed from the 998 ROIs used by Alstott et al. Red (blue) lines indicate
a decreased (increased) correlation for the lesioned brains. Center of the
lesion site indicated by the green “+.” (A) Lesion in sensory cortex; (B)

lesion in temporo-parietal junction. Slightly modified from Alstott et al. (2009);
[(A) is from Supplementary. Figure 1A; (B) is from Figure 4B].

It is worth noting, by the way, that we have oversimplified
things by assuming that there is a clear distinction between
anatomical and function/effective connectivity. At the level of
neuron and synapse, however, this distinction breaks down: in
which category does one place axonal sprouting and the for-
mation of new synapses, or even the strengthening of a single
synaptic contact? Indeed, one kind of connectivity change can
lead to a change in the other—Hebbian learning would be an
obvious example. These issues will need to be confronted in future
neural modeling studies.

THE ROLE OF SIMULATION IN THE DEVELOPMENT OF fMRI
BIOMARKERS
An important issue that was alluded to in the Introduction was
the utilization of neuroimaging for generating assorted biomark-
ers for brain disorders. Horwitz and Rowe (2011) have discussed
the various uses for which such biomarkers could be employed4.
These include detection or prediction of a disorder, differen-
tial diagnosis, and staging a disorder and investigating treatment
efficacy.

A significant and obvious point related to biomarker develop-
ment is that such markers are meant to be used on individual

4The Horwitz-Rowe article focused on neurodegenerative disorders; however,
many of the points made are relevant for numerous brain disorders.

patients (or potential patients). As such, an important issue is
how likely is it that fMRI will be able to provide sufficient
signal-to-noise ratio to be usable in single subjects (Horwitz and
Rowe, 2011; Damoiseaux, 2012; Vemuri et al., 2012). Most of the
experimental studies we have mentioned were group studies, and
although these investigations are important for discerning signal
patterns that have the potential to discriminate between patients
(actual or potential) and non-affected individuals (or between
different types of patients), clinically useful fMRI biomarkers are
still a future goal, not a present reality. Two areas of fMRI research
that are likely to lead to improvements are in hardware develop-
ment and in advances in the use of multivariate signal processing
techniques (e.g., Smith et al., 2010); for a review, see Smith, 2012.

A second issue, implicit in our previous discussion, concerns
what kind of fMRI technique (i.e., resting state fMRI or task-
based fMRI) is better to use for a particular brain disorder. The
answer depends on two things: which brain disorder is the focus
of interest, and which question is the biomarker attempting to
address. In some cases, it may be that rsfMRI will be more appro-
priate. For example, getting small children to do a specific set of
tasks could lead to compliance problems of one sort or another. In
other cases, task-based fMRI might have a significant advantage.
Specifically, task-based fMRI provides the opportunity to record
behavioral measures during scanning, and thus, these behavioral
measures can be correlated with the changes in connectivity. This
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FIGURE 4 | Comparison of fMRI effective connectivity differences

between simulated patients and normal subjects for a delayed

match-to-sample task for visual shape (Kim and Horwitz, 2009). The
top part of the figure shows the nodes and connections of the neural net
model used (Tagamets and Horwitz, 1998) (it is the same model shown in
Figure 1, which should be consulted for abbreviations). Simulated patients’
data were obtained by reducing the connection weight between the IT and
FS modules an average of 20% of its normal value. The lower part of the
figures shows the results of applying an effective connectivity analysis
(structural equation modeling) to the normal and patient networks.
Significant reductions in patients relative to controls are in violet, significant
increases are in green. Modified from Kim and Horwitz (2009).

is a powerful method for determining which connectivity changes
are aiding the person being scanned and which are reducing their
performance. Similar behavioral correlations have been used with
resting state connectivity changes, but the behavioral measure is
on a subject by subject basis, not on a trial by trial basis. For exam-
ple, Venkataraman et al. (2012) found two co-existing patterns
of connectivity in their schizophrenia patients: increased frontal-
parietal connectivity that was associated with severity of positive
symptoms, and decreased parietal-temporal connectivity that was
related to negative symptoms.

As an illustration of the task vs. resting issue, consider AD.
We know that the pathology of AD can be found in individuals’
brains decades before clinical symptoms appear (Reiman et al.,
1996; Hampel et al., 2011), and young adults at risk for develop-
ing late-onset AD show default mode network (DMN) alterations
(Filippini et al., 2009). Given this situation, if an appropriate ther-
apy were available, when should it be given? One might want
to start it before a patient demonstrates cognitive deficiency (in
which case there may be a significant reduction in viable brain
tissue), but perhaps not years or decades before, given the likely
costs of the treatment and the potential side-effects of the ther-
apy. In analogy with cardiovascular disease, a “cognitive stress
test” during fMRI scanning might provide a way to assess neural
integrity. However, one study (Fleisher et al., 2009) has been used
to argue against task-based fMRI studies and in favor of rsfMRI
in AD. Fleisher et al. showed that rsfMRI of the DMN had a larger
effect size than did an fMRI encoding task for distinguishing AD
high-risk from low-risk groups. However, it should be noted that
although functional connectivity was utilized for the rsfMRI por-
tion of the study, the researchers only used differences in regional

BOLD deactivation in DMN nodes during the encoding part of
the investigation. As Horwitz and Rowe (2011) have suggested, a
task-base network analysis, targeting a network that shows early
impairment in AD (such as memory), might be more sensitive
compared to examining individual region of interests, since net-
work analysis is intrinsically multivariate. One would determine if
the at-risk subject’s data fit the network defined by healthy control
subjects performing the same task. If the fit is bad, that would sug-
gest that therapy might be warranted. This scheme is based on the
notion that neuroplasticity enables behavioral performance to be
maintained during the many years during which brain pathology
builds up.

As we have just seen, progress has been slow in develop-
ing fMRI based biomarkers. Among the reasons for this are the
difficulty in performing neuroimaging studies on patients, and
importantly, not being able to actually “know the answer.” Of the
patients at risk for a given disorder, how many will actually get
the disorder, and when will they get it? Patient variability is often
huge, and different individuals could have different amounts of
neuroplasticity over the years during which a disorder may have
gone undiagnosed. How do we know that a group difference in
some fMRI metric will be large enough in individuals to be able
to distinguish a single subject with a high sensitivity and speci-
ficity? Note that the problem is not just scanner signal-to-noise,
as was mentioned earlier. Rather, the additional problem is that
there is large subject-to-subject variability in humans, even in
healthy subjects—structural brain differences (e.g., see Amunts
and Zilles, 2001), and functional differences (e.g., see Kanwisher
and Yovel, 2006).

Computational neural modeling may provide a method to cir-
cumvent some of these issues in attempting to determine if an
fMRI based metric can serve as a biomarker for detecting a brain
abnormality. As an illustration, how weak can a brain structural
disconnection be so that it is undetectable using rsfMRI-FC anal-
ysis? In our review of the simulation studies of Deco, Cabral and
their group and Alstott, Honey, Sporns and their colleagues, the
extent of the structural damage was quite large in many cases. For
example, Alstott et al. (2009) found in one of their analyses many
significant differences in functional connectivity in 5 subjects
when they deleted 50 ROIs from an anatomical area (see Figure 3
for two examples). Using the same set of models (structural, neu-
ral, and hemodynamic) as Alstott and collaborators, we targeted
two anatomical areas for modification: the left precuneus (LPr)
and the left medial frontal cortex (LMPF). All modifications were
performed on the 25 ROIs closest in Euclidean distance to the cen-
ter of the targeted areas. Specifically, the structural connectivities
in a targeted area were scaled by 0.5 from the normal values. We
examined focal, unidirectional, and bidirectional modifications.
In focal alterations, connections among the 25 ROIs in a single
anatomical area were scaled by 0.5, but connections between these
targeted ROIs and all other ROIs in the cortex were left unmodi-
fied. Bidirectional and unidirectional structural alterations were
only applied to the two separate anatomical regions—LPr and
LMPF. In bidirectional modifications, the connections from one
set of 25 target ROIs to and from the second set of 25 target ROIs
were scaled by the specified amount of 0.5. In unidirectional mod-
ifications, the connections from one set of ROIs in LMPF to the
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LPr set of ROIs were scaled, but the connections from the latter
set of ROIs to the former set were left intact.

Simulations were run for 10 “normals” subjects and 10
“patients.” Variation in the subjects was introduced by adding
or subtracting to all the structural connection weights random
numbers from a Gaussian distribution with a standard devia-
tion of 0.01. Pearson correlations between the time series of the
simulated BOLD activity from each anatomical area for each
“normal” subject and for each “patient” were evaluated. Given
the small number of “subjects” (10 in each group), and the rela-
tively weak reduction of structural connectivity between just two
brain areas, it is not surprising that there were few robust group
differences. Indeed, no significant group differences in rsfMRI-
FC between the two targeted areas LPr and LMPF were found in
any of the cases (focal, unidirectional, bidirectional). These sim-
ulation results thus indicate the relative insensitivity of simple
rsfMRI-FC to detecting the presence of structural modifications
that are weak and of restricted extent, even if one knows where to
look. That is, not much change occurs when one input is reduced
to areas that have inputs from multiple other areas. Simulations
could be used to see if the situation is different when the modi-
fication affects a connection between nodes engaged in a task, as
was the case for the Kim-Horwitz simulation (Kim and Horwitz,
2009) that was discussed earlier, but that would require adjust-
ing the structural and neural models so that a specific task can
be performed. Moreover, newer experimental and data analysis
procedure could arise to improve the situation. For instance, high
spatial resolution MRI may be able to find mild abnormalities in
either structural or functional connectivity in the future.

CONCLUSIONS
In this paper we reviewed some recent efforts at using neural
modeling to help understand and interpret human neuroimag-
ing data comparing patients with brain disorders to healthy
subjects. Experimental neuroimaging data provide macroscopic
measures of brain structure and function. In the case of fMRI,
these data are indirect measures of function; the signals are those
of the metabolic/hemodynamic consequences of neural activity.
Among the factors confounding the interpretation of such data in
patients are the sheer complexity of neural anatomy and connec-
tivity and the immense plasticity of the brain. Large-scale neural
modeling provides a way to study such a system and investigate
how the size and extent of various modifications translate into
alterations in neuroimaging signals. Furthermore, because we
know what alterations actually took place in the modeled brains,
potential interpretations of actual data can be checked against the
simulated data.

Our review of several studies that explored the fMRI conse-
quences of alterations in anatomical connectivity lead to several
conclusions. First, interpretation of changes in either functional
or effective connectivity is not as straightforward as one might
first suppose. Although a weakening of the structural connec-
tion strength between brain areas can appear as a decreased
functional/effective connection, decreases and increases in func-
tional/effective connectivity between areas not directly affected by
the brain alteration are also found. Essentially, one must keep in
mind that in a functional network, one cannot just change one
link; functional networks are such that changes in one part of
the network result in changes everywhere else (although not all
these changes will be large enough to be statistically significant).
Moreover, some of the changes in parts of a network unaffected
by the structural alterations may result in a strengthening of the
functional/effective connectivity, but these changes are not nec-
essarily the result of neuroplasticity. Task-based fMRI may be a
better choice than rsfMRI to deal with this issue, since it is often
possible in task-based fMRI to acquire performance data during
the scanning. Such data can then be correlated with the mea-
sured functional/effective connectivity, and the results of such an
analysis may strengthen a claim for neuroplasticity mediating the
altered connection. The net conclusion from all this is that the
reverse inference—that a change in functional/effective connec-
tivity in a patient means that there is a corresponding change in
the underlying structural connectivity—is unwarranted.

We also discussed utilizing large-scale neural modeling as a
tool for helping to develop fMRI resting state and/or task-based
biomarkers for brain disorders. This is an area that is just begin-
ning, but it does have potential advantages, especially in terms
of cost and time. It is cheaper and less time consuming to run a
large number of simulations than it is to find subjects and run
fMRI experiments. But little work has been done in this area, so it
will be a while before one can assess whether or not modeling can
provide significant help in deciding which potential biomarkers
are viable.
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APPENDIX

Abbreviations:

AD Alzheimer’s Disease
BOLD Blood oxygenation level dependent
DMN Default mode network
DSI Diffusion spectrum imaging
DTI Diffusion tensor imaging
fMRI Functional magnetic resonance imaging
LPr Left precuneus area
LMPF Left medial prefrontal area
PET Positron emission tomography
PFC Prefrontal cortex
rCBF Regional cerebral blood flow
ROI Region of interest
rsfMRI Resting state fMRI
rsfMRI-FC Resting state fMRI functional connectivity
SEM Structural equation modeling
TR Repetition time
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The human connectome at the level of fiber tracts between brain regions has been shown
to differ in patients with brain disorders compared to healthy control groups. Nonetheless,
there is a potentially large number of different network organizations for individual patients
that could lead to cognitive deficits prohibiting correct diagnosis. Therefore changes that
can distinguish groups might not be sufficient to diagnose the disease that an individual
patient suffers from and to indicate the best treatment option for that patient. We describe
the challenges introduced by the large variability of connectomes within healthy subjects
and patients and outline three common strategies to use connectomes as biomarkers
of brain diseases. Finally, we propose a fourth option in using models of simulated
brain activity (the dynamic connectome) based on structural connectivity rather than
the structure (connectome) itself as a biomarker of disease. Dynamic connectomes, in
addition to currently used structural, functional, or effective connectivity, could be an
important future biomarker for clinical applications.

Keywords: brain connectivity, network disease, brain disorders, classification, diagnosis

The study of how different components of the brain, may they
be neurons or brain regions, are connected has become an
emerging field within the neurosciences (Sporns et al., 2004;
Bullmore and Sporns, 2009; Kaiser, 2011). The analysis of physi-
cal connections within neural systems gained momentum around
20 years ago with the availability of information on the nematode
Caenorhabditis elegans’ nervous system (White et al., 1986;
Achacoso and Yamamoto, 1992) and the rhesus monkey’s visual
system of cortico-cortical connections (Felleman and van Essen,
1991; Young, 1992). Now called connectomics, the field aims to
discover the structure of brain networks, representing physical
connections such as axons or fiber tracts. As a next milestone,
the first data sets of the Human Connectome Project are being
released. What will the next 20 years bring? Like for genomics,
the hopes are that features of the connectome of a patient can
be a biomarker for diseases and an indicator for therapeutic
interventions. Identifying biomarkers for diseases based on
large-scale genome studies has been challenging. Is the link
between connectivity and brain disease also over-weighted? What
could a structural connectome in principle tell us about the brain
organization in health and disease?

In analogy to genetics, we may distinguish a genotype and
a phenotype of brain organization. The genotype is given
by the structural connectivity either observed at the level of
individual synapses (microconnectome) or at the level of fiber
tracts between brain regions (macroconnectome) (DeFelipe,
2010) and we will refer to this as connectome. As for every novel
field, the underlying techniques are still under development
(Jbabdi and Johansen-Berg, 2011). Diffusion tensor and diffusion

spectrum imaging can give us information on potential structural
connections of the macroconnectome. The phenotype represents
activity, as seen in functional Magnetic Resonance Imaging
(fMRI) or EEG, or behavior, as for cognitive clinical scores. We
refer to these patterns as consequences on dynamics or behavior
due to changed brain connectivity.

The problem of diagnosing a disease, as in genetics, is due
to the fact that several mutations of the genotype might result
in the same phenotype (disease). Observing brain connectivity,
there might be several combinations of changes in fiber tracts
leading to hallucinations or seizures, for example. Also, the same
connectome organization might lead to different dynamics for
changes that affect the internal anatomy and activity of net-
work nodes but not the nodes’ topology (Figure 1). The idea
that many pathways can lead to similar behavior is linked to
the concept of degeneracy (Tononi et al., 1999; Price and Friston,
2002), “the ability of elements that are structurally different to
perform the same function or yield the same output.” If the
output (phenotype) is cognitive deficits in patients, the number
of connectome (genotype) patterns that lead to such behav-
ior can be seen as the degeneracy of a brain disease. Also, a
higher degeneracy, meaning that more connectome patterns are
linked to a disease, might result in a higher incidence in a
population. A related observation has been made in the field
of genetics when linking genetic changes to diseases: multiple
genotypes might lead to the same phenotype (heterogeneity)
(Addington and Rapoport, 2012). Therefore, detecting one con-
nectivity pattern linked to a disease might only relate to a fraction
of all patients. Moreover, many connectome changes will be
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FIGURE 1 | Mapping between underlying developmental causes of

connectome changes, ranging from genetic factors to spatiotemporal

epigenetic factors, to resulting brain connectivity (“connectome”),

observable network behavior (“consequence”), and final disease

classification. Similar patterns within each of the four categories are
shown in red. Note that both genetic patterns and network features alone
may be insufficient to inform the clinical diagnosis of a disease: first, the
same genetic mutation A might lead to a different connectivity due to
different epigenetic factors. Second, different genetic mutations A and B
could lead to the same connectivity due to additional factors. Third, the
same connectivity might lead to different behavior and disease
classification due to changes that solely affect the anatomical organization
within individual nodes.

neutral in that they do not lead to a brain disorder; thus variability
in the healthy population is expected to be large as well. As for
genetics, connectomics is currently moving to large-scale studies,
e.g., the 1,200-subject Human Connectome Project or the 1,000-
subject Functional Connectomes study, to address this underlying
variability.

Another problem besides large connectome variability
(“noise”) is that cognitive deficits might arise from small
changes (“signal”). Development can be seen as a system of
nonlinear dynamics (Turing, 1952). It has become clear that
genetic encoding (Kendler et al., 2011) and self-organization
shape the formation of neural systems in health and disease.
For self-organization, the interaction with the environment
(external factors) or physical constraints (internal factors) can
influence the establishment and survival of axonal connections.
Consequently, small changes during development might lead to
a different connectome and as a result to a different resulting
consequence for cognition and behavior of human subjects. As
the dynamics in the brain are also non-linear, a small change in
structural connectivity might be sufficient to lead to changes in
cognition and behavior. Relatively small changes in connectivity
might be sufficient to lead to a brain disorder. Therefore, some
connectivity patterns seen in patients might be quite close to the
organization of healthy subjects.

Let us look at some cases of how brain diseases could be linked
to brain connectivity. Also, let us only use two cases of how a net-
work structure (edge or node) in a patient could differ from that
of a control group: a significant increase or a significant decrease
of a network measure. We will only look at a single measure here,
say number of streamlines for edges and total strength of its con-
nections for nodes, but our general observations also hold for a

combination of network measures (Costa et al., 2007; Kaiser et al.,
2009; van den Heuvel et al., 2012).

First, a disease might affect a single brain region which could
have an effect on brain dynamics by changing its own activity
pattern, the pattern of directly connected neighbors of the region,
and, indirectly, the activity in the rest of the brain mediated by
intermediate brain regions. As a simplification, let us assume
that only structural connections from that brain region will be
altered. As each brain region (for a parcellation in humans of 110
cortical and subcortical regions including both hemispheres) is
connected to around 10 other brain regions, there are 210 = 1,024
possible changes assuming that each connection could either be
significantly increased or decreased in a patient. Thus even at the
local scale, only affecting a single brain region, many variations of
a disease are possible.

Second, a disease could affect a set of network nodes. For
example, regions of the neocortex mature at different times dur-
ing development: medial regions before lateral regions and pos-
terior before anterior regions. A change in the maturation of
the frontal lobe could affect multiple regions at the same time
and might affect a whole network module (Nisbach and Kaiser,
2007). Say that 10 regions show a different internal structure
that also manifests itself in altered fiber tracts between them and
other brain regions. Therefore, assuming 10 fiber tracts per brain
region, or 102 = 100 fiber tracts for all 10 affected regions, show
changes leads to 2100 = 1.3∗1030 variants. Let us look at a simpler
model where an increase (or a reduction) in at least 10 of those
100 fiber tracts is sufficient to lead to the behavioral features of a

disease. There are

(
100
10

)
= 1.7∗1013 ways to choose 10 out of 100

connections. Given that 10 is the lower bound for disease onset,
choosing 11, 12, 13, etc. connections leads to even more variations
at this regional level.

Third, a disorder could lead to changes of a set of edges at the
global level as a result of widely distributed changes. If there are
500 bidirectional connections (fiber tracts) between our 110 brain
regions, there are 2500 = 3.3∗10150 possible changes compared to
a benchmark brain based on a population of healthy subjects.

We know that there is huge variability not only in the surface
shape of human brains but also in its related connectivity pat-
tern (Van Essen, 1997; Hilgetag and Barbas, 2006). Clearly, only
a small fraction of connectome patterns is linked to a brain
disorder. Even if we assume that there are thousands of subtypes
of brain disorders, e.g., different kinds of epilepsy, and that many
diseases change synaptic efficacy without changing structural con-
nectivity, there might still be billions of connectome changes that
could lead to the clinical patterns observed in patients with one
type of a disease. Clearly, no two patients are the same (neither
are no two control subjects).

If there is a multitude of ways how connectome changes could
lead to a disease, how can we use brain connectivity information
to inform the diagnosis and treatment of clinical patients? First,
some links between connectome and consequential brain dynam-
ics might manifest themselves through changes of global net-
work features despite the variability in the changes of individual
connections. Examples are global topological changes, observed
through diffusion tensor imaging, in remitted geriatric depres-
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sion and amnestic mild cognitive impairment (Bai et al., 2012).
However, the same global changes, say a deviation from the brain’s
small-world organization towards random or regular connectivity
(Reijneveld et al., 2007), could be observed across diseases and
therefore limit their use as a classifier for brain diseases.

Second, some changes might be so widespread that they
affect the majority or all of the brain regions leaving fewer
degrees of freedom for variability in connectomes. The overall
pattern of altered structural connectivity in schizophrenia
patients (Skudlarski et al., 2010), along with resulting functional
connectivity changes (Fornito et al., 2012), would be one example
for this case.

Third, changes that are linked to a brain disease might only
affect specific circuits in the network. In that way, while the
strength of most connections also varies in healthy controls, more
consistent changes to specific fiber tracts would be expected for
patients. As a consequence, changes in selected circuits would be
common for a group of patients but a consistent change for all
fiber tracts of a circuit would not occur in control subjects. While
this is a potentially powerful approach it does need a priori knowl-
edge about the affected circuit. Such circuits might be identified
by large-cohort studies in patients or through “knock-out” stud-
ies, e.g., using transcranial magnetic stimulation (Hilgetag et al.,
2001), in healthy subjects.

Finally, I would propose a novel approach to deal with the
variability in brain disorders, which is the use of computer
simulations of brain activity, based on the connectivity in
individual patients. Such simulations are already emerging as
a way to understand the structural correlates of dynamical
changes and disease progression (Deco et al., 2011; Cabral et al.,
2012; Raj et al., 2012). As shown above, multiple structural
connectivity changes might lead to the same changes in brain
dynamics, patient behavior, or clinical test scores. Simulating the
activity in the brain of individual patients can inform us about
the expected behavioral features and thus about the presence or
absence of one sub-type of brain disorder. These models can go
beyond the observation of patterns in the recordings of brain
activity as simulated dynamics could include more complex
models. For example, a model based on structural connectivity
might include simulated activity of individual neurons or
local circuits, which cannot be observed by non-invasive
neuroimaging.

Using simulations in a clinical setting has several benefits.
First, simulated behavioral features can be mapped to brain
activity in patients that is available through fMRI, Positron Emis-
sion Tomography (PET), Magnetoencephalography (MEG), EEG,
Electrocorticography (ECoG), or recordings in resected tissue
(Roopun et al., 2010), depending on the disease. Second, the
simulated behavior can be compared with the experimentally
obtained behavior to validate and constrain a model: simulated
activity can be compared with the clinical recordings of a patient.
Third, observing dynamics in networks opens up the possibility to
use the tools of nonlinear dynamics and time series analysis to find
patterns that could be biomarkers for a given disease. Importantly,
changes in brain dynamics might be visible even in cases where the
structural connectivity is not significantly different from that of a
healthy control group. Such simulations are becoming available
both at the local (Blue Brain Project, Markram, 2006) and global
level (Virtual Brain Project, Jirsa et al., 2010) and will be support
through the Human Brain Project and other initiatives.

In conclusion, there is a large number of underlying structural
connectome changes that might lead to the same functional and
behavioral changes in healthy subjects and patients. This variety
makes the detection of a brain disorder—not just the classification
of the type of disorder (Hyman, 2010)—difficult. We propose the
use of computer models to use the simulated dynamics (dynamic
connectome) based on structural connectivity, rather than the
directly measured structural connectivity alone, as a biomarker.
In the same way that biology has moved from genes to gene
expression data, the use of dynamic connectomes, observing or
simulating activity in neural circuits, opens up future potential
for clinical applications.
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The Default Mode Network (DMN) has been found to be involved in various domains of
cognitive and social processing. The present article will review brain connectivity results
related to the DMN in the fields of social understanding of others: emotion perception,
empathy, theory of mind, and morality. Most of the reviewed studies focused on healthy
subjects with no neurological and psychiatric disease, but some studies on patients with
autism and psychopathy will also be discussed. Common results show that the medial
prefrontal cortex (MPFC) plays a key role in the social understanding of others, and the
subregions of the MPFC contribute differently to this function according to their roles in
different subsystems of the DMN. At the bottom, the ventral MPFC in the medial temporal
lobe (MTL) subsystem and its connections with emotion regions are mainly associated
with emotion engagement during social interactions. Above, the anterior MPFC (aMPFC)
in the cortical midline structures (CMS) and its connections with posterior and anterior
cingulate cortex contribute mostly to making self-other distinctions. At the top, the dorsal
MPFC (dMPFC) in the dMPFC subsystem and its connection with the temporo-parietal
junction (TPJ) are primarily related to the understanding of other’s mental states. As
behaviors become more complex, the related regions in frontal cortex are located higher.
This reflects the transfer of information processing from automatic to cognitive processes
with the increase of the complexity of social interaction. Besides the MPFC and TPJ, the
connectivities of posterior cingulate cortex (PCC) also show some changes during tasks
from the four social fields. These results indicate that the DMN is indispensable in the
social understanding of others.

Keywords: default mode network, social cognition, brain connectivity, morality, theory of mind, empathy

INTRODUCTION
THE DEFAULT MODE NETWORK AND SOCIAL UNDERSTANDING OF
OTHERS
Human beings are social animals that have a tendency to interpret
stimuli according to their possible social relevance, and spend a
huge amount of time assessing one’s own and other’s social rela-
tionships and positions by engaging in activities such as thinking
about oneself and others and exchanging those thoughts during
the whole of life (Schilbach et al., 2008). Dunbar and coleagues
suggested a “social brain hypothesis,” which deemed that the large
brains observed in primates reflected the computational demands
of the complex social systems that characterized the order of their
members (Dunbar, 1993).

In the past two decades, the social brain of human has
been intensively studied in several different domains: (1) under-
standing others, (2) understanding oneself, (3) controlling one-
self, and (4) the processes that occur at the interface of self
and others (Lieberman, 2007). However, in the strictest sense,
social cognition is about understanding of other people, includ-
ing their emotional, mental, psychological status, and behav-
iors (Lieberman, 2007). Increasing studies have shown that
regions of the default mode network (DMN) largely activate

in tasks requiring participants to understand and interact with
others, such as perceiving and interpreting other’s emotion sta-
tus, showing empathy to other people, inferring other’s belief and
intention, and performing moral judgments on other’s behav-
ior (Schilbach et al., 2008; Laird et al., 2011). Besides overlaps
with the DMN, the large scale brain networks for social domains
also contain several regions outside the DMN, since these social
behaviors usually comprise extensive cognitive processes such as
obtaining, retrieving, and processing information about the lives,
relationships, and mental states of others (Mars et al., 2012).

In the present article we will review results related to the DMN
in the field of social understanding of others using brain con-
nectivity methods. Several important fields of social behavior,
emotion perception, empathy, theory of mind (ToM, or men-
talizing), and morality, will be summarized for both healthy
subjects and patients with autism, psychopathy and schizophre-
nia (see Table 1). The existing results were organized through two
aspects. The first one is how the regions within the DMN inter-
act with each other when people perform those social tasks, and
the second one is how the DMN interacts with other distributed
brain systems that contribute to the process of social cognition of
others. Possible future directions will be discussed at the end.
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Table 1 | Brain connectivity studies on the social understanding of others.

Study Paradigm Method Connectivity Connectivity between Number Results

within the DMN DMN and other regions of subjects

EMOTION PERCEPTION

Etkin et al., 2006 Emotional stroop
task

EC, PPI,
voxel-wise DCM

rostral
ACC-amygdala

19 ↑EC from rACC to
amygdala during high
conflict, the strength
predicted successful
conflict resolution

Passamonti
et al., 2008

Emotional faces
gender decision

EC, PPI,
voxel-wise DCM

vACC-amygdala 21 EC from vACC to amygdala
negatively correlated to
reward-drive score

Das et al., 2005 Fear perception FC, PPI,
seed-based

vACC, and dACC
with thalamus–
sensory cortex
pathway, and
thalamus–
amygdala
pathway

28 Positive modulation from
dACC and negative
relationship from vACC on
thalamus–sensory cortex
pathway; both dorsal and
vACC had inverse
interaction with
thalamus–amygdala
pathway

Cremers et al.,
2010

Emotional faces
gender decision

FC, PPI,
voxel-wise

dMPFC-
amygdala;
ACC-amygdala

60 Neuroticism scores
positively correlated with
FC of dMPFC-right
amygdala for angry and
fearful faces, and
negatively correlated with
FC of ACC-left amygdala
for angry, fearful, and sad
faces

Satterthwaite
et al., 2011

Emotion
identification

FC, PPI,
voxel-wise

Medial
OFC-amygdala,
MPFC-amygdala

39 Positive FC of medial
OFC-amygdala, and
negative FC of
MPFC-amygdala during
task

Kleinhans et al.,
2008

Face
identification

FC, seed-based PCC-FFA 47 (24 autistic) ↓FC in ASD group

Rudie et al.,
2012

View emotional
face expressions

FC, seed-based vMPFC-rIFGpo 47 (23 autistic) ↓negative FC in ASD group

EMPATHY

Decety et al.,
2008

View pain
scenarios

EC, PPI,
voxel-wise

Medial OFC-right
TPJ,
ParaCC-right TPJ

Medial
OFC-anterior
IPS, precentral
sulcus, and
anterior MCC;
ParaCC-anterior
IPS, and
precentral sulcus

17 ↑EC during condition of
pain which was caused
intentionally compared to
pain which occurred
accidentally

Otti et al., 2010 View pain
scenarios

FC, ICA Within anterior
DMN

19 ↓FC from “No Pain” to
“Pain,” and the strength
positively correlated with
the subjective post-scan
pain

(Continued)
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Table 1 | Continued

Study Paradigm Method Connectivity Connectivity between Number Results

within the DMN DMN and other regions of subjects

Zaki et al., 2007 Experience self
pain, and view
other pain

FC, PPI,
voxel-wise

MPFC, PCC-AI,
dACC

19 ↑FC from self pain task to
other pain task

Cheng et al.,
2007

View pain
scenarios

FC, PPI,
seed-based

MPFC-insula 28 (14 experts) ↑negative FC in the
experts compared to
control

Meyer et al.,
2013

View social pain
scenarios

FC, PPI,
voxel-wise

MPFC-AI,
MPFC-dACC

16 ↑FC for the friend’s
exclusion

Gu et al., 2010 View pain
scenarios

FC, PPI,
seed-based

Superior MPFC-
frontoinsula

18 ↓FC under the context of
painful stimuli

Cox et al., 2012 Self-report of
empathy

FC, seed-based Perigenual
ACC-left
amygdala

38 Dominance of affective
empathy was related to
stronger positive FC,
dominance of cognitive
empathy was related to
stronger negative FC

Akitsuki and
Decety, 2009

View pain
scenarios

FC, PPI,
voxel-wise

Medial
OFC-amygdala,
precuneus-
amygdala

26 ↑FC of medial OFC-left
amygdala, precuneus-left
amygdala during painful
situations caused
intentionally

THEORY OF MIND

Atique et al.,
2011

Emotion,
intention ToM

FC, seed-based vMPFC-anterior
TPJ

24 ↑FC of vMPFC-anterior
TPJ during emotion
mentalizing

Burnett and
Blakemore, 2009

Imagine basic
and social
emotional
experience

FC, PPI,
seed-based,
voxel-wise

Anterior rostral
MPFC-pSTS/TPJ

28 (10 adults) ↑FC during social emotion
both in adolescents and
adults, and ↑FC in
adolescents compared to
adults during social
emotion

Mason et al.,
2008

Read passages FC, seed-based MPFC-TPJ Left hemisphere
language
network-ToM
network

36 (10 autistic) ↓FC between left MPFC
and right TPJ, as well as
left hemisphere language
network and ToM network,
during intentional inference
condition in the autistic
group

Baumgartner
et al., 2012

Punish people
for violating
social norms

FC, PPI,
Seed-based

dMPFC-left TPJ 16 Negative correlation
between FC of dMPFC-left
TPJ and third-party
punishment of defecting in
group members

Das et al., 2012 Infer states of
two moving
triangles

FC, ICA Posterior
DMN-lateral
fronto-temporal
networks and
insula

45 (23 schizophrenic) ↓FC in schizophrenic

(Continued)

Frontiers in Human Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 74 | 27

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Li et al. The DMN and social understanding of others

Table 1 | Continued

Study Paradigm Method Connectivity Connectivity between Number Results

within the DMN DMN and other regions of subjects

Herve et al.,
2012

Comprehend
affective speech

FC, seed-based MPFC-TPJ “Medial”
network
–“Language”
network,
amygdala

51 Interaction between
language (inferior frontal,
and temporal areas), ToM
(MPFC, TPJ), and emotion
processing network
observed during emotional
speech comprehension

Lombardo et al.,
2010

ToM judgments
about self or a
familiar
non-close other

FC, seed-based 33 vMPFC, PCC/precuneus,
and TPJ exhibited same FC
patterns during mentalizing
of both self and other

MORALITY

Pujol et al., 2012 Resting state,
moral dilemma,
stroop task

FC, seed-based MPFC-PCC 44 (22 psychopaths) ↓FC during resting state in
psychopathic group

Craig et al., 2009 DTI OFC-amygdala 27 (18 psychopaths) ↓FA of the uncinate
fasciculus in psychopaths

Marsh et al.,
2011

Moral judgment
implicit
association

FC, seed-based rACC/OFC-
amygdala

28 (14 psychopaths) ↓FC during task
performance in
psychopaths

Decety et al.,
2012a

View moral
scenarios

FC, PPI,
seed-based

vMPFC-TPJ vMPFC-
amygdala

126 ↑FC of vMPFC-amygdala
with age when viewing
intentional harm, ↑FC of
vMPFC-pSTS/TPJ while
viewing moral actions in
adults compared to
adolescents

Verdejo-Garcia
et al., 2012

Resting state,
moral dilemma

FC, seed-based
cross-correlation
analysis

ACC-thalami 24 (cocaine users) ↓FC during resting state in
cocaine-dependent
subjects

Shannon et al.,
2011

FC, IDEA DMN-PMdr 202 (107 offenders) FC positively correlated
with impulsivity score in
juvenile offenders, while
negatively correlated with
age in typical developing
individuals

PPI, psychophysiologic interaction analyses; DCM, dynamic causal modeling; ICA, independent component analysis; IDEA, iterative data-driven evolutionary algo-

rithm; FC, functional connectivity; EC, effective connectivity; ASD, autism spectrum disorder; DTI, diffusion tensor imaging; MPFC, medial prefrontal cortex; vMPFC,

ventral medial prefrontal cortex; dMPFC, dorsal medial prefrontal cortex; PCC, posterior cingulate cortex; ACC, anterior cingulate cortex; rACC, rostral anterior cin-

gulate cortex; vACC, ventral anterior cingulate cortex; dACC, dorsal anterior cingulate cortex; OFC, orbital frontal cortex; TPJ, temporo-parietal junction area; IPS,

intraparietal sulcus; MCC, midcingulate cortex; ParaCC, paracingulate cortex; AI, anterior insula; pSTS, posterior superior temporal sulcus; IFG, inferior frontal gyrus;

MTG, middle temporal gyrus; PMdr, dorsolateral premotor cortex; AG, angular gyrus; SFG, superior frontal gyrus; FFA, fusiform face area; rIFGpo, the right pars

opercularis of the inferior frontal gyrus; PHC, parahippocampal cortex.

THE DEFAULT MODE NETWORK
The DMN is an anatomically defined brain system that pref-
erentially activates when individuals are not focused on the
external environment (Buckner et al., 2008). Core areas of the
DMN include the medial posterior cortex [specifically the pos-
terior cingulate cortex (PCC) and parts of the precuneus], medial

prefrontal cortex (MPFC), as well as bilateral inferior parietal
lobule (IPL) expanding to posterior temporal areas around the
temporo-parietal junction (TPJ). Apart from these core areas,
hippocampus and adjacent regions in the medial temporal lobe
(MTL) and lateral temporal cortex (LTC) extending toward the
temporal pole (TP) are also often reported as part of the DMN
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(Shulman et al., 1997; Buckner et al., 2008; Andrews-Hanna et al.,
2010b) (see Figure 1).

The DMN was originally identified in a meta-analysis map-
ping brain areas that showed increased activity during passive
tasks compared to active tasks in block-design positron emission
tomography (PET) studies (Shulman et al., 1997). Three kinds of
activity patterns within the DMN have been found since then. The
first one is consistently decreased activity when subjects engage
in goal-directed tasks as compared to control states (Gusnard
and Raichle, 2001; Greicius et al., 2003); the second one is the
high intrinsic activity during resting states with the eyes closed or
visually fixating without engagement in any specific task (Raichle
et al., 2001; Greicius et al., 2003; Beckmann et al., 2005); and the
last one is the striking overlap between the DMN and regions
activated in social cognitive tasks (Schilbach et al., 2008; Eickhoff
et al., 2009).

So far, evidence have been found that brain regions within the
DMN contribute to specialized functions organized into subsys-
tems that converge on hubs. Buckner et al. (2008) pointed out
that the DMN consisted of at least two interacting subsystems:
the MTL subsystem containing both the hippocampal forma-
tion (HF) and parahippocampal cortex (PHC); and the core
MPFC subsystem including the posterior cingulate/retrosplenial
cortex (PCC/Rsp), ventral MPFC (vMPFC), and IPL. They pro-
posed that the MTL subsystem was associated with mnemonic
processes and activated during successful retrieval of old infor-
mation, and the MPFC subsystem was activated in tasks requiring
participants to engage in self-relevant mental simulations. Using

FIGURE 1 | The medial prefrontal cortex (MPFC) plays a key role in the

social understanding of others. The subregions of MPFC belong to
different subsystems of DMN. At the bottom, the ventral MPFC is in the
medial temporal lobe subsystem (green) and its connections with emotion
regions are mainly associated with emotion engagement during social
interactions. Above, the anterior MPFC is in the cortical midline structures
(yellow) and its connections with posterior and anterior cingulate cortex
contribute mostly to making self-other distinctions. At the top, the dorsal
MPFC (dMPFC) is in the dMPFC subsystem (blue) and its connection with
the temporo-parietal junction (TPJ) are primarily related to understanding
others’ mental states (Andrews-Hanna et al., 2010b). The orange clusters
show the anterior insula and amygdala, which contribute greatly in the
social understanding of others.

memories and associations from past experiences as its building
blocks, the DMN participated in constructing self-relevant men-
tal simulations that were exploited by a wide range of cognitive
functions including remembering the past, thinking about the
future, and conceiving the current viewpoint of others. Andrews-
Hanna and colleagues further suggested that the DMN consisted
of two subsystems that interacted with a common core system (see
Figure 1): one was the dorsal MPFC (dMPFC) subsystem com-
prising the dMPFC, TPJ, LTC, and TP; and the other was the MTL
subsystem comprising the HF, PHC, Rsp, vMPFC, and posterior
IPL. The dMPFC subsystem was selectively activated when par-
ticipants considered one’s own and others’ present mental states,
whereas the MTL subsystem showed preferential activity when
participants simulated the future using mnemonic imagery-based
processes. Both of these two subsystems were strongly correlated
with a midline common core system consisting of the anterior
MPFC (aMPFC) and PCC, which is usually activated when peo-
ple make self-relevant affective decisions. The midline core system
interacted with the MTL subsystem and the dMPFC subsys-
tem to facilitate the construction of mental models of personally
significant events (Andrews-Hanna et al., 2010b).

MEASURING BRAIN CONNECTIVITY IN THE DMN
An increasing number of researchers are interested in the brain
connectivity among the DMN regions and have applied several
newly developed approaches and methodologies to DMN stud-
ies. In the functional connectivity (FC) approach, researchers
compute the statistical interrelation of neurophysiological time
series representing temporal changes in different brain regions,
and examine the stimulus-dependent and -independent synchro-
nizations and interactions between these regions (Friston, 2005;
Menon, 2011). In the effective connectivity (EC) approach, data
can be obtained by dynamic causal modeling (DCM), which esti-
mates and judges the negative or positive impacts of one region
on another and how such impacts are affected by experimental
context (Aertsen et al., 1989; Friston, 2002). Granger causality
and other similar methods, unlike the bidirectional functional
connectivity, which is a model-free concept, computes the uni-
directional EC and emphasizes asymmetric causal interactions
between neural systems. Granger causality estimates forward
(bottom-up) vs. backward (top-down) connectivity between
diverse regions. Nevertheless, it has been criticized for the lack of
a biologically-based generative model and likelihood of obtaining
pseudo estimated “causality” that is in fact induced by systematic
differences across brain areas in hemodynamic lag (Friston, 2009;
Smith et al., 2011). Functional and effective connectivity can be
studied through both linear techniques (correlation coefficient,
coherence) and non-linear techniques (phase synchronization,
generalized synchronization) (Stam and van Straaten, 2012). It
is worth noting that, negative correlations in brain connectiv-
ity analysis, sometimes referred to as anti-correlations, must be
cautiously interpreted since they are usually present only after
regressing whole-brain signals. This raises a point of contro-
versy: whole-brain normalization leads to a bell-shaped corre-
lation value distribution centered on zero, thereby guaranteeing
negative correlations even if such correlations were not initially
present in the data (Murphy et al., 2009; van Dijk et al., 2010).
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A brain network can also be defined on the basis of structural
connectivity through Magnetic Resonance Imaging (MRI) mor-
phology and Diffusion Tensor Imaging (DTI) tractography in vivo
or tracer studies on postmortem tissue. Structural connectivity
denotes a network of anatomical links and places constraints on
which functional and effective interactions occur in the network
(Bullmore and Sporns, 2009; Bressler and Menon, 2010; Menon,
2011).

BRAIN CONNECTIVITY STUDIES ON DMN AND SOCIAL
UNDERSTANDING OF OTHERS
EMOTION PERCEPTION
Emotion plays a crucial role in human social cognition. Perceiving
and interpreting other people’s emotion status is one of the most
important steps during social interaction. Traditional studies on
the neural mechanism of emotion adopted a locationist approach,
which asserted that each basic emotion faculty has its own special-
ized neural circuitry that is architecturally distinct, inborn, and
shared with other animals (Panksepp, 2004). Early neuroimaging
results were indeed congruent with this assumption, for example
amygdala for fear (Adolphs et al., 1995), insula for disgust (Wicker
et al., 2003), orbitofrontal cortex (OFC) for anger (Murphy et al.,
2003), and subgenual anterior cingulate cortex (ACC) for sad-
ness (Murphy et al., 2003). However, several recent meta-analyses
and reviews favored the psychological constructionist approach,
which suggested that a set of interacting brain regions involved
in the basic psychological operations of both emotional and non-
emotional processing were activated during emotion experience
and perception (Lindquist and Barrett, 2012; Lindquist et al.,
2012). Yet co-activation of different brain regions does not nec-
essarily mean connectivity between them, so the evidence for the
constructionist approach is inconclusive and brain connectivity
results would be critical for examining this approach.

Most emotion perception studies using brain connectivity
methods revealed changes between the DMN and other brain sys-
tems, especially between the prefrontal cortex and amygdala. In a
gender discrimination task of angry and neutral faces, Passamonti
et al. (2008) confirmed that the interaction between the ventral
ACC and amygdala was influenced by the drive to obtain reward,
with reduced negative connectivity in high reward-drive partici-
pants. The direction of this effect was limited to connection from
the ventral ACC to the amygdala but not vice versa. Moreover,
in another study, the rostral ACC was negatively coupled with the
amygdala in high vs. low conflict resolution trials of a classic emo-
tion Stroop task with fearful and happy faces, and the strength
of the connectivity predicted successful conflict resolution (Etkin
et al., 2006). Studies also found that the connectivity between dif-
ferent subregions of the MPFC and amygdala may make diverse
effects on emotion function. For example, when people did a fear
perception task, there was a dorsal-ventral division in ACC mod-
ulation of the thalamus-sensory cortex pathway, with a positive
modulation of this pathway from dorsal ACC and a negative one
from the ventral ACC (Das et al., 2005). In addition, Satterthwaite
et al. (2011) demonstrated that the amygdala responded prefer-
entially to threatening (fearful or angry) faces and had increased
connectivity during threat trials with the OFC. Moreover, a
study also showed that the neuroticism scores of subjects were

negatively related to the left amygdala-ACC connectivity, but pos-
itively associated with the right amygdala-dorsomedial prefrontal
connectivity, when processing negative emotional facial expres-
sions (angry and fearful compared to neutral faces) (Cremers
et al., 2010).

Besides the prefrontal cortex and amygdala, functional con-
nectivity changes between other regions were also found in autism
patients. For example, in a facial expression identification task,
the healthy control group had significantly increased connectiv-
ity between the fusiform face area and PCC compared to autism
patients (Kleinhans et al., 2008). In another study requiring
subjects to passively view emotional facial expressions, typically
developing children showed an anticorrelation between the right
pars opercularis of the inferior frontal gyrus (rIFGpo) and the
DMN, whereas autistic children showed a similar anticorrelated
relationship between the rIFGpo and the posterior portion of the
DMN, but not the anterior portion of the DMN (vMPFC) (Rudie
et al., 2012).

General speaking, the FC in emotion perception studies con-
centrated on the relation between the vMPFC (including parts
of ACC), and other emotion-related areas, mainly the amyg-
dala and insula. The DMN has been theorized to make sensory
inputs meaningful as “situated conceptualizations” for distinct
emotions, since it reconstitutes past experiences for use in the
present (Lindquist and Barrett, 2012; Lindquist et al., 2012). The
vMPFC, as part of the DMN, is believed to receive reinforce-
ment expectancy information from emotion learning systems
that process the reinforcement provided by specific reinforcers of
emotional expressions (Blair, 2007). Thus, the above results from
functional connectivity in emotion perception may demonstrate
that the vMPFC is indeed associated with successful regulation of
human’s emotional perception and responses.

EMPATHY
Empathy can be defined as the process to generate an isomorphic
affective state in the self to understand another individual’s emo-
tional state or condition while realizing that it is the other who
causes this affective state (Decety and Svetlova, 2012; Engen and
Singer, 2012). Neuroimaging of empathy is usually acquired by
scanning people’s brain when they fall into empathic states with
various emotions such as disgust, reward, joy, and, particularly,
pain (Jabbi et al., 2008; Singer et al., 2009; Bernhardt and Singer,
2012). Researchers proposed that at least three neural systems play
vital roles in empathy: the mirror neuron system, the affective
empathy system located in the anterior insula (AI) and midcin-
gulate cortex (MCC), and the cognitive empathy system of theory
of mind that almost overlaps with the DMN network. The affec-
tive empathy system and the cognitive empathy system are linked
through the vMPFC (Walter, 2012).

Only a few empathy studies adopted brain connectivity meth-
ods to investigate the FC within the DMN, most of which were
studying pain. For instance, although temporal correlation anal-
ysis demonstrated that the anterior DMN (aDMN) was deacti-
vated in both the “Pain” and “No Pain” conditions compared to
the resting-state, the decrease of connectivity was significantly
stronger in the “No Pain” than “Pain” condition. In addition,
independent component analysis (ICA) demonstrated that higher
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integration of the left medial OFC into the aDMN was associated
with higher post-scan pain ratings (Otti et al., 2010).

Most of empathy studies focused on the connection between
the DMN (e.g., MPFC) and other regions, especially the insula.
When participants watched short videos of other people suffer-
ing painful injuries, the brain area of dMPFC and PCC showed
greater connectivity with the dorsal ACC and AI than when par-
ticipants received noxious thermal stimulation (Zaki et al., 2007).
In another study, subjects were asked to view color photographs
describing human body parts in painful or non-painful situations
and then judge whether the person was suffering from pain or not.
Results revealed that the frontoinsular cortex showed decreased
FC with the superior MPFC in response to the painful compared
to non-painful stimuli (Gu et al., 2010). Moreover, observing a
friend experiencing social exclusion would trigger greater inten-
sity of FC between the MPFC and both the dorsal ACC and
bilateral insula than observing a stranger doing so (Meyer et al.,
2013). Furthermore, Cheng et al. (2007) proposed that medical
experts who applied painful procedures in their practice could
regulate the unpleasant feelings generated by perceiving others
in pain through modulating attentional demands. In accord with
this hypothesis, experts showed negative FC between the MPFC
and AI, whereas the controls showed no significant correlation
with the MPFC.

As to the relationship between the amygdala and MPFC in
empathy, studies found that the FC pattern between the amyg-
dala and other brain areas was modulated by social context. For
instance, the medial OFC and precuneus showed stronger covari-
ation with the left amygdala when the visual stimulus was one per-
son in a painful situation caused by another individual than when
the situation was caused by accident (Akitsuki and Decety, 2009).
Cox et al. (2012) argued that relative empathic ability (REA), the
difference between affective empathy and cognitive empathy, is
a useful index for empathy ability. Their results showed that the
dominance of affective empathy was associated with stronger FC
among social-emotional regions (ventral anterior insula, OFC,
amygdala, perigenual ACC), whereas the dominance of cognitive
empathy was related to stronger FC among areas implicated in
social-cognitive regions (brainstem, STS, ventral anterior insula).

The FC differences found in empathy studies may reflect
similar mechanisms as emotion perception, which involve the
vMPFC’s connection with the amygdala and insula (Akitsuki and
Decety, 2009; Otti et al., 2010). Empathy has a deep evolutionary
foundation stemming from the phylogenetically ancient practice
of parental care, which assists the propagation of genetic legacy
to future generations. The motivational systems originally devel-
oped to care for one’s offspring have gradually been used to
facilitate positive relationships between unrelated group mem-
bers. Ultimately, empathy became a useful means of forming
and maintaining strong social bonds between unrelated individ-
uals (Decety et al., 2012b). By enabling human beings to feel the
suffering of others, empathy can promote affective interactions
and contribute to prosocial behaviors toward other conspecifics,
depending on relevant social contexts and social relationships
(Decety and Porges, 2011). Thus, it is very important for humans
to identify the real protagonist of emotion—the one who causes
this affective state. It follows that empathy, to a great extent,

is based on emotion perception. Consistent with this line of
thought, the region in the frontal cortex that is strongly impli-
cated in both empathy and emotion perception is the aMPFC
(Cheng et al., 2007; Otti et al., 2010; Cox et al., 2012; Meyer et al.,
2013), which takes charge of the self-other distinction. There are
also some other areas connected with the dMPFC (Zaki et al.,
2007; Gu et al., 2010), which contribute to the recognition of
other humans’ mental states.

THEORY OF MIND
Theory of mind refers to the ability to explain, predict, and
interpret another person’s behavior by attributing affective and
cognitive mental states such as desires, beliefs, intentions and
emotions to other people (Amodio and Frith, 2006; Abu-Akel
and Shamay-Tsoory, 2011; Krause et al., 2012). The machin-
ery of ToM involves at least three basic processes: representing
cognitive and affective mental states, attributing these mental
states to others, and finally applying (or deploying) these mental
states to correctly comprehend and forecast behavior (Abu-Akel
and Shamay-Tsoory, 2011). A number of neuroimaging stud-
ies have demonstrated the crucial role of the MPFC in ToM
tasks (Northoff and Bermpohl, 2004; Uddin et al., 2007; Qin and
Northoff, 2011). Some researchers also declared that ToM was
subserved by the posterior DMN (pDMN) regions. For instance,
Saxe argued that the right TPJ was vital for representing men-
tal states, particularly false beliefs (Saxe, 2006), and Samson and
colleagues proposed that the left TPJ (coupled with the frontal
lobes) was crucial for the representation of mental states (Samson
et al., 2004). In general, neuroimaging studies have identified a
common pattern of brain activation underlying autobiographical
memory, ToM, and the DMN (Fair et al., 2008; Spreng et al., 2009;
Spreng and Grady, 2010).

Past ToM studies investigating the brain connectivity within
the DMN revealed strong connections between the parietal and
frontal cortex. For instance, Atique and colleagues compared the
different patterns of functional connectivity between inferring
another person’s emotion (emotion mentalizing) and intention
(intention mentalizing) in the DMN. The results revealed a dou-
ble dissociation, such that a more anterior region of the right and
left TPJ was more strongly activated during emotion mentaliz-
ing and showed stronger FC with the vMPFC, whereas a more
posterior region was more strongly activated during intention
mentalizing (Atique et al., 2011). Burnett and Blakemore found
that an anterior rostral region of the MPFC (arMPFC) showed
greater connectivity with the posterior superior temporal sul-
cus (pSTS) bordering on the TPJ and anterior temporal cortex
during social emotion (such as embarrassment and guilt) than
basic emotion, which was in line with the assumption that social
emotions require the representation of another’s mental states.
They also found that the adolescent group possessed stronger
connectivity between arMPFC and pSTS/TPJ during social vs.
basic emotion than did the adult group (Burnett and Blakemore,
2009). Moreover, Mason et al. (2008) detected that the autism
group had lower functional connectivity within the DMN net-
work (between the left medial frontal gyrus and right TPJ) in the
intentional inference condition than the control group. In addi-
tion, researchers found that when subjects made the decision to
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punish in-group members and out-group members for violating
social norms (third-party punishment), the less in-group mem-
bers were punished, the stronger was the FC between the dMPFC
and left TPJ (Baumgartner et al., 2012).

Some other studies explored the connectivity between the
DMN network and other regions during ToM processing. For
example, in a study asking schizophrenia patients to infer the
social interactions of two moving triangles, FC analyses showed
that the degree of FC between task-positive (lateral fronto-
temporal network and insula) and task-negative (medial fronto-
temporal network and pDMN) regions was significantly reduced
in schizophrenia patients as compared to controls (Das et al.,
2012). Another study also detected that autistic patients had lower
FC between the DMN (the left MPFC and the right TPJ) and a
left hemisphere language network (the inferior frontal gyrus and
posterior left middle temporal gyrus) in the intentional infer-
ence condition than the control group (Mason et al., 2008).
Additionally, in a study using an affective speech comprehen-
sion task, researchers identified three functional modules with
FC analysis, including a “medial” ToM network (the MPFC and
TPJ regions), a bilateral “language” network (the inferior frontal
and temporal areas), and the bilateral amygdala. The coopera-
tion of these modules was observed during people’s emotional
speech comprehension, with the left angular gyrus playing a crit-
ical role when the medial network and the language network
interacted (Herve et al., 2012). Furthermore, Lombardo et al.
(2010) found that the vMPFC, PCC/precuneus, and TPJ all exhib-
ited the same FC patterns during mentalizing of both self and
others, which indicated that identical neural circuits were imple-
menting processes involved in the mentalizing of both self and
others.

To sum up, the main findings of ToM studies focused on
the connection between the dMPFC and TPJ (Mason et al.,
2008; Burnett and Blakemore, 2009; Baumgartner et al., 2012;
Herve et al., 2012), with few studies on the FC between vMPFC
(Lombardo et al., 2010; Atique et al., 2011) and aMPFC (Burnett
and Blakemore, 2009), as well as some other regions, such as
the insula and language network (Das et al., 2012; Herve et al.,
2012). Relative to emotion perception and empathy, ToM is con-
sidered as a relatively high-level cognitive process (Gallagher and
Frith, 2003; Amodio and Frith, 2006). Many species can predict
the goals of others, while only humans and perhaps some non-
human primates can separate one’s own mental perspective from
that of others (Van Overwalle, 2009; Van Overwalle and Baetens,
2009). The process of ToM critically involves self-projection, since
we must imagine ourselves in the same situation as another per-
son and use our own experiences to simulate and understand
the mind of that person (Blakemore and Decety, 2001; Spreng
et al., 2009; Spreng and Grady, 2010; Spreng and Mar, 2012).
Hence, the ToM processes require not only representing current
and mnemonic event materials, which mainly depends on the
posterior hemisphere of the human brain, but also distinguish-
ing self from others, which is the critical function of the frontal
cortex. The involvement of dMPFC in ToM is perhaps due to
its responsibility for evaluation and decision-making processes
in self- and other-referential processing (van der Meer et al.,
2010).

MORALITY
Psychologists’ interest in the moral dimensions of life and
thoughts could date back to the dialogs of Plato and Aristotle’s
ethical treatises. In the recent 20 years, neuroscience has started
a new era for moral psychology. Neuroimaging studies have
found several brain regions related to morality, such as the ACC
(Greene et al., 2004), TPJ (Young et al., 2007, 2011; Young and
Saxe, 2008, 2009), vMPFC (Tangney et al., 2007; Zahn et al.,
2009; Moll et al., 2011), and dorsolateral prefrontal cortex Greene
et al., 2004, 2008. The distributed nature of the moral network
led researchers to shift their focus from seeking domain-specific
brain regions dedicated to morality to determining the contri-
butions of domain-general processes to morality (Shenhav and
Greene, 2010; Young and Dungan, 2011). The existing results
show that the moral brain network is closely associated with the
DMN (Buckner et al., 2008; Bzdok et al., 2012; Reniers et al.,
2012).

Connectivities within the DMN have been found in some
morality studies. Decety found that the adult group showed
the strongest connectivity between the vMPFC and pSTS/TPJ
during viewing of moral actions relative to non-moral actions
when compared to other, younger groups (Decety et al., 2012a).
Harrison et al. (2008a) compared the FC within the DMN when
subjects were resting, judging moral dilemmas, or performing the
Stroop task. They found that regions within the DMN, particu-
larly the posterior and anterior cingulated cortex, showed greater
correlated activity during the moral dilemma task compared to
the resting state. Pujol and colleagues further discovered that,
in contrast with control subjects, psychopathic individuals with
documented histories of severe criminal offenses showed signifi-
cantly reduced FC between the medial frontal cortex (aDMN) and
posterior brain areas (pDMN) in the resting state (Pujol et al.,
2012).

Due to the complexity of morality, researchers are also very
interested in the relation between the DMN and other networks,
particularly the amygdala. When categorizing illegal and legal
behaviors in an implicit association moral judgment task, youths
with psychopathic traits displayed reduced FC between the amyg-
dala and the medial OFC compared with healthy controls (Marsh
et al., 2011). Decety et al. (2012a) found a positive age-related
increase of FC between the vMPFC and amygdala in response to
intentional harm. Another study reported significantly reduced
fractional anisotropy (FA), an indirect measure of microstruc-
tural integrity, in the uncinate fasciculus (white matter connec-
tions linking the amygdala and OFC) of psychopaths compared
with controls (Craig et al., 2009). Cocaine-dependent subjects
have been found to have less resting-state functional connectivity
between the ACC, thalamus, insula and the brain stem com-
pared with controls (Verdejo-Garcia et al., 2012). Furthermore,
researchers also found that the strength of the coupling between
the dorsolateral premotor cortex and the DMN was positively
correlated with the impulsivity scores in juvenile offenders but
negatively correlated with age in typically developing individuals
(Shannon et al., 2011).

Moral judgment is one of the most complex social behaviors.
It involves a variety of lower level cognitive processes, such as
distinguishing between self and others, integrating social norms,
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computing goal-directed actions, showing empathy to others and
inferring the intentions of others (Moll et al., 2008; Bzdok et al.,
2012; Feldmanhall et al., 2013). Corresponding complexity has
been shown in the above FC results. Moral judgment studies
reported FC results that not only involved areas subserving emo-
tion perception, empathy, ToM, but also other regions, such as
the FC between the medial OFC and precentral sulcus (Decety
et al., 2008), as well as the ACC and thalamus (Verdejo-Garcia
et al., 2012). However, neuroimaging studies using brain connec-
tivity methods are still scarce in the field of morality. Given the
importance of moral judgment to society, high priority should
be given to conducting more studies using the FC approach to
further explore the neural mechanisms of morality.

DISCUSSION
One of the consistent trends revealed in the above studies is that
tasks from all the related fields of social understanding of oth-
ers, from emotion perception to morality, elicit brain connectivity
changes from the MPFC (extending to the ACC), a core region of
the DMN, to other regions either inside (e.g., TPJ or PCC) or out-
side (e.g., insula or amygdala) of the DMN. Furthermore, more
complex behaviors are subserved by brain regions which are sit-
uated higher in the frontal cortex. These results indicate that the
MPFC plays a critical role in the social understanding of others,
and different parts of MPFC take charge in distinct cognitive pro-
cesses. According to Andrews-Hanna et al. (2010b), the MPFC
can be divided into three subregions that belong to different sub-
systems of the DMN: the dMPFC in the dMPFC subsystem, the
vMPFC in the MTL subsystem and the aMPFC in the midline
common core system. The FC results reviewed in the current
article provide support for the statements above.

CONNECTIVITY FROM THE vMPFC OF THE MTL SUBSYSTEM
The vMPFC in the MTL subsystem is crucial in processing emo-
tional features during social cognition. Connectivity changes
between the vMPFC and other DMN regions (TPJ) have been
found in ToM studies and morality studies. Atique and col-
leagues found that a more anterior region of the right and left
TPJ showed strong FC with the vMPFC during emotion men-
talizing (Atique et al., 2011). In contrast, Decety et al. (2012a)
found an increase of FC between the vMPFC and pSTS/TPJ while
viewing moral actions in adults compared to adolescents. The
connection between the vMPFC and TPJ in these two fields can
be attributed to the affective aspects of ToM that enables humans
to infer emotions.

The dense connections between the vMPFC and emotional
regions (e.g., amygdala, insula) means this frontal region can
represent and regulate socioemotional states and synthesize a
diverse range of information to represent affective mental states
(Abu-Akel and Shamay-Tsoory, 2011). In all four fields, particu-
larly emotion perception and empathy, the connectivity changes
between the amygdala and vMPFC were repeatedly attested. The
detection of connectivity between these two regions, to a certain
extent, is consistent with discoveries in animal studies using fear
conditioning paradigms which affirm that these regions play a
critical role in the process of animal fear conditioning (Maren and
Quirk, 2004; Jovanovic and Ressler, 2010; Fiorenza et al., 2012).

Researchers have put forward a fear conditioning neuromech-
anism model, in which learning the conditioned responses in
the central nucleus of the amygdala is modulated by two sepa-
rate processes. One signals a positive prediction error from the
basolateral amygdala, and another signals a negative prediction
error from the vMPFC (Moustafa et al., 2013). This model is,
in part, similar to the Integrated Emotion Systems (IES) model
proposed by Blair (2007), which states that relatively indepen-
dent emotion learning systems (e.g., the processing of fearful, sad
and happy expressions in the amygdala, disgust expressions in the
insula, as well as angry expressions in the inferior frontal cor-
tex) input reinforcement expectancy information to the vMPFC
while processing reinforcement provided by specific reinforcers
of emotional expressions. The vMPFC represents the informa-
tion and thus allows decision making, including moral decision
making. The reduced connectivity between the MPFC and amyg-
dala (Marsh et al., 2008; Glenn, 2011; Motzkin et al., 2011)
instead of the insula and inferior frontal cortex in psychopaths
relative to controls offers strong confirmation, as their impair-
ments when processing care-based transgressions is thought to
depend on the amygdala’s role in the association of the trans-
gression with the fear/sadness of the victim. Compared with
the IES model, the amygdala-hippocampal-prefrontal interaction
model includes the hippocampus, which is also frequently found
in emotion related studies using functional connectivity meth-
ods (Kensinger and Corkin, 2004; Smith et al., 2006), and takes
the effects of environment into account. However, there are still
many open questions. For example, what is the actual role of the
vMPFC? Does this region only signal a negative prediction error
to the central nucleus of the amygdala, as Moustafa states, or does
it play a part in successful decision making, as Blair asserts? How
do other’s emotions influence one’s own moral decision?

CONNECTIVITY FROM THE aMPFC OF THE CORTICAL MIDLINE
STRUCTURES
The aMPFC and PCC are part of the core cortical midline struc-
tures (CMS) of the DMN, which mostly contributes to the elab-
oration of the experiential feelings of self (Northoff et al., 2006,
2011; Leech et al., 2011; Pearson et al., 2011; Qin and Northoff,
2011; Denny et al., 2012; Leech and Sharp, 2013). The aMPFC
has been proposed to be critical in making self-other distinc-
tions. For example, the aMPFC activates when participants make
judgments or remember trait adjectives about themselves com-
pared to other people (e.g., Kelley et al., 2002; D’Argembeau et al.,
2005; Heatherton et al., 2006; Mitchell et al., 2006). The above
results show the crucial role the aMPFC plays in processes of
social behavior, especially empathy. For instance, medical experts
who applied painful procedures in their practice showed negative
FC between the MPFC and AI, while controls showed no signif-
icant correlation with the MPFC (Cheng et al., 2007). It could
be interpreted that long-term practice allows the medical experts
to regulate the unpleasant feelings through self-other discrimina-
tion to identify the real protagonist of pain. In addition, observing
a friend experience social exclusion triggers greater intensity of
FC between the MPFC and both the dorsal ACC and bilateral
insula than observing a stranger doing so (Meyer et al., 2013).
This result can be explained by the logic that the concept of friend,
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as compared to stranger, is closer to the self, thus social exclusion
of a friend brings about greater FC.

CONNECTIVITY FROM THE dMPFC OF THE dMPFC SUBSYSTEM
The main results of the reviewed studies with regards to the
DMN are the associations between the dMPFC and TPJ in the
dMPFC subsystem, which were present not only in ToM (men-
talizing) but also in morality studies. Understanding complex
social interactions among people who are presumed to be social,
interactive, and emotive always involves the processing of self-
reflective thoughts and judgments (Buckner et al., 2008). Thus it
is not surprising that connections between the TPJ and dMPFC
are commonly found in these studies, since these two areas
are key regions known to be involved in inferring temporary
goals, intentions, desires, and more enduring dispositions of
others owing to previous localization results using the mental-
izing paradigm (Gallagher and Frith, 2003; Mitchell et al., 2005;
Hampton et al., 2008; Steinbeis and Koelsch, 2009; Van Overwalle
and Baetens, 2009). For example, studies have shown that func-
tional connectivity between the dMPFC and TPJ increased when
healthy participants performed ToM tasks on social properties
but decreased when autistic participants did (Mason et al., 2008;
Burnett and Blakemore, 2009; Baumgartner et al., 2012).

Several different theories have been proposed to interpret
the relationship between the dMPFC and TPJ (as well as other
LTC regions such as pSTS). For example, it is suggested that
the dMPFC is associated with the internally-focused process
of considering the contents of another person’s mind, whereas
those temporal regions are related to externally-focused processes
that do not require consideration of a target’s internal states
(Lieberman, 2007). Some researchers have argued that the TPJ is
responsible for a domain-general computational mechanism for
reorienting attention to the agency (e.g., other individual) and the
MPFC is more domain specific for understanding human men-
tal states (Decety and Lamm, 2007). Others have proposed that
the TPJ is more specific for the, possibly uniquely, human abil-
ity to reason about others’ affective and cognitive mental states,
and the MPFC is more domain-general (Saxe, 2006). Thus the FC
between the TPJ and the MPFC would be an index of either shift-
ing between internally-focused and externally-focused processes
or communication between domain-general and domain-specific
processing during the understanding of others’ mental states.

CONNECTIVITY FROM OTHER REGIONS OF THE DMN
Besides the MPFC and TPJ, several studies also revealed con-
nectivity changes between the PCC/Precuneus in the CMS and
other regions within and outside the DMN (Zaki et al., 2007;
Harrison et al., 2008b; Assaf et al., 2010; Weng et al., 2010; Pujol
et al., 2012). The PCC appears sensitive not only to explicit
emotional engagement, for example, during tasks of emotional
word processing and face-perception, but also implicit emotional
engagement during self-directed attention or evaluation, as well
as autobiographical memory Leech et al., 2011, 2012; Pearson
et al., 2011; Leech and Sharp, 2013. Vogt et al. (2006) thus
proposed that the PCC may respond to the general emotional
content of events, particularly when the nature of processing is
self-relevant.

In summary, during tasks from all four social fields, emotion
perception, empathy, ToM, and moral judgments, connectivity
changes were found between the MPFC and other regions within
the DMN (e.g., TPJ, PCC) or outside the DMN (e.g., amygdala,
insula). Evidence has shown that the MPFC is closely related to
self-referential processing (Northoff et al., 2011; Wagner et al.,
2012; Moran et al., 2013). The connectivity changes between
the MPFC and other regions further confirm the viewpoint that
humans use memories and associations from past experiences
as the building blocks for understanding other’s emotional and
cognitive states. Furthermore, these studies suggest that different
parts of the MPFC undertake distinct responsibilities. Specifically,
connectivity changes between the emotion regions and vMPFC
were repeatedly found in all four fields, particularly emotion
perception and empathy; the aMPFC was found to be crucial,
especially for empathy; and the associations between the dMPFC
and TPJ were usually present in ToM (mentalizing) and moral-
ity studies. As social behaviors become more and more complex,
the involvement of related regions in the medial frontal cortex
gradually increased as well, which may reflect the transition of
information processing from automatic to effortful cognitive pro-
cesses. In consideration of all these findings, we propose that the
vMPFC is engaged in identifying self-relevant information and
assessing the salience of stimuli (Gusnard et al., 2001; Northoff
and Bermpohl, 2004; Northoff et al., 2006); the aMPFC takes
charge in making clear self-other distinctions (Andrews-Hanna
et al., 2010b), and the dMPFC is involved in the evaluation and
decision of whether a certain stimulus is applicable to the self or
to another (van der Meer et al., 2010).

In addition to the MPFC regions, social understanding of
others also includes cognitive processing for extracting existing
storage and perceiving immediate material to represent current
events, as well as for identifying and expressing the emotion itself.
The former is closely related to the TPJ, which is believed to help
in the establishment of a social context for a decision (Carter and
Huettel, 2013), whereas the latter is managed by the amygdala,
insula and other emotion regions. These three basic processes
interact with each other and eventually lead to the formation of
complex social behavior.

Reproducibility is a lingering issue with previous studies. For
example, Andrews-Hanna and colleagues divided the MPFC into
dMPFC, vMPFC, and aMPFC and proposed that they respectively
belong to the dMPFC subsystem, MTL subsystem, and common
core system (Andrews-Hanna et al., 2010a,b). van der Meer and
colleagues further suggested that “the vMPFC is responsible for
tagging information relevant for “self,” whereas the dMPFC is
responsible for evaluation and decision-making processes in self-
and other-referential processing” (van der Meer et al., 2010).
However, other studies did not emphasize the role of aMPFC, but
instead showed that the vMPFC responds more to self, whereas
the dMPFC responds more to others (Denny et al., 2012; Wagner
et al., 2012). Compared with these studies, the present article
specifically highlights the function of self-other distinction in
the aMPFC for two main reasons: theoretically, there must be
some transition from self to others and the aMPFC anatomi-
cally connects the vMPFC and dMPFC; in practice, as we have
presented, this area has been repeatedly found to participate in
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the differentiating of self and others. However, to address the
divergence and inconsistencies between studies, more brain con-
nectivity methods such as those from graph theory, statistical
physics, and non-linear dynamics should be put to use to confirm
the relations and differences between the subregions of the MPFC
and the DMN. Transcranial magnetic stimulation and transcra-
nial direct-current stimulation should also be considered because
they can provide causal evidence to evaluate the above theories.

CONCLUSION AND FUTURE DIRECTIONS
In this article, we reviewed recent studies on the social under-
standing of others using brain connectivity methods. We focused
on the brain connectivity within and outside the DMN in four
different research fields: emotion perception, empathy, ToM, and
morality. The reviewed studies suggest that the MPFC plays a
key role in the social understanding of others, the subregions of
the MPFC contribute differently to this function according to
their roles in the different subsystems of the DMN, and more
complex behaviors are related to anatomically higher regions
in the frontal cortex. Starting from the bottom, the vMPFC in
the MTL subsystem and its connection with emotion regions
are mainly associated with emotion engagement during social
interactions. Above the vMPFC, the aMPFC in the CMS and its
connections with the PCC and ACC contribute mostly to mak-
ing self-other distinctions. At the top, the dMPFC in the dMPFC
subsystem and its connection with the TPJ are primarily associ-
ated with understanding others’ mental states. Besides the MPFC
and TPJ, the connectivities of the PCC also show some changes
during tasks from the four social fields. These results indicate
that the DMN is indispensable in the social understanding of
others.

Several points require attention during future development of
large-scale brain connectivity studies of social cognition. First of
all, interest in brain connectivity arose from the study of brain
lesions and neuropsychiatric disorders ranging from epilepsy to
autism (Menon, 2011; Shafi et al., 2012). A rich body of litera-
ture on neuropsychiatric disorders suggest that abnormalities in
the interactions of network components play a vital role in these
disorders (Lytton, 2008; Vissers et al., 2012), and damage to spe-
cific functional connectivity networks can result in corresponding
neuropsychopathy (Seeley et al., 2009). However, compared with
lesions and patient studies, there are far fewer studies on healthy
human participants applying the methods and theories of brain
connectivity, let alone in the field of social cognition. This is a
very promising approach for future work.

Secondly, most previous studies exploring the social brain
in healthy participants only computed the functional or effec-
tive connectivity among regions of interest determined by prior
experience or localization tasks, whereas a wide range of brain
connectivity methods such as those from graph theory, statistical
physics, and non-linear dynamics have been adopted in neuropsy-
chiatric disorders studies (van den Heuvel and Hulshoff Pol, 2010;
Menon, 2011; Xia and He, 2011; Stam and van Straaten, 2012;
Yu et al., 2012; Griffa et al., 2013). Undoubtedly, these meth-
ods should be put to use to confirm the relations and differences
between subregions in the MPFC or the DMN and deeply explore
the complex social brain network in healthy participants.

Thirdly, so far most brain connectivity studies are con-
ducted with fMRI, a technique based mainly on correlational
evidence. However, investigating causality is the main goal of
scientific studies, so building causal models accounting for the
entire loop of social information processing within and between
brains would be a promising future direction (Singer, 2012).
Consequently, the methods for studying brain networks could
be combined with many other methodologies, such as multi-
voxel pattern analyses (Carter et al., 2012), transcranial magnetic
stimulation/transcranial direct-current stimulation (Young et al.,
2010; Carter et al., 2012), genetic-imaging approaches (Glenn,
2011), and pharmacological interventions (Sripada et al., 2012)
to explore the neural substrates of various human physiological
and psychological states during social interaction.
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Our brain is a complex network of structurally and functionally interconnected regions,
shaped to efficiently process and integrate information. The development from a brain
equipped with basic functionalities to an efficient network facilitating complex behavior
starts during gestation and continues into adulthood. Resting-state functional MRI
(rs-fMRI) enables the examination of developmental aspects of functional connectivity (FC)
and functional brain networks. This review will discuss changes observed in the developing
brain on the level of network FC from a gestational age of 20 weeks onwards. We discuss
findings of resting-state fMRI studies showing that functional network development starts
during gestation, creating a foundation for each of the resting-state networks (RSNs) to
be established. Visual and sensorimotor areas are reported to develop first, with other
networks, at different rates, increasing both in network connectivity and size over time.
Reaching childhood, marked fine-tuning and specialization takes place in the regions
necessary for higher-order cognitive functions.

Keywords: resting-state functional MRI, functional connectivity, brain development

INTRODUCTION
The change from basic behavioral patterns during the first
months after birth to being able to reason logically as an
adult illustrates that development of the brain with age is very
important. Although these cognitive manifestations of brain
development are impressive, brain maturation may be even bet-
ter appreciated by the macroscopic anatomical changes which the
brain undergoes before birth. Considerable increases in both cor-
tical folding and volume have been studied from 26 weeks gesta-
tional age (Figure 1) (Dubois et al., 2008; Ment et al., 2009). Even
though this process continues also beyond the age of 2, impor-
tant changes in cortical folding and volume are observed before 2
years of age. From the age of 2 onwards, both cognitive and behav-
ioral development becomes more prominent, while the extent of
macroscopic anatomical changes and myelination is fairly limited
compared to changes before the age of 2 (Paus et al., 1999). Thus,
development of these domains during late human development
is more likely to rely on microstructural or functional changes
(Yakovlev and Lecours, 1967; Paus et al., 1999).

For studying brain development, previous research has shed
light on different aspects of the early developing brain, such as
cerebral volume, cortical morphology, gray/white matter ratios,
and brain metabolism (Chugani, 1998; Dubois et al., 2008;
Hüppi, 2011). Studies have revealed several aspects of brain
structure and function using techniques such as conventional
MRI, diffusion-tensor imaging (DTI), positron emission tomog-
raphy (PET), and electroencephalography (EEG) (Chugani, 1998;
Smit et al., 2012; Vasung et al., 2013). An imaging technique
to study the functional interactions between brain regions is

resting-state functional MRI (rs-fMRI), which measures the level
of correlation between endogenous brain signals. Evidence is
emerging that this spontaneous activity is predominantly of
a neuronal origin and can thus reflect functional connectiv-
ity (FC) within the brain (Fox and Raichle, 2007; Leopold
and Maier, 2011). In case of a significant overlap of sponta-
neous activation patterns of two spatially distant brain regions,
a level of FC is assumed and a so-called resting-state net-
work (RSN) can be identified (Fox et al., 2005; Fox and
Raichle, 2007). At least eight resting-state networks, among oth-
ers motor, visual, attentional, and default-mode networks, have
been described in adult humans (Figure 2) (Damoiseaux et al.,
2006; Smith et al., 2009; Van den Heuvel and Hulshoff Pol,
2010). Also animal studies in rodents (Becerra et al., 2011;
Jonckers et al., 2011) and monkeys (Hutchison et al., 2011;
Mars et al., 2011) have shown analogous large-scale brain net-
works, validating concepts of functional network connectivity in
humans.

This review will address some of the developmental changes
that can be observed in the functional networks of the young
brain using rs-fMRI. First, to illustrate how the early human
brain develops qualitatively, connectivity patterns of preterm
and full-term children up to the age of 2 will be discussed.
After a concise description of late human brain development,
i.e. from 2 years of age onwards, the focus will shift toward
quantitative measurements of brain development. Lastly, a brief
summary, a discussion of a number of technical limitations
of rs-fMRI as well as future directions for research will be
provided.
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EARLY HUMAN DEVELOPMENT
In recent years, early brain maturation has been studied by
examining the resting-state dynamics in both prenatal and post-
natal life. Recently, two studies have conducted fetal rs-fMRI
showing that it may be possible to map FC of healthy fetuses
(Schöpf et al., 2012; Thomason et al., 2013). Almost half of all
bilateral functional networks could be identified in utero from
24 weeks gestational age onwards, with increasing connectivity
strength toward full-term age (Thomason et al., 2013). Similar
maturation effects have been observed in prematurely born
infants (Fransson et al., 2007; Doria et al., 2010; Smyser et al.,
2010). Five functional networks were indentified in extremely
preterm to early preterm infants at term-equivalent age, encom-
passing the primary visual cortex, bilateral sensorimotor area,
bilateral auditory cortex, precuneus area, lateral parietal cortex,
cerebellum, and the medial and dorsolateral prefrontal cortex
(Figure 3) (Fransson et al., 2007). Additionally, default-mode and
executive control RSNs have been reported in very preterm to
late preterm infants as well (Doria et al., 2010). One network in

FIGURE 1 | Cortical folding at 26 weeks (A), 29 weeks (B), and 36

weeks gestational age (C). This illustrates considerable macroscopic
changes of the developing preterm brain. Images are generated by brain
surface rendering with a mathematical morphology approach. The different
colors delineate surface curvature. Reproduced with permission from
Elsevier (Ment et al., 2009).

the prematurely born infants (Figure 3, network D) could not be
directly linked to a comparable network known in adults. Also,
immaturity of the identified networks was characterized by less
extension into the posterior-anterior direction compared to adult
networks. Although contradicting results have been reported on
lateralization of developing networks in which also unilateral net-
works have been described (Liu et al., 2008), more evidence seems
to be present for bilateral FC patterns, already present at the
neonatal stage (Fransson et al., 2007, 2009; Lin et al., 2008; Kelly
et al., 2009; Gao et al., 2013). Based on the consistent findings
of both fetal and neonatal rs-fMRI studies it can be hypothe-
sized that the foundations of resting-state networks are already
laid down before term age, with rapid neural growth in the last
trimester of pregnancy (Doria et al., 2010).

The default-mode network (DMN) is a network that received
considerable attention in FC studies in children. The adult DMN
encompasses the posterior cingulate cortex (PCC), the precuneus,
the medial prefrontal cortex (mPFC), the orbital frontal gyrus,
the anterior cingulate cortex (ACC), the inferolateral temporal
cortex, the parahippocampal gyrus as well as the bilateral pari-
etal cortex (Raichle et al., 2001; Thomason et al., 2008; Van den
Heuvel et al., 2009; Damaraju et al., 2010). Which exact collec-
tion of functions the network employs in humans has not yet been
elucidated. However, the DMN is considered to be important for
internally focused tasks, such as episodic memory, self-referential
thought, and other social cognitive processes (Buckner et al.,
2008; Uddin et al., 2010). Resting-state studies that could not
detect a DMN in preterm infants have suggested the existence of
a pre-DMN, or “proto-DMN” (Fransson et al., 2007, 2009, 2011;
Doria et al., 2010; Power et al., 2010; Smyser et al., 2010). This
network, composed of the bilateral parietal cortex and the pre-
cuneus/PCC, has been suggested to be a fragment of the posterior
part of the adult DMN, forming the basics of the DMN at term
age (Doria et al., 2010).

FIGURE 2 | Illustration of eight commonly reported resting-state

networks (RSNs), consisting of distant areas that show

functional coupling. Both unilateral and bilateral connectivity

networks have been consistently reported in adults. Reproduced
with permission from Elsevier (Van den Heuvel and Hulshoff Pol,
2010).

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 650 | 41

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Hoff et al. Development of functional brain connectivity

FIGURE 3 | The five resting-state networks consistently found in

preterm infants. Each row depicts one resting-state network represented
on an axial T2-weighted template, with on the left hand side the left
hemisphere. Colors indicate correlation strength, with increasing correlation
strength toward the yellow part of the spectrum. (A) primary visual areas;
(B) bilateral somatosensory and motor cortices; (C) bilateral
temporal/inferior parietal cortex encompassing the primary auditory cortex;
(D) posterior lateral and midline parts of the parietal cortex and lateral
aspects of the cerebellum; (E) medial and lateral sections of the anterior
prefrontal cortex. With permission reproduced from (Fransson et al., 2007).
Copyright National Academy of Sciences, U.S.A. (2007).

Even though the frameworks of the DMN and other RSNs
can be recognized at term age, some networks appear to be
more developed than others. For example, FC of the visual and
auditory networks is relatively mature compared to other net-
works in preterm infants around 36 weeks of gestation (Lin
et al., 2008; Doria et al., 2010). Medial regions develop through
different connectivity patterns as compared to lateral regions
(Smyser et al., 2010). In these medial regions, such as in the
anterior cingulate, an increase in interhemispheric connectivity
can already be detected as early as 26 weeks post-menstrual age
(PMA) (Smyser et al., 2010; Thomason et al., 2013). Seeds in lat-
eral brain regions, for instance in the sensorimotor cortex, have
connections that extend over a relatively large distance to their
homotopic counterparts. Interhemispheric connectivity between
these laterally located areas still cannot be detected by 38 weeks
PMA (Smyser et al., 2010). They appear to first intensify local

connection strength before the connection toward the homo-
topic counterpart is established (Smyser et al., 2010). Increasingly
coherent interhemispheric activity and high thalamic FC during
the period of accelerated neural development demonstrates the
critical importance of this last period of pregnancy for brain net-
work maturation (Smyser et al., 2010, 2011; Uddin et al., 2010;
Thomason et al., 2013).

THE FIRST YEARS OF LIFE
Next to different developmental rates of connectivity strength,
development of network size appears to differ between networks
as well. Changes in network size, represented by a percentage of
brain volume, have been observed during the first years of life.
Comparing infants of 2 weeks with infants at 2 years of age, sev-
eral RSNs have shown to exhibit a significant increase in FC as
well as cerebral volumes of cortical connectivity (Lin et al., 2008).
However, the latter study showed that growth of network vol-
ume is not necessarily associated with a simultaneous increase in
FC strength across all RSNs. Whereas FC strength of the sensori-
motor RSNs is comparable to the visual RSNs, the sensorimotor
network exhibits the most significant increase in volume between
2 weeks and 1 year, preceding the growth of the visual network,
which occurs predominantly between 1 and 2 years of age (Lin
et al., 2008). Lack of linear correlation between increases in con-
nectivity strength and network size also applies to the DMN in
the first 2 years (Gao et al., 2009). With a gradual increase in net-
work size and a decrease in fragmentation during this period, it
is possible that the more fragmented state of the DMN early in
development could be a sign of immaturity, in which the network
achieves adult-like properties around 1 year of age (Fair et al.,
2008; Gao et al., 2009; de Bie et al., 2011). The dorsal attention
network synchronizes in a similar way, although its configuration
also seems to be influenced by network-network interactions with
the DMN (Gao et al., 2013).

LATE HUMAN DEVELOPMENT
From the age of 2 years onwards, neurodevelopment is char-
acterized by a gain in higher-order cognitive abilities, such as
attention and memory. Networks supporting these abilities show
differences between children and adults, which is assumed to
reflect a process of maturation. For example, EEG in healthy
5–8-year-old children has demonstrated that RSNs associated
with higher-order cognitive functions, such as the DMN, cingulo-
opercular, ventral, and dorsal frontoparietal RSNs, still have a
primitive architecture compared to adults (de Bie et al., 2011).
Characteristics of such a primitive architecture are lower overall
FC, weak within-network connectivity and presence of aber-
rant connections between distant brain areas as compared to
adults. The sensorimotor area, which starts its development rel-
atively early (de Bie et al., 2011), did not show these immature
characteristics. Rather, FC of the sensorimotor area, which is
similar to adults, may suggest mature-like characteristics of pri-
mary networks by the age of 7 (de Bie et al., 2011). As for
the DMN, a more integrated network is found in teenagers and
young adults (Fair et al., 2008, 2009). By the age of 10, each
of the major regions of the DMN are present, with areas in the
mPFC, the PCC, the left and right medial temporal lobe and the
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left and right angular gyrus (Supekar et al., 2010). Small spa-
tial differences from adult patterns persist and FC of all RSNs,
including the DMN, is still reduced. At 12 years of age, over-
all FC as well as network size is still decreased in comparison
with adults (Jolles et al., 2011). However, areas associated with
higher cognitive and emotional processing (for instance the exec-
utive control system, the dorsal attention system and the DMN)
showed locally increased FC compared to the level of connec-
tivity in these areas in adults. Hence, the basic configuration of
RSNs may be subject to fine-tuning and specialization during
the first years of adolescence, especially in the regions neces-
sary for higher-order cognitive functions. Some studies have
suggested that brain maturation may be reflected by a decrease
in connectivity of short-range links and an increase of FC of
long-range connections (Fair et al., 2007, 2008; Kelly et al.,
2009; Supekar et al., 2009). Yet, caution is warranted regard-
ing the interpretation of the results, as observed effects may at
least be partly explained by effects of head motion, which has
been shown to impose systemic effects on rs-fMRI measures
(Power et al., 2012; Van Dijk et al., 2012).

QUANTITATIVE MEASUREMENTS OF BRAIN DEVELOPMENT:
GRAPH THEORY
Graph theory describes and quantifies complex whole-brain net-
works (for a comprehensive review of graph theory, see Bullmore
and Sporns, 2009), which allows interpretation of different quan-
titative measurements into qualitative aspects of whole-brain
organization.

Initially, communication between networks seems to be mostly
localized to areas in close anatomical proximity (Fair et al., 2007,
2009; Supekar et al., 2009; Gao et al., 2011). During development,
large-scale brain networks transform from a locally oriented orga-
nization to a more integrated topology (Fair et al., 2007, 2009;
Supekar et al., 2009; Gao et al., 2011). The presence of “func-
tional hubs” is an example of how graph theoretical measures may
provide insight into functional cerebral architecture. Functional
hubs, which are brain areas with a high FC density, are thought
to be important for efficient neural signaling and integration of
information (Buckner et al., 2009; Tomasi and Volkow, 2011).
Cortical hubs and their related cortical networks in healthy, full-
term infants have been found to be bilaterally connected and
mainly located in the homomodal primary sensorimotor, visual,
and auditory brain regions (Fransson et al., 2011). As of the age of
2, the posterior cingulate cortex/retrosplenial (PCC/Rsp) connec-
tion exhibits considerable strength, which would make it suitable
to function as a primary cortical hub within the developing DMN
(Gao et al., 2009). With age, FC between hub and non-hub
connections increases strongly, while connectivity between hubs
remains relatively stable (Hwang et al., 2013).

METHODOLOGICAL CONSIDERATIONS
Currently, the approaches most commonly used for the analysis
of the rs-fMRI data are seed-based or region-of-interest (ROI)
analyses, independent component analysis (ICA) and graph the-
ory. The latter approach is used for describing properties of
the functional connections rather than establishing them; some
applications of graph theory have been discussed in the previous

section. In ROI-based analysis the time series of a brain region
of interest are correlated to time series of other brain regions.
The functional connections of this predefined area of the brain,
or seed, can thus be determined. Its relative simplicity may be
a disadvantage, as whole-brain connectivity patterns—without
predefined brain regions to correlate to—cannot be evaluated.
Also, it can be more difficult to detect novel links (Gao et al.,
2009). Alternatively, this limitation does not apply to ICA, which
enables formation of a whole-brain connectivity map. Although
an a priori hypothesis is not necessary to run the statistics, the
interpretation of the analysis is more difficult than the ROI-
based analysis method (Fox and Raichle, 2007; de Bie et al.,
2011). When further comparing seed-based analysis and ICA, the
resting-state data results appear to correspond fairly well (Gao
et al., 2011; Rosazza and Minati, 2011). Yet, the level of correspon-
dence slightly decreases when more components are included
in the analysis (Rosazza and Minati, 2011). The application of
different preprocessing steps enhances the heterogeneity among
rs-fMRI studies, further complicating comparison and uniform
interpretation of rs-fMRI studies (Lee et al., 2013). In addition,
rs-fMRI data may also be subject to other confounding effects
possibly leading to misinterpretation. Potential and unknown
effects of other neurophysiological processes or sedation on the
rs-fMRI data (Nallasamy and Tsao, 2011; Birn, 2012), as well
as the already mentioned sensitivity to effects of motion (Power
et al., 2012; Van Dijk et al., 2012), with reported intra-individual
differences (Honey et al., 2009) could impinge on reproducibil-
ity and question the neuronal nature of observed developmental
effects.

EFFECTS OF PREMATURITY ON FC
Prematurity, especially in the context of a complicated postnatal
course, may have adverse effects on gray matter volume, myeli-
nation, cerebral surface area, and overall cerebral volume (Hüppi
et al., 1996; Inder et al., 2005; Kapellou et al., 2006). However,
data on effects of prematurity on FC development are still limited.
The networks identified in preterm infants have been reproduced
in healthy full-term neonates, supporting at least similar RSN
architecture (Fransson et al., 2009). In addition, despite small
differences in the basal ganglia, the visual cortex and the cere-
bellum, no major differences have been reported between the
anatomical locations of RSNs in preterm infants without serious
postnatal complications and full-term controls (Damaraju et al.,
2010; Doria et al., 2010; Smyser et al., 2010). The studies cited
included prematurely born infants without acquired brain injury
or early developmental problems and provided limited infor-
mation on long-term neurodevelopmental outcome. Therefore,
to what extent brain development of preterm infants may be
different from full-term neonates warrants further exploration.
Prematurely born infants with only minor cerebral abnormal-
ities showed disruption in network architecture, especially in
thalamo-cortical connections (Smyser et al., 2010). Compared
to the networks of the full-term infant, preterm infants scanned
at term-equivalent age had lower correlations and less connec-
tivity between lateral seeds. Moreover, whereas infant born at
term showed characteristics of a coherent network with possible
DMN precursors, term-equivalent premature infants did not
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(Smyser et al., 2010). Follow-up data of preterm infants at 36
months of age showed lower overall connectivity compared to
full-term peers (Damaraju et al., 2010). Long-term effects of pre-
mature birth on FC have been observed in young adulthood, in
which alternative functional circuits involved in language have
been described (Constable et al., 2013).

Summarizing, a number of studies have looked at resting-state
dynamics in premature populations, but only limited data is avail-
able on possible effects of prematurity on FC development. More
studies in both preterm and healthy term infants with long-term
follow-up are therefore required to improve insights into brain
development.

DIRECTIONS FOR FUTURE RESEARCH
All of the aspects outlined in the previous section should be
taken into consideration in the interpretation of developmen-
tal effects in rs-fMRI studies and also provide directions for
further investigations. In addition, elucidating the structure-
function relationship of networks by further combination of
imaging techniques could improve insights into the mechanisms
behind functional network development. Similar maturational
effects can be observed with DTI measuring structural parame-
ters (Vasung et al., 2013) and arterial spin labeling MRI to map
perfusion (De Vis et al., 2013). Furthermore, the translational
aspect of developmental connectivity patterns toward executive
functions and behavior merits attention as well, which ultimately
may improve prediction of neurodevelopmental outcome or dis-
ease progression by rs-fMRI techniques. Considering that the last
trimester of pregnancy may be especially relevant for adequate
FC development (Doria et al., 2010), studying effects of pre-
maturity related to both brain maturation and neurocognitive
outcome could be an important application. Full-term infants
with neonatal encephalopathy, in whom prediction of cognitive
outcome is often difficult, may also be a relevant study popula-
tion. In addition, a possible effect of gender on RSN patterns has
been suggested (Biswal et al., 2010; Weissman-Fogel et al., 2010;

Zuo et al., 2010; Gong et al., 2011). Structural MRI studies have
shown that in particular across puberty gradual sexual dimor-
phisms develop, with unknown relationships between gender,
puberty and neural development (Blakemore, 2011). So far, only
one study addressed gender differences in functional homotopy
in children (Zuo et al., 2010). Therefore, to what extent gender
effects might influence developmental patterns of FC in neonates,
children or young adults remains unknown. Lastly, this review
supports the notion that foundations of each of the RSNs are laid
down before term age, after which fine-tuning and specialization
of these networks take place. It has been suggested that a genetic
substrate for functional networks may exist (e.g., Glahn et al.,
2010). Twin-studies in children and adults indeed show signif-
icant effects of heritability, primarily on the level of whole-brain
connectivity efficiency and functional organization (Fornito et al.,
2011; Van den Heuvel et al., 2013). More research into the
genetic control underlying functional network organization is
needed, also toward possible identification of specific deficits
in FC relevant for neuropsychiatric diseases, such as autism or
schizophrenia.

CONCLUSION
This review described developmental changes observed in the
functional networks of the brain from 20 weeks of gestation
onwards using rs-fMRI. Even though the techniques used to
acquire and analyze rs-fMRI data leave room for improvement,
all of the efforts so far have led to significant insights into brain
development. Even before term age, a network with founda-
tions of each of the RSNs can be recognized (Doria et al., 2010;
Fransson et al., 2011). RSNs differ in their growth trajectories,
but fine-tuning and specialization of RSNs is generally character-
ized by increasing FC, network volume, and coherence. The next
step in developmental fMRI research may be to explore the ori-
gins of inter-individual network variation as well as associations
with cognitive functioning and behavior by combining structure
and function at different ages, in both healthy and diseased states.
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Attention-deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed
neurodevelopmental disorder in childhood, which affects more than 5% of the population
worldwide. ADHD is characterized by developmentally inappropriate behaviors of
inattention, and/or impulsivity and hyperactivity.These behavioral manifestations contribute
to diminished academic, occupational and social functioning, and have neurobiological
bases. Neuronal deficits, especially in the attention and executive function processing
networks, have been implicated in both children and adults with ADHD by using
sophisticated structural and functional neuroimaging approaches. These structural and
functional abnormalities in the brain networks have been associated with the impaired
cognitive, affective, and motor behaviors seen in the disorder. The goal of this review
is to summarize and integrate emerging themes from the existing neuroimaging
connectivity studies based on advanced imaging techniques, applied in data of structural
magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging,
electroencephalography and event related potential; and to discuss the results of
these studies when considering future directions for understanding pathophysiological
mechanisms and developmental trajectories of the behavioral manifestations in ADHD.
We conclude this review by suggesting that future research should put more effort
on understanding the roles of the subcortical structures and their structural/functional
pathways in ADHD.

Keywords: ADHD, brain networks, structural MRI, fMRI, DTI, EEG/ERP

INTRODUCTION
Attention deficit/hyperactivity disorder (ADHD) is the most com-
monly diagnosed neurodevelopmental disorder in childhood.
Diagnoses of ADHD are made based on developmentally inap-
propriate behavioral symptoms, which have been categorized into
three subtypes: inattentive, impulsive and hyperactive, and com-
bined type. These core behavioral symptoms must be pervasive
across situations, persistent for more than 6 months and observed
before the age of 7 years, defined by the diagnostic and statistical
manual of mental disorders (DSM-IV-TR) issued by the Amer-
ican Psychiatric Association (2000). The DSM-IV-TR reported
that 3–7% of school-aged children have ADHD. However, most
recent surveys have estimated significantly increased prevalence
rates, from 6.9% in 1998 to 9.0% in 2009, shown in children aged
5–17 years (Akinbami et al., 2011).

Attention deficit/hyperactivity disorder is considered one of
the most hereditable disorders with an estimated mean heri-
tability of 75% (Faraone, 2005). Besides the genetic component,
ADHD also has neurobiological and environmental underpin-
nings. The etiology of this highly inhomogeneous disorder is
still unknown. Apart from the behavioral symptoms that are
used for diagnostic measurements, both children and adults

with ADHD have been found to have impairments in neu-
ral networks associated with sensory and cognitive processing
functions. For instance, neuronal deficits in attention and
executive function processing networks have been frequently
reported in both children and adults with ADHD, by using
sophisticated structural and functional neuroimaging approaches
(Bush, 2005; Konrad and Eickhoff, 2010). And these structural
and functional abnormalities in the brain have been associ-
ated with impaired cognitive, affective, and motor behaviors
seen in ADHD approaches (Bush, 2005; Konrad and Eickhoff,
2010). In addition, spontaneous low-frequency functional activi-
ties have been reported in multiple brain regions, which formed
the default mode network (DMN), during wakeful resting-state
functional magnetic resonance imaging (fMRI) acquisition (Bar-
tels and Zeki, 2005). Patients with ADHD have been reported
to have both structural and functional abnormalities associ-
ated with the DMN (Konrad and Eickhoff, 2010; Castellanos,
2012).

In this study, we will review and summarize these existing stud-
ies, which have assessed the regional features and systems-level
patterns of the structural and functional brain networks in ADHD,
based on advanced computational techniques applied to data of
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structural MRI, diffusion tensor imaging (DTI), fMRI, electroen-
cephalography (EEG), and event related potential (ERP). We will
also discuss the results of these studies when considering future
directions for understanding pathophysiological mechanisms and
developmental trajectories of the behavioral manifestations in
ADHD.

STRUCTURAL MRI-BASED BRAIN NETWORKS
IN ADHD
Structural MRI is the primary imaging tool used for studying
brain anatomy and identifying changes in brain structures. Com-
monly used structural MRI measures include volume and density
of the gray (GM) or white matter (WM) of the whole brain or
sub-regions, as well as the regional and whole brain cortical GM
thickness (Vaidya, 2012). Techniques for investigating the topo-
logical and structural features of the anatomical brain networks
have also been developed by using regional volume or thickness
as basic metric (Lerch et al., 2006; He and Evans, 2007; Zielinski
et al., 2010).

The early estimations showed approximately 4–5% overall
cerebral and cerebellar volumetric reductions in children and ado-
lescents with ADHD, compared to that of typically developing
controls (TDC; Castellanos, 2002; Carmona et al., 2005). Other
structural MRI studies have reported volumetric reductions in
the frontal lobe, [including orbitofrontal (OFC), superior frontal
(SFC), and dorsolateral prefrontal (DLPFC) cortices], posterior
and anterior cingulate gyri, precentral gyrus, caudate nuclei, cor-
pus callosum (CC), as well as the cerebellum (Seidman et al.,
2005; Shaw et al., 2006; Bush, 2011). Significantly reduced whole
brain cortical GM thickness has also been found in children
with ADHD when compared to TDC (Shaw et al., 2006, 2007;
Makris et al., 2007). Studies also showed significantly thinner cor-
tical thickness in regions including bilateral DLPFC and OFC,
anterior and posterior cingulate cortex (PCC) and the temporo-
occipito-parietal junction, in adults with ADHD when compared
to controls (Makris et al., 2007; Proal et al., 2011). The rate of
cortical thinning in these regions has been shown to be inversely
associated with the severity of hyperactivity and impulsiveness in
normal development (Shaw, 2011).

Basal ganglia regions, such as the globus pallidus, putamen,
and caudate have been reported to have structural abnormali-
ties in children with ADHD. Structural MRI studies have detected
reduced globus pallidus, putamen, and caudate volumes in voxel-
based studies (Frodl and Skokauskas, 2012), and in manual tracing
region of interest (ROI)-based deformation analysis (Qiu et al.,
2009) in children with ADHD. Interestingly, they did not find any
regional volumetric differences of the basal ganglia in adults with
ADHD when compared to age-matched controls (Qiu et al., 2009;
Frodl and Skokauskas, 2012). However, clinical studies found that
the hyperactive/impulsive symptoms, observed in children with
ADHD, significantly decline over time, whereas the inattentive
symptoms rarely vanish (Lahey et al., 2005). Thus, the similar stri-
atal volumes shown in the adults with ADHD and age-matched
control may explain the vanished hyperactivity/impulsivity symp-
toms during the adulthood in many of the clinical cases. More
cross-sectional and longitudinal investigations need to be done,
to clarify the relationships among the striatum, its associated

brain pathways, and the developmental trajectories of the
disorder.

By now, most replicated findings from the voxel-based and
ROI-based structural MRI studies have suggested significant
decrease of the whole brain GM and WM volumes and signifi-
cant regional underdevelopment in the prefrontal cortex (PFC),
including the OFC, DLPFC, and SFC, basal ganglia substructures
(striatum and globus pallidus), and cerebellum, in patients with
ADHD (Frodl and Skokauskas, 2012). Structural changes, in the
brain networks encompassing PFC and its connections to the
striatum and cerebellum, have been found to be associated cogni-
tive impairments, such as distractibility, forgetfulness, impulsivity,
poor planning, and locomotor hyperactivity, in both children and
adults with ADHD (Seidman et al., 2005; Arnsten, 2006).

From literature, structural MRI-based techniques for con-
structing the anatomical brain networks, such as in (Lerch et al.,
2006; He and Evans, 2007; Zielinski et al., 2010), have not yet been
implemented in cohorts with ADHD. Investigations of the topo-
logical features and pair-wise nodal communication patterns of
the anatomical networks, and their relationships with the clinical
and behavioral manifestations are important future directions in
the research field related to ADHD.

FUNCTIONAL BRAIN NETWORKS IN ADHD
Functional MRI techniques provide a way to understand normal
brain functions and to test for regional brain dysfunctions associ-
ated with disorders (Bush, 2005). Both task-based and resting-state
fMRI have been frequently applied in children with ADHD, and
have demonstrated atypical functional activations in the frontal,
temporal, parietal lobes, and cerebellar regions (Shaw et al., 2006;
Cubillo et al., 2010, 2011; Rubia et al., 2010). The frontal cor-
tex can be divided into five major functional sub-regions: the
orbital, dorsolateral, mesial (all which make up the PFC), the
premotor, and motor regions. Social inhibition and impulse con-
trol are associated with the OFC (Fischer et al., 1990). Abnormal
functional activations in OFC have been suggested to influence
behavioral inhibition in children with ADHD (Bush, 2010). The
DLPFC, another most frequently reported region of functional
impairment in ADHD, has been implicated in planning, work-
ing memory and attentional processes (Danielson et al., 2011).
In addition, one fMRI study conducted in adults with child-
hood ADHD showed reduced activations in bilateral inferior
prefrontal cortices (IFC), left parietal lobe, caudate and thalamus,
and reduced inter-regional functional connectivity between right
inferior fronto-frontal, fronto-striatal, and fronto-parietal neural
networks during a stop and switching task, when compared to
controls (Cubillo et al., 2010).

Structures of the cingulo-fronto-pariental (CFP) cogni-
tive/attention network, including the fronto-striatal and fronto-
parietal pathways, are thought to be the primary substrate for
most attention and executive functions (Bush, 2011). The main
regions that comprise the CFP network are the lateral frontal pole,
dorsal anterior cingulate cortex (dACC), DLPFC, ventrolateral
PFC (VLPFC), caudate, cerebellum, and the parietal cortex (Bush,
2010). This network controls goal-directed processes and provides
the ability to respond to changing task demands (Castellanos,
2012). Significantly decreased activations have been reported in
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DLPFC,VLPFC, IFC, and superior parietal cortex (SPC) in ADHD,
during multiple cognitive performance tasks and in resting-state
(Rubia et al., 2010; Bush, 2011; Castellanos, 2012).

The dACC is an important component of the fronto-striatal cir-
cuitry of the CFP network, which has been consistently reported
to have abnormal activation in ADHD (Sun et al., 2012). The
dACC has a critical role in attention, cognitive processing, target
detection, novelty detection, response selection, response inhi-
bition, error detection, and motivation (Bush, 2010). Hypothe-
ses about its functions include reward-based decision-making,
response selection, error detection, and predicting task difficulty,
which have shown to be impaired in children and adults with
ADHD (Seidman et al., 2005). An attention task-based fMRI study
found hypo-activation of the dACC in adults with ADHD when
compared to controls (Bush, 2011). Resting-state fMRI studies fre-
quently reported disrupted functional connectivity between the
dACC and PCC (Castellanos et al., 2008), and abnormal develop-
mental pattern of the dACC–DMN interactions in ADHD subjects
(Fair, 2010; Sun et al., 2012). The atypical connectivity in ADHD
may relate to delayed or disrupted maturation. ADHD adults
presented with abnormal dACC-PCC connectivity patterns when
compared to age-matched TD adults. Connectivity patterns were
similar between the ADHD group and the young TD subjects,
indicating atypical brain maturation in the ADHD group (Sato,
2012). In addition, significantly increased functional connectivity
between the dACC and the bilateral thalamus, bilateral cerebel-
lum, and bilateral insula have been shown during resting-state in
children with ADHD, compared to TDC (Tian, 2006).

The thalamus is a key subcortical structure of the cortico-
striato-thalamo-cortical (CSTC) loops that serve attentional and
cognitive processing. Significantly reduced regional activations in
bilateral thalami (especially in the pulvinar nuclei), significantly
decreased functional connectivity between bilateral pulvinar and
right prefrontal regions, and significantly increased connectivity
between the right pulvinar and bilateral occipital regions have
been reported in children with ADHD, during a visual sustained
attention task-based fMRI study (Li et al., 2012). Another study
has found reduced functional connectivity between thalamus and
basal ganglia areas (especially in putamen) in children with ADHD,
during resting-state (Cao et al., 2009).

Altered topological features and inter-regional functional con-
nectivity in large-scale brain networks encompassing cortical and
subcortical regions have been increasingly reported, indicating
systematic and more widespread brain alterations in ADHD.
Resting-state fMRI has been used across laboratories to identify
neural networks such as the DMN, dorsal, and ventral attentional
networks, as well as motor, visual, and executive control systems
(Fox et al., 2006; Buckner et al., 2008; Castellanos, 2012). The
DMN is a distributed network of brain regions, which is more
active during rest than during performance of sensory and cogni-
tive demanding tasks. Studies have found significantly decreased
functional connectivity among the brain regions of the DMN,
and between those with putamen and thalamus (Cao et al., 2009;
Qiu et al., 2011). Incremental deactivations of the regions in the
DMN have been associated with increased task difficulty as well as
during transition from rest-to-task states in ADHD (Konrad and
Eickhoff, 2010; Liddle, 2011). Furthermore, by applying the graph

theoretical approach (GTT), which has been used to characterize
the topology of global and regional brain communications (Kon-
rad and Eickhoff, 2010; Ahmadlou et al., 2012), a resting-state
fMRI study found significantly increased local efficiency com-
bined with a decreasing tendency in global efficiency of the DMN,
and significantly decreased nodal efficiency in the medial pre-
frontal, temporal, occipital, and subcortical regions in children
with ADHD, when compared to the control group (Wang, 2009).
Castellanos (2012) have suggested that ADHD could be consid-
ered as a DMN disorder. In addition, a resting-state fMRI study, by
running network based statistics (NBS) in 90 cortical and subcor-
tical regions, demonstrated abnormal inter-regional connectivity
of the frontal-amygdala-occipital network and frontal-temporal-
occipital network in young adults with ADHD (Cocchi, 2012).
Impaired inter-regional connectivity within reward-motivation
regions and their decreased connectivity with regions from the
DMN and dorsal attentional networks have also been reported,
and suggest impaired interactions between control and reward
pathways that might underlie attention and motivation deficits in
ADHD (Tomasi and Volkow, 2012).

Altered topological features and inter-regional functional con-
nectivity in large-scale brain networks in ADHD, which have been
reviewed in the fMRI section, are convinced in EEG/ERP studies as
well. A GTT-based study in resting-state EEG data reported abnor-
mal cluster coefficients and path lengths of the nodes in the left
hemisphere, which were recognizable in the delta band, in patients
with ADHD when compared to controls (Ahmadlou et al., 2012).
An NBS study in sustained attention task-based EEG data showed
distinct frontal-central-parietal patterns in the theta and alpha fre-
quency bands in adults with ADHD compared to controls, where
ADHD subjects displayed a more robust homogeneous response
pattern in the 120–260 ms time range that included the P1, N1,
P2 component, with a majority of latency peaks characterized by
alpha and theta activation in the fronto-central sites (Shahaf et al.,
2012). Similar findings have been interpreted as revealing a com-
pensatory mechanism activated by ADHD patients in early stages
of stimulus processing, by which more attention was directed to
the task (Prox et al., 2007).

DTI-BASED BRAIN NETWORKS IN ADHD
While functional brain imaging studies may reveal specific regions
of dysfunction within the brain, it is important to know how
the nodes within these networks are structurally connected.
Micro-structural abnormalities in the WM may lead to disrupted
functional communications between brain regions, ultimately
resulting in disrupted behavioral functioning in ADHD (Nagel,
2011). DTI is an MRI method that provides in vivo information
about the WM microstructure through water diffusion, which can
reveal microscopic details about tissue architecture (Konrad and
Eickhoff, 2010). Orientations of the WM tracts in the brain can
be measured by the directions of diffusivity (Konrad and Eickhoff,
2010). The most common quantitative indices used to measure the
WM integrity are mean diffusivity (MD) and fractional anisotropy
(FA; Konrad and Eickhoff, 2010; Nagel, 2011).

Two primary analysis methods have been applied in DTI stud-
ies: voxel-based analysis (VBA) that allows for a complete overview
of the WM integrity in the brain, and ROI-based analysis for
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more specific exploration of the WM abnormalities in certain
brain regions. A recent meta-analysis reviewed the ROI-based
studies assessing the WM integrity, and provided evidence of sev-
eral disturbed WM regions in children with ADHD, including the
inferior and superior longitudinal fasciculus, anterior corona radi-
ate, cortico-spinal tract, cingulum, CC, internal capsule, caudate
nucleus, and cerebellum (van Ewijk, 2012). Review of the VBA
studies also confirmed WM changes in these regions, and found
extensive differences across the four brain lobes, as well as areas
within the basal ganglia, uncinate fasciculus, and forceps minor
(van Ewijk, 2012).

Development of WM determinative and probabilistic tractog-
raphy techniques has made it possible to estimate and visualize
the structural connectivity of the WM pathways in human
brain. Using tractography-based analyses, DTI studies have
demonstrated increased FA in WM structures connecting parietal-
occipital regions (Silk, 2009), and tracts connecting the temporal
lobe and other distant cortical regions in children with ADHD
compared to TDC, which were positively associated with symp-
tom severity in the patient group (Peterson, 2011). Significantly
reduced FA in the cortico-spinal tract (Carmona et al., 2005;
Hamilton et al., 2008; Cubillo, 2010), the superior longitudinal
fascicle that connects the prefrontal and parietal regions (Makris,
2008; Cubillo et al., 2010; Konrad, 2010), the cingulum bun-
dle (Makris, 2008; Konrad, 2010), have also been reported in
patients with ADHD. In addition, one study detected significantly
increased MD in the frontal portion of the left fronto-occipital
fasciculus in adults with ADHD when compared with controls
(Konrad et al., 2006). DTI studies have also shown alterations
within the cerebellar WM areas in children and adolescents with
ADHD (Ashtari et al., 2005; Bechtel et al., 2009).

The neural pathways that are associated with the areas of abnor-
mal WM reviewed above are the pathways connecting the cortical
regions, cortical-striatum and cortical-cerebellum. The prevailing
theory regarding the neurobiological basis of ADHD identified the
fronto-striatal network as a probable substrate of cognitive and
behavioral impairments seen in ADHD (Bush, 2005; van Ewijk,
2012). Studies found disturbed WM structural connectivity of the
frontal-striatal network in both adults and children with ADHD,
compared to group-matched controls (Konrad and Eickhoff, 2010;
Tamm et al., 2012). Tract- specific analyses found reduced FA
in bilateral fronto-striatal fiber tracts in children with ADHD,
specifically in the orbitofrontal and ventrolateral tracts, associated
with poor executive functioning performance (Shang, 2013). In
addition, significant reductions of probabilistic WM connectivity
between the thalamus and striatum has been reported in children
with ADHD when compared to TDC (Xia et al., 2012).

The CC, the largest band of WM fibers in the brain that con-
nects the left and right hemispheres, plays an important role in
inter-hemispheric communication. Thus, abnormal microstruc-
ture of CC may affect cognitive functions that depend on bilateral
collaboration (Vaidya, 2012). Across studies, children with ADHD
showed reduced volume of the splenium, the posterior region of
the CC that connects bilateral parieto–temporal cortices (Valera,
2007). Using both DTI and anatomical MRI, one study found
microstructure abnormalities in the isthmus/splenium part of the
CC,characterized by reduced FA values in adults with ADHD when

compared to healthy controls (Dramsdahl, 2012). These results are
in line with two earlier studies, which observed reduced FA in the
isthmus in children with ADHD (Chao, 2009; Cao, 2010).

DISCUSSIONS
Attention-deficit/hyperactivity disorder is the most common neu-
rodevelopmental disorder in childhood. Neuroimaging studies
have attempted to identify the pathophysiology of the disorder by
searching for abnormalities in brain regions and their connections
that are involved in attention, executive function, motor control,
response inhibition, working memory, and even during rest. We
reviewed and summarized the important findings from the struc-
tural MRI, fMRI, EEG/ERP, and DTI studies, which have provided
the abundant evidence of structural and functional alterations in
widespread brain regions and their connections, in this severe and
heritable brain disorder.

The majority of the existing neuroimaging studies, which have
attempted to find the neurobiological underpinnings of ADHD,
have focused on cortical regions and their connections, and has
demonstrated global cortical maturation delay based on reduced
cortical thickness and reduced GM and WM volumes, specifically
in frontal lobe (Carmona et al., 2005), regional WM micro-
structural abnormalities in frontal, temporal and parietal lobes
(Nagel, 2011; Dramsdahl, 2012; Shang, 2013), and aberrant neu-
ronal activations, inter-regional functional connectivity and global
network features over these cortical areas, during sensory and cog-
nitive performance or even at rest (Wang, 2009; Ahmadlou et al.,
2012; Castellanos, 2012; Cocchi, 2012; Shahaf et al., 2012). Fur-
thermore, the existing studies also suggest that the structural and
functional connectivity deficits and the ADHD symptoms might
arise incidentally from a common etiologic mechanism, involv-
ing altered modulation of synaptic potentiating and pruning by
dopamine and other factors during development, which result in
altered patterns of cortico-cortical connectivity that might persist
into adulthood (Liston et al., 2011).

Subcortical regions may also significantly contribute to the
pathophysiology of ADHD. For example, the basal ganglia has
been associated with the execution of appropriate goal-directed
behaviors and may play a role in the behavioral impairments
for response control seen in many children with ADHD (Qiu
et al., 2009). Neuroimaging studies have demonstrated regional
structural and functional deficits of the basal ganglia, especially
in the striatum (Qiu et al., 2009; van Ewijk, 2012). Disturbed
WM structural connectivity and atypical functional connectiv-
ity have been shown in the frontal-striatal network in both adults
and children with ADHD (Konrad and Eickhoff, 2010; Tamm
et al., 2012). It has been hypothesized that the impairments of
the striatum and its brain connections are associated with the
hyperactivity/impulsivity component in children with ADHD
(van Ewijk, 2012).

However, the role of the thalamus and its mediating role in
cortico-striatal and cortico-cortical pathways in ADHD have been
relatively ignored. Very recently, investigation of high resolution
structural MRI data revealed reduced bilateral thalamic volumes,
as well as regional surface atrophy in the pulvinar nucleus of the
left side thalamus in children with ADHD (Xia et al., 2012). In the
same study, disturbed frontal-thalamo and thalamo-striatal WM
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connectivity have also been demonstrated in the children with
ADHD. Furthermore, significantly reduced pulvinar activations
and abnormal pulvinar-frontal and occipital-pulvinar functional
connectivity have been shown in children with ADHD during a
visual sustained attention task, which were also significantly cor-
related with their inattentiveness indices for clinical diagnoses
(Li et al., 2012). This series of neuroimaging studies may drive
the field forward by placing the pulvinar nuclei of the thala-
mus at the center of dysfunctional attentional networks in ADHD
(Shaw, 2012).

As a summary, brain network associated dysfunctions have
been found to be central in ADHD pathophysiology. It is impor-
tant to gain a better understanding of how subcortical-cortical

and cortical-cortical networks development is altered during
the onset of the disorder. Thus, future studies should allocate
greater resources on subcortical regions and relationships between
subcortical and cortical regions in order to provide a better
understanding of the etiology of the disorder.
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Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial
temporal sclerosis, as its surgical removal results in clinically meaningful improvement
in about 70% of patients. Nevertheless, a considerable subgroup of patients continues
to suffer from post-operative seizures. Although the reasons for surgical failure are not
fully understood, electrophysiological and imaging data suggest that anomalies extending
beyond the temporal lobe may have negative impact on outcome. This hypothesis has
revived the concept of human epilepsy as a disorder of distributed brain networks. Recent
methodological advances in non-invasive neuroimaging have led to quantify structural and
functional networks in vivo. While structural networks can be inferred from diffusion
MRI tractography and inter-regional covariance patterns of structural measures such as
cortical thickness, functional connectivity is generally computed based on statistical
dependencies of neurophysiological time-series, measured through functional MRI or
electroencephalographic techniques. This review considers the application of advanced
analytical methods in structural and functional connectivity analyses in TLE. We will
specifically highlight findings from graph-theoretical analysis that allow assessing the
topological organization of brain networks. These studies have provided compelling
evidence that TLE is a system disorder with profound alterations in local and distributed
networks. In addition, there is emerging evidence for the utility of network properties as
clinical diagnostic markers. Nowadays, a network perspective is considered to be essential
to the understanding of the development, progression, and management of epilepsy.

Keywords: TLE, connectivity, MRI, graph-theory, connectome

INTRODUCTION
Epilepsy is one of the most prevalent neurological disorders,
affecting ∼1% of the general population. Of patients treated
with antiepileptic drugs, about one third never achieve remis-
sion. Drug-resistance should be identified early and treated
effectively, as uncontrolled epilepsy is harmful to the brain,
has devastating socio-economic consequences, and is associated
with increased mortality (Leonardi and Ustun, 2002; Pugliatti
et al., 2007; Tellez-Zenteno et al., 2007; Cascino, 2009; Coan and
Cendes, 2013). Epilepsy is broadly defined by a state of recurrent
spontaneous seizures, which arise when balance between excita-
tion and inhibition is disrupted (Scharfman, 2007; Engel et al.,
2013). Compelling evidence from animal models, experimental
paradigms, and clinical work in humans indicates that specific
cortical and subcortical networks play a fundamental role in the
genesis and expression of seizures (Avoli and Gloor, 1982; Bear
et al., 1996; Bertram, 1997; Spencer, 2002).

Temporal lobe epilepsy (TLE) is the most common drug-
resistant epilepsy in adults. TLE is traditionally associated with
mesiotemporal sclerosis, defined by cell loss and gliosis in the
hippocampus, entorhinal cortex, and amygdala. Surgical resec-
tion of this epileptogenic lesion is the current treatment of choice
(Wiebe et al., 2001), and leads to freedom from seizures in the

majority of cases. Nevertheless, even in carefully selected cases,
∼30% of surgical candidates continue to have seizures (Mcintosh
et al., 2004; Bernhardt et al., 2010). Although reasons for surgical
failure are not fully understood, electrophysiological and imag-
ing data suggest that anomalies extending beyond the temporal
lobe may have negative impact on outcome. This hypothesis has
revived the concept of human epilepsy as a disorder of distributed
neural networks (Spencer, 2002; Bonilha et al., 2007b; Elsharkawy
et al., 2009; Engel et al., 2013).

In the past decade, advances in imaging acquisition and
postprocessing have permitted in vivo mapping of the regional
distribution of network abnormalities in TLE patients. In par-
ticular, quantitative structural MRI studies based on volume-
try, voxel-based morphometry, cortical thickness mapping, and
structural covariance analysis have shown widespread, coordi-
nated, and progressive cortical gray matter loss in temporal
and extra-temporal regions, such as the thalamus, fronto-limbic,
and fronto-central neocortices (Bernasconi et al., 2003b, 2004;
Natsume et al., 2003; Bonilha et al., 2004; Lin et al., 2007;
Bernhardt et al., 2008, 2009, 2010, 2012; Keller and Roberts, 2008;
Mcdonald et al., 2008b,c). Findings of gray matter alterations
have been complemented by diffusion MRI data of the white
matter. These studies have shown disruptions in inter-regional
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fiber diffusivity both within and beyond mesiotemporal and
temporo-limbic networks, suggestive of decreased fiber arrange-
ment and altered myelin membranes (Concha et al., 2005;
Rodrigo et al., 2007; Yogarajah and Duncan, 2008; Ahmadi
et al., 2009). Furthermore, studies based on both electrophys-
iological techniques as well as functional MRI have provided
evidence for region-specific shifts in intrinsic functional net-
works (Bettus et al., 2009; Voets et al., 2012). More recently,
reports of disruptions of inter-regional structural and func-
tional connections in TLE have been complemented by graph-
theoretical approaches (Liao et al., 2010; Bernhardt et al., 2011;
Bonilha et al., 2012). These techniques, derived from complex sys-
tem analysis, lend tools to characterize topological aspects that
relate to the specialization and integration of inter-connected
brain networks (Watts and Strogatz, 1998; Sporns et al., 2004;
Bullmore and Sporns, 2009; Guye et al., 2010). In TLE, such
approaches provide a novel window to study connectivity,
and have begun showing alterations in higher-order network
configurations.

The aim of this review is to summarize the current
state of imaging evidence for network abnormalities in
TLE. We will first outline findings that have provided
insights into the topographical extent of regional struc-
tural abnormalities in TLE. We will then discuss studies
on low-level inter-regional abnormalities, using connectiv-
ity mapping techniques such as seed-based structural MRI
covariance, functional MRI connectivity, and diffusion MRI
tractography. Subsequently, we will discuss graph-theoretical
analyses to address the topological organization of brain net-
works in TLE. We will conclude by commenting on the poten-
tial clinical relevance of current network-based MRI analysis
in TLE.

REGIONAL PATTERNS OF STRUCTURAL PATHOLOGY
The hallmark lesion of TLE is hippocampal sclerosis. This lesion
is characterized by various degrees of neuronal loss and gliosis
within hippocampal subfields and the dentate gyrus (Sommer,
1880; Babb and Brown, 1987; Blumcke et al., 2002). In addition,
up to 50% of TLE patients may show intense reorganization of
neuronal networks, manifested by granule cell dispersion (Houser
et al., 1992; Blumcke et al., 2002), selective loss of inhibitory
neurons (De Lanerolle et al., 1989), as well as axonal sprout-
ing (Babb et al., 1991). Histological reports of TLE patients
and animal models of limbic epilepsy have consistently demon-
strated that pathology is not limited to the hippocampus. Indeed,
cell loss and gliosis may be found in proximal and even more
distal temporo-limbic regions, including the amygdala (Yilmazer-
Hanke et al., 2000), entorhinal cortex (Du et al., 1993, 1995),
temporopolar (Choi et al., 1999; Meiners et al., 1999; Mitchell
et al., 1999; Bothwell et al., 2001) and lateral temporal neocor-
tices (Cavanagh and Meyer, 1956; Falconer et al., 1964; Turski
et al., 1983; Clifford et al., 1987; Kuzniecky et al., 1987; Cavalheiro
et al., 1991; Thom et al., 2009), as well as the thalamus (Turski
et al., 1983; Clifford et al., 1987; Bertram et al., 2001; Sloan
and Bertram, 2009). In animal models, tissue damage has been
shown in extra-temporal neocortical regions, such as sensorimo-
tor cortex, piriform, perirhinal, retrosplenial, and visual cortices.

In humans, pathological data in regions remote from the tem-
poral lobes in TLE is sparse. This is, in part, due to difficulties
in obtaining immediate postmortem specimens and the surgical
approach tailored to the temporal lobe. In their seminal post-
mortem study, Margerison and Corsellis described neuronal loss
and gliosis in frontal and occipital cortices in about 20% of
patients (Margerison and Corsellis, 1966). More recent autopsy
reports have confirmed and further extended these observa-
tions by showing varying degrees of architectural abnormalities
involving virtually all lobes (Eriksson et al., 2002; Blanc et al.,
2011).

A large body of electro-clinical work suggests that the epilep-
togenic network in TLE is broad. Seizure activity may involve
not only the hippocampus, but also several other subcortical and
cortical structures, including the amygdala, entorhinal cortex,
lateral temporal, inferior, as well as orbitofrontal cortices (Lieb
et al., 1987, 1991) together with the medial thalamus (Cassidy
and Gale, 1998; Rosenberg et al., 2006). The close spatial corre-
spondence between histopathological alterations and electrophys-
iological anomalies in TLE has provided a strong motivation to
study structural brain changes, which have been of a high clinical
and scientific value in mapping causes and consequences of drug-
resistant epilepsy. In particular, quantitative Magnetic Resonance
Imaging (MRI) analysis has offered a unique perspective to study
structural substrates of TLE in vivo and to gain further insights
into their spatial patterns and clinical correlates (See Figure 1, for
a schematic overview of structural MRI findings in TLE). Studies
based on manual volumetric MRI analysis largely confirmed
previous histological assessments, and provided a more compre-
hensive picture of the regional extent of structural abnormalities
in TLE. Volumetric analysis demonstrated atrophy in multiple
limbic structures, including the hippocampus, entorhinal cor-
tex, amygdala (Cendes et al., 1993a,b; Bernasconi et al., 2001,
2003a,b), temporopolar, perirhinal, lateral temporal neocortices
(Jutila et al., 2001; Moran et al., 2001; Sankar et al., 2008), and the
thalamus (Dreifuss et al., 2001; Natsume et al., 2003; Bernhardt
et al., 2012). In the hippocampus and thalamus, surface shape
mapping has furthermore allowed localizing structural anoma-
lies at a subregional level (Hogan et al., 2004; Kim et al., 2008;
Bernhardt et al., 2012, in press). In the thalamus, for example,
we found volume loss located primarily in mediodorsal segments
(Bernhardt et al., 2012). Quantitative MRI postprocessing tech-
niques, such as voxel-based morphometry (Bernasconi et al.,
2004; Bonilha et al., 2004; Keller and Roberts, 2008) and analyses
of cortical thickness have shown that TLE is associated with exten-
sive regional neocortical abnormalities, encompassing not only
mesiotemporal structures, but also prefrontal, fronto-central, cin-
gulate, occipito-temporal, and lateral temporal neocortices (Lin
et al., 2007; Bernhardt et al., 2008, 2009, 2010, 2012; Mcdonald
et al., 2008c; Mueller et al., 2009b; Kemmotsu et al., 2011; Voets
et al., 2011). Although the exact biological underpinnings of gray
matter loss in different brain regions are not clear, they likely
reflect a combination of neuronal loss and synaptic reorganiza-
tion (Cascino et al., 1991; Sanabria et al., 2002; Blanc et al., 2011),
possibly secondary to seizures (Sutula et al., 1988; Holmes, 2002;
Cavazos et al., 2003). These findings have increased our under-
standing of whole-brain pathology associated with TLE. On the
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FIGURE 1 | Schematic illustration of gray matter structural anomalies in

temporal lobe epilepsy. (top) Results from MRI-based cortical thickness
analysis, showing cortical thinning in left temporal lobe epilepsy (TLE)
patients with hippocampal atrophy relative to healthy controls in mesial and
lateral temporal as well as fronto-central neocortices (Bernhardt et al., 2010).
(lower left) Patterns of atrophy in TLE patients relative to controls in CA1

subregions of the ipsilateral hippocampus (Kim et al., 2008) and (lower right)

mediodorsal segments of the thalamus (Bernhardt et al., 2012), both
generated using spherical harmonic surface-shape modeling techniques of
manual MRI segmentations. The shown analyses have been generated using
the SurfStat toolbox for Matlab (Worsley et al., 2009). Further details on the
statistical procedures can be found in the original publications.

other hand, new techniques such as hippocampal and thalamic
surface-shape mapping (Kim et al., 2008; Bernhardt et al., 2012)
have allowed searching for fine-grained, subregional structural
anomalies within temporo-limbic seizure networks. Importantly,
the MRI-derived knowledge of pathology is in overall agree-
ment with data from animal models and ex vivo studies. These
studies collectively support the concept of TLE as a disorder of
distributed neural networks.

STRUCTURAL NETWORKS
Quantitative structural studies have provided a comprehensive
mapping of structural pathology in TLE. Nevertheless, the com-
monly applied mass-univariate group comparisons provide only
a snapshot of putative network abnormalities in TLE. Indeed,
while such topographic maps may localize an ensemble of
affected regions, they do not directly address how these regions
inter-relate.

The term structural connectivity refers to anatomical associa-
tions between brain regions, defining the actual physical wiring
(Stephan et al., 2000; Stone and Kotter, 2002; Sporns et al., 2005;
Sporns, 2011). The gold standard to define such connections
has been anterograde and retrograde tract-tracing techniques.
Tracers show good accuracy and sensitivity, in particular for
mapping long-range connections, and have resulted in a rich
and detailed cartography of connectivity in several mammalian
species (Felleman and Van Essen, 1991; Scannell et al., 1995;
Modha and Singh, 2010). Their invasiveness however, limits their
application to animal studies (Sporns, 2011).

In humans, two major indirect approaches have been
employed to map structural networks: diffusion MRI tractography
and structural MRI covariance (see Figures 2A–D). Structural
networks derived from diffusion-weighted MRI data provide
an approximation of the underlying white matter architecture
(Le Bihan et al., 1986, 1996; Johansen-Berg and Behrens, 2006;
Jbabdi and Johansen-Berg, 2011) by describing the direction-
ality and magnitude of water diffusion at each imaging voxel.
These data can be further processed by tractography algo-
rithms (Mori et al., 1999; Behrens et al., 2003), which recon-
struct fiber pathways running along plausible diffusion trajec-
tories in voxel-space (Figure 2A). While somewhat challenged
in regions where different fiber populations intersect (Behrens
et al., 2003; Jones et al., 2012), such as the cortical gray mat-
ter, tractography can generate consistent results, particularly in
deep white matter. Findings have shown overall a good cor-
respondence with the animal tracing literature, and have been
cross-validated by comparative sacrificial tracing studies in non-
human primates (Mori et al., 1999; Parker et al., 2002; Dauguet
et al., 2007). Moreover, it has been shown that factors such
as fiber diameter and density, membrane permeability, myeli-
nation, as well as fiber packing (Beaulieu, 2002; Concha et al.,
2010) can influence the directionality and magnitude of water
displacement at a given voxel. Diffusion imaging may, thus,
be used to assess microstructural and architectural integrity
in vivo. The most widely used diffusion tensor parameters
are fractional anisotropy (FA), an index of deviation of water
diffusion from a random spherical displacement, and mean
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FIGURE 2 | Assessment of inter-regional connectivity. (A) Diffusion
tractography. Left: Illustration of diffusion tensor directions
superimposed on a fractional anisotropy map derived from diffusion
MRI. Right: Seed-based deterministic tractography of the uncinate
fasciculus. (B) Altered mean diffusivity along the uncinate fasciculus
tract in a group of patients with temporal lobe epilepsy (TLE)
relative to controls (Concha et al., 2012). Prior to analysis, the tract
was subdivided into bins with respect to the anatomical distance
to the temporal and frontal lobes. (C) Structural covariance analysis.
Shown is the cortical thickness correlation map of the left medial
orbital cortex seed with the remaining cortical mantle in a group
of healthy controls. High positive correlations are interpreted as

connections, low correlations as absence of connections. (D)

Structural covariance alterations in TLE patients relative to controls
between an entorhinal cortex seed and target regions in medial
orbitofrontal cortices (Bernhardt et al., 2008). (E) Functional
connectivity between a left medial orbitofrontal cortex seed and the
rest of the cortical mantle in healthy controls. Insets show
exemplary time courses of the seed region with selected cortical
target regions with high and low correlations, respectively. (F)

Voxel-wise functional connectivity abnormalities in TLE, highlighting
target regions with altered time-series correlation to a spatial
component that closely matches the “default mode” network (Voets
et al., 2012).

diffusion (MD), a scalar marker of bulk diffusion at each
voxel.

In TLE, previous diffusion MRI studies have consistently
shown decreased FA in temporo-limbic tracts such as the fornix
pathway (Concha et al., 2005; Ahmadi et al., 2009), parahip-
pocampal fibers (Mcdonald et al., 2008a; Yogarajah and Duncan,
2008; Ahmadi et al., 2009), the uncinate fasciculus (Rodrigo et al.,
2007; Diehl et al., 2008; Lin et al., 2008; Mcdonald et al., 2008a),

and the cingulum bundle (Concha et al., 2008; Ahmadi et al.,
2009), as well as in several frontal and posterior fiber tracts
including the inferior and superior longitudinal fascicles (Focke
et al., 2008; Lin et al., 2008; Mcdonald et al., 2008a; Ahmadi et al.,
2009), the internal and external capsule (Arfanakis et al., 2002;
Gross et al., 2006; Concha et al., 2008), and the corpus callosum
(Arfanakis et al., 2002; Gross et al., 2006; Concha et al., 2008).
Relative to the widespread pattern of FA changes, MD anomalies
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follow a more restricted distribution (Concha et al., 2005, 2008;
Focke et al., 2008). In a recent study that assessed diffusion abnor-
malities along fiber tracts, our group could show that the effect
size of MD alterations in TLE seems to decrease as a function of
anatomical distance to the temporal lobe (Figure 2B), suggesting
co-localization of these changes with the seizure focus (Concha
et al., 2012).

The combined contribution of different microstructural and
architectural properties to the diffusion signal precludes a
straightforward, and universal biological interpretation of diffu-
sion tensor indices and their alteration in disease (Jones et al.,
2012). Diffusion MRI is, nevertheless, currently the only imag-
ing method that can assess fiber architecture in vivo (Jones et al.,
2012). Initial evidence from histopathological analysis of the
fimbria-fornix pathways in operated TLE patients suggests that
FA decreases may primarily reflect alterations in axonal mem-
branes (Concha et al., 2010). MD changes, on the other hand,
have been shown to vary with respect to the dynamics of seizure
activity (Yu and Tan, 2008; Concha et al., 2012). Indeed, MD has
been shown to decrease in the hyperacute phase after prolonged
seizures or status epilepticus, likely due to intracellular cytotoxic
edema. Conversely, few days following the subacute peri-ictal
phase, MD may increase as a consequence of vasogenic edema
(Scott et al., 2006). Neuronal loss and gliosis can lead to further
MD increase as a consequence of the chronic expansion of the
interstitial water content.

Structural networks may also be studied through covariance
analysis of MRI-based morphological metrics, such as corti-
cal thickness or gray matter volume (Bullmore et al., 1998;
Mechelli et al., 2005; Lerch et al., 2006; Bernhardt et al., 2008,
2013). According to the framework of MRI covariance analysis, a
high correlation in morphological markers between two regions
across subjects can be interpreted as a network link, while a low
correlation indicates no link (Figure 2C). Similar to diffusion
tractography, this correlational framework does not infer direct
anatomical connections between pairs of regions. Nonetheless,
analyzing structural covariance may detect manifestations of per-
sistent functional-trophic cross-talk, maturational inter-change,
as well as common developmental and pathological influences
(Lerch et al., 2006; Bullmore and Sporns, 2009; Zielinski et al.,
2010; Bernhardt et al., 2011; Raznahan et al., 2011; Xia and He,
2011; Khundrakpam et al., 2012; Alexander-Bloch et al., 2013).
One of the advantages of cortical thickness covariance analysis is
the direct seeding from cortical gray matter regions in a high-
resolution space that is in principle not limited by the imaging
voxels of the underlying MR image, but by the sampling den-
sity of the points on the cortical mesh. Correlation analysis of
structural features may furthermore represent a relatively prag-
matic approach toward structural network mapping. In fact, the
commonly used T1-weighted images, a standard component of
every clinical imaging protocol, have a short acquisition time.
Moreover, these images are generally unaffected by distortion
and signal dropout artifacts in orbitofrontal and temporo-basal
regions often occurring in echo-planar functional and diffusion
MRI sequences.

In TLE, several recent covariance analyses have mapped
abnormal structural correlations between mesiotemporal and

neocortical regions (Bonilha et al., 2007a; Bernhardt et al.,
2008; Mueller et al., 2009b), thalamic and neocortical regions
(Mueller et al., 2009a; Bernhardt et al., 2012), and within
cortico-cortical networks (Mueller et al., 2009a). Correlating
the thickness of the entorhinal cortex to that of the neocor-
tex, our group found decreased structural coordination between
mesial temporal regions and lateral temporal neocortices, sug-
gestive of a connectional breakdown within temporo-limbic cir-
cuits (Figure 2D; Bernhardt et al., 2008). Moreover, covariance
analysis of thalamo-cortical circuits (Hetherington et al., 2007;
Mueller et al., 2009a; Bernhardt et al., 2012) has shown coupled
structural and metabolic change of the thalamus with neocor-
tical (Bernhardt et al., 2012) and with mesiotemporal regions
(Hetherington et al., 2007; Mueller et al., 2009a), emphasiz-
ing a key role of this structure in the pathological network
of TLE.

Diffusion MRI and structural MRI covariance analysis tap into
different facets of structural brain networks. While diffusion MRI
analysis may be the method of choice to study white matter tracts,
and their potential architectural disruptions, structural covari-
ance analysis may sensitively assess alterations in the trophic-
morphological coordination between gray matter regions. Both
approaches have advanced our understanding of the fundamental
architecture of inter-regional connections, and their disruptions
in TLE.

FUNCTIONAL NETWORKS
The study of functional networks helps to elucidate how a struc-
tural architecture gives rise to alterations in neurophysiological
dynamics. The term functional connectivity refers to the strength
of statistical dependencies of neurophysiological signals between
regions (Figure 2E).

Functional connectivity can be determined from time-series
measured by functional MRI (Friston et al., 1993, 1996; Focke
et al., 2008; Smith, 2012) or electrophysiological techniques, such
as electroencephalography (EEG) (Lopes Da Silva et al., 1989;
Tononi et al., 1994; Lachaux et al., 1999). Although functional
MRI and EEG have complimentary temporal/spatial resolution
tradeoffs, they can also be combined (Lemieux et al., 2011). In
short, functional MRI does not directly measure neural activity,
but only activity-dependent hemodynamic alterations, and has a
relatively low temporal resolution in the range of 1–2 s [but see
Feinberg et al. (2010); Smith et al. (2012), for a recent example
of increasing the temporal resolution in functional MRI acqui-
sitions]. Yet, this technique offers high spatial resolution in the
millimeter range and allows imaging the entire brain (Lemieux
et al., 2011). EEG, on the other hand, has a superior tempo-
ral resolution (in the order of milliseconds) but suffers from
neurophysiological signals limited to the scalp.

One way to assess functional connectivity between different
brain regions is through analysis of task-free (or, resting-state)
paradigms, functional acquisitions during which the subject does
not perform any task (Biswal et al., 1995, 2010; Greicius et al.,
2003; Smith et al., 2009). Functional connectivity analysis of such
task-free datasets has allowed the identification of brain networks
that show strong coupling of intrinsic, spontaneous brain activ-
ity. Ample recent resting-state functional MRI assessments have
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revealed networks which are generally reproducible across sub-
jects (Damoiseaux et al., 2006) that closely correspond to brain
systems engaging in specific tasks (Biswal et al., 1995; Smith et al.,
2009; Laird et al., 2011). Several studies have furthermore begun
to explore the relationship between low-frequency resting-state
networks derived from functional MRI and those measured from
EEG (De Pasquale et al., 2010; Jann et al., 2010; Musso et al., 2010;
Yuan et al., 2012). Moreover, several studies in primates have sug-
gested a close correspondence between intrinsic functional MRI
connections and known anatomical pathways (Mantini et al.,
2011; Shen et al., 2012). In turn, other studies have demonstrated
the utility of resting-state patterns to generate regional parcella-
tions of specific anatomical areas (Margulies et al., 2007; Mars
et al., 2011). Finally, analysis of resting-state connectivity patterns
may be sensitive to detect disruptions of brain organization in
disease conditions (Greicius, 2008; Fox and Greicius, 2010; Kelly
et al., 2012).

