
EDITED BY :  Geir Kjetil Sandve, Subhajyoti De, Ryan Matthew Layer and 

Eivind Hovig

PUBLISHED IN : Frontiers in Genetics

GENOMIC COLOCALIZATION 
AND ENRICHMENT ANALYSES

https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/journals/genetics


Frontiers in Genetics 1 March 2021 | Genomic Colocalization and Enrichment Analyses

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-566-2 

DOI 10.3389/978-2-88966-566-2

https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Genetics 2 March 2021 | Genomic Colocalization and Enrichment Analyses

Topic Editors: 
Geir Kjetil Sandve, University of Oslo, Norway
Subhajyoti De, The State University of New Jersey, United States
Ryan Matthew Layer, University of Colorado Boulder, United States
Eivind Hovig, University of Oslo, Norway

Topic Editor Ryan Matthew Layer is a co-founder of Base2 Genomics. The rest of 
Topic Editors declare no competing interests with regards to the Research Topic.

Citation: Sandve, G. K., De, S., Layer, R. M., Hovig, E., eds. (2021). Genomic 
Colocalization and Enrichment Analyses. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88966-566-2

GENOMIC COLOCALIZATION 
AND ENRICHMENT ANALYSES

https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/journals/genetics
http://doi.org/10.3389/978-2-88966-566-2


Frontiers in Genetics 3 March 2021 | Genomic Colocalization and Enrichment Analyses

04 Editorial: Genomic Colocalization and Enrichment Analyses

Chakravarthi Kanduri, Geir Kjetil Sandve, Eivind Hovig, Subhajyoti De and 
Ryan M. Layer

07 LD-annot: A Bioinformatics Tool to Automatically Provide Candidate SNPs 
With Annotations for Genetically Linked Genes

Julien Prunier, Audrey Lemaçon, Alexandre Bastien, Mohsen Jafarikia, 
Ilga Porth, Claude Robert and Arnaud Droit

15 epiCOLOC: Integrating Large-Scale and Context-Dependent Epigenomics 
Features for Comprehensive Colocalization Analysis

Yao Zhou, Yongzheng Sun, Dandan Huang and Mulin Jun Li

23 SECNVs: A Simulator of Copy Number Variants and Whole-Exome 
Sequences From Reference Genomes

Yue Xing, Alan R. Dabney, Xiao Li, Guosong Wang, Clare A. Gill and 
Claudio Casola

36 Integrating Peak Colocalization and Motif Enrichment Analysis for the 
Discovery of Genome-Wide Regulatory Modules and Transcription Factor 
Recruitment Rules

Mirko Ronzio, Federico Zambelli, Diletta Dolfini, Roberto Mantovani and 
Giulio Pavesi

51 Testing Proximity of Genomic Regions to Transcription Start Sites and 
Enhancers Complements Gene Set Enrichment Testing

Christopher Lee, Kai Wang, Tingting Qin and Maureen A. Sartor

66 TADCompare: An R Package for Differential and Temporal Analysis of 
Topologically Associated Domains

Kellen G. Cresswell and Mikhail G. Dozmorov

82 Integrating Genome-Wide Association Studies and Gene Expression 
Profiles With Chemical-Genes Interaction Networks to Identify Chemicals 
Associated With Colorectal Cancer

Xinyue Tan, Hanmin Tang, Liuyun Gong, Lina Xie, Yutiantian Lei, 
Zhenzhen Luo, Chenchen He, Jinlu Ma and Suxia Han

91 From GWAS to Function: Using Functional Genomics to Identify the 
Mechanisms Underlying Complex Diseases

Eddie Cano-Gamez and Gosia Trynka

Table of Contents

https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://www.frontiersin.org/journals/genetics


EDITORIAL
published: 26 January 2021

doi: 10.3389/fgene.2020.617876

Frontiers in Genetics | www.frontiersin.org 1 January 2021 | Volume 11 | Article 617876

Edited and reviewed by:

Richard D. Emes,

University of Nottingham,

United Kingdom

*Correspondence:

Ryan M. Layer

ryan.layer@colorado.edu

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 15 October 2020

Accepted: 24 November 2020

Published: 26 January 2021

Citation:

Kanduri C, Sandve GK, Hovig E, De S

and Layer RM (2021) Editorial:

Genomic Colocalization and

Enrichment Analyses.

Front. Genet. 11:617876.

doi: 10.3389/fgene.2020.617876

Editorial: Genomic Colocalization
and Enrichment Analyses

Chakravarthi Kanduri 1, Geir Kjetil Sandve 1, Eivind Hovig 1,2, Subhajyoti De 3 and

Ryan M. Layer 4,5*

1Department of Informatics, University of Oslo, Oslo, Norway, 2Department of Tumor Biology, Institute for Cancer Research,

Radium Hospital, Oslo University Hospital, Oslo, Norway, 3 Rutgers Cancer Institute of New Jersey, New Brunswick, GA,

United States, 4Computer Science Department, University of Colorado, Boulder, CO, United States, 5 BioFrontiers Institute,

University of Colorado, Boulder, CO, United States

Keywords: colocalization analyses, bioinformatics, genomics, genome annotation, computational biology,

enrichment analyses, co-occurrence analyses, genomic overlap

Editorial on the Research Topic

Genomic Colocalization and Enrichment Analyses

INTRODUCTION

To decipher the molecular basis of health and disease, profiling multiple molecular modalities
is a common practice [e.g., genetic variation, transcription, chromatin accessibility, epigenomic
marks, binding sites, and three dimensional (3D) genome architecture]. Most of these molecular
assays generate lists of genomic loci that are relevant to the trait/phenotype under investigation.
Functional interpretation of these lists is often carried out through colocalization and enrichment
analyses (Kanduri et al., 2018), which is akin to gene ontology/pathway analysis for lists of genes.
A wide range of tools and methodologies have been developed over the past decade to perform
colocalization and enrichment analyses of genomic regions. Given the availability and continuous
generation of massive high resolution, cell-specific public datasets (e.g., ENCODE, RoadMap
Epigenomics, GTEx, and BLUEPRINT), both existing and novel colocalization/enrichment
analysis strategies will continue to generate new knowledge in our understanding of the
molecular basis of health and disease. To highlight current research demonstrating the utility
of colocalization/enrichment analysis, we invited contributions for a special Research Topic.
The received contributions in this article collection include a comprehensive literature review,
tools that extend the state-of-the-art methodology and enhance the user convenience in
performing colocalization/enrichment analyses, and applied work that demonstrates the utility of
colocalization/enrichment analyses.

LITERATURE REVIEW SUMMARIZING HOW

COLOCALIZATION/ENRICHMENT ANALYSES HAVE AIDED THE

FUNCTIONAL INTERPRETATION OF GWAS FINDINGS

Cano-Gamez and Trynka provide a detailed overview of how various strategies, especially
enrichment and colocalization analysis, have aided in the interpretation of the findings of
genome-wide association studies (GWAS). Specifically, the authors summarized single nucleotide
polymorphism (SNP) enrichment analysis and statistical colocalization analysis. SNP enrichment
analysis is one way to identify the tissue/cell types that are relevant for a disease by integrating
either genome-wide-significant or a full set of assayed SNPs with molecular annotation tracks (e.g.,
either gene expression or chromatin accessibility). Once the relevant tissue/cell types are identified,

4

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.617876
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.617876&domain=pdf&date_stamp=2021-01-26
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ryan.layer@colorado.edu
https://doi.org/10.3389/fgene.2020.617876
https://www.frontiersin.org/articles/10.3389/fgene.2020.617876/full
https://www.frontiersin.org/research-topics/9458/genomic-colocalization-and-enrichment-analyses
https://doi.org/10.3389/fgene.2020.00424


Kanduri et al. Editorial: Genomic Colocalization and Enrichment Analyses

further refined analysis using similar statistical analysis methods
could disentangle the enrichments in highly similar cell types
(e.g., to differentiate between cell states). Statistical colocalization
analysis is one way to interpret novel GWAS findings by linking
GWAS findings with likely target genes. This can be achieved by
integrating GWAS signal with eQTL data to evaluate whether
the same variant is causal in both GWAS and eQTL studies. In
addition to summarizing the knowledge and strategies of the SNP
enrichment and colocalization analysis, the authors have also
provided perspectives on how the state-of-the-art technologies
(e.g., single cell sequencing, genome editing) could be utilized in
the future for the interpretation of GWAS findings.

TOOL THAT EXTENDS THE

STATE-OF-THE-ART

One of the applications of colocalization analysis is for the
interpretation of the functions of non-coding genomic regions.
GREAT (McLean et al., 2010) andmany other similar tools assign
a regulatory domain for each gene that extends user-customizable
distance both upstream and downstream to the transcription
start site (TSS) of that gene. The regions of DNA binding events
(both proximal and distal) are then assigned to genes, and
subsequent statistical testing akin to traditional gene ontology
analysis is performed to aid the functional interpretation. In this
special collection, a novel method titled ProxReg (Lee et al.)
complements the current state-of-the-art methods to aid the
functional interpretation of non-coding regions by extending the
methodology to not only test the proximity to TSS, but also to
enhancers. The authors show that ProxReg provides additional
insights into the regulatory mechanisms and binding tendencies
of transcription factors (e.g., cell-specific regulatory mechanisms
of the same TF by binding at promoters in one cell type and
binding at enhancers in another cell type).

TOOLS THAT ENHANCE THE USER

CONVENIENCE IN PERFORMING

COLOCALIZATION/ENRICHMENT

ANALYSES

EpiColoc
One of the arduous tasks when using colocalization analysis
tools to test/generate hypotheses is the need to carefully curate
a collection of reference genomic tracks that are annotated
thoroughly. Existing tools provide carefully curated collections
of reference track collections (e.g., see Sheffield and Bock, 2016;
Simovski et al., 2017; Layer et al., 2018); but epiColoc (Zhou et al.)
published in this special issue takes a step further in this direction,
and provides large collections of curated genomic tracks (44,385
bulk/single cell genomic tracks across 53 human cell/tissue
types). The curated data span across transcriptional regulators,
histone modifications, chromatin accessibility, transcriptional
events, and chromatin segmentation data.

LD-Annot
To perform any colocalization or enrichment analysis that
involves SNPs, it is desirable to include statistically significant
SNPs and all SNPs that are in tight linkage disequilibrium
(LD) with them. Often, subsequent enrichment analyses
are carried out on reference genome annotations that are
overlapping the LD blocks. LD-annot provides a convenient
wrapper around the popular PLINK tool (Chang et al.,
2015) that computes LD between the genotypes of a
given dataset and uses that information to intersect and
extract the reference genome annotations overlapping the
LD blocks.

APPLIED WORK

The study by Cresswell and Dozmorov, which includes a
novel method titled TADcompare, demonstrates the utility
of colocalization/enrichment analyses in aiding the functional
interpretation of genomic regions with unknown biological
significance. TADcompare is a method specifically developed to
identify the changes in interacting domains (one of the features
of three-dimensional genome architecture) and compare them
across different conditions. One of the main challenges for
TADcompare (as noted by the authors) was that no ground
truth exists for boundaries of interacting domains, making
it difficult to quantify the identified boundaries’ biological
relevance. To tackle this challenge, the authors of TADcompare
used a range of colocalization analyses of epigenomic annotations
and also a colocalization-based gene ontology enrichment
analysis to determine whether the known genomic features that
are characteristic of interacting domains and boundaries are
enriched proximal to the identified boundaries and if that is
different than background (non-boundaries).

The study by Ronzio et al. presents a new pipeline based
on colocalization/enrichment analyses to identify regulatory
modules of transcription factors (TFs) and TF recruitment
rules. Instead of requiring overlap between a pair of ChIP-
seq tracks, a proximity-based test statistic is suggested to
quantify colocalization. The significance (p-value) is computed
according to either hypergeometric or Poisson distribution.
One possibility in the pipeline is to convert the p-values into
scores and perform clustering analysis between the scores of
multiple experiments to visualize potential regulatory modules.
Further, motif enrichment analysis either relative to the whole
accessible DNA or selected windows (e.g., upstream/downstream
regions) could be performed for a pair of TFs. One could draw
inferences on the recruitment patterns based on the observed
pattern of motif enrichment (motifs for both TFs enriched or
only one of them or none). Construction of the background
sets in both colocalization analysis and motif enrichment
analysis using alternative definitions (e.g., focusing only relative
to enhancers/promoters) would allow one to identify specific
regulatory modules.

The study by Tan et al. extends the traditional GSEA approach
to establish associations between chemical-associated gene sets
and gene expression in colorectal and rectal cancers. In the
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absence of a reliable tool to simulate CNVs from whole-
exome sequencing data, Xing et al. developed the SECNVs tool
which can generate CNVs with multiple customizable parameter
options to mimic realistic CNVs from experimental data. The
simulated CNV datasets could be utilized to explore the patterns
of enrichment of CNVs in various contexts. For example, earlier
others (Alexandrov et al., 2020; Singh et al., 2020) analyzed the
patterns of enrichment of somatic mutations in tumor genomes
and associated mutational signatures in their (epi)genomic
contexts to infer their likely etiologies during tumorigenesis.

Overall, this Research Topic summarizes and showcases
some of the existing and novel ways of utilizing genome
colocalization/enrichment analyses to study a wide range of
genetics and genomic research questions. The methods and
tools published in this Research Topic extend the state of the

art and enhance user convenience in performing genomic
colocalization/enrichment analysis. With the continuous
increase in the generation of genomic/epigenomic datasets,
the interpretation of the resulting genomic regions becomes
vital; we expect that the methodological principles of genomic
colocalization/enrichment analysis will be utilized in many
innovative ways in the future to further aid the functional
interpretation of genomics datasets.
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LD-annot: A Bioinformatics Tool to 
Automatically Provide Candidate 
SNPs With Annotations for 
Genetically Linked Genes
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A multitude of model and non-model species studies have now taken full advantage of 
powerful high-throughput genotyping advances such as SNP arrays and genotyping-by-
sequencing (GBS) technology to investigate the genetic basis of trait variation. However, 
due to incomplete genome coverage by these technologies, the identified SNPs are 
likely in linkage disequilibrium (LD) with the causal polymorphisms, rather than be causal 
themselves. In addition, researchers could benefit from annotations for the identified 
candidate SNPs and, simultaneously, for all neighboring genes in genetic linkage. In such 
case, LD extent estimation surrounding the candidate SNPs is required to determine 
the regions encompassing genes of interest. We describe here an automated pipeline, 
“LD-annot,” designed to delineate specific regions of interest for a given experiment and 
candidate polymorphisms on the basis of LD extent, and furthermore, provide annotations 
for all genes within such regions. LD-annot uses standard file formats, bioinformatics tools, 
and languages to provide identifiers, coordinates, and annotations for genes in genetic 
linkage with each candidate polymorphism. Although the focus lies upon SNP arrays and 
GBS data as they are being routinely deployed, this pipeline can be applied to a variety 
of datasets as long as genotypic data are available for a high number of polymorphisms 
and formatted into a vcf file. A checkpoint procedure in the pipeline allows to test several 
threshold values for linkage without having to rerun the entire pipeline, thus saving the user 
computational time and resources. We applied this new pipeline to four different sample 
sets: two breeding populations GBS datasets, one within-pedigree SNP set coming from 
whole genome sequencing (WGS), and a very large multi-varieties SNP dataset obtained 
from WGS, representing variable sample sizes, and numbers of polymorphisms. LD-annot 
performed within minutes, even when very high numbers of polymorphisms are investigated 
and thus will efficiently assist research efforts aimed at identifying biologically meaningful 
genetic polymorphisms underlying phenotypic variation. LD-annot tool is available under a 
GPL license from https://github.com/ArnaudDroitLab/LD-annot.

Keywords: linkage disequilibrium, candidate SNP, SNP annotation, bioinformatics tool, variant call format (VCF), 
SNP chip analyses
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INTRoDUCTIoN
The progress in molecular technologies enabled the study of 
genetic variants at the genome level, in both model and non-
model species, such as Genome-Wide Association Studies 
(GWAS) identifying genetic variants likely involved in variation 
of interesting quantitative traits or in adaptation to environmental 
stress. Among those molecular techniques, SNP genotyping 
chips and genotyping-by-sequencing (GBS) approaches [also 
addressing the related reduction site-associated DNA sequencing 
(RADseq) in this paper] are often deployed to efficiently screen 
genomes at the population level and test for relationships between 
genetic polymorphisms and either quantitative characteristics or 
environmental conditions (i.e. Keller et al., 2013; Narum et al., 
2013; Sonah et al., 2015; Carter et al., 2018; Torkamaneh et al., 
2018;). GBS is based on sequencing genome subparts using 
restriction enzymes and insert size selection (Elshire et al., 2011) 
and yields thousands of genetic variants randomly distributed 
over the genome. SNP genotyping chips are based on allele-
specific hybridization and traditionally include SNPs previously 
identified and selected to be regularly distributed across the 
genome (Carvalho et al., 2007; Bai et al., 2018). Both techniques 
usually result in thousands of SNPs successfully genotyped.

Research projects based on either of these variant detection 
approaches often investigate the genomic basis of trait variations 
related to agronomic performance in cultivated plants or animals 
(Carter et al., 2018; Torkamaneh et al., 2018;), the dispersion of 
invasive species (White et al., 2013; Roe et al., 2018), or species’ 
adaptation (Hess et al., 2012; Keller et al., 2013), for instance. 
Such studies typically use regression models to select candidate 
SNPs presenting significant trait variations between distinct 
genotypic classes. However, these polymorphisms might not 
be directly responsible for phenotypic variations but in linkage 
disequilibrium (LD) with larger genomic regions encompassing 
untested genetic variants that might be truly causal for the 
studied phenotypic variation.

LD is the non-random assortment of alleles between 
neighboring loci due to the short physical distance limiting 
recombination between them during meiosis. This phenomenon 
results in a systemic association between alleles of the same 
parental origin. For biallelic loci, LD is often estimated using 
the correlation coefficient (denoted r2) between two alleles at 
two different loci (Hill and Robertson 1968). This estimate 
varies with the recombination coefficient which is a function of 
physical distance between markers (Hill and Robertson 1968). 
However, the recombination coefficient actually fluctuates along 
the genome, with regions known to present lower recombination 
coefficients than others, such as centromeric regions for instance 
(Smith et al., 2005). In addition, r2 is also impacted by inbreeding 
which results in lower genetic diversity that in turn leads to 
homozygosity hiding recombination events. Hence, r2 also varies 
between populations according to population demographic 
history (Reich et al., 2001), even within species. Similarly, the r2 
estimator presents a variability related to allele frequencies (minor 
allele frequency, MAF) (VanLiere and Rosenberg 2008) or sample 
size effect (Jorgenson and Witte 2006). Despite its limitations, 
the r2 estimate remains largely used and most interesting when 

scanning GWAS results, for instance, since the correlation 
between two SNPs is still indicative of a mathematical link (Bush 
and Moore 2012), either reflecting a true low recombination rate 
between them or not.

Candidate polymorphisms, identified from GWAS or FST-
based outlier analyses for instance, most often need to be further 
studied with additional approaches such as gene expression 
profiling among individuals with contrasting trait expression or 
genetic engineering for instance, to corroborate these variants’ 
involvement in trait variation (Ermann and Glimcher 2012). In 
these regards, annotations of genes encompassing or overlapping 
DNA segments harboring SNPs in LD with these candidate 
ones (referred as genes in genetic linkage with candidate SNPs 
in this paper) are crucial to support their biological significance 
and help prioritize subsequent investigations. Given the r2 
variability among populations and markers subsets, estimating 
an experiment-specific LD on both sides of one candidate 
SNP is an adequate procedure to find the nearby genes that 
are genetically linked to this candidate and select significant 
annotations. Even though a number of softwares and packages 
dedicated to genomic polymorphisms annotation already exist 
(Wang et al., 2010; Rope et al., 2011; Cingolani et al., 2012), 
they either only consider the sequences encompassing the 
candidate SNPs (Wang et al., 2010; Cingolani et al., 2012) or use 
LD estimates from a different population, usually a population 
of reference such HapMapII or the 1000 Genomes Project in 
Humans (Johnson et al., 2008; Machiella and Chanock 2015), 
thus leading to limited or biased results. Furthermore, candidate 
polymorphisms found lying outside gene sequence boundaries 
are often annotated using the closest gene annotation in non-
human organisms, without estimating in the specific experiment 
the genomic regions in genetic linkage with those (e.g. Stanton-
Geddes et al., 2013). Thus, we developed a new bioinformatics 
annotation tool that estimates LD in order to gather annotations 
from regions genetically linked to candidate polymorphisms, 
thus strengthening their potential and help prioritizing them for 
further analyses.

MATeRIALS AND MeThoDS

Tested Datasets
When studying relationships between genetic markers and 
quantitative traits, research efforts usually involve testing 
and genotyping (1) hundreds to thousands of outbred 
individuals from natural populations, or (2) the progeny of 
a controlled cross between two individuals differing widely 
(i.e. segregating) for the trait of interest. In the first approach, 
individuals are sampled and later phenotyped in controlled 
and uniform conditions to perform a GWAS identifying 
candidate polymorphisms. In the second approach, a progeny 
is also assessed in controlled and uniform conditions, and the 
co-segregation of alleles and trait values allows to identify 
candidate SNPs. Both approaches have different assumptions 
regarding the levels of LD; average LD is usually moderate 
to low in association tests while very high in F1 progenies 
where many candidate SNPs are found in complete or nearly 
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complete LD. Here, we tested our annotation pipeline with 
four different datasets to investigate a wide range of expected 
LD levels, originating from: (1) a domesticated animal, (2) a 
domesticated plant, and (3) a wild insect. These sets also varied 
in sampling size, numbers of tested SNPs, and candidate SNPs, 
thus further allowing to evaluate the pipeline’s performance.

Domesticated Species Datasets
We applied our tool to annotate GWAS results in Sus scrofa 
domesticus which is characterized by high LD levels due to 
hundreds of years of selection to improve performance. This 
GWAS tested GBS data for association with meat quality 
(Prunier, Droit, Robert et al. unpublished) and was based on the 
genotyping of 196 individuals coming from two different breeding 
companies selecting sires and dams after each generation to 
improve meat quality in the Duroc pig breed (Figure 1A). The 
association tests yielded 199 candidate SNPs spread over the 18 
autosomal chromosomes.

Even though the main focus of the present study is on GBS and 
SNP-array datasets, we also tested a dataset of 14,374,088 SNPs 
obtained from whole genome sequencing of the plant model 
Medicago truncatula varieties. These were investigated using 
GWAS for candidate genes involved in agronomic trait variations 
based on 226 accessions and representing as many inbred lines 
(Stanton-Geddes et al., 2013) (Figure 1B). The association study 
led to the identification of 1,537 candidate SNPs likely involved 
in variation of plant height or flowering timing, among other 
traits, and distributed over Medicago’s eight chromosomes. In 
order to run our pipeline, this publicly available dataset (www.
medicagohapmap.org) was converted into a vcf file using bash 
commands and we tested both the entire set of SNPs and a set of 

SNPs with a minor allele frequency higher than 5%, yielding a 
total of 593,614 SNPs.

Wild Species Dataset
While three previous datasets were related to organisms with 
well described genomes, we finally assessed LD-annot capability 
to annotate candidate SNPs in a non-model, namely Lymantria 
dispar spp. This moth is an invasive species in North American 
forests as their caterpillars can successfully feed on foliage of 
numerous tree species (polyphagy) and therefore can damage 
vast tree plantations and natural forests. The co-segregation 
of SNP alleles and flying capabilities was followed over four 
generations (F2–F5) in this line resulting from the mating 
between a fully flying individual and a flightless individual in this 
species complex (Figure 1C). This analysis yielded a total of 250 
SNPs possibly related to the moth’s ability to fly.

Implementation
The LD-annot pipeline efficiently integrates a public package 
as well as new bash and python scripts to import SNP-array 
data, estimate SNP-specific genomic regions genetically linked 
to candidate SNP and extract corresponding gene annotations 
(Figure 2). It can be deployed on any Unix-based (or bash 
developer mode on Windows OS) following installation steps 
described here: https://github.com/ArnaudDroitLab/LD-annot/
blob/master/README.md.

LD-annot uses the public package PLINK1.9 to calculate LD (r2) 
levels. The user must define an r2 threshold for limiting the region 
surrounding a candidate SNP in which annotations will be extracted, 
i.e. only polymorphisms linked to one candidate polymorphism with 

FIGURe 1 | Population and kinship history for the three types of datasets used as study cases. (A) the pig case in which trait-based genetic selection has been 
performed for centuries from a large ancestral population many generations ago; (B) the Medicago case in which inbred lines have been obtained from self-crossing 
of individuals originating from a very large population; (C) the Asian gypsy moth case where an introgressed progeny was obtained from mating between a flying 
individual and a non-flying individual, repeated over few generations.
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a LD value superior to this threshold will be considered to delineate 
the region of interest (Figure 2). The pipeline includes a format 
check of input files and a checkpoint procedure. The latter allows 
to restart the analysis with different thresholds for r2 for instance, 
without rerunning the format checks nor pairwise LD calculations, 
thus avoiding to run all steps and reducing the time for the analysis.

Command and Parameters
The pipeline is launched using only a single command line 
containing the parameters and paths for input files. In addition, 
LD-annot.py calls a bash script (calculLD.sh) that must be placed 
in the same folder. The command using vcf format input file is:

python3 LD-annot.py geno.vcf annot.gff3 candidate\ 
type thr output

while the command using SNP-array input file is:

python3 LD-annot.py PathToSnpFiles annot.gff3\ 
candidate type thr output SNP_Map

where “type” is the feature (mRNA, CDS, gene), “thr” is 
the threshold for r2, and “SNP_Map” is a txt file providing 

chromosome and position identifiers for each SNP included on 
the SNP-array.

Inputs
The LD-annot pipeline is based on three different inputs.

The first input contains all genotypes for the studied 
population; this file is usually in vcf format obtained from 
a variant caller [Haplotypecaller or Platypus, for instance 
(DePristo et al., 2011; Rimmer et al., 2014)] for next-generation 
genotyping such as GBS data, or a folder including all 
individuals’ genotypes in the case of SNP-array genotyping. 
In the latter case, genotyping is usually spread over txt files, 
one for each individual, which contain polymorphisms names 
and genotypes after 12 lines of comments and headers. In the 
case of GBS data, the vcf file is directly converted by PLINK1.9 
before running LD calculations. In the case of SNP-array data, 
a formatting step is performed before LD calculations using 
PLINK1.9. This bash script gathers all individuals’ genotypes 
included in the designated folder and converts this information 
into a .ped, .map, and .fam files for PLINK1.9 by making use 
of an additional input file providing the chromosome and 
position for each SNP on the SNP-array. Afterward, .ped files 
are converted to .bed files to save memory space and running 
time for both types of data, and r2 are then calculated using 
PLINK1.9 (Figure 2).

The annotation file is a text file respecting a gff-like format 
(gff, gtf, or gff3) including the chromosome number/name in 
the first column, the feature in the third column (CDS, mRNA, 
exon), the starting and ending positions in respectively the 
fourth and fifth columns, and the annotation (= attributes) in 
the last column.

Finally, the third file contains the list of candidate SNPs with 
chromosome name in the first column, position in the second 
column, and SNP_ID in the third column (not required).

Note that the chromosome identification should be consistent 
among the various files; the number may often be prefixed 
with a “chr” or not. As this is the most likely source of errors 
and incompatibility, the format checking step generates error 
messages pointing at corrupt files and probable causes.

Linkage Calculation and Annotation 
extraction
Linkage disequilibrium is estimated using the r2 correlation score 
calculated using PLINK for genotyped SNPs located on the same 
chromosome in linkage for r2 > 0.4. This low threshold is defined 
as the lowest one that a user may select. The threshold defined 
by the user is used later in the pipeline when estimating an 
average distance in linkage with candidate SNPs according to this 
threshold, and during delineation of genomic regions in linkage 
with each candidate SNP for annotations extraction.

Based on the LD calculations previously computed and the r2 
threshold set by the user, annotations from a .gff/.gff3/.gtf-type file 
are then gathered to create an annotation file for each candidate 
variant. A “.gff/.gff3/.gtf ” file usually includes annotations for 
different features (mRNA, CDS, exon, gene) which represents 
a hierarchical classification of the same genomic regions and 

FIGURe 2 | LD-annot overview. The LD-annot.py script is the master 
script that checks file format and calls a bash script for format conversion 
and PLINK LD estimation, and afterward calculates average LD and linked 
regions boundaries and gathers annotations for linked genes. At the bottom, 
an example header of the output file is presented.
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thus results in some repetition of the information. According 
to the approaches deployed to annotate the reference genome, 
the level of its completeness or the biological question asked in 
the research, one might favor one over the other features. Thus, 
LD-annot offers an option to select the feature of interest and 
avoid redundancy of the information at the various levels (i.e. 
gene, mRNA, and exon), which also make it flexible to any 
feature that may be indicated in the annotations file.

After input format checking and r2 calculations, the python 
script gathers chromosome, position, and annotation for 
the designated feature. Afterward, it makes a dictionary of 
“candidate” regions (chr, start, and end) around candidate 
SNPs by using the position of the foremost upward and 
downward SNPs in linkage with each one of those candidates 
according to r2 threshold chosen by the user. However, a 
candidate SNP might not be surrounded by other genotyped 
SNPs because of true absence of polymorphisms (possibly in 
a specific sampling set) or low quality genotyping. In such 
cases, the average distance calculated earlier in the pipeline is 
used to delineate the region of interest around such candidates 
and an “alone” flag is added to the candidate SNP name in 
the output file. It should be noted that this average is a broad 
estimate and those results should be interpreted with caution 
given the r2 variability along the genome, and the possibility 
of the non-Gaussian distribution of distances between SNPs 
in LD.

Finally, all annotated regions with the selected feature in .gff/.
gff3/.gtf file that overlap the “candidate” region are included 
into an output file that provides: chromosome, candidate SNP 
position, region start and end positions, annotation start and end 
positions, and the annotation per se. According to the number of 
annotations overlapping the candidate region, a candidate SNP 
can be found several times in the output file.

ReSULTS AND DISCUSSIoN

LD-annot Performances
We assessed the performance of our tool through the analysis 
of the four datasets previously described and covering a large 
distribution in numbers of genotyped and candidate SNPs, 
and a variety of r2 thresholds. The goal being to make this 
procedure amenable to researchers without coding skills 
nor access to high-performance infrastructures, we ran the 
pipeline using a common laptop computer with 4CPU cores 
and 8 Gbytes of RAM.

As expected, there was a significant correlation between the 
number of variants included in the analysis and the processing 
time (ANOVA, p < 2e-16; Figure 3). However, a single analysis 
never exceeded 16.1 min despite the very large SNP set (> 
14M SNPs) originating from Medicago (Table 1). In such case, 
making use of the checkpoint feature allowed to reduce the 
computational time from 16.1 min to less than 10 (Figure 3A). 
As datasets are always increasing in size with technological 
progress and the usual need to test several r2 thresholds, we 
believe the checkpoint procedure will be beneficial to the 
genomics research community.

Another factor impacting the analysis time is the size of the 
annotation file and particularly the type of feature specified by 
the user in the command line. Annotation files (.gff/.gff3/.gtf) 
typically harbor more annotation lines in the “CDS” feature than 
for “gene” or “mRNA.” As a result, the analyses were significantly 
longer when searching for “CDS” feature annotations (ANOVA, 
p = 0.0137; Figure 3B). In line with this trend, regions linked 
to candidate SNPs extended when the r2 threshold increased, 
resulting in an increasing number of annotations and time length 
for the analysis, although the difference was not significant.

FIGURe 3 | Pipeline performances according to the run number (A) and the 
type of annotated features (B). (A) LD-annot involves a checkpoint procedure 
that does not require rerunning each step when testing several LD thresholds, 
which results in shorter turnover of analysis after its first run. (B) The type of 
feature has an impact on the time for analysis since mRNA and CDS features 
are usually more complex than gene features in an annotation file. *Note that 
no CDS annotations were available for the Lymantria dispar genome.
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Average Distance
The LD-annot pipeline calculates an average distance (in bp) 
separating two SNPs in LD according to the specified r2 threshold 
across the whole dataset. This distance is later used to delineate a 
linked region around a candidate SNP (the average distance on both 
sides) when there is no surrounding genotyped SNPs. This distance is 
a function of inbreeding as illustrated by our datasets where the higher 
the original effective population size, the shorter is the distance in 
LD. Even within the pig species, the pedigree denoted Sus1 generally 
presented shorter distances than Sus2 pedigree which was developed 
from a smaller effective population of sires and dams.

This distance is also varying according to the number of 
genotyped SNPs which is related to the occurrence of rare SNPs that 
tend to present lower r2 values than more common SNPs (Pritchard 
and Przeworski 2001; Pe’er et al., 2006). As a result, removing SNPs 
with minor allele frequency <0.05 resulted in a sizable increase in 
distances (up to 18-fold) when testing the Medicago SNP set.

When genotyping a sample set using GBS approach, the 
SNP distribution over the genome is not controlled and the 
proportion of the genome interrogated by the genotyping is 
often an important question for researchers. The average distance 
provided by the tool can further be used to broadly estimate the 
genome coverage given the r2 thresholds. For instance, using 
54,712 SNPs in the Sus1 pedigree allowed to investigate the entire 
2.4Gb Sus scrofa genome with r2 > 0.7, but 82% and only 40% of 
this genome with r2 > 0.8 and 0.9, respectively. The same SNP set 
in the Sus2 pedigree allowed to investigate 100, 87, and 38% of the 
genome with r2 > 0.7, 0.8, and 0.9, respectively. However, these 
coverage values should be seen as broad estimates and, therefore, 
interpreted with caution given r2 variability across the genome.

Why Not Consider only the Closest Gene?
Selecting annotations associated with a candidate polymorphism 
is usually accomplished using the proximity criteria, in other 
words, the gene including the SNP in its sequence or the closest 
gene for non-coding SNP is often seen as the relevant one (e.g. 
Stanton-Geddes et al., 2013). However, other remote genes might 
be in genetic linkage with the candidate SNP while not presenting 
SNP in the studied SNP set, which does not allow to test their 
association per se. Even when presenting SNPs, these genes may 
have been missed because of too many missing genotypes or too 

low minor allele frequency for a specific locus which, in turn, did 
not permit to significantly detect them as candidate SNPs. For 
instance, when using LD-annot in Sus scrofa, we found a total 
of 334 genes in genetic linkage with only 176 of the candidate 
SNPs while the remaining candidate SNPs were not linked to any 
genes using an r2 threshold >0.7. We even observed six cases of 
annotations for distant genes (second or third order of the closest 
genes and still in LD with the candidate SNP using r2 > 0.9) that 
were in fact more informative with regards to the trait of interest 
than the closest one (Figure 4).