Several EEG and combined EEG-fMRI studies have shown
dynamic alterations in functional activations and connectiv-
ity patterns related to epileptic spikes (Gotman et al., 2006;
Kobayashi et al., 2006; Laufs et al., 2007; Ponten et al., 2007;
Bettus et al., 2011). Resting-state functional EEG and functional
MRI connectivity analyses in TLE have also quantified chronic,
inter-ictal changes in functional networks (Waites et al., 2006;
Bettus et al., 2009). These studies have mainly focused on assess-
ing associations of intrinsic signals between regions known to
be involved in seizure activity, particularly among medial tem-
poral lobe structures. Bettus and colleagues reported decreased
functional connectivity in mesiotemporal regions proximal to
the seizure focus; interestingly, ipsilateral decreases co-occurred
with increased functional connectivity in contralateral regions
(Bettus et al., 2009). Findings of contralateral connectivity
increases are suggestive of compensatory network reorganiza-
tion. Several studies have also suggested functional connectivity
alterations in regions that comprise the “default mode” net-
work (Raichle et al., 2001; Greicius et al., 2003; Voets et al.,
2012), or between this network and other brain regions (Frings
et al., 2009; Liao et al., 2010; Zhang et al., 2010). The default
mode network includes a collection of medial frontal, midline
parietal, and lateral parietal regions that show increased activa-
tion in the absence of a specific tasks, and whose function may
closely relate to internal thought processes such as memory and
mind-wandering (Buckner and Carroll, 2007; Christoff et al.,
2009).

Changes in inter-regional functional coupling are thought
to represent compensatory mechanisms secondary to struc-
tural pathology and seizure-related activity. Combining
structural and functional image analysis, for example, our
group recently showed disruptions in functional connectiv-
ity between mesiotemporal regions and neocortical target
networks (Figure 2F) that may relate to abnormal gray mat-
ter density and altered diffusivity of inter-connecting fiber
tracts (Voets et al., 2012) suggestive of a complex derange-
ment in the structural-functional cross-links. There is also
evidence for abnormal signal interactions in epileptic patients
without a visible lesion on MRI (Vlooswijk et al., 2011). In
addition, functional abnormalities have even been shown

in regions unaffected by epileptic discharges (Bettus et al.,
2011), suggestive of a widespread pathological process that
alter the whole-brain intrinsic functional network architecture
in TLE.

GRAPH THEORY—MODELING NETWORK TOPOLOGY
Conventional analysis approaches, mainly based on between-
group comparisons have shown low-level regional and
connectional alterations in TLE. These methods, however,
are not tailored at capturing the complexity of whole-brain
pathological interactions in TLE, which may affect higher-order,
topological aspects of brain network organization.

Graph theory is a framework for the mathematical repre-
sentation and analysis of complex systems. It has been applied
to the analysis of artificial and biological networks (Watts and
Strogatz, 1998). Graph theoretical analysis has recently attracted
considerable attention in brain research because it provides a
powerful formalism to quantitatively describe the topological
organization of connectivity (Bullmore and Sporns, 2009; Guye
et al., 2010; Bassett and Gazzaniga, 2011; Bullmore and Bassett,
2011; Alexander-Bloch et al., 2013). In graph theory terms, a
network is a collection of nodes that are interconnected by
edges. Nodes usually represent brain regions, while edges rep-
resent (structural or functional) connections. A pre-requisite
to connectivity analysis is the proper designation of nodes as
distinct gray matter regions. Various parcellation schemes have
been proposed, including approximating Brodmann areas based
on imaging-derived surrogates of myelination (Glasser and Van
Essen, 2011; Bock et al., 2013), sulcation-based atlases (Van
Essen, 2005; Desikan et al., 2006), high-resolution parcellations
(Hagmann et al., 2008; Honey et al., 2009), as well as schemes that
take the imaging voxels/vertices themselves as nodes (Lohmann
et al., 2010; Tomasi and Volkow, 2011). In addition, several
studies have also used data-driven techniques such as indepen-
dent brain components to define network nodes (Yu et al.,
2011b, 2013). Nodal definitions have shown to have a large
influence on graph-theoretical parameters (Tohka et al., 2012),
and the definition of reliable, biological meaningful parcella-
tions schemes continues to be an active area of current research
(Geyer et al., 2011; Glasser and Van Essen, 2011; Van Essen et al.,
2012).

As described in previous sections, in vivo studies provide sev-
eral definitions for network edges, both in the structural and
functional domain (see Figure 3, for an example of functional and
structural network generation). Accordingly, graph-theoretical
analysis has been conducted across various modalities such as
functional MRI (Salvador et al., 2005; He et al., 2009; Honey
et al., 2009), electrophysiology (Stam, 2004; Bassett et al., 2006),
diffusion-weighted MRI (Hagmann et al., 2007, 2008; Iturria-
Medina et al., 2007; Gong et al., 2009), and structural covariance
(He et al., 2007; Bassett et al., 2008; Chen et al., 2008; Bernhardt
et al., 2011). Collectively, these studies have shown that the global
topology of brain networks in healthy populations is neither ran-
dom nor regular, but characteristic of a small-world. Small-world
networks are defined by clusters of tightly inter-connected nodes,
which are themselves linked to other clusters through few inter-
connector links. This architecture results in overall short path
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FIGURE 3 | Graph-theoretical analysis. (A) Association matrix
quantifying the degree of connectivity (derived from techniques such
as diffusion MRI tractography, structural covariance, or functional
connectivity, see Figure 2). (B) Matrices commonly undergo a
thresholding procedure to remove spurious edges. In this example,

binary adjacency matrix. (C) Each binary matrix is equivalent to an

undirected graph. (D) Topological parameters such as the clustering
coefficient and path length can then be measured; networks can be
partitioned in modules based on groupings of connectivity among
nodes; hubs can be identified, for example, as nodes with high
degree centrality (i.e., a high number of connections). (E) Cortical
degree centrality map, based on resting-state functional connectivity
data from a single healthy control subject.

lengths between individual nodes and an overall high degree of
clustering (Watts and Strogatz, 1998), an architecture that enables
both the specialization and integration of information transfer at
relatively low wiring costs (Sporns et al., 2004). Graph-theoretical
methods may be used to examine intermediary levels of organi-
zation. Communities (also called modules) are groups of nodes
that are richly connected to one another within the larger frame-
work of the entire network (Meunier et al., 2010; Bullmore and
Bassett, 2011). Modularity is one of the most ubiquitous prop-
erties of complex, large-scale networks (Bullmore and Sporns,
2009), and modules may express some degree of hierarchical
organization (Bassett et al., 2008; Meunier et al., 2010; Bullmore
and Bassett, 2011). Theoretically, there are several advantages
to a modular and hierarchical organization, including greater
adaptability and robustness to changing environmental condi-
tions (Meunier et al., 2010). Moreover, it has been suggested that
the more modular and hierarchically organized a system is, the
more diverse its functional activation patterns (Alexander-Bloch
et al., 2010; Kaiser and Hilgetag, 2010). Modularity may be under-
mined by disease processes, as suggested by disrupted modularity
in schizophrenia (Bassett et al., 2008; Alexander-Bloch et al.,
2010; Yu et al., 2011a), and frontal lobe epilepsy (Vaessen et al.,
2012a).

Besides the characterization of global and modular properties
of large-scale networks, graph-theoretical techniques allow the
localization of key regions within the network layout, so-called
hubs, through centrality-based metrics (Bullmore and Sporns,
2009; Van Den Heuvel and Sporns, 2011; Zuo et al., 2012).
According to formulations of centrality, hubs can be defined
as regions with a high degree centrality, which means that
they have a high number of connections to other nodes
(Zuo et al., 2012); they can be identified on the basis of
high betweeness centrality, which signifies they are located
along pathways of efficient information flow (Zuo et al.,
2012); finally, they can be identified through a high eigen-
vector centrality, which is a recursive formulation quantify-
ing connections to other highly connected hubs (Lohmann
et al., 2010; Zuo et al., 2012). Depending on their embed-
ding in specific modules and connectivity profiles, hubs can
be further classified as to whether they primarily mediate
within- or between-module connectivity (Sporns et al., 2007).
Assessing hubs promises to highlight critical key regions in
structural and functional networks, and may thus provide a
better understanding of their potential role in pathological
processes (Bullmore and Sporns, 2012). In Alzheimer’s dis-
ease, for example, functional hubs coincide with regions of
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high amyloid-beta deposition (Buckner et al., 2009). Central hubs
may form a so-called rich club, a collection of mutually densely
linked nodes with disproportionally high centrality (Van Den
Heuvel and Sporns, 2011; Harriger et al., 2012). This architecture
is thought to contribute to the robustness of the core constituents
of the brain network. In humans, a rich club inferred from
diffusion MRI has been shown to comprise lateral prefrontal,
midline and lateral parietal, as well as the hippocampus, puta-
men, and thalamus (Van Den Heuvel and Sporns, 2011). In the
macaque monkey, rich club regions have been shown to be pref-
erentially located on short paths through the network, thereby
contributing effectively to global communication (Harriger et al.,
2012).

In focal epilepsy, relatively few studies have employed graph-
theoretical analysis of brain networks derived from MRI (Liao
et al., 2010; Bernhardt et al., 2011; Bonilha et al., 2012;
Vaessen et al., 2012b). We previously showed that in drug-
resistant TLE, structural networks derived from inter-regional
MRI-based cortical thickness correlations are characterized by
increased clustering and path length, a finding indicative of a
more regular global topology (Bernhardt et al., 2011). These
findings were complemented by the parallel observation of
reduced network robustness, a measure of organizational sta-
bility (Bernhardt et al., 2011), and subtle alterations in the
distribution of network hubs pointing toward a more paral-
imbic distribution in patients relative to controls. In a longi-
tudinal study, we showed that structural network disruptions
intensify over time. Furthermore, relating network parameters
to postsurgical seizure outcome data indicated that patients
who continued to have seizures after surgery had more marked
network disruptions relative to those who became seizure-free
(Bernhardt et al., 2011). These findings speak to the hypoth-
esis that seizure recurrence after surgery may, in part, be
related to an extended epileptogenic network (Ryvlin, 2003;
Bernhardt et al., 2010). Our findings therefore suggest a pos-
sible clinical potential for network data in the presurgical
workup.

Our finding of a more regularized topology of structural
cortico-cortical networks in drug-resistant TLE closely resem-
bled results from graph-theoretical analyses of intracerebral

EEG recordings during focal seizures (Ponten et al., 2007;
Kramer et al., 2008; Schindler et al., 2008) and scalp EEG
data of generalized absence seizures (Ponten et al., 2009).
Indeed, electrophysiological work has suggested that seizures
may be associated with a sudden regularization of func-
tional networks. It may, thus, be plausible that network syn-
chronization during the ictal phase may influence mutual
inter-cortical trophic exchanges, ultimately leading to progres-
sive and long-lasting remodeling of inter-regional structural
networks.

Few other studies assessed the topology of brain networks
derived from MRI in TLE using graph-theoretical methods. A
diffusion MRI tractography of structures belonging to the limbic
network showed increased clustering and centrality in 12 patients
with unilateral TLE (Bonilha et al., 2012). Analysis of whole-brain
resting-state functional networks in patients with bilateral TLE
has revealed both atypical low-level connectivity (i.e., increases in
temporal and decreases in fronto-parietal connectivity) and topo-
logical disruptions, indicative of decreased clustering and path
length (Liao et al., 2010). These studies have further demon-
strated that TLE is associated with topological disruptions in
large-scale structural and functional networks. Results have nev-
ertheless been somewhat divergent, possibly as a result of het-
erogeneous patient populations and diverse network construction
methods.

CONCLUSIONS AND FUTURE DIRECTIONS
Advances in brain network construction and graph theoretical
modeling have permitted a characterization of topological aspects
of healthy and abnormal brain connectivity. While an extensive
literature has shown regional as well as low-level connectional
disruptions in TLE, studies focusing on disruptions of network
topology have been so far rather sparse. The unified and elegant
framework of graph theoretical analysis promises to further con-
solidate our understanding of how functional networks interact
with their structural substrate. Moreover, given initial observa-
tions of a relationship between the extent of network damage and
post-surgical seizure outcome, establishing subject-specific pro-
files of network properties has great potential to assist in clinical
decision-making.
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In a previous study we reported on a non-invasive functional diffusion tensor imaging (fDTI)
method to measure neuronal signals directly from subtle changes in fractional anisotropy
along white matter tracts. We hypothesized that these fractional anisotropy changes relate
to morphological changes of glial cells induced by axonal activity. In the present study
we set out to replicate the results of the previous study with an improved fDTI scan
acquisition scheme. A group of twelve healthy human participants were scanned on a
3 Tesla MRI scanner. Activation was revealed in the contralateral thalamo-cortical tract
and optic radiations during tactile and visual stimulation, respectively. Mean percent signal
change in FA was 3.47% for the tactile task and 3.79% for the visual task, while for the MD
the mean percent signal change was only −0.10 and −0.09%.The results support the notion
of different response functions for tactile and visual stimuli. With this study we successfully
replicated our previous findings using the same types of stimuli but on a different group
of healthy participants and at different field-strength. The successful replication of our first
fDTI results suggests that the non-invasive fDTI method is robust enough to study the
functional neural networks in the human brain within a practically feasible time period.

Keywords: white matter, DTI, activation, MRI imaging, task performance and analysis

INTRODUCTION
Neurobehavioral functions depend on a dynamic flow of infor-
mation between different gray matter brain regions that are
interconnected via white matter pathways (Catani and Ffytche,
2005; Mesulam, 2005). Imaging techniques such as diffusion ten-
sor imaging (DTI; Le Bihan et al., 1986; Basser et al., 1994) in
combination with fiber tracking (Conturo et al., 1999; Jones et al.,
1999; Mori and van Zijl, 2002) allow us to non-invasively study
the anatomy of these pathways – but not their activity.

Numerous studies examined the various aspects of using
diffusion-weighted MRI in a functional setup (DfMRI) to measure
activation in gray matter, using weak (Le Bihan et al., 1986, 1988)
or strong diffusion weighting (Boxerman et al., 1995; Prichard
et al., 1995; Gulani et al., 1999; Darquie et al., 2001; Jin et al.,
2006; Le Bihan et al., 2006; Jin and Kim, 2008; Stroman et al.,
2008; Yacoub et al., 2008; Aso et al., 2009; Flint et al., 2009; Ker-
shaw et al., 2009; Autio et al., 2011; Baslow et al., 2012; Branzoli
et al., 2013; Tirosh and Nevo, 2013). In our first fDTI study
(Mandl et al., 2008) we proposed a non-invasive functional dif-
fusion tensor imaging (fDTI) method that has the potential to
detect the white matter fibers that are active during neurobe-
havioral functioning. In that study, eight healthy participants
were scanned on a 1.5 MRI Tesla scanner during a tactile exper-
iment and a visual experiment to assess the validity of the fDTI
method. The results of these experiments revealed activation in
the contralateral thalamo-cortical tract and optic radiations dur-
ing tactile and visual stimulation, respectively. Furthermore, these
results not only suggested a slowly varying response function for
both the tactile and visual stimuli but also that these response
functions are different for the different types of stimuli. We spec-
ulated that the differences between the response functions could

be due differences in perceived intensity of the different stimuli
used – the checkerboard stimulus being perceived more intense
than the tactile stimulus. Figure 1A shows the response functions
for a single tactile and a single visual stimulus. In the current
study we set out to replicate our previous findings using the
same types of stimuli but on a different group of healthy par-
ticipants with a new fDTI acquisition scheme using a 3 Tesla MRI
scanner.

Functional diffusion tensor imaging is based on the assump-
tion that task-related changes in fractional anisotropy (Basser and
Pierpaoli, 1996; FA) are a sign of local fiber activity. The prin-
ciple of the fDTI method as applied in this study is outlined in
Figure 2. In our first fDTI study (Mandl et al., 2008) the conser-
vative non-parametric sign-test formed the statistical basis to test
for tract activation. Note that in the present study we used the
more familiar parametric t-test because the findings from our first
fDTI study suggested that the usage of the t-test instead of the
sign-test produces very similar results. We hypothesized that mor-
phological changes of glial cells (e.g., oligodendrocytes) induced
by activity-related increases in extracellular potassium concen-
trations could lead to shape changes of the extra-cellular space
(ECS; Ransom et al., 1985; Sykova, 2004; Beshay et al., 2005) and,
in turn, lead to a measurable increase in FA. Indeed, changes in
the diffusion profile due to changes in the ECS in white matter
have been shown in vitro using diffusion weighted imaging in the
rat optic nerve (Anderson et al., 1996). An earlier study (Prichard
et al., 1995) reported that electrical stimulation induced significant
changes in the diffusion properties of brain tissue in rats. Using
intrinsic optical imaging (MacVicar et al., 2002) slowly varying
activity-related signal changes were measured in the rat optical
nerve, which were attributed to glial cell swelling. However, a
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FIGURE 1 | Response functions and task encoding. The graphs represent
the time course of the measured diffusion weighted MRI signal for a single
tactile stimulus (dots) or visual stimulus (dashes; adapted from Mandl et al.,
2008) and the scan in combination with a scan block as used in the fDTI
experiment. (A) Both the tactile stimulus and visual stimulus (bar) started
after 12 s with a duration of 60 s. (B) The results of the response function
experiment show that the maximum of the response function (dotted line) for

the tactile stimulus (bar) falls within the first scan of a scan block while the
maximum of the response function (dashed line) of the visual stimulus is
found between the first and second scan. (C) Therefore in the fDTI
experiment the tactile task the first scan is contrasted against the second and
third scan, while for the visual task the first and second scan are contrasted
against the third scan. The signal during the stimulus is constantly increasing
(reflecting a reduction in diffusivity in the transverse direction of the tract).

FIGURE 2 |The fDTI method (visual experiment). (A) In the fDTI
experiment 1+6 blocks of 3 DTI scans are acquired. The first block (dashed
lines) is a dummy block added to correct for possible scanner onset effects
and is disregarded in the further analysis. The necessity for the lag between
task and scans is explained in Figure 2. For each of the 18 DTI scans an FA
map is computed (B). A statistical parameter map (SPM) is computed

(D) on the FA maps using a general linear model. Fiber tracts are
reconstructed for the complete brain (C) and, for each tract, the t -values
found in the SPM along that tract were grouped into a single set of
t -values (E). For each tract a statistical test (student’s t -test) is done (F) on
the set of t -values to test if the average t -value found along the tract is
significantly (t > 5) greater then zero.

study using the real-time tetramethylammonium (TMA+) ion-
tophoretic method in combination with intrinsic optical imaging
(Sykova et al., 2003) showed that the concentration of TMA+ in
the ECS did not change although similar changes in the intrin-
sic optical imaging signal were measured. Therefore the authors
concluded that it was unlikely that glial cell swelling was the pri-
mary mechanism for these intrinsic optical signal changes and
they suggested that a more plausible explanation may be found in
morphological changes of glial cells. Our first fDTI results (Mandl

et al., 2008) support this conclusion as the FA-signal changes in the
active fibers measured in that study were due to opposite changes
in parallel and transverse diffusion coefficients which (for a large
part) cancel each other out leading to only small changes in mean
diffusivity (MD). If cell swelling was the underlying mechanism
for the measured FA-signal changes then an overall reduction in
MD is expected because cell swelling would result in a decrease
in both transverse and parallel diffusivity in the active condi-
tions. More recent studies (Stroman et al., 2008; Flint et al., 2009)
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showed that increased levels of potassium lead to changes in both
intrinsic optical signal values and MRI proton density measure-
ments for gray and subcortical white matter in rats, suggesting
that activity-related changes in the ECS of gray matter as well as
white matter can be measured using MRI. In addition, Tirosh and
Nevo (2013) showed, using ultra-high field MRI, that neuronal
activation results in a 19.5% reduction of the ADC in excised and
vital newborn rat spinal cord and concluded that this reversible
drop in ADC was due to a reduction in water displacement and
could not be related to any hemodynamic effect because the tissue
samples were blood-free. Indeed, the contribution of hemody-
namic effects to diffusion-weighted functional imaging in gray
matter is a topic of extensive research. Various hypercapnia chal-
lenge studies show that in gray matter changes in ADC can be
measured even when strong diffusion weighting is used. Hyper-
capnia induces a strong vascular response but no neuronal activity.
Because of the strong diffusion weighting, changes in cerebral
blood flow and/or cerebral blood volume are not expected to pay a
major contribution to the measured change in ADC (Yacoub et al.,
2008). However, it was shown that gradient coupling between
changes in extravascular susceptibility gradients (i.e., BOLD effect)
and the diffusion gradients can result in substantial changes in
ADC (Zhong et al., 1991; Hong and Dixon, 1992). These results
implicate that DfMRI is not immune to possible hemodynamic
effects and posed the question whether or not the reported DfMRI
activity-related ADC changes can be fully explained by this gra-
dient coupling effect (Song et al., 1996; Does et al., 1999; Goerke
and Moller, 2007; Miller et al., 2007; Lu et al., 2009; Ding et al.,
2012; Rudrapatna et al., 2012). Although the results presented in
(Stroman et al., 2008; Flint et al., 2009; Tirosh and Nevo, 2013) do
provide important evidence that neuronal activation significantly
reduces water displacement that can be measured using DfMRI it
does not provide information on the relative contributions of the
different contrast mechanisms to the measured ADC changes in
gray matter. In our first fDTI study we also could not rule out the
influence of hemodynamic effects on the measured task-related
FA changes in white matter. Indeed, two recent vascular chal-
lenge studies (Ding et al., 2012; Rudrapatna et al., 2012) in adult
Spraque-Dawley rats using strong diffusion gradients (b-values
equal or higher than 1000) showed signal changes in white matter
ranging between 1 and 2% both in MD and FA. Similar to these
results the absolute percent signal change for FA reported in our
first fDTI study ranged between 0.98 and 1.45% but in contrast
to these results the absolute percent signal change for MD was
much lower (between 0.03 and 0.21%) suggesting that the mea-
sured ADC changes cannot be readily explained by hemodynamic
effects alone and are more in line with possible shape changes of the
ECS.

Normal activity-induced ECS changes, however, are expected
to be very small as compared to the physiological noise (Gulani
et al., 1999) and a reliable detection of the signal change would
require a large number of measurements. In the proposed fDTI
method we assume that these activity-related glial shape changes
extend over the entire active fiber so that a substantial increase
in signal-to-noise ratio (SNR) can be achieved by pooling the
signal changes over the complete fiber. It is the adoption of a
fiber-based statistics -rather than a voxel-based statistics- that

enables us to measure the signal within a practically feasible time
period.

In our first fDTI study a tactile experiment and a visual exper-
iment were selected for their expected lack of overlap in activated
fibers, which allowed us to study both the specificity and sensi-
tivity of the fDTI method. Also the chance of task related motion
artifacts was reduced because a subject’s response was not required
in either of the tasks. In the present study we used the same types
of stimuli but with a new acquisition scheme on a 3 Tesla MRI
scanner. For white matter voxels that are part of an active fiber, we
expected that the FA was higher during the active condition than
during the rest condition, thus showing a positive correlation with
the task. For the tactile task, activation was expected for the affer-
ent fibers of the thalamo-cortical tracts that connect the thalamus
and the contralateral primary sensory area (Kandel et al., 2000).
For the visual task, activation was expected mainly for fibers that
are bilaterally part of the optic radiation (Kandel et al., 2000).

MATERIALS AND METHODS
Twelve healthy subjects participated in this study. All experiments
presented in this study were approved by the medical ethical
committee for human subjects of the University Medical Center
Utrecht, the Netherlands, and all subjects signed written informed
consent prior to participation. For the tactile stimulus experiment
the participants were instructed to keep their eyes closed for the
duration of the whole experiment. During the active condition,
the palm and fingers of the subject’s right hand were brushed in
a random fashion (approximately 1 Hz) by an investigator. In the
visual response function experiment the subjects were instructed
to look at a red fixation cross that was projected on the center of
a screen visible from inside the scanner at all times. During the
active condition a red and green checkerboard was shown that
alternated at a frequency of 8 Hz.

IMPROVEMENTS OF THE fDTI ACQUISITION
In the present study we utilized an fDTI acquisition scheme that
was improved in several ways to increase specificity by further
excluding possible confounding factors (the time settings of this
acquisition scheme are detailed in Figure 1). (1) We optimized
the time settings separately for the tactile stimulus and the visual
stimulus because the results of the previous study suggested a
considerable time lag in the order of tens of seconds for the visual
stimulus, which was not found for the tactile stimulus (Figure 1A).

(2) For each type of stimulus, scan slice directions were chosen
perpendicular to the expected active tracts in order to minimize
the effects of possible motion artifacts that may introduce false
positives. If a slice is corrupted because of motion artifacts then
for a tract that runs completely through that slice, all points are
affected. In contrast, for a tract that runs in the direction per-
pendicular to that slice only one point is affected. Therefore, the
scan slice direction was set in the transverse direction for the tac-
tile stimulus, which is perpendicular to the thalamo-cortical tracts
and for the visual stimulus the scan slice direction was set in the
coronal direction, which is perpendicular to the optic radiations.
(3) The voxel size was set to be anisotropic pointing into the direc-
tion of the tracts that are expected to become active in order to
reduce partial voluming. (4) In the fDTI experiment 6 blocks of
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3 DTI scans were acquired (Figure 2A) where stimulus periods
(60 s) alternated with resting periods (120 s). Thus, instead of a
simple on/off task-design each stimulus period was now followed
by two resting periods. In this way possible effects of any periodic
signal changes that are not related to the task such as cerebrospinal
fluid pulsations (Kao et al., 2008) were minimized.

(5) For both tactile and visual fDTI experiments the stimulus
period was shifted with respect to the corresponding acquisition.
Now a stimulus period starts at the middle of the last scan of a
block and stops at the middle of the first scan of the consecutive
block. This shift between the start of the stimulus period and the
start of the DTI scan(s) associated with activation was added for
two reasons.

First, the time-course experiment described in our first fDTI
study showed a slowly varying response function for both the
tactile and the visual stimulus (see Figure 2A), which was later
also reported for gray matter (Baslow et al., 2012). Because of the
slowly varying response function the expected signal maximum
now falls in the first DTI scan period for tactile stimulus and
in the middle of the first and second DTI scans for the visual
stimulus. Second, effects of possible faster varying signal changes
(such as signal changes due to task-related head motion or blood
oxygen-level dependent, BOLD signal) now affect activation and
rest DTI scans equally, thereby canceling each other out. Because
both activation and rest DTI scans were acquired partially during
an activation period (Figure 1A).

(6) Rudrapatna et al. (2012) argued that measures derived from
the diffusion tensor (e.g., FA) may be devoid of their usual mean-
ing rendering interpretation difficult because the signal is slowly
varying during the acquisition of all 7 scans (that is, 1 scan without
diffusion weighting and 6 diffusion-weighted scans). To determine
if this non-stationarity of the signal would substantially affect
the fDTI measurements we circular shifted the diffusion gradi-
ent scheme by one for each subsequent epoch. This “round robin”
diffusion gradient scheme is detailed in Table 1.

SCAN ACQUISITION PARAMETERS
For each experiment a separate T1-weighted scan, two conven-
tional high-resolution DTI scans, and an fDTI scan were acquired.
All scans were acquired on a Philips Achieva 3 Tesla whole-body
MR scanner (Intera Achieva, Philips, Best, The Netherlands) using
an eight-channel head coil.

A sagittal 3D T1-weighted whole brain scan was acquired for
anatomical reference, inter-subject registration, the creation of a
white matter mask and visualization of the results (acquisition
matrix 304 × 299 × 200; FOV = 240 mm × 240 mm × 160 mm;
TR = 10 ms; TE = 4.6 ms; flip angle = 8 degrees; SENSE parallel
imaging in both phase encoding directions = 1.5; total scan dura-
tion 602 s). Next, two conventional transverse Stejskal-Tanner
diffusion weighted single shot spin-echo, echo planar imaging
(SS-EPI) DTI scans were acquired (FOV = 240 mm × 240 mm;
acquisition matrix 128 × 128; reconstruction matrix 128 × 128;
slice thickness 2 mm; 75 consecutive slices; flip angle = 90 degrees;
TE = 68 ms; TR = 7047 ms; parallel imaging SENSE factor = 3;
total scan duration 268 s, no cardiac gating; Mandl et al., 2008; van
den Heuvel et al., 2008). The second conventional DTI scan differs
from the first one in that the k-space readout direction (anterior–
posterior) is reversed. These conventional DTI-scans were used
for reconstruction of the fibers (Figure 2C). The functional time
series of DTI scans (the fDTI set) were acquired during the exe-
cution of an alternating sequence of a neurobehavioral task and a
resting condition. For the tactile experiment a total of seven sets of
three transverse SS-EPI DTI scans (acquisition matrix = 96 × 96;
FOV = 240 mm; 30 slices; slice-thickness = 7 mm; no gap;
TE = 78 ms; TR = 6000 ms; parallel imaging SENSE factor = 3;
90 degrees flip angle; 6 non-collinear diffusion gradient direc-
tions with b-factor = 1000 s/mm2 and 2 scans without diffusion
gradients; scan duration per DTI scan = 60 s) were collected.
No cardiac gating was used as it would lengthen the experi-
ments. For the visual experiment the fDTI scans were acquired
in coronal direction with otherwise identical parameter settings.
The first set is a dummy set that was added to eliminate pos-
sible scanner onset effects (e.g., gradient heating). Per set the
order of the diffusion gradient directions was circular shifted
(Table 1). For the dummy set the same ordering of the diffu-
sion gradients was used as for the first real set. For each set
one stimulus period was presented. A stimulus period started
at the middle of the acquisition period of the last DTI scan of
the previous block and stopped at the middle of the acquisi-
tion period of the first scan of the current block (Figure 2A).
The subjects left the scanner room for at least 15 min to rest
between the two experiments. The order of the fDTI experi-
ments (first tactile then visual or vice versa) was balanced and
randomized.

Table 1 | Gradients settings used in the visual and tactile fDTI experiments.

Scan block #1 Scan block #2 Scan block #3 Scan block #4 Scan block #5 Scan block #6

Gradient #1 G(1, 0, 0) G(0, 1/2
√

2, 1/2
√

2) G(1/2
√

2, 0, 1/2
√

2) G(1/2
√

2, 1/2
√

2, 0) G(0, 0, 1) G(0, 1, 0)

Gradient #2 G(0, 1, 0) G(1, 0, 0) G(0, 1/2
√

2, 1/2
√

2) G(1/2
√

2, 0, 1/2
√

2) G(1/2
√

2, 1/2
√

2, 0) G(0, 0, 1)

Gradient #3 G(0, 0, 1) G(0, 1, 0) G(1, 0, 0) G(0, 1/2
√

2, 1/2
√

2) G(1/2
√

2, 0, 1/2
√

2) G(1/2
√

2, 1/2
√

2, 0)

Gradient #4 G(1/2
√

2, 1/2
√

2, 0) G(0, 0, 1) G(0, 1, 0) G(1, 0, 0) G(0, 1/2
√

2, 1/2
√

2) G(1/2
√

2, 0, 1/2
√

2)

Gradient #5 G(1/2
√

2, 0, 1/2
√

2) G(1/2
√

2, 1/2
√

2, 0) G(0, 0, 1) G(0, 1, 0) G(1, 0, 0) G(0, 1/2
√

2, 1/2
√

2)

Gradient #6 G(0, 1/2
√

2, 1/2
√

2) G(1/2
√

2, 0, 1/2
√

2) G(1/2
√

2, 1/2
√

2, 0) G(0, 0, 1) G(0, 1, 0) G(1, 0, 0)

G(x, y, z) is the gradient direction vector where x points in the subjects right–left direction, y points in anterior–posterior direction and z points in the inferior–superior
direction. For each subsequent scan block the set of six gradients is rotationally shifted by one.
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FIBER TRACKING
The two conventional DTI scans were combined to remove
susceptibility-induced distortions (Andersson et al., 2003). After
correction (Andersson and Skare, 2002) of the gradient-induced
distortions and subject motion the diffusion tensors were com-
puted using robust tensor estimation (Chang et al., 2005) based
on M-estimators yielding a single DTI volume. The DTI vol-
ume was used to reconstruct the fiber tracts for the whole
brain with the FACT algorithm (Mori et al., 1999). Parame-
ter settings: minimum FA > 0.15, maximum angle between
current major eigenvector and previous major eigenvector <37
degrees, average maximum angle between current major eigenvec-
tor and major eigenvectors of neighboring voxels (R-value) < 37
degrees, minimum fiber length 50 mm, number of fiber start-
ing points per voxel = 8. The fiber tracking was constrained
within the white matter by using a white matter mask that
was created on the T1-weighted scan using SPM2 (Wellcome
Department of Cognitive Neurology, London, UK) and overlaid
on the conventional DTI set. The rigid transformation needed
to align the T1-weighted scan with the conventional DTI vol-
ume was computed between the T1-weighted image and the
diffusion unweighted scan from the (susceptibility corrected)
conventional DTI image with the ANIMAL software package
(Collins et al., 1995) using mutual information as a similarity
metric.

STATISTICAL ANALYSIS
Because the measured FA values and noise characteristics may
vary considerably at different positions along a fiber, the effect size
of a task-related signal change is not constant for all voxels that
are part of the fiber tract. Therefore statistical tests that assume
equal effect sizes for all parts of the fiber are not suited to test
for fiber activation. In the fDTI method the comparison between
active and rest FA values is performed per voxel using a general
linear model (GLM). The resulting t-value then represents the
difference between activation and rest independent of the effect
size. The results for all voxels together form a statistical parame-
ter map (SPM) that is used to test for task-related fiber activation
(Figure 2D). The computation of the SPM is described below. For
each of the reconstructed fibers (Figure 2C) the set of t-values in
the SPM that coincides with the fiber is selected (Figure 2E) and
tested whether its mean t-value is significantly greater than zero
(here we used a fixed threshold of t > 5, uncorrected; Figure 2F).
Because of the differences in response functions for tactile and

visual stimuli, different task encoding regressors for the recon-
struction of the SPM were used in the tactile and visual experiment
(Figure 1). The first DTI scan (activation) was compared with the
second and third DTI scan (rest) of the set for the tactile stim-
ulus, while for the visual stimulus the first and second DTI scan
(activation) were compared to the third DTI scan (rest).

STATISTICAL PARAMETER MAP CREATION
To correct for inter-scan subject motion all different diffusion
weighted (and unweighted) volumes were rigidly aligned (using
cross-correlation as similarity metric) with their counterparts
from the first DTI scan. Next, the FA maps were computed for
each of the 18 registered DTI scans. For each FA time series (i.e.,
the FA value of a single voxel followed over time) a t-statistic
was computed using a GLM with two regressors. The first regres-
sor encoded for activation (activation = 1, rest = 0). The second
regressor (with linear increasing values between 0 and 1) was added
to correct for effects of possible scanner drift. The results of the
first regressor form the SPM that is used to test for activation of the
entire fiber tracts (Figure 2D). Realignment of the SPM with the
reconstructed tracts was done using a linear transformation that
was computed between the average diffusion unweighted scan of
the conventional DTI scan and the fDTI set using cross-correlation
as a similarity metric.

ACCUMULATED RESULTS
The accumulated results here were created analog to accumulated
results presented in (Mandl et al., 2008). In short, for each subject
a binary map of the complete set of voxels that coincides with the
active fibers found is placed in one common space using the linear
transformation that registers the subject’s anatomy scan with the
Montreal Neurological Institute MNI-305 template. Each of the
transformed sets is then blurred with a 3-dimensional Gaussian
kernel with a full width at half maximum of 7 mm followed by a
threshold at a value of 0.1 yielding a second binary map. Finally
these binary maps of the subjects are accumulated and overlaid on
the subjects’ average anatomy. Thus the value of a (colored) voxel
represents the minimum number of subjects for which an active
fiber can be associated with that voxel.

RESULTS
Figure 3 shows the active fibers found for a single subject in
the tactile fDTI experiment and the visual fDTI experiment. For

FIGURE 3 | fDTI results for a single subject. Tracts that were
found active during the visual task (blue) and the tactile task
(yellow) using the fDTI method. During the tactile task, activation
was found predominantly contra-laterally for the thalamo-cortical tracts

running from the thalamus to the primary sensory cortical area.
Activation during the visual task was found, amongst others, for
tracts that are part of the optic radiation and the genu of the
corpus callosum.
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FIGURE 4 | Accumulated fDTI results of all 12 individuals for the

tactile and visual tasks. For both tasks the cumulative fDTI results
were computed and overlaid on the subjects’ average anatomy. The
value of a (colored) voxel represents the minimum number of subjects
for which active fibers are found at that position. Visual activation is
found for tracts that are part of the forceps major (A) MNI-coordinate

(31, −58, 16), superior longitudinal fasciculus (B) MNI-coordinate (31,
−24, 34), and at positions that correspond with the optic radiations. The
results show that the majority of the tactile activation is found in the
contralateral tracts connecting the thalamus and sensory cortex.
Maximum cumulative values are found at MNI-coordinates (−27, −30,
34; C) and (−19, −22, −3; D).

each task, the results of all individuals were placed in a com-
mon space to study the cumulative activation patterns (Figure 4).
For the tactile experiment contralateral activation of the left sen-
sory thalamo-cortical tract was found. A maximum cumulative
value 7 of 12 (indicating the number of subjects that had an active
fiber running through that voxel) for the superior part of the left
thalamo-cortical tract was found at (−27, −30, 34) in MNI space.
The maximum cumulative value 8 (of 12) for the inferior part of
the left thalamo-cortical tract was found at MNI coordinate (−19,
−22, −3).

For the visual experiment bilateral activation was found pre-
dominantly in the optic radiations. The maximum cumulative
value 8 (of 12) for the visual task was found at MNI coordinate
(31, −58, 16), which is located in the forceps major (according to
the JHU white matter tractography atlas; Hua et al., 2008). More
superior, a local maximum cumulative value 7 (of 12) was found
at MNI location (31, −24, 34), in the right superior longitudinal
fasciculus.

The mean percent signal change found for the voxels part of the
active fibers for the tactile task was 3.47% (SD = 1.86), −0.10%
(0.44), −0.65% (2.01), 0.09% (0.57) and 0.10% (0.18) computed
for the FA, MD, transverse diffusivity, parallel diffusivity and the
diffusion-unweighted signal (B0), respectively. For the visual task
the mean percent signal change was 3.79% (1.79) for the FA,
−0.09% (0.70) for the MD, −0.35% (1.03) for transverse diffu-
sivity, 0.63% (0.86) for parallel diffusivity and 0.14% (0.25) for
the B0 signal.

DISCUSSION
Here we report activation measured along white matter tracts in
the brains of healthy volunteers during tactile and visual stimu-
lation using fDTI on an MRI scanner operating at 3 Tesla. This
replication of our previous fDTI results on a different group
of healthy participants using a different MRI scanner operat-
ing at 3 Tesla can be seen as a further indication that the fDTI
method can successfully be applied to measure white matter
activation. The white matter activation patterns that we found
are very similar to the activation patterns found in our first
fDTI study. For the tactile stimulus, task-related changes in FA-
values were found in the contralateral sensory thalamo-cortical
tract. A maximum cumulative value 7 was found for the supe-
rior part of the left thalamo-cortical tract at MNI coordinate
(−27, −30, 34) which is in good agreement the results of a
recent fMRI study that used a tactile stimulus similar to the
one we used (Jang et al., 2013). That study reported that for
stimulation applied to the palm of the right hand of 15 healthy
volunteers the peak activation value was found at MNI coordinate
(−38, −24, 60), which is located in the primary sensory motor
cortex.

For the visual stimulus task-related changes in FA-values were
predominantly found in the optic radiations and forceps major.
The latter contains fibers that connect homotopic visual regions.
Interestingly, activation was also found in the right superior
longitudinal fasciculus – a major fiber bundle that connects to
the intraparietal sulcus (Uddin et al., 2010). The intraparietal

Frontiers in Human Neuroscience www.frontiersin.org December 2013 | Volume 7 | Article 817 | 72

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00817” — 2013/11/29 — 19:58 — page 7 — #7

Mandl et al. Functional diffusion tensor imaging at 3 Tesla

sulcus is a structure that has been associated with perceptual
motor-coordination, visuo-spatial working memory and visual
attention (Swisher et al., 2007). Structural changes in white matter
adjacent to this structure that were induced by training of a com-
plex visuo-motor skill have been reported previously (Scholz et al.,
2009). In that study no significant correlation was found between
these structural FA changes and training progress or performance
level, and it was therefore suggested that these FA changes could
be more related to the amount of time spend training. Our results
suggest that visual attention may also play a role in the reported
structural FA changes because in our visual task no learning was
involved.

The aim of our first fDTI study was to demonstrate that it
was possible to non-invasively measure task-related activation in
the brains’ white matter. Based on the results from that study we
hypothesized that subtle task-related morphological changes of
glial cells resulted in measurable FA changes. However, we could
not exclude possible hemodynamic contributions to the measured
signal. Indeed, two recent vascular challenge studies (Ding et al.,
2012; Rudrapatna et al., 2012) showed measurable changes in the
order of 1–2% for the both FA and MD in white matter. Their
results showed that the changes for MD where of the same size
(or higher) than the changes in FA. Also, changes in the diffusion-
unweighted signal (B0) were even more pronounced (this was also
reported in humans; Kershaw et al., 2009). In contrast, the results
from our first fDTI showed that the mean percent signal change
in MD computed for all voxels part of the active fibers was much
smaller then the mean percent signal change in FA. The same pat-
tern was found in our current study with the mean percent signal
change in FA for the tactile task being 3.47% and for the visual
task 3.79% while for the MD the mean percent signal change was
only −0.10% for the tactile task and −0.09% for the visual task. In
addition, for the B0 signal the corresponding mean percent signal
change was 0.10% for the tactile task and 0.14% for the visual task.
This pattern of a relatively large mean percent signal change for FA
compared with the mean percent signal change in MD and B0 is
more in line with the hypothesized activity-related morphological
glial cell changes and suggests that the observed signal changes
cannot be explained by hemodynamics alone (Song et al., 1996;
Does et al., 1999; Goerke and Moller, 2007; Miller et al., 2007; Lu
et al., 2009). Thus, a possible hemodynamic contribution (and if
present by itself a valid and interesting contrast mechanism for
measuring activation in white matter) may not fully explain the
measured fDTI signal. Other confounding factors that are not
directly related to neuronal activation may also have contributed
to the measured changes in FA. For instance, fMRI studies showed
that changes in respiration patterns can introduce magnetic sus-
ceptibility changes leading to artificial activation patterns found
in white matter (Windischberger et al., 2002). In our approach,
however, the role of this type of magnetic susceptibility changes
is probably quite limited because of the introduction of the tem-
poral shift for the stimulus onset (Figure 1A). Because of this
shift, this type (and other types) of fast varying task-related signal
changes (e.g., BOLD contrast) are largely canceled out. Further-
more, the stimulus design used in this study (1 stimulus period
followed by 2 rest periods) reduces the possibility that any type
of sinusoid signal fluctuations could interfere with task-related

signal changes and therefore contribute to the measured changes in
FA-signal.

Diffusion-weighted MR acquisitions are known to be very
sensitive to motion artifacts (e.g., cardiac pulsation, voluntary
subject motion). In our first fDTI study we used the same 2-
dimensional axial DTI acquisition for both the tactile and visual
experiment. In a 2-dimensional sequence, motion artifacts typ-
ically affect the quality of the scan at a slice level. For tracts
running in parallel with the slice direction (such as optic radi-
ations) the sensitivity to motion artifacts is therefore relatively
high because large parts of the tract run trough one single slice.
This in contrast to tracts running perpendicular to the slice direc-
tion (such as the thalamo-cortical tracts) because here each slice
only contains a small part (1 or 2 voxels) of the complete tract.
In the current experiments we used a coronal slice direction for
the visual experiment to eliminate this difference in sensitivity to
motion artifacts. The fact that the results of the current study are
similar to the results of our first fDTI study suggests that the cho-
sen slice direction is not a dominant factor in the experimental
setup.

Despite the application of the temporal lag to maximize
the measured signal change and the increased SNR due to the
increased main magnetic field strength the bilateral activation pre-
dominantly found for the visual experiment in the optic radiations
appears to be less pronounced at 3 Tesla than the activation found
for the visual experiment in the optic radiations at 1.5 Tesla (Mandl
et al., 2008). This difference in sensitivity may be explained by the
lower number of stimulus periods (6) in the 3 Tesla experiment
as compared to the number of stimulus periods (12) in the 1.5
Tesla experiment. Moreover, due to the smaller voxel size at 3 Tesla
(43.75 mm3) compared to the voxel size at 1.5 Tesla (64 mm3) the
SNR between a single fDTI scan 1.5 Tesla is comparable to a single
fDTI scan at 3 Tesla because the expected increase in SNR with a
factor of

√
2 due to a doubling of the main magnetic field strength

(3 Tesla vs 1.5 Tesla) cancels out. Also, because of the thick slices
used in the 3 Tesla experiments (7 mm) internal dephasing may
contribute to a reduction of the SNR.

In the current study we applied a circular shift to the gradi-
ent direction settings for subsequent fDTI scans to determine if
the non-stationarity of the response function during acquisition
(Rudrapatna et al., 2012) would substantially alter the results. The
successful replication of the results of our first fDTI study suggests
that the effect of a non-stationary signal on the detection of white
matter activation is limited although we cannot exclude that addi-
tional variation introduced by the use of this circular shift lowered
the sensitivity of the fDTI method.

Both 1.5 and 3 Tesla experiments were specifically designed
to maximize the specificity of the fDTI method to minimize the
change of spurious fiber activation because the main purpose of
these experiments was to assess the feasibility of the fDTI method.
Further experiments are needed to determine the optimal stimulus
and MRI parameter scanner settings to optimize the sensitivity of
the fDTI method.

In conclusion, we replicated the results of our previous fDTI
study using the same types of stimuli but with an improved scan
acquisition scheme on a different group of healthy participants
using a 3 Tesla MRI scanner. This replication of our previous
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fDTI results suggests that the fDTI method can be applied within
feasible time period and is robust enough to become a valuable
tool that can help us to get a better understanding of the dynamics
of functional neural networks in the human brain.
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Anatomical, morphological, and histological data have consistently shown that the
cingulate cortex can be divided into four main regions. However, less is known about
parcellations of the cingulate cortex when involved in active tasks. Here, we aimed
at comparing how the pattern of clusterization of the cingulate cortex changes across
different levels of task complexity. We parcellated the cingulate cortex using the results of
a meta-analytic study and of three experimental studies. The experimental studies, which
included two active tasks and a resting state protocol, were used to control the results
obtained with the meta-analytic parcellation. We explored the meta-analytic parcellation by
applying a meta-analytic clustering (MaC) to papers retrieved from the BrainMap database.
The MaC is a meta-analytic connectivity driven parcellation technique recently developed
by our group which allowed us to parcellate the cingulate cortex on the basis of its pattern
of co-activations during active tasks. The MaC results indicated that the cingulate cortex
can be parcellated into three clusters. These clusters covered different percentages of
the cingulate parenchyma and had a different density of foci, with the first cluster being
more densely connected. The control experiments showed different clusterization results,
suggesting that the co-activations of the cingulate cortex are highly dependent on the task
that is tested. Our results highlight the importance of the cingulate cortex as a hub, which
modifies its pattern of co-activations depending on the task requests and on the level of
task complexity. The neurobiological meaning of these results is discussed.

Keywords: meta-analytic clustering, voxel-based meta-analysis, meta-analytic connectivity modeling, activation

likelihood estimation, data driven parcellation, k-means clustering, hierarchical clustering, voronoi parcellation

INTRODUCTION
The cingulate cortex is the thick part of the cerebral cortex sur-
rounding the corpus callosum and is currently thought to be
made up of four subregions (the four-region neurobiological
model): The anterior cingulate cortex, which includes the peri-
genual cingulate cortex, the midcingulate cortex, the posterior
cingulate cortex and the restrosplenial cingulate cortex (Vogt,
2009). Such four major subdivisions were built mainly on struc-
tural observations (Vogt and Pandya, 1987; Vogt et al., 1987, 1992,
2001, 2003; Vogt and Derbyshire, 2002; Vogt and Vogt, 2003;
Vogt and Laureys, 2005; Fan et al., 2008; Palomero-Gallagher
et al., 2008, 2009; Vogt, 2009) and were proposed to subserve
specific functions, with the anterior cingulate cortex involved in
affective evaluation (Allman et al., 2001), conflict monitoring
(Carter et al., 1998, 1999; Botvinick et al., 2004), error moni-
toring and detection (Holroyd et al., 1998; Gehring and Knight,
2000; Gehring and Fencsik, 2001), response selection (Paus et al.,
1993; Awh and Gehring, 1999) and attention control (Posner and

Abbreviations: MaC, Meta-analytic clustering; fMRI, Functional magnetic res-
onance imaging; ROI, Region of interest; MACM, Meta-analytic connectivity
modeling; ALE, Activation likelihood estimation.

Dehaene, 1994; Crottaz-Herbette and Menon, 2006); the mid-
cingulate cortex involved in cognitive tasks such as attention for
action (Pardo et al., 1990; Badgaiyan and Posner, 1998), response
selection (Corbetta et al., 1991; Paus et al., 1993), error detection
and competition monitoring (Carter et al., 1998), anticipation
(Murtha et al., 1996), and working memory (Petit et al., 1998);
the posterior cingulate cortex in tasks related to visuospatial ori-
entation and navigation of the body in environmental space (Vogt
and Laureys, 2005), self-reflection and autobiographical memory
(Spreng et al., 2009); and finally, the retrosplenial cingulate cortex
in memory and visuospatial functions (Vogt and Pandya, 1987;
Vogt et al., 1987; Parker and Gaffan, 1997; Burgess et al., 2001;
Vogt, 2005; Iaria et al., 2007; Keene and Bucci, 2008; Vann et al.,
2009). Until recently this “segregationist model,” for which each
portion of the cingulate cortex subserves specific functions, has
been adopted.

Recent studies have used magnetic resonance imaging (MRI)
or functional MRI (fMRI) to investigate the connectivity based
parcellation of the cingulate cortex. Beckmann and colleagues
(2009) used probabilistic diffusion tractography (a measure of
anatomical connectivity), to characterize the cingulate proba-
bilistic connectivity. By applying a connectivity-based parcella-
tion, they found nine distinct clusters in the cingulate cortex
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(Beckmann et al., 2009). Yu and colleagues investigated the func-
tional connectivity of each of the subregions proposed in the
four-region model and showed that each subregion was charac-
terized by a specific pattern of functional connectivity (Yu et al.,
2011). This finding led the authors to conclude that the anatomi-
cal segregation is confirmed by functional segregation (Margulies
et al., 2007; Yu et al., 2011). While the functional connectivity
of some specific subregions of the cingulate cortex during rest
has been progressively disclosed (Koski and Paus, 2000; Margulies
et al., 2007; Yu et al., 2011), to date far less is known about
the functional profile and the parcellation of the cingulate cortex
during tasks.

The advent of databases such as BrainMap (Fox et al., 2005;
Laird et al., 2005a,b, 2009a,b), which stores thousands of fMRI
experiments together with their results, has allowed performing
the so-called voxel-based meta-analyses. Using these databases,
many different studies can be pooled together to investigate the
functional properties of specific brain regions when involved
in active tasks. As a result of this approach, recent views have
proposed that the same subregions of the cingulate cortex are
involved in different functions (“integrationist model”). For
example, Shackman and colleagues (2011) observed that in the
rostral anterior cingulate cortex, pain, affect, and cognition over-
lap. Similarly, Torta and Cauda (2011) have reported that the
midcingulate cortex is recruited in a variety of tasks ranging from
pain to affect to attention and motor tasks.

Altogether these findings suggest that fMRI parcellations of
the cingulate cortex lead to different results depending on the
methodological approach. In addition, it has been shown that
high-dimensional parcellations support the view of a hierarchi-
cal nested structure within the hub regions of the brain (Leech
et al., 2011). Here, we aimed at comparing how the pattern
of clusterization of the cingulate cortex changes across differ-
ent levels of task complexity (i.e., tasks and non-tasks such as
resting state). We performed a meta-analytic study using a meta-
analytic tool recently developed by our group: the meta-analytic
clustering (MaC) (Cauda et al., 2012). This method permits
a voxel-wise data-driven clusterization of the patterns of co-
activation of the cingulate cortex during the widest number of
active tasks (Cauda et al., 2012). This technique starts from the
meta-analytic data and produces a meta-analytic connectivity-
based parcellation in a data-driven fashion (Torta and Cauda,
2011). We verified the results of the MaC study by perform-
ing three additional fMRI experiments on healthy volunteers.
In this way we could observe possible modifications of the
parcellation of the cingulate cortex during the widest num-
ber of active tasks, during specific tasks and during resting
state.

For the control fMRI experiments, we scanned participants
during resting state (experiment 2), during the presentation of
emotional faces (experiment 3) and during the administration of
painful stimuli (experiment 4). These latter two tasks were cho-
sen as known to activate the cingulate cortex (Apkarian et al.,
2005; Friebel et al., 2011). Subsequently we parcellated the cingu-
late cortex on the basis of the results of the two experiments and
compared such findings to those obtained with the meta-analytic
parcellation.

MATERIALS AND METHODS
META-ANALYTIC STUDY
Database search
We queried the BrainMap database (Fox et al., 2005; Laird et al.,
2005a,b, 2009a,b) for studies on healthy volunteers that recorded
activations in the cingulate cortex. We did not select studies on
the basis of the task performed as we were interested in inves-
tigating activations of the cingulate cortex in a broad range of
cognitive tasks. Such a choice allowed us to characterize the par-
cellation of the cingulate cortex in a “working mode” irrespective
of the task. The results of this search were saved in a series
of files containing locations, papers and behavioral domains.
For the meta-analysis, boundaries of the cingulate cortex were
already coded in BrainMap, indeed we queried the database
for all the papers that showed at least one focus in the cingu-
late cortex (http://www.brainmap.org/sleuth/). For subsequent
analyses on in-house acquired fMRI data, the volume of inter-
est (VOI) around the cingulate cortex was drawn by one of
the authors (Franco Cauda), expert in neuroanatomical clus-
tering, on the Colin 27 template (http://neuro.debian.net/pkgs/
mni-colin27nifti.html) at the group level. The MNI cingulate
coordinates were then converted to Talairach coordinates using
the icbm2Tal transform (http://brainmap.org/icbm2tal/).

META-ANALYTIC CLUSTERING (MaC)
Data preparation
Here, we employed a methodology called MaC, delineated in a
recent paper (Cauda et al., 2012). MaC works on meta-analytic
connectivity modeling data (MACM; Robinson et al., 2010).
Thus, as a first step, we performed a MACM. The MACM method
is based on co-occurrences that are evaluated using the ALE
approach. With a too small number of co-occurrences (i.e., foci)
the ALE results are too dependent on the contribution of sin-
gle foci (i.e., single studies) and are spatially very variable. As a
consequence of this variability the parcellation results are unsta-
ble. Indeed the ALE method needs a minimum number of foci
to produce a valid estimate (Laird et al., 2005a, 2009a; Eickhoff
et al., 2009). To accomplish this need we created, in a completely
unsupervised data-driven way, “blocks” of voxels each containing
50 foci.

The choice of 50 foci was supported by a simulation to eval-
uate the stability of the parcellation results using 10–100 foci in
steps of 10. We parcellated the cingulate surface using blocks of
different dimensions (namely with a different number of foci).
For each dimension we repeated the entire process 100 times. We
then checked the reliability of the results for each step evaluating if
the results were stable for a given number of foci. The results were
stable with blocks of n > 40 foci (see also Cauda et al., 2012) so
we decided to opt for a minimum number of 50 foci as to further
improve the stability obtained with 40 foci. We created blocks of
voxels by employing the quad tree algorithm (Ballard and Brown,
1982). The quad tree is an algorithm that subdivides the two-
dimensional space by decomposing the region into four equal
quadrants and subsequently into four further subquadrants until
each of the subquadrants contains the pre-defined number of foci
(50 in our case). Thus, when the blocks meet the criterion, they
are not subdivided further. In contrast, if more than 50 foci are
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found in a block, the algorithm further subdivides the block until
the criterion of homogeneity is reached. As a result, we obtained
37 blocks containing 50 foci each but having different sizes. The
quad tree decomposition returns a structure consisting of the y
and z Talairach coordinates of each block and the corresponding
papers in which Talairach coordinates of the foci appear. All par-
cellations were performed on a 3D mesh. To build the 3D mesh, a
constant gray matter (GM) thickness was assumed, to allow sub-
sequent methods to operate in 2D. Indeed, the 3D data from the
database were projected to a plane passing through the coordi-
nates X = 0 and then analyzed. For visualization purposes these
data were back projected to a renderized brain surface on the basis
of each voxel’s original coordinate. All foci were projected within
+1 and −5 mm from the GM plane to this surface. All these clus-
tering analyses were performed using custom developed MATLAB
scripts (Mathworks, Natick, MA, USA).

We calculated the MACM using the ALE algorithm (Laird
et al., 2005a; Eickhoff et al., 2009) to pool the active foci of
each quad tree. Each coordinate (focus) was modeled by a 3-
D Gaussian distribution, defined by a full-width half-maximum
(FWHM) of 10 mm (Turkeltaub et al., 2002). The ALE statistic
was computed at every voxel in the brain. We made a valid assess-
ment of the significance of the result by testing the values from the
ALE images against null distributions. A threshold was applied,
while controlling the false discovery rate (FDR) (Genovese et al.,
2002) at a significance level of p < 0.05. Importantly, the ALE
algorithm has been formulated to limit the inter-subject and
inter-laboratory variability typical of neuroimaging studies. This
algorithm estimates the spatial uncertainty of each focus and takes
into account the possible differences among studies, as to avoid
that single studies may drive the results.

We subdivided the cingulate cortex into areas with homoge-
neous co-activations by employing two kinds of cluster analysis
(Cauda et al., 2010; Frades and Matthiesen, 2010): Hierarchical
and k-means clustering and using as input the results of ALE anal-
ysis (MACM). Hierarchical clustering groups data over a variety
of scales by creating a cluster tree; trees represent multilevel hier-
archies where clusters at one level are joined as clusters at the
next level. Importantly, hierarchical clustering does not require
a priori impositions on the number of clusters and by creating
the dendrogram it allows the visualization of the hierarchy within
the data. The advantage of the hierarchical clustering is that it can
handle different forms of similarity or distance. A distance matrix
is the only requirement for hierarchical clustering. Furthermore,
hierarchical clustering allows an embedded flexibility regarding
the level of granularity; that is, the extent to which an entity is
divided in smaller parts. We used the hierarchical clustering as
we were interested in visualizing the hierarchical structure of the
data. To verify the goodness of the hierarchical clustering we used
the cophenetic distance. This measure describes how well the clus-
ter tree reflects the data for different distance measures and allows
to verify the consistency of each link. This method, together with
the visual inspection of the dendrogram and the reordered dis-
tance matrix, represents a way to find the optimal number of
clusters of the data (Ward, 1963). The matrix was composed of
rows, representing the blocks formed by the quad tree algorithm,
and columns representing the probability of activation obtained

by the ALE analysis of each voxel in the brain. The data matrix
was used to create the distance matrix. There are different criteria
to evaluate the distances between clusters in the hierarchical clus-
tering literature. In this case, we employed the Ward method that
uses an analysis of variance approach (Ward, 1963). Subsequently,
we employed the k-mean clustering to assess the results using
as input the number of clusters obtained from the techniques
described above.

Unlike hierarchical clustering, k-means operates on actual
observations and creates a single level of clusters. K-means is a
partition method in which objects are classified as belonging to
one or k groups with k chosen a priori. The cluster member-
ship is determined by calculating the centroid for each group
and assigning each object to the group with the closest cen-
troid. This approach minimizes the overall dispersion within
cluster by operating an iterative reallocation of cluster members.
Advantages of this methods are its time and space complex-
ity and its order-independent properties. Order independency
means that k-means generates the same partition of the data
irrespective of the order in which patterns are presented.

The results of the k-means clustering were further verified
using the average silhouette values (Rousseeuw, 1987). To calcu-
late the hemisphere prevalence, for each cluster we overimposed
the clusterization results of the left and the right cingulate cor-
tex. Areas pertaining to the left cingulate cortex were colored in
green, areas pertaining to the right cingulate cortex were colored
in orange. Areas of overlap of the clusterization results of both
sides were colored in red.

DENSITY ANALYSIS
We observed that voxels in the cingulate cortex were unequally
activated by tasks. That is, the activation of some voxels was more
frequent and some regions of the cingulate cortex were found to
be characterized by a wider number of active voxels. In order to
substantiate this observation, we performed a density analysis of
the active foci in the cingulate cortex. This was done in order to
obtain a deterministic method to calculate the density of foci.
We decided not to use ALE for this aim because it modifies the
probability kernel including information such as the number of
subjects. In this way results are not exactly a measure of den-
sity of foci. For density, we intended the number of foci per unit
of area. In order to analytically calculate the number of foci per
unit per area, we used the Voronoi tessellation algorithm (Klein,
1989). A Voronoi tessellation is a decomposition of metric space
by distances between sets of points. The Voronoi algorithm tes-
sellates a surface into polygons in such a way that the area of each
polygon is inversely proportional to the density of points (foci) in
that area.

NETWORK ANALYSIS
It has been suggested that some portions of the cingulate cor-
tex may act as hubs interconnecting different networks (Leech
et al., 2011). Graph analysis techniques allow the investigation
of how complex brain networks relate to each other (Bullmore
and Sporns, 2009), therefore resulting particularly suitable for
inspecting the presence of hub areas. Graph and network analyses
build graphs of elements in such a way that the position of an
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element in the graph reflects its relationship with neighboring
elements.

We reordered the distance matrix so as to place more edges
closer to the diagonal. Reordering was performed using a rou-
tine of the Brain Connectivity Toolbox that minimizes the cost
function of the matrix (Rubinov and Sporns, 2010). Then, using
the data in the reordered distance matrix, we constructed a
network and we optimally represented the results employing
a force-directed algorithm: the Fruchterman-Reingold method
(Fruchterman and Reingold, 1991). In this algorithm, the nodes
are represented by steel rings and the edges are springs between
them. The attractive force is analogous to the spring force and
the repulsive force is analogous to the electrical force. The basic
idea is to minimize the energy of the system by moving the
nodes and changing the forces between them. A threshold was
applied to the resulting image so that only the circles (blocks) with
highest network connectivity (first quartile) were represented as
color-filled.

EXPERIMENTS 2–4
We also performed three additional experiments on healthy vol-
unteers.

PARTICIPANTS
We scanned two groups of healthy volunteers. The first group
was composed of 10 right-handed adults (five females) (mean
age = 22 ± 1.4) who participated in the resting state experiment
(experiment 2) and in the experiment in which emotional faces
were shown (experiment 3). The second group was composed
of 17 healthy right-handed volunteers (eight females, mean age
28 ± 4.2) who participated in the experiment in which painful
stimuli were applied to the hands (experiment 3). All of the par-
ticipants were free of neurological or psychiatric disorders, not
taking medications known to alter brain activity, and with no his-
tory of drug or alcohol abuse. We obtained the written informed
consent of each subject, in accordance with the Declaration of
Helsinki. The studies were approved by the institutional com-
mittee on ethical use of human subjects at the University of
Turin.

TASKS AND ACQUISITION
Experiment 2—Resting state
The first group performed a 6-minute resting state task. During
the resting state scan, participants were asked to relax, to not fall
asleep and to not think of anything in particular while they were
being scanned.

Experiment 3—Faces expressing emotions
The same 10 participants took part in an experiment in which
faces expressing different emotions were shown to them while
lying in the scanner. The stimuli consisted of faces showing anger,
disgust, fear, happiness, sadness, and neutral expressions. The
faces were taken from Biehl et al. (1997). A total of four Caucasian
actors (two males and two females) showing both emotional and
neutral expressions were used for a total of 24 images (six con-
ditions × four actors). The task scans consisted of four runs of
a slow event-related design. Each run consisted of 24 stimuli,

four for each emotional and neutral condition, presented in ran-
dom order. The subjects were instructed to look passively at the
faces.

Experiment 4—Painful stimuli
The second group participated in a task in which painful mechan-
ical stimuli were delivered to the hands. Painful mechanical
stimuli were delivered with a 256 mN pinprick probe which acti-
vates the high-threshold mechanoreceptors (Baumgartner et al.,
2010). During the four runs of this slow event-related design, the
participants received a total of 48 stimuli on the left and right
hand (no more than three consecutive stimuli on the same hand).
They were instructed to relax, pay attention to the stimuli and
report a subjective rating of intensity at the end of each block.

Data acquisition
Data acquisition was performed on a 1.5 Tesla INTERA™ scanner
(Philips Medical Systems) with a SENSE high-field, high res-
olution (MRIDC) head coil that was optimized for functional
imaging. The functional T2∗-weighted images were acquired
using echoplanar (EPI) sequences, with a repetition time (TR)
of 2000 ms, an echo time (TE) of 50 ms, and a 90◦ flip angle.
The acquisition matrix was 64 × 64, and the field of view (FoV)
200 mm. A total of 200 volumes were acquired; each volume con-
sisted of 19 axial slices, parallel to the anterior-posterior (AC-PC)
commissure line and covering the whole brain; slice thickness
was 4.5 mm with a 0.5 mm gap. Two scans were added at the
beginning of the functional scanning and the data were dis-
carded to reach a steady-state magnetization before acquiring the
experimental data.

In the same session, a set of three-dimensional high-resolution
T1-weighted structural images was acquired for each partici-
pant. This data-set was acquired using a Fast Field Echo (FFE)
sequence, with a TR of 25 ms, ultra-short TE, and a 30◦ flip angle.
The acquisition matrix was 256 × 256, and the field of view (FoV)
256 mm. The set consisted of 160 contiguous sagittal images cov-
ering the whole brain. In-plane resolution was 1 × 1 mm and slice
thickness 1 mm (1 × 1 × 1 mm voxels).

ANALYSIS
The data were pre-processed using slice scan time correction,
3D motion correction, spatial smoothing (4 mm FWHM) and
temporal filters (linear trend removal and band pass filter of
0.008–0.08 Hz).

After pre-processing, voxels belonging to the cingulate cor-
tex were submitted to a voxel-wise unsupervised fuzzy c-mean
clustering technique (Cauda et al., 2010, 2013). This data-driven
method decomposes the original fMRI time series into a prede-
fined number of spatiotemporal modes, which include a spatial
map and an associated cluster centroid time course. The extent
to which a voxel belongs to a cluster is defined by the similarity
(as measured, e.g., by correlation) of its time course to the clus-
ter centroid. We used this clusterization approach as it has been
previously optimized for resting state and MACM (Cauda et al.,
2010, 2011b).

We used two clustering approaches to compare the complexity
of clustering of the MaC data to that of the experimental tasks.
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First, we imposed the same number of clusters obtained for the
MaC to the in-house acquired datasets. Second, we calculated the
number of clusters of the experimental data without imposing the
results of the MaC.

VALIDATION OF CLUSTERING PROCEDURES
We used the upper tail rule developed by Mojena to vali-
date the number of clusters (Mojena, 1977). Statistical stop-
ping rules for clustering methods allow selecting the “best”
number of clusters in the data. Stopping rules define explic-
itly what is meant by a significant change in the clustering
criterion. That is, these rules help define when a further parti-
tion is not necessary. The method developed by Mojena (1977)
uses the relative sizes of the fusion level in the hierarchy.
The algorithm selects the partition associated to the first level
in the cluster number sequence which satisfies the following
condition:

Zj + 1 > m + ksz

where m is the mean of the fusion level of the previous
fusion level, sz is the standard deviation of those values, and
k is the standard deviate. The knee of the curve of the clus-
ter sequence is an indicator of the right number of clusters.
In simple words, this method takes the distance matrix and
calculates the types of aggregation by calculating mean and
standard deviation of the number of nodes as a function of
the imposed clusters. Then the knee is calculated as a second
derivative of the curve. The peak that is obtained represents
the “optimal” number of clusters according to the stopping
criterion.

RESULTS
DATABASE SEARCH
The BrainMap query retrieved 1240 papers involving 24,540
subjects and a total of 1851 foci (see Table S1).

MACM CLUSTERING
The results of the dendrogram obtained from the hierarchical
clustering suggested that the cingulate cortex can be optimally
parcellated into three clusters (see Figures 1, 2). The same result
was confirmed by the silhouette plot. The silhouette plot is a mea-
sure of how close each point in one cluster is to points in the
neighboring clusters. This method allows to understand of how
well-separated the resulting clusters are.

We used the k-means method to cluster the MACM blocks into
the three clusters as previously identified. To minimize the risk of
inconsistent results obtained for the initial random placement of
starting points, the k-means was computed 256 times (Nanetti
et al., 2009). The same three clusters were identified all 256
times.

The results of the MaC evidenced that Cluster 1 covers 7% of
the cingulate surface and is located in the dorsal anterior cingu-
late cortex (dACC). Cluster 2 covers 30% of the total cingulate
surface, being predominantly located in the intermediate part of
the cingulate cortex but also presenting two small locations in
the anterior and posterior cingulate cortex. Cluster 3 covers 63%

of the cingulate surface, encompassing the posterior but also the
anterior parts of the cingulate cortex, and also presenting a small
location in the midcingulate area (Figures 2, 3).

Figure 4 shows the mean MACM connectivity of the three
clusters. Our results indicate that cluster 1 is functionally con-
nected to the parietal cortices (the inferior parietal lobe BA 40,
the superior parietal lobe BA 7), frontal cortices (superior and
middle frontal gyri BA 9, 10) and to some sensory (primary
somatosensory cortices BA 2, 3) and motor (primary and pre-
motor areas BA 4 and 6) areas. In addition, this cluster shows
connections to the temporal lobe (superior and middle tem-
poral gyri BA 21, 22, 39) and is slightly left lateralized in the
anterior cingulate cortex and slightly right lateralized in the pos-
terior cingulate cortex. Cluster 2 is co-active with the inferior,
middle and superior frontal gyri (BA 45, 9, and 10), the pari-
etal cortex (BA 7, 40, 43), and the temporal lobe (BA 37, 39).
Moreover this cluster presents a strong co-activation with sub-
cortical structures such as the thalamus, the red nucleus, and the
caudate. This cluster is also characterized by a right-prevalence
of activations in the posterior cingulate cortex. Cluster 3 is
characterized by a more frontal and limbic functional connec-
tivity which includes the superior and middle frontal gyri (BA
9 and 10) and hippocampal and parahippocampal structures.
All three clusters are extensively co-active with other portions of
the cingulate cortex and with the insula (see Figure 4 and Tables
S2–S4).

The probabilistic map (Figure 5) shows that the highest over-
lap between all the block-related MACM maps is in the anterior
insula, dorsal cingulate cortex, dorsolateral prefrontal cortices,
sensorimotor, precuneal, and posterior parietal cortices.

The lower part of Figure 1 represents the network derived
from the distance between blocks of the cingulate cortex.
The points represent blocks and are coded with a color
indicating the cluster to which they belong. In this image
the distance between points represents the Euclidean distance
between the MACM maps of each block. The network repre-
sentation is optimized using multidimensional scaling. Points
belonging to cluster 1 are centrally located and surrounded
by points belonging to clusters 2 and 3. This method rear-
ranges multidimensional entities in a 2D space such that the
distance represents the similarity. In this way, similar enti-
ties are closer in space whereas dissimilar entities are placed
apart.

The same finding was confirmed by the results presented
in Figure 6, which shows the network representation of the
Euclidean distances between blocks. Here the graphical net-
work representation is optimized with the Fruchterman–Reingold
method. The color-filled circles display blocks with the highest
degree of connectivity. This analysis supports the idea that blocks
in cluster 1 are hub areas.

A representation of which behavioral classes activate each
cluster can be found in Figure S1.

DENSITY OF FOCI
Figure 7 displays the results of the Voronoi tessellation. The
dACC showed the highest density of foci. Notably, this area was
found to partially overlap with the location of cluster 1. Other
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FIGURE 1 | Results of the clusterization of the cingulate cortex: distance

matrix and multidimensional scaling (see also Figure 6 for network

analysis). The upper left panel shows the results of the distance matrix. The
upper right panel shows the dendrogram of the hierarchical clusterization,
one of the algorithms used. The lower panel shows the Multidimensional

scaling of the network derived from the distance between blocks of the
cingulate cortex. The points represent blocks and are coded with a color
indicating the cluster to which they belong. In this image the distance
between points represents the Euclidean distance between the MACM
maps of each block.

portions in the anterior cingulate cortex and in the cingulate
motor zone showed a high density of foci. The two blocks show-
ing the highest number of functional connections (see Figure 6)
were found to be part of cluster 1 and were located in the dorsal

cingulate cortex in the area with the highest density of foci.
Together, these results indicate that such area exerts a pivotal role
as a hub.

Figure S2 describes the behavioral related density of foci.
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EXPERIMENTS 2–4
Images of the task-evoked activations and of the resting state pro-
tocol are shown in the supplementary material (Figures S3–S5).

The resting state parcellation shows a tripartite subdivision
of the cingulate cortex with an anterior, a mid and a poste-
rior cluster. In contrast, the parcellations based on the functional
connectivity of the cingulate cortex when involved in the elab-
oration of emotional faces are less sharp and more complex
(Figure 8). The parcellation based on responses to painful stim-
uli goes further in the direction of the results of the emotions
paradigm: The clusters were found to be intermixed in a com-
plex and blurred pattern of connectivity. Areas clearly connected
with one network in the resting state showed, in contrast, an
intermixed pattern of connectivity during tasks. That is, areas
previously found to be characterized by homogeneous functional
connectivity (e.g., cluster containing only voxels belonging to
that cluster) are found to contain voxels also belonging to other
clusters.

The results of the parcellation of the cingulate cortex based
on the activations elicited by experimental tasks and obtained
without imposing a priori the number of clusters, revealed a

FIGURE 2 | Results of the clusterization of the cingulate cortex and

anatomical location of the clusters.

pattern of increasing complexity from the resting state data
(2 clusters) to the emotion (3 clusters) and pain (5 clusters)
paradigms (See Figure 9 and Figure S6 for the results of the
stopping criterion).

DISCUSSION
This study was designed to investigate the pattern of clusterization
of the cingulate cortex during the broadest range of tasks possi-
ble. We performed a meta-analytic study using a meta-analytic
tool recently developed by our group: the MaC (Cauda et al.,
2012). We further performed three additional fMRI experiments
on healthy volunteers. In this way we could observe possible mod-
ifications of the parcellation of the cingulate cortex during the
widest number of active tasks, during specific tasks and dur-
ing resting state. Our main finding was that the cingulate cortex
changes its pattern of co-activations depending on the level of
task complexity. Indeed, the complexity of the pattern of parcel-
lation increased and changed from the resting state experiment,
to the two task-based experiments and the meta-analytic study.
Importantly, we considered the task complexity not as reflecting
a greater cognitive challenge, but rather as reflecting the kind of
task (resting state-no task vs. active tasks) and the number of tasks
(e.g., responses to painful stimulation vs. a general active mode,
that is whenever a task is performed-meta-analytic study).

MaC CLUSTERING: CLUSTERING MACM RESULTS
Voxel-based meta-analyses have provided a fundamental contri-
bution to the building of new insights into brain functions. In
a previous study, we found that an ROI based parcellation of the
cingulate cortex produced three clusters (Torta and Cauda, 2011).
Such results were confirmed by those of the present study which
indicate that using MaC, the cingulate cortex can be efficiently
divided into three clusters (see Figure 1). These three clusters
have different dimensions and cover a different percentage of the
cingulate parenchyma. Although each cluster is characterized by
specific co-activations (Corbetta et al., 1991, 2008; Corbetta and
Shulman, 2002; Seeley et al., 2007; Beckmann et al., 2009; Menon
and Uddin, 2010; Alexander and Brown, 2011), all three have
extensive co-activations within the cingulate cortex and the insula
(Cauda et al., 2011b, 2012) and share an “attentional” pattern of
co-activation (Craig, 2003, 2009; Medford and Critchley, 2010;

FIGURE 3 | The side differences for each cluster are shown here. Areas showing a left prevalence are coded in green, areas showing a right prevalence are
coded in orange, areas equally lateralized are coded in red.
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FIGURE 4 | Mean Meta-analytic connectivity of the three networks. ALE maps were computed at an FDR-corrected threshold of p < 0.05; minimum
cluster dimension k > 100 mm and visualized using MRIcron (http://www.cabiatl.com/mricro/mricron/index.html).3

FIGURE 5 | Probabilistic map showing the superposition of the

MACM of all blocks. The probabilistic map shows the probability
of overlap between each block-related MACM map. The probability
map is calculated by summing the voxel value of each
block-related MACM map and dividing this value by the number
of blocks. Single network maps before the creation of the
probability maps were thresholded at p < 0.05, minimum cluster
size k > 100 mm3. Regions in blue are characterized by a low
probability of overlap, whereas green regions present a high
probability of overlap.

Cauda et al., 2011b; Torta and Cauda, 2011). This overlap of com-
mon co-activations is maximal in the dACC and in the insula, as
evidenced by the results of the probabilistic map (Figure 5). These
findings support the view that the cingulate cortex and the insula
form a saliency network devoted to the integration of informa-
tion coming from the internal (e.g., homeostasis) and the external
(e.g., sensory) environments (e.g., sensory inputs) (Vincent et al.,
2008). In addition, this insular-cingulate system is thought to be
in charge providing a stable “set maintenance” over the execu-
tion of tasks (Dosenbach et al., 2006). Moreover, we found that
all clusters are strongly locally interconnected as evidenced by the
presence of activity of the dACC and of the insula in the MACM
profiles of the three clusters.

One possible criticism to our approach is that it may be consid-
ered not completely data driven. However, to obtain a voxel-wise
analysis we first needed to aggregate a certain number of voxels
to reach a minimum amount of foci. In this sense, our cluster-
ing cannot be entirely considered as voxelwise. Our method does
not rely on pre-determined regions of interest but operates a local
reduction of the resolution in a inverse relation to the density of
foci. Other alternative solutions have been proposed (Bzdok et al.,
2012). For instance, Bzdok and colleagues (2012) have obtained a
partial voxel-wise clusterization by searching foci in the adjacency
of a voxel, spreading the search to reach a minimum number of
foci and then projecting the connectivity profile of these foci to
the voxel.
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FIGURE 6 | Network derived from the distance between blocks of

the cingulate cortex. Right panel: The points represent blocks and
are coded with a color indicating the cluster to which they belong.
In this image the distance between points represents the Euclidean
distance between the MACM maps of each block. The network

representation is optimized using a force-directed layout algorithm
(Fruchterman–Reingold). Arrows indicate the two blocks with the
highest number of connections. Left panel: the two blocks with the
highest number of connections are graphically represented over a
sliced standard brain surface.

HUBS OF THE CINGULATE CORTEX
The overlap of activations in the dACC, insula and thalamus (see
Figure 5) suggests that such brain regions act as hubs through
which homeostatic and sensory information is conveyed. This
interpretation is also supported by the results of the Voronoi tes-
sellation that pointed to the dACC as the area with the greatest
density of foci. Indeed, it is highly likely that those areas having
the greatest density of foci also have a greater number of connec-
tions. Further confirmation of the interpretation of the dACC as
a hub area comes from the results of the distance matrix analysis
(Figure 1, lower panel) and of the network analysis. Indeed, the
findings of the graph analysis show that, in multidimensional
scaling of MACM-based profiles, blocks of cluster 1 are close to
each other and placed in a central position. These results indicated
that such blocks have a similar and homogenous connectivity pat-
tern. Moreover, they also suggest that cluster 1 may exert a pivotal
role in regulating the activity of the other two clusters. A piv-
otal role of the cingulo-insular network in the regulation of the
activity of other networks was suggested by Sridharan and col-
leagues (2008). These authors proposed that the cingulo-insular
network plays a major role in switching between brain networks
such as the central-executive network and the default-mode net-
work (Sridharan et al., 2008). Interestingly, hypo-functionality of
the dACC has been related to reduced awareness of the self. This
would suggest that damage to hub areas may result in a failure to
integrate stimuli coming from the external world into a coherent
representation of the self (Amanzio et al., 2011).

PARCELLATION OF THE CINGULATE CORTEX WHEN AT REST AND
WHEN INVOLVED IN ACTIVE TASKS
Whether the cingulate cortex has a segregated functional organi-
zation or not remains a matter of debate. Devinsky et al. (1995)

and Bush et al. (2000) have reviewed evidence from neuroimag-
ing, neurophysiological and anatomical data supporting the view
that each part of the cingulate cortex is specialized in a family
of cognitive operations, with the anterior cingulate more devoted
to affective elaboration and the midcingulate to cognitive tasks.
Previous studies, investigating the parcellation of the cingulate
cortex on the basis of its connectivity (anatomical, Beckmann
et al., 2009 or functional Yu et al., 2011) have upheld this view. A
partial support for these results came also from a previous study
performed by our group (Torta and Cauda, 2011). However, our
present findings open up the possibility of a substantial diver-
gence between the parcellation of the cingulate cortex when at
rest and when involved in active tasks. Differences were also found
depending on the kind and on the number of active tasks under
exam. This result suggests that, when involved in active tasks,
the cingulate cortex reconfigures its patterns of co-activation. In
this view, the cingulate cortex may modify its connectivity from
a resting state to a “working state”: We, propose that such a
modification may be related to the kind of task executed and con-
sequently to how subpopulations of neurons modify their own
specific time courses to begin to cooperate with different neu-
ronal groups (see also Leech et al., 2011). This implies that such
subdivisions are probably related to the kind of task and that,
depending on the kind of task that is included in the analysis,
they may change. In this sense, it may be argued that not even
the MACM results allow a generalization of a “functional clus-
tering” of the cingulate cortex, as also in BrainMap some tasks
are more represented than others. The results of the experiments
seem to support this view. However, two elements should be con-
sidered. First, these observations do not hamper the main results
of our study, namely that the cingulate cortex reconfigures to a
more complex parcellation when involved in active tasks. Second,
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FIGURE 7 | Density of foci. Upper panel: colors from red to green represent increased foci density. Lower right panel: Voronoi tessellation of the cingulate
cortex; colors from blue to red are inversely proportional to the Voronoi polygon area (i.e., Proportional to the density). All values are normalized.

FIGURE 8 | Control experiments. Connectivity-based parcellation of the
cingulate cortex in the three datasets. Probabilistic maps for functional
connectivity defined clusters. The color scheme represents the
probability of overlapping brain areas in each voxel across all the

subjects. Maps are projected on an inflated 3D brain surface with the
BrainVoyager QX surface tool. This parcellation was obtained by
imposing the same number of clusters obtained for the parcellation of
the MaC data.
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FIGURE 9 | Control experiments. Connectivity-based parcellation of
the cingulate cortex in the three datasets. Probabilistic maps for
functional connectivity defined clusters. The color scheme represents
the probability of overlapping brain areas in each voxel across all

the subjects. Maps are projected on an inflated 3D brain surface
with the BrainVoyager QX surface tool. This parcellation was
obtained by parcellating the data without imposing an a priori
partition.

although some tasks are indeed more represented than others in
BrainMap, it is also true that some cognitive functions such as
attention are common across a great variety of tasks and thus
more likely to be always recruited. Indeed, a growing body of
literature indicates that the intrinsic functional connectivity of a
brain region is modulated in function of a task, both during and
after task execution (Liu et al., 1999; Friston and Buchel, 2000;
Lowe et al., 2000; Hampson et al., 2002; Jiang et al., 2004; Peltier
et al., 2005; Waites et al., 2005; Fransson, 2006; Hasson et al., 2009;
Lewis et al., 2009; Tambini et al., 2010) and that the functional
connectivity varies adaptively with a local efficiency that is higher
locally and lower globally (Wang et al., 2012). Here, we did not
directly measure functional connectivity, but used MACM, which
is meant to assess the consistency of co-activations. However, it
has been shown that MACM and resting state functional con-
nectivity may lead to similar results (Cauda et al., 2011a). It is
difficult to explain how such co-activations of brain areas across
different paradigms and studies may emerge in absence of any
functional connectivity between these areas [for a discussion see
Koski and Paus (2000), Postuma and Dagher (2006), Laird et al.
(2009b), Smith et al. (2009)]. Functional co-activations may be
thus interpreted as forms of functional connectivity (Koski and
Paus, 2000; Postuma and Dagher, 2006; Laird et al., 2009b; Smith
et al., 2009). Furthermore, the mapping of functional connectivity
via coordinate-based meta-analysis has been validated by com-
paring the results of MACM to resting-state connectivity (Smith
et al., 2009). Both approaches produced very consistent results.

Another important question regards the possibility that com-
plex “interdigitated” results may be related to under or over-
decompositions in the clustering step. This issue specifically
applies to clusterization in the control experiments. We used two
different approaches to investigate if the cingulate cortex recon-
figures its pattern of connectivity from resting state to “working
state.” First, we kept the number of clusters of the in-house
acquired datasets equal to the number of clusters calculated

for the meta-analytic data in order to have a one-by-one com-
parison between clusters. The logic behind this choice was to
compare how the pattern changes across different levels of task
complexity. Indeed, the evidence of greater functional complex-
ity of a given region can be reflected either by an increase in
the number of clusters (some of which probably very small) or
by a more complex and interdigitated clusterization (as in our
case). In addition, it should be considered that, as evidenced by
Figure S2, single behavioral categories of stimuli do not acti-
vate contiguous cingulate areas but wide regions of interdigitated
(sparse) blobs. This further supports the view that “sparseness”
predominates in brain connectivity (Daubechies et al., 2009).
However, as a second approach, in order to validate the results
obtained with the first, we performed a parcellation of the
resting state and task results, without imposing to the exper-
imental datasets the same number of clusters as in the MaC.
The results of this second analysis confirmed what we pro-
posed with the previous approach, namely that from resting
state to experimental tasks, there is an increase in the number
of identified clusters (from 2 of the resting state to 5 of the
pain task).

LIMITATIONS OF THE STUDY; NEUROBIOLOGICAL MEANING OF THE
RESULTS AND CONTROVERSIES
Our results seem at odds with previous neurobiological evidence
showing many additional partitions in the cingulate cortex (Bush
et al., 2000; Vogt, 2009). However, some elements should be
borne in mind when interpreting our findings. First, different
parcellation schemes may co-exist in associative areas such as
the insula (Cauda and Vercelli, 2012; Kelly et al., 2012). This
could be explained by the intrinsically hierarchical nature of brain
networks, as disclosed by neuroimaging studies (Doucet et al.,
2011; Power et al., 2011; Yeo et al., 2011). Second, functional
properties of these regions do not necessarily correspond to the
anatomical subdivisions. For instance, it has been proposed that
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different tasks and stimuli may activate the very same region of
the cingulate cortex as this area may be devoted to elaborate some
common characteristics of the tasks (Vogt, 2005). Third, the aim
of our paper was not to provide compelling evidence to the parcel-
lation of the cingulate cortex when during tasks. This is difficult,
as in meta-analytic studies, many papers on different behavioral
domains are pooled together. Thus, it may well be that differ-
ent behavioral domains lead to different co-activations and thus
to different parcellations. This is what we show with the control
experiments. In addition, it has been demonstrated that clus-
terization of brain networks likely produces sparse rather than
segregated results (Daubechies et al., 2009). All these elements
may explain why it is possible to obtain a clusterization of the cin-
gulate cortex that is different from previously suggested ones. In
addition, it has been shown that individual anatomical differences
may produce slightly diverging results when parcellating the cin-
gulate cortex (Beckmann et al., 2009). We could not control for
these factors in the meta-analytic study, thus our results might
have been affected also by this. Importantly, the main objec-
tive of our study was to show that when the cingulate cortex is
studied during tasks, the co-activations of its subparts diverge
in a way that, when clustered together, is different from what
we have known on the cingulate cortex so far. Finally, previous

studies using meta-analytic procedures have already shown that
our understanding of the cingulate cortex during tasks remains
behind its anatomical understanding. Our clustering is based
mainly on co-activations (MACM procedure), thus in this sense
it is possible that a part of the cingulate cortex, as for exam-
ple the anterior cingulate cortex, is connected with others as
they are functionally linked at a network level, although the two
components remain anatomically segregated.

In conclusion, we have shown that the cingulate cortex changes
its pattern of co-activations depending on the level of task com-
plexity. In addition, clusters resulting from a parcellation of the
cingulate cortex during tasks, rather than being strongly function-
ally segregated, are likely to reflect the activity of hub areas densely
interconnected with local and whole-brain networks. This opens
up the possibility that areas that appear to be active for a wide
range of active tasks are differentially recruited by each of them
and echo the activity of other networks in the brain (Leech et al.,
2011).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.
2013.00275/abstract
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In functional connectivity analyses in BOLD (blood oxygenation level dependent) fMRI
data, there is an ongoing debate on whether to correct global signals in fMRI time
series data. Although the discussion has been ongoing in the fMRI community since the
early days of fMRI data analyses, this subject has gained renewed attention in recent
years due to the surging popularity of functional connectivity analyses, in particular graph
theory-based network analyses. However, the impact of correcting (or not correcting)
for global signals has not been systematically characterized in the context of network
analyses. Thus, in this work, I examined the effect of global signal correction on an fMRI
network analysis. In particular, voxel-based resting-state fMRI networks were constructed
with and without global signal correction. The resulting functional connectivity networks
were compared. Without global signal correction, the distributions of the correlation
coefficients were positively biased. I also found that, without global signal correction,
nodes along the interhemisphic fissure were highly connected whereas some nodes and
subgraphs around white-matter tracts became disconnected from the rest of the network.
These results from this study show differences between the networks with or without
global signal correction.

Keywords: resting-state fMRI, brain network analysis, brain networks, network modules, fMRI analysis, graph

theory, functional connectivity

INTRODUCTION
Since the early days of fMRI, neuroimaging researchers have doc-
umented highly correlated time courses in distinct brain areas
even when a subject is not engaged in a cognitive task. For exam-
ple, Biswal et al. described strong correlation between the left
and right motor cortices while the subjects were at rest (Biswal
et al., 1995). Another well-documented example is a collection
of brain areas, known as the default mode network (DMN), that
exhibit similar time courses when subjects are at rest (Raichle
and Snyder, 2007). Brain areas following a highly correlated time
course despite the lack of external stimulus or cognitive engage-
ment are often referred as functionally connected. Conversely func-
tional connectivity between distinct brain areas can be assessed
by examining the temporal correlation or coherence between
the recordings from those areas. While early connectivity stud-
ies focused on functional connectivity to/from a particular seed
region in the brain (for example, Greicius et al., 2003; Fox et al.,
2005, 2006), in recent years, functional connectivity among dif-
ferent brain areas is often examined in the form of functional
connectivity networks (Eguiluz et al., 2005; Salvador et al., 2005;
Achard et al., 2006). Such a brain network can be constructed
by examining functional connectivity originating from each dis-
tinct brain area, and organizing such connections from all the
brain areas in the form of a network, with each node representing
a brain area and each edge representing functional connectivity
between two nodes (or brain areas) (Bullmore and Sporns, 2009;
Bullmore et al., 2009; Rubinov and Sporns, 2010).

When constructing a functional brain network, it is important
to process fMRI data in a way that the resulting network does not
include erroneous functional connectivity resulting from con-
founding biases or signals not necessarily of a neurological origin.
Thus, in order to construct a network, it is a common practice to
pre-process fMRI data before assessing functional connectivity. In
particular, a band-pass filter is applied to focus on low frequency
BOLD fluctuations (Cordes et al., 2001; Fox et al., 2005; Van Dijk
et al., 2010). In addition, rigid-body transformation parameters,
generated during motion correction and alignment, are regressed
out from fMRI time series data to lessen the impact of motion in
the connectivity analysis (Fox et al., 2005). Physiologically con-
founding noises also need to be corrected. This is often carried
out by regressing out the average time courses from the ventri-
cles, white matter, and/or the whole-brain (Fox et al., 2005), often
referred as global signals.

Among the pre-processing steps described above, regressing
out global signals is somewhat controversial. The controversy
stems from an argument that regressing out the average whole-
brain signal inherently induces negative correlation, or anti-
correlation (Murphy et al., 2009). There have been a number of
studies supporting or refuting the need for global signal regres-
sion in connectivity analyses (Chang and Glover, 2009; Fox et al.,
2009; Weissenbacher et al., 2009; Van Dijk et al., 2010; Anderson
et al., 2011; Carbonell et al., 2011; Chai et al., 2012; He and Liu,
2012). Interestingly, some of these studies found that the distri-
bution of correlation coefficients is positively biased (Fox et al.,
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2009; Murphy et al., 2009; Chai et al., 2012). Moreover, Fox et al.
(2009) found that extensive brain areas are positively correlated
with the whole-brain signal; this may explain the positive bias in
the correlation coefficients since a large number of brain areas
exhibit correlation to the same signal.

It should be noted that most of these studies described
above are seed-based functional connectivity studies, in which
correlation coefficients are calculated between the time series
from a particular seed region and each individual voxel in the
brain. On the other hand, in graph-theory-based network anal-
yses, functional connectivity networks are constructed by cal-
culating correlation coefficients in all possible pairs of brain
areas or voxels. Thus, it is still unclear how correcting for
the global signal affects the resulting functional connectivity
networks. During construction of functional connectivity net-
works, emphasis is often placed on highly positive correlations
rather than negative correlations or anti-correlations. Moreover,
investigators routinely select a certain proportion of high cor-
relation coefficients to define edges in their networks; thus a
positive bias in the distribution of correlation coefficients may
not impact the network structure. Therefore, in this report, I
investigate the impact of (not) regressing out global signals in
functional connectivity networks. In particular, I constructed
networks with and without global signal correction using the
resting-state fMRI data from the same set of subjects. Then I
examined how the network organization differed between these
networks. Namely, I focused on the distribution of correlation
coefficients, the locations of high degree nodes—or hubs, and
the modular organization in voxel-based functional connectivity
networks.

MATERIALS AND METHODS
fMRI DATA
I used the same dataset as the study described in Hayasaka and
Laurienti (2010). I used this data set since it has been exten-
sively studied and characterized in my previous work (Hayasaka
and Laurienti, 2010). This data set consisted of fMRI time series
data from 10 normal subjects (5 females, average age 27.7 years
old, SD = 4.7). The fMRI data were acquired while the subjects
were resting using a gradient echo echo-planar imaging (EPI)
protocol with TR/TE = 2500/40 ms on a 1.5 T GE MRI scanner
with a birdcage head coil (GE Medical Systems, Milwaukee, WI).
Other acquisition parameters included: 24 cm field of view, and
64 × 64 acquisition matrix. The time series data included 120
images acquired over 5 min. The acquired images were corrected
for slice timing and motion, and subsequently were realigned.
Then the images were spatially normalized to the MNI (Montreal
Neurological Institute) space and re-sliced to 4 × 4 × 5 mm voxel
size using an in-house processing script based on the SPM pack-
age (Wellcome Trust Centre for Neuroimaging, London, UK).
The resulting fMRI time series data were band-pass filtered
(0.009–0.08 Hz) to attenuate respiratory and other physiological
noises. These processing steps are widely used in fMRI func-
tional connectivity studies (Fox et al., 2005; Van Den Heuvel
et al., 2008). More details on my data pre-processing steps can
be found elsewhere (Hayasaka and Laurienti, 2010; Joyce et al.,
2010).

GLOBAL SIGNAL REGRESSION
I considered four different methods of global signal correction.
Although there are many possible ways of correcting global sig-
nals, examining a large number of such methods may be beyond
the scope of this work. Thus, I focused on the methods that
have been widely used in the literature examining the impact
of global signal correction (Chang and Glover, 2009; Fox et al.,
2009; Murphy et al., 2009; Weissenbacher et al., 2009; Van Dijk
et al., 2010; Anderson et al., 2011; Chai et al., 2012; He and Liu,
2012; Hallquist et al., 2013). Mean time courses from the entire
brain (the average of voxel values within the brain parenchyma
mask including gray and white matter), the deep white matter
(average time course in an 8 mm radius sphere within the ante-
rior portion of the right centrum semiovale composed entirely of
white matter), and the ventricles (average of time courses within
the ventricle mask) were extracted and used in global signal cor-
rection as described below. In the first method, 6 rigid-body
transformation parameters, generated during the realignment
(note: NOT normalization) step, were regressed out from the
fMRI time series data (Fox et al., 2009). This method was referred
as the no correction method (NoCorr), since no global signals,
besides the motion parameters, were regressed out from the data.
This method demonstrated a situation in which global signal
correction is completely omitted. In the second method, in addi-
tion to the motion parameters as described above, the average
time course from the deep white matter and the ventricles were
regressed out, but not the average whole-brain signal (Chang
and Glover, 2009; Fox et al., 2009; Weissenbacher et al., 2009;
Anderson et al., 2011; He and Liu, 2012). This method was
referred as the no whole-brain signal method (NoWB). In the
third method, only the whole-brain signal was regressed out in
addition to the motion parameters (Murphy et al., 2009; Van
Dijk et al., 2010; Anderson et al., 2011; He and Liu, 2012). This
method was referred as the whole-brain only method (WBonly).
Finally, in the fourth method referred as the full method (Full),
the motion parameters as well as the average signals from the
white matter, ventricles, and whole-brain were regressed out (Fox
et al., 2009; Van Dijk et al., 2010; Chai et al., 2012; Hallquist et al.,
2013). The Full networks served as the baseline in this study, char-
acterizing differences in the network organization when one or
more global signal variables are omitted. Figure 1 describes the
overview of the different methods. It was noted by one of the
reviewers that regression after filtering has been criticized by some
studies (Hallquist et al., 2013; Saad et al., 2013).

NETWORK CONSTRUCTION
Processed in one of the four methods described above, the fMRI
time series data from each subject were then used to construct
a functional brain network, with each node representing a voxel
and each edge representing a strong linear correlation between
two voxel time courses. To ensure all the networks from all
the subjects have the same set of nodes, a binary mask image
was generated comprising 15,996 voxels within the AAL (auto-
mated anatomical labeling) atlas (Tzourio-Mazoyer et al., 2002).
Among these voxels within the mask, a cross-correlation matrix
was calculated, with each element being the correlation coefficient
between two voxel time courses. The resulting correlation matrix
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FIGURE 1 | A schematic of the three global signal correction

methods. Motion corrected and band-pass filtered fMRI time series data
from each subject were processed in four different methods to correct
for global signals. In the first method, only the 6 parameters associated
with a rigid-body transformation were regressed out from the fMRI time
series (NoCorr). In the second method, in addition to the motion

parameters, the mean signals from the deep white matter and the
ventricles were also regressed out (NoWB). In the third method, only the
whole-brain signal is regressed out in addition to the motion parameters
(WBonly). In the fourth method, the motion parameters as well as the
mean signals from the white matter, the ventricles, and the whole-brain
were regressed out (Full).

consisted of 255,856,020 correlation coefficients (excluding the
main diagonal elements, which are 1).

I then examined the distribution of the correlation coefficients
in the correlation matrix. The exact marginal distribution of each
correlation coefficient r is

f (r) = �((t − 1)/2)

π1/2�((t − 2)/2)

(
1 − r2)(t − 4)/2

(1)

where t is the number of time points (Johnson et al., 1995; Cao
and Worsley, 1999). However, correlation coefficients in the cor-
relation matrix are not independent. Rather, collectively they
represent a 6-dimensional “connexel” field (Worsley et al., 1998;
Cao and Worsley, 1999). Consequently the collective distribution
of all the correlation coefficients in this correlation matrix does
not follow (1). Nevertheless, since the marginal distribution (1)
is centered around 0 and symmetric, the histogram of the cor-
relation coefficients should be centered at 0 and symmetric. Any
deviation from mean = 0 can be an indication of a systematic

bias in the correlation matrix. Or, if there is a true global sig-
nal present in all the voxels that also biases the distribution of
correlation coefficients. Let W1 = Y1 + G and W2 = Y2 + G be
two voxel time courses, where Y1 and Y2 indicate intrinsic time
courses in both voxels and G is the global signal present in both
W1 and W2. If the global signal G is uncorrelated with neither
Y1 nor Y2 [i.e., Cov(Y1, G) = 0 and Cov(Y2, G) = 0], then the
covariance between the two voxel time courses W1 and W2 is

Cov (W1, W2) = Cov(Y1 + G, Y2 + G)

= Cov(Y1, Y2) + Cov(G, G)

= Cov(Y1, Y2) + Var(G)

The variance of W1 and W2 are Var(W1) = Var(Y1) + Var(G)

and Var(W2) = Var(Y2) + Var(G), respectively. Thus, even if Y1

and Y2 are uncorrelated [i.e., Cov(Y1, Y2) = 0], the correlation
coefficient between W1 and W2
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Corr (W1, W2) = Cov(W1, W2)√
Var(W1)Var(W2)

= Var(G)√
(Var(Y1) + Var(G))(Var(Y2) + Var(G))

> 0

is always positive since Var(G) is always positive. Because of this,
the distribution of correlation coefficients in this case no longer
follows (1) but follows a non-central form

f (r) = (1 − ρ)(t − 1)/2
(
1 − r2

)(t − 4)/2

π1/2� ((t − 1)/2) � ((t − 2)/2)

∞∑
j = 0

(
�((t − 1 + j)/2)

)2

j! (2ρr) j (2)

where ρ = Corr(W1, W2). This distribution is no longer sym-
metric around 0. In the literature on functional connectivity,
there have been some reports that the distribution of correla-
tion coefficients is positively biased when global signals are not
corrected (Fox et al., 2009; Murphy et al., 2009; Chai et al.,
2012). Thus, to examine whether there is such a systematic bias,
I generated a histogram of the correlation coefficients for each
method (NoCorr, NoWB, WBonly, or Full) for each subject. The
means from the correlation coefficient distribution were com-
pared across different correction methods by paired two-sample
t-tests.

The correlation matrix from each subject and each correction
method was then used to construct a functional connectivity net-
work. In particular, the correlation matrix was thresholded to
generate a binary adjacency matrix with 1 indicating the pres-
ence and 0 indicating the absence of an edge between two nodes,
with each edge representing a strong positive correlation. I chose
a positive threshold in a way to control the number of nodes N
and the average node degree K in the resulting network. In par-
ticular, I selected a correlation threshold such that the ratio S =
log(N)/ log(K) is the same across subjects. I chose S = 3.0 since it
has been shown to capture the network characteristics effectively
(Hayasaka and Laurienti, 2010) and the resulting edge density is
comparable to that of a self-organized network of a similar size
(Laurienti et al., 2011). I examined the results with different val-
ues of S ranging between 2.5 and 3.5, and the results were similar
across S-values in comparisons of network characteristics across
the methods (results not shown). Thus, throughout this paper,
only the results for the networks with S = 3.0 are shown.

Once the network was generated, various network character-
istics were compared. This includes whole-network metrics such
as clustering coefficients C and path length L (Watts and Strogatz,
1998; Stam and Reijneveld, 2007). While C represents the prob-
ability that a node’s neighbors are also neighbors to each other,
L is the average of shortest distances between any two nodes in a
network, in terms of the number of edges separating them or the
geodesic distance. These metrics were compared across different
methods by paired two-sample tests. Moreover, I examined the
consistency of high degree nodes, or hubs, across subjects. This
was done by examining the spatial overlap of top 20% highest
degree nodes across subjects (Hayasaka and Laurienti, 2010). The

resulting overlap images were compared across different correc-
tion methods. If global signal correction does not influence the
overall structure of the network, then the overlap maps should
appear similar across different correction methods. On the other
hands, if systematic biases are introduced by global signal correc-
tion, or by the lack thereof, then the overlap maps may appear
different across the correction methods.

MODULAR ORGANIZATION
In a network, some groups of nodes may have a large num-
ber of connections among themselves compared to connections
between such groups. These highly interconnected sets of nodes
are often referred as modules. If a network has a modular struc-
ture, then its nodes can be grouped into a number of modules,
with each node belonging to a single module. The human brain
networks have been shown to have modular organization (He
et al., 2009; Meunier et al., 2009; Power et al., 2011; Rubinov
and Sporns, 2011). Despite the difference in the number of nodes
in these previous studies, the number of modules is similar and
the modular parcellation is comparable (Moussa et al., 2012).
Thus, I hypothesize that, if a lack of global signal correction alters
the macro-scale organization of a functional brain network, such
altered organization may manifest as changes in the modular
organization.

To investigate the modular organization, I applied an algo-
rithm called Qcut (Ruan and Zhang, 2008). Qcut is an iterative
algorithm to find a near optimal modular parcellation of a net-
work, by maximizing modularity Q, a metric that quantifies how
parcellated a network is relative to a random network of a com-
parable size. Q is zero if the network exhibits no community
structure, whereas a large Q is a strong indicator of community
structure in a network (Clauset et al., 2004). The upper limit of
Q is 1. For each fMRI network, before running Qcut, I identified
sub-networks that were isolated from the largest connected net-
work component (or the giant component), and grouped such
nodes into a “junk” module. Then the giant component was ana-
lyzed by Qcut, resulting in a modular parcellation. The resulting
Q was compared across different correction methods, and the
consistency of some modules was examined.

RESULTS
CORRELATION COEFFICIENT DISTRIBUTION
Figure 2 shows distributions of correlation coefficients for all the
subjects under different correction methods. While the distribu-
tion was centered at 0 for all the subjects for the Full and WBonly
methods, the distribution was positively skewed in some sub-
jects for the NoWB and NoCorr methods. Between NoWB and
NoCorr, the distribution appeared more skewed for NoCorr. This
was confirmed by the mean of these distributions. The mean (SD)
of the mean correlation coefficient across subjects was 0.00006
(0.0004) under the Full method, 0.00006 (0.0004) under the
WBonly method, 0.050 (0.035) under the NoWB method, and
0.086 (0.056) under the NoCorr method. I compared the mean
correlation coefficient between different methods by paired two
sample t-tests (since the networks originate from the same set
of subjects). I found a significant difference between the Full
and NoWB methods (p = 0.001), as well as between the Full
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and NoCorr methods (p < 0.001). However, no significant dif-
ference was found between the Full and WBonly methods (p =
0.70). Significant differences were also found between WBonly
and NoWB methods (p = 0.001) as well as between the WBonly
and NoCorr methods (p < 0.001). These results indicate that the
correlation matrix may be systematically biased when the whole-
brain signal is not regressed out. These results are consistent with
previous reports on seed-based connectivity studies (Fox et al.,
2009; Murphy et al., 2009; Chai et al., 2012).

NETWORK METRICS
Table 1 shows the average C and L for the four different meth-
ods. While clustering coefficient C appeared similar across dif-
ferent correction methods, path length L was somewhat larger
for the NoWB and NoCorr networks, in comparison to the
Full and WBonly networks. Paired two-sample t-tests revealed
that the path lengths were marginally larger for the NoWB,
WBonly, and NoCorr networks when compared to that of the
Full networks (p = 0.09, p = 0.03, and p = 0.05, respectively).
This may be because the NoWB, WBonly, and NoCorr net-
works fragmented more than the Full networks. In fact, the size
of the largest connected network component Nc, or the size of
the giant component, was smaller in the NoWB, WBonly, and
NoCorr networks compared to the Full networks (paired t-test
p = 0.03, p = 0.02, and p = 0.006, respectively) (see Table 1).
Since my method of path length calculation was based on the
reciprocal mean of the geodesic distance between nodes (Latora
and Marchiori, 2001; Hayasaka and Laurienti, 2010), discon-
nected network components were accounted as increased path
length. Furthermore, the proportion of connected nodes (i.e.,
nodes with at least one connection) was much lower in the
NoWB and NoCorr networks compared to the Full networks
(paired t-test p = 0.04 and p = 0.01, respectively) (see Table 1).
However, the proportion of connected nodes was only marginally
smaller in the WBonly networks compared to the Full networks

FIGURE 2 | Distributions of correlation coefficients. Distributions of
correlation coefficients from different subjects’ networks under different
global signal correction methods. While the distributions are centered at
zero for the Full and WBonly methods, the distributions are positively
skewed for some subjects for the NoWB and NoCorr methods.

(paired t-test p = 0.08). It should be noted that the differ-
ence in the path length L as described above cannot be simply
attributed to the differences in the distribution of correlation
coefficients. This is because a distribution of correlation coef-
ficients does not describe the network structure or topology,
as it lacks information on how nodes are connected to each
other.

NODE DEGREE DISTRIBUTION
Figure 3 shows the degree distributions for the networks con-
structed with different correction methods. In all the methods,
the degree distributions seem to follow an exponentially trun-
cated power-law distribution, as I previously reported (Hayasaka
and Laurienti, 2010). However, the shape of the distribu-
tions appeared more variables in the NoWB and NoCorr
networks. To confirm this, the variance of the largest node
degree was compared across different correction methods by
an F-test. The variability was significantly larger in the NoWB

Table 1 | Average network metrics.

Correction C L Nc Proportion

method Mean (SD) Mean (SD) Mean (SD) of connected

nodes

Mean% (SD%)

Full 0.230 (0.039) 5.29 (1.01) 14897 (916) 94 (4)

NoWB 0.223 (0.031) 7.35 (3.90) 13246 (2430) 86 (13)

WBonly 0.236 (0.039) 5.49 (1.18) 14699 (1095) 94 (5)

NoCorr 0.224 (0.032) 8.72 (5.11) 12245 (2616) 81 (15)

The average network metrics across subjects were calculated for the networks

with different global signal correction methods. Clustering coefficient C and path

length L, as well as the size of the giant component Nc and the proportion of

nodes with at least one connection are presented.

FIGURE 3 | Degree distributions. Degree distributions of the Full, NoWB,
WBonly, and NoCorr networks are shown. Although all the distributions
seem to follow an exponentially truncated power-law distribution, the
degree distributions appear more variable across subjects in the NoWB and
NoCorr networks.
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and NoCorr networks compared to the Full networks (F-test
p = 0.008 and p = 0.005, respectively), or compared to the
WBonly networks (F-test p = 0.01 and p = 0.008, respectively).
However, no significant difference in variability was found
between the Full networks and the WBonly networks (F-test
p = 0.82).

NETWORK HUBS
Next, I examined the locations of high-degree nodes, or hubs, in
the networks with different correction methods. In particular, the
consistency of hub locations was examined by an overlay image
of top 20% highest degree nodes (see Figure 4). All the methods
yielded a concentration of network hubs in the posterior cingu-
late cortex and the precuneus. This finding was consistent with
my previous results (Hayasaka and Laurienti, 2010) as well as the
other voxel-based network studies (Eguiluz et al., 2005; Van Den
Heuvel et al., 2008; Buckner et al., 2009). However, the NoWB and
NoCorr networks also showed a concentration of hub nodes near
the superior edge of the interhemispheric fissure while such con-
centration was not observed in the Full and WBonly networks.
To the best of my knowledge, this area has not been reported as
the hub area of the brain in voxel-level fMRI networks. Moreover,
resting-state MEG (magnetoencephalography) networks often do
not exhibit concentration of hubs along the interhemispheric fis-
sure (Bassett et al., 2006; Deuker et al., 2009; Jin et al., 2013; Rutter
et al., 2013). The concentration of hub nodes in this area was more
consistent and extensive in the NoCorr networks than the NoWB
networks. Thus, it is possible that this concentration is an arti-
fact of not correcting for the whole-brain signal. It should also
be noted that, while the Full networks showed a concentration of
hub nodes in the anterior cingulate cortex, the NoWB, WBonly,
and NoCorr networks did not show such a concentration in the
same area.

MODULAR ORGANIZATION
Table 2 shows the mean modularity Q of the networks under
different correction methods, as well as the mean number of
modules found in these networks. Compared to the Full net-
works, modularity Q did not differ significantly in the NoWB,
WBonly, and NoCorr networks (paired t-test p-values, p = 0.12,
p = 0.20, and p = 0.05, respectively). However, there were sig-
nificantly more modules in the NoWB and NoCorr networks
compared to the Full networks (paired t-test p = 0.02 and p =
0.004, respectively). Compared to the WBonly networks, the
NoWB and NoCorr networks had significantly more modules
as well (paired t-test p = 0.03 and p = 0.01, respectively). There
was no significant difference in the number of modules between
the Full and WBonly networks (p = 0.08). These results indi-
cate that the brain network is parcellated into a larger number
of communities when the whole-brain signal is not corrected.

I examined the consistency of the default mode network DMN
module across subjects under different correction methods. In
particular, for each method, I generated an overlap image of the
DMN module, identified manually as the module comprising

Table 2 | Modularity Q and the number of modules.

Correction method Modularity Q Number of modules

Mean (SD) Mean (SD)

Full 0.658 (0.050) 12.5 (5.4)

NoWB 0.596 (0.077) 25.2 (15.2)

WBonly 0.675 (0.043) 14.8 (7.11)

NoCorr 0.565 (0.098) 27.4 (10.6)

The mean modularity Q from the networks under different correction methods,

as well as the mean number of modules are shown.

FIGURE 4 | Consistency of hub nodes. The overlap of hub nodes (top
20% highest degree nodes) across subjects is shown for the networks
with different correction methods. Hub nodes were consistently
concentrated in the posterior cingulate cortex and the precuneus.

However, the NoWB and NoCorr networks also showed a concentration
of hub nodes along the superior edge of the interhemispheric fissure,
while such a concentration was not observed among the Full and
WBonly networks.
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a large portion of the posterior cingulate cortex and the pre-
cuneus, the areas known to be part of the DMN. Figure 5 shows
the overlap images demonstrating the consistency of the DMN.
Surprisingly, the DMN overlap images were similar across differ-
ent methods. This result indicates that the difference in correction
methods did not impact the DMN module.

I also examined the consistency of the junk module, the mod-
ule consisting of nodes and subgraphs disconnected from the

giant component of the brain network. Figure 6 shows the over-
lap images of the junk module across subjects under different
correction methods. While the junk module was not spatially con-
sistent across subjects in the Full and WBonly networks, the junk
module consistently included nodes around the major white mat-
ter tracts in the NoWB and NoCorr networks. It should be noted
that, my network data only consisted of gray matter nodes defined
by the AAL atlas. Between the NoWB and NoCorr networks,

FIGURE 5 | Consistency of the default mode network module. The overlap of the default mode network module across subjects is shown for the networks
with different correction methods. The areas of overlap appear similar across different methods.

FIGURE 6 | Consistency of the junk module. The junk module in each
network consists of nodes and subgraphs that are disconnected from
the giant component. Under each global signal correction method, the
consistency of such junk modules across subjects was examined by
generating an overlap image. While the junk module showed only

isolated signs of consistency in the Full and WBonly networks, the junk
module consistently included nodes around the major white matter
tracts in the NoWB and NoCorr networks. Between the NoWB and
NoCorr networks, the overlap was more consistent and extensive in the
NoCorr networks.
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the overlap was more consistent and extensive in the NoCorr
networks. To further investigate these differences, I counted the
number of nodes in the junk module (i.e., isolated nodes and sub-
graphs) that are adjacent to major white matter tracts. Such nodes
adjacent to white matter tracts were identified from the gray
matter voxels constituting a brain network (Figure 7A). Among
these voxels, ones with white matter probability greater than 40%
were identified using the white matter probability map from the
SPM package; the resulting mask included nodes that were adja-
cent to white matter tracts, as it can be seen in Figure 7B. The
average numbers of junk module nodes within this mask for dif-
ferent correction methods are shown in Table 3. Compared to
the Full networks, there were more junk module nodes (i.e., iso-
lated nodes and subgraphs) adjacent to white matter tracts in the
NoWB, WBonly and NoCorr networks (paired t-test p = 0.02,
p = 0.02, and p = 0.002, respectively). Compared to the WBonly
networks, the NoWB and NoCorr networks had significantly
more junk module nodes adjacent to white matter tracts (paired
t-test p = 0.02, and p = 0.003, respectively). These results indi-
cated that, without regressing out the whole-brain signal, some
nodes may be systematically disconnected from the rest of the
network, especially around white matter tracts.

Next, I examined the accuracy of the gray matter mask
used in this study [i.e., voxels belonging to areas identified by
the AAL atlas (Tzourio-Mazoyer et al., 2002)]. This was done
by first eliminating the nodes adjacent to major white matter
tracts (Figure 7B) from the whole-brain networks, and then by
comparing path length L of the resulting networks to that of

FIGURE 7 | Nodes surrounding white matter tracts. Among the gray
matter voxels included as part of a brain network (A), voxels adjacent to the
major white matter tracts were identified (B). These voxels were identified
from a white matter mask image from the SPM package, with at least 40%
white matter probability.

the whole-brain networks, as suggested by one of the review-
ers. As mentioned above, the whole-brain network consisted of
15,996 nodes, whereas the networks without nodes adjacent to
white matter tracts consisted of 12,660 nodes. In other words,
the network size was reduced by 20%. The path lengths L for
the network with and without the nodes adjacent to white mat-
ter tracts are shown in Table 4, along with the p-values from a
paired t-test comparing them. While the path length L was signif-
icantly shorter without nodes adjacent to white matter tracts in
the NoCorr networks (p = 0.038), no significant difference was
found in the other correction methods. The difference may simply
be a result of a reduced network size, or there may be a systematic
connectivity difference in nodes adjacent to white matter tracts.

DISCUSSION
I have constructed voxel-based functional brain connectivity net-
works from the same set of resting-state fMRI data but with
four different methods of global signal correction. I found that
the correlation coefficients were positively biased in the methods
without the whole-brain signal correction. The bias was stronger
if no global signal was corrected at all. I also found that, with-
out correcting the whole-brain signal, the resulting networks may
include a large number of isolated nodes and subgraphs discon-
nected from the giant component. This resulted in increased path
length L, with a stronger effect on the NoCorr networks than
the NoWB networks. While high degree nodes, or hub nodes,
were consistently observed in the posterior cingulate cortex as

Table 3 | The number of junk module nodes adjacent to white matter

tracts.

Correction method Number of junk module nodes

adjacent to white matter tracts

Mean (SD)

Full 384 (324)

NoWB 865 (684)

WBonly 448 (377)

NoCorr 1146 (675)

The number of nodes within the junk modules which are within the white matter

adjacency mask (Figure 7, right) is listed for different correction methods.

Table 4 | The path length L of the networks with and without nodes

adjacent to major white matter tracts.

Correction Path Length l, Path Length l, P-value,

method networks with networks without paired T -test

nodes adjacent to nodes adjacent to

white matter tracts white matter tracts

Mean (SD) Mean (SD)

Full 5.29 (1.01) 5.24 (0.88) 0.365

NoWB 7.35 (3.90) 6.94 (3.34) 0.053

WBonly 5.49 (1.18) 5.40 (1.01) 0.175

NoCorr 8.72 (5.11) 8.05 (4.27) 0.038

The path length L was compared between the two types of networks by a paired

t-test. The resulting p-values are also shown.
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previously reported regardless of the correction method, the net-
works without whole-brain signal correction exhibited consistent
concentration of hub nodes along the superior portion of the
interhemispheric fissure. Since this area has not been reported
as the hub region in previous research, especially the ones based
on neuromagnetic activities observed by MEG, it is likely that
such a concentration of hub nodes may be an artifact resulting
from a lack of whole-brain signal correction. I also examined the
modular organization of the networks with different correction
methods, and found that the networks without whole-brain sig-
nal correction were parcellated into a larger number of modules.
Despite the difference in global signal correction, the DMN mod-
ule was observed consistently across subjects. I also found that, in
the networks without full global signal correction (whole-brain
signal in particular), nodes near the major white matter tracts
were systematically disconnected from the rest of the network.
This was particularly apparent in the NoCorr networks.

As described above, there are some different characteristics
between the networks with and without whole-brain signal cor-
rection. One possible explanation for such differences is the
highly connected area along the superior edge of the interhemi-
spheric fissure in the NoWB and NoCorr networks, in compari-
son to the Full or WBonly networks. Since the number of edges
in a network is indirectly controlled by the way the correlation
matrix is thresholded (see Network Construction), an abundance
of edges in one area of the network can result in reduced edges
in other areas of the network. From Figure 4, I can infer that
extra edges were allocated near the interhemispheric fissure in
the NoWB and NoCorr networks, and these extra edges would
deprive connections in other areas of the brain. This resulted
in a larger number of disconnected nodes and subgraphs in the
NoWB and NoCorr networks compared to the Full or WBonly
networks. Such disconnected components concentrate around
the white matter tracts, as it can be seen in Figure 6. These alter-
ations appeared more pronounced in the NoCorr networks than
the NoWB networks. This may be because the NoWB networks
are corrected by global signals to a certain degree, while the
NoCorr networks are not adjusted by any global signals at all.
Such a systematic fragmentation around white matter tracts can
be observed even in the WBonly networks, when compared to the
Full networks. Despite the alterations in the number of connec-
tions as described above, the modular organization of the NoWB
and NoCorr networks was not completely altered. In fact, possibly
because of the modular nature of the brain networks, the DMN
module in the NoWB and NoCorr networks was surprisingly
similar to that of the Full or WBonly networks (see Figure 5).

In this study, I focused on alterations in various network char-
acteristics when resting-state fMRI data were not corrected for
global signals, compared to that of the networks constructed
with a global signal correction method regressing out whole-
brain, white matter, and ventricle signals (Fox et al., 2006, 2009).
However, global signal correction method used for the Full net-
works is far from perfect. This correction method entails simply
regressing out mean signals from the fMRI time series, which
is more simplistic than methods using the physiological signals
recorded during the fMRI data acquisition (Chang and Glover,
2009). Rather than regressing out the global signals, perhaps a

more sophisticated approach, such as principal component anal-
ysis (PCA) or independent component analysis (ICA), may be
effective in extracting neurologically relevant data from physio-
logical noises (Chai et al., 2012). Although these shortcomings
exist, regression-based methods are easy to implement as a part of
cross-correlation calculation, since it only involves regressing out
a number of nuisance covariates from the fMRI time series. These
global covariates can be calculated from the fMRI data itself; thus
this would be ideal for re-analyzing fMRI data acquired with-
out the accompanying physiological recording. Thus, this type of
global signal correction method would be amenable to various
types of existing fMRI data, even those that are publicly available
for downloading.

It should be noted that there are infinitely many ways of
correcting for global signals, and the four methods presented
in this work simply represent popular methods used among
neuroimaging researchers. It is possible that there are other cor-
rection methods suitable for constructing functional connectivity
network. However, the goal of this paper is to evaluate exist-
ing methods; my intention is not to develop better correction
methods. With increased interests in this field in recent years,
it is possible that some brain network researchers will develop
methods more suitable than the ones examined in this work.

One limitation in this work is the lack of ground truth in eval-
uating different correction methods. This is due to computational
challenges arising from generating a gold standard with thou-
sands of time series (each corresponding to a voxel time course)
with a small number of known correlations among them repre-
senting the “true” connectivity in an adjacency matrix. This is a
very difficult mathematical problem, as if there were thousands of
simulated regions in the simulation described in Saad et al. (2012)
and each region’s connectivity would have to exactly match the
ground truth adjacency matrix.

I also would like to emphasize that this study does not answer
whether or not there is a genuine “global signal” that is present
throughout the brain. This study only outlines the differences in
network organization arising from correcting/not correcting for
global signals. There are a number of papers describing the exis-
tence of such global signals and consequently discouraging the use
of global signal correction (Murphy et al., 2009; Scholvinck et al.,
2010; Saad et al., 2012, 2013; Hallquist et al., 2013). Because of
the limitations listed above, I cannot conclude which correction
method should be used, if used at all. So I will leave that determi-
nation up to each reader. If one suspects that there exists a true
“global signal” that covers extensive cortical areas due to a brain-
wide synchronized neurological processing, then a global signal
regression is not necessary. However, I would like to reiterate that,
without global signal correction, a concentration of hubs appears
at the superior portion of the interhemispheric fissure, which can-
not be detected by MEG. Moreover, nodes around white matter
tracts tend to systematically disconnect from the rest of the brain
network if the whole-brain signal is not corrected.

In summary, I demonstrated alterations in networks charac-
teristics resulting from not correcting for global signals. Such
alterations include increased connections along the interhemi-
spheric fissure and isolated nodes and subgraphs around the
white-matter tracts. However, incomplete global signal correction
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or lack thereof may not alter some brain network modules, such
as DMN. Thus, each practitioner of brain network analysis, espe-
cially dealing with networks in voxel-level, should consider the
results presented in this work and select an appropriate correction
method that is suitable for his/her study.
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Graph theoretical explorations of functional interactions within the human connectome,
are rapidly advancing our understanding of brain architecture. In particular, global
and regional topological parameters are increasingly being employed to quantify
and characterize inter-individual differences in human brain function. Head motion
remains a significant concern in the accurate determination of resting-state fMRI
based assessments of the connectome, including those based on graph theoretical
analysis (e.g., motion can increase local efficiency, while decreasing global efficiency
and small-worldness). This study provides a comprehensive examination of motion
correction strategies on the relationship between motion and commonly used topological
parameters. At the individual-level, we evaluated different models of head motion
regression and scrubbing, as well as the potential benefits of using partial correlation
(estimated via graphical lasso) instead of full correlation. At the group-level, we
investigated the utility of regression of motion and mean intrinsic functional connectivity
before topological parameters calculation and/or after. Consistent with prior findings, none
of the explicit motion-correction approaches at individual-level were able to remove motion
relationships for topological parameters. Global signal regression (GSR) emerged as an
effective means of mitigating relationships between motion and topological parameters;
though at the risk of altering the connectivity structure and topological hub distributions
when higher density graphs are employed (e.g., >6%). Group-level analysis correction
for motion was once again found to be a crucial step. Finally, similar to recent work,
we found a constellation of findings suggestive of the possibility that some of the
motion-relationships detected may reflect neural or trait signatures of motion, rather than
simply motion-induced artifact.

Keywords: functional connectomics, head motion impact, network analysis, resting-state fMRI, small-world,

topological parameters

INTRODUCTION
The graph of functional interactions in the human connectome
is increasingly being used as a defining component of an individ-
ual’s neurophenotype (Craddock et al., 2013). Not surprisingly,
cataloging variations in the connectome, from one individual or
population to another, has emerged as a key objective in modern
day neuroscience. Seemingly simple from a conceptual viewpoint,
the task of characterizing and comparing connectomes has proven
to be a significant challenge for the imaging community—both
due to the computational complexity of the connectome graph
and the richness of interactions between its connections and
subgraphs (i.e., modules). In response, the examination of con-
nectomes in terms of their network properties has emerged as a
potentially promising solution that reduces its complexity to a set
of topological parameters (see Table 1) that are easily amenable
to comparison across individuals and populations (Bullmore and
Sporns, 2009). Initial studies have demonstrated the sensitivity
of these measures to differences in both diagnostic status and

behavioral indices (Bassett and Bullmore, 2009; Bullmore and
Sporns, 2009, 2012; He and Evans, 2010; Wang et al., 2010;
Bullmore and Bassett, 2011; Yu et al., 2012), and have exhibited
acceptable test-retest reliability for these metrics (Telesford et al.,
2010; Wang et al., 2011). Although promising, little attention has
been given to the potential confounding effects of nuisance signals
present in R-fMRI studies—in particular, that of motion, which
is the primary focus of the present work.

Although the impacts of motion on graph topological mea-
sures have not been thoroughly assessed, the demonstrated dele-
terious effects of motion on community detection provides com-
pelling evidence of their existence (Power et al., 2012). Previous
work has found that the assignment of nodes in the connectome
to communities (modules) differed notably between children and
adults when motion was not considered, but were more similar
when motion was accounted for by the removal of affected frames
(i.e., scrubbing) (Power et al., 2012). Beyond this demonstration,
a key point raised by Power et al., as well as others (Satterthwaite
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Table 1 | Topological properties of brain graphs examined in the

current study.

Topological properties Descriptions

GLOBAL TOPOLOGICAL PROPERTIES

Local efficiency The average efficiency of information
transfer over a node’s direct neighbors

Global efficiency The efficiency of information transfer
through the entire graph

Clustering coefficient The average inter-connectedness of a
node’s direct neighbors

Characteristic shortest
path length

The average shortest path length between
any pairs of nodes

Normalized clustering
coefficient

The clustering coefficient compared to
matched random networks

Normalized characteristic
shortest path length

The characteristic shortest path length
compared to matched random networks

Small-worldness The normalized clustering coefficient
divided by the normalized characteristic
shortest path length, which reflect the
balance of global efficiency and local
efficiency

Assortativity The tendency of nodes to link with those
nodes with similar number of edges

Modularity The extent to which a graph can be
segregated into densely intraconnected but
sparsely interconnected modules

REGIONAL TOPOLOGICAL PROPERTIES

Degree centrality The number (or sum of weights) of
connections connected directly to a node

Nodal efficiency The efficiency of information transfer over a
node’s direct neighbors

Nodal clustering
coefficient

The inter-connectedness of a node’s direct
neighbors

Subgraph centrality The participation of a node in all subgraphs
comprised in a graph

Betweenness centrality The influences of a node over information
flow between other nodes

Eigenvector centrality A self-referential measure of centrality –
nodes have high eigenvector centrality if
they connect to other nodes that have high
eigenvector centrality

et al., 2012; Van Dijk et al., 2012) is that short-distance con-
nectivity increases with motion while long-distance connectiv-
ity decreases. However, applying this knowledge to topological
parameters does not lead to any direct conclusions. In topo-
logical space nodes are deemed neighbors if they are directly

connected, regardless of the anatomical distance between them.
Thus, although motion may decrease the number of long-distance
connections in a node’s topological neighborhood, and increase
the number of short-distance connections, the overall impact
to topological parameters such as local and global efficiency is
unclear. Equally unclear is the degree to which the effects of
motion are reflected in compromises to small-world properties,
which reflect the balance of global efficiency with local efficiency
(Watts and Strogatz, 1998; Salvador et al., 2005).

Concerns about the impact of motion on topologic param-
eters are particularly relevant to studies of inter-individual or
population-based differences, where systematic relationships can
exist between motion and variables of interest (e.g., developmen-
tal status, diagnostic status).

In this regard, several recent studies focusing on seed-based
correlation and regional R-fMRI measures (Fair et al., 2012;
Satterthwaite et al., 2013; Yan et al., 2013a; Power et al., 2014) have
provided comprehensive assessments of motion related artifacts
and suggested measures for controlling them. These studies gen-
erally emphasize that, if attempting to correct for motion at the
individual-subject level, (1) higher-order regression models [e.g.,
Friston 24-parameter model (Friston et al., 1996)] perform bet-
ter than lower-order models, (2) including scrubbing approaches
is superior to regression models alone, and (3) global signal
regression controls for head motion more than any approach
attempting to explicitly model motion. Importantly, several stud-
ies have suggested that despite the best of efforts, motion cannot
be fully accounted for at the individual-subject level and argued
that motion may be better accounted for at the group-level (i.e.,
covariate analysis) when possible (Fair et al., 2012; Satterthwaite
et al., 2013; Yan et al., 2013a). While some, or all, of these findings
may generalize to graph theoretical analyses, this remains an open
issue.

Here, we extend our prior work that examines the impact of
motion on seed-based correlation analyses and regional R-fMRI
measures (Yan et al., 2013a) to include topological properties.
Consistent with our prior work, we assess not only the impact
of motion on topologic measures and findings of inter-individual
and group-related differences, but the ability of previously estab-
lished motion correction procedures to account for the confound-
ing effects of motion (see Table 2). Importantly, when considering
graph theoretical analyses, it is essential to appreciate the potential
impact of motion on graph construction, prior to the deriva-
tion of topologic measures. In order to address this concern, we
begin our examination with an analysis of the impact of motion
on the density of graphs derived through correlation coefficient
thresholding. Additionally, for all topologic measures and proce-
dures examined, we systematically vary density to establish the
robustness of our findings.

METHODS
PARTICIPANTS AND IMAGING PROTOCOLS
We performed our analyses on publicly available imaging data
from the 1000 Functional Connectomes Project (FCP; data are
available at http://fcon1000.projects.nitrc.org). Consistent with
our previous study (Yan et al., 2013a), data of 176 participants
(70 males, 20.9 ± 1.9 years) in the Cambridge dataset were used in
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Table 2 | Head motion correction strategies investigated in the

current study.

Correction strategies Descriptions

INDIVIDUAL-LEVEL

Preprocessing-stage: motion was corrected during preprocessing

Rigid-body 6 Regress out 6 head motion parameters

Friston 24 Regress out 6 head motion parameters, 6 head
motion parameters one time point before, and
the 12 corresponding squared items (Friston
et al., 1996)

Friston 24 + scrubbing Identifying “bad” time points using a threshold
of FD (Power) >0.2 mm as well as 1 back and 2
forward neighbors as done in Power et al.
(2013), then modeling each “bad” time point as
a separate regressor in the regression models

Polynomial regression The difference in correlation values (�r ) were
calculated between the r -values acquired in
Strategy 2 (Friston 24) and those in Strategy 3
(Friston 24 + scrubbing). A 5-degree polynomial
model was used to fit �r values on Euclidean
distances, and then these fitted �r values were
regressed out from the original r values (Fair
et al., 2012)

Connection estimation-stage: motion was corrected during

connection estimation

Graphical lasso Using graphical lasso to estimate the partial
correlation instead of full correlation

GROUP-LEVEL

Connection-stage: the following motion-related parameters were
regressed out from each connection before topological parameter
calculation

Mean iFC regression Whole brain mean iFC

Motion regression Mean FD

Mean iFC + motion
regression

Both mean iFC and mean FD

Topological parameter-stage: the following motion-related

parameters were regressed out from each topological parameter

after their calculation

Mean iFC regression Whole brain mean iFC

Motion regression Mean FD

Mean iFC + motion
regression

Both mean iFC and mean FD

Both stages: the following motion-related parameters were

regressed out from each connection before topological parameter

calculation, as well as from each topological parameter after their

calculation

Mean iFC regressed Whole brain mean iFC

(Continued)

Table 2 | Continued

Correction strategies Descriptions

Motion regressed Mean FD

Mean iFC + motion
regressed

Both mean iFC and mean FD

FD, framewise displacement; iFC, intrinsic functional connectivity.

our main analyses. In addition, data of 176 participants (70 males,
21.2 ± 1.9 years) in the Beijing dataset were used to assess the gen-
eralizability of our main analyses. The corresponding institutional
review boards approved or provided waivers for the inclusion of
anonymized data in the FCP. Data were acquired with written
informed consent from each participant.

Participants were instructed to simply rest while awake in
a 3T scanner, and R-fMRI data were acquired using an echo-
planar imaging (EPI) sequence (Cambridge dataset: repeat time
(TR) = 3 s, echo time (TE) = 30 ms, time points = 119, slice
number = 47, voxel size = 3 × 3 × 3 mm3, field of view (FOV)
= 216 × 216; Beijing dataset: TR = 2 s, TE = 30 ms, time points
= 235, slice number = 33, voxel size = 3.12 × 3.12 × 3.6 mm3,
FOV = 200 × 200). A high-resolution T1-weighted magnetiza-
tion prepared gradient echo image (MPRAGE) was also obtained
for each participant to perform spatial normalization and
localization.

PREPROCESSING
Unless otherwise stated, all preprocessing was performed using
the Data Processing Assistant for Resting-State fMRI (DPARSF,
Yan and Zang, 2010, http://www.restfmri.net), which is based
on Statistical Parametric Mapping (SPM8) (http://www.fil.ion.

ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit
(REST, Song et al., 2011; http://www.restfmri.net), running in
Matlab R2012a (Natick, MA). All volume slices were corrected
for different signal acquisition times by shifting the signal mea-
sured in each slice relative to the acquisition of the slice at the
mid-point of each TR. Then, the time series of images for each
subject were realigned using a six-parameter (rigid body) lin-
ear transformation with a two-pass procedure (registered to the
first image and then registered to the mean of the images after
the first realignment). Individual structural images (T1-weighted
MPRAGE) were co-registered to the mean functional image after
realignment using a 6 degrees-of-freedom linear transformation
without re-sampling. The transformed structural images were
then segmented into gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) (Ashburner and Friston, 2005). The
Diffeomorphic Anatomical Registration Through Exponentiated
Lie algebra (DARTEL) tool (Ashburner, 2007) was used to com-
pute transformations from individual native space to MNI space.

HEAD MOTION CORRECTION STRATEGIES (INDIVIDUAL-LEVEL)
As identified in our previous study (Yan et al., 2013a), the
Friston 24-parameter model performed well in addressing head
motion effects, which is consistent with other studies that found
higher-order models performed better than lower-order models
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(Satterthwaite et al., 2013; Power et al., 2014). Thus, we com-
pared the following individual-level correction strategies at the
preprocessing-stage in the current study (see Table 2):

(1) Regression of realigned data on 6 head motion parame-
ters (i.e., three translations and three rotations) (rigid-body
6-parameter model);

(2) Regression of realigned data on 6 head motion parameters,
6 head motion parameters from the previous time point,
and the 12 corresponding squared items (Friston et al., 1996)
(Friston 24-parameter model);

(3) Scrubbing within Friston 24-parameter model regression
(spike regression): “bad” time points were identified using a
threshold of framewise displacement (FD, Power et al., 2012)
> 0.2 mm as well as 1 back and 2 forward neighbors as per-
formed by Power et al. (2013), then each “bad” time point
was modeled as a separate regressor in the regression mod-
els (Lemieux et al., 2007; Satterthwaite et al., 2013; Yan et al.,
2013a) in addition to Strategy 2 (Friston 24 + scrubbing);

(4) Recently, Fair et al. (2012) proposed a method that incor-
porates the information of scrubbing but does not result in
a reduction of degrees of freedom. The difference in corre-
lation values (�r) were calculated between the correlation
(r)-values acquired in Strategy 2 and those in Strategy 3.
A 5-degree polynomial model was used to fit �r values on
Euclidean distances, and then these fitted �r values were
regressed out from the original r-values acquired in Strategy
2 (Polynomial regression).

As scrubbing can result in the removal of a large number of time
points (Power et al., 2012, 2013; Satterthwaite et al., 2013; Yan
et al., 2013a), to obtain reliable results, we removed subjects who
had less than 3 min of data remaining after scrubbing, as done
in our previous study (Yan et al., 2013a). This resulted in the
exclusion of 18 subjects in the Cambridge datasets from the main
analyses, leaving 158 subjects for these analyses.

GLOBAL SIGNAL REGRESSION (GSR)
GSR is a commonly used, yet controversial practice in the R-fMRI
field, that yields substantial increases in negative correlations
(Murphy et al., 2009; Weissenbacher et al., 2009) and may dis-
tort group differences in intrinsic functional connectivity (iFC)
(Saad et al., 2012, 2013; Gotts et al., 2013). However, recent
studies have found that GSR is more effective in removing rela-
tionships between motion and correlation-based R-fMRI metrics
across subjects than any correction strategy that explicitly models
motion (Yan et al., 2013a; Power et al., 2014). Thus, we evalu-
ated the effects of head motion correction strategies on analyses
performed with and without GSR.

Within the nuisance regression step, linear and quadratic
trends were included as regressors to account for low-frequency
drifts, and signals from WM and CSF were regressed out to reduce
respiratory and cardiac effects, in the BOLD signal.

After nuisance regression, the functional data were trans-
formed to MNI space and resampled to 3 × 3 × 3 mm3 voxel
size with DARTEL tool (Ashburner, 2007). Spatial smoothing
was not performed to avoid mixing signals between different

regions (see section Network Construction). Temporal filtering
(0.01–0.1 Hz) was then applied to the time series of each voxel
to reduce the effect of low-frequency drifts and high-frequency
noise.

NETWORK CONSTRUCTION
The connectome graph is composed of distinct brain regions
(nodes) and their functional interactions (edges). The whole
brain was first parcellated into 90 cortical and subcortical regions
of interest (45 for each hemisphere, see Table A1) using a prior
anatomical automatic labeling (AAL) atlas (Tzourio-Mazoyer
et al., 2002). Although the AAL atlas is widely used in brain
network topology analysis, Smith et al. (2011) demonstrated
the use of functionally inaccurate ROIs is damaging to net-
work estimation, and thus suggests against structural atlases.
Here we also evaluated the networks based on two func-
tional atlas for supplementary analyses: Dosenbach’s 160 ROIs
which were generated based on meta-analysis (Dosenbach et al.,
2010), and Craddock’s 200 ROIs which were generated based
on spatially constrained spectral clustering (Craddock et al.,
2012).

The mean time series of each region was extracted by aver-
aging the time series of all voxels within that region. Pearson’s
correlation coefficients were estimated for each pair of regions
and were transformed to Fisher’s z-score (Fisher, 1915) to cre-
ate the iFC matrix for each participant. The correlation matrices
were further thresholded into binary networks or weighted net-
works to examine the head motion impact on binarized topology
or weighted topology. Two thresholding strategies are widely
used: correlation coefficient thresholding and density threshold-
ing; each has its own limitations (Fornito et al., 2013). The
correlation coefficient thresholding strategy resulted in networks
with densities (the number of existing edges divided by the
maximum possible number of edges) that are sensitive to head
motion (see results in the section “Head Motion Impact on Graph
Construction”); this in turn affects the topological properties. As
such, we used the density thresholding strategy to normalize the
number of edges among all of the graphs. A wide range of den-
sity thresholds (2% ≤ density ≤ 50%, step of 2%) was chosen to
allow prominent small-world properties in brain networks to be
observed (Watts and Strogatz, 1998) (for details, see the Results
section).

While the primary focus of the present work is on graphs
derived using full correlation (Pearson’s correlation), we also felt
that it is important to address potential differences when partial
correlation-based graphs are used instead. Partial correlation-
based approaches should inherently remove signals present
throughout the brain; as such, we predicted that graphs gener-
ated from partial correlation should be more robust to motion. Of
note, a key limitation for partial correlation approaches is that the
covariance matrix is not invertible for most R-fMRI datasets due
to the limited number of time points relative to the large number
of nodes. This challenge is compounded by additional losses in
the number of degrees of freedom produced by temporal filtering.
In order to address this, we utilized the graphical lasso method
to estimate the sparse inverse matrix through L1 norm (lasso)
regularization (Friedman et al., 2008) (http://www-stat.stanford.
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edu/∼tibs/glasso/). We systematically varied the regularization
penalties 1 to acquire matrices with the desired density (2% ≤
density ≤ 50%, step of 2%) for each participant.

NETWORK ANALYSIS
We investigated both the global and regional topological proper-
ties of brain graphs (Table 1). At the global level, we investigated
local efficiency, global efficiency, clustering coefficient, charac-
teristic path length, normalized clustering coefficient, normal-
ized characteristic path length, small-worldness, assortativity and
modularity. At the regional level, we computed degree centrality,
nodal efficiency, nodal clustering coefficient, subgraph centrality,
betweeness centrality and eigenvector centrality for each node.

All of the topological parameters investigated in the current
study are summarized in Table 1, and were calculated with the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) (http://
www.brain-connectivity-toolbox.net). For details about the com-
putation of network parameters, please see (Rubinov and Sporns,
2010).

STATISTICAL ANALYSIS
To examine head motion effects on the topological properties
of the connectome graph, we calculated the correlation between
head motion and each of the parameters across participants. Head
motion was indexed by mean FD derived with Jenkinson’s relative
root mean square (RMS) algorithm (Jenkinson et al., 2002); mean
FD (Jenkinson) was used due to its consideration of voxel-wise
differences in motion in its derivation (Yan et al., 2013a).

To investigate the need for group-level motion correction after
individual-level correction (Fair et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012; Yan et al., 2013a), we also com-
pared topological parameters derived from subjects in the upper
and lower terciles of head motion, as in our prior study (Yan
et al., 2013a). The upper and lower motion terciles were created
using only females (n = 32 / group) to avoid potential confounds
associated with sex; age did not differ. Two-sample t-tests were
performed between the two motion groups to test motion effects
with and without group-level correction.

Group-level corrections were performed at two stages:
connection-stage and/or topological parameter-stage (Table 2).
For each stage, two kinds of regressors were regressed out: mean
iFC and/or mean FD. The regression of mean iFC is motivated
by its ability to address unwanted additive noise as demonstrated
in our prior work on standardizing R-fMRI measures (Yan et al.,
2013b).

RESULTS
HEAD MOTION IMPACT ON GRAPH CONSTRUCTION
Topological parameters derived from graph theoretical analyses
are highly sensitive to graph construction. In order to address
concerns regarding the potential impact of motion on graph con-
struction, we examined the relationship between mean FD and

1In order to achieve densities as close as the desired range, the regularization
penalties were varied from 0.0001 to 0.001 in a step of 0.0001, and then from
0.001 to 1 in a step of 0.001, and the penalty resulting in the density closest
to the desired value was chosen. Consequently, the selected inverse covariance
matrices are very close to the desired densities.

mean iFC (calculated by averaging the Fisher’s z value across all
connections for an individual). Our findings indicate that mean
iFC is highly correlated with motion when GSR is excluded,
regardless of the motion correction strategy employed; in con-
trast, when GSR is applied, mean iFC relationships with motion
were more moderate (Figure 1A).

We also examined the impact of motion on the density of
graphs derived using the correlation coefficient thresholding
strategy. As would be expected, the global increase in iFC with
motion results in increased density, regardless of the r thresh-
old applied for graph construction (Figure 1B). Once again, we
found GSR to be a major determinant of our findings, with graph
density exhibiting markedly greater relationships (across corre-
lation thresholds) with motion when the data were processed
without GSR, rather than with GSR (which diminished nearly
all relationships between graph density and motion, regardless of
motion correction approaches employed). This is consistent with
our prior finding that GSR controls for head motion more than
any approach attempting to explicitly model motion (Yan et al.,
2013a).

One other consideration that should be noted is the impact of
scrubbing on motion-density relationships. Specifically, we found
that scrubbing reduces motion-density relationships the most
among the individual-level correction strategies when GSR is not
used. This benefit was not seen when GSR is used—in fact, the
combination of scrubbing and GSR appeared to increase motion
relationships relative to GSR alone. This may at first appear to be
surprising, but it is important to note that participant data requir-
ing a higher degree of scrubbing will inherently have a higher
likelihood of extreme correlation values after scrubbing due to
decreases in the number of degrees of freedom; this in turn will
increase density (i.e., more edges) (Yan et al., 2013a)—please see
an expanded discussion in the section “Reviving or Learning from
Global Signal Regression?”

Overall, these results indicate that one should be extremely
cautious when using a correlation- or p-value-based threshold to
construct brain graphs, as the results can be highly confounded
by head motion; GSR can alleviate these concerns. Nonetheless,
given the impact of head motion on graph construction with
correlation-based thresholding, our remaining analyses were car-
ried out using a density thresholding strategy in which the
number of graph connections across participants and process-
ing strategies was normalized. We report our main results based
on binarized graphs, though our analyses using weighted graphs
yielded similar results (see section “Generalizability of Findings”).

MOTION-ROBUST SMALL-WORLD PROPERTIES IN THE CONNECTOME
GRAPH
Prior work has demonstrated that human connectome graphs
based upon iFC follow a small-world topology (i.e., high clus-
tering and short path lengths linking different nodes) (Salvador
et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007; Liao
et al., 2011; Yan and He, 2011; Yu et al., 2011). Here, we tested
whether the prominent small-world architecture is robust to the
various head motion correction strategies, finding that the graphs
derived from all the correction strategies retained small-world
properties, independent of density level (0.06–0.44) (Figure 2A).
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FIGURE 1 | The relationship between mean framewise displacement

(FD) and mean intrinsic functional connectivity (iFC) (A) as well

as density under different correlation thresholds (B). The mean iFC
was averaged across all the connections between all the pairs of 90
ROIs of automated anatomical labeling (AAL) atlas. Five preprocessing

strategies were evaluated in combination without global signal
regression (GSR: green shaded) and with GSR (pink shaded). The
correlation is considered significant at p < 0.05 (|r |> 0.16). We did not
correct for multiple comparisons to avoid false negative effects of
head motion.

When compared with 100 random networks with the same num-
ber of nodes, edges, and degree distribution as the observed
graph (Maslov and Sneppen, 2002), the brain networks had an
almost identical path length (normalized characteristic shortest
path length ∼1) but were more locally clustered (normalized clus-
tering coefficient >1). Taken together, the current results indicate
the previous findings of small-world properties in human func-
tional networks cannot be easily attributed to the presence of head
motion. As will be discussed in the following sections, this state-
ment is not intended to imply that head motion does not impact
topological parameters.

We also tested if hub distribution is robust to head motion
correction strategies. We first calculated node degree centrality
over the range of densities that maintained small-worldness, i.e.,
0.06–0.44, and then calculated the area under curve (AUC) for
this range. The AUC of degree centrality was averaged across all
the participants, and regions with degree > mean + one standard
deviation (SD) across nodes were identified as hubs (Figure 2B).
Head motion correction strategies had little impact on the iden-
tification of hubs, though once again, the presence of absence of
GSR was a major determinant of findings. In the case without
GSR, the hubs were predominantly attributed to fronto-parietal
network and temporal regions, while shifted into default mode
network and insula in the case with GSR. However, there is an
important caveat on this finding if one looks at motion-hub dis-
tribution relationships for individual density levels, rather than
using AUC. The hub distributions are similar between data with
and without GSR when the density is low (<6%); however, when
the density increases, the discrepancy of hub distribution between
with and without GSR becomes dominant (Figure 3A). This can
be explained by the alteration in correlation distribution induced
by GSR (Figure 3B). The top percentage of connections can be
identified either with or without GSR. However, the weaker con-
nections identified will differ as a function of whether or not GSR
is applied. In sum, GSR is not only mean-centering the intrinsic
connectivities, but can also affect their relative structure as well as
hub distribution.

HEAD MOTION IMPACT ON GLOBAL TOPOLOGICAL PROPERTIES
Head motion increased local efficiency while decreasing global
efficiency (Figure 4). These findings generalized across nearly
all densities above 0.1 for global efficiency, but were limited to
densities greater than 0.3 for local efficiency. Of note, here the
topological properties were derived from graph constructed with
density threshold; in other words, relationships with head motion
exist in network structure even when the wiring cost (i.e., number
of connections) is controlled. When GSR is performed, such head
motion relationships are removed.

With regard to small-worldness, we found that motion is nega-
tively associated with small world properties—a finding that gen-
eralized across density levels greater than 0.1, and was once again
diminished with GSR. To interpret these findings, it is important
to understand the impact of motion on the two constituent mea-
sures for small-worldness—the normalized clustering coefficient
and the normalized characteristic shortest path length. As previ-
ously described, higher head motion is associated with an increase
in local efficiency (which is equivalent to clustering coefficient) of
the constructed graph, and also for degree-matched random net-
works. The increase in clustering coefficient of the constructed
network is less than the increase in degree-matched random net-
works, leading to a negative correlation between head motion
and normalized clustering coefficient. In contrast, the character-
istic shortest path length (the inverse of global efficiency) and
its normalized version (compared to random networks) were
both positively correlated with head motion. Combining the nor-
malized clustering coefficient and normalized characteristic path
length, the small-worldness was negatively correlated with head
motion. Once again, such an effect is significant in the case
without GSR, but almost completely diminished by GSR.

HEAD MOTION IMPACT ON REGIONAL TOPOLOGICAL PROPERTIES
Next, we evaluated the impact of head motion on regional topo-
logical properties; the AUC densities in the range of 0.06–0.44
were used as in section Motion-Robust Small-World Properties
in the Connectome Graph. In our prior work, we found degree
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FIGURE 2 | Small-world properties (A) and hub distributions (B) under

different head motion correction strategies. Five preprocessing strategies
were evaluated in combination without GSR (green shaded) and with GSR
(pink shaded). “�” in panel (A) indicates that the hub distribution
demonstrated in panel (B) is derived from Friston 24 model. The hub

distribution was demonstrated with the area under the curve (AUC) of degree
centrality integrated within density range of 0.06–0.44, while regions with
AUC > mean + SD are considered as hubs. For the abbreviations of the
regions, see Table A1. Surface maps were created with BrainNet Viewer (Xia
et al., 2013 www.nitrc.org/projects/bnv/).

centrality was drastically increased with motion, and that rela-
tionships with motion were markedly reduced by GSR or Z-
standardization (i.e., mean centering + variance normalization)
(Yan et al., 2013a). Unlike our previous findings, which were
based on a p-value-based thresholding strategy (similar to corre-
lation coefficient thresholding), here we found that with density
thresholding (i.e., the mean degree was controlled accordingly),
both positive and negative relationships with motion were noted
for region-wise degree centrality, depending on the specific region
examined (Figure 5). Interestingly, the degree centralities of pre-
cuneus, precentral, fusiform, middle temporal, median cingulate
and paracingulate gyri—the hub regions when no GSR is used—
were positively correlated with head motion. On the other hand,
the degree centralities of default mode network regions—medial
prefrontal cortex (MPFC), posterior cingulate cortex (PCC),
angular gyrus, hippocampus and parahippocampal gyrus—were
negatively correlated with head motion. Such findings are in line
with our prior findings that head motion is positively associ-
ated with motor cortex and negatively correlated with the default
mode network (Yan et al., 2013a). Of note, head motion asso-
ciations decreased with scrubbing, but the pattern was similar
(i.e., no new regional associations emerged) (Figure 6). A key
challenge in the interpretation of these findings, which was dis-
cussed previously and will be expanded in our discussion, is
determining whether or not the motion–BOLD relationships are

purely artifactual, or may in part reflect motion-related neural
activity or indices of kinetic traits.

Regarding regional topological properties, which reflect local
properties, e.g., nodal efficiency and nodal clustering coef-
ficient, we generally found positive relationships with head
motion. However, the pattern was reversed for the topologi-
cal properties that reflect global properties, e.g., betweenness
and eigenvector centrality. Subgraph centrality, a measure con-
sidered to reflect middle- or meso-scale properties (Zuo et al.,
2012), was drastically increased with motion. These findings
are consistent with our findings that head motion increased
local efficiency while decreased global efficiency (see prior sec-
tion). Once again, when time points with relatively larger
frame-wise displacements were removed via scrubbing, rela-
tionships with head motion observed for the various centrality
measures were reduced, though the overall patterns remained
(Figure 6).

When GSR was included in preprocessing, relationships
between head motion and regional topological properties were
diminished. It is important to note that since we controlled den-
sity in our graph construction step, the same amount of highly
connected edges were present in the cases of processing with and
without GSR—thus removing a major potential confound. The
markedly different motion relationships noted with GSR suggest
that GSR is not just mean-centering correlation scores, but also
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FIGURE 3 | Impact of density on hub distribution. (A) Hub distribution
across various densities either without GSR (green shaded) or with GSR (pink
shaded) derived from the data corrected with Friston 24 model. With
stringent density thresholds, the hub distributions are similar between data
with and without GSR. When the density increases, the discrepancy of hub

distribution between with and without GSR becomes dominant. (B) Scatter
plot of Fisher’s Z averaged across participants. Most of the top connections
can be identified either with or without GSR. However, when the percentage
increases, a large portion of connections can be only identified by one
procedure but not the other.

altering the connectivity structure. The manner in which GSR
alters this structure remains largely unknown.

THE IMPACT OF GRAPHICAL LASSO ON HEAD MOTION
RELATIONSHIPS
When partial correlation (using graphical lasso) was utilized
instead of full correlation for estimating connections, we found
that topological parameters were insensitive to motion effects
at higher density thresholds (e.g., >0.25) as compared to those
based on full correlation (Figure 7). However, head motion
effects were more prominent for lower densities (0.05–0.25) when
graphical lasso was employed. These results indicate that although
graphical lasso removes the variance of other regions when esti-
mating the relationship between two specific regions, it did not
remove the “global effect” as addressed by GSR.

Given that we found GSR diminished the relationship between
head motion and global topological properties, we tested the
effect of GSR on graphical lasso estimates of connectivity using
two strategies: (1) the global signal was added as an addi-
tional timeseries to the parcellation set; (2) the global signal was
regressed out of the fMRI timeseries data prior to performing
graphical lasso. In the first case, when the GS timeseries was
treated as a signal akin to any ROI’s timeseries, the result was
identical to those obtained from graphical lasso without the GS
timeseries. Of note, this finding did not depend on whether the
GS timeseries was calculated by averaging the timeseries across
all ROIs, or all voxels. In contrast, regressing out the GS prior to
carrying out graphical lasso reduced the effect of head motion as

previously seen with full correlation. Once again, we found that
this did not depend on the specific approach used to calculate the
GS; additionally, it did not matter if the GS was regressed before or
after filtering. Given that the GS should be theoretically removed
by partial correlation or graphical lasso itself, it is not clear why
GSR prior to graphical lasso has such an impact.

GROUP LEVEL CORRECTION IN ADDRESSING RESIDUAL HEAD MOTION
IMPACT
Previous studies have suggested the necessity of accounting for
motion at the group-level when possible (Fair et al., 2012; Van
Dijk et al., 2012; Satterthwaite et al., 2013; Yan et al., 2013a).
While these reports primarily highlighted the merits of including
mean FD as a covariate in group-level analyses, more recent work
has suggested additional benefits of correcting each participant’s
data for global distribution parameters (e.g., the mean R-fMRI
for each individual) (Saad et al., 2013; Yan et al., 2013b). Here, we
explored the group-level correction targeting two different stages:
(1) the connection—for each edge, we regressed the correlation
scores across subjects on their mean iFC scores and/or motion,
and then perform graphical theoretical analysis, (2) topological
parameter—we added mean iFC and/or mean FD as covariates
in group analysis after the topological parameters are calculated.
Following the approach of our prior work (Yan et al., 2013a), this
was accomplished by comparing a “high”-motion vs. a “low”-
motion participant group; the upper and lower-motion terciles of
females in the publically available Cambridge dataset were used
to define these two groups.
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FIGURE 4 | Correlations between head motion and global

topological properties. Each panel presents one property. The
upper green shaded section is without GSR and the lower pink
shaded section is with GSR. Each row represents a preprocessing

strategies and each column represents a density threshold. The
correlation is considered significant at p < 0.05 (|r |> 0.16). We did
not correct for multiple comparisons to avoid false negative effects
of head motion.

In order to carry out group-level correction on global distri-
bution parameters, we first needed to calculate mean iFC. While
these values can be calculated from the mean iFC across all ROIs
for each participant, as done in the section “Head Motion Impact
on Graph Construction”, the results can be biased by the atlas
used. Here we estimated the mean iFC between all the voxel-
to-voxel connectivities across the brain (70831 voxels) to avoid
such a bias2; as expected, the measure was highly correlated with
head motion across subjects (r = 0.51, p < 10−11). The following
connection-stage corrections were performed and compared:

2We calculated the all voxel-to-voxel mean iFC as follows: (1) normalize the
time courses of all the voxels to zero mean and unit variance; (2) calculate
the mean signal across the brain (“global signal”); (3) calculate correlation
between this “global signal” and all the other voxels (a simple dot product and
then divided by n − 1); (4) calculate the mean value of the correlation coeffi-
cients across brain. This mean correlation coefficient is equivalent to the mean
of all voxel-to-voxel correlations. This calculation is similar to the L2 norm
method recently proposed by Saad et al. (2013), but in a more intuitive form.
To improve the normality of such a value for the purpose of standardization,
we converted the mean iFC into Fisher’s z value.

(1) mean iFC regressed; (2) motion (mean FD) regressed; (3)
(mean iFC + mean FD) regressed. Consistent with the goal of
removing unintended, but systematic, global variations across
subjects, mean iFC regression reduced the motion effect when
compared to non-correction (Figure 8). Directly regressing out
head motion from the edges across subjects produced even
greater reductions in motion effects. When we regressed out
both mean iFC and mean FD the head motion effects were
reduced in a similar extent, but this may have the additional
benefit of addressing unwanted global variations beyond head
motion.

When we performed the group-level correction of topological
parameters by including mean iFC and/or mean FD as covariates
(topological parameter-stage), significant reductions were noted
in the difference between the high motion and low motion ter-
ciles. This reduction was significant as compared to uncorrected
data, and even compared to the connection-stage group-level
correction. We further combined group-level correction at both
stages, but without clear benefit as compared to the topological
parameter-stage correction.
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FIGURE 5 | Correlations between head motion and regional topological

properties were plotted in matrix (A) and on brain surface (B). The layout
of panel (A) is the same as Figure 4 except that each column represents one
of the AAL regions. The regional properties were characterized by the area

under the curve (AUC) of each measure integrated within density range of
0.06–0.44 and the head motion correlation with these AUCs was
demonstrated in panel (B). The size of spheres denotes the

(Continued)
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FIGURE 5 | Continued

strength of correlation, red spheres denote positive correlations, blue
spheres denote negative correlations, and green spheres denote

insignificant correlations (p > 0.05, |r |< 0.16). “�” in panel (A) indicates
that the node correlation demonstrated in panel (B) is derived from Friston
24 model.

FIGURE 6 | Head motion impact on six regional topological properties

with scrubbing (Friston 24 + scrubbing) at FD (Power) > 0.2 mm. The
regional properties were characterized by the area under the curve (AUC) of
each measure integrated within density range of 0.06–0.44. The head motion

correlation with these AUCs was demonstrated. The size of spheres denotes
the strength of correlation, red spheres denote positive correlations, blue
spheres denote negative correlations, and green spheres denote insignificant
correlations (p > 0.05, |r |< 0.16).

GENERALIZABILITY OF FINDINGS
Finally, we addressed possible concerns regarding the generaliz-
ability of our findings to other studies by varying several factors
(Figure 9): (1) brain parcellation approach; (2) connection type
(binary vs. weighted); (3) dataset (Cambridge vs. Beijing). First,
we examined the effect of parcellation approach on our find-
ings by repeating our analyses with brain graphs constructed
from Dosenbach’s 160 spherical ROIs that were generated based
on a meta-analysis (Dosenbach et al., 2010) (Figure 9A), and
Craddock’s 200 ROIs that were generated based on spatially con-
strained spectral clustering (Craddock et al., 2012) (Figure 9B).
Similar to our findings with AAL, for these two parcellations, we
found head motion effects on the global topological parameters in
the case without GSR; such relationships were diminished when
GSR was employed. Next, we examined the impact of connection
type, by repeating our analyses using weighted connections, find-
ing the effect of head motion on the global topological parameters
were once again significant without GSR, and diminished when
GSR was employed (Figure 9C). Finally, we repeated our analy-
ses using the Beijing dataset; the findings generalized well from
the Cambridge dataset, further increasing our confidence in them
(Figure 9D).

DISCUSSION
The present work provides a comprehensive examination of the
relationship between inter-individual differences in commonly
used topological parameters and motion, yielding multiple

important findings. First, we found that head motion increases
iFC throughout the brain, and as such, confounds graph
construction when correlation (p-value) based thresholds are
employed to determine the presence of edges. Density thresh-
olding was used as a means of avoiding this potential confound
in the present work. As expected, small-world properties were
related to the presence of head-motion, though could not be
attributed to motion alone (i.e., small world properties persist
after motion correction). Consistent with our prior work, global
signal regression proved beneficial with respect to its ability to
mitigate relationships between topological properties of the con-
nectome graph and head motion. Consistent with its ability to
remove globally present signals, using partial correlation to esti-
mate graph connections also reduced the influences of motion on
topological parameters, although not to the degree observed with
GSR. Finally, it is worth noting that, consistent with our prior
work, group-level corrections were effective in reducing motion
relationships for topologic parameters, although they were more
effective when applied after graph topological parameter calcu-
lation (i.e., as covariates in group level analyses for topological
parameters). Importantly, we found that our findings generalized
across parcellation sets, connection types (binary, weighted) and
datasets.

MOTION-DEPENDENCIES IN GRAPH CONSTRUCTION
Motion poses a distinct challenge for graph theoretical R-fMRI
measures, as it confounds construction of the graph upon which
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FIGURE 7 | Impact of graphical lasso (partial correlation) on head motion

relationships with global topological parameters. The head motion
effects of full correlation was demonstrated as a base (green shaded, based
on Friston 24 model), while different implementation of graphical lasso was
implemented based on the Friston 24 model (pink shaded). Two scenarios
were created to test the GSR effect with graphical lasso: (1) the global signal

was added as an additional time series to the parcellation set (+1 column); (2)
the global signal was regressed out of the fMRI time series data prior to
performing graphical lasso (Regress). The GS time series was calculated by
averaging the time series across either all ROIs (ROI mean), or all voxels
(brain mean). For the second scenario, the brain mean was regressed out in
cases of either before or after filtering.

the parameters are based by inflating the number of edges.
The increased wiring cost associated with motion in turn biases
topological parameters, regardless of whether they are global
or regional. Central to any effort to minimize the relationship
between topological parameters and motion, is the minimiza-
tion of its impact on graph construction. In this regard, we
found density thresholding to be superior to correlation or p-
value thresholding as it fixes the number of connections in
the brain across participants. This avoids motion-related varia-
tion in the number of connections from one participant to the
next, which are present when correlation thresholding strategies
are employed due to increases in correlation levels through-
out the brain inherently produced by motion. However, density
thresholding has its own limitations. First, it results in a loss
to the biological validity of the analysis, as it is highly unlikely
that all individuals have the same number of connections in
their brain. Second, the specific correlation threshold making
the top n% connections varies across subjects (Fornito et al.,

2013) and can be affected by motion and preprocessing strat-
egy decisions—particularly when higher density threshold are
employed.

The present work draws attention to group-level correction as
a means of accounting for the influences of motion on graph
construction and topological parameters. Such approaches can
be applied to individual connections prior to graph construction,
or to topological parameters calculated after graph construction.
Regressing mean iFC and mean FD from each connection prior to
graph construction can effectively remove motion-density rela-
tionships with respect to correlation and p-value thresholding
(the correlation between mean FD and density across r thresh-
olds are within −0.02 to 0.05), while allowing the density to vary
across participants. Although potentially less obvious, our anal-
yses suggest that graph construction with density thresholding is
affected by motion as well, and can benefit group-level correc-
tion of individual connections prior to graph construction. An
interesting finding of the present work is that connection-level
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FIGURE 8 | Group-level correction in addressing residual head

motion impact. Two-sample t-tests were performed on each of the
global topological properties between upper motion tercile (n = 32)
and lower motion tercile (n = 32) of Cambridge females. The “null
model” was defined by performing two-sample t-test between two
“null” groups (mixing the motion terciles and equating for motion

and age). The group-level correction was performed either at
connection-stage (i.e., applied to the connections before topological
parameter calculation), at topological parameter-stage (i.e., applied to
the topological parameters after their calculation), or at both stages.
For each stage, the mean iFC, mean FD, or both mean iFC +
mean FD were regressed out.

corrections cannot entirely remove motion dependencies for
topologic parameters, necessitating group-level covariate analysis
for topologic parameters.

REVIVING OR LEARNING FROM GLOBAL SIGNAL REGRESSION?
Consistent with prior work (Yan et al., 2013a), the most robust
finding of the present work was the ability of GSR to remove
motion-relationships for R-fMRI metrics. This may at first seem
to be a vindication of GSR, or at least an argument for resurgence
of usage of GSR, which has decreased in the small world literature
in recent years without replacement by an alternative technique
for handling motion.

Unfortunately, the picture for GSR is not that simple. Prior
demonstrations of the potential for GSR to artifactually exagger-
ate or introduce negative correlation coefficients (Murphy et al.,
2009; Weissenbacher et al., 2009), as well as artifactually alter the
covariate structure in group-level analyses (Saad et al., 2012, 2013;
Gotts et al., 2013), cannot go unheeded. Nor can concerns about

potential difficulties in interpretation of findings with GSR as it’s
actually GM signal regression (Yan et al., 2013b). In the present
work, we found that GSR can do more than just mean-centering
data, as the specific connections surviving density thresholding
can change with the presence of GSR (regardless of whether
aggressive motion corrections, such as scrubbing, were applied)—
in turn producing drastic changes in topological parameters as
well as hub distributions (Figure 10). Our findings suggest that
one way to obtain topological properties and hub distributions
that are robust to preprocessing strategy, is to adopt a more
stringent density threshold (e.g., <6%) at which only the top con-
nections survive—as these are the same with or without GSR.
One notable caveat in this suggestion is that given our lack of
knowledge concerning the true wiring cost of the brain, strin-
gent thresholding may or may not compromise biological validity
and/or sensitivity.

The present work explored the interaction of GSR with a num-
ber of other approaches thought to remove the impact of nuisance
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FIGURE 9 | Generalizability of the current findings of head motion

dependencies. We addressed possible concerns regarding the
generalizability of our findings to other studies by computing the
topological parameters based on parcellation set (A: Dosenbach’s 160

sphere ROIs, B: Craddock’s 200 ROIs), weighted graph based on
AAL atlas (C), and Beijing dataset based on AAL atlas (D). Results
without GSR were shaded in green and with GSR were shaded in
pink.

FIGURE 10 | Impact of GSR on global topological properties (A) and

regional topological properties (B) based on Friston-24 model. In panel
(B), the regional properties were characterized by the area under the curve
(AUC) of each measure integrated within density range of 0.06–0.44. The

GSR effect was evaluated by paired t-test on these AUCs. The size of
spheres denotes the strength of difference, red spheres denote GSR
increased the property, blue spheres denote GSR decreased the property,
and green spheres denote insignificant effect (p > 0.05, |T|< 2).

signals, including motion—namely, scrubbing, partial correlation
and standardization. In the case where data is processed with-
out GSR, we found that scrubbing reduced the impact of motion
more than any of the other individual-level correction strate-
gies, though still appeared to be less effective than GSR alone
(e.g., the mean correlation between motion and small-worldness
across densities 6–44% for Friston 24 + scrubbing: r = −0.20;
while for Friston 24 + GSR: r = 0.03). Importantly, scrubbing
did not produce any of the alterations in hub ranking or other
topological parameters that were seen with GSR at higher densi-
ties. Thus, the effect of scrubbing is qualitatively different from
GSR. Furthermore, when scrubbing was combining with GSR, as
recently recommended by Power et al. (2014), the decreases in
motion-density relationships produced through GSR alone, were
less profound—suggesting a performance decrease. This may be
explained in part by the introduction of more extreme correla-
tion values through scrubbing (Figure 11). As shown in our prior

work (Yan et al., 2013a), this is to be expected, as scrubbing inher-
ently decreases the degrees of freedom, and systematic differences
can be introduced across subjects as a function of the number
of frames scrubbed. As suggested by Power et al. (2014), one can
try to balance the impact of scrubbing in group comparisons by
balancing the number of frames scrubbed between groups, but
this cannot be easily accomplished in the study of inter-individual
differences.

Under no condition was partial correlation (using graphical
lasso) able to remove motion relationships to the extent that GSR
was able to. This was surprising, as a signal present through-
out the brain due to motion should be accounted for by partial
correlation. One possibility that will be discussed in the next sec-
tion is that residual relationships with motion may reflect the
neural correlates of head motion, which would be expected to
survive correction with partial correlation. Regarding standard-
ization approaches, we found that regression of mean iFC and
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FIGURE 11 | Impact of scrubbing on correlation distribution.

Twenty-five subjects with highest motion (to allow a number of time
points being scrubbed) of the 158 subjects were selected to form the
mean distribution in the case of without GSR (A) or with GSR (B). Top:
the distribution of Fisher’s Z across region pairs were averaged across
the 25 subjects for either without scrubbing (blue) or with scrubbing

(red). Bottom: The difference in distribution between with and without
scrubbing was averaged across the 25 subjects. Scrubbing reduces the
correlation coefficients overall in the case of without GSR, i.e., left
shifting the distribution. However, in the case of with GSR, the
mean-centered distribution (GSR’s property) is widened by scrubbing, i.e.,
scrubbing increased the possibility of extreme correlation values.

mean FD at the connection and topologic parameter stages was
effective in removing the majority of relationships with motion,
but once again, not as completely as GSR. In sum, GSR appears to
possess a unique property that clearly merits future understand-
ing, even if the approach itself is not well justified for continued
use by the literature.

MOTION ARTIFACT vs. MOTION-RELATED NEURAL ACTIVITY
Our prior work raised a key concern in the interpretation of
motion-relationships with the BOLD signal and its derivatives—
namely the possibility that they may in part be driven by the
neural origins of motion, or reflect kinetic traits, rather than
being solely the product of intensity fluctuations induced by
motion (Yan et al., 2013a). In our prior work, this notion was
supported by findings that low and high motion framewise dis-
placements had differential effects on the BOLD signal. For
individuals with a high frequency of framewise displacements
greater than 0.2 mm, we found negative motion-BOLD relation-
ships in the prefrontal areas, where displacements resulting from
head motions are greatest; for individuals with particularly high
amounts of motion (e.g., children), these negative relationships
were even more widespread throughout the brain. Scrubbing
largely removed these negative relationships. In contrast, positive
motion-BOLD relationships were primarily present in motor-
related cortices (e.g., primary motor, supplementary motor) and
were relatively unaffected by scrubbing procedures—suggesting
against origins in imaging artifact. One other theme of note
arose from our analysis of relationships between differences in
motion and differences in R-fMRI metrics across participants.

In these analyses, we found that individuals with higher motion
tended to have higher scores for a number of R-fMRI measures in
motor-related cortices, and lower in default mode regions.

In the present work, we note that individuals with higher
motion appeared to be characterized by higher centrality in
dorsal parietal and dorsal frontal areas, and lower centrality
in the default network—a finding that remains after motion
correction approaches, including scrubbing. While this could
still be a reflection of problematic effects of the low degree
of motion present in the data, we find this highly unlikely.
Instead, we posit, that our findings may in fact reflect either a
trait marker of individual with higher kinetic traits, or at least
higher kinetic states during the scan session. The unique abil-
ity of GSR to remove motion relationships is interesting, as it
demotes the centrality of those regions that appear to be most
associated with motion (even in scrubbed data) and increase the
centrality of regions least associated with motion (Figure 10).
Given that the global signal is known to have neural compo-
nents (Scholvinck et al., 2010), a link may exist. Nonetheless,
future efforts may benefit from working to find novel (and
likely multimodal) ways of differentiating between image arti-
facts resulting from head motion and motion-related neural
activity.

EMERGING RECOMMENDATIONS FOR OPTIMIZING PROCESSING FOR
GRAPH THEORETICAL ANALYSIS: WHAT TO OR NOT TO DO
While a growing number of studies have begun to revisit the
challenges of motion-correction for the purposes of R-fMRI, sig-
nificant empirical and analytic work is needed before developing
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guidelines for addressing motion. Nonetheless, the present work
has yielded multiple insights to help guide researchers as follows:

• Global Signal Regression. GSR appears to be the single-most
effective approach for reducing motion-relationships—both at
the individual and group-level. Despite this seeming success,
we cannot recommend continued use of GSR without cau-
tion, as it can alter relative relationships within the connectome
graph in a way that is unexplainable at present (particularly
when weaker connections are included in the graph—i.e., when
higher density graphs are used). Neither aggressive motion-
correction (i.e., scrubbing) nor statistically accepted methods
to accounting for confounding global signals (i.e., partial cor-
relation) altered hub relationships, as GSR did.

• Individual-level Motion Correction. Consistent with prior
reports, we found that neither model-based nor volume cen-
soring approaches to motion correction are adequate for the
removal of motion-relationships completely at the individual
level.

• Group-level Motion Correction. Consistent with prior reports,
we found that group-level covariate analysis (e.g., ANCOVA) is
beneficial as a means of alleviating confounding motion effects
in the study of inter-individual or population differences in
topological parameters (Fair et al., 2012; Satterthwaite et al.,
2012; Van Dijk et al., 2012; Yan et al., 2013a). We found correc-
tion in the final stage of analysis to be more advantageous to
earlier group-level correction prior to graph construction, and
the combination of the two approaches without clear merit.

• Partial Correlation. Using partial correlation rather than full
correlation can reduce head motion effects substantially, due
to its ability to remove signals present throughout the connec-
tivity matrix. Calculation of partial correlation via graphical
lasso is an effective way of overcoming insufficient number
of degrees of freedom present in most R-fMRI time series.
However, further studies are needed to evaluate the resid-
ual motion effects, as well as neurobiological significance of
the brain graphs revealed by graphical lasso rather than full
correlation.

LIMITATIONS
Several limitations in the current work merit consideration. First,
the head motion parameters were estimated from the fMRI data
themselves, and limited to between-volume motions (i.e., motion
occurring within the period of a single scan volume cannot be
accounted for). Future studies require objective external mea-
surement of motion to obtain a true gold standard of head
motion. Second, simultaneously recorded cardiac and respira-
tory signals were not available for the dataset used in the current
study, which prevented the definitive separation of head motion
effects from physiological noise sources as well as meaningful
neural signals. Third, the current methods explored graphi-
cal lasso as a statistical method to evaluate partial correlation;
although effective and generally accepted, alternative approaches
exist (e.g., ridge and elastic net) and should be considered for
further exploration. Fourth, in order to facilitate group com-
parisons, we created two groups of participants using mean
FD (high motion vs. low motion) for our two-sample t-test

based analyses; however, mean FD is not all encompassing—
other aspect of motion attributes can vary across participants
and groups in an uncontrolled manner. Additionally, while we
controlled sex and age between the two groups, other uncon-
trolled traits (e.g., IQ, social economical status, extraverts vs.
introverts) may differ between the two groups. Future studies
may consider the creation of within-subject designs for compar-
ison of motion states, i.e., high motion vs. low motion scans for
each subject. Fifth, for the group-level mean FD correction, we
only take mean FD itself but not the interaction term (mean
FD ∗ Group) into account. If the interaction term is modeled
and significant, interpretation of findings related to the main
group effect can be difficult. In such a case, methods such as
the Johnson-Neyman procedure can be carried out to deter-
mine within which range of covariates the main group effect
is significant, and which range is not (D’Alonzo, 2004). Finally,
in our previous work on standardization (Yan et al., 2013b),
we standardized global SD beyond global mean (e.g., method
of mean regression + SD division). In the current work, SD
division for each individual had no effects on the graph construc-
tion, as it doesn’t change the relative order of connections for
a given participant. Further studies focusing on addressing the
multiplicative effects might be helpful in mitigating head motion
effects.

CONCLUSIONS
While graph theoretical measures, including local and global
topological parameters, possess significant promise for the
advancement of our quantification and understanding of inter-
individual differences in human brain function, they can be
profoundly confounded by the presence of motion if not
properly accounted for. The present work explored various
options to individual-level correction approaches, generating
a set of recommendations for future work and demonstrat-
ing the continued necessity for using ANCOVA-based cor-
rections at the group-level. A key challenge for the field
as it moves forward is to develop empirical and analytic
approaches that are capable of differentiating associations
with motion between reflective of artifact and reflective of
neural signals underlying motion in the scanner, or trait
markers.
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APPENDIX

Table A1 | Abbreviations for the regions in the AAL-atlas.

Cortical regions Abbreviations

Precental gyrus PreCG

Superior frontal gyrus, dorsolateral SFGdor

Superior frontal gyrus, orbital part ORBsup

Middle frontal gyrus MFG

Middle frontal gyrus, orbital part ORBmid

Inferior frontal gyrus, opercular part IFGoperc

Inferior frontal gyrus, triangular part IFGtriang

Inferior frontal gyrus, orbital part ORBinf

Rolandic operculum ROL

Supplementary motor area SMA

Olfactory cortex OLF

Superior frontal gyrus, medial SFGmed

Superior frontal gyrus, medial orbital ORBsupmed

Gyrus rectus REC

Insula INS

Anterior cingulate and paracingulate gyri ACG

Middle cingulate and paracingulate gyri DCG

Posterior cingulate gyrus PCG

Hippocampus HIP

Parahippocampal gyrus PHG

Amygdala AMYG

Calcarine fissure and surrounding cortex CAL

Cuneus CUN

Lingual gyrus LING

Superior occipital gyrus SOG

Middle occipital gyrus MOG

Inferior occipital gyrus IOG

Fusiform gyrus FFG

Postcentral gyrus PoCG

Superior parietal gyrus SPG

Inferior parietal, but supramarginal and angular gyri IPL

Supramarginal gyrus SMG

Angular gyrus ANG

Precuneus PCUN

Paracentral lobule PCL

Caudate nucleus CAU

Lenticular nucleus, putamen PUT

Lenticular nucleus, pallidum PAL

Thalamus THA

Heschl gyrus HES

Superior temporal gyrus STG

Temporal pole: superior temporal gyrus TPOsup

Middle temporal gyrus MTG

Temporal pole: middle temporal gyrus TPOmid

Inferior temporal gyrus ITG
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Objectives: Measurements of resting-state networks (RSNs) have been used to
investigate a wide range of diseases, such as dementia or epilepsy. This raises the
question whether this method could also serve as a pre-surgical planning tool. Generating
reliable functional connectivity patterns is of crucial importance, particularly for pre-surgical
planning, as these patterns may directly affect the outcome.

Methods: This study investigated the reproducibility of four commonly used resting-state
conditions: fixation of a black crosshair on a white screen; fixation of the center of a
black screen; eyes-closed and fixation of the words “Entspann dich!” (Engl., “relax”).
Ten healthy, right-handed male subjects (mean age, 25 years; SD 2) participated in
the experiment. The spatial overlap for different RSNs across the four conditions was
calculated.

Results: The spatial overlap across all four conditions was calculated for each seed region
on a single subject and at the group level. Activation maps at the single-subject and
group levels were highly stable, especially for the reading network (RNW). The lowest
consistency measures were found for the visual network (VIN). At the single-subject level
spatial overlap values ranged from 0.31 (VIN) to 0.45 (RNW).

Conclusion: These findings suggest that RSN measurements are a reliable tool to
assess language-related networks in clinical settings. Generally, resting-state conditions
showed comparable activation patterns, therefore no specific conditions appears to be
preferable.

Keywords: functional connectivity, resting-state network (RSN), resting-state, fMRI, default mode network,

reproducibility

INTRODUCTION
The possibility of performing functional magnetic resonance
imaging (fMRI) without stimulation, as an easy way to obtain
insight into the spatiotemporal distribution of resting-state net-
works (RSNs), has revolutionized neuroscience research. It has
been demonstrated that RSNs are organized as specific func-
tional networks across the brain, demonstrating characteristic
spatial and temporal changes independent of condition (sleep,
task performance, rest, anesthesia) or age (fetuses, preterms,
infants, adults) (see, e.g., Schöpf et al., 2012a,b). In partic-
ular, in patient groups that show a lack of task coopera-
tion, as, for example, in patients with neurodegenerative or
neuropsychiatric diseases (Auer, 2008), resting-state fMRI has
become quite popular as a method by which to gain new
insights into these diseases (Fox and Greicius, 2010). RSNs
are typically characterized by spontaneous low-frequency fluc-
tuations (<0.1 Hz) and are observed throughout the whole
brain.

In several previous studies, state-dependent differences were
observed in the functional connectivity of resting-state networks
(fcRSN) (Fransson, 2006; Newton et al., 2007; Bianciardi et al.,
2009; Yan et al., 2009; Van Dijk et al., 2010). Some of these
studies (Yan et al., 2009; Van Dijk et al., 2010) compared the
differences between frequently presented resting-state conditions:
eyes-open with fixation; eyes-open without fixation; and eyes-
closed. Independent of the resting-state condition, subjects or
patients are usually instructed to relax, not to think of any-
thing in particular, and not to fall asleep during the scanning
session. These studies have shown that the eyes-open condi-
tions evoked higher functional connectivity of the default mode
network (DMN) than the eyes-closed condition. Apart from
lower-vigilance states, such as mind wandering, day dreaming, or
musing about the recent past (Mason et al., 2007; Buckner et al.,
2008), the DMN is associated with monitoring the functions of
sensory input (Gilbert et al., 2007; Hahn et al., 2007). Therefore,
activities within the DMN seem to be attenuated when the eyes
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are closed. However, Fox et al. (2005) found no differences in
the DMN between resting-state conditions for the eyes-closed
condition, the eyes-open without fixation in low-level illumina-
tion condition, and the eyes-open condition with fixation of a
crosshair.

A recently published study on the interpretation of deacti-
vations in neuroimaging studies (Hayes and Huxtable, 2012)
suggested resting-state fMRI measurements before and after task-
or stimulus-related fMRI experiments would enable better inter-
pretation of activity in the task itself. In this context, the stability
of RSN patterns, independent of the resting-state condition, is of
major importance.

The variations in the results of fcRSN measurements raise
questions concerning the reproducibility, accuracy, and speci-
ficity of resting-state fMRI not only for basic neuroscience
research. Resting-state connectivity measures are also proposed
as a promising practical tool in a wide range of clinical appli-
cations, especially for pre-surgical planning (e.g., epilepsy) (see,
e.g., Lui et al., 2008; Bettus et al., 2009). Hence, generating
reliable functional connectivity measurements is of particular
importance. The reproducibility of functional connectivity mea-
surements within one subject and across subjects has been dis-
cussed critically. A recent study (Chou et al., 2012) obtained
high reproducibility within one subject, but substantial varia-
tion in fcRSNs between subjects. However, other investigations
found a high degree of reproducibility for functional connec-
tivity in the DMN (Meindl et al., 2010) and in the motor
network (Amann et al., 2009) across subjects, as well as a sig-
nificant correspondence between different statistical methods
(Rosazza et al., 2012). In most clinical resting-state studies,
factors like differences in disease duration, incidence of pre-
cipitating factors, cognitive dysfunction, and surgical outcome,
are considered, but the rest-task itself and how patients were
instructed to perform in the resting-state has been given less
attention.

In this study, we investigated the reproducibility of RSNs
in a homogenous group of 10 healthy subjects, who under-
went four different resting-state sessions, while factors that could
potentially influence reproducibility were held constant. These
four resting-state conditions have been commonly used in pre-
vious studies: (1) crosshair (rest_cross): participants had to fix-
ate on a black crosshair on a white screen; (2) black screen
(rest_black): subjects were instructed to focus on the center
of a black screen; (3) eyes-closed (rest_eyes_closed): partici-
pants had to rest with their eyes-closed; and finally (4) sub-
jects were asked to fixate on the presented words “Entspann
dich!” (Engl., “relax”) written in black letters on a white screen
(rest_relax).

The prospective use of resting-state fMRI measures in a clinical
set-up for the purpose of enabling pre-surgical planning, it is of
crucial importance that the designs generate a stable and reliable
signal. As fMRI reproducibility characteristics can be strongly
dependent on the chosen paradigm designs (Bennett and Miller,
2010), it is important to formally examine reproducibility mea-
sures for specific conditions. Therefore, we analyzed differences
in functional connectivity patterns induced by the four resting-
state conditions (1–4) in distinct networks: the DMN; the visual

network (VIN); the sensorimotor network (SMN); the reading
network (RNW); and the auditory network (AUD).

MATERIALS AND METHODS
SUBJECTS
Ten healthy, right-handed male subjects (mean age, 25 years;
SD 2) were included in the study. All participants had normal or
corrected-to-normal vision. All subjects were informed about the
aim of the study and gave their written, informed consent prior
to inclusion. The study was approved by the Ethics Committee
of the Medical University of Vienna. Measurements were per-
formed at approximately the same time of the day, between 5:00
and 9:00 p.m.

IMAGING METHODS
Measurements were performed on a 3 Tesla TIM Trio system
(Siemens Medical Solution, Erlangen, Germany) using single-
shot gradient-recalled echo-planar imaging (EPI). Twenty slices
(1 mm gap, 4 mm thickness) with an FOV of 210 × 210 mm and
TE/TR 42/2000 ms were acquired. Slices were aligned with the
connection line between the anterior and posterior commissure.
Each subject underwent four resting-state conditions, each last-
ing for 5 min. The light in the scanning room was turned off
throughout the whole measurement period.

RESTING-STATE CONDITIONS
Across all four conditions, participants were instructed not to
think of anything in particular and not to fall asleep.

(1) Rest_cross: subjects were visually presented with a black
crosshair on a white background image using an MR-
compatible visual stimulation system (NordicNeuroLab,
Bergen, NO) and were instructed to focus on the crosshair
at all times.

(2) Rest_black: subjects were visually presented with a blank,
black screen and instructed to focus on the center.

(3) Rest_closed: subjects were instructed to keep their eyes-
closed during the whole run and visual presentation was
turned off.

(4) Rest_relax: subjects were visually presented with the words
“Entspann dich!” (Engl., “relax”) in black letters centered on
a white screen and instructed to focus on the words.

Eye movement and fixation of the target were monitored using
an MR-compatible eye tracker (ViewPoint EyeTracker, Arrington
Research, Scottsdale, AZ) at all times. The order of the runs was
identical for all subjects.

DATA ANALYSIS
Image preprocessing for all four runs was performed sepa-
rately with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/), including
slice-timing and motion correction, normalization to an MNI
template, and smoothing. Correlation maps were generated by
computing the cross-correlation coefficient on a single-voxel
basis for different regions of interest (ROIs; see Figure 1). Seed
regions were chosen according to previously published literature
and specified on the standard brain using the WFU PickAtlas
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FIGURE 1 | Seed regions (red areas) for all investigated networks. (A) Precuneus (DMN); (B) primary visual cortex (BA17; VIN); (C) right primary motor
cortex (BA 4; SMN); (D) left reading areas (RNW); and (E) left auditory cortex (BA 41, BA 42; AUD).

(Maldjian et al., 2003, 2004) and processed using MarsBaR v0.43
(Brett et al., 2002). Chosen seed regions comprised the pre-
cuneus (DMN see, e.g., Cole et al., 2010), the right primary
visual cortex (BA17; VIN see, e.g., Bianciardi et al., 2009), the
right primary motor cortex (BA 4; SMN see, e.g., Biswal et al.,
1995), the left reading areas (BA 22, BA 44, BA 45; RNW see,
e.g., Koyama et al., 2010), and the left auditory cortex (BA 41,
BA 42; AUD see, e.g., Cordes et al., 2000). Correlation maps
were converted to z-values using Fisher’s r-to-z transformation, as
implemented in Matlab (Matlab 7.8.0, Release 2009 Mathworks
Inc., Sherborn, MA, USA) to enable parametric statistical com-
parison. Only positive correlations were mapped for this investi-
gation. Single-subject analysis for all four conditions (rest_cross,
rest_black, rest_eyes_closed, rest_relax) was conducted for all
seed regions. A within-subject ANOVA factoring the four con-
ditions was performed separately for all seed regions, followed
by T-contrasts to compare all conditions in pairs. All result-
ing statistical parametric maps were thresholded at p < 0.001
(uncorrected) using a cluster extent threshold of 10 contiguous
voxels.

As a measure of consistency of the spatial patterns, an over-
lap of activation maps for all four conditions was calculated at
the single-subject level and group level [see Equation (1)]. For
comparison of consistency across all four conditions and across
all possible combinations of three conditions, an overlap was
calculated at the single-subject and at the group level.

The spatial overlap for each condition and each seed voxel
(Rombouts et al., 1997, 1998) was calculated by

ROVERLAP(i) = n × AOVERLAP(i)∑
j Aj(i)

(1)

where i represents the different seed regions, j the different
resting-state conditions, n the number of conditions, Aj(i) the
quantity of activated voxels for seed region i in condition j, and
AOVERLAP(i) the quantity of identical supra-threshold voxels for
all conditions for seed region i. AOVERLAP is a measure to describe
the quantity of voxels that are activated across all conditions.
ROVERLAP ranges from 0 (no spatial overlap) to 1 (exact overlap)
and can be expressed as a percentage. This measure represents the
consistency of the spatial extent of the functional connectivity,

independent from the way, resting-state was induced. The appli-
cation of this whole brain consistency measure was motivated by
the fact that we did not want to restrict our measurements to
a predefined ROI (e.g., Raemaekers et al., 2007; Caceres et al.,
2009).

RESULTS
After successfully completing all four fMRI runs, subjects were
asked which of the four resting-state conditions created the great-
est state of relaxation. The majority of subjects (6/10) rated
rest_relax, the last condition, to be the easiest condition in
which to stay relaxed during the scan. Three subjects declared
the rest_eyes_closed condition, and one subject the rest_cross
condition, to induce the greatest state of relaxation.

A complete description and visualization of all contrasts, con-
ditions, and seed regions can be found in Figure A1 and Table A1
(both in Appendix). Results of the calculated linear T-contrast
uncovered significant differences within network-specific areas
for most comparisons across all resting-state conditions and all
networks analyzed.

SINGLE-SUBJECT ANALYSIS
Results revealed a high consistency for all investigated RSN across
the four conditions within one subject, but considerable differ-
ences between subjects (see Figure 2). Spatial overlaps of any two
conditions within one subject ranged from 0.58 to 0.66 (exem-
plarily calculated for subject 3 for the DMN; for visualization see
Figure 2), whereas overlaps of one condition between two sub-
jects ranged from 0.39 to 0.57 (exemplarily calculated for subject
2 and 3 for the DMN; for visualization see Figure 2). The high-
est overlap across all conditions was found for the RNW (0.45),
and the lowest overlap was seen in the VIN (0.31; see Table 1 and
Figure 3). Results further revealed that all overlaps calculated for
any combination of three conditions led to comparable spatial
overlap.

GROUP ANALYSIS
Although group activation maps showed high consistency across
all four conditions, significant variations were found in all
investigated networks. For the DMN, these differences involved
the precuneus, the medial temporal and frontal gyrus, the
pre- and postcentral gyrus, the inferior parietal gyrus, and the
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FIGURE 2 | Comparison of the DMN based on two single-subject

activation maps for all four conditions. (A/G): black screen (rest_black),
(B/H): fixation of a crosshair (rest_cross), (C/I): fixation of the words
“Entspann dich!” (Engl. “relax”) and (D/J): eyes-closed (rest_eyes_closed).
Results revealed a substantial consistency across all four conditions (F/L) in

one subject (spatial overlaps of any two conditions ranging from 0.58 to 0.66
in subject 3), but considerable differences of activation maps between two
subjects for the same condition (spatial overlaps ranging from 0.39 to 0.57).
However, a significant increase of overlap was found excluding the
eyes-closed condition (E/K).

Table 1 | Mean overlap at the single-subject level for all four conditions compared to the overlap of any possible combination of three

conditions.

Overlap DMN VIN AUD SMN RNW

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

All four conditions 0.39 (0.10) 0.31 (0.09) 0.37 (0.07) 0.40 (0.11) 0.45 (0.11)

Without rest_cross 0.48 (0.07) 0.37 (0.10) 0.48 (0.09) 0.50 (0.10) 0.54 (0.10)

Without rest_black 0.48 (0.12) 0.38 (0.11) 0.46 (0.11) 0.48 (0.11) 0.56 (0.10)

Without rest_eyes_closed 0.46 (0.09) 0.40 (0.09) 0.44 (0.08) 0.45 (0.10) 0.51 (0.10)

Without rest_relax 0.47 (0.10) 0.40 (0.09) 0.44 (0.10) 0.46 (0.13) 0.54 (0.13)

paracentral lobule. Significant changes in the network-specific
areas were obtained in the calcarine gyrus, the fusiform gyrus, the
lingual gyrus, and the superior and medial occipital cortex. The
rest_cross condition resulted in the highest functional connectiv-
ity in the right precuneus, whereas, in the resting-state condition,
rest_relax functional connectivity in the precuneus was found on

left side. The least precuneus functional connectivity was induced
by the rest_black condition.

Significant differences in the VIN have been found across
the four resting-state conditions in the calcarine gyrus, the
fusiform gyrus, the lingual gyrus, and the superior occipi-
tal cortex. All of these brain areas are associated with the
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FIGURE 3 | Boxplot of overlap across all four conditions at the

single-subject level.

Table 2 | Overlap at the group level for all four conditions compared

to the overlap of any possible combination of three conditions.

Overlap DMN VIN AUD SMN RNW

All four conditions 0.71 0.41 0.55 0.70 0.82

Without rest_cross 0.75 0.51 0.68 0.72 0.84

Without rest_black 0.79 0.43 0.70 0.77 0.84

Without rest_eyes_closed 0.76 0.41 0.54 0.75 0.87

Without rest_relax 0.74 0.62 0.54 0.73 0.86

VIN. The rest_cross condition, compared to all other condi-
tions (rest_black, rest_eyes_closed, rest_relax), induced the high-
est functional connectivity in the left lingual gyrus and the
right fusiform gyrus. The rest_eyes_closed condition evoked
less functional connectivity in the superior occipital cortex.
Significant differences within the SMN involved areas such as
the precentral gyrus, the supplementary motor area (SMA), and
the postcentral gyrus. A decreased functional connectivity in the
left postcentral gyrus was found in the rest_black condition. For
the RNW, differences were found in the left medial temporal
gyrus and the left superior temporal gyrus. Results revealed sig-
nificant differences in the AUD for the superior temporal gyrus,
the insular cortex, the postcentral gyrus, and the supramarginal
gyrus.

The spatial consistency analysis of the group maps across
resting-state conditions revealed substantial overlap in supra-
threshold voxels (p < 0.001, FWE corrected) for all ROIs (see
Table 2).

The spatial overlap of any possible combination of three con-
ditions was calculated for detecting one specific condition that
induces most variability. The results show that all overlaps of three

conditions revealed comparable overlaps, leading to the conclu-
sion that no specific conditions appears to be preferable at group
level. Therefore, no specific conditions appears to induce more
variance in general.

DISCUSSION
fMRI is a validated and frequently used tool in pre-surgical plan-
ning for the mapping of language or motor areas (Roessler et al.,
2005). Difficulties with this method may arise when patients
have restricted motor or language abilities, as active participation
is necessary in most fMRI paradigms. In contrast, resting-state
fMRI is a method that does not require active task performance.
Therefore, it is a promising tool to overcome the challenge of
active participation in clinical practice. RSN measurements have
experimentally been used in pre-surgical planning (Böttger et al.,
2011). To date, initial experience has been gained by compar-
ing fcRSN with functional connectivity patterns generated by
a finger tapping paradigm (Zhang et al., 2009). The results of
that study revealed high consistency of fcRSN patterns com-
pared to task-based mapping of functional connectivity patterns.
Less attention has been given to the impact of the resting-state
condition.

In this study, we were able to demonstrate stable networks
across different resting-state conditions. An analysis of the robust-
ness of the group-mean response was performed for all resting-
state conditions. Differences across the four conditions occurred
in all networks investigated. However, we found that the group-
level activation maps were highly stable across conditions. As
previous studies have shown considerable between-subject vari-
ations (Chou et al., 2012), the analysis of consistency across the
conditions was also calculated on a single-subject level. We were
able to replicate these findings as single-subject overlaps for all
four conditions differed across subjects within a range from 0.14
to 0.65. According to Gorgolewski et al. (2013), a reliable task may
be characterized by a significantly higher within- than between-
subject overlap. Results of our study revealed higher overlaps
across different conditions within one subject (overlaps of any
two conditions ranging from 0.58 to 0.66) than overlaps for two
different subjects for the same conditions (overlaps ranging from
0.39 to 0.57).

Motion related artifacts are one of the most challenging prob-
lems in fMRI used for pre-surgical planning (Bullmore et al.,
1999; Seto et al., 2001) and at very high field, as parallel imag-
ing reconstruction artifacts, eddy currents and B0 changes due
to motion increase (Beisteiner et al., 2011; Robinson et al.,
in revision). Known problems are head motion in slice selecting
direction during one TR causing spin history effects and between
image volumes causing signal changes near the ventricles and at
the edge of the brain (Friston et al., 1996). Head motion arti-
facts are particularly severe in patient studies. Gorgolewski et al.
(2013) reported stimulus related motion to be the confound-
ing factor in explaining reliability between sessions. Therefore,
resting-state fMRI could serve as a supplementary technique in
pre-surgical planning not presenting with stimulus correlated
motion artifacts.

In addition to the DMN, we extended our analysis to other
networks, such as the VIN, the SMN, the AUD, and the RNW.
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These networks are of increasing importance in clinical and pre-
surgical mapping studies. Thus, our results may be highly relevant
for the planning and task specification of future clinical RSN
trials.

The results of our single-subject analysis revealed a stable
reproducibility for all investigated networks on a single-subject
level, but considerable differences between subjects. These find-
ings are in line with the results of Chou et al. (2012), who obtained
high reliability of the DMN within one subject, but substantial
variations across different subjects by calculating intraclass cor-
relation coefficients (ICC) and coefficients of variance (COV).
The highest overlap across all four conditions was found in the
RNW (0.45), and the lowest overlap in the VIN (0.31). The
poorer overlap in the VIN might have been the result of dif-
ferent visual input. Therefore, a spatial overlap was calculated
for any possible combination of three conditions to evaluate if
any condition significantly decreases variability. Exclusion of any
condition led to a significant increase in spatial overlap, but no
difference between any combinations of three conditions could be
found. Therefore, no specific resting-state condition appears to be
preferable.

A detailed discussion of our data in relation to the pub-
lished literature is only possible on the topic of the DMN, as
the other networks were not part of extensive investigations
concerning differences across resting-state conditions. In the fol-
lowing paragraphs, all investigated networks will be discussed in
detail.

DEFAULT MODE NETWORK (DMN)
The DMN includes parts of the medial temporal lobe, the medial
prefrontal cortex, the posterior cingulated cortex, the precuneus,
and the medial, lateral, and inferior parietal cortex (Buckner et al.,
2008).

In this study, we found that all four resting-state condi-
tions induced differences in functional connectivity networks
within areas that are typically part of the DMN. Yan et al.
(Yan et al., 2009) found differences among the three resting-
state conditions of eyes-closed, eyes-open, and eyes-open with
fixation. The eyes-closed condition evoked less functional con-
nectivity, assuming that more evaluation of sensory informa-
tion is needed with opened eyes, and therefore, an increased
functional connectivity was found for the DMN. However,
in our study, we even found differences between the three
resting-state conditions with opened eyes. This variability in
fcRSN activation patterns might be explained by distinc-
tive eye movements across the four resting-state conditions
(Morisita and Yagi, 2001).

For the DMN, we found a stable overlap of ROVERLAP = 0.71
across all conditions at a group level, representing a consistent
spatial extent of functional connectivity independent of resting-
state condition.

VISUAL NETWORK (VIN)
The VIN can be characterized by areas typically involved in pro-
cessing visual stimuli, such as the mesial visual areas (e.g., striate
cortex, lingual gyrus) and lateral visual areas, such as the occipi-
tal pole and the occipito-temporal regions (Rosazza and Minati,

2011). The eyes_closed condition induced less functional connec-
tivity in the superior occipital cortex, which might be explained
by the lack of visual input. These findings are in line with a study
by Yang et al. (Yang et al., 2007).

The poorest overlap across the four conditions was found for
the VIN. This finding could be elucidated by the use of dif-
ferent visually induced fcRSN conditions, which influence the
functional connectivity patterns of the VIN.

SENSORIMOTOR NETWORK (SMN)
In the first report of a RSN (Biswal et al., 1995), spontaneous
BOLD fluctuations were found in the sensorimotor cortex, the
SMA, and in premotor areas during rest. In this investigation, sig-
nificant differences across the four resting-state conditions were
found in all areas representing the SMN. The finding of decreased
functional connectivity in the rest_black condition is in line with
a study by McAvoy et al. (2008), which reported a dissimilarity in
networks induced by the conditions eyes-open and eyes-closed,
where the first may reflect greater neuronal activity than the latter.

With an overlap of 70% across all four conditions, the SMN
was found to be very robust. This high spatial reproducibil-
ity makes the SMN an interesting candidate for pre-surgical
planning, e.g., to evaluate motor-related areas in patients with
restricted motor abilities.

READING NETWORK (RNW)
Language-related areas are commonly examined for pre-surgical
planning, using fMRI activation patterns during verb generation
tasks, see for example (Holland et al., 2001; Eaton et al., 2008;
Szaflarski et al., 2008; Tillema et al., 2008; Karunanayaka et al.,
2010). Individual definition of language- and motor-related areas
is of high importance, as it is widely accepted that there are no
typical language or motor “centers.” These functions are rather
spread across wide cortical and subcortical networks. As patients
with brain tumors or epilepsy often show restricted function-
ing, resting-state fMRI may act as an outstanding method for
pre-surgical planning.

The highest consistency across all four resting-state condi-
tions was obtained for the RNW. With an overlap of 0.82 at
the group level, the spontaneous fluctuations across all condi-
tions was extremely stable, hence fcRSN measurements seem to
be an appropriate tool for the assessment of a language network in
group studies. For any 3-fold combination a minimal spatial over-
lap of 0.84 was found ranging from 0.84 (excluding the condition
rest_cross) to 0.87 (excluding the condition rest_eyes_closed).
Thus, all four resting-state conditions examined in this study
appear to show robust and reliable functional connectivity
in the RNW and are thus appropriate for investigations of
the RNW.

AUDITORY NETWORK (AUD)
The AUD involves the superior temporal gyrus, Heschl’s gyrus,
the insula, and the postcentral gyrus. The primary auditory cortex
is known to interact with the angular gyrus, the supramarginal
gyrus, Broca’s area, and Wernicke’s area.

Our results indicate that, among all conditions,
rest_eyes_closed and rest_relax evoked the most differences
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concerning functional connectivity networks compared to the
other conditions. With an overlap of ROVERLAP = 0.54 in the
AUD, the four resting-state conditions induced larger variability
compared to the other networks, except the VIN. Yet, the
underlying source of this moderate overlap remains unclear.

RATING OF RELAXATION
The majority of subjects rated the condition, rest_relax, as most
relaxing. In this rest-task, however, less precuneus activation was
found in the DMN. DMN activity is generally characterized by the
absence of an active task. Without focusing attention on a task,
thoughts tend to wander, participants imagine future events, or
think about the recent past. In fact, participants perform an active
task in the resting-state condition, rest_relax, by focusing their
attention on relaxation. Subjects felt more relaxed, but mind wan-
dering and daydreaming tendencies decreased, as the functional
connectivity of the DMN is decreased compared to rest_cross or
rest_black.

APPLICATION TO CLINICAL PRACTICE
Resting-state measurements are not only of interest for basic
neuroscience research. These measurements have recently been
shown to allow promising insights in the epileptic brain in clinical
practice (e.g., Lui et al., 2008; Negishi et al., 2011; Morgan et al.,
2012).

The results of a study by Lui et al. (2008) revealed a difference
in the interictal activity of the precuneus in epilepsy patients with
generalized rather than partial seizures, suggesting that the lack
of precuneus activation in patients with generalized seizures may
contribute to the more severe interictal deficits in cognitive func-
tions. Morgan et al. (2012) also identified resting-state fMRI as a
supporting tool for pre-surgical assessment.

According to Negishi et al. (2011), RSN measurements are also
an appropriate technique to predict surgical outcome in epilepsy
patients. A common treatment method for intractable epilepsy
is surgery, which can considerably improve epileptic symptoms.
However, surgical therapy is not risk-free, and postsurgical com-
plications can lead to cognitive dysfunction. Therefore, it is neces-
sary to assess the possible benefit of surgical treatment. A recently
published investigation by Negishi et al. (2011) showed that pre-
operative measurements of RSNs may serve as a predictor of
surgical outcome, as patients with recurrent seizures after surgery
differed in their functional connectivity compared to seizure-free
patients.

Seed-based resting-state fMRI must be discussed critically in
clinical practice, as mapping of a seed region may cause complica-
tions. In pathologically altered brains, an activated region may be
located differently, therefore additional variance, based on differ-
ent locations of the seed regions, must be recognized. Moreover,
the performance of seed-based resting-state fMRI is impossible if
the seed region is occupied by a tumor or a lesion.

Alterations of RSN connectivity, especially in the DMN, have
been shown in neurological and neurodegenerative disorders,
such as Alzheimer’s disease (Auer, 2008). Initial changes can be
observed even in the preclinical stages. For a reliable interpre-
tation of the results, especially in a clinical setting, the stability
of generated networks is of crucial importance, and the way the

resting-state is induced should be considered. Generally, resting-
state conditions with eyes-opened are preferable, as they usually
evoke higher functional connectivity. According to our findings,
patients who undergo fMRI for investigation of speech- and
reading-related areas may also be investigated with eyes-closed
conditions, considering patient comfort due to disease-related
impairments. For examination of the DMN, resting-state con-
ditions in which subjects or patients are instructed to relax by
visual presentation of a word or a sentence (e.g., “relax”) should
be avoided because of the lowered activity levels in the precuneus.
Study protocols for fMRI resting-state measurements should be
clearly defined for reliability of functional connectivity patterns
and to complete information in reports. In pre-surgical plan-
ning, motion artifacts may cause considerable difficulties, as head
motion artifacts are particularly severe in patients. Gorgolewski
et al. (2013) identified motion as the main confounding fac-
tor in task-based fMRI. Therefore, resting-state fMRI may be a
useful tool to overcome stimulus correlated motion-artifacts in
pre-surgical planning.

LIMITATIONS
A possible limitation of this study is the identical sequence of
resting-state conditions, i.e., there was no randomization of the
different conditions across subjects. However, it is known from
several studies using the Stroop test that reading is an automatic
process (see, e.g., MacLeod, 1991), which does not require the
subjects’ focused attention. Therefore, to prevent possible influ-
ence and carry-over effects induced by the rest_relax condition
on the resting-state conditions, the run order was kept identical
for all subjects.

Another limitation is eye movements, which have been sug-
gested to possibly influence activity patterns according to Ramot
et al. (2011). However, an eye-tracking device in this study was
used only to verify that the subject obeyed the instructions and
had his/her eyes-opened or closed. Thus, we did not record eye
movements or blinking during the scanning session. Such data
should be collected in further investigations to determine the
exact influence of eye movements on RSNs.

CONCLUSION
We were able to show that the degree of network pattern mod-
ulation induced by resting-state conditions varied across the
investigated networks. The most consistent results were obtained
for the RNW. Our results indicate that RSN patterns were not
affected by the resting-state conditions within one subject but a
considerable difference of overlap across subjects was obtained.
Furthermore, we were able to show that fcRSN were highly stable
at the group level, especially for the language-related network. As
the overlap is comparable in any combination of three conditions,
no specific condition seems to be preferable at single-subject or at
group level.
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APPENDIX

FIGURE A1 | Axial mean anatomical images overlaid by brain activation resulting from contrasts for all conditions and networks (p < 0.001

uncorrected for whole-brain volume analysis).
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Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research
and clinical practice in in-vivo studies of the human brain. While a number of
post-processing packages have been developed, fully automated processing of dMRI
datasets remains challenging. Here, we developed a MATLAB toolbox named “Pipeline
for Analyzing braiN Diffusion imAges” (PANDA) for fully automated processing of brain
diffusion images. The processing modules of a few established packages, including
FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion
Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets
from different subjects, in either DICOM or NIfTI format, PANDA can automatically
perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional
anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the
voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish
the construction of anatomical brain networks for all subjects. In particular, PANDA can
process different subjects in parallel, using multiple cores either in a single computer or
in a distributed computing environment, thus greatly reducing the time cost when dealing
with a large number of datasets. In addition, PANDA has a friendly graphical user interface
(GUI), allowing the user to be interactive and to adjust the input/output settings, as well as
the processing parameters. As an open-source package, PANDA is freely available at http://
www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the
image processing of dMRI datasets and facilitate human structural connectome studies.

Keywords: PANDA, diffusion MRI, DTI, pipeline, diffusion metrics, structural connectivity, network, connectome

INTRODUCTION
Diffusion magnetic resonance imaging (dMRI) has become one
of the most popular MRI techniques for brain research. dMRI can
be used to quantify white matter (WM) property and to virtually
reconstruct WM pathways in the living brain (Le Bihan, 2003).
Given its unique merits, dMRI has been extensively applied to the
study of WM connectivity in both normal and abnormal condi-
tions, leading to a substantial enhancement in our understanding
of the role of WM, particularly in brain diseases (Johansen-Berg
and Rushworth, 2009).

One popular application of dMRI is to extract various diffu-
sion metrics [e.g., fractional anisotropy (FA) and mean diffusivity
(MD)] that putatively reflect WM integrity (Basser and Pierpaoli,
1996; Pierpaoli and Basser, 1996; Beaulieu, 2002). These metrics
can be further applied to identify differences in WM integrity
across subjects. To perform this type of analysis, multiple sequen-
tial image-processing steps (e.g., eddy-current correction, tensor
calculation, metric calculation, and normalization) are required.
Currently, a number of packages, such as FMRIB Software Library
(FSL) (Smith et al., 2004) and DTI-Studio (Jiang et al., 2006),
provide a set of functions that can carry out these jobs. However,
these packages typically perform the processing step-by-step and
subject-by-subject. Obviously, this processing pattern is ineffi-
cient, as users have to wait until the preceding steps or until
each subject is completely finished before initiating the next step

or subject. In addition, this pattern requires a large amount of
manual operation, which potentially increases the possibility of
processing errors caused by manual mistakes. To date, a tool-
box supporting fully automated processing of raw dMRI datasets
to diffusion metrics that are ready for statistical analysis is still
lacking.

Another popular application of dMRI is to virtually recon-
struct WM tracts, referred to as diffusion tractography (Mori
et al., 1999; Behrens et al., 2007). Previous studies using dif-
fusion tractography mainly focus on a few specific WM tracts.
Recently, accurately constructed entire brain anatomical networks
(i.e., the connectome) based on diffusion tractography have
attracted a lot of attention (Behrens and Sporns, 2012) and are
the key target of the ongoing human connectome project (http://
humanconnectome.org/). While the framework for constructing
anatomical networks of the human brain (i.e., definition of net-
work nodes and edges) has been established (Hagmann et al.,
2008; Gong et al., 2009a,b), it is mainly implemented in-house.
The community is in urgent need of a fully automated public
tool that can construct anatomical brain networks using dMRI
datasets.

Currently, there have been a few packages such as MIPAV
(McAuliffe et al., 2001), JIST (Lucas et al., 2010), Nipype
(Gorgolewski et al., 2011), and LONI (Dinov et al., 2009), which
aim to facilitate automated processing of neuroimaging dataset.
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Essentially, these packages provide environments for constructing
analysis workflows with a number of pre-included processing
modules from existing tools (e.g., Camino, FSL, AFNI, FreeSurfer,
and SPM), and therefore various automated processing pipelines
(e.g., a dMRI processing pipeline) can be developed within
these environments. In order to construct pipelines with these
packages, users need to choose processing modules and define
dependencies and parameters themselves. It is noted that, if
particular processing modules are not encapsulated [e.g., JIST
does not include Tract-Based Spatial Statistics (TBSS) analysis],
users have to develop their own modules and further incor-
porate them into the environment. While these powerful and
sophisticated packages make it possible to generate a dMRI
processing pipeline, they are favored by developers, and not
end users without programming skills. A ready-for-use pipeline
tool for dMRI processing is highly desired, particularly for end
users.

Here, we present a MATLAB toolbox named PANDA (a
Pipeline for Analyzing braiN Diffusion imAges) for a com-
prehensive pipeline processing of dMRI dataset, aiming to
facilitate image processing for the across-subject analysis of
diffusion metrics and brain network constructions. Of note,
the processing pipelines in this toolbox have been com-
pletely set up, allowing the end-users of dMRI to process the
data immediately. Moreover, the processing procedures within
this pipeline were carefully designed to follow the recom-
mended practice as possible (Jones et al., 2012). After the
user sets the input/output and processing parameters through
the friendly graphical user interface (GUI), PANDA fully auto-
mates all processing steps for datasets of any number of sub-
jects, and results in data pertaining to many diffusion metrics
that are ready for statistical analysis at three levels (Voxel-
level, ROI-level, and TBSS-level). Additionally, anatomical brain
networks can be automatically generated using either deter-
ministic or probabilistic tractography techniques. Particularly,
PANDA can run processing jobs in parallel with multiple
cores either in a single computer or within a distributed com-
puting environment using a Sun Grid Engine (SGE) system,
thus allowing for maximum usage of the available computing
resources.

To assess the usability and validity of PANDA, we apply
PANDA to study the age effect (i.e., old vs. young) on the dif-
fusion metrics of WM as well as the topological properties of
the WM network. According to previous findings, decreased WM
anisotropy and weakened network efficiency are expected in old
individuals.

MATERIALS AND METHODS
PANDA was developed by using MATLAB under an Ubuntu
Operating System. A number of processing functions from
FSL (Smith et al., 2004), Pipeline System for Octave and
Matlab (PSOM) (Bellec et al., 2012), Diffusion Toolkit (Wang
et al., 2007), and MRIcron (http://www.mccauslandcenter.
sc.edu/mricro/mricron/) were called by PANDA. Here,
we will describe the procedures of pipeline processing in
PANDA, followed by an introduction to the realization of
pipelines.

PANDA PROCESSING PROCEDURES
The main procedure of PANDA is shown in Figure 1 and includes
three steps: (1) preprocessing; (2) producing diffusion metrics
(ready for statistical analysis); and (3) constructing networks.

Preprocessing
Converting DICOM files into NIfTI images. The input files of
PANDA can be in either DICOM or NIfTI format. If the input
files are in NIfTI format, this conversion step will be skipped.
Otherwise, DICOM files will be converted into NIfTI format
during this step. The dcm2nii tool embedded in MRIcron accom-
plished this task.

Estimating the brain mask. This step yields the brain mask by
using the bet command of FSL (Smith, 2002). The brain mask is
required for the subsequent processing steps. Here, the b0 image
without diffusion weighting was used for the estimation.

Cropping the raw images. To reduce the memory cost and speed
up the processing in subsequent steps we cut off the non-brain
space in the raw images, leading to a reduced image size. The
acquired brain mask was used to determine the borders of the
brain along the three dimensions. The fslroi command of FSL was
then applied to remove the non-brain spaces.

Correcting for the eddy-current effect. Eddy-current induced
distortion of diffusion weighted images (DWI), as well as sim-
ple head-motion during scanning, can be corrected by registering
the DW images to the b0 image with an affine transformation.
To achieve this, the flirt command of FSL was used. Notably, this
registering procedure was applied to all images, with the b0 image
of first acquisition used as the target if multiple DWI acquisitions
were scanned. It is worth mentioning that while the eddy_correct
command of FSL is not called here, the result of this step is exactly
the same as the output of eddy_correct. Basically, PANDA just
splits the 4D file (the input file of eddy_correct) into a number
of 3D files and then performed the affine-registration exactly like
eddy_correct. The purpose of this implementation is to avoid the
large memory demand when the 4D file size is huge. Finally, the
gradient direction of each DWI volume was rotated according to
the resultant affine transformations (Leemans and Jones, 2009).

Averaging multiple acquisitions. This step will be skipped if
there is only one DWI acquisition. Otherwise, after eddy-current
correction, the aligned multiple DWI was averaged by calling the
fslmaths command of FSL.

Calculating diffusion tensor (DT) metrics. This step involves a
voxel-wise calculation of the tensor matrix and the DT metrics,
including FA, MD, axial diffusivity (AD), and radial diffusivity
(RD) (Pierpaoli and Basser, 1996; Song et al., 2002). The dtifit
command of FSL was applied.

Producing diffusion metrics that are ready for statistical analysis
Normalizing. To allow for comparison across subjects, location
correspondence has to be established. To end this, registra-
tion of all the individual images to a standardized template is
always applied. Here, PANDA non-linearly registered individual
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FIGURE 1 | Main procedure for pipeline processing of dMRI datasets in PANDA. The procedure includes three parts: (1) preprocessing; (2) producing
diffusion metrics that are ready for statistical analysis; and (3) constructing networks.

FA images of native space to the FA template in the MNI space by
calling the fnirt command of FSL. The resultant warping transfor-
mations were then used to resample the images of the diffusion
metrics (i.e., FA, MD, AD, and RD) into the MNI space with
a customized spatial resolution (e.g., 1 × 1 × 1 mm or 2 × 2 ×
2 mm). This resampling step was implemented by the applywarp
command of FSL.

Output for voxel-based analysis. The resultant images of the dif-
fusion metrics in the standard space are ready for voxel-based
statistical analysis. However, in the framework of voxel-based
analysis, these images are typically smoothed to some degree,
which can reduce the effect of image noise and misalignment
between subjects. Accordingly, PANDA smoothed the images with

a given Gaussian kernel, which was realized by calling the fslmaths
command of FSL. The smoothed diffusion metric images can
then be directly used for voxel-based statistical analysis with any
preferred tools, e.g., FSL (http://www.fmrib.ox.ac.uk/fsl/), SPM
(http://www.fil.ion.ucl.ac.uk/spm/), or AFNI (http://afni.nimh.

nih.gov/afni/).

Output for atlas-based analysis. In addition to the popular
voxel-based method of analysis, diffusion metrics can be ana-
lyzed at the level of region of interests (ROI), which may provide
better statistical sensitivity in some cases (Faria et al., 2010).
Recently, a few WM atlases (e.g., the ICBM-DTI-81 WM labels
atlas and the JHU WM tractography atlas) have been proposed
(Mori et al., 2008). These WM atlases in the standard space
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allow for parcellation of the entire WM into multiple ROIs,
each representing a labeled region in the atlas. To support ROI-
based analysis, PANDA calculates the regional diffusion metrics
(i.e., FA, MD, AD, and RD) by averaging the values within
each region of the WM atlases. These resultant ROI-based data
(saved as text files) can be statistically analyzed with SPSS (http://
www-01.ibm.com/software/analytics/spss/) and other statistical
packages.

Output for TBSS-based analysis. The TBSS framework avoids
the necessity of choosing a spatial smoothing procedure during
voxel-based analysis and may provide better sensitivity and inter-
pretability when it is applied to multi-subjects dMRI datasets
(Smith et al., 2006). To support this type of analysis, PANDA
follows the standard TBSS framework. Firstly, the mean of all
the aligned FA images was created and skeletonized, resulting in
a mean FA skeleton. Secondly, the diffusion metric data from
individual subjects were projected onto the skeleton. Finally,

individual images with data on the skeleton were created. The
resultant images can be directly used for voxel-wise statistical
analysis on the skeleton. Here, the fslmaths and tbss_skeleton
commands of FSL were employed.

Constructing networks
Two basic elements are required for a network: a node and a con-
nection. Thus, the central tasks for constructing brain networks
are: (1) defining network nodes and (2) defining connections
between nodes. The schematic flowchart of network construction
is demonstrated in Figure 2.

Defining network nodes. Typically, the entire brain is divided
into multiple regions using a prior gray matter (GM) atlas, where
each region represents a network node (Bullmore and Sporns,
2009). However, the prior atlases are generally defined in the stan-
dard space and need to be transformed to the native dMRI space
of each individual. To address this, PANDA uses the framework

FIGURE 2 | Flowchart for constructing anatomical brain networks

using diffusion tractography in PANDA. (A) White matter tracts
reconstructed using deterministic tractography. (B) Parcellation of gray
matter in diffusion space. Each color represents a node in a brain

network. (C) White matter connectivity maps using FSL probabilistic
tractography. (D) Three resultant network matrices weighted by fiber
number, averaged length, and averaged FA. (E) The network matrix
weighted by connectivity probability.
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proposed by Gong et al. (2009a). Specifically, the individual FA
image in native space was co-registered to its corresponding struc-
tural image (i.e., T1-weighted) using an affine transformation.
The individual structural image was then non-linearly registered
to the ICBM152 template. Based on the resultant transforma-
tions in these two steps, an inverse warping transformation from
the standard space to the native dMRI space can be obtained.
Prior atlases in the standard space were then inversely warped
back to individual native space by applying this inverse transfor-
mation. Currently, PANDA provides two well-defined atlases: the
Automated Anatomical Labeling (AAL) (Tzourio-Mazoyer et al.,
2002) atlas and the Harvard-Oxford atlas (HOA) (http://www.

cma.mgh.harvard.edu/fslatlas.html). Notably, users can import
customized atlases into PANDA to define the network nodes.
During this step, the flirt, fnirt, inwarp, and applywarp commands
of FSL were used.

Constructing networks using deterministic tractography. In gen-
eral, deterministic tractography assumes a deterministic fiber
orientation at every location during tracking, typically ending
up with 3D trajectories for reconstructed WM tracts. Here, the
dti_recon and dti_tracker commands of the Diffusion Toolkit
(http://trackvis.org/dtk/) were called to reconstruct all possible
fibers within the brain by seeding from all the WM voxels. For
every pair of brain nodes/regions defined above, fibers with two
end-points located in their respective masks were considered to
link the two nodes. Based on the linking fibers, PANDA calculated
three basic weighted matrices: number-weighted matrix (MN ),
FA-weighted matrix (MFA), and length-weighted matrix (ML). In
the matrices, each row or column represents a brain region/node.
The values of the elements M(i, j)N , M(i, j)FA, and M(i, j)L

represent the number, averaged FA and averaged length of link-
ing fibers between node i and node j, respectively. The resultant
matrices were saved as a MATLAB data file and can be directly
used for topological analysis with graph theoretic approaches
(Bullmore and Sporns, 2009; Bullmore and Bassett, 2011).

Constructing networks using probabilistic tractography. In
contrast, probabilistic tractography typically runs the tracking
procedure many times, and fiber orientation is determined
probabilistically. This type of tractography may improve tracking
sensitivity, particularly for non-dominant fibers. The probabilis-
tic tractography proposed by Behrens et al. (2003, 2007) has
been implemented in FSL and is called by PANDA for network
construction. This process involves two steps as follows:

BedpostX. Using the Markov Chain Monte Carlo sampling
technique, this module estimated the local probability distribu-
tion of fiber direction at each voxel, a prerequisite for running
subsequent probabilistic tractography (Behrens et al., 2003). In
PANDA, bedpostX was realized by calling the xfibres command
of FSL.

Probabilistic Tractography and Network Construction. Network
construction using FSL-based probabilistic tractography has been
previously described (Gong et al., 2009b). Briefly, for each defined
brain region/node, probabilistic tractography was performed by
seeding from all voxels of this region. For each voxel, 5000 fibers
were sampled. To achieve this, the probtrackx command of FSL

was called. The connectivity probability from the seed region i
to another region j was defined by the number of fibers passing
through region j divided by the total number of fibers sampled
from region i. The connectivity probability of each node to the
other nodes within the brain network can be calculated by repeat-
ing the tractography procedure for all nodes. This leads to an
individual-specific weighted matrix, whose rows and columns
represent the brain nodes and whose elements represent the con-
nectivity probability between nodes. This matrix can also be
directly used for various network analyses.

REALIZATION OF PIPELINES
PSOM is a flexible framework for the implementation of pipelines
in the form of Octave or Matlab scripts (Bellec et al., 2012),
and was employed to build up the processing pipeline in our
study. Here, a pipeline refers to a collection of jobs with a well
identified set of options that use files for inputs and outputs.
The entire processing flow of PANDA includes 41 steps, each
of which is a job within the PANDA pipeline. Notably, more
steps can be added if new functions or processing steps are
included. The workflow of the current PANDA pipeline show-
ing all the jobs and their associated dependencies is illustrated in
Appendix A.

In particular, PANDA was designed to allow for jobs running
in parallel either on a single computer with multiple cores or
on a computing cluster. Notably, the PANDA processing steps
are parallelizable at multiple levels. For example, the same pro-
cessing steps (i.e., preprocessing) for a group of subjects can
be parallelized, since the steps are independent across subjects.
In addition, for the same subject, different processing steps
without between-dependency such as producing diffusion met-
rics and brain parcellation can be parallelized as well. Finally, a
few very time-consuming steps (i.e., BedpostX and Probabilistic
Tractography and Network Construction) have been internally par-
allelized. The parallelizing strategies in PANDA are demonstrated
in Figure 3.

TESTING THE AGE EFFECT ON WM CONNECTIVITY BY USING PANDA
Subjects
The test included data from 23 young adults (males, 11; females,
12; age, 17–24 years) and 17 elderly individuals (males, 8; females,
9; age, 54–77 years). All subjects were recruited from the campus
and the local community. Subjects with a history of neuro-
logical or psychiatric disorders were excluded from this study.
Written informed consent was obtained from each subject, and
the protocol was approved by the Ethics Committee of the State
Key Laboratory of Cognitive Neuroscience and Learning, Beijing
Normal University.

MRI acquisition
All scans were performed using the 3-T Siemens Tim Trio MRI
scanner in the Imaging Center for Brain Research, Beijing Normal
University. Diffusion MRI was acquired using a single-shot echo-
planar imaging-based sequence with following parameters: cov-
erage of the whole brain; slice thickness, 2 mm; no gap; 68 axial
slices; repetition time (TR), 9000 ms; echo time (TE), 92 ms;
flip angle, 90◦; 66 non-linear diffusion weighting directions with
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FIGURE 3 | The schematic parallelizing strategy of PANDA. For example,
pre-processing steps in Stage 1 are parallelizable across subjects.
Independent processing steps from the same subject or across subjects in

Stage 2 and Stage 3 can be parallelized as well. In addition, BedpostX and
Probabilistic Network Construction have been internally parallelized, as
indicated by orange boxes.

b = 1000 s/mm2 and one image without diffusion weighting (i.e.,
b = 0 s/mm2); 4 repetitive acquisitions; acquisition matrix, 128 ×
124; field of view (FOV), 256 × 248 mm2; resolution, 2 × 2 ×
2 mm. Three-dimensional T1-weighted images with high reso-
lution were obtained using a three-dimensional magnetization
prepared rapid gradient echo (MP-RAGE) sequence with the fol-
lowing parameters: 1 mm slice thickness without gap; 176 sagittal
slices; TR, 1900 ms; TE, 3.44 ms; flip angle, 9◦; acquisition matrix,
256 × 256; FOV, 256 × 256 mm2; resolution, 1 × 1 × 1 mm.

Image processing
The whole pipeline procedure of PANDA was run on all dMRI
datasets with an in-house computing cluster of 6 nodes, each with
30GB of memory and 12 Intel Xeon E5649 2.53 GHz cores. For
each pipeline step, default parameters were chosen.

Network topology
Graph theoretical approaches have been applied to characterize
the topology of brain networks that are derived from neuroimag-
ing data (Bullmore and Sporns, 2009). Here, we focus on two

topological network parameters: global efficiency and local effi-
ciency. Global efficiency was defined as the average of the inverse
of the “harmonic mean” of the characteristic path length, which
represents global information transferring ability within the net-
work (Latora and Marchiori, 2001). Local efficiency quantifies
the ability of the network fault tolerant, corresponding to the
efficiency of the information flow between nodal neighbors.
Specifically, local efficiency was defined as the average of nodal
local efficiency that is computed as the global efficiency of the sub-
graph composed by its nearest neighbors (Latora and Marchiori,
2001).

Statistical analysis
For diffusion metric, we tested the group difference on FA across
the entire WM. Specifically, normalized and smoothed (6 mm
Gaussian kernel) FA images produced by PANDA were employed
for this voxel-based analysis. A general linear model (GLM) with
gender being taken as a covariate was applied to each WM voxel.
For multiple comparison correction, false discovery ratio (FDR)
was applied, and p < 0.01 was considered as significant.
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For each subject, the FA-weighted matrix generated from
PANDA was selected for topological analysis. Each matrix is
78 × 78 and represents the WM network of cerebral cortex. Each
row or column of the matrix represents a cortical region of the
AAL template (Gong et al., 2009a,b). The global efficiency and
local efficiency were then calculated. To test the group effect on
the global and local efficiency, a GLM with gender and brain
size as covariates was applied, and p < 0.05 was chosen as the
significant level.

RESULTS
AN INTEGRATED MATLAB TOOLBOX: PANDA
An integrated MATLAB toolbox named PANDA has been devel-
oped for fully automated processing of dMRI datasets, which is
an open-source package and is freely available at http://www.

nitrc.org/projects/panda. An online discussion forum (http://
www.nitrc.org/forum/forum.php?forumid=2731) and a mail-
ing list (http://www.nitrc.org/mailman/listinfo/panda-commits)
have been registered for PANDA, and technical supports and
updates will be constantly provided by the developers. Notably,
PANDA has been packaged with PSOM, MRIcron, and Diffusion
Toolkit. Only FSL is required to be installed separately.

Specifically, PANDA includes a main function and a set of sep-
arate modules/utilities. Using the main function, PANDA can run

pipeline processing for any number of subjects, after raw dMRI
datasets are loaded into the program. This running mode will fin-
ish all processing steps and end up with all outputs as described
in “Materials and Methods.” In contrast, the utilities can be used
separately for specific processing steps (e.g., DICOM conversion,
TBSS, and brain parcellation). Particularly, PANDA has a very
friendly GUI (Figure 4), with which users can perform various
interactions with the embedded functions, e.g., setting inputs or
outputs and configuring the processing parameters. In addition,
PANDA can provide the status of the ongoing pipeline process-
ing in real-time, allowing users to monitor progress through the
GUI. The detailed descriptions for GUIs of PANDA are included
in Appendix B.

As provided by PSOM (Bellec et al., 2012), PANDA has a
number of advantages as follows: (1) it can run jobs in parallel
either in a single computer with multiple cores or in a comput-
ing cluster; (2) it can generate log files and keep track of the
pipeline execution; (3) if the program terminates before finish-
ing, users can load a configuration file, click “RUN,” and PANDA
will restart from the termination point; (4) if users re-run the
pipelines after changing some options, PANDA will only restart
the procedures related to these options; and (5) the jobs will run
in the background and PANDA & MATLAB can be closed after
clicking the “RUN” button.

FIGURE 4 | A snapshot of the GUIs of PANDA. (A) The main GUI for loading dataset and monitoring job status. (B) The GUI for initiating separate utilities.
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RESULTANT FILES OF PANDA
For each subject, PANDA generates six folders containing resul-
tant files, as listed in Table 1. Specifically, the native_space folder
consists of all images and files in the native space. The files in
the quality_control folder include 2D snapshot pictures of FA,
T1, normalized FA, and normalized T1, which can be quickly
viewed to check the quality of the data and related registrations
(Figure 5). All files of the diffusion metrics that are ready for sta-
tistical analysis are stored in the folder named standard_space.
The trackvis folder consists of resultant files generated by the
“Diffusion Toolkit” for deterministic tractography, which can be
opened with Trackvis. The native_space.bedpostx folder contains
the resultant files of bedpostX that are required for FSL prob-
abilistic tractography. Finally, the MATLAB files containing the
network matrices with different weighting (i.e., fiber number,
averaged FA, averaged length, and connectivity probability) are
stored in the folder named network.

TIME COST
To provide information about the time cost of PANDA pro-
cedures, a few baseline running-time tests were conducted.
Specifically, two dMRI datasets with different acquisition schemes
(dataset I: 64 directions, 4 repetitive acquisitions, resolution:
2 × 2 × 2 mm; dataset II: 30 directions, 2 repetitive acquisitions,
resolution: 2.2 × 2.2 × 2.2 mm) were tested under four condi-
tions (one subject with four cores; one subject with eight cores;
two subjects with four cores; two subjects with eight cores). The
results are listed in Table 2.

Obviously, the running time depends on dMRI scanning
schemes. More DWI directions and more repetitive acquisitions
will result in longer running time of preprocessing and bed-
postX. Our results further demonstrated that the running-time

Table 1 | Folders produced by PANDA.

Folder name Files

native_space Text files of bvals and bvecs

Native-space images of DWI, b0, brain mask,
FA, MD, AD, RD, and parcellation mask

quality_control Snapshot pictures of native FA, native T1,
normalized FA, and normalized T1

standard_space Normalized images of FA, MD, AD, and RD
(ready for voxel-based analysis)

Text files of regional FA, MD, AD, and RD (ready
for ROI-based analysis)

Images of skeletonized FA, MD, AD, and RD
(ready for TBSS analysis)

trackvis Trackvis-related resultant files (for deterministic
tractography)

native_space
bedpostx

BedpostX-related resultant files (for probabilistic
tractography)

network MATLAB files containing network matrices
weighted by fiber number, averaged FA,
averaged length (from deterministic
tractography), and connectivity probability (from
probabilistic tractography)

for multiple subjects with multiple cores in PANDA can be effec-
tively saved, due to the parallelized processing. For example,
finishing the pre-processing steps for two subjects costs almost
the same time as for one subject (Table 2). In addition, since
the bedpostX has been parallelized internally, finishing bedpostX
with eight cores cost only half of time as cost with four cores
(Table 2).

THE AGE EFFECT ON WM CONNECTIVITY USING PANDA
As expected, voxel-based comparison revealed a distributed FA
decreases (p < 0.01, FDR corrected) throughout the brain in
the old group. Specifically, FA was mainly affected in the bilat-
eral superior longitudinal fasciculus, uncinate fasciculus, inter-
nal capsules, external capsules, fornices, and corpus callosum
(Figure 6).

Moreover, we observed group differences in topological effi-
ciencies of WM network of cerebral cortex. As demonstrated in
Figure 7, the global efficiency of the WM network showed a sig-
nificant reduction in the old group (p = 0.03) after controlling
for gender and brain size, and the local efficiency exhibited only a
trend of reduction (p = 0.16).

DISCUSSION
In this study, we have developed a MATLAB toolbox named
PANDA for comprehensively processing dMRI datasets. The key
advantage of PANDA is that it fully automates all the pro-
cessing steps of dMRI datasets for any number of subjects.
PANDA can yield diffusion metric data that is ready for statis-
tical analysis at three levels (voxel-level, atlas-level, and TBSS-
level), and can generate anatomical networks/matrices of the
entire brain using either deterministic or probabilistic diffusion
tractography.

FIGURE 5 | Snapshot pictures for quality control of FA normalization.

The normalized FA is overlaid with image edges that were derived from the
FA template. These pictures can be quickly viewed to check the quality of
normalization.
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Table 2 | Baseline time cost of pipeline processing on dataset I (64 DWI directions, 4 repetitive acquisitions, resolution: 2 × 2 × 2 mm) and

dataset II (30 DWI directions, 2 repetitive acquisitions, resolution: 2.2 × 2.2 × 2.2 mm) with PANDA.
���������������������Dataset II

Dataset I Time cost (h)

One subject One subject Two subjects Two subjects

Four cores Eight cores Four cores Eight cores

Preprocessing and producing data that is ready for statistical analysis
�������0.167

0.883 �������0.150
0.900 �������0.217

0.917 �������0.183
0.900

Brain parcellation (for network node definition)
�������0.133

0.167 �������0.133
0.167 �������0.183

0.167 �������0.183
0.150

Deterministic tractography and network construction (AAL template 90)
�������0.017

0.067 �������0.017
0.050 �������0.033

0.050 �������0.033
0.067

BedpostX
�������1.467

3.667 �������0.883
2.317 �������2.933

7.117 �������1.650
4.233

Probabilistic tractography and network construction (AAL template 90)
�������3.283

6.017 �������1.917
3.683 �������6.583

11.883 �������3.633
6.750

The processing was performed using a local workstation with 30 GB of memory and Intel Xeon E5649 2.53 GHz cores. Four conditions were tested: one subject

with four cores; two subjects with four cores; one subject with eight cores; two subjects with eight cores.

FIGURE 6 | The statistical map showing significant FA decreases in old group (p < 0.01, FDR corrected). The hot color represents t values for the age
effect.

A fully automated pipeline naturally makes the data processing
efficient, at the same time reducing potential mistakes by avoid-
ing manual processing of individual steps. While constructing a
dMRI processing pipeline with MIPAV (McAuliffe et al., 2001),
JIST (Lucas et al., 2010), Nipype (Gorgolewski et al., 2011), or
LONI (Dinov et al., 2009) is possible, it requires prior knowl-
edge on pipeline design and programming skills related to these
packages. In addition, knowledge on the details of all steps for
processing dMRI dataset is required, which might be another
challenge for end users. To provide a ready-for-use pipeline tool
for end users, PANDA was developed, making it possible to
process dMRI datasets immediately with established pipelines.

Notably, there exist differences in the processing procedures
across existing dMRI packages, and some important process-
ing steps might be overlooked (Jones et al., 2012). These issues
have been well discussed by a few recent articles (Jones and
Cercignani, 2010; Jones et al., 2012). The processing pipelines
of PANDA have tried to follow the best practice as possible.
For example, the adjustment of diffusion gradient directions
after eddy-current correction, which has been frequently missed
(Leemans and Jones, 2009; Jones et al., 2012), has been included
in the PANDA pipeline. In future versions, PANDA will keep
being updated to include processing steps of the best practice at
the moment.
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FIGURE 7 | The group comparison of network efficiency. The old group
showed a significant reduction of global efficiency and a trend of reduction
in local efficiency.

Another advantage of PANDA is that both sequential and par-
allel processing modes are supported, which makes it possible to
take full advantage of available computing resources. The paral-
lel environment can be either a single computer with multiple
cores or a computing cluster, which increasingly enters into labs
around the world. As shown in Figure 3, the PANDA processing
have been parallelized as much as possible, and can thus reduce
the time cost substantially under a parallel processing mode.
For instance, the running time for pre-processing two subjects is
almost the same as for one subject by using a workstation with
four cores.

Finally, PANDA has a very friendly GUI (Figure 4), allowing
the advanced users to select the desired options for each process-
ing step. Depending on the datasets, users may change the options
of some processing steps to optimize the processing quality. The
reference data, e.g., image templates for normalization or prior
atlases for node definition, can also be replaced by customized
data, making it possible for processing dMRI data of non-human
(e.g., primate) brains.

In the present study, we applied PANDA to produce results
for testing the age effect on WM diffusion metrics as well as
topological properties of the WM network. Significant FA reduc-
tions during aging were found in the bilateral uncinate fasciculus,

superior longitudinal fasciculus, external capsules, fornices and
corpus callosum, which are highly consistent with previous find-
ings (Bennett et al., 2010; Michielse et al., 2010). In addition,
significant reduction of global efficiency and a trend of reduction
of local efficiency were observed in the old group. These topolog-
ical changes are largely compatible with our previous results that
are based on a larger dataset (Gong et al., 2009b). The declined
WM connectivity and topology may underlie various patterns of
cognitive decline during normal aging. The results for this specific
study prove the usability and validity of the PANDA processing.

PANDA is of great applicability in the area of connectivity
neuroscience. For example, this tool can be applied to dMRI
datasets that are collected to study various connectivity hypothe-
ses. Also, the effects of dMRI processing parameters or steps
on the final connectivity results can be easily tested by using
PANDA. Recently, the term “connectome” has been proposed
to advocate efforts for comprehensively mapping and analyzing
brain connectivity and networks (Sporns et al., 2005), and dMRI
has been taken as a primary technique for structural macro-
connectome (Behrens and Sporns, 2012). This will lead to a
large number of dMRI datasets in the foreseeable future (http://
humanconnectome.org/). To process these connectome dataset,
PANDA has unique advantages, as it can handle the large number
of datasets very efficiently because of its parallelizing strategies.
Meanwhile, it can automatically provide important metrics of
interest (e.g., diffusion metrics of brain connectivity and brain
network matrices) for connectome studies. Therefore, PANDA
can potentially make contributions to the study of the human
connectome in the near future.

In summary, PANDA can substantially facilitate/simplify
image processing in a dMRI-related study, and can provide mea-
sures for WM connectivity and network analysis. It has an extend-
able design framework, and new functions or utilities can and will
be added in the future.
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APPENDICES
APPENDIX A

FIGURE A1 | Implementation of the PANDA pipeline. The entire process of the PANDA pipeline was divided into 41 steps. Arrows indicate
dependencies: A→B means that B cannot start until A is finished.

APPENDIX B: GUIs OF PANDA
Main function
The main GUI of PANDA is shown in Figure B1. Users are
required to set up inputs and configure outputs through this
GUI. Specifically, the data inputs are folders, each containing
files in either DICOM or NIfTI format, for each subject. The
output configuration includes: (1) a main output folder that con-
tains subject-specific subfolders of results; (2) digital subject IDs;

and (3) a prefix. The IDs and prefixes are used to name the
resultant subfolder or files for each subject. In addition, users
may change the pipeline options (Figure B2A), diffusion options
(Figure B2B), and tracking options (Figure B2C). The default
setting for these options will be used if no changes are made.

Once all required settings are established, users simply click
the “RUN” button to start the processing. PANDA will auto-
matically finish all the sequential jobs and yield files containing
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FIGURE B1 | A snapshot of the main GUI while PANDA is

running. The GUI allows for (1) inputting raw dMRI datasets and
configuring processing parameters and (2) monitoring the progress
of data processing in real-time.

diffusion metrics and anatomical brain networks, as described
in the “Materials and Methods.” During processing, the status of
jobs can be checked in the monitor table of the GUI (Figure B1).

Separate utilities
TBSS. As shown in Figure B3A, this utility is for separate TBSS
procedures, which require all images of FA and other diffusion
metrics to be aligned in the MNI space. With correct input set-
tings, this module will automatically generate individual images
with data on the skeleton for all subjects. Statistical analyses can
be directly applied to the resultant images.

Brain parcellation (node definition). This utility is used to sep-
arately define the brain network nodes. The sub-GUI is shown in
Figure B3B. This module requires FA images of native space and
skull-stripped T1 images as inputs. A prior atlas in the MNI space
should also be specified. The results of this utility are individual
atlas images in the dMRI native space for all subjects. These
images can be directly loaded by the utility “Tracking & Network.”

Bedpostx. As shown in Figure B4A, this utility allows for the
estimation of voxel-wise local probability distributions of fiber
orientation for a set of subjects, which is typically very time-
consuming. The input for each subject should be a folder con-
taining four files as listed: (1) a 4D image named data.nii.gz
containing diffusion-weighted volumes and volumes without dif-
fusion weighting; (2) a 3D binary brain mask volume named
nodif_brain_mask.nii.gz; (3) a text file named bvecs containing
gradient directions for diffusion weighted volumes; and (4) a
text file named bvals containing the b-values that were applied
to each volume acquisition. This module will generate a sepa-
rate folder containing all the files that are required for subsequent
probabilistic tractography.

Tracking & Network. This utility can separately construct
anatomical brain networks based on tractography. The sub-
GUI is shown in Figure B4B. For a deterministic tractography-
based network, a folder with four files described in the section
“Bedpostx” together with an individual-specific atlas image gen-
erated by the utility “Brain Parcellation” are required. For a prob-
abilistic tractography-based network, the resultant folder of the
utility “Bedpostx” and the individual-specific atlas image should
be the inputs. As described in the “Materials and Methods,”
this module will generate network matrices that are saved in a
MATLAB data file.

DICOM sorter. This handy utility, as shown in Figure B5A,
can automatically sort multiple DICOM files in the same folder
into sequence-specific or subject-specific sub-folders, based on
the header information of the DICOM files. This is particu-
larly useful when the DICOM files from different sequences
or subjects are saved in the same folder, which happens
very often.

Image converter. The NIfTI format can be a pair of files
(hdr/img), a single file (nii), or a compressed file (nii.gz). A NIfTI
file may be required in a certain file type, e.g., *.nii or *.hdr/img.
As shown in Figure B5B, this utility can convert NIfTI pair for-
mat (hdr/img), NIfTI format (nii), and NIfTI GZ format (nii.gz)
file types.

File copier. This utility can copy a large number of files located
in different source folders into the same target folder. The sub-
GUI is shown in Figure B5C. After PANDA processing, each
subject will have unique folders containing the resultant files.
“File Copier” can easily copy the same types of resultant files
(e.g., aligned FA images) of all the subjects to one target folder,
which might be helpful for further statistical analysis or other
purposes.
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FIGURE B2 | Snapshots of the GUI for configuring the processing

parameters. (A) A snapshot of the GUI for changing the preprocessing
parameters and for producing diffusion metrics that are ready for statistical

analysis. (B) A snapshot of the GUI for changing the computing modes of
PANDA. (C) A snapshot of the GUI for changing the parameters used to
construct anatomical brain networks.

FIGURE B3 | GUIs for the utilities “TBSS” and “brain parcellation” in PANDA. (A) The utility for TBSS analysis. (B) The utility for brain parcellation.
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FIGURE B4 | GUIs for the utilities “Bedpostx” and “Tracking & Network” in PANDA. (A) The utility for Bedpostx. (B) The utility for tractography and
network construction.
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FIGURE B5 | GUIs for the utilities “DICOM Sorter,” “Image Converter,” and “File Copier” in PANDA. (A) The utility for DICOM Sorter. (B) The utility for
Image Converter. (C) The utility for File Copier.
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There is a growing interest in studies of human brain networks using resting-state
functional magnetic resonance imaging (fMRI). However, it is unclear whether and how
brain networks measured during the resting-state exhibit comparable properties to brain
networks during task performance. In the present study, we investigated meta-analytic
coactivation patterns among brain regions based upon published neuroimaging studies,
and compared the coactivation network configurations with those in the resting-state
network. The strength of resting-state functional connectivity between two regions
were strongly correlated with the coactivation strength. However, the coactivation
network showed greater global efficiency, smaller mean clustering coefficient, and lower
modularity compared with the resting-state network, which suggest a more efficient
global information transmission and between system integrations during task performing.
Hub shifts were also observed within the thalamus and the left inferior temporal cortex.
The thalamus and the left inferior temporal cortex exhibited higher and lower degrees,
respectively in the coactivation network compared with the resting-state network. These
results shed light regarding the reconfiguration of the brain networks between task and
resting-state conditions, and highlight the role of the thalamus in change of network
configurations in task vs. rest.

Keywords: brain network, coactivation, hub shift, meta-analysis, modularity, resting-state, small world, thalamus

INTRODUCTION
The human brain exhibits organized spontaneous fluctuations
in the resting-state (Biswal et al., 1995), enabling researchers to
study large-scale brain segregations and integrations (Bullmore
and Sporns, 2009, 2012; Menon and Uddin, 2010). The spon-
taneous fluctuations reveal high synchronization between brain
regions in the same brain system (Cordes et al., 2000; Greicius
et al., 2003), and are relatively independent between different
brain systems (Beckmann et al., 2005; Biswal et al., 2010). The
whole brain segregation and integration can also be studied using
graph theory based analysis (Bullmore and Sporns, 2009; Wang
et al., 2010). For example, the brain network in the resting-state
revealed modular structures, small world and scale free properties
(Salvador et al., 2005; Achard et al., 2006; Achard and Bullmore,
2007; Nakamura et al., 2009; Yan and He, 2011).

Despite the growing popularity of resting-state fMRI to study
brain functions, studies have yet to address a fundamental ques-
tion regarding whether the brain at resting-state is comparable
to the brain during task performing. Given that the evoked cere-
bral blood flow by different tasks account for less than 5% of
the resting-state cerebral blood flow (Raichle, 2010), the resting-
state brain already represents a large proportion of hemodynamic
information which may reflect brain maintenance. Studies have
also shown that task-related coactivation patterns correspond
well with the brain systems that are measured during the resting-
state (Toro et al., 2008; Smith et al., 2009). However, based on the
economic theory of brain network organization, the brain net-
work should be in an energy saving mode during the resting-state,

while exhibiting dynamic network reconfiguration in the pres-
ence of a task demand to facilitate global and between systems
information transmissions (Bullmore and Sporns, 2012). We pre-
dict that even though the connectivity in task conditions and the
resting-state may be similar, substantial differences of network
configurations may take place to support different task demands.

Changes in connectivity modulated by task are important
to understand brain integration (Friston, 2011). Specific con-
nections have been shown to be modulated by specific tasks
(McLntosh and Gonzalez-Lima, 1994; McIntosh et al., 1994;
Büchel and Friston, 1997; Rao et al., 2008). However, the mod-
ulations of connectivity are task specific, and it is difficult to
modulate the whole brain network using a specific task. Thus,
we adopted the same approach as Toro et al., and Smith et al.
to examine task activations or group differences and their cor-
responding coactivation pattern across the whole brain (Toro
et al., 2008; Smith et al., 2009). Specifically, we constructed brain
networks comprised of 140 regions of interest (ROIs) from the
whole brain based on both meta-analytic coactivation patterns
(Yarkoni et al., 2011) and resting-state correlations of fMRI sig-
nals (Biswal et al., 2010). The online database Neurosynth (http://
old.neurosynth.org/) was used to extract coactivation infor-
mation, which contained 47,493 activations from 4393 studies
(Yarkoni et al., 2011). We first asked whether the strength of coac-
tivation between a pair of ROIs was correlated with their resting-
state correlations. We then compared different network properties
based on graph theory between the two brain networks (Bullmore
and Sporns, 2009), including the small-worldness (Watts and
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Strogatz, 1998), modularity (Newman, 2006), and hub distri-
butions. We hypothesized that the brain when performing tasks
will be more integrated and thus exhibit higher global efficiency
and reduced modularity compared with the resting-state brain.
In addition, we hypothesized that the brain hubs may shift from
the default mode network (DMN) (Raichle et al., 2001; Greicius
et al., 2003) regions to other brain regions that are critical during
task executions.

METHODS
REGIONS OF INTEREST
One hundred and sixty functionally defined ROIs from
Dosenbach et al. were adopted in the present analysis (Dosenbach
et al., 2010). Twenty-four ROIs were removed because they were
outside the Neurosynth mask. We included four more ROIs that
were not represented within the 136 ROIs (Sabatinelli et al., 2011):
the right amygdala (Montreal Neurological Institute, MNI, coor-
dinates: 20, −4, −15), the left amygdala (−20, −6, −15), the right
parahippocampus (14, −33, −7), and the left parahippocampus
(−20, −33, −4). A total of 140 ROIs were used in the present
study to construct brain networks (supplementary Table S1).

COACTIVATION NETWORK
The online database, Neurosynth, was used to construct the coac-
tivation network (Yarkoni et al., 2011). The database search was
conducted in November, 2012 when the database had 4393 stud-
ies and 47,493 activations. For each of the 140 ROIs, Neurosynth
identified all the papers in the database that reported coordi-
nates within 10 mm from the ROI center, and exported a whole
brain z-score map representing the likelihood that a voxel coac-
tivated with the given ROI (Yarkoni et al., 2011). The images
were thresholded using a false discovery rate (FDR) criterion of
p < 0.05. Thus, the Neurosynth search of all the ROIs resulted in
140 coactivation maps.

One hundred and forty spherical ROIs were defined using radii
of 10 mm. The coactivation values of 140 ROIs were extracted
from 140 coactivation maps, which resulted in a 140 × 140
matrix. Each row of the matrix represented the coactivation val-
ues of a given ROI with the other ROIs. Because the number of
papers that was returned by each ROI inquiry was different, the
coactivation values from different ROI inquiry may be biased.
Therefore, we normalized each row by dividing the value from
the ROI corresponding to that row, so that the diagonal values of
the matrix were equaled to one. In addition, since the distribution
of the coactivation values are skewed, all the values of the matrix
were added by one, and were logarithmically transformed to facil-
itate a normal distribution. Finally, because the coactivation like-
lihood of region A with region B and the coactivation likelihood
of region B with region A are generally similar but have slightly
different values, the matrix was transposed, and averaged with the
original matrix to create a symmetrical coactivation matrix.

RESTING-STATE NETWORK
We analyzed a resting-state fMRI data set to construct a resting-
state network to compare with the coactivation network. The
Oulu dataset from the 1000 Functional Connectomes Project
was used (Biswal et al., 2010). This dataset originally contains

103 subjects. One subject’s data was discarded because of large
head motion (greater than 3 mm). Thus 102 subjects’ data
were included in the current analysis (36M/66F). The mean
age was 21.5 years (range from 20 to 23 years). Two hundred
and forty-five resting-state functional images were acquired for
each subject (TR = 1.8 s, 28 slices). High resolution anatomi-
cal image was also acquired for each subject using MPRAGE
sequence (Magnetization Prepared Rapid Acquisition Gradient

Functional MRI images were processed using the SPM8 tool-
box (http://www.fil.ion.ucl.ac.uk/spm/) under the MATLAB7.7
environment (www.mathworks.com). First, the MPRAGE
anatomical image for each subject was segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF)
using the new segment routine in SPM8. The deformation field
maps were also obtained in this step to later normalize the
functional images. For each subject, the first five images of the
fMRI images were discarded, resulting in 240 images per subject.
The functional images were then motion corrected using the
realign function. One subject’s data were discarded after this step
because the head motion was greater than 3 mm, resulting in 102
subjects in total. Next, the functional images were coregistered
to the subjects’ own anatomical images. Then, the deformation
field map obtained from new segmentation step was applied to
the functional images to normalize them into the standard MNI
space.

One hundred and forty times series from the corresponding
ROIs were extracted for each of the subjects. Six head motion
parameters and their first order derivatives, first five eigenvec-
tors from signals within WM masks, and first five eigenvectors
from signals within CSF masks were regressed out using linear
regression (Chai et al., 2012). No global signal regression was
applied. Next, the time series were temporally filtered using a
band-pass filter of 0.01–0.1 Hz. For each subject, a 140 × 140
correlation matrix was calculated using Kendall’s rank correla-
tion to minimize spurs correlations due to noises. The correlation
matrices were transformed into Fisher’s z, and averaged across
subjects. Finally, the mean Fishers’ z matrix was transformed back
to correlation matrix using Fisher’s inverse transform.

NETWORK ANALYSIS
Because the values in the coactivation matrix and the resting-
state correlation matrix are essentially different, network sparsity
thresholds were used to keep the number of edges of the two net-
works the same when comparing the two networks. The sparsity
range was set between 6 and 40% with an increment of 1%. This
range was used because typical sparsity of human neuron network
is between this range, and the large scale brain networks revealed
small world properties within this range (Achard and Bullmore,
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Echo). More information for the data can be found at http://
fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html. To rule
out the possibility that the current results are due to sample bias
of the resting-state dataset, we have conducted a separate anal-
ysis using another resting-state dataset, i.e., the Nathan Kline
Institute (NKI) / Rockland Sample (http://fcon_1000.projects.
nitrc.org/indi/pro/nki.html). Data analyses were identical to the
Oulu dataset. Detailed methods and results of NKI dataset are
reported in the supplementary material section.
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2007; He et al., 2008). After thresholding, all the networks were
binary (unweighted) undirected networks.

We first compared the two networks in terms of small world
properties (global efficiency and mean clustering coefficient)
and modularity. The global efficiency characterizes how efficient
the whole brain network integrates information, and the mean
clustering coefficient characterizes how efficient the information
flows around local nodes (Watts and Strogatz, 1998). Modularity,
also known as Newman’s Q, characterizes the extent the whole
brain network can be divided into sub-communities (Newman,
2006). The global efficiency, mean clustering coefficient, and
modularity were calculated for the two networks at each sparsity
level using the brain connectivity toolbox (Rubinov and Sporns,
2010). As a reference, random networks were generated 1000
times at each sparsity level. The three parameters were also cal-
culated for the random networks, and were averaged across the
1000 random networks.

To determine the statistical significance, we created a null dis-
tribution of network differences by randomly shuffling the two
networks 1000 times and calculating their differences of network
properties for 1000 random networks. Specifically, at each spar-
sity level, we first identified edges that were different between the
two networks. Next, we randomly assigned 50% of these different
edges from the coactivation network to the resting-state network,
and vice versa, resulting in two new mixed networks. We then cal-
culated the three network parameters, i.e., the global efficiency,
mean clustering coefficient and modularity, for the two mixed
networks and obtained their differences between the two net-
works. The randomizations were performed 1000 times for each
sparsity level to obtain a difference distribution. The difference
of the three parameters between the coactivation network and
the resting-state network were then compared with the random-
ized distribution to determine statistical significances. A critical
threshold of p < 0.001 was used.

To demonstrate modular structures of the coactivation and
the resting-state network, we thresholded the two networks at a
sparsity level of 20%, and entered the two unweighted undirected
networks into Gephi (https://gephi.org/) to determine their mod-
ular structures using the algorithm by Blondel et al. (2008).
The two networks and their modular structures were rendered
into a 2D surface using the Fruchterman–Reingold Algorithm
(Fruchterman and Reingold, 1991).

We then examined whether the two networks displayed sim-
ilar hub distribution (Achard et al., 2006). In the present study,
we simply defined the importance of each node by calculating the
number of edges connected to this node (also known as degree).
We calculated the degrees for each node for the two networks
at each sparsity level. Next, at each sparsity level, correlations of
node degrees between the coactivation network and the resting-
state network were calculated at the sparsity range of 6–40%. The
correlations reflected the similarity of hub distributions of the two
networks. There were only small correlations of degrees between
the two networks (see Results below), i.e., a high degree node in
the resting-state network was not necessarily a high degree node
in the coactivation network. Hence, we subtracted the degrees
between the two networks for each node at the sparsity level of
10, 20, and 30%. At each of the three sparsity levels, we sorted
the degree differences. The two networks were also randomized
using the method mentioned above, and the sorted degree dif-
ferences were calculated. The randomization was conducted 1000
times, and the distribution of the sorted degree differences was
obtained. Then, the original sorted degree differences between
the coactivation network and resting-state network was compared
with the distribution. Next, at each sparsity level, five nodes that
had the largest degree differences and five nodes that had the
least degree differences between the coactivation network and the
resting-state network were identified. These nodes were rendered
on a brain surface model using the BrainNet Viewer (http://www.

nitrc.org/projects/bnv/).

RESULTS
COACTIVATION AND RESTING-STATE NETWORKS
The pattern of the coactivation and the resting-state correlation
matrix were comparable (Figures 1A,B). Because the ROIs were
arranged according to their network affiliations as reported by
Dosenbach et al. (2010), square like structures along the diago-
nal were observed in both networks (see supplementary Table S1
for the network affiliations of the ROIs). In addition, the coacti-
vation strengths and the resting-state correlation strengths among
the 9730 (140 × 139/2) pairs of ROIs showed a strong linear rela-
tionship (Figure 1C), i.e., if two regions had higher correlation
in the resting-state, they also had higher coactivation strength,
and vice versa. The Pearson correlation between the coactivation
strengths and connectivity strengths was 0.72 (r2 = 0.51).

FIGURE 1 | Coactivation matrix (A), resting-state correlation matrix (B), and the relationship between coactivation strengths and resting-state

correlations (C). Each dot in the scatter plot represents one pair of ROIs. The red line in panel (C) represents the linear fit.
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SMALL WORLD AND MODULARITY
Both the coactivation network and the resting-state network
revealed smaller global efficiency and larger clustering coefficient
compared with the reference random networks, which charac-
terizes the small world network properties (Figure 2). Direct
comparison between the coactivation network and the resting-
state network revealed greater global efficiency and smaller mean
clustering coefficient for the coactivation network compared with
the resting-state network at selected sparsity levels (highlighted
by shading in Figure 2). Thresholding at a significance level of
p < 0.001, greater global efficiency for the coactivation network
were present at almost all the sparsity levels that were tested
between 6 and 40% (except for 23%), while smaller mean clus-
tering coefficient for the coactivation network were only present
at the sparsity level between 28 and 40%.

Both the coactivation network and the resting-state network
revealed higher modularity compared with the random net-
works (Figure 3A). The coactivation network generally revealed
lower modularity than the resting-state network at sparsity level
between 17 and 40% at the significance level of p < 0.001.
Figures 3B,C demonstrated the modular structures of the coac-
tivation network and the resting-state network at sparsity level
of 20%. For the resting-state network, four modules were clearly

FIGURE 2 | Global efficiency (A) and mean clustering coefficient (B) for

the coactivation, resting-state, and random networks as a function of

connectivity sparsity. The shading areas represent significant differences
between the coactivation and resting-state networks at p < 0.001 based on
1000 permutations.

visible with a large number of within module connections and a
small number of between modules connections. In contrast, five
modules for the coactivation network were difficult to distinguish
since there were large numbers of between module connections.

HUB SHIFTS
At all sparsity levels between 6 and 40%, the correlations between
node degrees of the coactivation network and the resting-state
network were small (range from 0.17 to 0.38) (Figure 4A). We
then plotted the node degrees of the coactivation network against
the node degrees of the resting-state network at 10, 20, and 30%
sparsity levels (Figures 4B–D). We observed that there were sev-
eral nodes in the upper right corner or lower right corner of the
scatter plots, which indicates that these nodes had higher degrees
in one network but not in the other network.

Additional analysis showed that the distribution of degree dif-
ferences between the coactivation network and the resting-state
network were outside the distribution of sorted degree differences

FIGURE 4 | (A) Correlations between nodes’ degree of the coactivation
network and the resting-state network as a function of connectivity
sparsity. Panels (B–D) show the scatter plots of node degrees between the
two networks at sparsity level of 10% (B), 20% (C), and 30% (D),
respectively. The lines in the scatter plots represent the linear fit.

FIGURE 3 | (A) Modularity for the coactivation, resting-state, and
random networks as a function of connectivity sparsity. The
shading areas represent significant differences between the
coactivation and resting-state networks at p < 0.001 based on 1000

permutations. Panels (B,C) demonstrate the modular structures for
the coactivation network and the resting-state network at sparsity
level 20%. The node colors in panels B and C encode different
modules.
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of randomized 1000 permutations (Figures 5A–C), indicating
that the degree differences between the two networks are not
likely due to random noises. We then subtracted the degrees in
the activation network by the degrees in the resting-state network
for all 140 nodes at sparsity levels of 10, 20, and 30%, respec-
tively. The top five nodes that had the greatest degree differences
between the two networks are illustrated in Figures 5D–F and
Table 1. Across the three sparsity levels, the bilateral thalamus
demonstrated higher degrees in the coactivation network com-
pared with the resting-state network. Other regions, including
the basal ganglia, inferior parietal lobule (IPL), posterior pari-
etal cortex, medial frontal cortex (mFC), and anterior insula,
also showed higher degrees in the coactivation network at vari-
ous sparsity levels. In contrast, a node in the inferior temporal
cortex revealed consistently higher degree in the resting-state net-
work compared with the coactivation network. Other regions,
including the precuneus, angular gyrus, inferior parietal sulcus
(IPS), temporoparietal junction (TPJ), superior frontal cortex,
parahippocampal gyrus, and inferior cerebellum, also showed
higher degrees in the resting-state network at various sparsity lev-
els. The connectivity of the thalamus and the left inferior cortex
for the two networks at sparsity level of 20% are illustrated in
Figure 6.

DISCUSSION
The current study compared the whole brain network configu-
rations between the coactivation network and the resting-state
network. We first observed a high correlation between the coacti-
vation strength and the resting-state correlation across all pairs
of ROIs. In other words, if a pair of brain regions has greater
functional connectivity in the resting-state, they are more likely
to have greater coactivation, and vice versa. This is in line with
previous findings that the coactivation patterns correspond well
with the resting-state connectivity and networks (Toro et al.,
2008; Smith et al., 2009). However, further analysis revealed sub-
stantial differences in network configuration between the two
networks. Specifically, the coactivation network revealed higher

global efficiency, lower mean clustering coefficient, and lower
modularity as compared with the resting-state network. Shifts in
hub regions were also observed where the thalamus had greater
degrees in the coactivation network than in the resting-state net-
work, and a region in the left inferior temporal cortex had greater
degrees in the resting-state network than in the coactivation net-
work. These results were similar when using NKI-dataset (see
supplementary materials).

The brain network exhibits a so-called “small-world” prop-
erty (Watts and Strogatz, 1998) that the network has greater
mean local efficiency but smaller global efficiency than random
network. Small world properties have been initially shown in non-
human primates (Sporns, 2000; Stephan et al., 2000) and later in
human brain network using both the resting-state fMRI (Salvador
et al., 2005; van den Heuvel et al., 2009) and diffusion weighted
imaging (Hagmann et al., 2007; Gong et al., 2009). The cur-
rent results revealed greater global efficiency and smaller mean
local efficiency for the coactivation network as compared with
the resting-state network, suggesting that the whole brain is con-
nected more efficiently to support global information flow during
task performing. These results are in line with the findings that the
brain exhibits higher global efficiency as task difficulty increases
(Kitzbichler et al., 2011), and in the awake state compared with
the stage 1 sleep (Uehara et al., 2013).

The current study also revealed smaller modularity in the
coactivation network as compared with the resting-state net-
work. These results suggest that the whole brain is less segregated
as independent modules when performing tasks as compared
with the resting-state. In other words, there are more between
module connections and less within module connections when
performing tasks, while more within module connections and
less between module connections exist in the resting-state. These
results are in line with the economy theory of brain network that
long range between system connections are more costly, so that
dynamic connectivity between brain systems is only present upon
task demands (Bullmore and Sporns, 2012). Consistent with this
notion, brain network modularity reduces when the task demand

FIGURE 5 | Top row, sorted degree differences of 140 ROIs between

the coactivation network and the resting-state network at sparsity

of 10% (A), 20% (B), and 30%(C), respectively. The chromatic lines
represent sorted degree differences of scrambled networks for 1000

permutations. Bottom row, five regions that have largest and least
degree differences between the coactivation network and the
resting-state network at sparsity of 10% (D), 20% (E), and 30% (F),
respectively.
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Table 1 | Top five regions that have greater or smaller degree in the

coactivation network as compared with in the resting-state network

for the sparsity of 10, 20, and 30%, respectively.

MNI coordinates Label Degree differences

Coactivation > correlation

x y z

SPARSITY = 10%

−12 −12 6 Thalamus 27

11 −12 6 Thalamus 24

−41 −40 42 IPL 21

−35 −46 48 Post-parietal 18

0 15 45 mFC 16

−36 18 2 Ant insula 16

−16 29 54 Sup frontal −18

−36 −69 40 IPS −18

23 33 47 Sup frontal −19

−59 −25 −15 Inf temporal −21

51 −59 34 Angular gyrus −21

SPARSITY = 20%

−12 −12 6 Thalamus 54

11 −12 6 Thalamus 42

−20 6 7 Basal ganglia 36

−12 −3 13 Thalamus 30

−41 −31 48 Post-parietal 30

23 33 47 Sup frontal −23

−3 −38 45 Precuneus −24

−52 −63 15 TPJ −26

−16 29 54 Sup frontal −28

−59 −25 −15 Inf temporal −37

SPARSITY = 30%

−12 −12 6 Thalamus 61

11 −12 6 Thalamus 52

−12 −3 13 Thalamus 37

−41 −40 42 IPL 37

−20 6 7 Basal ganglia 34

18 −81 −33 Inf cerebellum −26

−3 −38 45 Precuneus −26

−21 −79 −33 Inf cerebellum −26

−52 −63 15 TPJ −31

−20 −33 −4 Parahippocampal −31

−59 −25 −15 Inf temporal −39

Regions highlighted in bold represent the regions show consistent differences

between the two networks across the three sparsity levels.

increases (Kitzbichler et al., 2011), and in awake state than during
non-rapid eye movement sleep (Boly et al., 2012).

In addition to the whole brain network properties, the current
study also identified hub regions by calculating degrees (number
of connections) for each ROI. In contrast to the high correlation
of network strengths between the coactivation network and the
resting-state network, the correlations of node degrees between
the two networks are small (around 0.3). This suggests a hub
shift between task performance and resting-state (Fransson et al.,
2011; Achard et al., 2012), which may reflect the adaptive brain
reorganization that support the execution of tasks. However, the

low correlations of degrees are inconsistent with a previous study
showing a high correlation of degrees between a passive fixation
condition and a continuous semantic classification task condition
(Buckner et al., 2009). The differences may be due to the method-
ological differences used by Buckner et al. (voxel-wise analysis);
the voxel-wise degree distributions are likely to be affected by the
underlying brain anatomy, and the high correlation between the
two degree maps may partially reflect the anatomical informa-
tion. In addition, the differences may also be explained by the
task adopted by Buckner et al., which is different from the current
coactivation approach. Further studies are needed to investigate
shifts in hubs elicited by different tasks.

The thalamus regions showed consistently higher degrees (the
number of connections with other regions) in the coactivation
network as compared with the resting-state network. The tha-
lamus relays visual and auditory information gathered from the
eyes and ears to the cerebral cortex (Hotta and Kameda, 1963).
Different parts of the thalamus have intensive connections to
wide spread cortical regions (Zhang et al., 2008; Eckert et al.,
2012). In addition, the thalamus as a relay is important for
corticocortical communication, and thus is suggested to be a
potential hub for the brain function (Guillery, 1995). Previous
resting-state fMRI studies occasionally identified the thalamus as
a hub region (van den Heuvel et al., 2008), however, most of
studies did not support this view (Achard et al., 2006; Buckner
et al., 2009; Yan and He, 2011; Zuo et al., 2012). This may be
because the centrality (as measured by degree or eigenvector
centrality) of the thalamus is context specific (Lohmann et al.,
2010; Gili et al., 2013). This is in line with the present result,
and suggests that the thalamus mediates corticocortical com-
munication during task, but this mediation is weakened in the
resting-state.

In contrast, the left inferior temporal cortex region revealed
higher degree in the resting-state network as compared with the
coactivation network. This region is part of the DMN (Raichle
et al., 2001; Buckner et al., 2008), which is generally deactivated
during tasks (Shulman et al., 1997). Regions that are connected
with the left inferior temporal cortex mostly constitute the DMN
(Figure 6D). Consistent with previous studies of brain centrality
(Achard et al., 2006; Buckner et al., 2009), the left inferior tempo-
ral cortex showed high centrality in resting-state. But, the current
analysis also revealed that the degree is significantly less in the
coactivation network. This may reflect the less involvement of this
region during tasks as compared with the resting-state (Shulman
et al., 1997).

By comparing network configurations of the coactivation net-
work with the resting-state network, the current analysis provides
insight on the different brain modes during task and resting-
state. The brain during task exhibits greater small-worldness that
facilitates global information transmission, and smaller modu-
larity that facilitate information transmission between different
systems. These results motivate future studies to investigate brain
network configurations in different task conditions. In addition,
the current analysis identified the thalamus as a hub region only
in the coactivation network but not the resting-state network,
suggesting that the role of thalamus in the brain network may
be overlooked when studying the resting-state brain network.
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FIGURE 6 | Connectivity of the thalamus (A,B) and left inferior temporal cortex (ITC) (C,D) for the coactivation (A,C) and resting-state correlation (B,D)

networks at sparsity of 20%.

A difficulty of studying thalamus connectivity is that the thalamus
is spatially heterogeneous, so that different substructures connect
to different brain regions (Zhang et al., 2008; Eckert et al., 2012).
Future studies may need to use fine spatial scales to investigate the
thalamus and its effect on network configurations (Wang et al.,
2009; Hayasaka and Laurienti, 2010).

Recently, several efforts have been made to study brain net-
works using inter-individual covariance from different imaging
modalities, for example brain structures (Mechelli et al., 2005;
Chen et al., 2008), brain metabolisms (Horwitz et al., 1984; Di
et al., 2012), and resting-state brain parameters (Zhang et al.,
2011; Taylor et al., 2012). Although these studies provide infor-
mation on brain integration, the lack of theoretical basis causes
difficulty in combining results from different imaging modal-
ities. The current study may provide a theoretical framework

to relate the different levels of brain network (e.g., anatomical,
metabolic, and hemodynamic) in terms of local/global efficiencies
and modular integrations. Future work on systematically compar-
ing different levels of brain network configuration will facilitate in
testing theories of brain organization such as the economic theory
(Bullmore and Sporns, 2012).
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Complex cognitive functions are widely recognized to be the result of a number of brain
regions working together as large-scale networks. Recently, complex network analysis
has been used to characterize various structural properties of the large-scale network
organization of the brain. For example, the human brain has been found to have a modular
architecture i.e., regions within the network form communities (modules) with more
connections between regions within the community compared to regions outside it. The
aim of this study was to examine the modular and overlapping modular architecture of
the brain networks using complex network analysis. We also examined the association
between neighborhood level deprivation and brain network structure—modularity and
gray nodes. We compared network structure derived from anatomical MRI scans of
42 middle-aged neurologically healthy men from the least (LD) and the most deprived
(MD) neighborhoods of Glasgow with their corresponding random networks. Cortical
morphological covariance networks were constructed from the cortical thickness derived
from the MRI scans of the brain. For a given modularity threshold, networks derived
from the MD group showed similar number of modules compared to their corresponding
random networks, while networks derived from the LD group had more modules
compared to their corresponding random networks. The MD group also had fewer gray
nodes—a measure of overlapping modular structure. These results suggest that apparent
structural difference in brain networks may be driven by differences in cortical thicknesses
between groups. This demonstrates a structural organization that is consistent with a
system that is less robust and less efficient in information processing. These findings
provide some evidence of the relationship between socioeconomic deprivation and brain
network topology.

Keywords: socioeconomic status, neighborhood deprivation, gray nodes, modularity, graph theory, cortical

thickness

INTRODUCTION
Overlapping large-scale networks that are organized across the
cortex form the anatomical and functional foundations of com-
plex cognitive processes (Bressler and Menon, 2010). Complex
network analysis based on graph theory has been recently used
on neuroimaging data (MRI, MEG, and EEG) to explore differ-
ent properties of these large-scale cortical network organization
(Sporns, 2011). These studies have shown that human brain net-
works are optimally functioning systems that demonstrate small
world properties, and a modular architecture (He et al., 2007;
Bassett et al., 2008; Chen et al., 2008; Bullmore and Sporns,
2012). Modularity is an index of community structure within
a large-scale network (Newman, 2006). That is, these networks
have a tendency to form modules or communities with more

connections between nodes within the module than between
modules. Structurally, modules represent discrete entities whose
functions are separable from those of other modules (Hartwell
et al., 1999).

While modularity is usually associated with robustness of
the network in biological systems, complex cognitive processes
(an index of performance of the network) are unlikely to occur
optimally within isolated modules (Hintze and Adami, 2008).
Rather, they are likely to be dependent on the coordinated
activity between several modules within the large-scale network.
Indeed, most biological networks that survive in nature are those
that achieve some balance between robustness and performance.
Intuitively, it would be beneficial if the human brain network
demonstrated modularity—increasing its robustness—but also
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had an architecture that facilitates efficient information transfer
between modules—thereby improving performance. Therefore,
while maintaining the advantages of having a modular architec-
ture, we propose that the human brain will also demonstrate
an overlapping modular architecture, where certain nodes (we
call gray nodes) are included in many modules at the same time
(Figure 1) (Zhao et al., 2011). Within an information process-
ing system, such architecture, will improve information transfer
between modules thereby increasing efficiency and performance
of the network in terms of having lesser number of edges and
shorter average path lengths. In short, while modularity repre-
sents the community architecture within a network, gray nodes
represents an index of overlapping communities.

Survival in adverse environments may be associated with
changes in network structure that make them less robust and
reduce their performance. Neighborhood level socioeconomic
status (SES) is associated with adversity and the presence of
risk factors for reduced physical and neurocognitive health (Diez
Roux and Mair, 2010; Srireddy et al., 2012). If indeed, cogni-
tive functions are dependent on optimal functioning (and hence
structure and topology) of large-scale brain networks, it is pos-
sible that SES is associated with changes in large-scale network
structure. A small number of neuroimaging studies have shown
SES to be associated with variations in individual brain anatomy
and functional connectivity in adults (Gianaros et al., 2007, 2008).
While network structure and topology have been found to be dis-
rupted in a number of mental illnesses, no study has examined the
relationship between neighborhood socioeconomic deprivation
and brain network structure in humans.

The aim of the present study was to apply complex
network analysis to examine the structural characteristics—
modularity and gray nodes—of cortical networks derived from
cortical morphology correlation (Figure 1). We also examined

FIGURE 1 | Shows the modular architecture (A) and gray nodes (B).

Gray nodes: Consider two fully connected networks (B), with four nodes
each and are fully connected. The two networks can be connected in two
different ways. If they are connected as the first left in the bottom, then one
additional edge is used. On the other hand, if they share the two nodes
depicted in gray, then the combined module saves resources, i.e., there are
two nodes and two edges less than the first combination. In addition, the
average path lengths are shortened than the one with the non-sharing
combination.

these structural characteristics in relation to socioeconomic
deprivation. There is growing evidence that cortical morphol-
ogy covariation is an indicator of connectivity between different
regions of the brain (Worsley et al., 2005; Lerch et al., 2006; He
et al., 2007; Bassett et al., 2008; Zalesky et al., 2010; Alexander-
Bloch et al., 2013). Graph-theoretical network analyses based on
morphological correlations have been used to examine brain net-
work structure in healthy and clinical samples (He et al., 2007,
2009; Bassett et al., 2008).

Using complex network analysis of magnetic resonance imag-
ing (MRI) surface-based morphometry we investigated the topo-
logical features of whole cortical anatomical networks in 42
neurologically healthy men from the most deprived (MD) and
least deprived (LD) neighborhoods of Glasgow (Sporns, 2011).
The connectivity matrices in the present study were derived from
region-wise cortical thickness correlations between 68 anatom-
ical parcellations and subjected to complex network analyses.
We propose that the brain networks derived thus will show
an overlapping modular architecture—by the presence of mod-
ules and gray nodes. We also examined to determine if these
structural properties differed significantly between neurologically
healthy people living in the most deprived (with higher risk
of reduced mental health cognitive functioning) and the least
deprived regions of Glasgow. Throughout the paper, “structural”
refers to the network structure (e.g., modularity or proportion of
gray nodes). We have used the term “anatomical” to refer to brain
anatomy.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited as part of a larger study
(Psychological, social and biological determinants of ill health
(pSoBid). Details of the design of pSoBid have been described
elsewhere (Velupillai et al., 2008; Deans et al., 2009; Knox et al.,
2012; McGuinness et al., 2012; McLean et al., 2012). Selection
of participants was based on the Scottish Index of Multiple
Deprivation 2004 (SIMD), which ranks small areas on the basis
of multiple deprivation indicators across six domains, namely:
income; employment; health; education, skills, and training; geo-
graphic access and telecommunications; and housing. Sampling
was stratified to achieve an approximately equal distribution of
the 666 participants across males and females and age groups
(35–44, 45–54, and 55–64 years) within the most (bottom 5% of
SIMD score) and LD areas (top 20% of SIMD score). Participants
could opt-in for the neuroimaging component of the study.
This paper presents the analysis from 42 male individuals who
were randomly selected. This included 21 people from the most
deprived regions and 21 from the least deprived regions, who
were age matched.

IMAGE ACQUISITION
All MR imaging were performed using GE Medical systems, 3T
Signa Excite HD system (Milwaukee, USA) using an eight chan-
nel phased array (receive only) head coil. An axial 3D T1-weighted
IR-FSPGR was acquired with TR = 6.8 ms; TE = 1.5 ms, Inversion
Preparation time = 500 ms; Flip angle = 12◦; FOV = 26 cm;
Phase FOV = 70%; matrix: 320 × 320; 160 slices; Bandwidth
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31.25 kHz; Slab thickness = 1 mm. The acquisition time for this
scan was 8 min 54 s.