Contrastingly, the closest gene might be far away and not 
genetically linked with the candidate SNP which could lead to 
biased interpretation, particularly when performing enrichment 

TABLe 1 | LD-annot time analysis according to the sizes of SNP sets and candidate SNP sets.

Dataset* Total SNPs set size Candidate SNP number Time (s) r2 threshold Average distance (bp)†

Sus1 54,712 199 18.3 0.7 50494
Sus1 54,712 199 19.3 0.9 18000
Sus2 54,712 199 20.0 0.7 53614
Sus2 54,712 199 21.0 0.9 17430
Lymantria 321,868 250 13.5 0.7 6191
Lymantria 321,868 250 14.0 0.9 4620
Medicago 593,614 1,536 109.7 0.7 706
Medicago 593,614 1,536 110.6 0.9 601
Medic-large 14,374,089 1,536 581.6 0.7 44
Medic-large 14,374,089 1,536 692.5 0.9 33

*Sus1 and Sus2: the two pig genotyping-by-sequencing datasets; Lymantria: the gypsy moth SNP set; Medicago: the public Medicago dataset after filtering for low 
minor allele frequencies; Medic-large: the entire SNP set for Medicago (Stanton-Geddes et al., 2013).
†Average distance between a pair of SNPs in linkage disequilibrium according to the threshold for r2 estimated from all SNPs in the dataset.

FIGURe 4 | Illustration of one candidate SNP likely involved in pig meat quality 
that is genetically linked to four different genes; note that the most biologically 
meaningful is not the closest one but of the third order. The candidate SNP is at 
the position “0” upon the chromosome and marked with an asterisk; –log10(p-val) 
is the p-value for the association test between allelic variation and meat quality; 
r2 is the correlation coefficient calculated in the dataset (red line) using PLINK and 
the specified threshold for linkage was 0.7 (blue line).
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analyses. In Medicago, over the 1,536 candidate SNPs that were 
annotated using the closest gene (Stanton-Geddes et al., 2013), only 
541 SNPs were actually genetically linked with their target gene 
(r2 > 0.7). On the other hand, 40 candidate SNPs were genetically 
linked with two genes, and 62 annotated genes were linked to more 
than one candidate SNP (Supplementary Table 1), hence showing 
the importance of taking into account the LD when looking at 
annotations supporting the importance of a candidate SNP.

In the case of progenies study (gypsy moth case), the LD level 
is very high which resulted in blocks of several candidate SNPs 
genetically linked together, thus defining large regions possibly 
encompassing several genes. However, only 100 SNPs were in 
linkage with 64 genes (r2 > 0.9) among the 250 candidate SNPs 
spread over 103 contigs. Despite the high level of LD and that all 
scaffolds harboring a candidate SNP were also encompassing one 
gene at the very least (2.39 genes in average), some candidate SNPs 
were not found in genetically linked with any gene. The distribution 
of recombination rates was not continuous as expected given the 
low number of individuals and generations, and LD breakpoints 
were observed along scaffolds. Thus, a SNP might be relatively 
close to a gene but still not representing it. Altogether, these 
results illustrate the need to evaluate the experiment-specific LD 
surrounding candidate SNPs when employing genes to annotate 
and prioritize these for further investigations, and understand the 
mechanisms underlying their association with trait variation.

CoNCLUSIoN
The LD-annot tool yields supporting lines of evidence to 
help identify biologically meaningful genetic polymorphisms 
underlying phenotypic variation. It can be used with any sort of 
annotations and polymorphism data as long as the input format 
matches either SNP-chips or vcf files. One can obtain annotations 
for repeats or specific methylation sites, for instance, and use 
this tool to identify those features that are statistically linked to 
candidate SNPs for a given sampling.
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High-throughput genome-wide epigenomic assays, such as ChIP-seq, DNase-seq and
ATAC-seq, have profiled a huge number of functional elements across numerous human
tissues/cell types, which provide an unprecedented opportunity to interpret human genome
and disease in context-dependent manner. Colocalization analysis determines whether
genomic features are functionally related to a given search and will facilitate identifying the
underlying biological functions characterizing intricate relationships with queries for genomic
regions. Existing colocalization methods leveraged diverse assumptions and background
models to assess the significance of enrichment, however, they only provided limited and
predefined sets of epigenomic features. Here, we comprehensively collected and integrated
over 44,385 bulk or single-cell epigenomic assays across 53 human tissues/cell types, such
as transcription factor binding, histone modification, open chromatin and transcriptional
event. By classifying these profiles into hierarchy of tissue/cell type, we developed a web
portal, epiCOLOC (http://mulinlab.org/epicoloc or http://mulinlab.tmu.edu.cn/epicoloc), for
users to perform context-dependent colocalization analysis in a convenient way.

Keywords: colocalization, epigenomics and epigenetics, functional annotation analysis, genetic variants, cell type
specific, web server
INTRODUCTION

The epigenome, beyond genome sequence, has been increasingly recognized as key component in
the gene regulation to drive certain biological processes and associate with many human diseases
(Lawrence et al., 2016; Dor and Cedar, 2018; Feinberg, 2018). In the past decades, high-
throughput epigenomic sequencing assays have profiled large numbers of functional elements
across numerous human tissues/cell types, such as histone modification, DNA methylation, open
chromatin, transcription factor binding site (TFBS), etc. The International Human Epigenome
Consortium (IHEC) project (Bujold et al., 2016) have been initialized, across different countries
and consortiums, to coordinate the production of reference maps of human epigenomes for key
cellular states relevant to health and diseases. These unprecedented growths of epigenetic profiles
and following comprehensive analysis of tissue/cell type-specific epigenomes will ultimately lead
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to a better understanding of how human population and
genome function are shaped in response to the environment
(Egtex, 2017).

To facilitate convenient and accurate utilization of increasing
volume of epigenomic data, several commonly-used resources
have uniformly processed raw profiles and made them easily
accessible, including ENCODE (Consortium, 2012), Roadmap
Epigenomics (Roadmap Epigenomics et al., 2015), Blueprint
Epigenome (Stunnenberg et al., 2016) and CistromeDB (Mei
et al., 2017; Zheng et al., 2019). Furthermore, comprehensive
epigenomics accumulation has motivated novel computational
methods of modelling functional elements across many tissues/
cell types, such as ChromHMM (Roadmap Epigenomics et al.,
2015) and Segway (Libbrecht et al., 2019). Therefore, integrating
such large-scale and context-dependent epigenomics features for
novel biological findings is in urgent demand (Dozmorov, 2017;
Cazaly et al., 2019). To this end, colocalization analysis was
frequently used to study the interplay of various functional
elements in different biological processes and conditions,
where potential enrichment of a given genomic/epigenomic
profile in pre-defined dataset could be drawn from the global
perspective (Kanduri et al., 2019). Integrated with large-scale
tissue/cell type-specific epigenomics data, colocalization analysis
provides a powerful avenue to investigate biological relations and
cell type specificities, such as identifying co-occurrence of
transcription regulators (Yan et al., 2013) and inferring causal
tissues/cell types from disease-associated variants identified by
genome-wide association study (GWAS) (Farh et al., 2015).

Many colocalization tools have been developed by
holding diverse assumptions and background models to assess
the significance of enrichment. For instances, GSuite
HyperBrowser is a web-based tool that performs colocalization
analysis using either analytical approaches or Monte Carlo
simulations (Simovski et al., 2017). LOLA utilizes Fisher's exact
test based on universe regions to inspect enrichment and
provides a web-based portal LOLAweb (Sheffield and Bock,
2016; Nagraj et al., 2018). GoShifter (Trynka et al., 2015) and
GARFIELD (Iotchkova et al., 2019), which were implemented
into standalone tools, specifically quantify enrichment of
overlaps between GWAS variants and genomic annotations by
considering linkage disequilibrium (LD). To overcome the
discordant enrichment among exiting methods, Coloc-stats
integrates multiple colocalization analysis tools in a single web
interface (Simovski et al., 2018). This integrated system serves as
a one-stop shop for performing comprehensive colocalization
analysis and asseses the consistency of the conclusions
across seven different methods. However, some critical issues
remain unaddressed. First, existing tools only provide
limited pre-defined sets for genomic features in different
biological domains. Current web-based tools, such as GSuite
HyperBrowser, GenomeRunner (Dozmorov et al., 2016) and
LOLAweb, only incorporate a small number of epigenomic
profi les from ENCODE, Cistrome and other specific
annotation datasets, which restrict the broader applications of
online colocalization analysis. Second, the descriptions of tissue
and cell type information are disordered and only based on free
Frontiers in Genetics | www.frontiersin.org 216
text, making current tools unable to properly classify or group
tissues/cell types to inspect the specificity of enrichment.
Therefore, a uniform human tissue/cell-type definition is
needed. Furthermore, the growing volume of epigenomic
profiles on extensive tissues/cell types, collection and
integration of these genomic features require a great effort to
download. Most colocalization web tools are time-consuming for
features intersection and background generation when dealing
with such accumulating data scale. To ease the comprehensive
colocalization analysis for biologists and geneticists, a faster and
versatile online platform would be welcome.

For this study we comprehensively collected and integrated
over 44,385 bulk or single cell epigenomic profiles across 53
human tissues/cell types. By classifying and mapping these
profiles into hierarchy of tissue/cell type, we developed a web
portal, epiCOLOC, for users to perform context-dependent
colocalization analysis in a convenient way. We leveraged a
recent ultrafast genomics search engine, GIGGLE, to identify
and prioritize the enrichment of genomic loci shared between
query features and our pre-defined epigenomic interval files
(Layer et al., 2018). epiCOLOC equips many visualization
functions and is freely available at http://mulinlab.org/epicoloc
or http://mulinlab.tmu.edu.cn/epicoloc.
EPIGENOMIC PROFILES INTEGRATION
AND PROCESSING

Data Collection
We collected human genomic and epigenomic data from various
public resources including ENCODE (Consortium, 2012),
Roadmap Epigenomics (Roadmap Epigenomics et al., 2015),
Cistrome (Mei et al., 2017), ReMap (Cheneby et al., 2018),
ChIP-Atlas (Oki et al., 2018), DeepBlue (Albrecht et al., 2017),
BOCA (Fullard et al., 2018), TCGA (Corces et al., 2018) and
HACER (Wang et al., 2019) (Supplementary Table 3).
According to data sources and corresponding attributes, we
classified collected features into following categories: 1)
Transcriptional regulator, which incorporates ChIP-seq profiles
of large number of transcriptional factors and chromatin
remodelers; 2) Histone modification, which incorporates ChIP-
seq profiles of different histone modifications; 3) Chromatin
accessibility, which contains DNase-seq, ATAC-seq and FAIRE-
seq profiles of open chromatin; We also curated several single cell
ATAC-seq assays in this category; 4) Transcriptional event,
which contains CAGE-seq, GRO-seq and PRO-seq profiles of
nascent transcription signals; 5) Chromatin segmentation, which
introduces tissue/cell type-specific chromatin states predicted by
ChromHMM and Segway (Figure 1A and Supplementary Table
1). In order to improve accuracy and robustness of epiCOLOC
backend database, we removed low-quality profiles according to
the quality control scheme provided in the original resource. For
example, we removed ChIP-seq data not passing two Cistrome
quality metrics, including fraction of reads in peaks, and
sufficient number of peaks with good enrichment. We also
February 2020 | Volume 11 | Article 53
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excluded ENCODE profiles with error audit flags, such as
extremely low read length, not tagged antibody, etc. Current
epiCOLOC database covers 1,631 chromatin markers, which
comprises 88 histone modifications, 1,538 transcriptional
regulators, open chromatin and transcriptional event.

Data Processing
Tissue Organization and Mapping
We mapped cell lines to tissues by accounting for some auxiliary
information from original epigenomic studies and several
standards from GTEx (Consortium et al., 2017), Expression
Atlas (Papatheodorou et al., 2018), Cellosaurus (Bairoch,
2018), ATCC (www.atcc.org), and BRENDA Tissue Ontologies
(www.ebi.ac.uk/ols/ontologies/bto), yielding 53 main human
tissues in total. For some main tissues that contain multiple
well characterized components or some cell lines that cannot
simply map to specific main tissues, we set independent terms in
tissue set and finally generated 137 sub-tissues (Supplementary
Table 2). We then manually mapped tissue/cell type name of
each profile to our uniformly defined tissue set.

Cell Type Mapping
To reduce the complexity of cell type description in our collected
epigenomic profiles, we performed cell type mapping using
Cellosaurus that collected almost all cell line synonyms in a
reference database (Bairoch, 2018). We acquired the Cellosaurus
accession numbers and corresponding synonyms for all recorded
cell lines, and assigned uniform synonyms identifiers to
epigenomic profiles, which greatly reduces the heterogeneity of
cell type descriptions. For cancer cell types mapping, we
Frontiers in Genetics | www.frontiersin.org 317
borrowed DepMap which provides standard terms for over
thousands of cancer cell lines and organoid models (Van Der
Meer et al., 2019). Since DepMap provides Cellosaurus accession
numbers, we were able to easily map cancer cell lines to
consistent reference.

Profile Grouping
Since the epigenomic data were generated by different
laboratories or produced using different protocols, replicates
and analysis methods among collected sources, we sought to
identify profiles describing similar biological processes in each
source. We grouped all collected profiles according to source +
assay type + tissue/cell type + biological target, and assigned
unique group identifiers to them.

Outlier Profiles Removal
To further ensure informative profiles in each group, we
designed a strategy to eliminate potential outlier profiles that
may deviate from underlying biological process of the group
(Supplementary Methods). For each group with at least three
profiles, we first constructed a pair-wise similarity matrix for all
profiles based on GIGGLE combo score (Layer et al., 2018).
Then, hierarchical clustering was used to cluster these profiles
based on Euclidean distance and the optimal number of clusters
was automatically determined by inconsistency coefficient
method (Zahn, 1971). Furthermore, we only retained profiles
within the largest cluster as representatives in this group. For
example, we identified that four outlier profiles among 11 ETS1
ChIP-seq peak profiles in GM12878 cell line, and excluded them
in the colocalization analysis (Figure 1B).
FIGURE 1 | The overview of epiCOLOC design and datasets. (A) The source schema of epiCOLOC data collection. (B) An example to illustrate outlier profiles
removing. (C) The summary of data types in the current version of epiCOLOC.
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epiCOLOC Web Tool Implementation
The current version of epiCOLOC incorporates 44,385 tissue/cell
type-specific functional profiles from 44,364 bulk-cell studies
and 21 single-cell studies after quality control (Supplementary
Table 4). Most of these profiles (89.8%) are derived from ChIP-
seq for transcription regulators and histone modifications, while,
9.5% profiles came from DNase-seq and ATAC-seq for
chromatin accessibility (Figure 1C).

Colocalization Method
To achieve a fast and efficient colocalization based on high
volume epigenomic features, we embedded a genomic feature
search engine, GIGGLE, into epiCOLOC web server (Layer et al.,
2018). GIGGLE uses Fisher's exact test and odds ratio of
“observed” versus “expected” to measure enrichment between
query features and pre-indexed genomic intervals. It also creates
a combination score called GIGGLE combo score, which is the
product of -log10(Fisher's exact test P-value) and log2(odds
ratio). Given thousands of epigenomic profiles in epiCOLOC
database, GIGGLE can significantly reduce the running time
from hours to minutes. For example, epiCOLOC takes about 6
minutes to finish colocalization analysis on transcriptional
regulator profiles of all blood cells for a set of 10k intervals
(randomly generated genomic intervals with varying length). For
each profile group, we calculated median score to represent
group-level enrichment. With the aid of efficient colocalization
strategy, epiCOLOC tries to provide powerful context-specific
epigenomic evidences, leading to novel biological problems
identification, such as “Are two transcription factors (TFs)
colocalized and forming cooperation” or “Are the query
variants/intervals enriched in chromatin open regions of
specific tissues?” or “Are the query variants/intervals overlap
with transcribed enhancers regions more than would be
expected by chance?” More biological examples can be found
in our website http://mulinlab.org/epicoloc/Introduction/
#Biological-examples.

Web Interface and Usage
epiCOLOC was implemented in a web-based tool with built-in
large-scale and context-dependent epigenomic annotations. The
epigenomic profiles were indexed using GIGGLE. The web server
was developed by Python, jQuery, igv.js, amcharts.js and related
JavaScript modules.

Querys
epiCOLOC accepts two types of genomic format: BED-like
format and VCF-like format. Both plain text and uploaded file
of regions of interest (ROIs) or variant positions are well
supported. Uploaded file can be BED or VCF text file or
compressed gzip file (<20Mb).

Options
epiCOLOC provides several options for users to customize
colocalization analysis, including 1) select tissues (53 tissues/
137 sub-tissues); 2) select profile categories (Transcriptional
regulator, Histone modification, Chromatin accessibility,
Transcriptional event, Chromatin segmentation); 3) change
Frontiers in Genetics | www.frontiersin.org 418
human genome assembly (GRCh37 and GRCh38); 4) define
background genome size (3,095,677,412 for GRCh37 and
3,088,269,832 for GRCh38 in default); 5) set maximal
interval length (500bp in default, and ROIs which exceed
maximum length will be removed); 6) set extended length on
both sides (no extension by default); 7) set central window size
(cut the central area of genomic intervals, no central window
by default).

Job Submission
Once submitted, the job will be sent to the backend of the web
server for colocalization analysis. epiCOLOC displays a progress
bar to track the execution status. It allows job retrieval by
searching for the job ID in the home page, or by using a fixed
URL (http://mulinlab.org/epicoloc/<jobid>) to check results
directly, or through email notification.

Results Visualization
We used GIGGLE combo scores to prioritize colocalization
results. Higher combo score indicates better enrichment on a
specific profile, while negative combo scores suggest depleted
enrichment (Supplementary Figure 1). Users can inspect and
visualize the results in four different manners: 1) Prioritization
table, which shows statistics metrics of colocalization including
combo score, Fisher's exact P-value, odds ratio, the number of
overlaps and extra information of enriched profiles (Figure 2A);
2) Tissue-wise pie charts for enrichment and depletion, which
depict the per tissue proportion in all enriched (positive combo
score) or depleted (negative combo score) profiles (Figure 2B).
Users can click the slice of each tissue in the pie chart to see
detailed sub-tissue results; 3) Tissue-wise bar plots, which display
the representative enriched or depleted profiles in each tissue
(Figure 2C). The user can search, scroll, zoom and hover over
the bar plot to get detailed information of enrichment (only assay
IDs for the best profiles in each group are displayed in hover
tooltip). Once the label under the tissue-wise bar plotsis clicked,
cell type-wise bars which depict enrichment patterns for the top
20 enriched cell types appear in a pop-up window. 4) The IGV
dashboard displays relative genomic location for queries
genomic intervals and top five enriched profi les in
colocalization analysis.

Download
epiCOLOC allows users to download colocalization results in csv
format and result figures in png, jpg or pdf formats.
CASE STUDIES AND EVALUATIONS

By integrating large-scale tissue/cell type-specific epigenomic
profiles, epiCOLOC could be used to investigate many biological
questions. Here, we used several examples to demonstrate the
performances and potential usages of epiCOLOC.

To identify potential disease-relevant genomic features and
tissues using GWAS variants, we first performed colocalization
analysis on disease-associated variants for inflammatory bowel
February 2020 | Volume 11 | Article 53
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disease (IBD) (Liu et al., 2015) to test the tissue-specific
enrichment. Using chromatin accessibility features, we found
that IBD GWAS variants (P-value < 5E-8) were significantly
Frontiers in Genetics | www.frontiersin.org 519
enriched in blood tissue, where open chromatin profiles on
monocyte, lymphocyte and granulocyte macrophage progenitor
received highest enrichment scores. (Figure 2, and also see
FIGURE 2 | Results page of epiCOLOC. Colocalization result for IBD GWAS variants in open chromatin regions, (A) Prioritization table. (B) Pie chart that depicts the
number of significant enriched or depleted profiles in each tissue. (C) Bar plots that display ordered combo score, P-value, odds ratio in tissue-wise manner.
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colocalization result from: http://mulinlab.org/epicoloc/results/
bc2fa49a-6dfa-40f1-bb61-1349c9118168). This result was
consistent with GARFIELD results using functional
annotations from ENCODE and Roadmap Epigenomics
(Iotchkova et al., 2019). We then used coronary artery disease
(CAD) GWAS variants (P-value < 5E-8) to perform
colocalization in open chromatin regions (Van Der Harst and
Verweij, 2018). Consistent with GARFIELD reports, we observed
that most of tissues showed similar enrichment patterns, without
distinct tissue specificity at open chromatin (http://mulinlab.org/
epicoloc/results/63b0cd1b-f22f-43dd-9452-fdea114f6c3d).
However, when using fine-mapped CAD variants, we observed
several highly enriched signals in tissues like liver and artery
blood vessel (http://mulinlab.org/epicoloc/results/04bf79a8-
f7cd-4960-913e-5c5c84c05753), implying that the importance
of selecting informative ROIs before colocalization analysis.

Next we sought to demonstrate that whether epiCOLOC
could be used to identify potential cooperative factors for given
TF. Transcription factor 7-like 2 (TCF7L2), a TF in the Wnt-
signaling pathway, has been proven to play a central role in
coordinating the expression of proinsulin and forming mature
insulin (Zhou et al., 2014). TCF7L2 binding sites had been
reported to colocalize with HNF4alpha and FOXA2 in HepG2
cell (Frietze et al., 2012). We hence used TCF7L2 ChIP-seq in
HepG2 to perform colocalization analysis using epiCOLOC. In
our colocalization results, TCF7L2 ChIP-seq peaks were
significantly enriched in EP300, CREM, SP1, FOXA2 and
HNF4alpha ChIP-seq profiles in various tissues/cell types
(http://mulinlab.org/epicoloc/results/d736578a-59a4-4160-a6fe-
1a9c420c4adf). Furthermore, we used two motif finding tools,
PscanChIP (Zambelli et al., 2013) and HOMER (Heinz et al.,
2010), with the same query input to investigated enriched TF
motifs. We found that TF motifs including HNF4alpha, FOXA2,
TCF7, GATA4, FOXP1, FOXA1, FOXK2 and FOXO3 can be
simultaneously identified among two motif finding tools and our
epiCOLOC, which also validates the efficacy of our tool.
DISCUSSION

In this study, we have integrated a comprehensive and tissue/cell
type-specific epigenomics profiles database. With strict pre-
processing, quality control and tissue mapping, we established a
user-friendly web portal, epiCOLOC, which to perform fast and
context-dependent colocalization analysis; and provide a series of
visualization functions to interpret results; and significantly
distinguish between existing web-based tools (Supplementary
Table 5). In the applied examples, we demonstrated the
accuracy and practicality of epiCOLOC in identifying causal
tissues/cell types from GWAS disease-associated variants and
inferring co-occurrence of transcription regulators.

There are some limitations in this work which deserve
optimization in our future works. First, the statistical
assumption of GIGGLE is simple and could be sub-optimal in
several cases. We strongly recommend users to prioritize results by
combo score and set stringent thresholds. As observed from the
Frontiers in Genetics | www.frontiersin.org 620
combo scores distribution when P< = 0.05 using query intervals
that randomly generated in genome (Supplementary Figure 2),
we propose to use an empirical combo score cutoff, 5 for
enrichment and -2 for depletion, as advisable criteria to further
filter enrichment or depletion results. Although GIGGLE can
greatly speed up colocalization analysis, as compared with
GenomeRunner (Dozmorov et al., 2016) and LOLAweb (Nagraj
et al., 2018), it limits the usage of user-specific background of
genomic regions and the analysis of multiple genomic intervals.
Second, although epiCOLOC is applicable to perform
colocalization analysis using genetic variants, but it cannot
account for LD and allele frequency. Third, there are uneven
epigenomic profiles for different tissues/cell types. It may
potentially affect the robustness of colocalization when applying
epiCOLOC to the tissues/cell types having fewer data available,
and it also cannot determine the missing enrichment for tissues/
cell types lacking sufficient data. In addition, single-cell
technologies, such as single-cell ATAC-seq and single-cell ChIP-
seq (Grosselin et al., 2019), have been developed to analyze
genome-wide epigenomic features. Such approaches pave the
way to study the role of epigenetic heterogeneity in many
biological conditions and will be largely incorporated into
epiCOLOC in the next stage. Recently, a novel algorithm named
Augmented Interval List (AIList) (Feng et al., 2019), which
introduces a new data structure and provides a significantly
improved fundamental operation for highly scalable genomic
data analysis. This method together with upcoming large-scale
genomic features will be added in the epiCOLOC future updates.
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Copy number variants are duplications and deletions of the genome that play an important
role in phenotypic changes and human disease. Many software applications have been
developed to detect copy number variants using either whole-genome sequencing or
whole-exome sequencing data. However, there is poor agreement in the results from
these applications. Simulated datasets containing copy number variants allow
comprehensive comparisons of the operating characteristics of existing and novel copy
number variant detection methods. Several software applications have been developed to
simulate copy number variants and other structural variants in whole-genome sequencing
data. However, none of the applications reliably simulate copy number variants in whole-
exome sequencing data. We have developed and tested Simulator of Exome Copy
Number Variants (SECNVs), a fast, robust and customizable software application for
simulating copy number variants and whole-exome sequences from a reference genome.
SECNVs is easy to install, implements a wide range of commands to customize
simulations, can output multiple samples at once, and incorporates a pipeline to output
rearranged genomes, short reads and BAM files in a single command. Variants generated
by SECNVs are detected with high sensitivity and precision by tools commonly used to
detect copy number variants. SECNVs is publicly available at https://github.com/
YJulyXing/SECNVs.

Keywords: copy number variation, simulation, software, whole-exome sequencing, read depth
INTRODUCTION

Copy number variants (CNVs) represent DNA duplications and deletions ranging from a few dozen
base pairs to several million bases that have been associated with phenotypic changes and human
disease (Feuk et al., 2006). There is no precise definition for the minimum length of CNVs in
research, although a minimum length of 1 kb is commonly used for clinical applications. Initially
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discovered by array-based methods (Pinkel et al., 1998), CNVs
have been increasingly detected using next-generation
sequencing (NGS) data (Shen et al., 2019). A substantial
proportion of CNVs encompass protein-coding genes
(Zmienko et al., 2014). Many software applications have been
developed to detect CNVs using either whole-genome
sequencing (WGS) (Bartenhagen and Dugas, 2013; Pattnaik
et al., 2014; Qin et al., 2015; Faust, 2017; Xia et al., 2017) or
whole-exome sequencing (WES) (Sathirapongsasuti et al., 2011;
Fromer et al., 2012; Klambauer et al., 2012; Koboldt et al., 2012a;
Koboldt et al., 2012b; Krumm et al., 2012; Plagnol et al., 2012;
Magi et al., 2013) data.

WES is based on the capture and sequencing of transcribed
regions (exons) of protein coding sequences, which combined
represent approximately 1% of the human genome. Thus, WES
offers a significant benefit in terms of the sequencing costs
compared to WGS. Additionally, WES data are an increasingly
important source to identify genetic variants in non-model
organisms (Lu et al., 2016; Kaur and Gaikwad, 2017). In
species with very large genomes and limited opportunities for
WGS experiments, WES data are expected to represent a critical
source of information to detect CNVs (Hirsch et al., 2014).

Detection strategies for CNVs from next-generation
sequencing data consist of four different approaches based on
read depth, physical distance between read pairs (or paired-end
mapping), detection of split reads, and comparison of de novo
and reference genome assemblies (Alkan et al., 2011; Pirooznia
et al., 2015). Because each of these approaches have limitations,
programs that combine multiple strategies to detect CNVs based
on WGS datasets have also been developed [see (Pirooznia et al.,
2015)]. In WES data, the approaches based on the distance
between read pairs and detection of split reads have limited
efficacy because the boundaries of the CNV region must fall
completely within a target region for a CNV to be detected
(Fromer et al., 2012; Alkodsi et al., 2014). However, the target
regions only span a sparse 1% of the whole genome, therefore
most of the breakpoints of CNVs are not located in the captured
target regions (Tan et al., 2014; Yao et al., 2017). In addition, read
pair and split read methods both rely on paired-end reads across
a CNV region or reads mapped across CNV breakpoints (Tan
et al., 2014). In read pair-based methods, shorter insert size
compared to diploid individuals indicate deletions, whereas
longer insert size compared to diploid individuals indicate
duplications; in split read based methods, the split of reads is
used to identify CNV and CNV breakpoints (Pirooznia et al.,
2015). Because of the average size of exons and introns, most
target regions in WES data fall between 100 and 300 bps, which
makes detection of CNVs from WES data using read pair and
split read methods practically impossible. Therefore, most
available WGS-based CNV detection methods relying on
paired-end reads cannot be successfully applied to WES data
(Tan et al., 2014). Conversely, read depth-based methods rely on
the number of sequenced reads aligned to each target region to
calculate the average read depth over each base (Fromer et al.,
2012), and it is assumed that read depth signal is proportional to
copy number. Thus, read depth represents the only effective
Frontiers in Genetics | www.frontiersin.org 224
strategy to detect CNVs from WES datasets and has been
implemented in several programs (reviewed in Tan et al.,
2014). Because these programs are built using different
implementations and statistical models, they tend to produce
datasets of CNVs with relatively little overlap (Magi et al., 2013;
Kadalayil et al., 2014; Tan et al., 2014; Nam et al., 2016; Yao et al.,
2017; Zare et al., 2017; Pounraja et al., 2019). WES data tend to
have higher levels of noise and specific biases compared to WGS
data (Zare et al., 2017), making detection of CNVs from WES
data less accurate overall. In addition, there are limitations of the
read depth method that make CNV detection in WES data less
accurate (Tan et al., 2014). These limitations include poor
resolution, systematic group effects, GC bias and difficulty in
prediction of breakpoints in WES datasets (Tan et al., 2014).
Therefore, benchmark analyses are necessary to evaluate the
performance of CNV detection programs that utilize exome-
sequencing datasets. Both simulated exome data and data from
either arrays or WGS have enabled the assessment of CNV
detection tools for WES datasets (Magi et al., 2013; Kadalayil
et al., 2014; Tan et al., 2014; Nam et al., 2016; Yao et al., 2017;
Zare et al., 2017). Simulations allow a more comprehensive
assessment of the accuracy and power of these tools.

Most software applications developed to simulate CNVs fall
short of generating the required outputs for WES datasets and
are difficult to implement or cannot be applied to certain datasets
(Table 1). Here, we introduce Simulator of Exome Copy Number
Variants (SECNVs), a fast, robust and customizable software
application for simulating CNV datasets usingWES data. It relies
upon a completely new approach to simulate test genomes and
target regions to overcome some of the limitations of other WGS
CNV simulation tools, and is the first ready-to-use WES CNV
simulator. The simulator can be easily installed and used on
Linux and MAC OS systems to facilitate comparison of the
performance of different CNV detection methods and to test the
most appropriate parameter settings for CNV identification.
METHODS

Characteristics Needed for a Simulator of
Copy Number Variants
To generate WES reads, specific regions of a reference genome,
called “target regions,” are captured and sequenced (Goh and
Choi, 2012). To reproduce a realistic distribution of structural
variants, a CNV simulator for WES data should generate variants
that overlap partly or entirely with one or more target regions
(Figure 1). The WES CNV detection tools require a list of target
regions (exons) (Sathirapongsasuti et al., 2011; Fromer et al.,
2012; Klambauer et al., 2012; Koboldt et al., 2012a; Koboldt et al.,
2012b; Krumm et al., 2012; Plagnol et al., 2012; Magi et al., 2013),
which can be obtained from public databases, and so this list
could be used as the input to simulate short reads for those
regions (Koboldt et al., 2009; Sathirapongsasuti et al., 2011;
Koboldt et al., 2012a; Plagnol et al., 2012; Tan et al., 2014).
Short reads would be simulated from a control genome (same as
the reference genome) and test genomes (with simulated CNVs,
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SNPs, and indels) and aligned back to the control genome. In the
read alignment file for the test genome, simulated CNVs
(duplications and deletions) would ideally appear as increased
read coverage or reduced read coverage, respectively (Figure 1).
Options to generate short reads rearranged according to
customized length, type (duplication or deletion) and copy
number of CNVs within the genomic coordinates of target
regions (whole exons and, potentially, regions upstream and
downstream of exons) should be available in such a program
(Figure 1). To mimic real data, it would be desirable to introduce
SNPs and indels during this step as well.
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These characteristics were incorporated into the program
SECNVs, which we designed to solve the issue of how to
reliably simulate CNVs for WES datasets. The Python-based
SECNVs pipeline copies the FASTA reference genome (control)
and a list of start and end coordinates for exons to a working
directory. From the command line, the user can choose to
expand or connect regions to specify targets for sequencing
and define the type, total number, copy number, and length of
CNVs to simulate. SECNVs makes a list of randomly generated
CNVs and using that information creates a file of rearranged
target regions. Next, FASTA-formatted test genome sequence(s)
FIGURE 1 | Copy Number Variant detection by alignment of whole-exome sequencing reads to a reference genome. Whole-exome sequencing data are obtained
by sequencing target regions in genomes of interest. If the test genome contains duplications and/or deletions overlapping target regions, these regions will be
rearranged (duplicated, deleted or shifted in their genomic coordinates) compared to control and reference genome. Reads from the test and control genomes are
aligned to the original target regions in the reference genome. Copy number variants are detected according to the alignment.
TABLE 1 | Comparison of current simulators to SECNVs.

Simulator
Type

Name Language Steps Extra Files? * Output Format Short Reads
Simulated?

WGS RSVSim (Bartenhagen and
Dugas, 2013)

R Multiple No Test genome (fasta) and CNV
information

No

SCNVSim (Qin et al., 2015) JAVA 2 Samtools index of reference genome;
Chromosome length file; Repeat mask file

Test genome (fasta) and CNV
information

No

Pysim-sv (Xia et al., 2017) Python Multiple No Fastq and SAM Some
SVsim (Faust, 2017) Python 1 Samtools index of reference genome Test genome (fasta) and bedpe No
SInC (Pattnaik et al., 2014) C 2 No Test genome (fasta) and short reads Some

WES VarSimLab1 (CNV-Sim2) Python 1 No Short reads or SAM, CNV
information

Some

SECNVs Python 1 No Test genome (fasta), short reads
and/or BAM files, and CNV
information

Yes
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and FASTQ-formatted short sequence reads for the target
regions from the control and single or pooled test genome(s)
are simulated, and BAM file(s) and index(es) for them are all
generated in a single command. These files can then be used as
the input to compare various CNV detection tools.