Cortical thickness measurements and parcellations
Cortical reconstruction was performed with the FreeSurfer image
analysis suite, which is documented and freely available for down-
load online (http://surfer.nmr.mgh.harvard.edu/). (Dale et al.,
1999; Fischl et al., 1999; Fischl and Dale, 2000) Briefly, following
skull-stripping and correction of inhomogeneity artifact, con-
strained region growing was used to create a unitary white mat-
ter volume for each hemisphere. The gray-matter/white-matter
boundary for each cortical hemisphere was determined using tis-
sue intensity and neighborhood constraints. The white matter
surface was tessellated by assigning two triangles to the square
face of each surface voxel. This process yielded approximately
160000 vertices per hemisphere. The white matter surfaces were
deformed toward the gray matter/pial boundary, with a point to
point correspondence at each vertex. Cortical thickness was com-
puted as the distance between the white and the pial surfaces
at each vertex. Cross-subject registration of hemispheric corti-
cal surfaces was performed by projecting them onto the spherical
representations. The maps produced are not restricted to the voxel
resolution of the original images and are thus capable of detect-
ing sub-millimeter differences between groups. The parcellations
were obtained using the Desikan sulcogyral-based atlas, which
follows the anatomical conventions of Duvernoy. The FS image-
processing pipeline was visually inspected and corrected at critical
points in order to avoid errors permeating through the subse-
quent analyses. Procedures for the measurement of cortical thick-
ness have been validated against histological analysis and manual
measurements. The Desikan Killiany atlas produces 68 parcella-
tions based on gyri and sulci (Desikan et al., 2006). In addition
to the Desikan Killiany atlas parcellation scheme, we also used
fine-grained parcellation schemes based on anatomical sulcogyral

boundaries including the Destrieux atlas, (148 parcellations)
and fine-grained parcellation schemes (200, and 1000 parcella-
tions) that did not follow anatomical conventions described in
Echtermeyer et al. (Destrieux et al., 2010; Echtermeyer et al.,
2011). The pipeline of the analysis and the parcellation are shown
in Figure 2.

CORTICAL THICKNESS—BETWEEN GROUP COMPARISON
Statistical comparisons of global data and surface maps were
generated by computing a general linear model (GLM) of the
effect of neighborhood deprivation (independent variable) on
thickness (dependent variable) at each vertex in the cortical
mantle, using the Query, Design, Estimate, Contrast (QDEC)
interface of FreeSurfer. Age was used as nuisance covariate in
the model. QDEC is a single-binary application included in the
FreeSurfer distribution that is used to perform group averaging
and inference on the cortical morphometric data produced by the
FreeSurfer processing stream. (http://surfer.nmr.mgh.harvard.

edu/fswiki/Qdec). Maps were created using statistical thresholds
of p = 0.05 and were smoothed to a full width half maximum
(FWHM) level of 20 mm. Since this analysis involved performing
a GLM analysis at 160000 vertices, these maps were corrected for
multiple comparisons by means of a cluster-wise procedure using
the Monte Carlo Null-Z simulation method adapted for corti-
cal surface analysis and incorporated into the QDEC processing
stream. For these analyses, a total of 10,000 iterations of simula-
tion were performed for each comparison, using a threshold of
p = 0.05.

NETWORK CONSTRUCTION
Network construction was based on parcellations of cortical
thickness as described by He et al. (2007). We defined an anatom-
ical connection (edge) as statistical associations in cortical thick-
ness between cortical parcellations based on the Desikan Killiany

FIGURE 2 | Shows the pipeline of analysis, including the parcellation schemes—Desikan atlas and Destrieux atlas showing the sulcogyral

parcellations and the Finegrain 200 and 1000 atlas as in Echtermeyer et al. (2011).
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atlas included in the FreeSurfer pipeline (nodes). The statistical
similarity in cortical thickness between 2 regions was measured
by computing the Pearson’s correlation coefficient across subjects
to create an interregional correlation matrix (N × N, where N
is the number of brain regions based on Desikan cortical par-
cellation atlas, here N = 68). In order to keep the analysis as
close as possible to previous reports, prior to the correlation
analysis, a linear regression was performed at every region to
remove the effects of age, and mean overall cortical thickness;
the residuals of this regression were then substituted for the raw
cortical thickness values (He et al., 2007; Chen et al., 2008). In
order to be consistent with the cortical thickness group differ-
ence analysis presented above, the complex network analyses were
repeated without mean overall cortical thickness in the model,
but the results of our analysis did not differ significantly (results
not shown). A separate matrix was produced for the MD (21
subjects) and the LD (21 subjects). As a first step, all negative
correlations were discarded. As the correlation analysis was per-
formed for all 68 × 68/2 = 1431 pairs of regions, we performed
a multiple comparisons correction to test the significance of these
correlations.

We applied the false discovery rate (FDR) procedure sepa-
rately to each matrix in order to correct the multiple comparisons
at a q value of 0.2 (this was chosen as at 0.05, both matrices
were very sparse). (Genovese et al., 2002) Using this threshold,
we constructed a symmetric connection matrix (Figures 5, 6),
whose element was 1 if the cortical thickness correlation between
2 regions was statistically significant and 0 otherwise. This bina-
rized connection matrix captures the underlying anatomical con-
nection patterns of the human brain common to the population
sample under study. We repeated all the analyses on matrices
derived from the fine grained parcellation schemes described
above, in order to validate our findings using multiple parcella-
tion schemes.

MODULARITY
All the modularity metrics were calculated on the above two adja-
cency matrices separately and compared to corresponding ran-
dom networks. Modularity is an intuitional concept and there are
variations in the mathematical definitions, where each has its own
advantages and disadvantages. One common property among the
various ways of defining modularity, however, is accounting for
the agreed intuition about modularity, i.e., a module is a subset of
nodes in a graph, whose connections among the elements within
the subset are much denser than the ones to nodes outside the
subset. Newman suggested the following modularity measure,Q:

Q = max
s ∈ S

1

4m
sTBs,

where s is a column vector and element of the set S, S is the
set of all column vectors whose dimension are equal to the
number of nodes in the graph, n, and each component of the
vector is either −1 or +1, (·)T is the transpose. B is equal to
A − kkT/ (2m), A is the adjacency matrix, whose dimension is
n × n, and the i-th column (or row) and j-th row (or column)
element is 1 (or 0) if i-th and j-th nodes are connected by an edge
(or if there is no edge), k is a column vector whose element is the

number of edges connected for each node, i.e., the degree of node,
and m is the total number of edges. Roughly speaking, B quanti-
fies the difference between the number of edges found in a subset
of the given network structure, i.e., A, and the expected average
from the random graphs, whose nodes degree is the same as the
one of the given graph, i.e., kkT/ (2m). Hence, positive Q values
imply that there are more edges found than the expected and it is,
therefore, a module.

By obtaining s that maximizes the modularity, Q, the nodes
are divided into two groups, i.e., modules, depending on the cor-
responding values in the maximizing vector, s. The maximization
problem, however, is the integer quadratic programming prob-
lem, which is NP-hard. It is even computationally very difficult to
obtain the true solution, which gives the global maximum value of
Q. Note that Q is always less than or equal to 1. If the condition for
s is relaxed so that it can take any real numbers, then the problem
becomes finding maximum eigenvalue and the corresponding
eigenvector of the matrix, B. This can be solved efficiently using
the power-iteration, i.e., choosing an arbitrary initial vector, s0,
and recursively updating the vector using sk+1 = Bsk until it con-
verges. Then, s maximizing Q is calculated simply by taking the
sign of converged sk. To increase the chance of finding the global
solution, these procedures are repeated a number of times with
a different random initial vector, s0. If the calculated maximum
value, Q, is positive (or negative), then the graph is divided (or
declared indivisible).

Once the graph is divided into two modules, then each mod-
ule is inspected whether it can be further divided by solving the
following the maximization problem:

�Q = max
r ∈ Sg

1

4m
rTBgr,

where r is an element of the set sg , sg is the set of ng-dimension
column vectors whose element is either +1 or −1, ng is the num-
ber of nodes in the module, which is found in the previous step,
Bg is equal to Bij − diag [kg], Bij is a matrix constructed by a part
of B, where the rows and columns belong to the module, kg is the
degree of each nodes only concerning Bg , and diag [·] is the diago-
nal matrix, where the diagonal terms are given by the vector in the
argument and the other elements are zero. Again, if �Q > 0(or
�Q ≤ 0), then the module is divided into two smaller mod-
ules (or declared indivisible). The above procedures are repeated
on every module recursively until all modules are declared indi-
visible. By definition, the divisibility of a module is determined
based on whether the modularity measure is positive or not. Very
often, it is, hard to justify whether some subgroups of a graph
are modules if the modularity contribution, i.e., Q or �Q, is very
close to zero. As the mathematically possible maximum value
is 1, the modular structure is much clearer if the modularity is
closer to 1. Hence, the number of modules is calculated for var-
ious Q-threshold, which decides when modules are declared as
indivisible.

GRAY NODES
A network, in general, is not a simple collection of modules but a
combination of complicated overlapped modular structures, i.e.,
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it demonstrates a hierarchical modular architecture. The over-
lapped modular structures are hard to decipher into elementary
modules that pertain to the whole network. There are several
methods to unravel the overlapping modular structure. In order
to use a consistent measure with the modular calculation, an
extended modularity (Qe) is defined as follows:

Qe = max
se ∈ Se

1

4m
sT
e Bse,

where se is an element of the set, Se, and the set Se is the collec-
tion of vector, se, whose dimension is again, n, i.e., the number
of nodes, and its element is either -1, +1, or 0. Compare to the
vector s in S, se has one more degree of freedom in possible values
(Zhao et al., 2011). The nodes corresponding to zero are called
gray nodes, which are included in multiple modules at the same
time or are not included in any module. �Qe is defined in the
similar manner. Gray node is a similar concept to that of con-
nector hub and hierarchical or overlapping modular structure.
While connector hubs are defined as nodes with greater than aver-
age degree of the network and distributed between both local and
long range connections, gray nodes are defined as nodes that are
shared by modules. It is an index of overlapping modular archi-
tecture of the network. Previous literature has described such
overlapping architecture based on a prior definition of modular-
ity by Newman and Girvan (Newman and Girvan, 2004; Nicosia

et al., 2009; Lazar et al., 2010; Wang et al., 2012). On the other
hand, “gray nodes” are a unified way to define the structure in the
more recent modularity definition by Newman (Newman, 2006).
This provides an advantage that we measure modular architec-
ture, and the overlapping architecture using a consistent measure
without requiring significant changes in the algorithm (Newman,
2006).

All calculations presented in this paper are based on Monte-
Carlo simulations performed 1000 times. The distributions of all
calculations are confirmed to be similar to Gaussian distributions
(data not shown). Hence, there is no danger that the analyses
based on the mean and the variance may give any false inter-
pretations of the true distribution of the data. All graphs were
compared to random graphs (with the same number of nodes and
degree distribution as the corresponding brain networks).

RESULTS
Demographic details, differences in risk factors and performance
on cognitive tests of the participants are shown in Table 1. In
general, participants in the MD group had higher inflammatory
and metabolic risk markers, poorer GHQ scores and performed
poorly on a number of cognitive tests. Supplemental file shows
the details of how early life and current individual level SES were
derived. Table A1 shows that individual level SES covaried signif-
icantly with the neighborhood level deprivation status, and hence
were not included in our data analysis.

Table 1 | Demographic and clinical characteristics of study participants.

Least deprived n = 21 mean (s.d.) Most Deprived n = 21 mean (s.d.) t p

Age (years) 51.18 (8.7) 50.70 (8.75) 0.224 0.82

Alcohol units per week 15.81 (9.39) 18.61 (21.32) −0.55 0.58

Diet score 95.24 (48.55) 40.66 (32.92) 4.26 < 0.001

GHQ 28 score 1.48 (2.71) 5.00 (5.59) −2.59 0.015

NART errors 5.33 (3.719) 12.43 (6.66) −4.26 < 0.001

Choice reaction time 860.14 (115.66) 1064.48 (168.6) −4.5 < 0.001

Trail making test A 28.55 (7.59) 35.86 (12.97) −2.18 0.035

Trail making test B 61.74 (20.81) 90.42 (29.98) −3.4 0.002

RAVLT – trial 5 12.05 (1.74) 11.52 (2.06) 0.88 0.52

Cortisol (nmol/l) 354.37 (103.29) 398.63 (124.06) −1.19 0.24

CRP (mg/L) 1.17 (1.34) 3.40 (2.94) −3.16 0.004

ICAM (ng/ml) 234.48 (25.72) 309.67 (84.19) −3.81 0.001

IL6 (pg/ml) 2.6235 (5.42) 2.5320 (1.76) 0.07 0.94

Fibrogen (g/L) 2.94 (0.61) 3.17 (0.95) −0.89 0.37

D-dimer 89.81 (47.35) 150.32 (104.27) −2.32 0.029

Glucose (mmol/L) 5.42 (0.57) 5.31(1.15) 0.38 0.70

HDL (mmol/l) 1.22 (0.20) 1.26 (0.36) −0.46 0.64

Triglycerides (mmol/l) 1.71 (0.72) 2.29 (2.23) −1.14 0.26

Insulin (uIU/ml) 7.1820 (4.82) 9.857 (6 8.43) −1.23 0.22

Systolic BP (mmHg) 139.90 (17.03) 142.47 (20.96) −0.43 0.66

Diastolic BP (mmHg) 81.28 (8.53) 82.85 (11.33) −0.50 0.62

BMI (kg/m2) 27.02 (2.69) 28.42 (5.86) −0.99 0.33

Waist-Hip ratio 0.90 (0.05) 0.97 (0.072) −3.6 0.001

Intracranial volume (cc) 1572.94 (143.52) 1542.66 (161.72) 0.642 0.525

T, unpaired t-test; BMI, body mass index; CRP, C-reactive protein; IL-6, interleukin-6; ICAM-1, intercellular adhesion molecule.
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CORTICAL THICKNESS DIFFERENCES BETWEEN GROUPS
Initial analysis of cortical thickness across groups showed that
those from the most deprived population had significant cortical
thinning pertaining to bilateral perisylvian cortices. (Figure 3).

NETWORK ANALYSIS
We conducted all analyses on binarised matrices derived from
interregional correlations of cortical thickness. Initial examina-
tion of number of isolated modules showed that for a given
correlation threshold, the least deprived group had greater num-
ber of isolated groups compared to the deprived group (Figure 4).
The raw networks and FDR filtered networks are shown in
Figures 5, 6. The distribution of the groups’ correlation coeffi-
cients is shown in Figure 7. A direct comparison of the networks
derived from the above populations, was not possible, as for
a given correlation threshold, the sparsity (density) of the two
networks were significantly different (Figure 8). In addition, the
FDR procedure thresholded the two networks significantly differ-
ently. This method of thresholding resulted in different number of
edges—k—(sparsity) in the networks of the two groups because
of differences in their inter-regional cortical thickness correla-
tions. We therefore compared the network structure derived from
the groups to their corresponding random networks. The results
of this analysis are shown in Figures 9, 10.

Modularity and grey nodes
Firstly, the networks derived from both groups showed a modular
architecture, and the presence of gray nodes. Toward a modu-
larity of 0.3 (strong modularity), the least deprived network had
more modules, compared to its corresponding random network.
However, the most deprived network, showed no difference from
its random counterpart.

With regards the gray nodes, for a given a modularity toward
0.3, the least deprived network showed significantly greater num-
ber of gray nodes compared to the corresponding random net-
work. However, the most deprived network showed significantly

FIGURE 3 | Shows the difference in cortical thickness between the

most deprived and the least deprived groups. Red regions pertain to
regions where the most deprived group showed cortical thinning.
Covariates in the model—Age and alcohol use.

smaller proportion of gray nodes compared to its random coun-
terpart. While the differences between groups were maintained
in the Destreaux atlas (148 parcels) that followed the sulcogyral
boundaries, these differences were not seen with the finer grain
parcellations of 200 and 1000 parcels that did not follow the
sulcogyral scheme. (Figures 11A–C).

DISCUSSION
We have shown here that brain networks derived from cortical
morphological correlations show a modular organization, and
indeed an overlapping modular architecture as demonstrated by
the presence of gray nodes. We have also shown that neurolog-
ically healthy subjects from the MD regions of Glasgow differ
significantly in their brain network structure from those from the
LD regions in comparison to their corresponding random net-
works on relatively coarse parcellations schemes that followed the

FIGURE 4 | The correlation values in the matrices are distributed

between 0.1 and 0.9. By changing the correlation threshold from 0.2 to
0.85, the number of isolated groups are counted for the both groups. The
least deprived has more isolated groups than the deprived over the almost
all values of the correlation threshold. Affluent: Least deprived; Deprived:
Most deprived.

FIGURE 5 | The raw correlation matrix for each group shows that two

groups have almost equal number of non-zero components in the

matrix. The correlation matrix for each group is given by a 68 × 68 matrix,
where each value in the matrix is calculated from the cortical thickness
correlation measured in 21 individuals. Affluent: Least deprived; Deprived:
Most deprived.
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FIGURE 6 | In the correlation matrix for each group, all values below

the FDR threshold are set to zero, where. About three-times more edges
survived the FDR procedure in the most deprived than the least deprived
group. Affluent: Least deprived; Deprived: Most deprived.

FIGURE 7 | The distributions of correlation coefficients for both

groups. The vertical red lines are the FDR threshold values for each group.
Affluent: Least deprived; Deprived: Most deprived.

sulcogyral boundaries. Brain networks in the MD group showed
same number of modules and smaller proportion of gray nodes
compared to their corresponding random network. These differ-
ences, however, disappeared at fine-grained parcellation schemes
that did not follow the sulcogyral schemes.

A number of recent studies have shown that human brain net-
work structure derived from anatomical covariance demonstrates
a modular architecture (Chen et al., 2008, 2011). There are a
number of advantages in having a modular architecture. Kaiser
et al. suggest that this feature allows for low wiring costs; are
time scale separable; allows for the coexistence of integration and
segregation within a network; transient chimera states of resyn-
chronization and synchronization; and also allows for rapid and
robust assembly (Kaiser, 2007). In addition, a modular architec-
ture is robust against random attacks on the network and helps
to contain the effects of these attacks to the module, rather than
spreading through the network.

We compared the brain network graphs with random graphs
that had similar degree to the corresponding brain network. For

FIGURE 8 | Correlation and sparsity (Number of zeros divided by

Maximum possible number of edges) relations in cortical thickness

network. The most deprived have more edges (denser network) than the
least deprived for a fixed correlation threshold. On the other hand the least
deprived would have more false positive edges than the deprived and/or
the deprived would have more false negative edges than the least deprived
for a fixed sparsity. Affluent: Least deprived; Deprived: Most deprived.

FIGURE 9 | Number of modules and the corresponding random graphs

[indicated by “(R)”] with respect to various modularity (Q) threshold.

Error bars represent the 1σ-bound for each case. In the module calculation
algorithm, if the module contribution, Q or �Q, is less than the threshold, it
was declared indivisible. Higher thresholds imply strong modules. Affluent:
Least deprived; Deprived: Most deprived.

both the LD and MD groups, at lower modularity thresholds,
the brain network graphs had fewer modules compared to their
corresponding random graphs. However, this phenomenon was
reversed at higher thresholds. This is possibly because within
the constraints of fixed resources (nodes/edges), brain networks
enhance a few specific modules by rewiring and sacrificing
unwanted modules.

In our study, for a given number of modules, the brain
networks in the LD group showed stronger modular organization
than their corresponding random graphs. In other words, the net-
works derived from the most deprived group had more edges
between modules, which weakened the modular architecture.
Previous work by Chen et al. using a similar technique showed

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 722 | 165

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Krishnadas et al. PSOBID and brain networks

FIGURE 10 | Shows the proportion of gray nodes with respect to the

corresponding Modularity threshold. Error bars represent the 1σ-bound
for each case. In the module calculation algorithm, if the module
contribution, Q or �Q, is less than the threshold, it was declared indivisible.
Higher thresholds imply strong modules. Gray nodes have two implications
in the network structure: (i) efficient usage of resources and (ii) shorter
average distance between nodes. Recycling existing nodes and edges to
combine multiple modules saves limited resources to construct the
network. It is believed that reducing wiring resources is one of the major
selection pressure on the brain network evolution. Affluent: Least deprived;
Deprived: Most deprived.

that modules derived using correlations of cortical thickness,
broadly gave out six functionally relevant modules (Chen et al.,
2008). Using the same number (six modules) as Chen et al., the
modules were functionally more relevant in the LD population
(data not shown). For example, all anatomical regions pertaining
to language function were integrated together within a given
module. However, this was not the case with the MD. Anatomical
regions pertaining to similar function were distributed across
several modules, consistent with poor functional modular orga-
nization at a given threshold. While these modularity differences
may be due to anatomical differences between groups that we
have shown, these may have functional implications, as anatomi-
cal networks have been found to overlap with functional networks
(Alexander-Bloch et al., 2013). If we consider these networks
as information processing systems, then such a difference in
network structure could contribute to greater noise and less effi-
cient information processing within the system. However, a direct
interpolation of the results of our study is not possible due to the
static nature of our data.

We describe a new metric—gray node—as a measure of
overlapping modular organization. While modularity improves
the robustness within a system, it is unlikely that our brain
network achieves optimal performance by operating as a num-
ber of different isolated modules. As stated previously, cognitive
processes are likely to be the result of a number of modules inter-
acting with each other in a fast and efficient way. The overlapping
modular architecture—represented here by the presence of gray
nodes—is beneficial in that given a fixed number of resources it
provides the best modular architecture, maximizing the commu-
nication between modules thereby achieving a balance between
robustness and optimal performance. Gray nodes have two impli-
cations in the network structure: i) efficient usage of resources
and ii) shorter average distance between nodes. Recycling exist-
ing nodes and edges to combine multiple modules saves limited
resources to construct an efficient network. It is believed that

reducing wiring resources is one of the major selection pres-
sures on the brain network evolution. Our results suggest that
the networks derived from the MD group show much lower
efficiency compared to their corresponding random network
(Achard and Bullmore, 2007; Bullmore and Sporns, 2009). While
metrics describing overlapping modules have been outlined pre-
viously, gray nodes have the advantage that it was derived from
Newman (2006) and integrates well with the given modularity
metric (Newman, 2006).

While the structural differences may be driven by the differ-
ence in cortical thickness between the two groups, the reason
for the anatomical difference between the two groups is not
clear. It should be noted that the groups differed on a number
of variables that could potentially explain the observed differ-
ence. For example, those from the most deprived had poorer
mental health and also had higher levels of inflammation. (See
Table 1) We have previously shown inflammatory markers to
be associated with cortical thickness (Krishnadas et al., 2013).
We were, however, underpowered to explore the role of poten-
tial mediators that could explain the difference between groups
in structural properties. Previous studies have demonstrated age
related changes to modularity (Chen et al., 2011). Our groups
were matched for age. Similarly, mental illnesses have shown to
be associated with disruption to the modular architecture. A few
studies have also examined this property in medical conditions
like MS and epilepsy (He et al., 2009; Vaessen et al., 2012). A
number of studies have shown an association between socioe-
conomic deprivation and brain anatomy and function in both
children and adults, though none have examined the associa-
tion with network structure (Gianaros et al., 2011; Hanson et al.,
2011; Jednorog et al., 2012). A key question that remains is how
these anatomical differences could contribute to poorer cognitive
functioning and mental health. Interestingly, the MD group per-
formed poorly on all cognitive tests, including NART (National
adult reading test)—a test that is relatively stable through age,
and often considered a test of measure of the peak achieved intel-
lectual functioning. We did not examine if less modularity was
directly associated with poorer cognitive functioning as utiliz-
ing correlation coefficients to construct the matrix meant that
indices of modularity could not be calculated at an individual
level. However, change in network structure is a potential mecha-
nism by which regional anatomical brain deficits may contribute
to global network topology, thereby resulting in poorer cogni-
tive function. Previous studies have examined the relationship
between intelligence quotient (IQ) and network properties. For
example Li et al. found a significant positive correlation between
number of edges and IQ. They also found that those with greater
IQ had shorter path lengths, greater clustering coefficient (sim-
ilar to our findings) and in general greater global efficiency of
structural networks in the brain (Li et al., 2009). Similarly using
resting state fMRI to examine the overall organization of the brain
network using graph analysis, van den Heuvel et al. showed a
strong negative association between characteristic path length of
the resting-state brain network and IQ (Van Den Heuvel et al.,
2009). They suggest that human intellectual performance is likely
to be related to how efficiently the brain integrates information
between various brain regions.
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FIGURE 11 | Shows the number of modules and proportion of

gray nodes at a fine grain level—(A) parcellation following
sulcogyral boundaries—Destrieux atlas (148 parcels) and (B) a

parcellation scheme that does not follow the sulcogyral boundaries
[(B) 200 parcels and (C) 1000 parcels). Affluent: Least deprived;
Deprived: Most deprived.

NEIGHBORHOOD LEVEL vs. INDIVIDUAL LEVEL SES.
Socio-economic status (SES) refers to a multidimensional con-
struct that is usually measured using a number of economic
(e.g., income) and non-economic (e.g., education) indicators
(Hackman et al., 2010). SES can be measured at an individ-
ual/household or at a neighborhood level. Regardless of the level
of measurement (individual/neighborhood), SES has been asso-
ciated with significant health disparities (Diez Roux and Mair,
2010). Most of the studies previously mentioned have examined
the association between individual level SES and brain mor-
phology. But individual level explanations for poor health do

not capture significant social and structural determinants of ill
health (Diez Roux and Mair, 2010). It is well-established that
social circumstances have direct biological consequences, as well
as impact on health behaviors (see Diez Roux and Mair for a
detailed review on neighborhood deprivation). However, rela-
tively small number of studies have explored the contributions
of individual level SES indicators with neighborhood level indi-
cators to health inequalities. Neighborhood level deprivation has
been associated with poor health outcomes due to inequali-
ties in resource distribution. These neighborhoods have physical
(e.g., access to food) and social (e.g., violence) attributes that
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are contributors to health outcomes. However, individual and
neighborhood deprivation are likely to interact significantly. For
example, Stafford and Marmot found that living in a deprived
neighborhood has the most adverse impacts on poorer indi-
viduals possibly because they are more dependent on collective
resources of the neighborhood (Stafford and Marmot, 2003). In
our study, individual level SES covaried significantly with neigh-
borhood level SES. (For details of this analysis see Table A1 in
Appendix) Due to the nature of the sampling technique, people
from the most deprived neighborhoods also had poorer individ-
ual SES. This is partly because neighborhood deprivation scores
(SIMD) are derived from data pertaining to individuals in the
area. Since our groups differed inherently in their individual SES,
it was deemed inappropriate to co-vary for the effects of individ-
ual SES (Miller and Chapman, 2001). Our relatively small sample
size was also not sufficiently powered to examine if individual SES
contributed significant variance over and above that explained
by neighborhood SES or vice versa. The extreme group sampling
technique prevented us from examining any dose-response effect
of either individual or neighborhood level deprivation in our
sample.

EFFECT OF PARCELLATION SCHEME ON NETWORK STRUCTURE
Zalesky et al. have previously shown that network topology
vary considerably as a function of the spatial scale of the atlas
used (Zalesky et al., 2010). Previous reports that have exam-
ined cortical thickness covariance network structure in clinical
and non-clinical populations have used the same parcellation
scheme (Desikan-Killiany atlas) used in our study (Raj et al.,
2010; Hanggi et al., 2011; Romero-Garcia et al., 2012; Yang et al.,
2012). Of note, Romero-Garcia et al. in order to examine the
effect of network resolution on topological properties, compared
the Desikan-Killiany atlas based parcellation with finer parcella-
tion schemes of up to 1494 parcellations (Romero-Garcia et al.,
2012). Interestingly they found that highly grained cortical scales
showed enhanced local connectivity (clustering coefficient), and
local efficiency, but increased path length and decreased global
efficiency. Our findings resonate that of Romero-Garcia et al.,
in that, at different parcellation schemes, the network topologies
differed (Romero-Garcia et al., 2012). For fine-grained parcel-
lation schemes that did not follow sulcogyral boundaries, the
LD brain network, and MD brain network were similar. At a
modularity threshold of around 0.3, both network structural
properties looked similar to their random counterparts (suggest-
ing a decrease in global properties at more fine grained schemes)
(Figures 1A,B).

Anatomically, since cortical thickness is a continuous measure,
regions that lie close to each other will show very similar corti-
cal thickness and hence high correlation. Here, a fine parcellation
schemes, may uncover local connection (or a forking-U fiber con-
nection), while a coarse may not (see Figure 1 in Zalesky et al)
(Zalesky et al., 2010). In addition, regions close to each other are
likely to be anatomically connected by the tangential neurons and
dendrites. It is possible that in our case, the group differences dis-
appeared when geometrically close connections were exposed at
the finer parcellation schemes. In addition, at finer parcellation,
where the number of parcels far exceed the number of subjects in

the study, the study may have been significantly underpowered to
show significant differences between groups (Zalesky et al., 2010).

It is also possible that network structure derived from relatively
coarse parcellations are more representative of large scale corti-
cal networks, while the networks derived from the fine-grained
parcellations also include the meso/microscale connections rep-
resenting regional/local connections. Whatever the case, it is clear
that the granularity of chosen parcellations may affect the results
of the network analysis. Our data suggest that when exploring
connectivity, choosing the right granularity that is best suited
to answer the question of interest is vital. However, clear cut
guidelines pertaining to this are absent. One suggestion is that in
order to answer clinical questions, anatomically relevant atlases
like AAL or the sulcogyral parcellations (FreeSurfer) as used in
our study may be more relevant. Interestingly for a finer (than
Desikan atlas) parcellation that follows the sulcogyral bound-
aries (the Destreaux atlas—149 parcellations), the difference
between the brain and random networks in the most deprived
group disappear at around a modularity threshold of around 0.2
(Figure 11A).

SPARSITY (DENSITY) AND MODULARITY
Although we found significant differences between the networks
and their corresponding random graphs, we did not perform
a direct comparison of the network structure between the two
groups, as the thresholds imposed by the FDR correction led
to matrices that were significantly different in their sparsity
(density). Thresholding a matrix is a problem when compar-
ing networks that have different sparsity for a given correlation
coefficient (Van Wijk et al., 2010). While the reason for the
sparsity difference between the groups is not known, revealing
topological differences gives deeper insights into the difference
in networks than just revealing the sparsity difference. One rec-
ommended way to solve this problem is by fixing the sparsity
(density) of a matrix, and comparing the networks at the same
fixed sparsity threshold (Hanggi et al., 2011). This approach will,
however, increase the false negative or false positive correlations
at a given threshold. For instance, in our case, at more than 90%
of correlation thresholds, the LD network was more sparse (less
edges—k) than the MD. i.e., for a given correlation threshold,
the networks from both the groups were different in their size
(the number of edges). The difference in modularity between
groups may therefore be k dependent. This difference in correla-
tion threshold may have arisen from anatomical difference in the
bilateral perisylvian cortical thickness we found between groups.
While these morphological differences could have led to a reduc-
tion in correlation between regions that are actually connected,
this could also have led to an increase in the number of spurious
correlations (false positive), between regions that are not biologi-
cally connected, thereby contributing to noise within the network.
Therefore, introducing false edges by fixing the sparsity was not
thought to be meaningful.

CORTICAL THICKNESS CORRELATION AS A MEASURE OF
CONNECTIVITY
While the biological meaning of structural covariance is not clear,
structural covariance networks have been found to be genetically
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heritable, associated with cognitive function, recapitulate func-
tional networks, and change over the life span. See Alexander-
Bloch et al. (2013) for a detailed recent review of this literature
(Alexander-Bloch et al., 2013). Cortical volume is a construct
that is derived from two distinct properties of the cortical sheet:
cortical thickness and surface area and have distinct cellular and
genetic basis. Rakic’s (2007, 2009) radial unit hypothesis pro-
poses that symmetrical cell division within the neural stem cell
pool in the ventricular zone causes an exponential increase in
the number of radial columns—that result in surface area (SA)
expansion. This is independent of asymmetrical cell division in
the founder cells that is responsible for a linear increase in the
number of neurons within a radial column, contributing to cor-
tical thickness (CT) (Rakic, 2007). Complex network analysis
using graph theory using cortical structural covariance networks
derived from CT and cortical SA shows different structural prop-
erties, suggesting that they contribute to different properties
within cortical networks (Sanabria-Diaz et al., 2010). Cortical
gray matter volume is almost entirely driven by differences in
the cortical SA rather than CT. (Im et al., 2006) Secondly, recent
large scale studies have shown that these two parameters—CT
and SA—have independent genetic basis (Panizzon et al., 2009).
Thirdly, life course trajectories of these cortical parameters seem
to be different. While gyrification—a ratio of total SA to pial
SA remains fairly stable post childhood through to early adult-
hood, CT changes dynamically through this period (Rathbone
et al., 2011; Raznahan et al., 2011; Salinas et al., 2012). However,
more recent studies suggest that the relation between age and
cortical parameters in adulthood, are complex (Hogstrom et al.,
2012). CT in addition appears to be highly susceptible to various
environmental influences over the life course such as smoking,
alcohol dependence, and marijuana use while SA appears to be
influenced by various unique developmental factors (Kuhn et al.,
2010; Lopez-Larson et al., 2011; Momenan et al., 2012). This
highlights the importance of studying volume and thickness inde-
pendently in morphometric studies (Winkler et al., 2010). Surface
area appears to be influenced by various unique developmental
factors and is less susceptible to age-related differences in later life
(ref). These and other findings suggest that while cortical surface
areas increase significantly prenatally and remain fairly stable post
childhood, cortical thickness changes dynamically across the lifes-
pan (Raznahan et al., 2011; Salinas et al., 2012; Shaw et al., 2012).
We restricted our analysis to cortical thickness as we were exam-
ining the association between what an environmental variable
(deprivation) and a cortical parameter (cortical thickness) that
has previously shown to be influenced by environmental factors.
Further analysis using other parameters may reveal differences in
structural properties that are contributed by factors that may be
influenced early in life.

LIMITATIONS
While the positive features of this study include a well-
characterized community based cohort, there are limitations to
be acknowledged: the cross-sectional design limits our ability
to attribute causation and there is some selection bias in that
the participants opted in. We did not include any sub-cortical
regions particularly those that are relevant to physiological stress

response. Smaller sample size meant that there was a potential for
type 2 error, especially with regards the fine grain parcellations.
We excluded female subjects in order to reduce variance in
cortical morphology pertaining to gender. Further work would
involve replication of the study in a larger population, including
younger population, targeting critical periods of brain growth.
Finally, future work to develop a clearer biological framework of
a more comprehensive investigation of metabolic and inflamma-
tory markers may be more informative.

In summary, people from the MD population show less mod-
ular and overlapping modular architecture of the brain networks
derived from cortical morphology compared to their correspond-
ing random graphs at a coarse sulcogyral parcellation scheme.
At fine grained parcellation scheme that did not follow sulcogy-
ral boundaries, this difference disappeared. While the difference
in network structure at the coarse level may be the result of
anatomical differences at a large scale level, the exact etiopatho-
genesis and the consequence of this difference is not clear. Taken
together we propose that brain networks associated with MD
group may be less efficient in information and signal processing
at a large scale level. Future studies should look at longitu-
dinal functional and effective connectivity studies using MRI
and EEG/MEG to explore the effect of socioeconomic status on
development.
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APPENDIX
EARLY LIFE AND CURRENT SOCIOECONOMIC STATUS (SES)
Correspondence analysis was used to explore the factor struc-
ture of early and late SES. This is similar to factor analysis
for categorical data. These analyses confirmed that markers of
early and late SES are well-represented by single factors, and
determined the corresponding weight associated with each level
of each marker. By taking levels with positive and negative
weights as representing relative deprivation or affluence, the fol-
lowing cut-offs were used to derive early and late SES scores:
Early life SES (ESES) consisted of the following items: number

of siblings (> 3 = 0), people per room (> 1 = 0), paternal
social class (IIIM or below = 0), parental housing tenure (Not
owner = 0), use of a car by the family (no car = 0). The cur-
rent SES (CSES) score was derived from current income (<
25k = 0); current social class (III or lower = 0); current hous-
ing tenure (not owner = 0). For each variable, those deemed
to be least deprived scored 1 and those deemed to be most
deprived scored 0. These scores were then summed for each,
giving total score (0–5 for ESES, 0–3 for CSES), higher scores
suggesting more affluence. The components are shown in the
Table A1.

Table A1 | Individual level SES.

Affluent (N = 21) Deprived (N = 21) *p

Childhood overcrowding (no.
people per room at age 11)

n (missing) 21 (0) 21 (0)

≤1 12 (57.1%) 3 (14.3%) 0.0088

>1 9 (42.9%) 18 (85.7%)

Fathers social class n (missing) 21 (0) 19 (2)

I 5 (23.8%) 1 (5.3%) 0.0042

II 7 (33.3%) 0 (0.0%)

IIIM 4 (19.0%) 11 (57.9%)

IIINM 3 (14.3%) 3 (15.8%)

IV 2 (9.5%) 2 (10.5%)

V 0 (0.0%) 2 (10.5%)

Parents tenure status at age 11 n (missing) 21 (0) 21 (0)

Owner 12 (57.1%) 0 (0.0%) <0.001

Not owner 9 (42.9%) 21 (100.0%)

Parents owned car at age 11 n (missing) 21 (0) 21 (0)

Yes 12 (57.1%) 4 (19.0%) 0.0247

No 9 (42.9%) 17 (81.0%)

Number of siblings n (missing) 21 (0) 21 (0)

0–2 16 (76.2%) 13 (61.9%) 0.5055

3 or more 5 (23.8%) 8 (38.1%)

Current social class n (missing) 21 (0) 20 (1)

I 11 (52.4%) 0 (0.0%) <0.001

II 8 (38.1%) 3 (15.0%)

IIIM 0 (0.0%) 8 (40.0%)

IIINM 2 (9.5%) 2 (10.0%)

IV 0 (0.0%) 6 (30.0%)

V 0 (0.0%) 1 (5.0%)

Current income n (missing) 20 (1) 21 (0)

<£15,000 0 (0.0%) 8 (38.1%) <0.001

£15–25,000 1 (5.0%) 9 (42.9%)

£26–35,000 1 (5.0%) 2 (9.5%)

£36–45,000 3 (15.0%) 2 (9.5%)

> £45,000 15 (75.0%) 0 (0.0%)

Current tenure status n (missing) 21 (0) 21 (0)

Owner Occupier 20 (95.2%) 5 (23.8%) <0.001

Tenant 1 (4.8%) 16 (76.2%)

*Fishers exact test.
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With the advent and development of modern neuroimaging techniques, there is an
increasing interest in linking extraversion and neuroticism to anatomical and functional
brain markers. Here, we aimed to test the theoretically derived biological personality
model as proposed by Eysenck using graph theoretical analyses. Specifically, the
association between the topological organization of whole-brain functional networks
and extraversion/neuroticism was explored. To construct functional brain networks,
functional connectivity among 90 brain regions was measured by temporal correlation
using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy
subjects. Graph theoretical analysis revealed a positive association of extraversion scores
and normalized clustering coefficient values. These results suggested a more clustered
configuration in brain networks of individuals high in extraversion, which could imply a
higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts.
On a local network level, we observed that a specific nodal measure, i.e., betweenness
centrality (BC), was positively associated with neuroticism scores in the right precentral
gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For
individuals high in neuroticism, these results suggested a more frequent participation
of these specific regions in information transition within the brain network and, in turn,
may partly explain greater regional activation levels and lower arousal thresholds in these
regions. In contrast, extraversion scores were positively correlated with BC in the right
insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG),
indicating that the relationship between extraversion and regional arousal is not as simple
as proposed by Eysenck.

Keywords: resting-state, functional magnetic resonance imaging, graph topological properties, extraversion,

neuroticism

INTRODUCTION
In Eysenck’s personality theory, he proposed three fundamen-
tal dimensions of personality: extraversion, neuroticism, and
psychoticism (Eysenck, 1967; Eysenck and Eysenck, 1985). It
is now acknowledged that extraversion and neuroticism have
their biological bases (Matthews and Gilliland, 1999), while
the neuropsychology of the third dimension, psychoticism, has
not been worked out in detail. The arousal theory of Eysenck
(1967) related extraversion to arousability of the reticulo-
cortical circuit and proposed a higher arousal threshold in
cortex and higher levels of arousal tolerance in extraverts
(Eysenck, 1967; Eysenck and Eysenck, 1985; Fischer et al., 1998).
Neuroticism, on the other hand, is associated with arousability
of the limbic circuit, such that individuals with higher neu-
roticism scores have greater activation levels and lower thresh-
olds within subcortical structures (Eysenck, 1990; Wei et al.,
2012).

With the advent and development of modern neuroimaging
techniques, there is increasing interest in exploring neuroanatom-
ical or neurofunctional correlates of extraversion and neuroti-
cism, to test the theoretically proposed biological explanation of
the two fundamental dimensions. Neuroanatomical studies have
found extraversion was associated with structural/anatomic vari-
ations in the middle and inferior frontal regions, fusiform gyrus,
and insula (INS), whereas neuroticism was associated with varia-
tions in the orbitofrontal cortex, precentral gyrus (PreCG), and
amygdala (AMYG) (Rauch et al., 2005; Omura et al., 2005b;
Wright et al., 2006, 2007; Sollberger et al., 2009; DeYoung,
2010). In neurofunctional studies, functional magnetic resonance
imaging (fMRI) experiments have also demonstrated that spe-
cific brain regions that are engaged during cognitive-affective
tasks were associated with specific personality dimensions. For
example, activations in the prefrontal cortex, parietal cortex,
anterior cingulated cortex (ACC), and middle temporal gyrus
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(MTG) were correlated with extraversion (Canli et al., 2001;
Eisenberger et al., 2005; Hutcherson et al., 2008; Tamura et al.,
2012), while activations in the frontal cortex, dorsomedial pre-
frontal cortex, and AMYG were related to neuroticism (Canli
et al., 2001; Haas et al., 2007; Hooker et al., 2008; Harenski
et al., 2009). In addition, a positron emission tomography (PET)
study assessing resting regional cerebral blood flow (rCBF) found
that regions in ACC and temporal lobes were correlated with
extraversion (Johnson et al., 1999). Extraversion was associated
with regional cerebral glucose metabolism (rCMRglu) assessed
by PET in right putamen, while neuroticism was associated with
rCMRglu in the medial prefrontal cortex (MPFC) (Kim et al.,
2008). These studies indicated specialized, spatially distributed
regions were associated with personality dimensions of extraver-
sion and neuroticism, respectively, and provided neurobiological
evidence for the hypothesized biological model of Eysenck’s per-
sonality.

Instead of detection activation paradigms by task-based fMRI,
resting-state fMRI studies observe intrinsic spontaneous fluctua-
tions in the blood oxygen level-dependent (BOLD) fMRI signal
while avoiding the constraints of task-based approaches (Raichle
et al., 2001; Fox and Raichle, 2007; Raichle and Snyder, 2007;
Adelstein et al., 2011). There is accumulating evidence for local
characteristics of resting brain functions associated with per-
sonality dimensions using resting-state fMRI (Kunisato et al.,
2011; Wei et al., 2011, 2012; Hahn et al., 2012). Using regional
homogeneity (ReHo) approach, our prior study found ReHo was
correlated negatively with extraversion in the MPFC, and corre-
lated positively in INS, cerebellum, and cingulate gyrus; whereas
neuroticism had negative correlation with ReHo in left middle
frontal gyrus (Wei et al., 2011). In addition, by using other local
characteristics, i.e., the fractional amplitude of low-frequency
fluctuations (fALFF), our previous study found positive correla-
tions between LFF amplitude at Slow-5 and extraversion in MPFC
and PCU, and between LFF amplitude at Slow-5 and neuroticism
in right PreCG; LFF amplitude at Slow-4 was negatively associated
with extraversion and neuroticism in left hippocampus (HIP) and
bilateral superior temporal cortex (STC), respectively (Wei et al.,

2012). Table 1 summarizes the main results on the characteris-
tics of resting brain functions associated with extraversion and
neuroticism in recent resting-state fMRI studies.

From a functional integration perspective in the human brain,
the multiple spatially distinct brain regions are functionally con-
nected with coherent temporal dynamics (Friston et al., 1997;
Sporns et al., 2000; Van Den Heuvel et al., 2009), making up
complex and reciprocal brain networks even when we are at rest
(Greicius et al., 2003; Damoiseaux et al., 2006; Van Den Heuvel
et al., 2009). Such networks are thought to provide the physiolog-
ical basis for information processing and mental representation
(Canli, 2004; Bullmore and Sporns, 2009). Furthermore, evi-
dence for small-world attributes of brain networks has been
reported in the relative studies (Sporns et al., 2004; Stam, 2004;
Eguiluz et al., 2005; Achard et al., 2006; Van Den Heuvel et al.,
2009), indicating that small-world architectures in brain networks
deviating from randomness reflect their specific functionality
(Watts and Strogatz, 1998; Latora and Marchiori, 2001; Stam and
Reijneveld, 2007; Bullmore and Sporns, 2009; Van Den Heuvel
et al., 2009; He and Evans, 2010). Since personality factors may
well be related to the networks in the brain (Canli, 2004; Wilt
and Revelle, 2009), the analysis of task-independent, resting-state
functional connectivity may reveal the intrinsically organized
functional brain networks (Biswal et al., 1995), and allow for
a better understanding of the neurobiological bases of extraver-
sion and neuroticism. The recent study by Adelstein et al. (2011)
found that extraversion and neuroticism were encoded within
resting-state functional connectivity between seed regions and
the lateral paralimbic regions and dorsomedial prefrontal cortex,
respectively (Adelstein et al., 2011). However, the study was seed-
based and lacked a network perspective on brain dynamics. In the
present study, we hypothesized that the topological organization
of the whole-brain functional networks would be associated with
inter-individual variations in extraversion and neuroticism, and
would link to Eysenck’s cortical arousal theory of the two dimen-
sions. To test our hypothesis, an exploratory analysis based on
graph theory was thereby performed on the resting-state fMRI
data of 71 healthy subjects, to detect the intrinsic resting-state

Table 1 | The main results on the characteristics of resting brain functions associated with extraversion and neuroticism in recent resting-state

fMRI studies.

Method fALFF (Kunisato et al., 2011) Seed-based (ACC and PCU)

FC (Adelstein et al., 2011)

ReHo (Wei et al., 2011) fALFF (Slow-5 and Slow-4 bands)

(Wei et al., 2012)

Extraversion Striatum PCU FC between seed INS MPFC and PCU at Slow-5

SFG regions and lateral MCG

paralimbic regions MPFC HIP at Slow-4

MTG

Cerebellum

Neuroticism MFG FC between seed regions MFG PreCG at Slow-5

PCU and the dorsomedial STC at Slow-4

prefrontal cortex

ACC, anterior cingulate cortex; fALFF, fractional amplitude of low-frequency fluctuations; FC, functional connectivity; HIP, hippocampus; INS, insula; MCG, middle

cingulate gyrus; MFG, middle frontal gyrus; MPFC, medial prefrontal cortex; MTG, middle temporal gyrus; PCU, precuneus; PreCG, precentral gyrus; ReHo, regional

homogeneity; SFG, superior frontal gyrus; STC, superior temporal cortex.
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functional connectivity mechanisms underlying the two person-
ality dimensions.

MATERIALS AND METHODS
PARTICIPANTS
We conducted the analysis with the same dataset in our previous
study (Wei et al., 2011). Eighty-seven healthy right-handed sub-
jects (48 males; age range: 17–36 yrs, mean age: 23.5 yrs) with
no history of neurological or psychiatric disorders participated in
the study. The present study was approved by the local Medical
Ethics Committee at Jinling Hospital, Nanjing University School
of Medicine, and the informed written consents were obtained
from all participants.

PERSONALITY QUESTIONNAIRES
The revised Eysenck personality questionnaire short scale for
Chinese (EPQ-RSC) (Eysenck, 1991; Qian et al., 2000) was used
to assess personality dimensions of extraversion, neuroticism, and
psychoticism of each subject before MRI scanning. Raw scores of
the three dimensions were then converted into T-scores using the
formula (Qian et al., 2000), respectively:

T = 50 + 10 × raw score − mean

SD
,

where mean represents the mean value of the personality scores
over all the subjects; SD is the standard deviation of the per-
sonality scores. We focused our analyses on extraversion and
neuroticism whose resultant T-scores were used for calculating
correlations with the brain network metrics.

IMAGE ACQUISITION
Resting-state fMRI images were acquired using a single-shot,
gradient-recalled echo planar imaging (EPI) sequence on a 3.0-T
Siemens Trio scanner (Jinling Hospital, Nanjing, China). The
acquisition parameters were: TR = 2000 ms, TE = 30 ms, field
of view (FOV) = 240 mm, image matrix size = 64 × 64, voxel
size = 3.75 × 3.75 × 4 mm3, 30 transverse slices without slice
gap, flip angle = 90◦, and a total of 255 volumes for each
subject.

DATA PREPROCESSING
Data preprocessing was performed using the Statistical
Parametric Mapping software (SPM8, http://www.fil.ion.

ucl.ac.uk/spm). The first five volumes were discarded to ensure
steady-state longitudinal magnetization. The remaining resting-
state fMRI images were first corrected by the acquisition time
delay among different slices, and then realigned to the first
volume for head-motion correction. The dataset with transla-
tional or rotational parameters exceeding ±1 mm or ±1◦ would
be excluded, according to our previous study on functional
connectivity network (Liao et al., 2010). The images of remaining
71 participants were further spatially normalized into a stan-
dard stereotaxic space at 3 × 3 × 3 mm3, using the Montreal
Neurological Institute (MNI) template in SPM8. In order to
avoid artificially introducing local spatial correlation, no spatial
smoothing was applied, as previous studies suggested (Salvador
et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007; Liao

et al., 2010). Since recent studies have showed that functional
connectivity analysis is sensitive to gross head motion effects
(Power et al., 2012; Van Dijk et al., 2012), we further evaluated
the framewise displacement (FD) (Power et al., 2012) to express
instantaneous head motion, and the threshold of 0.5 was sug-
gested. The mean ± SD of FD over subjects was: 0.1080 ± 0.0159.
Six subjects’ FD values were beyond 0.5, but only in one frame
for each subject. Scrubbing process was performed using toolbox
“ArtRepair” in SPM8.

The mean time series of each ROI was corrected by a linear
regression to remove the possible spurious variances including six
head motion parameters acquired from the SPM8 preprocessing,
the white matter (WM) and the ventricular brain signals averaged
from a WM mask and a ventricular mask respectively (Fox et al.,
2005; Salvador et al., 2005; Tian et al., 2006; Liao et al., 2010). The
residuals of these regressions were temporally band-pass filtered
(0.01 < f < 0.08 Hz) to reduce low-frequency drifts and physio-
logical high-frequency respiratory and cardiac noise (Biswal et al.,
1995), and linearly detrended for further functional connectivity
and graph-theory analysis (Tian et al., 2006; Liao et al., 2010).
The following approaches based on graph theory were performed
by an in-house program coded in MATLAB (The Mathworks,
Natick, MA).

COMPUTATION OF FUNCTIONAL CONNECTIVITY NETWORK
Node definition
To define the brain nodes, the anatomical parcellation was per-
formed using the automated anatomical labeling (AAL) template,
segmenting the images into 90 anatomical regions of interests
(ROIs) (45 ROIs for each hemisphere). The representative time
series in each ROI was obtained by averaging the fMRI time series
across all voxels in the ROI.

Edge definition
To define the network edges, the residuals of the regression anal-
ysis were used to compute the Pearson’s correlation, resulting in
a 90 × 90 correlation matrix for each subject. A Fisher’s r-to-z
transformation was applied to the correlation matrices of all the
subjects to improve the normality of the correlation coefficients
(r) (Liu et al., 2008). The undirected edge eij between node i and
node j is defined as:

eij =
{

1 when |rij| > T
0 otherwise

In general, if the absolute value of rij of a pair of brain regions,
i and j, exceeds a predefined threshold T, an edge is assumed
to exist; otherwise, no existence would be assumed (Liao et al.,
2010).

GRAPH THEORETICAL ANALYSIS
Network metrics
The topological properties of the brain functional networks can
be measured by both nodal and global network measures. In this
study, we calculated the nodal measures including the degree Ki,
the clustering coefficient Ci, the minimum path length Li, the
efficiency Ei, and the betweenness centrality BCi of a node i; the
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global measures including the average degree K, the network effi-
ciency involving the local efficiency Elocal and the global efficiency
Eglobal, the characteristic path length L, the clustering coefficient
of a network C, the normalized clustering coefficient γ, the nor-
malized characteristic path length λ, and the small-worldness σ.

Degree. The degree at each node, Ki, i = 1, 2, . . . , 90, is defined
as the number of nodes in a subgraph Gi, which is the graph
including the nodes that are direct neighbors of node i. Briefly,
Ki denotes to which extent the node is connected to the rest of the
network (Bullmore and Sporns, 2009; Wang et al., 2010). A node
with a higher degree has more connections (where each connec-
tion is counted once). The average degree K is the mean of Ki of
all the nodes in the network.

Clustering coefficient. The absolute clustering coefficient Ci of
a node is the ratio between the number of existing connections
and the number of all possible connections in the subgraph Gi.
Ci quantifies the level of local connectedness within a network
(Bullmore and Sporns, 2009; Van Den Heuvel et al., 2009; He and
Evans, 2010)

Ci = ei

Ki(Ki − 1)/2
,

where ei is the number of edges in the subgraph Gi. The clustering
coefficient of the network C is the mean of Ci of all the nodes in
the network.

Minimum path length. The nodal minimum path length Li is
defined as the mean shortest absolute path length of node i to
other nodes in a network (Bullmore and Sporns, 2009), which
quantifies the level of routing efficiency or the capability for paral-
lel information propagation of a network (Van Den Heuvel et al.,
2009; He and Evans, 2010; Liao et al., 2010)

Li = 1

N − 1

∑
i �= j ∈ G

min{Li, j},

where min {Li,j} is the shortest absolute path length between
node i and node j, and the absolute path length is the number
of edges included in the path connecting two nodes. The char-
acteristic path length L is the mean of Li of all the nodes in the
network.

Efficiency. The nodal efficiency Ei is the inverse of the harmonic
mean of the length between node i and all other nodes in the net-
work, to deal with the disconnected graphs, non-sparse graphs or
both (Latora and Marchiori, 2001; Bassett and Bullmore, 2006;
Wang et al., 2010)

Ei = 1

N − 1

∑
j ∈ G
j �= i

1

min{Li, j} .

The global efficiency Eglobal of the network is the mean of Ei of all
the nodes in the network.

In the subgraph Gi, we can calculate the local efficiency of node
i as:

Ei_local = 1

NGi(NGi − 1)

∑
j,k ∈ Gi

j �= k

1

min{Lj, k} .

The local efficiency Elocal of the network is then similarly defined
as the mean of Ei_local of all the nodes in the network (Rubinov
and Sporns, 2010).

Betweenness centrality. The betweenness centrality BCi is
defined as the fraction of all shortest paths in the network that
pass through node i (Rubinov and Sporns, 2010). BCi describes
the central nodes that participate in many short paths within a
network, and consequently act as important controls of informa-
tion flow (Freeman, 1978)

BCi = 1

(N − 1)(N − 2)

∑
j, k ∈ G

i �= j �= k

ρj, k(i)

ρj, k
,

where ρj, kis the number of shortest paths between node j and k;
ρj, k(i) is the number of shortest paths between j and k that pass
through node i (Rubinov and Sporns, 2010).

Small-world parameters. Compared with random networks
characterized by a low clustering coefficient and a typical short
path length, networks with a small-world organization have a
higher clustering coefficient and similar path length, i.e., γ =
C/Crandom > 1, λ = L/Lrandom ≈ 1, namely normalized clustering
coefficient and normalized characteristic path length, respec-
tively (Watts and Strogatz, 1998). These two conditions can also
be summarized into a quantitative measurement, σ = γ/λ > 1,
namely small-worldness (Humphries et al., 2006; Wang et al.,
2010). Crandom and Lrandom were calculated as the averaged
clustering coefficient and characteristic path length of a set of
100 random networks with the same degree distribution as that of
the examined functional connectivity network (Van Den Heuvel
et al., 2009; Liao et al., 2010). The random networks were gen-
erated based on a Markov-chain algorithm, according to our
previous study (Liao et al., 2010).

Threshold selection
The threshold T was defined as the total number of edges in a
graph divided by the maximum possible number of edges (Achard
and Bullmore, 2007), namely wiring cost. We investigated the
topological properties of brain functional network over a range of
Tmin ≤ T ≤ Tmax. (1) Tmin was selected by thresholding all net-
works to construct a sparse graph with the average degree K ≥ 2×
log (N) (here N = 90 represents the number of nodes); (2) Tmax

was selected to ensure the small-worldness σ of the thresholded
networks be larger than 1.1 for all participants (Liao et al., 2010;
Zhang et al., 2011). The resultant threshold range of 0.10 ≤ T ≤
0.31 was used in our study. This range of sparsity allows the
thresholded networks to be estimable for small-worldness and the
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functional connectivity mechanisms underlying the two person-
ality dimensions.

MATERIALS AND METHODS
PARTICIPANTS
We conducted the analysis with the same dataset in our previous
study (Wei et al., 2011). Eighty-seven healthy right-handed sub-
jects (48 males; age range: 17–36 yrs, mean age: 23.5 yrs) with
no history of neurological or psychiatric disorders participated in
the study. The present study was approved by the local Medical
Ethics Committee at Jinling Hospital, Nanjing University School
of Medicine, and the informed written consents were obtained
from all participants.

PERSONALITY QUESTIONNAIRES
The revised Eysenck personality questionnaire short scale for
Chinese (EPQ-RSC) (Eysenck, 1991; Qian et al., 2000) was used
to assess personality dimensions of extraversion, neuroticism, and
psychoticism of each subject before MRI scanning. Raw scores of
the three dimensions were then converted into T-scores using the
formula (Qian et al., 2000), respectively:

T = 50 + 10 × raw score − mean

SD
,

where mean represents the mean value of the personality scores
over all the subjects; SD is the standard deviation of the per-
sonality scores. We focused our analyses on extraversion and
neuroticism whose resultant T-scores were used for calculating
correlations with the brain network metrics.

IMAGE ACQUISITION
Resting-state fMRI images were acquired using a single-shot,
gradient-recalled echo planar imaging (EPI) sequence on a 3.0-T
Siemens Trio scanner (Jinling Hospital, Nanjing, China). The
acquisition parameters were: TR = 2000 ms, TE = 30 ms, field
of view (FOV) = 240 mm, image matrix size = 64 × 64, voxel
size = 3.75 × 3.75 × 4 mm3, 30 transverse slices without slice
gap, flip angle = 90◦, and a total of 255 volumes for each
subject.

DATA PREPROCESSING
Data preprocessing was performed using the Statistical
Parametric Mapping software (SPM8, http://www.fil.ion.

ucl.ac.uk/spm). The first five volumes were discarded to ensure
steady-state longitudinal magnetization. The remaining resting-
state fMRI images were first corrected by the acquisition time
delay among different slices, and then realigned to the first
volume for head-motion correction. The dataset with transla-
tional or rotational parameters exceeding ±1 mm or ±1◦ would
be excluded, according to our previous study on functional
connectivity network (Liao et al., 2010). The images of remaining
71 participants were further spatially normalized into a stan-
dard stereotaxic space at 3 × 3 × 3 mm3, using the Montreal
Neurological Institute (MNI) template in SPM8. In order to
avoid artificially introducing local spatial correlation, no spatial
smoothing was applied, as previous studies suggested (Salvador
et al., 2005; Achard et al., 2006; Achard and Bullmore, 2007; Liao

et al., 2010). Since recent studies have showed that functional
connectivity analysis is sensitive to gross head motion effects
(Power et al., 2012; Van Dijk et al., 2012), we further evaluated
the framewise displacement (FD) (Power et al., 2012) to express
instantaneous head motion, and the threshold of 0.5 was sug-
gested. The mean ± SD of FD over subjects was: 0.1080 ± 0.0159.
Six subjects’ FD values were beyond 0.5, but only in one frame
for each subject. Scrubbing process was performed using toolbox
“ArtRepair” in SPM8.

The mean time series of each ROI was corrected by a linear
regression to remove the possible spurious variances including six
head motion parameters acquired from the SPM8 preprocessing,
the white matter (WM) and the ventricular brain signals averaged
from a WM mask and a ventricular mask respectively (Fox et al.,
2005; Salvador et al., 2005; Tian et al., 2006; Liao et al., 2010). The
residuals of these regressions were temporally band-pass filtered
(0.01 < f < 0.08 Hz) to reduce low-frequency drifts and physio-
logical high-frequency respiratory and cardiac noise (Biswal et al.,
1995), and linearly detrended for further functional connectivity
and graph-theory analysis (Tian et al., 2006; Liao et al., 2010).
The following approaches based on graph theory were performed
by an in-house program coded in MATLAB (The Mathworks,
Natick, MA).

COMPUTATION OF FUNCTIONAL CONNECTIVITY NETWORK
Node definition
To define the brain nodes, the anatomical parcellation was per-
formed using the automated anatomical labeling (AAL) template,
segmenting the images into 90 anatomical regions of interests
(ROIs) (45 ROIs for each hemisphere). The representative time
series in each ROI was obtained by averaging the fMRI time series
across all voxels in the ROI.

Edge definition
To define the network edges, the residuals of the regression anal-
ysis were used to compute the Pearson’s correlation, resulting in
a 90 × 90 correlation matrix for each subject. A Fisher’s r-to-z
transformation was applied to the correlation matrices of all the
subjects to improve the normality of the correlation coefficients
(r) (Liu et al., 2008). The undirected edge eij between node i and
node j is defined as:

eij =
{

1 when |rij| > T
0 otherwise

In general, if the absolute value of rij of a pair of brain regions,
i and j, exceeds a predefined threshold T, an edge is assumed
to exist; otherwise, no existence would be assumed (Liao et al.,
2010).

GRAPH THEORETICAL ANALYSIS
Network metrics
The topological properties of the brain functional networks can
be measured by both nodal and global network measures. In this
study, we calculated the nodal measures including the degree Ki,
the clustering coefficient Ci, the minimum path length Li, the
efficiency Ei, and the betweenness centrality BCi of a node i; the
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FIGURE 2 | The brain regions showing significantly correlations between

AUC of BCi and extraversion scores (p < 1.90). AUC was calculated over
the range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01. The cyan color

represents the negative correlations, while the magenta color represents the
positive correlations. INS, insular; L, left; MTG, middle temporal gyrus;
R, right.

THE ASSOCIATIONS BETWEEN NETWORK METRICS AND
NEUROTICISM
No global measures showed significant correlation with neuroti-
cism. Significant correlations were revealed in the AUC of BCi,
too. Neuroticism scores showed increased significant correla-
tion with BCi in right PreCG, right olfactory cortex (OLF), right

caudate nucleus (CAU), and bilateral AMYG. No significantly neg-
ative correlation was found. Figure 4 indicates the brain regions
showing significant correlations between BCi and neuroticism
scores along with the corresponding correlation coefficients.

Figure 5 depicts the topological characteristics of BCi as a
function of wiring cost thresholds, in the brain regions whose BCi
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FIGURE 3 | The topological characteristics of network metrics which

have significant associations with extraversion, as a function of wiring

cost thresholds. The asterisk indicates the threshold where the significant

correlation between the metric and extraversion was detected (permutation
testing, p < 1/90). The inset figure indicates the correlation between the
metric and extraversion at wiring cost = 0.22.

values have significant associations with neuroticism. The aster-
isk also indicates the threshold where the significant correlation
between the metric and neuroticism was detected (permuta-
tion testing, p < 1.90). The inset figure indicates the correlation
between the metric and neuroticism at wiring cost = 0.22.

THE PREDICTION OF PERSONALITY SCORES BY LEAVE-ONE-OUT
APPROACH
Figure 6 shows the predicted and original pairs of extraversion
(Figure 6A) and neuroticism (Figure 6B) scores, respectively. The
Pearson’s correlation coefficients of the predicted and original
personality scores were 0.536 (p = 0.146 × 10−7) for extraver-
sion, and 0.547 (p = 0.784 × 10−8) for neuroticism. The preci-
sions of individual prediction were 11.4% for extraversion and
21.7% for neuroticism.

DISCUSSION
METHODOLOGICAL CONSIDERATIONS
The present study differed from our previous studies in both
hypothesis and analysis methods. In the previous studies, the
purpose was to identify the associations between the personality

dimensions and the local synchronization of spontaneous BOLD
activity (Wei et al., 2011), or between the personality dimen-
sions and the fLFF in individual brain regions (Wei et al., 2012).
Thereby the analysis method as well as the results obtained was at
the functional segregation level.

Since the multiple spatially distinct brain regions are function-
ally connected with coherent temporal dynamics, the topological
properties of the brain functional networks may predict individ-
ual differences in the two fundamental personality dimensions.
To test this hypothesis, in the present study, we applied the graph
theory method to explore the correlation between the network
metrics in the resting-state brain network and the personality
dimensions of extraversion and neuroticism at the functional
integration level. To the best of our knowledge, the present study
is among the first demonstrations of an association between
personality dimensions and the properties of the resting-state
functional network.

EXTRAVERSION AND THE NETWORK METRICS
The present results showed that compared to individuals with
lower extraversion scores, individuals with higher extraversion
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FIGURE 4 | Continued
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FIGURE 3 | The topological characteristics of network metrics which

have significant associations with extraversion, as a function of wiring

cost thresholds. The asterisk indicates the threshold where the significant

correlation between the metric and extraversion was detected (permutation
testing, p < 1/90). The inset figure indicates the correlation between the
metric and extraversion at wiring cost = 0.22.

values have significant associations with neuroticism. The aster-
isk also indicates the threshold where the significant correlation
between the metric and neuroticism was detected (permuta-
tion testing, p < 1.90). The inset figure indicates the correlation
between the metric and neuroticism at wiring cost = 0.22.

THE PREDICTION OF PERSONALITY SCORES BY LEAVE-ONE-OUT
APPROACH
Figure 6 shows the predicted and original pairs of extraversion
(Figure 6A) and neuroticism (Figure 6B) scores, respectively. The
Pearson’s correlation coefficients of the predicted and original
personality scores were 0.536 (p = 0.146 × 10−7) for extraver-
sion, and 0.547 (p = 0.784 × 10−8) for neuroticism. The preci-
sions of individual prediction were 11.4% for extraversion and
21.7% for neuroticism.

DISCUSSION
METHODOLOGICAL CONSIDERATIONS
The present study differed from our previous studies in both
hypothesis and analysis methods. In the previous studies, the
purpose was to identify the associations between the personality

dimensions and the local synchronization of spontaneous BOLD
activity (Wei et al., 2011), or between the personality dimen-
sions and the fLFF in individual brain regions (Wei et al., 2012).
Thereby the analysis method as well as the results obtained was at
the functional segregation level.

Since the multiple spatially distinct brain regions are function-
ally connected with coherent temporal dynamics, the topological
properties of the brain functional networks may predict individ-
ual differences in the two fundamental personality dimensions.
To test this hypothesis, in the present study, we applied the graph
theory method to explore the correlation between the network
metrics in the resting-state brain network and the personality
dimensions of extraversion and neuroticism at the functional
integration level. To the best of our knowledge, the present study
is among the first demonstrations of an association between
personality dimensions and the properties of the resting-state
functional network.

EXTRAVERSION AND THE NETWORK METRICS
The present results showed that compared to individuals with
lower extraversion scores, individuals with higher extraversion

Frontiers in Human Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 257 |181

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Gao et al. Personality and brain’s topological properties

FIGURE 2 | The brain regions showing significantly correlations between

AUC of BCi and extraversion scores (p < 1.90). AUC was calculated over
the range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01. The cyan color

represents the negative correlations, while the magenta color represents the
positive correlations. INS, insular; L, left; MTG, middle temporal gyrus;
R, right.

THE ASSOCIATIONS BETWEEN NETWORK METRICS AND
NEUROTICISM
No global measures showed significant correlation with neuroti-
cism. Significant correlations were revealed in the AUC of BCi,
too. Neuroticism scores showed increased significant correla-
tion with BCi in right PreCG, right olfactory cortex (OLF), right

caudate nucleus (CAU), and bilateral AMYG. No significantly neg-
ative correlation was found. Figure 4 indicates the brain regions
showing significant correlations between BCi and neuroticism
scores along with the corresponding correlation coefficients.

Figure 5 depicts the topological characteristics of BCi as a
function of wiring cost thresholds, in the brain regions whose BCi
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number of spurious edges to be minimized (Watts and Strogatz,
1998; Achard and Bullmore, 2007; He et al., 2008; Zhang et al.,
2011).

ASSOCIATION BETWEEN NETWORK ORGANIZATION AND
PERSONALITY DIMENSIONS
All the nodal and global measures were thresholded repeat-
edly over the range of 0.1 ≤ T ≤ 0.31 with an interval of 0.01,
and the area under the curve (AUC) for each network metric
was calculated, which provides a summarized scalar for topo-
logical characterization of brain networks independent of single
threshold selection (Zhang et al., 2011). The partial correlation
was then calculated between the AUC of each network metric
and extraversion/neuroticism scores, with age and gender being
covariates.

To assess the statistical significance of the correlation, the
null distribution for each network metric was obtained by non-
parametric permutation tests. Accordingly, 5000 subject specific
random networks were generated at each threshold as null-model
reference networks. The correlations between the AUC of each
network metric and the personality scores were recalculated to
obtain the null distribution. 1/number of regions was used as a
false-positive correction, which implied that there was less than
one false positive regional result per cortical map at this threshold
(Lynall et al., 2010; Fornito et al., 2011).

LEAVE-ONE-OUT PREDICTION
To test the validity of the significantly correlated measures in
predicting personality scores of extraversion and neuroticism,
a leave-one-out cross-validation strategy was applied. The sig-
nificantly correlated measures acted as explanatory variables in
the linear regression models to predict the personality scores. The
predicted results of all the subjects were assessed by calculating the
Pearson’s correlation between the predicted values and the origi-
nal values. The precision of individual prediction was assessed by
the average of the absolute relative errors between the predicted
and original scores.

RESULTS
DESCRIPTIVE STATISTICS OF THE PERSONALITY DIMENSIONS
Table 2 describes the scores of the three personality dimen-
sions from the EPQ-RSC questionnaire, and Table 3 describes
the correlations across the scores of the three dimensions. As
two dimensions concerned in the present study, extraversion had

Table 2 | Descriptive Statistics of the three personality dimensions of

71 participants.

Category Data

Gender (male/female) 38/33

Age (years) 23.219 ± 2.031

Extraversion (E) 56.172 ± 8.703

Neuroticism (N) 43.048 ± 12.822

Psychoticism (P) 46.581 ± 8.229

Age and personality scores are displayed as mean ± SD.

a moderate negative correlation with neuroticism (r = −0.238,
p = 0.046). The result was concordant with many prior studies,
suggesting an inverse relationship between extraversion and neu-
roticism (Rusting and Larsen, 1997; Wright et al., 2006; Kim et al.,
2008). Therefore, we added extraversion (or neuroticism) scores
as covariate when calculating the partial correlation between neu-
roticism (or extraversion) and the AUC of each network metric,
to obtain effects that were uniquely driven by each personality
dimension.

THE ASSOCIATIONS BETWEEN NETWORK METRICS AND
EXTRAVERSION
Among all the global measures of the network calculated in the
present study, only the AUC of normalized clustering coefficient
γ showed significant correlation with extraversion (Figure 1). As
for the nodal measures, results indicated that only the AUC of BCi

showed significant correlations with extraversion. Extraversion
significantly increased with BCi in left INS, while significantly
decreased with BCi in bilateral MTG. Figure 2 demonstrates the
brain regions showing significant correlations between their BCi

and extraversion scores along with the corresponding correlation
coefficients.

Figure 3 depicts the topological characteristics of network
metrics which have significant associations with extraversion, as
a function of wiring cost thresholds. The asterisk indicates the
threshold where the significant correlation between the metric
and extraversion was detected (permutation testing, p < 1.90).
The inset figure indicates the correlation between the metric and
extraversion at wiring cost = 0.22.

Table 3 | Correlations between scores of the three personality

dimensions.

p N

N 0.106 (p = 0.379)
E −0.205 (p = 0.086) −0.238 (p = 0.046*)

E, extraversion; N, neuroticism; P, psychoticism. *p < 0.05.

FIGURE 1 | The correlation between the area under the curve (AUC) of

γ and extraversion scores (p < 1.90). AUC was calculated over the range
of 0.1 ≤ T ≤ 0.31 with an interval of 0.01.
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specific brain regions in the PreCG and limbic system, provid-
ing some supporting evidence for Eysenck’s biological theory of
neuroticism. Furthermore, the right lateralization of these regions
with regard to neuroticism gave neurofunctional evidence to
the preferential involvement of brain’s right hemisphere in emo-
tions and motivational states associated with withdrawal aspect of
neuroticism.

ACKNOWLEDGMENTS
This work was supported by grants from the Natural Science
Foundation of China (61035006, 91132721, and 61125304);
Postdoctoral Science Foundation of China (20100481378) and
Special Postdoctoral Science Foundation of China (2012T50772).
The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

REFERENCES
Achard, S., and Bullmore, E. (2007).

Efficiency and cost of econom-
ical brain functional networks.
PLoS Comput. Biol. 3:e17. doi:
10.1371/journal.pcbi.0030017

Achard, S., Salvador, R., Whitcher,
B., Suckling, J., and Bullmore,
E. (2006). A resilient, low-
frequency, small-world human
brain functional network with
highly connected association corti-
cal hubs. J. Neurosci. 26, 63–72. doi:
10.1523/JNEUROSCI.3874-05.2006

Ackerman, P. L., and Heggestad,
E. D. (1997). Intelligence,
personality, and interests: evi-
dence for overlapping traits.
Psychol. Bull. 121, 219–245. doi:
10.1037/0033-2909.121.2.219

Adelstein, J. S., Shehzad, Z., Mennes,
M., Deyoung, C. G., Zuo, X. N.,
Kelly, C., et al. (2011). Personality
is reflected in the brain’s intrin-
sic functional architecture. PLoS
ONE 6:e27633. doi: 10.1371/jour-
nal.pone.0027633

Bai, S., Zhu, T., and Cheng, L.
(2012). Big-five personality pre-
diction based on user behaviors at
social network sites. Comput. Soc.
arXiv:1204.4809.

Bassett, D. S., and Bullmore, E. (2006).
Small-world brain networks.
Neuroscientist 12, 512–523. doi:
10.1177/1073858406293182

Biswal, B., Yetkin, F. Z., Haughton,
V. M., and Hyde, J. S. (1995).
Functional connectivity in the
motor cortex of resting human
brain using echo-planar MRI.
Magn. Reson. Med. 34, 537–541. doi:
10.3410/f.714597885.790202808

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph
theoretical analysis of structural
and functional systems. Nat.
Rev. Neurosci. 10, 186–198. doi:
10.1038/nrn2575

Canli, T. (2004). Functional brain
mapping of extraversion and neu-
roticism: learning from individ-
ual differences in emotion process-
ing. J. Pers. 72, 1105–1132. doi:
10.1111/j.1467-6494.2004.00292.x

Canli, T., Zhao, Z., Desmond, J. E.,
Kang, E., Gross, J., and Gabrieli,
J. D. (2001). An fMRI study of

personality influences on brain
reactivity to emotional stimuli.
Behav. Neurosci. 115, 33–42. doi:
10.1037/0735-7044.115.1.33

Cremers, H. R., Demenescu, L. R.,
Aleman, A., Renken, R., Van Tol, M.
J., Van Der Wee, N. J., et al. (2010).
Neuroticism modulates amygdala-
prefrontal connectivity in response
to negative emotional facial expres-
sions. Neuroimage 49, 963–970. doi:
10.1016/j.neuroimage.2009.08.023

Critchley, H., Daly, E., Phillips,
M., Brammer, M., Bullmore, E.,
Williams, S., et al. (2000). Explicit
and implicit neural mechanisms
for processing of social information
from facial expressions: a functional
magnetic resonance imaging study.
Hum. Brain Mapp. 9, 93–105.

Cunningham, W. A., Arbuckle, N.
L., Jahn, A., Mowrer, S. M., and
Abduljalil, A. M. (2010). Aspects
of neuroticism and the amygdala:
chronic tuning from motiva-
tional styles. Neuropsychologia
48, 3399–3404. doi: 10.1016/
j.neuropsychologia.2010.06.026

Damoiseaux, J. S., Rombouts, S. A.,
Barkhof, F., Scheltens, P., Stam,
C. J., Smith, S. M., et al. (2006).
Consistent resting-state networks
across healthy subjects. Proc. Natl.
Acad. Sci. U.S.A.103, 13848–13853.
doi: 10.1073/pnas.0601417103

Davidson, R. J. (2002). Anxiety
and affective style: role of pre-
frontal cortex and amygdala.
Biol. Psychiatry 51, 68–80. doi:
10.1016/S0006-3223(01)01328-2

DeYoung, C. G. (2010). Personality
neuroscience and the biology
of traits. Soc. Personal. Psychol.
Compass 4, 1165–1180. doi:
10.1111/j.1751-9004.2010.00327.x

DeYoung, C. G. (ed.). (2011).
Intelligence and Personality. New
York, NY: Cambridge University
Press.

DeYoung, C. G., Peterson, J. B., Seguin,
J. R., and Tremblay, R. E. (2008).
Externalizing behavior and the
higher order factors of the Big Five.
J. Abnorm. Psychol. 117, 947–953.
doi: 10.1037/a0013742

Dolcos, F., Labar, K. S., and Cabeza,
R. (2004). Interaction between the
amygdala and the medial temporal

lobe memory system predicts
better memory for emotional
events. Neuron 42, 855–863. doi:
10.1016/S0896-6273(04)00289-2

Eguiluz, V. M., Chialvo, D. R.,
Cecchi, G. A., Baliki, M., and
Apkarian, A. V. (2005). Scale-
free brain functional networks.
Phys. Rev. Lett. 94, 018102. doi:
10.1103/PhysRevLett.94.018102

Eisenberger, N. I., Lieberman, M.
D., and Satpute, A. B. (2005).
Personality from a controlled pro-
cessing perspective: an fMRI study
of neuroticism, extraversion, and
self-consciousness. Cogn. Affect.
Behav. Neurosci. 5, 169–181. doi:
10.3758/CABN.5.2.169

Eysenck, H. J. (1967). The Biological
Basis of Personality. Springfield, IL:
Charles C. Thomas.

Eysenck, H. J. (ed.). (1990). Biological
Dimensions of Personality. New York,
NY: Guilford Press.

Eysenck, H. J. (1991). Manual of the
Eysenck Personality Scales (EPS
Adult). London: Hodder and
Stoughton.

Eysenck, H. J. (ed.). (1994). Personality:
Biological Foundations. London:
Academic Press.

Eysenck, H. J., and Eysenck, M. W.
(eds.). (1985). Personality and
Individual Differences: a Natural
Science Approach. New York, NY;
Plenum Press.

Fischer, H., Wik, G., and Fredrikson, M.
(1998). Extraversion, Neuroticism
and brain function: a PET study
of personality. Pers. Indiv. Differ.
23, 345–352. doi: 10.1016/S0191-
8869(97)00027-5

Fitzgerald, P. B., Laird, A. R., Maller,
J., and Daskalakis, Z. J. (2008).
A meta-analytic study of changes
in brain activation in depression.
Hum. Brain Mapp. 29, 683–695. doi:
10.1002/hbm.20426

Fornito, A., Yoon, J., Zalesky, A.,
Bullmore, E. T., and Carter, C. S.
(2011). General and specific func-
tional connectivity disturbances in
first-episode schizophrenia during
cognitive control performance.
Biol. Psychiatry 70, 64–72. doi:
10.1016/j.biopsych.2011.02.019

Fox, M. D., and Raichle, M. E. (2007).
Spontaneous fluctuations in brain

activity observed with functional
magnetic resonance imaging. Nat.
Rev. Neurosci. 8, 700–711. doi:
10.1038/nrn2201

Fox, M. D., Snyder, A. Z., Vincent,
J. L., Corbetta, M., Van Essen, D.
C., and Raichle, M. E. (2005). The
human brain is intrinsically orga-
nized into dynamic, anticorrelated
functional networks. Proc. Natl.
Acad. Sci. U.S.A. 102, 9673–9678.
doi: 10.1073/pnas.0504136102

Freeman, L. C. (1978). Centrality in
social networks: conceptual clarifi-
cation. Soc. Netw. 1, 215–239. doi:
10.1016/0378-8733(78)90021-7

Friston, K. J., Buechel, C., Fink, G. R.,
Morris, J., Rolls, E., and Dolan, R.
J. (1997). Psychophysiological and
modulatory interactions in neu-
roimaging. Neuroimage 6, 218–229.
doi: 10.1006/nimg.1997.0291

Gray, J. R., Burgess, G. C., Schaefer, A.,
Yarkoni, T., Larsen, R. J., and Braver,
T. S. (2005). Affective personality
differences in neural processing effi-
ciency confirmed using fMRI. Cogn.
Affect. Behav. Neurosci. 5, 182–190.
doi: 10.3758/CABN.5.2.182

Greicius, M. D., Krasnow, B., Reiss,
A. L., and Menon, V. (2003).
Functional connectivity in the rest-
ing brain: a network analysis of the
default mode hypothesis. Proc. Natl.
Acad. Sci. U.S.A.100, 253–258. doi:
10.1073/pnas.0135058100

Guitart-Masip, M., Pascual, J. C.,
Carmona, S., Hoekzema, E., Berge,
D., Perez, V., et al. (2009). Neural
correlates of impaired emotional
discrimination in borderline per-
sonality disorder: an fMRI study.
Prog. Neuropsychopharmacol. Biol.
Psychiatry 33, 1537–1545. doi:
10.1016/j.pnpbp.2009.08.022

Guo, W. B., Sun, X. L., Liu, L.,
Xu, Q., Wu, R. R., Liu, Z. N.,
et al. (2011). Disrupted regional
homogeneity in treatment-resistant
depression: a resting-state fMRI
study. Prog. Neuropsychopharmacol.
Biol. Psychiatry 35, 1297–1302. doi:
10.1016/j.pnpbp.2011.02.006

Haas, B. W., Omura, K., Constable,
R. T., and Canli, T. (2007).
Emotional conflict and neu-
roticism: personality-dependent
activation in the amygdala and

Frontiers in Human Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 257 |184

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Gao et al. Personality and brain’s topological properties

subgenual anterior cingulate.
Behav. Neurosci. 121, 249–256. doi:
10.1037/0735-7044.121.2.249

Hahn, T., Dresler, T., Ehlis, A. C.,
Pyka, M., Dieler, A. C., Saathoff,
C., et al. (2012). Randomness of
resting-state brain oscillations
encodes Gray’s personality trait.
Neuroimage 59, 1842–1845. doi:
10.1016/j.neuroimage.2011.08.042

Harenski, C. L., Kim, S. H., and
Hamann, S. (2009). Neuroticism
and psychopathy predict brain acti-
vation during moral and non-
moral emotion regulation. Cogn.
Affect Behav. Neurosci. 9, 1–15. doi:
10.3758/CABN.9.1.1

He, Y., Chen, Z., and Evans, A.
(2008). Structural insights into
aberrant topological patterns
of large-scale cortical net-
works in Alzheimer’s disease.
J. Neurosci. 28, 4756–4766. doi:
10.1523/JNEUROSCI.0141-08.2008

He, Y., and Evans, A. (2010).
Graph theoretical modeling
of brain connectivity. Curr.
Opin. Neurol. 23, 341–350. doi:
10.1097/WCO.0b013e32833aa567

Hooker, C. I., Verosky, S. C., Miyakawa,
A., Knight, R. T., and D’Esposito, M.
(2008). The influence of personality
on neural mechanisms of obser-
vational fear and reward learning.
Neuropsychologia 46, 2709–2724.
doi: 10.1016/j.neuropsychologia.
2008.05.005

Humphries, M. D., Gurney, K., and
Prescott, T. J. (2006). The brainstem
reticular formation is a small-
world, not scale-free, network.
Proc. Biol. Sci. 273, 503–511. doi:
10.1098/rspb.2005.3354

Hutcherson, C. A., Goldin, P. R.,
Ramel, W., McRae, K., and Gross,
J. J. (2008). Attention and emotion
influence the relationship between
extraversion and neural response.
Soc. Cogn. Affect. Neurosci. 3, 71–79.
doi: 10.1093/scan/nsm040

Iaria, G., Committeri, G., Pastorelli,
C., Pizzamiglio, L., Watkins, K. E.,
and Carota, A. (2008). Neural activ-
ity of the anterior insula in emo-
tional processing depends on the
individuals’ emotional susceptibil-
ity. Hum. Brain Mapp. 29, 363–373.
doi: 10.1002/hbm.20393

Jackson, C. J. (2005). How preferred
ear for listening moderates emo-
tional cognitions in the predic-
tion of personality. Laterality 10,
305–320. doi: 10.1080/13576500442
000102

Johnson, D. L., Wiebe, J. S., Gold, S.
M., Andreasen, N. C., Hichwa,
R. D., Watkins, G. L., et al.
(1999). Cerebral blood flow and
personality: a positron emission

tomography study. Am. J. Psychiatry
156, 252–257.

Kehoe, E. G., Toomey, J. M., Balsters,
J. H., and Bokde, A. L. (2012).
Personality modulates the effects
of emotional arousal and valence
on brain activation. Soc. Cogn.
Affect. Neurosci. 7, 858–870. doi:
10.1093/scan/nsr059

Kim, S. H., Hwang, J. H., Park, H.
S., and Kim, S. E. (2008). Resting
brain metabolic correlates of neu-
roticism and extraversion in young
men. Neuroreport 19, 883–886. doi:
10.1097/WNR.0b013e328300080f

Kunisato, Y., Okamoto, Y., Okada,
G., Aoyama, S., Nishiyama,
Y., Onoda, K., et al. (2011).
Personality traits and the amplitude
of spontaneous low-frequency
oscillations during resting state.
Neurosci. Lett. 492, 109–113. doi:
10.1016/j.neulet.2011.01.067

Lamm, C., and Singer, T. (2010). The
role of anterior insular cortex in
social emotions. Brain Struct. Funct.
214, 579–591. doi: 10.1007/s00429-
010-0251-3

Latora, V., and Marchiori, M. (2001).
Efficient behavior of small-world
networks. Phys. Rev. Lett. 87,
198701. doi: 10.1103/PhysRevLett.
87.198701

Liao, W., Zhang, Z., Pan, Z., Mantini,
D., Ding, J., Duan, X., et al. (2010).
Altered functional connectivity and
small-world in mesial temporal lobe
epilepsy. PLoS ONE 5:e8525. doi:
10.1371/journal.pone.0008525

Liu, Y., Liang, M., Zhou, Y., He, Y.,
Hao, Y., Song, M., et al. (2008).
Disrupted small-world networks in
schizophrenia. Brain 131, 945–961.
doi: 10.1093/brain/awn018

Liu, Z., Xu, C., Xu, Y., Wang, Y.,
Zhao, B., Lv, Y., et al. (2010).
Decreased regional homogeneity in
insula and cerebellum: a resting-
state fMRI study in patients with
major depression and subjects at
high risk for major depression.
Psychiatry Res. 182, 211–215. doi:
10.1016/j.pscychresns.2010.03.004

Lynall, M. E., Bassett, D. S., Kerwin,
R., McKenna, P. J., Kitzbichler, M.,
Muller, U., et al. (2010). Functional
connectivity and brain networks
in schizophrenia. J. Neurosci.
30, 9477–9487. doi: 10.1523/
JNEUROSCI.0333-10.2010

Matthews, G., and Gilliland, K. (1999).
The personality theories of H.J.
Eysenck and J.A. Gray: a com-
parative review. Pers. Indiv. Differ.
26, 583–626. doi: 10.1016/S0191-
8869(98)00158-5

Moutafi, J., Furnham, A., and Tsaousis,
I. (2006). Is the relationship
between intelligence and trait

neuroticism mediated by test anxi-
ety? Pers. Indiv. Differ. 40, 587–597.
doi: 10.1016/j.paid.2005.08.004

Nagai, M., Kishi, K., and Kato,
S. (2007). Insular cortex and
neuropsychiatric disorders: a
review of recent literature. Eur.
Psychiatry 22, 387–394. doi:
10.1016/j.eurpsy.2007.02.006

Olson, I. R., Plotzker, A., and Ezzyat,
Y. (2007). The Enigmatic tem-
poral pole: a review of findings
on social and emotional process-
ing. Brain 130, 1718–1731. doi:
10.1093/brain/awm052

Omura, K., Aron, A., and Canli,
T. (2005a). Variance maps as a
novel tool for localizing regions
of interest in imaging studies of
individual differences. Cogn. Affect.
Behav. Neurosci. 5, 252–261. doi:
10.3758/CABN.5.2.252

Omura, K., Todd Constable, R.,
and Canli, T. (2005b). Amygdala
gray matter concentration is
associated with extraversion and
neuroticism. Neuroreport 16,
1905–1908. doi: 10.1097/01.wnr.
0000186596.64458.76

Paulus, M. P., and Stein, M. B.
(2006). An insular view of anxiety.
Biol. Psychiatry 60, 383–387. doi:
10.1016/j.biopsych.2006.03.042

Power, J. D., Barnes, K. A., Snyder,
A. Z., Schlaggar, B. L., and
Petersen, S. E. (2012). Spurious
but systematic correlations in
functional connectivity MRI net-
works arise from subject motion.
Neuroimage 59, 2142–2154. doi:
10.1016/j.neuroimage.2011.10.018

Qian, M., Wu, G., Zhu, R., and Zhang,
S. (2000). Development of the
revised eysenck personality ques-
tionnaire short scale for Chinese
(EPQ-RSC). Acta. Psychol. Sinica 32,
317–323.

Raichle, M. E., Macleod, A. M.,
Snyder, A. Z., Powers, W. J.,
Gusnard, D. A., and Shulman,
G. L. (2001). A default mode of
brain function. Proc. Natl. Acad.
Sci. U.S.A. 98, 676–682. doi:
10.1073/pnas.98.2.676

Raichle, M. E., and Snyder, A. Z. (2007).
A default mode of brain function:
a brief history of an evolving
idea. Neuroimage 37, 1083–1090.
discussion: 1097–1089. doi:
10.1016/j.neuroimage.2007.02.041

Rauch, S. L., Milad, M. R., Orr, S.
P., Quinn, B. T., Fischl, B., and
Pitman, R. K. (2005). Orbitofrontal
thickness, retention of fear extinc-
tion, and extraversion. Neuroreport
16, 1909–1912. doi: 10.1097/01.wnr.
0000186599.66243.50

Rubinov, M., and Sporns, O. (2010).
Complex network measures of

brain connectivity: uses and
interpretations. Neuroimage
52, 1059–1069. doi: 10.1016/
j.neuroimage.2009.10.003

Rusting, C. L., and Larsen, R. J. (1997).
Extraversion, neuroticism, and sus-
ceptibility to positive and negative
affect: a test of two theoretical mod-
els. Pers. Indiv. Differ. 22, 607–612.
doi: 10.1016/S0191-8869(96)00246-
2

Salvador, R., Suckling, J., Coleman,
M. R., Pickard, J. D., Menon,
D., and Bullmore, E. (2005).
Neurophysiological architecture
of functional magnetic reso-
nance images of human brain.
Cereb. Cortex 15, 1332–1342. doi:
10.1093/cercor/bhi016

Shackman, A. J., McMenamin, B. W.,
Maxwell, J. S., Greischar, L. L.,
and Davidson, R. J. (2009). Right
dorsolateral prefrontal cortical
activity and behavioral inhibition.
Psychol. Sci. 20, 1500–1506. doi:
10.1111/j.1467-9280.2009.02476.x

Sollberger, M., Stanley, C. M., Wilson,
S. M., Gyurak, A., Beckman,
V., Growdon, M., et al. (2009).
Neural basis of interpersonal traits
in neurodegenerative diseases.
Neuropsychologia 47, 2812–2827.
doi: 10.1016/j.neuropsychologia.
2009.06.006

Sporns, O., Chialvo, D. R., Kaiser,
M., and Hilgetag, C. C. (2004).
Organization, development and
function of complex brain net-
works. Trends Cogn. Sci. 8, 418–425.
doi: 10.1016/j.tics.2004.07.008

Sporns, O., Tononi, G., and Edelman,
G. M. (2000). Connectivity
and complexity: the relation-
ship between neuroanatomy
and brain dynamics. Neural
Netw. 13, 909–922. doi:
10.1016/S0893-6080(00)00053-8

Stam, C. J. (2004). Functional con-
nectivity patterns of human
magnetoencephalographic record-
ings: a ‘small-world’ network?
Neurosci. Lett. 355, 25–28. doi:
10.1016/j.neulet.2003.10.063

Stam, C. J., and Reijneveld, J. C.
(2007). Graph theoretical analysis
of complex networks in the brain.
Nonlinear Biomed. Phys. 1, 3. doi:
10.1186/1753-4631-1-3

Tamura, M., Moriguchi, Y., Higuchi, S.,
Hida, A., Enomoto, M., Umezawa,
J., et al. (2012). Neural network
development in late adolescents
during observation of risk-taking
action. PLoS ONE 7:e39527. doi:
10.1371/journal.pone.0039527

Tian, L., Jiang, T., Wang, Y., Zang,
Y., He, Y., Liang, M., et al. (2006).
Altered resting-state functional
connectivity patterns of anterior

Frontiers in Human Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 257 |185

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Gao et al. Personality and brain’s topological properties

cingulate cortex in adolescents
with attention deficit hyperactivity
disorder. Neurosci. Lett. 400, 39–43.
doi: 10.1016/j.neulet.2006.02.022

Tran, Y., Craig, A., Boord, P., Connell,
K., Cooper, N., and Gordon,
E. (2006). Personality traits
and its association with resting
regional brain activity. Int. J.
Psychophysiol. 60, 215–224. doi:
10.1016/j.ijpsycho.2005.05.008

Van Den Heuvel, M. P., Stam, C.
J., Kahn, R. S., and Hulshoff
Pol, H. E. (2009). Efficiency
of functional brain networks
and intellectual performance.
J. Neurosci. 29, 7619–7624. doi:
10.1523/JNEUROSCI.1443-09.2009

Van Dijk, K. R., Sabuncu, M. R.,
and Buckner, R. L. (2012). The
influence of head motion on
intrinsic functional connectivity
MRI. Neuroimage 59, 431–438. doi:
10.1016/j.neuroimage.2011.07.044

Wang, J., Zuo, X., and He, Y. (2010).
Graph-based network analysis
of resting-state functional MRI.
Front. Syst. Neurosci. 4:16. doi:
10.3389/fnsys.2010.00016

Watts, D. J., and Strogatz, S. H.
(1998). Collective dynamics of
‘small-world’ networks. Nature
393, 440–442. doi: 10.1038/30918

Wei, L., Duan, X., Yang, Y., Liao,
W., Gao, Q., Ding, J. R., et al.
(2011). The synchronization
of spontaneous BOLD activity
predicts extraversion and neuroti-
cism. Brain Res. 1419, 68–75. doi:
10.1016/j.brainres.2011.08.060

Wei, L., Duan, X., Zheng, C., Wang, S.,
Gao, Q., Zhang, Z., et al. (2012).
Specific frequency bands of ampli-
tude low-frequency oscillation
encodes personality. Hum. Brain
Mapp. doi: 10.1002/hbm.22176.
[Epub ahead of print].

Wilt, J., and Revelle, W. (2009).
Extraversion. New York, NY:
Guilford Press.

Wolf, M. B., and Ackerman, P. L.
(2005). Extraversion and intelli-
gence: a meta-analytic investigation.
Pers. Indiv. Differ. 39, 531–542. doi:
10.1016/j.paid.2005.02.020

Wolf, R. C., Sambataro, F., Vasic,
N., Schmid, M., Thomann,
P. A., Bienentreu, S. D., et al.

(2011). Aberrant connectiv-
ity of resting-state networks in
borderline personality disorder.
J. Psychiatry Neurosci. 36, 402–411.
doi: 10.1503/jpn.100150

Wright, C. I., Feczko, E., Dickerson,
B., and Williams, D. (2007).
Neuroanatomical correlates
of personality in the elderly.
Neuroimage 35, 263–272. doi:
10.1016/j.neuroimage.2006.11.039

Wright, C. I., Williams, D., Feczko,
E., Barrett, L. F., Dickerson, B.
C., Schwartz, C. E., et al. (2006).
Neuroanatomical correlates of
extraversion and neuroticism.
Cereb. Cortex 16, 1809–1819. doi:
10.1093/cercor/bhj118

Zhang, J., Wang, J., Wu, Q., Kuang,
W., Huang, X., He, Y., et al.
(2011). Disrupted brain connectiv-
ity networks in drug-naive, first-
episode major depressive disorder.
Biol. Psychiatry 70, 334–342. doi:
10.1016/j.biopsych.2011.05.018

Zuckerman, M. (ed.). (2005).
Psychobiology of Personality. New
York, NY: Cambridge University
Press.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 29 November 2012; accepted:
22 May 2013; published online: 11 June
2013.
Citation: Gao Q, Xu Q, Duan X, Liao
W, Ding J, Zhang Z, Li Y, Lu G and
Chen H (2013) Extraversion and neu-
roticism relate to topological properties
of resting-state brain networks. Front.
Hum. Neurosci. 7:257. doi: 10.3389/
fnhum.2013.00257
Copyright © 2013 Gao, Xu, Duan,
Liao, Ding, Zhang, Li, Lu and Chen.
This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and repro-
duction in other forums, provided
the original authors and source are
credited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 257 |186

http://dx.doi.org/10.3389/fnhum.2013.00257
http://dx.doi.org/10.3389/fnhum.2013.00257
http://dx.doi.org/10.3389/fnhum.2013.00257
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


GENERAL COMMENTARY
published: 06 August 2013

doi: 10.3389/fnhum.2013.00448

Erratum: Extraversion and neuroticism relate to topological
properties of resting-state brain networks
Qing Gao*

School of Mathematical Sciences, University of Electronic Science and Technology of China, Cheng du, China
*Correspondence: qingqing.gao@gmail.com

Edited by:
Yong He, Beijing Normal University, China

A commentary on

Extraversion and neuroticism relate to
topological properties of resting-state
brain networks
by Gao, Q., Xu, Q., Duan, X., Liao, W.,
Ding, J., Zhang, Z., et al. (2013). Front.
Hum. Neurosci. 7:257. doi: 10.3389/fnhum.
2013.00257

In the above paper, two mistakes
were discovered after publication.

The corrections are as following:

1. Zhiliang Long needs to be added as the
third author.

2. All the “p < 1.90” in the paper should
be corrected to “p < 1/90.”

Received: 11 July 2013; accepted: 20 July 2013; published

online: 06 August 2013.

Citation: Gao Q (2013) Erratum: Extraversion and
neuroticism relate to topological properties of resting-
state brain networks. Front. Hum. Neurosci. 7:448. doi:
10.3389/fnhum.2013.00448
Copyright © 2013 Gao. This is an open-access article
distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the
original publication in this journal is cited, in accor-
dance with accepted academic practice. No use, distribu-
tion or reproduction is permitted which does not comply
with these terms.

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 448 |

HUMAN NEUROSCIENCE

187

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00448/full
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=QingGao&UID=74584
http://www.frontiersin.org/Journal/Abstract.aspx?ART_DOI=10.3389/fnhum.2013.00257&name=Human_Neuroscience&x=y
http://www.frontiersin.org/Journal/Abstract.aspx?ART_DOI=10.3389/fnhum.2013.00257&name=Human_Neuroscience&x=y
http://www.frontiersin.org/Journal/Abstract.aspx?ART_DOI=10.3389/fnhum.2013.00257&name=Human_Neuroscience&x=y
http://dx.doi.org/10.3389/fnhum.2013.00448
http://dx.doi.org/10.3389/fnhum.2013.00448
http://dx.doi.org/10.3389/fnhum.2013.00448
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 29 October 2013

doi: 10.3389/fnhum.2013.00721

Differences of inter-tract correlations between neonates
and children around puberty: a study based on
microstructural measurements with DTI
Virendra Mishra1, Hua Cheng2,3, Gaolang Gong4, Yong He4, Qi Dong4 and Hao Huang1,5*
1 Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
2 Department of Radiology, Beijing Children’s Hospital, Beijing, China
3 Department of Radiology, Capital Medical University, Beijing, China
4 State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
5 Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA

Edited by:
Alan Evans, McGill University,
Canada

Reviewed by:
Pratik Mukherjee, University of
California, USA
Xiaobo Li, Albert Einstein College of
Medicine, USA

*Correspondence:
Hao Huang, Advanced Imaging
Research Center, University of Texas
Southwestern Medical Center, 5323
Harry Hines Blvd., Dallas, TX
75390-8542, USA
e-mail: hao.huang@
utsouthwestern.edu

The human brain development is a complicated yet well-organized process. Metrics
derived from diffusion tensor imaging (DTI), including fractional anisotropy (FA), radial
(RD), axial (AxD), and mean diffusivity (MD), have been used to noninvasively access
the microstructural development of human brain white matter (WM). At birth, most
of the major WM tracts are apparent but in a relatively disorganized pattern. Brain
maturation is a process of establishing an organized pattern of these major WM tracts.
However, how the linkage pattern of major WM tracts changes during development
remains unclear. In this study, DTI data of 26 neonates and 28 children around puberty
were acquired. 10 major WM tracts, representing four major tract groups involved in
distinctive brain functions, were traced with DTI tractography for all 54 subjects. With the
10 by 10 correlation matrices constructed with Spearman’s pairwise inter-tract correlations
and based on tract-level measurements of FA, RD, AxD, and MD of both age groups,
we assessed if the inter-tract correlations become stronger from birth to puberty. In
addition, hierarchical clustering was performed based on the pairwise correlations of WM
tracts to reveal the clustering pattern for each age group and pattern shift from birth to
puberty. Stronger and enhanced microstructural inter-tract correlations were found during
development from birth to puberty. The linkage patterns of two age groups differ due to
brain development. These changes of microstructural correlations from birth to puberty
suggest inhomogeneous but organized myelination processes which cause the reshuffled
inter-tract correlation pattern and make homologous tracts tightly clustered. It opens a
new window to study WM tract development and can be potentially used to investigate
atypical brain development due to neurological or psychiatric disorders.

Keywords: brain development, neonate, DTI, microstructure, inter-tract correlation, homologous

INTRODUCTION
The human brain is complicated yet well organized. The major
cerebral white matter (WM) tracts connecting different brain
regions are involved in different brain functions. These major
cerebral WM tracts are often categorized into different tract
groups based on their distinct functions. There are roughly four
tract groups, namely limbic, projection, callosal, and association
tract groups (e.g., Wakana et al., 2004; Huang et al., 2012a,b),
for cerebral WM tracts. The WM tracts within a tract group per-
form similar functions. For example, limbic tracts underlie the
connectivity in the limbic system and association tracts connect
between cerebral cortical areas. The pair of tracts in both cerebral
hemispheres belongs to the same tract group and is considered
as homologous tracts. At birth, most of major WM tracts are
well formed (e.g., Huang et al., 2006; Oishi et al., 2011), except
the arcuate fasciculus which is a part of the superior longitudinal
fasciculus (SLF) and related to language function.

The water molecules all over the human brain tend to diffuse
more freely along the WM fiber bundle, instead of perpendicular
to it. This diffusion property can be measured noninvasively with
diffusion MRI (dMRI), a modality of MRI. The widely used dif-
fusion tensor imaging (DTI) (Basser et al., 1994) characterizes the
water diffusion properties in the brain voxels with a tensor model.
Fractional anisotropy (FA) (Pierpaoli and Basser, 1996; Beaulieu,
2002) and mean diffusivity (MD), derived from DTI, have been
widely used to quantify the microstructural properties of the WM
voxels. Other than FA or MD, the other two DTI-derived metrics,
radial diffusivity (RD) and axial diffusivity (AxD), convey unique
information related to myelination and axonal integrity, respec-
tively (Song et al., 2002). The four DTI-derived metrics, FA, RD,
AxD, and MD, characterize different aspects of diffusion tensor
and are highly sensitive to WM microstructural changes.

Compared to voxel-based morphometry (VBM), recent tract
analyses (Yushkevich et al., 2008; Goodlett et al., 2009; O’Donnell
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et al., 2009; Zhang et al., 2010; Colby et al., 2012) including
ours (Huang et al., 2011, 2012a,b) have become important due
to great functional and clinical significance of the tracts. These
WM tracts can be noninvasively traced with tractography based
on diffusion MRI (dMRI) (e.g., Conturo et al., 1999; Jones et al.,
1999a; Mori et al., 1999; Basser et al., 2000; Stieltjes et al., 2001;
Catani et al., 2002; Parker et al., 2002; Lazar et al., 2003; Behrens
et al., 2007). And the heterogeneous WM tracts can be nonin-
vasively segmented with the traced fibers. With these segmented
WM tracts as binary masks for the maps of DTI-derived met-
rics, the microstructural properties of the WM tracts can be
quantified.

Dramatic microstructural changes take place during normal
human brain development from birth to puberty, which are
two landmark time points in early brain development. Birth
marks the beginning time point of postnatal brain develop-
ment. Puberty marks the end of the child development and
beginning of adolescence. The four DTI derived metrics, FA,
RD, AxD and MD, have been incorporated in numerous stud-
ies investigating WM microstructural changes for infants, chil-
dren and adolescents during development. The human brain
development process is usually characterized with significant
increases in FA (e.g., Barnea-Goraly et al., 2005; Snook et al.,
2005; Eluvathingal et al., 2007; Dubois et al., 2008; Lebel et al.,
2008; Gao et al., 2009; Giorgio et al., 2010; Schmithorst and
Yuan, 2010; Tamnes et al., 2010; Westlye et al., 2010) and sig-
nificant decreases in MD, AxD and RD (e.g., Snook et al., 2005;
Eluvathingal et al., 2007; Dubois et al., 2008; Lebel et al., 2008;
Gao et al., 2009; Giorgio et al., 2010; Schmithorst and Yuan,
2010; Tamnes et al., 2010; Westlye et al., 2010). On the other
hand, it was shown with DTI-derived metrics of a cohort of
adults that specific WM tracts involved in similar functions
vary in a similar pattern with each other across different indi-
viduals (Wahl et al., 2010; Li et al., 2012), while hemispheric
asymmetries of DTI-derived metrics in homologous pairs of
WM tracts (Bonekamp et al., 2007; Wilde et al., 2009) have
been reported. However, from perspective of brain develop-
ment, whether or not the significant inter-tract correlations exist
at birth and around puberty is still unclear. Furthermore, it
remains elusive if these inter-tract correlations will be strength-
ened and how the correlation patterns change from birth to
puberty.

During the development from birth to puberty, the human
brain is likely to change from a more randomized state to a
more balanced and organized state. In this study, we hypothesized
that inter-tract correlations become stronger and the correla-
tion patterns are reshuffled from birth to puberty. Specifically,
the reshuffling process will cause more homologous tracts to
form tight relationship. DTI data were acquired from 26 normal
neonates and 28 normal children around puberty. The follow-
ing 10 major WM tracts covering limbic, association, commis-
sural and projection tract groups were selected for tract-level
measurements of DTI metrics of each subject: left and right
corticospinal tract (CST_L and CST_R), left and right inferior
fronto-occipital fasciculus (IFO_L and IFO_R), left and right cin-
gulate part of cingulum tract (CGC_L and CGC_R), left and
right hippocampal part of cingulum tract (CGH_L and CGH_R),

forceps major (FMajor) and forceps minor (FMinor). The tract
level comparisons of all four DTI-derived metrics were conducted
between the two age groups. Spearman’s pairwise inter-tract cor-
relations were performed. We tested if significant correlations of
homologous WM tracts exist in neonates and children around
puberty. After obtaining four 10 by 10 inter-tract correlation
matrices corresponding to four DTI-derived metrics, FA, RD,
AxD, and MD, for each age group, we tested these correla-
tion matrices against the identity matrix or a matrix with equal
non-diagonal entries. We then assessed if the inter-tract corre-
lations become statistically stronger from birth to puberty. In
addition, hierarchical clustering was performed with the pair-
wise correlations based on FA, RD, AxD, and MD measure-
ments for each age group to reveal the pattern of clustering
in either age group and reveal the pattern shift from birth to
puberty.

MATERIALS AND METHODS
SUBJECTS AND DATA ACQUISITION
Twenty six normal neonates (14 males; age: 37 to 43 ges-
tational weeks with mean and standard deviation 40.1 ± 2.0
gestational weeks) and 28 normal children around puberty
(15 males; age: 9.5–15 years with mean and standard devia-
tion 12.0 ± 2.3 years), free of current and past neurological
or psychiatric disorders, were recruited at Children’s Medical
Center (CMC) at Dallas and Advanced Imaging Research Center
(AIRC) of the University of Texas Southwestern Medical Center
(UTSW), respectively. The parents of all the subjects gave writ-
ten informed consents approved by Institutional Review Board of
UTSW.

Two 3T Philips Achieva MR systems at CMC and AIRC
were used to acquire dMRI of neonate and child group, respec-
tively. dMRI data were acquired using a single shot echo planar
imaging (EPI) with SENSE parallel imaging scheme (SENsitivity
Encoding, reduction factor = 2.3). dMRI parameters for neonates
were: FOV = 200/200/100 mm, in-plane imaging matrix = 100 ×
100, axial slice thickness = 2 mm. dMRI parameters for chil-
dren around puberty were: FOV = 224/224/143 mm, in-plane
imaging matrix = 112 × 112, axial slice thickness = 2.2 mm.
The common parameters for dMRI acquisition of both neonate
and child group were: b-value = 1000 s/mm2, TE = 97 ms,
TR = 7.6 s, 30 independent diffusion-weighted directions (Jones
et al., 1999b) and 2 repetitions to increase signal-to-noise
ratio (SNR).

DTI PREPROCESSING
dMRI acquired from all the subjects was processed offline using
DTIStudio (mristudio.org; Jiang et al., 2006). dMRI images for
each subject were corrected for motion and eddy current by reg-
istering all the diffusion weighted images to the b0 image using a
12-parameter (affine) linear image registration with automated
image registration (AIR) algorithm (Woods et al., 1998). After
the registration, six independent elements of the 3 × 3 diffu-
sion tensor (Basser et al., 1994) were determined by multivariate
least-square fitting of diffusion weighted images. The tensor was
diagonalized to obtain three eigenvalues (λ1 − 3) and eigenvec-
tors (ν1 − 3). FA, MD, AxD and RD, derived from DTI, were
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obtained for all the subjects with the following equations of
eigenvalues:

FA =
√

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

√
2
√

λ2
1 + λ2

2 + λ2
3

MD = (λ1 + λ2 + λ3)/3

AxD = λ1

RD = (λ2 + λ3)/2

TRACT-LEVEL MEASUREMENTS OF DTI METRICS
The following 10 major WM tracts were selected for tract-level
measurements of DTI metrics, left and right corticospinal tract
(CST_L and CST_R), left and right inferior fronto-occipital fas-
ciculus (IFO_L and IFO_R), left and right cingulate part of
cingulum tract (CGC_L and CGC_R), left and right hippocam-
pal part of cingulum tract (CGH_L and CGH_R), forceps major
(FMajor) and forceps minor (FMinor). These tracts could be
reproducibly traced with DTI of all neonates and children and
cover all four major tract groups, namely projection, limbic, com-
missural and association tract group. Other major WM tracts
such as SLF could not be traced reproducibly with our cohort
of neonate DTI dataset. Following the literature (Wakana et al.,
2007), the tractography protocol described in details below was
used to trace all these tracts. DTIstudio (mristudio.org) was
used to conduct the tractography. The binary masks of the
individually traced tracts were used to compute the tract-level
FA, RD, AxD, and MD. The test-retest reliability was quanti-
fied by coefficient of variation (CV) and κ values of variability
shown in Supplemental Table 1, after tracing the tracts below
3 times with the data from 3 subjects randomly selected from
each group. All CV values are less than 2% and κ values are
greater than 95% for both neonate an child group, indicating
almost perfect test-retest reliability and almost perfect agreement
of measurements among different tests in both neonate and child
group.

CST-L and CST-R
For the first ROI, the entire cerebral peduncle of the desired
hemisphere was delineated at the level of the decussation of the
superior cerebellar peduncle using an axial slice. “OR” opera-
tion was used to select all the CST fibers in this hemisphere that
reach the primary motor cortex. The second ROI was then drawn
at the most ventral axial slice that identifies the cleavage of the
central sulcus. “AND” operation is performed at this axial slice
to select all the CST fibers in this hemisphere. The fibers run-
ning through to the opposite hemisphere were removed using the
“NOT” operation.

CGC-L and CGC-R
For the first ROI, a coronal plane was selected at the middle of
the splenium of the corpus callosum (CC) using the mid-sagittal
plane and the region containing the entire cingulum in the desired
hemisphere is selected. All the fibers in this coronal plane passing
through the cingulum were selected using the “OR” operation.
The second ROI was drawn by selecting a coronal plane in the

middle of the genu of the CC and all the CGC fibers were selected
using the “AND” operation.

CGH-L and CGH-R
For the first ROI, a coronal plane in the middle of the splenium of
the CC was selected using the mid-sagittal plane and the cingulum
below the CC of the desired hemisphere was delineated. All the
fibers in this coronal plane passing through the cingulum were
selected using the “OR” operation. The second ROI was drawn at
a coronal slice anterior to the pons using the mid-sagittal plane
and the fibers passing through the cingulum in this hemisphere
were selected using the “AND” operation.

IFO-L and IFO-R
For the first ROI, a coronal slice at the middle point between
the posterior edge of the cingulum and the posterior edge of the
parieto-occipital sulcus was selected and the entire occipital lobe
of the desired hemisphere was delineated. All the fibers in this
hemisphere were selected using the “OR” operation. The second
ROI was drawn at the anterior edge of the CC using a coronal
slice and all the fibers in this hemisphere were selected using the
“AND” operation. The fibers running through to the thalamus
were removed by using the “NOT” operation.

FMajor
For the first ROI, a coronal plane including only the left occipital
lobe was selected at the most posterior edge of the parieto-
occipital sulcus. The “OR” operation in this coronal plane delin-
eated all the fibers of FMajor. The second ROI was drawn in the
same coronal plane on the right hemisphere using the “AND”
operation such that all the fibers in the right occipital lobe was
selected.

FMinor
For the first ROI, a coronal plane at the middle point between the
anterior tip of the frontal lobe and the anterior edge of the genu
of the CC was selected using the mid-sagittal plane. The “OR”
operation was used to select all the fibers in the entire left hemi-
sphere. The second ROI was drawn in the same coronal plane on
the right hemisphere and all the fibers in the right hemisphere
were selected using the “AND” operation.

INTER-TRACT CORRELATION ANALYSIS
Shapiro-Wilk normality test was performed with DTI-derived
metrics of all the 10 WM tracts of 26 neonate brains and 28 child
brains. Distributions of DTI-derived metrics for most of the tracts
in the neonate group did not show significant difference (p >

0.05) from normality. However, distributions of DTI-derived
metrics of most of the tracts in the child group differed signifi-
cantly (p < 0.05) from normality. Hence, following the method
in the literature (Wahl et al., 2010), non-parametric Spearman’s
rank correlation coefficient ρ was used to measure all corre-
lations. Subsequently, a correlation matrix was constructed for
each of the 4 DTI-derived metrics using pairwise correlation val-
ues between any two tracts. Symmetric correlation matrices were
obtained with a value of unity along the diagonal of the correla-
tion matrix. The diagonal element represents perfect correlation
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of the DTI-derived parameter of the tract with itself and the off-
diagonal element represents the correlation of the DTI derived
parameter of one tract with that of another tract. There were
10∗(10 − 1)/2 = 45 nontrivial independent correlation values in
each correlation matrix.

STATISTICAL ANALYSIS
Two independent tests of correlation matrices were performed
to evaluate if the correlation matrices were significantly differ-
ent from identity and homogeneous matrix (Rencher, 2002; Wahl
et al., 2010). The null hypothesis to test for identity was the

correlation matrix is an identity matrix, �0 =
⎛
⎜⎝

1 0 0
...

. . .
...

0 · · · 1

⎞
⎟⎠. The

size of the correlation matrix was 10 × 10 as we were testing for
pairwise correlations of 10 independent tracts. To test the corre-
lation matrices for homogeneity, the null hypothesis was that the
correlation matrix was homogeneous and that the non-diagonal

elements of the matrix were equal, i.e.,: μ0 =
⎛
⎜⎝

1 ρ ρ

...
. . .

...

ρ · · · 1

⎞
⎟⎠. This

null hypothesized homogeneous correlation matrix was derived
by following the procedure outlined in the literature (Rencher,
2002; Wahl et al., 2010). Bonferroni correction was conducted for
both test of correlation matrix against identify matrix and test of
correlation matrix against matrix with equal non-diagonal ele-
ments. Once the DTI-derived correlation matrices were found to
be significantly different from identity and homogeneity within
each group, correlation matrices of each DTI-derived metric were
compared between the two age groups. Spearman’s rank corre-
lation coefficients were converted to z values by using Fisher’s
r-to-z-transform (Fisher, 1915). Note that r in Fisher’s r-to-z-
transform is the spearman’s rank correlation coefficient ρ in this
study. Z-statistics was then performed to identify the pair of tracts
that showed significant change in correlation strength from birth
to puberty.

HIERARCHICAL CLUSTERING ANALYSIS
Hierarchical clustering methods were used to characterize the pat-
terns of inter-tract correlation in each matrix among the groups.
We used 1-ρ, where ρ is the Spearman’s rank correlation coeffi-
cient, as a measure of distance or dissimilarity between the WM
tracts for the purpose of clustering. Hierarchical clustering was
performed using hclust function in R version 2.15.2. Depending
on the correlation coefficient, different WM tracts were succes-
sively grouped into larger groups and the results were visualized
as a dendrogram. WM tracts that had stronger correlation among
themselves were fused together and were linked together. To char-
acterize the uncertainty of the linkage among WM tracts and
reduce the standard error in the percentage of confidence level
for each cluster, a multi-scale bootstrap with 1000 repetitions of
the analysis was performed using pvclust function in R (Suzuki
and Shimodaira, 2006). The multi-scale bootstrap analysis yields
an approximately unbiased p-value of each linkage in hierar-
chical clustering and has been applied in various other studies
(Shimodaira, 2002, 2004; Wahl et al., 2010). The threshold for

determining statistical significance for the grouping of tracts was
set at an unbiased p-value of 0.05 or 95% confidence interval.

RESULTS
CHANGES OF WHITE MATTER MICROSTRUCTURE FROM NEONATES TO
CHILDREN AROUND PUBERTY
Figure 1 shows the three-dimensional (3D) visualization of the
traced 10 major WM tracts for a typical neonate and a typi-
cal child around puberty. These 10 major tracts, namely CST_L,
CST_R, IFO_L, IFO_R, CGC_L, CGC_R, CGH_L, CGH_R,
FMajor and FMinor, cover projection, limbic, association and
commissural tract groups involved in distinct brain functions.
The microstructural changes from neonates to children at puberty
and measured with FA, MD, AxD, and RD are shown in Figure 2.
For all 10 major WM tracts, FA values are higher in the child
group than those of the neonate group while MD, AxD, and RD
values of the child group are less. FA of CST_L and CST_R of
both age groups are highest among all tracts, followed by FMajor
and FMinor. RD of CST_L and CST_R of both age groups are

FIGURE 1 | 3-D visualization of the traced WM tracts overlaid on

mid-sagittal slice of the FA image of a typical neonate (A) and a typical

child around puberty (B). Different colors represent different tracts traced
for both subjects. CGC_L/R, CGH_L/R, CST_L/R, FMajor/FMinor and
IFO_L/R are painted by red, orange, green, blue, and yellow color,
respectively.

FIGURE 2 | Mean and standard deviation of tract-level FA (A), RD (B),

AxD (C), and MD (D) measurements for 26 neonates and 28 children

around puberty for all the 10 WM tracts. Error bars indicate standard
deviations across all the subjects at the same age group.
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lowest among all tracts, indicating better myelination of CST
compared to all other tracts. MD and AxD of FMajor and FMinor
are highest among all tracts for child group. The values of these
DTI-derived metrics of all tracts for the two age groups are shown
in Supplemental Table 2.

ENHANCED INTER-TRACT CORRELATION FROM NEONATES TO
CHILDREN AROUND PUBERTY
Figure 3 shows the scatterplot of the FA (Figure 3A), RD
(Figure 3B), AxD (Figure 3C), and MD (Figure 3D) values for 2
pairs of homologous tracts and 2 pairs of non-homologous tracts,
CGC_L vs. CGC_R, CST_L vs. CST_R, FMajor vs. FMinor, and
CST-R vs. CGC-R. The 2 homologous tracts and FMajor/FMinor
represent tract pairs of the three tract groups. Significant correla-
tions (p < 0.05) can be observed for these 4 pairs of tracts in both
age groups.

Significant differences (p < 0.05, Bonferroni-corrected) were
observed for tests of all inter-tract correlation matrices of both
groups against identity matrix or matrix with equal non-diagonal
entries. The inter-tract correlation matrices of neonate and
child group and the differences of these correlation matrices
for FA, RD, AxD and MD are shown in Figures 4A–D, respec-
tively. General stronger inter-tract correlations can be observed
in the child group compared to those in the neonate group
for all DTI-derived metrics, represented by the warmer col-
ors in correlation matrices of child group. The statistics with

z-scores (right panel of Figure 4) show that 64.4% (29/45),
84.4% (38/45), 73.3% (33/45), and 73.3% (33/45) of independent
entries in the correlation matrix of child group are significantly
higher than the corresponding entries of neonate group for FA,
RD, AxD and MD, respectively. The correlation matrix from
RD shows highest percentage changes (84.4%) among corre-
lation matrices from all DTI-derived metrics, indicating more
widespread enhanced inter-tract correlations with RD measure-
ments. Note that the denominator 45 above indicates the num-
ber of all independent entries in the correlation matrix. The
absolute values of correlation coefficients for AxD and MD, rep-
resented by the warmer colors in Figures 4C,D, are higher in
both neonate and child group than those for FA (Figure 4A)
or RD (Figure 4B). Much smaller percentages of independent
entries of the correlation matrices are associated with the sit-
uation where correlation coefficients are significantly higher in
the neonates than the children. Specifically, these percentages
are 8.9% (4/45, namely CGC_R vs. FMinor, CGC_R vs. FMajor,
CGH_L vs. IFO_L and IFO_L vs. IFO_R), 6.7% (3/45, namely
CGC_R vs. FMinor, CGC_R vs. FMajor and IFO_L vs. FMajor),
4.4% (2/45, namely CGC_R vs. FMinor and CGC_R vs. FMajor)
and 4.4% (2/45, namely CGC_R vs. IFO_R and CGC_R vs.
FMajor) for FA, RD, AxD and MD, respectively. The inter-tract
correlation coefficient values based on FA, RD, AxD and MD
measurements for both age groups are shown in Supplemental
Table 3.

FIGURE 3 | Scatterplots of FA (A), RD (B), AxD (C) and MD (D) values

from 2 homologous and 2 non-homologous tracts. The 2 homologous
pairs and FMajor/FMinor represent tract pairs of three tract groups for both
age groups. Top panel shows the inter-tract scatter plots for the neonates and

bottom panel shows those for the children around puberty. Each dot in all the
plots represents the data from an individual subject in that group. ρ is the
Spearman’s rank correlation coefficient of the tract pair while p-value shows
the statistical confidence of the inter-tract correlation strength.
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FIGURE 4 | Heat maps of the inter-tract correlation matrices obtained

from tract-level FA (A), RD (B), AxD (C) and MD (D) measurements of

both age groups. The left and middle panels show the inter-tract
correlation matrices for neonates and children around puberty, respectively.
The right panel shows the z-scores of the changes in correlation strength
between the two age groups. In the z-score plots, the entries with
significant (p < 0.05) changes in inter-tract correlation strengths are shown
in red color while entries with non-significant (p > 0.05) change in inter-tract
correlation strengths are shown in green color. Color bar encoding the
correlation strengths in the left and middle columns is also shown.

RESHUFFLED INTER-TRACT CORRELATION PATTERNS FROM
NEONATES TO CHILDREN AROUND PUBERTY
The inter-tract correlations based on each of DTI-derived met-
rics are reshuffled from neonates to children at puberty. These
reshuffled inter-tract correlation patterns can be appreciated from
dendrograms based on FA, RD, AxD, and MD measurements in
Figures 5A–D, respectively. In general, the pairing of homologous
tracts is more prominent for child group compared to that of the
neonate group based on measurements of all DTI-derived met-
rics. The reshuffling leading to a more organized pairing among
WM tracts is most prominent with the dendrograms based on
tract-level RD measurements (Figure 5B). For inter-tract corre-
lation based on FA measurement (Figure 5A), the tract pairs of
CST_L/R becomes clear in the dendrogram of child group, while
this pair is not as apparent in neonate group. The IFO_L/R pair
is prominent for dendrograms of both neonate and child group
based on FA measurements (Figure 5A). For dendrograms based
on RD measurements (Figure 5B), it is clear that all homolo-
gous tracts and FMajor/FMinor get paired for child group while
the correlation patterns are more random for neonate group.
For dendrograms based on AxD (Figure 5C) or MD (Figure 5D)
measurements, stronger and more clusters of the homologous
tracts can be observed. The clustering pattern obtained from MD
(Figure 5D) is similar to that obtained from RD (Figure 5B).
However, the homologous tracts of child group are not well paired
in MD-based dendrogram (Figure 5D), compared to those in
RD-based dendrogram (Figure 5B).

FIGURE 5 | Dendrograms depicting the hierarchical clustering pattern

obtained from tract-level FA (A), RD (B), AxD (C) and MD (D)

measurements for both age groups. The left and right panels show the
clustering pattern for neonates and children around puberty, respectively.
The ranks of the clustering are shown in bold. The confidence intervals for
the clustering (the percentage values) are shown in italics.

DISCUSSION
In this study, dynamics of inter-tract correlations from birth to
onset of adolescence was investigated with DTI-based tract-level
microstructural measurements from 10 major WM tracts, CST_L,
CST_R, IFO_L, IFO_R, CGC_L, CGC_R, CGH_L, CGH_R,
FMajor, and FMinor. Higher WM tract integrity, reflected by
higher FA, lower MD, AxD, and RD, were found for the cor-
responding tracts from neonates to children around puberty. It
is clear that even at birth, nearly all major WM tracts demon-
strate similar morphology as those in children around puberty.
Significant correlations of homologous tracts are shown for both
neonate and child groups. The comparisons of the inter-tract
correlation matrices between the neonate and child group indi-
cated that stronger inter-tract correlations are established during
development. Using data-driven hierarchical clustering algorithm
with no a priori information, we were able to reveal that the
linkage patterns of the major tracts differ between the two age
groups. Specifically, homologous tracts involved in similar brain
functions tend to cluster together for children around puberty
especially with tract-level RD measurements. Such clustering pat-
terns of homologous tracts become more prominent from birth
to puberty. These changes of inter-tract correlations between
neonates and children around puberty suggest inhomogeneous
but organized axonal development which causes the reshuffled
inter-tract correlation pattern while keeping homologous tracts
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tightly correlated. To the best of our knowledge, this is the first
study investigating dynamics of inter-tract correlations with DTI-
based microstructural measurements during early human brain
development.

HETEROGENEOUS WM GROWTH
The WM development is heterogeneous among different tract
groups, but more homogeneous among homologous tracts. The
heterogeneity among different tract groups includes heteroge-
neous tract-level measurements of DTI-derived metrics at each
time point and heterogeneous changes of these DTI-based tract-
level measurements from birth to puberty. The general FA
increase and general MD, AxD, and RD decrease for all WM
tracts in early brain development shown in Figure 2 are consistent
with the previous findings (e.g., Barnea-Goraly et al., 2005; Snook
et al., 2005; Eluvathingal et al., 2007; Dubois et al., 2008; Lebel
et al., 2008; Gao et al., 2009; Giorgio et al., 2010; Schmithorst and
Yuan, 2010; Tamnes et al., 2010; Westlye et al., 2010). The het-
erogeneity among different tract groups is most prominent with
FA measurements for children around puberty (Figure 2). From
Figure 2A, it is clear that FA of CST-L/R (project tract group) is
highest in children around puberty, followed by FMajor/FMinor
(commissural tract group), IFO-L/R (association tract group)
and CGC/H_L/R (limbic tract group). This order of tract group
FA measurements is preserved back at birth, but the differences of
FA among the tract groups are smaller (Figure 2A) for neonatal
brains. The heterogeneous changes of tract-level DTI metrics in
Figure 2 may cause the reshuffling of inter-tract correlation pat-
terns. Quite similar FA values (Figure 2A) as well as MD, AxD,
and RD values (Figures 2B,D) of the homologous tracts can be
found for both age groups.

STRENGTHENED AND RESHUFFLED INTER-TRACT CORRELATION
DURING DEVELOPMENT
At birth, significant correlations can be observed based on
microstructural measurements of homologous tracts, as shown in
upper panels of Figures 3A,D. From Figure 4, the general inter-
tract correlations from birth to puberty are clearly stronger for all
four DTI-derived microstructural measurements. With FA mea-
surement as an example, each entry of correlation matrix in
Figure 4A can be expanded to the correlation scatterplots such
as those shown in panels of Figure 3A. Our results also indi-
cated that significantly increased inter-tract correlations are more
widespread with correlation coefficients based on RD measure-
ments. For both age groups, correlation coefficients are highest
based on AxD measurements (Figure 4C) and lowest based on FA
measurements (FA). This pattern is especially clear for children
around puberty. The overall higher inter-tract correlation coeffi-
cients based on AxD measurements suggest that axonal integrity
is coherent among the WM tracts within an individual child’s
brain but varies among different children. To help understand this
finding, we could assume a situation when each of the children
around puberty has identical AxD for all 10 major WM tracts and
the AxD values vary among these children. Under such situation,
all inter-tract correlation coefficients based on AxD would be the
perfect value 1. The relatively low inter-tract correlation coeffi-
cients based on FA measurements may be caused by heterogeneity

of FA values among the WM tracts within each individual sub-
ject’s brain. Larger variability of FA values among WM tracts can
also be observed in Figure 2A.

From Figure 5A, the FA-based dendrograms show that sev-
eral homologous tracts are clustered together even for neonates.
The left and right IFO are clustered with rank 1 for dendro-
grams based on tract-level FA of neonatal brains. IFO is thought
to play a role in integrating the information from auditory and
visual cortices to the prefrontal cortex (e.g., Martino et al., 2010).
Resting-state fMRI studies have shown consistent pattern of acti-
vation in auditory and visual networks in neonates (Fransson
et al., 2007; Doria et al., 2010). It is noteworthy that in the resting-
state fMRI studies, the connectivity was also identified through
correlation of brain-oxygen-level-dependent (BOLD) signal fluc-
tuations in the homologous brain regions. The strong correlations
of BOLD signal time courses in visual and auditory networks
between left and right hemisphere in neonatal brains may be
related to tight cluster of IFO-L and IFO-R involved in these
brain functions. Both neonatal and child dendrograms based on
FA measurements (Figure 5A) have two more separate clusters
of projection tracts (CST) and limbic tracts (CGC). All these
clusters can also be found in adult brains (Wahl et al., 2010).
Figure 5B demonstrates one of the most compelling findings
with dendrograms based on RD measurements. Although two
pairs of homologous WM tracts are clustered together with rank
1 (IFO_L/R) and rank 3 (CGC_L/R), the other two pairs of
homologous tracts and FMajor/FMinor are spread all over the
dendrogram for neonatal brains (Figure 5B). It is striking that
all 4 pairs of homologous tracts and FMajor/FMinor are tightly
clustered together for children around puberty (Figure 5B). RD
is closely related to myelination of WM tracts (Song et al., 2002).
We should be careful to associate the RD values with myelina-
tion due to crossing-fiber and pathological situations (Wheeler-
Kingshott and Cercignani, 2009). Nevertheless, during normal
brain development with no implication of pathology and with
the assumption that tract-level RD measurement for major WM
tracts is much less affected by crossing fiber compared to vox-
elwise RD measurement, tract-level RD is still considered as an
important index reflecting the degree of myelination (e.g., Snook
et al., 2005; Eluvathingal et al., 2007; Gao et al., 2009; Tamnes
et al., 2010; Westlye et al., 2010). The results in Figure 5B sug-
gest that organized myelination from birth to puberty plays an
important role to reshuffle the inter-tract correlations and result
in clustered homologous tracts and clustered functionally sim-
ilar tracts. The dendrogram patterns based on AxD and MD
measurements are different than those based on FA or RD mea-
surements. Unlike RD-based dendrogram (Figure 5B), neither
of the dendrograms based on AxD or MD measurements for
children around puberty shows well organized clusters of all 4
pairs of homologous tracts and FMajor/FMinor (Figures 5C,D).
Previous studies (Mukherjee et al., 2002; Snook et al., 2005; Gao
et al., 2009) found that the measurements of RD decrease dra-
matically with relatively little changes in AxD of the major WM
tracts during brain development. Our results demonstrated in
Figure 2 also indicate smaller and more homogeneous changes
of AxD from birth to puberty compared to those of RD. These
AxD change features may explain why relatively disorganized
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AxD-based dendrograms remain for children around puberty.
From Equation (1), MD is the linear combination of AxD and
RD. The relatively disorganized dendrograms based on MD mea-
surement for child group could also be originated from smaller
and more homogeneous changes of AxD measurements during
development. Nevertheless, with the brain development, there
are still trends for homologous and functionally similar tracts
to cluster together in dendrograms based on AxD and MD in
Figures 5C,D.

POSSIBLE MECHANISMS OF THE INTER-TRACT CORRELATION
CHANGES FROM BIRTH TO ONSET OF ADOLESCENCE
This study on dynamics of inter-tract correlations from birth
to onset of adolescence provides unique insight on the well-
organized cerebral WM development. The development of
human cerebral WM tracts is characterized with enhanced myeli-
nation and axonal integrity. From the results in this study,
inhomogeneous RD decreases among the tracts take place dur-
ing development. More (84.4% of all independent correlation
coefficients) inter-tract correlations become stronger with RD
measurements, compared to those with any other DTI met-
ric measurements. In addition, the dendrograms based on RD
(Figure 5B) demonstrate that all 4 pairs of homologous tracts and
FMajor/FMinor are tightly clustered at puberty while only 2 pairs
of homologous tracts are clustered at birth. The cerebral WM at
birth is likely to be in a relatively random and disorganized sta-
tus. Due to close relationship of RD with the myelination of WM
tract, these results suggest that inhomogeneous enhancement of
myelination rather than strengthening of axonal integrity plays
a key role in reshaping the WM configuration during develop-
ment. Both genes and experiences could also play a role to adjust
WM microstructures so that the homologous WM tracts reach
to a coherent status to meet the needs of certain brain functions
by the time of onset of adolescence. Although it is not known
by what mechanism inhomogeneous myelination is modulated
during WM maturation, our results suggest that the myelination
process is precisely controlled so that all 4 pairs of homologous
tracts and FMajor/FMinor are clustered together around puberty
(Figure 5B).

LIMITATIONS OF THIS STUDY AND FUTURE DIRECTIONS
There are several issues which may affect the results in this
study. Five pairs of major WM tracts were chosen for this study
due to the fact that only these five pairs of major WM tracts
could be reproducibly traced with neonate DTI. The numbers of
participated subjects, 26 for neonates and 28 for children, just
exceeds 25 which is needed for correlation analysis of five pairs
of WM tracts. Higher sample numbers could increase the confi-
dence level in analysis of hierarchical clustering. Corrections for
multiple comparisons were only performed on testing the cor-
relation matrices against identity matrix and matrix with equal
non-diagonal elements. No correction was performed on the
hierarchical clustering results due to lack of any known meth-
ods to perform such a correction on dendrograms. The accuracy
of measuring tract-level DTI-derived metrics plays a key role
in inter-tract correlations. This accuracy is affected by three
major factors. They are the crossing-fiber factor, SNR of the

data and partial volume effects. Both the tractography and the
DTI-derived measurements are biased at crossing-fiber regions
(Wheeler-Kingshott and Cercignani, 2009). With single tensor
model and tractography method of fiber assignment by contin-
uous tracking (FACT) (Mori et al., 1999), it is apparent that the
tracing method adopted in this study cannot resolve the crossing-
fiber issue, resulting in imperfect binary mask of the traced tracts
for tract-level measurements of DTI metrics. Nevertheless, the
tracing protocol (Wakana et al., 2007) based on FACT tractog-
raphy captures the core of the major WM tracts and is still widely
used in the field. We conducted two repetitions of diffusion MRI
and the SNR is sufficient for data acquisition with 3T magnet.
With diffusion imaging resolution 2 × 2 × 2 mm3 for neonates
and 2 × 2 × 2.2 mm3 for children around puberty, the partial
volume effects are inevitable. However, it seems the effects of
imperfect WM fiber tracing offsets the partial volume effects for
obtaining accurate tract-level DTI metrics, in that the tracing
algorithm adopted in this study cannot trace the small branches
of the fibers where the problem of partial volume effects is most
prominent. Ranks of the DTI measurements, instead of measured
metrics themselves, were used for correlation pattern analysis.
Despite possibly different levels of biases of the DTI metric mea-
surements caused by partial volume effects due to different head
sizes between neonates and children, the similar shifts of mea-
surements in the same age group could have minimum effects
on the rank of metric measurements and therefore minimum
effects on the Spearman’s rank correlation patterns. Although
same types of scanners were used in this study, systematic dif-
ferences of the scanners may affect the DTI analysis results. To
make sure that the effects of systematic differences caused by two
different scanners are minimal, a healthy young subject (“in vivo
human phantom”) was scanned in both scanners used in this
study and with the same DTI sequence. The quantitative com-
parisons were also conducted. Quantitative DTI measurement
differences caused by scanner difference were tested to be within
the range of variability of scanning the same subject twice with
one scanner (Saxena et al., 2012). With the same type of scanners
used in this study and rigorous quality control of both scan-
ners, the effects of scanner differences on the presented results
in this study are thus negligible. The group of children around
puberty included both pre-puberty and post-puberty subjects.
The age difference between the two groups, newborns and chil-
dren around puberty, is much larger than the age difference
within the group of around puberty. Therefore, we hypothesized
that the intra-group WM developmental heterogeneity for the
children group exists, but is not big enough to affect the inter-
group results presented in this study. This has been tested and
proved by Supplemental Figure 1. In Supplemental Figure 1, we
separated the children around puberty into two subgroups, pre-
puberty (9.5–12 years) and post-puberty (12–15 years). With
reduced sample number for each subgroup, we could conduct the
correlation analysis for 6 tracts (3 pairs of homologous tracts).
It is shown in Supplemental Figure 1 that homologous tracts are
still clustered together in both subgroups, like the cluster patterns
shown in the right column of Figure 5. Moreover, the linkage
patterns are very similar between the two subgroups, with slight
dendrogram rank change.
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In the future, several improvements can be made to address
the issues affecting accuracy of measuring tract-level DTI met-
rics. The tracking methods (e.g., Tournier et al., 2004; Behrens
et al., 2007) which are capable of resolving the crossing-fiber
issue can be adopted. Although there is no general consensus
on which parameters can replace these four DTI-derived met-
rics and better characterize the WM microstructure, there have
been a few metrics such as general fractional anisotropy (GFA)
(Tuch, 2004; Fritzsche et al., 2010; Zhan et al., 2010), general-
ized anisotropy (GA) (Ozarslan et al., 2005), mode of anisotropy
(Ennis and Kindlmann, 2006; Douaud et al., 2011) and frac-
tions (Hosey et al., 2008; Jbabdi et al., 2010) which are less
sensitive to crossing-fiber problem. In addition, tract-based spa-
tial statistics (TBSS) from FSL (http://www.fmrib.ox.ac.uk/fsl)
(Smith et al., 2006) can be used to alleviate the partial vol-
ume effects, as shown in the study of FA correlations in adults
(Li et al., 2012).

CONCLUSION
In conclusion, inter-tract correlation changes during develop-
ment from birth to onset of adolescence were investigated with
tract-level FA, RD, AxD, and MD measurements. Stronger and
enhanced microstructural inter-tract correlations were found
during development. The linkage patterns of the major tracts
also differ with the dendrograms of two age groups due to brain
development. These changes of microstructural correlations from
birth to puberty suggest inhomogeneous but organized myelina-
tion processes which cause the reshuffled inter-tract correlation
pattern and make homologous tracts tightly clustered. Especially
RD-based dendrograms reveal that all 4 pairs of homologous
tracts and FMajor/FMinor investigated in this study are tightly
clustered for children around puberty while only 2 out of these
5 pairs of tracts are clustered at birth, indicating important role
of myelination to reshape the WM configuration. It opens a new
window to study WM tract development and can be potentially
used to investigate atypical brain development due to neurologi-
cal or psychiatric disorders.
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Understanding the development of human brain organization is critical for gaining insight
into how the enhancement of cognitive processes is related to the fine-tuning of the brain
network. However, the developmental trajectory of the large-scale white matter (WM)
network is not fully understood. Here, using graph theory, we examine developmental
changes in the organization of WM networks in 180 typically-developing participants.
WM networks were constructed using whole brain tractography and 78 cortical regions
of interest were extracted from each participant. The subjects were first divided into 5
equal sample size (n = 36) groups (early childhood: 6.0–9.7 years; late childhood: 9.8–12.7
years; adolescence: 12.9–17.5 years; young adult: 17.6–21.8 years; adult: 21.9–29.6 years).
Most prominent changes in the topological properties of developing brain networks occur
at late childhood and adolescence. During late childhood period, the structural brain
network showed significant increase in the global efficiency but decrease in modularity,
suggesting a shift of topological organization toward a more randomized configuration.
However, while preserving most topological features, there was a significant increase
in the local efficiency at adolescence, suggesting the dynamic process of rewiring and
rebalancing brain connections at different growth stages. In addition, several pivotal
hubs were identified that are vital for the global coordination of information flow over
the whole brain network across all age groups. Significant increases of nodal efficiency
were present in several regions such as precuneus at late childhood. Finally, a stable
and functionally/anatomically related modular organization was identified throughout the
development of the WM network. This study used network analysis to elucidate the
topological changes in brain maturation, paving the way for developing novel methods
for analyzing disrupted brain connectivity in neurodevelopmental disorders.

Keywords: graph theory, neurodevelopment, anatomical connectivity, modular networks, small world network

INTRODUCTION
Neuroimaging studies have demonstrated widespread and
regionally specific structural and functional brain changes during
development from infancy to adulthood. Structural magnetic res-
onance imaging (MRI) studies have reported age-related changes
in brain volumes (Giedd et al., 1999; Good et al., 2001), areas
(Thompson et al., 2000), cortical thickness (Sowell et al., 2004;
Shaw et al., 2008), and regional gray matter (GM) and white mat-
ter (WM) density (Paus et al., 1999; Gogtay et al., 2004). The
developmental changes in GM and WM on gross scale MRI may
reflect synaptic pruning and myelination occurring at the neu-
ronal level (Gogtay et al., 2004). Functional neuroimaging studies
have demonstrated increased connectivity among distant regions
and decreased connectivity among neighboring regions in brain
maturation which suggests a mechanism of segregation of local
regions and integration of distant regions into disparate subnet-
works for the developing brain (Fair et al., 2008, 2009; Vogel
et al., 2010). Diffusion tensor imaging (DTI) studies of WM
have shown age-related increases in fractional anisotropy (FA)
and decrease in overall diffusion with development [many studies

but some include (Snook et al., 2005; Lebel et al., 2008; Tamnes
et al., 2010)], including into young adulthood (Giorgio et al.,
2008; Lebel and Beaulieu, 2011).

The recent advent of modern network analysis based on graph
theory (Strogatz, 2001), has enabled the investigation of the large-
scale topological organization of various structural and func-
tional brain networks such as the small-world property, network
efficiency and modularity (He et al., 2007; Bullmore and Sporns,
2009; He and Evans, 2010). The network metrics have also proven
useful in modeling the large-scale functional and structural orga-
nization of the developing brain. Several functional brain network
studies have reported age-related increases in the small-worldness
(Wu et al., 2013) and a progression from local to distributed orga-
nization (Fair et al., 2009) in brain development. The analysis of
the structural brain network constructed from regional cortical
thickness correlations has revealed a non-linear developmental
pattern in network metrics and that most topological changes
happen at the late childhood stage (Khundrakpam et al., 2013).

Recently, there has been an increasing interest in the study
of how graph metrics of the anatomical brain network change
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during development. Using DTI, Yap et al. (2011) examined
WM networks of 39 healthy pediatric subjects with longitudi-
nal data collected at average ages of 2 weeks, 1 year, and 2
years and demonstrated that the small-world architecture exists
at birth with efficiency that increases in later stages of devel-
opment. Two recent brain connectivity studies of WM matu-
ration pattern using diffusion MRI tractography demonstrated
linear and non-linear patterns of increasing structural efficiency
with age between ages 2 and 18 years in 30 patients scanned
clinically and otherwise deemed normal post-MRI (Hagmann
et al., 2010) and between ages 12 and 30 years in 439 healthy
subjects (Dennis et al., 2013). However, those studies were
limited by different constraints such as a binarized brain net-
work, limited sample size, or restricted age range (early adoles-
cence to early adulthood), thus the developmental trajectory of
the WM network from early childhood to adulthood remains
unclear.

Therefore, the main goal of this study was to map the devel-
opmental changes of the structural brain network based on
WM connectivity in 180 typically-developing subjects from 6
to 30 years of age. We hypothesized (i) non-linear age-related
developmental trajectories of network metrics as most changes
would be expected to happen at late childhood and adolescent
stages, and (ii) altered modular organization in different age
groups that reflects a process of fine-tuning in structural brain
development.

MATERIALS AND METHODS
SUBJECTS
This study included 180 healthy right-handed subjects aged from
6 to 30 years. Health was verified by asking participants a series of
questions to ensure there was no history of neurological or psychi-
atric disease or brain injury. All subjects gave informed consent;
child assent and parent/guardian consent was obtained for volun-
teers under 18 years. The subjects were divided into 5 age groups
with equal numbers of subjects and demographics of all groups
are shown in Table 1.

IMAGE ACQUISITION
All data were acquired on a 1.5-T Siemens Sonata MRI scanner.
Standard DTI was acquired using a dual spin-echo, single shot
echo-planar imaging sequence with the following parameters: 40
3-mm-thick slices with no inter-slice gap, TR = 6400 ms, TE =
88 ms, 6 non-collinear diffusion sensitizing gradient directions

Table 1 | Group demographics.

Group Early Late Adolescence Young Adult

childhood childhood adult

Number 36 36 36 36 36

Male/
female

16/20 19/17 15/21 18/18 16/20

Mean age,
SD (y )

8.1 (1.1) 11.3 (0.9) 15.4 (1.4) 19.4 (1.1) 25.7 (2.7)

Age range
(y )

6.0–9.8 9.9–12.7 12.9–17.6 17.6–21.8 21.9–29.7

with b = 1000 s/mm2, 8 averages, field-of-view 220 × 220 mm2,
matrix of 96 × 128 zero-filled to 256 × 256, and scan time of
6:06 min. T1-weighted images were also acquired using MPRAGE
with TE = 4.38 ms, TR = 1870 ms, TI = 1100 ms, and scan time
of 4:29 min.

STRUCTURAL BRAIN NETWORK CONSTRUCTION
Image preprocessing steps including motion and eddy cur-
rent corrections were performed using FSL 5.0 for all DTI
images (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The T1-weighted
(MPRAGE) image of each subject was first linearly coregistered
(Figures 1A,B) to its corresponding b0 image. Each transformed
T1 image was then non-linearly registered to a pre-segmented
and validated volumetric template, the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) as shown in
Figures 1B,C. This parcellation divided the cortical surface into
78 regions (39 per hemisphere). See Table 2 for the name of
the regions and their corresponding abbreviations. The result-
ing inverse deformation map (T−1) for each subject was then
applied to warp the AAL template to the DTI native space
of each subject using nearest neighbor interpolation method
(Figures 1E,F) as each AAL region was defined as a brain net-
work node. Whole brain WM tractography was performed using a
brute-force streamline-tracking method (Basser et al., 2000) with
a FA threshold of 0.2 and primary eigenvector turning angle of
45 degrees (Figures 1A,D). To limit false positive connections,
two cortical regions were deemed connected if at least 10 con-
necting fibers with two end points were located between them;
the same threshold was also applied in a recent brain network
study (van den Heuvel et al., 2012). The effects of different node-
connecting fiber number (FN) thresholds ranging from 3 to 10
were determined for our network analysis. We quantified the
weight of each valid connection between two cortical regions
(i and j) as the product of the connecting FN and mean FA
of the connecting fiber, normalized by dividing the average vol-
ume of the two connecting regions to counteract the bias where
larger cortical regions inherently project/receive more “virtual”
fibers (wij = FN∗FA/Volume). Several diffusion brain network
studies have applied this weighting function (Lo et al., 2010;
Brown et al., 2011). As a result, the structural brain network of
each participant was represented by a symmetric 78 × 78 matrix
(Figure 1G).

To examine the small-worldness and modular organization
of the WM networks for all different age groups, one weighted
backbone network for each age group was generated to capture
the underlying anatomical connectivity patterns using a previ-
ously published method by our group (Gong et al., 2009). In
summary, to identify the highly consistent cortical connections, a
non-parametric one-tailed sign test was applied. For each pair of
cortical regions, the sign test was performed with the null hypoth-
esis that there is no existing connection. The Bonferroni method
was applied to correct for multiple comparisons at P < 0.05. The
use of this conservative statistical criterion generated a symmetric
weighted matrix as each edge weight was calculated as the mean of
all existing edges in all subjects that captured underlying anatom-
ical connectivity patterns in the human cerebral cortex (Gong
et al., 2009).
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FIGURE 1 | Flowchart for the construction of the DTI white matter

(WM) network for each subject. The T1-weighted image of each subject
(B) was first coregistered into DTI native space (A) using rigid
transformation to the b0 image (not shown). The resultant T1 image was
then non-linearly registered to the ICBM 152 template (C) in the MNI space
to obtain transformation matrix T. The AAL template (E) was then inversely
warped back to the individual DTI space (F) using the inverse
transformation (T −1). Whole brain white matter fibers were reconstructed
using a deterministic tractography method in native DTI space (D). The WM
fibers connecting any pair of regions were located and the edge weight
between the two regions was calculated from the FA, fiber number (FN)
and average volume of the two cortical regions. (G) A sample white matter
network for one subject.

NETWORK ANALYSIS
Several network topological properties were applied for
the weighted anatomical brain network derived from each
participant, including small-worldness, efficiency and modularity
(Watts and Strogatz, 1998; Latora and Marchiori, 2001; Newman,
2006). The connection weights of all edges (wij) were normalized
by the mean weight of the whole network to keep network cost at
the same level for all subjects.

For a weighted network G with N nodes and K edges, the
total strength S was defined as the mean of all edge weights

in the network, S(G) = 1
N

NM∑
i �= j ∈ G

wij where i and j are two

distinct nodes in graph G. The clustering coefficient (CC) of
the weighted network G quantifies the likelihood whether the
neighboring nodes of any network nodes are connected with
each other (Onnela et al., 2005), which was defined as: CC =
1
N

∑
j,k ∈ G

(wij wjk wik)
1/3/(k∗

i (ki − 1)/2), where ki is the number of

connected neighbors of node i. The weighted characteristic path
length L of a network is the average minimum connectional

weights that link any two nodes of the network. To avoid the
issue of disconnected nodes, L was measured here by using a
“harmonic mean” distance between any pair of nodes such as
the reciprocal of the average of the reciprocals (Newman, 2003).
A real network would be considered small world if it meets
the following criteria: γ = Creal

p /Crand
p > 1 and λ = Lreal

p /Lrand
p ∼

1 (Watts and Strogatz, 1998), where Crand
p and Lrand

p are the
mean CC and L of matched random networks that preserve
the same number of nodes, edges and degree distribution as
the real network (Maslov and Sneppen, 2002). In this study,
we generated 1000 matched random networks for each group
network.

The global efficiency Eglob of a weighted network G is defined

as Eglob(G) = 1
N(N−1)

∑
i �= j∈ G

1
wij

, where wij is the smallest con-

nectional weight between node i and j and N is the number
of nodes. It characterizes the efficiency of a system transporting
information in parallel (Latora and Marchiori, 2003). The local
efficiency Eloc of a weighted network G is defined as: Eloc(G) =
1
N

∑
i ∈ G

Eglob(Gi), where Gi denotes the subgraph composed of the

nearest neighbors of node i. The local efficiency represents the
fault tolerance level of the network in response to the removal of
a node (Latora and Marchiori, 2003).

The regional global efficiency Ereg of a given node i is defined

as: Enodal(i) = 1
N−1

∑
i �= j ∈ G

1
wij

, as it measures the average smallest

path weight between given node i and all other nodes in the net-
work. The node i was considered as a hub if its regional global
efficiency was at least one standard deviation (SD) greater than
the mean nodal efficiency of the whole network.

The modularity Q(p) for a given partition p of a weighted brain

structural network is defined as Q(p) =
NM∑
s = 1

[
ws
W −

(
Ws
2W

)2
]

,

where NM is the number of modules, W is the total weight of
the network, ws is the sum of the connectional weights between
all nodes in module s, and Ws is the sum of the nodal weights in
module s. The modularity index quantifies the difference between
the weight of intra-module links of the actual network and that of
a random network in which connections are weighted at random
(Newman, 2004). The aim of this module identification process
is to find a specific partition p which yields the largest network
modularity, Q(p). Here a modified greedy optimization algorithm
(Clauset et al., 2004; Danon et al., 2006) is used to find the
modules of the network. The advantage of this modularity opti-
mization method is that it takes into account the heterogeneity of
module size observed in real networks (Danon et al., 2006).

We also determined the participation coefficient (PC) for each
cortical region in terms of their inter-modular connection den-
sity (Guimera and Amaral, 2005; Guimera and Nunes Amaral,
2005; Sales-Pardo et al., 2007). The PC, Pi, measures the inter-
modular connectivity of node i, and is defined as: Pi = 1 −
NM∑
s = 1

(
wis
wi

)2
, where NM is the number of modules and wis is inter-

modular connectional weight between the node i and module
s. wi is the total weight of node i in the network. The PC of
node i will be close to 0 if all weights are within its module.
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Table 2 | Seventy eight cortical regions of interest defined in the study and their abbreviations (L: left hemisphere, R: right hemisphere).

Index Region Abb. Index Regions Abb.

(L, R) (L, R)

(1, 40) Gyrus rectus REC (21, 60) Precuneus PCUN

(2, 41) Olfactory cortex OLF (22, 61) Superior occipital gyrus SOG

(3, 42) Superior frontal gyrus, orbital part ORBsup (23, 62) Middle occipital gyrus MOG

(4, 43) Superior frontal gyrus, medial orbital ORBsupmed (24, 63) Inferior occipital gyrus IOG

(5, 44) Middle frontal gyrus orbital part ORBmid (25, 64) Calcarine fissure and surrounding cortex CAL

(6, 45) Inferior frontal gyrus, orbital part ORBinf (26, 65) Cuneus CUN

(7, 46) Superior frontal gyrus, dorsolateral SFGdor (27, 66) Lingual gyrus LING

(8, 47) Middle frontal gyrus MFG (28, 67) Fusiform gyrus FFG

(9, 48) Inferior frontal gyrus, opercular part IFGoperc (29, 68) Heschl gyrus HES

(10, 49) Inferior frontal gyrus, triangular part IFGtriang (30, 69) Superior temporal gyrus STG

(11, 50) Superior frontal gyrus, medial SFGmed (31, 70) Middle temporal gyrus MTG

(12, 51) Supplementary motor area SMA (32, 71) Inferior temporal gyrus ITG

(13, 52) Paracentral lobule PCL (33, 72) Temporal pole: superior temporal gyrus TPOsup

(14, 53) Precentral gyrus PreCG (34, 73) Temporal pole: middle temporal gyrus TPOmid

(15, 54) Rolandic operculum ROL (35, 74) Parahippocampal gyrus PHG

(16, 55) Postcentral gyrus PoCG (36, 75) Anterior cingulate and paracingulate gyrus ACG

(17, 56) Superior parietal gyrus SPG (37, 76) Median cingulate and paracingulate gyrus DCG

(18, 57) Inferior parietal, but supramarginal and angular gyri IPL (38, 77) Posterior cingulate gyrus PCG

(19, 58) Supramarginal gyrus SMG (39, 78) Insula INS

(20, 59) Angular gyrus ANG

The node i was considered as an inter-modular hub if its PC
value was at least one SD greater than the mean PC of the whole
network.

STATISTICAL ANALYSIS
Between-group differences analysis of all the global network met-
rics (S, CC, L, Eglob, Eloc, Ereg, Q) was performed between adjacent
age groups using the General linear model (GLM) with age and
gender included as covariates. The nodal properties (Ereg , z, P)
were corrected by false discovery rate at q = 0.05 (Genovese et al.,
2002; Zeisel et al., 2011).

RESULTS
AGE-RELATED CHANGES IN FIBER NUMBER AND NETWORK SPARSITY
To examine the age effect on the tractography results, we mapped
age-related changes in the FN and sparsity of white matter net-
work as shown in Figures 2A,B. We found that age has an incre-
mental effect on both the FN and sparsity, where both increase
by a factor of ∼1.6 and ∼1.2, respectively, from age 6 to 30
years. These increases are presumably due to the known eleva-
tions of FA in WM with age. Given the fact that our network edge
weighting function depends on FN and FA, it is expected that the
connectivity strength of the network would also increase with age.

SMALL-WORLD EFFICIENCY OF DEVELOPING WM NETWORKS
To examine the small-worldness of the WM networks for all
different age groups, using a previously published method by
our group (Gong et al., 2009), one weighted backbone net-
work for each age group was generated to capture the under-
lying anatomical connectivity patterns as shown in Figure 3.
Compared with their corresponding 1000 random networks, all

FIGURE 2 | Age-related changes in fiber number and sparsity of white

matter network in all the individual subjects. Both fiber number and
sparsity demonstrate increases with age.

five age groups showed strong small-worldness (σearly childhood =
3.54, σlate childhood = 3.19, σadolescence = 3.25, σyoung adult = 3.12,
σadult = 3.19).

GLOBAL NETWORK PROPERTIES AND THEIR AGE-RELATED
TRAJECTORIES
Over all subjects in each age group, the total network weight, CC,
Lp, modularity (Q), Eglob and Eloc was calculated for the WM
network and the age-related trajectories are shown in Figure 4.
The total network weight displayed significant increases in three
of the four developing stages, whereas the other metrics such as
Lp, Q, Eglob, and Eloc demonstrated non-linear alteration pat-
terns where most changes happened from young childhood to
late childhood that then leveled off. Both Lp and Q decreased
significantly from young childhood to late childhood but stabi-
lized at older ages. Global network efficiency increased signifi-
cantly from young childhood to late childhood but also stabilized
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FIGURE 3 | The small-worldness of the WM networks for the five age

groups. Each group was represented by one weighted backbone network
to capture the underlying anatomical connectivity patterns. Compared with
their corresponding random networks, all age groups showed strong
small-worldness (i.e., σ >> 1). The numbers reflect the structural indices
indicated in Table 2.

later. Local network efficiency increased significantly from late
childhood to adolescence and stabilized afterwards.

REGIONAL EFFICIENCY OF THE DEVELOPING WM NETWORKS
We found consistent hubs regions, measured here as the AAL
areas with highest regional global efficiency, such as bilateral
PCUN, SFGdor, and SFGmed, that are shared by all age groups
as shown in Figure 5. Comparing the regional efficiency changes
from group to group in these hubs, seven regions had increased
nodal efficiency (P < 0.05, FDR corrected) from early childhood
to late childhood and two regions from late childhood to ado-
lescence (Figure 6). Most regional changes from early to late
childhood are in the default-mode system, including bilateral
PCUN and left DCG. Left STG and right INS were found to have
increased efficiency from late childhood to adolescence.

FIGURE 4 | Age-related changes in different network metrics for the

developing WM network from early childhood to adult. (A) Total
network strength (S), (B) Clustering coefficient (CC), (C) Shortest path
length (Lp ), (D) Modularity (Q), (E) Global efficiency (Eglob), and (F) Local
efficiency (Eloc). Significant changes between any adjacent age groups are
indicated by their p value. An increase with age is observed in S over the
full age span. Eglob increases only between the two youngest age groups
and Eloc only between late childhood and adolescence; in both cases, the
efficiency values then stay elevated. Reductions are observed in Lp and Q
from early to late childhood that is then maintained low. There is no change
in CC between any adjacent age groups. The + signs indicate outliers.

MODULAR ORGANIZATION AND CONNECTOR HUBS OF THE
DEVELOPING WM NETWORKS
The modular organization of the developing structural brain
networks for the five different age groups is shown in Table 3
and Figure 7. Six modules (1–6) were detected in all age groups
indicating strong stability (Greicius et al., 2003) in the modu-
larity of the developing brain network. Despite decreased mod-
ularity from early to late childhood, the modular structures of
both groups were almost identical. Module 1 was mostly com-
posed of bilateral orbitofrontal regions (ORBsup, ORBsupmed,
ORBmid, REC) in early and late childhood that becomes more
lateralized in adolescence. Right orbitofrontal regions become
connected with right temporal and occipital regions that resem-
bles the ventral visual system (Grill-Spector et al., 2008) and
left orbitofrontal regions become part of lateral frontal sys-
tem. Module 2 consists of mostly occipital regions (SOG, CAL,
CUN) throughout the youngest age groups except at adult-
hood when the left occipital regions become part of left ventral
visual system (Grill-Spector et al., 2008). Lateralized modules 3
(left hemisphere) and 4 (right hemisphere) consist of regions
mostly across frontal, parietal and temporal lobes from each
hemisphere from early to late childhood. However, module 4
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FIGURE 5 | Global hubs of the developing WM network defined by their nodal efficiency. Association hub regions such as bilateral PCUN, SFGdor, and
SFGmed are consistent over all age groups. Note that all brain images are viewed from the medial side (also for Figures 6, 7).

FIGURE 6 | Regions with significantly increased nodal efficiency from

early childhood to late childhood and late childhood to adolescence.

Seven regions had increased nodal efficiency (P < 0.05, FDR corrected)
from early childhood to late childhood and two regions from late childhood
to adolescence. Most regional changes from early to late childhood are in
the default-mode system, including bilateral PCUN and left DCG. Left STG
and right INS have increased efficiency from late childhood to adolescence.

is pruned to a mainly frontal-parietal system from adolescence
onwards and module 3 doesn’t reach a similar outcome until
adulthood. Modules 5 and 6 are two of the most consistent
modules during development and include mostly bilateral frontal
(SFG, MFG) and posterior parietal (PCUN, DCG, SMA) regions,
respectively.

The distribution of inter-modular hubs based on PC of each
region for different age groups was very consistent (Figure 8).
They were mostly located within posterior cortex, including bilat-
eral PCUN, SPL, and MOG. Large frontal hubs such as bilateral
SFGdor appeared in late childhood and remained significant
afterwards.

To ensure the change of modular organization didn’t result
from the different sparsity of the five age groups, an additional

analysis was performed where we normalized all group networks
sparsity to the lowest sparsity at 0.1142 (early childhood)
as weaker connections were removed from the other net-
works with higher sparsity (late childhood, 0.1262, adolescence,
0.1312, young adult, 0.1289, adult, 0.1329) and re-examined
the modularity of the networks. We found extremely consis-
tent modularity (0.56 previous vs. 0.56 with normalized spar-
sity in late childhood, 0.56 vs. 0.56 in adolescence, 0.55 vs.
0.56 in young adults, and 0.58 vs. 0.56 in adults) and mod-
ular organization compared with our original networks. Thus,
we could presume that changes in the backbone network and
its modular organization were not due to different matrix
densities.

DISCUSSION
The present study utilized DTI tractography and network the-
ory to characterize changes to the global structural WM network
with age from early childhood to adulthood. Our main results are
demonstrations of (1) a non-linear age effect on most network
topological properties of brain WM network in development
where most changes happen at late childhood stage (10–13 years),
such as increased global network efficiency and decreased modu-
larity, suggesting a shift of organization toward a more random-
ized configuration, (2) consistent hubs involving several major
functional systems across all age groups and significant nodal
changes only happening from early childhood to adolescence, (3)
anatomically localized modules in the development of brain WM
network, and (4) key connector hubs during development of the
WM network.

First, using graph theoretical analysis, small-world net-
work architecture was demonstrated in the WM networks
of all age groups. During the last decade, graph theoreti-
cal analysis has been widely applied to both the functional
(Stam, 2004; Bassett et al., 2006; Achard and Bullmore, 2007)
and anatomical (He et al., 2007; Hagmann et al., 2008;
Gong et al., 2009) brain networks and one common find-
ing is the existence of “small-worldness” in all types of net-
work, as defined by high CC and low characteristic path
length. Recent structural brain network studies have also
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Table 3 | Cortical regions in each module of developing white matter network.

Module Early childhood Late childhood Adolescence Young adult Adult

1 ORBsupmed.L
ORBsupmed.R
ORBsup.L
ORBmid.L
ORBinf.L
REC.L
REC.R
OLF.L
OLF.R

ORBsupmed.L
ORBsupmed.R
REC.L REC.R
OLF.L
OLF.R

ORBsup.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
REC.R OLF.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R
MOG.R PHG.R

ORBsupmed.L
ORBsup.R
ORBsupmed.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
REC.L REC.R
OLF.L OLF.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R
MOG.R

ORBsup.R
ORBmid.R
ORBinf.R
TPOsup.R
TPOmid.R
MOG.R IOG.R
FFG.R HES.R
STG.R MTG.R
ITG.R PHG.R
REC.R OLF.R
INS.R

2 SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.R

SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.R PHG.R

SOG.L CAL.L
CUN.L PCG.L
SOG.R CAL.R
CUN.R LING.R
PCG.R

SOG.L SOG.R
CAL.L CAL.R
CUN.L CUN.R
LING.L LING.R
PHG.L PHG.R

TPOmid.L
SOG.L SOG.R
MOG.L IOG.L
CAL.L CAL.R
CUN.L CUN.R
LING.L LING.R
FFG.L ITG.L
PHG.L

3 IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBsup.L
ORBmid.L
ORBinf.L
IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBmid.L
ORBinf.L
IFGoperc.L
IFGtriang.L
TPOsup.L
TPOmid.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L LING.L
FFG.L HES.L
STG.L MTG.L
ITG.L PHG.L
INS.L

ORBsup.L
ORBmid.L
ORBinf.L
IFGoperc.L
TPOsup.L
TPOmid.L INS.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L MOG.L
IOG.L FFG.L
HES.L STG.L
MTG.L ITG.L

IFGoperc.L
IFGtriang.L
TPOsup.L
PreCG.L ROL.L
PoCG.L SPG.L
IPL.L SMG.L
ANG.L HES.L
STG.L MTG.L
INS.L

4 ORBsup.R
ORBmid.R
ORBinf.R
IFGoperc.R
IFGtriang.R
TPOsup.R
TPOmid.R
PHG.R INS.R
PreCG.R ROL.R
PoCG.R SPG.R
IPL.R SMG.R
ANG.R MOG.R
IOG.R FFG.R
HES.R STG.R
MTG.R ITG.R

ORBsup.R
ORBmid.R
ORBinf.R
IFGoperc.R
IFGtriang.R
TPOsup.R
TPOmid.R
INS.R PreCG.R
ROL.R PoCG.R
SPG.R IPL.R
SMG.R ANG.R
MOG.R IOG.R
FFG.R HES.R
STG.R MTG.R
ITG.R

IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R
INS.R

SFGdor.R
IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
MFG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R
INS.R

SFGdor.R
IFGoperc.R
IFGtriang.R
PreCG.R
PoCG.R
MFG.R
ROL.R
SPG.R
IPL.R
SMG.R
ANG.R

(Continued)
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Table 3 | Continued

Module Early childhood Late childhood Adolescence Young adult Adult

5 SFGdor.L
SFGdor.R
SFGmed.L
SFGmed.R
ACG.L
ACG.R
MFG.L
MFG.R

SFGdor.L
SFGdor.R
ORBsup.L
ORBsupmed.L
ORBsupmed.R
SFGmed.L
SFGmed.R
REC.L OLF.L
MFG.L MFG.R
ACG.L ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
IFGtriang.L
MFG.L
ACG.L
ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
MFG.L
IFGtriang.L
ACG.L
ACG.R

SFGdor.L
SFGmed.L
SFGmed.R
ORBsup.L
ORBsupmed.R
ORBsupmed.L
ORBmid.L
ORBinf.L
MFG.L
ACG.L ACG.R
REC.L OLF.L

6 PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCL.L PCL.R
SMA.L SMA.R

PCL.L PCUN.L
PCUN.R DCG.L
DCG.R PCG.L
PCG.R PCL.R
SMA.L SMA.R

PCUN.L PCUN.R
DCG.L DCG.R
PCG.L PCG.R
PCL.L PCL.R
SMA.L

revealed that small-world topology and modular organization
are established during early brain development (<2 years) to
support rapid synchronization and information transfer with
minimal rewiring cost (Fan et al., 2011; Yap et al., 2011). Thus,
our results are in agreement with previous findings that the
WM network maintains small-world efficiency at all stages of
development.

Total network weight shows increases in three of the four
developing stages, although the greatest change is between the
two youngest groups pre-adolescence. Our finding is consis-
tent with a previous WM network study that reported a sig-
nificant increase in the average node strength in a group of
subjects aged from 18 months to 18 years where it was sug-
gested that increased network weight indicates increased nodal
strength and greater physiological efficacy, particularly of long
pathways (Hagmann et al., 2010). A functional network study has
also reported increased functional integration due to a decrease
of average path length during the same period and suggested
it was related to increased axonal diameter and myelin thick-
ness of long association fiber tracts (Supekar et al., 2009). We
also found significant age-related decreases in the shortest path
length and modularity and increase in the global efficiency of
the developing WM network from early childhood to late child-
hood indicating greater integration among distant brain regions
and a shift of topological organization to a more randomized
configuration. Previous WM network (Hagmann et al., 2010)
and cortical thickness network (Khundrakpam et al., 2013) stud-
ies of brain development also demonstrated a similar pattern
of network metrics evolution between age 2 and 18 years and
between 5 and 18 years, respectively. However, the WM net-
work study had applied a linear fit for all the network metrics
vs. age even though network metrics such as efficiency and clus-
tering seemed to have leveled off after late childhood in their
paper (Hagmann et al., 2010). Using a similar approach to ours,
(Khundrakpam et al., 2013) demonstrated a leveling off of various

cortical thickness network metrics after the early adolescence
stage.

Consistent global hub regions, indicated by higher regional
efficiency, are observed across all age groups. Hub regions are
predominately association cortices that receive convergent inputs
from multiple cortical regions. Regions such as SFG and PCUN
have been constantly identified as the hub regions in both struc-
tural (He et al., 2007; Gong et al., 2009) and functional brain
networks (Achard and Bullmore, 2007). A recent structural brain
network study also identified them as the hub regions from age
2 years suggesting that they are established at a very early age
(Hagmann et al., 2010). We also found that the regions with the
most age-related increases in efficiency are in the default-mode
system, including bilateral PCUN and left DCG. A functional
brain network study has reported a less well-developed default
mode network connectivity in early childhood compared with
adults, especially within posterior regions such as PCUN (Fair
et al., 2008). However, evidence from structural covariance net-
work analysis has demonstrated significant pruning in the default
mode system from early childhood to late childhood (Zielinski
et al., 2010). Thus, we could speculate that nodal efficiency of
default mode regions might plateau by late childhood.

In this study, a stable and functionally/anatomically related
modular organization was demonstrated in the developing WM
network. Six modules comprising regions with known func-
tions or connections were identified in the developing WM
network. Modules 1, 2, 5 and 6 were mostly composed of
orbitofrontal, occipital, frontal, and posterior parietal regions
that could correspond to sensory integration, visual, executive
function, and default mode network, respectively, (Duncan and
Owen, 2000; Raichle et al., 2001; Kringelbach, 2005). Modular
network analysis has provided rich quantitative insights into
the organization of complex brain networks. Studies in mam-
malian anatomical brain networks have revealed clusters that
overlap with many known brain functions (Hilgetag et al., 2000;
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FIGURE 7 | Modular organization of the developing WM

networks. Six modules (1–6) were detected in all age groups and
are represented by red, green, purple, yellow, pink, and blue
colors. See Table 3 for a detailed list of modular regions. Module
1 was mostly composed of bilateral orbitofrontal regions (ORBsup,
ORBsupmed, ORBmid, REC) in early and late childhood and
becomes more lateralized from adolescence onwards. Module 2
consists of mostly occipital regions (SOG, CAL, CUN) bilaterally.
Lateralized modules 3 (left hemisphere) and 4 (right hemisphere)
consist of regions mostly across frontal, parietal and temporal
lobes within each hemisphere. Modules 5 and 6 are two of the
most consistent modules during development that include mostly
bilateral frontal (SFG, MFG) and posterior parietal (PCUN, DCG,
SMA) regions, respectively.

Zhou et al., 2006). Previous neuroimaging studies have also
demonstrated anatomically- and functionally-related modules in
the human brain structural network using diffusion spectrum
imaging (Hagmann et al., 2008) and the functional network
using resting-state functional MRI (Salvador et al., 2005; Ferrarini
et al., 2009; He et al., 2009; Meunier et al., 2009; Valencia et al.,
2009). Also, network modules identified by cortical thickness net-
work analysis are comprised of brain regions known to subserve
distinct brain functions such as executive function, vision, and
default mode network (Chen et al., 2008, 2011). Two recent DTI
studies also revealed non-random and dynamic modular orga-
nization of structural brain network in the first 2 years of brain
development (Fan et al., 2011; Yap et al., 2011). Two lateralized
modules (3 and 4) that correspond to the frontal-parietal net-
work were also observed in the developing WM network. The
adult human brain exhibits distinct hemispheric asymmetries
in both structure and function. These asymmetries are thought
to originate from evolutionary, developmental, hereditary, expe-
riential, and pathological factors (Toga and Thompson, 2003).
Thus, we could speculate that the lateralized network modules
might result from the functional and structural hemispheric
asymmetries.

Taken together, our results suggest an efficient modular orga-
nization in the WM network from early childhood and are
consistent with modular behavior reported in previous struc-
tural and functional brain network studies and more importantly,
a lateralized developmental pattern in some of the modules.
The inter-modular hubs are the main connectors between mod-
ules and their existence in frontal and posterior cortex in the
developing brain are consistent with previous WM network
(Yap et al., 2011) and cortical thickness network (Khundrakpam
et al., 2013) analysis. Resting state functional networks have
also reported a high density of strong functional connections
in posterior cortex (Achard et al., 2006). Thus, we could spec-
ulate that the inter-modular hubs uncovered in this study are
well-established at childhood and are responsible for the con-
nections between different functional systems of the developing
brain.

FIGURE 8 | The distribution of inter-modular hubs based on

participation coefficient (PC) of each region for different age

groups. They were mostly located within posterior cortex, including

bilateral PCUN, SPL, and MOG. Large frontal hubs such as
bilateral SFGdor appeared in late childhood and remained significant
afterwards.
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A few methodological issues need to be addressed. Two draw-
backs of our study include the acquisition of DTI data with six
diffusion directions at low b values of 1000 s/mm2 and the use
of deterministic tractography which will give errors in such an
unsupervised tractography method given abrupt terminations at
low FA crossing fiber regions or erroneous connections due to
errors in the primary eigenvector direction. Multiple gradient
directions can reduce the uncertainty of the primary eigenvector
direction and limit potential bias as a function of tract orienta-
tion, both concerns for deterministic tractography of WM tracts
(Landman et al., 2007). However, a recent study from our group
has demonstrated six-direction data can also provide average
diffusion measures like FA over a specific tract with compara-
ble robustness to 30- or 60-direction data and yield appropriate
parameter values for many major WM tracts (Lebel et al., 2012),
which is encouraging as our edge weights were calculated based
on the average FA of all voxels over the whole tract connecting
two nodes. However, this does not overcome potential false pos-
itive connections or missed connections from the deterministic
tractography algorithm. We attempted to minimize the former
by invoking a minimum FN between regions but an incor-
rect connection that is consistent among the subjects within a
group would still be included in the network analysis. DTI data
with more than six directions also permit other advantages such
as alternative analysis methods (e.g., probabilistic tractography)
(Dennis et al., 2013). Higher b values than typically acquired
are also advantageous for resolving crossing fibers and increas-
ing the accuracy of tractography derived connections (Tournier
et al., 2008). Another limitation of the study is that the age ranges
of the groups covered a 3.1 to 4.7 year age range for the four
youngest groups. In this study, a general linear model was applied
to remove those age effects within all groups before perform-
ing the between-group comparison. In future study, smaller age
ranges within groups may provide more specific indices of tim-
ing for the WM network maturation. Third, a FN threshold of
10 was applied to minimize the inclusion of random connections
between two cortical regions. Currently, there are no standard
approaches in determining the threshold value for the number
of connecting fibers between regions as small thresholds such as 3
streamlines (Shu et al., 2011) produced networks with large spar-
sity with many spurious connections. Thus, our choice of higher
threshold reduces, but does not eliminate, the risk of false-positive
connections due to noise or the limitations in deterministic trac-
tography. Recently, a threshold of 10 connecting streamlines or
more was also applied in a brain network study (van den Heuvel
et al., 2012) in which they considered that edges comprising
fewer than 10 streamlines were potentially spurious and were
deleted from the connection matrix. To examine the influence
of the threshold, we tested a range of thresholds from 3 to 10
fibers and results including all network parameters are shown
in Table A1. Although the network efficiency decreased as the
sparsity decreased, the small worldness of the network remained
intact. Most importantly, the group differences among adjacent
age groups also remained consistent across all applied thresh-
olds which indicates that the network comparison results are not
sensitive to the threshold choices. Cortical regions in our study

are defined by an a priori volumetric template (AAL) that was
employed to automatically parcellate the entire cerebral cortex
into different regions. Different templates used in various studies
might cause discrepancy in the specific results, though the main
trend of the network properties is expected to remain intact.

Various weighting functions for cortical-cortical connections
have been applied in previous brain network analyses of brain
development including 1/mean diffusivity (Hagmann et al., 2010)
and proportional FN (Dennis et al., 2013), whereas we used
the product of tract FA (known to increase exponentially with
development over this age range but at unique rates per tract—
Lebel et al., 2008) and AAL regional volume-normalized FN
that has been used by others in studies of Alzheimer’s Disease
and aging (Lo et al., 2010; Brown et al., 2011). Other diffusion
indices such as mean diffusivity (MD), axial diffusivity (AD)
or radial diffusivity (RD) could have been examined instead of
FA as a basis of “weighting” the network connections. However,
to our best knowledge, while a few studies have applied MD
as an edge weighting function (Hagmann et al., 2010; Li et al.,
2012), none have used AD or RD. While changes in MD and
FA for the WM typically occur together during maturation, with
MD values decreasing and FA values increasing, the processes
by which the two parameters change are theoretically different
(Schmithorst et al., 2002; Huppi and Dubois, 2006) and they
do not change at the same rate (Lebel et al., 2008). Axial and
RD, under certain circumstances, may be more specific to under-
lying biological processes, such as myelin and axonal changes
(Song et al., 2002). A recent study has demonstrated changes
of FA in corticospinal tract and anterior corona radiata during
development (2 to 40 years) that were attributed to the differ-
ent rate changes in AD and RD (Faria et al., 2010). Thus, one
would expect different WM network organization if using differ-
ent weighting functions. Therefore, future studies could consider
using multiple diffusion tensor measures such as FA, MD, AD
and RD.

In conclusion, a graph theoretical approach was used to
demonstrate age-related alterations in the large scale network
properties of the developing WM network from early child-
hood (6 years) to adulthood (30 years). It was shown that
increased network weight signifies a reshaping of the WM net-
work from early childhood to late childhood with increased
integration and decreased segregation. These findings are com-
patible with the notion that structural and functional brain
networks become stable after late childhood. Our results also
have implications for understanding how the modular organi-
zational alterations in the large-scale structural brain networks
underlie maturation of cognitive function in brain development.
This study may pave the way for developing novel methods for
analyzing disrupted brain connectivity in neurodevelopmental
disorders.
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APPENDIX

Table A1 | White matter network parameters derived from different fiber-number node-to-node connection thresholds in all age groups.

FN threshold Groups Eglob Eloc Q σ

3 Early childhood 0.93 ± 0.07 1.32 ± 0.07 0.55 ± 0.03 3.15

Late childhood 0.98 ± 0.07 1.35 ± 0.08 0.54 ± 0.02 3.02

Adolescence 1.02 ± 0.09 1.38 ± 0.09 0.54 ± 0.02 2.92

Young adult 1.02 ± 0.07 1.37 ± 0.06 0.54 ± 0.02 2.76

Adult 1.03 ± 0.07 1.39 ± 0.06 0.54 ± 0.02 2.90

4 Early childhood 0.89 ± 0.07 1.27 ± 0.06 0.56 ± 0.02 3.22

Late childhood 0.94 ± 0.07 1.30 ± 0.07 0.54 ± 0.02 3.02

Adolescence 0.97 ± 0.08 1.33 ± 0.08 0.54 ± 0.02 2.95

Young adult 0.97 ± 0.06 1.33 ± 0.06 0.54 ± 0.02 2.82

Adult 0.99 ± 0.06 1.36 ± 0.06 0.54 ± 0.02 2.96

5 Early childhood 0.86 ± 0.07 1.25 ± 0.06 0.55 ± 0.02 3.29

Late childhood 0.91 ± 0.07 1.27 ± 0.07 0.54 ± 0.02 3.09

Adolescence 0.94 ± 0.08 1.30 ± 0.08 0.54 ± 0.02 3.06

Young adult 0.94 ± 0.06 1.30 ± 0.05 0.54 ± 0.02 2.95

Adult 0.96 ± 0.06 1.31 ± 0.06 0.54 ± 0.02 3.01

6 Early childhood 0.84 ± 0.07 1.22 ± 0.06 0.55 ± 0.03 3.33

Late childhood 0.88 ± 0.06 1.24 ± 0.07 0.54 ± 0.02 3.08

Adolescence 0.91 ± 0.08 1.27 ± 0.08 0.54 ± 0.02 3.10

Young adult 0.91 ± 0.06 1.27 ± 0.05 0.54 ± 0.03 3.00

Adult 0.93 ± 0.06 1.29 ± 0.05 0.54 ± 0.02 3.04

7 Early childhood 0.82 ± 0.07 1.19 ± 0.07 0.56 ± 0.03 3.37

Late childhood 0.86 ± 0.06 1.22 ± 0.07 0.54 ± 0.02 3.01

Adolescence 0.89 ± 0.08 1.25 ± 0.08 0.54 ± 0.02 3.18

Young adult 0.89 ± 0.06 1.25 ± 0.05 0.54 ± 0.02 3.01

Adult 0.90 ± 0.05 1.26 ± 0.05 0.54 ± 0.02 3.08

8 Early childhood 0.80 ± 0.06 1.17 ± 0.07 0.56 ± 0.03 3.40

Late childhood 0.84 ± 0.06 1.20 ± 0.06 0.54 ± 0.02 3.14

Adolescence 0.87 ± 0.07 1.23 ± 0.07 0.54 ± 0.02 3.23

Young adult 0.87 ± 0.06 1.22 ± 0.05 0.54 ± 0.02 3.06

Adult 0.89 ± 0.05 1.24 ± 0.05 0.54 ± 0.02 3.12

9 Early childhood 0.78 ± 0.06 1.15 ± 0.06 0.56 ± 0.02 3.48

Late childhood 0.82 ± 0.05 1.18 ± 0.06 0.54 ± 0.02 3.21

Adolescence 0.85 ± 0.07 1.21 ± 0.07 0.54 ± 0.02 3.25

Young adult 0.85 ± 0.05 1.20 ± 0.05 0.54 ± 0.02 3.09

Adult 0.87 ± 0.05 1.22 ± 0.05 0.54 ± 0.02 3.14

10 Early childhood 0.77 ± 0.06 1.13 ± 0.06 0.56 ± 0.03 3.54

Late childhood 0.81 ± 0.05 1.16 ± 0.06 0.54 ± 0.02 3.12

Adolescence 0.83 ± 0.07 1.19 ± 0.07 0.54 ± 0.02 3.25

Young adult 0.84 ± 0.05 1.19 ± 0.05 0.54 ± 0.02 3.12

Adult 0.85 ± 0.05 1.21 ± 0.05 0.54 ± 0.02 3.19

Adjacent groups show significant differences or trend in network properties are highlighted in shaded cells. FN: fiber number, Eglob: global efficiency, Eloc: local

efficiency, Q: modularity, σ : small worldness.

Frontiers in Human Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 716 | 211

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 26 March 2013

doi: 10.3389/fnhum.2013.00098

Age-related changes in brain structural covariance
networks
Xinwei Li1,2, Fang Pu2, Yubo Fan2, Haijun Niu1,2, Shuyu Li1,2* and Deyu Li2*
1 State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
2 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Department of Biomedical Engineering, School of Biological Science and Medical

Engineering, Beihang University, Beijing, China.

Edited by:
Yong He, Beijing Normal University,
China

Reviewed by:
Xiaobo Li, Albert Einstein College of
Medicine, USA
Zhang Chen, University of Alberta,
Canada

*Correspondence:
Shuyu Li and Deyu Li, Key
Laboratory for Biomechanics and
Mechanobiology of Ministry of
Education, School of Biological
Science and Medical Engineering,
Beihang University, No. 37 Xueyuan
Road, Haidian District,
Beijing 100191, China.
e-mail: shuyuli@buaa.edu.cn;
deyuli@buaa.edu.cn

Previous neuroimaging studies have suggested that cerebral changes over normal aging
are not simply characterized by regional alterations, but rather by the reorganization of
cortical connectivity patterns. The investigation of structural covariance networks (SCNs)
using voxel-based morphometry is an advanced approach to examining the pattern of
covariance in gray matter (GM) volumes among different regions of the human cortex.
To date, how the organization of critical SCNs change during normal aging remains
largely unknown. In this study, we used an SCN mapping approach to investigate eight
large-scale networks in 240 healthy participants aged 18–89 years. These participants
were subdivided into young (18–23 years), middle aged (30–58 years), and older (61–89
years) subjects. Eight seed regions were chosen from widely reported functional intrinsic
connectivity networks. The voxels showing significant positive associations with these
seed regions were used to describe the topological organization of an SCN. All of these
networks exhibited non-linear patterns in their spatial extent that were associated with
normal aging. These networks, except the primary motor network, had a distributed
topology in young participants, a sharply localized topology in middle aged participants,
and were relatively stable in older participants. The structural covariance derived using
the primary motor cortex was limited to the ipsilateral motor regions in the young and
older participants, but included contralateral homologous regions in the middle aged
participants. In addition, there were significant between-group differences in the structural
networks associated with language-related speech and semantics processing, executive
control, and the default-mode network (DMN). Taken together, the results of this study
demonstrate age-related changes in the topological organization of SCNs, and provide
insights into normal aging of the human brain.

Keywords: connectivity, structural covariance network, normal aging, neuroimaging, sensorimotor,

neurocognition

INTRODUCTION
The majority of neuroimaging studies of aging have reported a
consistent pattern of gray matter (GM) volumetric reductions in
the human cortex, involving mainly prefrontal regions, parietal,
and temporal association cortices, and the insula and cingulum
(Resnick et al., 2003; Sowell et al., 2003; Raz et al., 2005; Du
et al., 2006; Terribilli et al., 2011). However, more and more
studies have demonstrated that cerebral changes with normal
aging are not simply characterized by regional alterations but
rather by the reorganization of cortical connectivity patterns
(O’Sullivan et al., 2001; Koch et al., 2010; Wu et al., 2011b; Zhu
et al., 2012). Using diffusion tensor imaging (DTI), several stud-
ies have consistently reported a diffuse loss of axonal integrity in
senior populations (Salat et al., 2005; Pagani et al., 2008; Madden
et al., 2009), which allowed for inferences regarding changes of
structural connectivity in older people compared with younger
adults. Building on complex network analysis methods, Gong
et al. (2009) reported a reduction in overall cortical connectivity,
decreased local efficiency, and a shift in regional efficiency from

parietal and occipital to frontal and temporal neocortex in older
brains.

The investigation of structural covariance networks (SCNs)
using structural magnetic resonance imaging (sMRI) is another
useful method to explore structural brain networks. This
approach mainly characterizes the pattern of structural covari-
ance in GM morphology (e.g., volume, thickness and surface
area) between brain regions using a general linear model (GLM)
framework (Mechelli et al., 2005; Lerch et al., 2006; Nosarti et al.,
2010; Zielinski et al., 2010; Montembeault et al., 2012; Soriano-
Mas et al., 2012). Many studies have demonstrated underlying
relationships among brain areas using structural correlation by
sMRI, anatomical connectivity by DTI, and functional correlation
by resting-state functional MRI. For example, He and colleagues
found that structural networks based on cortical thickness mea-
surements were compatible with known functional networks (He
et al., 2007). Greicius et al. measured functional connectivity
using independent component analysis and anatomical connec-
tivity using DTI and found there existed white matter tract

Frontiers in Human Neuroscience www.frontiersin.org March 2013 | Volume 7 | Article 98 |

HUMAN NEUROSCIENCE

212

http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/about
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00098/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=XinweiLi&UID=76422
http://community.frontiersin.org/people/FangPu/85014
http://community.frontiersin.org/people/HaijunNiu/85017
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ShuyuLi&UID=68203
http://community.frontiersin.org/people/DeyuLi/85016
mailto:shuyuli@buaa.edu.cn
mailto:deyuli@buaa.edu.cn
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Li et al. Age-related changes in SCNs

structural connections between functionally connected regions
(Greicius et al., 2009). A recent study reported agreement in the
correlations in GM thickness and underlying fiber connections
across brain areas, but more information was included for the
thickness network than the fiber network (Gong et al., 2012). In
addition, Seeley and colleagues demonstrated that SCNs using
voxel-based morphometry (VBM) were able to recapitulate the
functional connectivity network topologies (Seeley et al., 2009).
The covariance of different cortical regions in their GM vol-
umes was considered to be the result of mutual trophic influences
(Ferrer et al., 1995) or common experience-related plasticity
(Draganski et al., 2004; Mechelli et al., 2004). The consistency
among these three networks provides substantial support for
SCNs serving a measure of network integrity in cross-sectional
studies.

Of note, the analysis of SCNs using VBM has been successfully
applied to map the eight SCNs and explore how neural sys-
tems build large-scale structural covariance during development
(Zielinski et al., 2010). One previous aging study using struc-
tural covariance approaches compared two populations (younger
vs. older subjects) and reported reduced structural associations
in order adults, specifically in high-order cognitive networks
(Montembeault et al., 2012). However, because subjects in only
two age categories were involved in that experiment, it could
not determine the aging trajectories of these sensorimotor and
high-order cognitive networks. Zielinski et al. (2010) found that
there were non-linear trajectories of primary visual, auditory,
and sensorimotor networks during development. Moreover, these
networks were provisionally established by early childhood, but
underwent significant expansion in early adolescence before con-
traction or pruning in late adolescence. Many studies have shown
that age-related atrophy of some neural regions follows vari-
able, non-linear patterns (Allen et al., 2005; Kennedy et al., 2009;
Terribilli et al., 2011). However, it remains unknown whether and
how age-related changes of primary sensorimotor and high-order
cognitive SCNs exhibit non-linear trajectories during normal
aging.

Here, we used an SCN mapping approach to investigate eight
large-scale networks in 240 healthy participants aged 18–89.
These participants were subdivided into young (18–23 years),
middle aged (30–58 years), and older (61–89 years) subjects.
Given that SCNs subserving language, social–emotional, and
executive control functions have shown gradual deterioration
through normal aging, we expected to observe age-related trajec-
tories in the deterioration of these large-scale networks. To test
our hypothesis, we first investigated the aging trajectories of three
sensorimotor and five high-order cognitive SCNs in three groups
composed of an equal number of subjects at different ages, and
then compared these SCNs differences between the groups.

MATERIALS AND METHODS
PARTICIPANTS
Three hundred sixteen right-handed, healthy subjects were
selected from the Open Access Series of Imaging Studies (OASIS)
cross-sectional database (http://www.oasis-brains.org) (Marcus
et al., 2007). Data from seven subjects were excluded from further
analysis because of poor image quality or image preprocessing.

Because of relatively few subjects aged 30–60 years, we first
selected 80 subjects from this age range as the middle-aged group
(30 males and 50 females). Then, we selected 80 separate subjects
around 75 years of age as the old group. Finally, we selected the
youngest 80 subjects matched for gender as the young group. The
names and characteristics of the groups are shown in Table 1. All
subjects were evaluated using the Mini-Mental State Examination
(MMSE) (Folstein et al., 1975) and Clinical Dementia Rating
(CDR) scales (Morris, 1993; Morris et al., 2001). MMSE scores
were higher than 29, and CDR scores were all zero. For demo-
graphic data on all subjects, see Marcus et al. (2007). This dataset
has been used in several previous studies (Bakkour et al., 2009;
Fjell et al., 2009; Salat et al., 2009; Li et al., 2011).

IMAGE ACQUISITION
For each subject, three to four individual T1-weighted
magnetization-prepared rapid gradient echo (MP-RAGE)
images were acquired on a 1.5T Vision scanner (Siemens,
Erlangen, Germany) within a single session. Head movement
was minimized with cushioning and a thermoplastic face-
mask. Images were motion corrected and averaged to create
a single image with a high contrast-to-noise ratio. MP-RAGE
parameters were empirically optimized for gray/white contrast:
TR = 9.7 ms; TE = 4 ms; flip angle = 10◦; slice number = 128;
resolution = 256 × 256 (1 × 1 mm); thickness = 1.25 mm.

IMAGE PREPROCESSING
Structural MR images were processed using a technical com-
puting software program (MATLAB 2010; The MathWorks
Inc., Natick, Mass) and Statistical Parametric Mapping software
(SPM 8; The Wellcome Department of Imaging Neuroscience,
London, UK). Following the inspection of image artifacts,
image preprocessing was performed with the VBM8 toolbox
(http://dbm.neuro.uni-jena.de/vbm/). Briefly, all native-space
MRIs were segmented to extract GM based on an adaptive max-
imum a posteriori technique (Rajapakse et al., 1997) and partial
volume estimation method (Tohka et al., 2004) without the need
for a priori tissue probability information. In addition, a spa-
tially adaptive non-local denoising filter (Manjon et al., 2010)
and a hidden Markov random field model (Rajapakse et al.,
1997) were applied to minimize the level of noise in the result-
ing GM segments. Subsequently, the high-dimensional DARTEL
(diffeomorphic anatomical registration using exponentiated lie
algebra) approach provided non-linear deformation to normal-
ize the images to the DARTEL template in Montreal Neurological
Institute (MNI) space, which was derived from 550 healthy
control subjects (Ashburner, 2007). Non-brain tissue was also

Table 1 | Characteristics of the subjects in this study.

Group ID Age (mean ± SD) Number of subjects

Young (Y) 18–23 (20.66 ± 1.47) 80 (F:50/M:30)

Middle-aged (M) 30–58 (47.43 ± 8.23) 80 (F:50/M:30)

Old (O) 61–89 (73.75 ± 7.12) 80 (F:55/M:25)

Abbreviations: F, female; M, male.
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removed. Additionally, the Jacobian determinants derived from
the spatial normalization were used to modulate the GM value
for each voxel to preserve the total amount of GM from the orig-
inal images (Good et al., 2001). We used non-linear components
only, which allowed us to analyze relative (i.e., corrected for indi-
vidual brain size) differences in regional GM volume. Finally,
the resulting modulated and normalized images were smoothed
with a 12 mm full width at half maximum isotropic Gaussian
kernel.

EXTRACTION OF SEED VOLUMES
To assess the structural covariance pattern of each large-scale
network, we extracted individual GM volumes from eight seed
regions of interest (ROIs). These ROIs included the primary
visual, auditory, and motor cortex, as well as language-related
speech and semantic areas, areas related to salience and executive
control, and the default-mode network (DMN). We based our
ROIs on previous studies (Zielinski et al., 2010; Montembeault
et al., 2012). For each region, seeds were defined with the MarsBar
ROI toolbox (http://marsbar.sourceforge.net/) as 4-mm radial
spheres centered at the following MNI coordinates: right cal-
carine sulcus (9, −81, 7), right Heschl’s gyrus (46, −18, 10),
right precentral gyrus (28, −16, 66), left inferior frontal gyrus,
pars opercularis (IFGo) (−50, 18, 7), left temporal pole (−38
10, −28), right frontoinsular cortex (38, 26, −10), right dorso-
lateral prefrontal cortex (DLPFC) (44, 36, 20), and right angular
gyrus (46, −59, 23). In addition, we selected contralateral seeds by
changing the sign on each seed’s x coordinate to perform similar
SCNs analyses (Table A1, and Figure A1).

STATISTICAL ANALYSIS
A voxel-wise statistical analysis was performed on the GM images
using the GLM as applied in SPM8. Eight multiple regression
models were used to test the strength of the structural covari-
ance between each seeds and all other regions across whole-brain
GM for each age group. In each regression model, the extracted
mean GM volume from each ROI was entered as a covariate
of interest, and gender as a confounding covariate. Because of
the unequal sample size across the genders, we removed the
effects of gender on the SCN patterns in the correlation anal-
ysis. These statistical analyses identified voxels that had a pos-
itive covariance with each a priori selected ROI in each group.
The resulting correlation maps were using height and extent
thresholds at P < 0.05 with family-wise error (FWE) correction.
They were displayed on the MNI template to allow qualita-
tive comparisons between the age groups using BrainNet Viewer
software (http://www.nitrc.org/projects/bnv/). To quantify differ-
ences in normal aging trajectories across networks, we calculated
the total number of significant positive ipsilateral, contralat-
eral, and whole-brain voxels and plotted these across the age
groups.

To further examine the effects of age on specific regional
covariance, we performed between-group difference analyses of
SCN patterns for any two groups according to the scientific lit-
erature (Lerch et al., 2006). For any pair of voxels in two groups,
their structural correlation may have different slopes, and the dif-
ference in slope may represent the difference in their structural

association. The difference in slope was tested using a classic
interaction linear model:

Vi = β0 + β1Vj + β2Group + β3(Vj × Group) + ε

where Vi and Vj represented the GM volumes of a pair of vox-
els in two groups. The Group component was modeled using
treatment contrasts, and significance tested using the Student’s
t statistic. Specific t-value contrasts were established to map the
voxels that expressed a significantly different structural associ-
ation between any two groups. The threshold for the result-
ing statistical parametric maps was given at P < 0.05 for the
height and extent thresholds, with FWE multiple comparisons
correction.

RESULTS
For each network, the age-related SCN trajectory was identified
by the spatial extent of each SCN. These results were demon-
strated by functional domain, as described in the following sec-
tions. We also explored regions that significantly differed in their
structural associations between any two groups.

PRIMARY SENSORY AND MOTOR NETWORKS
Seeds within primary visual cortex (right calcarine sulcus)
produced SCNs with a relatively preserved pattern (Figure 1).
However, there were small changes in the distributions of the
covariance maps. In the young and middle-aged groups, the
covariance regions mainly included the bilateral calcarine sulcus,
lingual gyrus, cuneus and right lateral occipital gyrus, whereas
only included bilateral calcarine sulcus, lingual gyrus, and cuneus
in the old group. Primary auditory cortex (i.e., the right Heschl’s
gyrus) covaried with the bilateral insula and precuneus, the
right posterior cingulate cortex (PCC), parahippocampus, and
inferior frontal gyrus, and the left orbital-frontal cortex in the
young participants, and underwent significant contraction in the
middle-aged and old groups to include only the bilateral insula
regions. There was a flat transition in the covariance maps during
aging. Primary motor cortex (right precentral gyrus) correlated
with the ipsilateral precentral regions in the young participants,
which progressed at middle age to include the contralateral pre-
central and supplementary motor areas. In old participants, these
structural associations were similar to the young participants.

In addition, within the primary sensory and motor networks,
there were no significant differences observed in the structural
association between any two groups when we compared the slopes
of the structural associations on a voxel-by-voxel basis.

LANGUAGE-RELATED SPEECH AND SEMANTIC NETWORKS
The two language-related speech and semantic networks followed
similar variation patterns (Figure 2). From the young partici-
pants to the middle group, the covariance regions showed abrupt
decreases. They then showed smaller changes at the following
ages. For the language-related speech network, the covariance
map involved the bilateral anterior insula, medial frontal, cin-
gulate cortex, and temporal regions in the young participants,
and then contracted to include seed autocorrelation in the older
participants. The semantic regions correlated with the bilateral
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FIGURE 1 | Age-related changes in primary sensory and motor structural

covariance networks. (A) Statistical maps of regions significantly correlated
with the seed region in each group. The results are presented as correlation
coefficient values (P < 0.05, FWE corrected). (B) The plots of voxel counts by

group indicate small covariance changes throughout the life-span. The y-axis
represents the voxel number (×104). Abbreviations: Calcs, calcarine sulcus;
HG, Heschl’s gyrus; PreCG, precentral gyrus; R, right; L, left; Y, young group;
M, middle-aged group; O, old group; CC, correlation coefficient.

FIGURE 2 | Age-related changes in speech and semantic structural

covariance networks. (A) Statistical maps of regions significantly correlated
with the seed region in each group. The results are presented as correlation
coefficient values (P < 0.05, FWE corrected). (B) The plots of voxel counts by

group indicate abrupt contraction in the middle-aged group and mild changes in
the old group. The y-axis represents the voxel number (x×104). Abbreviations:
IFGo, inferior frontal gyrus, parsopercularis; TPole, temporal pole;L, left;R, right;
Y, young group; M, middle-aged group; O, old group; CC, correlation coefficient.

temporal cortices, cingulate gyrus, insula and frontal regions in
the young participants, and shrank sharply to include only the
anterior temporal cortices during normal aging.

Comparing the other SCNs, language-related speech and
semantic networks showed more age-related changes. Specifically,
the left supplementary motor and superior temporal areas

showed significant positive associations with the speech seed
region in young adults, whereas this covariance disappeared in
the middle-aged group (Table 2 and Figure 3). Decreased posi-
tive associations between the left superior temporal region and
left temporal pole were found in the middle-aged group com-
pared with the young group (Table 2 and Figure 4). There were
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Table 2 | Contrast analysis of structural covariance network trajectories.

Network Contrast x y z Region BA Voxel size maxT

DMN (R ANG) Y > M 27 65 1 R PFC 10 181 4.97

Y > O −3 −10 40 L PCC 23/24/31 1100 5.34

−6 33 25 L ACC 32 110 4.43

Speech (L IFGo) Y > M −3 12 52 L SMA 6/8 3498 5.35

−51 −16 −11 L STC 21/22 741 4.77

54 −28 3 R STC 21/22 630 4.52

Y > O −10 35 25 L ACC 8/9/32 3235 5.82

−5 29 52 L SFC 5.28

−4 −21 37 L PCC 24/31 218 4.29

Semantic (L TPole) Y > M −54 −15 −11 L STC 22 114 4.31

Y > O 10 −34 36 R PCC 23/31 978 5.33

−40 −3 10 L Insula 13 217 4.72

26 33 −21 R OFC 11 200 4.33

Executive (R DLPFC) Y > O −4 −22 43 L PCC 24/31 419 4.99

The regions listed showed significant between-group differences (P < 0.05, FWE corrected). x, y, z coordinates are reported in standard MNI space. Abbreviations:

DMN, default-mode network; ANG, angular gyrus; IFGo, inferior frontal gyrus, pars opercularis; TPole, temporal pole; DLPFC, dorsolateral prefrontal cortex; PFC,

prefrontal cortex; PCC, posterior cingulate cortex; ACC, anterior cingulate cortex; SMA, supplementary motor area; STC, superior temporal cortex; SFC, superior

frontal cortex; OFC, orbitofrontal cortex; R, right; L, left; Y, young group; M, middle-aged group; O, old group; BA, Brodmann area.

significant positive associations between the left anterior and the
PCC and left IFG in the young participants, and this covari-
ance became a negative correlation in the old group (Table 2 and
Figure 4). When compared with the old group, there was a signif-
icant positive association between the right PCC and the semantic
seed region in the young participants (Table 2 and Figure 5).

SALIENCE, EXECUTIVE CONTROL, AND DEFAULT-MODE NETWORKS
The three networks associated with social–emotional and cog-
nitive function showed similar patterns to the language-related
speech and semantic networks, with more distributed struc-
tural covariance in the young participants and limited covariance
patterns throughout the later stages (Figure 5). Specifically, the
right frontoinsular cortex anchored covariance maps included
extensive areas of the bilateral lateral and medial frontal cortex,
temporal cortices, and cingulate regions. This SCN underwent
significant shrinkage in the middle-aged group to include only
bilateral insular regions. In the older subjects, this network some-
what extended to include the bilateral medial prefrontal regions.
The right DLPFC seed covaried with the bilateral frontal, tempo-
ral, and cingulate cortices in the young participants, but shrank
into a more focal distribution in the middle-aged and older sub-
jects. A seed in right angular gyrus produced an aging SCN,
including the bilateral angular gyrus, middle temporal, cingulum,
and prefrontal regions in the young participants, and contracting
to include the bilateral PCC and angular gyrus in the middle-aged
group, and only the bilateral angular gyrus in the old group.

There were no significant differences observed in the struc-
tural associations between any two groups within the salience
network. The left PCC showed a significant positive associa-
tion with the executive control seed region and right angular
region (DMN seed) in the young adults, whereas this covari-
ance disappeared in the old group (Table 2 and Figure 5).
Furthermore, a less robust positive association between the
right prefrontal region and DMN seed region was found in
the middle-aged group compared with the young participants
(Table 2 and Figure 4).

DISCUSSION
In this study, we investigated the age-related trajectories of eight
large-scale networks using an SCN mapping approach in three
distinct age groups. All networks exhibited non-linear patterns
across normal aging in terms of the spatial extent of the network.
Except for the primary motor network, these networks showed a
more distributed topology in young participants, which shrank
sharply to a more localized topology in the middle-aged group,
and maintained this localized topology in the old group. Primary
sensory and motor networks showed fewer age-related changes
compared with high-order cognitive networks. Moreover, there
were significant between-group differences in language-related
speech and semantic networks, the executive control network,
and the DMN. Taken together, our results provide evidence
of variations in the topological organization of SCNs during
normal aging.
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FIGURE 3 | Age-related changes in salience, executive control, and

default-mode structural covariance networks. (A) Statistical maps of
regions significantly correlated with the seed region in each group.
The results are presented as correlation coefficient values (P < 0.05, FWE
corrected). (B) The plots of voxel counts by group indicate abrupt contraction

in the middle-aged group and mild changes in the old group. The y-axis
represents the voxel number (×104). Abbreviations: DMN, default-mode
network; DLPFC, dorsolateral prefrontal cortex; FI, frontoinsular cortex;
ANG, angular gyrus; R, right; L, left; Y, young group; M, middle-aged group;
O, old group; CC, correlation coefficient.

FIGURE 4 | Group differences for the young vs. the middle-aged

subjects. Significant between-group differences within the DMN (A),
speech (B), and semantic (C) structural covariance networks were found.
For each network, the region of interest (upper) and region showing the
most significant structural association (lower) are presented on the right,
and a plot of slop differences between the seed region and a 4-mm radius

sphere centered on the peak voxel are presented in the left. Voxels with
PFWE < 0.05 are displayed. Abbreviations: DMN, default-mode network;
ANG, angular gyrus; IFGo, inferior frontal gyrus, pars opercularis; TPole,
temporal pole; PFC, prefrontal cortex; SMA, supplementary motor area;
STC, superior temporal cortex; R, right; L, left; Y, young group;
M, middle-aged group.

COMPARISON OF STRUCTURAL COVARIANCE NETWORKS AND OTHER
NETWORKS
The cerebral cortex is organized into networks of functionally
complementary areas. New advances in modern neuroimaging
techniques and quantitative analysis of complex networks have
made the investigation of brain network topological organiza-
tion possible. DTI is a useful tool for non-invasively mapping
cortico-cortical anatomical connections by examining axonal
integrity. Insight into the structural covariance of GM morphol-
ogy (e.g., volume, thickness, and surface area) between brain

regions is provided by sMRI. Resting-state fMRI has allowed
for assessments of the strength of functional connections within
a network by quantifying correlated activity [i.e., spontaneous,
low-frequency fluctuations in the blood oxygen level-dependent
(BOLD) signal] between brain regions at rest.

The current studies have demonstrated the underlying rela-
tionships among structural correlations, anatomical connectivity,
and functional correlations. For example, structural networks
based on cortical thickness measurements were consistent with
known functional networks (He et al., 2007). A recent study
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FIGURE 5 | Group differences for the young vs. the old subjects.

Significant between-group differences within the DMN (A), speech (B),
semantic (C), and executive (D) structural covariance networks were
found. For each network, the region of interest (upper) and region showing
the most significant structural association (lower) are presented on the
right, and a plot of slop differences between the seed region and a 4-mm

radius sphere centered on the peak voxel are presented in the left. Voxels
with PFWE < 0.05 are displayed. Abbreviations: DMN, default-mode
network; ANG, angular gyrus; IFGo, inferior frontal gyrus, pars opercularis;
TPole, temporal pole; DLPFC, dorsolateral prefrontal cortex; PCC, posterior
cingulate cortex; ACC, anterior cingulate cortex; R, right; L, left; Y, young
group; O, old group.

reported agreement in the correlations in GM thickness and
underlying fiber connections across brain areas, but more infor-
mation was included for the thickness correlation network than
the fiber connection network (Gong et al., 2012). In addition,
SCNs determine using VBM recapitulated the canonical intrinsic
connectivity networks topologies (Seeley et al., 2009). The consis-
tency among the SCNs and other networks provides substantial
support for the use of SCNs as a measure of network integrity for
cross-sectional studies.

AGE-RELATED CHANGING TRAJECTORY OF SCNs
In this study, we employed three age groups to map the trajec-
tory of SCN changes over age. Except the primary motor network,
these SCNs appeared the similar non-linear pattern that had
a distributed topology in young participants, a sharply local-
ized topology in middle aged participants, and were relatively
stable in older participants. This trajectory was similar to age-
related changes of integrated local efficiency of brain network
(Wu et al., 2011b). They employed the graph theory analy-
sis method and reported that the local efficiency in the young
group was significantly larger than those of the middle and old
groups, whereas no significant difference was found between the
middle and old groups. The shrinkage of SCNs as well as the
reduction of local efficiency might be explained by the region-
ally distributed pattern of GM atrophy (Bergfield et al., 2010).
As for primary motor network, we found inverted V-curve ten-
dency among three age groups in the SCN of primary motor
cortex. The previous study reported increased inter-regional cor-
relations between bilateral primary motor cortex in the aging
brain (Chen et al., 2011). In our study, we found the structural

covariance of primary motor cortex between two hemispheres in
the middle group. Alternatively, we found that the volume of right
precentral gyrus reduced with age increasing (Figure A2), which
might reflect a compensation mechanism that a network may
need to work harder by becoming overactive due to regional vol-
umetric atrophy with the network (Reuter-Lorenz and Cappell,
2008).

INTRAGROUP PATTERNS AND BETWEEN-GROUP DIFFERENCES OF
SCNs
Primary sensory and motor networks
In this study, we found that seeds within the primary visual,
auditory, and motor cortices produced SCNs with smaller
spatial extents (i.e., total voxel count exhibiting a significant
correlation at the corrected threshold) compared with other
networks. This is consistent with previous work (Lerch et al.,
2006) with mapped anatomical correlations across cerebral cor-
tex (MACACC) using cortical thickness. Similarly, they used
the number of cortical region showing significant correla-
tions with seed region to describe the strength of MACACC.
They found the primary motor, sensorimotor, and visual areas
had the lowest strengths of correlation, whereas the associa-
tion cortices had the highest strength. This could be explained
by the functions of association cortices, because these cor-
tices receive and integrate inputs from multiple cortical and
non-cortical sources, and distribute information to multiple
areas.

In addition, primary sensory and motor networks showed
fewer age-related changes compared with high-order cogni-
tive networks. There were no significant differences observed
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in the structural association between any two groups when
the slopes of the structural associations were contrasted
on a voxel-by-voxel basis within the primary sensory and
motor networks. This finding is in line with a recent study
(Montembeault et al., 2012) in which between-group differ-
ences were only observed in high-order cognitive SCNs between
young and old subjects, rather than primary sensory and motor
networks.

Language-related speech and semantic networks
The language-related speech and semantic networks showed sig-
nificant age-related changes, with a more localized topology with
increasing age. These results could account for the decline of lan-
guage abilities across in normal aging. Federmeier and colleagues
observed age-related changes in the timing with which message-
level information impacted semantic analysis using event-related
potentials, which indicated that aging affects high-order language
processes (Federmeier et al., 2003). Wierenga and colleagues also
reported that healthy older adults had increased difficulty in word
retrieval with unchanged semantic knowledge (Wierenga et al.,
2008).

Within the language-related speech SCN, a reduced struc-
tural association was observed the between inferior frontal gyrus
and the supplementary motor area in the middle-aged group
compared with the young participants. The speech SCN linked
the language and motor systems that enable speech fluency
(Seeley et al., 2009). This reduced structural covariance may
explain the decline of motor speech skills with the transfer-
ence of language to a speech code in older adults. Similarly,
there was a significant decrease in the covariance between the
seed region and the anterior cingulate cortex (ACC) in the old
group compared with the young participants. This could be
related to the functional degradation of these areas. Takahashi
et al. reported that significant age-related reductions in regional
cerebral blood flow in the left IFG and the bilateral medial
frontal gyri and ACC using single-photon emission tomography
(Takahashi et al., 2005). In addition, as the ACC plays a critical
role in the control of speech responses (Paus et al., 1993), this
reduced covariance may explain some speech difficulties in senior
populations.

In semantic SCN analysis, a reduced structural association
between the left temporal pole and left superior temporal cor-
tex was found in the middle-aged group compared with the
young participants. Many studies have shown that the supe-
rior temporal cortex is associated with understanding spo-
ken words (Demonet et al., 1992; Chao et al., 2002; Okada
and Hickok, 2006). Thus, this reduced structural association
may be related to a decline in auditory word comprehen-
sion with increasing age. In the comparisons of the young
and old participants, the main differences we found were in
the structural associations between the left temporal pole and
PCC. The results of functional neuroimaging studies in young,
healthy adults provide compelling evidence for the involve-
ment of the PCC in memory retrieval. For example, PCC acti-
vation was elicited during recognition of thematic narrative
information learned during training sessions (Maguire et al.,
1999). The reduced structural association between these two

regions may explain the decline of semantic memory in senior
populations.

Salience, executive control, and default-mode networks
The three high-order cognitive SCNs showed a similar pat-
tern to the language SCNs, showing a distributed topology in
young participants that shrank sharply to a localized topol-
ogy in the middle-aged group, and maintained a localized
topology in the old group. Cepeda and colleagues found age-
related decline of executive control processes by examining task-
switching performance (Cepeda et al., 2001). Kelly and colleagues
also demonstrated the stability of executive control decreased in
older subjects (West et al., 2002). Several studies have shown that
the DMN is altered in old subjects (Andrews-Hanna et al., 2007;
Koch et al., 2010; Sambataro et al., 2010), especially in anterior
regions (Damoiseaux et al., 2008). Similarly, Chen et al. found
the decreased inter-regional correlations with the DMN module
(Chen et al., 2011). Cognitive decline with age, such as cognitive
control (Persson et al., 2007) and working memory (Sambataro
et al., 2010), is associated with decreased DMN connectivity.

In the executive-control SCN analysis, the main differences
we found were in the structural association between the right
DLPFC and PCC, which exhibited a positive correlation in the
young participants and no association in the old group. The
DLPFC shows increased activity when experimental stimuli are
presented, and is thought to support on-task processing in
attention tasks. The PCC, in contrast, shows decreased activity
during stimulus presentation, and is thought to support off-
task processing in attention tasks. Some studies have reported
that activity in the DLPFC shows a negative correlation with
activity in the PCC during the resting state (Greicius et al.,
2003; Fransson, 2005), and the negative coupling between these
regions is lower in older adults (Sambataro et al., 2010). Our
findings are inconsistent with functional connectivity between
these areas, which should be further investigated in future
studies.

Finally, for the DMN, we found a reduction in the structural
association between the right angular gyrus and right prefrontal
cortex from the young to the middle-aged participants. In the
comparison of the young and old group, we found age-related
differences in the structural association between the right angu-
lar gyrus and PCC. Similarly, Wu and colleagues reported that
the left angular gyrus has a significantly reduced correlation
with the PCC in older compared with younger participants in
a resting-state fMRI study (Wu et al., 2011a). As the PCC is a
prominent region within the DMN, the reduced structural asso-
ciation between the seed regions and the PCC indicates that the
DMN SCN shrinks with age.

LATERALITY OF THE SCNs
We found similar SCNs across both hemispheres (Figure A1),
consistent with previous SCN analyses of the developing brain
(Zielinski et al., 2010). However, the auditory and speech net-
works showed a notable exception. The SCN derived from the
left seed of Heschl’s gyrus was distinctly smaller than the one
derived from the right seed. In contrast, the SCN derived from
the left seed of the IFGo was distinctly larger than the one derived
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from the right seed, which may explain why speech networks are
left-dominated (Powell et al., 2006; Xiang et al., 2010).

FURTHER CONSIDERATIONS
To build upon this study, several issues need to be addressed.
First, we assigned subjects in their 30s to the middle-aged group
because there were fewer subjects in their 40s and 50s in our sam-
ple. This resulted in wide age range in the middle-aged group. In
future, this age range should be refined by including more sub-
jects. Second, a previous study has reported the brain functional
connectivity pattern could be affected by the sex factor (Biswal
et al., 2010). In future, it is interesting to explore the sexual dif-
ferences when the SCNs change with age. Third, it should be
highlighted that this study used ROIs based on previous studies
(Zielinski et al., 2010; Montembeault et al., 2012). Future studies

using ROIs extracted from ICNs of the same subjects may obtain
more accurate definitions of seed regions.

CONCLUSIONS
In this study, we used an SCN mapping approach to investigate
eight large-scale networks in a large cohort of healthy partici-
pants. Our results show age-related changes in the topological
organization of SCNs and provide insights into the normal aging
process of the human brain.
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APPENDIX

Table A1 | Contrast analysis of structural covariance network trajectories derived from contralateral seeds.

Network Contrast x y z Region BA Voxel size maxT

DMN (R ANG) Y > O 36 24 −20 R IFC 47 1149 5.56

−36 15 −23 L TPole 38/47 808 5.15

−44 42 −3 L IFC 47 128 4.53

4 −27 42 R PCC 24/31 139 4.5

Speech (L IFGo) Y > M −50 −55 22 L ANG 39 57 4.23

Y > O 4 −54 28 R PCC 7/31 2443 5.4

Semantic (L TPole) Y > M 62 −21 −23 R ITC 20 200 4.38

Y > O 28 35 −6 R IFC 11/47 361 4.93

−30 −36 −15 L FG 37 138 4.41

Salience (R FI) Y > O 5 −47 36 R PCC 23/31/32 1575 5.64

−39 −3 7 L Insula 13 166 4.65

−26 −35 −22 L FG 37 392 4.67

Auditory (R HG) Y > M 26 44 −24 R OFC 11 906 5.30

Y > O −8 21 34 L ACC 24/32 864 4.86

The regions listed showed significant between-group differences (P < 0.05, FWE corrected). x, y, z coordinates are reported in standard MNI space. Abbreviations:

DMN, default-mode network; ANG, angular gyrus; IFGo, inferior frontal gyrus, pars opercularis; TPole, temporal pole; FI, frontoinsular cortex; HG, Heschl’s gyrus;

IFC, inferior frontal cortex; PCC, posterior cingulate cortex; ITC, inferior temporal cortex; FG, fusiform gyrus; OFC, orbitofrontal cortex; ACC, anterior cingulate cortex;

R, right; L, left; Y, young group; M, middle-aged group; O, old group; BA, Brodmann area.
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FIGURE A1 | Trajectories of the structural covariance networks

derived from contralateral seeds. The plots of voxel counts by group
(P < 0.05, FWE) indicate a similar pattern to the ipsilateral seed, except
for the auditory and speech networks, which show differences in
their spatial extents. The y-axis represents the voxel number (×104).

Abbreviations: Calcs, calcarine sulcus; HG, Heschl’s gyrus; PreCG,
precentral gyrus; IFGo, inferior frontal gyrus, pars opercularis; TPole,
temporal pole; ANG, angular gyrus; DLPFC, dorsolateral prefrontal
cortex; FI, frontoinsular cortex; R, right; L, left; Y, young group; M,
middle-aged group; O, old group.
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FIGURE A2 | Trajectories of the gray matter volume for each seed.

The y-axis represents the mean gray matter volume for each age group.
Abbreviations: Calcs, calcarine sulcus; HG, Heschl’s gyrus; PreCG, precentral

gyrus; IFGo, inferior frontal gyrus, pars opercularis; TPole, temporal pole;
ANG, angular gyrus; DLPFC, dorsolateral prefrontal cortex; FI, frontoinsular
cortex; R, right; L, left; Y, young group; M, middle-aged group; O, old group.
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The aim of this study was to investigate age-related changes in the topological organization
of structural brain networks by applying a longitudinal design over 6 years. Structural
brain networks were derived from measurements of regional gray matter volume and
were constructed in age-specific groups from baseline and follow-up scans. The structural
brain networks showed economical small-world properties, providing high global and local
efficiency for parallel information processing at low connection costs. In the analysis of
the global network properties, the local and global efficiency of the baseline scan were
significantly lower compared to the follow-up scan. Moreover, the annual rate of change
in local and global efficiency showed a positive and negative quadratic correlation with
the baseline age, respectively; both curvilinear correlations peaked at approximately the
age of 50. In the analysis of the regional nodal properties, significant negative correlations
between the annual rate of change in nodal strength and the baseline age were found
in the brain regions primarily involved in the visual and motor/control systems, whereas
significant positive quadratic correlations were found in the brain regions predominately
associated with the default-mode, attention, and memory systems. The results of the
longitudinal study are consistent with the findings of our previous cross-sectional study:
the structural brain networks develop into a fast distribution from young to middle age
(approximately 50 years old) and eventually became a fast localization in the old age. Our
findings elucidate the network topology of structural brain networks and its longitudinal
changes, thus enhancing the understanding of the underlying physiology of normal aging
in the human brain.

Keywords: structural brain network, economical small-world, normal aging, longitudinal study, regional gray

matter volume

INTRODUCTION
Recent advances in generating a network map of the human
brain, known as the human connectome, provided new insights
into structural and functional connectivity patterns of the human
brain (Sporns et al., 2005; Bullmore and Bassett, 2011; Sporns,
2011a,b). The quantitative analysis of the structural and func-
tional systems of the human brain, based largely on graph theory,
reveal the topological properties of complex networks, such as
economical small-world properties, highly connected hubs, and
modularity (Bullmore and Sporns, 2009; He and Evans, 2010; Wig
et al., 2011). Prodigious efforts in the study of the human con-
nectome have greatly expanded our knowledge of the topological
principles of brain network organization in the healthy, devel-
oping, aging, and diseased brains (Bassett and Bullmore, 2009;
Uddin et al., 2010; Lo et al., 2011; Xia and He, 2011; Xie and He,
2011; Greicius and Kimmel, 2012; Sun et al., 2012).

It has been well-established that advanced aging is accom-
panied by cognitive decline, even in the absence of disease.
Cognitive deficits in normal aging might arise from anatomical

changes in specific brain regions or alterations of the struc-
tural and functional associations between distinct brain regions
(Andrews-Hanna et al., 2007). Normal aging has been proven
to be associated with changes in both functional (Achard and
Bullmore, 2007; Meunier et al., 2009; Wang et al., 2010, 2012;
Meier et al., 2012; Spreng and Schacter, 2012) and structural
(Gong et al., 2009; Montembeault et al., 2012; Wu et al.,
2012; Zhu et al., 2012) brain networks. However, these findings
were revealed by cross-sectional studies, and few studies using
a longitudinal design have been applied to investigate human
brain networks with normal aging. Several Alzheimer’s disease
Neuroimaging Initiative (ADNI) studies have shown longitudi-
nal changes in default mode network (DMN) regions, including
the medial temporal lobe and posterior cingulate cortex (PCC),
as patients progress into Alzheimer’s disease (AD) and through its
later stages (Risacher et al., 2010; Li et al., 2012). Thus, we hypoth-
esized that significant longitudinal changes might occur in the
topological properties of structural brain networks with normal
aging.
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By applying a longitudinal design over 6 years in a large num-
ber of healthy subjects aged 21–80, our previous studies have indi-
cated the following: significant correlations between the annual
percentage change in the ratio of gray matter and the age at base-
line (Taki et al., 2011a), as well as significant correlations between
the annual rate of regional gray matter volume change in many
brain regions and the age at baseline (Taki et al., 2012a). In the
present study, we aimed to investigate structural brain networks
with normal aging by applying the above-mentioned longitudi-
nal design. Structural brain networks have been constructed from
inter-regional correlation of morphological measurements [e.g.,
cortical thickness (He et al., 2007), regional gray matter volume
(RGMV) (Bassett et al., 2008), and surface area (Sanabria-Diaz
et al., 2010)] in structural magnetic resonance imaging (sMRI)
data. Recently, many studies have investigated the topological
organization of structural brain networks in health [e.g., healthy
subjects with normal aging (Montembeault et al., 2012; Wu et al.,
2012; Zhu et al., 2012)] and disease [e.g., AD (He et al., 2008),
multiple sclerosis (He et al., 2009), schizophrenia (Bassett et al.,
2008), and breast cancer (Hosseini et al., 2012)]. In this study,
we divided 380 healthy subjects into 29 age-specific groups using
a sliding boxcar grouping ordered by baseline age. A structural
brain network consisting of 90 regions was constructed by com-
puting the correlation matrix of the RGMV across subjects within
each age group in both the baseline and follow-up scans. We
then computed both global and regional network properties in
the structural brain networks and compared their differences
between baseline and follow-up. Finally, to characterize the longi-
tudinal changes of structural brain networks with normal aging,
the correlations between the baseline age and the annual rate
of change in both global and regional network properties were
analyzed.

MATERIALS AND METHODS
SUBJECTS
The subjects were normal, community-dwelling Japanese sub-
jects recruited by the Aoba Brain Imaging Project (Sato et al.,
2003). Subject recruitment was described previously (Taki et al.,
2011a,b,c, 2012a,b). Briefly, we performed longitudinal follow-
up (Aoba2) scans of 442 subjects who were selected from 1604
participants in the baseline (Aoba1) scan. In both the baseline
and follow-up scans, we excluded those subjects who had a past
or present history of malignant tumors, head traumas, cere-
brovascular diseases, epilepsy, or psychiatric diseases. After the
interview, brain MR images were obtained from each subject.
The MR images were inspected by 2–3 well-trained radiologists.
Images with any of the following findings were excluded from
this study: head injuries, brain tumors, hemorrhage, major and
lacunar infarctions, or moderate to severe white matter hyper-
intensities. Thus, the final sample consisted of 380 participants
(157 men/223 women). The mean ± standard deviation (SD)
interval between baseline and follow-up was 7.41 ± 0.54 years
(range, 6.1–9.0). The mean ± SD age of the participants at
baseline was 51.1 ± 11.7 years old (range, 21–80).

A total of 11 subjects (mean age = 65.3 years; range, 57.7–73.4
years at follow-up; 3 men/8 women) were scanned twice on the
same day to obtain an estimation of the measurement reliability.

We observed no significant differences in the gray matter volume
or intracranial volume between the baseline and follow-up scans.
The details of the measurement reliability are reported elsewhere
(Taki et al., 2011a).

After a full explanation of the purpose and procedures of the
study, written informed consent according to the Declaration of
Helsinki (1991) was obtained from each subject prior to MRI
scanning. Approval for these experiments was obtained from the
institutional review board of Tohoku University.

IMAGE ACQUISITION
All images were collected using the same 0.5-T MR scanner (Signa
contour; GE-Yokogawa Medical Systems, Tokyo, Japan) for both
the baseline and follow-up studies. The scanner was routinely
calibrated using the same standard GE phantom between base-
line and follow-up. During the course of this study, no major
hardware upgrade occurred. At baseline and follow-up, all sub-
jects were scanned with identical pulse sequences: 124 contigu-
ous, 1.5-mm-thick axial planes of three-dimensional T1-weighted
images (spoiled gradient recalled acquisition in steady state: rep-
etition time, 40 ms; echo time, 7 ms; flip angle, 30; voxel size,
1.02 mm × 1.02 mm × 1.5 mm).

MEASUREMENTS OF REGIONAL GRAY MATTER VOLUME
After the image acquisition, the RGMV for each subject was mea-
sured using statistical parametric mapping 2 (SPM2) (Wellcome
Department of Cognitive Neurology, London, UK) (Friston
et al., 1995) in Matlab (MathWorks, Natick, MA). First, the
T1-weighted MR images were transformed to the same stereo-
tactic space by registering each of the images to the ICBM 152
template (Montreal Neurological Institute, Montreal, Canada),
which approximates the Talairach space (Jean Talairach, 1988).
Then, tissue segmentation from the raw images to the gray mat-
ter, white matter, cerebrospinal fluid space, and non-brain tissue
was performed using the SPM2 default segmentation proce-
dure. We applied these processes using the “cg_vbm_optimized”
MATLAB function (http://dbm.neuro.uni-jena.de/vbm.html).
WFU_PickAtlas software was employed to label the regions in the
gray matter images, providing a method for generating ROI masks
based on the Talairach Daemon database (Lancaster et al., 2000;
Maldjian et al., 2003, 2004). To calculate the regional gray matter
volume (RGMV) for each subject, we parcellated the entire gray
matter into 45 separate regions for each hemisphere (90 regions in
total, see Table 1) defined by the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002).

CONSTRUCTION OF STRUCTURAL BRAIN NETWORKS
We applied the methodology described in our previous studies
(Wu et al., 2011, 2012) to construct structural brain networks.
Briefly, we computed a correlation matrix using the measure-
ment of RGMV across a group of subjects. In this study, we
created 29 age groups using a sliding boxcar grouping (Fair et al.,
2009) in the order of baseline age (i.e., Group1: subjects 1–100,
Group2: subjects 11–110, Group3: subjects 21–120, . . . Group
29: subjects 281–380). Similarly, 29 age groups in the follow-up
scan were also created, which corresponded to the age groups
in the baseline scan. For each age group, a linear regression
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Table 1 | Regions of interest included in AAL-atlas.

Lobes Regions Abbreviations Lobes Regions Abbreviations

Frontal Precentral gyrus PreCG Temporal Hippocampus HIP

Superior frontal gyrus (dorsal) SFGdor Parahippocampal gyrus PHG

Orbitofrontal cortex (superior) ORBsup Amygdala AMYG

Middle frontal gyrus MFG Fusiform gyrus FFG

Orbitofrontal cortex (middle) ORBmid Heschl gyrus HES

Inferior frontal gyrus (opercular) IFGoperc Superior temporal gyrus STG

Inferior frontal gyrus (triangular) IFGtriang Temporal pole (superior) TPOsup

Orbitofrontal cortex (inferior) ORBinf Middle temporal gyrus MTG

Rolandic operculum ROL Temporal pole (middle) TPOmid

Supplementary motor area SMA Inferior temporal gyrus ITG

Olfactory OLF Occipital Calcarine cortex CAL

Superior frontal gyrus (medial) SFGmed Cuneus CUN

Orbitofrontal cortex (medial) ORBmed Lingual gyrus LING

Rectus gyrus REC Superior occipital gyrus SOG

Anterior cingulate gyrus ACG Middle occipital gyrus MOG

Middle cingulate gyrus MCG Inferior occipital gyrus IOG

Parietal Posterior cingulate gyrus PCG Subcortical Caudate CAU

Postcentral gyrus PoCG Putamen PUT

Superior parietal gyrus SPG Pallidum PAL

Inferior parietal lobule IPL Insula INS

Supramarginal gyrus SMG Thalamus THA

Angular gyrus ANG

Precuneus PCUN

Paracentral lobule PCL

analysis was performed on the RGMV to remove the effects of
the total gray matter volume, age, sex, and age-by-sex interac-
tion. Thus, the residuals of this regression were employed as
the substitute for the raw RGMV and denoted as the corrected
RGMV (cRGMV). We then computed the Pearson correlation
coefficient between cRGMV across 100 subjects included in one
group to construct an interregional correlation matrix (N × N,
where N is the number of gray matter regions; here, N = 90).
Each element of the correlation matrix represents the structural
connectivity between two regions. For example, the bilateral pre-
central gyrus (PreCG) showed strong correlations in Group 1
in both the baseline and follow-up scans (Figure 1A), indicat-
ing high connectivity between the same region in the bilateral
hemispheres; however, the correlation between the left PreCG and
the left opercular part of the inferior frontal gyrus (IFGoperc) in
Group 1 was stronger in the follow-up scan compared to the base-
line scan (Figure 1B). A correlation matrix (rij, N × N) can be
converted to a weighted and undirected network G using a cost
threshold approach (t, 0 < t < 1), which can normalize all net-
works to have the same number of edges or wiring cost and, thus,
provide an avenue to detect changes in topological organization
with aging (Achard and Bullmore, 2007).

G(i, j) =
{

1,
∣∣rij

∣∣ ≥ rt

0,
∣∣rij

∣∣ < rt

Finally, we constructed a structural brain network for each of the
29 age groups in both the baseline and follow-up scans.

GRAPH THEORETICAL ANALYSIS
To ensure that the resulting brain networks are sparse, fully con-
nected, and distinguishable from degree-matched random and
regular networks, we adopted a range of cost thresholds (0.11 ≤
t ≤ 0.25, step = 0.01) to calculate the topological properties of
structural brain networks (Bassett et al., 2008; Liu et al., 2008;
Wang et al., 2009b; Wu et al., 2012). Small-world efficiency met-
rics (local efficiency, LE, and global efficiency, GE) were computed
to characterize the global network properties of the structural
brain networks. The node strength (NS) was used to examine
regional nodal properties because of its high test-retest reliabil-
ity (Wang et al., 2011). Here, both global and regional network
metrics are briefly described as follows (Rubinov and Sporns,
2010) and were calculated using the Brain Connectivity Toolbox
(www.brain-connectivity-toolbox.net).

The global efficiency of the graph G can be computed as
(Latora and Marchiori, 2001):

GE(G) = 1

N(N − 1)

∑
i �= j ∈ G

1

dij
,

where dij is the shortest path length between nodes i and j.
The path length between nodes i and j is defined as the sum
of the edge lengths along this path, where each edge’s length
was obtained by computing the reciprocal of the edge weight,
1/wij. Thus, the shortest path length dij is the length of the path
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FIGURE 1 | Structural connectivity derived from the measurement of

regional gray matter volume. (A) The structural connectivity between the
bilateral precentral gyrus (PreCG). (B) The structural connectivity between left
PreCG and the left opercular part of the inferior frontal gyrus (IFGoperc). The
plots indicate Pearson’s correlation coefficients [wN (i, j)] between two brain

regions (i and j ) using the measurement of regional gray matter volume,
which was corrected by a linear regression analysis to remove the effects of
total gray matter volume, age, sex, and age-by-sex interaction. The data from
both the baseline (Aoba1, N = 1) and follow-up (Aoba2, N = 2) scans are
shown.

with the shortest length between nodes i and j. The local effi-
ciency of the graph G is defined as (Latora and Marchiori, 2001):

LE(G) = 1

N

∑
i ∈ G

GE(Gi),

where GE(Gi) is the global efficiency of Gi, the subgraph of
the neighbors of node i. The small-world efficiency metrics
(GE and LE) of real brain networks were compared with 1000
random networks (Grand) that preserved the degree and weight
distributions of real networks (Maslov and Sneppen, 2002). A
real brain network is considered to be a small-world network if
it shows similar global efficiency but much higher local efficiency
than its matched random networks (Latora and Marchiori, 2001).

The node strength (NSi) for a given node i is defined as the
sum of all of the edge weights between this node and all of the
other nodes in the network. Regions with a high nodal strength
indicate high interconnectivity with other regions.

Regarding the structural brain network for each age group, we
averaged the global and regional network metrics (LE, GE, and
NS) over the range of cost thresholds (0.11 ≤ t ≤ 0.25) to obtain
the summary network metrics (Bassett et al., 2008). To investigate
the longitudinal changes of network properties, the annual rate of
change in the summary network metrics (ARC_X) was defined as:

ARC_X = X2 − X1

Age2 − Age1
,

where X1 and X2 are the summary network metrics at baseline
and follow-up, respectively; and Age1 and Age2 are the mean age
of 100 subjects included in the age group at baseline and follow-
up, respectively. The ARC_X value indicates the differences in

summary network metrics between the baseline and follow-up
scans, normalized by the interval of age.

STATISTICAL ANALYSIS
To analyze the differences in the summary global network prop-
erties (e.g., LE and GE) of the same age group between two
scans (e.g., Group 1 at baseline vs. Group 1 at follow-up), a
non-parametric permutation test method was applied (Bullmore
et al., 1999; He et al., 2008; Wu et al., 2012). Moreover, a paired
t-test was performed to determine whether there were significant
longitudinal changes in each summary network metric (LE, GE,
and NS) between all age groups at baseline and those at follow-
up. To evaluate correlations between the longitudinal changes in
network properties and the baseline age, we performed multi-
ple linear regression analyses with the annual rate of change in
the summary network metrics as the dependent variables and
the baseline age as the independent variable. Here, three multi-
ple linear regressions (Model I, II, and III) modeling mean value,
age, age2, and age3 as predictors were applied to detect the linear,
quadratic, and cubic changes with the baseline age. We then deter-
mined the best model among the three regressions using Akaike’s
information criterion (AIC) (Akaike, 1974).

ARC_X = mean + a × Age1 + e (I)

ARC_X = mean + a1 × Age1 + a2 × Age2
1 + e (II)

ARC_X = mean + a1 × Age1 + a2 × Age2
1

+ a3 × Age3
1 + e (III)

For the regression analysis of regional nodal property, we only
included regions with significant differences in the summary
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regional network metric (e.g., NS) between the baseline and
follow-up scans by the paired t-test (p < 0.05, FDR-corrected).

RESULTS
ECONOMICAL SMALL-WORLD PROPERTIES AND LONGITUDINAL
CHANGES
The structural brain networks of the age-specific groups exhib-
ited economical small-world properties, showing higher local
efficiency but similar global efficiency compared to the matched
random networks (Latora and Marchiori, 2001). This finding is
illustrated in Figure 2, where we plot the local and global effi-
ciency of the structural brain networks of the age-specific groups
from both the baseline and follow-up scans against those of
the matched random networks. Moreover, significant differences
(a non-parametric permutation test; p < 0.05) in the summary
local efficiency were found in several age groups across the base-
line age but those in the summary global efficiency were found in
the middle age groups (Figure 3). For all age groups, the struc-
tural brain networks from the baseline scan showed significantly
lower local efficiency (a paired t-test; t-value = 8.446; p < 10−4)
and global efficiency (a paired t-test; t-value = 10.478; p < 10−4)
compared to those from the follow-up scan. The annual rate
of change in local efficiency (ARC_LE) and global efficiency
(ARC_GE) showed a positive quadratic (F-value = 3.622, p =
0.041) and a negative quadratic (F-value = 3.506, p = 0.045) cor-
relation with the baseline age, respectively (Figures 3A,B). The
curvilinear correlations peaked at the baseline ages of 45.49 years
and 50.95 years, respectively.

REGIONAL NODAL PROPERTIES AND LONGITUDINAL CHANGES
We found significant correlations between the annual rate of
change in node strength (ARC_NS) and the baseline age in many

brain regions, which showed significant differences in the node
strength (a paired t-test; p < 0.05, FDR-corrected) between the
baseline and follow-up scans. Specifically, significant negative cor-
relations (p < 0.05) between the ARC_NS and the baseline age
were found in several brain regions that were primarily related to
the visual system [e.g., the bilateral middle occipital gyrus (MOG)
and right inferior temporal gyrus (ITG)] and the motor/control
system [e.g., the left postcentral gyrus (PoCG), left superior pari-
etal gyrus (SPG), right medial part of superior frontal gyrus
(SFGmed), and right middle cingulate gyrus (MCG)] (Table 2,
Figure 4). Significant positive quadratic correlations (p < 0.05)
between the ARC_NS and the baseline age were found in several
brain regions that were mainly associated with the default-mode
system [e.g., the left anterior cingulate gyrus (ACG) and right
medial part of the orbitofrontal cortex (ORBmed)], the atten-
tion system [e.g., the right middle frontal gyrus (MFG), right
IFGoperc, and bilateral inferior parietal lobule (IPL)], and the
memory system [e.g., the right parahippocampal gyrus (PHG),
left amygdala (AMYG), and bilateral putamen (PUT)] (Table 3,
Figure 4); the significant positive quadratic correlations peaked
at a baseline age of 51.17–54.87 years (Table 3). The regional
nodal properties of these brain regions were visualized in anatom-
ical space (Figure 4A) and mapped onto the cortical surface
(Figure 4B) using the BrainNet Viewer (http://www.nitrc.org/
projects/bnv/).

DISCUSSION
To our knowledge, this is the first study to investigate longitu-
dinal changes in the topological organization of structural brain
networks in a large number of healthy individuals. We found that
the structural brain networks of age-specific groups exhibit eco-
nomical small-world properties. ARC_LE and ARC_GE showed

FIGURE 2 | Small-world efficiency properties in structural brain

networks. (A) Local efficiency calculated under the cost threshold range of
0.11–0.25. (B) Global efficiency calculated under the cost threshold range of

0.11–0.25. Aoba1-Random and Aoba2-Random correspond to the matched
random networks for the structural brain network in Aoba1 and Aoba2,
respectively.

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 113 | 229

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wu et al. Longitudinal changes of structural brain networks

FIGURE 3 | Significant correlations between the annual rate of change

in small-world efficiency and the baseline age. (A) Significant positive
quadratic correlations between the annual rate of change in local efficiency
(ARC_LE) and the baseline age (Age1 ), peaked at the baseline age of
45.49 years. (B) Significant negative quadratic correlations between the

annual rate of change in global efficiency (ARC_GE) and the baseline age,
peaked at the baseline age of 50.95 years. Note that significant differences
(p < 0.05) in the summary global network properties of the same age
group between two scans by the nonparametric permutation test are
indicated by violet stars.

Table 2 | Significant negative linear correlation between the annual

rate of change in node strength and the baseline age.

System Lobe Class Abbreviation F value

Visual Occipital Association MOG.L 10.416

Occipital Association MOG.R 11.194

Temporal Association ITG.R 21.121

Motor/control Parietal Primary PoCG.L 13.561

Parietal Association SPG.L 14.523

Frontal Association SFGmed.R 17.964

Frontal Paralimbic MCG.R 18.481

The level of significance was set at p < 0.05.

significant curvilinear correlations with the baseline age, with a
peak at the baseline age of approximately 50. Our results also
revealed significant correlations between the ARC_NS and the
baseline age in many brain regions. Structural brain networks
develop into a more distributed organization from young to
middle age (approximately 50 years old) and then achieve a local-
ized organization with substantial alterations in old age. Thus,
revealing longitudinal changes in the topological properties of
structural brain networks may enhance our understanding of the
physiology underlying normal aging in the human brain.

ECONOMICAL SMALL-WORLD PROPERTIES AND LONGITUDINAL
CHANGES
In this study, the structural brain networks derived from mea-
surements of RGMV in all age-specific groups exhibited the key

properties of economical small-world organization. An econom-
ical small-world network can provide a topological substrate for
both locally specialized processing in the neighborhoods of highly
clustered nodes and globally distributed processing on a highly
efficient network with short characteristic path lengths (Sporns
and Zwi, 2004; Stam, 2004; Achard et al., 2006; Achard and
Bullmore, 2007). Our finding of high global and local efficiency in
the structural brain networks is consistent with the results of pre-
vious functional and structural brain networks studies (He et al.,
2007, 2008, 2009; Bassett et al., 2008, 2009; Wang et al., 2009b;
Khundrakpam et al., 2012; Wu et al., 2012; Zhu et al., 2012).

We also noted longitudinal changes in small-world efficiency
metrics of the structural brain networks. Several age groups in the
follow-up scan showed significant higher values in local or global
efficiency compared to those in the baseline scan. Moreover, the
differences in both local and global efficiency between two scans
varied across the age groups and showed significant correlations
with the baseline age. ARC_LE and ARC_GE showed a U-curve
and an inverted-U curve trajectory with the baseline age, respec-
tively. In particular, the trajectories of ARC_LE and ARC_GE
peaked at a baseline age of 45.49 and 50.95 years, respectively.
These results are consistent with our previous cross-sectional
study findings, in which the local and global efficiency showed
U-curve and inverted-U curve tendencies, respectively, in young
(18–40 years), middle (41–60 years), and old age (61–80 years)
groups (the subjects used were from the same dataset of the
baseline scan in this study) (Wu et al., 2012).

The longitudinal changes in local and global efficiency could
be divided into two processes based on the peaks. First, the period
from young to middle age (approximately 50 years old) showed
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FIGURE 4 | Significant correlations between the annual rate of change in

node strength and the baseline age. Significant correlations (p < 0.05) are
visualized in anatomical space (A) and mapped onto the cortical surface (B).

Negative linear and positive quadratic correlations are indicated by blue and
red colors, respectively. ARC_NS: the annual rate of change in node strength;
Age1: the baseline age. Abbreviations are shown in Table 1.

decelerated increases in local efficiency and accelerated increases
in global efficiency, indicating a fast distribution in the mid-
dle age. This period might reflect a maturation process in the
structural brain network. A previous study demonstrated that the

organization of multiple functional networks shifts from a local
anatomical emphasis in children to a more distributed architec-
ture in young adults, indicating the maturation process of the
functional systems (Fair et al., 2009). A more recent study on

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 113 | 231

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wu et al. Longitudinal changes of structural brain networks

Table 3 | Significant positive quadratic correlation between the annual rate of change in node strength and the baseline age.

System Lobe Class Abbreviation F value Peak at the baseline age

Default-mode Frontal Paralimbic ACG.L 8.859 51.17

Frontal Paralimbic ORBmed.R 25.981 53.40

Attention Frontal Association MFG.R 13.169 54.87

Frontal Association IFGoperc.R 18.572 54.15

Parietal Association IPL.L 12.596 51.93

Parietal Association IPL.R 12.521 54.23

Memory Temporal Paralimbic PHG.R 12.612 53.51

Temporal Paralimbic AMYG.L 33.272 52.03

Subcortical Subcortical PUT.L 14.899 52.59

Subcortical Subcortical PUT.R 16.783 53.62

The level of significance was set at p < 0.05.

structural brain networks constructed from the measurement of
cortical thickness also indicated a more distributed configura-
tion in late childhood, accompanied by significant increases in
global efficiency but decreases in local efficiency (Khundrakpam
et al., 2012). In addition, white matter plays a vital role in the
efficient transfer of information between gray matter regions.
Our previous longitudinal study of a large number of healthy
subjects (the same datasets of both the baseline and follow-up
scans in this study) demonstrated that the white matter ratio
increased until approximately age 50 and then decreased in both
men and women (Taki et al., 2011a). Several previous studies
also indicated that white matter volume seems to increase until
the middle age of approximately 45 years and decrease there-
after (Bartzokis et al., 2001; Sowell et al., 2003). Increases in
the white matter represent maturational changes, such as myeli-
nation that continue until middle adulthood and may, there-
fore, provide evidence of the maturation of structural brain
networks.

Second, the period from middle (approximately 50 years old)
to old age showed an accelerated increase in local efficiency
and a decelerated increase in global efficiency, leading to a fast
localization in the old age. The changes over this period might
reflect a degenerative process in the structural brain network
with advanced aging. A recent study demonstrated that the struc-
tural brain networks in an older cohort (mean age = 66.6 years,
range 64–68) had lower global efficiency but higher local effi-
ciency, revealing a more localized configuration compared to
the younger cohort (mean age = 46.7 years, range 44–48) (Zhu
et al., 2012). Using a sample of 342 healthy individuals aged
72–92 years, a previous DTI tract-derived connectivity study
indicated that the global efficiency of the structural brain net-
works decreased significantly with older age (Wen et al., 2011).
It is important to note that a regular configuration with less
global integration upsets the optimal balance of a small-world
network and is related to many neurological and psychiatric
disorders described as dysconnectivity syndromes (Catani and
ffytche, 2005). Several previous studies have reported a regu-
lar configuration or a reduction in the global efficiency of brain
networks in patients with diseases such as AD and amnestic
mild cognitive impairment (aMCI, the prodromal stage of AD),

providing further support for the characterization of AD and
aMCI as dysconnectivity syndromes and indicating the functional
basis of cognitive deficits (Stam et al., 2007; He et al., 2008; Bai
et al., 2012; Zhao et al., 2012; Wang et al., 2013). Therefore, we
speculate that advanced aging is associated with a high risk for
dysconnectivity syndromes.

REGIONAL NODAL PROPERTIES AND LONGITUDINAL CHANGES
Node strength measures the interconnectivity of a node with
other regions and can be used to determine the relative impor-
tance of a node within a network. We identified significant
correlations between the ARC_NS and the baseline age in
many brain regions, mainly consisting of recently evolved asso-
ciation (9/17) and primitive limbic/paralimbic (5/17) regions.
Association regions contribute to the integrity of multiple func-
tional systems such as the attention and memory systems, while
limbic/paralimbic regions are highly interconnected with the pre-
frontal regions and subcortical regions and are mainly involved
in emotional processing and the maintenance of a conscious state
of mind (Mesulam, 1998). Thus, our results support the view
that age-related changes are mainly a characteristic of the associ-
ation cortex rather than the primary cortex (Albert and Knoefel,
1994).

The brain regions showing significant negative correlations
with the baseline are primarily involved in the visual and
motor/control systems. A previous study of the structural brain
networks in elderly subjects using DTI data demonstrated
significant positive correlations between the regional nodal effi-
ciency and visuospatial, processing speed, and executive func-
tions in many cortical regions (Wen et al., 2011). Therefore,
we speculate that our findings of the decreases of ARC_NS
with the baseline age in the visual and motor/control systems
might be related to the decline of these functions with nor-
mal aging. It is well-known that visual abilities decline during
normal (non-pathological) aging, and older individuals tend
to have reduced visual acuity and contrast sensitivity (Spear,
1993; Owsley, 2011). A recent study using event-related poten-
tials (ERPs) also found that visual acuity declined as a func-
tion of age when young adults (18–32 years), young–old adults
(65–79 years), and old–old adults (80+ years) performed a visual
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processing task involving selective attention to color (Daffner
et al., 2012). Moreover, normal aging-related degeneration in
the brain is accompanied by reduced force control, progres-
sive slowness, and impaired motor ability (Roos et al., 1997;
Smith et al., 1999; Krampe, 2002). Worsened task performance
(e.g., slower speed with increasing memory load) in old adults
(mean age = 71.27) is associated with decreases in the func-
tional network connectivity between components comprising the
supplementary motor area and the middle cingulate gyrus and
between the precuneus and the middle/superior frontal cortex
(Steffener et al., 2012). A previous resting-state fMRI study indi-
cated a significant decrease in the functional connectivity of the
motor network in aged subjects (mean age = 61.8) compared
to young subjects (mean age = 26.5 years) (Wu et al., 2007).
A more recent fMRI study using a visual oddball task also indi-
cated that elderly subjects (mean age = 63.9 years) showed a
decrease in connectivity within the somatomotor network com-
pared to younger subjects (mean age = 24.1 years) (Geerligs et al.,
2012).

We also found significant quadratic correlations between the
ARC_NS and the baseline age in many brain regions, predom-
inately from frontal (4/10), temporal (2/10), parietal (2/10), and
subcortical (2/10) areas. It is notable that the significant quadratic
correlations peaked at a baseline age from 51.17 to 54.87 years.
Thus, in these brain regions, the ARC_NS increased with the
baseline age in the period from middle (approximately 50 years
old) to old age. More importantly, the identified brain regions are
mainly associated with the default-mode, attention, and memory
systems. The scaffolding theory of aging and cognition (STAC)
suggests that scaffolding is a normal process present across the
lifespan that involves use and development of complementary,
alternative neural circuits to achieve a particular cognitive goal
and is protective of cognitive function in the aging brain (Park
and Reuter-Lorenz, 2009). Thus, our results are in line with the
STAC and suggest a compensation mechanism of structural brain
network reorganization with advanced aging. It has been indi-
cated that cognitive decline is associated with differences in the
structure and function of the aging brain, and it has been sug-
gested that increased activation is either caused by disruption,
whether structural or functional, or is a compensatory response to
such disruption (Hedden and Gabrieli, 2004; Persson et al., 2006;
Grady, 2012). Previous findings from several studies on struc-
tural and functional brain networks also support this view. Many
brain regions, primarily from the frontal and temporal lobes,
show increases in regional nodal efficiency in structural brain net-
works (Gong et al., 2009). Several regions, mostly in the lateral
occipital-parietal junction and the paralimbic/subcortical area,
reveal increased node betweenness in old age (Wu et al., 2012).
The decrease in visual memory and visuoconstructive functions is
strongly associated with the age-dependent enhancement of func-
tional connectivity in both temporal lobes (Schlee et al., 2012).
However, a recent study showed reduced structural association
in the high-order cognitive networks of older adults compared
to young adults, while no differences were observed in the sen-
sorimotor networks (Montembeault et al., 2012). The following
possible reasons are given for the discrepancies between this find-
ing and our results: only eight brain regions were included in the

previous study, whereas the present study was a whole-brain anal-
ysis; furthermore, only a comparison between young (mean age =
23.5 ± 3.1 years) and old (mean age = 67.3 ± 5.9 years) age was
analyzed in the previous study, neglecting the other comparisons
(young vs. middle; middle vs. old). Moreover, most of the iden-
tified brain regions showing positive quadratic correlations with
the baseline age are found to be altered in AD patients (Bai et al.,
2012; Zhao et al., 2012; Wang et al., 2013). For example, sev-
eral brain regions (e.g., ACG.L, ORBmed.R, IFGoperc.R, IPL.L,
IPL.R, and PUT.R) in AD patients show significant increases in
regional nodal properties (e.g., the regional local and global effi-
ciency) (Zhao et al., 2012). Thus, these findings provide further
evidence supporting the view that advanced aging confers a high
risk for neurodegenerative diseases, such as AD.

METHODOLOGY
Several methodological issues need to be addressed. First,
structural brain networks can be constructed in two ways:
(1) indirectly from inter-regional correlation of morphologi-
cal measurements (e.g., cortical thickness, RGMV, and surface
area) in sMRI data; (2) directly from characteristics of white
matter fibers (e.g., fiber number, fractional anisotropy, appar-
ent diffusion coefficient, or distance) in diffusion tensor imaging
(DTI) data (Bassett and Bullmore, 2009; He and Evans, 2010; Lo
et al., 2011; Xia and He, 2011). Although there is still no direct
proof that correlations of morphological measurements across
subjects are indicative of axonal connectivity via white matter
tracts, strong correlations between brain regions known to be
anatomically connected have been observed in previous opti-
mized voxel-based morphometry studies (Mechelli et al., 2005;
Pezawas et al., 2005). Moreover, a recent study indicated that
approximately 35–40% of cortical thickness correlations showed
convergent diffusion connections across the cerebral cortex and
most of them were the positive thickness correlations (Gong et al.,
2012). However, the authors also found that almost all of the
negative correlations (>90%) did not have a matched diffusion
connection, suggesting different mechanisms behind the positive
and negative thickness correlations. Since we defined structural
connectivity as the absolute value of correlation of RGMV in
this study, the association between correlation of RGMV and
diffusion connections should be investigated further in future
studies. Second, previous studies indicate that different parcel-
lation strategies affect the topological properties (e.g., the local
efficiency, global efficiency, small-worldness, and modularity)
of structural or functional brain networks (Wang et al., 2009a;
Fornito et al., 2010; Zalesky et al., 2010). A previous study also
indicates that regional volumes are positively correlated with
their mutual information, which measures the functional con-
nectivity between each region and the remaining brain regions
(Salvador et al., 2008). Thus, variations in parcellation templates
(e.g., AAL used in this study) may affect the network structure
of the human brain; future studies should include comparisons
of network topology with different parcellation templates. Third,
because all of the subjects in this study were over 20 years
old, young and adolescent subjects should be included in future
studies of brain network development. Finally, further investiga-
tions will also examine longitudinal changes in the topological
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properties of the human brain network using different neu-
roimaging modalities, such as diffusion tensor imaging, func-
tional MRI, and electroencephalography.

CONCLUSION
In this study, we quantitatively analyzed the topological organi-
zation of structural brain networks using a longitudinal design
over 6 years. Our results reveal economical small-world proper-
ties of structural brain networks and longitudinal changes in both
global and regional network properties. The structural brain net-
works develop into a fast distribution at approximately the age
of 50 and then transform into a fast localization with substantial
alterations in old age. Our findings may contribute to under-
standing the mechanism of normal aging in the human brain
and help to distinguish neurodegenerative diseases from normal
aging.

REFERENCES
Achard, S., and Bullmore, E. (2007).

Efficiency and cost of econom-
ical brain functional networks.
PLoS Comput. Biol. 3:e17. doi:
10.1371/journal.pcbi.0030017

Achard, S., Salvador, R., Whitcher,
B., Suckling, J., and Bullmore, E.
(2006). A resilient, low-frequency,
small-world human brain func-
tional network with highly con-
nected association cortical hubs.
J. Neurosci. 26, 63–72.

Akaike, H. (1974). A new look at the
statistical model identification. IEEE
Trans. Automat. Contr. 19, 716–723.

Albert, M., and Knoefel, J. (1994).
Clinical Neurology of Aging, 2nd
Edn. New York, NY: Oxford
University Press.

Andrews-Hanna, J. R., Snyder, A. Z.,
Vincent, J. L., Lustig, C., Head,
D., Raichle, M. E., et al. (2007).
Disruption of large-scale brain sys-
tems in advanced aging. Neuron 56,
924–935.

Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H.,
Wu, D., et al. (2012). Topologically
convergent and divergent structural
connectivity patterns between
patients with remitted geriatric
depression and amnestic mild
cognitive impairment. J. Neurosci.
32, 4307–4318.

Bartzokis, G., Beckson, M., Lu, P. H.,
Nuechterlein, K. H., Edwards, N.,
and Mintz, J. (2001). Age-related
changes in frontal and temporal
lobe volumes in men: a magnetic
resonance imaging study. Arch. Gen.
Psychiatry 58, 461–465.

Bassett, D. S., and Bullmore, E. T.
(2009). Human brain networks in
health and disease. Curr. Opin.
Neurol. 22, 340–347.

Bassett, D. S., Bullmore, E. T., Meyer-
Lindenberg, A., Apud, J. A.,

Weinberger, D. R., and Coppola, R.
(2009). Cognitive fitness of cost-
efficient brain functional networks.
Proc. Natl. Acad. Sci. U.S.A. 106,
11747–11752.

Bassett, D. S., Bullmore, E., Verchinski,
B. A., Mattay, V. S., Weinberger,
D. R., and Meyer-Lindenberg, A.
(2008). Hierarchical organization of
human cortical networks in health
and schizophrenia. J. Neurosci. 28,
9239–9248.

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph
theoretical analysis of structural
and functional systems. Nat. Rev.
Neurosci. 10, 186–198.

Bullmore, E. T., and Bassett, D. S.
(2011). Brain graphs: graphical
models of the human brain connec-
tome. Annu. Rev. Clin. Psychol. 7,
113–140.

Bullmore, E. T., Suckling, J.,
Overmeyer, S., Rabe-Hesketh,
S., Taylor, E., and Brammer, M. J.
(1999). Global, voxel, and cluster
tests, by theory and permutation,
for a difference between two groups
of structural MR images of the
brain. IEEE Trans. Med. Imaging 18,
32–42.

Catani, M., and ffytche, D. H. (2005).
The rises and falls of disconnection
syndromes. Brain 128, 2224–2239.

Daffner, K. R., Haring, A. E., Alperin,
B. R., Zhuravleva, T. Y., Mott, K.
K., and Holcomb, P. J. (2012).
The impact of visual acuity on
age-related differences in neural
markers of early visual processing.
Neuroimage 67, 127–136.

Declaration of Helsinki. (1991). BMJ
302:1194.

Fair, D. A., Cohen, A. L., Power, J.
D., Dosenbach, N. U., Church, J.
A., Miezin, F. M., et al. (2009).
Functional brain networks

develop from a “local to dis-
tributed” organization. PLoS
Comput. Biol. 5:e1000381. doi:
10.1371/journal.pcbi.1000381

Fornito, A., Zalesky, A., and Bullmore,
E. T. (2010). Network scaling
effects in graph analytic studies of
human resting-state FMRI data.
Front. Syst. Neurosci. 4:22. doi:
10.3389/fnsys.2010.00022

Friston, K. J., Holmes, A. P., Worsley,
K. J., Poline, J. P., Frith, C. D.,
and Frackowiak, R. S. J. (1995).
Statistical parametric maps in func-
tional imaging: a general linear
approach. Hum. Brain Mapp. 2,
189–210.

Geerligs, L., Maurits, N. M., Renken,
R. J., and Lorist, M. M. (2012).
Reduced specificity of functional
connectivity in the aging brain dur-
ing task performance. Hum. Brain
Mapp. doi: 10.1002/hbm.22175.
[Epub ahead of print].

Gong, G., He, Y., Chen, Z. J., and
Evans, A. C. (2012). Convergence
and divergence of thickness corre-
lations with diffusion connections
across the human cerebral cortex.
Neuroimage 59, 1239–1248.

Gong, G., Rosa-Neto, P., Carbonell,
F., Chen, Z. J., He, Y., and Evans,
A. C. (2009). Age- and gender-
related differences in the cortical
anatomical network. J. Neurosci. 29,
15684–15693.

Grady, C. (2012). The cognitive neuro-
science of ageing. Nat. Rev. Neurosci.
13, 491–505.

Greicius, M. D., and Kimmel, D.
L. (2012). Neuroimaging insights
into network-based neurodegener-
ation. Curr. Opin. Neurobiol. 25,
727–734.

He, Y., Chen, Z., and Evans, A.
(2008). Structural insights into
aberrant topological patterns of

large-scale cortical networks in
Alzheimer’s disease. J. Neurosci. 28,
4756–4766.

He, Y., Chen, Z. J., and Evans, A.
C. (2007). Small-world anatomi-
cal networks in the human brain
revealed by cortical thickness from
MRI. Cereb. Cortex 17, 2407–2419.

He, Y., Dagher, A., Chen, Z., Charil,
A., Zijdenbos, A., Worsley, K.,
et al. (2009). Impaired small-world
efficiency in structural cortical
networks in multiple sclerosis
associated with white matter lesion
load. Brain 132, 3366–3379.

He, Y., and Evans, A. (2010). Graph
theoretical modeling of brain con-
nectivity. Curr. Opin. Neurol. 23,
341–350.

Hedden, T., and Gabrieli, J. D. (2004).
Insights into the ageing mind: a view
from cognitive neuroscience. Nat.
Rev. Neurosci. 5, 87–96.

Hosseini, S. M., Koovakkattu, D.,
and Kesler, S. R. (2012). Altered
small-world properties of gray
matter networks in breast cancer.
BMC Neurol. 12:28. doi: 10.1186/
1471-2377-12-28

Jean Talairach, P. T. (1988). Co-planar
Stereotaxic Atlas of the Human
Brain. Stuttgart: Thieme.

Khundrakpam, B. S., Reid, A., Brauer,
J., Carbonell, F., Lewis, J., Ameis,
S., et al. (2012). Developmental
changes in organization of struc-
tural brain networks. Cereb. Cortex.
doi: 10.1093/cercor/bhs187. [Epub
ahead of print].

Krampe, R. T. (2002). Aging, exper-
tise and fine motor movement.
Neurosci. Biobehav. Rev. 26,
769–776.

Lancaster, J. L., Woldorff, M. G.,
Parsons, L. M., Liotti, M., Freitas,
C. S., Rainey, L., et al. (2000).
Automated Talairach atlas labels for

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 113 |

ACKNOWLEDGMENTS
This study was supported by the 2007 Tohoku University Global
Century Centre of Excellence (GCOE) Program (Ministry of
Education, Culture, Sports, Science and Technology; MEXT)
titled “Global Nano-Biomedical Engineering Education and
Research Network Centre.” The brain MRI database was con-
structed at the Aoba Brain Imaging Center with a grant from
the Telecommunications Advancement Organization (National
Institute of Information and Communications Technology) of
Japan.

FUNDING
This study was supported by grants-in-aid from the Ministry of
Education, Culture, Sports, Science, and Technology (20790875,
24103701, and 23240056), Japan and Guangdong Natural Science
Foundation (S2012040007743), China.

234

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wu et al. Longitudinal changes of structural brain networks

functional brain mapping. Hum.
Brain Mapp. 10, 120–131.

Latora, V., and Marchiori, M.
(2001). Efficient behavior of
small-world networks. Phys. Rev.
Lett. 87:198701. doi: 10.1103/
PhysRevLett.87.198701

Li, Y., Wang, Y., Wu, G., Shi, F.,
Zhou, L., Lin, W., et al. (2012).
Discriminant analysis of longitu-
dinal cortical thickness changes in
Alzheimer’s disease using dynamic
and network features. Neurobiol.
Aging 33, 427.e15–427.e30.

Liu, Y., Liang, M., Zhou, Y., He, Y.,
Hao, Y., Song, M., et al. (2008).
Disrupted small-world networks in
schizophrenia. Brain 131, 945–961.

Lo, C. Y., He, Y., and Lin, C. P.
(2011). Graph theoretical analysis of
human brain structural networks.
Rev. Neurosci. 22, 551–563.

Maldjian, J. A., Laurienti, P. J., and
Burdette, J. H. (2004). Precentral
gyrus discrepancy in electronic
versions of the Talairach atlas.
Neuroimage 21, 450–455.

Maldjian, J. A., Laurienti, P. J.,
Kraft, R. A., and Burdette, J. H.
(2003). An automated method for
neuroanatomic and cytoarchitec-
tonic atlas-based interrogation of
fMRI data sets. Neuroimage 19,
1233–1239.

Maslov, S., and Sneppen, K. (2002).
Specificity and stability in topology
of protein networks. Science 296,
910–913.

Mechelli, A., Friston, K. J., Frackowiak,
R. S., and Price, C. J. (2005).
Structural covariance in the human
cortex. J. Neurosci. 25, 8303–8310.

Meier, T. B., Desphande, A. S., Vergun,
S., Nair, V. A., Song, J., Biswal, B.
B., et al. (2012). Support vector
machine classification and charac-
terization of age-related reorganiza-
tion of functional brain networks.
Neuroimage 60, 601–613.

Mesulam, M. M. (1998). From sen-
sation to cognition. Brain 121,
1013–1052.

Meunier, D., Achard, S., Morcom,
A., and Bullmore, E. (2009). Age-
related changes in modular organi-
zation of human brain functional
networks. Neuroimage 44, 715–723.

Montembeault, M., Joubert, S., Doyon,
J., Carrier, J., Gagnon, J. F., Monchi,
O., et al. (2012). The impact of aging
on gray matter structural covari-
ance networks. Neuroimage 63,
754–759.

Owsley, C. (2011). Aging and vision.
Vision Res. 51, 1610–1622.

Park, D. C., and Reuter-Lorenz, P.
(2009). The adaptive brain: aging
and neurocognitive scaffolding.
Annu. Rev. Psychol. 60, 173–196.

Persson, J., Nyberg, L., Lind, J., Larsson,
A., Nilsson, L. G., Ingvar, M., et al.
(2006). Structure-function corre-
lates of cognitive decline in aging.
Cereb. Cortex 16, 907–915.

Pezawas, L., Meyer-Lindenberg, A.,
Drabant, E. M., Verchinski, B. A.,
Munoz, K. E., Kolachana, B. S., et al.
(2005). 5-HTTLPR polymorphism
impacts human cingulate-amygdala
interactions: a genetic susceptibil-
ity mechanism for depression. Nat.
Neurosci. 8, 828–834.

Risacher, S. L., Shen, L., West, J. D.,
Kim, S., McDonald, B. C., Beckett,
L. A., et al. (2010). Longitudinal
MRI atrophy biomarkers: rela-
tionship to conversion in the
ADNI cohort. Neurobiol. Aging 31,
1401–1418.

Roos, M. R., Rice, C. L., and
Vandervoort, A. A. (1997). Age-
related changes in motor unit
function. Muscle Nerve 20, 679–690.

Rubinov, M., and Sporns, O. (2010).
Complex network measures of brain
connectivity: uses and interpreta-
tions. Neuroimage 52, 1059–1069.

Salvador, R., Martíez, A., Pomarol-
Clotet, E., Gomar, J., Vila, F.,
Sarró, S., et al. (2008). A sim-
ple view of the brain through a
frequency-specific functional con-
nectivity measure. Neuroimage 39,
279–289.

Sanabria-Diaz, G., Melie-Garcia, L.,
Iturria-Medina, Y., Aleman-Gomez,
Y., Hernandez-Gonzalez, G., Valdes-
Urrutia, L., et al. (2010). Surface
area and cortical thickness descrip-
tors reveal different attributes of the
structural human brain networks.
Neuroimage 50, 1497–1510.

Sato, K., Taki, Y., Fukuda, H.,
and Kawashima, R. (2003).
Neuroanatomical database of
normal Japanese brains. Neural
Netw. 16, 1301–1310.

Schlee, W., Leirer, V., Kolassa, S.,
Thurm, F., Elbert, T., and Kolassa,
I. T. (2012). Development of large-
scale functional networks over
the lifespan. Neurobiol. Aging 33,
2411–2421.

Smith, C. D., Umberger, G. H.,
Manning, E. L., Slevin, J. T.,
Wekstein, D. R., Schmitt, F. A.,
et al. (1999). Critical decline in fine
motor hand movements in human
aging. Neurology 53, 1458–1461.

Sowell, E. R., Peterson, B. S.,
Thompson, P. M., Welcome, S.
E., Henkenius, A. L., and Toga, A.
W. (2003). Mapping cortical change
across the human life span. Nat.
Neurosci. 6, 309–315.

Spear, P. D. (1993). Neural bases of
visual deficits during aging. Vision
Res. 33, 2589–2609.

Sporns, O. (2011a). From simple
graphs to the connectome: networks
in neuroimaging. Neuroimage 62,
881–886.

Sporns, O. (2011b). The human con-
nectome: a complex network. Ann.
N.Y. Acad. Sci. 1224, 109–125.

Sporns, O., Tononi, G., and Kotter, R.
(2005). The human connectome: a
structural description of the human
brain. PLoS Comput. Biol. 1:e42. doi:
10.1371/journal.pcbi.0010042

Sporns, O., and Zwi, J. (2004). The
small world of the cerebral cortex.
Neuroinformatics 2, 145–162.

Spreng, R. N., and Schacter, D. L.
(2012). Default network modula-
tion and large-scale network inter-
activity in healthy young and old
adults. Cereb. Cortex 22, 2610–2621.

Stam, C. J. (2004). Functional con-
nectivity patterns of human
magnetoencephalographic record-
ings: a ‘small-world’ network?
Neurosci. Lett. 355, 25–28.

Stam, C. J., Jones, B. F., Nolte, G.,
Breakspear, M., and Scheltens,
P. (2007). Small-world networks
and functional connectivity in
Alzheimer’s disease. Cereb. Cortex
17, 92–99.

Steffener, J., Habeck, C. G., and Stern,
Y. (2012). Age-related changes in
task related functional network con-
nectivity. PLoS ONE 7:e44421. doi:
10.1371/journal.pone.0044421

Sun, J., Tong, S., and Yang, G. Y. (2012).
Reorganization of brain networks
in aging and age-related diseases.
Aging Dis. 3, 181–193.

Taki, Y., Kinomura, S., Sato, K., Goto,
R., Kawashima, R., and Fukuda, H.
(2011a). A longitudinal study of
gray matter volume decline with age
and modifying factors. Neurobiol.
Aging 32, 907–915.

Taki, Y., Kinomura, S., Sato, K., Goto,
R., Wu, K., Kawashima, R., et al.
(2011b). Correlation between
baseline regional gray matter
volume and global gray matter
volume decline rate. Neuroimage
54, 743–749.

Taki, Y., Kinomura, S., Sato, K., Goto,
R., Wu, K., Kawashima, R., et al.
(2011c). Correlation between
degree of white matter hyperinten-
sities and global gray matter volume
decline rate. Neuroradiology 53,
397–403.

Taki, Y., Thyreau, B., Kinomura,
S., Sato, K., Goto, R., Wu, K.,
et al. (2012a). A longitudinal
study of age- and gender-related
annual rate of volume changes in
regional gray matter in healthy
adults. Hum. Brain Mapp. doi:
10.1002/hbm.22067. [Epub ahead
of print].

Taki, Y., Thyreau, B., Kinomura, S.,
Sato, K., Goto, R., Wu, K., et al.
(2012b). A longitudinal study of the
relationship between personality
traits and the annual rate of volume
changes in regional gray matter in
healthy adults. Hum. Brain Mapp.
doi: 10.1002/hbm.22145. [Epub
ahead of print].

Tzourio-Mazoyer, N., Landeau, B.,
Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., et al. (2002).
Automated anatomical labeling
of activations in SPM using a
macroscopic anatomical parcella-
tion of the MNI MRI single-subject
brain. Neuroimage 15, 273–289.

Uddin, L. Q., Supekar, K., and
Menon, V. (2010). Typical and
atypical development of func-
tional human brain networks:
insights from resting-state FMRI.
Front. Syst. Neurosci. 4:21. doi:
10.3389/fnsys.2010.00021

Wang, J., Wang, L., Zang, Y., Yang, H.,
Tang, H., Gong, Q., et al. (2009a).
Parcellation-dependent small-
world brain functional networks:
a resting-state fMRI study. Hum.
Brain Mapp. 30, 1511–1523.

Wang, L., Zhu, C., He, Y., Zang, Y., Cao,
Q., Zhang, H., et al. (2009b). Altered
small-world brain functional net-
works in children with attention-
deficit/hyperactivity disorder. Hum.
Brain Mapp. 30, 638–649.

Wang, J., Zuo, X., Dai, Z., Xia, M.,
Zhao, Z., Zhao, X., et al. (2013).
Disrupted functional brain connec-
tome in individuals at risk for
alzheimer’s disease. Biol. Psychiatry
73, 472–481.

Wang, J., Zuo, X., Gohel, S., Milham,
M. P., Biswal, B. B., and He, Y.
(2011). Graph theoretical analy-
sis of functional brain networks:
test-retest evaluation on short- and
long-term resting-state functional
MRI data. PLoS ONE 6:e21976. doi:
10.1371/journal.pone.0021976

Wang, L., Li, Y., Metzak, P., He, Y.,
and Woodward, T. S. (2010). Age-
related changes in topological pat-
terns of large-scale brain functional
networks during memory encod-
ing and recognition. Neuroimage 50,
862–872.

Wang, L., Su, L., Shen, H., and
Hu, D. (2012). Decoding lifespan
changes of the human brain using
resting-state functional connectiv-
ity MRI. PLoS ONE 7:e44530. doi:
10.1371/journal.pone.0044530

Wen, W., Zhu, W., He, Y., Kochan, N.
A., Reppermund, S., Slavin, M. J.,
et al. (2011). Discrete neuroanatom-
ical networks are associated with
specific cognitive abilities in old age.
J. Neurosci. 31, 1204–1212.

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 113 | 235

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Wu et al. Longitudinal changes of structural brain networks

Wig, G. S., Schlaggar, B. L., and
Petersen, S. E. (2011). Concepts and
principles in the analysis of brain
networks. Ann. N.Y. Acad. Sci. 1224,
126–146.

Wu, K., Taki, Y., Sato, K., Kinomura, S.,
Goto, R., Okada, K., et al. (2012).
Age-related changes in topological
organization of structural brain net-
works in healthy individuals. Hum.
Brain Mapp. 33, 552–568.

Wu, K., Taki, Y., Sato, K., Sassa,
Y., Inoue, K., Goto, R., et al.
(2011). The overlapping commu-
nity structure of structural brain
network in young healthy indi-
viduals. PLoS ONE 6:e19608. doi:
10.1371/journal.pone.0019608

Wu, T., Zang, Y., Wang, L., Long, X.,
Hallett, M., Chen, Y., et al. (2007).

Aging influence on functional con-
nectivity of the motor network in
the resting state. Neurosci. Lett. 422,
164–168.

Xia, M., and He, Y. (2011). Magnetic
resonance imaging and graph
theoretical analysis of complex
brain networks in neuropsychi-
atric disorders. Brain Connect. 1,
349–365.

Xie, T., and He, Y. (2011). Mapping
the Alzheimer’s brain with connec-
tomics. Front. Psychiatry 2:77. doi:
10.3389/fpsyt.2011.00077

Zalesky, A., Fornito, A., Harding, I.
H., Cocchi, L., Yücel, M., Pantelis,
C., et al. (2010). Whole-brain
anatomical networks: does the
choice of nodes matter? Neuroimage
50, 970–983.

Zhao, X., Liu, Y., Wang, X., Liu, B.,
Xi, Q., Guo, Q., et al. (2012).
Disrupted small-world brain net-
works in moderate Alzheimer’s
disease: a resting-state FMRI
study. PLoS ONE 7:e33540. doi:
10.1371/journal.pone.0033540

Zhu, W., Wen, W., He, Y., Xia, A.,
Anstey, K. J., and Sachdev, P. (2012).
Changing topological patterns in
normal aging using large-scale
structural networks. Neurobiol.
Aging 33, 899–913.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 04 December 2012; accepted:
15 March 2013; published online: 03
April 2013.
Citation: Wu K, Taki Y, Sato K,
Qi H, Kawashima R and Fukuda H
(2013) A longitudinal study of struc-
tural brain network changes with normal
aging. Front. Hum. Neurosci. 7:113. doi:
10.3389/fnhum.2013.00113
Copyright © 2013 Wu, Taki, Sato, Qi,
Kawashima and Fukuda. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits
use, distribution and reproduc-
tion in other forums, provided the
original authors and source are cred-
ited and subject to any copyright
notices concerning any third-party
graphics etc.

Frontiers in Human Neuroscience www.frontiersin.org April 2013 | Volume 7 | Article 113 | 236

http://dx.doi.org/10.3389/fnhum.2013.00113
http://dx.doi.org/10.3389/fnhum.2013.00113
http://dx.doi.org/10.3389/fnhum.2013.00113
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 09 August 2013

doi: 10.3389/fnhum.2013.00456

Modular reorganization of brain resting state networks and
its independent validation in Alzheimer’s disease patients
Guangyu Chen1, Hong-Ying Zhang2,3, Chunming Xie1,4, Gang Chen1, Zhi-Jun Zhang4, Gao-Jun Teng2*
and Shi-Jiang Li1,5*
1 Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
2 Department of Radiology, Jiangsu Key Laboratory of Molecule Imaging and Functional Imaging, Medical School of Southeast University, Nanjing, PR China
3 Department of Radiology, Subei People’s Hospital of Jiangsu Province, Yangzhou University, Yangzhou, PR China
4 Department of Neuropsychiatry, Affiliated Zhong Da Hospital of Southeast University, Nanjing, PR China
5 Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA

Edited by:
Yong He, Beijing Normal University,
China

Reviewed by:
Christian Sorg, Klinikum rechts der
Isar Technische Universität
München, Germany
Jinhui Wang, Beijing Normal
University, China

*Correspondence:
Gao-Jun Teng, Department of
Radiology, Jiangsu Key Laboratory
of Molecule Imaging and Functional
Imaging, Medical School of
Southeast University, 87 Dingjiaqiao
Road, Nanjing 210009, PR China
e-mail: gjteng@vip.sina.com;
Shi-Jiang Li, Department of
Biophysics, Medical College of
Wisconsin, 8701 Watertown Plank
Road, Milwaukee, WI 53226, USA
e-mail: sjli@mcw.edu

Previous studies have demonstrated disruption in structural and functional connectivity
occurring in the Alzheimer’s Disease (AD). However, it is not known how these disruptions
alter brain network reorganization. With the modular analysis method of graph theory, and
datasets acquired by the resting-state functional connectivity MRI (R-fMRI) method, we
investigated and compared the brain organization patterns between the AD group and
the cognitively normal control (CN) group. Our main finding is that the largest homotopic
module (defined as the insula module) in the CN group was broken down to the pieces in
the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the
opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus,
transverse temporal gyri, superior temporal gyrus, and superior temporal pole) of the insula
module had lost symmetric functional connection properties, and the corresponding gray
matter concentration (GMC) was significant lower in AD group. We further quantified the
functional connectivity changes with an index (index A) and structural changes with the
GMC index in the insula module to demonstrate their great potential as AD biomarkers.
We further validated these results with six additional independent datasets (271 subjects
in six groups). Our results demonstrated specific underlying structural and functional
reorganization from young to old, and for diseased subjects. Further, it is suggested that
by combining the structural GMC analysis and functional modular analysis in the insula
module, a new biomarker can be developed at the single-subject level.

Keywords: Alzheimer’s disease, MCI, validation, module analysis, resting-state functional connectivity, brain

network, gray matter concentration, graph theory

INTRODUCTION
Alzheimer’s disease (AD) is considered a disconnection syndrome
(Geschwind, 1965; Delbeuck et al., 2003). Recent studies demon-
strated that the underlying neural mechanisms responsible for
the disconnection syndrome are involved in the functional dis-
ruption in the brain of AD patients (Horwitz et al., 1987; Wada
et al., 1998). An increasing number of studies have focused
on imaging the default mode network (DMN) in aging and
dementia by using intrinsic blood oxygenation level-dependent
(iBOLD) signals, acquired by the resting-state functional MRI
(R-fMRI) method (Lustig et al., 2003; Greicius et al., 2004; Sorg
et al., 2009; Khalili-Mahani et al., 2012). The measurement of
functional disruption in the DMN could become a potential clin-
ical diagnostic biomarker for AD because convergent evidence
demonstrated that brain atrophy, Aβ-amyloid plaque deposition
and metabolic deficits co-occurred in the DMN (Buckner et al.,
2009). Several other studies demonstrated that functional disrup-
tion also occurred in other areas besides the DMN, such as the
hippocampus and the insular networks (Li et al., 2002; Bonthius
et al., 2005; Royall, 2008; Xie et al., 2012). However, despite these
scientific advancements, efforts to cross-validate the functional
disruption trait as a biomarker have been of limited success.

Specifically, several studies provided the diagnostic power of
the DMN for AD (Li et al., 2002; Greicius et al., 2004; Fleisher
et al., 2009; Koch et al., 2010, 2012), but follow-up studies by
other research groups are either lacking (Li et al., 2002; Greicius
et al., 2004; Fleisher et al., 2009; Koch et al., 2010, 2012), contro-
versial (Zhang et al., 2009; Yu et al., 2011), or failed to confirm a
solid diagnostic value (Prvulovic et al., 2011). As a result, despite
the efforts during the past decade, there is no robust biomarker
based on R-fMRI technology, which has substantially limited its
potential utility value in AD research and treatment. There are
several factors that may contribute to the current stagnant status.
First, in typical seed-based R-fMRI studies, the group-level t-tests
often statistically identified the connectivity maps that highlight
voxels where functional connectivity is disrupted. Such a statisti-
cal approach often overestimates the diagnostic power, even if the
leave-one-out approach or seven-fold cross-validation method is
employed (Chen et al., 2011a; Westman et al., 2012a,b). Second,
because of compensatory mechanisms or increased activation,
brain connectivity may be reorganized along the continuum of
disease progression (He et al., 2008; Sanz-Arigita et al., 2010). Not
only did the functional connectivity decrease in certain regions,
but it also increased in other regions (Zhang et al., 2010). As a
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result, the summation of the overall connectivity strength may not
change significantly. Third, the disconnection syndrome in AD
may be the result of the functional and structural disruptions in
the large-scale networks; therefore, the seed-based network alone,
such as the DMN, may have no sufficient power as a biomarker. As
a result, when applying trained classifiers to independent datasets,
the specificity and sensitivity were low.