Simulation of Rearranged Genomes and
Rearranged Target Regions
Before simulating WES, test genomes containing simulated
CNVs that overlap with target regions are produced. First, the
reference sequence is preprocessed based on how the user wants
to handle gaps in the sequence. Next, a list of coordinates for
CNVs are generated. Then SNPs and indels are simulated to
create test genomes that mimic real data. Finally, CNVs are
created in the FASTA-formatted test genome files.

Preprocessing
First, SECNVs reads in a FASTA reference genome file and a file
of target regions, and checks which option the user chose to
handle ambiguous nucleotides (N) or assembly gaps (collectively
referred to herein as “gaps”). An assembly gap is a stretch of 50
(default) or more “Ns” in the sequence. The user can choose to
replace ambiguous nucleotides or gaps with random nucleotides,
to avoid simulating CNVs in regions containing gaps, or to
ignore the presence of gaps (default). If the user chose
replacement, SECNVs finds gaps in the reference genome and
fills them with random nucleotides. Instead, if the user chose to
avoid them, after finding the gaps, SECNVs stores the genomic
coordinates that demarcate each gap for the following steps.

Creating a List of Coordinates for Copy Number
Variant Regions
Before actually simulating a FASTA test genome and WES reads
that contain CNVs, a list of sites where the CNVs will be placed is
generated by the software. Placement of CNVs in the sequence
depends on many user defined parameters: proportion of each
type (duplication, deletion), total number, range of copy number,
range and distribution of lengths (random, Gaussian, Beta, user-
supplied), spacing (random, Gaussian), and minimum spacing
between CNVs. Unless the user specifies a number of CNVs per
chromosome, the application considers the proportion of CNVs
that would be expected on each chromosome based on the length
of the chromosome. The software randomly allocates whether
each CNV is a duplication or deletion and the number of copies
will be simulated within the user-defined range for copy number,
and the length is also assigned randomly within the user-defined
range and length distribution. Once the length of the CNVs have
been determined, for each CNV, the software randomly chooses
the start point of that CNV based on CNV spacing and calculates
the coordinate for the end point. At this stage, the software stores
the coordinates for the beginning and end of the CNV region.
Next, if the user specified that CNVs should not overlap with any
gaps, SECNVs checks the coordinates of the CNV region against
the coordinates for gaps. If an overlap is found, the CNV is
discarded; otherwise it is kept for the next step. SECNVs then
compares the start and end coordinate of the CNV region to the
Frontiers in Genetics | www.frontiersin.org 426
list of target regions. If there is partial (default minimum overlap
is 50 bp) or complete overlap with targets, the region is retained,
otherwise it is discarded, and the loop starts again. Before writing
the coordinates for the CNV regions to the file, SECNVs checks
for overlap with previously generated regions or a user-defined
buffer region. Only non-overlapping CNV regions are recorded
in the final list from SECNVs. The loop is repeated until the total
number of CNVs is reached, unless the chromosome is too small
and/or the number of target regions is too limited to simulate
enough CNVs. In this situation, SECNVs outputs a warning
message and the number of CNVs simulated on that
chromosome is printed instead of the user specified number,
and the program continues for other chromosomes. Users can
also choose to simulate CNVs outside of target regions. The
process is very similar to simulating CNVs overlapping with
target regions. The only difference is that if a CNV does not
overlap with any target region, it will be kept; otherwise it will be
discarded. SECNVs can also work with a list of predefined CNV
regions. In this case SECNVs will read in the CNV list and use it
as the final output of this step.

The Gaussian distribution of CNV spacing is generated by
random selection from a symmetrically truncated Gaussian
distribution mapped to the length of the chromosome, with
distribution parameters (mean, SD) supplied by the user.
Likewise, Gaussian distribution of CNV length is generated by
random selection from a symmetrically truncated Gaussian
distribution mapped to the range of user specified CNV length
given distribution parameters (mean, SD) supplied by the user.
The Beta distribution of CNV length, which is more realistic for
CNV length distribution (Bartenhagen and Dugas, 2013), is
generated by random selection from a Beta distribution
mapped to the range of user-specified CNV lengths, again
given distribution parameters (alpha, beta) from the user.
Default values for alpha and beta are those used in
Bartenhagen and Dugas, 2013. Otherwise, the user must
estimate the parameters for the Beta distribution using a
collection of sample CNV lengths from their own data, which
can easily be done using R (Team, 2016). Detailed instructions
for this are included in the manual.

The final product of this step is a list of coordinates for CNV
regions that are used in the following step to produce test
genomes that are rearranged from the reference genome and
adjusted coordinates for target regions.

Simulation of Test Genomes and Adjusted
Target Regions
The target regions are duplicated, deleted or shifted as a result of
the simulated CNVs, as shown in Figure 1. Short reads are
generated based on the rearranged genome and target regions,
and aligned to the original reference/control genome in this
“simulation of short reads” step.

Before introducing CNVs into the FASTA genome sequence,
SNPs and indels are simulated as requested by the user. First,
SNPs are randomly generated in the target regions plus a user-
supplied buffer region upstream and downstream of the target
regions (default is 0), based on the SNP rate specified by the user.
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In this step, SECNVs randomly extracts n positions from these
regions to simulate SNPs, where n equals the total length of the
regions multiplied by the SNP rate. Then, nucleotides for these
positions are randomly changed to another nucleotide in the test
genome using the weights assigned by (Park, 2009) to represent
the known mutation rate for SNP in human. Users can modify
the mutation rates for other organisms. Detailed instructions are
in the manual.

Next, indels are randomly generated in the target regions
based on the indel rate (default is 0) specified by the user. In this
step, m start points of indels are randomly generated in the target
regions, where m equals the total length of the target regions
multiplied by the indel rate. The length of each indel is then
assigned by randomly choosing a number between 1 and the
maximum indel length specified by the user. Type of indel
(insertion or deletion) is randomly assigned to each indel as
well. Next, SECNVs sorts the indels by their start points, and
generates them one by one. If an indel is an insertion, SECNVs
will make a random string of nucleotides of the previously
assigned length and insert it at the assigned start point of that
indel in the test genome sequence. Then, SECNVs recalculates
the genomic coordinates of the target regions. If the start and/or
end of the target regions are greater than the start point of the
indel, their coordinates are increased by the length of that indel.
The start point of the remaining indels is iteratively changed as
well: coordinates of subsequent indels are increased by the length
of that indel.

If an indel is a deletion, SECNVs will first check if the length
of that indel is smaller than the target region it is in. If not, the
length of that indel is reduced to ensure that at least one base pair
of the target region remains. Then the sequence between the
coordinates defining the indel is deleted from the test genome.
Next, if the start and/or end of the target regions are greater than
the start point of the indel, their coordinates are adjusted by
subtracting the length of that indel. The start point of the rest of
the indels are adjusted in the same way.

Finally, after the SNP and indels are created, the simulated
CNVs are generated in the FASTA test genome files. In general,
Frontiers in Genetics | www.frontiersin.org 527
users would simulate CNVs that overlap with targets. The list of
CNVs is sorted by coordinate and processed one by one so that
the coordinates for subsequent CNVs are adjusted, similar to the
process used for indels.

For each CNV, the genomic start and end coordinates and
length are extracted. Then SECNVs loops iteratively through the
genomic coordinates for all the target regions on a chromosome. If
a target region is completely inside the CNV, it is categorized as
“inside the CNV.” If a target region partially overlaps with a CNV,
it will be split into at least two parts: the parts outside of the CNV
and the part overlapping with the CNV, and then categorized
(upstream, inside, downstream), as shown inFigure 2. Sometimes
users will choose to simulate CNV completely outside of target
regions, even though those CNVwill be undetectable in theWES.
If a target region is completely before the CNV, it is categorized as
“upstream of the CNV” and if a target region is completely after
the CNV, it is categorized as “downstream of the CNV.”

The next step is to adjust the coordinates to take into account
the placement of the CNV relative to the target regions. As
shown in Supplementary Figure 1, the coordinates of target
regions categorized as “upstream of the CNV” remain
unchanged. Coordinates of target regions categorized as “inside
the CNV” must be adjusted. For duplications, the new start and
end positions of these target regions will be: new position =
length * (number of copies – 1) + old position, where the number
of copies loops from 1 to the total copy number of that
duplication, thus creating a tandem CNV duplication event in
the test sequence. For deletions, when the CNV and target region
overlap, the coordinates for that part of the target are deleted
from the file. Coordinates of target regions categorized as
“downstream of the CNV” will be altered as follows. For
duplications, new position = length * (total copy number of
duplication –1) + old position. For deletions, new position = old
position – length of the CNV.

Finally, the CNV sequence will be copied to or deleted from
the FASTA test genome accordingly. All the genomic
coordinates of CNVs subsequent to this CNV in the list are
adjusted in the same manner as the target regions categorized as
FIGURE 2 | Categorization of target regions in the test genome. For each of the simulated copy number variants (CNVs), all target regions on a chromosome are
assigned as “upstream of the CNV,” “inside the CNV,” and/or “downstream of the CNV.” If the region partially overlaps it is also split. Afterwards genomic
coordinates for the targets are recalculated and split regions are reconnected.
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“downstream of the CNV.” Finally, if a target region was
previously split, it will be reconnected.

The software loops iteratively through all CNVs to create the
rearranged test genome sequence and target regions for short
read simulation. If the user chose to simulate multiple test
genomes, the steps after preprocessing will be repeated to
simulate each test genome.

The output files generated by this step include: 1. Test genome
(s) (FASTA) with non-overlapping CNVs; 2. Target regions for
test genome(s) (.bed); 3. Control genome (FASTA, optional); 4.
Target regions for control genome (.bed, always generated in case
the target regions are modified by user in sequencing steps); 5.
List(s) of CNVs overlapping with target regions (.bed); 6. List(s)
of CNVs outside of target regions (.bed, optional).

This is the core step of SECNVs. Users can choose to continue
the pipeline within SECNVs to simulate short reads or use
another short-read simulator and the files produced from this
step as input.

Simulation of Short Reads
Users have the option to generate short read files with SECNVs
by simulating single- or paired-end sequences from the test and
control genomes. During this step, if the spacing between target
regions is less than the spacing selected by user (default 0), the
target regions are connected to form a single region (called a
combined target region) to simulate the sequences. Users can
also choose to expand the target regions by including additional
nucleotides (default 0) upstream and downstream of the target
regions (called an extended target region) for sequencing. The
number of reads, type of reads (paired-end or single-end),
fragment size, standard deviation of fragment size, read length,
quality score offset, and error model can also be specified. A
default error model: Illumina HighSeq 2500 for WES paired end
sequencing is provided. This default error model was generated
using a modified GemSIM script (McElroy et al., 2012) which
fixed a bug to make the error profile generation function work.
The dataset used for generating this error model was a human
WES dataset from the Sequence Read Archive at the National
Center for Biotechnology Information: run number
ERR3385637. Users can also generate their own error model
from real data using this modified GemSIM script, to keep the
error profiles up to date as sequencing technology changes over
time. Detailed instructions on how to use it to make new error
profiles are included in the manual.

Instead, SECNVs reads in the headers of the input file as keys
of a dictionary and reads the sequences line by line and combines
them as values of that dictionary for the corresponding keys.
Short read sequences are generated within the combined and
extended target regions, which match just the target regions
when default settings are used. Reads passing GC filtering are
synthesized using a modification to the Wessim1 (Kim et al.,
2013) algorithm (ideal target approach). Wessim1 only simulates
reads at the start and the end of each target region
(Supplementary File 1). Custom codes were written to modify
Wessim1's scripts to correct this shortcoming of the program.
Now fragments across the entire target regions based on
fragment size and standard deviation of fragment size are
Frontiers in Genetics | www.frontiersin.org 628
produced and saved as FASTQ sequence, better mimicking
real-world WES sequencing data. Output files from this step
are the short reads for test genome(s) (FASTQ) and the short
reads for the control genome (FASTQ, optional).

Creating BAM Files and Indexes From the
Simulated Short Read Files
BAM files and indexes can be generated from the short read files
for the test and control genomes through a standard pipeline that
implements the widely-used tools BWA (Li and Durbin, 2009),
samtools (Li et al., 2009; Li, 2011), Picard3, and GATK
(McKenna et al., 2010):

1. The Burrows–Wheeler Aligner of BWA is used to align the
FASTQ reads to create a SAM file.

2. Samtools is used to convert the file format to a BAM file, sort
the BAM file, and remove potential PCR duplicates.

3. Picard is used to add read groups to the samples.
4. GATK is used to locally realign reads, to minimize the

number of mismatching bases across all the reads.

The output files in this step include: 1. Indexes for the control
genome (.dict,.fai,.sa, etc., if BAM files are to be generated and no
indexes exist in the output directory); 2. BAM file(s) and index
(es) for the test genome(s) (.bam and.bai); 3. BAM file(s) and
index(es) for control genome (.bam and.bai, optional).

Validation of Method
To confirm that the code for the algorithm implemented in
SECNVs is correctly simulating the test genome and target
regions, a small pseudo-genome was used as input to illustrate
the process in Supplementary Figure 1.

Example Command Lines

1. Simulate 10 CNVs overlapping with target regions, and one
CNV outside of target regions randomly on each chromosome
using default lengths, copy numbers, minimum distance
between each of the 2 CNVs and proportion of duplications.
For each CNV overlapping with target regions, the overlapping
length is no less than 90 bps. CNV break points follow a
Gaussian(1, 2) distribution, and CNV lengths follow a Beta(2,
5) distribution. CNVs are not generated in gaps. A total of five
test and control samples are built. Short reads (fastq) files are
generated using default settings, paired-end sequencing.

SECNVs/SECNVs.py -G< input_fasta> -T< target_region>
-o < output_dir> \-e_chr 10 -o_chr 1 -ol 90 -ms gauss -as 1 -bs 2
-ml beta -al 2 -bl 5 -eN gap -n 5 -sc -pr -ssr

2. Simulate CNVs overlapping with target regions from a provided
CNV list. Twenty CNVs are to be simulated outside of target
regions randomly on the whole genome with default settings.
CNVs are not to be generated on any stretches of “N”s. A pair of
test and control genome are built.

SECNVs/SECNVs.py -G < input_fasta> -T <
t a r g e t _ r e g i o n> - o < ou t p u t _ d i r > \ - e _ c n v <
list_of_CNV_overlapping_with_target_regions> -o_tol 20
-eN all -sc
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3. Simulate 20 CNVs overlapping with target regions on the whole
genome and have at least 100 bps between any two CNVs.
CNVs are not generated outside of target regions. Gaps (50 or
more consecutive “N”s) are replaced by random nucleotides.
SNP rate is 0.001 and indel rate is 0.00001, and the maximum
indel length is 100 bps. Paired-end sequencing reads with
quality offset 35 are then produced. For a pair of test and
control genomes BAM files are generated.

SECNVs/SECNVs.py -G < input_fasta> -T < target_region>
-o < output_dir> \-e_tol 20 -f 100 -rN gap -sc -pr -q 35 -ssr -sb
\-s_r 0.001 -i_r 0.00001 -i_mlen 100 \-picard <
absolute_path_to_picard> -GATK < absolute_path_to_GATK>

4. Simulate CNVs overlapping with target regions and outside
of target regions from provided files of CNV lengths.
Combined single regions are formed from two or more
regions originally separated by less than 100 bps. CNVs are
not generated on gaps (60 or more consecutive “N”s). A total
of 10 test and control samples are built. The paired-end
sequencing must include sequences 50 bp upstream and
downstream of the target regions. The final output consists
of short reads (fastq) files with 100,000 reads.

SECNVs/SECNVs.py -G < input_fasta> -T <
target_region> -o < output_dir> \-ml user -e_cl <
length_file_1> -o_cl < length_file_2> \-clr 100 -eN gap
-n_gap 60 -n 10 -sc -pr -tf 50 -nr 100000 -ssr
Simulation of Mouse and Human Whole-
Exome Sequencing Datasets
To evaluate the performance of SECNVs, we used mouse (mm10)
and human (hg38) chromosome 1 (downloaded from UCSC
genome browser: https://genome.ucsc.edu/) as control genomes.
Target regions were exons, which were also downloaded from the
UCSC genome browser. We simulated 20 test genomes for each
species that included 100 randomly distributed CNVs that
overlapped at least 100 bp of target regions and ranged from
1,000 to 100,000 bp in length. Another 10 CNVs outside of target
regions were also generated for each species. For each test genome,
all sequenceswith “Ns” (gaps)were excluded, the SNPratewas set at
10-3, and the indel rate was set at 10-5 (Mills et al., 2006). The
minimum distance between any two CNVs was 1000 bp. For the
synthesis of short reads, target regions less than 100 bp apart were
connected and 50 bp upstream and downstream of the connected
target regions were also sequenced. Paired-end sequencing was set
to a base quality offset of 33. A total of one million reads were
generated for each sample, with a fragment size of 200 bp and a read
length of 100 bp. The rearranged fasta genome files with target
regions, fastq short read files, BAM files and indexes for the 20
samples and control were simulated in one command for each
species as follows:

Mouse: python SECNVs/SECNVs.py -G mouse/mouse.1.fa -T
mouse/mouse.1.bed -e_chr 100 -o_chr 10 -o test_mous -rn mouse
-ssr -sb -f 1000 -ol 100 -tf 50 -clr 100 -sc -eN all -pr -n 20 -q 33 -s_r
0.001 -i_r 0.00001 -nr 1000000 -picard< absolute_path_to_picard>
-GATK < absolute_path_to_GATK>

Human: python SECNVs/SECNVs.py -G hg38/hg38.1.fa -T
hg38/hg38.1.bed -e_chr 100 -o_chr 10 -o test_human_nn -rn
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human -ssr -sb -f 1000 -ol 100 -tf 50 -clr 100 -sc -eN all -pr -n 20
-q 33 -s_r 0.001 -i_r 0.00001 -nr 1000000 -picard <
absolute_path_to_picard> -GATK < absolute_path_to_GATK>

Validation of Read Generation
and Alignment
To confirm SECNVs is reliably simulating short reads and BAM
files, read alignments in the target regions for human and mouse
chromosome 1 against the respective reference genome were
visualized with IGV (Thorvaldsdóttir et al., 2013).

Evaluation of Performance of Simulator of
Exome Copy Number Variants
To demonstrate the utility of simulated datasets generated by
SECNVs in performance testing of CNV detection software, we
chose three commonly used WES CNV detection tools:
ExomeDepth (Plagnol et al., 2012), CODEX2 (Jiang et al.,
2018), and CANOES (Backenroth et al., 2014). Performance
was evaluated for sensitivity, precision and false discovery rate.
Sensitivity is the number of true CNVs that are correctly detected
divided by the total number of true CNVs. Precision is the
number of CNVs correctly detected by tools, divided by the total
number of CNVs detected by tools. False discovery rate (FDR),
which equals to 1—precision, is the number of CNVs incorrectly
detected by tools, divided by the total number of CNVs detected
by tools. During this evaluation, we found that CNV transition
probability in ExomeDepth and CNV occurrence in CANOES
influenced the test results the most, so we evaluated different
values for these parameters as well. All other parameters were
either left as default or set to fit the characteristics of CNVs we
expected to detect. For example, in ExomeDepth, length of
expected CNVs was set to 50000, which was about the average
CNV length expected. A CNV was considered detected if at least
80% of the detected CNV overlap with a simulated CNV.We also
used the best application with optimized parameter settings to
test if any CNVs outside of target regions were detected.
RESULTS

In this study, we presented a fast, reliable and highly-
customizable software application, SECNVs, which takes in a
reference genome and target regions to simulate SNPs, indels and
CNVs in one or multiple test genomes, as well as the control, and
outputs fasta formatted genome files with target regions, short
read files, BAM files and indexes in a single command.

Computational Speed
SECNVs is a fast software application for CNV simulation. The
detailed approximate computation time to generate CNVs for
each sample on human and mouse chromosome 1 is shown in
Table 2.

Validation of Method
Simulation of SNPs, indels and CNVs in the tiny pseudo-genome
established that the method of random replacement of gaps,
simulation of SNPs, indels and CNVs in the test genome is
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accurate; and the rearrangement of target regions for the test genome
is accurate aswell (Supplementary File 2; Supplementary Figure 1).

The simulated short reads and BAM files generated using the
modified Wessim1 code align across the whole target regions
(Figure 3). Differences in read coverage at combined and extended
target regions in test andcontrolBAMfiles are characteristic ofCNVs
spanning these target regions (Figures 3A, C). For target regions
without CNVs, there was no obvious difference in read coverage at
combined and extended target regions in test and control BAM files
(Figures 3B, D). No reads were aligned outside of target regions,
regardless of whether there were CNVs or not, except for a few
alignment errors. The reliability of the BAM files ensured that CNVs
overlapping with target regions could be readily detected.
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Sensitivity and Precision of Copy Number
Variant Detection From Simulated WES
Datasets
Average sensitivity, precision, FDR and the number of CNVs
detected by ExomeDepth, CANOES and CODEX2 using
simulated reads from human and mouse genomes are
summarized in Table 3 and Figure 4. Regardless of the species,
as the transition probability from ExomeDepth increased
(Figures 4A, B) and until the number of CNV detected
matched the number of CNV simulated, sensitivity increased,
and precision was high. Beyond 100 CNV, the number of detected
CNV rapidly inflated and precision rapidly declined. A similar
profile was observed for occurrence of CNV inCANOES (Figures
4C, D). The overall performance of ExomeDepth in terms of
precision and sensitivity was better than CANOES or CODEX
(Figure 5). False discovery rate was higher for the human data
than the mouse data. CODEX was not able to detect all of the
simulated CNV. Although the parameters of transition
probability in ExomeDepth and occurrence of CNV in
CANOES are similar in concept, the comparison in Figure 5
shows that as each of these parameters was changed, performance
of the two software tools was very different. We also confirmed
that CNVs simulated outside of exomes were never detected.
DISCUSSION

CNVs represent an important source of genetic variation and have
been associated with disease and other important phenotypic traits
in humans, domesticated animals and crops (Zhang et al., 2009;
FIGURE 3 | Exemplar simulated output BAM files visualized in IGV. (A) A 10 copy duplication at mouse chr1:65272798-65339955, which partially overlap with
exons of the Pikfyve gene. Because of the read depth in this region, the reads tracks are shown side-by-side; (B) A region of Dhx9 gene of the mouse genome,
showing no copy number variants in this region; (C) A deletion at human chr1: 35106158-35150376, which partially overlap with exons of the Zmym1 gene; (D) A
region of ANKRD13C gene of the human genome, showing no copy number variants in this region. In each image, the top track is a region of the test genome and
the middle track shows the same region of the control genome. The bottom track is the exons and introns of genes.
TABLE 2 | Computation time and memory usage of SECNVs.

Mouse
chromosome

1

Human
chromosome

1

1. Read in genome and target region files,
exclude all “N” sequences

<15 s <25 s

2. Generate list of CNVs overlapping with
target regions

<4 min <8 min

3. Generate list of CNVs outside of target
regions

<50 s <3 min

4. Generate rearranged genome: make
SNPs, indels and CNVs in the genome

<50 s <80 s

5. Generate short reads <7.5 min <7.5 min
6. Create indexes for the control genome <3.5 min <4.5 min
7. Generate BAM file and index <2 min <2 min

Max memory 5,630 MB 6,516 MB
Average memory 1,885.78 MB 2,521.26 MB
CNV, copy number variant; SECNVs, Simulator of Exome Copy Number Variants.
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Alkan et al., 2011).WES projects represent an increasingly common
source of genomic data that can be harvested to detect CNVs. Often
applied in the detection of mutations associated with cancer,
Mendelian and complex diseases in humans, WES data have also
been generated for multiple non-model organisms to identify
genetic variants, including CNVs (Prunier et al., 2017; Low et al.,
2019). However, previous studies have shown that detection of
CNVs from WES data is inconsistent across the tools designed to
detect these variants (Guo et al., 2013; Nam et al., 2016; Yao et al.,
2017). These evaluations have largely relied on datasets of well-
characterized CNVs obtained using array-based experiments or
WGS data from human samples, a benchmarking approach that
presents several limitations. First, known variants tend to occupy
the higher end of the spectrum of lengths for CNVs. Second, known
CNVs are often derived from cancer tissues and are expected to
show different features than germline CNVs. Third, the
characteristics of CNVs might differ significantly between
humans and other organisms. Therefore, flexible CNV simulators
would allow more rigorous testing of the efficacy of these tools.

Previously developed simulators fall short of producing
realistic CNVs and present a variety of operational issues that
make them challenging or impossible to use. Most of the
applications for simulating CNVs and other structural variants
from WGS data (Table 1) (Bartenhagen and Dugas, 2013;
Pattnaik et al., 2014; Qin et al., 2015; Faust, 2017; Xia et al.,
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2017), require commands be entered in several steps, and require
further processing to use their outputs. Among them, only
RSVSim (Bartenhagen and Dugas, 2013) and SVsim (Faust,
2017) allow users to specifically generate CNVs in user-
selected regions of the genome. However, they cannot calculate
rearranged coordinates of the target regions in the test genome
after simulating CNVs, which makes it impossible to use their
outputs to generate accurate sets of short reads if the user only
knows the original target regions but not the probe sequences in
sequencing step. Additionally, RSVSim runs into an infinite loop
when there are too many gaps in the genome.

To the best of our knowledge, VarSimLab1, previously
released as CNV-Sim2, is the only other program specifically
designed to simulate CNVs from WES data (Zare et al., 2017),
but the website for the software indicates it is currently not
usable. We found that CNV-Sim had a problem generating short
reads. The main issue with these programs appears to be their
reliance on the ideal target approach implemented in the
application Wessim1 (Kim et al., 2013) to generate short reads,
but this approach does not provide coverage across target regions
(see Supplementary File 1). Furthermore, the majority of CNVs
simulated by CNV-Sim overlap with each other when target
regions are nearby on the reference genome. A third issue is that
this program creates temporary “genomes” by deleting the
segments between target regions. Additional copies for the test
TABLE 3 | Average sensitivity, precision, FDR, and number of CNV detected using simulated WES datasets.

Application Parameter value Mouse Human

Sensitivity Precision FDR Total # of CNVs
detected

Sensitivity Precision FDR Total # of CNVs
detected

Exome-Depth 0.0005 0.34 0.99 0.01 34.2 0.20 0.98 0.02 20.1
0.001 0.37 0.99 0.01 37.3 0.22 0.98 0.02 22.7
0.010 0.48 0.99 0.01 49.3 0.32 0.98 0.02 32.8
0.020 0.53 0.99 0.01 55.0 0.36 0.98 0.02 38.1
0.030 0.55 0.98 0.02 58.4 0.39 0.98 0.02 41.5
0.050 0.60 0.99 0.01 64.3 0.44 0.98 0.02 47.1
0.080 0.65 0.98 0.02 70.4 0.48 0.98 0.02 52.7
0.100 0.67 0.98 0.02 73.1 0.50 0.97 0.03 56.0
0.150 0.70 0.96 0.04 78.0 0.55 0.93 0.07 66.1
0.200 0.72 0.94 0.06 83.3 0.61 0.85 0.15 80.6
0.250 0.74 0.90 0.10 89.5 0.64 0.69 0.31 106.1
0.300 0.76 0.82 0.18 101.6 0.68 0.49 0.51 157.4
0.350 0.77 0.65 0.35 127.9 0.71 0.31 0.69 262.1
0.400 0.78 0.43 0.57 193.7 0.73 0.17 0.83 482.5

CANOES 0.0005 0.34 0.90 0.10 37.7 0.32 0.91 0.09 35.6
0.001 0.36 0.90 0.10 40.1 0.35 0.90 0.10 38.7
0.010 0.45 0.89 0.11 50.7 0.44 0.88 0.12 50.7
0.050 0.55 0.79 0.21 72.3 0.54 0.79 0.21 73.7
0.080 0.56 0.65 0.35 95.2 0.55 0.64 0.36 100.8
0.100 0.55 0.53 0.47 120.4 0.54 0.48 0.52 136.6
0.120 0.52 0.39 0.61 158.0 0.50 0.31 0.69 198.1
0.125 0.51 0.35 0.65 169.5 0.49 0.27 0.73 218.0
0.150 0.46 0.20 0.80 248.2 0.41 0.13 0.87 356.3
0.200 0.35 0.09 0.91 404.4 0.27 0.05 0.95 574.7
0.250 0.28 0.06 0.94 460.8 0.20 0.04 0.96 611.6
0.300 0.25 0.06 0.94 473.9 0.19 0.03 0.97 631.9
0.350 0.22 0.05 0.95 479.9 0.17 0.03 0.97 655.6

CODEX2 – 0.47 0.72 0.28 65.9 0.31 0.71 0.29 44.9
February 20
20 | Volum
CNV, copy number variant; WES, whole-exome sequencing; FDR, false discovery. The parameter for ExomeDepth is transition probability and the parameter for CANOES is
CNV occurrence.
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FIGURE 4 | Sensitivity, precision and number of copy number variants (CNVs) detected for ExomeDepth and CANOES. The sensitivity, precision and number of
CNVs detected in (A) simulated mouse data for ExomeDepth, (B) simulated human data for ExomeDepth, (C) simulated mouse data for CANOES and (D) simulated
human data for CANOES are displayed. Red lines show sensitivity, blue lines show precision and orange lines show the number of CNVs detected. Solid triangles,
squares and circles represent the actual data points.
FIGURE 5 | Comparison of sensitivity, precision and number of copy number variants (CNVs) detected by the three software applications. (A) simulated mouse data
and (B) simulated human data. Red lines show sensitivity, blue lines show precision and orange lines show the number of CNVs detected. Because CODEX2 does
not have the parameter “transition probability” or “CNV occurrence,” a single value for sensitivity, precision and number of CNVs is displayed.
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genome are generated in the case of duplications, and additional
copies for the control genome are created in the case of deletions.
Short read files are then generated using these test and control
genomes (called “tumor” and “normal” in CNV-Sim). This makes
it impossible to generate pooled samples with a common control,
whereas many CNV detection applications for WES data require
pooled samples as input. In addition, it cannot simulate the realistic
scenario of CNVs with different degrees of overlap with target
regions. Finally, CNV-Sim only accepts one chromosome at a time.

Here, we described SECNVs, a novel software application that
fills this gap by simulating realistic CNVs fromWES data. First, it
uses a completely new method to accurately and reliably simulate
test genome(s) and target regions with SNPs, indels and CNVs.
Second, it incorporates a modified version of the Wessim1
algorithm to simulate short reads, which effectively mimics
real-world WES sequencing, including GC filtration. Third, to
keep the sequencing error profile up to date, SECNVs provides a
recent error profile for short read simulation and includes
detailed instructions on how to make user-specified error
profiles from real data. Finally, the options for CNV
simulation are highly customizable. In this paper, SECNVs was
applied to human and mouse data and the results showed that
CNVs simulated by the software application were successfully
detected by various WES CNV detection software applications,
demonstrating that output from SECNVs can be used to test
these applications and their parameters.

Sensitivity and FDR were similar to previous reports using
real data (Seiser and Innocenti, 2015; Zare et al., 2017). It is
known that the sensitivity is low and FDR is high for CNV
detection inWES datasets (Tan et al., 2014; Yao et al., 2017). This
is because read depth approaches are the only reliable method for
WES CNV detection, but they have many limitations (Tan et al.,
2014). In addition, the high SNP and indel rate introduced, as
well as GC filtration and sequencing errors affect the alignment
and reduce sensitivity and increase FDR. However, compared to
the real human CNV detection from Illumina genotyping
microarrays by other Hidden Markov Model-Based CNV
detection methods mentioned in Seiser and Innocenti (2015),
and real human CNV detection from WES data using various
software applications (Zare et al., 2017), the sensitivity, precision,
and FDR all suggest that CNVs generated by SECNVs are reliable
and can be easily detected.

After reaching the true CNV number, the number of detected
CNVs tends to inflate. When this happens, sensitivity either
increases very slowly or begins to drop, and precision decreases
rapidly. Therefore, the user can choose the transition probability,
CNV occurrence or similar parameter to detect CNVs
approximating the number of real CNVs, and determine if the
sensitivity and precision are acceptable. Alternatively, the user
can sacrifice some sensitivity and detect fewer CNVs to get
higher precision. Of course, users can test other parameters as
well to find out the most suitable software application and
parameter settings for their data.

Using datasets simulated with SECNVs, we were also able to
characterize the performance of CNV detection software
applications under a wide range of parameters. We showed
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that simulations are critical to assess the effect of key
parameters on the sensitivity and accuracy of such
applications. Thus, SECNVs can simulate highly customized
WES datasets to mimic real-world data and enable users to
identify the most appropriate software application and
parameter settings for their real data.

SECNVs is suitable for the analysis of large, complex genomes.
In our tests on mouse and human chromosome 1 (~195.5 and
~250 Mbp), the program simulated a new chromosome for each
species with 110 CNVs/chromosome, removed gaps, and generated
one million reads/sample, BAM files and indexes in less than 30
min. The run time for scaled-up simulations using complete
mammalian genomes (~3–3.5 Gbp) should therefore require less
than a day. Longer computational times are likely to occur for
incomplete genomes with more extensive gap regions, although the
gaps-exclusion component of SECNVs is computationally fast
(Table 2). Because there is no limitation in the number of input
chromosome/scaffolds/contigs, SECNVs can be applied to highly
fragmented assemblies of nonmodel organisms. For instance,
CNVs have been simulated using SECNVs on the ~21 Gbp
assembly of the loblolly pine, which consists of 1,755,249 contigs
and scaffolds. In general, for very large assemblies such as those of
wheat, conifer and some amphibian genomes, generating CNVs is
likely to be computationally demanding. Using only scaffolds and
contigs containing the target regions is advised in order to
accelerate the simulation of CNVs.

We identified two main limitations in the current version of
SECNVs. First, because SNPs and indels are simulated in the test
genome and then CNVs are simulated, there is no variability
among the duplicated sequences. Second, all CNVs are tandem
duplications or deletions in SECNVs. However, these limitations
do not affect CNV detection from WES data, because most WES
CNV detection methods are read depth based, which cannot
distinguish between tandem duplication and insertion elsewhere
in the genome (Tan et al., 2014). The nature of WES datasets
makes methods other than read depth ineffective for WES CNV
detection (Tan et al., 2014).