To overcome these shortcomings and to move the research
field forward, the present study is focusing on three new
approaches. First, we extend the seed-based analysis to the mod-
ular analysis method (He et al., 2009; Meunier et al., 2009a,b,
2010) to examine the patterns of brain network reorganization
at the large-scale network level to test the hypothesis that the
AD network organization is a reconfiguration from CN net-
works where some subnetworks that are related to cognitive
processing may change and others are preserved. A previous
study (Faria et al., 2012) addressed the factor that network
(or called Atlas)-based analysis can enhance SNR and repro-
ducibility of resting-state functional connectivity. In addition,
in using network-based functional connectivity, the number of
false positive cross-correlations can be significantly reduced due
to the reduced number of the total pairs of correlations. To our
knowledge, the applicability of the modular analysis to exam-
ine the resting-state functional network reorganization pattern in
mild cognitive impairment (MCI) and AD brains has not been
demonstrated. Second, based on specific changes in brain reor-
ganization patterns at the module level, an exploratory analysis
was performed to evaluate if the changes can be employed as a
biomarker for AD. Third, we employed an additional six inde-
pendent R-fMRI datasets from human subjects to independently
cross-validate the module-based biomarker at the single-subject
level.

MATERIALS AND METHODS
HUMAN SUBJECTS
A total of 331 subjects in eight groups were employed for this
study. Two R-fMRI datasets obtained from the cognitively nor-
mal (CN) group (N = 30) and the mild AD group (N = 30)
from the Medical College of Wisconsin (MCW) site (referred
to herein as MCW datasets) (Table 1) were employed as the
testing datasets to identify changes in the modular reorgani-
zation patterns occurring in AD brains as a biomarker. We
then employed six additional independent R-fMRI datasets to
cross-validate the biomarker. Among the six sets of datasets,
one was obtained from amnestic mild cognitive impairment
(aMCI) subjects (N = 23) from the MCW site, three datasets
were obtained from a group of 56 elderly subjects from Southeast
University, Nanjing, China, comprised of elderly CN subjects
(N = 20), aMCI subjects (N = 22), and AD subjects (N = 14)
(referred to herein as Nanjing datasets) (Table 1) (Zhang et al.,
2010). The other two independent R-fMRI datasets are com-
prised of 192 young subjects; these were downloaded from the
1000 Functional Connectomes Project database (www.nitrc.org/
projects/fcon_1000/) from Beijing Zang’s datasets (http://www.
nitrc.org/frs/shownotes.php?release_id=819) (referred to herein
as Beijing datasets) (Table 1) (Biswal et al., 2010). All of these
subjects were obtained from databanks. For detailed subject

information, please refers to originally published papers (Biswal
et al., 2010; Zhang et al., 2010; Chen et al., 2011a).

IMAGING ACQUISITION OF MCW DATASETS
Imaging was performed using a whole-body 3T Signa GE scan-
ner with a standard quadrature transmit receive head coil. During
the resting-state acquisitions, no specific cognitive tasks were
performed, and the study participants were instructed to close
their eyes and relax inside the scanner. Sagittal resting-state func-
tional MRI (fMRI) datasets of the whole brain were obtained in
6 minutes with a single-shot gradient echo-planar imaging (EPI)
pulse sequence. The fMRI imaging parameters were: TE of 25 ms,
TR of 2 s, flip angle of 90◦; 36 slices were obtained without gap;
slice thickness was 4 mm with a matrix size of 64 × 64 and field
of view of 24 × 24 cm. High-resolution SPGR 3D axial images
were acquired for anatomical reference. The parameters were:
TE/TR/TI of 4/10/450 ms, flip angle of 12◦, number of slices of
144, slice thickness of 1 mm, matrix size of 256 × 192. To make
sure that cardiac and respiratory frequencies did not account
for any significant artifacts in the low-frequency spectrum, a
pulse oximeter and respiratory belt were employed to measure
these physiological noise sources. Further processing ensured a
minimizing of the potential aliasing effects.

IMAGING ACQUISITION OF BEIJING DATASETS
The data was acquired at 3T Siemens Scanner. We used 192 sub-
jects out of a total of 198 young subjects from Beijing Zang’s
datasets. Six subjects were discarded during the preprocessing
procedures for a variety reasons. The imaging acquisition param-
eters can be found on the website (http://www.nitrc.org).

IMAGING ACQUISITION OF NANJING DATASETS
The data was acquired at 1.5T Philips Scanner. Subjects wore
headphones and were instructed to lie in a supine position in a
standard head coil of a 1.5-T MR imaging unit (Eclipse; Philips,
Best, The Netherlands). Structural images were obtained. Resting-
state functional images were acquired by using a gradient-echo
EPI sequence (TR/TE, 3000/40 ms; flip angle, 90◦, slice thick-
ness, 6 mm; slice gap, 0 mm; field of view, 240 mm; and matrix
size, 64 × 64; 18 axial slices and 128 time points). For detailed
parameters and demographic information, please refer to previ-
ous study (Zhang et al., 2010). All of these studies were conducted
with Institutional Review Board approval and were in compli-
ance with Health Insurance Portability and Accountability Act
(HIPAA) regulations or similar polices in China.

DATA PREPROCESSING
We used Analysis of Functional NeuroImages (AFNI) software
(http://afni.nimh.nih.gov/afni/) and MATLAB (Mathworks) in
this study for data processing. The first five volumes of each
raw resting-state functional imaging dataset were discarded
to allow for T1 equilibration. Interleaved slice acquisition-
dependent time shifts were corrected (AFNI command,
to3d -time:zt nz nt TR tpattern). Spikes in time series data were
removed (AFNI command, 3dDespike). Data were then motion
corrected (Six motion parameters, including roll, pitch, in
the superior, left and posterior direction displacement were
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estimated by volume registration of the R-fMRI data, and then,
were regressed out by using Afni command 3dDeconvolve to
control possible micromovement effects). There was no group
difference for movement parameters. Detrend processing pro-
cedure using AFNI commands (3dvolreg and 3dDetrend) was
performed. The reference template in Talairach space, which
contained 116 anatomically defined regions of interest (ROIs)
(Tzourio-Mazoyer et al., 2002), was transformed and aligned
to the SPGR images and EPI resting-state functional images for
each subject (AFNI command, 3dfractionize). This resulted in
116 mapped ROIs. The average time course within each ROI
was extracted from the resting-state functional imaging datasets.
Averaged white matter signal and cerebrospinal fluid (CSF) signal
were extracted using white matter mask (http://afni.nimh.nih.

gov/pub/dist/data/TTwm+tlrc) and CSF (http://afni.nimh.nih.

gov/pub/dist/data/ TT_csf+tlrc) mask in Talairach space. These
two masks were transformed and aligned to the SPGR and echo
planar images for each subject (AFNI command, 3dfractionize).
Then, the average time courses within the CSF or the eroded
white matter mask, together with global mean signals, were
removed as nuisance regressors from the 116 regional time
courses with linear regression using Matlab (Mathworks).

POSTPROCESSING
Brain functional network
We constructed a region-wise whole-brain resting-state func-
tional network for each subject. A network size is N (N is the
number of Nodes or ROIs, in this study, N = 116), there are N ×
(N – 1)/2 possible edges in a fully connected network expressed in
a matrix. The weighted strength of each edge between nodes i and
j was defined as CCij (cross-correlation coefficient (CC) between
two time series of ROI(i) and ROI(j)). The weighted distance
of each edge between a pair of directly connected nodes ROI(i)
and ROI(j) was defined as dij = 1 − CCij. The adjacent matrix
of CCij represents graph G, such that G = {V, S, D}, consisting
of a set of vertices(Nodes) V = {V1, V2, . . . , VN}, a set of edges
S = {CCij|i, j = 1, 2, . . . , N} and a set of associating weighted
edge distances D = {1 − CC_i, j|i, j = 1, 2, . . . ,N} between brain
regions ROI(i) and ROI(j).

Group network
A group functional network matrix (A) is constructed by the ratio
of mean to the standard deviation of all individuals’ matrices in

this group. Each element value of A is calculated as follows:

aij =
1
n

∑n
k = 1 CCk,i,j√

1
n

∑ n
k = 1(CCk,i,j − μij)

2
(1)

This matrix can reduce the intersubject variation of the functional
connectivity especially those connections with large intersubject
variation. k is the subject number, n is the number of subjects, i
and j are two ROIs of ROI(i) and ROI(j). In this study, we only use
the positive CC value in group network as previously described
(Chen et al., 2011b) for further modular analysis.

Modularity
Module is defined as a community, the inside of which has denser
connections than the rest of the network (Newman and Girvan,
2004). Several algorithms have been developed to detect those
modules (Clauset et al., 2004; Duch and Arenas, 2005). The basic
approach is to measure the maximum modularity value, Q, which
is defined as:

Q = 1

2m

∑
i, j

[
aij − kikj

2m

]
δ(ci, cj). (2)

aij is the adjacent weighted matrix which represents the network,
m is the number of connections in the network, and ki is the
degree of node i (Ahnert et al., 2007) and ci is the module i.

In order to find the communities in the brain functional
network, we use the spectral algorithm of Newman (Newman,
2006; Leicht and Newman, 2008), which is implemented in
the Brain Connectivity Tool Box (https://sites.google.com/a/
brain-connectivity-toolbox.net/bct/Home). This program can
find the network organization pattern with the best modularity
value (Q).

Quantitative measurement of modular reorganization in AD
Based on our hypothesis that AD may reorganize modular pat-
terns compared to CN, the reorganization pattern may exhibit
the disruption properties of the whole-brain function network.
In order to quantify the changes in the modular patterns in the
subnetworks, we created two functional indices (index A and
index B) to measure the inter- and intra-hemisphere connections.
Index A measures an average of functional connectivity strength

Table 1 | Summary of demographic information for test and validation groups of subjects.

Groups Number Age Male/Female MMSE Education (year)

CN_3T 30 75.9 ± 6.42 16/14 29.4 ± 1.03 NA Test group

AD_3T 30 76.7 ± 5.28 17/13 24.8 ± 2.97 NA

MCI_3T 23 76.1 ± 6.84 11/12 27.83 ± 1.67 NA Validation group

CN_1.5T 20 68.9 ± 6.44 7/13 28.6 ± 1.05 10 ± 3.71 Validation group

MCI_1.5T 22 71.6 ± 4.95 10/12 27.2 ± 1.4 10.7 ± 3.50 Validation group

AD_1.5T 14 71.3 ± 5.09 5/9 22.2 ± 2.91 9.6 ± 4.96 Validation group

Young 18–22 3T 150 20.4 ± 1.13 59/91 NA NA Validation group

Young 23–26 3T 42 23.9 ± 1.02 27/15 NA NA Validation group
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in homotopic pairs (ROI_L(i), ROI_R(i))

indexA = 1

n

n∑
i = 1

CC (ROI_L(i), ROI_R(i)) (3)

Where ROI_L(i) and ROI_R(i) are two corresponding bilateral
homotopic regions, and CC(ROI_L(i), ROI_R(i)) is the two time
courses CC value of ROI_L(i) and ROI_R(i). The n is the number
of pairs of homotopic regions to calculate index A. Index B is used
to measure an average of functional connectivity strength within
selected unilateral ROIs.

indexB = 1

n

⎛
⎝ n∑

i = 1

n∑
j = 1

CC
(
ROI_L(i), ROI_L(j)

)

+
n∑

i = 1

n∑
j = 1

CC
(
ROI_R(i), ROI_R(j)

)⎞⎠ (4)

There are n ROIs from the right hemisphere (ROI_R) and n cor-
responding homotopic ROIs from the left hemisphere (ROI_L).

Gray matter concentration (GMC)
Besides the functional connectivity, we also calculated the GMC
on the AAL template within the regions that showed functional
disruption. The gray matter of each subject is segmented by using
SPM 8 software (www.fil.ion.ucl.ac.uk/spm/software/spm8/) and
then normalized into Talairach space to extract each part of the
regions using AFNI and 116 AAL templates. GMC value of each
region is the average overall voxel values within those regions
involved in modular reorganization.

RESULTS
MAXIMUM MODULARITY VALUE (Q)
The Q is determined with the modular algorithm, which mea-
sures how a network can be separated into different subnetworks.
With the MCW dataset, Figure 1 shows the averaged maximum
modularity values of individual subjects in each group as a func-
tion of number of edges (NE). All subjects in groups CN and AD

FIGURE 1 | Individual modularity values (Q) distribution of a network

as the function of the number of edges and its corresponding random

network. Error bar shows the standard deviation. All groups’ networks
have a significantly larger Q-value than the corresponding random
networks. Larger Q shows the ability of a network to form modules.

have larger averaged Q values than their corresponding random
networks, indicating that their complex functional networks have
a strong ability to form modules, and the module analysis method
can be applied to disease populations, such as MCI and AD. There
is no group difference in Q value at all different thresholds of NE
after the familywise error correction.

MODULE STRUCTURES IN THE AD GROUP WERE REORGANIZED,
UNLIKE THE CN GROUP
Although the complex functional network of the AD group has
the ability to form the modular structures, similar to the CN
group, the modular patterns and membership are quite different
between the CN and AD groups, and demonstrated network reor-
ganization patterns. The modular structures are expressed into
two forms of presentations: the graphic presentation and map-
ping presentation, as illustrated in Figures 2A,B for CN and AD
groups, respectively. For the CN group, the brains were orga-
nized into seven modules. For the AD group, the brain modules
were reorganized into eight modules. The module-reorganization
patterns between CN and AD are graphically illustrated in
Figures 2C,D. The largest module in the CN group (CN-1) was
broken down into two separated modules in the AD group (AD-
1 and AD-2). The module CN-2 is disrupted into three modules
(AD-3, AD-4, and AD-8) and module CN-6 is disrupted into four
modules (AD-4, AD-6, AD-7, AD-8).

FIGURE 2 | Module of the non-threshold positive group networks of

CN and AD at 3T. Color represents the individual community. First row of
(A) and (B) is the network view, the second row of (A) and (B) shows the
brain module organization overlaid in the brain template and the last row
(C and D) is the module reorganization pattern between CN and AD. The
label module numbers in the brain views of (A) and (B) are matched with
the module numbers in (C) and (D), respectively. Two matrices, (C) and (D),
show the grouped CC matrix of CN and AD. In (C) and (D), numbers along
each matrix labeled the module number for each group. Red arrow and red
connection lines show the reorganization pattern from CN to AD. The
thickness of each line represents the number of members.
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To compare the module membership composition between
CN and AD groups and identify specific brain regions that dis-
rupted away from the original module, the module CN-1 was
cited as an example. As listed in Table 2, the module CN-1 con-
tained eight pairs of homotopic brain regions, which are defined
as geometrically symmetric across interhemispheric regions. This
well-organized module is highly symmetric across hemispheres
in the control network (Figure 2A). We called this module the
“insula module,” because its members are involved in saliency,
switching, attention and control functions of the insula network
(Menon and Uddin, 2010). Noticeably, eight out of 16 homotopic
regions were broken in the AD group. The eight regions on the
right hemisphere formed a new module in the AD group (AD-2)
(labeled in Red bold in Table 2). These eight regions are the right
opercular part of inferior frontal gyrus, right area triangularis,
right insula, right putamen, right globus pallidus, right transverse
temporal gyri, right superior temporal gyrus, and right superior
temporal pole. The formation of the new module AD-2 not only
indicated that the insula module is broken down, but also indi-
cated there is severe disruption between left and right hemisphere
communication in the AD brains.

QUANTIFICATION AND VALIDATION OF THE INSULA MODULE IN
HEALTHY YOUNG, CN, MCI, AND AD GROUPS
To quantify the insula module disruption between hemispheres,
two functional indices were obtained [index A calculated from
Equation (3) and index B calculated from Equation (4)]. As illus-
trated in Figures 3A,B, functional connections of the eight pairs
of homotopic (contralateral) regions of the insula module were

Table 2 | Regions in the insula module (blue module).

Blue module (insula community)

Left Right

Left precentral gyrus Right precentral gyrus

Left opercular part of inferior
frontal gyrus

Right opercular part of inferior frontal

gyrus

Left area triangularis Right area triangularis

Left rolandic operculum Right rolandic operculum

Left insula Right insula

Left middle cingulate Right middle cingulate

Left postcentral gyrus Right postcentral gyrus

Left superior parietal lobule Right superior parietal lobule

Left inferior parietal lobule Right inferior parietal lobule

Left supramarginal gyrus Right supramarginal gyrus

Left paracentral lobule Right paracentral lobule

Left putamen Right putamen

Left globus pallidus Right globus pallidus

Left transverse temporal gyri Right transverse temporal gyri

Left superior temporal gyrus Right superior temporal gyrus

Left superior temporal pole Right superior temporal pole

Right supplementary motor area

Right amygdala

The eight right brain regions (in red bold) are no longer the members of the blue

module in the AD brains.

disconnected in the AD group. As shown in Figure 3C, index
A is significantly (p < 0.018) decreased in the AD group com-
pared to the CN group. Index B shows no significant difference
related to the AD and CN groups but has increasing trends
(p < 0.12). To cross-validate the results with indices A and B, we
employed six additional independent datasets in order to avoid
an overly optimistic estimate of the error rate by the resubstitution
method or the leave-one-out method. First, we employed the MCW
dataset containing 23 aMCI subjects. As shown in Figure 3D,
index A, individually calculated from each aMCI subject in the
aMCI group, was significantly lower than that in the CN group
and index B showed no difference. Second, we employed the
Beijing datasets containing the young groups of subjects (group
age between 18 and 22 years old, and group age between 23 and
26 years old, total 192 subjects). As shown in Figure 3D, index A
of young subjects has stronger homotopic connectivity strength
than that of the elderly CN subjects and no differences for index B.
Third, we further demonstrated that datasets acquired on the 1.5T
scanner can be employed to validate our results. With the Nanjing
datasets acquired from 1.5T scanner, index A of the MCI and
AD groups is significantly reduced compared to the CN group,
as shown in Figure 3E. These validated results demonstrated that
index A as a biomarker can be quantitatively employed for mon-
itoring AD progression in the continuum of disease processes:
higher index A in young, decrease in elderly CN groups, and more
significantly decreased in the MCI and AD groups.

Decreased gray matter concentration (GMC) of these eight
pairs of homotopic regions in MCI and AD groups. The dis-
rupted functional connectivity occurred in the eight pairs of
homotopic regions in the insula module. In addition, the aver-
age gray matter concentration (GMC) of those regions showed
significant decrease in the MCI and AD groups in compari-
son to the CN groups. The GMC decrease in the MCI and
AD group was observed, as shown in Figure 3F. To deter-
mine if the GMC changes affect the calculation of index A,
the variance of the GMC factor was controlled out. As shown
in Figure 3G, index A is still valid in distinguishing between
CN from MCI or AD status. These results also indicated that
although structural density and functional connectivity decrease
may be related, their changes are not necessary proportional
(Palop et al., 2006). With this trait, we have combined index
A and GMC to examine their diagnostic potential, as described
below.

Diagnostic power of index A and GMC as biomarkers to clas-
sify CN, MCI, and AD statuses. Through the measurement of
index A and GMC on each single subject, we have explored their
potential as biomarkers to classify CN, MCI, and AD statuses. As
shown in Figure 4, the result from testing groups (CN vs. AD)
provided 94% of area under the curve (AUC) of the receiver oper-
ation characteristic (ROC) curve. The validation results provided
78 and 71% of AUC to classify between CN and AD, and between
MCI and AD, respectively. With Nanjing datasets acquired on the
1.5T Siemens scanner, these validation results become 85% (AD
vs. CN) and 80% (MCI vs. CN), and 70% (MCI vs. AD). For the
young subject groups as the healthiest population, there is a per-
fect 100% specificity and sensitivity (AUC 100%) in comparison
to the AD group.
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FIGURE 3 | (A) and (B) Show the changes of insula module between CN
(A) and AD (B); each dot is the center of an AAL-based brain region;
regions with same color are in the same module, solid line means higher
connection, while the dash line represents the weaker connection.
(C) Two indices (index A and index B) of CN_3T and AD_3T (test groups).
(D) Two indices of two young subject groups, CN_3T and MCI_3T
(validation groups). (E) Two indices of CN_1.5T, MCI_1.5T, and AD_1.5T

(validation groups). (F) The average of GMC of each group. (G) The two
indices after removal of the GMC effect of each group; where (∗)
represents the significance (p < 0.05) in comparison to CN_1.5T and (∗∗)
represents the significance (p < 0.05) in comparison to the MCI group.
Error bar indicates the standard deviation. (++) represents both young
groups have significant larger index A value than the old CN_3T and
MCI_3T groups.

DISCUSSION
Several studies have employed the modular analysis method to
demonstrate that the brain has modular organization (Hilgetag
et al., 2000; Chen et al., 2008; Hagmann et al., 2008). In com-
parison to small-world metrics, modular analysis can provide
detailed network organization patterns as to how the nodes are
connected to form subnetworks or communities in a complex
network (Hilgetag et al., 2000; Chen et al., 2008; Hagmann et al.,
2008). Using this advantage, modular analysis methods have
been applied to diseased resting-state brain networks, such as
in chronic back pain (Balenzuela et al., 2010) and schizophrenia
(Alexander-Bloch et al., 2010; Yu et al., 2011). Using magnetoen-
cephalography (MEG), it was also found that the module strength

and the number of modules significantly changed in AD patients
(de Haan et al., 2012). Our results are consistent with these find-
ings and demonstrated the applicability of R-fMRI datasets for
modular analysis to AD.

In the control network, as expected, module patterns are well
organized with symmetric distribution. Each pair of the inter-
hemispheric homotopic regions, for the most part, is in the same
communities. Many literature references substantiate that the
brain functional network forms an interhemispheric symmetric
pattern with highly consistent functional connectivity between
homotopic regions (Zuo et al., 2010). A high degree of symmetry
in the motor cortex of resting-state functional connectivity has
been reported (Biswal et al., 1995; Van den Heuvel and Hulshoff
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FIGURE 4 | Classification power (ROC curve) when both biomarkers of GMC and index A are combined.

Pol, 2010). The well-known DMN (Raichle et al., 2001; Greicius
et al., 2004) has a symmetric, well-organized pattern. Similar to
the module method, Mezer (Mezer et al., 2009) used the clus-
tering method and discovered a symmetric pattern of clusters
between the two hemispheres. This was true not only in the
human brain, but also in the rat brain. The highest values of
functional connectivity exist between interhemispheric homo-
topic regions (Pawela et al., 2008, 2010). However, not all the
interhemispheric homotopic regions are symmetric, only some
regions and their homotopic regions belong to different commu-
nities. This may be due to the dynamic changes of the functional
connectivity (Chang and Glover, 2010).

As expected in mild AD group, some of the communities
lost symmetric properties. There are more single regions whose
homotopic regions are in different communities. For example,
module 1 (blue module in Figure 2A) in the control group is
very symmetric, while it is separated into two modules in the AD
group (blue and brown modules in Figure 2B). Decreased sym-
metric properties or functional connectivity between interhemi-
spheric homotopic regions have been found in many diseased
functional networks. In behavioral research, Yamina (Lakmache
et al., 1998) found that AD subjects performed normally when
using intrahemispheric processing, but did poorly when inter-
hemispheric communication was required. For instance, in imag-
ing research, EEG studies (Locatelli et al., 1998; Babiloni et al.,
2004) of AD found decreased coordination between interhemi-
spheric networks. In the cocaine-dependent group, Kelly (Kelly
et al., 2011) investigated the interhemispheric homotopic connec-
tions using the Voxel-Mirrored Homotopic Connectivity method,
and found the striking cocaine-dependence-related reduction
in interhemispheric resting-state functional connectivity among
nodes of the dorsal attention network. Also, decreased inter-
hemispheric functional connectivity in subjects with impaired
awareness were found (Ovadia-Caro et al., 2012). Therefore,
this phenomenon of losing symmetric properties may reflect the

cognitive decline and unbalanced state in the functional network
of the diseased brain.

The most significant finding of this module study is the inter-
rupted integration of insula module in AD group. Anatomically,
the insula is a crucial hub in the human brain network; it is widely
connected to the cortical, limbic, and paralimbic structures.
Functionally, it is involved in high-order cognition, emotion,
autonomic, and sensory process (Naqvi et al., 2007; Allen et al.,
2008). The previous study has shown that the insula was affected
in AD and its atrophy was significantly decreased from the normal
population (Fan et al., 2008). The seed-based functional con-
nectivity of the insular regions was discovered to be significantly
decreased in the regions that functionally connected with insula.
This disruption was associated with episodic-memory deficits in
aMCI patients (Xie et al., 2012). Our results are not only con-
sistent with these previous findings, they indicate a disruption
between the insula and other brain regions. Also, we detected
the breakdown of the insula module in the AD group, which is
a possible neural underpinning of AD dementia.

Our findings demonstrated that the specific reorganized mod-
ular patterns can be quantified with index A in the CN, MCI,
and AD groups. Unlike biomarkers with inverse U-shape patterns,
such as the fMRI method due to the compensatory mechanisms
(Dickerson and Sperling, 2009), index A is a monofunction with
the disease progression of AD. Index A of aMCI and AD subjects
is significantly lower than that of CN and young subjects. Because
the biggest risk factor of AD is aging, the congruency between the
changes in the index A value, and changes in age, demonstrated
the potential of index A to serve as a biomarker. This character-
istic of the monofunction of index A with age is very important
for diagnostic accuracy by decreasing false positive and negative
errors.

We showed the potential of using structural changes (GMC)
and functional disruption in the insula module (index A) as
a biomarker for AD. Recent revision of the NINCDS-ADRDA
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(National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders
Association [now known as the Alzheimer’s Association]) cri-
terion for the diagnosis of AD suggested adding abnormal
biomarkers, such as MRI, positron emission tomography (PET),
CSF, and brain atrophy to strengthen their roles (Kohannim et al.,
2010; Nettiksimmons et al., 2010; Walhovd et al., 2010; McKhann
et al., 2011; Zhang et al., 2011; Dai et al., 2012; Ewers et al.,
2012; Westman et al., 2012b). The effective combination of these
biomarkers can clinically provide more diagnostic power than
using a single biomarker. In this study, we found that the combi-
nation of MRI atrophy biomarker and the R-fMRI biomarker of
insula module could enhance the classification of AD and mon-
itor the progression along the continuum of AD development
both in the test and validation group. Our results demonstrated
the great feasibility of combining both MRI-based biomarkers of
the insula module in AD diagnosis.

In summary, with the modular analysis, we demonstrated the
ability of index A and GMC of the insula module in distin-
guishing MCI and AD from old and young, healthy CN subjects,
and its power of cross-validation with six independent datasets.

The combination of the MRI-based structural biomarker and
functional biomarker will significantly enhance the diagnostic
power. Further studies will be needed to characterize the relation-
ships between different biomarkers for AD (Sperling et al., 2009;
Kohannim et al., 2010; Nettiksimmons et al., 2010; Sheline et al.,
2010a,b; Walhovd et al., 2010; Zhang et al., 2011; Ewers et al.,
2012; Johnson et al., 2012).
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Functional MRI studies have revealed changes in default-mode and salience networks
in neurodegenerative dementias, especially in Alzheimer’s disease (AD). The purpose
of this study was to analyze the whole brain cortex resting state networks (RSNs)
in patients with behavioral variant frontotemporal dementia (bvFTD) by using resting
state functional MRI (rfMRI). The group specific RSNs were identified by high model
order independent component analysis (ICA) and a dual regression technique was used
to detect between-group differences in the RSNs with p < 0.05 threshold corrected
for multiple comparisons. A y -concatenation method was used to correct for multiple
comparisons for multiple independent components, gray matter differences as well as
the voxel level. We found increased connectivity in several networks within patients with
bvFTD compared to the control group. The most prominent enhancement was seen in
the right frontotemporal area and insula. A significant increase in functional connectivity
was also detected in the left dorsal attention network (DAN), in anterior paracingulate—a
default mode sub-network as well as in the anterior parts of the frontal pole. Notably
the increased patterns of connectivity were seen in areas around atrophic regions. The
present results demonstrate abnormal increased connectivity in several important brain
networks including the DAN and default-mode network (DMN) in patients with bvFTD.
These changes may be associated with decline in executive functions and attention as
well as apathy, which are the major cognitive and neuropsychiatric defects in patients with
frontotemporal dementia.

Keywords: default, resting state, functional MRI, dorsal attention network, frontotemporal dementia

INTRODUCTION
Frontotemporal lobar degeneration (FTLD) is a clinically and
pathologically heterogeneous syndrome characterized by a pro-
gressive decline in behavior and/or language associated with
degeneration of the frontal and anterior temporal lobes (Neary
et al., 2005). FTLD is the second most frequent neurodegener-
ative disease leading to early onset dementia after Alzheimer’s
disease (AD). The most common clinical presentation of FTLD
is behavioral-variant frontotemporal dementia (bvFTD). The
prominent symptoms in bvFTD are a gradual decline in social
behavior with loss of insight and decline in executive functions
instead of typical memory problems.

Resting state functional MRI (rfMRI) can be used to study the
intrinsic connectivity of brain networks in task-free settings by
mapping temporally synchronous, spatially distributed, sponta-
neous low frequency (<0.08 Hz) blood oxygen level-dependent

(BOLD) signal fluctuations (Fox and Raichle, 2007). rfMRI
reports have revealed a number of functional networks in the
brain, but mainly two major intrinsic connectivity networks, the
default-mode network (DMN) and salience, have been studied in
neurodegenerative diseases. The DMN is a posterior network that
consists of the hippocampi, posterior cingulate cortex/precuneus,
lateral parietal regions, and the rostromedial prefrontal cortex
(Raichle et al., 2001). Regions of the DMN seem to participate in
episodic memory and visuospatial imagery (Zhou et al., 2010).
The salience network is a large anterior network that consists
of the anterior cingulate cortex (ACC), orbital frontoinsula (FI),
amygdala, and striatum and is related to socially-emotionally rel-
evant information processing (Seeley et al., 2007a,b). Decreased
connectivity in the DMN is consistently associated with AD
(Greicius et al., 2004; Zhang et al., 2009; Gili et al., 2011),
while reduction of connectivity in the salience network has been
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usually found in patients with bvFTD. However, the findings
in patients with bvFTD are controversial (Zhou et al., 2010;
Whitwell et al., 2011; Borroni et al., 2012). Disruption in other
functional networks such as the dorsal attention network (DAN)
has been found in AD (Li et al., 2012).

Previous rfMRI analyses have been done using relatively low
model order (<30) independent component analysis (ICA) esti-
mated from a single subject or group analyses (Zhou et al., 2010;
Whitwell et al., 2011; Borroni et al., 2012). Detecting multiple
networks from 1.5 T BOLD data from a single subject is not
optimal in all occasions. Instead, group ICA offers much more
robust delineation of identifiable networks (Kiviniemi et al., 2009;
Smith et al., 2009; Abou-Elseoud et al., 2010). Also, the use of a
higher model order in ICA detects more networks under detected
at low model orders and introduces sub-network delineation of
resting state networks (RSNs) at more detailed level separating
noise more appropriately (Abou Elseoud et al., 2011, 2012). The
problem with the more robust group ICA networks is still the
challenge of acquiring accurate representations of networks from
the individual level for a statistical group analysis.

The dual regression method has been introduced in order to
overcome statistical inference problems (Filippini et al., 2009).
Zuo and co-workers found that not only is the temporal con-
catenated ICA dual regression approach reliable, it produces more
robust results than template matching ICA performed on an indi-
vidual level (Zuo et al., 2010). This variability at the individual
level seems to arise from the non-stationarity of the networks
themselves, rather than the ICA method instability (Zuo et al.,
2010; Kiviniemi et al., 2011; Hutchison et al., 2013). Moreover,
group-level averaging seems to increase matching accuracy to
RSN templates as well.

In order to obtain robust whole brain cortex network status
with all relevant functional RSNs one still has to account for the
multiple comparison problem introduced by the usage of sev-
eral ICs. We have recently developed a y-concatenation method
for correcting for multiple comparisons for multiple IC compo-
nents as well as at the voxel level (Abou Elseoud et al., 2012).
This correction enables the detection of statistically significant
alterations between groups in all analysed RSNs of the brain
cortex.

In bvFTD executive dysfunction is the prominent neuropsy-
chological finding, and neurodegeneration is seen in frontal,
temporal and insular areas including parts of the salience net-
work (Neary et al., 1998, 2005; Rosen et al., 2002; Seeley et al.,
2007a,b; Whitwell et al., 2009). Thus, we hypothesized to find
decreased connectivity in the salience network associated with
changes in executive networks. Our aim was to obtain a robust,
fully data driven measure of the functional connectivity changes
of all RSNs covering the whole brain. For this we performed
time concatenated temporal ICA with a dual regression approach
with y-concatenation statistics of bvFTD data compared to
controls.

MATERIALS AND METHODS
PATIENTS
The patient group included 19 cases with bvFTD (nine male).
A clinical diagnosis of bvFTD was made according to the

criteria of Lund and Manchester (Neary et al., 1998; Rascovsky
et al., 2011). Patients presenting other types of FTLD phe-
notype such as progressive aphasia and semantic dementia
were excluded. All patients were examined in Oulu University
Hospital at the Memory outpatient clinic of the Department
of Neurology. The mean age at examination was 60.3 years
(range 47–77 years). MMSE (Mini-Mental State Examination)
score was on average 24.1 (17–30). Neuropsychological exam-
ination was performed within 6 months of the fMRI scan of
each patient. Impairments in memory, language, executive, and
visuospatial functions were then rated in three stages (absent,
mild to moderate, severe). The declines in attention and exec-
utive functions were the most prominent findings in all of the
patients, but there was also significant deterioration in other
cognitive domains. Patients’ reading and writing skills were nor-
mal. Dyspraxia was not present, and motor speed and con-
trol were at a normal level. Apathy was the most prevalent
neuropsychiatric symptom (74%), but depression and irritabil-
ity was also common (50%). The severity of the disease was
rated as mild in nine patients, moderate in nine patients and
severe in one patient (Piguet et al., 2011). Medications for
neuropsychiatric symptoms were used in some of the patients
(acetylcholinesterase inhibitors in three patients, memantine
in two, neuroleptics in eight and valproate in three). Positive
family history for any type of dementia was seen in 52.6%
(n = 10) of patients. DNA samples were available from ten
patients and five of them carried a C9ORF72 repeat expansion
(Renton et al., 2011). Mutations in progranulin or microtubule-
associated protein tau genes were not found in any of the
patients.

Age and gender-matched controls (n = 19) were also exam-
ined. Mean age at examination was 57.8 years (range 50–70). No
psychiatric or neurological disorders or medications affecting the
central nervous system were allowed. Beck’s depression inventory
(BDI) score was mean 2.7 (range 0–10) and MMSE mean was 28.9
(range 26–30).

Written informed consent was obtained from all of the patients
or their guardians. The research protocol was approved by
the Ethics Committee of the Northern Ostrobothnia Hospital
District.

IMAGING PROTOCOL
Resting-state BOLD data were collected on a GE Signa 1.5 T MRI
scanner with an 8-channel parallel imaging-coil ASSET system
(acceleration factor × 2) with an EPI GRE sequence (TR 1800 ms,
TE 40 ms, 285 time points, 28 oblique axial slices, slice thick-
ness 4 mm, inter-slice space 0.4 mm, covering the whole brain
with an FOV of 25.6 cm × 25.6 cm with 64 × 64 matrix, and
a flip angle of 90◦). Hearing was protected using ear plugs and
motion was minimized by using soft pads fitted over the ears.
The subjects were instructed to simply lay still inside the scan-
ner with their eyes closed, think of nothing in particular and not
to fall asleep. High-resolution T1-weighted 3D FSPGR BRAVO
images were taken in order to obtain anatomical images for
co-registration of the fMRI data to the standard space coordi-
nates and to investigate voxel-wise changes in the gray matter
volume.
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STRUCTURAL ANALYSIS
Structural data were analysed with FSL-VBM
(www.fmrib.ox.ac.uk/fsl), a voxel-based morphometry style
analysis (Ashburner and Friston, 2000; Good et al., 2001).
Firstly, structural images were brain-extracted using BET (Smith,
2002). Next, tissue-type segmentation was carried out using
FAST4 (Zhang et al., 2001). The resulting gray matter partial
volume images were aligned to MNI152 standard space using
nonlinear registration FNIRT in FSL (www.fmrib.ox.ac.uk/
analysis/techrep), which uses a b-spline representation of the reg-
istration warp field (Rueckert et al., 1999). The resulting images
were averaged to create a study-specific template, to which the
native gray matter images were then non-linearly re-registered.
The registered partial volume images were then modulated to
correct for local expansion or contraction by dividing by the
Jacobian of the warp field. The modulated segmented images
were then smoothed with an isotropic Gaussian kernel with
a sigma of 3 mm. Finally, voxelwise GLM was applied using
FSL’s randomize, which is a permutation-based non-parametric
testing, correcting for multiple comparisons across space with
p < 0.05 threshold.

fMRI DATA PRE-PROCESSING
Data pre-processing was carried out with FSL tools. Head motion
in the fMRI data was corrected using multi-resolution rigid body
co-registration of volumes, as implemented in the MCFLIRT soft-
ware (Jenkinson et al., 2002). Brain extraction was carried out
for motion corrected BOLD volumes with optimization of the
deforming smooth surface model, as implemented in the BET
software (Smith, 2002). This procedure was verified with visual
inspection of the extraction result. The resulting image data was
used as a mask for a secondary brain extraction. Multi-resolution
affine co-registration as implemented in the FLIRT software was
used to co-register fMRI volumes to 3D FSPGR volumes of the
corresponding subjects and further the 3D FSPGR volumes to
the MNI152 standard space. The images were transformed to
4 mm cubic voxels with 5 mm FWHM smoothing. There were
no differences in head motion parameters in absolute [FTD
(0.30 ± 0.12 mm) vs. control (0.26 ± 0.13 mm, t-test p = 0.36)]
or relative [FTD (0.07 ± 0.03 mm) vs. controls (0.06 ± 0.03 mm,
t-test p = 0.34)] between the study groups. Maximum absolute
(2.9 mm) and relative (3.1 mm) head motion were below the voxel
size in all subjects.

FUNCTIONAL CONNECTIVITY ANALYSIS
ICA analysis has been conducted as previously described (Abou
Elseoud et al., 2011). Briefly, ICA analysis was carried out
using FSL 4.1.4 MELODIC software implementing probabilis-
tic independent component analysis (PICA) (Beckmann and
Smith, 2004). A multisession temporal concatenation tool in
MELODIC was used to perform PICA related pre-processing
and data conditioning in the group analysis setting. Spatial ICA
using 70 independent component maps (IC maps) was applied
to detect RSNs from the control group. Control group data
was chosen for two reasons: Firstly, our experience is that a
combined groupICA having both cases and controls produces
averaged maps of both groups which are then less sensitive

in detecting differences between the groups in dual regression.
Secondly, control data groupICA results are more robust match
with previous healthy control data groupICA templates without
disease-related alterations (Kiviniemi et al., 2009; Smith et al.,
2009). Variance normalization was used. The IC maps were
thresholded using an alternative hypothesis test based on fit-
ting a Gaussian/gamma mixture model to the distribution of
voxel intensities within spatial maps and controlling the local
false-discovery rate at P < 0.5 (Beckmann and Smith, 2004;
Beckmann et al., 2005). Thirty-six RSNs were identified as
anatomically and functionally classical RSNs upon visual inspec-
tion by an experienced neuroradiologist (VK) using previously
described criteria (Kiviniemi et al., 2009; Smith et al., 2009;
Abou-Elseoud et al., 2010). The 36 RSNs are presented in
Figure 1.

The analysis for the differences between groups was car-
ried out using an FSL dual regression technique that allows for
voxel-wise comparisons of resting-state fMRI (Filippini et al.,
2009; Littow et al., 2010; Veer et al., 2010; Abou Elseoud et al.,
2011). This involves (A) using the group-ICA spatial maps in
a linear model fit against the separate fMRI data sets, result-
ing in matrices (time-course matrices) describing the temporal
dynamics for each component and subject, and (B) using these
time-course matrices to estimate subject-specific spatial maps.
The ICA template for the dual regression was selected from
the healthy control data. The dual regression analysis was per-
formed both with and without variance normalization (FSL414
dual_regression command with des norm-option 1 or 0, respec-
tively), since the results have a different emphasis on the spatial
or amplitude of the BOLD signal depending on normalization
(Allen et al., 2012a,b). With variance normalization, the dual
regression reflects differences in both activity and spatial spread
of the RSN. Without normalization, only spatial alterations are
reflected in principle.

As a statistical analysis the different component maps are col-
lected across subjects into single 4D files (1 per original ICA
map) and tested voxel-wise for statistically significant differences
between the groups using FSL randomize nonparametric per-
mutation testing, with 5000 permutations, using a threshold-free
cluster enhanced (TFCE) technique to control for multiple com-
parisons (Nichols and Holmes, 2002). The hypothesized differ-
ences between groups were calculated using a p < 0.05 threshold
with voxel-wise changes in the FSL randomize tool. A newly
developed inter-IC concatenation technique was used in order to
control for multiple comparisons across the detected IC differ-
ences (Abou Elseoud et al., 2012). After discarding noise, motion
and other artifact components, all the 36 RSN ICs were con-
catenated in the y-direction and fed to the FSL randomize tool
as a joint dataset. After 5000 permutations the resulting datasets
were separated with fslroi and thresholded for p < 0.05 correct-
ing for type I error for the selected multiple ICs. As a new step,
a gray matter regressor image was also fed in a similar fashion
such that it was concatenated in the y-direction to control for
gray matter differences with FSL randomize using—vxl and—vxf
options.

The Juelich histological atlas incorporated in FSL and the
Harvard-Oxford cortical and subcortical atlases (Harvard Center
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FIGURE 1 | Resting-state networks from the control group identified as anatomically and functionally classical RNSs and which were used for the

dual regression analysis. The normal resting-state networks are shown in FSL red-yellow color encoding using a 3 < z-score < 9 threshold.
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for Morphometric Analysis) which are provided with the FSL4
software were used to identify the anatomical characteristics of
the resulting PICA maps. The FSL4 fslstats and fslmaths tools
were used to calculate the number of non-zero voxels in the
selected difference maps, and their t-score values.

RESULTS
The differences between patients with bvFTD and healthy
controls were markedly smaller in the dual regression without
variance normalization than with normalization. Thus, the dif-
ferences between groups in the network shape seemed to be
relatively limited when gray matter differences were adjusted.
The variance normalized and non-normalized dual regression
results suggest that the functional connectivity of the base-
line RSNs is altered rather than the shape of the network in
patients with bvFTD when compared with healthy controls.
Based on this we further performed y-concatenation correc-
tion for multiple ICA components with the variance normal-
ized (des norm = 1) results. We corrected for both multiple
ICs and gray matter volume simultaneously. After this analy-
sis, the number of ICs with significant differences reduced from
fifteen detected after only voxel-level correction to six (Table 1,
Figure 2).

Using this protocol, increased connectivity was found in sev-
eral networks within patients with bvFTD compared to the con-
trol group. The most prominent enhancement was seen in the
right frontotemporal area and insula (IC 25). Increased connec-
tivity was also detected in the left DAN (IC 55), in the DMN
(anterior paracingulate gyrus; IC 17) and in anterior parts of
the frontal pole (IC 12). Minor changes were also seen in the
visual network in the occipital region (IC 3) and in the premotor-
postsensory network (IC 33).

The bvFTD group was divided into two separate groups
according to the degree of severity of the disease, mild (n = 9) and
moderate/severe (n = 10). There were no significant differences
between mild and moderate to severe subgroups in functional
connectivity.

In structural analysis, widespread gray matter atrophy was
detected (Table 2, Figure 3). Atrophy was most prominent in the
right temporal lobe in addition to the precuneus cortex and pos-
terior cingulate gyrus. Mild atrophy was also detected in both
hippocampi. After the adjustment for gray matter differences,
the increased connectivity was predominantly placed around the
atrophic area (Figure 3).

DISCUSSION
This is the first report of RSNs of the whole brain cortex
in patients with bvFTD using a new correction method that
allows the assessment of several brain networks. Connectivity
changes as well as changes in the shape of the brain networks
were analysed. The most extensive increase in connectivity was
detected in the frontal poles bilaterally, in the right insular cor-
tex and the ACC in several networks (IC 12, IC 17, IC 25).
This area is associated with the human mirror neuron system
and the von Economo cells, which are thought to be crucial in
social cognition (Seeley et al., 2006, 2007a,b). These cells are
destroyed in patients with bvFTD and atrophy in this area is

associated with a decline in behavior and loss of empathy and
insight in bvFTD. In a recent study, prefrontal hyperconnec-
tivity has been associated with apathy in patients with bvFTD
(Farb et al., 2012). Apathy was the most prevalent neuropsy-
chiatric symptom in the present study and may be associated
with hyperconnectivity in the prefrontal areas, which confirms
the previous findings. Farb and colleagues also detected that pre-
frontal hyperconnectivity was associated with dementia severity,
but this phenomenon was not seen in our patients (Farb et al.,
2012).

Impairment in executive functions and attention are promi-
nent neuropsychological findings in bvFTD patients. Significant
increase in connectivity was detected in the left DAN (Table 1,
Figure 2; IC 55). However, we did not detect any changes in
the executive network itself (IC 42), which confirms the previ-
ous finding of normal executive networks in patients with bvFTD
(Filippi et al., 2012). In previous studies the DAN has been found
to be disrupted in AD, but not in bvFTD (Filippi et al., 2012; Li
et al., 2012). Despite the normal executive network, a decline in
executive functions may be explained by changes in the attention
networks and the destruction of several frontal control networks
(IC12, 17, 25).

Increased connectivity was also found in the frontal sub-
network of the DMN (IC 17). In several studies the disruption of
the DMN is consistently associated with AD (Greicius et al., 2004;
Zhang et al., 2009; Gili et al., 2011), but the findings are contro-
versial in patients with bvFTD (Zhou et al., 2010; Whitwell et al.,
2011; Borroni et al., 2012). In bvFTD, increased DMN connectiv-
ity has often been associated with decreased connectivity in the
salience network (Zhou et al., 2010; Whitwell et al., 2011; Borroni
et al., 2012; Farb et al., 2012). However, in the present study,
decreased connectivity was not detected in the salience network
even if increased connectivity in the DMN was found.

In structural analyses, the most prominent gray matter atro-
phy was detected in the right temporal region, precuneus, and
posterior cingulate. Atrophy in the posterior cingulate is typi-
cally associated with AD and decreased connectivity in DMN.
The research reports about gray matter atrophy in posterior brain
areas in patients with bvFTD have been controversial. Broadly,
precuneus and posterior cingulate seem to be preserved in bvFTD,
however gray matter atrophy of these areas has been detected
in some studies (Du et al., 2007; Zhou et al., 2010; Hartikainen
et al., 2012). In present study increased functional connectivity
was consistently located around the atrophic areas. The centrifu-
gal disposition of increased functional connectivity around the
atrophic areas suggests plasticity related shifting of function to
areas still capable of functioning. It is noteworthy that multi-
modal imaging in detecting functional changes in diseases with
abnormal anatomy is demanding. For example, how is the vari-
ance normalization of the BOLD signal affected by shifted and
increased function; is it merely overlap of functional connectivity
or plasticity effects? This question currently remains unanswered.
In this study we were able to correct our results for both multi-
ple comparisons related to the selecting of 36 RSNs and for gray
matter differences known to exist in bvFTD.

We found only increased connectivity in patients with bvFTD
compared to controls. Several factors may have an influence

Frontiers in Human Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 461 | 251

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Rytty et al. Resting-state networks in bvFTD

Table 1 | Functional brain regions showing increased functional connectivity in patients with bvFTD compared to healthy controls.

Voxel level correction Inter-IC corrected y-concatenation for all RSNs

IC RSN voxels max min max mean Std IC voxels max min max mean Std

X Y Z X Y ZT -score T -score T -score T -score T -score T -score

IC01 Cranial
salience,
superior
frontal gyrus

52 21 42 31 2.63 3.93 3.06 0.33

IC03 Visual cortex
1–4

103 13 10 14 2.51 4.90 3.36 0.59 IC03 2 11 12 15 4.69 4.81 4.75 0.09

IC04 DAN R 158 9 18 28 2.31 5.26 2.86 0.49

IC11 Visual
cortex,
inferior
parietal
lobule

4 17 9 24 3.59 4.44 3.91 0.35

IC12 Bilateral
frontal pole,
middle
frontal gyrus

733 29 35 25 1.93 4.86 2.71 0.57 IC12 268 30 38 31 2.60 4.52 3.16 0.38

IC17 Anterior
paracingu-
late

387 22 44 17 2.07 5.05 2.65 0.48 IC17 7 22 45 17 3.76 4.33 4.05 0.21

IC21 Broca L 1369 34 41 14 1.90 5.28 2.91 0.67

IC25 Insula,
inferior
frontal
gyrus,
middle
temporal
gyrus

1202 11 39 12 1.82 5.53 2.82 0.70 IC25 573 7 18 16 2.49 5.53 3.32 0.61

IC27 Pons,
bilateral
parahip-
pocampus

7 23 12 21 3.73 4.22 3.97 0.21

IC33 Premotor-
presensory

555 11 32 27 1.91 5.46 2.54 0.49 IC33 2 17 33 30 5.01 5.30 5.16 0.21

IC35 Bilateral
primary
motor
cortex

41 30 24 35 2.45 3.82 2.90 0.35

IC41 Frontal pole
R

508 10 42 13 2.03 6.14 3.20 0.84

IC47 Primary
somatosen-
sory
cortex

27 7 29 26 2.86 3.70 3.20 0.21

IC51 Angular
gyrus,
bilateral
supra-
marginal
gyrus

217 6 22 22 2.40 4.89 3.01 0.47

IC55 DAN L 956 35 16 24 1.85 5.13 2.53 0.54 IC55 260 24 11 27 2.54 4.58 3.05 0.42

Significant differences in functional connectivity were detected in fifteen RSNs by voxel level correction. By Inter-IC corrected y-concatenation for all RSNs significant

differences in functional connectivity were detected in six RSNs. Significant differences are demonstrated by; the anatomical areas involved, number of voxels, MNI

coordinates (in mm) of the involved anatomical areas, t-score and its standard deviation. Abbreviations: IC, independent component; R, right; L, left; DAN, dorsal

attention network.
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upon our results. We have used different data analysing meth-
ods compared to the previous rfMRI studies (Zhou et al., 2010;
Whitwell et al., 2011; Borroni et al., 2012; Farb et al., 2012; Filippi
et al., 2012). Higher model order (a.k.a 70) was used, which
yields a more detailed RSN partition and reduces the presence
of noise in the maps (Kiviniemi et al., 2009; Smith et al., 2009;
Abou-Elseoud et al., 2010). Furthermore, global mean regres-
sion may be involved with unpredictable anti-correlations and
this may also be one source of differences between our results
and others’ (Murphy et al., 2009). We also used a group ICA

FIGURE 2 | Independent components (IC) with significant increase in

functional connectivity in patients with bvFTD. The differences in
resting state networks corrected for multiple comparison at voxel level in
green and for y-concatenation correction for including all RSNs in lilac-blue,
threshold p < 0.05. The differences between groups are also adjusted for
gray matter differences. The involved RSN is presented in red-yellow color
encoding with (3.6 < z-score < 6) threshold. Arrows in ICs 3, 17, and 33
indicate the y-concatenated results.

dual regression approach in this study. Matching individual level
ICA maps is more prone to errors when compared to group
map templates (Zuo et al., 2010). We also share this experience
in this dataset. We analysed individual level ICA maps with low
(20) model order, but had considerable difficulty in detecting
a robustly identifiable salience and other high cognitive net-
works from individual ICA runs for each subject, especially when
compared to group templates. This is not a problem of ICA
per se, since it has been known to be robust in detecting fMRI
sources (Kiviniemi et al., 2009; Smith et al., 2009). Actually, it
may be the other way around; ICA is very sensitive to sparsity
(Daubechies et al., 2009). On the individual level, the RSNs have
marked spatiotemporal non-stationarity due to strong momen-
tary neuronal avalanches (Chang and Glover, 2010; Kiviniemi
et al., 2011; Hutchison et al., 2013; Liu and Duyn, 2013; Palva
et al., 2013). The neuronal avalanches arising within RSN nodes
have unique spatial connectivity distributions and match only
with group level RSN templates when strongly averaged in both
time and space (Zuo et al., 2010; Liu and Duyn, 2013). Dual
regression maps may therefore provide a closer matching repre-
sentation of an individual subject’s RSN compared to ICA based
maps.

The advantage of the present method is the whole brain cortex
coverage and higher hierarchical level of sub-networks (Kiviniemi
et al., 2009; Abou-Elseoud et al., 2010; Littow et al., 2010).
Moreover, the high model order enables increased accuracy of
regressors of also the unwanted artifacts such as pulsating blood
vessels, compartmental CSF pulsation/jet and motion artifacts
that cannot be identified with other methods. The regression of
these artifacts is crucial for the correct analysis of group dif-
ferences in any kind of connectivity measurement. ICA dual
regression offers a simultaneous data-driven regression of both
artifacts and RSNs. Importantly, with group ICA, the effects of
curved and often individually different cerebral artery and CSF

Table 2 | Regional atrophy detected by structural MRI.

Voxels max_Y min_Z max_Z Mean-T score sem T -score max T -score Anatomical area

16479 72 −52 60 2.94 0.005 5.55 R middle and inferior temporal gyrus

15849 38 −50 72 2.94 0.006 6.38 L precuneus cortex, cingulate gyrus

422 58 −22 −6 2.62 0.016 3.58 L broca, frontal pole, inferior temporal gyrus

278 28 −30 0 3.40 0.045 5.76 L frontal pole, orbitofrontal, and subcallosal cortex

267 18 4 16 3.72 0.050 5.46 L insula, frontal and central opercular cortex, broca

82 −14 60 68 3.68 0.043 4.72 R premotor and motor cortex, precentral gyrus

52 12 −44 −26 2.34 0.020 2.74 R temporal pole, middle temporal gyrus

47 −8 38 46 2.52 0.039 3.24 L postcentral gyrus

42 28 −20 −16 2.39 0.026 2.85 R orbitofrontal cortex, frontal and temporal pole

28 26 −40 −34 2.55 0.062 3.29 R temporal pole

23 −20 48 56 3.43 0.031 3.75 L premotor and primary motor cortex, precentral gyrus

20 −32 −8 −2 3.43 0.048 3.87 R hippocampus, parahippocampal gyrus

19 −32 2 6 2.49 0.054 2.93 L superior and middle temporal gyrus

13 −80 12 14 2.21 0.010 2.28 L lateral occipital cortex

R, right; L, left.
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FIGURE 3 | Regional atrophy was detected in several frontal and

temporal regions and also in the posterior cingulate cortex, occipital

cortex, and occipital poles. Increased connectivity was constantly placed
around the atrophied area. Atrophic regions are in red, difference in the RSNs
are in yellow (bvFTD > controls) and overlapping areas are in orange color.
Arrows in ICs 3, 17, and 33 indicate the difference in the RSN.

pulsations become separated by the best way within the analysed
group as a whole, also with individual weighting in their time
series. The adequate modeling of blood vessel noise may have an
effect on the salience network results in the insular cortex near
the medial cerebral artery branches. Advanced spiral in/out scan-
ning sequences at the higher 3 T magnetic field are also likely to
be more sensitive than conventional 1.5 T EPI sequences in pro-
viding frontal cortex/insular data at the individual level (Zhou
et al., 2010; Whitwell et al., 2011; Farb et al., 2012; Filippi et al.,
2012).

Despite careful diagnostics, long follow-up and genetic confir-
mation of bvFTD, it is possible that some patients with atypical
AD may be included in the study cohort. The wide range in
disease severity may affect the rfMRI results even though no
difference was seen between the patient groups with different dis-
ease severity. Neuroleptic and cholinergic drugs may also modify
results. However, there are no rfMRI data available concerning the
effects of these drugs.

In conclusion, this is the first analysis of the whole brain
cortex networks using high model order ICA in patients with
bvFTD. Increased connectivity was seen in the left DAN and
frontal control networks neighboring executive network, as well
as the frontal poles and insula. These changes may explain
bvFTD associated cognitive and neuropsychiatric symptoms.
In general, the increase in functional connectivity centrifu-
gally was surrounding the atrophied areas, which suggest plas-
ticity related shifting of neuronal activity into intact brain
structures.
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Effective estimation of the salience of environmental stimuli underlies adaptive
behavior, while related aberrance is believed to undermine rational thought processes
in schizophrenia. A network including bilateral frontoinsular cortex (FIC) and dorsal
anterior cingulate cortex (dACC) has been observed to respond to salient stimuli using
functional magnetic resonance imaging (fMRI). To test the hypothesis that activity in
this salience network (SN) is less discriminately modulated by contextually-relevant
stimuli in schizophrenia than in healthy individuals, fMRI data were collected in
20 individuals with schizophrenia and 13 matched controls during performance of
a modified monetary incentive delay (MID) task. After quantitatively identifying
spatial components representative of the FIC and dACC features of the SN, two
principal analyses were conducted. In the first, modulation of SN activity by salience
was assessed by measuring response to trial outcome. First-level general linear
models were applied to individual-specific time-courses of SN activity identified using
spatial independent component analysis (ICA). This analysis revealed a significant
salience-by-performance-by-group interaction on the best-fit FIC component’s activity
at trial outcome, whereby healthy individuals but not individuals with schizophrenia
exhibited greater distinction between the response to hits and misses in high salience
trials than in low salience trials. The second analysis aimed to ascertain whether
SN component amplitude differed between the study groups over the duration of
the experiment. Independent-samples T -tests on back-projected, percent-signal-change
scaled SN component images importantly showed that the groups did not differ in
the overall amplitude of SN expression over the entire dataset. These findings of
dysregulated but not decreased SN activity in schizophrenia provide physiological support
for mechanistic conceptual frameworks of delusional thought formation.

Keywords: schizophrenia, salience, cortical networks, fMRI, reward

INTRODUCTION
The finite capacity of our attentional and behavioral resources
necessitates that we assign preferential salience to certain environ-
mental stimuli, while limiting responses to others. Appropriately
selecting the stimuli to which we assign salience is therefore a
key component of adaptive behavior. Relatedly, the allocation of
incentive salience to both primary and more abstract rewarding
stimuli potently modulates behavior (Robbins and Everitt, 1996).

Electrophysiological recordings from the macaque striatum
show that phasic dopaminergic responses to rewarding stimuli
temporally mimic the prediction error of reward-value models,
implicating this region as the source of a reinforcement signal
required to adjust the probability of subsequent action selection
(Schultz et al., 1997). Comparable human blood oxygenation-
level dependent (BOLD) responses in striatum to novel, aversive
and intense stimuli suggest that this response indexes salience-
related features such as familiarity, contextual relevance and pre-
dictability more generally (Zink et al., 2004). A complementary
model of the role of phasic striatal dopamine therefore proposes
that the basal ganglia concertedly act as a centralized selection

device, allocating attentional resources between competing motor
programs in a contextually-relevant manner (Redgrave et al.,
1999). The reward findings uphold this model insofar as test ani-
mals are generally required to shift attention to rewarding stimuli
and carry out a motor program to realize their consumption.

Human BOLD findings also imply an analogous, attention-
switching function in a cortical network comprising dorsal ante-
rior cingulate cortex (dACC) and bilateral frontoinsular cortex
(FIC), subsuming anterior insula (AI), and inferior frontal gyrus
(IFG). These regions are consistently coactive with task-specific
regions when stimuli are modulated in terms of cognitive, emo-
tional and homeostatic salience, which implies they fundamen-
tally code salience (Menon, 2011); they also exhibit a temporal
signature dissociable from task-specific regions via seed-region
correlation and independent component analysis (ICA) suggest-
ing that they represent a salience network (SN; Seeley et al.,
2007), Moreover, analyzing Granger-causal relationships from
multi-task functional magnetic resonance imaging (fMRI) data,
Sridharan et al. (2008) observed that right FIC activity consis-
tently preceded and predicted activity in regions of the default
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mode network (DMN; medial prefrontal cortex, precuneus and
bilateral angular gyrus), where activity is typically greater during
times of introspection, and also regions of the central executive
network (CEN; bilateral dorsolateral PFC and posterior pari-
etal cortex), where activity is typically greater when attention is
focused on environmental stimuli. They suggested that right FIC
was therefore crucial in switching between these two contrasting
modes of brain function.

The cortical SN appears to be a focus of pathology in
schizophrenia. Structurally, these regions are amongst the most
consistently observed sites of gray-matter reduction in the dis-
order (Ellison-Wright et al., 2008), and focal alterations in SN
volume are observed to be associated with the severity of reality
distortion in schizophrenia (Palaniyappan et al., 2011). Reduced
functional connectivity has also been observed within the SN in
schizophrenia compared to controls during volitional eye sac-
cades (Tu et al., 2010) and at rest (Tu et al., 2012). However,
within-SN dysconnectivity is not unequivocally apparent in
schizophrenia. Resting-state connectivity between a FIC seed and
other SN constituents was recently reported to be unaffected by
schizophrenia, despite significant connectivity reductions in both
DMN and CEN (Woodward et al., 2011). Combined assessment
of within- and between-network connectivity in schizophrenia as
compared with controls has revealed less consistent functional
relationships within the SN and between the SN and DMN during
passive perceptual stimulation (White et al., 2010a).

The monetary incentive delay (MID) task presents an adapt-
able framework for assessing SN functional modulation in
schizophrenia. Investigating gains (but not losses) Walter et al.
(2009, 2010) demonstrated that activity in dACC and a region
encompassing AI and ventrolateral prefrontal cortex is more
sensitively modulated at outcome in healthy individuals than
schizophrenia patients in tasks that vary reward magnitude and
those that vary reward probability. Furthermore, Waltz et al.
(2010) reported significant group-by-outcome interactions in
right FIC and pregenual ACC BOLD responses in a MID task
involving both gains and losses, with controls exhibiting greater
activity for gains than losses and patients exhibiting greater
responses for losses than gains. While these latter findings are
in line with anhedonic symptoms of schizophrenia, from a bio-
logical perspective salience should be attributed to both positive
and negative events—potential rewards and dangers must both
be appropriately detected. As a result, salience coding should be
expectedly heightened to both positive and negative extremes.
Moreover, the success with which potential losses and gains are
respectively obtained or avoided should additionally contribute
to salience coding to maximally adapt subsequent behavioral
output.

The notion that individuals with schizophrenia exhibit not
just muted salience attribution to conventionally salient stimuli
but also aberrantly excessive salience attribution at other times
is central to dominant theories of delusion formation (Kapur,
2003; Kapur et al., 2005). This suggests that attenuated reward
signals in cortical SN and striatum (for review, see Heinz and
Schlagenhauf, 2010) paint an incomplete picture. Here, we use
spatial ICA of fMRI data to identify the cortical SN in individu-
als with schizophrenia and matched controls during performance

of a modified MID task. We present analyses conducted to assess
the explicit hypotheses that: (1) cortical SN activity focused
in both dACC and FIC will be modulated by the salience of
rewarding monetary stimuli at reward outcome in healthy indi-
viduals; (2) SN modulation by task and performance will be
diminished in schizophrenia; and (3) despite this putative dysreg-
ulation in schizophrenia, the cortical SN will be no less evident
in these individuals than in healthy controls over the duration of
the task.

MATERIAL AND METHODS
PARTICIPANTS
Twenty individuals satisfying DSM-IV criteria for schizophrenia
(American Psychiatric Association, 1994) and 13 healthy controls
were recruited to take part in the study. All participants were
right-handed and groups did not differ significantly in terms of
age or intelligence quotient (IQ) assessed using the National Adult
Reading Test (NART; Nelson, 1982). Summary demographic and
psychiatric-symptom details are provided in Table 1.

Diagnosis of schizophrenia was confirmed by assessment
of clinical case notes and confirmation of suitability by each
individual’s consultant psychiatrist. Patients were recruited in
a clinically stable condition and were excluded if present-
ing evidence of comorbid diagnosis or a medical disorder
resulting in an IQ of less than 85. Symptom severity and
classification were assessed using the Positive and Negative
Syndrome Scale (PANSS; Kay et al., 1987). Sixteen patients
were receiving treatment with atypical antipsychotic medica-
tions: olanzapine (n = 8); risperidone (n = 4); quetiapine (n =
2); clozapine (n = 1); and sulpiride (n = 1). The remaining
four patients were receiving typical antipsychotic medications:
zuclopenthixol (n = 2); flupentixol (n = 1); and chlorpromazine
(n = 1). Chlorpromazine equivalent doses were computed for
oral antipsychotic medications using data presented by Woods
(2003). In the case of risperidone Consta injection, 25 mg
Consta injection every 14 days was taken to equate to 4 mg
oral risperidone per day, in accordance with the British National
Formulary recommendation (Joint Formulary Committee, 2008).

Table 1 | Sample details.

Measure Group

Schizophrenia group Healthy group

(n = 20) (n = 13)

(A) GROUP MEAN DEMOGRAPHIC DETAILS. BRACKETED VALUES

DENOTE STANDARD DEVIATION

Age (years) 36.9 (6.95) 31.3 (9.7)

Intelligence quotient (NART) 101.6 (11.62) 106.4 (9.1)

(B) MEAN SCHIZOPHRENIA GROUP PANSS SCORES. BRACKETED

VALUES DENOTE STANDARD DEVIATION

Positive 13.77 (6.92)

Negative 13.31 (5.92)

General 26.81 (6.5)

NART, national adult reading test (Nelson, 1982); PANSS, positive and negative

signs and symptoms of schizophrenia (Kay et al., 1987).
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The average chlorpromazine-equivalent dose was 292.7 (range:
100–700) mg/day.

Healthy volunteers were recruited by local advertisement and
excluded from study if: they reported a personal history of psy-
chiatric or neurological illness or diagnosis of schizophrenia in a
first-degree relative; they exhibited an IQ of less than 85; or they
had a recent history of illicit substance use.

Ethical approval was provided by Essex 1 Research and Ethic
Committee (08/H0301/116). All participants provided informed
written consent and were given an inconvenience allowance for
study participation plus additional payment proportional to task
performance.

EXPERIMENTAL PROCEDURE
Participants performed a modified MID task (Knutson et al.,
2001) comprising three 15-min sessions, each containing 48 tri-
als split equally between the different experimental conditions.
Participants viewed a screen, onto which visual stimuli were pro-
jected, using mirrors mounted on the scanner headcoil. Trials
were categorized as either: win trials, in which pressing the but-
ton within a target time window resulted in the relevant reward
(hit), while failure to do so (miss) resulted in no financial change;
or loss trials, in which poor performance (miss) led to loss of
the relevant monetary value, while good performance (hit) led
to avoidance of this loss. Win and loss trials were further cate-
gorized according to the magnitude of their potential financial
value (£5, £0.50, and £0). This permitted evaluation of graded
incentive salience. As trials with a large potential reward/loss have

greater financial implications, they should be considered more
salient. Each trial began with a cue notifying trial type (win
vs. loss; magnitude of reward), followed by a probe indicating
when to perform the right index finger button press and then,
following a delay, visual feedback indicating trial outcome. On
completion of each trial, participants were required to manually
report their feeling of subjective contentment using a visual ana-
log scale (VAS), ranging from satisfied (1) to dissatisfied (9). A
schematic representation of an example trial, including the time-
lines of phase 1 (anticipation to act), phase 2 (anticipation of
outcome), and phase 3 (outcome), and the stimuli presented in
the experiment is provided in Figure 1.

MRI DATA ACQUISITION
Four hundred and forty-eight gradient-echo echo-planar BOLD
images (TR/TE: 2000/25 ms, flip angle: 75◦, matrix: 64 × 64) were
acquired on a 3 Tesla GE Excite II MR scanner (GE Healthcare,
USA) during each run of the task. Each whole-brain image con-
tained 38 non-contiguous slices of 2.4-mm thickness separated by
a distance of 1 mm, and with in-plane isotropic voxel resolution
of 3.4 mm.

BEHAVIORAL DATA ANALYSIS
The time taken to make the button-press response following pre-
sentation of probe stimulus (reaction time; RT) was recorded for
each trial. To reduce the effects of trials in which no response was
made, the within-session median RT was calculated and these val-
ues averaged to give subject-specific mean RTs for each condition

FIGURE 1 | The monetary incentive delay task. Showing an example trial (top) and the various cue values used (bottom).
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over the experiment as a whole. A repeated-measures ANOVA test
was performed within SPSS (SPSS Inc., USA) to assess differences
related to trial valence (win or loss), salience (£5 or £0.50), and
group (healthy or schizophrenia). Similarly, the hit rate (percent-
age calculated on the basis of number of hits and total trials) was
calculated for each condition averaged across sessions. Again, a
repeated-measures ANOVA was conducted to assess differences
relating to trial valence, salience and group. Post-hoc T-tests were
performed to assess the specifics of significant main effects and
between-factor interactions.

fMRI DATA PREPROCESSING AND ANALYSIS
fMRI data were preprocessed using SPM5 (Wellcome Department
of Imaging Neuroscience, University of London, UK). Data were
realigned to the first image of the series, normalized to a standard-
brain template and smoothed using an 8-mm FWHM Gaussian
kernel.

Spatial ICA was performed on the pre-processed data using
the Group ICA fMRI Toolbox (GIFT; http://icatb.sourceforge.net)
within Matlab 7.8 (MathWorks, USA). GIFT uses a temporal con-
catenation approach during which data reduction is performed
via multi-staged principal component analysis (PCA) and aggre-
gation to generate common-group maps. These components are
subsequently back-projected onto each individual’s data to cre-
ate subject-specific spatial maps with corresponding time-courses
(Calhoun et al., 2008, 2009).

Prior to ICA, data dimensionality was estimated using
Minimum Length Description criteria to be 64. Since model order
determines network spatial characteristics including subnetwork
parcellation, ICA was constrained to produce 64 components.
ICA was performed using the Infomax algorithm (Bell and
Sejnowski, 1995), and repeated five times with Icasso (Himberg
et al., 2004) to maximize the stability of the derived compo-
nents. Components were also scaled according to percent signal
change to facilitate inter-subject comparisons of their time-
courses. Back-reconstruction was carried out using GICA3 on
the basis of previous empirical support for the accuracy of this
method (Erhardt et al., 2011).

In light of previous observations that the dACC and FIC fea-
tures of the SN are customarily dissociated into separate fMRI
spatial components (Sridharan et al., 2008; White et al., 2010a),
it was considered appropriate to attempt to identify these SN fea-
tures independently. To this end, binary masks of (1) the dACC
and (2) the FIC, were constructed from a downloadable SN map
(http://findlab.stanford.edu/research; Shirer et al., 2012). Each
binary mask was dilated by one voxel to favor components whose
outside-mask loadings were greater in regions immediately prox-
imate to the specified masks. Goodness-of-fit (GOF) was then
assessed between each of these masks and the 64 whole-sample
component maps. GOF was calculated by subtracting the mean
Z-score of voxel values outside the mask from the mean Z-score
of voxels within it (Greicius et al., 2004; Seeley et al., 2007) using
Matlab 7.8 (MathWorks, USA). Components were ranked accord-
ing to GOF and the best-fit component for each binary mask
selected for subsequent investigation.

Having identified the two best-fit SN whole-sample compo-
nents, their voxel-wise robustness was assessed statistically for

the whole sample using one-sample T-tests conducted on whole-
brain, back-reconstructed loading images for each participant.
This identified the voxels with strongest loadings for these com-
ponents, although it must be stressed that each component is a
whole-brain component. To identify regions of strong positive
loading, significance was ascribed according to a cluster-level cri-
terion based on the spatial extent of suprathreshold voxel clusters.
Voxel-level inclusion of P < 0.001 and cluster-level significance of
P < 0.05 family-wise error corrected were used throughout this
work. In addition, two-samples T-tests were performed to inves-
tigate between-group differences in the amplitude of expression
of the SN components over the entire dataset. Little difference
between individuals with schizophrenia and healthy controls was
predicted here according to the hypothesis that SN activity is
dysregulated rather than diminished.

To investigate modulation of SN activity by task-related events
at outcome, first-level GLMs were applied to the back-projected
time-courses of the two SN components, with the hypothe-
sis that these events would predict activity less in individuals
with schizophrenia than in healthy controls. This technique per-
mits assessment of distributed, event-related brain activity and
has advantages over the conventional voxel-wise, mass-univariate
approach including: (1) it reduces the chances of Type-1 error
inherent to mass-univariate analyses on account of the large num-
ber of tests involved in the latter; (2) it reduces the chances of
Type-2 error likely in the latter as a consequence of attempts to
stringently correct for these multiple tests; and (3) it presents a
readily understandable summary statistic for a distributed feature
of brain activity, which has been previously identified by virtue of
its temporal congruity. The conjoined use of GLMs and ICA has
for these reasons been successfully used in wide-ranging settings
(for recent examples, see Caulo et al., 2011; Luckhoo et al., 2012;
White et al., in press).

For the current GLM-ICA analyses we modeled the time-
course of the BOLD response associated with the presentation
of the visual stimuli throughout the task, by convolving a vec-
tor of delta functions for the onset and durations of these stimuli
with the canonical haemodynamic response function. Regressors
were included in the GLMs for events split by cue value, perfor-
mance and phase. This resulted in 30 conditions (5 cue values ×
2 performance outcomes × 3 phases) for each of the three ses-
sions. When necessary, regressors were included for void trials
during which no button-press response was registered. Session-
specific realignment parameters were also included in the GLMs
as covariates of no interest. Resulting, individual-specific GLMs
were applied to the time-courses of the best-fit FIC and dACC
components. Beta coefficients for responses at trial outcome
were then exported into SPSS (SPSS Inc., USA) for statistical
appraisal. Repeated-measures ANOVAs were carried out to assess
the effects on the beta coefficients of within-subjects factors of
reward salience (£5 or £0.50), performance (hit or miss) and trial
valence (win or loss), and the between-subject factor of group
(healthy or schizophrenia) for each of the best-fit components
separately. Post-hoc confirmatory T-tests were performed to assess
the direction of significant effects.

The relationship between psychiatric symptomatology and
SN task modulation was assessed in the schizophrenia group
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using bivariate Pearson correlation between above-calculated
beta coefficients and PANNS positive, negative and general psy-
chopathology scores. Similarly, the relationship between antipsy-
chotic medication and SN task modulation was investigated by
assessing correlation between beta coefficients and chlorpro-
mazine equivalent dosage in the same individuals. In a fur-
ther analysis to investigate whether medication class predicted
SN modulation, a repeated-measures ANOVA was conducted in
the schizophrenia group to assess the effects on beta estimates
of salience, performance and trial outcome as in the previous
analyses; however, this analysis also included a binary covariate
detailing whether each individual had been prescribed typical or
atypical antipsychotic medication.

RESULTS
BEHAVIOR
Hit rate and RT results are summarized in Figure 2; statis-
tical findings from the repeated-measures ANOVA conducted
on these measures is provided in Table 2. There was a signifi-
cant valence-by-salience interaction [F(1, 32) = 9.02, P = 0.005]
in RT. Subsequent T-tests demonstrated that while RT was sig-
nificantly less for large win trials compared to small win trials
[T(32) = 3.76, P = 0.001], no significant difference was observed
between large and small loss trials. A valence-by-group interac-
tion [F(1, 32) = 6.57, P = 0.015] was also observed in RT. Patients
demonstrated significantly shorter RTs averaged across win tri-
als (246.03 ± 24.07 ms) as compared to loss trials [250.42 ±
23.93 ms; T(19) = 2.84, P = 0.011]. By contrast, healthy individ-
uals exhibited non-significant differences in RT between these
conditions [win trials: 238.82 ± 23.98 ms; loss trials: 235.26 ±
20.58 ms; T(12) = 1.19, P = 0.255]. There was an additional weak
trend toward a group effect in hit rate [F(1, 32) = 2.78, P =
0.11]. This was observed on account of the increased number
of void trials, for which no participant response was recorded,
in the schizophrenia group as compared to the healthy group
[healthy group: 1.33 ± 0.96 %; schizophrenia group: 5.75 ± 7.61
%; T(32) = 2.07, P = 0.05]. VAS ratings categorized on the basis

of trial type and group are presented in Figure 3. Main-effect and
interaction statistics for VAS measures are shown in Table 3.

SN IDENTIFICATION AND CHARACTERISATION
Figure 4 displays GOF scores between the FIC mask and each of
the 64 whole-sample components. The GOF score for the best-fit
component was 2.87. This Z-score equates to a P-value of 0.004,
and as such this component can be confidently declared to focus
on FIC regions. A one-sample T-test on individual-specific com-
ponent maps for the best-fit component demonstrated significant
positive clusters in bilateral IFG and anterior insula and is dis-
played in Figure 5. Statistical characteristics of its gray-matter
foci are presented in Table 4(A). Figure 6 displays GOF scores
between the dACC mask and each of the 64 whole-sample com-
ponents. The best-fit dACC component, whose whole-sample

Table 2 | Modulation of hit rate and reaction time.

Measure Effect F -value P-value

Hit rate V 1.49 0.231

S 0.41 0.529

G 2.78 0.105

V × S 0.01 0.913

V × G 0.66 0.423

S × G 0.36 0.551

V × S × G 1.54 0.224

Reaction time V 0.72 0.790

S 3.83 0.059

G 1.97 0.171

V × S 9.02 0.005

V × G 6.57 0.015

S × G 3.13 0.086

V × S × G 0.26 0.874

Valence, V; Salience, S; Group, G.

FIGURE 2 | Condition-specific behavioral results. Showing (A) hit rate, and (B) reaction time. Error bars denote standard error of the mean. Healthy group
results are shown in black and schizophrenia group results in white.
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FIGURE 3 | Condition-specific visual analog scale (VAS) rating

results. For (A) hit trials, and (B) miss trials. VAS ratings range
between 1 when the participant reported feeling “satisfied” and 9

when “dissatisfied.” Error bars denote standard error of the mean.
Healthy group results are shown in black and schizophrenia group
results in white.

Table 3 | Modulation of visual analog scale ratings.

Effect F -value P-value

V 20.72 7 × 10−5

S 1.27 0.268

P 34.58 2 × 10−6

G 1.75 0.20

V × S 5.91 0.021

V × P 49.143 1 × 10−6

V × G 0.02 0.891

S × P 8.06 0.008

S × G 0.11 0.746

P × G 0.55 0.465

V × S × P 27.14 1 × 10−4

V × S × G 2.19 0.149

S × P × G 2.00 0.167

V × P × G 0.35 0.561

V × S × P × G 4.29 0.046

Valence, V; Salience, S; Performance, P; Group, G.

GOF with the dACC mask was 1.38 (which equates to a P-value
of 0.168) and had maximal loadings in medial prefrontal regions.
This component is displayed in Figure 5 and statistics relating to
its gray-matter foci are presented in Table 4(B).

BETWEEN-GROUP DIFFERENCES IN SN COMPONENT AMPLITUDE
Whole-brain examination of between-group amplitude differ-
ences in the best-fit FIC and dACC components conducted using
two-samples T-tests revealed no significant clusters (using either
an uncorrected or FWE-corrected cluster level of P < 0.05 and a
voxel-level threshold of P < 0.001).

SN ACTIVITY AT REWARD OUTCOME
Figure 7 and Table 5 present beta coefficients for the best-
fit FIC component at time of trial outcome. As is shown in
Table 6, there was an overall main effect of group [F(1, 32) = 4.82,

P = 0.036]. Subsequent independent samples T-tests revealed
that beta estimates for schizophrenia patients averaged over con-
ditions were significantly smaller than those for healthy individu-
als. Interestingly, a significant salience-by-performance-by-group
interaction was also observed [F(1, 32) = 4.280, P = 0.047].
Healthy individuals displayed a trend toward greater responses
for hits compared to misses (across both valences of condi-
tions) in the high salience trials [T(12) = 2.055, P = 0.061] and
a non-significant effect for low salience trials [T(12) = −1.730,
P = 0.107]; by contrast, performance did not significantly mod-
ulate FIC response for either high or low salience trials in the
schizophrenia group [high salience: T(19) = 0.483, P = 0.634;
low salience: T(19) = −0.483, P = 0.966]. There was also a
highly significant valence-by-salience interaction on FIC activ-
ity at reward outcome [F(1, 32) = 11.353, P = 0.002]. A follow-up
paired-samples T-test of the full study sample revealed that, while
there was a non-significant difference in FIC modulation between
high and low salience conditions for win trials [T(32) = 0.944,
P = 0.352], high salience loss trials evoked greater responses than
corresponding low salience trials [T(32) = 3.482, P = 0.001]. No
other main effects or between-factor interactions were significant
for this component. For the best-fit ACC component task modu-
lation at reward outcome is shown in Figure 8, and beta estimates
summarized in Table 5. No main effects or between-factor inter-
actions were significant at conventional statistical thresholds, as is
shown in Table 7.

RELATIONSHIPS WITH SYMPTOM AND MEDICATION
No statistically significant relationship was observed between SN
task modulation and psychiatric symptomatology, medication
dosage or medication class.

DISCUSSION
This salience-focused fMRI study of individuals with schizophre-
nia and matched control subjects employed spatial ICA to identify
components of brain activity with maximal spatial correspon-
dence with two principal features of the SN, namely the FIC and
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FIGURE 4 | Goodness-of-fit (GOF) with frontoinsular cortex mask. Showing (A) the mask is overlaid onto a standardized T1-weighted image shown
according to the neurological convention; and (B) GOF with this mask for each component displayed according to rank.

FIGURE 5 | The salience network. Showing the best-fit frontoinsular
cortex component (top row) and the best-fit anterior cingulate cortex
component (bottom row) overlaid on a standardized T1-weighted image.

Colorbar denotes T -scores from one sample T -tests and relates to both
components. These images are thresholded at uncorrected P -threshold
of 0.001.

dACC; modulation of the activity of these components at trial
outcome was then investigated to test the hypothesis that SN
would be temporally dysregulated in schizophrenia.

The best-fit FIC group component exhibited a high GOF with
the FIC mask (Z = 2.87, P = 0.004). It was characterized by
maximal positive loadings in bilateral regions principally includ-
ing AI and IFG, and can therefore be confidently described as
exhibiting substantial FIC focus. Its hemispherically bilateral dis-
tribution is in accord with numerous fMRI ICA characterizations
of the SN (for example, Seeley et al., 2007; Sridharan et al., 2008;

White et al., 2010b), although it is noted that right FIC has
been ascribed particular, influential roles in cognitive switching
(Sridharan et al., 2008). GLM analysis of activity in this compo-
nent at trial outcome produced findings of amplitude modulation
suggestive of its role in salience coding.

A significant salience-by-performance-by-group interaction
on FIC component activity was evident at trial outcome. In
healthy individuals a trend toward greater responses for hits than
misses was observed for high salience trials but less robustly for
low salience trials. Since the outcome of a specific trial potently
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Table 4 | One-sample T -test results for the best-fit salience network components.

Brain structure (Brodmann area) MNI coordinates T -value Cluster size (kE)

(A) SIGNIFICANT GRAY-MATTER FOCI OF THE BEST-FIT FRONTO-INSULAR CORTEX COMPONENT

Left inferior frontal gyrus (47) −34 18 −12 8.11 2641

Left insula (13) −44 10 −2 5.81 2641

Left superior temporal gyrus (22) −54 14 −6 5.81 2641

Right inferior frontal gyrus (47) 34 30 −10 5.86 2108

Right superior temporal gyrus (38) 46 10 −10 4.58 2108

Right anterior cingulate gyrus (32) 2 48 0 3.29 76

(B) SIGNIFICANT GRAY-MATTER FOCI OF THE BEST-FIT ANTERIOR CINGULATE CORTEX COMPONENT

Left anterior cingulate gyrus (24) −4 32 14 6.60 2053

Right anterior cingulate gyrus (24) 6 28 18 6.45 2053

Right anterior cingulate gyrus (32) 2 48 2 4.61 2053

Right inferior frontal gyrus (47) 46 26 4 4.09 91

FIGURE 6 | Goodness-of-fit (GOF) with anterior cingulate cortex mask. Showing (A) the mask is overlaid onto a standardized T1-weighted image shown
according to the neurological convention; and (B) GOF with this mask for each component displayed according to rank.

modulates its financial implications, and the differential conse-
quences of the hit or miss are greater in high salience trials, it is
unsurprising that the cortical system purported to encode salience
exhibits modulation of activity in this manner in healthy individ-
uals. An interesting addendum here is that FIC responses to hits
exceed those to misses across high salience trials of both reward
valences. Learning from a large-magnitude failure is an impor-
tant aspect of adaptive behavior, and is contingent on importance
being placed on the event in question; as such, it is somewhat
surprising that this is not reflected in FIC activity at reward
outcome.

Contrary to the healthy individuals, FIC component activity
was not significantly modulated by performance as a function
of salience in the individuals with schizophrenia. Non-significant
performance effects were observed for both the high and low

salience trial types. This demonstrates a functional impairment
in FIC regulation in these individuals with potential behav-
ioral repercussions. Efficient reinforcement learning must rely on
determination of not only the potential salience of environmental
events (as would be demonstrated by a main effect of salience) but
also how this salience changes contextually (as would be demon-
strated in this instance by a salience-by-performance interaction).
That this effect is not evident in individuals with schizophrenia
provides further physiological support for reinforcement learning
deficits in these individuals (Evans et al., 2011; Maia and Frank,
2011).

There was also a significant salience-by-valence interaction on
FIC activity at trial outcome. Across the whole sample, responses
for large-loss hits exceeded those for small-loss hits, while the cor-
responding comparisons for win trials were insignificant. These
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FIGURE 7 | Frontoinsular cortex component activity at trial outcome. Condition-specific beta coefficients are shown, with blue and black bars denoting hit
and miss trials, respectively. Error bars denote standard error of the mean.

Table 5 | Beta coefficients for salience network responses at outcome.

Condition FIC component ACC component

Healthy group Schizophrenia group Healthy group Schizophrenia group

Large win—hit 2.30 (2.07) 0.62 (2.07) 0.87 (1.45) 0.65 (1.51)

Large win—miss 1.24 (1.48) 1.01 (1.64) 0.97 (0.89) 0.71 (1.00)

Small win—hit 1.47 (1.64) 1.20 (1.81) 0.93 (0.47) 0.58 (1.21)

Small win—miss 1.08 (2.00) 0.23 (1.57) 0.83 (0.95) 0.73 (0.92)

Large win—hit 1.39 (1.59) −0.06 (2.56) 0.81 (0.78) 0.69 (1.12)

Large win—miss 0.69 (1.14) 0.87 (2.06) 1.09 (1.09) 0.87 (0.92)

Large win—hit 2.19 (1.25) 1.64 (2.59) 1.40 (0.98) 0.69 (1.44)

Large win—miss 1.37 (1.12) 0.70 (2.07) 0.71 (0.74) 0.45 (1.07)

Group mean values and their standard deviation in brackets.

Frontoinsular cortex, FIC; Anterior cingulate cortex, ACC.

findings provide a cortical correlate of “loss aversion,” by which
individuals exhibit increased sensitivity for loss compared to gain
(Tversky and Kahneman, 1979). Previous behavioral evidence
suggests that this phenomenon is reduced in individuals with
schizophrenia (Tremeau et al., 2008), representing a failure in the
integration of affective and cognitive systems. Thus, while the
current data highlight a finely-tuned aspect of SN function, it
appears that the FIC does not act as the physiological substrate for
the loss-aversion deficits previously observed in individuals with
schizophrenia. Nevertheless, these findings of enhanced FIC sen-
sitivity to negative events are broadly concordant with previous
observations that right AI is influential in processing emotionally

negative stimuli, such as those evoking feelings of disgust (Phillips
et al., 1997).

The responses of the FIC component at trial outcome were
consistently smaller in individuals with schizophrenia as com-
pared to healthy individuals, as was demonstrated by the main
effect of group in the repeated-measures ANOVA. This finding
demonstrates that activity at this time was less tightly linked to
the environmental stimuli in these individuals. While this is in
itself noteworthy, the importance of this finding is magnified by
the concomitant observations that contrasting features of FIC
activity remain unchanged in the disorder. Despite the between-
group differences in SN task modulation, voxel-wise comparison
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revealed no significant between-group difference in amplitude
of SN expression over the dataset. This result suggests that the
SN is similarly active in schizophrenia and that this network is
similarly coherent in the disorder, thus acting as an integrated
system (as reported by Woodward et al., 2011), despite exhibiting
attenuated task-related responses in schizophrenia. In summary,

Table 6 | Modulation of frontoinsular cortex component activity by

task.

Effect/interaction F -value P-value

V 0.037 0.848

S 1.282 0.266

P 2.467 0.126

G 4.820 0.036

V × S 11.353 0.002

V × P 0.112 0.740

V × G 0.082 0.776

S × P 2.092 0.158

S × G 0.263 0.612

P × G 1.099 0.302

V × S × P 0.584 0.450

V × S × G 0.356 0.555

V × P × G 0.175 0.679

S × P × G 4.280 0.047

V × S × P × G 0.025 0.876

Valence, V; Salience, S; Performance, P; Group, G.

these data suggest that the SN is dysregulated in schizophre-
nia rather than attenuated per se. This work, similarly to EEG
reports of increased background oscillatory activity in the face of
decreased event-related activity (Winterer et al., 2004), therefore
provides evidence of a generalized failure to appropriately recruit
task-relevant brain structures in schizophrenia. Unconventional
recruitment of SN structures has particular clinical relevance in
light of the putative consequences of this aberrance in the forma-
tion and shaping of thoughts. According to the aberrant salience
hypothesis of psychotic illness (Kapur, 2003; Kapur et al., 2005),
salience attribution is not only diminished for events to which
salience is usually attributed, but also increased for events to
which salience would not normally be assigned. This paper there-
fore adds a useful extension to the sizeable literature reporting
diminished responses during reward (and more generally during
salience processing) in regions including FIC and ventral striatum
(for review, see Heinz and Schlagenhauf, 2010).

Our results relating to SN activity in ACC are less clear—no
main effects or between-factor interactions were significant—but
nevertheless raise important methodological issues related to the
study of brain networks using ICA. The best-fit ACC component
exhibited a GOF of 1.38 with the dACC mask. This value is at
the 17th percentile and as such would not permit rejection of
the null hypothesis (that the component does not significantly
fit the mask) according to conventional statistical thresholds.
Nevertheless, this component’s global maximal positive loadings
were in ACC and its significant positive clusters were limited to
ACC and IFG. From this perspective, it can be validly adjudged
a reasonable ACC component, albeit one whose ACC focus was

FIGURE 8 | Anterior cingulate cortex component activity at trial outcome. Condition-specific beta coefficients are shown, with blue and black bars
denoting hit and miss trials, respectively. Error bars denote standard error of the mean.
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Table 7 | Modulation of anterior cingulate cortex component activity

by task.

Effect/interaction F -value P-value

V 0.188 0.667

S 0.176 0.678

P 0.073 0.789

G 1.299 0.263

V × S 0.008 0.929

V × P 0.797 0.379

V × G 0.130 0.721

S × P 3.37 0.077

S × G 0.537 0.469

P × G 0.290 0.594

V × S × P 3.247 0.081

V × S × G 0.527 0.473

V × P × G 0.027 0.869

S × P × G 1.055 0.312

V × S × P × G 0.131 0.720

Valence, V; Salience, S; Performance, P; Group, G.

more ventral than is conventional for the SN, given its extension
into subgenual regions. The use of objective measures such as the
GOF index (Greicius et al., 2004; Petrella et al., 2011) to identify
components is preferential to visual inspection but is not with-
out potential pitfall. Lability of distributed large-scale networks
should be expected in view of variability of contemporaneous
task demands and the psychological processes exercised. On these
grounds, if activity in independent networks is coordinated over
the course of an experiment they might reasonably be expected to
be amalgamated into conglomerate spatial components. Despite
the SN being initially identified by procedures such as ICA and
seed-region connectivity (Seeley et al., 2007), this problem is par-
ticularly likely for networks such as the SN, which are responsible
for processing stimuli at a fundamental level and hence likely to
be coactive with task-specific regions in numerous tasks.

Antipsychotic medication is a potentially critical confounder
of the study of reward salience systems in schizophrenia on
account of its dopaminergic mode of action. However, several
reports suggest that atypical antipsychotics have a normaliz-
ing effect on cerebral activity (for example, Lane et al., 2004).
Confounding medication effects cannot be totally discounted in

the present study; however, no significant relation was observed
between chlorpromazine equivalent dosage or medication class
and SN task modulation. While follow-up study in a drug-naïve
sample is required to explicitly discount medication confound-
ing effects, it is relevant that aberrant striatal activity during
reward processing in schizophrenia has been shown to predate
antipsychotic medication treatment (Schlagenhauf et al., 2009).

The application of GLMs to component time-courses lessens
the multiple-comparison problem inherent in mass-univariate
assessments of whole-brain activity using fMRI. However, a lim-
itation of this procedure is that it does not permit fine-tuned
regional inferences, since resultant beta coefficients relate to the
component as a whole. As such, their utility depends on the jus-
tified selection of meaningful components of activity for GLM
assessment. This criterion is met by the current analysis (in par-
ticular for the FIC component), given the spatial concordance of
the current SN components with previous characterizations of the
SN (Sridharan et al., 2008; Shirer et al., 2012).

A further limitation of this work is the employment of uneven
sample sizes between the study groups. However, it is not con-
sidered that this difference significantly contributed to the find-
ings presented. Since the healthy group sample was sufficient to
detect wide-ranging within-group effects at conventional statisti-
cal thresholds, it can be reasonably claimed that the healthy group
sample characteristics represent a realistic approximation of the
population characteristics. Furthermore, our healthy sample was
of comparable magnitude to those employed in previous fMRI
investigations of abnormal reward processing in schizophrenia
(for review, see Heinz and Schlagenhauf, 2010).

This work, in line with recent observations confirms the
importance of FIC and to a lesser degree ACC in processing salient
stimuli, and presents evidence of SN activity as a useful index of
cognitive processes such as loss aversion. SN task modulation is
more weakly apparent in schizophrenia as predicted by the con-
siderable literatures of aberrant reward and target processing in
the disorder (Kiehl and Liddle, 2001; Walter et al., 2009). The
observation that the FIC component is not significantly reduced
in amplitude in patients compared to healthy controls, when
assessed in its entirety rather than from an event-related perspec-
tive, suggests that SN activity is not simply attenuated but rather
temporally dysregulated in schizophrenia. This indirectly implies
abnormally high SN activity at other times, in line with theories
of abnormal salience attribution in the disorder.
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Functional network connectivity (FNC) is a method of analyzing the temporal relationship
of anatomical brain components, comparing the synchronicity between patient groups or
conditions. We use functional-connectivity measures between independent components
to classify between Schizophrenia patients and healthy controls during resting-state.
Connectivity is measured using a variety of graph-theoretic connectivity measures such
as graph density, average path length, and small-worldness. The Schizophrenia patients
showed significantly less clustering (transitivity) among components than healthy controls
(p < 0.05, corrected) with networks less likely to be connected, and also showed lower
small-world connectivity than healthy controls. Using only these connectivity measures,
an SVM classifier (without parameter tuning) could discriminate between Schizophrenia
patients and healthy controls with 65% accuracy, compared to 51% chance. This implies
that the global functional connectivity between resting-state networks is altered in
Schizophrenia, with networks more likely to be disconnected and behave dissimilarly
for diseased patients. We present this research finding as a tutorial using the publicly
available COBRE dataset of 146 Schizophrenia patients and healthy controls, provided as
part of the 1000 Functional Connectomes Project. We demonstrate preprocessing, using
independent component analysis (ICA) to nominate networks, computing graph-theoretic
connectivity measures, and finally using these connectivity measures to either classify
between patient groups or assess between-group differences using formal hypothesis
testing. All necessary code is provided for both running command-line FSL preprocessing,
and for computing all statistical measures and SVM classification within R. Collectively,
this work presents not just findings of diminished FNC among resting-state networks in
Schizophrenia, but also a practical connectivity tutorial.

Keywords: fMRI, classification, functional network connectivity, SVM, independent component analysis, R,

Schizophrenia, small-world

1. INTRODUCTION
Functional Magnetic Resonance Imaging (fMRI) is a four-
dimensional medical imaging modality that captures changes in
blood oxygenation over time, an indirect measure of neuronal
activation. Because fMRI scans are large, they are stored in spe-
cialized formats that make their direct access and manipulation
difficult. Statistical analyses are therefore limited to the software
the neuroscientist is able to use; pre-made routines are available
to perform general analyses such as linear models, but the tech-
niques and consequently the hypotheses that can be evaluated by
them are limited and inflexible. Analyses are dependent upon the
ability to create programs that not only can access directly subsets
of the data, but also can be tailored to unique statistical analy-
sis based on a priori hypotheses of the underlying neurological
disorders.

An increasing focus is the classification of either mental dis-
orders or states based on the fMRI signal variations within
and among brain networks. One method of accomplishing this
is through measurements of functional network connectivity
(FNC), which infers differences in temporal brain connectivity

that may depend on a disease or mental state (Biswal et al., 1995;
van de Ven et al., 2004). FNC investigates temporal connectivity
differences among either anatomical brain regions or functionally
defined networks. Herein, we present a tutorial to perform FNC
in R which can be altered easily for a unique hypothesis or dataset
(Tabelow et al., 2011; R Development Core Team, 2012).

The methods we discuss here closely follows those pre-
sented in Anderson et al. (2010), which describes in full
the motivation for, and findings of, using brain connectiv-
ity measures to classify between Schizophrenia patients and
normal controls during rest. We demonstrate this procedure
on a recently released dataset, publicly available for download
at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html and
studied previously in Calhoun et al. (2011), Hanlon et al. (2011),
Mayer et al. (2012). This dataset, which we will refer to as the
COBRE data, consists of 72 patients with Schizophrenia and 74
healthy controls, ranging in age from 18 to 65 years old. A full
demographic table is provided in Table 1.

The code contained in this article is available through the
Neuroimaging Informatics Tools and Resources Clearinghouse
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Table 1 | COBRE FCON-1000 data demographics.

N Age (SD) % Female % Right-Handed

Schizophrenia 72 38.16 (13.89) 0.19 0.83

Patients 74 35.82 (11.58) 0.31 0.96

(NITRC) at http://www.nitrc.org/projects/fmriclassify/. NITRC
is an NIH-sponsored project to categorize, compare, rate and
distribute software and data, created by and for neuroimaging
researchers. It contains both stand-alone programs and code snip-
pets such as this project. Its usefulness is quite evident given
the redundancies in research, where many labs develop indepen-
dently routines to perform similar analysis techniques such as
functional connectivity analysis. It is also useful for determin-
ing reproducibility, as users can test another’s analysis on their
own data to see if similar results are reached. This is particularly
appropriate in fMRI analysis, where conclusions are often reached
on quite small sample sizes since data are costly and difficult to
obtain. The reader is encouraged to download and modify this
code snippet from the NITRC website.

We demonstrate this analysis using preprocessing in FSL,
which performs brain extraction [bet (Smith, 2002)] to remove
non-brain tissue, motion-correction mcflirt (Jenkinson et al.,
2002) to correct for subject movement within the scan, and
ICA using melodic (Smith et al., 2004) with automatic com-
ponent estimation. A full FSL tutorial is available at http://
http://fsl.fmrib.ox.ac.uk/fslcourse/. We use independent compo-
nent analysis (ICA) to identify networks within each patient and
calculate properties of their temporal-connectivity, demonstrat-
ing this within FSL, implemented as “MELODIC”, and within R.
Using packages vegan (Oksanen et al., 2011) and AnalyzeFMRI
(Bordier et al., 2009), we extract possible neurological networks
and define distances among them as functional connectivity mea-
sures. This distance matrix is then converted into a graph struc-
ture, and properties of these connectivity graphs are computed
using igraph (Csardi and Nepusz, 2006). We use this connec-
tivity for classification with the Support Vector Machines (SVM)
algorithm in the package e1071 (Dimitriadou et al., 2010).

Because this analysis is heavily computational, we also demon-
strate how to perform this same process in parallel using the
package parallel (R Development Core Team, 2012). The ability
to code this in R with minimal function calls, or changing of the
original code, allows users to implement and test computation-
ally intensive analyses efficiently and simply. Parallel computing
is a specialized topic, and many researchers are uninterested in
learning methods such as MPI to implement their analyses, as
troubleshooting can often take as long as the time saved by run-
ning in parallel. Because of this, we demonstrate calling fork
clusters within R to perform parallel analysis, without making
major revisions to the code already created to run in serial. This
supplementary section is listed in the Appendix. We additionally
demonstrate in the Appendix using R to access fMRI data, includ-
ing how to perform ICA using the package AnalyzefMRI (Bordier
et al., 2009).

We begin with a description of our approach, and follow with
an applications section where we provide and discuss the code

necessary to accomplish these methods. In this tutorial we assume
the reader has no specific knowledge of R, but does have gen-
eral knowledge of basic programming techniques. An R tutorial is
available at http://cran.r-project.org/doc/manuals/R-intro.html.
We hard-code as little as possible to ensure minimal changes
for a new users’ analysis. As this analysis focuses on connec-
tivity within subjects, spatial alignment across subjects is not
necessary, although procedures such as motion correction and
temporal filtering may be performed beforehand if desired. The
AnalyzeFMRI, vegan, igraph, and e1071 packages are used along
with their dependencies, and must be pre-installed. These pack-
ages are available at http://cran.r-project.org/web/packages. The
package parallel is a base package installed already within the
latest R release. As the bulk of this code is constructed to clas-
sify between distance matrices, these routines can be adapted
easily for a region of interest (ROI) analysis where distances
are sought not between independent components, but instead
between ROIs. More generally, these methods are applicable to
longitudinal data analysis where the temporal correlations among
units are indicative of a state or condition. Collectively, this arti-
cle demonstrates code that can be adapted easily to new data for
determining if functional connectivity differences exist between
groups of fMRI scans, and is meant to serve as a bridge between
neuroscientists interested in performing their own connectiv-
ity/classification analysis, and statisticians interested in seeing
these methods applied to real-world data.

2. BACKGROUND
2.1. OVERVIEW OF fMRI
Function magnetic resonance imaging is a modality that mea-
sures brain activity over time. The fMRI Blood Oxygen Level
Dependent (BOLD) signal is an indirect reflection of neuronal
activity captured during an fMRI scan, and analysis is per-
formed under the assumption that neuronal activity coincides
with increased blood flow. The blood flow increase in response to
neuronal activity is known as the hemodynamic response (Kim
et al., 1999). When activation occurs within a region, oxygenated
hemoglobin flows to that area to increase the local oxygen con-
centration. Deoxyhemoglobin has a faster MR signal decay rate
(T2∗) than oxyhemoglobin (Cohen and Bookheimer, 1994), so
the signal from well-oxygenated regions results in a stronger MR
signal intensity than areas lacking the increased blood flow. Areas
with increased neuronal activity therefore give off a greater MRI
signal, which indicates potential neural activity.

The four-dimensional fMRI picture can be used to discover
anatomical regions specific to certain tasks such as language pro-
cessing (Bookheimer, 2002), face recognition (Gauthier et al.,
1999), or even to diagnose regional impairment specific to cogni-
tive disorders such as Alzheimers disease, traumatic brain injury
(TBI), or schizophrenia (Ford et al., 2003; Anderson et al., 2010).
Such studies typically analyze regional blood flow to establish
areas active during a task, or to compare regional blood oxygena-
tion levels between two groups, such as Alzheimer’s patients and
normal controls, to find localized variation that could be the cause
of cognitive impairment.

FNC is used to test the hypotheses that synchronicity across
anatomically-defined brain regions or functionally-hypothesized
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networks are different, because of age, disease, or the task being
performed. Connectivity differences are thought to underly many
disorders such as autism (Koshino et al., 2005) and schizophre-

been used to explore directed influences between neuronal pop-
ulations in fMRI data (Roebroeck et al., 2005) using Granger
causality, and to examine differences between schizophrenia
patients compared to normal controls (Garrity et al., 2007; Jafri
et al., 2008; Anderson et al., 2010; Yu et al., 2011) using cross-
correlation measures. Within Schizophrenia, disrupted small-
world properties were found compared to healthy controls among
90 cortical and subcortical regions (Liu et al., 2008). Increased
regional functional connectivity in the 0.06–0.125 Hz interval
were found in Schizophrenia, along with decreased strength by
Bassett et al. (2008). Within the default mode network, abnor-
mally high functional connectivity and altered temporal fre-
quency have been found (Garrity et al., 2007; Whitfield-Gabrieli
et al., 2009). Schizophrenia patients had higher correlations
among seven selected resting-state networks than healthy controls
(Jafri et al., 2008), and different topological measures were found
between resting-state networks identified by group-ICA (Yu et al.,
2011). Collectively, these works and others propose that within
Schizophrenia, functional connectivity measures can be used to
identify traits that are characteristic of the disease itself.

Because connectivity depends on how networks or regions
are defined, and how the graphical properties of regions may be
measured (Toppi et al., 2012; Zalesky et al., 2012), it is vital for
researchers to be able to tailor connectivity analysis to their own
data, to allow pre-existing knowledge or certain hypothesis to be
tested. For example, Sato et al. (2010), implemented functional
connectivity analysis among regions of interest, while Chu et al.
(2011), analyzed connectivity among individual voxels. Similarly,
Yu et al. (2011) analyzed FNC among group-ICA components,
while we analyzed FNC among within-subject ICA components
(Anderson et al., 2010).

2.2. fMRI CLASSIFICATION
The primary challenge of fMRI classification is the abundance of
observations within a single scan, many of which are correlated
strongly both in space and time. Although many of these voxels
will be empty, they are not systematically empty across subjects
as a result of differences in brain size and shape. Because many of
these datapoints are redundant, dimension reduction techniques
are used by creating statistical summaries of individual voxels
(t-tests, correlation tests), isolating “regions of interests” (ROI)
or neural hotspots on which discrimination could be performed,
or implementing classical dimension reduction methods such as
principal components analysis (PCA) to decompose the entire
scan into orthogonal signal sources over time. Newer methods
such as ICA (Hyvärinen and Oja, 2000) and Sparse Component
Analysis (Georgiev et al., 2005) mimic the approach of PCA into
decomposing the scan into a limited number of spatial networks
operating over time, but alternatively impose assumptions such
as statistical independence or sparsity to estimate the underlying
signal sources.

Once the dimension reduction and feature extraction steps
are complete, the reduced data are fed into classifiers such as

SVM, random forests, and boosting algorithms. These classi-
fication techniques have been used previously to discriminate
between Positron Emission Tomography (PET) scans of HIV
positive and healthy individuals (Liow et al., 2000), to detect
deceptive individuals within a group using fMRI (Lee et al., 2002;
Fan et al., 2006), to separate drug-addicted patients from healthy
controls using fMRI scans (Zhang and Samaras, 2005), and to
discriminate between patients with Alzheimer’s, schizophrenia,
and TBI and healthy controls using fMRI scans (Ford et al.,
2003).

In “leave one out” cross-validation, these classifiers often
achieve around 90% accuracy, but because methods are con-
structed uniquely for each dataset they are difficult to validate
across different patient groups, or even within the same patient
group but with a new population. These studies are often per-
formed on excessively small samples (n ≈ 20). The reproducibil-
ity of such findings are often unverified, leaving open the criticism
that superior classification accuracy is due to mere chance or
model-mining, instead of underlying functional or anatomical
differences between patient groups. It can be difficult to pool data
taken across laboratories, because the scan parameters, resolu-
tion, and imaging sequences would have to be nearly equivalent.
Because of this, the ability to evaluate models on different datasets
would increase confidence in results, since the models acting on
the same patient group should produce identical results, holding
the scan environment constant.

2.3. R FOR fMRI
The R platform has important benefits for fMRI analyses because
of its availability and functionality. R is free and open source, so
licensing costs for research are not prohibitive and any researcher
is able to install it easily. Because of this, sharing code to vali-
date methods and reproduce findings is quite simple. R contains
thousands of packages that can perform cutting-edge statistical
and machine learning techniques; analyses and hypothesis are not
limited by the available models. R allows the user direct con-
tact with their data, with routines for fMRI that can efficiently
extract single timeseries, volumes, or planes. This is of particu-
lar value because fMRI scans are encoded in specialized formats
(ANALYZE or NIfTI) that are otherwise unaccessible. The ability
to access directly the data combined with the high-level statistical
methods available within the general R framework allows the user
to construct his own methods unique to his hypothesis.

Finally, R contains packages to implement specifically fMRI
analysis. There are routines pre-built into R for fMRI that can
perform methods such as mixed effects analysis 3dMEMA (Chen
et al., 2010, 2012) to estimate the effect, which is implemented
indirectly in R by sourcing through AFNI (http://afni.nimh.

nih.gov/sscc/gangc/MEMA.html). The bread and butter of fMRI
analysis, the general linear models (GLM) can be implemented
in the package fmri (Polzehl and Tabelow, 2007), Bayesian multi-
level modeling analysis in cudaBayesreg (Ferreira da Silva, 2011)
and Granger Causality and structural equation modeling in
FIAR (Roelstraete and Rosseel, 2011). Functional connectivity
analysis also can be performed using the package brainwaver,
where ROIs are analyzed for connectivity using wavelet analysis,
and connections are trimmed with a hypothesis test (Achard
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et al., 2006). We refer the reader to a presentation at the use-
R! 2010 conference for a description of packages and options
in R for fMRI analyses, at http://www.r-project.org/conferences/
useR-2010/slides/Chen+Saad+Cox.pdf. Some packages require
installing the most recent versions of gfortran and tcltk
available for MacOS at http://cran.r-project.org/bin/macosx/
tools/.

3. METHODS
In this section, we cover the specific methods used for FNC
and fMRI classification presented in this paper. We first use the
ICA dimension-reduction technique to decompose each scan into
a set of spatial brain networks being modulated over time by
associated timecourses. We then create functional connectivity
matrices, by measuring the longitudinal correlations of the time-
courses for each network. Next, each matrix is converted into a
graph structure, and the connectivity properties of each graph are
measured. Finally, these connectivity properties are used as fea-
tures for an SVM classifier. We additionally use a t-test to evaluate
whether the small-world connectivity of ICA networks is different
between Schizophrenia patients and healthy controls. A flowchart
depicting this process is shown in Figure 1.

3.1. ICA FOR fMRI
As fMRI is composed of recordings that are highly-redundant in
both space and time, it is desirable to extract meaningful features
prior to classification. This serves two purposes. Firstly, it lowers
the noise by essentially tossing out signals that have no common-
ality with other signals. This is based on the assumption that noise
is independent across observations; a signal seen only in a single
location is more likely to be noise than a signal observed con-
sistently throughout the brain. Secondly, reducing the scan to a
manageable number of consistent signals reduces the tendency

FIGURE 1 | Functional network connectivity (FNC) and classification:

the first step in FNC is to define the scale of connectivity to observe.

In this case, we use whole-brain networks obtained from ICA, but this
analysis also can be implemented on the region-of-interest or the voxel
scale. The connectivity is defined and measured to identify differences
between either groups or conditions.

of overfitting in the classification process. The classification com-
plexity is a function of the number of dimensions (features).

Although there are many methods of extracting common sig-
nals across the brain, ICA in particular has gained popularity
in fMRI. It can isolate networks corresponding to neurological
activity, as well as motion artifacts, where signals that operate
most strongly on the peripheral regions along the scalp are taken
to be motion. ICA has been validated through bootstrapping
and clustering methods, identifying components that exist across
subjects and scans that correspond to functionally identifiable
brain networks (McKeown et al., 2003; Anderson et al., 2011).
In this implementation we run ICA within subjects, rather than
implementing a group-ICA which would have identified common
networks across all subjects. This is based upon the hypothe-
sis that there are a different set of networks operating within
Schizophrenia, and assuming that the same exact networks oper-
ate within both patient groups would dampen any between-group
differences.

Under the hypothesis that the activity of the brain is con-
structed of anatomical networks acting together to produce
meaningful psychobehavioral cognitive states, the aggregate activ-
ity is decomposed into subcomponents in ICA. Prior to this, space
is “unrolled” where the four dimensional scan (3 dimensions of
space, 1 of time) are transformed into a matrix of dimension space
by time, so that a scan array of dimension (X, Y, Z, T) would
become a matrix of dimension (T, X∗Y∗Z). An fMRI scan of time
length T and spatial dimension S and can be expressed as a lin-
ear combination of M < T components and the corresponding
timeseries:

Xts =
M∑

μ= 1

AtμCμs

where Xts represents the raw scan intensity at timepoint t ≤ T and
spatial location s ≤ S, Atμ is the amplitude of component μ at
time t, and Cμs is the spatial magnitude for component μ at spa-
tial location s. An example of a spatial map output by R is shown
in Figure 2.

The components c are estimated to be statistically indepen-
dent as possible by solving instead the inverse problem via the
FAST-ICA algorithm. To estimate the signal sources c in x = Ac,
the inverse problem of y = w′x is solved where w is a row of
A−1, or the inverse of the mixing matrix. Then y = w′x ⇒ y =
w′Ac. Substituting z = A′w, y = z′c. W is optimized such that
y = w′x = z′c is as non-Gaussian as possible, leading to even
less Gaussian sources c because of the Central Limit Theorem.
Maximizing the kurtosis, minimizing the entropy, and maximiz-
ing the negentropy over w are all methods of finding the least
Gaussian y = w′x = z′c.

Negentropy = J(y) = H(yGauss) − H(y)

H(y) = −
∑

i

P(y = ai)log[P(y = ai)]

In the continuous case this becomes

H(y) = −
∫

f (y)log(f (y dy
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FIGURE 2 | Spatial map produced by independent components analysis within R. Each component is a set of spatially weighted regions modulated by
the time course. The total longitudinal contribution of a component to the activity observed is the spatial map multiplied by the timecourse.

By default R and FSL use FAST-ICA. The default parameter set-
ting in R is for parallel extraction, and also includes temporal
normalization, 1000 maximum iterations for the algorithm using
negentropy: G(u) = 1

α
log

[
cosh(αu)

]
where α ∈ [1, 2] is the con-

stant used for the negentropy approximation. An example of a
ICA spatial map is shown in Figure 2.

We implement here spatial ICA the only option in FSL, which
sought statistical independence of the spatial maps. We alterna-
tively could have implemented temporal ICA, which would have
maximized independence of the time-courses. A presentation of
this using the AnalyzeFMRI, and a demonstration of how to
implement temporal ICA within R using the AnalyzeFMRI is
provided in (Bordier et al., 2011). We allowed the number of com-
ponents to be determined within the data following (Allen et al.,
2011).

3.2. CREATING FUNCTIONAL CONNECTIVITY MATRICES
A temporal interaction plot for a schizophrenia patient and a nor-
mal control is shown in Figure 3, showing the joint longitudinal
activity by two components within each subject, (Aμ1 , Aμ2 ). Since
graphical interpretation is subjective, a fixed measure of this joint
activity is established by computing a correlation-based distance

metric. The distance function is a transformation of the maximal
absolute cross-correlation between two timeseries. This computa-
tion is done for each possible pair of components within a subject,
thus transforming the original fMRI scan into a matrix. This is a
measure of the functional connectivity between components for a
given subject, but is only one of many possible metrics that can be
changed by the end user within this tutorial. This is but one exam-
ple where R allows the user to change the methods according to
the hypothesis and data being evaluated.

The cross-correlation function (CCF) between these timeseries
is calculated over a range of temporal lags. We subtract the maxi-
mal absolute cross-correlation from 1 to create a pseudo distance
measure, d(Aμi , Aμj), given by

d(Aμi , Aμj ) = 1 − max[∣∣CCF(Aμi , Aμj , l)
∣∣]

where

CCF(Aμi , Aμj , l) = E[(aμi,t+l − Aμi)(aμj,t − Aμj)]√
E[(aμi,t − Aμi )

2]E[(aμj,t − Aμj)
2]

(1)
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FIGURE 3 | Temporal activity plot of two primary components within a

subject, depicting the relationship between two components over

time. This phase space transition between pairs of components are
measured for the functional connectivity analysis, to calculate the similarity
of the components’ behavior.

FIGURE 4 | Normalized distance matrices of two subjects, where rows

and columns correspond to components within a subject and the

intensity represents the functional connectivity between those

components.

where l is the time lag separating the two timeseries Aμi

and Aμj , and Aμi is the mean of the entire timeseries Aμi =
(aμi,1, aμi,2, . . . , aμi,T). The timeseries are calculated at lags
ranging from 0 to 3 points (6 seconds), as higher lags results
in fewer time points to calculate the correlation and a more
noisy estimate, and also lacks biological plausibility given our cur-
rent understanding of neurological coupling. Within R, the lag
parameter is specified using lag.max.

The matrices by themselves are uninterpretable, since they
are merely representations of a set of connected objects. An
example of this is shown in Figure 4. Moreover, the rows and
columns of these matrices, representing unique independent
components within subjects, are themselves not comparable
across subjects. Our ultimate goal is to measure this connectiv-
ity; not only how closely connected they are, but also how it
changes with respect to patient diagnosis. For example, do all
networks interact with all other networks? Are there subgraphs
that are fragmented from the original graph? Does the number
of steps to travel among nodes differ? Are some graphs more
densely connected than others? To answer these questions, we
must convert the connectivity matrices to graph objects, so we
can use R packages designed purposefully for graph connectivity
analysis.

3.3. GRAPH CREATION AND MEASUREMENT
Each matrix represents a structure of completely connected points
on a high-dimensional manifold, where each point is an indepen-
dent component and the distance between two points measures
the similarity of their temporal activity. Every point is linked to
every other point regardless of similarity. To create graphs out
of the connectivity matrices, we prune weak connections among
points and then embed the simplified structure into a lower-
dimensional space using the ISOMAP procedure (Tenenbaum
et al., 2000). Then, we measure the graph-theoretic connectivity
to summarize the connections between resting-state networks.

3.3.1. Graph creation
Conceptually, any set of points contained in a distance matrix
of dimension d can be embedded into a space of dimension
d − 1 without any information loss (preserving all the distances
between points). Usually such a transformation assumes the space
on which the points lie is linear. This, however, may not be
the case. Consider if you were trying to measure the distance
from Sacramento, California to Shanghai, China, using only the
(x, y, z) grid coordinates of each city. The linear distance between
the cities, while calculable, would assume that the correct path
from Sacramento to Shanghai went through the core of the earth.
Instead, a more reasonable way to measure the distance would be
to travel along the flight-paths, from Sacramento to Los Angeles,
Los Angeles to Tokyo, and finally from Tokyo to Shanghai. This
method of measuring distance is known as the geodesic distance,
or path-distance among points. It assumes that travel among dis-
tant points usually requires routing through intermediate nodes,
as shown in Figure 5. It is this concept we will now use to sever
weak connections and create graphs out of the matrices.

We transform each matrix into a graph structure using an ini-
tial geodesic distance calculation implemented in the function
isomap in the library vegan. Weak ties among points are then
severed; points can be connected if they are within a certain dis-
tance, ε, of each other (|x − y| ≤ ε), or they can be connected
if they are within a set of k-nearest neighbors. The distances
are recomputed after pruning, where the distance between con-
nected points is the same as it was originally, but the new distance
between unconnected points is computed as the shortest path
through intermediary connecting nodes. Combined with multi-
dimensional scaling to obtain a coordinate system for embedding,
this procedure is called ISOMAP (Tenenbaum et al., 2000). An
example of such a graph created by a geodesic distance transfor-
mation and a multidimensional scaling embedding is shown in
Figure 6.

The two definitions of connectivity (nearest-neighbor vs. ε-
distance) can lead to different results; establishing connectivity
by ε-distance, also called edge density (sparsity), may lead to the
graph becoming fragmented, with some portions of the graph
having no connections, direct or indirect, to other subgraphs.
This would be caused by some point(s) being too distant to oth-
ers to maintain a connection with the main graph. This is an
instance where the a priori knowledge about the disease may
inform the parameter choices of the methods. In diseases such
as Schizophrenia or autism, a hypothesis of disconnectivity may
be tested directly by computing, for example, the fragmentation
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FIGURE 5 | Geodesic distance calculation. The distance between A and
C is calculated as the manifold path distance from A to B to C, instead of
the direct path from A to C. This eliminates the assumption that the points
occupy a linear space when using a Euclidean distance.

FIGURE 6 | Graphs representing connectivity of two subjects, obtained

by converting the distance matrices for each subject into a structure

where each node represents a component, and the distance between

nodes represents the connectivity or similarity of their behaviors.

Nodes close together demonstrate a higher functional connectivity
measure. This map is obtained by recalculating the connectivity matrices
using geodesic distances, and then embedding the points in a two
dimensional space for plotting. Dim 1 and Dim 2 represent the weightings
on the two primary dimensions, similar to multi-dimensional scaling.

rate of the patients versus controls. By allowing the user to choose
these parameters within R, specific theories of neuropathology
may be tested.

We threshold points as being connected using a modified near-
est neighbor method. We select the k-nearest neighbors of all
nodes to be connected by defining k as 10% of total compo-
nents for that subject, or 2, whichever is greater. This enforces the
graph be completely connected, unlike the edge density method.
We select this parameter choice because we are using weighted
graphs; edge density methods typically binarize the adjacency
matrix by assigning weights above a given threshold a unit value,
and a zero value to all below such as in Rubinov and Sporns
(2010). Since we are using weighted graphs, we allow sufficiently

“close” points to retain their given weights, and prune all other
points which are not sufficiently close. This parameter could be
investigated further, but because we are using these metrics for
performing classification then optimizing the adjacency pruning
method would lead to biased estimates of the accuracy.

3.3.2. Graph measurement
At this point, each brain scan has been transformed into a graph-
ical structure, where each node represents a brain network and
the connectivity between nodes represents the similarity in the
activity of these networks. Each graph can then be summarized
by its connectivity properties. There are many such measure-
ments available within R within the package igraph. A tutorial by
Gabor Csardi on Network Analysis with the package igraph is at
http://igraph.sourceforge.net/igraphbook/. A description of net-
work measures of brain connectivity is available at Rubinov and
Sporns (2010), which describes in detail the graph-theoretic mea-
sures discussed only briefly here, and additionally describes other
connectivity measures such as modularity. An additional connec-
tivity measure which we used in a previous study to discriminate
between Schizophrenia patients and healthy controls (Anderson
et al., 2010) is the “eigenvector centrality,” which can be computed
here using the command eigen(d)$values.

Creating graphs out of each matrix using a non-linear dis-
tance metric such as the geodesic distance not only allows for a
more efficient low-dimensional projection of the matrix, but also
encourages the graph to be connected more efficiently by trim-
ming poor connections while maintaining stronger ones. This
fragmentation allows us to determine how many strong connec-
tions are within the subject, how many subnetworks (subgraphs)
exist, what the sizes of these subnetworks are, and how effi-
ciently the points are connected overall. These properties, all
interrelated, give quantitative measurements of the connectivity
that can be used to fingerprint the networking differences asso-
ciated with different disorders. These individual metrics can be
compared directly between groups if multiple comparisons are
adjusted for.

Some of these available measures within igraph are:

• Average path length: average path length between all connected
vertices.

• Clique number: number of elements in the largest subgraph.
• Graph density: ratio of the number of edges to the number of

possible edges.
• Edge connectivity (also called graph adhesion): minimum

number of edges needed to obtain a graph which is not strongly
connected.

• Median closeness: median number of steps required to access
every other vertex from a given vertex.

• Median Degree: median number of edges incident to a vertex,
with loops being counted twice.

• Vertex Count: number of Vertices in the graph.
• Edge count: number of Edges in the graph.
• Maximum degree: maximum number of edges incident to a

vertex, with loops being counted twice.
• Transitivity: probability that two vertices are connected. This is

also called the clustering coefficient.
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We use two of these measures to compute the small-world
property generated by the Erdős-Renyi game (Erdős and Rényi,
1961). Alternative methods of computing this are presented by
Rubinov and Sporns (2010). The small-world measure σ is com-
puted as

σ = γ

λ

where γ is the ratio of the clustering coefficient of the real network
to the mean of the clustering coefficient of n random networks
with an equivalent number of edges and weights as the real
(data-derived) network but randomly rewired. λ is the similar
to γ but uses characteristic path length. The variable n is usually
somewhere between 500 and 5000. Typically, biological networks
have:

• γ >> 1, i.e., greater local clustering than a random network
• λ ≈ 1, i.e., similar characteristic path length to a random

network

Any network with σ >> 1 is considered to be “small world”
(Humphries and Gurney, 2008).

3.4. CLASSIFICATION USING SVM
We have transformed each subject’s fMRI scan into a graph, where
the nodes of the graph represent functional networks and the dis-
tances between nodes represents the similarity of the activity of
the nodes. We have measured the connectivity of these graphs,
or the FNC. We now wish to use these connectivity features for
classification. R has an immense number of libraries available for
classification. Packages are continually being added that imple-
ment new machine learning algorithms, and packages for specific
algorithms can be found at http://www.rseek.org. In this paper
we use the basic SVM algorithm, included in the package e1071.

The SVM algorithm attempts to find a hyperplane that best
separates different classes, using only the points contained in the

margin (or region of overlap.) For a set of points (xi, yi) where
(xi) ∈ Rn is the set of graph measurements for the graph Gi cor-
responding to subject i, a member of class yi ∈ (−1, 1) (patient
or control), SVM will learn the hyperplane which best divides the
classes (−1, 1). If a hyperplane is modeled by w · xi − b where
w are the vectors normal to the hyperplanes, the parallel hyper-
planes separating the observations can be defined by w · xi − b ≥
1 for yi = 1 and w · xi − b ≤ −1 for yi = −1. The optimization
problem becomes to maximize the distance between planes, 2

‖w‖ ,
such that yi(w · xi − b) ≥ 1

Using the graph properties (path length, clique number,
etc...) as features, we can then perform classification between
schizophrenia patients and healthy controls.

4. APPLICATIONS
4.1. PREPROCESSING AND COMPONENT EXTRACTION IN FSL
Our first step was to perform motion correction and skull-
stripping on the fMRI data, and to run ICA within each scan
to extract the networks of interest. We specifically use automatic
component estimation in FSL because our previous research has
suggested differences in the number of independent components
for Schizophrenia patients and healthy controls. An example of an
ICA map produced by FSL is shown in Figure 7.

Assuming the COBRE data has been downloaded and
installed, then we can run FSL from the command line to pro-
cess all scans, which includes motion correction, skull-stripping,
smoothing with a 6 mm filter, high-filtering at 100 Hz, and
finally running Melodic with automatic component estimation
within each subject. This script is tailored to the COBRE data,
and requires that the variable STUDY_DIR be changed for the
users’ specific path. Following this script the melodic_mix files
containing the patients’ ICA timecourses will all be located
in the folder ./COBRE/COBRE_MELODIC. To create a sim-
ilar script for a new dataset, one can simply run Melodic
from the GUI, and copy the command-line input from the
log file.

#!/bin/sh
# Subject directories (Change Me)
STUDY_DIR="/u/home/of/my/COBRE";
#############
# CONSTANTS #
#############
subjects="0040000 0040005 0040010 0040015 0040020 0040025 0040030 0040035 0040040
0040045 0040050 0040055 0040060 0040065 0040070 0040075 0040080 0040085 0040090

FIGURE 7 | Spatial map produced by independent components analysis in FSL.
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0040095 0040100 0040105 0040110 0040115 0040120 0040125 0040130 0040135 0040140
0040145 0040001 0040006 0040011 0040016 0040021 0040026 0040031 0040036 0040041
0040046 0040051 0040056 0040061 0040066 0040071 0040076 0040081 0040086 0040091
0040096 0040101 0040106 0040111 0040116 0040121 0040126 0040131 0040136 0040141
0040146 0040002 0040007 0040012 0040017 0040022 0040027 0040032 0040037 0040042
0040047 0040052 0040057 0040062 0040067 0040072 0040077 0040082 0040087 0040092
0040097 0040102 0040107 0040112 0040117 0040122 0040127 0040132 0040137 0040142
0040147 0040003 0040008 0040013 0040018 0040023 0040028 0040033 0040038 0040043
0040048 0040053 0040058 0040063 0040068 0040073 0040078 0040083 0040088 0040093
0040098 0040103 0040108 0040113 0040118 0040123 0040128 0040133 0040138 0040143
0040004 0040009 0040014 0040019 0040024 0040029 0040034 0040039 0040044 0040049
0040054 0040059 0040064 0040069 0040074 0040079 0040084 0040089 0040094 0040099
0040104 0040109 0040114 0040119 0040124 0040129 0040134 0040139 0040144";

umask 0002;
######################
# PROCESSING COMMANDS #
######################

# Change to STUDY_DIR
cd $STUDY_DIR;
mkdir COBRE_MELODIC

# Loop through subjects
for i in $subjects; do

if [ ! -f "$STUDY_DIR/COBRE_MELODIC/${i}_melodic_mix_new" ]; then
cd $STUDY_DIR/${i}/session_1/rest_1
rm -r *.ica*
rm rest_mcf*

rm prefiltered*
rm filtered*
mcflirt -in rest.nii.gz -out prefiltered_func_data_mcf -mats -rmsrel -rmsabs
fslmaths prefiltered_func_data_mcf -Tmean mean_func
bet2 mean_func mask -f 0.3 -n -m; immv mask_mask mask
fslmaths prefiltered_func_data_mcf -mas mask prefiltered_func_data_bet
fslstats prefiltered_func_data_bet -p 2 -p 98
fslmaths prefiltered_func_data_bet -thr 100.8095459 -Tmin -bin mask -odt char
fslstats prefiltered_func_data_mcf -k mask -p 50
fslmaths mask -dilF mask
fslmaths prefiltered_func_data_mcf -mas mask prefiltered_func_data_thresh
fslmaths prefiltered_func_data_thresh -Tmean mean_func
susan prefiltered_func_data_thresh 614.340225 2.12314225053 3 1 1

mean_func 614.340225 prefiltered_func_data_smooth
fslmaths prefiltered_func_data_smooth -mas mask prefiltered_func_data_smooth
fslmaths prefiltered_func_data_smooth -mul 12.2082189881 prefiltered_func_

data_intnorm
fslmaths prefiltered_func_data_intnorm -bptf 25.0 -1 prefiltered_func_

data_tempfilt
fslmaths prefiltered_func_data_tempfilt filtered_func_data
fslmaths filtered_func_data -Tmean mean_func
melodic -i filtered_func_data --nobet --bgthreshold=3 --tr=2.0000000000 -d 0

--mmthresh=0.5
cp filtered_func_data.ica/melodic_mix

$STUDY_DIR/COBRE_MELODIC/${i}_melodic_mix_new
fi
done #END "Loop through subjects..."
echo "Processing complete.";

Frontiers in Human Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 520 | 277

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Anderson and Cohen Small-world fMRI analysis and classification in schizophrenia

4.2. GRAPH CREATION AND MEASUREMENT IN R
4.2.1. Computing functional network connectivity using lagged

correlations
FNC requires breaking down the original temporal scans into a
series of units modulated by time-series, where the correlations
of the timeseries determines their similarity. We begin by calling
the necessary libraries for this analysis:

> library(igraph)
> library(vegan)
> library(e1071)

For the COBRE data we can create the list of filenames using:

> setwd("/path/to/my/directory")
> filenames <-

dir (pattern="melodic_mix_new")

Otherwise, we can read in the filenames from a text document
using the scan() command.

With FSL the number of ICA components was determined
uniquely for each subject. We first determine the number of
components within each file to store within the vector, s.

> num_subjects <- length(filenames)
> s <- c(rep(0,num_subjects))
> for (i in 1:num_subjects)
{ s[i] <- dim((read.table(as.character

(filenames[i]))))[2] }

We next read in each melodic_mix file and use these to cre-
ate a distance matrix. We define the distance matrix as the
maximal normed cross-correlation for a lag distance of 3. The
distance between the timeseries for each component is calcu-
lated and stored in data_array_distance. The mapply
function is used to apply the distance function to all ele-
ments in the upper-triangular part of the distance matrix,
instead of using a nested for loop to calculate each item
individually.

> data_array_distance <- array(NA, c(num_subjects, max(s), max(s)))
> for (i in 1:num_subjects)
{ ##Read in ICA results

temp <- as.matrix(read.table(as.character(filenames[i])))
for(j in 1:s[i])
{ for(k in j:s[i])

{ data_array_distance[i,k,j] <- 1-max(abs(ccf(temp[,j], temp[,k],
plot = FALSE, lag.max = 3)$acf))

data_array_distance[i,j,k] <- data_array_distance[i,k,j] }}
diag(data_array_distance[i,,]) <- 0 }

At this point the fMRI scans of each subject have been con-
verted: first by decomposing them into independent components,
and then creating a functional connectivity matrix measuring

the temporal connectivity among components within each sub-
ject. Every melodic_mix file has been converted into a functional
connectivity distance matrix.

4.2.2. Graph creation and analysis
Next, we transform each matrix into a graph structure and mea-
sure the connectivity properties of each graphs. We first use the
ISOMAP embedding algorithm to compute the distances among
elements using the geodesic framework, and prune weak connec-
tions with package vegan. We then create a graph structure whose
connectivity can be measured using functions in igraph. Because
the data type output in vegan is different than the type needed
for igraph, we create an internal conversion function named
makegraph. This graphical structure uses weighted edges in a
dissimilarity matrix, where ‘0’ indicates that two points are not
connected. Because of this, we use the inverse of the distance
to define the weights between two vertices when the ISOMAP
algorithm has computed they are connected.

> makegraph <- function(my_iso)
{ ##dim is dimension of matrix

my_dist <- as.matrix(dist(my_iso
$points[]))

k <- dim(my_dist)[1]
my_net <- matrix(0, nrow = k,

ncol = k)
which.rows <- my_iso$net[,1]
which.cols <- my_iso$net[,2]
for(j in 1:length(which.rows))
{ my_net[which.rows[j],

which.cols[j]]
<- 1/my_dist[which.rows[j],
which.cols[j]]

my_net[which.cols[j],
which.rows[j]]
<- 1/my_dist[which.cols[j],
which.rows[j]]

}
my_net }

We next analyze the properties of these graphs. We create a
function to calculate the coefficients γ and λ of a random graph.
This is used to compute the small worldness of the actual graph
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proposed by the data. We call this function smallworld; it
takes in 2 parameters: n = the number of vertices, and m = the
number of edges. The value γ is a transitivity measure, of the
probability that adjacent vertices are connected. This is some-
times called the clustering coefficient. This function is called later
to compute the values γ and λ later for the randomly reconnected
graph, and is averaged across 5000 random graphs. These val-
ues are used to form the ratio to calculate σ, the small-worldness
measure.

> smallworld <- function(n,m)
{ smallworld <- matrix(nrow=5000,ncol=2)

for(k in 1:5000)
{ g <- erdos.renyi.game

(n,m, type="gnm")
smallworld[k,1] <- transitivity(g)
smallworld[k,2] <- average.path.

length(g) }
colMeans(smallworld) }

We next run our geodesic-distance pruning procedure
(ISOMAP) within vegan, convert the data structure using
our function makegraph, and then measure the connec-
tivity using igraph. We compute separately the small-world
measure, σ, which is a vector output, by the routine called
my_small_worldness. We threshold points as being con-
nected using the k-nearest neighbors method.

> my_small_worldness <- matrix(NA, nrow = num_subjects, ncol = 1)
> my_feature_matrix <- matrix(NA, nrow = num_subjects, ncol = 12)
> randomsmallstore <- matrix(NA, nrow = num_subjects, ncol = 2)
> for(i in 1:num_subjects)
{ d <- matrix(data_array_distance[i,1:s[i],1:s[i]], nrow = s[i])

my_iso <- isomap(d[1:s[i],1:s[i]],axes=3, k=max(floor(s[i]/10),2), ndim = 15,
fragmentedOK=TRUE)

my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net )
transitivity(d2)
n=vcount(d2)
m = ecount(d2)
randomsmall <- smallworld(n,m)
sigma <- (transitivity(d2)/randomsmall[1])/(average.path.length(d2)/randomsmall[2])
randomsmallstore[i,] <- c(randomsmall)
my_small_worldness[i,] <- sigma
my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net, weighted = TRUE )
my_feature_matrix[i,] <-c(average.path.length(d2),clique.number(d2),graph.density(d2),

edge.connectivity(d2),median(closeness(d2)),median(graph.coreness(d2)),
max(degree(d2)),median(degree(d2)),min(degree(d2)),vcount(d2),ecount(d2),
transitivity(d2)) }

> my_feature_matrix <- cbind(my_feature_matrix,my_small_worldness)

Finally, we label the columns.

> colnames(my_feature_matrix) <- c("Average Path Length", "Clique Number","Graph Density",
"Edge Connectivity", "Median Closeness", "Median Graph Coreness","Max Degree",
"Median Degree", "Min Degree", "Vertex Count", "Edge Count","Transitivity",
"Small Worldness")

We began with functional connectivity matrices, turned each
matrix into a graph, and measured the connectivity of each graph.
We used a total of 13 connectivity measures, include the small-
world calculations. The feature vectors collectively form a feature
matrix that will be used for classification in the following section.

4.3. SVM CLASSIFICATION IN R
In this section we demonstrate SVM Classification using
the package e1071 that contains an interface to the lib-
svm C++ package by Chih-Chung Chang and Chih-Jen Lin.
The R vignette (http://cran.r-project.org/web/packages/e1071/
vignettes/svmdoc.pdf) details the functionality of this package,
which includes many other classification routines besides SVM.
The SVM method within this package has an optional bene-
fit of cross-validation, which simplifies coding dramatically by
implementing the training and testing steps within a single func-
tion call. In the following code we demonstrate classification of
our feature vector using 10-fold cross-validation, but this is an
adjustable parameter. There are many options within the svm()
method that can be specified such as kernel choices, but we use
the default parameters here (“radial basis function”) for the sake
of conciseness and clarity.

We create a vector my_cat with the response variables, in
the case the patient diagnosis of each scan. This can alternatively
be read in using the function read.table(). Because within
the COBRE data two patients were disenrolled, we exclude those
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patients from this analysis. As R read in the list of files alpha-
betically and the COBRE demographic spreadsheet has patients
entered in order of age, we reorganize the file formats to ensure
that our patient labels read in from the spreadsheet match up with
the data matrix already created.

> cobre <- read.csv
("COBRE_phenotypic_data.csv")

> cobre <- cobre[order(cobre[,1]),]
> my_cat <- cobre[,5]
> my_data_matrix <- my_feature_matrix

[my_cat!="Disenrolled",]
> my_cat <- my_cat[my_cat!="Disenrolled"]
> my_data_matrix <- cbind

(my_cat,my_data_matrix)

Finally, the library is loaded and the model is trained and tested
using 10-fold cross-validation.

> my_svm <- svm(as.factor(my_cat)~.,
data = as.data.frame(my_data_matrix),
cross=10)

> pred <- fitted(my_svm)

The structure my_svm contains many details of the model. We
can see the average cross-validation accuracy within each kth-fold
using my_svm$tot.accuracy.

4.4. HYPOTHESIS TESTING
Alternatively, we can test for between-group differences using for-
mal hypothesis testing. For example, if we wished to test the
individual metrics between patients and controls, we could do so
using:

> for(i in 2:14)
{ print(t.test(na.omit(my_data_matrix

[my_cat=="Patient",i]),
na.omit(my_data_matrix[my_cat=

="Control",i]))) }

All the computed graph-connectivity measures are correlated;
for example, a graph with a low median closeness measure would
imply that there is a short distance between two vertices, thus
increasing the transitivity. Because of this, to compare the 13 mea-
sures we would have to adjust for multiple comparisons. Using
a Bonferroni correction, only p-values below 0.05/13 = 0.0038
would be considered significant.

5. RESULTS AND DISCUSSION
We briefly present here the results of this analysis.

Patients had a significantly lower clustering coefficient
than healthy controls (p < 0.05, corrected). Lower cluster-
ing implies networks are less likely to be connected to each
other in Schizophrenia, indicating that the networks are them-
selves less synchronized and more independent of each other.
Patients had lower small-world measures of connectivity than
healthy controls, although both groups exhibited small-world

connectivity among independent components. This differ-
ence was not statistically significant when using unweighted
graphs, but was statistically significant when using weighted
graphs.

Using just the scripts provided here, our 10-fold cross-
validation accuracy is 65%, compared to a chance accuracy
of 50.7%. There are quite a number of things we could do
to improve this accuracy, which we omitted intentionally here
because they are outside the scope of this tutorial. We performed
no quality-control on this data to exclude scans with exces-
sive motion or scanner artifacts. We also took no measures to
identify and exclude ICA networks that were related to motion,
scanner noise, or physiological artifacts. We did not use any of
the demographic information (patient gender, age, etc...) which
would likely have improved accuracy, both by controlling for
functional brain changes and also by controlling for sampling
variation. For example, in this sample males were more likely to be
Schizophrenia patients than females, so knowing this information
would have permitted classification based upon this information,
which is parallel to the actual functional connectivity analysis.
Finally, we implemented only the basic SVM algorithm without
any parameter tuning, and similarly did not optimize the defi-
nition of “connectivity” among points. Connectivity definitions
have been shown previously to affect the final results, with differ-
ent thresholds for connectivity having significant effects on the
final graph-theoretic measurements (Toppi et al., 2012). Given
the simplicity of our methods, it is perhaps somewhat remarkable
that we were able to achieve the classification accuracy realized
here and significant small-world differences between patients and
controls.

6. CONCLUSION
Collectively, we have provided methods to determine whether
functional connectivity differences exist between groups, and to
demonstrate that the resting-state functional connectivity dif-
ferences in schizophrenia can be useful for automated patient
diagnosis. Functional connectivity measures can be used to
discriminate between patients and controls, and schizophrenia
patients show lowered clustering of networks than healthy con-
trols, indicating that networks within Schizophrenia are more
disconnected.

The analysis outlined here is intended to be adjusted and
altered by the end user, even those who aren’t regular users
of R. The user has flexibility in altering parameters such as
distance metrics, classification machines, and feature selection
choices. For example, another method of implementing func-
tional connectivity is through Granger causality among ROIs such
as in Sato et al. (2010), whereas this presentation implements
functional connectivity through correlations among functional
networks determined by ICA. Other distance metrics could have
been used, which would be optimal given the recent finding that
using correlation metrics to compute distance automatically leads
to non-random graphical structures (Zalesky et al., 2012). We
performed SVM classification in R, a “black-box” model which
ironically is remarkably simple to implement with a single func-
tion call to both train and test the model using cross-validation.
Because R is an established package in the statistics research
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community, many newer machine learning procedures can easily
be implemented to compare with more established classification
machines.

This analysis and tutorial is not without limitations; primar-
ily, we took no steps to identify and discard artifacts in the ICA
data, which almost certainly would have increased the classifi-
cation “accuracy” we obtained. This omission was intentional
given the intentions of this tutorial; manually identifying arti-
facts within ICA is outside the scope of this manuscript, and
other tutorials to perform to identify fMRI artifacts and clean
data further are available elsewhere. We wish here to illus-
trate how functional connectivity can be measured in a graph-
theoretic approach, and to provide a working framework for other
researchers to alter and improve. Moreover, there are scripts avail-
able at http://www.nitrc.org/plugins/mwiki/index.php/fcon1000:
ScriptUse to process this data and compute a variety of con-
nectivity measures outside of the ICA-based measures presented
here. These could be easily integrated with the methods outlined
here to measure the connectivity properties once the connectivity
matrices are established.

Although this analysis was created for analysis of fMRI data,
more generally it applies to problems where the relationship
among signal sources may determine the category to which an
object belongs. The joint behavior of the signal sources (inde-
pendent components) was observed as a graph object, where the
distances between the sources represented the similarity of their
behavior. Although second order measures were used to assess the
functional connectivity (correlations), it is possible that as much
discriminatory power exists using higher-order measurements
that take into account the cohesiveness of triplets of components,
or even more. Functional connectivity is one technique, of many,
that should be assessed from multiple angles.
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APPENDIX
R FUNCTIONS AND FEATURES TUTORIAL
We begin by calling the library AnalyzeFMRI which must be pre-installed. When installing any package within the GUI, the option of
“install dependencies” should be selected to install packages called by the main package. Once this package is installed, it is called, and
the proper directory is navigated to. The current working directory can be obtained using getwd(). This directory needs to contain
a list of scan names, filenames.txt, and the set of scans. We use here a scan produced by the FSL script supplied on the data
available for download from NITRC.

> library(AnalyzeFMRI)
> rm(list = ls())
> setwd("/path/to/my/directory")

A scan can be read directly into R, and consequently held in memory, using

> myimage <- f.read.nifti.volume("rest_mcf_brain.nii")

We can get preliminary statistics using

> summary(myimage)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 0.0000 129.0000 0.0006 1639.0000

We can access the header information using

> f.nifti.file.summary("rest_mcf_brain.nii")

File name: rest_mcf_brain.nii
Data Dimension: 4-D

X dimension: 64
Y dimension: 64
Z dimension: 33

Time dimension: 150 time points
Voxel dimensions: 3.75 x 3.75 x 4.55000019073486

Data type: (32 bits per voxel)

We can alternatively verify the dimensions of the scan using the command dim, since the image is held in memory.

> dim(myimage)
[1] 64 64 33 150

This image is stored as an array, which we can verify using

> is.array(myimage)
[1] TRUE

Functions such as f.read.nifti.volume, f.read.nifti.ts, and
f.read.nifti.slice.at.all.timepoints can allow direct access to specific pieces of data. For example, if we wanted to
access a single timeseries from the 4D scan at voxel location (30,30,10) without holding the entire scan in memory, we can do so by:

> f.read.nifti.ts("rest_mcf_brain.nii",30,30,10)

where the input parameters are the filename and the (x,y,z) coordinates of the voxel desired. We can also access this from the scan held
in memory using myimage[30,30,10,] which is noticeably faster.
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We next wish to perform ICA within R, but this is available only for Analyze format scans. We write out our scan as Analyze format
with:

> f.write.analyze(myimage,file="rest_mcf_brain")

If we wish to see all the parameter options available for ICA, we can access this using

> help(f.ica.fmri)}

We next run ICA on the example fMRI scan.

> g <- f.ica.fmri("rest_mcf_brain.img", n.comp=20, alg.type = "deflation")

This performs ICA on the scan called “rest_mcf_brain.img”, extracting 20 components and storing the results in the object
g. It is necessary to state the number of components to be extracted with the parameter ncomp. The number of components is
somewhat arbitrary; the ICA extraction is performed here using the deflation approach where components are individually estimated
and then subtracted out, so limiting the number of components theoretically should not change the structure of the components that
are extracted. We set the default value, (num_components), to 20 according to (?). Use help(f.ica.fmri) to see the full list of
options within the function

There is also the option of using a GUI to run this analysis, using the command f.ica.fmri.gui().
The object g contains several attributes:

> attributes(g)
$names
[1] "A" "S" "file" "mask"

The timeseries for the components are contained in g$A:

> dim(g$A)
[1] 150 20

The spatial maps are contained in the array g$S, the filename in g$file, and the mask (if used) in g$mask.
We can view a single component as shown in Figure 2, in this case the second of the set, by using

> f.plot.ica.fmri(g,2,cols=rainbow(100))

This image isn’t thresholded, but can be roughly thresholded by adjusting the color options within rainbow(), by changing the
number of colors to display to 3 and adjusting the saturation.

> f.plot.ica.fmri(g,2,cols=rainbow(3,alpha=.8))

We can also manually threshold using the spatial map g$S[, , ,2]. Here, we threshold the second component into the 10-th and
90-th percentile:

> g_thresholded <- g
> g_thresholded$S[,,,2][g$S[,,,2]>quantile(g$S[,,,2],probs=c(.1,.9))[2]] <- 3
> g_thresholded$S[,,,2][g$S[,,,2]<quantile(g$S[,,,2],probs=c(.1,.9))[2]] <- 2
> g_thresholded$S[,,,2][g$S[,,,2]<quantile(g$S[,,,2],probs=c(.1,.9))[1]] <- 1

The image can be written out using:

> f.write.analyze(g_thresholded$S[,,,2],file="MyThresholdedImage")

creating files called “MyThresholdedImage.img” and “MyThresholdedImage.hdr” in the working directory.
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This concludes our example of the package AnalyzefMRI. This is not an exhaustive list of the functions available in this package,
but a brief tutorial showing direct fMRI data access in R. For a full list of functions within this package, please see the manual at http://
cran.r-project.org/web/packages/AnalyzeFMRI/AnalyzeFMRI.pdf.

ICA FOR fMRI IN R USING PREPROCESSED DATA
R can also perform ICA on Analyze format scans, so we demonstrate doing this in a loop. ICA within R uses the FAST-ICA algorithm,
which is similar to FSL. This implementation will not work directly on the COBRE data since the function f.ica.fmri requires
Analyze format data and the COBRE data is NIfTI, although the FSL command fslchfiletype will convert between the two
formats. The filenames (“myfilename1.img”) are written on a text file called filenames.txt, where each line contains a separate filename.
The lines that will need to be changed for the user are as follows:

> setwd("/path/to/my/directory")
> filenames <- read.table("filenames.txt")
> filenames <- filenames[i,1]
We can alternatively create the list of filenames using:
> filenames <- dir(pattern="melodic_mix")

We then create a loop to read in our files, perform ICA on each scan using the function f.ica.fmri() within the library
AnalyzeFMRI, extract the timeseries associated with the components, and create a distance matrix for each component.

> library(AnalyzeFMRI)
> num_subjects <- dim(filenames)[1]
> num_components <- 30
> data_array_distance <- array(NA, c(num_subjects, num_components, num_components))
> my_distance <- function(x,y)
{ 1-max(abs(ccf(x, y, plot = FALSE, lag.max = 3)$acf)) }

> for (i in 1:num_subjects)
{ #Perform ICA on each file

temp <- f.ica.fmri(as.character(filenames[i,1]), n.comp = num_components,
alg.type="deflation")

for(j in 1:num_components)
{ j.vals <- rep(j,(num_components-j+1))

k.vals <- (j:num_components)
data_array_distance[i,j,j:num_components] <- c(mapply(x=j.vals,

y=k.vals, function(x,y) my_distance(temp$A[,x],temp$A[,y])))
data_array_distance[i,j:num_components,j]

<- data_array_distance[i,j,j:num_components] }
diag(data_array_distance[i,,]) <- 0 }

This performs ICA on this ith scan listed in filenames.txt, and stores the results into an object called temp. This object has
several attributes, one of which is the timeseries associated with each component called temp$A.

PARALLEL ANALYSIS IN R
We now demonstrate parallel computing by using the base package parallel in R 2.1.4 as presented by http://www.bytemining.com/
files/talks/larug/hpc2012/HPCinRrev2012.pdf which provides an extensive explanation of parallel data analysis using R. The package
cudaBayesreg also provides parallel analysis of fMRI data using multi-level Bayesian modeling.

The package parallel wraps together packages multicore and snow. We assume the computing is being done on the local machine
here with multiple cores, but these methods can easily be extended to run on a cluster. The number of available cores can be detected
using Windows will report the number of logical CPUs, which may exceed the number of physical cores.

> library(parallel)
> mc <- detectCores()
> mc
[1] 2
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To perform the parallel analysis, we create a new function func_network_connectivity which takes as an argument the file
number, and performs within each scan the FNC analysis.

> data_array_distance <- array(NA, c(num_subjects, num_components, num_components))
> num_components <- 20
> func_network_connectivity <- function(i){

temp <- f.ica.fmri(as.character(filenames[i,1]), n.comp = num_components)
for(j in 1:num_components)
{ j.vals <- rep(j,(num_components-j+1))

k.vals <- (j:num_components)
data_array_distance[i,j,j:num_components] <-

c(mapply(x=j.vals,y=k.vals, function(x,y)
1-max(abs(ccf(x, y, plot = FALSE, lag.max = 3)$acf)))

data_array_distance[i,k.vals,j.vals] <- 1/data_array_distance[i,j,
j:num_components] }

diag(data_array_distance[i,,]) <- 0
d <- (data_array_distance[i,,])
my_iso <- isomap(d,axes=1, ndim = 10,epsilon=median(d),

fragmentedOK=TRUE)
my_net <- makegraph(my_iso)
d2 <- graph.adjacency(my_net, weighted = TRUE )
c(as.character(filenames[i,1]),average.path.length(d2),clique.number(d2),

graph.density(d2),edge.connectivity(d2),median(closeness(d2)),
median(graph.coreness(d2)),max(degree(d2)),median(degree(d2)),
min(degree(d2)),vcount(d2),ecount(d2),transitivity(d2)) }

The new func_network_connectivity function is called by the parallel function parLapply, which is similar to mapply
but operates in parallel. Using this, we perform ICA, establish functional connectivity and measure the graph structures in parallel.
The function makeForkCluster is called to create multiple identical R processes on the same machine with a copy of the master
workspace. This function will not work in Windows since Windows does not have a fork system call, so sockets must be used instead.

> cl <- makeForkCluster()
> clusterSetRNGStream (cl, 123)
> res <- parLapply(cl, seq_len(4), func_network_connectivity)
> stopCluster(cl)
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Schizophrenia is postulated to be the prototypical dysconnection disorder, in which
hallucinations are the core symptom. Due to high heterogeneity in methodology across
studies and the clinical phenotype, it remains unclear whether the structural brain
dysconnection is global or focal and if clinical symptoms result from this dysconnection. In
the present work, we attempt to clarify this issue by studying a population considered as a
homogeneous genetic sub-type of schizophrenia, namely the 22q11.2 deletion syndrome
(22q11.2DS). Cerebral MRIs were acquired for 46 patients and 48 age and gender matched
controls (aged 6–26, respectively mean age = 15.20 ± 4.53 and 15.28 ± 4.35 years old).
Using the Connectome mapper pipeline (connectomics.org) that combines structural and
diffusion MRI, we created a whole brain network for each individual. Graph theory was
used to quantify the global and local properties of the brain network organization for
each participant. A global degree loss of 6% was found in patients’ networks along
with an increased Characteristic Path Length. After identifying and comparing hubs, a
significant loss of degree in patients’ hubs was found in 58% of the hubs. Based on
Allen’s brain network model for hallucinations, we explored the association between local
efficiency and symptom severity. Negative correlations were found in the Broca’s area
(p < 0.004), the Wernicke area (p < 0.023) and a positive correlation was found in the
dorsolateral prefrontal cortex (DLPFC) (p < 0.014). In line with the dysconnection findings
in schizophrenia, our results provide preliminary evidence for a targeted alteration in the
brain network hubs’ organization in individuals with a genetic risk for schizophrenia. The
study of specific disorganization in language, speech and thought regulation networks
sharing similar network properties may help to understand their role in the hallucination
mechanism.

Keywords: DTI, small-world, network, Broca, psychosis, schizophrenia, human connectome, Wernicke

INTRODUCTION
22q11.2 deletion syndrome (22q11.2DS), also known as velo-
cardio-facial syndrome (Shprintzen et al., 1978), is a well-
established neurogenetic model for studying the pathogenesis of
schizophrenia (Bassett and Chow, 1999). The prevalence rate of
the 22q11DS population for developing schizophrenia is about
30%, making it the third highest risk rate after having an affected
monozygotic twin (50% risk) or both parents being affected
(46% risk) (McGuffin et al., 1995). Furthermore, 30–50% of non-
schizophrenic 22q11DS individuals demonstrate sub-threshold
symptoms of psychosis (Feinstein et al., 2002). Considering the
genetic 22q11.2DS model as a homogenous sub-type may high-
light the presence of neurodevelopmental biomarkers underlining
the schizophrenic disorders.

As schizophrenia is a heterogeneous disorder previous lit-
erature on white matter has revealed highly variable alter-
ations throughout the brain and a few replicated findings (see
Fitzsimmons et al., 2013 for a recent review). Due to confounding

factors such as duration of illness, medication, age sample or
methodology, it remains unclear whether schizophrenia demon-
strates localized alterations or a whole brain dysconnection.
Graph theory provides promising tools to analyze both whole
brain phenomenon using global network measurements, and
specific properties using local network measurements (Bassett
and Bullmore, 2009; He and Evans, 2010; Rubinov and Sporns,
2010). Few studies in schizophrenia have used the graph theory
in structural magnetic resonance imaging. Bassett et al. (2008)
characterized the cerebral gray matter volumetric covariation in
a large sample (>200) of patients with schizophrenia compared
to healthy controls. Although the small-world properties were
preserved, a reduced network hierarchy with a loss of hubs was
found in individuals with schizophrenia and more specifically
in frontal (bilateral dorsolateral prefrontal cortex) areas (Bassett
et al., 2008). Graph theory was also used in studies of func-
tional connectivity in schizophrenia. Evidence of global rather
than focal functional dysconnectivity grows in schizophrenia
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literature. Disruption of the small-world properties has been
found in patients (Liu et al., 2008) as well as weaker connectiv-
ity and lower clustering coefficient (Yu et al., 2012), and hubs
alteration (Yu et al., 2012, 2013). The functional connection of
several specific regions has also been found such as the tem-
poral lobe, the parietal lobe, the thalamus, hippocampus but
more interestingly, functional integration between sub-networks
(such as the semantic network, the default network) is impaired
(see Zhang et al., 2012; Alexander-Bloch et al., 2013). Using
diffusion images for reconstructing brain networks, van den
Heuvel et al. (2010) replicated the observation that individuals
with schizophrenia have preserved small-world properties and
increased path length in frontal, temporal and occipital areas.
Reduction of frontal hubs has also been demonstrated, involv-
ing the superior frontal and the anterior cingulate (van den
Heuvel et al., 2010). Following Latora and Marchiori’s concep-
tion of global and local efficiency measuring how well infor-
mation is exchanged over the network (Latora and Marchiori,
2001), Wang et al. (2011) demonstrated that individuals with
schizophrenia have a reduced global efficiency [reduced after
controlling for the effect of age, gender and brain size (Wang
et al., 2011)]. However, it remains unclear whether the network
alterations are caused by the emergence of the schizophrenia
disorder or if there is a predetermined network configuration
that acts as a vulnerability factor for the later development of
schizophrenia.

Amongst all the psychotic symptoms in the 22q11DS, halluci-
nations are often considered the most clinically salient signs of
risk for psychosis (Debbané et al., 2006). Moreover, hallucina-
tions constitute a valid early risk indicator for the development
of schizophreniform disorders during adulthood (Poulton et al.,
2000). As complex cognitive functions rely on a cerebral network
involving several regions, (Sporns, 2010; Bassett and Gazzaniga,
2011) dysfunctions such as hallucination may result from abnor-
mal topological connectivity between these areas (Lo et al., 2011).
Structural and functional studies in individuals with schizophre-
nia suggest that several key regions play a role in the apparition
of hallucinations and their severity [(see Allen et al., 2008) for a
review]. In schizophrenic patients, reduction in the superior tem-
poral gyrus (STG) gray matter volume has been associated with
the severity of hallucinations (Flaum et al., 1995; Gaser et al.,
2004; Onitsuka et al., 2004). Loss of gray matter volume in Broca’s
area has also been associated with this symptom (Gaser et al.,
2004; Sumich et al., 2005). Several other brain areas, such as
the insula (Shapleske et al., 2002), the thalamus (Neckelmann
et al., 2006) and the supramarginal gyrus (Gaser et al., 2004),
have been associated with the presence of hallucinations but have
failed to show consistent volumetric reduction. Two network
studies have explored the relationship between clinical symptoms
of schizophrenia and brain network properties. Although van den
Heuvel et al. (2010) found no significant association between
the Positive and Negative Symptoms Scale (PNASS) (Kay et al.,
1987) and topological features, Wang et al. (2011) showed a nega-
tive correlation between the PANSS (positive, negative and total
scores) and global and local efficiency, meaning that the more
severe the symptoms, the lower are both the local and the global
topological efficiencies. Lower global efficiency and longer path

length has also been related to higher score on the negative PANSS
scale (Yu et al., 2011a,b).

The purpose of this present work is to study the global
and local network features in a population at high genetic risk
for schizophrenia (22q11.2DS) by focusing on the hierarchical
structure of the brain network (hub topological configuration).
Furthermore, we aim to explore the specific relationship between
hallucination symptoms and the local efficiency of the related
brain areas. According to Allen’s model of brain regions involved
in hallucinations (Allen et al., 2008), we suggest that the topologi-
cal connectivity of the following regions—DLPFC, dorsal anterior
cingulate, Broca’s area, ventral anterior cingulate, orbitofrontal
gyrus, and STG—will be associated with the severity of halluci-
nations in schizophrenia.

MATERIALS AND METHODS
PARTICIPANTS
All the participants underwent the same protocol, which included
an MRI session for collecting a structural T1-weigthed image and
a diffusion image along with an IQ measure with the Wechsler
Intelligence Scale for Children-Third Edition revised (Wechsler,
1991) or the Wechsler Adult Intelligence Scale-III for adults
(Wechsler, 1997). The participant or their parents signed consent
forms containing information about the study and its purpose.
The detailed protocol of the study was previously reviewed and
accepted by the Institutional Review Board of Geneva University
School of Medicine.

22q11.2DS GROUP
Forty-six participants with a 22q11.2DS aged between 6 and 26
(mean = 15.20 ± 4.53), (23 males and 22 females) were recruited
through parent associations in French speaking European coun-
tries. The 22q11.2 deletion was confirmed by a blood sample
analyzed with the Quantitative Fluorescent Polymerase Chain
Reaction (QF-PCR) performed on the deleted region. The average
IQ was of 77.5 ± 16.6. All the patients were assessed by an experi-
enced psychiatrist using the Brief Psychiatric Rating Scale (BPRS)
(Leucht, 2005), the Diagnostic Interview for children and adoles-
cents (DICA) (Reich, 2000) and the Structured Clinical Interview
for DSM-IV AXIS I Disorders for adults (SCID) (First et al., 1996).
Only one patient fulfilled the criteria for schizophrenia. The aver-
age BPRS hallucination subscale for the forty-six participants was
1.63 ± 1.12 and among them fourteen individuals reported to
have verbal hallucination.

CONTROL GROUP
The participants from the control group were recruited among
the siblings of the patients and in the community. The 48 control
participants comprised 25 males and 24 females, aged from 7 to
24 (mean = 15.28 ± 4.35). The average IQ was of 107 ± 18.12.
None of the controls had present or past history of psychiatric or
neurological disorders.

MRI CHARACTERISTICS
Using a Siemens Trio 3 Tesla scanner, we acquired a set of
two cerebral MRIs for each participant. A T1-weighted sequence
with a 3D volumetric pulse was collected using the following
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sequence: TR = 2500 ms, TE = 3 ms, flip angle = 8◦, acquisi-
tion matrix of 256 × 256, field of view = 22 cm, slice thickness
= 1.1 mm, 192 slices. The second MRI was a Diffusion Tensor
Imaging (DTI) with the following parameters: number of direc-
tions = 30, b = 1000 s/mm2, TE = 82 ms, TR = [8300–8800] ms,
flip angle = 90◦, acquisition matrix of 128 × 128, field of view
25.6 cm, slice thickness = 2 mm.

IMAGE PROCESSING
The two acquired scans were processed for each participant
using the Human Connectome Mapper (http://connectomics.
org, Daducci et al., 2012). The software is a pipeline of sev-
eral other software programs, combining each dedicated package
for the purpose of creating an individual’s connectome. For the
T1-weigthed image, FreeSurfer software starts to remove all non-
brain tissue, segmenting the image in order to extract the white
matter, the sub-cortical gray matter volume and the cortical sur-
face (Dale et al., 1999; Fischl et al., 1999). This step is performed
using both intensity and continuity data through the whole 3D
volume. The surfaces and volumes generated have been validated
against histological studies (Rosas et al., 2002). However, these
automatic steps need verification and manual correction if nec-
essary. At the end of this process, three-dimensional volumes or
surfaces and a cortical segmentation are available For the dif-
fusion images, first we use a correction for the effect of head
motion and distortion of eddy currents through an affine align-
ment using the FLIRT tool of the FSL-FDT software (Jenkinson
and Smith, 2001). The realigned images are used to reconstruct
the white matter macroscopic bundles using the streamline deter-
ministic tractography of Diffusion Toolkit (http://trackvis.org/).
The registration of the T1-weighted onto the diffusion images
is an affine transformation using the intensity-based linear reg-
istration tool FLIRT. When combined, the intersection of the
estimated fibers and the segmented regions creates a connectome
which is represented by the connection matrix.

NETWORK MEASURES
Graph theory describes the human connectome as a network
of nodes (in our case cortical regions) and edges (in our case
white matter bundles) connecting two nodes. This network can
be described either with weighted edges (where edges contain
the information about the strength of the two nodes) or with
binary edges (where only the existence of a link is represented).
Therefore, two kinds of measurements are applicable: measure-
ments on a binary network or on a weighted network. Following
the purpose of the present study, which is to try to delineate the
core organization of individuals with 22q11.2DS, we decided to
explore the configuration of the binary network. Furthermore,
binary network analyses have the advantage of showing a low
variability in the network measures (Cheng et al., 2012).

In the present study, we used the tools for measuring network
properties included in the brain connectivity toolbox developed
for Matlab (https://sites.google.com/site/bctnet/) (see Rubinov
and Sporns, 2010) for the description and mathematical for-
mula of each measure. The first measurement step is the analysis
of the global characteristics of the patients’ and controls’ net-
works, using the Characteristic Path Length, the Mean Clustering

Coefficient, the Global Transitivity, the Global Efficiency and the
Global Degree. In the context of the binary networks, the Global
Degree represents the total number of edges (existing connec-
tions between two nodes) in the network. The Mean Clustering
Coefficient measures the potential for functional segregation of
the network and is calculated as the mean of the clustering coef-
ficient, which is the fraction of the number of neighbors of a
node that are also neighbors of each other (Watts and Strogatz,
1998). The Characteristic Path Length represents the average of
the short path lengths of the network. The short path length
is the number of edges that have to be crossed to go from
one node to another. The Characteristic Path Length therefore
measures the functional integration potential of a network. The
normalized ratio between the Mean Clustering Coefficient and the
Characteristic Path Length of a network gives the Smallworldness
measure of the network (Watts and Strogatz, 1998; Humphries
and Gurney, 2008). The Smallworldness measures the optimality
between rapid communication throughout the network (func-
tional integration) and the capacity to process locally based
information (functional segregation) (Sporns and Honey, 2006).
The optimal balance between the Characteristic Path Length and
the Mean Clustering Coefficient can also be estimated by the
Global Efficiency and the local efficiency (Latora and Marchiori,
2001). The Global and local efficiency measure how efficiently
information is exchanged over the network, and respectively play
similar roles to the Characteristic Path Length and the clustering
coefficient.

The second analysis focuses on the hub configuration by rank-
ing all of the nodes in the healthy control network on three
local network measures, the local degree, the clustering coefficient
and the betweenness centrality. The local degree measures a node’s
number of edges or neighbors. The clustering coefficient highlights
a node’s surrounding configurations by analyzing how many of its
neighbors are also connected to each other. The betweenness cen-
trality measures how many short path lengths pass through the
node and is therefore a measure of node influence on the network
(Rubinov and Sporns, 2010). By definition, the 20% highest rank-
ing nodes for all 3 values are considered to be the network hubs
(Sporns et al., 2007; Sporns, 2010; van den Heuvel et al., 2010;
van den Heuvel and Sporns, 2011). The analysis then continues
by comparing the hubs and node degrees between the 22q11.2DS
group and the healthy control group.

The third step consists of exploring the relationship between
Allen’s model’s network characteristics (local efficiency) and the
clinical measures such as the presence and severity of halluci-
nations (BPRS). According to Allen’s model of hallucinations,
the DLPFC, dorsal anterior cingulate, Broca’s area, ventral ante-
rior cingulate, orbitofrontal gyrus, the supplementary motor area
and STG are the brain regions involved in hallucinations. These
regions are not represented in the same way in the Freesurfer
Desikan parcellation scheme: region that corresponds the most
to the DLPFC is the rostral middle frontal parcel; for the supe-
rior temporal gyrus it is the superior temporal parcel and the
transverse temporal parcel; for the ventral and dorsal anterior
cingulated it is respectively the rostral anterior parcel and the
caudal anterior cingulate parcel; the inferior frontal gyrus includ-
ing Broca’s area refers to the pars triangularis parcel, the pars
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opercularis parcel and the pars orbitalis parcel; and the orbito
frontal gyrus corresponds to the lateral orbito-frontal parcel and
the medial orbito-frontal parcel (see Figure 1). We decided not to
include the supplementary motor area, as it is equally spread over
three Freesurfer’s regions (the caudal middle frontal, the superior
frontal and the precentral).

As Latora and Marchiori (2001) demonstrated, the local effi-
ciency measures the functional segregation of one node when
this particular node is removed from the sub-network. This mea-
sure represents the level of local information-processing. More
precisely the local efficiency measures the functional segregation
which means the capacity of locally processed information. In the
case of hallucination, Allen et al. postulated a neuroanatomical
model, composed of several cortical regions where their dysfunc-
tional interplay fosters the hallucination emergence. Therefore,
we wanted to see if the local capacity of this sub-network to pro-
cess the information was related to the emergence and the severity
of the hallucination.

In order to analyze the efficiency of communication in Allen’s
theoretical network, we compared the local efficiency value of
each node between patients and healthy participants. Then, in
the patients’ networks, we analyzed the relationship between each
node’s efficiency and the BPRS hallucination subscale. For the
ten regions, an outlier analysis was applied on the efficiency

FIGURE 1 | Among the Desikan parcellation scheme, the regions

elected as similar to Allen’s model areas are the represented in full

color and the remainder parcels are in faded color. On the lateral view:
the superior temporal is cyan, the rostral middle frontal is purple, the lateral
orbitofrontal is dark green, the pars orbitalis is khaki, the pars triangularis is
dark orange, and the pars opercularis is beige. On the medial view, the
medial orbitofrontal is fuchsia, the rostral anterior cingulate is dark purple,
and the caudal cingulate is parme.

measurement and the correlation was controlled for age and
gender.

SIMULATION METHOD
As previous literature in the 22q11.2DS demonstrated that the
brains of patients with 22q11.2DS show a 10% volumetric reduc-
tion (Eliez et al., 2000; Kates et al., 2001), which has an impact
on the number of fibers (∼10% less fibers) (Ottet et al., 2013),
in the current study we simulated a random 10% reduction on
the controls’ connectome. This simulation enables a determi-
nation of whether the network measures applied for compar-
ing both groups are biased by the reduction of the number of
fibers or not. Using Matlab, we randomly subtracted one fiber
at a time until 10% of the total number of fibers in the net-
work were removed. This procedure was replicated for each
healthy control connectome before applying the global network
measurements.

RESULTS
GLOBAL NETWORK MEASURES
All the global network results comparing patients, controls and
simulated networks can be found in Table 1.

The one tailed t-test comparison between the number of fibers
contained in the patients’ network and the controls’ network
revealed a significant loss of 10% of fibers (p < 0.001). The same
test was applied between the patients’ and the simulated net-
work revealing that the significance was no longer preserved (p =
0.59). Although the simulated network didn’t show any difference
in the number of fibers compared to the patient group, the num-
ber of edges demonstrated a connectivity reduction of 6% (p <

0.005). Similarly, the Global Efficiency was significantly reduced
in the brain network of the patients (p = 0.0117). No difference
was observed in the Mean Clustering Coefficient between the two
groups. Although the Characteristic Path Length was increased for
the patient group (p = 0.04), the Smallworldness measure did not
differ significantly between the two groups (p = 0.368).

HUB ANALYSIS
To determine which of the 83 nodes are hubs in the healthy con-
trol network, each node was ranked on 3 local network measures:
the local degree, the betweenness centrality and the clustering

Table 1 | Mean, standard deviation and significant differences in the brain network global measures for participants with 22q11.2DS, healthy

participants and simulated networks.

Global network measures 22q11.2DS Control p Simulated p

Mean Std Mean Std Mean Std

Total number of fibers 42087 6608 46764 7343 0.0005 42385 5098 0.59

Total number of edges 1269.8 167.5 1354.5 132.4 0.0038 1354.5 132.4 0.0038

Characteristic path length 2.1652 0.1640 2.1150 0.1069 0.0402 2.1150 0.1069 0.0402

Mean clustering coefficient 0.7319 0.0295 0.7345 0.0234 0.3224 0.7345 0.0234 0.3224

Global efficiency 0.5238 0.0335 0.5372 0.0221 0.0117 0.5372 0.0221 0.0117

Smallworldness 1.6837 0.0859 1.68961 0.0783 0.368 1.68961 0.0783 0.368

The first p column from the left reports in bold the significant value (p < 0.05) of the comparison between the 22q11.2DS and control network. The second reports

in bold the significant values (p < 0.05) when comparing the 22q11.2DS with the simulated network.
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FIGURE 2 | Final ranking of the 82 gray matter regions in the healthy controls’ brain. The 17 nodes with the highest rank highlighted in yellow, are
considered as the connector hubs of the network. In blue is represented the repartition of the final ranking for the control and in red for the 22q11.2DS.

coefficient. According to the literature, hubs are defined as nodes
that demonstrate a high degree, a high centrality and a low clus-
tering coefficient. A ranking score was attributed to each of the
nodes for the three measures previously discussed and averaged
for the 48 healthy controls. The highest connected and the most
central node scored 83 and the least connected and least central
node scored 1. Inversely the least clustered node scored 83 and
the most clustered scored 1. The final classification is the addi-
tion of the three scores, in which the top 20% are considered as
the connector hubs of the network (see yellow bars in Figure 2).
Although the stem node was the highest node on the final clas-
sification, we did not consider it as a hub because it is not a
gray matter region (therefore all subsequent analyses considered
82 regions and not 83). Twelve out of 17 hubs were represented
on both hemispheres in the superior frontal, the hippocampus,
the superior parietal, the precuneus, the precentral and the puta-
men. In the right hemisphere two supplementary hubs are found,
the rostral middle frontal and the lateral orbito-frontal. In the left
hemisphere, three supplementary hubs were found, the superior
temporal the lateral occipital and the thalamus.

DEGREE ANALYSIS
The results demonstrated that 26 nodes out of 82 (33%) in the
patients’ networks have a significantly reduced degree after FDR
correction (pFDR = 0.0149). The names of the brain regions
affected are listed in Table 2. Only one node showed an increased
degree in the patients’ networks: the right supramarginal region.

When analyzing how many of the hubs are altered, we noted
that 10 out of 17 hubs (58%) were reduced in the patients network
(see Figure 3). Conversely only 16 non-hubs out of 65 (25%)
were reduced (see Table 2). Therefore, the percentage of affected
hubs is more than double that of affected non-hub nodes. The 10
affected hubs are the bilateral hippocampus, superior parietal and
precentral regions, right rostral middle frontal, superior frontal,
precuneus and left thalamus.

EFFICIENCY AND HALLUCINATIONS
Following Allen’s brain network model, the efficiency of ten nodes
of the left hemisphere was correlated with the BPRS hallucina-
tion subscale. After controlling for age and gender, three of them
showed a significant association with the presence and/or severity
of the symptoms. Both the pars triangularis parcel and the trans-
verse temporal parcel demonstrated a negative correlation with

FIGURE 3 | Graph representation of the mean brain network for

patients and controls using Gephi (http://gephi.org/) to produce optimal

visualization of all the nodes and connections embedded in the

networks. The circled nodes are the hubs of the network. The red circles
are altered hubs and the black circles are preserved hubs. Every nodes
contained in the same lobe or cerebral structure has the same color, blue
for the node of the frontal lobe, magenta for the cingulate areas, green for
the parietal lobe, yellow for the occipital lobe, brown for the temporal lobe
and gray for the subcortical areas. The size of the nodes indicates their
degree level.

the symptom’s scale (respectively R = −0.312, p = 0.04, uncor-
rected and R = −0.354, p = 0.023, uncorrected). Inversely, the
rostral middle frontal shows a positive correlation with the symp-
tom’s scale (R = 0.373, p = 0.014, uncorrected) (see Figure 4).
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Table 2 | List of the 26 nodes out of 82 that are significantly different in the patients’ network after FDR correction, and indication as being

hubs or not.

Parcel name Control mean degree Std 22q11DS mean degree Std FDR corrected (0.014883) Hub

R_medialorbitofrontal 16.70 4.36 14.39 4.66 0.00733 No

R_parsopercularis 11.97 3.32 10.04 3.18 0.00245 No

R_rostralmiddlefrontal 21.5 4.52 19.45 3.63 0.00903 Yes

R_superiorfrontal 28.31 3.38 26.30 3.98 0.00492 Yes

R_precentral 23.41 3.96 21.26 3.79 0.00422 Yes

R_caudalantcingulate 10.68 2.41 9.23 2.17 0.00148 No

R_superiorparietal 31 4.35 27.82 6.01 0.00208 Yes

R_inferiorparietal 18.81 5.09 16.71 3.97 0.01451 No

R_precuneus 28.29 3.99 25.45 5.62 0.00290 Yes

R_lateraloccipital 21.70 5.24 18.69 5.74 0.00463 No

R_lingual 18.70 5.27 15.71 5.35 0.00382 No

R_parahippocampal 9.58 3.40 8.06 2.60 0.00874 No

R_inferiortemporal 18.37 5.15 16.10 4.77 0.01488 No

R_hippocampus 21.70 3.36 19.23 3.70 0.00051 Yes

L_parsopercularis 11.91 3.21 9.97 3.44 0.00291 No

L_precentral 24 3.55 20.69 3.36 6.14E-06 Yes

L_superiorparietal 31.91 5.03 28.97 6.19 0.00658 Yes

L_inferiorparietal 21.66 4.27 18.84 4.17 0.00085 No

L_pericalcarine 15.43 4.23 12.89 6.16 0.01064 No

L_lingual 16.52 5.41 13.67 5.06 0.00498 No

L_fusiform 19.18 4.11 14.95 3.34 2.04E-07 No

L_parahippocampal 9.02 3.32 7.52 3.20 0.01432 No

L_middletemporal 16.12 3.96 13.56 4.50 0.00215 No

L_thalamus 24.37 3.00 22.47 3.66 0.00356 Yes

L_caudate 13.81 3.07 11.60 2.86 0.00026 No

L_hippocampus 20.60 3.64 18.02 3.86 0.00062 Yes

FIGURE 4 | Correlations between the BPRS hallucination subscale and

the network efficiency in individuals with 22q11.2DS after age and

gender correction. On the left hemisphere, the red regions (pars
triangularis and transverse temporal) represent a negative correlation and
the blue region (rostral middle frontal) represents a positive correlation.

The level of IQ, an additional controlling variable, was intro-
duced, but nevertheless the significance for the three correlations
survived.

DISCUSSION
Using white matter deterministic tractography and gray matter
surface-based parcellation to reconstruct the brain connectome,
the present work is the first study that analyzes the brain con-
nectome in the 22q11.2DS in the light of the graph theory
framework. In line with previous white matter studies in the
22q11DS, we found a 10% reduction in the number of fibers
in the brain connectome of patients with 22q11DS (Eliez et al.,
2000; Kates et al., 2001; Gothelf et al., 2011; Ottet et al., 2013). We
also observed a 6% reduction of connectivity in patients, which
means that 6% of the edges of the patients’ network were missing.
The simulation analysis demonstrated that the initial 10% fiber
loss was not the cause of the 6% connectivity loss. This global
dysconnection found in our analyses sustains the dysconnection
hypothesis in schizophrenia (Friston and Frith, 1995; Stephan
et al., 2009).

Despite the observed global disconnection, graph theoretical
analysis comparing individuals with a high risk of developing
schizophrenia (22q11.2DS) and healthy controls revealed that the
smallworldness property of the patients’ brain network was still
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preserved. However, a longer path length, similar to a lower global
efficiency, demonstrates that the functional integration [capacity
to transmit information more directly, with less interference or
attenuation (Latora and Marchiori, 2001)] is reduced in 22q11.2
deletion syndrome. Although the global clustering coefficient is
not significantly different from the healthy controls, the small-
world brain organization of patients with 22q11.2DS tends to
be closer to a regular network organization, in which the func-
tional segregation (capacity to process specialized information,
organized in clusters) is preserved but the functional integration
is not optimum. Our study is in line with the previous network
analysis on non-syndromic schizophrenia patients where a longer
Characteristic Path Length has been systematically found (van den
Heuvel et al., 2010; Zalesky et al., 2010b; Wang et al., 2011).

In the present work, local connectivity analysis allowed local-
ization of the network nodes that were significantly altered in
the patients’ network. Every lobe and sub-cortical structure had
one or more disconnected nodes sustaining the hypothesis that
there is a widespread impact on the brain network in schizophre-
nia (Fornito et al., 2012). However, among the nodes that had
a lower connectivity in patients, the proportion of affected hubs
compared to non-affected hubs (58%) is interesting. Similarly
in schizophrenia, previous findings shows a loss of hub connec-
tivity specifically in frontal lobes (van den Heuvel et al., 2010).
Our finding shed light on a possible targeted alteration of cere-
bral hubs in the 22q11.2DS that may also have some relevance for
schizophrenia. Network hubs have special integrative or control
functions as their privileged position in the hierarchical organi-
zation is postulated to be a key element for large-scale cognitive
abilities. Because of their high centrality and influence any per-
turbation in a hub would heavily impact brain network function
(Sporns et al., 2007). The major hub connectivity alteration in
individuals with 22q11.2DS may explain their mild cognitive
impairments, but also the cognitive collapse seen in schizophrenia
during and after their first psychotic episode.

Schizophrenia is a disease with multifactorial etiologies.
However, among the multiple causes, genetic factors play an
important role (Stephan et al., 2006). Studying brain alterations
in populations with high risk or ultra-high risk of developing
schizophrenia could break out the predetermining cerebral orga-
nization leading to the development of psychosis (Cannon et al.,
2007). To the best of our knowledge, no study to date has mea-
sured the network properties of white matter connectivity using
graph theory in adolescents at risk for schizophrenia. However,
a recent study by Shi et al. (2012) demonstrates a significant
reduction of global efficiency, an increased global Characteristic
Path Length, less hub nodes and lower edge “global efficiency” in
neonates’ brain networks having a mother with schizophrenia or
a schizoaffective disorder. These results suggest that the topologi-
cal abnormalities in individuals carrying a familial genetic risk for
schizophrenia can already be observed a few weeks after birth (Shi
et al., 2012). As the 22q11.2 deletion syndrome is commonly con-
sidered as a high risk population for schizophrenia (Bassett and
Chow, 1999), our study adds some evidence to the hypothesis that
early alterations in a cerebral network organization due to genetic
factors may partially drive the development of schizophrenia and
psychotic symptoms such as hallucinations.

Indeed, the graph theory of large-scale brain networks pos-
tulates that cognitive abilities arise from several cerebral regions
interacting together (Bressler and Menon, 2010). In our graph
network study, we explored the relationship between the alter-
ations of a topological network property and a cognitive dysfunc-
tion. Our analyses revealed that the local efficiency value within
three parcels of the left hemisphere, namely Broca’s area (pars
triangularis), Wernicke’s area (transverse temporal) and the dor-
solateral prefrontal cortex (DLPFC) (rostral middle frontal), cor-
related significantly with clinical ratings of hallucination severity.
Efficiency values in Broca and Wernicke’s areas suggested that,
as local connections within these parcels decreased, the severity
of hallucinatory phenomena increased in our 22q11DS sam-
ple. Given the implication of these areas in language production
and comprehension, our results suggest that impairments in
the different components of language processing in 22q11DS
may significantly contribute to the expression of hallucinations.
These findings are consistent with previously reported associa-
tions between a decrease in verbal IQ and psychotic symptoms
(Gothelf et al., 2005; Debbané et al., 2006), and further suggest
that local network connectivity in key language areas of the brain
contributes to hallucinations in this deletion syndrome (Gothelf
et al., 2011).

Hallucination severity further correlated positively with effi-
ciency within the dorsolateral prefrontal parcel. The DLPFC
region is one of the most consistently examined regions in
MRI studies involving individuals with schizophrenia (Lewis
et al., 2004) because of its implications at different levels
of impairments, from working memory and executive func-
tions to dopaminergic system malfunction (Tanaka, 2006).
Neuromodulation of the DLPFC activity and its role in regulation
of thought content is hypothesized to depend on its connectiv-
ity patterns with surrounding regions (Arnsten et al., 2012). In
this perspective, our results may suggest that an atypically high
local efficiency in 22q11DS works against the DLPFC’s connec-
tivity with surrounding parcels that modulate its activity. This
impairment may thus increase the propensity to experience hal-
lucinations. Future functional MRI studies should examine the
connectivity dynamics of the DLPFC more specifically to evaluate
its contributions to symptoms such as hallucinations. Overall, our
results add important information about the relevance of brain
topological network organization to previous longitudinal inves-
tigations in 22q11DS that have linked cerebral integrity of gray
matter in the DLPFC to the development of psychosis (Gothelf
et al., 2005; Schaer et al., 2009; Gothelf et al., 2011). Further
research is necessary to understand the maturational dynamics
between gray and white matter, and how these may interact to
increase the potential for psychotic symptoms in 22q11DS.

LIMITATIONS
In this study, Graph theory principles were applied for the first
time on a population with 22q11.2DS bringing new insight on
the alterations in their brain organization that could in turn lead
to schizophrenia symptoms. Nevertheless, the present work shows
some limitations.

Although we choose the recommended ratio between scan
timing, voxel size and the number of directions, the same
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limitations found in every DTI and tractography study remain
present. Listed in detail in (Bammer et al., 2003), the major lim-
itations are the absence of in vitro validation studies and the
distance-related effect of the tractography [see the limitation sec-
tion in (Ottet et al., 2013)]. This distance related effect biases
the number of fibers included in a bundle. Nevertheless, as the
present work used unweighted (binary) network analysis, we do
not take in consideration the number of fibers, therefore the latter
issue is not expected to influence our analyses.

The comparison of brain networks when assessing their prop-
erties with graph theory measures, is very sensitive with regard
to two constitutive elements, first the choice of the nodes and
second the connection density. The first limitation relies on the
choice of the cortical parcellation and its scale. Indeed, the choice
of a network node is a critical step (He and Evans, 2010). Zalesky
et al. (2010a,b) demonstrated the strong influence on network
measures of different choices of parcellation scales and diffusion
imaging, which impairs the comparability and the constituency
across studies (Zalesky et al., 2010a). A wider discrepancy arises
when comparing two different parcellation scales (80 vs. 4000
nodes) and/or when comparing two different diffusion imaging
techniques [High angular (HARDI) diffusion vs. DTI]. The anal-
yses in our study do not suffer from this issue as we compared
our patients’ cerebral diffusion image with the same sequence in
healthy control cerebral images. Furthermore, for both patients
and controls we used the same connectome processing pipeline
including the parcellation scheme, which demonstrated a good to
excellent test-retest reliability on graph network measures (Owen
et al., 2013). Therefore, the comparison between the two popu-
lations of the global and local network measures does not suffer
from this kind of issue.

Nevertheless, the Desikan parcellation scheme we chose for
processing our participants’ brain may yield an issue. Although
this parcellation is based on the primary and secondary sulci
delineation which confers a very high reliability across humans
brains (Desikan et al., 2006), the size of the parcels differ impor-
tantly. Thus, when delineating the hubs of the network, the very
large parcels display a higher degree value, which is one of the
three measures used to rank the nodes onto the hub scale. This
concern is valid for the two other measures used for delineating
the hubs (clustering coefficient and the centrality). However, the
hubs we found were highly consistent with previous literature.
Indeed, Li et al. (2011) evaluated as the highest reliable hubs the

bilateral putamen, bilateral superior frontal and left precuneus
among three tractography methods (Li et al., 2011). van den
Heuvel and Sporns (2011) found that bilaterally, the precuneus,
superior frontal and superior parietal, hippocampus, putamen
and thalamus were hubs of structural derived networks (van den
Heuvel and Sporns, 2011). Amongst all the hubs delineated in
our study, only the bilateral precentral could have been elected
because of its large size.

The second limitation concerns the difference in the number of
connections that exist between the control and patient networks.
This discrepancy may bias the topological measurements and may
result in the significant findings. As van Wijk et al. shows in 2010,
there is no way to rule out these differences without introducing
another bias.

CONCLUSION
In the present study, the targeted dysconnectivity of the hubs in a
population considered as a model for schizophrenia (22q11.2DS)
suggests the existence of an early alteration in the cerebral net-
work organization that is due to genetic factors which may
partially drive the development of schizophrenia and psychotic
symptoms. Furthermore, altered local efficiency in areas respon-
sible for language processing (Broca and Wernicke) sheds light
on the implication of structural network organization in the
severity of hallucinations. Further research is needed to under-
stand the interaction between structural networks and psychotic
symptoms.
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Borderline personality disorder (BPD) is characterized by “stable instability” of emotions
and behavior and their regulation.This emotional and behavioral instability corresponds with
a neurocognitive triple network model of psychopathology, which suggests that aberrant
emotional saliency and cognitive control is associated with aberrant interaction across
three intrinsic connectivity networks [i.e., the salience network (SN), default mode network
(DMN), and central executive network (CEN)]. The objective of the current study was to
investigate whether and how such triple network intrinsic functional connectivity (iFC) is
changed in patients with BPD. We acquired resting-state functional magnetic resonance
imaging (rs-fMRI) data from 14 patients with BPD and 16 healthy controls. High-model
order independent component analysis was used to extract spatiotemporal patterns of
ongoing, coherent blood-oxygen-level-dependent signal fluctuations from rs-fMRI data.
Main outcome measures were iFC within networks (intra-iFC) and between networks (i.e.,
network time course correlation inter-iFC). Aberrant intra-iFC was found in patients’ DMN,
SN, and CEN, consistent with previous findings. While patients’ inter-iFC of the CEN was
decreased, inter-iFC of the SN was increased. In particular, a balance index reflecting the
relationship of CEN- and SN-inter-iFC across networks was strongly shifted from CEN to
SN connectivity in patients. Results provide first preliminary evidence for aberrant triple
network iFC in BPD. Our data suggest a shift of inter-network iFC from networks involved
in cognitive control to those of emotion-related activity in BPD, potentially reflecting the
persistent instability of emotion regulation in patients.

Keywords: resting-state functional connectivity, brain networks, central executive network, default mode network,

salience network, brain connectivity, large-scale networks, triple network hypothesis

INTRODUCTION
Borderline personality disorder (BPD) is characterized by “sta-
ble instability” (Schmideberg, 1959) of emotions, impulsivity,
social relationships, and self-image. Additionally most patients
suffer from chronic feelings of emptiness, complex dissociations,
self-injury, and suicidal tendencies with a suicide rate of 10%
(Oldham, 2006). BPD, which often co-occurs with other psychi-
atric disorders (about 85% of patients with BPD fulfill criteria
for having at least one Axis I disorder; Lenzenweger et al., 2007),
is common with a prevalence of more than 20% for psychiatric
inpatients (Torgersen, 2005). Behavioral and emotional dysreg-
ulation is suggested as critical factors underlying this variety of
symptoms (Leichsenring et al., 2011). We suggest that the stabil-
ity of fluctuating symptoms across time and different situations
might be related to consistent and profound functional alterations
in the patient’s brain intrinsic functional architecture, particularly
in brain regions involved in behavior/emotion regulation.

Previous functional neuroimaging studies revealed context spe-
cific patterns of altered brain activity in BPD patients during

emotion- or self-related tasks. For example, negative emotional
pictures or fearful/angry faces evoke stronger activity in the extras-
triate, posterior cingulate, and frontal cortices, as well as weaker
activity in the amygdala (Minzenberg et al., 2007; Koenigsberg
et al., 2009a; Niedtfeld et al., 2010; Hazlett et al., 2012). In healthy
subjects, self-distancing of negative pictures activates parietal
regions overlapping with the so-called default mode network
(DMN) including the medial prefrontal, medial and lateral pari-
etal cortex (Koenigsberg et al., 2009b). Patients with BPD, however,
fail to activate the DMN but show increased activity in the amyg-
dala. On the contrary, memories of unresolved life events activate
regions of the DMN in addition to amygdala, insula, and occipi-
tal cortices in patients (Beblo et al., 2006). Overall, emotional and
self-related context increasingly activates an aberrant distributed
pattern of brain regions including the DMN, insula, amygdala,
and occipital cortices in BPD patients.

The measure of intrinsic functional connectivity (iFC),
i.e., coherence of ongoing blood-oxygenation-level-dependent
(BOLD) signal fluctuations in resting-state functional magnetic
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resonance imaging (rs-fMRI) data, is a surrogate for organized
intrinsic brain activity (Fox and Raichle, 2007). At a large-scale
level, coherent BOLD activity across remote brain areas forms
consistent intrinsic connectivity networks (ICNs) in humans
(Damoiseaux et al., 2006). Importantly, ICNs show strong spa-
tial correspondence in independent analyses of resting-state and
task-related activity patterns (Smith et al., 2009; Laird et al., 2011),
suggesting that certain intrinsically coupled functional networks
are also systematically engaged during cognition and behavior.
Moreover, direct evidence exists that ongoing activity in ICNs
serves as a scaffold for patterns of evoked neuronal activity
(Keller et al., 2011), supporting the idea that the intrinsic archi-
tecture maintains and updates the brain’s repertoire of functional
responses.

A recently proposed neurocognitive framework identified ICNs
related to self-, emotion-, and cognitive control processing as
neurocognitive “core” networks to study higher cognitive func-
tion and dysfunction (Menon and Uddin, 2010; Menon, 2011). In
more detail, the anterior and posterior DMN (a/pDMN) covering
the medial prefrontal cortex (mPFC), posterior cingulate cortex
(PCC), and precuneus consistently activate during self-related and
social cognitive functions (Buckner et al., 2008; Andrews-Hanna
et al., 2010). The salience network (SN) covers anterior and pos-
terior parts of the insula (AI, PI) and the anterior cingulate cortex
(ACC) is critically involved in emotions, pain, and interoception
(Seeley et al., 2007; Taylor et al., 2009; Legrain et al., 2011). Finally,
left and right lateralized fronto-parietal networks (central exec-
utive network, CEN) are robustly associated with cognitive and
executive control processes during goal-directed behavior (Seeley
et al., 2007; Dosenbach et al., 2008; Habas et al., 2009). The consis-
tent involvement of these three networks does not exclude other
areas or networks to be also relevant for these functions particu-
larly in specific contexts. However, it seems that these networks
critically contribute (like a “core”) to self-, emotion-, and cogni-
tive control-related processes (Menon, 2011), which are impaired
in patients with BPD.

Several studies reported aberrant iFC within and across these
ICNs in various neuropsychiatric diseases such as major depres-
sion (MD) or schizophrenia (Greicius, 2008; Hamilton et al., 2011;
Uddin et al., 2011; Manoliu et al., 2013a,b) indicating the large-
scale brain impact of these diseases on basic intrinsic functional
network architecture and associated functions (for review, see also
Menon, 2011; Palaniyappan and Liddle, 2012; Hamilton et al.,
2013). Due to both the persistent nature of BPD and its “sta-
ble instability” in emotion-, self-, and control-related functions,
we suggest altered iFC among DMN, SN, and CEN in BPD. In
the so far only previous study focusing on iFC in BPD, Wolf
et al. (2011) found aberrant (i.e., increased and decreased) iFC
within the DMN and CEN of patients with BPD; but this did
not yield information about the SN and the intrinsic connectiv-
ity across networks. To test our hypothesis about aberrant iFC
within and across SN, DMN, and CEN in BPD, we acquired rs-
fMRI data from patients with BPD and matched healthy controls
(HC). We applied data-driven, high-model-order independent
component analysis (ICA) to the rs-fMRI data to extract ICNs
of coherent ongoing BOLD activity (Calhoun et al., 2001; Allen
et al., 2011). We then examined the relationship, i.e., iFC, within

(intra-iFC) and between (inter-iFC) ICNs-of-interest and provide
a new measure capturing the balance across these neurocognitive
networks.

MATERIALS AND METHODS
SUBJECTS
Fourteen right-handed patients and 16 age-, sex-, and handedness-
matched HC participated in the study after signing the informed
consent form in accordance with the Human Research Com-
mittee guidelines of the Klinikum Rechts der Isar, Technische
Universität München (Table 1). Patients were recruited from the
Department of Psychiatry, Klinikum rechts der Isar, Technische
Universität München. Controls were recruited by word-of-mouth
advertising from the larger Munich area. Participants’ exami-
nation included medical history, psychometric assessments [i.e.,
Beck Depression Inventory (BDI; Beck et al., 1961), Hamil-
ton Depression Scale (HDS; Hamilton, 1960), short version of
the Borderline Symptom List (BSL; Bohus et al., 2001), and
Global Assessment of Functioning (GAF) Scale (Endicott et al.,
1976)] and a structured psychiatric interview for patients only
[Structured Clinical Interview for DSM-IV Axis I Disorders
(SCID-I; First et al., 1996b) and Structured Clinical Interview
for DSM-IV Axis II Personality Disorders (SCID-II; First et al.,
1996a), German version]. All participants were examined by
their psychiatrists (Andreas Wöller, Christian Sorg), profes-
sionally trained for SCID-based interviews with an inter-rater
reliability of more than 95%. Psychiatric diagnoses were based
on Diagnostic and Statistical Manual of Mental Disorders-IV
(DSM IV).

Patients with BPD constitute a heterogeneous group of patients,
who vary in diagnostic subcategories (e.g., with/without feeling of
emptiness or stress-related paranoid ideation), comorbidity (e.g.,
with/without MD or post-traumatic stress disorder, PTSD), and
degree of medication (e.g., with/without neuroleptica; Skodol
et al., 2002). We adopted selection criteria for a representative
group of patients recommended by Skodol et al. (1999) based
on a longitudinal examination of 240 patients with BPD. BPD
was the primary diagnosis for all patients. We excluded patients
with current psychosis, intoxication, or confusional states, with a

Table 1 | Demographics and psychometric scores.

Parameter Patients with BPD HC

n 14 16

Age (year) 30.4 34.0

Sex, male/female 1/13 1/15

GAF 43.7 ± 9.1* 100 ± 0

HDS 17.1 ± 7.4* 0.5 ± 0.8

BDI 18.1 ± 15.4* 1.8 ± 2.7

BSL 51.0 ± 17.4* 10.9 ± 3.9

Data are presented as mean ± SD. HC, healthy controls; BPD, borderline person-
ality disorder; GAF, Global Assessment of Functioning, HDS, Hamilton Depression
Scale; BDI, Beck Depression Inventory; BSL, Borderline Symptom List; *p < 0.05
(two-sample t-tests).
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history of schizophrenia, schizoaffective disorder or bipolar dis-
order but we allowed co-occurrence of Axis I disorders MD or
PTSD and psychotropic medication (Skodol et al., 1999). Addi-
tional exclusion criteria were an age below 18 or above 60 years,
pregnancy, neurological or internal systemic diseases, and gen-
eral contraindications for MRI assessment. A detailed description
of each patient’s current comorbidity and medication can be
found in Table 2. All control subjects were free of any cur-
rent or past neurological or psychiatric disorder or psychotropic
medication.

All participants in this study underwent 10 min of rs-fMRI with
the instruction to keep their eyes closed and not to fall asleep. We
verified that subjects stayed awake by interrogating via intercom
immediately after the rs-fMRI scan. Before and after scanning, a
medical examination of patients validated their stable condition
and investigated whether they had feelings of odd situations during
the scanning. No patient dropped out during the scanning session.

MRI DATA ACQUISITION
Magnetic resonance imaging was performed on a 3-T whole
body MR scanner (Achieva, Philips, Netherlands) using an eight-
channel phased-array head coil. For co-registration of functional
data, T1-weighted anatomical data were obtained from each
subject by using a magnetization-prepared rapid acquisition gra-
dient echo sequence [time to echo (TE) = 4 ms, repetition time
(TR) = 9 ms, time for inversion (TI) = 100 ms, flip angle = 5◦,
field of view (FoV) = 240 mm × 240 mm, matrix = 240 × 240,
170 slices, voxel size = 1 mm × 1 mm × 1 mm]. fMRI

data were collected using a gradient echo planar imaging (EPI)
sequence (TE = 35 ms, TR = 2000 ms, flip angle = 82◦,
FoV = 220 mm × 220 mm, matrix = 80 × 80, 32 slices, slice
thickness = 4 mm, and 0 mm interslice gap; an fMRI run of
10 min results in 300 volumes).

fMRI DATA ANALYSIS
Preprocessing
For each participant the first three functional scans of each
fMRI-session were discarded due to magnetization effects. SPM51

(Wellcome Department of Cognitive Neurology, London) was
used for motion correction, spatial normalization into the stereo-
tactic space of the Montreal Neurological Institute (MNI) with
resampling of voxel size to 3 mm × 3 mm × 3 mm, and spatial
smoothing by applying an 8 mm × 8 mm × 8 mm Gaussian kernel.
None of the participants had to be excluded due to excessive head
motion (linear shift <3 mm across run and on a frame-to-frame
basis, rotation <1.5◦). Two-sample t-tests between groups yielded
no significant results regarding translational and rotational move-
ments of any direction as well as voxel-wise signal-to-noise ratio
of fMRI data calculated with DPARSFA toolbox2 (p < 0.05).

Independent component analysis of fMRI data
Following a recent approach (Manoliu et al., 2013b), we applied
high-model-order ICA to the preprocessed data by using the

1http://www.fil.ion.ucl.ac.uk/spm/
2http://www.restfmri.net

Table 2 | Detailed clinical characteristics of patients with BPD.

Patients Medication Current comorbidity History of comorbidity

1 Quetiapine 50 mg, Fluoxetine 20 mg PTSD Substance abuse

2 Olanzapine 5 mg, Quetiapine 600 mg (prolong),

Escitalopram 20 mg

Alcohol abuse MDD

3 Escitalopram 20 mg, Zopiclone 7.5 mg Bulimia nervosa Recurrent MDD

4 Quetiapine 100 mg, Lamotrigine 12.5 mg Substance abuse, Cannabis dependence Recurrent MDD

5 Quetiapine 300 mg (prolong), Sertraline 150 mg,

Aripiprazole 10 mg

Multiple personality disorders None

6 None None None

7 Atomoxetine 50 mg, Fluoxetine 20 mg,

Paliperidone 3 mg

MDD, ADHD, alcohol abuse Anorexia nervosa, recurrent MDD

8 Fluoxetine 40 mg MDD Substance abuse

9 Fluoxetine 30 mg, Quetiapine 12.5 mg, Pregabalin

225 mg

Undifferentiated somatoform disorder, alcohol

abuse

Alcohol abuse

10 Aripiprazole 20 mg, Venlafaxine 150 mg Alcohol abuse Alcohol abuse

11 Pregabalin 300 mg, Quetiapine 60 mg, Venlafaxine

225 mg

PTSD, undifferentiated somatoform disorder,

alcohol dependence

Recurrent MDD

12 None None None

13 Sertraline 75 mg PTSD, substance abuse Recurrent MDD

14 Sertraline 50 mg Cannabis abuse Recurrent MDD

BPD, borderline personality disorder; PTSD, post-traumatic stress disorder; MDD, major depressive disorder.
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Group ICA of fMRI Toolbox (GIFT)-toolbox3 (version 1.3h)
with the infomax algorithm implemented in Matlab (Calhoun
et al., 2001). Data were decomposed into 70 spatial indepen-
dent components (ICs), correspondent with a recently suggested
framework for high-model-order decomposition (Abou Elseoud
et al., 2011; Allen et al., 2011). High-model-order ICA approaches
yield ICs, which are in accordance with large-scale functional
networks from low-order approaches but offer a more detailed
and particularly robust decomposition of sub-networks (Damoi-
seaux et al., 2006; Kiviniemi et al., 2009; Smith et al., 2009).
Before volumes were entered into ICA analysis, voxel-wise z-
transformation on time course data yijk(t) was applied by sub-
tracting the mean 〈yijk〉 and dividing by the standard deviation σijk

{ŷijk(t) = [yijk(t) − 〈yijk〉]/σijk}, t time, i,j,k directions in space;
Sorg et al., 2007). The sensitivity of the multivariate ICA algo-
rithm for correlation of variance between voxels, i.e., functional
connectivity, was thereby rendered independent of the original
BOLD signal magnitude across subjects. Data were concatenated
and reduced by two-step principal component analysis (PCA),
followed by IC estimation with the infomax algorithm. We subse-
quently ran 40 ICAs (ICASSO) to ensure stability of the estimated
components (Himberg et al., 2004). This results in a set of average
group components, which are then back reconstructed into sin-
gle subject space employing a dual regression analysis (group ICA
(GICA) back-reconstruction approach (GICA-3) in GIFT; Erhardt
et al., 2011). Each thus reconstructed IC results in a spatial map of
z-scores reflecting the within-network iFC (intra-iFC) of a voxel
within this component and an associated time course of BOLD
signal fluctuations representative for this IC. We then reintegrated
the initially calculated scaling factor σijk into the data by voxel-
wise multiplication in order to preserve each individual’s profile
of variance magnitude while leaving the normalized time course
component unchanged.

Network selection
As previously described (Manoliu et al., 2013b), we ran a multiple
spatial regression with a previously established baseline set of func-
tionally relevant ICNs as regressors of interest (Allen et al., 2011)
to automatically identify DMN, SN, and CEN in our dataset. From
this publication, we selected the posterior (IC 53) and anterior (IC
25) DMN (a/pDMN), left and right lateralized fronto-parietal net-
works (ICs 34 and 60) reflecting left and right CEN, and an insular
network (IC 55) reflecting the SN. The template for the insular
network revealed a second component covering PI and bilateral
amygdala and hippocampus [which we called posterior SN (pSN)
in contrast to the anterior SN (aSN); see also Seeley et al., 2007;
Taylor et al., 2009; Legrain et al., 2011]. Due to the importance
of insular structures in BPD we also selected this component for
further analyses.

Statistical analysis
To evaluate the spatial consistency of ICNs (intra-iFC), we calcu-
lated voxel-wise one-sample t-tests on participants’ reconstructed
spatial maps using SPM5 for each ICN and group (p < 0.05, cor-
rected for false discovery rate, FDR). We then examined group

3http://icatb.sourceforge.net

differences of intra-iFC. The individual z-maps were entered
into voxel-wise two-sample t-tests and a conjunction map of the
one-sample t-test image (p < 0.001 uncorrected) was applied
as a mask to the analysis. In order to control for antipsychotic
medication we added chlorpromazine (CPZ)-equivalent doses
(Woods, 2003) as covariate-of-no-interest in all imaging analyses.
The resulting SPMs were thresholded at p < 0.001 (voxel level)
and p < 0.05 [corrected for family wise error (FWE) at cluster
level].

In order to investigate group effects of inter-iFC between
ICNs, we extracted each subject’s IC-timecourse of a/pDMN, l/r
CEN, and a/pSN, calculated pairwise Pearson’s correlation coef-
ficients between the time course of all ICNs for each subject,
transformed the correlation matrix into z-values via Fisher r-to-
z-transformation and tested differences between the two groups
(two-sample t-tests with CPZ as covariate-of-no-interest, p < 0.05,
Bonferroni-corrected for 15 pairwise correlations).

CEN/SN-inter-iFC index
Finally, we calculated the ratio (r) of overall inter-iFC for SN
and CEN within the intrinsic functional architecture of DMN,
SN, and CEN for each group controlling for effects of antipsy-
chotic medication (two-sample t-test, p < 0.05): r = inter-
iFCsum(CEN)/inter-iFCsum(SN). Here, the inter-iFCsum reflects
the inter-network connectivity of CEN and SN, and is calcu-
lated as the summarized absolute z-values of each network from
the between ICN analysis. This integrated score is motivated
by the idea that both SN and CEN interact with the DMN
and among each other during emotion regulation, and that
they are involved in cognitive control processes (task-positive
networks; Seeley et al., 2007) with stronger representation of
motivational/emotional aspects by the SN and of attention-
related aspects by the CEN (Dosenbach et al., 2008; Menon, 2011;
Hamilton et al., 2013).

RESULTS
Psychometric assessment revealed significant differences between
patients and controls for GAF (two-sample t-test, t = 17.3,
p < 0.05), HDS (t = −7.1, p < 0.05), BDI (t = −3.1, p < 0.05),
and BSL (t = −5.8, p < 0.05) between the two groups (Table 1).

INTRA-iFC
Automated component selection, which was based on spatial tem-
plates representing subsystems of the DMN, SN, and CEN (see
Figure 4 in Allen et al., 2011 for spatial templates), revealed six
IC of interest from high-model-order analysis of fMRI data for
each individual. The SN was represented in an anterior and pos-
terior insular network (a/pSN), the DMN in an a/pDMN, and the
CEN in left and right (l/r) CEN. Selected components were spa-
tially consistent across groups and matched previous results of SN,
DMN, and CEN (Allen et al., 2011; see Figure 1 and Table 3 for
detailed description of intra-iFC within selected ICNs, p < 0.05,
FDR-corrected).

Group comparisons of networks’ intra-iFC revealed regionally
increased intra-iFC in each ICN of patients and decreased intra-
iFC in only two ICNs (i.e., pSN, lCEN; p < 0.05 FWE-corrected
cluster level and Bonferroni-corrected for six ICNs; Figure 2;
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FIGURE 1 | Spatial maps and time courses of default mode, salience, and

central executive network (DMN, SN, CEN) in healthy controls and

patients. Spatial statistical parametric maps (SPM, one-sample t -tests
controlled for medication) and associated time courses of intrinsic networks
in healthy controls (HC) and patients with borderline personality disorder
(BPD). Maps and time courses are derived from independent component

analysis of resting-state fMRI of subjects. SPMs are thresholded at p < 0.05
FDR-corrected and superimposed on a single subject high resolution T1
image. Color coding (red > yellow) represents t -values ranging from 3 to 25.
The x -axis of signal time courses reflects number of fMRI scans; the y -axis
represents normalized signal amplitude. First to third row: anterior and
posterior (a/p) DMN, anterior and posterior SN, left and right (l/r) CEN.

Table 4). Increased intra-iFC in the BPD group covered vari-
ous brain regions (midline structures: ACC, PCC, medial frontal
gyrus; parietal lobe: bilateral SPL; insula: posterior part), decreased
intra-iFC occurred in right hippocampus and left superior frontal
gyrus.

INTER-iFC
To explore inter-iFC across DMN, SN, and CEN, we calculated the
pairwise correlation between network time courses and tested sig-
nificance of correlations and their potential group differences by
using one- and two-sample t-tests controlling for effects of medi-
cation (CPZ covariate-of-no-interest). In HC, we found significant
inter-iFC for 9 of 15 network pairs, while only four significant

correlations occurred in BPD (p < 0.05, Bonferroni-corrected,
black lines in Figure 3A; Table 5). The analysis of group differences
revealed specific changes in the intrinsic functional architecture
of patients (p < 0.05, Bonferroni-corrected for 15 connections;
Table 5). More specifically, absent inter-network connectivity was
found mainly for interactions concerning the CEN where four of
six connections significantly decreased. Contrary to this overall
decrease of iFC in patients, two additional intrinsic inter-network
connections occurred in the patients group for the SN (red lines
in Figure 3A).

Interestingly, in our correlation analysis of ICA-derived net-
work time courses we found increased connectivity between
the r/lCEN and a/pDMN in HC. This finding might be
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Table 3 | Spatial intra-iFC maps of DMN, SN, and CEN in controls and patients.

Networks and brain regions HC BPD

Cluster size tmax MNI Cluster size tmax MNI

x y z x y z

aDMN

Superior frontal gyrus 2506 18.39 15 63 21 1460 14.39 −6 54 15

Anterior cingulate cortex 17.68 6 48 21 12.18 −3 60 30

Inferior frontal gyrus 63 6.24 −45 33 −12

Middle cingulate cortex 56 4.8 0 −3 30

Posterior cingulate cortex, precuneus 195 6.78 0 −60 27 330 12.9 −3 −51 33

Angular gyrus 266 10.91 −51 −66 30

Precentral sulcus 54 6.5 −6 −36 66

Cerebellum 155 10.11 12 −54 −42 43 5.12 6 −54 −42

Putamen 25 5.41 −21 6 12

Middle occipital gyrus 74 5.08 57 −63 24

pDMN

Posterior cingulate cortex 2749 17.13 3 −48 21 4122 26.56 12 −48 30

Precuneus 22.45 −9 −57 33

Angular gyrus 247 15.48 45 −51 27

Anterior cingulate cortex 39 3.87 6 39 21

Middle temporal gyrus 34 5.69 60 0 −21 79 4.87 −57 3 −24

Hippocampus 40 6.71 24 −36 −3

Cerebellum 47 4.12 −3 −24 −21

Fusiform gyrus 42 3.62 36 −75 −3

aSN

Right anterior insula 882 18.58 39 18 −3 723 18.88 48 24 −3

Left anterior insula 696 12.84 −33 9 −6 631 12.78 −30 27 −6

Orbitofrontal gyrus 53 4.94 −30 51 −3

Anterior cingulate cortex 275 6.41 9 39 15 868 8.19 −9 48 18

Superior medial gyrus

Middle cingulate cortex 81 6.39 −6 −36 45 9.32 9 24 33

Thalamus 138 7.46 −9 −21 6 14 4.86 −9 −9 9

Cerebellar vermis 53 6.33 9 −57 −30

Middle frontal gyrus 37 5.02 33 51 12 12.78 −39 27 −6

Angular gyrus 150 6.31 48 −45 30

pSN

Right posterior insula 1239 11.6 48 9 0 679 14.82 51 −3 −12

Left posterior insula 892 11.03 −45 −12 3 487 11.96 −51 0 −6

Hippocampus 989 13.07 −15 −30 −6

Anterior cingulate cortex 298 7.03 0 36 9 111 8.32 0 36 9

Inferior frontal gyrus 85 5.37 −48 30 15 50 5.91 −54 33 3

Right Amygdala 31 4.02 24 −3 −15

lCEN

Middle frontal gyrus 1229 13.95 −24 23 59 2580 14.51 −45 36 18

Superior frontal gyrus 10.09 −15 36 51

(Continued)
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Table 3 | Continued

Networks and brain regions HC BPD

Cluster size tmax MNI Cluster size tmax MNI

x y z x y z

Inferior frontal gyrus 277 10.05 48 36 21

Superior medial gyrus 181 7.25 0 63 0

Middle orbital gyrus 47 5.44 −42 48 −3

Middle cingulate cortex 388 8.86 0 −36 36

Thalamus 62 5.95 −6 −15 12

Inferior parietal lobe 128 6.52 48 −60 27 2071 14.46 −27 −66 39

13.49 −48 −42 48

Superior temporal gyrus 45 4.86 66 −15 6

Insula 66 4.27 42 0 6

Hippocampus 44 6.5 −15 −3 −21

Cerebellum 298 7.78 39 −75 −30 293 8.35 30 −66 −33

Superior occipital gyrus 255 8.13 33 −72 45

rCEN

Middle frontal gyrus 1271 11.93 39 18 54 757 10.64 39 21 42

Middle orbital gyrus 54 4.92 −39 48 −9 220 8.54 36 51 −12

Middle cingulate cortex 85 7.68 3 −39 39 155 7.51 6 −45 33

Middle temporal gyrus 46 5.91 69 −42 0

Inferior parietal lobule 641 19.16 −51 −54 45 665 10.65 −48 −54 48

Angular gyrus 1047 19.2 42 −60 39 967 20.56 42 −63 42

Precuneus 133 7.65 6 −78 42

Cerebellum 210 9.39 −36 −66 −42 124 7 −30 −66 −36

Fusiform gyrus 83 4.57 30 −66 −9

One-sample t-test (corrected for medication), p < 0.05 corrected for false discovery rate. HC, healthy controls; BPD, borderline personality disorder; aDMN, pDMN,
anterior and posterior default mode network; aSN, pSN, anterior and posterior salience network; lCEN, rCEN, left and right central executive network. Coordinates
are presented in MNI standard space.

counterintuitive, since CEN and DMN are usually found
anti-correlated (e.g., Fox et al., 2005). However, our findings for
CEN and DMN sub-networks are perfectly in line with those of
Allen et al. (2011), suggesting that such sub-networks are posi-
tively related among each other. This result might be explained
by recent findings of Smith et al. (2012) based on a combina-
tion of high-model order spatial and temporal ICA; these authors
demonstrated that the DMN can be subdivided into several func-
tionally distinct sub-networks, each with its own characteristic
patterns of correlations and anticorrelations with other intrinsic
networks.

Finally, the observed global “shift” of inter-iFC among SN
and CEN in patients was reflected by an altered CEN/SN-
inter-iFC index r (Figure 3B). This ratio reflects the rela-
tive intrinsic impact of the CEN in comparison to the SN
within the global intrinsic functional architecture of SN, CEN,
and DMN. We found a significant difference between r (con-
trols) = 1.64 ± 0.80 and r (BPD) = 0.99 ± 0.52 with p = 0.015
(two-sample t-test), potentially indicating a relative shift from

cognitive control to emotion processing in patients with BPD
(Figure 3B).

DISCUSSION
The aim of this study was to investigate iFC among SN, DMN,
and CEN in patients with BPD. This aim was motivated by
previous findings demonstrating that interactions within and
between these three networks contribute critically to behavior
and emotion regulation; impaired emotion/behavior regula-
tion, in turn, is suggested as an essential property of BPD.
In a sample of 14 patients, we found aberrant intra-iFC in
all three networks. While patients’ inter-iFC of the CEN was
generally decreased, only inter-iFC of the SN was increased.
In particular, a “balance” index reflecting the relationship of
CEN- and SN-inter-iFC across networks was strongly shifted
from CEN to SN connectivity in patients. This result pro-
vides first preliminary evidence for aberrant intrinsic connec-
tivity among the DMN, SN, and CEN in BPD. Data suggest
that patients’ impaired emotion/behavior regulation may rely on

Frontiers in Human Neuroscience www.frontiersin.org October 2013 | Volume 7 | Article 727 | 303

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


“fnhum-07-00727” — 2013/10/28 — 21:41 — page 8 — #8

Doll et al. Shifted connectivity in borderline disorder

FIGURE 2 | Aberrant intrinsic functional connectivity within DMN, SN,

and CEN (intra-iFC) of patients. SPMs of group differences in intra-iFC for
the DMN, SN, and CEN (voxel-wise two-sample t -tests) controlled for

antipsychotic medication. SPMs are thresholded at p < 0.05, FWE-corrected
at cluster level and superimposed on a single subject high resolution T1
image. Color coding (red > yellow) represents t -values ranging from 4 to 11.

anomalous iFC among intrinsic networks that is centered on the
SN.

ABERRANT INTRA-iFC IN SALIENCE, DEFAULT MODE, AND CENTRAL
EXECUTIVE NETWORK IN BPD
In patients, we found increased intra-iFC in the DMN, SN, and
CEN with increases covering midline structures such as frontal
and parietal cingulate cortices, prefrontal cortices (PFC), parietal
lobes, and insular regions (Figure 2; Table 4). Decreased intra-
iFC was found in right hippocampi and in the left dorsolateral
frontal cortex (Figure 2; Table 4). Identified group differences were
not due to a disintegration of investigated networks in patients,
since basic spatial maps of networks were both largely consis-
tent across groups (Figure 1; Table 3) and in line with previous
findings (Damoiseaux et al., 2006; Allen et al., 2011). Patients’
counter-intuitively increased and decreased intra-iFC in intrin-
sic networks particularly in one and the same network (such as
lCEN) has been observed also in other neuropsychiatric disor-
ders such as schizophrenia (Manoliu et al., 2013b) or Alzheimer’s
disease (Zhou et al., 2010) and – in line with our findings – in
BPD (for the DMN and CEN; Wolf et al., 2011); however, the
functional significance of the direction of intra-iFC changes in
brain disorders is still unclear (e.g., iFC decreases are suggested to
reflect connectivity disruptions while iFC-increases might reflect
compensatory processes; but also a loss of desynchronization and
therefore system complexity may play a role; Zhou et al., 2010).
Previous imaging studies, which explored the neural correlates of
impaired self- or emotion-processing in BPD, revealed aberrant
task-related activity in areas similar to those of aberrant intra-
iFC we found (Minzenberg et al., 2007; King-Casas et al., 2008;
Driessen et al., 2009; Koenigsberg et al., 2009a; Smoski et al., 2011;

Holtmann et al., 2013). For example, patients with BPD, who had
to engage with emotional stimuli, had aberrant levels of activity
in ACC, dorsolateral PFC, and amygdala (Minzenberg et al., 2007;
Koenigsberg et al., 2009a; Holtmann et al., 2013); the insula was
found to be the key region distinguishing BPD patients from HC
in a more complex setting of a gambling task (King-Casas et al.,
2008); in healthy subjects, self-distancing of negative pictures acti-
vates parietal regions overlapping with DMN (Koenigsberg et al.,
2009b), while patients with BPD fail to activate the DMN. Further-
more, so far limited literature of resting-state imaging data in BPD
supports the spatially widespread pattern of functional changes
in BPD. A study using 18F-fluorodeoxyglucose-positron emis-
sion tomography (FDG-PET) found aberrant brain metabolism
in prefrontal and cuneal regions (Juengling et al., 2003). Impor-
tantly, the only rs-fMRI study in BPD reported altered intra-iFC
of prefrontal, cuneal, and insular regions within the DMN and
CEN (Wolf et al., 2011), in line with our results. Taken together,
our result demonstrates regionally specific iFC changes within
DMN, SN, and CEN, which fit spatially previous findings of aber-
rant activity during tasks involved in emotion- and self-related
processing.

ABERRANT INTER-iFC AMONG DMN, SN, AND CEN IN PATIENTS
In addition, we found altered inter-iFC among DMN, SN, and
CEN in patients (Figure 3; Table 5). More specifically, we
observed an overall decrease of inter-iFC (with only two signif-
icant exceptions); this decrease of inter-iFC concerned mainly
the CEN while increases were only found in the SN (Figure 3A;
Table 5). The “shift” from a rather evenly spread inter-iFC
pattern among the three networks in HC (Figure 3A) to a SN-
centered pattern in patients (Figure 3A) was further indicated
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Table 4 | Group differences of intra-iFC maps for DMN, SN, and CEN.

Network with brain region HC BPD

Cluster size tmax MNI Cluster size tmax MNI

x y z x y z

aDMN

Left superior medial frontal gyrus 108 7.35 −9 57 24

Left superior frontal gyrus 3.92 −12 51 33

Intraparietal junction 55 3.42 −51 −63 33

pDMN

Left precuneus 207 6.67 −3 −63 24

aSN

Left superior medial gyrus 111 5.13 −9 48 18

Left anterior cingulate gyrus 4.15 −3 45 9

Right anterior cingulate gyrus 4.07 6 45 12

pSN

Right insular lobe 186 5.64 48 6 −6

Right hippocampus 38 4.45 21 −30 −12

lCEN

Left precentral gyrus 639 8.12 −45 12 30

Left inferior frontal gyrus (pars triangularis) 7.77 −42 3021

Left inferior parietal lobule 398 9.06 −45 −45 51

Left middle temporal gyrus 47 5.51 −57 −54 0

Left superior frontal gyrus 85 5.21 −15 36 51

rCEN

Right angular gyrus 168 5.49 54 −48 30

Right inferior parietal lobule 4.54 45 −51 39

Two-sample t-test (corrected for medication), p < 0.05 corrected for family wise error at cluster level and Bonferroni-corrected for six comparisons; green indicates
increased intra-iFC in patients, red reduced intra-iFC. HC, healthy controls; BPD, borderline personality disorder; aDMN, pDMN, anterior and posterior default mode
network; aSN, pSN, anterior and posterior salience network; lCEN, rCEN, left and right central executive network. Coordinates are presented in MNI standard space.

by a strongly reduced CEN-/SN-inter-iFC index (Figure 3B).
The strong impairment of coordinated activity among these net-
works appears to be in line with a previous EEG study that
found strongly impaired gamma-band synchrony in the parietal
lobes of BPD patients during a cognitive control task (Williams
et al., 2006). The most prominent cognitive model of BPD sug-
gests that patients have deficits in emotion regulation due to
impaired interactions between (pre-)frontal and limbic areas
(Skodol et al., 2002; Mauchnik and Schmahl, 2010; Malhi et al.,
2013). This is supported by several above-mentioned task-fMRI
studies of either emotion processing (Minzenberg et al., 2007;
Koenigsberg et al., 2009a) or cognitive control (Driessen et al.,
2009; Koenigsberg et al., 2009b; Lang et al., 2012). Since these
prefrontal–limbic areas largely overlap with the DMN, CEN,
and SN, our results suggest an integrative model of altered
intrinsic connectivity between emotion- and cognitive control-
relevant intrinsic networks in BPD, which may be related to
prefrontal–limbic regulatory deficits. This model implicates that
neither system nor brain region alone is responsible for the var-
ious and stable behavioral symptoms in BPD. Future studies

combining rs-fMRI and task-fMRI are necessary to test explic-
itly the relationship between aberrant iFC and emotion-evoked
activity in BPD.

PARALLELS WITH OTHER NEUROPSYCHIATRIC DISORDERS
Our result of aberrant iFC among DMN, SN, and CEN is
largely consistent with the more general triple network hypoth-
esis of psychopathology (Menon, 2011). This hypothesis states
that psychopathological symptoms are associated with specifi-
cally altered coordinated activity across SN, DMN, and CEN;
particularly, aberrant SN control function of DMN and CEN
might underlie specific mental dysfunctions (Palaniyappan and
Liddle, 2012). For example patients with schizophrenia with
and without psychotic symptoms demonstrate distinctive changes
of intra- and inter-iFC in the insular SN that are associated
with impaired DMN/CEN interactions and positive and nega-
tive symptoms of patients (Manoliu et al., 2013a,b); in depressive
patients, rumination is associated with aberrant coordination of
intrinsic SN, DMN, and CEN activity (Hamilton et al., 2011). Con-
cerning BPD, our data suggest that impaired behavior/emotion
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FIGURE 3 | Aberrant intrinsic functional connectivity between DMN, SN,

and CEN (inter-iFC) of patients. (A) Inter-iFC between two networks is
based on Pearson’s correlation between network time courses. In healthy
controls (HC), black lines indicate significant inter-iFC (one-sample t -tests,
p < 0.05, Bonferroni-corrected for 15 correlations). Thickness of lines reflects
absolute values of Fisher-z -normalized correlation coefficients. In patients
with BPD, red lines indicate increased inter-iFC compared to healthy controls,
while missing lines indicate significantly reduced and absent connections in

BPD (two-sample t -tests, p < 0.05, Bonferroni-corrected). See alsoTable 5

for correlation coefficients of significant inter-iFC. Results are controlled for
antipsychotic medication. (B) For each subject, the ratio (r ) of overall inter-iFC
for CEN and SN within the intrinsic functional architecture of DMN, SN, and
CEN was calculated by r = inter-iFCsum(CEN)/inter-iFCsum(SN), with
inter-iFCsum for CEN and SN, respectively, reflecting summarized absolute
z -values of inter-iFC. We found significantly reduced r in patients (two-sample
t -test, **p = 0.007).

regulation might be associated with SN-centered inter-iFC reor-
ganization of triple network functional architecture; however,
more explicit evidence for such specific link between network
interaction changes and behavioral deficits in BPD is necessary
(for more detailed discussion of this point see below “limita-
tions”). Furthermore, in comparing among different disorders
one has to pay attention to potential confounding effects of
psychotropic medication, which might be used in both com-
pared disorders, e.g., antipsychotics in BPD and schizophre-
nia. Based on these findings, three basic questions about the
specificity of aberrant triple network iFC in BPD arise: how
specific are iFC changes for distinct psychopathological symp-
toms such as emotional response style or impulsivity in BPD?
Beyond symptoms, how specific are iFC changes for com-
parisons with other neuropsychiatric disorders? Beyond triple
network, which further brain changes outside the triple net-
work such as subcortical or neurochemical changes are critical
for distinct symptoms or differences with other disorders? To
disentangle such questions, future studies, which may include dif-
ferent psychiatric disorders and brain measures beyond iFC, are
necessary.

LIMITATIONS
First, although comparable with previous studies in BPD, the sam-
ple size of our study is small (n = 14; e.g., Koenigsberg et al., 2009a;
Wolf et al., 2011; Lang et al., 2012). In general, a small sample
size reduces the power of effects, and increases the likelihood of
false positive results (Button et al., 2013). Therefore the presented
results are preliminary and warrant further replication with higher
sample sizes. Second, our patient sample is heterogeneous due to
gender, comorbidity, and medication status. This heterogeneity is
due to clinically based inclusion criteria, which provided a clin-
ical representative patient sample (Skodol et al., 1999). On the
one hand this heterogeneity together with small sample size pre-
cluded us to link brain changes with specific behavioral changes;
in such groups, the distribution of symptom severity is too het-
erogeneous to allow for brain–behavior relationship analysis. On
the other hand, our results are independent of specific BPD sub-
groups, suggesting that observed changes of triple network iFC are
a general feature of BPD. Nevertheless, studies in more homoge-
neous sub-groups of BPD might be helpful to specify aberrant
network iFC due to BPD sub-groups. Third, patients of the
study were therapeutically treated with psychotropic substances
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Table 5 | Inter-iFC between DMN, SN, and CEN.

Inter-iFC between

ICNs

Healthy controls BPD patients Two-sample

t -test (p)
SEM Mean One-sample

t -test (p)

SEM Mean One-sample

t -test (p)

aDMN–aSN 0.083 −0.089 0.300 0.112 0.144 0.220 0.177

aDMN–lCEN 0.059 0.472 0.000** 0.059 −0.036 0.550 0.000**

aDMN–pDMN 0.077 0.391 0.000** 0.086 0.417 0.000** 0.887

aDMN–pSN 0.067 0.361 0.000** 0.073 −0.063 0.406 0.000**

aDMN–rCEN 0.075 0.348 0.000** 0.086 0.262 0.010* 0.574

aSN–lCEN 0.089 −0.392 0.001** 0.079 0.014 0.860 0.003**

aSN–pSN 0.056 0.041 0.472 0.075 0.372 0.000** 0.009**

aSN–rCEN 0.084 −0.150 0.095 0.118 −0.017 0.889 0.323

lCEN–pDMN 0.064 0.563 0.000** 0.062 −0.112 0.095 0.000**

lCEN–pSN 0.090 −0.057 0.534 0.052 −0.035 0.507 0.783

lCEN–rCEN 0.112 0.236 0.053 0.097 0.056 0.574 0.220

pDMN–aSN 0.061 −0.347 0.000** 0.081 −0.236 0.012* 0.461

pDMN–pSN 0.082 −0.019 0.824 0.076 −0.446 0.000** 0.003**

pDMN–rCEN 0.083 0.354 0.001** 0.093 0.437 0.000** 0.672

rCEN–pSN 0.077 0.354 0.000** 0.089 −0.252 0.014* 0.000**

One-sample and two-sample t-tests (*p < 0.05 uncorrected, **p < 0.05, Bonferroni-corrected for 15 tests) including CPZ-equivalent doses as covariate-of-no-interest,
for inter-iFC between intrinsic networks in healthy controls and patients with BPD (mean and standard error of Fisher r-to-z-transformed Pearson’s correlation coefficient
among network time courses). aDMN, pDMN, anterior and posterior default mode network; aSN, pSN, anterior and posterior salience network; lCEN, rCEN, left and
right central executive network.

(Table 2). While we did control for antipsychotic medication,
we did not control for antidepressant medication because no
appropriate numerical procedure (comparable to CPZ conver-
sion) is available for antidepressants. Previously, antidepressant
effects on brain activity and functional connectivity have been
discussed for the BOLD signal (Miller et al., 2001; Phillips et al.,
2008; Heller et al., 2013). Although recent studies suggest that
antidepressants normalize brain function (Anand et al., 2005; Fu
et al., 2007; Heller et al., 2013), we cannot exclude antidepressant
medication effects on our results. Future studies of non-medicated
patients are necessary. Forth, some limitations concerning the use
of ICA to identify ICNs have to be considered. Our selection of a
model order 70 was empirical; although a model order of about
75 components seems to be an optimal choice (Abou-Elseoud
et al., 2010), no clear computational or objective criterion for that
number is available. Furthermore, the selection of ICNs of inter-
est from ICA-derived components is intricate, particularly due
to subjective bias; to account for this problem, we performed
maximally controlled spatial regression analysis of all ICs on
ICN templates as previously described (Manoliu et al., 2013b),
which stem from a previous study using a very similar approach
(Allen et al., 2011).

CONCLUSION
The current study provides evidence for aberrant iFC within and
across DMN, SN, and CEN in patients with BPD. Data suggest a
“shift” of inter-network iFC from networks of cognitive control

to those of emotion-related activity, potentially reflecting the
persistent instability of emotion regulation in patients.
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Major depressive disorder (MDD) is characterized by altered intrinsic functional
connectivity within (intra-iFC) intrinsic connectivity networks (ICNs), such as the Default
Mode- (DMN), Salience- (SN) and Central Executive Network (CEN). It has been proposed
that aberrant switching between DMN-mediated self-referential and CEN-mediated
goal-directed cognitive processes might contribute to MDD, possibly explaining patients’
difficulties to disengage the processing of self-focused, often negatively biased thoughts.
Recently, it has been shown that the right anterior insula (rAI) within the SN is modulating
DMN/CEN interactions. Since structural and functional alterations within the AI have been
frequently reported in MDD, we hypothesized that aberrant intra-iFC in the SN’s rAI is
associated with both aberrant iFC between DMN and CEN (inter-iFC) and severity of
symptoms in MDD. Twenty-five patients with MDD and 25 healthy controls were assessed
using resting-state fMRI (rs-fMRI) and psychometric examination. High-model-order
independent component analysis (ICA) of rs-fMRI data was performed to identify ICNs
including DMN, SN, and CEN. Intra-iFC within and inter-iFC between distinct subsystems
of the DMN, SN, and CEN were calculated, compared between groups and correlated
with the severity of symptoms. Patients with MDD showed (1) decreased intra-iFC within
the SN’s rAI, (2) decreased inter-iFC between the DMN and CEN, and (3) increased
inter-iFC between the SN and DMN. Moreover, decreased intra-iFC in the SN’s rAI was
associated with severity of symptoms and aberrant DMN/CEN interactions, with the latter
losing significance after correction for multiple comparisons. Our results provide evidence
for a relationship between aberrant intra-iFC in the salience network’s rAI, aberrant
DMN/CEN interactions and severity of symptoms, suggesting a link between aberrant
salience mapping, abnormal coordination of DMN/CEN based cognitive processes and
psychopathology in MDD.

Keywords: intrinsic functional connectivity, intrinsic networks, central executive network, default mode network,

salience network, triple network hypothesis, anterior insula, major depressive disorder

INTRODUCTION
Major depressive disorder (MDD) is a severe mental disorder
defined by the presence of at least one major depressive episode
(MDE), which is primarily characterized by depressed mood,
diminished interest, loss of energy, impaired cognition, and sui-
cidal tendency (American Psychiatric Association, 2000). MDEs
have been demonstrated to be associated with both structural
(Savitz and Drevets, 2009) and functional brain anomalies includ-
ing aberrant functional connectivity (FC) of remote brain areas’
activity (Greicius et al., 2007; Sheline et al., 2010; Northoff et al.,
2011). Altered intrinsic FC (iFC, i.e., synchronous ongoing brain
activity) has been found in intrinsic connectivity networks (ICNs)

particularly in the Default Mode Network (DMN), Salience
Network (SN), and Central Executive Network (CEN), suggest-
ing a critical role of these neurocognitive “core” networks (Uddin
et al., 2011) in mediating pathophysiological mechanisms in
MDD (Menon, 2011; Hamilton et al., 2013).

The DMN comprises mainly the ventromedial prefrontal cor-
tex, the posterior cingulate cortex, bilateral inferior parietal
cortex and the middle temporal lobe and is involved in self-
referential/internally oriented processes (Buckner et al., 2008).
Within the DMN, aberrant deactivation during goal-directed
tasks (Sheline et al., 2009) as well as increased FC during
rest [(Greicius et al., 2007), see also Broyd et al. (2009) for
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review] have been demonstrated in patients with MDD, sug-
gesting that DMN-mediated processes bias patients for increased
self-referential thoughts even during external tasks in MDD
(Hamilton et al., 2013). The CEN comprises primarily the
dorsolateral prefrontal cortex (DLPFC) and posterior pari-
etal cortex and is involved in control processes during goal-
directed/externally oriented tasks (Fox and Raichle, 2007) and
regulation of emotional responses, particularly mediated via the
DLPFC (Phillips et al., 2008). Heterogeneous alterations in iFC
during both task (Fitzgerald et al., 2008b) and rest (Fitzgerald
et al., 2008a; Diener et al., 2012) have frequently been reported
in MDD, supporting the assumption of aberrant cognitive regu-
lation of emotional processing in patients with MDD (Pizzagalli
et al., 2009). The SN comprises the anterior insular cortex (AI)
and dorsal anterior cingulate cortex and is involved in detect-
ing and orienting to both external and internal salient stimuli
and events (Seeley et al., 2007). The AI within the SN is crit-
ically involved in maintaining and updating representations of
current and predictive salience (Singer et al., 2009; Palaniyappan
and Liddle, 2012). Particularly, the right AI has been suggested
to critically contribute to appropriate behavioral responses to
salient stimuli via switching between DMN-related self-referential
and CEN-related goal directed cognitive activity (Sridharan et al.,
2008). In MDD, increased activation in response to negative
stimuli (Strigo et al., 2008) as well as aberrant iFC at rest [see
Sliz and Hayley (2012) and Diener et al. (2012) for extensive
review] have been reported in the AI, possibly indicating height-
ened SN response selectively to negative stimuli. Taken together,
these findings suggest a reorganization of iFC within DMN,
SN and CEN in MDD, potentially contributing to characteristic
symptoms in MDD, such as rumination (DMN), emotional over-
reactivity (SN), and emotional disinhibition (CEN) (Hamilton
et al., 2013).

Recent large-scale neurocognitive models of MDD point at
the prominent role of aberrant PFC-limbic interactions under-
lying impaired emotion processing including its regulation in
MDD (Mayberg, 1997; Drevets et al., 2008; Disner et al., 2011).
In terms of intrinsic networks, these models suggest aberrant
interactions among DMN, CEN, and SN, which cover large
parts of the prefrontal and limbic brain (Hamilton et al., 2013).
Correspondingly, Hamilton and colleagues found that increased
dominance of DMN activity over the activity of the task pos-
itive network (“TPN,” which corresponds in its spatial pattern
widely to the CEN) during rest is associated with the severity
of self-focused rumination in depressive patients, therefore giv-
ing a first hint toward aberrant inter-network interaction and its
relevance for symptoms in MDD. In line with this finding, they
demonstrated further that aberrant right AI activity in patients
appeared to be involved in this network interaction failure: more
specifically, increased AI activity was found in patients when
CEN activity increased, while in controls increased AI activity
was present when DMN activity increased. This result corre-
sponds well with right AI’s critical role in modulating interac-
tions between the DMN and CEN in healthy subjects (Sridharan
et al., 2008), suggesting maladaptive interaction between right
AI and DMN/CEN in patients with MDD. However, direct evi-
dence for such aberrant inter-network interaction centered on

the right AI in depression is still missing. Beyond previously
reported structural and functional alterations in the AI [(Strigo
et al., 2008; Sprengelmeyer et al., 2011); see also (Diener et al.,
2012) for review], we hypothesized that rAI’s intrinsic connec-
tivity is aberrant and associated with both aberrant iFC between
DMN and CEN (inter-iFC) and severity of symptoms in major
depression.

The current study aimed to test this hypothesis by addressing
the following questions: Is there a relationship between aberrant
intra-iFC within and aberrant inter-iFC between intrinsic brain
networks (i.e., SN, DMN, CEN) in patients with MDD? Is, as
recently proposed (Menon, 2011), aberrant intra-iFC in the right
AI within the SN linked to aberrant inter-iFC between the DMN
and CEN? And are aberrant intra-iFC and inter-iFC not only
linked to selective symptoms, such as rumination, but also to the
global severity of symptoms in patients with MDD?

To investigate these questions, we performed resting-state
functional magnetic resonance imaging (rs-fMRI) measuring
the ongoing blood-oxygenation-level-dependent (BOLD) fluc-
tuations, structural imaging as well as psychometric assess-
ment in 25 patients with MDD and 25 age- and sex matched
healthy controls. According to a previously reported approach
(Manoliu et al., 2013b), rs-fMRI data were decomposed by high-
model-order independent component analysis (ICA) into spa-
tially independent z-maps of functionally coherent brain areas
and corresponding time courses of component activity (Calhoun
et al., 2001). From these spatial maps (SM), we selected those rep-
resenting the DMN, SN, and CEN. Main outcome measures were
Pearson’s correlation between network time courses, reflecting
inter-network intrinsic functional connectivity (inter-iFC) and
components’ z-maps, reflecting the intra-network intrinsic func-
tional connectivity (intra-iFC). We controlled our analyses for
effects of age, sex and structural anomalies.

METHODS
PARTICIPANTS
Twenty-five patients with recurrent MDD and 25 healthy
control subjects participated in this study (see Table 1 for
detailed presentation of demographical and clinical character-
istics). Participant’s data have also been used in a previous
study investigating the topology of the brain’s connectivity pat-
ters in patients with MDD (Meng et al., 2013). All partici-
pants provided informed consent in accordance with the Human
Research Committee guidelines of the Klinikum rechts der Isar,
Technische Universität München. Patients were recruited from
the Department of Psychiatry, healthy controls by word-of-
mouth advertising. Participants’ examination included medi-
cal history, psychiatric interview, psychometric assessment, and
blood tests for patients. Psychiatric diagnoses were based on DSM
IV (American Psychiatric Association, 2000). The Structured
Clinical Interview for DSM-IV (SCID-I, Spitzer et al., 1992) was
used to assess the presence of psychiatric diagnoses. Severity of
clinical symptoms was measured with the Hamilton Rating Scale
for Depression (HAM-D, Hamilton, 1960) as well as the Beck
Depression Inventory (BDI, Beck et al., 1961). The global level of
social, occupational, and psychological functioning was measured
with the Global Assessment of Functioning Scale (GAF, Spitzer
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Table 1 | Demographic and clinical characteristics.

Measure MDD (n = 25) HC (n = 25) MDD vs. HCa,b

Mean (SD) Mean (SD) p-value

Age 48.76 (14.83) 44.08 (14.78) >0.05a

Sex (m/f) 12/13 11/14 >0.05b

Handedness (EHI) 70.30 (21.67) 66.45 (22.04) >0.05a

GAF 49.80 (10.53) 99.50 (1.10) <0.001a,∗

HAM-D 22.12 (7.06) 0

BDI 24.08 (6.31) 0

Duration of current
MDE [weeks]

16.56 (6.62)

Duration of illness
[years]

16.72 (10.20)

Number of MDEs 5.56 (2.47)

aTwo-sample t-test.
bχ2-test.
*significant for p < 0.05, Bonferroni-corrected for multiple comparisons.

Abbreviations: MDD, major depressive disorder; HC, healthy controls; SD, stan-

dard deviation; EHI, Edinburgh handedness inventory; GAF, Global Assessment

of Functioning Scale; HAM-D, Hamilton Depression Rating Scale; BDI, Beck

Depression Inventory.

et al., 1992). Psychiatrists Martin Scherr and Dirk Schwerthöffer
performed clinical-psychometric assessment and have been pro-
fessionally trained for SCID interviews with inter-rater reliability
for diagnoses and scores of more than 95%.

MDD was the primary diagnosis for all patients. All patients
met criteria for a current MDE with an average current episode
length of 16.56 weeks (SD = 6.62), an averaged HAM-D score
of 22.12 (SD = 7.06) and an average BDI score of 24.08 (SD =
6.31). The average GAF-score was 49.80 (SD = 10.53). The mean
duration of MDD was 16.72 years (SD = 10.20), the mean num-
ber of episodes 5.56 (SD = 2.47). Fourteen out of twenty-five
patients with MDD had a psychiatric co-morbidity, including
generalized anxiety disorder (n = 6), somatization disorder (n =
3), and avoidant or dependent personality disorder (n = 5).
Patients with psychotic symptoms, schizophrenia, schizoaffective
disorder, bipolar disorder, and substance abuse were excluded
from this study. Additional exclusion criteria were pregnancy,
neurological or severe internal systemic diseases, and general
contraindications for MRI. One patient was free of any psy-
chotropic medication during MRI assessment. Seven patients
received mono-therapy [including citalopram 30 mg/d (mean
dose, n = 3), sertraline 200 mg/d (n = 3), mirtazapine 30 mg/d
(n = 1)]. Twelve patients received dual-therapy [including citalo-
pram 37.5 mg/d and mirtazapine 30 mg/d (n = 5), citalopram
40 mg/d and venlafaxine 225 mg/d (n = 2), citalopram 30 mg/d
and quetiapine 200 mg/d (n = 1), sertraline 200 mg/d and mir-
tazapine 30 mg/d (n = 1), venlafaxine 225 mg/d and mirtazapine
30 mg/d (n = 3)]. Five patients received triple therapy [includ-
ing citalopram 30 mg/d, venlafaxine 187.5 mg/d and amisul-
prid 200 mg/d (n = 2), citalopram 30 mg/d, mirtazapine 30 mg/d
and quetiapine 200 mg/d (n = 2), venlafaxine 22 mg/d, mirtaza-
pine 30 mg/d and quetiapine 200 mg/d (n = 1)]. All healthy
controls were free of any current or past neurological or

psychiatric disorder or psychotropic medication and had no fam-
ily history of affective or psychotic mental disorders in first-degree
relatives.

All participants underwent 10 min of rs-fMRI with the instruc-
tion to keep their eyes closed and not to fall asleep. We verified
that subjects stayed awake and had no odd feelings during the
scanning session by interrogating via intercom immediately after
the rs-fMRI scan. No patient dropped out during the scanning
session.

MRI DATA ACQUISITION
MRI was performed on a 3 T MR scanner (Achieva, Philips,
Netherland) using an 8-channel phased-array head coil. For
co-registration and volumetric analysis, T1-weighted anatomi-
cal data were obtained by using a magnetization-prepared rapid
acquisition gradient echo sequence (TE = 4 ms, TR = 9 ms, TI =
100 ms, flip angle = 5◦, FoV = 240 × 240 mm2, matrix =
240 × 240, 170 slices, voxel size = 1 × 1× 1 mm3). FMRI data
were obtained by using a gradient echo EPI sequence (TE =
35 ms, TR = 2000 ms, flip angle = 82◦, FoV = 220 × 220 mm2,
matrix = 80 × 80, 32 slices, slice thickness = 4 mm, and 0 mm
interslice gap; 300 volumes).

fMRI DATA ANALYSIS
Preprocessing
For rs-fMRI data, SPM8 (Wellcome Department of Cognitive
Neurology, London) was used for motion correction, spa-
tial normalization into the stereotactic space of the Montreal
Neurological Institute (MNI) and spatial smoothing with a 6 ×
6 × 6 mm Gaussian kernel. To control for potential differences
in motion between groups and potential bias on function con-
nectivity (Van Dijk et al., 2012), several parameters have been
investigated and compared between patients with MDD and
healthy controls as reported previously [see (Meng et al., 2013)
for extensive presentation of the applied procedures and anal-
yses]. Briefly, excessive head motion (cumulative translation >

3 mm and rotation > 3◦ as well as mean point-to-point transla-
tion >0.15 mm or rotation > 0.1◦) has been applied as exclusion
criteria for all participants. Furthermore, two-sample t-tests were
performed to investigate potential between-group differences in
cumulative and/or mean point-to-point motion, both yielding
no significant between-group differences, respectively (p > 0.05).
Moreover, signal-to-noise ratio of fMRI data was not different
between healthy subjects and patient group (two-sample t-test,
p > 0.05).

Independent component analysis
Independent Component Analysis (ICA) is a computational tech-
nique for identifying statistically independent sources from mul-
tivariate data and can therefore be used to explore functional con-
nectivity patters in the context of resting-state fMRI (Beckmann,
2012). In contrast to seed-based approaches, ICA analyzes the
data in a data-driven way (Calhoun et al., 2001). Therefore, no
a-prior assumptions, such as the manual selection of regions-of-
interest (ROIs), is necessary, making ICA a powerful tool to inves-
tigate the complete picture of the functional hierarchy within the
human brain (Cole et al., 2010), which we aimed to investigate in
patients with MDD and healthy controls in the present study. As

Frontiers in Human Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 930 | 312

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Manoliu et al. Insular dysfunction in depression

recently proposed by Allen et al. (2011) and previously reported
(Manoliu et al., 2013b), preprocessed data were decomposed into
75 spatial independent components within a group-ICA frame-
work (Calhoun et al., 2001), based on the infomax-algorithm
and implemented in the GIFT-software (http://icatb.sourceforge.
net). High-model-order ICA approaches yield independent com-
ponents, which are in accordance with known anatomical and
functional segmentations (Allen et al., 2011). FMRI data were
concatenated and reduced by two-step principal component anal-
ysis, followed by independent component estimation with the
infomax-algorithm. We subsequently ran 20 ICA (ICASSO) to
ensure stability of the estimated components. This results in a set
of average group components, which are then back reconstructed
into single subject space via GICA3, a back-reconstruction algo-
rithm based on PCA compression and projection [see (Allen et al.,
2011) for detailed discussion of advantages of the GICA3 algo-
rithm]. Each back-reconstructed component consists of a spatial
z-map reflecting component’s functional connectivity pattern
across space (intra-iFC) and an associated time course reflecting
component’s activity across time.

Selection of model-order and networks-of-interest
Although ICA-based analyses of rs-fMRI data are often reported,
the selection of the optimal ICA model-order to analyze rs-fMRI
data is still a subject of ongoing debate [see Manoliu et al.
(2013b) as well as Manoliu et al. (2013a) for detailed discus-
sion]. However, it has been demonstrated that a model-order
around 70 components may represent an optimal level to detect
between-group differences and to avoid false positive results
(Abou-Elseoud et al., 2010). Bearing this in mind and exactly
following a recently proposed approach of Allen et al. (2011),
we decomposed our data into 75 independent components.
The congruence with Allen’s approach enables greater com-
parability of results across studies and reduced subjective bias
for ICN selection. In more detail, Allen and colleagues used
an ICA model-order of 75 to decompose rs-fMRI data of 603
subjects within a group-ICA framework based on the infomax-
algorithm and implemented in the GIFT-software (http://icatb.

sourceforge.net) (Calhoun et al., 2001). Authors provided
T-maps of 28 components, which reflect canonical ICNs online
(http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_tmap
s.nii; Allen et al., 2011). To select components, which reflect
networks-of-interest, in an automated and objective way, we
chose from these T-maps those representing subsystems of the
SN, DMN, and CEN (7 of 28 maps, see Figure 1), and performed
multiple spatial regression analyses of our 75 independent
components’ spatial maps on these templates. We selected
components of highest correlation coefficient with the templates,
resulting in 7 ICNs of interest: 1 component reflecting the SN, 3
reflecting subsystems of the DMN or CEN, respectively. In the
end, this approach yielded for each subject and ICN a compo-
nent’s z-map and time course, which reflect network’s coherent
activity.

Outcome measures and statistical analysis
Intra-iFC. To statistically evaluate intra-iFC of selected ICs, we
calculated voxel-wise one-sample t-tests on participants’ recon-
structed spatial maps for each group, using SPM8 [p < 0.05,

family-wise-error (FWE)-corrected for multiple comparisons].
To analyze group differences, participants’ spatial maps were
entered into two-sample t-tests with age, sex, and total gray mat-
ter (GM) volumes within the area covered by the 7 networks-of-
interest [see section Voxel-Based Morphometry (VBM) Analysis
for detailed presentation of calculation of total gray matter] as
covariate-of-no-interest (p < 0.05 FWE-corrected).

Inter-iFC. To statistically evaluate inter-iFC, subject specific
ICN time courses (TCs) were detrended, despiked, filtered
using a fifth-order Butterworth low-pass filter with a high fre-
quency cutoff of 0.15 Hz, and pairwise correlated by Pearson’s
correlation, following the approach of Jafri et al. (2008) as
reported in Manoliu et al. (2013b). To assess group differ-
ences, correlation coefficients were transformed to z-scores using
Fisher’s z-transformation and entered into two-sample t-tests
with age, sex, and total GM volumes of the areas covered by the
7 networks-of-interest [see section Voxel-Based Morphometry
(VBM) Analysis for details regarding the calculation of total
gray matter] as covariate-of-no-interest (p < 0.05, Bonferroni-
corrected for multiple comparisons).

Correlation analyses. Insula dysfunction has been suggested to
be associated with the severity of symptoms in patients with
MDD (Menon, 2011; Hamilton et al., 2013). Accordingly, the total
scores of both HAM-D and BDI were selected for further corre-
lation analyses. To evaluate relationships between insula network
connectivity (SN’s insular intra-iFC) and both between-network
interactions (inter-iFCs) and severity of symptoms in patients, we
first calculated voxel-wise one-sample t-test on patients’ recon-
structed intra-iFC maps for the SN and masked the result with
a mask derived from the two-sample-t-test contrasting patients
from healthy controls. Subsequently, we extracted principle eigen-
variates of left and right AI within patient’s masked SN spatial
map, respectively. Then we used eigenvariate-scores for par-
tial correlation analyses of Fisher-z-transformed inter-iFC scores
and both HAM-D scores and BDI scores, respectively, includ-
ing age, sex, and total GM within the brain areas covered by the
7 networks-of-interest as covariates of no interest [see section
Voxel-Based Morphometry (VBM) Analysis for detailed descrip-
tion of the calculation of total gray matter]. To study the relation-
ship between inter-iFCs and severity of depressive symptoms in
patients, we used Fisher-z-transformed inter-iFC scores for par-
tial correlation analyses of both HAM-D scores and BDI scores,
respectively, including age, sex, and total GM within the brain
areas covered by the 7 networks-of-interest as covariates of no
interest. Results of partial correlation analyses were thresholded
at p < 0.05, Bonferroni-corrected for multiple comparisons.

VOXEL-BASED MORPHOMETRY (VBM) ANALYSIS
The VBM analysis followed the description provided in Meng
et al. (2013). The functional connectivity of intrinsic brain net-
works depends on widespread structural integrity of polysynaptic
pathways (Lu et al., 2011). Since we focus on alterations of
functional interactions among 7 distinct networks, we included
total GM scores of the brain areas covered by the 7 networks-
of-interest as covariate-of-no-interest in above-mentioned FC
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FIGURE 1 | T-maps of intrinsic connectivity networks of interest as

described and provided online by Allen et al. (2011). Allen and
colleagues used an ICA model-order of 75 to decompose rs-fMRI data
of 603 subjects, obtaining 28 components. T-maps of components were
provided online (http://mialab.mrn.org/data/hcp/RSN_HC_unthresholded_
tmaps.nii). As previously reported (Manoliu et al., 2013b), we chose the
T-maps of ICs representing the default mode network, salience network
and central executive network, and performed multiple spatial regression
analyses of our 75 independent components’ spatial maps on these

templates to select the networks-of-interest in an automated and
objective way. Here, provided T-maps were superimposed on a
single-subject high resolution T1 image (color scale representing t-values
from 5 to 25). (A) Anterior default mode network (aDMN); (B) inferior
posterior default mode network (ipDMN); (C) superior posterior default
mode network (spDMN); (D) salience network (SN); (E) left ventral
central executive network (lvCEN); (F) right ventral executive network
(rvCEN); (G) dorsal central executive network (dCEN). Modified from
Manoliu et al., 2013a.

analyses to control for the influence of structural variations. As
described recently (Sorg et al., 2013), we used the VBM8 tool-
box (http://dbm.neuro.uni-jena.de/vbm.html) to analyze brain
structure. T1-weighted images were corrected for bias-field inho-
mogeneity, registered using linear (12-parameter affine) and
non-linear transformations, and tissue-classified into gray mat-
ter (GM), white matter (WM), and cerebro-spinal fluid (CSF)
within the same generative model (Ashburner and Friston, 2005).
The resulting GM images were modulated to account for vol-
ume changes resulting from the normalization process. Here,
we only considered non-linear volume changes so that further
analyses did not have to account for differences in head size.
Finally images were smoothed with a Gaussian kernel of 8 mm
(FWHM). Since we were interested specifically in investigating
aberrant iFC within and between 7 distinct ICNs, we constructed
a binarized mask representing all 7 ICNs of interest and extracted
the total GM scores within this mask for each group following
the procedure reported in Manoliu et al. (2013b). Subsequently,
we used these scores as covariate of no interest in all further
analyses of both intra-iFC and inter-iFC within and between
the 7 ICNs of interest. Furthermore, between group compar-
isons have been reported in a previous study (Meng et al.,
2013).

RESULTS
INTRINSIC CONNECTIVITY NETWORKS: INTRA- AND INTER-iFC
Regarding both intra-iFC and inter-iFC, current results matched
almost perfectly reported findings of Allen et al. (2011) and

previously reported studies investigating the iFC within and
between the DMN, SN, and CEN (Manoliu et al., 2013b), demon-
strating the presence of the basic functional architecture of the
DMN, SN, and CEN in both investigated groups (see Figure 1
for presentation of spatial templates, Figure 2 and Table 2 for
detailed presentation of intra-iFC within ICNs of interest and
Figure 3, and Table 4 for detailed presentation of inter-iFC
between ICNs of interest).

Intra-iFC
As previously described (Manoliu et al., 2013b), automated com-
ponent selection, which was based on spatial templates rep-
resenting subsystems of the DMN, SN, and CEN, revealed 7
components of interest for each participant [see Figure 1 for pre-
sentation of spatial templates according to Allen et al. (2011)]:
The SN was represented in one component (SN, corresponding
with Allen-IC 55). The DMN was represented in 3 components
[anterior DMN (aDMN, corresponding with Allen-IC 25), infe-
rior posterior DMN (ipDMN, corresponding with Allen-IC 53),
superior posterior DMN (spDMN, corresponding to Allen-IC
50)]. The CEN was represented in 3 components [left ventral
CEN (lvCEN, corresponding to Allen IC 34), right ventral CEN
(rvCEN, corresponding to Allen-IC 60), dorsal CEN (dCEN,
corresponding to Allen-IC 52)]. All selected components were
spatially consistent across groups and matched previous results
of SN, DMN, and CEN (Allen et al., 2011) (see Figure 2 and
Table 3 for detailed description of intra-iFC within selected ICNs,
p < 0.05, FWE-corrected).
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FIGURE 2 | Default mode network, salience network, and central

executive network in healthy controls and corresponding group

differences for patients with major depressive disorder. (1) Spatial
maps of selected ICs (derived from ICA of fMRI data) representing the
default mode, salience, and central executive network (DMN, SN, CEN) in
healthy controls were entered into voxel-wise one-sample t-tests and
thresholded at p < 0.05, corrected for family wise error (FWE). Statistical
parametric maps (SPMs) representing brain areas with significantly
co-varying activity were superimposed on a single-subject high resolution
T1 image (color scale representing t-values from 5 to 25; only maps of
healthy controls are shown). (2) To analyze between-group differences,
patients’ and controls’ ICs of the DMN, SN, and CEN were entered into
voxel-wise two-sample-t-test with age, sex, and GM volume of the brain

areas covered by the 7 networks of interest as covariates of no interest
and thresholded at p < 0.05, FWE-corrected. SPMs were superimposed on
a single-subject high resolution T1 image (color scale representing t-values
from 5 to 10; yellow (“hot”) color maps indicate regions displaying higher
intra-iFC in MDD compared to HC; blue (“cold”) color maps indicate
regions displaying lower intra-iFC in MDD compared to HC). Results of
between-group comparisons are presented panel-wise. (A) Anterior default
mode network (aDMN); (B) inferior posterior default mode network
(ipDMN); (C) superior posterior default mode network (spDMN); (D)

salience network (SN); (E) left ventral central executive network (lvCEN);
(F) right ventral executive network (rvCEN); (G) dorsal central executive
network (dCEN). Abbreviations: MDD, group of patients with major
depressive disorder; HC, healthy control group (see also Tables 2, 3).

Inter-iFC
Calculated inter-iFC between ICNs of interest matched results
of Allen et al. (2011), (see Figure 3 and Table 4 for detailed
presentation of inter-iFC between all ICNs of interest). In accor-
dance with previous findings (Manoliu et al., 2013b), we found

positive correlations between subsystems of the DMN and CEN
in both groups. Despite the incongruity with previously described
patterns of anti-correlation between the DMN and CEN (Fox
and Raichle, 2007), it is well in line with findings presented in
recent studies using high-model order ICA (Allen et al., 2011).
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Table 2 | Intrinsic connectivity networks in healthy controls.

Anatomical region L/R/Bi Cluster Z -score p-value* MNIa(x, y, z)

(A) ANTERIOR DEFAULT MODE NETWORK (aDMN)

Medial prefrontal cortex L 1224 >8.00 <0.001 0, 50, −14

Medial prefrontal cortex R ” >8.00 <0.001 6, 47, −5

Posterior cingulate cortex Bi 47 6.14 <0.001 0, −55, 19

(B) INFERIOR POSTERIOR DEFAULT MODE NETWORK (ipDMN)

Precuneus L 937 >8.00 <0.001 −3, −52, 22

Precuneus R ” >8.00 <0.001 3, −55, 19

Angular gyrus L 40 7.33 <0.001 −45, −73, 37

Angular gyrus R 17 6.06 <0.001 48, −67, 31

(C) SUPERIOR POSTERIOR DEFAULT MODE NETWORK (spDMN)

Precuneus R 1444 >8.00 <0.001 6, −64, 43

Precuneus L ” >8.00 <0.001 0, −79, 43

Angular gyrus L ” 6.20 <0.001 −36, −58, 40

Angular gyrus R 56 6.15 <0.001 36, −58, 37

(D) SALIENCE NETWORK (SN)

Anterior cingulate cortex Bi 948 >8.00 <0.001 0, 23, 28

Anterior insula L 432 >8.00 <0.001 −39, 14, −11

Anterior insula R 400 >8.00 <0.001 51, 17, −11

Middle frontal gyrus R 92 6.52 <0.001 33, 53, 22

(E) LEFT VENTRAL CENTRAL EXECUTIVE NETWORK (lvCEN)

Angular gyrus L 653 >8.00 <0.001 −45, −67, 31

Inferior parietal gyrus L ” 7.82 <0.001 −51, −52, 31

Precuneus L 310 7.60 <0.001 −3, −61, 31

Middle frontal gyrus L 345 6.73 <0.001 −45, 17, 49

Inferior temporal gyrus L 24 6.27 <0.001 −63, −49, −17

Superior medial gyrus L 33 5.55 <0.001 −9, 41, 40

(F) RIGHT VENTRAL CENTRAL EXECUTIVE NETWORK (rvCEN)

Superior frontal gyrus R 481 7.46 <0.001 30, 26, 52

Angular gyrus R 488 7.40 <0.001 42, −73, 40

Precuneus R 94 6.68 <0.001 3, −61, 25

Middle frontal gyrus L 25 6.49 <0.001 −24, 17, 58

Temporal pole L 10 5.71 <0.001 −57, 11, −11

(G) DORSAL CENTRAL EXECUTIVE NETWORK (dCEN)

Supramarginal gyrus L 1099 7.79 <0.001 −60, −34, 37

Inferior frontal gyrus L 182 7.22 <0.001 −45, 38, 7

Inferior frontal gyrus L 109 7.04 <0.001 −48, 8, 22

Inferior temporal gyrus L 161 6.75 <0.001 −57, −55, −11

Superior frontal gyrus L 35 6.31 <0.001 −24, 5, 64

Middle frontal gyrus R 9 5.84 <0.001 51, 44, 10

*One-sample-t-test, significant for p < 0.05, FWE-corrected for multiple comparisons, cluster-threshold >10 voxel.
aMNI, Montreal Neurological institute; L, left hemisphere; R, right hemisphere; Bi, bilateral (see Figure 2).

In particular, Smith et al. (2012) demonstrated by applying
high temporal resolution resting-state fMRI that distinct sub-
networks within the DMN are associated with distinctive pat-
tern of between-network connectivity, possibly underlying the
constantly shown heterogeneous connectivity pattern between
subsystems of the DMN and CEN.

INTRA-iFC OF THE SN IS DISRUPTED IN BILATERAL ANTERIOR INSULA
IN PATIENTS WITH MAJOR DEPRESSIVE DISORDER
Compared to healthy controls, patients demonstrated altered
intra-iFC within the DMN, SN, and CEN. (Figure 2 and

Table 3; p < 0.05 FWE-corrected with age, sex, and total GM
of the brain areas covered by the 7 networks of interest as
covariates of no-interest). Regarding the SN, patients showed
decreased intra-iFC within the bilateral AI. Furthermore,
intra-iFC was increased in bilateral ACC within the SN
(see Figure 2D). Regarding the DMN, patients showed
increased intra-iFC in bilateral ACC within the aDMN
(see Figure 2A), increased intra-iFC within the in the
bilateral precuneus within the ipDMN (see Figure 2B) as
well as both increased and decreased intra-iFC in distinct
parts of the precuneus within the spDMN (see Figure 2C).
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FIGURE 3 | Inter-network intrinsic functional connectivity matrix for

patients with major depressive disorder and healthy controls. Pairwise
Pearson’s correlations between time courses of selected ICs (derived from
ICA of fMRI data) concerning the default mode, salience, and central
executive network (DMN, SN, CEN) were Fisher-z-transformed, averaged

across subjects for each group of patients with major depressive disorder
and healthy controls, and presented in a correlation matrix. Colors represent
intensity of averaged z-scores. a/ip/spDMN, anterior/inferior-posterior/
superior-posterior DMN; SN, salience network; lv/rv/dCEN, left-ventral/
right-ventral/dorsal CEN (see Table 4).

Regarding the CEN, patients showed heterogeneous alter-
ations, including increased intra-iFC in the right angular
gyrus and decreased intra-iFC in both the left precuneus
and left middle temporal gyrus within the lvCEN (see
Figure 2E) as well as increased intra-iFC in the right
postcentral gyrus within the dCEN (see Figure 2G). No
between-group differences were observed within the rvCEN
(see Figure 2F).

INTER-iFC BETWEEN DMN AND CEN IS DECREASED IN PATIENTS
WITH MAJOR DEPRESSIVE DISORDER
Compared to healthy controls, patients with major depressive
disorder showed both increased and decreased inter-iFC (see
Figure 4, Table 4; p < 0.05, corrected for age, sex and GM vol-
ume of the brain areas covered by the 7 networks of inter-
est, Bonferroni-corrected for multiple comparisons). Patients
showed decreased inter-iFC between ipDMN and dCEN as well
as between spDMN and dCEN, suggesting a decreased functional
connectivity between the DMN and CEN. Furthermore, patients
showed increased inter-iFC between SN and ipDMN, indicating
increased functional connectivity between the SN and DMN.

RIGHT ANTERIOR INSULA’S ABERRANT SN CONNECTIVITY IS
ASSOCIATED WITH SEVERITY OF SYMPTOMS IN PATIENTS WITH
MAJOR DEPRESSIVE DISORDER
To study the influence of insular SN activity on the severity of
symptoms in patients with MDD, we correlated eigenvariates of
SN’s left and right AI group difference clusters with both HAM-D
and BDI total scores (Figure 5, Table 5; p < 0.05, partial corre-
lations with age, sex, and GM of the brain areas covered by the
7 networks of interest as covariates of no-interest, Bonferroni-
corrected for multiple comparisons). In patients, SN’s right AI’s
intra-iFC correlated negatively with the severity of symptoms

as measured by both HAM-D (r = −0.554, p = 0.008) and
BDI (r = −0.556, p = 0.007), suggesting an association between
aberrant connectivity within the right anterior insular cortex
and the severity of symptoms in patients with MDD. The
altered intra-iFC within the left AI did not show any signifi-
cant correlation with total scores assessed by HAM-D and BDI,
respectively.

RIGHT ANTERIOR INSULA’S ABERRANT SN CONNECTIVITY IS
ASSOCIATED WITH ALTERED DMN-CEN INTERACTION IN PATIENTS
WITH MAJOR DEPRESSIVE DISORDER
To study the influence of insular SN activity on altered inter-
network connectivity in patients, we correlated eigenvariates of
SN’s left and right AI group difference clusters with Fisher-
z-transformed correlation coefficients of each pair of network
time courses (Figure 5, Table 6, p < 0.05, partial correlations
with age, sex, and GM of the brain areas covered by the 7
networks of interest as covariates of no-interest, Bonferroni-
corrected for multiple comparisons). In patients, SN’s right
AI’s intra-iFC correlated positively with inter-iFC between
ipDMN and dCEN (r = 0.472, p = 0.026) as well as between
spDMN and dCEN (spDMN—dCEN: r = 0.541, p = 0.009).
Furthermore, the SN’s right AI’s intra-iFC correlated positively
with the aberrant inter-iFC between the rvCEN and dCEN
(r = 0.605, p = 0.003). These results suggest a relation between
altered connectivity within the right anterior insular cortex
and aberrant inter-network connectivity in patients with MDD.
However, it is to note that these associations were not sig-
nificant when corrected for multiple comparisons (n = 21).
Furthermore, the altered intra-iFC in the left AI within the
SN did not show any significant correlation to inter-network
connectivity.
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Table 3 | Altered intra-iFC in patients with major depressive disorder compared to healthy controls.

Anatomical region L/R/Bi Cluster Z -score p-value* MNIa (x, y, z)

(A) ANTERIOR DEFAULT MODE NETWORK (aDMN)

(a) MDD > HC

Anterior cingulate cortex R 635 >8.00 <0.001 6, 47, −14

Anterior cingulate cortex L ” >8.00 <0.001 0, 65, 4

(b) MDD < HC

–

(B)INFERIOR POSTERIOR DEFAULT MODE NETWORK (ipDMN)

(a) MDD > HC

Precuneus L 292 >8.00 <0.001 0, −64, 28

Precuneus R ” 6.25 <0.001 9, −52, 31

(b) MDD < HC

–

(C) SUPERIOR POSTERIOR DEFAULT MODE NETWORK (spDMN)

(a) MDD > HC

Precuneus R 275 6.91 <0.001 15, −64, 28

Precuneus L ” 6.77 <0.001 −12, −70, 25

(b) MDD < HC

Precuneus R 157 7.14 <0.001 3, −61, 46

Precuneus L 13 5.95 <0.001 −6, −49, 58

(D) SALIENCE NETWORK (SN)

(a) MDD > HC

Anterior cingulate cortex Bi 168 6.54 <0.001 0, 8, 34

(b) MDD < HC

Insula lobe R 65 5.05 0.007 48, 14, −2

Insula lobe L 53 4.91 0.017 −42, 11, −8

(E) LEFT VENTRAL CENTRAL EXECUTIVE NETWORK (lvCEN)

(a) MDD > HC

Angular gyrus R 23 5.34 0.002 51, −61, 46

(b) MDD < HC

Precuneus L 26 5.52 <0.001 0, −64, 25

Middle temporal gyrus L 24 5.48 <0.001 −42, −70, 19

(F) RIGHT VENTRAL CENTRAL EXECUTIVE NETWORK (rvCEN)

(a) MDD > HC

–

(b) MDD < HC

–

(G) DORSAL CENTRAL EXECUTIVE NETWORK (dCEN)

(a) MDD > HC

Postcentral gyrus R 19 5.58 <0.001 63, −16, 40

(b) MDD < HC

–

*Two-sample-t-test with age, sex, and total GM volume within brain areas covered by the 7 ICNs of interest as covariates of no-interest, significant for p < 0.05,

FWE-corrected for multiple comparisons. cluster-threshold > 10 voxel.
aMNI, Montreal Neurological institute; L, left hemisphere; R, right hemisphere, Bi, bilateral (see Figure 2).

ALTERED INTER-NETWORK CONNECTIVITY WAS NOT ASSOCIATED
WITH THE SEVERITY OF SYMPTOMS
To study the relationship between inter-network connectivity
and severity of symptoms, we correlated inter-iFC scores with
total scores as assessed with both HAM-D and BDI, respectively
(Figure 5, Table 7; p < 0.05, partial correlations with age, sex
and GM of the brain areas covered by the 7 networks of interest
as covariates of no-interest, Bonferroni-corrected for multiple

comparisons). There was no association between inter-network
connectivity and severity of symptoms in patients with major
depressive disorder.

DISCUSSION
To investigate the relationship between anterior insular dysfunc-
tion within the SN, altered between-network interaction, and
severity of symptoms in MDD, we analyzed intrinsic functional

Frontiers in Human Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 930 | 318

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Manoliu et al. Insular dysfunction in depression

Table 4 | Inter-network intrinsic functional connectivity in patients with major depressive disorder and healthy controls.

Inter-iFC MDD (n = 25) HC (n = 25) MDD vs. HCa

Mean SD Mean SD Direction p-value

aDMN—ipDMN 0.412 0.281 0.313 0.250 MDD > HC 0.088

aDMN—spDMN 0.340 0.247 0.131 0.244 MDD > HC 0.003

aDMN—SN 0.183 0.223 −0.020 0.248 MDD > HC 0.029

aDMN—lvCEN 0.485 0.250 0.494 0.209 HC > MDD 0.684

aDMN—rvCEN 0.410 0.231 0.380 0.191 MDD > HC 0.896

aDMN—dCEN −0.266 0.233 −0.294 0.184 MDD > HC 0.593

ipDMN—spDMN 0.274 0.221 0.466 0.189 HC > MDD 0.062

ipDMN—SN −0.070 0.185 −0.276 0.224 MDD > HC 0.002*

ipDMN—lvCEN 0.383 0.245 0.616 0.203 HC > MDD 0.005

ipDMN—rvCEN 0.427 0.208 0.629 0.205 HC > MDD 0.019

ipDMN—dCEN −0.393 0.235 −0.162 0.184 HC > MDD 0.001*

spDMN—SN 0.160 0.202 −0.018 0.261 MDD > HC 0.054

spDMN—lvCEN 0.244 0.243 0.431 0.215 HC > MDD 0.080

spDMN—rvCEN 0.395 0.193 0.509 0.247 HC > MDD 0.438

spDMN—dCEN −0.134 0.208 0.131 0.217 HC > MDD <0.001*

SN—lvCEN −0.044 0.173 −0.209 0.217 MDD > HC 0.027

SN—rvCEN 0.048 0.216 −0.194 0.277 MDD > HC 0.021

SN—dCEN 0.043 0.217 0.201 0.204 HC > MDD 0.026

lvCEN—rvCEN 0.580 0.248 0.602 0.202 HC > MDD 0.901

lvCEN—dCEN −0.030 0.248 0.056 0.199 HC > MDD 0.120

rvCEN—dCEN −0.230 0.222 −0.055 0.245 HC > MDD 0.021

aTwo-sample t-test controlled for age, sex and total GM volume within brain areas covered by the 7 ICNs of interest.

Italics indicate p < 0.05; *significant for p < 0.05, Bonferroni-corrected for multiple comparisons (n = 21).

Abbreviations: MDD, group of patients with major depressive disorder; HC, healthy control group; inter-iFC, inter-network intrinsic functional connectivity;

a/ip/spDMN, anterior/inferior-posterior/superior-posterior DMN; lv/rv/dCEN, left-ventral/right-ventral/dorsal CEN; SN, salience network (see also Figures 3, 4).

connectivity within (intra-iFC) and between (inter-iFC) the
DMN, SN, and CEN by the use of resting-state fMRI and ICA
in patients with MDD and healthy controls. We found aberrant
intra-iFC in DMN, SN and CEN, including decreased intra-
iFC in the right AI within the SN in patients. Furthermore,
we found decreased inter-iFC between subsystems of the DMN
and CEN as well as increased inter-iFC between the SN and
DMN. Remarkably, decreased intra-iFC in the right AI within
the SN correlated significantly with the severity of symptoms.
Furthermore, we found a correlation between the decreased
intra-iFC in the SN’s rAI and aberrant inter-iFC between sub-
systems of the DMN and CEN in patients with major depressive
disorder but significance did not survive correction for mul-
tiple comparisons. These results extend our knowledge about
aberrant iFC within intrinsic networks in MDD by reveal-
ing altered iFC across networks, more specifically the link
between right AI dysfunction within the SN, aberrant between-
network interaction and severity of symptoms in patients with
MDD. Together with previously reported findings (Hamilton
et al., 2011) and in accordance with recently suggested models
(Menon, 2011; Hamilton et al., 2013), our data suggest aber-
rant insular control of DMN-CEN interactions, potentially con-
tributing to depressive negative bias in attention and thought
in MDD.

THE LINK BETWEEN ANTERIOR INSULAR DYSFUNCTION WITHIN THE
SN AND ABERRANT INTERACTIONS BETWEEN DMN AND CEN IN MDD
In bilateral anterior insula, intra-iFC was decreased within
the SN, while SN’s inter-iFC with the ipDMN was increased.
Furthermore, we found decreased inter-iFC between the ipDMN
and dCEN, indicating both insular dysfunction and altered con-
nectivity between subsystems of the DMN and CEN in patients
with MDD. In addition, rAI’s decreased intra-iFC correlated
both negatively with the severity of symptoms, suggesting a
link between insular dysfunction and severity of symptoms in
major depression, and positively with the decreased connectivity
between ipDMN and dCEN, suggesting a link between rAI dys-
function and aberrant DMN/CEN interactions. However, it is to
note that the latter correlation lost significance after correction for
multiple comparisons (n = 21). All these results were controlled
for effects of age, sex and total GM of the brain areas covered by
the networks of interest. Thus, it is unlikely that these possible
confounders explain the reported results.

These findings support the hypothesis that rAI dysfunction
might be associated with abnormal interactions between DMN
and CEN in MDD, likely via impaired AI-mediated control of
network interactions (Menon, 2011). Previous findings support
this assumption: (1) The rAI has been demonstrated to play a
pivot role in modulating interactions between DMN and CEN

Frontiers in Human Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 930 | 319

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Manoliu et al. Insular dysfunction in depression

FIGURE 4 | Between-group differences of inter-network intrinsic

functional connectivity. Based on network time courses, inter-network
intrinsic functional connectivity (inter-iFC) was calculated by the use of
Pearson’s correlation between subject specific ICN timecourses (TCs). The
red arrows indicates increased inter-iFC in patients with major depressive
disorder compared to healthy controls (two-sample t-test, p < 0.05,
Bonferroni-corrected for multiple comparisons); The blue arrows indicates
decreased inter-iFC in patients with major depressive disorder compared to
healthy controls (two-sample t-test, p < 0.05, Bonferroni-corrected for
multiple comparisons). Spatial maps indicate the
anterior/inferior-posterior/superior-posterior default mode network
(a/ip/spDMN), left-ventral/right-ventral/dorsal central executive network
(lv/rv/dCEN), and salience network (SN). All tests were corrected for age,
sex, and GM volume of the brain areas covered by the 7 networks of
interest. Abbreviations: MDD, group of patients with major depressive
disorder; HC, healthy control group (see also Table 4).

in healthy controls (Sridharan et al., 2008) and to show aberrant
activity at the onset of increases in DMN and CEN activity, while
aberrant relationship between the DMN and CEN was associated
with severity of rumination in patients with MDD (Hamilton
et al., 2011). Moreover, a recent meta-analysis performed by
Diener et al. (2012) demonstrated, that the right AI consistently
showed hypoactivity during affective switching and cognitive
control tasks in MDD patients. (2) In patients with MDD, func-
tional anomalies within the AI rank among the most frequently
reported findings in the current literature (Diener et al., 2012;
Sliz and Hayley, 2012; Hamilton et al., 2013). (3) More generally,
recently formulated models propose that insular dysfunction and
its consecutive abnormal modulation of interactions between
networks (i.e., aberrant engagement and disengagement of the
DMN and CEN due to aberrant AI mediated network switch-
ing) contribute to several neuropsychiatric disorders via aberrant
mapping and detection of salient external stimuli and inter-
nal events (Menon and Uddin, 2010), potentially manifesting in

FIGURE 5 | Intra-iFC in the right anterior insula within the salience

network is associated with severity of symptoms and inter-iFC

between DMN and CEN in patients with major depressive disorder.

Intrinsic functional connectivity (inter-iFC) between ICNs of interest was
calculated by the use of Pearson’s correlation between networks’ time
courses. (A) Intra-iFC in the right anterior insula within the SN (turquoise
spatial map) was significantly correlated with severity of negative
symptoms in patients with major depressive disorder as measured by both
HAM-D (partial correlation, r = −0.554, p = 0.008) and BDI (partial
correlation, r = −0.556, p = 0.007). (B) Intra-iFC in the right anterior insula
within the SN was significantly correlated with the inter-iFC between DMN
and CEN in patients (turquoise arrows, partial correlations, ipDMN—dCEN:
r = 0.472, p = 0.026; spDMN—dCEN: r = 0.541, p = 0.009). Furthermore,
intra-iFC in the right anterior insula within the SN was significantly
correlated with the inter-iFC between distinct subsystems of the CEN
(rvCEN—dCEN: r = 0.605, p = 0.003). All partial correlations were
corrected for age, sex, and GM volume of the brain areas covered by the 7
networks of interest. Spatial maps indicate the
anterior/inferior-posterior/superior-posterior default mode network
(a/ip/spDMN), left-ventral/right-ventral/dorsal central executive network
(lv/rv/dCEN), and salience network (SN) (see also Tables 5–7).

specific symptom dimensions by specific AI/SN changes (Menon,
2011; Uddin et al., 2011; Palaniyappan and Liddle, 2012). For
example we found recently that aberrant intra-iFC within the
rAI is related to aberrant interaction between DMN and CEN
in psychotic patients with schizophrenia (Manoliu et al., 2013b).
Taken together, our data suggest a direct association between
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Table 5 | Partial correlations between intra-iFC in the right/left AI

within the SN and severity of symptoms in patients with major

depressive disorder.

Right AI Left AI

r-score p-value r-score p-value

HAM-D −0.554 0.008* 0.103 0.649

BDI −0.556 0.007* −0.320 0.888

Italics indicate p < 0.05; *significant for p < 0.05, after Bonferroni-correction for

multiple comparisons (n = 2).

Partial correlation, corrected for age, sex and total GM volume within brain areas

covered by the 7 ICNs of interest.

Abbreviations: AI, anterior Insula; HAM-D, Hamilton Depression Rating Scale;

BDI, Beck Depression Inventory (see Figure 5).

Table 6 | Partial correlations between intra-iFC in the right/left AI

within the SN and inter-iFC in patients with major depressive

disorder.