One caution is that most diploid reference genomes report a
consensus sequence for each pair of chromosomes. Therefore, by
default the SECNVs simulator adds or deletes two copies at a
time. If the user wanted to extend the simulator to an odd
number of duplication or deletion events, the bam files for the
reference and test genomes could be merged.

Currently, SECNVs only simulates indels in target regions to
increase speed. For SNPs, buffer regions upstream and
downstream of target regions are allowed for simulation,
because SNPs downstream of CNVs may affect the detection of
that CNV (Bartenhagen and Dugas, 2013). Buffer regions
upstream and downstream of target regions are also allowed
for short read simulation. In future version of SECNVs, SNPs
and indels will be simulated for the whole genome.

The time used for each step implemented in SECNVs strongly
depends on the parameter settings supplied by the user and
increases in an approximately linear manner. For instance, run
time is positively correlated with the number of CNVs, SNPs and
indels that are generated. In addition, the run time tends to
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increase significantly when the length of all CNVs combined
exceeds the length of the genome, but we expect that this model
will rarely be implemented when simulating realistic CNVs even
in small genomes. Given its flexibility, precision and variety of
unique features, SECNVs represents a reliable application to
study CNVs using WES data for various species and under a
variety of conditions.
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Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) has
opened new avenues of research in the genome-wide characterization of regulatory DNA-
protein interactions at the genetic and epigenetic level. As a consequence, it has become
the de facto standard for studies on the regulation of transcription, and literally thousands
of data sets for transcription factors and cofactors in different conditions and species are
now available to the scientific community. However, while pipelines and best practices
have been established for the analysis of a single experiment, there is still no consensus on
the best way to perform an integrated analysis of multiple datasets in the same condition,
in order to identify the most relevant and widespread regulatory modules composed by
different transcription factors and cofactors. We present here a computational pipeline for
this task, that integrates peak summit colocalization, a novel statistical framework for the
evaluation of its significance, and motif enrichment analysis. We show examples of its
application to ENCODE data, that led to the identification of relevant regulatory modules
composed of different factors, as well as the organization on DNA of the binding motifs
responsible for their recruitment.

Keywords: ChIP-seq, colocalization analysis, transcription factor (TF), transcriptional regulation, transcription
factor binding sites (TFBS)
INTRODUCTION

Next-generation sequencing based assays have opened novel avenues of investigation in every
aspect of research in genomics. In particular, they have become the standard in the genome-wide
characterization of all the elements concurring to the regulation of gene transcription, like
nucleosome positioning (Buenrostro et al., 2013; Pajoro et al., 2018), DNA accessibility (Giresi
et al., 2007), DNAmethylation, histone modifications and chromatin states (Roadmap Epigenomics
Consortium et al., 2015), transcription factor binding (Johnson et al., 2007), and long-distance
enhancer-promoter interactions (Fullwood and Ruan, 2009; Lieberman-Aiden et al., 2009).
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As a consequence, literally thousands of experiments have
been published on one or more of the above aspects in different
species and conditions, and large scale projects like ENCODE
(Gerstein et al., 2012) and Roadmap Epigenomics (Roadmap
Epigenomics Consortium et al., 2015) have been launched. It is
now standard practice also for small or midsize labs to produce
several datasets with different experiments, and to merge the
results obtained into a single overall picture of the regulatory
landscape of the condition studied.

Genome-wide NGS-based assays usually produce as a main
result a list of genomic regions, where base pairs included in
these regions satisfy the condition being tested, e.g., they are
nucleosome-free, bound by a transcription factor, occupied by a
nucleosome carrying a given histone modification, and so on.
Further information can be associated with each region, as for
example, its enrichment in the sequenced sample, that can be
expressed according to different measures. Key factors for the
reliability of the results produced are both wet lab protocols and
the downstream bioinformatic analysis of the data, and indeed,
as of today, a consensus has been reached for which are to be
considered the best practices for both (Landt et al., 2012).
However, we are far from having de facto standards for the
integrative analysis of the results of different experiments. In
principle, a single base pair on the genome appearing in the
output of two or more experiments can be considered to satisfy
simultaneously the different conditions that have been tested.
How this information can be interpreted depends on the
experiments producing the data to be analyzed. For example,
ChIP-Seq assays for different histone modifications in the same
condition can be processed with approaches like segmentation
(Ernst and Kellis, 2017), in order to identify their most relevant
combinations on the genome, and to produce a genome-wide
map of chromatin states each characterized by a different
combination of modifications, mapping the location of active
or repressed promoters, enhancers, transcribed regions, and so
on. However, the integrative analysis of different ChIP-Seq
experiments for DNA binding proteins like transcription
factors is usually performed with different criteria and
principles, often designed ad hoc for the protein or
condition studied.

In this work we present a simple pipeline for the integrative
analysis of any number of ChIP-Seq experiments for
transcription factors (TFs) or cofactors. Each ChIP-Seq
experiment returns a genome-wide map of the binding
locations on DNA of the protein studied. While this
phenomenon is usually represented as a single protein
interacting with DNA, in reality different factors and
cofactors form large protein complexes, binding DNA at
distal and proximal regions, that recruit RNA polymerase
and initiate transcription. Thus, it is of the utmost importance
for obtaining a complete understanding of the mechanisms
behind the regulation of transcription not to treat each factor
as a separate entity, but to identify combinations of different
factors binding DNA as a complex at the same loci of the
genome, and evaluate if these coassociations can constitute
widespread regulatory modules.
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Given the results of ChIP-Seq experiments for any number of
different TFs or cofactors, our pipeline has been designed to
answer the following questions: (1) Which are the combinations
of factors and cofactors that are found with higher frequency on
the genome? (2) Are the combinations found actually significant,
that is, not resulting from random associations between different
proteins but indeed found with high frequency on the genome,
thus signaling a higher level of organization in transcriptional
regulation? (3) Which are the recruiting rules on DNA, that is,
which are the factors actually bound to DNA, and are there
specific combinations (e.g., distance or orientation requirements)
for their DNA-binding sites?

These questions have become more and more relevant over
the years, once large datasets, like the assays performed by the
ENCODE project, have been released. Indeed, curated databases
containing thousands of ChIP-Seq datasets for TFs in different
species and conditions are now publicly available, like ChIP-
Atlas (Oki et al., 2018) or ReMap (Chèneby et al., 2018). An
important feature of these repositories is that, like in the
ENCODE project, all datasets included have been uniformly
reprocessed, in order to make their comparison as less biased as
possible by different choices in data analysis.

TF colocalization on the genome has been already defined
and tacked with different approaches, ever since the
introduction of the first NGS-based assays, as for example in
(Chen et al., 2008). Several works have addressed the problem
by starting from the position of TF binding peaks on the
genome [see among many others (Chen et al., 2008; Gerstein
et al., 2012)]. Colocalization, and its significance, is then
assessed starting from the number of overlapping peaks, and
evaluated with explorative or correlation measures like
Pearson correlation (Chen et al., 2008), z-scores (Gerstein
et al., 2012), the Jaccard index (Salvatore et al., 2019), or with
machine learning based techniques like self-organizing maps
(Xie et al., 2013).

An orthogonal approach is to analyze regions resulting from a
single ChIP-Seq experiment for enrichment of sequence motifs
known to represent sites be bound by other TFs, as for example
in (Wang et al., 2012; Levitsky et al., 2019). Candidate TFs thus
identified can be likely members of the same regulatory module.
The pipeline we introduce here is indeed a combination of these
two approaches, peak colocalization and motif enrichment
analysis, with the additional introduction of a statistical
framework designed ad hoc to assess both.
METHODS

Transcription Factor Colocalization
Defining Overlapping Peaks and Cobinding Regions
The overlap among two or more genome-wide datasets can
formalized in different ways, both in the definition of common
features and in the evaluation of the significance of the overlap
found, as reviewed for example in (Kanduri et al., 2019; Salvatore
et al., 2019).
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ChIP-Seq experiments for DNA binding proteins like TFs
produce as output enriched regions usually called “peaks.” This is
due to the experimental protocol preparing the DNA to be
sequenced (Figure 1). The fragments, produced by random
DNA sonication, are usually of about 200 bps. Once mapping
on the genome of the sequenced reads has been performed, the
actual fragment size can be reestimated according to the distance
between clusters of reads mapping on opposite strands, (Zhang
et al., 2008; Bailey and MacHanick, 2012; Mathelier et al., 2016)
in order to improve the resolution obtained by the experiment.
The result is a coverage “signal” map, giving an estimate of how
many times each base pair of the genome was present in the
sequenced DNA sample. Since the actual point of interaction
between the protein studied and DNA is present in each of the
fragments, enriched regions show a typical “peak” shape in the
signal map (Figure 1).

Algorithms for “peak calling” thus return regions where the
observed enrichment and respective signal is not considered to
be due to random experimental noise (Thomas et al., 2017). A
typical region is reported to be a few hundreds of base pairs long,
while the sites actually bound by TFs are much smaller, usually
no more than 10–12 base pairs. However, the local maxima of the
Frontiers in Genetics | www.frontiersin.org 338
peaks correspond, or at least are not too distant from, the actual
binding site of the protein studied (Zhang et al., 2008). Indeed,
ChIP-Seq peaks usually show a good “centrality,” that is, the
likely binding site of DNA returned by sequence analysis is
usually found to be within a few dozen base pairs from the
summit (Zhang et al., 2008; Bailey and MacHanick, 2012;
Mathelier et al., 2016). For proteins like cofactors, not directly
in contact with DNA, the argument still holds, with the only
difference that summits and binding sites are related to the
protein(s) of the complex tethering the cofactor on DNA.

The above considerations should be kept in mind when
performing colocalization analyses for TF binding. Simply
defining a DNA locus as “cobound” by two different
transcription factors if two peak regions overlap might
correspond to cases in which the actual binding sites of the
factors are hundreds of base pairs apart. Thus, our approach to
defining two (or more) TFs or cofactors as “colocalizing” on the
genome is based instead on peak summits coordinates. In other
words, we do not require two peak regions just to overlap, but we
consider the location of the respective summits. We then define
two peaks as “overlapping,” and the TFs to bind DNA in close
proximity, if the respective summits are within ds base pairs from
FIGURE 1 | The typical peak shaped enrichment plot for a ChIP-Seq experiment resulting from read mapping on the genome. The actual point of contact of the
protein studied on DNA is usually close to the point of maximum local enrichment (peak summit).
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one another, with an approach similar to (Chen et al., 2008),
where the “center” of peak regions was employed to assess
colocalization. With respect to (Chen et al., 2008), however, we
introduce also a statistical assessment of the significance of
overlaps, as detailed in the next section. As a default threshold
for this step we set as maximum distance ds = 150 bps, a distance
commonly employed in studies of this kind (Wang et al., 2012),
which also makes the calculation of the statistical significance of
overlap straightforward as shown in the next section.

We define pairs of peaks satisfying this criterion as cobinding
peaks. This, in turn, usually corresponds to having the binding
sites on DNA of the two factors located within a number of base
pairs (dbs) not too much different from the ds distance. Or,
alternatively, summit proximity could be due to only one of the
two factors in contact with DNA, with the other one being
anyway part of the same complex (Figure 2).

Assessing Statistical Significance of Peak Overlaps
Let TF1 and TF2 be two TFs on which the cobinding analysis is
performed; let n andm the respective number of peaks, and k the
number of cobinding peaks defined as at the previous point. We
want to assess the probability of finding by chance k cobinding
peaks (hence, regions bound by both TFs), given n and m.

In our approach, we also define a constant N, denoting the
number of regions across the genome available for TF binding,
whose size equals our “cobinding” region size of 150 bps. A
straightforward way to estimate N would be to count the overall
number of regions bound by all the TFs active in the condition
studied. This approach, however, would have the effect of
underestimating N if binding data were available only for a
limited number of TFs, i.e. several regions would not be included
in the count simply because the ChIP-Seq experiments for the
TFs binding them had not been performed.

However, since a region bound by a TF usually corresponds to
accessible DNA, estimate for N can be obtained from the number
of nucleosome-free regions, and their respective size. Thus, we
took advantage of maps of accessible DNA produced in several
different cell lines in the framework of the ENCODE project,
through digital genomic footprinting (Sabo et al., 2004; Vierstra
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and Stamatoyannopoulos, 2016). The advantage of these datasets
(retrieved from the UCSC genome browser track “UW DNaseI
DGF” on the GRCh37 assembly) is that the genome is split into
regions of exactly 150 bps, that corresponds to the maximum ds
distance between summits we allow for peak overlap. Thus,
cobinding peaks can be seen as two peak summits falling exactly
within the same accessible region. The value of N is naturally cell-
and condition-specific, ranging roughly from 200,000 to 250,000
for most of the ENCODE cell lines on which this assay has been
performed. In case this number is available for the condition
studied it can be thus employed in a straightforward way. If not, we
advise to employ N = 250,000, a value we consider to be reliable
enough for all different conditions in human, and also in other
mammalian genomes like mouse. The only exception to this rule
are embryonic stem cell lines, in which nucleosome occupancy has
been shown to be significantly lower (Celona et al., 2011; Harwood
et al., 2019), with an average number of genomic loci available for
binding almost doubled. Thus, for these the suggested value is
N = 500,000.

Indeed, the vast majority of the accessible regions results to be
bound by TFs (80%–90% in the different ENCODE cell lines for
which digital footprinting data are available). Once again, the
sole exception are stem cell lines, where the percentage is lower
(70% in ENCODE H7-ESC cells), also because less TF ChIP-Seq
experiments are available for this condition. The number of
regions actually bound (more than 300,000) is anyway larger,
nearly twice as much as the other cell lines.

Similar estimates can be derived for other species and taxa,
since nucleosome occupancy and DNA accessibility data are
available for all the most widely studied species, as for example in
Drosophila (Thomas et al., 2011), or Arabidopsis thaliana
(Tannenbaum et al., 2018). In these two species the smaller
genome size (hundreds of millions of base pairs) in turn results
in a proportionally lower number of estimated accessible regions
(tens of thousands).

An alternative, if data are available, could be to focus on regions
annotated as active promoters or enhancers, as revealed by
presence of specific histone marks or resulting from a genome
segmentation approach like ChromHMM (Ernst and Kellis, 2017).
FIGURE 2 | Definition of cobinding peaks. Peak summits are usually close of the point of contact of the corresponding transcription factor (TF) with DNA. Two peak
summits within a given number of base pairs ds (150 in this work) should thus correspond to two TFs binding DNA in close proximity with one another (left, with the
respective binding sites within dbs base pairs), or to one of the two TF tethering the other on DNA (right).
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An estimate for N can be thus derived by the number of regions of
size ds found annotated as active promoter or enhancer. Also, the
overlap between two TFs can be assessed in either subset of
regions, thus identifying promoter- or enhancer-specific modules.

Once an estimate for N has been produced, the probability of
finding k cobinding peaks for two TFs by chance given n and m
(the number of peaks for the two TFs, respectively) can be
computed with different approaches, for example with the
hypergeometric distribution:

p k; n,m,Nð Þ =

n

k

 !
N − n

m − k

 !

N

m

 !

or the Poisson distribution:

p k; n,m,Nð Þ = e−llk

k !

where l = mn
N . In our experiments we employed the latter,

since the p-values returned are more conservative. Since both
distributions are two-tailed, low p-values can point to significant
colocalization across the genome (k higher than the expected
value), or vice versa if k is lower than the expected value than the
two TFs considered tend to avoid one another on the genome.

This analysis is performed on every pair of experiments
available. If several pairwise comparisons are performed, then
the p-values should also be corrected for multiple testing. For
example, in the results we present here we analyzed 329
ENCODE datasets for TFs in the K562 cell line, thus with
329 × 329 pairwise comparisons. We employed once again the
most conservative choice, the Bonferroni correction, multiplying
the p-values by 3292 = 108,241.

Building Modules With More Than Two Factors
The results of the pairwise comparisons described at the previous
step can be further extended to modules composed by more than
two TFs or cofactors.

An initial explorative analysis (see Results) is to define a
colocalization score for each pair of experiments i and j, starting
from the corresponding number of cobinding peaks k, and the
respective p-value pij, as -log10pij if the observed overlap is
higher than the expected value, log10pij (and hence a negative
number) otherwise. The resulting values can be employed to
represent the results as a heatmap, and clustering the heatmap
can in turn highlight groups of TFs with significant pairwise
overlaps, hence likely to be found together in the same
regulatory module.

Another approach we introduce is to choose a “base” TFb, and
determine whether other TFs tend to colocalize within its peaks.
For every pair of TFs (TFi and TFj) different from TFb, this step is
formalized as follows:

- Let kb the number of peaks for the base TFb;

- Let ki and kj the number of cobinding regions with TFb of the
two other TFs (TFi and TFj);
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- Let kij be the number of cobinding regions for both TFi and TFj
with TFb

At this point, the significance of the cobinding of TFi and TFj
in correspondence to TFb binding sites can be assessed again
with a statistical test as in normal pairwise comparison. That is,
we can compute the probability of finding kij cobinding regions
for TFi, TFj and TFb, given ki, kj, and kb. The p-value can be
computed again with a Poisson distribution:

p kij; ki, kj, kb
� �

=  
e−llkij

kij !

where l =
kikj
kb
.

The resulting p-values can in turn be converted again into
scores, with the respective clustering highlighting groups of TFs
colocalizing, but this time with TFb as “tether” on DNA. Once
the base TFb has been chosen, this step can be performed by
selecting only TFs that had a significant overlap with TFb at the
previous step in their pairwise comparison with it.

If necessary, this step can be iterated any number of times, e.g.
assessing the significance of the overlap of a fourth TF given the
cobinding regions of TFb, TFi, TFj, and so on.

Defining Binding and Recruitment Rules Through
Motif Analysis
Once a list of genomic regions bound simultaneously by two (or
more) TFs has been produced, the next step is to determine if the
respective binding sites are actually present on DNA, and if so if
they present any arrangement, e.g., are found at a precise
distance, further hinting at co-operative binding and
interactions between the respective proteins.

The binding specificity of a TF is usually defined with a position
specific frequency matrix, or profile, obtained by the alignment of a
collection of binding sites for the TF (Stormo, 2000; Zambelli et al.,
2013a), defining its nucleotide preference on DNA. Several
collections of profiles are freely available, derived from large-
scale in vitro assays like SELEX or by the application of motif
discovery tools to ChIP-Seq peak regions (Wingender, 2008;
Mathelier et al., 2016; Khan et al., 2018; Wingender et al., 2018).
For example, the latest version of the JASPAR database (Khan
et al., 2018) includes for human and mouse profiles derived from
the analysis of the ENCODE datasets.

This step can be formalized as a motif enrichment analysis, that
is, the regions are analyzed in order to determine whether the motif
representing the binding specificity of each of the TFs involved can
be considered to be enriched in them, both in number and quality
of instances found. Different tools have been introduced for this
task, including a tool we developed called PscanChIP (Zambelli
et al., 2013b). Since, as we previously discussed, the region more
likely to correspond to the actual point of contact of the TF onDNA
is located near peak summits, PscanChIP requires as input a list of
one base pair peak summit coordinates, and scans the region of 150
base pairs centered on each one employing a collection of motifs
like the JASPAR database or defined by the user.

Actual motif enrichment is evaluated by the tool in
different ways:
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- Global enrichment: enrichment is assessed with respect to a
genomic background, that is, motifs are overrepresented in
the selected regions with respect to the rest of the genome
accessible to TF binding. Hence, a motif with significant
global enrichment could correspond to the actual binding
site of the TF (usually the most significant one), or binding
sites of other TFs which show a clear genome-wide tendency
to bind in association with it.

- Local enrichment: the enrichment of the motif in the peak
summit regions is compared to the regions immediately
upstream and downstream of the summit regions
themselves;

- Positional bias: the localization of the most likely instance of the
motif in each summit regions is identified, and the resulting
distribution is compared to a theoretical uniform distribution.

Thus, the results of motif enrichment analysis can be
interpreted as follows: if a motif corresponding to one of the
TFs binding the regions selected is found to be significantly
enriched according to the global p-value reported by PscanChIP,
then the corresponding TF can be assumed to be in contact with
DNA. Since the regions submitted as input are bound in vivo by
one or more TFs, then the corresponding motifs should be the
ones with the lowest global p-values among those employed in
the analysis. Also, given the centrality of ChIP-Seq peaks, they
should present a positional bias towards the middle of the
regions. Otherwise, TFs for which no significant motif
enrichment is found can be considered not to be directly
binding DNA, although part of a complex in contact with
DNA (Figure 2).

There are a few main differences between PscanChIP and
other methods for the same task. The presence/absence of a motif
instance in a region is evaluated with a score, ranging from 0 to 1,
instead of a yes/no decision (binding motif present/absent) as for
example in recent works (Dergilev et al., 2017; Czipa et al., 2020;
Levitsky et al., 2019), which are also focused on the analysis of
regions surrounding ChIP-Seq summits. Mean and variance of
scores of best motif instances in each of the summit regions are in
turn employed by PscanChIP to assess motif enrichment not
only with respect to regions flanking peaks (local enrichment), as
in similar tools (Zhang et al., 2011; Bailey and MacHanick, 2012),
but also with respect to the rest of the genome, providing a more
accurate evaluation of their significance.

PscanChIP also permits to perform a “motif centered”
analysis. Once the first round of motif enrichment analysis
has been completed in the neighborhood of peak summits,
users can select one of the motifs resulting to be significantly
enriched, and rerun the analysis centered this time on the
most likely instance of the motif in each of the input regions.
Regions containing a low quality instance for the motif chosen
are automatically discarded. The idea is to replace the peak
summit for the TF of interest with the most likely location of
its actual binding site on DNA. Thus, if two or more TFs have
their respective binding sites enriched in the regions, then the
motif centered analysis is meant to highlight if there is also a
preferential arrangement of their sites in the regions, signaled
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by the “positional bias” p-value output by PscanChIP. This
fact is in turn a strong indicator that the corresponding TFs
are likely to interact, require a precise arrangement for their
binding sites on DNA, and thus influence the respective
recruitment on DNA. Thus, by submitting to PscanChIP
cobinding peak regions for two of more TFs, we can assess
the enrichment and relative positions of the respective
binding sites.

Given a set of ChIP-Seq experiments for TFs and cofactors,
and the corresponding peaks and summits, our pipeline can be
thus summarized in the following steps:

1. Compute the summit neighborhood overlap for each pair of
TFs, and the corresponding p-values;

2. convert the p-values into scores, and cluster the experiments
according to the scores; this step is optional, but provides a
quick overview of the results obtained;

3. for selected pairs of TFs, define the recruitment and binding
rules on DNA by submitting the list of peak summits of either
one falling in cobinding regions to PscanChIP:
a. If motifs for both TFs are found to be significantly

enriched according to the global p-value, assess whether
there is a preferential arrangement or spacing of the
corresponding binding sites through motif centered
analysis on either one, by checking whether PscanChIP
reports a significant positional bias p-value (< 0.01) for the
other; if so, the distribution of the distances between the
two motifs can be further analyzed, starting from the
relative motif position in each of the input regions
reported by PscanChIP.

b. If only one motif is found to be enriched, then the
corresponding TF can be considered to be recruiting the
other on DNA.

c. If neither motif is enriched, then either the motifs
employed are not correct for the TFs studied, or there
might exist a third factor responsible for the recruitment of
the two factors considered.
4. The previous steps can be iterated in order to find significant
triplets, quadruplets, and so on, of TFs, and the
corresponding binding sites on DNA.

Peak cobinding analysis can be easily implemented with in-
house scripts, or with utilities like bedtools (Quinlan and Hall,
2010). A shell script making use of the bedtools “intersect” function
(bedtools version 2.29) is provided as Supplementary File 1.

PscanChIP is available both through a dedicated web
interface, or as a standalone software package. Both already
contain the latest release of the JASPAR database. Users can
anyway add to the already present collection their own profiles,
e.g., the result of a motif discovery analysis on the regions of
ChIP-Seq experiments with tools like MEME (Machanick and
Bailey, 2011), HOMER (Heinz et al., 2010) or Weeder (Zambelli
et al., 2014). Histograms of motif distance distributions
presented here were produced by plotting the relative distance
between two motifs as output by the motif centered analysis on
one of the two of PscanChIP.
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MATERIALS

ChIP-Seq data (“optimal thresholded” peak and summit
coordinates) for 492 experiments of transcription factors of
cofactors in the K562 cell line were retrieved from the
ENCODE data repository (Davis et al., 2018) (www.
encodeproject.org) as of 31st December of 2018. Each
experiment has been performed in at least two replicates,
whose consistency has been checked according to different
metrics. Only experiments with consistent replicates have been
released by ENCODE, with replicates merged into a single list of
consensus peak and summit coordinates (Landt et al., 2012).

Since in some cases for the same TF data contained more than
one experiment (e.g., with different tagging or antibodies, with or
without stimulation of the cells), we filtered the datasets as
follows: (1) Experiments on stimulated cells were not
considered. (2) In case for the same TF experiments were
performed with antibodies against both the wild-type protein
and a tagged protein (e.g., with flag or GFP), only the former was
kept. Finally, in case of redundant experiments for the same TF
not satisfying any of the above conditions we proceeded as
follows: (a) if an experiment contained less than 10,000 peaks,
and less than half of the peaks of the other(s), it was discarded;
(b) if the overlap among the remaining experiments was above
66% we kept the one with the highest number of peaks; otherwise
all the experiments for the TF were discarded. Peak overlap was
defined as for cobinding peaks, that is, the respective summits
had to be located within 150 bps.

After filtering, we obtained non redundant experiments for
329 TFs and other DNA binding proteins. The resulting list, with
the respective ENCODE identifiers , is avai lable as
Supplementary Table 1.

Sequence analysis was performed with PscanChIP version 1.3
(Zambelli et al., 2013b) using the JASPAR 2018 collection of
binding sites profi les (Khan et al . , 2018), and the
K562 background.
RESULTS

A preliminary version of the pipeline we present had been
applied to a comprehensive analysis of ENCODE ChIP-Seq
data for transcription factors and cofactors in three different
cell lines, focused on modules containing transcription factor
NF-Y (Dolfini et al., 2016). NF-Y is a trimeric TF composed of
two histone-like subunits (NF-YB and NF-YC) and a sequence-
specific subunit (NF-YA) binding to the CCAAT motif (CCAAT
box). The main difference of our previous work with the pipeline
we present here is that, since the original study was focused on
NF-Y, motif enrichment analysis was performed as a preliminary
step, and cobinding peaks and binding rules were further
investigated only for those TF whose binding regions were
enriched for the CCAAT box motif. Here, instead, motif
enrichment is assessed as a final step, so to include in the
pipeline the analysis of colocalization and recruitment for
factors not directly contacting DNA.
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We consider NF-Y an excellent case study for several reasons.
Its binding sites are functionally very well characterized from the
genetic point of view, are in general important, and in some cases
their presence in promoters is outright essential for the
transcription of the corresponding genes. The binding site
motif has a high information content, spanning 5 base pairs
flanking the central CCAAT, for a total of 10 discriminatory base
pairs. The motif is specific for only one complex, hence avoiding
the daunting task of disentangling subtle differences in binding
preferences among members of large TFs families.

ENCODE data contain experiments for two of the subunits of
the complex (NF-YA and NF-YB) in three cell lines. In each cell
line, the number of peaks for NF-YA is always lower than NF-YB,
and virtually all peaks for NF-YA overlap a peak for NF-YB. Amore
detailed analysis revealed that the peaks identified for NF-YB only
indeed correspond to “quasi-peaks” for NF-YA, that present
enrichment levels below detection thresholds for the bioinformatic
tools employed. The conclusion was thus that the NF-YB antibody
is more efficient than the one for NF-YA, and that the two subunits
can be assumed to be found together bound on DNA, as further
discussed in (Fleming et al., 2013). We thus employed peaks for NF-
YB for our analysis as representative of the whole NF-Y trimer.

Since the original release, new datasets have considerably
expanded the ENCODE repository, for new TFs or new cell lines.
Furthermore, while the initial ENCODE release contained
datasets processed with different tools and strategies, all ChIP-
Seq datasets have been reprocessed with a unique bioinformatic
pipeline, applying also more stringent quality controls for
experiments to be included in the official release. The result is
that some of the TFs originally included in the early ENCODE
releases -and in our study- have been removed, or the original
peak lists changed, both in number of peaks, peak size, or
genomic coordinates of peak regions. We thus reprocessed the
new datasets, focusing on the K562 cell line, with our pipeline
(see also Materials).

An updated version of the results is summarized in Figure 3.
The heatmap shows the significance of pairwise cobinding
between the ENCODE experiments available for the K562 cell
line (result of step 1 of the pipeline). The values represent the
log10 of the p-value resulting by the statistical assessment of the
overlap significance. Blue colors represent overlap higher than
expected (-log10 of the p-value), vice versa for black (log10 of the
p-value). Four main large clusters are clearly identifiable in the
center of the heatmap, formed by general transcription factors as
well as promoter-binding TFs. Several smaller clusters however
emerge, composed by proteins binding DNA at distal regions
away from genes. The complete results are available as
Supplementary Table 2.

Figure 4 shows the significance of the number of cobinding
peaks between pairs of TFs within NF-YB peaks (result of step 2),
restricted only to those TFs that had a significant overlap with
NF-YB at the first step (enriched with p-value < 10-10). It can be
observed how several small clusters emerge, clearly identifiable
along the main diagonal, each corresponding to a potential
genome-wide regulatory module composed by NF-Y and other
factors and cofactors.
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The already identified module containing NF-Y, FOS, and
other factors (Dolfini et al., 2016) was confirmed by the new
analysis on the reprocessed data (cluster in orange in Figure 4).
The presence of NF-YA, which colocalizes with NF-YB as a rule,
highlights the significance of this cluster, that is, it covers a
significant fraction of the NF-Y binding sites on the genome.
FOS is known to form a dimer with JUN, and to bind DNA on
the AP1 motif. The surprising result of our analysis was that in
the regions of FOS/NF-Y overlap the AP1 motif is not enriched,
but indeed seemed to be avoided (under-represented according
to PscanChIP), with the CCAAT box bound by NF-Y as the most
enriched one. Vice versa, FOS summits not overlapping with NF-
Y had the expected AP1 as the most enriched motif. Motif
centered analysis on the NF-Y/FOS cobinding peaks identified a
second binding motif for NF-Y, with the two CCAAT boxes
located with precise spacing on DNA, hinting at two NF-Y
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molecules forming a complex with FOS (Dolfini et al., 2016;
Zambelli and Pavesi, 2017). The same conclusion has been
confirmed by independent studies, leading to the interesting
hypothesis of a single complex connecting enhancers bound by
JUN/FOS to a promoter bound by NF-Y (Haubrock et al., 2016).

To further substantiate these results we repeated the analysis
of step 2 computing the significance of cobinding peaks between
pairs of TFs within FOS peaks, shown in Figure 5. Two distinct
clusters are easily identifiable, one (highlighted red in the figure)
composed by NF-YA/NF-YB and the other factors clustering
with NF-Y and FOS in the previous analysis. The second one
(green in Figure 5) is composed by factors forming the canonical
AP1 complex (JUN/JUNB/JUND). The two clusters and clearly
separated, and, more interestingly, the members of each show a
significant under-representation of their overlap with the others.
In other words, the number of cobinding peaks between pairs of
FIGURE 3 | Result of step 1 of the pipeline. Clustered heatmap of pairwise coassociation scores among 329 ENCODE ChIP-Seq experiments in the K562 cell line.
Coassociation scores are defined as −log10 of the p-value if the overlap is higher than expected, log10 of the p-value otherwise. Pearson correlation was employed
as distance for clustering.
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FIGURE 4 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with NF-YB for transcription factors (TFs) with significant overlap with
NF-YB (p-value lower than 10-10). Pearson correlation was employed as distance for clustering.
FIGURE 5 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with FOS for transcription factors (TFs) with significant overlap with
FOS (p-value lower than 10-100). Pearson correlation was employed as distance for clustering.
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members belonging to different clusters is significantly lower
than expected, converted into negative scores represented in
grayscale in the heatmap. The overall message thus becomes
clear: FOS is recruited on DNA by forming a complex either with
NF-Y or with JUN factors, but never by both. In fact, when
members of either cluster are found with FOS the others are
avoided, and vice versa.

Another cluster (in red in Figure 4) shows the overlap of NF-
Y with both USF1 and USF2, generalizing to the whole genome
previous observations (Zhu et al., 2003). USF factors in turn
show a significant colocalization within NF-Y peaks together
with RAD51. In this case, the motif enrichment analysis for both
the NF-Y/USF1 and NF-Y/USF2 cobinding regions returns both
the CCAAT-box and the expected E-box as significantly
enriched, with a strikingly precise spacing and orientation
between the two (shown in Figure 6 for NF-Y/USF1 cobinding
peaks). In most of the cobinding regions, the CCAAT is located
downstream of the E-box, at 17 or 18 bps of distance.

Interestingly, the USF1/USF2 cluster emerges in coassociation
with FOS as well (highlighted in yellow in Figure 5). Indeed, the
interactions of FOS with USF1/2 has been known ever since the
discovery of the latter (Blanar and Rutter, 1992; Aperlo et al.,
1996). The USF cluster in Figure 5 does not shows significant
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overlap with either the NF-Y or the AP1 cluster. Thus, to
determine whether FOS colocalizes with USF1/2 with or
without NF-Y, we performed another cobinding analysis
centered on USF1 peaks (Figure 7). Here several clusters
emerge, and, strikingly, one small cluster composed exactly bby
NF-YA, NF-YB, and FOS (highlighted in red in Figure 7).
However, the cobinding of FOS with JUN in USF1 peaks is
also significant, although JUN clusters elsewhere with members
of the AP1 complex (green in Figure 7).

By combining the results obtained from the three different
points of view just studied, the overall picture emerges. FOS can
be recruited either by NF-Y or as a member of the AP1 complex
with JUN factors, and the two modes are mutually exclusive.
When USF1 is found on DNA together with NF-Y or FOS, it is in
general with USF2; when FOS is bound on DNA with USF1/2, it
is mainly found in the NF-Y complex, but not exclusively; that is,
USF1/2 can be found in a smaller, but significant number of
genomic loci also in association with the AP1 complex
containing FOS. Complete cobinding statistics for the three TF
centered analyses are available as Supplementary Tables 3–5.