Inter-iFC Right AI Left AI

r-score p-value r-score p-value

aDMN—ipDMN −0.24 0.282 −0.23 0.304

aDMN—spDMN −0.195 0.383 0.108 0.633

aDMN—SN 0.285 0.198 −0.204 0.362

aDMN—lvCEN 0.243 0.277 −0.001 0.998

aDMN—rvCEN −0.3 0.174 −0.043 0.851

aDMN—dCEN 0.412 0.056 0.135 0.548

ipDMN—spDMN −0.24 0.282 0.118 0.602

ipDMN—SN 0.087 0.702 0.059 0.793

ipDMN—lvCEN 0.11 0.627 −0.325 0.14

ipDMN—rvCEN −0.403 0.063 −0.051 0.823

ipDMN—dCEN 0.473 0.026 0.453 0.034

spDMN—SN 0.33 0.134 −0.201 0.369

spDMN—lvCEN −0.23 0.302 0.205 0.359

spDMN—rvCEN −0.403 0.063 0.318 0.15

spDMN—dCEN 0.541 0.009 −0.057 0.8

SN—lvCEN 0.249 0.263 −0.117 0.605

SN—rvCEN 0.416 0.054 −0.118 0.601

SN—dCEN −0.045 0.843 −0.119 0.598

lvCEN—rvCEN −0.266 0.232 0.186 0.406

lvCEN—dCEN 0.097 0.669 −0.147 0.514

rvCEN—dCEN 0.605 0.003 0.019 0.932

Italics indicate p < 0.05.

Partial correlation, corrected for age, sex and total GM volume within brain areas

covered by the 7 ICNs of interest.

Abbreviations: a/ip/spDMN, anterior/inferior posterior/superior posterior DMN;

lv/rv/dCEN, left ventral/right ventral/dorsal CEN; SN, salience network; AI,

anterior insula (see Figure 5).

insular dysfunction, severity of symptoms and aberrant inter-
network interactions via impaired insular control in patients
with MDD.

Two further comments concerning laterality and specificity
of our results might be useful: (i) Laterality: It is to note

Table 7 | Partial correlations between inter-iFC and severity of

symptoms in patients with major depressive disorder.

Inter-iFC HAM-D BDI

r-score p-value r-score p-value

aDMN—ipDMN 0.076 0.735 0.082 0.716

aDMN—spDMN 0.098 0.664 0.009 0.969

aDMN—SN −0.048 0.833 −0.214 0.34

aDMN—lvCEN 0.029 0.896 0.195 0.386

aDMN—rvCEN 0.398 0.067 0.429 0.047

aDMN—dCEN 0.054 0.811 −0.057 0.8

ipDMN—spDMN −0.024 0.916 0.058 0.797

ipDMN—SN −0.055 0.808 −0.282 0.203

ipDMN—lvCEN −0.155 0.49 −0.116 0.609

ipDMN—rvCEN 0.305 0.167 0.199 0.375

ipDMN—dCEN 0.059 0.794 −0.119 0.597

spDMN—SN 0.039 0.864 −0.114 0.614

spDMN—lvCEN 0.128 0.57 −0.008 0.971

spDMN—rvCEN 0.178 0.429 0.203 0.364

spDMN—dCEN 0.11 0.626 −0.041 0.856

SN—lvCEN −0.107 0.637 −0.243 0.277

SN—rvCEN −0.306 0.167 −0.371 0.089

SN—dCEN 0.101 0.656 0.004 0.987

lvCEN—rvCEN 0.504 0.017 0.353 0.108

lvCEN—dCEN −0.109 0.629 −0.142 0.527

rvCEN—dCEN −0.289 0.193 −0.315 0.153

Italics indicate p < 0.05.

Partial correlation, corrected for age, sex and GM volume within brain areas cov-

ered by the 7 ICNs of interest.

Abbreviations: HAM-D, Hamilton Depression Rating Scale; BDI, Beck

Depression Inventory; a/ip/spDMN, anterior/inferior posterior/superior posterior

DMN; lv/rv/dCEN, left ventral/right ventral/dorsal CEN; SN, salience network.

that although both right and left AI showed decreased intra-
iFC within the SN, only patients’ right AI showed significant
correlation with the severity of symptoms while the left AI
displayed no results. Furthermore, the decreased intra-iFC in
the right AI within the SN correlated with the decreased con-
nectivity between the DMN and CEN, whereas it is to note,
however, that this correlation lost significance after perform-
ing correction for multiple comparisons (n = 21). This find-
ing is consistent with previous observations: in healthy con-
trols, the right AI modulates selectively inter-network interac-
tions (Sridharan et al., 2008), in patients with MDD only the
right AI is characterized by aberrant activity at the onset of
DMN/CEN activity (Hamilton et al., 2011). This insular asym-
metry might relate with the asymmetric representation of afferent
sympathetic nervous system activity in the insula and the fact
that interoceptive feelings are predominantly associated with the
right AI (Craig, 2002, 2009). Therefore, our data might indi-
cate a potential link between aberrant rAI control processes,
sympathetic activity and interoception in patients with MDD.
(ii) Specificity: Since increasing evidence for the relevance of
right AI dysfunction is emerging in various neuropsychiatric
disorders, Menon (2011) suggested, that anomalies within the
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right AI might contribute to aberrant inter-network interac-
tions, leading to various symptom dimensions such as affec-
tive and psychotic symptoms via distinct disease-specific path-
ways. It is evident that presented results support this notion.
However, it is still unclear how the triple network model of
anomalies among DMN, SN, and CEN might be linked to
anomalies beyond these networks (Williamson and Allman,
2012), such as aberrant reinforcement prediction error (Gradin
et al., 2011), striatal reward processing (Robinson et al., 2012)
and connectivity (Meng et al., 2013), or aberrant medial tem-
poral lobe activity and connectivity (Tahmasian et al., 2013)
in patients with MDD. Further studies investigating the pos-
sible link between aberrant DMN/SN/CEN organization and
subcortical functional and/or neurochemical (Tahmasian et al.,
2013) alterations in patients with MDD are necessary to bet-
ter understand both the pathophysiology of MDD in particular
and the nature of AI’s involvement in psychiatric disorders in
general.

DMN/CEN INTERACTIONS IN PATIENTS WITH MDD
Intra-iFC within the DMN in patients with MDD
In patients with MDD, we found selectively increased intra-iFC
within both aDMN and ipDMN as well as mainly increased
intra-iFC within the spDMN. Furthermore, we found a trend
to increased connectivity between aDMN and spDMN (p =
0.003) that, however, lost significance after correction for mul-
tiple comparisons (n = 21). Our findings are well in line with
current literature reporting predominantly increased FC within
the DMN during rest in patients with MDD (Greicius et al.,
2007; Broyd et al., 2009; Posner et al., 2013). In particu-
lar, increased intra-iFC in the subgenual anterior cingulate
and ventromedial prefrontal cortex of the DMN seems to be
a highly robust finding in patients with depression (Greicius
et al., 2007; Horn et al., 2010; Sheline et al., 2010; Veer et al.,
2010). Considering that patients with MDD display less acti-
vation of the DMN in response to both positive and nega-
tive external stimuli [see Hamilton et al. (2013) for review],
it has been proposed that the pattern of increased connec-
tivity during rest and decreased activation during task might
indicate that self-related cognition might be more suscepti-
ble to internal generated thoughts than to external stimuli in
patients with MDD (Hamilton et al., 2013). Taken together, our
results confirm previously reported findings, extending them
by demonstrating that distinct subsystems of the DMN are
consistently characterized by abnormal intra-iFC in patients
with MDD.

Intra-iFC within the CEN in patients with MDD
In the current study, we found heterogeneous alterations in
intra-iFC within the three sub-components of the CEN, includ-
ing both increased intra-iFC in the right angular gyrus and
decreased intra-iFC in the middle temporal gyrus and precuneus
within the rvCEN. These findings are well in line with previ-
ous studies, which reported aberrant activity within right angular
gyrus, middle temporal gyrus and precuneus in patients with
MDD (Fitzgerald et al., 2008b). In general, the CEN, which
is involved in goal-directed cognitively demanding tasks and

control of emotional responses, has been shown to be altered in
several psychiatric disorders, including MDD (Fitzgerald et al.,
2008a; Pizzagalli et al., 2009; Menon, 2011; Diener et al., 2012).
Although the CEN comprises both frontal and parietal regions,
most studies investigated primarily the DLPFC, mainly due to the
suggested link between functional anomalies within the DLPFC
and impaired cognitive emotion regulation in MDD (Fitzgerald
et al., 2008b). Several studies found heterogeneous results regard-
ing both direction of effect (Diener et al., 2012) and exact
localization (Hamilton et al., 2013) of aberrant iFC, possibly
indicating that different findings might be located in differ-
ent sub-networks of the CEN, each maintaining distinct tonic
(resting-state) or phasic (affective response) cognitive processes
(Hamilton et al., 2013). Our results confirm previous findings
and support this notion that heterogeneously distributed anoma-
lies of iFC are present within distinct subsystems of the CEN
in MDD.

Inter-iFC between the DMN and CEN in patients with MDD
In the current study, we found decreased inter-iFC between the
ipDMN and dCEN as well as between the spDMN and dCEN,
indicating a decreased connectivity between DMN and CEN in
patients with MDD. These results are well in line with pre-
vious findings (Sheline et al., 2010; Alexopoulos et al., 2013).
Particularly Hamilton and colleagues found that increased dom-
inance of the DMN was related to the severity of ruminations.
It is to note that whereas the significant between-group differ-
ences regarding the inter-iFC between the ipDMN and dCEN are
based on differences in height of negative correlations between
the ipDMN and dCEN in both groups (see also Figures 3, 4 and
Table 4), the group differences regarding the inter-iFC between
spDMN and dCEN are based on the fact that timecourses between
spDMN and dCEN are negatively correlated in patients with
MDD and positively correlated in healthy controls. However,
positive correlation between spDMN and dCEN in healthy con-
trols corresponds with previous results (Allen et al., 2011) and
has also been found in an independent group of healthy con-
trols (see Manoliu et al., 2013b) using the same methodolog-
ical approach as presented in the current study. As discussed
previously (Manoliu et al., 2013a) positive correlation between
subsystems of the DMN and CEN seems unexpected and in con-
trast to the notion of anti-correlation between DMN and CEN
(Fox and Raichle, 2007). However, studies using high model
order ICA (e.g., Allen et al., 2011) demonstrated that both
DMN and CEN consist of functional sub-networks, while Smith
et al. (2012) demonstrated by applying high temporal resolution
resting-state fMRI that distinct sub-networks within the DMN
are characterized by specific connectivity patterns between them-
selves and other networks. The current data suggests a partial
re-organization of these inter-iFC patterns, particularly between
subsystems of the DMN and CEN in patients with MDD.

Taken together, our findings replicate previously reported
results about aberrant network connectivity in MDD, demon-
strating the representative nature of our study sample. Moreover,
we extend the current knowledge by linking aberrant intra-iFC in
the AI within the SN with both aberrant inter-iFC between the
DMN and CEN and severity of symptoms in patients with MDD.
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PSYCHOPATHOLOGICAL IMPLICATIONS OF ALTERED LARGE-SCALE
BRAIN NETWORKS IN MDD
According to Beck’s cognitive theory of depression (Beck, 1967;
Beck and Alford, 2009), negative cognitive biases lead to a
generally negative view of oneself and the world, thus under-
lying depression (Mathews and MacLeod, 2005; Willner et al.,
2013). In particular, activation of negative schemata that are
mainly associated with activity in areas of the SN and sub-
cortical regions such as the amygdala or the striatum are sug-
gested to bias attention, processing, and memory (for review
Disner et al., 2011). For example, increased synchronous activ-
ity between the striatum and the anterior cingulate cortex is
thought to increase both the activity within the mPFC and
to decrease the activity within the DLPFC, being associated
with biased thinking and memory, leading to depressive symp-
toms such as rumination. Since these regions are key regions
of SN, DMN, and CEN, a link between neurocognitive mod-
els of negative bias and aberrant large-scale intrinsic network
interactions arises. We suggest an essential relationship between
the negative bias model of Beck and the frame of interacting
SN, DMN, and CEN (Menon, 2011; Hamilton et al., 2013). In
more detail, in the frame of interacting networks [i.e., the triple
network model of Menon (2011)] the DMN is involved in self-
referential processes (Buckner et al., 2008), while the CEN is
involved in goal-directed processes (Fox and Raichle, 2007). The
right AI within the SN has been demonstrated to mediate the
switching between DMN-based self-referential and CEN-based
goal-directed processes (Sridharan et al., 2008). Therefore, ante-
rior insular dysfunction within the SN might contribute to an
abnormal switching between DMN and CEN, thus leading to
an abnormal behavioral response to both internal and external
stimuli and events (Menon and Uddin, 2010). While increased
activity in the DMN has been demonstrated to be related with
depressive ruminations (Hamilton et al., 2013), abnormal engage-
ment and disengagement of DMN and CEN might underlie
difficulties to disengage the processing of negative information,
thus negatively biasing attention and cognitive processing. This
bias, in turn, might contribute to the worsening of symptoms
in patients with MDD. This argument suggests a link between
modern large-scale network theories and traditional cognitive
theories in MDD, possibly providing a valuable contribution to
the better understanding of the neurobiology of MDD. However,
several limitations regarding this model have to be considered.
We mention only two of them: (i) how are findings beyond
the DMN, SN and CEN linked to this model (Williamson and
Allman, 2012)? For instance, we found recently that the func-
tional connectivity between both amygdala and hippocampus
into the AI and dorsomedial PFC (overlapping with CEN and
SN) is consistently disrupted in major depression, potentially
constituting a pathway to modulate aberrantly large-scale net-
works (Tahmasian et al., 2013). (ii) How are DMN, SN, and CEN
linked to potential neurochemical anomalies, such as aberrant
availability of striatal dopamine in MDD (Nestler and Carlezon,
2006)? For example disrupted reward learning in major depres-
sion is associated with the altered reward prediction error activity
in the putamen, which again depends on dopaminergic input
(Robinson et al., 2012); putamen activity and reward learning

are critically linked with the SN (Kapur, 2003), however, it
is unknown how these processes relate with the regulation of
large-scale networks. Further studies are necessary to test these
questions.

LIMITATIONS

We acknowledge several limitations of the current study. (1)
Independent Component Analysis. Although often performed,
ICA is still associated with methodological constraints, such as
arbitrary selection of the model order and subjective bias in iden-
tification of the components of interest (Cole et al., 2010). First,
our selection of model order was empirical. While model order
of around 75 components appears to be optimal for network
stability (Abou-Elseoud et al., 2010), computational or objective
criteria are still missing. Second, visual selection of networks-
of-interest from ICA-derived components has some pitfalls due
to subjective bias. To circumvent this problem, we run auto-
mated spatial regression analysis of all ICs on network templates
from a previous study using the exactly same analysis approach
based on a large sample of 603 healthy subjects (Allen et al.,
2011). Third, although our results of inter-network connectivity
match previous literature, the nature of the interaction within and
between different intrinsic connectivity networks or their subsys-
tems is not yet fully understood. For example, Smith et al. (2012),
using high-temporal resolution rs-fMRI, discovered remarkable
temporal dynamic within intrinsic networks, which is incom-
pletely addressed by our measure of inter-iFC. (2) Causality and
inter-iFC between SN and DMN: While we found significantly
aberrant inter-iFC between SN and DMN, we did not pro-
vide direct evidence for the direction—or stronger causality—of
this aberrant interaction. Even when previous studies do sug-
gest a controlling effect from the AI of the SN onto the DMN,
our data do not provide direct evidence for this direction of
effect. To overcome this missing evidence, the use of Granger
causality (GC) analysis (which is a form of time-lagged cor-
relation analysis for BOLD time series) might be a candidate;
however, there is still ongoing debate whether BOLD-based GC
is a valid method to detect causality among neural processes
underlying BOLD signals [for detailed discussion see Manoliu
et al. (2013b)]. However, several methods have recently been
proposed to overcome the potential restrictions of previous vari-
ants of GC analysis (Ryali et al., 2011; Tang et al., 2012). For
example Ryali and colleagues proposed a multivariate dynami-
cal systems model (MDS) approach, in which they use the frame
of probabilistic graphs to estimate dynamic interactions among
regions (Ryali et al., 2011). Definitely, future studies, which apply
such advanced methods, are necessary to specify directions of
aberrant inter-iFC of the salience network in major depression.
(3) Structural anomalies. Since structural anomalies have been
shown to have an influence on FC (e.g., Lu et al., 2011), we used
the total GM volume extracted from a mask covering the DMN,
SN, and CEN as a covariate of no-interest in all statistical anal-
yses of FC. Furthermore, we correlated the GM values derived
from the mask covering all 7 ICNs of interest with both inter-
iFC between all networks and intra-iFC in the left and right AI
within the SN, finding no significant results. However, it is impor-
tant to note that correcting for linear covariates or investigating
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potential linear correlations does not exclude the presence of
non-linear effects possibly associated with structural changes.
Moreover, the effect of structural anomalies on FC is still subject
of current research and not yet fully understood. Further stud-
ies are necessary to investigate the relationship between structural
anomalies and functional connectivity in both healthy partici-
pants and patients with MDD. (4) Medication. Antidepressant
medication has been demonstrated to have an impact on intrin-
sic functional connectivity (Delaveau et al., 2011). However, 24
out of 25 patients were medicated at the timepoint of scanning.
Although our results are widely consistent with the current liter-
ature, the presented data should be interpreted cautiously until
replicated in an unmedicated patient sample. (5) Co-morbidities.
We would like to point out that although MDD was the pri-
mary diagnosis for our patient sample, 14 out of 25 patients with
MDD were diagnosed with psychiatric co-morbidities, including
generalized anxiety disorder, somatization disorder and avoidant
or dependent personality disorder. However, since we aimed
to investigate the relationship between intra-iFC, inter-iFC and
severity of symptoms in MDD, which is a heterogeneous men-
tal disorder including a high variance in duration of the disorder,
number of episodes, family history of MDD and psychiatric
co-morbidities, we followed the selection criteria reported in
Hennings et al. (2009) to obtain a clinically representative sam-
ple, thus including the patients with aforesaid co-morbidities.
(6) Although resting-state fMRI is applied frequently throughout
the literature to explore possible differences in the brain’s func-
tional architecture of patients with mental disorders compared to
healthy controls, it is still unclear if the reported alterations might
have been at least partially induced by psychological-behavioral
differences during the scan. For example, patients might display a
higher level of arousal and/or anxiety that, in turn, might have an
influence on the ongoing cognitive processes during the scan. In
the current study, we investigated whether the patients had expe-
riences of odd feelings during the scan. However, we missed to
explicitly measure these possible confounds on a psychometrical
or physiological level (e.g., via electrodermatoactivity). Therefore,
the possibility that different levels of arousal and/or anxiety
might have had an influence on the presented results cannot be
excluded.

CONCLUSION
The current study provides evidence that aberrant connectivity in
the right anterior insula (rAI) within the salience network is asso-
ciated with the severity of symptoms and aberrant interactions
between DMN and CEN in MDD. Data suggest a link between
anterior insular dysfunction, altered inter-network connectivity,
and severity of symptoms in patients with MDD.
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As one of the most widely accepted neuroanatomical models on obsessive-compulsive
disorder (OCD), it has been hypothesized that imbalance between an excitatory direct
(ventral) pathway and an inhibitory indirect (dorsal) pathway in cortico-striato-thalamic
circuit underlies the emergence of OCD. Here we examine the structural network in
drug-free patients with OCD in terms of graph theoretical measures for the first time.
We used a measure called efficiency which quantifies how a node transfers information
efficiently. To construct brain networks, cortical thickness was automatically estimated
using T1-weighted magnetic resonance imaging. We found that the network of the OCD
patients was as efficient as that of healthy controls so that the both networks were in
the small-world regime. More importantly, however, disparity between the dorsal and the
ventral networks in the OCD patients was found in terms of graph theoretical measures,
suggesting a positive evidence to the imbalance theory on the underlying pathophysiology
of OCD.

Keywords: obsessive-compulsive disorder, magnetic resonance imaging, cortical thickness, structural

connectivity, graph theoretical analysis, network efficiency, small-worldness, dorsal-ventral imbalance

1. INTRODUCTION
Obsessive-compulsive disorder (OCD) is an anxiety disorder
characterized by intrusive, distressing thoughts and ritualistic,
repetitive behaviors (American Psychiatric Association, 1994).
The most widely accepted neuroanatomical model of OCD has
suggested the involvement of a direct and an indirect cortico-
striato-thalamic (CST) pathway (Cummings, 1993; Saxena et al.,
1998). In this model, the direct pathway involves in an excitatory
input to the internal part of globus pallidus that leads to a disinhi-
bition of thalamus and increased excitation of prefrontal cortex,
whereas the indirect pathway involves in an inhibitory input to
the external part of globus pallidus that evokes an increased inhi-
bition of thalamus and decreased excitation of prefrontal cortex
(Mataix-Cols and van den Heuvel, 2006). Although the over-
simplification of the model is questioned (Menzies et al., 2008;
Milad and Rauch, 2011), the dichroism has been a well-known
basis in approaching the disorder for a long time (Saxena et al.,
1998).

Functional studies driven by the CST model have converged on
altered activation in patients with OCD in relation to healthy con-
trols in basal ganglia, caudate nucleus, thalamus, orbital frontal
cortex, cingulate gyrus, dorsal lateral cortex and parietal regions,
using single-photon emission computed tomography (SPECT),
positron emission tomography (PET) or functional magnetic res-
onance imaging (fMRI) (Whiteside et al., 2004; Friedlander and

Desrocher, 2006). Despite of the inconsistencies in the literature
to some degree, many papers reported higher activations from
OCD patients in orbital frontal cortex and basal ganglia, in par-
ticular striatum, which have been related to the “hyperactivation
of ventral fronto-strital system”. In addition, lower activations
from OCD patients in dorsal lateral prefrontal cortex and anterior
cingulate gyrus, which have been known as the “hypoactivation
of dorsal fronto-strital system” (Saxena et al., 1998; Remijnse
et al., 2005; Oh et al., 2012; Mataix-Cols and van den Heuvel,
2006).

In relation to the functional findings supporting the CST
hypothesis, structural neuroimaging evidences of the abnormali-
ties in OCD patients have been cumulated. Structural alterations
were mainly localized in prefrontal regions and basal ganglia. In
meta-analyses, gray matter densities in bilateral anterior putam-
ina were found to be higher in OCD patients than healthy
controls, and those in dorsal prefrontal regions were found to
be lower in OCD patients (Radua and Mataix-Cols, 2009; Rotge
et al., 2010). In addition, diffusion tensor imaging (DTI) stud-
ies have shown that smaller fractional anisotropy (FA), which has
been commonly used to characterize local diffusion and thus to
infer white matter integrity (Basser, 1995), were found in clinical
population with OCD in the anterior part of cingulum, corpus
callosum and other white matter regions in frontal and parietal
lobes (Szeszko et al., 2005; Garibotto et al., 2009; Ha et al., 2009;
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Bora et al., 2011; Koch et al., 2012; Nakamae et al., 2011; Oh et al.,
2012).

It should be noted that the previous structural studies men-
tioned above have mainly focused on differences in local mor-
phology using massive univariate frameworks such as voxel-based
morphometry (VBM; Ashburner and Friston, 2000) or tract-
based spatial statistics (TBSS; Smith et al., 2006). Due to its
complex nature of brain network, local alterations might not
be sufficient to understand the disorder. As needs for investi-
gating connectivities within the CST circuits and between other
brain regions have been motivated in the previous literature on
OCD (Remijnse et al., 2005; Mataix-Cols and van den Heuvel,
2006; Menzies et al., 2008), a seed-based correlation method
(Harrison et al., 2009; Jang et al., 2010) and a whole-brain
graph analysis have been used in functional studies (Zhang et al.,
2011).

While it is demonstrated that network analyses are capable of
investigating the properties of human brains that could not be
described using the conventional analyses (Bullmore and Sporns,
2009), relatively new neuroimaging modalities such as DTI and
resting-fMRI have been mainly used for the brain connectivity
studies. In order to exploit conventional anatomical scans such as
T1-weighted MRI, a network analysis based on the correlation of
local morphology has been proposed as an alternative framework
to examine structural networks in human brains (Worsley et al.,
2004; Lerch and Evans, 2005; He et al., 2007; Bernhardt et al.,
2011).

In the studies, gray matter is characterized by cortical thick-
ness in a sub-millimeter resolution using cortical surface recon-
struction techniques (Dale et al., 1999; Fischl and Dale, 2000;
MacDonald et al., 2000). This approach, which only requires
T1-weighted MRI, assumes that the positive correlation of cor-
tical thickness may reflect the anatomical connectivity, pre-
sumably because of common experiences, shared trophic or
maturational influences (Lerch et al., 2008; He et al., 2009;
Raznahan et al., 2011). These networks constructed based on
cortical thickness have shown their resemblance to DTI-based
networks (Gong et al., 2012) and similar modular structures
with known functional modules (Chen et al., 2008, 2011).
More recently, the cortical thickness-based network in develop-
ing brains notably overlapped a functional network known as
default-mode-network (DMN; Raznahan et al., 2011).

Here we apply the cortical thickness network analysis on
patients with OCD. To our best knowledge, there has been no
preceding study to examine graph theoretical measures of brain
networks in patients with OCD based on the correlation of corti-
cal thickness so far. As the cortical thickness network analysis has
shown its ability to detect reliable and meaningful attributes of
human brains in healthy population (He et al., 2007; Chen et al.,
2008, 2011; Gong et al., 2009, 2012) and clinical populations with
disorders such as multiple sclerosis (He et al., 2009), Alzheimer’s
disease (He et al., 2008) or temporal lobe epilepsy (Bernhardt
et al., 2011), we expect to find alterations in the brain of patients
with OCD in terms of network properties, in particular, with a
supporting evidence for the dorsal-ventral imbalance in the CST
circuits (Saxena et al., 1998; Mataix-Cols and van den Heuvel,
2006), as well as abnormalities in other circuits including dorsal

anterior cingulate cortex (Milad and Rauch, 2011) and parietal
cortex (Menzies et al., 2008).

Our main contributions include: (1) performing a cortical
thickness network analysis on drug-free patients with OCD, (2)
investigating graph theoretical measures in the perspective of
the major hypothesis of OCD at a network-level (Latora and
Marchiori, 2001) and a node-level (Achard and Bullmore, 2007),
and finally (3) examining the pathophysiology of OCD in terms of
disparity between dorsal and ventral networks, as recently shown
as a spatial bias in FA alteration within corpus callosum in OCD
patients (Oh et al., 2012).

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
We recruited 32 patients who fulfilled the criteria for OCD in
DSM-IV (American Psychiatric Association, 1994) via the OCD
clinic at Seoul National University Hospital (Seoul, Korea). The
patients were diagnosed using the Structured Clinical Interview
for DSM-IV (SCID; First et al., 1996). All of the patients with
OCD were drug-free: 23 patients were drug-naïve, and the
other 9 patients were unmedicated for at least 4 weeks at the
time of inclusion. Four patients were assessed to have person-
ality disorders in addition to OCD: three were with obsessive-
compulsive personality disorders and one was with schizoty-
pal personality disorder. In addition to the patients, we also
recruited 35 age- and gender-matched controls (HC) using the
SCID Non-patient Version to confirm that none of the con-
trols was with Axis I psychiatric disorders. The exclusion criteria
for both patients and control included lifetime history of psy-
chosis, bipolar disorder, major depressive disorder, substance
abuse or dependence, significant head injury, seizure disor-
der or mental retardation. All participants were right-handed.
The severity of depression and anxiety was measured by self-
reporting Beck’s Depression Inventory (BDI; Beck et al., 1961)
and Beck’s Anxiety Inventory (BAI; Beck et al., 1988), respec-
tively. The severity of OC symptoms was assessed with clinician-
administered Yale-Brown Obsessive-Compulsive Scale (Y-BOCS;
Goodman et al., 1989). The institutional review board (IRB) of
Seoul National University Hospital (H-1209-025-424) approved
the present study. All participants were fully instructed about
the procedures of scanning and assessment and then submitted
written informed consents.

2.2. IMAGE ACQUISITION AND GRAPH CONSTRUCTION
We obtained magnetic resonance imaging (MRI) using 1.5T
MAGNETOM Avanto syngo scanner (Siemens, Erlangen,
Germany). T1-weighted 3D images were acquired with the
following parameters: TR = 1160 ms, TE = 4.76 ms, FOV =
230 mm, flip angle = 15◦, voxel size: 0.45 × 0.45 × 0.90 mm,
volume dimension: 350 × 263 × 350 mm.

The steps of image analysis are illustrated in Figure 1. To
compare brain networks between the patients and the controls
at the final stage of analysis, we estimated cortical thicknesses
from MRIs and constructed brain networks based on them. The
detailed steps of the present analysis are explained in the follow-
ings. The analysis was carried by custom MATLAB (Mathworks
Inc., Natick, MA, USA) codes, if not otherwise specified.
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FIGURE 1 | The illustration of analysis steps to construct networks from

MRI. The cortical thicknesses are estimated in native spaces (A, section 2.2.1),
normalized into the template space (B, section 2.2.2), and smoothed by a heat

kernel based on Laplace-Beltrami eigenfunctions (C, section 2.2.3). Partial
correlations are computed over 148 ROIs (D, section 2.2.4) and binarized to
obtain adjacency matrices at a certain rewiring cost (E, section 2.2.5).

2.2.1. Cortical thickness estimation
The reconstruction of cortical surfaces and the estimation of
cortical thickness were performed using FreeSurfer1. As in its stan-
dard pipeline (Dale et al., 1999), the intensity of T1-weighted
images were normalized and the bias of B0 field was corrected.
Then the images were resampled in a unit millimeter isovoxel.
An inner cortical surface (the interface between white matter and
gray matter) and an outer cortical surface (the interface between
gray matter and cerebrospinal fluid) were modeled as triangular
tessellation. The cortical thickness was computed by averaging
distances from the inner surface to outer surface and the dis-
tance from the outer surface to the inner surface (Fischl and Dale,
2000).

2.2.2. Spatial normalization and resampling on a template surface
The estimated cortical surfaces were spatially normalized onto a
given template surface, called “fsaverage6” with 40962 vertices for
each hemisphere, using curvature matching technique to align
major sulci patterns (Fischl et al., 1999). Then the cortical thick-
ness was resampled onto the template surface, resulting in the
correspondence of measures across all participants. This normal-
ization enables a direct comparison of a vertex or a set of vertices
across participants.

2.2.3. Heat kernel smoothing via Laplace-Beltrami eigenfunction
Individual cortical thickness maps on the template surface were
smoothed using a heat kernel smoothing technique based on

1http://surfer.nmr.mgh.harvard.edu

Laplace-Beltrami (LB) eigenfunctions (Seo et al., 2010; Kim
et al., 2011b; Seo and Chung, 2011). The surface-based smooth-
ing reduces the impact of possible abrupt noise or errors from
MRI scanning, surface reconstruction and thickness estimation,
thus increases statistical power (Chung et al., 2005; Lerch and
Evans, 2005). In addition, due to its analytic formulation, the
heat kernel smoothing via LB eigenfunctions has a benefit of
circumventing numerical errors in conventional smoothing tech-
niques based on iterations. Theoretical details are explained
in somewhere else (Seo et al., 2010). In this paper, we used
4000 orthonormal bases of LB eigenfunctions. The measure-
ments were smoothly recovered with the bandwidth parame-
ter σ of 10 mm, using freely available MATLAB codes by Moo
K. Chung2.

2.2.4. Partial correlation between ROIs
Automatic parcellations of gray matter into 74 regions-of-interest
(ROIs) per hemisphere were adapted from (Fischl et al., 2004;
Destrieux et al., 2010), which was included in FreeSurfer as
“Destrieux 2009 atlas”. Although the 148 ROIs are less uniform
in terms of area (mean area = 13.73 ± 9.68 cm2) than in a
high-resolution parcellation with about 1000 ROIs (mean area
∼1.5 cm2 with standard deviation less than 0.15 cm2) used in
Hagmann et al. (2007, 2008), the anatomical significance of the
current parcellations assists us in interpreting results while reduc-
ing the computational loads in permutation tests as described in

2http://brainimaging.waisman.wisc.edu/~chung/lb/
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the section 2.4. Thickness measures were averaged in each ROI
and used in further analysis.

We computed partial correlation between the ROIs while fac-
toring out the effect of age and gender, as well as the mean
of measures, as previous cortical thickness network studies (He
et al., 2007, 2008, 2009; Bernhardt et al., 2011). First we fit such a
general linear model (GLM) as

c(x) = β0 + β1a + β2g + ε, (1)

where c(x) is the vector of the cortical thickness of the x-th ROI
for individual participants, βk = 0, 1, 2 are unknown parameters
to estimate, a is the vector of ages, g is the vector of genders
and ε is the vector of Gaussian random noise. Once we esti-
mated the parameters with the least square method, the residuals
c(x) − ĉ(x) of the GLM were used to compute a correlation
matrix R = [

rxy
] ∈ R

148×148 as

rxy = corr(c(x) − ĉ(x), c(y) − ĉ(y)), (2)

corr(i, j) is the Pearson product of two vectors i and j as

corr(i, j) =
∑

ij − [(∑
i
∑

j
)
/n

]
[

i2 − (∑
i
)2

/n
] [

j2 − (∑
j
)2

/n
] , (3)

where n is the number of the elements of i or j. Since we
are interested in the anatomical connectivity due to neuronal
associations under the same assumptions in the previous net-
work studies based on cortical thickness (He et al., 2007, 2009;
Bernhardt et al., 2011), we do not examine anti-correlations in
this paper. Although negative association should also be studied
in the future to reveal the biological mechanism of the cor-
tical thickness interdependence (Lerch et al., 2008; Raznahan
et al., 2011), it would be beyond the scope of the current
study.

2.2.5. Network construction for different rewiring costs
For it is known that the rewiring costs, or the density, of a
network critically affects the graph theoretical properties and
topological characteristics of network (Eguíluz et al., 2003; Latora
and Marchiori, 2003; Achard et al., 2006; Gong et al., 2009),
we controlled the costs to compare the brain networks of
the OCD patients with that of the controls. When an undi-
rected and unweighted graph G is written as a set of two
sets as

G = {V,E}, (4)

where V is the set of vertices and E is the set of edges, then the
cost of a graph G is given as

cost(G) = K

N(N − 1)/2
, (5)

where K = |E | as the number of edges and N = |V | as the num-
ber of vertices in the graph G. Note that N(N − 1)/2 is the largest

number of possible K. Thus the cost equals to zero when there
is no connections and the cost equals to one when every node
is directly connected to all the other nodes. We binarized the
correlation matrices so that they have the equivalent cost, rang-
ing from 0.01 to 0.50 with a step of 0.01. It resulted in 100 (50
costs × 2 groups) adjacency matrices Ag, c with the dimension-
ality of 148 × 148, where g is the group index (g = 1 for the
controls; g = 2 for the OCD patients) and c is the cost (c = 0.01,
0.02,. . . , 0.50). The denser graphs with the cost of more than 0.50
are indistinguishable between the groups and even from the the-
oretical models (random and lattice), thus we did not include the
range over 0.50 in our study. One might note that the selected
range of cost is slightly wider than in some previous studies:
0.05 ≤ c ≤ 0.40 (Bernhardt et al., 2011), 0.06 ≤ c ≤ 0.40 (He
et al., 2008), but narrower than in another study: 0 < c < 1 (He
et al., 2009). However, determining a threshold for binary graph
analysis is no trivial issue, and even selecting multiple thresholds
also introduces empirical choices (Langer et al., 2013). It should
be noted that using too high threshold (i.e., low cost) has a risk
of excluding true connections (false negative) and too low thresh-
old (i.e., high cost) has a risk of including false connections (false
positive).

2.3. GRAPH MEASURES: EFFICIENCY AT NETWORK AND NODE LEVELS
In order to characterize the properties of cortical thickness net-
works, we used efficiency in this paper, which measures how effi-
ciently a network exchanges information (Latora and Marchiori,
2001). The efficiency measure is given in two ways: (Latora and
Marchiori, 2001): global efficiency and local efficiency, which are
closely related to the small-worldness measures such as charac-
teristic path length and clustering coefficients (Watts and Strogatz,
1998). In contrast to the small-worldness measures are defined
only in a network with only one connected component, the effi-
ciency measures are more adoptable for the real-world networks
as they are also applicable to disconnected networks.

In addition to the originally proposed network-wise mea-
sures for efficiency (Latora and Marchiori, 2001), a node-wise
measure has been used in the previous brain connectivity liter-
ature (Achard and Bullmore, 2007; He et al., 2009; Wang et al.,
2009b; Lo et al., 2010), but only limited to the global efficiency.
Combining two levels (network- and node-) and two efficiency
measures (global and local), we used four different types of
efficiency measures in the paper, as explained in the following
subsections.

For the assessment of real-world networks from human brains,
we generated cost-matched theoretical networks. The theoreti-
cal networks provide benchmarks for a network with a maximal
global efficiency [i.e., a random network for unweighted graphs;
Latora and Marchiori (2003)] or a network with a high local effi-
ciency (i.e., a regular lattice) under a given constraint of cost.
A “economic behavior” of network, or small-worldness, is often
used to describe a network with a low characteristic path length,
or a high global efficiency, as a random network and a high clus-
tering coefficient, or a high local efficiency, as a regular lattice
(Latora and Marchiori, 2003). For each level of cost, 1000 ran-
dom networks with uniform probability of connections and 1000
lattice networks with the fixed patterns of adjacent connections
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were synthesized, then the graph measures were averaged over
instances. The efficiency measures in the followings were com-
puted using a custom modification of the MATLAB code in Brain
Connectivity Toolbox3.

2.3.1. Global efficiency
Global efficiency of a graph G is given (Latora and Marchiori,
2001) as

Eglob(G) = 1

(N − 1)N

∑
i ∈G

∑
j ∈G

1

dij
, (6)

where N is the number of nodes in the graph G, the nodes i and j
within G are different, (i �= j) and dij is the shortest path length, or
geodesic distance (Newman, 2003), between the two nodes. One
may note that Eglob(G) quantifies the expectation on how closely
a node is connected to all the other nodes in the whole network.
It has a clear relation to a graph theoretical measure previously
known as characteristic path length (Watts and Strogatz, 1998).
While the characteristic path length is the arithmetic mean of the
shortest path lengths, the Eglob is the reciprocal of the harmonic
mean of the shortest path lengths (Latora and Marchiori, 2003).
The Eglob is bounded from 0 to 1. When there are no connections
between any nodes, all geodesic distances are equal to infinity then
the Eglob equals to zero. On the other hand, when the all nodes are
directly connected, all distances are equal to one and the Eglob also
equals to one.

2.3.2. Local efficiency
Local efficiency of a network G is given as the average of the global
efficiencies of sub-graphs (Latora and Marchiori, 2001) as

Eloc(G) = 1

N

∑
i ∈G

Eglob(Gi) (7)

where Gi is a sub-graph centering the node i, that is, the set of the
node i and its neighbors (the nodes with the distance of a single
edge from the node i) and the set of edges between the nodes. As
the measure depicts connectivity within local neighbors, Latora
and Marchiori (2003) have shown that the Eloc(G) is related to
clustering coefficient (Watts and Strogatz, 1998). As the Eloc(G) is
the average of Eglob(Gi), the measure is also bounded from 0 to 1.
The higher the measure, the more efficiently the nodes within a
local network are interconnected.

2.3.3. Nodal efficiency
Besides of network-level, we can measure how efficiently an
individual node transfer information at node-level as

Enodal(i;G) = 1

N − 1

∑
j ∈G

1

dij
, (8)

where j �= i. Enodal(i;G) is known as nodal efficiency (Achard
and Bullmore, 2007). When the global efficiency Eglob(G) can

3https://sites.google.com/site/bctnet/

be understood as “the global efficiency of a network”, we can
regard the nodal efficiency Enodal(i;G) as “the global efficiency
of a node”. Remind that the term “global” or “local” only indi-
cates whether the efficiency measure is computed for the inter-
connections to the all nodes, i.e., global network, or whether it is
for the intra-connections within the neighboring nodes, i.e., local
network (Latora and Marchiori, 2003).

2.3.4. Neighboring efficiency
The efficiency within the local neighbors of a node is
computed as

Enbr(i;G) = Eglob(Gi) = 1

(Ni − 1)Ni

∑
m ∈Gi

∑
n ∈Gi

1

dmn
(9)

where Ni is the number of nodes in a sub-graph Gi and the
nodes m and n in Gi are different (m �= n). We call this measure
Enbr(i;G) as neighboring efficiency, which is a node-level measure
of local efficiency, as well as the nodal efficiency Enodal(i;G) is a
node-level measure of global efficiency. By definition, Enbr(i;G) is
given when Ni ≥ 2, otherwise Enbr(i;G) = 0 for a node with no
connections or only one connection.

2.4. STATISTICAL INFERENCES
We tested the equalities of the expected efficiency measures
between the controls and the OCD patients. The null hypotheses
of the equality of the expected network-level efficiencies (Eglob,
Eloc) between the networks of the controls (G1) and that of the
OCD patients (G2) are given as

{
H

glob
0 : E

(
Eglob(G2)

) − E
(
Eglob(G1)

) = 0
Hloc

0 : E
(
Eloc(G2)

) − E
(
Eloc(G1)

) = 0.
(10)

For the node-level measures (Enodal, Enbr), the null hypotheses of
equality at a node i are given as

{
Hnodal

0 (i) : E
(
Enodal(i;G2)

) − E
(
Enodal(i;G1)

) = 0
Hnbr

0 (i) : E
(
Enbr(i;G2)

) − E
(
Enbr(i;G1)

) = 0.
(11)

We used randomization to compute the exact p-values for the
significances of differences (Nichols and Holmes, 2001) in the
global, local, nodal and neighboring efficiency as given in sec-
tion 2.3. The group identifiers (g = 1, 2) were randomly per-
muted for 2000 times and the identical analysis steps were
applied to construct graphs and derive efficiency measures. The
difference between the two randomly separated groups were
used to obtain the null distribution under the hypothesis H0

that there is no difference between the controls and the OCD
patients. The p-values were calculated at each cost as two-tailed
p-values.

The significance level is given as 0.05 in this study. We did
not apply any multiple comparison corrections in comparing
the efficiency measures for each ROI as in the previous brain
connectivity studies (Achard and Bullmore, 2007; Wang et al.,
2009a), neither for each cost since the networks with the adja-
cent costs are obviously not independent. The similar relation-
ship between the networks across the costs has been explained
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by graph filtration (Lee et al., 2011), the process in which the
succeeding network embeds the preceding network with the
decreasing threshold of correlation (or the increasing “epsilon”
distance in constructing Rips complexes (Ghrist, 2007) in an
N-dimensional similarity space). We pursued, however, a per-
sistent group difference over the various costs as well in this
study.

3. RESULTS
3.1. DEMOGRAPHIC AND CLINICAL VARIABLES OF PARTICIPANTS
Demographic and clinical variables are tabulated with corre-
sponding statistics and p-values in Table 1. There were no sig-
nificant differences in age (p = 0.49), gender ratio (p = 0.88),
education year (p = 0.59) and IQ (p = 0.49). BDI and BAI scores
in the OCD patients were significantly higher than the controls
(BDI, p < 10−7; BAI, p < 10−6). The mean of total Y-BOCS
in the OCD patients was 21.03 with the standard deviation
of 6.06.

Out of 32 OCD patients, 13 patients (41%) were with con-
tamination, 8 patients (25%) with checking, 5 patients (16%)
with aggressions and 5 patients (16%) with other obsessions of
sex, religion, somatic, or a combination of them as their promi-
nent symptoms, as classified with Y-BOCS Symptom Checklist
(Goodman et al., 1989). The main symptom of one patient
was not determined. No significant differences between the
two largest subgroups (contamination vs. checking) were found
in total Y-BOCS (p = 0.31), neither in obsession (p = 0.10)
nor compulsion (p = 0.98) subscores. The equalities across
the other subgroups were not tested due to the small sizes
of the subgroups. In addition, we did not find the effect of
the history of medications on the severity of OCD either;
between 23 drug-naïve patients and 8 unmedicated patients,
there were no significant differences in total Y-BOCS (p = 0.25)
and the subscores of obsession (p = 0.90) and compulsion
(p = 0.58).

Table 1 | The summary of demographic and clinical variables.

Variable Controls OCD patients t-/z-stat. p-value

(n = 35) (n = 32)

Age (year) 23.94 ± 3.60 24.81 ± 6.41 0.69 0.49

Gender
(men/women)

24/11 21/11 0.15 0.88

Education (year) 14.03 ± 1.29 14.34 ± 3.23 0.53 0.59

IQ 113.20 ± 9.98 111.40 ± 11.32 −0.69 0.49

BDI 4.26 ± 6.17 17.37 ± 10.71 6.21 <10−7

BAI 4.54 ± 5.49 18.72 ± 13.70 5.65 <10−6

Y-BOCS

Obsession – 11.97 ± 3.49 – –

Compulsion – 9.06 ± 4.69 – –

Total – 21.03 ± 6.06 – –

The mean and the standard deviation of the variables are shown except for gen-

der. The IQ was estimated by Korean-Wechsler adult intelligence scale-revised

(K-WAIS-R). Abbreviations: BDI, Beck’s depression inventory; BAI, Beck’s anxiety

inventory; Y-BOCS, Yale-Brown obsessive-compulsive disorder Scale.

3.2. NO GROUP DIFFERENCES IN CORTICAL THICKNESS AND
CORRELATION COEFFICIENTS

In prior to graph measure analysis, we compared cortical thick-
ness covayring age and gender with multiple comparison cor-
rection by SurfStat MATLAB toolbox 4 (Worsley et al., 2009).
We found no significant group differences (Figure not shown;
corrected p > 0.56 in left hemisphere and p > 0.16 in right hemi-
sphere). In addition, inter-regional correlations rxy as given in
(Equation 2) were compared between groups using Fisher’s z-
transformation. Due to the substantially large number (148 ×
147/2 for all possible pairs) of simultaneous testings, false-
discovery-rate (FDR; Benjamini and Hochberg, 1995) is used for
this case. Once again, no correlation between the pairs of nodes
were found to be significantly different between the patients with
OCD and the controls (q > 0.40).

3.3. SMALL-WORLDNESS OF THE BRAIN NETWORKS
The global efficiencies and local efficiencies of the brain networks,
as well as the random and lattice networks with the matched
costs, are given over the varying costs (0.01, 0.02, · · · , 0.50) in
Figure 2. We found that the network-level efficiency measures of
the brain networks were invariently in-between the cost-matched
random and lattice networks as

Eglob(Grnd) > Eglob(Gbrain) > Eglob(Glat) and

Eloc(Glat) > Eloc(Gbrain) > Eloc(Grnd), (12)

except for two extreme cases (cost of 0.01 and 0.50).
These characteristics of inequalities have been typically

referred as economic small-world behaviors of networks (Latora
and Marchiori, 2003; Achard and Bullmore, 2007). It has been
found that many brain networks of clinical populations are still in
the small-world regime despite the significantly altered properties
of patients in comparison with the healthy populations (He et al.,
2007, 2008, 2009; Wang et al., 2009b; Lo et al., 2010). Thus we
presume that the cortical thickness network of the OCD patients
has the small-world architecture, as well as that of the controls.

3.4. NO GROUP DIFFERENCES IN NETWORK-LEVEL EFFICIENCY
We found significantly smaller global efficiencies in the OCD
patients than the controls at the cost of 0.06 (p = 0.03), 0.48
(p = 0.04) and 0.49 (p = 0.02), but found no differences at the
other costs. No significant group differences in local efficiency
were found at any costs we studied. In addition, the area under
curves (AUC) divided by the range of costs, or the mean of effi-
ciencies across the discrete costs, were compared. We found no
differences in the mean global efficiency (p = 0.14) nor the mean
local efficiency (p = 0.74). Taken together, we did not find a clear
distinction between the OCD patients and the controls in terms
of the aggregated network-level efficiency measures.

3.5. GROUP DIFFERENCES IN NODE-LEVEL EFFICIENCY
In contrast to the results of network-level efficiency, we found
significant group differences at node-level. The heat maps of

4http://www.math.mcgill.ca/keith/surfstat/
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FIGURE 2 | Global efficiencies and local efficiencies of the brain

networks of the controls (HC), and the OCD patients (OCD) are plotted

over variant rewiring costs with the ones of random and lattice

networks with matched costs (A,B). The differences between the OCD

patients and controls are plotted with the 95% confidence intervals (CI) of
the null distributions obtained from 2000 permutations (C,D). The
significantly different points (P < 0.05) are marked with green circles (C).
Note that no significant differences were found in the local efficiencies.

group-wise nodal efficiency and neighboring efficiency over costs
are given in Figures 3, 4, respectively. Additionally, the differences
in efficiency measures between the groups and the negative log-
arithm with the base of ten of p-values are also shown together.
The logarithmic p-value is signed as positive when the efficiency
is greater in the OCD patients than in the controls (− log10 p > 0)
and as negative when the value is smaller in the patients than in
the controls (log10 p < 0).

What can be prominently noted from Figure 3 is that the
number of disconnected nodes (the nodes with infinity dis-
tance to all other nodes thus zero nodal efficiency; blue pixels
in Figures 3A,B) at a low cost are larger in the OCD patients
than in the controls (e.g., when c = 0.01, 74 in OCD, 61 in
HC), and that it takes higher costs to be connected to any
nodes in the OCD patients (c = 0.20) than in NC (c = 0.15).
Unlike the small-wordness measure (Watts and Strogatz, 1998),
which is given for a connected network, the efficiency mea-
sure (Latora and Marchiori, 2003) enables the investigation

of the disconnected graphs with smaller costs in the present
study.

As we have done previously for the network-level efficiency
measures, the AUC divided by the range of costs were compared
for each node, so that we can compare mean measures across
costs. Out of the 148 ROIs, 9 nodes showed significant group dif-
ferences in nodal efficiencies, while 15 nodes were found to be
significantly different in neighboring efficiencies (p < 0.05), as
summarized in Table 2. For frontal regions, left orbital frontal
gyrus and right lateral orbital sulcus showed lower neighbor-
ing efficiencies in the OCD patients than the controls, while
left middle frontal sulcus exhibited smaller nodal efficiency as
well. On the other hand, parietal regions such as left postcen-
tral gyrus, right postcentral sulcus, left superior parietal gyrus,
and bilateral sulci intermedius primus of Jensen showed higher
efficiency measures in the OCD patients. Finally, medial occipito-
temporal gyri around parahippocampal gyri bilaterally showed
smaller nodal and neighboring efficiencies in the patients with
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FIGURE 3 | Nodal efficiencies for 148 ROIs are plotted over cost for the

controls (HC, A) and the OCD patients (OCD, B). Along the Y-axis, 74 ROI
labels are indicated for each set of two rows separated by dashed horizontal
lines (upper row for the left hemisphere; lower row for the right hemisphere).
See Destrieux et al. (2010) for abbreviation of the ROI labels. The group

differences as HC subtracted from OCD are shown (C). The warm color
shows higher nodal efficiency in OCD than in HC, and the cool color shows
the opposite. The signed logarithmic p-values for the significance of group
differences are also given (D). The positive values means higher nodal
efficiency in OCD than in HC (− log10 p > 0), and vice versa (log10 p < 0).

OCD, with smaller nodal efficiency in right lateral and medial
occipito-temporal gyri.

3.5.1. Spatial pattern of node-level efficiency differences
Interestingly, the spatial bias of the node-level differences in effi-
ciency measures was found at a large scale (i.e., dorsal vs. ventral).
For the sake of simplicity, the nodes are classified either as a dor-
sal or ventral node, based on the Z-coordinate of the center of

mass of a ROI, in relation to the median of Z-coordinates of the
all ROIs. Mind that this separation based on the Z-coordinate is
only for the purpose of a simple comparison of the spatial distri-
bution. Further investigation on community structures based on
thickness correlation also might be useful to analyze the distribu-
tion of local alterations, but we did not include such an analysis
in the present study to keep our focus here to the efficiency of
networks. The geometrical distribution of the efficiency measures
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FIGURE 4 | Neighboring efficiencies for 148 ROIs are plotted over cost

for the controls (HC, A) and the OCD patients (OCD, B). The group
differences as HC subtracted from OCD (C) and the signed logarithmic

p-values (D) are also shown. The same graphical scheme is the same as
Figure 3. The warm color means higher neighboring efficiency in OCD than in
HC and the cold color means the opposite (C,D).

and the corresponding binary networks in the template space are
visualized in Figures 5, 6, for nodal efficiency and neighboring
efficiency, respectively. As previously hinted at by Table 2, it can
be noticed that the efficiency measures of many dorsal nodes are
greater in the OCD patients than the controls, and the ones of
many ventral nodes are smaller from Figures 5, 6. The signed
p-values of 148 ROIs are summarized while the location (dorsal
or ventral) of nodes with significant group differences marked in
Figure 7. For the nodal efficiency Enodal (Figure 7A), all of the 4
nodes with significantly larger values in the OCD patients (nodes

above the upper red line) were dorsal without any ventral nodes
(100%; green), and all of the 5 nodes with significantly smaller
values (nodes under the lower red line) were ventral (100%;
magenta). For the neighboring efficiency Enbr (Figure 7B), 6 out
of 8 nodes with significantly greater values in the OCD patients
were dorsal (75%), and all of the 7 nodes with significantly smaller
values were ventral (100%).

Although the spatial bias in the present results seems clearly
discernible (100%; 100%; 75%; 100%), one may be interested in
the stability of the present finding. It can be possible to compute
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Table 2 | The summary of the nodes with significant differences in mean efficiency (p < 0.05) as the subtraction of controls (HC) from the OCD

patients (OCD-HC) with corresponding p-values for nodal efficiency (A) and neighboring efficiency (B).

Location Structure name OCD-HC p-value

A. Nodal efficiency (Enodal)

Dorsal nodes Paracentral loblue and sulcus 0.1699 0.023

Left middle frontal sulcus 0.2002 0.037

Right postcentral sulcus 0.1316 0.034

Right middle occipital gyrus 0.0944 0.041

Ventral nodes Left parahippocampal part of the medial occipito-temporal gyrus −0.2836 0.015

Right parahippocampal part of the medial occipito-temporal gyrus −0.3653 0.001

Right gyrus rectus −0.2620 0.049

Right lateral occipito-temporal gyrus −0.2427 0.034

Right medial occipito-temporal sulcus and lingual sulcus −0.2690 0.026

B. Neighboring efficiency (Enbr)

Dorsal nodes Left postcentral gyrus 0.1208 0.019

Left superior parietal gyrus 0.0989 0.033

Left sulcus intermedius primus of Jensen 0.3367 0.014

Left superior part of the precentral sulcus 0.1552 0.027

Right sulcus intermedius primus of Jensen 0.1787 0.030

Right intraparietal sulcus and transverse-parietal sulcus 0.1349 0.024

Ventral nodes Left H-shaped orbital sulcus −0.4093 0.004

Left orbital gyrus −0.1367 0.032

Left parahippocampal part of the medial occipito-temporal gyrus −0.4367 0.015

Left inferior temporal gyrus 0.0722 0.047

Left medial occipito-temporal sulcus and lingual sulcus −0.4374 0.035

Right parahippocampal part of the medial occipito-temporal gyrus −0.5707 0.003

Right lateral orbital sulcus 0.3416 0.028

Right lateral occipito-temporal gyrus −0.3742 0.002

Right horizontal ramus of the anterior segment of the lateral fissure −0.5793 0.011

Dorsal nodes and ventral nodes are separated for tabulation.

reliability using a resampling method known as jack-knifing.
Unfortunately, however, we used randomization to compute p-
values for group differences. To see the spatial pattern of the
nodes with significantly different efficiency in a resampled sub-
set, each subset requires a new run of randomization and graph
measure computation. It renders impractical computational load
with the current MATLAB codes. Thus we have not carried
out the analysis for this study. We discuss on the spatial bias
of node-level efficiency measures between the dorsal and ven-
tral networks from the perspective of the imbalance theory of
dorsal-ventral pathways in the OCD patients in the following
section.

3.5.2. Altered relationship between node-level efficiency and node
centrality

In addition to the spatial pattern, the relationship between the
efficiency and centrality are further examined. We used degree,
which is the number of connected edges to a node, as a sim-
ple measure for node centrality. The mean efficiencies are plotted
over degrees in Figure 8. The efficiency is fitted using a GLM as

E(i) = β0 + β1D(i) + β2G(i) + β3D(i)G(i) + ε (13)

where E(i) is an efficiency measure of the i-th node, D(i) is
a degree and G(i) is a group index. The efficiencies were well
explained by the full models (nodal efficiency, R2 = 0.98; neigh-
boring efficiency, R2 = 0.50). We used logarithm of degrees
when the model fit is improved as in case of neighboring effi-
ciency (R2 for the full model with a linear degree measure
is 0.39).

The interactions between group index and degree were found
to be significant for nodal efficiency (p < 0.005) and neighboring
efficiency (p < 0.0005). The nodes with significantly difference
efficiencies seem to be responsible for the interaction, especially
for that the nodes with lower efficiency are deviated from the fit-
ting lines. The p-values for the interactions without the nodes
with significantly smaller efficiencies were higher than signifi-
cance level in the study (nodal efficiency, p = 0.23; neighboring
efficiency, p = 0.24). Thus the nodes with significantly smaller
efficiencies in patients with OCD seem to be aberrant from the
other nodes in the OCD patients. As an illustration for this idea,
the degrees and efficiencies of the nodes with the smaller effi-
ciencies from OCD patients are plotted over cost in Figure 9.
For comparison, the measures of the other nodes with similar
degrees from the patients are also given. In the process of graph
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FIGURE 5 | Mean nodal efficiencies across costs are overlaid on the

cortical surfaces of the controls (HC, column A) and the OCD

patients (OCD, column C) from a dorsal view (upper row) and a

ventral view (lower row). See the color bar on the leftmost side for
the color coding from 0 to 0.8. The sub-graphs (Gi ) of the binary

networks at the cost of 0.10 are shown as well for HC (column B)
and OCD (column D). From the nodes that showed significantly
different nodal efficiencies (marked by thick circles), their first
neighbors are connected in distinct colors which correspond to the
ROI legend on the rightmost side.

growth with the increasing cost, the efficiencies of the nodes
without significant group differences (gray lines) increase earlier
than the nodes with significant group differences (cyan lines).
Thus the nodes with group differences have smaller mean effi-
ciency (AUC divided by the range of cost) than the other nodes
with similar mean degrees, deviating from the fitting lines in
Figure 8.

4. DISCUSSION
4.1. THE BRAIN NETWORK OF OCD PATIENTS IN THE SMALL-WORLD

REGIME
We found that the brain network of the OCD patients is within
the small-world regime as well as that of the controls. The
small-worldness of neuronal network has been demonstrated
in various scales: the neuronal system of C. elegans (Watts
and Strogatz, 1998), the brains of cats and macaque monkeys
(Hilgetag and Kaiser, 2004; Kaiser, 2007), and that of humans
(Sporns et al., 2004; Sporns and Honey, 2006; Achard and
Bullmore, 2007; Hagmann et al., 2007; He et al., 2007; Hagmann
et al., 2008). Although the network properties were found to
be altered to a significant degree, the brain networks of clinical
population also exhibited small-worldness distinctively from the
cost-matched theoretical networks (He et al., 2008, 2009; Wang
et al., 2009a; Bernhardt et al., 2011). In consistence with a pre-
vious functional network study on the OCD patients (Zhang
et al., 2011), we confirmed that the structural network of the

patients shows small-worldness as well in terms of inequality
of network-level efficiency measures (Equation 12) as shown in
Figure 2.

The small-worldness of a network implies the existence of
local clusters in relation to its equivalent random counterpart
(Kaiser, 2011). As it can be seen in Figures 1E, 10, the corti-
cal thickness networks from both of the OCD patients and the
controls remarkably showed the variant degrees of connections
across nodes. Regarding that the random and lattice networks
are generated to have uniform distributions of degrees, the vari-
ety of degrees of the real-world brain networks makes them
clearly distinguishable from the theoretical networks. In particu-
lar, the pattern of mean degrees showed noteworthy resemblance
between the brain networks of the OCD patients and the con-
trol as given in Figure 10. The correlation of mean degrees
between the groups was strongly positive (r = 0.4969, p < 10−9).
It may imply that the essential structures and functions of brain
network are still preserved in the OCD patients, as shown as
intact capabilities of basic behaviors and primitive function-
ing of the patients, though diverse impairment in high level
cognitive functioning (Graybiel and Rauch, 2000; Kuelz et al.,
2004).

4.2. DORSAL AND VENTRAL DISPARITY IN OCD PATIENTS
The most significant contribution of our present study is detect-
ing the disparity between the dorsal and the ventral networks in
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FIGURE 6 | Mean neighboring efficiencies across costs for the controls

(HC, column A) and the patients with OCD (OCD, column C) and the

sub-graphs (Gi ) of the corresponding binary networks at the cost of 0.1

(HC, column B; OCD, column D) are shown in the same graphical

scheme as Figure 5, except that the color coding range of neighboring

efficiencies is adjusted from 0.3 to 0.8 for a better visualization.

the OCD patients in terms of graph theoretical measures, sup-
porting the hypothesis on “the imbalance of tone” between direct
and indirect CST pathways (Saxena et al., 1998, 2001).

Although we could not find any group differences in the mean
network-level efficiency measures, we found significant alter-
ations of the node-level efficiency in the OCD patients that were
localized with an evident spatial bias as shown in Figures 5, 6,
which may reflect the imbalance between the dorsal and ventral
pathways in the patients. In particular, the topological alterations
were particularly localized in sensory-motor regions including
paracentral lobule, postcentral regions, parietal cortices and mid-
dle frontal cortex as greater nodal or neighboring efficiencies in
the OCD patients than the controls, and the aberrations were
also detected in the ventral frontal and temporal regions includ-
ing orbital cortices the parahippocampal cortices as smaller nodal
or neighboring efficiencies in the OCD patients. We have shown
that the ratios of nodes with significantly greater or smaller effi-
ciency are not equal between the dorsal and ventral nodes, which
may reflect the spatial disparity of the subnetworks in the patients
with OCD, as shown in Figure 7.

Our findings are in accordance with the previous VBM stud-
ies those found local alterations of gray matter in parietal cortex
(Kim et al., 2001; Valente et al., 2005), middle temporal and occip-
ital cortex (Togao et al., 2010) and orbital frontal cortex (Pujol
et al., 2004; Szeszko et al., 2008). Given the neuropathological
model (Saxena et al., 2001; Menzies et al., 2008), those regions
have been considered as the loci of the abnormalities of OC symp-
toms such as attention control deficit, excessive anxiety and failure

of impulse control (Friedlander and Desrocher, 2006; Menzies
et al., 2008).

More interestingly, the present findings seem to be closely
related to a multivariate study on the structural network of OCD
patients (Menzies et al., 2007), which used a statistical technique
called partial least square (PLS; McIntosh et al., 1996). Unlike the
massive univariate approaches such as VBM, PLS extracts spatial
patterns that optimally correlate with a given measure of inter-
est from the whole image. Thus the ability of PLS to detect a
component with covariance is quite similar to that of the corti-
cal thickness network analysis we used in this paper, in the sense
of multivariate approaches. Their study showed that higher gray
matter density in a “parieto-cingulo-striatal system” and lower
gray matter density in a “fronto-temporal system” were correlated
with increasing behavioral impairment in OCD patients (Menzies
et al., 2007), with a striking congruence with the current findings.

4.3. ABERRANT RELATIONSHIP BETWEEN EFFICIENCY AND
CENTRALITY IN OCD PATIENTS

We also found that significant interactions between degree cen-
trality and group on node-level efficiency. The interactions
seemed to be driven by the nodes that showed significant group
differences, which are deviated even from the other nodes within
the patients. In particular, the nodes with smaller efficiency in
OCD patients demonstrated different graph growth trajectory
with the increasing costs, compared to the other nodes in OCD
patients with similar mean degrees. The nodal efficiency of a node
can increase without the additional connections to the node but
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FIGURE 7 | The mean node-level efficiency measures were

compared. Signed logarithmic p-values for nodal efficiency (A) and
for neighboring efficiency (B) are given. The x-axis indicates the
index of the ROI, or the node, from the left hemisphere (LH) to
the right hemisphere (RH), which are separated by dashed vertical
lines. Along the y-axis, the positive values mean the higher

efficiency measures in OCD patients than in controls (− log10 p > 0),
and the negative values mean lower efficiency measures in OCD
patients (log10 p < 0). The significance level of α = 0.05 are marked
with red horizontal lines and the suprathreshold nodes are
highlighted by green circles (dorsal nodes) or magenta squares
(ventral nodes). See Table 2 for ROI labels.

FIGURE 8 | Mean nodal efficiency (A) and neighboring efficiency (B) are

shown over mean degrees in a linear (A) and a logarithmic (B) scale.

Each point indicate an ROI from the networks of the healthy controls (HC,
blue dots) and patients with OCD (OCD, red dots). Specific ROIs with
significant group differences in efficiency measures are marked with

either green triangles (E(i; GOCD) > E(i; GHC)) or cyan triangles
(E(i; GOCD) < E(i; GHC)). Regression lines are given for each group (HC, blue
line; OCD, red line). Above panels, F -statistic and p-value for a GLM testing
the interaction between logarithm of degree and group and R2 for the full
model are given.
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FIGURE 9 | Degree (upper row) and efficiency (lower row) are plotted

over cost for the nodes with smaller nodal efficiency (A, cyan) and

smaller neighboring efficiency (B, cyan) from OCD patients. For
comparison, the measures of the other nodes from the patients with

similar mean degrees are also shown (gray). The nodes with smaller
efficiency in OCD than healthy controls exhibits different growth of
efficiency even though the mean degrees are similar to the other nodes
in OCD.

FIGURE 10 | The averaged degrees across costs over 148 ROIs are shown for the controls (HC) and OCD patients (OCD) on the y-axis. Similarly to
Figure 7, the x-axis indicates the index of the ROI from the left hemisphere (LH) to the right hemisphere (RH), which are separated by dashed vertical lines.

by the additional connections to the other node that is already
connected to the node. In other words, a node that is connected
to a hub node can have high nodal efficiency even with only 1◦.
In case of OCD patients in the present study, the nodes without
group differences (Figure 9A, gray lines) showed abrupt increase
of nodal efficiency at a low cost (<0.05) without much increase
of degrees. On the other hand, the nodes with group differences
(Figure 9A, cyan lines) took high costs to have sudden increase of
nodal efficiency, which is likely to be the point when the node is
connected to the other node with high degrees.

Neighboring efficiency does not monotonously increase by
increasing cost, since the measure quantifies the connections
between the first neighbors of the node. Thus the neighboring
efficiency can suddenly decrease during the graph growth when a

new node without any connections to the pre-existing first neigh-
bors is connected. In our case of OCD patients, the nodes without
group differences (Figure 9B, gray lines) showed sudden increases
at low degrees and sudden decrease, while the nodes with group
differences (Figure 9B, cyan lines) evolved with slowly increasing
neighboring efficiency, which means connecting unrelated nodes
into its the first neighborhood.

Only 3 nodes out of 24 nodes with group difference in effi-
ciency found to be with significantly different degree between
groups (p < 0.05). It is presumably because that the nodes with
significant group differences showed different trajectory of evo-
lution. Thus the difference in node level efficiency could not be
explained solely by degree centrality but also the connectivity of
other nodes as well. As an alternative measure for centrality in
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a close relation with efficiency, information centrality has been
introduced (Latora and Marchiori, 2004), but further investi-
gation in terms of graph theories remains to pursuit in this
paper.

4.4. CORTICAL THICKNESS NETWORK AND THE PATTERN OF
FUNCTIONAL ACTIVATIONS IN OCD PATIENTS

The disruption of structural architecture may correlate with
the alteration of the functional activation of involved areas.
Specifically, the cortical thickness network has demonstrated its
spatial correspondence to the DMN in human brains (Raznahan
et al., 2011), and the altered relationship between the subcortico-
cortical structures in a mouse model of Huntington’s disease, in
which its subcortical functions were impaired by a gene-knockout
(Lerch et al., 2008). Here, the altered efficiency measures at a node
level in the cortical thickness network of OCD patients implicate
the different pattern of one-to-n similarity of local morphology
of a node (nodal efficiency), or the different pattern of n-to-n
similarity within the neighbors of the node (neighboring effi-
ciency) in relation to the network of the controls. Although we
do not have concurrent functional dataset of the participants, an
fMRI meta-analysis using activation likelihood estimation (ALE;
Turkeltaub et al., 2002) demonstrated that a greater activation
was found in the left inferior parietal cortex in OCD patients
than controls and a smaller activation in the left parahippocam-
pal gyrus was found during various tasks (Menzies et al., 2008)
in relation to our current findings. However, it would be fair to
note that the meta-analysis also reported the foci of abnormal
activations that are not clearly relevant to our results, as well as
other studies that showed the different patterns of activation in
OCD patients, during tasks (Nakao et al., 2005; Han et al., 2011)
and using PET at rest (Kwon et al., 2003). Thus the relationship
between the patterns of functional activation and the efficiencies
of cortical thickness network may not be simply straightforward
but manifold due to the complex nature of human brains.

A recent whole-brain analysis on the functional connectivity of
OCD patients showed significantly higher or lower inter-regional
correlations of activations at rest (Zhang et al., 2011). The spa-
tial patterns of aberrant functional connectivity in their findings
were not quantified, but it can be noted that higher correla-
tions were found between parietal nodes, cingulate nodes and
dorsal frontal nodes and lower correlations were found between
prefrontal nodes and posterior temporal nodes (Zhang et al.,
2011). Although a larger number of samples and simultane-
ous multi-modal data will be beneficial to clarify the interaction
between the structural and functional networks, we conjecture
that the topological alteration in the structural network in OCD
patients would exhibit concurrent deviant patterns of functional
activations.

It can be added to discussion, that the resting-state hyperactiv-
ity in the ventral networks in OCD patients has been consistently
found in terms of greater local activation (Kwon et al., 2003;
Friedlander and Desrocher, 2006) and higher cortico-strial func-
tional connectivity of the basal ganglia (Harrison et al., 2009).
Intriguingly, it was demonstrated that the ventral network, pri-
marily including orbital frontal cortex, showed smaller deactiva-
tion (i.e., the failure of inhibition), responding to the participant’s

own error, thus resulting in higher activation in OCD patients
compared to controls (Stern et al., 2011). The coarse connections
and lower efficiency in the ventral network of the OCD patients in
our present findings implies that the morphometric similarity of
the ventral nodes with other nodes is disturbed. It may reflect the
underlying pathology of the dysfunction of inhibitory controls in
the OCD patients.

4.5. LIMITATIONS AND FUTURE WORKS
The first methodological limitation of our study is that the cur-
rent practice of cortical thickness network analysis is restricted to
cortical structures. Although the subcortical structures were con-
sidered to be highly involved in the pathophysiology of mental
disorders including OCD (Cummings, 1993; Saxena et al., 2001),
the present technical issues such as MR imaging resolution and
tissue contrast still render the surface analysis problematic to the
other brain structures than neocortices, despite recent computa-
tional advances (Khan et al., 2008; Qiu et al., 2010). Alternatively,
the volumetric measure of a subcortical structure may be used
along with the cortical thickness (Lerch et al., 2008). In addition,
it can also be possible to characterize the covariance structure of
local morphology in volumetric space (Kim et al., 2011a; Tijms
et al., 2012). It may be useful to adapt and combine those meth-
ods to investigate the relationship within and between the cortical
and subcortical networks.

The second limitation is that we could not separate the OCD
patients by their main symptoms, mainly due to the small size of
subgroups. As there have been rich discussions and supporting
evidences for the heterogeneity of OCD symptoms (Mataix-Cols
and van den Heuvel, 2006; van den Heuvel et al., 2009; Koch et al.,
2012), possible subtypes and multi-dimensions of the disorder
were discussed in the context of refining the diagnosis criteria
in the next generation of DSM (Leckman et al., 2010; Mataix-
Cols et al., 2010; Taylor, 2011). Even though we did not carry
out the analyses on the subgroups of the OCD patients in this
paper, a methodological improvement of the diagnosis and a
larger number of samples may resort the inconsistency in the
previous findings due to the diversity of OCD.

In relation to heterogeneity, we did not find any group dif-
ferences in cortical thickness in the current sample. Although
we previously reported cortical thinning in other patients with
unmedicated OCD (Shin et al., 2007), it was demonstrated that
a severity of OCD subtype may be correlated with the cortical
thickness (Nakamae et al., 2012). The underlying mechanism of
OCD might not be directly reflected in the local morphometry,
but rather be manifested in the interaction of complex networks,
which motivated the series of graph analysis on human brain
including the current study as well.

In conclusion, we have examined the network properties in
the patients with OCD based on the cortical thickness for the
first time. The anatomical network in the OCD patients was
in the small-world regime as well as that of the healthy con-
trols. We found topological alterations in the patients in terms
of efficiency at node level and its relation to node centrality.
The alteration showed disparity between the dorsal and ventral
networks, which may contribute to confirm the dorsal-ventral
imbalance hypothesis (Saxena et al., 2001).
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Despite an increasing amount of specific correlation studies between structural and
functional connectivity, there is still a need for combined studies, especially in pathological
conditions. Impairments of brain white matter (WM) and diffuse axonal injuries are
commonly suspected to be responsible for the disconnection hypothesis in traumatic
brain injury (TBI) patients. Moreover, our previous research on TBI patients shows a
strong relationship between abnormalities in topological organization of brain networks
and behavioral deficits. In this study, we combined task-related functional connectivity
(using event-related fMRI) with structural connectivity (derived from fiber tractography
using diffusion MRI data) estimates in the same participants (17 adults with TBI and 16
controls), allowing for direct comparison between graph metrics of the different imaging
modalities. Connectivity matrices were computed covering the switching motor network,
which includes the basal ganglia, anterior cingulate cortex/supplementary motor area, and
anterior insula/inferior frontal gyrus. The edges constituting this network consisted of
the partial correlations between the fMRI time series from each node of the switching
motor network. The interregional anatomical connections between the switching-related
areas were determined using the fiber tractography results. We found that graph metrics
and hubs obtained showed no agreement in both groups. The topological properties of
brain functional networks could not be solely accounted for by the properties of the
underlying structural networks. However, combining complementary information from
both imaging modalities could improve accuracy in prediction of switching performance.
Direct comparison between functional task-related and anatomical structural connectivity,
presented here for the first time in TBI patients, links two powerful approaches to map the
patterns of brain connectivity that may underlie behavioral deficits in brain-injured patients.

Keywords: functional connectivity, structural connectivity, brain networks, graph theoretical analysis, brain injury

INTRODUCTION
Many patients with traumatic brain injury (TBI) are faced with
persistent cognitive deficits, including impairments in informa-
tion processing speed, memory, and executive function, which
limit recovery (Levin and Kraus, 1994; Miller, 2000; Godefroy,
2003). The clinical pathology underlying this poor cognitive out-
come is traumatic axonal injury (TAI), which is characterized
by widespread axonal damage due to shearing forces by accel-
eration, deceleration, or rotation of the brain. TAI disrupts the
efficient functioning of brain networks, which consists of white
matter (WM) tracts that connect brain regions As cognitive
control depends on the coherent activity of widely distributed
networks, it is important to examine the characteristics of the
brain networks in TBI.

The area of graph theory is an established mathematical field
and has proven a very effective and informative way to explore
brain networks and human behavior (Bassett and Bullmore, 2009;
Bullmore and Sporns, 2009) in health (e.g., Iturria-Medina et al.,

2008; Li et al., 2009) and disease (for an overview, see Griffa et al.,
2013). With graph theory, the brain can be represented in an
abstract manner as a set of “nodes,” defined by anatomical regions
across the cortex, and “edges,” which reflect connection prop-
erties between these nodes (e.g., Hagmann et al., 2008). While
the node/edge characteristics are typically represented by “con-
nectivity matrices,” a graph theoretical analysis (GTA) provides a
novel way to explore topological and geometrical properties of
brain networks, such as clustering coefficient, small worldness,
efficiency, path length, connectivity degree, among others [for an
in-depth discussion of these measures, see (Rubinov and Sporns,
2010)].

As TAI disrupts the connections of distributed brain net-
works, GTA has already offered insights into the dysfunction of
these networks following TBI using different imaging modali-
ties. For example, using fMRI-based GTAs (Caeyenberghs et al.,
2012a), patients with TBI showed increased connectivity degree
and strength, and higher values of local efficiency, compared
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with controls. On the other hand, diffusion MRI-based GTAs
have shown reduced connectivity degree, longer average path
lengths, and reduced network efficiency in brain-injured adults
(Caeyenberghs et al., 2012b; Pandit et al., 2013) and children
(Caeyenberghs et al., 2012c). These findings suggest that TBI
affects the global organization of the brain network and support
the notion of TBI as a “disconnection syndrome” from a network
perspective (Guye et al., 2010).

However, most studies have used only one of the imaging
modalities at a time. Greater effort should be focused on the inte-
gration of different modalities, since combining complementary
information from the different imaging modalities may be more
fruitful than using either one alone (for a review, see Damoiseaux
and Greicius, 2009). It can be especially helpful in studying dis-
ease (e.g., Andrews-Hanna et al., 2007; Rocca et al., 2007; Lowe
et al., 2008; Skudlarski et al., 2010; Palacios et al., 2012). For
example, Lowe et al. (2008) found that in a cohort of 11 mul-
tiple sclerosis patients and 10 control subjects, mean FA of the
transcallosal motor pathway, as derived from DTI, correlated
positively with functional connectivity of the bilateral primary
sensorimotor cortices, as measured with resting state fMRI.

In these studies, WM microstructural measures usually come
in the form of single scores. However, it is important and infor-
mative to compare equidimensional structural and functional
connectivity maps/matrices, that is, cases in which both structural
and functional connectivity indices are available for the same
pairs of regions-of-interest. Moreover, in order to extract rele-
vant information from the brain’s structure and function, it is
necessary to validate them against different parameters of another
framework, such as GTA. For example, Hagmann et al. (2008) and
Honey et al. (2009) were, to the best of our knowledge, the first to
use GTA to directly compare resting-state functional connectivity
with structural connectivity. The authors found that the strength
of resting-state functional connectivity correlated positively with
structural connectivity strength in healthy participants. However,
there is still a need for combined studies, especially in pathological
conditions.

In this paper, we compared the graph metrics of task-related
functional connectivity, using event-related fMRI, and structural
connectivity, derived from fiber tractography using diffusion MRI
data, computed in the same participants (17 adults with TBI
and 16 controls). Our primary goal was to test the hypothesis
that TBI patients would show a negative correlation between the
two aspects of brain connectivity, i.e., TBI patients who exhibit
more profound structural deficits (lower structural connectiv-
ity) would show higher functional connectivity (to compensate).
Specifically, TAI might cause reorganization of functional connec-
tivity and thus cause a negative association between functional
and structural connectivity. This was predicted on the basis of
relevant earlier work showing that patients with TBI who showed
higher functional connectivity degree displayed lower switching
task performance and more severe brain injury (Caeyenberghs
et al., 2012a). Conversely, the results of our diffusion MRI based
GTA’s showed a decrease in global integration in structural net-
works in TBI patients (Caeyenberghs et al., 2012b,c). These earlier
results suggested that the higher functional network cohesion in
the TBI group may be directly related to a poorer neurobiological

substrate, i.e. structural disconnection between brain areas or
lower structural connectivity. Moreover, we sought to validate
whether complementary structural and functional connectivity
information can be combined to improve accuracy in prediction
of behavioral deficits.

MATERIALS AND METHODS
PARTICIPANTS AND MRI DATA ACQUISITION
The present study included data from 17 adults with TBI and
16 controls. The TBI patients had sustained closed-head trauma
due to traffic accident or sport injury that averaged 4 years 3
months prior to the study (SD = 2 years 5 months). The major-
ity of patients sustained moderate to severe TBI as measured by
the postresuscitation Glasgow Coma Scale (GCS, Teasdale and
Jennett, 1974) (only available from 4 patients, M = 7.8, range =
4–12), the duration of loss of consciousness (30 min or more),
the length of post-traumatic amnesia (>1 day), the anatom-
ical features of the injury based on inspection by an expert
neuroradiologist (see below), and the injury mechanism (traffic
accidents and falls), or combinations thereof. Informed consent
was obtained from each subject, and ethical approval was granted
by the local ethics committee for biomedical research.

Diffusion tensor images (Figure 2B) were acquired with a
Siemens 3 T Magnetom Trio MRI scanner (Siemens, Erlangen,
Germany) using the following parameters: single shot spin-echo;
slice thickness 2.9 mm; repetition time (TR) 7200 ms, echo time
(TE) 81 ms, number of diffusion directions 64, diffusion weight-
ing 1000 s/mm2, number of sagittal slices 56, in-plane resolution
2.2 × 2.2 mm2 with a field of view of 210 × 210 mm2.

Functional data (fMRI) (Figure 2A) were acquired with a
descending gradient echo planar imaging (EPI) pulse sequence
for T2∗-weighted images (TR = 3000 ms, TE = 30 ms, flip angle
= 90◦, 50 oblique axial slices each 2.8 mm thick, inter-slice gap
0.028 mm, in-plane resolution 2.5 × 2.5 mm2, and matrix size of
80 × 80).

Finally, a high resolution T1-weighted structural image was
acquired using magnetization prepared rapid gradient echo
(MPRAGE; TR = 2300 ms, TE = 2.98 ms, 1 × 1× 1.1 mm3 vox-
els, field of view (FOV): 240 × 256 mm2, 160 sagittal slices).
These structural MRI scans were inspected and classified by an
experienced neuro-radiologist (S.S.). Demographic and neuro-
logic variables are provided in Table 1.

BEHAVIORAL TESTING
Assessment of executive function was performed using the Local
Global Task (LGT). Participants performed the LGT (derived
from Miyake et al., 2000) with their right hand. The target stim-
ulus (as shown in Figure 1) consisted of a “global” square or
rectangle, composed of much smaller “local” squares or rect-
angles. Each trial began with the presentation of a prime cue,
indicating to which dimension to attend. The global dimension
was cued by a big square, to the left of the stimulus, and a big
rectangle to the right. For the local dimension the same square
and rectangle appeared, only smaller. After a random cue-target
interval of 400–600 ms, the target stimulus was presented. Both
the cue and the target stimulus remained on the screen until a
participant responded, or until 2500 ms had elapsed. Participants
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Table 1 | Summary of demographic and injury characteristics for the TBI group.

TBI patient no. Age at GCS Acute scan within 24 hours after injury MRI scan at examination

age/gender/ injury score lesion location/pathology lesion location/pathology

handedness

TBI 1 27.6/F/RH 25.2 TL contusion, (R) PL haemorrhage, (L) FL
intraparenchymateus hemorrhagic contusion,
subdural hematoma

Drain tract (R), (L) FL and TL contusion

TBI 2 22.9/F/RH 21.3 (R) FL haemorrhage, (L) FL/TL and (L) PL and
(R) orbito-frontal cortex contusion

Drain tract (R), hemosiderin deposits (R) PL and (R)
orbito-frontal cortex

TBI 3 22.5/M/RH 17.6 (L) FL shearing injuries, splenium and body
corpus callosum contusion

(R) FL contusion

TBI 4 28.1/M/RH 18.6 12 FL contusion, (L) FL subdural hematoma, (L)
TL and (R) PL haemorrhage

Drain tract (L), FL contusion

TBI 5 17.9/F/RH 12.9 Contusion (location not specified in available
records)

–

TBI 6 34.6/M/RH 28.9 (R) amygdala and basal ganglia and (R) PL
haemorrhage, (L) FL inflammatory changes

(L) TL contusion

TBI 716.8/M/RH 9.1 8 (L) TL and (L) FL punctiform and (R)
mesencephalon contusion, (L) FL and (L)
thalamus hemorrhagic injuries

Orbito-fronal cortex contusion, enlarged ventricles

TBI 833.8/M/RH 27.9 Drain tract (R), thalamus injury, corpus callosum shearing
injuries, (R) FL and (L) inferior FL and (R) OL contusion

TBI 9 26.9/F/RH 23.9 FL injuries Drain tract (L), PL and OL/PL and FL and (R) TL shearing
injuries, slightly enlarged ventricles

TBI 1022.3/M/RH 19.1 Contusion and DAI (location not specified in
available records)

(L) thalamus and (L) TL and (L) orbito-frontal cortex and (L) FL
and (R) FL and central sulcus shearing injuries

TBI 11 31.7/M/RH 29.6 (L) FL/TL haemorrhage and DAI, FL and TL/OL
shearing injuries

TL and (R) orbito-frontal cortex and (R) inferior FL contusion,
corpus callosum degeneration, asymmetric ventricles, (L) PL
shearing injury

TBI 1216.7/M/RH 14.5 Enlarged (R) lateral ventricle, (R) hematoma
occipital horn lateral ventricle, hyperdensity
(L) thalamus and PL/TL, (LH) shearing injuries

Drain tract (R), (L) corpus callosum and thalamus and (R) PL and
(L) FL and (R) TL shearing injuries, occipital horn lateral ventricle
asymmetrically enlarged

TBI 13 28.1/M/RH 18.4 Hemosiderin deposits corpus callosum, DAI,
ischemic injury (L) occipital horn of lateral
ventricle

Drain tract (R), (R) periventricular white matter FL and thalamus
injuries, corpus callosum degeneration

TBI 1427.9/M/RH 24.9 7 (L) thalamus and (L) periventricular and corpus
callosum and brainstem and TL shearing
injuries

Drain tract, (L) thalamus and corpus callosum and (L) TL
shearing injuries

TBI 15 30.9/M/RH 28.3 Lesion and location not specified in available
records

Drain tract (R), (L) inferior TL contusion, (L) anterior cingulate
and (R) FL and central sulcus shearing injuries

TBI 16 24.1/M/RH 21.8 (L) FL hematoma, FL intraparenchymal
hemorrhage, subarachnoidal bleeding

Drain tract (R), orbito-frontal cortex and (L) cerebellum contusion

TBI 17 20.6/F/RH 18.1 4 Diffuse axonal injuries, (L) FL/TL/PL subdural
hematoma, FL contusion, injuries corpus
callosum

FL and (R) PL contusion, orbito-frontal cortex shearing injuries,
enlarged ventricles

Anatomy codes: RH, right hemisphere; LH, left hemisphere; FL, frontal lobe; TL, temporal lobe; PL, parietal lobe; OL, occipital lobe; R, right; L, left. Other codes:

TBI, traumatic brain injury; MRI, magnetic resonance imaging; RH, right-handed; LH, left-handed; M, male; F, female, GCS, Glasgow Coma Scale score.
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FIGURE 1 | Local Global Task. Each trial started with a cue, indicating
whether attention had to be paid to the global or local level. When the
stimulus appeared, subjects had to rapidly decide whether the relevant
level consisted of squares or rectangles.

were required to identify the relevant target stimulus dimension
and press one key with their index finger for squares and another
with their middle finger for rectangles (Figure 1). The interval
between a response and the presentation of the next trial varied
randomly between 900 and 1100 ms. The experiment was com-
prised of two unidimensional blocks, and one switch block. In the
unidimensional blocks, participants attended to either the global
cues or the local cues. The order was counterbalanced across par-
ticipants. In the third switch block, the target stimulus dimension
alternated every other trial (i.e., two “local” trials, followed by
two “global” trials, etc.). When the prime cues changed, the par-
ticipants had to switch from responding to the local dimension
to the global dimensions of the target stimulus, and vice versa.
A short amount of practice was given to ensure the instructions
were understood (4 trials for each unidimensional block, and 8-16
trials for the switch block). The experiment consisted of 24 trials
in each pure block, and 49 trials in the switch block. Variables of
interest were RT and accuracy on repetition trials and on switch
trials, and switch cost (=RT switch trial—RT repetition trial).
The whole task took about 15 min.

PREPROCESSING
In preparation for the definition of the nodes, the fMRI time
series were passed through several preprocessing steps using the
SPM 5 software package (Wellcome Department of Imaging

Neuroscience, University College, London) implemented in
MATLAB 7.7 (Mathworks, Sherborn, MA). The first three func-
tional images of each subject’s data set were discarded to allow for
T1 equilibration. The remaining images were spatially realigned
to the first image in the time series, then corrected for differ-
ences in slice acquisition time by temporal interpolation to the
middle slice (reference slice = 25). Functional images were spa-
tially coregistered to the anatomical image, and normalized using
a combination of cost function masking and a unified segmen-
tation procedure (Ashburner and Friston, 2005; Crinion et al.,
2007). Finally, the normalized functional images were smoothed
with an isotropic 10 mm FWHM Gaussian kernel.

The DTI data were analyzed and processed in ExploreDTI
(Leemans et al., 2009; Jones and Leemans, 2011), as previously
described in detail (Caeyenberghs et al., 2010a,b, 2011). In sum-
mary, for each data set the diffusion-weighted MRI images were
corrected for subject motion and eddy-current induced geomet-
rical distortions correction (Leemans and Jones, 2009). During
this processing step, we adjusted the B-matrices with the appro-
priate reorientations and included the required signal intensity
modulation with the Jacobian determinant of the spatial transfor-
mation (Leemans and Jones, 2009; Jones and Cercignani, 2010).
The diffusion tensor was estimated using a non-linear regression
procedure (Veraart et al., 2012) from which the diffusion met-
rics (e.g., fractional anisotropy—FA) were computed for further
analysis (Basser and Pierpaoli, 1996).

SUBJECT MOTION
From the realigned fMRI data, it was verified that no subject had
head movement larger than 2 mm in any direction during any
of the functional runs (translational movements: TBI: mean =
0.55 mm, range = 0.19–1.09 mm; Controls: mean = 0.38 mm,
range = 0.18–0.58 mm; rotational motions: TBI: mean = 0.53◦,
range = 0.23–1.02◦; Controls: mean = 0.38◦, range = 0.23–
0.61◦).

Translational motions did not exceed 1 voxel for the DTI
data (TBI: mean = 0.95 mm, range = 0.40–1.44 mm; Controls:
mean = 0.73 mm, range = 0.37–1.19 mm). Rotations of the DTI
data were on average 0.81◦ and ranged between 0.31 and 1.31◦
for the TBI group; in the control group rotations were on average
0.68◦, ranging between 0.22 and 1.25◦.

WHITE MATTER TRACTOGRAPHY
The interregional anatomical connections between the switching-
related areas were determined using the fiber tractography results
as obtained with ExploreDTI (Figure 2G) (Basser et al., 2000;
Leemans et al., 2009). These fiber pathways were generated by
starting seed points sampled uniformly throughout the data at
2 mm isotropic resolution. Trajectory propagation was termi-
nated if FA < 0.2 or if the angle between consecutive steps
exceeded 45◦. The step size was set at 1 mm.

DEFINITION OF THE NODES AND EDGES
Our network of particular interest was the switching motor net-
work. This group of 22 brain regions (see Figure 2D), encompass-
ing the medial frontal cortex (SMA: pre-SMA and SMA-proper),
anterior cingulate cortex, bilateral dorso-lateral prefrontal cortex
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(DLPFC), inferior frontal cortex (BA44), basal ganglia (globus
pallidus, putamen, subthalamic nucleus region), bilateral cere-
bellum (lobule VI), right precuneus, left premotor cortex (dorsal
and ventral), bilateral insula, and right superior and right inferior
parietal lobules was active during Switch > Continue in an event-
related fMRI design (Figure 2C, Coxon et al., 2010; Leunissen
et al., 2013b).

As a functional measure (Figures 2E,F) we calculated, in each
of the 31 subjects, the partial correlations between each pair of
ROI’s mean time series, filtering out the effects of the remain-
ing 20 brain regions (for details, see Caeyenberghs et al., 2012a).
The structural measure for each subject was the number of
WM trajectories connecting the ROIs (Figure 2H) (Gong et al.,
2009; Lo et al., 2010; Hagmann et al., 2010; van den Heuvel
et al., 2010). Self-connections of nodes were not included in the
analyses.

A weighted graph approach was used, with the partial correla-
tion representing a proxy measure for the strength of functional
connectivity, and the number of WM trajectories as a weight value
for structural connectivity. In addition to the weighted connec-
tivity matrices, we also calculated unweighted binary matrices,
in which the weighting was omitted from the analysis. For each

individual dataset, all non-zero weights were set to one and to
zero otherwise (van den Heuvel et al., 2010). Thus, for each par-
ticipant, there were four different kinds of networks (weighted
structural, binary structural, weighted functional, binary func-
tional), each of which was represented by a symmetric 22 × 22
matrix.

Within the main analysis, the weights of the connections for
structural connectivity were determined by means of the num-
ber of WM trajectories. An alternative measure for connectivity
strength could be the level of FA, as FA values are regularly used as
a measure of WM microstructural organization and as a marker
for WM abnormalities in patient studies (Beaulieu et al., 2005;
Mori et al., 2007; Caeyenberghs et al., 2010a,b, 2011). Therefore,
an additional analysis was performed in which FA values were
used as a measure of connectivity strength. In this additional anal-
ysis, a similar weighted graph analysis was performed but this
time the weights of the connections were determined by means
of the FA values of the interconnecting WM connections rather
than the number of tracts. Similar to the analysis using the num-
ber of WM trajectories, overall graph organizational properties
(efficiency, strength, and betweenness centrality) were computed
and compared between groups.

FIGURE 2 | Structural and functional brain connectivity was examined

using graph theory through the following steps. First, we acquired
task-related fMRI data (A) and DTI data (B) in the same participants. (C,D)

We defined the network nodes as fMRI activation foci. A sphere with radius
(of 10 mm) was placed around the MNI coordinates of each ROI’s activation
peak. (E) For each subject, the average time series for each ROI was
extracted for the Switch > Continue condition in an event-related fMRI design
(Coxon et al., 2010; Leunissen et al., 2013a). (F) Based on the average time

series data, matrices of partial correlations were then calculated, quantifying
the unique functional relationships between each pair of ROIs (Caeyenberghs
et al., 2012a). (G) Next, using a deterministic tractography approach, the
number of white matter trajectories between each pair of regions of the
switching motor network was determined. (H) This value became the edge
weight in the structural connectivity matrix. (I) Finally, from the resulting brain
networks, graph metrics, including connectivity degree, connection strength,
regional efficiency, and betweenness centrality, were computed.
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GRAPH THEORY ANALYSIS
The properties of the switching network were investigated at the
global and regional (nodal) levels using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010; https://sites.google.com/
site/bctnet/). The equations to calculate each of these measures
can be found in Rubinov and Sporns (2010). We only provide
brief, formal definitions for each of the network properties used
in this study: connectivity degree, connection strength, regional
efficiency, and betweenness centrality (Figure 2I). Node degree is
the number of links connected to the node. Node strength is the
sum of weights of links connected to the node. The local efficiency
is the average inverse shortest path length in the network (global
efficiency) computed on node neighborhoods. Betweenness cen-
trality is the fraction of all of the shortest paths in a network
that contain a given node, with higher numbers indicating par-
ticipation in a large number of shortest paths. The nodes with the
largest betweenness centrality were considered to be pivotal nodes
(i.e., hubs) in the network. Specifically, nodes were identified as
hubs in the network if the values of nodal betweenness were 2 SDs
greater than the average betweenness centrality of the network.

STATISTICAL ANALYSIS
Demographic data, including age and handedness, were exam-
ined for between-group differences with t-tests. Analysis of
the reaction times of the LGT were subjected to a repeated-
measures ANOVA with factors Group (TBI, controls), Cue con-
dition (Global, Local), and Switch condition (Switch, Repeat).
Significant main and interaction effects were further explored
by post hoc tests using Tukey correction. For the switch cost
and accuracy rate of the LGT, two-sample t-tests were performed
for comparing the TBI group with the age matched control
group. Moreover, controls and patient subgroups with better and
poorer switching skills (based on a median-split of the accuracy
rate) were separated and used for further analyses (see below).
Between-group differences in the functional and structural con-
nectivity were evaluated using two-sample t-tests, with graph
measures (i.e., degree, strength, local efficiency, and betweenness
centrality) from each approach (DTI or fMRI) examined as
dependent variables. Pearson correlations were used to determine
the association between structural and functional connectiv-
ity. Finally, separate discriminant function analyses (based on a
median-split of the accuracy rate) were performed to identify the
predictive accuracy of (1) the model with degree of the struc-
tural connectivity, (2) the model with degree of the functional
connectivity, and (3) the model with the combination of the two
imaging modalities. These analyses allowed us to discern the spe-
cific potential of the modalities (structural, functional, or com-
bination) to distinguish between both groups. Discriminatory
power of the models was quantified by the resultant sensitivity,
specificity, overall classification accuracy and the Wilks’ lambda
statistic (1 = no discriminatory power; 0 = perfect discriminatory
power).

RESULTS
DEMOGRAPHIC CHARACTERISTICS
Demographic features and clinical characteristics for the patients
enrolled in this study are shown in Table 2. No significant

Table 2 | Graph metrics of the switching network of both imaging

modalities, mean, and standard error for both groups.

Graph

metric

TBI group control group

(N = 17) (N = 16)

Mean SE Mean SE T p

STRUCTURAL CONNECTIVITY (DTI)

Strength 1.861 0.097 1.818 0.072 −0.349 0.729

Degree 0.089 0.005 0.087 0.003 −0.353 0.727

Efficiency 0.137 0.01 0.131 0.009 −0.427 0.673

Betweenness
centrality

3.561 0.55 3.744 0.818 0.188 0.852

FUNCTIONAL CONNECTIVITY (FMRI)

Strength 1.593 0.035 1.469 0.044 –2.239 0.032*

Degree 5.861 0.16 5.449 0.195 −1.645 0.11

Efficiency 0.577 0.007 0.559 0.009 −1.549 0.132

Betweenness
centrality

19.877 0.754 21.612 1.021 1.384 0.176

Results of the two-sample-t-tests, bold values indicate significant results

(p < 0.05). *p < 0.05.

difference in age were found between controls (M = 24.5 years,
SD = 1.5 years) and patients (M = 24.9 years, SD = 5.8 years),
[t(31) = −0.30, p = 0.77]. Controls and patients did not differ by
handedness, as defined by the Edinburgh Handedness Inventory
(Oldfield, 1971) (laterality quotient: TBI: mean = 81, range =
22–100; control: mean = 92; range = 60–100).

DIFFERENCES IN BEHAVIORAL PERFORMANCE ON THE LOCAL GLOBAL
TASK (LGT)
For reaction times of the local and global trials in the LGT,
there was only a significant main effect of Cue condition
[F(1, 29) = 5.99, p < 0.05], indicating that global level informa-
tion (597 ± 23 ms) was processed faster than information of
local trials (634 ± 29 ms). For reaction times of the repeat and
switch trials, there was a significant main effect of Switch con-
dition [F(1, 29) = 8.63, p < 0.01], with longer reaction times for
the switching trials. Moreover, there was a significant interac-
tion effect between the two factors Switch condition and group
[F(1, 29) = 4.11, p < 0.05] (Figure 3A). Post hoc (Tukey) testing
revealed only a significant difference between the switch (676 ±
37 ms) and repeat (641 ± 32 ms) trials within the TBI group.
The mean accuracy rate (of the switch trials) and switch cost
(switch reaction time – repeat reaction time) differed significantly
between the TBI patients and the controls, accuracy: [t(29) =
2.11, p < 0.05, switch cost: t(29) = −2.03, p < 0.05] with the
lower accuracy scores and higher switch cost in the TBI subjects
indicating poorer switching performance than in the controls (see
Figures 3B,C).

GROUP DIFFERENCES IN CONNECTIVITY
While the graph metrics of the structural connectivity were basi-
cally identical between the groups (all p’s > 0.05), the TBI
group consistently showed the tighter functional connectivity as
compared to controls, which manifested in a higher connection
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FIGURE 3 | Behavioral task performance. (A) Reaction time of the
different trial types (global, local, repeat, switch); (B) switch cost; and (C)

accuracy rate of the Local Global Task. TBI, black bars; control, white bars.
∗p < 0.05 for the TBI group compared to controls; TBI, traumatic brain
injury.

strength [t(31) = −2.24, p < 0.05] between the network nodes of
the switching network (see Table 2).

ASSOCIATIONS BETWEEN STRUCTURAL AND FUNCTIONAL
CONNECTIVITY
Whilst each of the graph measures emphasizes a different facet
of connectivity spectrum captured via graph theoretical anal-
yses, these measures are highly inter-correlated. For example,
connectivity degree was highly correlated with efficiency within
the control group for both structural (r = 0.71, p < 0.01) and
functional connectivity (r = 0.96, p < 0.001). Subsequently, we
compared each graph metric of both structural connectivity and
task-related functional connectivity and found no significant cor-
relations (as shown in Table 3). Weak correlations were found
within the control group (0.1–0.3) and very weak to zero val-
ues of the correlations were observed within the TBI group
(<0.1). In nodal characteristics, we found that there was only
one significant positive correlation between functional and struc-
tural connectivity of the connectivity degree of the left superior
medial frontal gyrus (Brodmann area 6, r = 0.63, p < 0.01, indi-
cated in magenta in Figure 4). No other significant associations
were observed between functional and structural connectivity.
From these results, it is clear that there is no overall agree-
ment between functional and structural connectivity within the
switching network.

CONTROL CONDITION: FA-WEIGHTED GRAPH ANALYSIS
An additional weighted graph analysis was performed in which
the weight of the connections was represented by the FA value of
the interconnecting WM tracts rather than the number of trajec-
tories. Similar to the streamlines-weighted analysis, no significant
group differences in structural connectivity were observed (all
p’s > 0.05, see Table S1). Moreover, consistent with the results
of the correlation analyses of the number of WM trajectories

Table 3 | Results of the correlation analyses between graph metrics of

structural connectivity and functional connectivity.

Graph metric Functional connectivity (fMRI)

Control group TBI group

Structural connectivity (DTI) r p r p

Strength −0.119 0.661 0.121 0.643

Degree −0.259 0.332 −0.029 0.913

Efficiency −0.25 0.35 −0.075 0.775

Betweenness centrality 0.124 0.647 0.038 0.886

(Very) weak to none correlations were found within both groups.

weighted analysis, very weak correlations were found between
structural and functional connectivity for the FA-weighted analy-
sis (see Table S2).

IDENTIFICATION OF HUBS
To identify the hub regions, we calculated the betweenness cen-
trality for each node of each subject’s functional and structural
network. Then, we calculated the mean betweenness central-
ity of each node by averaging across subjects for each group
for each modality. For the functional connectivity, the identified
hub nodes included the right dorsolateral prefrontal cortex, right
insula lobe, and left dorsal premotor cortex for the TBI group
(see yellow spheres in Figure 4). The hubs for the control group
included only the right insula lobe. By contrast, for the structural
connectivity, the bilateral subthalamic nuclei and right precuneus
were identified as hub regions for both groups (indicated in cyan
in Figure 4).

CLASSIFICATION ACCURACY
Discriminant function analyses were performed on the behavioral
data (switch accuracy as outcome variable) and connectivity
degree (of each modality separately and in combination) to
obtain a more effective and significant discrimination between
the two groups. All models reached a Wilks’ lambda of zero,
indicating that their discriminatory power was sufficient enough
to correctly classify most subjects. Classification accuracy for
each model, that is, how well each model (structural or func-
tional connectivity or combination) correctly identifies group
membership, was calculated. The model based exclusively on
one modality was less effective in distinguishing between good
and worse performers on the LGT (functional: sensitivity:
42.9%; specificity: 70.6%, overall: 58.1%; structural: sensitiv-
ity: 28.6%; specificity: 76.5%, overall: 54.8%). The discrimi-
natory power of the model based on the combination of the
degree of functional and structural connectivity was slightly
higher, achieving a sensitivity of 42.9% and specificity of
76.5% in the present sample (overall classification accuracy:
61.3%).

DISCUSSION
The present study examined the relation between structural and
functional connectivity in patients with TBI from a graph theo-
retical network perspective. We found that connectivity matrices
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FIGURE 4 | Connectivity degree of the diffusion MRI versus

connectivity degree of the task-related fMRI of the 22 brain

regions. Upper panel controls, lower panel TBI patients. Size of the
ROIs (spheres) represents absolute value of the correlation coefficient.

The colors of the nodes refer to: magenta significant correlation, blue
not significant. Moreover, yellow spheres indicate hubs of the
functional connectivity, cyan spheres represent hubs of the structural
connectivity.

obtained using both diffusion MRI and task-related fMRI showed
no agreement. In addition, we observed that by combining
complementary information from the different imaging modal-
ities the accuracy in prediction of switching performance is
improved.

EXECUTIVE CONTROL DEFICITS IN TBI PATIENTS
The behavioral results showed that the information of the easy
conditions (repeat and global trials) was processed faster than the
information from the difficult conditions (switch and local trials).
Moreover, controls outperformed TBI patients on the switching
task. The healthy controls completed the executive control tasks
more rapidly than the TBI patients and they presented higher
accuracy rates during the LGT. These results are consistent with
our previous studies (Caeyenberghs et al., 2012a; Leunissen et al.,
2013a) suggesting that these switching deficits in TBI patients may
be related to disruptions in the cortico-subcortical connectiv-
ity, limiting the ability to enforce efficient cognitive control over
action.

GROUP DIFFERENCES IN CONNECTIVITY
The topological architecture of the functional networks was
significantly altered in patients with TBI. Specifically, an increase

in connection strength was consistently observed in patients with
TBI. Strength provides information on the variability of node
local connectivity in the brain and tells whether brain nodes are
all more or less connected to the same number of nodes. Strength
is defined as the weighted variant of the degree and is the sum of
all neighboring link weights (Rubinov and Sporns, 2010). Thus
an increase in strength in TBI patients implies that their network
connections are relatively denser than in controls. Increased func-
tional brain connectivity has also been reported in our previous
studies in TBI adults and children (Caeyenberghs et al., 2011,
2012a), in elderly (Heitger et al., 2013), and in patients with brain
tumors (Bartolomei et al., 2006; Bosma et al., 2008). Even though
it is intuitively appealing to suggest that higher connectivity
strength in clinical groups may reflect functional compensation,
it is clearly not the whole story. Strength is also thought to reflect
neurodevelopmental exigencies of wiring cost minimization, and
network topological feature optimization (Bullmore and Sporns,
2012). At the cellular level, it would be metabolically difficult
in TBI to maintain an extremely high number of connections
because this metabolism is simply not sustainable (Griffa et al.,
2013). Thus, a higher connection strength can point to high lev-
els of energetic cost, indicative of an overcharged network that
is unbalanced in the transmission versus energy consumption
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trade-off, as recently observed in a longitudinal study in patients
with TBI using resting-state magnetoencephalogram recordings
(Castellanos et al., 2011).

The absence of group effects on graph metrics of structural
connectivity tends to suggest that TBI does not strongly affect
the structural connectivity or organization of the switching net-
work. This result is not consistent with our previous study
(Caeyenberghs et al., 2012b,c), in which the nodes were defined
using the automated anatomical labeling atlas (AAL, Tzourio-
Mazoyer et al., 2002) covering the whole brain. However, Smith
et al. (2011) suggested that a data-driven approach by defin-
ing networks based only on areas showing clear task-related
activation is preferable to template-based approaches in order
to minimize confounds and obtain a better picture on brain
connectivity.

CORRELATION BETWEEN STRUCTURAL CONNECTIVITY AND
TASK-RELATED FUNCTIONAL CONNECTIVITY
To the best of our knowledge, DTI and task-related fMRI have not
been combined in a graph theoretical approach in TBI patients.
Our results show no significant association between graph met-
rics of structural and functional connectivity. No significant
correlations between each graph metric, including connectivity
degree, connection strength, regional efficiency, and between-
ness centrality, of both structural connectivity and task-related
functional connectivity were found. Moreover, the hubs obtained
using both techniques showed no agreement. The right dorsolat-
eral prefrontal cortex, right insula lobe, and left dorsal premotor
cortex presented as hubs in the functional connectivity. By con-
trast, the bilateral subthalamic nuclei and right precuneus acted as
hub in both groups for the structural connectivity. In other words,
the topological properties of brain functional networks cannot be
solely accounted for by the properties of the underlying structural
networks in this clinical group.

Although there are many studies investigating structural and
functional connectivity in the same cohort of participants, most
of these studies have employed a “univariate” approach, where
each modality is analyzed separately. For example, Palacios et al.
(2012) found a significant relationship between mean FA val-
ues of several WM tracts, including the inferior and superior
longitudinal fasciculi, cingulum, uncinate, and corpus callosum,
and functional activation scores for the default mode network
and working memory network. Although a valuable contribu-
tion is made by the concurrent consideration given to distinct
DTI data and (resting-state) fMRI data, a systematic framework
of integrating them is required to achieve reasonable inferential
power.

The number of studies directly comparing functional and
structural connectivity is relatively small (for a review, see
Damoiseaux and Greicius, 2009). Although these studies use
slightly different functional and structural units (including the
default network, a set of predefined anatomical regions, voxels,
etc), they show largely convergent results, i.e., the strength of
resting-state functional connectivity is positively correlated with
structural connectivity strength (e.g., Hagmann et al., 2008, 2010;
Skudlarski et al., 2008; van den Heuvel et al., 2008). Moreover,
functional connectivity was also observed between regions when

there is little or no structural connectivity, which most likely
indicates functional correlations mediated by indirect structural
connections (via one or more intermediate regions) (Greicius
et al., 2009; Honey et al., 2009).

Both the mean connectivity matrices and the graph metrics
at the nodal level show no similarity between DTI and fMRI
estimates of graph metrics. This divergence between DTI and
task-related connectivity may help us to understand the biolog-
ical substrates of changes. Increased functional connectivity in
the absence of reduction of structural connectivity would point
to impaired network nodes that fail to utilize existing neuronal
connections effectively. TBI might cause natural reorganization of
functional connectivity giving rise to the decoupling between the
two aspects of brain connectivity. While both methods assess par-
ticular aspects of brain connectivity, combining complementary
information from the different imaging modalities can improve
accuracy in prediction of behavioral deficits. Our results indicate
that the multimodality classification approach yields significant
improvement in accuracy over using each modality indepen-
dently. The classification accuracy obtained by the combination
is 61.3%, which is an increase of at least 3.2% from the single
modality-based methods.

LIMITATIONS AND CONCLUSIONS
The number of WM trajectories was used as a weight value
for structural connectivity. Other definitions of edge weight for
structural connectivity, such as FA, mean diffusivity, level of
myelination, and the number of fibers have previously been used
(e.g., Gong et al., 2009; Li et al., 2009; Hagmann et al., 2010; van
den Heuvel et al., 2010; Vaessen et al., 2012). Currently, no con-
sensus prevails which weighting factor is the most representative
measure of structural connectivity in the construction of the
graphs. To test the robustness of our results, we also constructed
networks weighted by FA values (see Supplemental Material).
The results of those networks were comparable with those of the
presented WM networks (the number of WM trajectories and
binary).

Moreover, in this study, we employed a deterministic stream-
line tractography (Basser et al., 2000; Mori and van Zijl, 2002) to
define the edges of the structural network. This is by far the most
widely applied tractography method in clinical research, mainly
for its simplicity, robustness and speed (Cheng et al., 2012; Griffa
et al., 2013). Nevertheless, deterministic tractography is known
to be particularly sensitive to noise, and the tensor model is
unable to recover multiple diffusion orientations in single voxels,
making it impossible to reconstruct tracts passing through brain
regions with complex fiber architecture, also referred to as “cross-
ing fibers” (Tournier et al., 2011; Jeurissen et al., 2013). Graph
theoretical analyses in clinical populations would surely benefit
from the use of more advanced reconstruction and tractography
techniques, such as diffusion spectrum magnetic resonance imag-
ing (DSI) (Wedeen et al., 2005, 2008) or high angular resolution
diffusion imaging (HARDI) with Q-ball reconstruction of mul-
tiple fiber orientations (Tuch, 2004; Hess et al., 2006; Jeurissen
et al., 2011).

As the methodologies for measuring structural and functional
connectivity improve and their complementarity strengths are
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applied in parallel, we expect important advances in our prog-
nostic capacities for degree of brain injury. Even though our
results should be interpreted with caution, to our knowledge, this
is the first report combining measures of altered functional and
structural connectivity of the switching network to elucidate the
mechanisms responsible for cognitive deficits after brain injury.
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Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations
in frontal and subcortical regions of the mesolimbic reward system. However, most
investigations were performed using tasks involving reward processing or executive
functions. Little is known about brain network abnormalities during task-free resting
state in PG. In the present study, graph-theoretical methods were used to investigate
network properties of resting state functional magnetic resonance imaging data in PG.
We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis
Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal
level, pathological gambler showed a reduced clustering coefficient in the left paracingulate
cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local
efficiency in the left SMA, as well as an increased node betweenness for the left and
right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node
betweenness in the left inferior frontal gyrus was decreased and increased in the caudate.
Additionally, increased functional connectivity between fronto-striatal regions and within
frontal regions has also been found for the gambling patients. These findings suggest
that regions associated with the reward system demonstrate reduced segregation but
enhanced integration while regions associated with executive functions demonstrate
reduced integration. The present study makes evident that PG is also associated with
abnormalities in the topological network structure of the brain during rest. Since alterations
in PG cannot be explained by direct effects of abused substances on the brain, these
findings will be of relevance for understanding functional connectivity in other addictive
disorders.

Keywords: fMRI, graph theory, network, connectivity, pathological gambling, reward, behavioral addiction, small

world

INTRODUCTION
Patients suffering from pathological gambling (PG) show persis-
tent gambling behavior despite negative consequences resulting
in a wide-range of psychosocial impairments (Goudriaan et al.,
2004). PG is classified as an impulse control disorder in DSM-
IV (American Psychiatric Association, 2000), but is increasingly
conceptualized as a behavioral addiction with striking similarities
to substance addictions such as withdrawal symptoms and signs
of tolerance (Petry, 2007). Therefore, PG (besides being renamed
as disordered gambling) has been reclassified under the chapter
“Addiction and related disorders” (together with substance addic-
tions) in DSM 5 (American Psychiatric Association, 2013; Petry
et al., 2013).

Most functional neuroimaging studies in PG up to date have
examined brain activity abnormalities using paradigms such as
reward processing, reactivity to gambling related cues, learn-
ing, decision making, and executive functions (for reviews,
see Potenza, 2008, 2013; van Holst et al., 2010). In line

with brain imaging studies on substance addiction, activation
abnormalities in regions of the mesolimbic reward system (mainly
in orbitofrontal, medial and lateral prefrontal regions, and the
ventral striatum) were consistently found in patients with PG
(Cavedini et al., 2002; Potenza et al., 2003; Reuter et al., 2005;
Tanabe et al., 2007; Balodis et al., 2012; Choi et al., 2012; Miedl
et al., 2012; van Holst et al., 2012a; Hudgens-Haney et al., 2013;
Limbrick-Oldfield et al., 2013).

Brain activation differences in fronto-striatal regions in PG
have also been found in executive function tasks and been com-
monly interpreted as reflecting impairments in cognitive control
and inhibitory functions (Potenza et al., 2003) which contribute
to maladaptive decision making in PG, comparable to such
impairments in substance addiction (Tanabe et al., 2007).

Recent interest in functional neuroimaging studies on neu-
ropsychiatric disorders has focused on analyzing resting state
functional connectivity (Fox and Greicius, 2010; van den Heuvel
and Hulshoff Pol, 2010; Menon, 2011; Xia and He, 2011;
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Buckholtz and Meyer-Lindenberg, 2012; Yu et al., 2012). Com-
pared to task based studies, resting state data is easier to obtain and
does not have to deal with group differences in task performance
and compliance. Resting state connectivity studies have revealed
abnormalities in a wide range of neuropsychiatric disorders such
as depression, schizophrenia, attention-deficit hyperactivity dis-
order (ADHD), and Alzheimer’s disease (for review, see Greicius,
2008).

Resting state functional magnetic resonance imaging (fMRI)
data can also be used to analyze topological network properties
of the brain using graph-theoretical approaches (He and Evans,
2010; Bullmore and Sporns, 2012). These approaches provide
important information on the architecture of brain networks.
Small-world networks are characterized by dense local intercon-
nectivity and short path length linking individual network nodes
in a short and efficient way (e.g., brain regions based on a
parcellation atlas; Bullmore and Sporns, 2009). Short pathways
between one node and any other node as well as a high den-
sity of connections between nearest neighbors are necessary for
efficient segregation and functional integration (Salvador et al.,
2005; Achard et al., 2006; Bassett and Bullmore, 2009). Net-
work graphs are based on structural or functional data and
quantify the structural and functional organization of the brain
(Stam and Reijneveld, 2007).

Studies have shown that the small-world architecture and topo-
logical network properties of the brain exhibit abnormalities
in neuropsychiatric disorders (e.g., He et al., 2009; Lynall et al.,
2010; Zhang et al., 2011a; Cocchi et al., 2012; Cisler et al., 2013;
for a review, see Xia and He, 2011). For example, patient with
schizophrenia show lower cortical integration (lower amount of
connections, longer path lengths, and lower clustering coefficients)
in the frontal, parietal, and temporal pole (Liu et al., 2009). Zhang
et al. (2011a) found global integration differences between HCs
and patients with major depressive disorder and differences in
nodal centrality for frontal areas, and regions of the default-mode
network as well as for subcortical regions like the caudate. Further-
more, patients with obsessive-compulsive disorder (OCD) show
altered functional connectivity and small worldness-properties
(Zhang et al., 2011b). OCD patients demonstrate higher local
clustering in the brain’s cognitive control network (posterior tem-
poral regions and the cingulate cortex). Differences in brain
topology are also reported for young adults with ADHD (Coc-
chi et al., 2012). Functional segregation of the orbitofrontal cortex
in the intrinsic brain network is enhanced in ADHD which can
be linked to attentional and perceptual control deficits. Both
approaches demonstrate how network analyses of the brain iden-
tify alternations directly related to symptoms of the specific mental
disorder.

To date, comparatively less is known about resting state
functional connectivity in addictive disorders (for review, see
Sutherland et al., 2012). For example, a resting state fMRI study
in chronic heroin addicts found increased functional connectiv-
ity of mesolimbic pathways and decreased functional connectivity
between frontal areas (Ma et al., 2010). Two studies using graph-
theoretical approaches reported differences in global small-world
properties and an increased degree in a number of medial frontal,
frontal, and subcortical regions in chronic abstinent heroin addicts

(Liu et al., 2009; Yuan et al., 2010). These studies suggest that
topological network properties may provide important insights
in functional brain abnormalities in addiction. However, both of
these studies on small-world properties in addiction had a rel-
atively small sample size (11 patients in Liu et al., 2009 and 12
patients in Yuan et al., 2010). Furthermore, in studies investigat-
ing substance addiction, results may also partly reflect the effects
of the abused substance on brain structure and function (Clark
and Limbrick-Oldfield, 2013).

To our knowledge, not one single study on resting brain connec-
tivity and especially on topological network properties has been
conducted in PG. Two recent reports of white matter microstruc-
tural abnormalities in PG suggest that brain connectivity and
network organization may be affected in PG (Joutsa et al., 2011; Yip
et al., 2013). Two studies in internet addiction report functional
connectivity abnormalities (Ding et al., 2013; Hong et al., 2013).
Ding et al. (2013) report differences between controls and internet
addicts in functional connectivity between a part of the default
mode network, that is, the posterior cingulate cortex (PCC), and
regions in the cerebellum, the inferior parietal lobule, and the
middle temporal gyrus. Hong et al. (2013) report decreased con-
nectivity in internet addiction between a number of cortical and
subcortical regions but no significant group differences in topo-
logical network properties. The authors point out that the low
number of participants (11 addicted adolescents and 11 matched
HCs) could be a reason for the absence of statistically significant
differences in network properties.

The aim of the present study is to provide first evidence for
alterations in topological network properties using resting state
fMRI and gain further insights on the neural correlates of this
disorder and addictive disorders in general.

MATERIALS AND METHODS
SUBJECTS
This study has been approved by the local ethics committee. Nine-
teen patients with PG and 19 age-matched HCs with no history
of neurological or psychiatric disorders participated in this study.
Written informed consent was provided by all participants. All
patients were seeking treatment and have been recruited at the
Pathological Gambling out-patient clinic at the Department of
Psychiatry and Psychotherapy II. Control subjects were recruited
via advertisements and mailings.

BEHAVIORAL ASSESSMENT
The German version of the short questionnaire on gambling
behavior (Kurzfragebogen zum Glücksspielverhalten – KFG; Petry,
1996) and The South Oaks Gambling Screen (SOGS) by Lesieur
and Blume (1987) were used to quantify gambling behavior. Fur-
thermore, all participants completed the Alcohol Use Disorders
Identification Test (AUDIT; Babor et al., 2006), the Fagerstrom Test
for Nicotine Dependence (FTND; Fagerstrom, 1978), the Behav-
ioral Inhibition Scale (BIS; Carver and White, 1994), and the Beck
Depression Inventory (BDI; Beck et al., 1996).

fMRI DATA ACQUISITION PREPROCESSING
Resting state fMRI was performed with a 3 Tesla Siemens Tim
Trio MRI using a 32-channel head coil. All participants were asked
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to quietly rest in the scanner with their eyes closed and not to
think of anything specific. Two-hundred and fifty T2*-weighted
images were acquired (including six dummy scans which were
discarded) with a gradient echo-planar imaging sequences with
the following parameters: TR: 2.25 s; TE: 30 ms; flip angle: 78◦;
field of view (FOV): 192 mm × 192 mm; matrix size: 64 × 64;
36 slices; slice thickness: 3 mm; slice gap 0.3 mm; voxel size:
3 mm × 3 mm × 3 mm. Additionally, a high-resolution struc-
tural scan (sagittal T1-weighted MPRAGE sequence; TR: 2300 ms;
TE: 2.91 ms; voxel size: 1 mm × 1 mm × 1.2 mm; slice thickness:
1.20 mm; FOV: 356 mm × 356 mm; 160 slices; flip angle: 9◦) and
fieldmaps were obtained from each participant.

Functional magnetic resonance imaging data were prepro-
cessed using Statistical Parametrical Mapping (SPM 8, Wellcome
Department of Imaging Neuroscience, London, UK1). The follow-
ing procedures were included: realignment and unwarping to com-
pensate for movement-related artifacts; slice timing correction;
co-registration of the EPI scans to the skull-stripped T1-weighted
structural scan; normalization to standard stereotaxic anatomi-
cal Montreal Neurological Institute (MNI) space; smoothing with
6 mm full-width at half-maximum (FWHM) Gaussian kernel;
voxel size was resampled to isotropic 3 mm × 3 mm × 3 mm.

To address the problem of confounds due to small head motion
which may influence resting state connectivity, we ensured that all
data sets did not exhibit movements larger than 3 mm for trans-
lations or 3◦ for rotations. Movement parameters were compared
between patients and HCs using two-tailed t-tests. There are no
significant differences in any of the six movement parameters (all
ts < 1, all ps > 0.3).

For further analyses, noise correction and filtering with a band-
pass filter between 0.01 and 0.1 Hz was performed with the conn
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). For noise
correction all six movement parameters and the first derivative
of the time-series were removed from the data by regression.
For further noise reduction, noise signals were estimated from
white matter and CSF signal and removed from the data with
the CompCor method (Behzadi et al., 2007) as implemented in
the conn toolbox. These noise removal steps have been shown to
substantially reduce noise from non-neural sources and increase
the sensitivity and reliability of functional connectivity analysis
(Whitfield-Gabrieli and Nieto-Castanon, 2012). No global signal
regression was performed as it may result in lower reproducibility
of network metrics (see Telesford et al., 2013).

NETWORK CONSTRUCTION
The Harvard–Oxford Atlas was used to extract the preprocessed
fMRI data from 48 left and 48 right hemisphere cortical regions, as
well as from seven left and seven right subcortical regions. Time-
series of the low-frequency BOLD signal were extracted for each
of the 110 regions and averaged over all voxels in each node. For
each subject, the time-series of all 110 regions were correlated
with each other to create an undirected and weighted correlation
matrix using Pearson correlation. These steps were performed with
the conn toolbox. In contrast to partial correlation, the Pearson
correlation coefficient is gaining higher values of reproducibility

1http://www.fil.ion.ucl.ac.uk

(see Telesford et al., 2013). In this network, each region represents
a node with the correlation coefficients of the time-series between
the different regions defining the edges resulting in a 110 × 110
connectivity matrix.

GRAPH ANALYSES
Analyses of network properties were performed with the GAT2

(Hosseini et al., 2012), which uses routines of the Brain Connectiv-
ity Toolbox for network metrics calculation (Rubinov and Sporns,
2010).

Threshold selection
To make groups comparable, we ensured that all graphs had the
same number of edges by applying an individual threshold to each
correlation matrix. This was done by calculating the ratio of the
number of actual connections divided by the maximum number of
all possible connections described as the so-called cost of the net-
work (connection density). Since there is still no consensus of the
best threshold to be chosen, a wide range of threshold values were
applied in this study (0.11 ≤ T ≤ 0.55 with an increment of 0.02).
To verify that the selection of the threshold range is not too wide
which may produce disconnected nodes and networks without
small worldness features on either ends of the range, we ensured
that all subjects (a) had an averaged degree value of 2*log(N) with
N = number of nodes and (b) showed network properties of small
worldness with σ > 1.1 in all threshold values (Zhang et al., 2011a).

Network metrics
For each threshold, the following global metrics were calcu-
lated: characteristic path length (L); the average of the clustering
coefficient (C); global efficiency (Eglob); small worldness (σ);
additionally, the following local metrics were calculated for each
threshold: degree (k); local efficiency (Eloc); node betweenness
(Nbc); clustering coefficient (C).

The degree describes the number of edges linking one node
to the rest of the network and gives information on how func-
tionally connected a network is. The clustering coefficient is a
measure of degree to which nodes in a graph are forming a clus-
ter. The characteristic path length describes the number of edges
between one node and any other node in a network giving an
overview of the effectiveness of information transfer. The global
efficiency is inversely related to the characteristic path length. The
local efficiency is computed on node neighborhoods and is related
to the clustering coefficient reflecting the efficiency of parallel
information transfer, robustness, and fault tolerance of a network.
Compared to the clustering coefficient and the characteristic path
length, measures of efficiency have the advantage of including dis-
connected nodes with a value of 0 while the former remove them
from the analysis, and therefore, may falsify the results when dis-
connected nodes are present (Achard and Bullmore, 2007). The
node betweenness is a measure of centrality and specifies the frac-
tion of all shortest pathways in a network that contain a given
node. The so-called small worldness is the ratio of the averaged
and normalized clustering coefficient (γ) to the normalized char-
acteristic path length (λ) and assesses the small-world properties
of a network characterized by high clustering coefficient and a

2http://nnl.stanford.edu/tools.html
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low characteristic path length. Small-worldness properties of a
network are usually given when sigma (σ) is greater than 1.

All metrics were compared with the corresponding values
obtained and averaged from 20 random networks with the same
number of nodes, total edges, and degree distribution resulting in,
for example, γ = C/Crand and λ = L/Lrand (Maslov and Sneppen,
2002).

Statistical analyses
Group comparisons of the metrics were conducted with permuta-
tion tests implemented in the GAT toolbox using the area under the
curve (AUC) calculated over the threshold for each metric (Bruno
et al., 2012; Hosseini et al., 2012; Singh et al., 2013). All results were
corrected for multiple comparisons using a false positive correc-
tion, p < 1/N (Alexander-Bloch et al., 2010). All p-values corrected
for multiple comparisons have been transformed and are reported
as pcor.

Since this study is an exploratory study and the first in PG using
graph theoretical approaches to assess network properties in rest-
ing state data, we also report significant results with uncorrected
p-values.

To examine possible alterations of functional connectivity
strength between regions, the correlation values of all regions were
compared between both groups to find significant differences in
connectivity. Analyses of functional connectivity were performed
with the conn toolbox and corrected for multiple comparisons
using an FDR-threshold, p < 0.05.

RESULTS
SAMPLE CHARACTERISTICS
Sample characteristics are shown in Table 1. No statistically signif-
icant group differences were found for sex ratio, years of education,
or age. Furthermore, PG patients were comparable to HCs with
respect to tobacco and alcohol consumption as assessed by the
FTND and the AUDIT.

Large group differences were found in gambling behavior
(KFG; SOGS). PG patients also demonstrated a larger number

Table 1 | Sample characteristics and group differences for healthy

controls (HCs) and pathological gamblers (PG) in all questionnaires.

HC PG

N /female 19/2 19/2

N smoker 4 6

Mean SD Mean SD

Age 42.4 14.85 41.4 10.35

AUDIT 3.63 2.53 5.07 6.06

BDI 3.53 5.20 13.72 12.9***

KFG 2.22 5.52 36.94 9.49***

SOGS 0.54 1.45 10.79 2.69***

BIS 48.93 12.91 67.48 9.59***

***p < 0.001.

of depressive symptoms as measured by the BDI and higher
impulsivity as measured by the BIS.

GLOBAL METRICS
Both groups showed small worldness properties with σ > 1 and
there were no significant differences between groups (p = 0.845).
Compared to random networks, both groups showed a higher
averaged clustering coefficient (γ > 1) and similar values for
the characteristic path length (λ ∼ 1). None of the global met-
rics differed between patients and controls (Eglob: p = 0.646; λ:
p = 0.797; γ: p = 0.817). Results for all global metrics are displayed
in Figure 1.

NODAL METRICS
At the corrected significance threshold, differences in nodal met-
rics were found in medial frontal regions. As can be seen in
Figure 2, patients with PG demonstrated a decreased cluster-
ing coefficient for the left juxtapositional lobe (supplementary
motor area, SMA; pcor = 0.038) and the left paracingulate gyrus
(pcor = 0.044). Additionally, local efficiency for the left juxtaposi-
tional lobe (SMA) was decreased for PG patients (pcor = 0.022).
Node betweenness was increased in the right paracingulate gyrus
(pcor = 0.05) as well as in the left paracingulate gyrus (pcor = 0.011)
in PG patients. Further differences in regional metrics at an uncor-
rected significance level are shown for exploratory purposes in
Table 2.

FUNCTIONAL CONNECTIVITY ANALYSES
Functional connectivity was increased in patients between frontal
regions and between frontal and temporal regions (see Table 3).
Furthermore, we found increased connectivity in patients between
the left caudate and the right anterior cingulum as well as the left
anterior cingulum. Additionally, the left amygdala with the left
subcallosal cortex demonstrated weaker connectivity in patients
than in controls.

DISCUSSION
In this exploratory study, we investigated the functional network
properties of patients with PG during the resting state using a
graph-theoretical approach. While several studies could demon-
strate functional abnormalities in PG during tasks associated with
gambling, executive functions, and reward processing (Reuter
et al., 2005; Tanabe et al., 2007; Balodis et al., 2012; Choi et al.,
2012; Miedl et al., 2012; van Holst et al., 2012a; Hudgens-Haney
et al., 2013; Limbrick-Oldfield et al., 2013; for a review, see Potenza,
2013), we are the first to show that patients with a behavioral
addiction such as PG exhibit alterations in the topology of resting
state networks in regions associated with reward processing and
self-regulation.

Network properties at the global level showed no differences
between patients and HCs. Global efficiency of information
transfer and fault tolerance, for example, were similarly high in
both groups. This is in line with a previous graph-theoretical
study investigating the global topology of subjects suffering from
internet addiction (Hong et al., 2013).

In contrast to global network properties, we found signifi-
cant differences between healthy subjects and patients in network
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FIGURE 1 | Global metrics for pathological gamblers (PG) and healthy controls (HC) in all density thresholds: (A) small worldness (σ); (B) global

efficiency; (C) characteristic path length (λ); (D) averaged clustering coefficient (γ).

FIGURE 2 | Mean area under the curve (AUC) values for nodal metrics

in regions with statistically significant group differences (pcor < 0.05)

between controls and patients with pathological gambling (PG): (A)

local efficiency; (B) clustering coefficient; (C) node betweenness. Error
bars reflect standard deviations; SMA: supplementary motor area.

properties at the nodal level. Corrected for multiple comparisons,
only medial frontal regions were affected in patients with PG.
The SMA and the paracingulate cortex both showed a reduced
clustering coefficient and impaired local efficiency of information
transfer and fault tolerance. Furthermore, the contribution to the
number of shortest paths was increased in both regions suggesting
that these regions seem to adopt a more central position in the
network than in healthy subjects. Note that the results for local
efficiency in the paracingulate cortex and for betweenness central-
ity in the SMA are only tendencies, since they are not significant
at a corrected level. These findings indicate that in medial frontal
regions the balance between integration and segregation seem to
be altered.

Medial frontal regions like the paracingulate cortex are asso-
ciated with reward processing (Knutson et al., 2001; van den Bos
et al., 2007; Fujiwara et al., 2009). Dysfunctions in reward process-
ing are typical findings of previous investigations in PG (Reuter
et al., 2005; Clark and Limbrick-Oldfield, 2013). The cingulate
cortex is also important for gambling situations especially for spe-
cific processes of gambling (Campbell-Meiklejohn et al., 2008) like
loss-chasing and quitting gambling.

Another frontal region which was found to be affected in
PG is the SMA. The SMA demonstrated the same pattern of
impairments as the paracingulate cortex with decreased cluster-
ing and efficiency of local information transfer but an increase in
betweenness centrality.

The SMA is associated with motor execution and vigi-
lance performance (Hinds et al., 2013) but is also involved in
error detection and reward expectancy (McClure et al., 2004).
Thus, the findings of this study demonstrating alterations
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Table 2 | Significant differences in all metrics using area under the curve (AUC) for pathological gamblers (PG) and healthy controls (HCs).

Hemisphere Region Metric p-Value pcor Group comparison

Right Paracingulate NB 0.009 0.050* PG > HC

Insular LE 0.057 0.316 HC > PG

NB 0.027 0.150 PG > HC

Precentral CC 0.026 0.144 HC > PG

Supramarginal (anterior) NB 0.019 0.105 HC > PG

Temporal fusiform (posterior) DG 0.022 0.122 PG > HC

Temporal fusiform (anterior) LE 0.031 0.172 PG > HC

NB 0.040 0.222 HC > PG

Caudate NB 0.041 0.227 PG > HC

Hippocampus NB 0.036 0.200 HC > PG

Left Juxtapositional (SMA) CC 0.007 0.038* HC > PG

LE 0.004 0.022* HC > PG

NB 0.041 0.227 PG > HC

Paracingulate CC 0.008 0.044* HC > PG

LE 0.033 0.183 HC > PG

NB 0.002 0.011* PG > HC

Inferior frontal (pars triangularis) NB 0.026 0.144 HC > PG

Middle temporal (anterior) CC 0.039 0.216 PG > HC

DG 0.013 0.072 HC > PG

Middle temporal (temporoocci) DG 0.024 0.133 PG > HC

NB 0.037 0.205 PG > HC

Inferior temporal (anterior) CC 0.034 0.188 PG > HC

LE 0.035 0.194 PG > HC

Inferior temporal (temporoocci) NB 0.034 0.188 PG > HC

Lateral occipital superior CC 0.025 0.138 HC > PG

LE 0.016 0.088 HC > PG

Temporal fusiform (posterior) CC 0.045 0.250 PG > HC

LE 0.024 0.133 PG > HC

CC, clustering coefficient; DG, degree; LE, local efficiency; NB, node betweenness; pcor: corrected for multiple comparisons; *Statistically significant at p < 0.05,
corrected for multiple comparisons.

in integration and segregation of medial frontal regions
may underlie specific behavioral difficulties patients with PG
exhibit.

Since this was an exploratory study, we also want to discuss
findings which do not exceed the threshold selected to correct for
multiple comparisons.

We found a reduced fraction of path length in the left infe-
rior frontal gyrus which also contributes to the general findings
of impairments in frontal regions in gambling and addiction.
A previous study showed that PG patients exhibit alterations
in inferior frontal activity during gambling cue presentation
(Crockford et al., 2005). The inferior frontal gyrus has been asso-
ciated with executive control and response inhibition (Hampshire
et al., 2010). Interestingly, while medial frontal regions showed an
increase in betweenness centrality, in lateral frontal regions, this
metric was decreased. This pattern may support previous findings
demonstrating deficits in self-regulation and working memory in

PG (Forbush et al., 2008), but enhanced involvement of the reward
system.

Additionally, we further found alterations in subcortical regions
at an uncorrected threshold level. The right caudate plays a more
central role as a main hub for integration of information com-
pared to HCs while the hippocampus is less involved. Again,
this points out the enhanced involvement of the reward sys-
tem in PG. The caudate is part of the striatum which is an
important part of the mesolimbic reward system. The alterations
found in network properties of the hippocampus, are in line with
deficits in heroin addicts identified in a previous study (Liu et al.,
2009).

This pattern of impaired topology in regions which were pre-
viously associated with the executive control network and the
reward system (Potenza et al., 2003; Reuter et al., 2005; Tanabe
et al., 2007; Limbrick-Oldfield et al., 2013) is complemented by
our findings of increased functional connectivity of fronto-striatal
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Table 3 | Significant differences between pathological gamblers (PG) and healthy controls (HC) in functional connectivity.

Region Region Group p-Value*

Right inferior frontal (pas opercularis) Right hippocampus HC < PG <0.001

Right frontal operculum Right inferior temporal gyrus (temporoocci) HC< PG <0.001

Right frontal operculum Right cuneal cortex HC < PG <0.001

Right frontal operculum Right temporal fusiform (anterior) HC < PG 0.003

Right frontal operculum Left inferior temporal (temporoocci part) HC < PG 0.001

Right frontal operculum Left middle frontal HC < PG <0.001

Right frontal operculum Left middle temporal (temporoocci) HC < PG <0.001

Right frontal operculum Left frontal pole HC < PG 0.003

Left caudate Right cingulate (anterior) HC < PG 0.001

Left caudate Left cingulate (anterior) HC < PG 0.004

Right angular Left lateral occipital (superior) HC < PG <0.001

Right temporal fusiform (posterior) Left inferior temporal (temporoocci) HC < PG 0.001

Left middle temporal (anterior) Left parahippocampal (anterior) PG < HC <0.001

Left subcallosal Left amygdala PG < HC 0.004

*Statistically significant at FDR-corrected threshold, p < 0.05.

circuits and between frontal regions. Note that almost all differ-
ences in connectivity in which patients with PG exhibit higher
functional connectivity than controls affect regions associated
with the reward system. This is in line with previous studies find-
ing alterations in functional connectivity between medial frontal
and subcortical regions in addiction (Ma et al., 2010).

One previous study investigating network properties in behav-
ioral addiction was performed in subjects with internet addiction
(Hong et al., 2013). This study did not identify any alterations in
the network topology in addicts. However, the authors emphasize
that the non-significant results may be due to the small sample
size. Additionally, two studies in heroin addiction also focused on
graph-theoretical methods to investigate network properties (Liu
et al., 2009; Yuan et al., 2010). They report dysfunction in several
frontal regions including the cingulate cortex and the SMA, and
subcortical regions including the striatum and the hippocampus.
Our findings endorse the association of addictive behavior with
alterations in functional connectivity and network topology dur-
ing resting state in these specific frontal and striatal regions. This
finding is of high relevance since previous investigations showing
abnormalities in brain topology focused on addiction involving
substance abuse. Thus, conclusions drawn from these studies are
confounded by the neurotoxic effects of the abused substances
(Clark and Limbrick-Oldfield, 2013). With this study, we con-
firm that abnormalities in network properties can also be found
in behavioral addiction and therefore cannot solely be explained
by effects of drugs on brain connectivity.

There are no available standards for a uniform application
of graph theories at present (Bullmore and Sporns, 2009). One
methodological limitation when investigating network topology
with a graph-theoretical approach, for example, is the choice of
thresholds. There are several possibilities to select the threshold
and no golden standard has been defined yet. When compar-
ing groups it should be ensured that each network has the same

number of edges. However, the problem with a global threshold
is that it may lead to disconnected graphs. Comparing network
properties of one graph with the other is problematic if the one is
connected at a given node and the other is disconnected. To address
this problem, we ensured that the averaged degree is above the
selected threshold and all subjects show small-world properties.
Furthermore, we also investigated the global and local efficiency
in addition to the clustering coefficient and the characteristic path
length. These metrics have some methodological advantages when
dealing with disconnectedness (Achard and Bullmore, 2007).

Another limitation is the wide range of thresholds selected.
Depending on the range, results differ between studies and make
comparison of findings and their interpretation difficult. How-
ever, we have implemented strategies which have been successfully
applied in previous studies using graph-theoretical approaches
(e.g., Zhang et al., 2011a; Bruno et al., 2012). Since this is a first
exploratory study in PG using graph-theoretical analyses of resting
state fMRI data, further research must be conducted to confirm
these results.

Moreover, Zalesky et al. (2012) has shown that the type
of randomization (topology randomization, correlation matrix
randomization, or time-series randomization) influences the nor-
malization process of the metrics. For a low density of around 7%
the authors identified a discrepancy of approximately 60% when
applying topology randomization compared to correlation matrix
randomization to estimate the normalized clustering coefficient.
In addition, using correlation matrix randomization to normal-
ize characteristic path length may lead to longer path lengths
due to the randomization of hub nodes since the degree distri-
bution is not preserved. These limitations affect especially low
density thresholds around 7% and are evident when looking at
absolute small-world properties of the networks in each group.
However, they are less essential for the comparison of network
metrics between groups which is the focus of this study.
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This first study in PG using graph-theoretical approaches to
investigate network properties demonstrates that alterations of
regions associated with the reward system and executive func-
tions are not only present in task-related activity but also during
rest. Alterations are reflected in a decrease in segregation and
an increase of information integration in specific regions of the
reward system.

This may contribute to the ongoing discussion whether
PG is characterized by a hyper- or a hypoactive reward sys-
tem (Hommer et al., 2011; van Holst et al., 2012b). Further-
more, our results suggest deficits of integration in regions
associated with executive functions. These alterations may

provide further explanation for several symptoms and previ-
ous findings in PG (for a review see Goudriaan et al., 2004;
van Holst et al., 2010)
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