Another example of combinations of factors colocalizing with
NF-Y is the SIX5/ZNF143 pair (yellow cluster in Figure 4). The
CCAAT box and the ZNF143 binding motifs show evident
FIGURE 6 | Distribution of distances between the most likely instances of the CCAAT box and the E-box in cobinding peaks of NF-YB with USF1, as reported by
PscanChIP from in the motif centered analysis on the USF1 motif (Supplementary Table 6). The blue histogram shows the distribution of the position of the CCAAT
box when found on the positive strand of the genome; red when on the negative strand. The origin of the x-axis corresponds to the center of the USF1 binding sites
(E-box). The analysis has been performed on 2748 cobinding regions for NF-YB and USF1.
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FIGURE 7 | Clustered heatmap of pairwise coassociation scores restricted to peaks cobinding with USF1 for transcription factors (TFs) with significant overlap with
USF1 (p-value lower than 10-100). Pearson correlation was employed as distance for clustering.
FIGURE 8 | Distribution relative positions of the CCAAT box (blue histogram) and the E-box (red histogram) around the most likely instances of the SIX5/ZNF143 binding
site in the cobinding peaks of NF-YB with ZNF143, as reported by PscanChIP from in the motif centered analysis on the ZNF143 motif (Supplementary Table 7). The origin
of the x-axis corresponds to the center of the ZNF143 binding sites. The analysis has been performed on 1424 cobinding regions for NF-YB and ZNF143.
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preferential spacing (Figure 8). Sequence analysis also returned
significant enrichment and positional bias for an additional E-
box motif, also plotted in Figure 8, located in between the
ZNF143 and CCAAT motifs, once again with a strong
positional preference. Thus, in this case, the preferential
arrangement of binding sites on the genome seems to be
ZNF143/E-BOX/CCAAT, on either strand, with a precise
spacing. Since none of the known E-box binding TFs so far
included in the K562 datasets shows relevant cobinding with
ZNF143 inside NF-Y peaks, it remains to be determined what
could be the actual TF binding the E-Boxes, or if there are
different TFs of the same family binding each a subset of them.

A final example is colocalizing peaks with precise motif
arrangement of NF-YB with PBX2 (in turn with significant
overlap with PKNOX1, green cluster in Figure 4): the
respective binding sites on the genome can be found, once
again with a clear distance preference (Figure 9). The
interaction of NF-Y with TALE transcription factors, including
PBX2, and the arrangement of their binding sites on DNA has
indeed been recently reported as for example in zebrafish (Ladam
et al., 2018). In this case, however, PscanChIP motif analysis
reports that in about 20% of the cobinding peaks the CCAAT
box motif is returned to be the most likely candidate also for the
binding of PBX2, since its consensus motif (CTGTCAATCA) in
turn contains a CAAT subsequence (see Supplementary Table
Frontiers in Genetics | www.frontiersin.org 1247
8). Also, the p-value associated by PscanChIP to the PBX2 motif
is only marginally significant. Thus, it remains to be ascertained
whether the binding motifs found on DNA are actually bound by
the respective transcription factors in all the cobinding regions,
or, as more likely, there are instances where a single or double
CCAAT box bound by NF-Y is the motif tethering the complex
on DNA.
DISCUSSION

We presented a computational pipeline that, starting from a
collection of peak regions resulting from the analysis of different
TFs and cofactors, is able to single out the most relevant TF
combinations and modules in the condition studied. The
integration of peak and summit overlap with a sequence
analysis method developed specifically for the analysis of
ChIP-Seq regions also permits the characterization of the
recruitment rules on DNA for the complex and the
organization of the respective binding sites on the genome.

A preliminary version of this pipeline has been applied to the
analysis of the complete collection of ENCODE ChIP-Seq
experiments in three different cell lines, focusing on modules
containing transcription factor NF-Y. In this work, we
reanalyzed the updated ENCODE data for K562, essentially
FIGURE 9 | Distribution relative positions of PBX2 binding site with respect to the CCAAT box motif in cobinding peaks of NF-YB with PBX2, as reported by
PscanChIP from in the motif centered analysis on the CCAAT box motif (Supplementary Table 8). The origin of the x-axis corresponds to the center of the CCAAT
box binding sites. The analysis has been performed on 1782 cobinding regions for NF-YB and ZNF143.
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confirming the previous results for NF-Y, as well as finding novel
candidate interactors and genome-wide coassociations involving
also FOS, USF1, and USF2. We are now working on manuscripts
detailing the results obtained also on additional cell lines, on
different TFs and cofactors, as well as linking these findings
to functionality.

Our approach permits to build a picture of the regulatory
landscape of a given condition, highlighting the TF
coassociations found more frequently, and assessing their
significance as well as the corresponding organization of
binding sites on the genome. It can be integrated with
additional sources of information. For example, one could
focus on active promoters or enhancers, as revealed by
presence of specific histone marks, and restrict the
cobinding peak analysis only to those regions that carry a
precise chromatin annotation, resulting for example from a
genome segmentation approach (Hoffman et al., 2009; Ernst
and Kellis, 2017). In this way separate maps of regulatory
modules specific for enhancers and/or promoters can be built.
The data can be complemented with RNA-Seq experiments
performed after inactivation of the single TF, so that the
functionality—positive, negative, or neutral—of the single
modules can be inferred. Finally, the exact pattern of
binding in a single selected region can be further analyzed
by employing more sophisticated sequence analysis
approaches (Gheorghe et al., 2019).
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Large sets of genomic regions are generated by the initial analysis of various genome-
wide sequencing data, such as ChIP-seq and ATAC-seq experiments. Gene set
enrichment (GSE) methods are commonly employed to determine the pathways
associated with them. Given the pathways and other gene sets (e.g., GO terms) of
significance, it is of great interest to know the extent to which each is driven by binding
near transcription start sites (TSS) or near enhancers. Currently, no tool performs such
an analysis. Here, we present a method that addresses this question to complement
GSE methods for genomic regions. Specifically, the new method tests whether the
genomic regions in a gene set are significantly closer to a TSS (or to an enhancer)
than expected by chance given the total list of genomic regions, using a non-parametric
test. Combining the results from a GSE test with our novel method provides additional
information regarding the mode of regulation of each pathway, and additional evidence
that the pathway is truly enriched. We illustrate our new method with a large set of
ENCODE ChIP-seq data, using the chipenrich Bioconductor package. The results show
that our method is a powerful complementary approach to help researchers interpret
large sets of genomic regions.

Keywords: gene set enrichment test, ChIP-seq data analysis, non-parametric test, pathway analysis, genomic
regions

INTRODUCTION

Cell development and differentiation depend on complex gene expression patterns which are
precisely and spatiotemporally controlled. The complex process of gene regulation involves many
different mechanisms, including regulation of transcription (Berger, 2007; Deaton and Bird, 2011),
post-transcriptional regulation (Roundtree et al., 2017), and regulation of translation (Sonenberg
and Hinnebusch, 2009). Transcription is the first step to decode the genetic information from
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DNA to functional elements, and this process is regulated by
many cis-regulatory elements across the genome (Wittkopp
and Kalay, 2011). Cis-regulatory elements include promoters,
enhancers, silencers, and insulators, with promoters and
enhancers being two important ones that can initiate
transcription and are the most well-studied (Andersson,
2015). Both promoters and enhancers are regions of DNA
sequences that typically are a few hundred base pairs in length
(Nguyen et al., 2016). Promoters are usually located immediately
upstream of the transcription start sites (TSSs) on the 5′ end of
target genes (Sanyal et al., 2012) and recruit transcription factors
(TFs) and RNA polymerase II (RNAPII) to instruct the direction
and initiation of transcription (Schoenfelder and Fraser, 2019).
Conversely, enhancers can be located upstream, downstream,
or in the intron of the target gene or another unrelated gene
(Shlyueva et al., 2014) and bound by TFs and cofactors to
activate or increase the transcription rate of their target genes
(Li et al., 2016). The protein sequences and regulatory motifs of
many TFs are well conserved across living organisms, indicating
that genome-wide gene regulatory mechanisms have important
conserved properties (Lambert et al., 2018). However, some TFs
such as ESR1 bind to different sets of target genes in a cell type
specific manner (Gertz et al., 2012), resulting in complex and
dynamic TF regulatory programs. Thus, deciphering the rules of
TF binding events is a key step to understanding gene expression
patterns and associated biological pathways.

A diverse collection of sequence-based approaches exist
to probe the gene regulome (Pinsach-Abuin et al., 2016).
For instance, ChIP-seq can provide genome-wide information
about gene regulation for specific TFs or chromatin marks
by identifying thousands of genomic regions (i.e., peaks,
which we will refer to for simplicity) across the genome
(Schmidt et al., 2009). ATAC-seq and copy number variation
(CNV) sequencing are also popular for studying genome-
wide regulation (Xie and Tammi, 2009; Buenrostro et al.,
2015). Through the aforementioned sequencing data, we can
identify significant peaks that were bound by a particular
TF or modified chromatin mark (ChIP-seq), open chromatin
regions (ATAC-seq), or regions with a CNV. We can further
infer their underlying regulatory functions by associating the
identified regions with target genes, whether predicted or
verified. Since biological processes involve many genes and
pathways, gene-centered analysis on regulome data may not
be as informative as Gene Set Enrichment (GSE) testing
(Subramanian et al., 2005).

Most GSE methods were developed for gene expression data,
do not adjust for the varying lengths of genes or regulatory space
between them, and thus are not generally appropriate for GSE
testing with large sets of peaks. However, several GSE methods
have been developed to specifically test sets of peaks, including
GREAT (McLean et al., 2010), ChIP-Enrich (Welch et al., 2014),
Broad-Enrich (Cavalcante et al., 2014), and Poly-Enrich (Lee
et al., 2018). Among these, Poly-Enrich is the only method
that counts genomic regions (which we will refer to as peaks
for simplicity) for each gene, adjusts for the varying lengths of
genes and regulatory space between them, and provides a flexible
approach with the ability to assign weights to peaks.

Current methods for GSE testing of peaks focus mainly
on the relationship between peaks and TSSs (promoters).
However, although some TFs [e.g., E2F1 (Ertosun et al., 2016)]
preferentially bind to promoters, others [e.g., FOXA1 (Pristera
et al., 2015)] tend to bind enhancers, while still other TFs bind
to both enhancers and promoters depending on context (e.g.,
master regulators, such as Serum response factor). Therefore,
it is of great interest to know the patterns of TF binding
with respect to promoters and enhancers of the target genes
and pathways. Although GREAT (McLean et al., 2010), ChIP-
Enrich (Welch et al., 2014), and Poly-Enrich (Lee et al., 2018)
incorporate distal binding events in their GSE testing, no method
has been established for answering the question of whether a TF
is binding closer to TSSs, near enhancers, both, or neither for a
specific gene set.

Other methods such as ChIPseeker (Yu et al., 2015) and
Seq2pathway (Wang et al., 2015) also perform GSE testing for
genomic regions. Different from previous GSE testing methods
that assign peaks to nearest TSS (NTSS), ChIPseeker applies a
max distance cutoff for assigning peaks to genes. Seq2pathway
incorporates the significance of each genomic region and both
coding and non-coding regions in GSE testing. Methods such
as Cistrome-GO (Li et al., 2019) and TREG (Chen et al., 2013)
incorporate the distance between ChIP-seq peaks and a gene’s
TSS into the GSE testing itself. Cistrome-GO integrates the peak
distance to TSS and the peak number together to estimate the
gene regulation potential. TREG collects the peak distances to a
gene’s TSS within a 2Mb window around each TSS into the GSE
test. However, since these methods embed the information about
binding proximity to a TSS within the test itself, it is difficult for
the user to interpret the results with respect to this information,
or separate the effect of proximity from that of enrichment.
A recently published, unique tool called loci2path (Xu et al.,
2019) links a set of genomic regions to key pathways by testing
for enrichment of expression quantitative trait loci (eQTLs) in
the genomic regions, including tissue-specific analyses. By using
eQTL target genes, loci2path does not rely on assigning genomic
regions to the nearest gene, and thus it is a complementary
method to a proximity test. No method, to our knowledge,
incorporates enhancer proximity.

Here, we propose a new method, Proximity Regulation
(ProxReg) to address this shortcoming of current methods.
By measuring the distance between each peak and the closest
TSS (or enhancer) and then performing a modified two-sided
Wilcoxon rank-sum test, we test whether the peaks in a gene
set are significantly closer to TSSs or enhancers than expected
by chance. Our method, in combination with a GSE test, is
able to provide additional evidence that a pathway is truly
enriched and information on the regulatory mechanism for that
enrichment. After validating the Type I error rate of our method,
we test ProxReg by applying it, in combination with Poly-
Enrich (implemented in the chipenrich Bioconductor package)
to 90 ENCODE ChIP-seq datasets (Sloan et al., 2015), including
35 TFs. In many cases, this led to a significant improvement
in the ability to pinpoint the known biological processes in
which a TF functions. In summary, we show the power and
benefits of ProxReg, which is available in five species (fruit fly,
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zebrafish, mouse, rat, and human) for promoters and in human
for enhancers, to complement GSE testing of large sets of peaks.

MATERIALS AND METHODS

Datasets Used
We used a total of 90 human ChIP-seq datasets from the
Encyclopedia of DNA Elements (ENCODE) at University of
California, Santa Cruz (ENCODE Project Consortium, 2004;
Qu and Fang, 2013; Sloan et al., 2015) that consists of 35 TFs
over the three Tier 1 cell lines [embryonic stem cells (H1-
hESC), B-Lymphocyte (GM12878), and myelogenous leukemia
cell (K562)] (Supplementary Table 1).

Gene sets tested were Gene Ontology: Biological Processes
(GO BP) from GO.db Bioconductor package version 3.4.2 (The
Gene Ontology Consortium, 2018). We filtered gene sets to only
use those with more than 15 and less than 2000 genes, as small
gene sets have very little statistical power and large gene sets tend
to be too vague to have meaningful biological interpretation. This
resulted in 5159 GO BP gene sets.

Measuring Peak Distances to Nearest
Transcription Start Site or Enhancer
Midpoint
Each peak’s “regulatory proximity” was defined as the distance,
in base pairs, between the peak’s midpoint and either the closest
TSS or the midpoint of the closest enhancer region. Human
gene TSS locations were obtained from the chipenrich package,
which for hg19 version 3.5.0 are from Bioconductor packages
TxDb.Hsapiens.UCSC.hg19.knowngene version 3.2.2 (Carlson
and Maintainer, 2015) and org.Hs.eg.db version 3.5.0 (Carlson,
2018). Enhancer regions were defined by the union of DNase
hypersensitive sites (DNase DHSs) found in at least two of the
125 cell and tissue types processed by ENCODE (Thurman et al.,
2012) and distal and non-promoter DHS within 500 kb of the
correlated promoter DHSs from 32 cell types (Thurman et al.,
2012). The minimum of two cell types was used to reduce false
positives. Unions were calculated using the expand_and_resect2
function in the granges R package with min.gapwidth = 0, and
distal and non-promoter elements were defined as those >5 kb
from a TSS. That is, we removed only the portion of an enhancer
that was <5 kb from a TSS. This resulted in a total set of
1,616,520 regions >5 kb from a TSS composed of enhancers,
silencers, and insulators, although for simplicity we refer to the
total set as enhancers. Finally, all peaks are then assigned to the
gene with the NTSS.

ProxReg Step 1: Normalizing for Gene
Locus Length and Average Distance to
Enhancer
Identical to our previous work, we define a gene’s locus length
(in bps) as the length of the region on the genome such that
a peak binding in the region is assigned to that target gene
(Cavalcante et al., 2014; Welch et al., 2014). As genes with larger
locus lengths (i.e., longer distances to neighboring genes) are

more likely to have peaks binding farther away from the gene’s
TSS, gene locus length is associated with average peak distance
to TSS, and thus gene locus length is a potential confounding
variable. To empirically normalize for gene locus length, we used
the combined set of peaks from all 90 ENCODE ChIP-seq peak
datasets and computed a cubic smoothing spline for log locus
length (x-axis) vs. log peak distances (y-axis) using the gam
function in the mgcv package. The spline provides the expected,
global average binding distance for each gene, which we then used
to obtain the normalized adjusted binding distance as:

Dadj
tss = logDtss − logDspline

Thus, peaks that are closer to a TSS than expected based
on the spline fit will contribute to significant promoter
proximity for a gene set.

Similar to how a gene with a longer locus length tends
to have peaks farther from its TSS, gene loci with farther
spaced enhancers tend to have peaks farther from them. More
specifically, the distance to an enhancer region is associated with
how far apart a gene’s enhancers are spread, which is dependent
on both the gene locus length and the number and distribution of
enhancers associated with the locus region. Therefore, the average
(or expected) enhancer density for each gene is a potentially
confounding variable. To normalize for this, we first determined
every gene’s empirical average distance to an enhancer with our
list of 90 ENCODE ChIP-seq datasets, and then calculated each
peak’s distance to the nearest enhancer, and finally averaged this
distance for each individual gene. As these 90 experiments do not
cover every gene, if a dataset happens to have a peak assigned
to a gene not covered, the average distance to enhancer will be
set as the predicted mean of a linear estimation using the log
gene locus length of the known genes. Similar to the locus length
normalization, we have the adjusted enhancer distance:

Dadj
enh = logDenh − logAvgDenh

Thus, peaks closer to an enhancer than expected by chance will
contribute to significant enhancer proximity for a gene set.

ProxReg Step 2: Testing for Proximal
Regulatory Binding
For a gene set of interest, the peaks assigned to genes in the
gene set are placed in one group while all other peaks assigned
to other genes, called the background genes, are placed in
another. We let any gene that has the potential of a peak being
assigned to it and annotated in the gene set database to be
a background gene, which is equivalent to the procedure of
gene expression tools such as DAVID (Da Wei Huang et al.,
2007). The goal is to test whether the peaks in the gene set
are significantly closer to TSSs (or enhancers) than expected
by chance, given the adjusted distances described above. We
use a two-sided Wilcoxon rank-sum test, with positive values
denoting the distances in the gene set are smaller than those
not in the gene set, to test if peaks in the gene set tend
to be closer or farther from regulatory regions than those
not in the gene set. To account for multiple testing, we
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use the Benjamini–Hochberg method to calculate FDR values
(Benjamini and Hochberg, 1995).

Gene Set Enrichment Testing Using
Poly-Enrich
We tested all 90 ENCODE datasets using the polyenrich method
in the chipenrich Bioconductor package, using the “nearest_tss”
gene locus definition and GO biological processes for the gene
sets. Poly-Enrich performs GSE on sets of peaks by testing if the
number of peaks regulating a gene set is greater or less than that
not in the gene set, taking into account the number of peaks
assigned to each gene (Lee et al., 2018). The statistical model uses
a negative binomial glm with an adjustment for gene locus length.
Significantly enriched gene sets have more peaks, while depleted
ones have fewer.

Permutations to Assess Type I Error Rate
To test Type I error rate of the ProxReg method, we simulated a
null set of peak distances (i.e., with no gene sets having significant
proximal binding) in three ways: (1) by reassigning every peak to
a random gene, where all genes are equally likely to be assigned
(Unif ). (2) To test for correct normalization of gene locus length,
we randomized peaks to a gene as above, except genes were first
binned with other genes of similar locus length as defined by
their TSSs. Specifically, we ranked genes by locus length, binned
them into sets of 100 genes, and then reassigned every peak to a
random gene within the same bin (ByLocusLength). (3) To test the
normalization of average distance to enhancers, we ranked genes
by expected distance to enhancer by chance, and then binned
genes into sets of 100. Again, we then reassigned every peak to
a random gene within the same bin (ByAvgDEnh). We performed
10 randomizations per ChIP-seq experiment and chose α-levels
of 0.05 and 0.001 to test for a controlled Type I error rate.

Simulations to Estimate Power
We simulated significant proximal gene sets by starting from a
null set of peaks using the ByLocusLength permutation strategy.
We then added peaks near the TSSs of genes from a gene set, with
the choice of a small (471 genes) or a large (1717 genes) gene set.
The number of peaks added was equal to 0.01, 0.05, or 0.1% of the
total number of starting peaks (4839) in the null set. The distance
was chosen from an exponential distribution with mean d0, and
an equal chance for upstream or downstream. We chose values of
100, 500, 1000 for d0 to simulate scenarios of closer and farther
binding. For each scenario, 200 simulated gene sets were ran.

Clustering for TF Regulatory Patterns
To investigate the regulatory patterns among all 90 ENCODE
ChIP-seq data sets, we performed clustering to classify them.
We first applied a p-value cut off (<0.001) for both ProxReg
(promoter and enhancer) results and Poly-Enrich results. We
counted the numbers of points (GO BP terms) in each of
four regions, defined by the different colored regions shown in
Figure 3, for both promoter and enhancer results in all 90 data
sets. Then, a hierarchical clustering heat map was generated based
on the log 2 value of counts from each region. The Euclidean

distance metric was used with Ward’s minimum variance method
for clustering. In addition, we also calculated the Pearson
correlation between ProxReg promoter results and enhancer
results. Since we propose our method as a complementary
method for GSE testing, only signed negative log p-values of
significant GO terms (FDR < 0.05) from Poly-Enrich were used
for correlation calculations.

Test for the Ability of ProxReg to Reduce
False Positives From GSE Results
To test the ability of our method to reduce false positives from
GSE results, we compared the results of ProxReg and Poly-Enrich
together to Poly-Enrich alone, using gene sets for each TF that
the TF is likely to regulate. Since no gold standard is available
for this, we used the GO BP terms that our 35 TFs were assigned
to in the human annotation Bioconductor package org.Hs.eg.db
(Carlson, 2018). Motivation for this derives from the fact that
TFs do not regulate random sets of genes, but rather a well-
coordinated set of genes in order to fulfill a cellular biological
goal. Indeed, it’s been shown that genes in a GO biological process
term tend to be regulated by a common TF (Allocco et al., 2004;
Qian et al., 2005; Roider et al., 2008; O’Connor et al., 2016). The
cellular biological goal is precisely what GO biological process
terms aim to describe, as it is defined as “The larger processes,
or ‘biological programs’ accomplished by multiple molecular
activities” (The Gene Ontology Consortium, 2004), which for
TFs in DNA binding. Based on these two facts, the TFs that are
assigned to a GO biological process term relate closely to this
biological process, and since the function of TFs is to regulate
genes, it follows logically that TFs tend to regulate genes in the
biological processes to which they belong. As an example, the
NCBI Gene website, an authoritative source for the properties
of genes, states in the main summary of E2F family genes that
“the E2F family plays a crucial role in the control of cell cycle”.
This family includes members E2F1, E2F2, E2F3a, E2F3b, E2F4,
E2F5, E2F6, E2F7, and E2F8. In each case, we can also find at
NCBI Gene that these TFs are assigned to the GO BP terms
related to cell cycle. To further validate our approach, we tested
whether the TFs actually do tend to target the promoters of
genes in their assigned GO terms. Indeed, we found a strong
overall trend to targeting more genes in the assigned GO terms
versus the non-assigned GO terms (Supplementary Figure 1
and Supplementary Table 2). Although TFs may not regulate
all of their target gene sets in every cell type, we conclude that
the degree of overlap between a method’s predictions and a TF’s
assigned GO BP terms represents a useful benchmarking tool.

To assess this, we first counted all significantly enriched gene
sets from Poly-Enrich for all 90 ENCODE ChIP-seq data sets
and found their overlap with the GO BP terms each TF was
assigned to in org.Hs.eg.db. These GO terms were used to count
significant GO terms from ProxReg promoter and enhancer
results. Fisher’s exact test was used to determine whether ProxReg
further enriched the resulting GO terms to those assigned to by
the TF, beyond what GSE testing accomplished. We used datasets
for TFs that are assigned to at least five GO BP terms that were
also significant with GSE testing alone. Fisher’s exact test results
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demonstrated whether ProxReg was able to increase the odds
ratio of identifying GO BP terms assigned to the TF, compared
to GSE testing alone.

Website Implementation and
Bioconductor Availability
Proximity Regulation is available in the chipenrich Bioconductor
package with the proxReg() function, and at the ChIP-Enrich
website1, as an additional option following any of our current
GSE tests. To run ProxReg, the user uploads a file of peaks, which
can be in narrowPeak or BED format. They then select to test for
proximity to either NTSS or enhancers. Currently, we have only
implemented testing for enhancer proximity in human (hg19
genome), but others will be added as enhancers are sufficiently
defined in other species and newer genome versions. Finally, the
user selects what gene sets to test from any of our included gene
set databases (including KEGG, Panther, MSigDB gene sets, and
several others; details in chipenrich package and on website), or a
user-generated set. An example of the proxReg() function outputs
four files:

Opts: the options that the user input into the function.
Peaks: a peak-level summary showing the peak-to-gene
assignment for each peak, as well as their distances to
TSS or enhancer.
Results: the results of the proximity tests. Lists the tested
gene sets along with their descriptions, the test effect,
closer/farther status, p-value, and FDR. Also included is
the list of Entrez gene IDs with contributing signal for
each proximity test.
Qcplot: a histogram showing the distribution
of peak distances.

All R code for recreating analysis and figures can be found at:
https://github.com/sartorlab/proxReg. An example for the use of
ProxReg can be found in the chipenrich Bioconductor vignette.

RESULTS

Overview of ProxReg Method
We developed a new method, ProxReg, to test the proximity
of peaks to TSSs or enhancers in a gene set of interest. The
motivation for our new method is illustrated in Figure 1. The
goal is to test whether the enrichment of a GO term or pathway
is driven by regulation via promoters or distal regions (i.e.,
enhancers). To accomplish this, we firstly measure the distances
from the midpoints of the peaks to the nearest regulatory regions
(either TSSs or enhancers), and assign each peak to its target
gene according to the gene with the NTSS (Welch et al., 2014).
Specifically, for each gene we defined its gene locus to be the
region between the upstream and downstream midpoints of
its TSS and the neighboring gene’s TSSs. However, one cannot
simply directly test whether the distances are smaller within
a gene set versus other genes, due to potentially confounding

1http://chip-enrich.med.umich.edu

variables that first need to be taken into account. Since a gene
locus with a large length was observed to have farther peaks
from its TSS on average (Figure 1A), we first normalize for
the gene locus length before testing the proximity to TSSs (see
section “Materials and Methods”). For enhancers, we observed
that the distance to an enhancer was dependent on the average
distance from each enhancer to peaks in a gene locus (Figure 1B).
Thus, we normalized the raw peak to enhancer distances using
the average enhancer density for each gene. Finally, a two-sided
Wilcoxon rank sum test was used for testing the proximity of
peaks in a gene set to TSSs (or enhancers) compared to peaks
outside the gene set. Generally, this test would be performed on
all of the enriched gene sets identified by a GSE test, to understand
whether the enrichment of each gene set was due to regulatory
activity near promoters or enhancers.

Recommended Workflow for ProxReg
To test our new method, 90 ENCODE ChIP-seq data sets (36 TFs
in three Tier 1 cell lines) (ENCODE Project Consortium, 2004;
Qu and Fang, 2013; Sloan et al., 2015) were used in this study.
The recommended workflow for implementing our new method
is summarized in Figure 2. We begin with a gene definition
file containing gene locus definitions (provided by our software,
or uploaded custom by the user) and a set of peaks of interest
(provided by the user). The distance between the midpoint of
peaks and NTSSs (or midpoint of enhancers) are measured and
adjusted for all background genes. The ProxReg non-parametric
test is ran for the chosen gene sets (e.g., GO). In parallel to this,
a standard GSE test is performed using the same gene sets. In
this article, we applied the polyenrich method for the GSE test
(Lee et al., 2018), but others may be used. Result files contain
the proximity results with test direction (enriched/depleted from
GSE, and closer/farther from ProxReg), p-values and FDR values.
Combined with the p-values from GSE, the gene set proximity
and enrichment patterns can be easily visualized (Figure 2; see
section “Results”).

Controlled Type 1 Error Rate and Ability
to Detect True Positive Results
We validated the Type 1 error rate (rate of false positives) of
ProxReg using randomizations of real datasets to simulate null
datasets with no significant proximities to TSSs or enhancers. We
performed three types of permutations: the “Unif ” permutation,
which takes every peak and reassigns another gene to it with
each gene having the same probability, the “ByLocusLength”
permutation, which tests the effectiveness of the locus length
normalization in the distance to TSS test, and the “ByAvgDEnh”
permutation, which tests the effectiveness of the normalization
to average distance to enhancer in the distance to enhancer
test (see section “Materials and Methods” for details). For
a p-value < 0.05 cutoff, we expect a Type I error rate of
approximately 5%. For a p-value < 0.001 cutoff, we expect a
Type I error rate of approximately 0.1%. Results indicate that for
each permutation (Unif and ByLocusLength for TSS proximity
tests, and Unif and ByAvgDEnh for enhancer proximity tests), the
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FIGURE 1 | Overview of how ProxReg adjusts for confounding variables. We describe the ProxReg adjustments in two parts. (A) When testing proximity to TSSs,
we normalize the peak distances to TSSs according to their relationship with gene locus lengths. (B) When testing proximity to enhancer, we normalize the peak
distances to enhancers according to their relationship with enhancer density, modeled by the average distance of any peak to an enhancer. In both cases, we avoid
a potential confounding effect, as shown by the arrows between variables on the left-hand side.

Type 1 error rate is reasonably controlled at the expected level
(Supplementary Figure 2).

To ensure that our method is able to identify gene sets with
true cases of TSS or enhancer proximity, we generated artificial
peak datasets starting with a randomized data set using the
ByLocusLength permutation, and then adding peaks with TSS
distances following a specified distribution. We added peaks by
varying the number of peaks and the distance of peaks to assess
a wide range of scenarios. We also used two gene sets of different
sizes (see section “Materials and Methods” for details). We
expected the following changes in parameters to increase power: a

smaller gene set used (easier to influence average distance), more
peaks added, and a smaller average distance. We can see that all
three of these scenarios increased power to detect the true positive
gene sets as expected (Supplementary Figure 3).

Integration of GSE and ProxReg Results
Reveals Different Regulatory Patterns of
TFs
We clustered the 90 ENCODE ChIP-seq datasets into three
groups based on the hierarchical clustering heat map illustrated
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FIGURE 2 | Overview of how of ProxReg fits in with the overall workflow of gene set enrichment testing with genomic regions. The peak distances to TSSs or
enhancers are calculated for the proximity test. In parallel, all peaks are assigned to genes for gene set enrichment testing. The same gene set database is used for
both proximity and gene set enrichment testing. Combining the gene set enrichment and proximity tests, the results can be visualized as shown in section “Results.”
The left scatter plot is an example of the combination of enrichment and promoter results. The right scatter plot is an example of enhancer results combined with
enrichment results. The x-axis of these two scatter plots represent the gene set enrichment test result. A larger signed –log p-value indicates more enrichment, while
negative values indicate depletion. The Y-axis represents the proximity results. Larger signed –log p-values indicate GO terms having genomic regions closer to the
TSSs or enhancers.
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in Figure 3. The first and largest group (47 datasets) is
characterized by a strong positive correlation between GSE and
promoter (TSS) ProxReg signed significance levels, and a strong
negative correlation between GSE and enhancer ProxReg signed
significance levels, indicating that the majority of enriched gene
sets are due to binding near TSSs (Figure 3 blue cluster; many
genes in regions p1, p2, e3, and e4). TFs like SIX5 (SIX homeobox
5), SP1 (Specificity Protein 1∗), and GABP (Nuclear Respiratory
Factor 2) are included in this group. The second largest group (32
datasets) is more interesting because the datasets consist of some
enriched gene sets with significant proximity to promoters, and
other enriched gene sets with significant proximity to enhancers
(Figure 3 red cluster; genes spread out across mainly p1, p4,
e1, and e4). The results for these TFs enable understanding
the different regulatory mechanisms used for different biological
processes. MEF2A (Myocyte-specific enhancer factor 2A) in
K562 cells, a member of this group, was observed to regulate
GTPase activity and translational initiation-related GO terms
from TSSs, and transmission of nerve impulse and multicellular
organismal signaling GO terms from enhancers. Similarly,
P300 (Histone acetyltransferase p300), a well-known marker of
enhancers, was found to regulate chromatin organization from
TSSs, while regulating phosphatidylinositol dephosphorylation
and phosphatidylinositol-mediated signaling-related GO terms
from enhancers (Fryer et al., 2002; De Luca et al., 2003).
The smallest group included only 11 ChIP-seq datasets. This
group was characterized mainly by enriched gene sets with
many having significant proximity to enhancer regions and/or
far from promoters (Figure 3 purple cluster; many genes in
p4 and e1). Members of this group included Pol II in all
three cell lines and EGR1 in K562 cells and Gm12878 cells,
indicative of Pol II binding along entire gene lengths and
not just at promoters. In addition, we examined the Pearson
correlation between promoter results and enhancer results for
all 90 ENCODE ChIP-seq data sets. Eighty-eight of them show a
negative correlation between the promoter results and enhancer
results (Figure 4). This negative correlation indicates that overall,
GO terms are significantly enriched either by the TF binding
closer to promoters or closer to enhancers. Among these 90 data
sets, most of them (67 out of 88 data sets) show a strong negative
correlation as shown in Figure 4A. Several of them have weak
correlations as shown in Figure 4B. The two datasets that did
not show negative correlations are neuron restrictive silencer
factor (NRSF) and CMYC in H1-hESC cells. After removing non-
significant GO BP terms from Poly-Enrich results, NRSF data set
shows a weak positive correlation based on the remaining GO BP
terms and no significant GO BP terms in CMYC data set.

ProxReg Identifies Known Associations
With Promoter and Enhancer Binding,
Using SIX5 and NRSF Peaks
To further illustrate our method, we assess ProxReg results for
two TFs known to have a very strong tendency to bind either
in proximal promoters or enhancers. We first selected SIX5 in
GM12878 cells as an example, which is involved in determination
and maintenance of retina formation that proposed binding to

promoter regions of related genes (e.g., myogenin and IGFBP5)
(Spitz et al., 1998; Sato et al., 2002). The results of SIX5 are shown
in Figure 5.

In Figure 5A, we can see that the majority of the ChIP-
seq peaks (67.4%) are near TSSs. Through the combination of
ProxReg results and Poly-Enrich results, a great majority of
gene sets are enriched by the TF binding near TSSs (positive
correlation in Figure 5B) instead of near enhancers (negative
correlation in Figure 5C). Using two particular GO terms from
the scatter plots, we show the distribution of distances from
peaks to TSSs or enhancers (bottom part of Figures 4C, 5B).
Combining the locations of these two GO terms (GS1 and GS2
in the scatter plots), illustrates how our method is able to provide
additional information for interpreting GSE testing results.

We also selected NRSF in the K562 cells as an example.
NRSF, also known as RE1-Silencing Transcription factor (REST),
is a TF known to silence neuronal genes in non-neuronal
cells, it can act as a transcriptional repressor or enhancer of
target genes, often regulating from enhancer regions (Schoenherr
and Anderson, 1995; Seth and Majzoub, 2001). Almost half of
NRSF ChIP-seq peaks (51.2%) are far from TSSs (Figure 5D).
A similar strategy was used for illustration of ProxReg with
the transcriptional repressor NRSF in K562 cells. Consistent
with previous observations that this TF tends to bind to
silencers/enhancers instead of promoters, there is a relative
strong positive correlation shown in the enhancer scatter plot
(Figure 5F) but not for TSSs. Thus the results confirm that most
enriched GO terms were enriched due to the TF binding in or
near enhancer regions. These results validate our new method,
ProxReg, is a powerful tool that can be used as a complementary
approach for interpreting GSE test results.

ProxReg Enriches GSE Findings for
Likely True Positives
We assessed whether ProxReg can be used to not only estimate
the proximity effects but also help users to remove possible
misleading or false positive gene sets from GSE results. To
accomplish this, we compared the significantly enriched gene sets
to a set of GO biological process (BP) terms from org.Hs.eg.db
for each TF before versus after taking into account their ProxReg
results. The GO BP terms from org.Hs.eg.db consists of the TFs
and the assigned GO BP terms for the gene that encodes them
(see section “Materials and Methods” for more detail).

We used ChIP-seq datasets with at least five significantly
enriched GO BP terms in their org.Hs.eg.db set (to ensure
sufficient power), which resulted in 28 datasets with ProxReg
enhancer results and 36 datasets with ProxReg promoter results.
We then tested whether requiring a significant ProxReg test
resulted in a higher odds ratio of detecting the TF-assigned
GO BP terms. Of the 28 enhancer dataset results, 18 (64%)
had an odds ratio greater than 1. Among these, 11 (61%) of
them were significant. Conversely, only two enhancers’ results
had an odds ratio significantly less than 1. These two results
were from EGR1 and ATF3 in K562 cells. Previous research
(Cullen et al., 2010) suggests that EGR1 recognizes and binds
to promoter regions of target genes, so it is possible that the
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FIGURE 3 | The regulation patterns of the 90 ENCODE ChIP-seq datasets. A p-value cutoff (<0.001) was applied to define the four regions as illustrated in the top
panel. The cutoffs are represented by the red dash lines. For each data set, the points count of the combination of ProxReg promoter results and Poly-Enrich results
are labeled as p1, p2, p3, and p4. Similarly, the combination of enhancer results and Poly-Enrich results are labeled as e1, e2, e3, and e4. Based on our analyses,
47 data sets show a clear positive correlation in promoter results and a clear negative correlation in enhancer results. 32 datasets show no strong correlation in either
promoter or enhancer results. The remaining 11 data sets show a clear positive correlation in the enhancer results. For each group, the promoter and enhancer
results of one data set are illustrated as an example.

GO BP terms from org.Hs.eg.db we compared to is incomplete,
with previous data mainly being focused on biological processes
that EGR1 regulates from promoter regions. A similar case may
be true for ATF3.

Among 36 ProxReg promoter results, 25 (69%) had an odds
ratio greater than 1. Among these 25 results, 15 (60%) of them
were significant. Conversely, only two promoter results were
significant with an odds ratio smaller than 1. One of them was
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FIGURE 4 | Examples of the correlation between ProxReg promoter p-values and enhancer p-values. Majority of the 90 ENCODE ChIP-seq data sets show a strong
negative correlation as shown in (A). A small portion of these data sets show a pattern as shown in (B). The three orange dots in (B) are GO terms related detection
of chemical stimulus (GO:0050907, GO:0009593, and GO:0050911).

PU.1 in K562 cells. A previous study (Heinz et al., 2015) indicated
that PU.1 usually binds to a PU-box found on enhancers of
target genes, consistent with the ProxReg promoter results of
PU.1 peaks having an odds ratio less than 1. Although we only
found five significant GO BP terms from our results that are also
assigned to PU.1, some other significant GO BP terms that we
identified were biologically related to the remaining GO terms
assigned to PU.1. For instance, some GO terms assigned to
PU.1 were related to response to toxic substances, drugs, and
antibiotics, and many immune response-related GO terms were
significant. Overall, these results demonstrate that ProxReg can
be used as a powerful supplemental method to remove misleading
or false positive GSE test results (Supplementary Table 3), and
provide additional evidence for novel regulated processes initially
identified by GSE testing.

ProxReg Analysis Identified NRSF
Regulatory Pattern Switching in Different
Cell Types
The ProxReg results can guide and refine the biological
interpretation of GSE results by identifying whether each
enriched gene set is regulated mainly via binding close to
promoters or enhancers. We exemplified this using the findings
of NRSF, which was shown to regulate neuron development
mostly via binding to enhancers in K562 cells (see details above).
To further investigate the regulation patterns of NRSF in different
cell lines, we utilized ENCODE NRSF ChIP-seq experiments
from three cell types (GM12878, H1-hESC, and K562), and
performed and integrated the Poly-Enrich and ProxReg analyses
for each cell type. In GM12878, almost all significant GO terms

identified by both Poly-Enrich and ProxReg were found to
be closer to enhancers, except one GO term “establishment
of localization in cell”, which was significantly closer to
promoters (FDR = 2.04 × 10−6) and farther from enhancers
(FDR = 9.60 × 10−7) (Figures 6A,B and Supplementary
Table 4). Most of them were related to neuron development,
including “neurological system process,” “regulation of nervous
system development,” and “synapse organization.” In H1-hESC
cells, however, NRSF binding sites were significantly enriched
in GO terms which were significantly closer to promoters, and
mostly related to neuron development and regulation, such
as “synapse organization,” “neuron projection guidance,” and
“neurotransmitter secretion” (Figures 6A,C and Supplementary
Table 5). Less than 1% GO terms were closer to enhancers
(“cell morphogenesis involved in differentiation,” “regulation
of cell projection organization,” and “positive regulation of
nervous system development”). The pattern observed in K562
was similar to that in GM12878: the majority of enriched GO
terms were significantly closer to enhancers, and again most of
them were related to neuron regulation (e.g., “axon guidance,”
“synapse maturation,” and “regulation of synapse assembly”)
(Figures 6A,D and Supplementary Table 6), whereas only
one was closer to promoters (“regulation of alternative mRNA
splicing, via spliceosome”). These findings point to a fundamental
shift in the binding patterns of NRSF to regulate neuronal genes
during neuron development and organization processes: closer
to promoters of genes in H1-hESC, while closer to enhancers
in differentiated cells (GM12878 and K562). Taken together, we
demonstrate that ProxReg analysis complements the GSE results
by distinguishing where a TF binds to regulate genes, which is key
to understanding the mechanisms of gene regulation and guiding
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FIGURE 5 | Illustration of ProxReg results. The results of SIX5 in GM12878 cell lines are shown in (A–C). (A) The distribution of distances from peaks to nearest
TSSs. (B) Scatter plot of the combination of enrichment results and promoter results. Two gene sets were selected to show the distance distribution to nearest TSSs
for genes in the gene set and not in the gene set. (C) Enhancer results combined with the enrichment results. The same gene sets were used in this scatter plot. The
distribution of distances to the nearest enhancers of these two gene sets are shown in the bottom of (C). Similar to SIX5 results, (D–F) show the results of NRSF in
K562 cells. For SIX5, GeneSet 1: RNA processing. GeneSet 2: Positive regulation of nitrogen compound metabolic process. For, NRSF, GeneSet 1: Neuron
differentiation. GeneSet 2: System process.

potential targeted gene therapy. ProxReg is incorporated in the
chipenrich Bioconductor package and ChIP-Enrich website, and
can be used with many additional databases of gene sets.

DISCUSSION

We introduced a genomic region proximity test called ProxReg
that can be used as a complement for GSE tests, and can
be used with various types of genomic regions, including
ChIP-seq, ATAC-seq, GWAS SNPs, DNA methylation, and
repetitive element families. The standard GSE tests for sets
of genomic regions (e.g., ChIP-seq peak sets) usually only
consider the relationship between the genomic regions and TSSs

(McLean et al., 2010). However, it is of great interest to know
whether a gene set is significantly enriched through regulatory
activity near promoters or enhancers. Our new method, ProxReg,
is able to find gene sets with regions that bind significantly closer
to (or farther from) either promoters or enhancers. Furthermore,
we validated that it has an appropriate Type I error rate,
and that the statistical power of the test behaves as expected
when varying the relevant variables. ProxReg uses a two-sided
Wilcoxon rank-sum test for the proximity test while adjusting
for important confounding variables. On its own, it provides
insight into particular regulatory patterns. Integrated with GSE
testing, it serves as a powerful complementary approach to
enhance understanding of regulatory behavior across cell types,
time points, disease stages, and more.
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FIGURE 6 | The different regulatory patterns of NRSF in three cell lines. (A) The bar plots show the percentage of significantly enriched GO terms that were closer to
enhancer (dark red) or promoter (dark blue) in each cell line (x-axis). The numbers of terms were marked on the top of each bar. (B–D) The dots represent the
ProxReg enhancer or promoter significance levels (signed negative log p-values, resulting in positive values for proximal regions, and negative values for more distal
regions) of the enriched GO terms in GM12878 (B), H1-hESC (C), and K562 (D) cell lines. In a particular cell line, the arrows point to the GO terms closer to
promoters (blue arrows) while most of the terms are closer to enhancers, or point to the GO terms closer to enhancers (red arrows) while most of the terms are
closer to promoters. For visualization, the redundant GO terms were removed from the list (Koneva et al., 2018).

When performing pathway analyses with current tools, the
method may detect significance from regulation coming from
different regions, but the underlying details are often left
unknown. Standard GSE tests either do not take proximity to
regulatory regions into account, or embed the proximity to
TSSs within the test, still ignoring enhancers. In this way, it is
difficult to interpret the results without the proximity effects.
For example, when GREAT or Poly-Enrich finds a significant
gene set from a ChIP-seq experiment, it is known that the gene
set is enriched with peaks compared to genes not in the gene
set, but we do not know if the peaks reside in promoter or
enhancer regions any more than expected by chance. ProxReg is
able to further show if the binding sites are closer to (or farther
from) TSSs or enhancers, giving more insight into a TF’s binding
tendencies. We showed with real world ChIP-seq datasets from

ENCODE that ProxReg was able to identify tendencies of TFs
known to most often bind in proximal promoter regions (SIX5)
(Spitz et al., 1998; Sato et al., 2002) or distal regions (NRSF)
(Schoenherr and Anderson, 1995; Seth and Majzoub, 2001).
Additionally, significantly enriched gene sets that were not found
to be significant by ProxReg may have resulted from distal peaks
being misassigned to incorrect target genes.

To illustrate the usefulness of ProxReg, we performed GSE
and ProxReg testing on three ChIP-seq datasets of the TF NRSF
in embryonic stem cells (H1-hESC) and two differentiated cell
lines (K562 and GM12878). We showed how NRSF tends to
regulate certain neuronal-related gene sets in differentiated cells
by binding closer to enhancer regions, while regulating similar
gene sets via binding to promoters in embryonic stem cells.
Furthermore, we identified other non-neuronal GO terms that
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NRSF regulates via binding mainly in promoter (or enhancer)
regions. It is interesting to note that the enhancer binding,
which is more cell-type specific and generally evolved later than
regulation from promoters (Nord et al., 2013; Cai et al., 2019),
was identified for the complex neuron development and related
terms, while more basic processes such an establishment of
location in cell and mRNA splicing, were regulated from closer to
TSSs. Only in embryonic stem cells was even the neuronal-related
terms regulated via promoters.

Proximity Regulation does have multiple limitations.
Currently, we have implemented distance to enhancers for
human (hg19 and hg38), and are planning to soon provide
support for mouse (mm9 and mm10) (Haeussler et al., 2018).
Since the enhancer landscape for other organisms lags the
comprehensiveness of that for humans and mice, we currently
only offer the promoter proximity test for other species. As other
organisms’ enhancer locations become more accurately defined,
we plan to add support for more enhancer proximity tests.

An ongoing question is the identity of the targeted genes of
enhancers binding events (Rubtsov et al., 2006; Sanyal et al., 2012;
Melamed et al., 2016), which remains challenging due to long-
range chromosome interactions. By analyzing TFs that tend to
bind far from TSSs, we found that there are gene sets that tend
to be regulated by TFs binding significantly farther from gene
TSSs while also binding closer to enhancer locations. However,
ProxReg assumes that each peak is associated with the gene with
the NTSS, whereas this is often not true. It has been estimated
that 79–95% of TF binding actually regulates a gene interceded
by one or more other genes (Van Heyningen and Bickmore, 2013;
Aldrup-Macdonald and Sullivan, 2014; de Sotero-Caio et al.,
2017). Additionally, we used one general set of enhancer locations
across the entire genome, whereas in reality, this method may
benefit from allowing different tissues to have different sets
of defined enhancer locations. Further research is required to
understand how the comprehensiveness of the enhancer database
affects the results of ProxReg, as well as of GSE tests. We are

currently undergoing research on the differences in enhancer
locations and their target genes in relation to GSE testing.
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Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, United States

Recent research using chromatin conformation capture technologies, such as Hi-C, has

demonstrated the importance of topologically associated domains (TADs) and smaller

chromatin loops, collectively referred hereafter as “interacting domains.” Many such

domains change during development or disease, and exhibit cell- and condition-specific

differences. Quantification of the dynamic behavior of interacting domains will help

to better understand genome regulation. Methods for comparing interacting domains

between cells and conditions are highly limited. We developed TADCompare, a

method for differential analysis of boundaries of interacting domains between two or

more Hi-C datasets. TADCompare is based on a spectral clustering-derived measure

called the eigenvector gap, which enables a loci-by-loci comparison of boundary

differences. Using this measure, we introduce methods for identifying differential and

consensus boundaries of interacting domains and tracking boundary changes over

time. We further propose a novel framework for the systematic classification of

boundary changes. Colocalization- and gene enrichment analysis of different types

of boundary changes demonstrated distinct biological functionality associated with

them. TADCompare is available on https://github.com/dozmorovlab/TADCompare and

Bioconductor (submitted).

Keywords: Hi-C, chromosome conformation capture, topologically associated domains (TADs), differential

analysis, TADCompare

1. INTRODUCTION

Recent research indisputably proves the importance of the three-dimensional (3D) genome
organization in regulating gene expression and other genomic processes (Osborne et al., 2004;
Schoenfelder et al., 2010a,b; Tanizawa et al., 2010; Steensel, 2011; Li et al., 2012; Papantonis and
Cook, 2013; Shavit and Lio, 2014; Symmons et al., 2014; Mifsud et al., 2015; Sexton and Cavalli,
2015; Franke et al., 2016; Mora et al., 2016). The 3D genomic structures consists of chromosome
territories (Cremer and Cremer, 2010), A/B compartments corresponding to active/repressed
chromatin (Lieberman-Aiden et al., 2009; Rao et al., 2014), topologically associated domains
(TADs) (Jackson and Pombo, 1998; Ma et al., 1998; Dekker et al., 2002; Dixon et al., 2012;
Nora et al., 2012; Sexton et al., 2012; Bonev et al., 2017), smaller sub-TADs (Phillips-Cremins
and Corces, 2013; Rao et al., 2014) and chromatin loops (Dowen et al., 2014; Rao et al., 2014;
Denker and Laat, 2016; Ji et al., 2016). These structures help to regulate global gene expression
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(de Laat and Grosveld, 2003; Osborne et al., 2004; Schoenfelder
et al., 2010a,b; Tanizawa et al., 2010; Steensel, 2011; Li et al.,
2012; Papantonis andCook, 2013; Shavit and Lio, 2014; Symmons
et al., 2014; Mifsud et al., 2015; Sexton and Cavalli, 2015;
Franke et al., 2016; Mora et al., 2016). Consequently, coordinated
changes in the 3D structures (Yaffe and Tanay, 2011; Dai and
Dai, 2012; Symmons et al., 2014) determine cell type-specific
gene expression and identity (Schoenfelder et al., 2010b; Dekker
et al., 2013; Jin et al., 2013; Phillips-Cremins and Corces, 2013;
Dowen et al., 2014; Rao et al., 2014; Vietri Rudan et al., 2015; Ji
et al., 2016), guide recombination (Jhunjhunwala et al., 2009), X
chromosome inactivation (Nora et al., 2012; Crane et al., 2015).
Many 3D structures are largely invariant between different cell
types, and even conserved between mammalian species (Dixon
et al., 2012; Nora et al., 2012; Naumova et al., 2013; Pope et al.,
2014; Rao et al., 2014; Vietri Rudan et al., 2015), indicating their
high biological importance during genome evolution.

Despite the high level of conservation, recent research
uncovered the dynamic nature of the 3D genomic structures,
and this plasticity accompanies various biological functions and
phenomena (Yu and Ren, 2017). In Drosophila, exposure to
heat-shock caused local changes in certain TAD boundaries
resulting in TAD merging (Li et al., 2015). Another recent
study showed that during motor neuron (MN) differentiation
in mammals, TAD and sub-TAD boundaries in the Hox
cluster are not rigid, and their plasticity is linked to changes
in gene expression during differentiation (Narendra et al.,
2016). The global organization of the 3D genomic structure
is found in mitosis (Nagano et al., 2017), the earliest stages
of mammalian lineage development (Dixon et al., 2015; Bonev
et al., 2017; Du et al., 2017; Ke et al., 2017), and somatic
cell reprogramming of pluripotent stem cells (Novo et al.,
2018; Zhang et al., 2018). Fusion of TADs (Nora et al., 2012;
Dowen et al., 2014; Guo et al., 2015; Sanborn et al., 2015;
Tang et al., 2015; Flavahan et al., 2016; Fudenberg et al.,
2016), creation or destruction of sub-TADs within existing TAD
boundaries (Lupiáñez et al., 2016; Taberlay et al., 2016), and/or
switching TAD states between active and inactive conformations
(Lieberman-Aiden et al., 2009; Dixon et al., 2012) has been
associated with a variety of phenotypes (Misteli, 2010; Krijger
and Laat, 2016; Spielmann et al., 2018), ranging from limb
malformation (Lupiáñez et al., 2016), congenital disorders (Ibn-
Salem et al., 2014), to cancer (Mitelman, 2000; Rickman et al.,
2012; Gr̀‘oschel et al., 2014; Barutcu et al., 2015; Corces and
Corces, 2016; Flavahan et al., 2016; Hnisz et al., 2016; Krijger
and Laat, 2016; Lupiáñez et al., 2016; Valton and Dekker, 2016).
Chromatin loops are even more dynamic and change during
the cell cycle and other cellular events (Sanborn et al., 2015;
Fudenberg et al., 2016; Golfier et al., 2019). These observations
highlight the importance of studying changes in the boundaries
of interacting domains as a means to understand genomic
regulation. However, methods for identifying these changes
remain underdeveloped.

To our knowledge, there are only three methods that can
be adapted for detecting changes in boundaries of interacting
domains; the majority have been developed for the detection
of TAD-specific boundary changes. Among the three methods,

localtadsim (Sauerwald et al., 2020), HiCDB (Chen et al., 2018),
and DiffTAD (Zaborowski and Wilczynski, 2016), none provide
an intuitive, easy to use way of calling differential boundaries.
Both localtadsim and DiffTAD are two-step procedures requiring
separately defined TADs and comparing them using a command-
line utility. HiCDB has a built-in TAD caller but does not allow
for comparisons of chromosome-specific contact matrices. All
three methods require highly specific data types and file names to
be able to run. The lack of usability is compounded with issues,
such as a lack of upkeep, slow runtimes, and lack of statistical
rigor (Supplementary Methods).

As the costs of Hi-C data continue to drop, several studies
started to investigate the dynamics of 3D changes over time.
The most notable applications include cell differentiation studies
(Bonev et al., 2017), embryonic development (Du et al., 2017;
Hug et al., 2017; Ke et al., 2017), cancer progression (Zhou et al.,
2019). Typically, TAD boundary changes over time are quantified
by overlap (Du et al., 2017; Hug et al., 2017) and classified into
distinct patterns (Zhou et al., 2019). However, general-purpose
methods for systematic analysis of boundary changes over time
do not exist.

The number of replicates for Hi-C experiments continue to
rise, requiring methods for defining consistent boundaries of
interacting domains across replicates of Hi-C data. Two primary
approaches have been developed to identify TAD boundaries
across multiple replicates. The first approach involves merging
all replicates into a consensus contact matrix and then calling
interacting domains [e.g., Arrowhead (Rao et al., 2014)]. The
second is to call domains on individual replicates and aggregate
them. A third approach available in the TADBit tool (Serra
et al., 2017) allows for the alignment of TAD boundaries
to a reference set of boundaries. This method relies on the
reference set being “true boundaries” and is potentially sensitive
to the selection of reference boundaries. Altogether, methods for
detecting consensus boundaries of interacting domains across
Hi-C datasets remain underdeveloped.

We developed TADCompare, an R package aimed at
providing a fast, accurate, user-friendly, and well-documented
approach to differential analysis of boundaries of TADs and
chromatin loops. We introduce a method based on the boundary
score statistic (Cresswell et al., 2019) and use it to identify
five types of boundary changes. The method is extended to
allow for calling consensus boundaries and comparing them
between groups of Hi-C replicates. We further demonstrate
how the boundary score statistic may be used to analyze the
dynamics of boundaries of interacting domains over the time
course. For both differential boundary detection and time course
analysis, we provide novel terminology for the classification
of boundary changes. We demonstrated the robustness of
TADCompare using simulated data with pre-defined interacting
domains (Forcato et al., 2017) and its ability to reveal distinct
biological roles of different boundary changes. In summary,
TADCompare provides an all-in-one pipeline from consensus
boundary calling to differential boundary detection, including
time course. The output is formatted in a commonly used
BED format that allows for flexible downstream analyses
and visualization.
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2. METHODS

2.1. Representation of Hi-C Data as a
Graph
For a given Hi-C experiment, Hi-C data is represented by
a chromosome-specific contact matrix C of non-overlapping
regions (aka bins) of size r (resolution of the data). Each entry
Cij corresponds to the number of contacts between region i and
region j. Previous work has shown that this contact matrix is
essentially an analog of the adjacency matrix found in graph
theory and Hi-C data can be thought of as a naturally occurring
graph where edges are contacts and vertices are genomic regions
(Boulos et al., 2013; Wang et al., 2013, 2019; Cresswell et al.,
2019), or genes associated with them (Merelli et al., 2013). The
graph representation of Hi-C data is the foundation of our
method and allows us to use a graph-clustering based approach
to identify and analyze TADs.

2.2. Calculating the Graph Spectrum
The first step of our method is to calculate the graph spectrum,
defined as the eigenvectors of the Laplacian of an adjacency
matrix. Using the interpretation of the contact matrix as a
naturally occurring adjacency matrix, we calculate the Laplacian
directly from the contact data. Briefly, the graph spectrum for a
given contact matrix is calculated as follows:

1. Calculate the normalized Laplacian L̄:

L̄ = D− 1
2CD− 1

2

whereD = diag(1TC), where 1 is a column vector of size C where
each entry is 1.D can be thought of as a vector containing the sum
of the degrees for a given node.

2. Perform an eigendecomposition of the Laplacian:

L̄v = λv

In practice, we calculate the first two eigenvectors with the largest
absolute values of eigenvalues and organize them into a matrix
V̄ with dimensions i × 2, where i is the number of regions in
the contact matrix. V̄ is referred to as the graph spectrum of the
contact matrix.

2.3. Eigenvector Gap as a Measure of
Pattern Change
We can think of each row of the matrix V̄ as a quantification
of the pattern of contacts in each region of the contact matrix.
Previous work (Cresswell et al., 2019) has demonstrated that
by taking the Euclidean distance between row Vi. and its
neighboring row V(i+1)., one can measure the similarity in
the pattern of contacts between region i and region i + 1
of the chromosome, termed “eigenvector gap.” A boundary
between interacting regions manifests itself as a sudden break
in the pattern of contacts. This pattern is reflected in the
eigenvector gap by a spike in gap size followed by and preceded
by smaller gaps (Figure 1). The eigenvector gap quantifies the
degree of this break, acting as a proxy for TAD boundary

FIGURE 1 | Boundary score distinguishes boundaries better than monotonic

metrics. Boundary scores calculated with four methods: directionality index,

insulation score, RobusTAD, and TADCompare are shown. X-axis—distance

from the boundary, measured in bins (40 kb each), Y-axis—score (signed log10

values centered at zero). Results from five simulated contact matrices, 40 kb

resolution, with manually annotated boundaries (Forcato et al., 2017) are

shown.

likelihood. To calculate the eigenvector gaps, we perform the
following procedure:

1. Normalize columns of V̄ to sum to 1:

V̂ ij =
V̄ ij

‖V̄ .j‖

where the subscript .j corresponds to column j.

2. Normalize V̂ and project onto a unit circle:

Z̃ = Diag(diag−
1
2 (V̂ i.V̂ i.

T))V̂ i.

3. Calculate the distance between neighboring regions (rows i
and i− 1 of Z̃) and store in a vector Di:

Di =

√

(Z̃i1 − Z̃(i−1)1)2 + (Z̃i2 − Z̃(i−1)2)2

We refer to D as the vector where each entry Di is referred
to as an eigenvector gap. Formally, an eigenvector gap is the
Euclidean distance between each successive row of the first two
eigenvectors. In practical terms, the eigenvector gap for a given
locus is a measure of how likely that loci is a boundary.

To maintain the association of each entry of the vector with
its corresponding matrix region, a placeholder is used in the first
entry of the vector. This is necessary because we cannot calculate
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an eigenvector gap for the first entry of the contact matrix due to
a lack of left-bound neighbor. In mathematical terms, this means
that for a matrix of size n the total number of eigenvector gaps
is n− 1.

2.4. Converting Eigenvector Gaps to
Boundary Scores
We showed that the distribution of eigenvector gaps
can be approximated by a log-normal distribution
(Supplementary Figure 1). The log-normality allows us to
convert the eigenvector gap values into boundary scores:

Bi =
(ln(Di)− µ)

σ 2

where ln(D) ∼ N(µ, σ 2) where µ and σ 2 are the mean and
variance of the distribution of the natural log of the eigenvector
gaps, respectively, and B is a vector of boundary scores with a
N(0,1) distribution. In practice, this value is simply the Z-score
for the natural log of eigenvector gaps.

2.5. Sliding Window Eigenvector Gap
Calculation
The frequency of interactions decays following power law as the
distance between the interacting regions increases (Lajoie et al.,
2015). This decay leads to noisy and non-informative interactions
farther off-diagonal of the contact matrix. To alleviate the effect
of noisy distant interactions, we perform spectral decomposition
within a fixed-size window that moves along the diagonal of the
matrix. For instance, a window size of 15 bins (default setting,
Supplementary Figure 2) means that only values within 15 bins
of the diagonal will be used to calculate the eigenvector gap.
The sliding window approach improves the performance of the
eigenvector gap calculation (Cresswell et al., 2019). Additionally,
it provides for faster calculations, operating on many small
matrices instead of one large matrix. In general, we found that the
results are robust to window size (Supplementary Figure 2). At
higher levels of noise and sparsity, we found that larger windows
tend to perform marginally better (Supplementary Figure 2).
This is likely due to the fact that more data points are needed
to capture pattern change in these scenarios. To achieve a good
compromise on performance, we used a window size of 15 for
each resolution.

2.6. Handling of Non-informative Bins
Non-informative bins refer to bins with <20% of non-zero
interactions. This percentage is calculated based on regions
within our sliding window. Such bins can introduce instability
in the algorithm and lack important information. To counter
this, we remove these bins before the analysis. This is done for
both contact matrices such that, if one contact matrix contains a
non-informative bin at a given location and the other does not,
we remove it from both. This allows us to make a one-to-one
comparison of bins.

2.7. Differential Analysis Using Boundary
Scores
To define the differences between two contact matrices, P and
R, we compare their eigenvector gaps DP and DR, respectively.
Given that ln(DP) ∼ N(µP, σ

2
P ) and ln(DR) ∼ N(µR, σ

2
R),

it follows that ln(DP) − ln(DR) ∼ N(µP − µR, σ
2
P +

σ 2
R). These results allow us to calculate a vector of differential

boundary scores:

DBi =
(ln(DPi)− ln(DRi))− (µP − µR)

σ 2
P + σ 2

R

or more simply,

DBi =
σ 2
PBP − σ 2

RBR

σ 2
P + σ 2

R

where BP and BR are the boundary scores for the P and R
matrices, respectively. This score can be thought of as the
difference in boundary likelihood for a given locus in two data
sets. Due to the aforementioned normality of the difference in
log eigenvector gaps, DBi can be thought of as a simple z-score
where DB∼ N(0, 1).

Boundary differences may be visualized using the package’s
TADcompare::DiffPlot function (Supplementary Figure 3C), or
by external tools [e.g., HiCexplorer (Ramirez et al., 2018)].

2.8. Time Course Boundary Changes
Boundary scores provide a convenient method for modeling
the change of boundaries over time. For a given boundary, or,
any region of the genome, we can monitor the trajectory of
the boundary score. Over time, we can define boundary score
changes based on their deviation from a baseline level (typically,
the first time point). It is expected that these scores will be
relatively constant over time except in regions where a boundary
appears or disappears. The trend across time points can be
recorded and the pattern of change classified accordingly. Our
implementation of time course boundary analysis allows for the
usage of multiple replicates for a given time point. Briefly, at each
region of the genome, the consensus boundary score is calculated,
defined as the median of consensus scores across all replicates,
and is then used to identify boundaries.

2.9. Gene Enrichment Testing
All gene enrichment testing was performed using the GREAT
method (McLean et al., 2010) implemented in the rGREAT
(Version 2.0) R package. Briefly, we detect genes within 5 kb
upstream and 1 kb downstream of each type of boundary change,
similar to the work of others (Chen et al., 2018). For each Gene
Ontology (GO) and pathways, a hypergeometric test is then
performed to determine the over-representation of boundary-
associated genes. For all figures, we report results for GO
Biological Processes. Results for GO Molecular Function, GO
Cellular Component, MSigDB, and PANTHER pathways are
reported in tables.
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2.10. Colocalization Enrichment Testing
A permutation test was used to quantify the enrichment
of colocalization of boundaries of interest with genomic
annotations. Briefly, we flank each type of boundary change
(differential or time course) by 50 kb on each side and calculate
the mean number of genomic annotations across those regions
(observed enrichment). Next, we generate two sets of bins, one
the size of the boundaries which we are testing (considering the
flanking) and another the size of all other bins. The difference
in the mean number of genomic annotations colocalized with
boundaries of interest was calculated for each set (expected
enrichment). We repeat this procedure 10,000 times. We
calculate the permutation p-value by taking the number of
times the expected enrichment was greater than the observed
enrichment, and dividing by 10000. α = 0.05 was set to assess
statistical significance.

2.11. Data and Code Availability
All simulated data were downloaded from theHiCToolsCompare
repository (Forcato et al., 2017). In total, we used 25
simulated matrices with varying levels of noise. For sparsity
and downsampling analysis matrices were manually created
based on matrices from HiCToolsCompare matrices with the
minimum noise level (see Cresswell et al., 2019 for methods
description). Data for comparisons across cell lines, replicates,
and tissues were taken from (Schmitt et al., 2016), generated
at 40 kb resolution (Supplementary Table 1). Time course data
was taken from (Rao et al., 2017), HCT-116 human colon
cancer cell-line at four time points after auxin-treatment
withdrawal (20, 40, 60, 180min). Contact matrices were
generated at 25, 50, and 100 kb using the straw tool from Juicer
(Durand et al., 2016). Chromatin state data were taken from
chromHMM (Ernst and Kellis, 2010). Histone modifications
and transcription factor binding sites were downloaded from
the Encyclopedia of DNA Elements (ENCODE) (Davis et al.,
2018) (Supplementary Table 2). Scripts to recreate the results
presented in the paper are available at https://github.com/
cresswellkg/TADCompare_Paper. The TADCompare R package
is freely available on GitHub (https://github.com/dozmorovlab/
TADCompare) and on Bioconductor (submitted).

3. RESULTS

3.1. A Modified Spectral Clustering
Approach Is Better Suited for Boundary
Detection Than Other Approaches
Our previous work on TAD detection using spectral clustering,
implemented as a SpectralTAD R package (Cresswell et al., 2019),
introduced the concept of the boundary score statistic, adapted
here for differential boundary detection. Briefly, the boundary
score is calculated for each bin by sliding a window across the
diagonal of the contact matrix, calculating the eigenvectors of
the Laplacian matrix, finding the distance between consecutive
eigenvectors (eigenvector gap) and converting them into Z-
scores (boundary score, see Methods). The boundary score is a

continuous measure of the likelihood of a given region being a
boundary between interacting domains.

In contrast to other metrics for boundary identification that
rely on finding inflection points of monotonic functions, such
as directionality index (Dixon et al., 2012), insulation score
(Crane et al., 2015), RobusTAD score (Dali and Blanchette,
2017) (Supplementary Material), our boundary score spikes
at the boundary (Figure 1). This unique behavior enables
easy distinction between boundaries and non-boundaries. An
additional advantage of the boundary score is that its magnitude
is directly interpretable as a “boundary strength.” This is in
contrast to other methods which are only interpretable relative
to neighboring points. We can use this interpretability for
parametric modeling of boundary behavior. Our previous work
has shown that the boundary score is robust to noise, sparsity,
and changes in sequencing depth of Hi-C data (Cresswell et al.,
2019). Thus, the boundary score is well-suited for finding
differences in boundaries between interacting domains.

3.2. Differential Boundary Scores Translate
to Five Types of Boundary Changes
Differential boundary score is a measure of the difference
between boundaries between two samples. This score
follows a standard normal centered at 0 (see Methods,
Supplementary Figure 1). Differential boundaries are detected
by finding regions with the absolute differential boundary score
is >2 (Supplementary Figure 2), which intuitively corresponds
to differences with a p-value smaller than 0.05.

We divide boundary changes into five categories
(complex, split, merge, shifted, strength change; Figure 2,
Supplementary Figure 3). A similar strategy was used in Ke
et al. (2017). An interacting domain can be split between
the datasets, meaning it exists as a continuous domain in
one and is split into two or more domains in another. In
practice, this situation requires two shared boundaries and a
differential domain between them. Merging is the opposite of
splitting and arises when a boundary surrounded by two non-
differential boundaries disappears in one of the contact matrices.
Classification of boundary change as merged and split depends
on the reference contact matrix being compared to. Finally,
domains can be split in a complex way, meaning they are neither
split or merged but instead taking on an entirely new structure.
Merged and split boundaries represent the structural change
of the same domain as opposed to complex boundaries, which
we consider to be part of a completely different domain. The
“complex,” “merge,” and “split” boundaries are considered to be
the most disruptive changes in the 3D structure of the genome.

A shifted boundary is defined as the non-overlapping
boundary that lies within five bins (or another user-defined
threshold) of a boundary in the contact matrix in which it is
being compared to. A strength change occurs when a boundary
is present in both contact matrices, but its differential boundary
score magnitude is greater than the differential threshold of 2.
The other cases are considered to be non-differential boundaries.
This framework allows us to systematically compare and classify
boundary changes.
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FIGURE 2 | Five types of boundary changes. Complex, split, and merge

boundary changes are considered as the major differences, while shifted and

strength changes are considered as the minor differences.

3.3. Boundaries Are Highly Consistent in
Both Technical and Biological Replicates
Previous studies have shown that the overlap between TAD
boundaries in replicate data ranges from around 60 to 70%
(Dixon et al., 2012; Rao et al., 2014; Sauerwald et al., 2020).
Additionally, technical replicates have been shown to have a
slightly higher proportion of shared TAD boundaries (∼65%)
than biological replicates (∼60%) (Sauerwald et al., 2020).
We have tested and confirmed these observations by showing
that significantly more boundaries were non-differential in
technical replicates than in biological replicates (73 vs. 65.7%).
Similarly, 9.3/8.1% of boundaries showed significant strength
change, while 7.8/6.1% were shifted in the biological/technical
replicates, respectively. A similar trend was observed for complex
and merge-split boundaries. In summary, only 17.2/12.8% of
boundaries were differential in biological/technical replicates,
respectively (Figure 3A), confirming the higher stability of the
3D structures in technical replicates.

3.4. Boundaries Are More Similar Within
Cells Than Tissues
Previous research showed that TADs are largely invariant across
cell lines and, to a lesser extent, tissue types (Pope et al., 2014; Rao
et al., 2014; Schmitt et al., 2016). However, the types of boundary
changes remained undefined. We compared Hi-C matrices of
seven different cell-lines and 18 different tissue types (Schmitt
et al., 2016) (Supplementary Table 3). In total, the average
percentage of differential boundaries was significantly less in

cell lines (22.5%) than tissue samples (39.7%, Figure 3B). As
expected, these percentages were higher than those for biological
(17.2%) and technical replicates (12.8%). These results suggest
that the variability of boundaries mirrors the homogeneity of
data types (technical replicates, biological replicates, cell lines,
and tissues, in that order).

3.5. Each Type of Differential Boundaries Is
Associated With Different Levels of
Epigenomic Enrichment
To understand the biological relevance of the types of boundary
changes, we identified changes between the GM12878 and IMR90
cell lines [chr 1–22, 40 kb resolution (Schmitt et al., 2016)] and
categorized them according to the type of change. For each
change type, we assessed the number of overlapping peaks and
calculated the enrichment of four genome annotation marks
known to co-locate with TAD boundaries—CTCF, RAD21,
insulators, and heterochromatin states.

We found that non-differential boundaries had a higher
average number of overlapping peaks for all four marks,
followed by “strength change” boundaries (Figure 4A). Similarly,
enrichment of non-differential boundaries was the most
significant (Figure 4B). Notably, the number of peaks for each
mark was highly variable on “strength change” boundaries
(Figure 4A), suggesting their biological relevance is less certain.
Similarly, “shifted” boundaries had the lowest average number
of peaks, suggesting that they may be detected due to noise
and, consequently, be less biologically significant. In contrast,
“complex” and “merge-split” boundaries had a moderate number
of overlapping peaks and were moderately enriched in them
(Figure 4). These results highlight the varied biological relevance
of different types of boundary changes and suggests “complex”
and “merge-split” changes are biologically important alterations
of the 3D structure.

3.6. Each Type of Differential Boundaries Is
Associated With Distinct Biological
Functionality
To test the biological significance of different types of boundary
changes, we compared neural progenitor cells (NPC) against
mesenchymal stem cells (MSC) (Schmitt et al., 2016) (Figure 5A,
Supplementary Figure 3C). Altogether, we found that the vast
majority of boundaries are either complex (38.6%) or non-
differential (32.6%). Shifted (17.5%), merge-split (7.7%) and
strength change (3.5%) were less common (Figure 5B). Under
the hypothesis that differential boundaries may be enriched
in genes driving relevant biological processes (Chen et al.,
2018), we investigated enrichment of genes in proximity of
each type of differential TAD boundary in biological processes
and other gene ontology- and pathway types using GREAT
(McLean et al., 2010) (see Methods). As NPCs are more
advanced on differentiation path than MSCs, we expected that
boundaries changed between them would be associated with
genes responsible for neural development-related processes.
Indeed, genes around “merge” and “complex” boundary changes,
as well as the “non-differential” boundaries were enriched in a
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FIGURE 3 | Biological replicates and cell lines have more differential boundaries than technical replicates and tissues, respectively. Differential boundaries were

calculated between Hi-C datasets of biological and technical replicates [A, HCT-116 cell line, 50 kb resolution, chr 1–22 (Rao et al., 2017)] and between cell lines and

tissues [B, various cell lines, 40 kb resolution, chr 1–22 (Schmitt et al., 2016)]. Types of boundary changes were recorded, and the proportions of boundary differences

for each type were summarized across chromosomes.

FIGURE 4 | Non-differential boundaries are more enriched for selected genome annotation marks than other types of differential boundaries. Differential boundaries

were called between GM12878 and IMR90 cell lines and categorized based on differential boundary type. (A) The number of peaks at boundaries and (B)

permutation p-values (−log10) are shown. Data from Schmitt et al. (2016), 40 kb resolution, chr 1–22.

variety of developmental processes (e.g., “cellular developmental
process,” etc.), including neural-specific (“nervous system
development,” Figure 5B). Notably, “split” boundary changes
were not enriched in these processes, indicating the importance
of the directionality of boundary changes. Genes around
“merge” and “non-differential,” but not “complex,” boundaries
were enriched in differentiation-related processes (e.g., “positive
regulation of cell differentiation”), while “forebrain radial glial
cell differentiation” and “neural tube development” processes
were exclusively enriched in genes around “merged” boundaries
(Figure 5B). In this case, “merge” indicates boundaries enriched
in the NPC cell-line, causing a separation of interacting domains
in MSC and “split” indicates a split in NPC caused by a boundary
enriched in MSC. As expected, genes around “noisy” boundary

changes (“shifted” and “strength change”) lacked enrichment
in any biological processes (Figure 5B, Supplementary Table 4).
These results emphasize the importance of classifying boundary
changes into distinct patterns that tend to be associated with
distinct biological functionality.

To further test whether different types of boundary changes
reflect biology of an experimental system, we used post-
auxin treatment time course experiment from Rao et al.
(2017) study (HCT-116 cell line, 40 kb resolution, 20, 40,
60, and 180min following auxin withdrawal, 4 replicates
at each time point) (Rao et al., 2017). Auxin treatment
eliminates CTCF binding genome-wide; consequently, the
majority of boundaries should be absent and gradually re-appear
following auxin withdrawal. To identify biological processes
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FIGURE 5 | Differential boundaries and their gene enrichment analysis. (A) An example of differential boundaries called between neural progenitor cell (NPC) and

mesenchymal stem cells (MSC) (Schmitt et al., 2016) (chr4:10500000–18600000 region, 40 kb resolution); outlined TADs were called using SpectralTAD (Cresswell

et al., 2019). (B,C) The top 30 gene ontologies most enriched (B) in NPC vs. MSC boundary comparison, and (C) across the time-course of boundary changes in

auxin-treated cells from the HCT-116 cell-line (Rao et al., 2017) (chr 1–22, 40 kb resolution). For each type of boundary change, enrichment p-values (rGREAT, see

Methods) are shown as heatmaps.

associated with re-appearing of boundaries, we compared
first and last time points (20 and 180min) following auxin
withdrawal. As boundaries were reported to be enriched in
housekeeping genes (Jin et al., 2013), we expected genes
around appearing boundaries to be enriched in general cellular
processes. Indeed, the vast majority of boundaries were complex
(41.4%) and non-differential (34.7%) (Supplementary Figure 4).
We found that only genes around “non-differential” and
“complex” TAD boundary changes showed some level of
enrichment (Supplementary Figure 4, Supplementary Table 5).
As expected, “metabolic processes” and various developmental
and housekeeping processes were specifically enriched in
genes around complex boundary changes, while cyclic AMP
synthesis and metabolic processes were enriched in genes

around “non-differential” boundaries. From these results, we
show that TADCompare can correctly classify less-essential
boundary changes (“shifted,” “strength change”) and detect
distinct boundary changes associated with shared and unique
biological processes.

3.7. Time Course Analysis Framework
Time course analysis of boundaries refers to the analysis of
boundary dynamics over time. The quantitative nature of
boundary score allows us to monitor its changes at boundaries
across any number of time points.We recommend taking a union
of boundaries detected at each time point and monitor boundary
score changes for each boundary. Monitoring boundary scores
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TABLE 1 | Six patterns of temporal boundary changes.

Temporal

boundary type

Time

point 1

Time

point 2

Time

point 3

Time

point 4

Total

(%

occurrence)

Highly common 1 1 1 1 326 (17.35%)

1 0 1 1

Early appearing 0 1 1 1 184 (9.79%)

Early disappearing 1 0 0 0 133 (7.08%)

Late appearing 0 0 1 1 1,047 (55.72%)

0 0 0 1

Late disappearing 1 1 0 0 79 (4.20%)

1 1 1 0

Dynamic 1 0 1 0 110 (5.86%)

1 0 0 1

Each column corresponds to a point in time.

“1” refers to the presence of a boundary, and “0” refers to the absence of a boundary. The

“Total” column shows the percentage of occurrences in the CTCF degradation-recovery

time course, HCT-116 cell line, chr 1–22 (Rao et al., 2017).

across time points provides an opportunity to quantify patterns
of boundary changes.

Using the boundary score cutoff of 3 for boundary definition,
we define six patterns of temporal boundary changes (adapted
from Zhou et al., 2019, Table 1, Figure 6). Highly common
boundaries refer to boundaries present across all time points or in
three out of four time points. Early appearing boundaries switch
from non-boundary to boundary at second time points and stay
as boundaries for the rest of the time points. Conversely, early
disappearing boundaries switch from boundary to non-boundary
at the second time point and stay as non-boundaries. Late
appearing boundaries switch from non-boundaries to boundaries
at the last or the second to last time point. Conversely, late
disappearing switch from boundaries to non-boundaries at the
last of the second to last time point. Finally, dynamic boundaries
are those which have inconsistent boundary status and do not
follow any of the aforementioned patterns (Figure 6). These six
patterns of temporal changes can be easily adapted for a larger
number of time points.

3.8. Temporal Boundary Types Are
Associated With Different Levels of
Epigenomic Enrichment
To evaluate the biological relevance of temporal patterns
of boundaries, we used post-auxin treatment time course
experiment introduced above. Briefly, HCT-116 cells were treated
with auxin to eliminate boundaries, and Hi-C measures were
obtained at 20, 40, 60, and 180min following auxin withdrawal
and subsequent boundary reappearance (Rao et al., 2017).
Accordingly, we expected to detect some number of highly
common boundaries (already existing at 20min) and boundaries
appearing at different stages of post-auxin withdrawal (early/late
appearing). Conversely, dynamic and early/late disappearing
boundaries should be rare and may potentially constitute noise
in TAD boundary detection.

FIGURE 6 | Six patterns of boundary score change across time. Average

trajectories for each pattern of boundary score change are shown. The red

horizontal line indicates the cutoff for boundary detection. HCT-116 cell line,

40 kb resolution, chr 1–22.

TABLE 2 | Consensus (aka median) boundary score is supported by high

boundary scores from multiple replicates.

Boundary

score 1

Boundary

score 2

Boundary

score 3

Consensus

boundary

score

Union

boundary?

Consensus

boundary?

1 2 1 1 No No

3 2 1 2 Yes No

5 5 4 5 Yes Yes

3 3 3 3 Yes Yes

6 0 0 0 Yes No

Examples of boundary scores across five regions in three replicates, and the

corresponding consensus boundary score. Both union and consensus boundaries are

calculated using a cutoff of 3.

Boundary scores were calculated for auxin-treated cells 20,
40, 60, and 180min after withdrawal. Taking the union of
boundaries (boundaries detected at one or more time points),
we calculated temporal patterns for each boundary. We found
that the vast majority of boundaries were late appearing (55.7%)
(Table 2, Figure 5C). Early appearing (9.8%) and highly common
(17.3%) made up most of the other boundaries present at the
end of the time course. Approximately 20% of boundaries were
highly common, i.e., resistant to auxin treatment, a number
similar to previous works (Nora et al., 2017). Meanwhile, 5.9%
of boundaries were dynamic, 7.1% were early disappearing,
and 4.2% were late disappearing, highlighting potential errors
in boundary detection. In summary, some boundaries can be
detected at 20min post-auxin treatment and remain present
through all time points; however, the timing of boundary
reappearance varies.

To test whether boundaries associated with different temporal
patterns have different functional roles, we investigated their
overlap with and enrichment in the common marks of TAD
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FIGURE 7 | Common and appearing boundaries show stronger enrichment in known epigenomic marks. The number of peaks at boundaries (A), and permutation

p-values (B) within 50 kb of boundaries in each temporal classification are shown. Hi-C data from Rao et al. (2017), 50 kb resolution, HCT-116 cell-line, chr 1–22.

boundaries (CTCF, RAD21, insulators, heterochromatin,
Figure 7A). For highly common, early- and late-appearing
boundaries, we observed more overlaps with CTCF
and RAD21 sites, insulator, and heterochromatin states
(Supplementary Table 6). Similarly, these types of boundaries
were highly enriched in the aforementioned genomic annotations
(Figure 7B). Conversely, dynamic, early, and late disappearing
boundaries showed less overlap with CTCF, RAD21, insulator,
and heterochromatin marks, and were less enriched in them.
These observations suggest that disappearing and dynamic
boundaries are likely detected due to noise in the data, while
boundaries appearing after auxin treatment expectedly represent
the biologically relevant signal.

3.9. Temporal Boundary Types Are
Associated With Distinct Biological
Functionality
Using gene enrichment analysis, we further investigated whether
boundaries associated with different temporal patterns may be
enriched in genes driving relevant biological processes (Chen
et al., 2018) (Supplementary Table 7). We found that, with a
few exceptions, all significant GO Biological pathways were
enriched in late or early appearing boundaries (Figure 5C,
Supplementary Table 7), which make up the majority of
boundaries (Table 2, Figure 5C). Both early and late appearing
boundaries were enriched in metabolism-related processes, such
as “cellular metabolic process,” “oxidation-reduction process.”
Late appearing boundaries, on the other hand, were enriched in
“cellular component organization,” “protein complex biogenesis”
and the like processes (Figure 5C). These results are expected
as cells may be activating metabolic and biogenesis pathways to
recover after destruction of boundaries by auxin. These results
confirm that TADCompare can accurately classify biologically

relevant temporal boundary changes and discern them from
noisy changes.

3.10. Consensus Boundary Score for
Defining Robust Boundaries Across
Multiple Hi-C Datasets
The sizeable proportion of noisy “shifted” and “strength change”
boundary changes across Hi-C datasets (Figure 3) highlights
the need to identify boundaries that are robustly detected. The
consensus boundary score, defined as the median of boundary
scores across replicates, addresses this challenge. Intuitively,
higher consensus boundary scores correspond to boundaries
supported by evidence from multiple replicates (Table 2). This
is in contrast to a union of boundaries, where boundaries
detected in at least one Hi-C dataset are pooled together.
Consensus boundary scores allow us to filter out boundaries with
insufficient support from multiple replicates, thus “denoise” the
detected boundaries. Given the fact that boundary scores
are log-normally distributed (Supplementary Figure 1,
Supplementary Methods), the consensus boundary scores
will also be asymptotically normal. The consensus boundary
score can be used as a proxy for the normal boundary score
for the analysis of replicated Hi-C datasets. Consequently, the
consensus boundary scores may be compared to define boundary
changes between groups of replicated Hi-C datasets.

3.11. Consensus Boundaries Are
Supported by Strong Biological Evidence
To investigate the biological relevance of boundaries defined
using consensus boundary score, we defined consensus
boundaries across seven cell-lines (17 matrices total) (Schmitt
et al., 2016). These boundaries represent cell type-invariant
boundaries supported by evidence from multiple datasets. Bins
of the genome were separated into three categories based on
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FIGURE 8 | Boundaries defined at higher consensus boundary score thresholds show stronger overlap with and enrichment in known epigenomic marks. Boundaries

were classified based on the range of their consensus boundary score. Enrichment of genomic factors known to occur near TAD boundaries was calculated. (A) The

number of peaks within 40 kb of boundaries with the corresponding consensus score range and (B) the −log10-transformed permutation p-values for each score

range are shown. Negative p-values indicate depletion. Data from seven cell lines, chr 1–22, 40 kb resolution (Schmitt et al., 2016).

the level of their consensus boundary score (<2, 2–4 and >4).
In total, there were 65,336 bins (40 kb resolution). Expectedly,
the majority (62,791 bins, 96.1% of all bins) were in the <2
category, 2,032 (3.1%) bins were in the 2-4 category, and 513
(0.8%) bins were in the >4 category. We assessed the number
of overlapping peaks and the enrichment of CTCF, RAD21,
insulators, and heterochromatin states in different categories
of bins. Expectedly, we observed increasing average number of
peaks overlapping bins selected at more stringent consensus
boundary score thresholds (Figure 8, Supplementary Table 8).
Similarly, bins with higher consensus boundary scores have
stronger enrichment in genome annotations, while bins with
score <2 were significantly depleted. These results suggest that
bins with higher consensus boundary scores (i.e., supported by
evidence from multiple Hi-C datasets) are more biologically
relevant. Therefore, to define consensus boundaries, we use a
consensus boundary score cutoff of 3.

3.12. The Union of Boundaries Is
Supported by Weaker Biological Evidence
Than Consensus Boundaries
The union of boundaries called in individual Hi-C datasets
represents an alternative method of defining boundaries across
multiple datasets (Table 1). The union method may be useful
for analysis of time course data, where boundaries are expected
to change across individual datasets. We hypothesized that the
union method would select for the less biologically relevant set
of boundaries because many may be detected due to noise in
Hi-C data.

To evaluate the biological relevance of boundaries called
using both methods, we call consensus and union boundaries
on a set of replicates (four cell lines, 40 kb resolution, three
replicates each, data from Schmitt et al., 2016). Consensus
scores were calculated separately for each cell line among the

three replicates. Expectedly, the consensus method filtered out
38% of boundaries (4,906 vs. 3,059, Supplementary Figure 5),
suggesting that many boundaries are detected in single datasets.
We found that boundaries called using consensus boundary
score overlapped significantly more with CTCF sites (P =

0.0006) and RAD21 (P = 0.0002) than those called using
the union method (Figure 9A). While the enrichment results
were similar for consensus- and union-defined boundaries,
consensus boundaries were more significantly enriched in
“heterochromatin” (Figure 9B). Together with previous
observations (Figure 6), these results strengthen our conclusion
that consensus boundary scores are more effective in removing
“noisy” boundaries that otherwise would be captured using the
union method.

3.13. Runtime Performance of
TADCompare
When run on data from (Rao et al., 2014), without parallelization,
both consensus boundary calling and differential boundary
detection were exceptionally fast. In total, for the entire genome,
differential boundary detection took ~6 s on 100 kb data, ~9 s
on 50 kb data, ~17 s on 25 kb data, and ~312 s on 10 kb data.
In the case of consensus boundary calling, TADCompare took
~17 s to run on 50 kb data for 4 matrices, ~32 s for 8 matrices,
and ~45 s for 12 matrices. On 10 kb data, it took ~611 s to
run for 4 matrices, ~1,152 s for 8 matrices, and ~1,680 s for 12
matrices. For a full summary of runtimes across all resolutions
(see Supplementary Figure 6).

4. DISCUSSION

The initial development of Hi-C technologies focused
on investigating individual genomes. While several key
properties have been discovered (chromosome territories, A/B
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FIGURE 9 | Consensus boundaries show stronger overlap with and enrichment in known epigenomic marks than the union of boundaries. (A) Number of peaks at

boundaries and (B) permutation p-values (−log10) are shown. Data from Schmitt et al. (2016), four cell lines, 40 kb resolution, chr 1–22.

compartments, TADs, chromatin loops, collectively referred to
as “interacting domains”), the next steps include investigating
changes in the 3D structure across multiple conditions. We
(Stansfield et al., 2018, 2019) and others (Lun and Smyth, 2015;
Djekidel et al., 2018) started to develop methods for comparative
analysis of the 3D structures. However, to our knowledge, no
methods are available for differential analysis of boundaries
demarcating interacting domains. In this work, we introduce
a method for differential boundary analysis, including a time
course, that supports replicated Hi-C data. The method is based
on a novel boundary score metric that provides a continuous
measure of boundary likelihood (Cresswell et al., 2019). We
introduce unique terminology for classifying differential and
temporal boundary changes. We show that our approach is
robust and effective at identifying distinct biology associated
with different types of boundary changes. Our method is
implemented in the TADCompare R package available on
Bioconductor, filling a vital gap in intuitive R-based software for
boundary detection and comparison.

The boundary score concept developed in our work addresses
three main problems: differential boundary detection, time
course analysis of boundary changes, and consensus boundary
calling. Yet, it has a broader scope of applications. Future
work will expand the utility of boundary score by developing
a similarity/reproducibility score to measure the agreement
between (multiple) Hi-C matrices, in the same vein as
HiCRep (Yang et al., 2017), Selfish (Ardakany et al., 2019),
GenomeDISCO (Ursu et al., 2018), HiC-Spector (Yan et al.,
2017), QuASAR-Rep (Sauria et al., 2015). Furthermore, for
differential boundary detection, our method is still limited to the
comparison of two profiles of (consensus) boundary scores. This
approach will eventually be expanded to include comparisons
of many contact matrices, similar to the concept of comparing
groups of multiple replicates in RNA-seq data. Finally, there is

still room for expansion of time course boundary analysis. The
continuous nature of boundary score allows for adopting time
course analysis methods developed for gene expression studies
(Bar-Joseph et al., 2012). More flexible classification of temporal
trends may be considered, such as 24 temporal patterns proposed
by Zhou et al. (2019), or fuzzy clustering techniques that do not
require a pattern to belong to a specific cluster (Abu-Jamous and
Kelly, 2018). In summary, our work enables further development
of various aspects of 3D genome analysis.

One difficulty in our work is how to accurately quantify the
biological relevance of boundaries (differential, time-varying, and
consensus) that we detect. There is no natural gold standard for
boundaries, but there are known genomic features that form the
building blocks of TADs (CTCF, RAD21). In practice, we can
use colocalization and/or signal enrichment of these marks near
boundaries as a proxy for “true boundaries.” To test whether
enrichment is different than random (non-boundaries), we use
a permutation test and present these p-values. In the current
work, we used colocalization enrichment analysis, and plan to
address changes in signal enrichment associated with changes in
boundaries in future work.

The goal of the TADCompare package is to provide
a practical implementation of our statistical framework for
differential boundary detection. It outputs genomic coordinates
of differential boundaries, type of the differences, and the
associated boundary score measures. The downstream analysis
options may be gene enrichment analysis in the proximity
of (different types of) differential boundaries using rGREAT,
epigenomic enrichment analysis [GenomeRunner (Dozmorov
et al., 2012, 2016), LOLA (Sheffield and Bock, 2016)], and visual
exploration of differential boundaries. Although TADCompare
provides simultaneous visualization of twoHi-Cmatrices and the
associated boundary differences and boundary scores, external
tools for visualizing multiple datasets may be explored (reviewed
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in Yardimci et al., 2019). Tools like the HiCBricks R package
(Pal et al., 2019) and the HiCexplorer Python software (Ramirez
et al., 2018) start enabling the users to visualize two Hi-C
matrices and the associated annotations. We continue exploring
visualization options to improve exploration and interpretation
of boundary differences.

Our results in this manuscript demonstrate the ability of
TADCompare to provide accurate, biologically relevant results.
The methods implemented span differential, time-course, and
consensus analysis. To date, TADCompare is the only actively
maintained and publicly available tool to provide any of this
functionality. We intend for TADCompare to be a one-stop
tool for comparison of HiC datasets, providing simple, easy-
to-interpret results in a timely manner. As a one-of-a-kind
tool, TADCompare will increase the ability of researchers to
extract important biological insights from the structure of
TAD boundaries.
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Supplementary Figure 1 | Log-normal distribution of eigenvector gaps

converted to boundary Z-scores. Eigenvector gaps were calculated for contact

matrices across three resolutions [10, 25, and 50 kb, Hi-C data from Rao et al.

(2014), GM12878 cell line, chr 1–22]. Density plots are shown for the (A) Natural

log of the eigenvector gaps and (B) Boundary scores derived from the same data,

separated by resolution. Regions of non-TADs are highlighted by a yellow bar,

moderate strength boundaries (2 < boundary score cutoff < 3) are highlighted by

a red bar, and strong boundaries (cutoff > 3) are shown using a green bar. We see

a slightly right-skewed distribution due to the filtering of gaps for plotting purposes.

Supplementary Figure 2 | Window size of 15 units of Hi-C data resolution and

boundary score cutoff of 2 yields consistent boundary detection. Differential

boundaries were compared between two simulated data sets with window size

sizes ranging from 10 to 25, and boundary score cutoff ranging from 1.5 to 4.

Youden index (balanced sensitivity and specificity metric) was calculated for each

combination and plotted to show agreement with ground-truth annotations.

Results are shown for noise-injected matrices (A) and sparsity-injected

matrices (B).

Supplementary Figure 3 | Visualization of different types of boundary score

patterns. (A) Patterns of raw boundary scores are shown for five different types of

differential boundaries (Merge, split, complex, shifted, and strength change). The

red horizontal line corresponds to the user-adjustable cutoff for a boundary.

Human neural progenitor cells (NPCs), chr22, most representative examples are

shown. (B) TADCompare::DiffPlot differential boundary visualization between

NPCs and mesenchymal stem cells (MSC), chr4:10500000–18600000. 40 kb

resolution data from Schmitt et al. (2016).

Supplementary Figure 4 | Heatmap of gene ontology enrichment at the first and

last time point in auxin-treated data. Differential boundary identification was

performed on auxin-treated data at the time of application (first time point) and

complete withdrawal (last time point) [HCT-116 cell line, chr 1–22, 40 kb resolution

(Schmitt et al., 2016)]. A barplot of the proportion of each differential boundary

type and FDR-adjusted hypergeometric p-values obtained from gene ontology

enrichment analysis using rGREAT (see Methods) are shown. The top 30

pathways, in terms of average enrichment, are shown and clustered using the

Ward method.

Supplementary Figure 5 | Venn diagram of union and consensus boundary

counts. Consensus and union boundaries were called across four different cell

lines (hesc, mesynchymal, npc, trophectoderm), and the number of union and

consensus boundaries was recorded. The Venn diagram shows the complete

overlap of consensus boundaries within union boundaries (40 kb resolution, data

from Schmitt et al., 2016).

Supplementary Figure 6 | Runtime of TADCompare. Plot containing the runtime

of two-way comparison (A) and consensus boundaries called on 4, 8, 12, and 16

replicates (B). Each point represents the runtime for a specific chromosome.

X-axis—chromosome, Y-axis—runtime in seconds. Hi-C data from Rao et al.

(2014), chr 1–22, 10, 25, 50, and 100 kb resolution.

Supplementary Table 1 | Contact matrix data sources. The source of all contact

matrices, experimental, and simulated, used in this paper are provided.

Experimental data are separated based on the study and cell line.

Supplementary Table 2 | Genomic annotation data sources. The sources, with

download links, for all genomic annotations used in this paper are included.

Supplementary Table 3 | Summary of differential boundary types across tissues

and cell lines. The percentage of each type of differential boundary for all

tissue-tissue and cell line-cell line comparisons is reported. Results are

aggregated over all chromosomes. Hi-C data from Schmitt et al. (2016), 40 kb

resolution, chr 1–22.

Supplementary Table 4 | Gene ontology enrichment for differential boundary

types. Differential boundaries were identified between the neural progenitor cells

(NPC) and mesenchymal stem cells (MSC) (Schmitt et al., 2016). Pathway analysis

was performed using rGREAT (Methods), and results are separated by ontology.

Boundaries with an FDR adjusted p-value of <0.3 are shown. 40 kb resolution,

chr 1–22.

Supplementary Table 5 | Gene ontology enrichment between the first and last

time points in auxin-treated data. Differential boundaries were identified between

the first and last time points of auxin-treated data (Rao et al., 2017). Pathway

analysis was performed using rGREAT (Methods), and results are separated by

ontology. Boundaries with an FDR adjusted p-value of <0.3 are shown. 50 kb

resolution, chr 1–22.

Supplementary Table 6 | Enrichment across different temporal boundary types.

Temporal boundary types were identified across four time points in auxin-treated
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data (Rao et al., 2017). Results are shown for four types of temporal boundaries

(Early Appearing, Late Appearing, Highly Common, Dynamic). Permutation

p-values, along with enrichment or depletion designations, are reported. HCT-116

cell line, 40 kb resolution, chr 1–22.

Supplementary Table 7 | Gene ontology enrichment for different temporal

boundary types. Temporal boundary types were identified across four time points

in auxin-treated data (Rao et al., 2017). For each temporal boundary type,

pathway analysis was performed using rGREAT (Methods), and results are

separated by ontology. Boundaries with an FDR adjusted p-value of <0.3 are

shown. HCT-116 cell line, 50 kb resolution, chr 1–22.

Supplementary Table 8 | Enrichment across different consensus scores.

Consensus scores were called across 17 contact matrices representing seven

different cell lines. Results were dichotomized into three groups (<2, 2–4, >4)

based on consensus boundary scores. Permutation p-values, along with

enrichment or depletion designations, are reported. Hi-C data from Schmitt et al.

(2016), 40 kb resolution, chr 1–22.
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Colorectal cancer (CRC) is the third most common cancer and has the second highest
mortality rate in global cancer. Exploring the associations between chemicals and CRC
has great significance in prophylaxis and therapy of tumor diseases. This study aims
to explore the relationships between CRC and environmental chemicals on genetic
basis by bioinformatics analysis. The genome-wide association study (GWAS) datasets
for CRC were obtained from the UK Biobank. The GWAS data for colon cancer
(category C18) includes 2,581 individuals and 449,683 controls, while that of rectal
cancer (category C20) includes 1,244 individuals and 451,020 controls. In addition,
we derived CRC gene expression datasets from the NCBI-GEO (GSE106582). The
chemicals related gene sets were acquired from the comparative toxicogenomics
database (CTD). Transcriptome-wide association study (TWAS) analysis was applied to
CRC GWAS summary data and calculated the expression association testing statistics
by FUSION software. We performed chemicals related gene set enrichment analysis
(GSEA) by integrating GWAS summary data, mRNA expression profiles of CRC and the
CTD chemical-gene interaction networks to identify relationships between chemicals
and genes of CRC. We observed several significant correlations between chemicals
and CRC. Meanwhile, we also detected 5 common chemicals between colon and
rectal cancer, including methylnitronitrosoguanidine, isoniazid, PD 0325901, sulindac
sulfide, and importazole. Our study performed TWAS and GSEA analysis, linked prior
knowledge to newly generated data and thereby helped identifying chemicals related
to tumor genes, which provides new clues for revealing the associations between
environmental chemicals and cancer.

Keywords: colorectal cancer, genome-wide association study, transcriptome-wide association study, gene set
enrichment analysis, comparative toxicogenomics database
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer
worldwide and has the second highest mortality rate in global
cancer (Bray et al., 2018; Ferlay et al., 2019). In western
countries, CRC accounts for about 10% of cancer deaths
(Kuipers et al., 2015). The accepted view is that genetic,
lifestyle, and environmental factors are closely related to CRC
(Dekker et al., 2019). Current research shows that environmental
chemicals play important roles in the etiology of CRC. Several
chemicals have been suggested to promote the tumorigenesis
and development of CRC. For instance, analysis of an Iowa
Women’s Health Study cohort suggested that exposure to TTHM
in drinking water is associated with increased risk of rectal
cancer (Jones et al., 2019). In addition, another case-control
study observed that organochlorine and organophosphorus
pesticides may induce CRC (Abolhassani et al., 2019). In contrast,
numerous chemicals have been identified that inhibit CRC.
Metastatic CRC (mCRC) often indicates a poor prognosis.
The 5-year overall survival (OS) rate of patients with mCRC
is less than 15% (Siegel et al., 2017; Bray et al., 2018), and
the median OS of unresectable mCRC patients who received
only supportive therapy was only 5 months (Lucas et al.,
2011). However, the 5-years OS rate increased to 10% in such
patients receiving 5-fluorouracil (5-FU)/leucovorin (LV) plus
oxaliplatin (FOLFOX) (Gustavsson et al., 2015). Thus, FOLFOX
chemotherapy regimen is still the standard first-line therapy for
unresectable mCRC (Giacchetti et al., 2000; Goldberg et al., 2004;
Kouhara et al., 2007; Bokemeyer et al., 2011). Recent studies
have found that some non-chemotherapeutic chemicals also have
an inhibitory effect on CRC, such as semisynthetic retinoid,
lidocaine, and beta-carotene (Mattingly et al., 2003; Pham et al.,
2013; Qu et al., 2018).

Therefore, it has great significance to clarify the relationship
between chemicals in environmental and CRC for the treatment
and prevention of diseases. But obtaining the entire life-time
exposure of an individual is difficult and complex, for lacking
sensitive methods to measure specific exposures. Although the
exposure is known to have occurred, the transient character of
the exposure indicators increases the difficulty of measuring the
specific exposure (Messerlian et al., 2017). With the help of new
technologies, such as genome-wide association research (GWAS),
more convenient and efficient analyses have been produced to
identify interactions between multiple environmental exposures
with genes (Khoury et al., 2005). Studies of gene-environment
interactions have been widely applied in psychological research,
however, lack in the field of oncology (Manuck and McCaffery,
2014). The Comparative Toxicogenomics Database (CTD) is a
public repository, aims to advance people’s understanding of how
environmental exposures affects human health (Mattingly et al.,
2003). This database provides information regarding chemical-
gene/protein interactions as well as chemical- and gene-disease
relationships that is organized by individual genes, gene sets,
organisms, chemicals, sequence type (DNA, mRNA, and protein),
gene ontology annotations and sequences (Mattingly et al., 2006).

Genome-wide association studies (GWAS) analyze DNA
sequence variations to provide associations for complex human

traits and diseases efficiently (Tam et al., 2019). Transcriptome-
wide association studies (TWAS) is further developed on this
basis, which can evaluate the association of each gene to diseases
by integrating tissue-related gene expression measurements
with GWAS summary data (Gong et al., 2018). Currently,
TWAS has been proved with high efficiency in determining
the genetic mechanism of complex diseases (Gusev et al., 2018;
Wu et al., 2018). The Gene Expression Omnibus (GEO) is a
worldwide resource which distributes a large number of high-
throughput microarray and next-generation sequence functional
genomic data sets (Barrett et al., 2013). Different from the
traditional GWAS to explain the relationship between DNA
and external phenotype, we simultaneously used the GEO to
obtain the gene expression profile (mRNA expression profile
chip data) of colorectal cancer, that is, a comprehensive analysis
at the DNA and mRNA level. This is helpful to narrow the
range of chemicals related candidate genes on the basis of
traditional GWAS analysis.

Briefly, in this work, the CTD chemical-gene interaction
networks, GWAS summary datasets and gene expression
profiles were integrated. TWAS analysis was performed by
FUSION software to evaluate the expression association
testing statistics. The gene set enrichment analysis (GSEA)
with the running-sum statistic and weighted Kolmogorov-
Smirnov–like statistic were applied to detect the correlation
between environmental chemicals and CRC (Charmpi and
Ycart, 2015). Firstly, we obtained the empirical distributions
of GSEA statistics for each chemical for statistical tests.
Subsequently, the P-value of each chemical was conducted
from the permuted empirical distribution of GSEA statistics.
Finally, we summarized and analyzed the obtained chemicals
associated with CRC.

MATERIALS AND METHODS

GWAS Summary Dataset for CRC
GeneATLAS1, a huge resource storing the information of
hundreds of traits and millions of related gene variants based
on the UK Biobank cohort, provides a convenient way for
researchers to acquire data from the UK Biobank (Lin et al.,
2019). To be specific, it allows researchers to query genome-wide
association results for 9,113,133 genetic variants and download
over 30 million genetic variants (>23 billion phenotype-genotype
pairs) for GWAS summary statistics (Canela-Xandri et al., 2018).

A large-scale GWAS summary data of colon cancer
and rectal cancer in our study were downloaded from
the GeneATLAS in UK Biobank. In the cancer register
category, 103,470 data items are available from 84,726
participants. In brief, our GWAS summary data, which
contained 5,899 available data items, were from categories C18
(malignant neoplasm of colon) and C20 (malignant neoplasm
of rectum). Detailed information regarding the methods,
process, and approaches were described in the previous studies
(Hammerschlag et al., 2017).

1http://geneatlas.roslin.ed.ac.uk/
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Gene Expression Datasets of CRC
NCBI-GEO2 is an international public repository with next-
generation sequencing and microarray/gene profiles which was
used in this study to obtain the mRNA expression profiles of
mucosa and colorectal tumor tissues (GSE106582). CRC patients
were recruited at the University Hospital of Heidelberg, from
whom the gene expression profiles of 77 tumor and 117 mucosa
tissues were obtained using an Illumina HumanHT-12 V4.0
expression beadchip. Using GEO2R, a web tool based on the GEO
database, differential gene expression was assessed by comparing
the expression of genes from colorectal tumor tissues to those of
respective mucosa tissues.

Transcriptome-Wide Association Study
(TWAS) Methodology
TWAS analysis utilizes disease GWAS summary statistics
combining with pre-computed gene expression weights to
calculate the association of every gene with known diseases
(Gusev et al., 2018). In other words, TWAS can integrate the
associations between GWAS and gene expression measurements
to identify genes associated with traits. In this study, A TWAS for
CRC was conducted using functional summary-based imputation
(FUSION) software and the gene expression weight references
of whole blood, rectum, and colon tissues were acquired from
the FUSION website3. Specifically, the gene expression weights
of whole blood were collected from 1,264 subjects of the Young
Finns Study (Raitakari et al., 2008; Nuotio et al., 2014).

Firstly, based on FUSION software we performed prediction
models to calculate the gene expression weights of different
tissues (Huang et al., 2019). Then we conducted the correlation
statistics between gene expressed level and CRC combining
the gene expression weights and summary-level GWAS results.
ZTWAS = w’Z/(w’Lw)1/2 was used to calculate the association
statistics. Z denotes the scores of CRC while w denotes the
weights. L means the SNP-correlation linkage disequilibrium
(LD) matrix. A TWAS p-value was calculated for each gene
within whole blood, rectum and colon tissues, respectively (Qi
et al., 2019). The genes with p < 0.05 were considered as
significant. Detailed information can be found in the published
study (Gusev et al., 2018).

Chemical-Gene Expression Interaction
Database of the CTD Database
The Comparative Toxicogenomics Database (CTD)4 is a publicly
and accessible database for toxicogenomic information (Zhang
et al., 2019). The CTD currently includes more than 30.5
million toxicogenomic relationships associated with chemicals,
proteins, etc. (Davis et al., 2017) and provides information
regarding chemical, gene, phenotype, and disease relationships
to advance our understanding of the effects of environmental
toxin exposure on public health (Grondin et al., 2018). A unique
and powerful feature of the CTD is knowledge transfer with

2https://www.ncbi.nlm.nih.gov/gds/
3http://gusevlab.org/projects/fusion/
4http://ctdbase.org/

respect to any information that is directly annotated to chemicals,
genes and diseases (Davis et al., 2013). This study download
11,190 chemicals related gene sets from the CTD. The process
of retrieving information using CTD was described in the study
previously (Mattingly et al., 2006).

Identification of Environmental
Chemicals Elements Associated With
Colorectal Cancer
The GSEA algorithm was originally used for microarray study
and GWAS-based GSEA was developed subsequently (He et al.,
2018). At present, it is utilized to identify abnormally expressed
gene sets for target diseases, and has been applied in etiology
researches of multiple diseases (Wang et al., 2007). Firstly,
for the jth (j = 1,2,3. . .N) gene, the most significant GWAS
association test statistics of the SNPs was assigned to jth gene
according to the score rj of the given gene. Secondly, all genes
G = (G1∗ , G2∗,. . . ,GN∗ ) were ranked by their scores from the
highest to the lowest (He et al., 2018), which was expressed
as U = (j1∗ , j2∗ ,. . .,jN∗ ). Thirdly, for a chemicals related gene
set S, an enrichment score ES was calculated for CRC by the
running sum statistic and weighted Kolmogorov-Smirnov-like
statistic (Subramanian et al., 2005; Charmpi and Ycart, 2015).
Gene set S independently derived from NH genes. ES represents
the overrepresentation of CRC associated genes in chemicals
related gene set S. ES was calculated as:

ES(S) = max
1≤j≤N

 ∑
Gj∗∈S,j∗≤j

|rj∗ |p

NR
−

∑
Gj∗ /∈S,j∗≤j

1
N − NH

 ,

where
NR =

∑
Gj∈S

|rj∗ |p.

Finally, after L time permutations, we can obtain the null
distribution of ESnull

= (ESnull
1 , ESnull

2 , . . . , ESnull
l ). To control

the effect of the gene sets with varying sizes, the observed ES(S)
is normalized by the average value and standard deviation of

the permutated ESnull
S , defined by NESS

=
ESS
−mean(ESnull

S )

SD(ESnull
S )

. The P-

values were finally calculated from the NES for each chemicals
related gene set.

This study conducted a total of 5,000 permutations to
calculate the empirical distributions of GSEA statistics of each
chemical. And the chemicals related gene sets with P < 0.05 are
considered statistically significant. Previous research provides the
detailed descriptions regarding this approach (Zhao et al., 2018).
Similarly, all mRNA expression profile from GEO were analyzed
using the same approach (Weng et al., 2011).

RESULTS

Environmental Chemicals Associated
With Colorectal Cancer
From the CRC GWAS summary datasets, we identified 175
chemicals that were significantly associated with colon cancer
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(including 34 for colon tissue and 141 for whole blood) as
well as 103 chemicals significantly associated with rectal cancer
(including 20 for rectal tissue and 83 for whole blood) (P < 0.05;
Supplementary Tables S1, S2). For the expression profile of
CRC, we identified 1,198 significant chemicals (P < 0.05;
Supplementary Table S3).

After a comparative analysis of the TWAS and mRNA
expression profile GSEA results, we significantly detected
several chemicals associated with the colon cancer and
rectal cancer (P < 0.05). For colon cancer, 104 common
chemicals were detected, including 83 in colon tissue and
24 in blood tissue, and 3 in both tissues (Supplementary
Table S4),such as Antirheumatic Agents (P-value1 = 0.0244,
P-value2 = 0.0230), Chenodeoxycholic Acid (P-value1 = 0.0002,
P-value2 = 0.0002) and Trientine (P-value1 = 0.0464, P-
value2 = 0.0314; Supplementary note: In this paragraph, P-value1
is P-value in GWAS dataset and P-value2 is P-value in mRNA
expression profile). For rectal cancer, 51 common chemicals
were discovered, including 12 in rectum tissue and 39 in blood
tissue (Supplementary Table S5). Tables 1, 2 summarized the
top 10 chemicals identified for the colon cancer and rectal
cancer separately.

TABLE 1 | List of top ten chemicals identified for colon cancer after a comparative
of GWAS and mRNA GSEA results.

Chemical Name P-value1a P-value2b

Antirheumatic Agents 0.0002 0.0002

LG 100815 0.0004 0.0004

Zinc Acetate 0.0010 0.0004

Aerosols 0.0016 0.0002

Titanium dioxide 0.0026 0.0002

Motexafin gadolinium 0.0046 0.0006

Clofibric Acid 0.0052 0.0002

Vitallium 0.0052 0.0002

Raloxifene Hydrochloride 0.0066 0.0002

Soman 0.0094 0.0002

aP-value1: P-value in GWAS dataset. bP-value2: P-value in mRNA expression
profile.

TABLE 2 | List of top ten chemicals identified for rectal cancer after a comparative
of GWAS and mRNA GSEA results.

Chemical name P-value1a P-value2b

NAD 0.0020 0.0004

Sulindac sulfide 0.0052 0.0002

Casticin 0.0086 0.0002

Benz(a)anthracene 0.0124 0.0002

Methylnitronitrosoguanidine 0.0132 0.0002

Afimoxifene 0.0134 0.0002

4-phenylbutyric acid 0.0150 0.0004

Nickel 0.0178 0.0002

Ochratoxin A 0.0180 0.0002

Promethazine 0.0196 0.0006

aP-value1: P-value in GWAS dataset. bP-value2: P-value in mRNA expression
profile.

TABLE 3 | The common significant chemicals between colon cancer and rectal
cancer GSEA results.

Chemical name P-value1a P-value2b P-value3c

Methylnitronitrosoguanidine 0.0394 0.0132 0.0002

Isoniazid 0.0164 0.0262 0.0068

PD 0325901 0.0348 0.0406 0.0012

Sulindac sulfide 0.0374 0.0052 0.0002

Importazole 0.0378 0.0450 0.0224

aP-value1: P-value in colon GWAS dataset. bP-value2: P-value in rectal GWAS
dataset. cP-value3: P-value in mRNA expression profile.

Meanwhile, Table 3 shows the common significant
environmental chemicals between colon cancer and rectal cancer.
We detected 5 chemicals, including methylnitronitrosoguanidine
(P-value1 = 0.0394, P-value2 = 0.0132, P-value3 = 0.0002),
isoniazid (P-value1 = 0.0164, P-value2 = 0.0262, P-
value3 = 0.0068), PD 0325901 (P-value1 = 0.0348,
P-value2 = 0.0406, P-value3 = 0.0012), sulindac sulfide (P-
value1 = 0.0374, P-value2 = 0.0052, P-value2 = 0.0002),
importazole (P-value1 = 0.0378, P-value2 = 0.0450, P-
value3 = 0.0224; Supplementary note: In this paragraph,
P-value1 is P-value in colon GWAS dataset, P-value2 is P-value
in rectal GWAS dataset, P-value3 is P-value in mRNA expression
profile). The specific technology roadmap and Venn diagram are
shown in Figure 1.

DISCUSSION

CRC is the fourth deadliest cancer lead to 900,000 deaths
worldwide annually (Dekker et al., 2019). It has become a
global public health problem due to its high morbidity and
mortality worldwide. Both genetic and environmental factors
play significant roles in the etiology of colorectal cancer.
Cancer risk factors include biological agents (infection), exposure
to synthetic chemicals, and lifestyle factors, which together
contribute to the development of 70–95% of cancers (Wu
et al., 2016). Several chemicals have been reported promote the
tumorigenesis and tumor development of CRC (Abolhassani
et al., 2019; Cernigliaro et al., 2019; Jones et al., 2019). This
provides a new clue for us to prevent the occurrence of colorectal
cancer. Meanwhile, except for the standard treatment, many
chemicals have been reported to inhibit CRC in recent years.
For example, the anti-colorectal cancer effect of awsonaringenin
(LSG), a flavonoid compound, has been demonstrated in previous
research (Anwar et al., 2018). Environmental chemicals are
related to various malignant tumors besides CRC. For example,
acrylamide, benzo(a)pyrene and polychlorinated biphenyls can
induce carcinogenesis for cytotoxicity and DNA damage to
hepatic cells (Erkekoglu et al., 2017). The discovery for the active
substance in chemicals related cancer is of great significance
for the treatment to tumor patients. Since the chemicals
environmental exposure is usually complex and accurately
measuring exposure levels in vivo is still with many objective
problems, we try to explore the relationships between chemicals
and cancer in an easier way.
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FIGURE 1 | Technology roadmap. First, the GWAS dataset of colon cancer and rectal cancer were downloaded from GeneATLAS, a large database based on the
UK Biobank cohort. Meanwhile, we obtained mRNA expression profiles of CRC from NCBI-GEO. The software FUSION was used to assess the CRC GWAS
summary data for tissue-related TWAS analysis. The chemicals related gene sets were then generated by the CTD. Subsequently, chemical-related gene set
enrichment analysis (GSEA) was conducted to detect the association between chemicals and CRC. Finally, the Venn diagram showed the significant chemicals
associated with colorectal cancer.
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In this study, we extended the classical GSEA approach
to detect associations between chemicals and CRC using
TWAS data and gene expression datasets. We identified several
chemicals showing genetic correlation evidence with the CRC.

We identified several significant chemicals for the colon
cancer, such as aspirin and titanium dioxide, which have
been reported by previous study. Aspirin, a well-known
antirheumatic drug, is proved that can prolong the survival
of patients with colorectal cancer and activate T cell-mediated
antitumor immunity (Hamada et al., 2017). Bettini, Boutet-
Robinet et al. has reported that daily oral food-grade titanium
dioxide (TiO2) intake is related to an chronic intestinal
inflammation and will increase the risk of carcinogenesis
(Bettini et al., 2017).

NAD and Nickel are two remarkable chemicals associated with
rectal cancer. A recent study revealed that increased nicotinamide
adenine dinucleotide pool suppressed reactive oxygen species
level to promote progression of colon cancer (Hong et al., 2019).
In a previous study, trace elements in normal and cancerous
tissue which obtained from 18 patients suffering from colon
and rectum cancer were quantitatively determined by X-ray
fluorescence, and the result showed that Nickel elevated in
cancerous tissues (Gregoriadis et al., 1983).

Five overlapped chemicals have been identified associated with
CRC, including the carcinogens methylnitronitrosoguanidine,
isoniazid. And PD 0325901, sulindac sulfide and importazole
have the ability to inhibit the carcinogenesis and
development of cancer.

Methylnitronitrosoguanidine (MNNG) is anticipated to be
declared a human carcinogen based on sufficient evidence of
its carcinogenicity from investigations involving animal models.
MNNG caused tumors at different tissue sites in several animal
model species by several different exposure routes. Research
indicated that the intrarectal infusion of MNNG into large
intestine of rats can cause tumors (Tsukamoto et al., 2015; U.S.
Department of Health and Human Services, 2016).

Isoniazid (INH) is an irreversible inhibitor of Monoamine
oxidase A (MAOA) that is widely regarded as a major anti-
tuberculosis drug (Zareifopoulos and Panayiotakopoulos, 2017).
MAOA is a mitochondrial-bound enzyme. It was confirmed
that MAOA may promote the progression of prostate cancer
by mediating EMT (Wu et al., 2014; Lv et al., 2018). However,
because conflicting results have been reported for the importance
of MAOA in HCC and cholangiocarcinoma (Huang et al.,
2012; Li et al., 2014), the role of MAOA may vary across
cancer types. Lee et al. demonstrated that Monoamine Oxidase
Inhibitors (MAOIs) are associated with increased colorectal
cancer risk (adjusted OR = 1.22, 95% CI = 1.06-1.41;
Lee et al., 2017).

PD 0325901 is an MEK inhibitor. Interestingly, Roper
et al. (2014) have shown PI3K/MEK inhibition combined with
NVP-BKM120 and PD-0325901 treatment can induce tumor
progression in a wild-type PIK3CA mouse model, KRAS mutant
CRC, based on the inhibition of mTORC1 and MCL-1 and the
activation of BIM. Moreover, PD0325901 was reported to inhibit
oxaliplatin-induced neuropathy and enhance oxaliplatin efficacy
(Tsubaki et al., 2015).

Liggett et al. observed that the non-steroidal anti-
inflammatory drug sulindac sulfide inhibits the expression
of the potential oncogene structural protein nesprin-2 in
CRC cells (Liggett et al., 2014). The results of another study
suggested the inhibition of sulindac sulfide on the growth of
colon cancer cells and down-regulation of specific transcription
factors (Li et al., 2015). Furthermore, the inhibitory effects of
5-fluorouracil and oxaliplatin on human CRC cell survival were
demonstrated to be synergistically enhanced by sulindac sulfide
(Flis and Splwinski, 2009).

Importazole is a small molecule inhibitor of the transport
receptor importin-β (Soderholm et al., 2011) that can inhibit
the proliferation and induce apoptosis of multiple myeloma cells
by blocking the NF-KB signaling pathway (Yan et al., 2015).
Moreover, intravenous administration of the specific KPNB1
inhibitor importazole was effective in reducing the volume and
weight of prostate cancer tumor in mice inoculated with PC3 PCa
cells (Yang et al., 2019). Thus, the results of the above studies show
that importazole can inhibit tumors.

We conducted a large scale correlation study between
colorectal cancer and environmental chemicals and explored
the associations between chemicals and colorectal cancer
systematically. Our analysis approach has two advantages.
Firstly, we identified interaction between chemicals and genes
directly. From the perspective of genome, the result is more
stable to overcome the shortcomings of traditional exposure
measurement methods. From the perspective of benefit, genome-
wide summary data usually can be obtained online conveniently.
Secondly, our research analyzed summaries of TWAS and
mRNA expression profiles, in other words, we made a
comprehensive analysis in the DNA and mRNA expression
levels. This is helpful to narrow the range of chemicals related
candidate genes on the basis of traditional GWAS analysis
and make the results more reliable. Current research shows
that chemicals in environmental factors have great significance
in the etiology of multiple cancers (Thompson et al., 2015).
However, we only researched the colon cancer and rectal
cancer. As cancer sequencing gene data sets increasing, we
will apply our method to large-scale studies of cancer gene-
environment interactions.

In summary, we conducted an integrative analysis of GWAS
summary data, mRNA expression profiles and chemical-gene
interaction networks. Tools such as TWAS and GSEA helped
linking these datasets and identifying several chemicals associated
with CRC. The results of our study evaluate the associations
between CRC and chemicals systematically, and provide new
clues for revealing the association between chemicals and genes
and their effects on cancer. Furthermore, our method can be used
to analyze other chemicals and complex malignant disease, which
is helpful for assessing the relationship between environmental
exposure and cancer.
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Genome-wide association studies (GWAS) have successfully mapped thousands of
loci associated with complex traits. These associations could reveal the molecular
mechanisms altered in common complex diseases and result in the identification of
novel drug targets. However, GWAS have also left a number of outstanding questions.
In particular, the majority of disease-associated loci lie in non-coding regions of the
genome and, even though they are thought to play a role in gene expression regulation,
it is unclear which genes they regulate and in which cell types or physiological contexts
this regulation occurs. This has hindered the translation of GWAS findings into clinical
interventions. In this review we summarize how these challenges have been addressed
over the last decade, with a particular focus on the integration of GWAS results with
functional genomics datasets. Firstly, we investigate how the tissues and cell types
involved in diseases can be identified using methods that test for enrichment of GWAS
variants in genomic annotations. Secondly, we explore how to find the genes regulated
by GWAS loci using methods that test for colocalization of GWAS signals with molecular
phenotypes such as quantitative trait loci (QTLs). Finally, we highlight potential future
research avenues such as integrating GWAS results with single-cell sequencing read-
outs, designing functionally informed polygenic risk scores (PRS), and validating disease
associated genes using genetic engineering. These tools will be crucial to identify new
drug targets for common complex diseases.

Keywords: GWAS, SNP enrichment, colocalization analysis, TWAS, single-cell RNA seq, eQTL, QTL

INTRODUCTION

Common non-communicable diseases such as autoimmunities, neurodegeneration, and
cardiovascular disease are among the most pressing challenges in present day healthcare.
These conditions are influenced by the interaction between a genetic predisposition and
environmental or lifestyle factors (Smith et al., 2005). As opposed to rare diseases, which are
often caused by the dysfunction of a single gene, common diseases are complex traits, i.e., they
are influenced by the added contribution of thousands of common genetic variants, each having
a small individual effect on the phenotype (Hindorff et al., 2011). This makes studying complex
diseases challenging, as their genetic architecture follows a polygenic rather than a Mendelian
model (Visscher and Goddard, 2019).
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Genome-wide association studies (GWAS) are designed
to map the polygenic architecture of common diseases by
identifying genetic variants present at a significantly higher
frequency in individuals with disease than in the healthy
population (Wellcome Trust Case Control Consortium, 2007).
Over the last 12 years, GWAS have grown significantly both
in sample size and in the number of investigated traits
(Visscher et al., 2017), with 128,550 associations and over
4,000 publications reported in the GWAS catalog to date
(MacArthur et al., 2017).

Despite the success of GWAS, the clinical insights derived
from their results have been limited. This is due to the
difficulty of interpreting GWAS associations. Firstly, neighboring
genetic variants are often correlated with one another, as they
tend to be inherited together due to co-segregation during
meiotic recombination, a phenomenon referred to as linkage
disequilibrium (LD) [for a more detailed discussion of LD, refer
to the review by Slatkin (2008)]. LD results in multiple variants
in a locus being present in the same individual purely due to
this correlation. This makes it difficult to distinguish the causal
variants underpinning the association. Secondly, it is unclear
which cell types are causal to the disease, as the pathophysiology
of complex diseases often implicates interactions of multiple cell
types. For example, the development of atherosclerotic plaques
involves monocytes, lymphocytes, mast cells, neutrophils and
smooth muscle (Insull, 2009). It is unclear which cell types are
the true drivers of a disease (i.e., in which cell type GWAS
variants act) and which are the consequence of the disease
pathogenic processes. Finally, over 90% of GWAS variants fall
in non-coding regions of the genome and thus do not directly
affect the coding sequence of a gene. The accumulation of
these variants in DNA regulatory elements (Maurano et al.,
2012) and the observation that they can disrupt binding sites
for transcription factors (TFs) (Musunuru et al., 2010) suggests
that these variants act by regulating the expression levels of
genes. However, disease-associated loci often contain multiple
genes, making it challenging to distinguish the affected ones. In
summary, follow-up studies are necessary to interpret GWAS
results and to infer the exact disease-causal variants, the genes
they regulate and the cell types in which they act (Figure 1).

Statistical methods designed to tackle these challenges
integrate GWAS results with functional genomics data such as
gene expression or chromatin activity profiles assayed across a
range of cell types and tissues. In particular, fine-mapping aims
to define causal variants, SNP enrichment methods prioritize
disease relevant cell types and colocalization nominates likely
target genes (Figure 1). Here, we review a selection of methods
that facilitate translation of GWAS results, focusing on SNP
enrichment and colocalization approaches, and we highlight
some biological conclusions derived from these studies. We also
discuss transcriptome-wide association studies which directly
associate genes with diseases. For a detailed analysis of fine-
mapping methods, we refer the reader to a previous review
(Schaid et al., 2018). Finally, we reflect on some of the
challenges and opportunities of post-GWAS research, such as the
availability of high-throughput single-cell sequencing platforms,
the identification of relevant intermediate phenotypes, the

development of polygenic risk scores (PRS), and the systematic
application of genetic engineering for GWAS validation.

IDENTIFYING CELL TYPES RELEVANT
TO COMPLEX DISEASES

The variants mapped through GWAS provide a strong genetic
anchor to complex disease biology and therefore to the
development of new therapies. However, going from genetics
to function requires robust model systems in which disease-
causal cells and tissues can be probed and manipulated. For
example, tumor-derived human cell lines have been relevant
for the systematic identification of novel drug targets in cancer
(Behan et al., 2019). Such model systems provide valuable clues
for drug target validation, as they enable us to elucidate the
molecular mechanisms of disease, to identify relevant genes
and to screen compounds with therapeutic potential at high-
throughput. However, for many complex diseases, it is unclear
which cells are causal. For instance, independent studies have
proposed that rheumatoid arthritis is caused by cells as diverse
as T cells (Cope et al., 2007), B cells (Bugatti et al., 2014),
macrophages (Udalova et al., 2016), and synoviocytes (Beatrix
Bartok, 2010). Psychiatric traits, which involve dysregulation of
the central nervous system, pose a similar challenge due to the
complex histological structure of the brain. For example, over 20
different cellular models have been used to study bipolar disorder
(Viswanath et al., 2015). The lack of ground truth causal cell types
makes the functional validation of GWAS variants challenging,
as dozens of tissues could be involved in the development of
a trait. Statistical methods that integrate GWAS variants either
with transcriptome or chromatin annotations assayed across a
range of different tissues can help nominate the most disease-
relevant cell types.

Snp Enrichment Analysis Based on
Genome-Wide Significant Gwas Variants
Identification of disease-relevant cell types assumes that GWAS
variants are overrepresented in genomic regions specifically
active in the pathogenic cell types (SNP enrichment). SNP
enrichment methods integrate GWAS results with different
genomic annotations and prioritize the cell types in which
associated variants overlap annotations more frequently than
expected by chance. For example, cell type specific activity of
a genomic region (e.g., a GWAS locus) can be defined by
the expression levels of genes within the region. An approach
proposed by Hu et al. (2011) (SNPsea) defines as highly cell
type specific those genes with high expression in individual cell
types as compared to all other cell types. If, for a given trait,
GWAS loci are overrepresented (enriched) for genes specifically
expressed in a given cell type, that cell type is prioritized. The
statistical significance is derived from a permutation-based test
in which disease-associated loci are compared with random loci
of similar properties (e.g., distance to TSS and gene density)
(Slowikowski et al., 2014). The authors used this approach
for three different immune-mediated diseases (Crohn’s disease,
systemic lupus erythematosus and rheumatoid arthritis), testing
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FIGURE 1 | Challenges in interpreting GWAS associations. From the top: Manhattan plot illustrates the association between genetic variants and a trait (e.g., a
disease) at a genome-wide level (left panel) and within an example locus (right panel). Variants above the dotted line represent genome-wide significant associations.
The panels below illustrate the main challenges in interpreting GWAS associations: high LD between variants (encoded in shades of red), variable levels of regulatory
activity of the genomic regions across cell types (peaks of different heights represent different levels of activity of chromatin marks) and multiple genes within the
associated locus.

for enrichment in gene expression across 79 human and 223
mouse tissues. While lupus-associated variants were enriched
in genes specifically expressed in B cells, rheumatoid arthritis
variants were enriched in genes specific to CD4+ memory T
cells (Hu et al., 2011). This demonstrated that SNP enrichment
is a valid approach for cell type prioritization and suggested
that variants associated with immune-mediated diseases result in
dysfunction of the adaptive immune system.

However, gene expression-based methods use an arbitrary
definition of which genes contribute to the SNP enrichment
score at each locus and either select a single gene with
the highest cell type specific gene expression or include all
the genes within the locus (Hu et al., 2011). The caveat of
this is that the first approach can select the wrong gene
and does not account for the effects of multiple causal
genes, while the second approach can dilute the signal
by including many genes which are likely not relevant to
the tested trait.

Alternatively, GWAS variants can be integrated with
chromatin annotations such as open chromatin regions

(assayed by DNase-hypersensitivity or ATAC-seq) (Boyle et al.,
2008; Buenrostro et al., 2013), histone modifications (e.g.,
H3K4me1, H3K4me3, H3K27ac, and H3K27me3) (Bannister
and Kouzarides, 2011) or DNA methylation (Frommer et al.,
1992). These annotations are profiled using sequencing-based
approaches which identify genomic elements with high levels of
regulatory activity (i.e., peaks). For example, DNA accessibility
peaks indicate regions available for transcription factor (TF)
binding, H3K4me3 peaks highlight gene promoters (Barski et al.,
2007) and H3K27ac peaks mark active enhancer and promoter
regions (Creyghton et al., 2010). As opposed to gene expression,
chromatin marks can be physically overlapped with GWAS
variants and therefore enrichment analysis can be estimated
directly from the SNPs located within the annotations (Figure 2).
Initiatives like the Encyclopedia of DNA Elements (ENCODE)
(ENCODE Project Consortium, 2012), Roadmap Epigenomics
(Roadmap Epigenomics Consortium et al., 2015), and the
BLUEPRINT project (Chen et al., 2016) have profiled tens of
epigenetic marks across dozens of human tissues, providing rich
resources for these type of SNP enrichment analyses.

Frontiers in Genetics | www.frontiersin.org 3 May 2020 | Volume 11 | Article 42493

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00424 May 11, 2020 Time: 19:24 # 4

Cano-Gamez and Trynka From GWAS to Function

FIGURE 2 | Overview of SNP enrichment analysis using chromatin annotations. SNP enrichment analysis integrates association signals from GWAS (Manhattan plot
on the top left) with functional genomics data such as chromatin annotations (heatmap on the bottom left). GWAS SNPs are overlapped with regulatory elements
(right panel) and if in a given tissue the overlap occurs more frequently than expected by chance, the tissue is assigned a high enrichment score.

An early example of SNP enrichment analysis with chromatin
annotations overlapped GWAS variants for 447 traits with
DNase-hypersensitive (DHS) regions from 348 tissues (Maurano
et al., 2012). Using a simple binomial test, this study found
that GWAS SNPs were enriched in DHS regions compared
to a background set of common SNPs from the HapMap
project (International HapMap Consortium, 2003). These SNP
enrichment results were tissue-specific, for example, variants for
coronary heart disease and body mass index were enriched in
DHS regions active in fetal cells. Conversely, variants associated
with age-related diseases (e.g., cancer and immune-mediated
diseases) were significantly depleted from fetal DHS regions.
These findings suggest that GWAS variants could modify
the regulatory activity of non-coding elements in a cell-type
specific manner.

However, GWAS loci reside in regions of high gene density,
which also include higher density of chromatin regulatory
elements, which can confound enrichment estimates if not
accounted for. To address this issue, enrichment of disease
variants in DHS regions can compare GWAS SNPs to random
sets of SNPs with similar properties (i.e., LD, gene density and
distance to TSS) in a permutation-based approach (GREGOR)
(Schmidt et al., 2015). By matching SNPs, this approach is robust
to both gene and annotation density. Results from this study
confirmed that GWAS SNPs are generally enriched in active
regulatory regions compared to random SNPs.

In addition to the binary overlap between SNPs and
annotations, SNP enrichment analysis can also take into account
other peak properties, such as the position of a variant within a
peak and the height of the peak (reflecting the levels of regulatory

activity). Moreover, SNP enrichment analysis can be extended to
chromatin marks other than DHS. For example, epiGWAS tests
for the accumulation of GWAS variants in chromatin regions
defined using ChIP-seq for histone modifications (Trynka et al.,
2013). In this approach, variants within each GWAS locus are
scored for their distance to the summit of the nearest peak and
for the height of the peak i.e., the height (h) to distance (d)
ratio (h/d). The contribution to the final enrichment score is
determined by a single variant per locus with the highest h/d
score, and statistical significance of the enrichment is inferred
by comparison to a matched set of random SNPs sampled from
the GWAS catalog (MacArthur et al., 2017). This approach is
suitable for narrow histone marks, where peak summits can be
reliably defined. The authors confirmed that variants associated
with LDL cholesterol levels were enriched in gene promoters
active in the liver, and that type 2 diabetes variants were enriched
in gene promoters active in both liver cells and pancreatic islets.
In both cases, the tissues are well understood to play a role
in disease biology. The authors also used this approach across
immune-mediated traits where pathogenic cell types are less
well characterized. This revealed an enrichment of rheumatoid
arthritis and type 1 diabetes variants in CD4+ T cell subsets,
particularly in regulatory T cells.

One limitation of the above methods, which all rely on random
sampling of SNPs to derive a null distribution, is that they make
assumptions on the SNP parameters that need to be controlled
for in random sampling (e.g., proximity to transcription start site,
minor allele frequency, gene density, etc.). However, the presence
of hidden confounders could bias the enrichment statistics if
uncontrolled for. For example, high LD in a given genomic
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region can result in inflated SNP enrichment estimates (Trynka
et al., 2015). One approach to address this, the GoShifter method
(Trynka et al., 2015), derives statistical significance by shifting
the location of functional annotations within the tested regions
while preserving the distance between them. The result is a null
distribution of SNP-annotation overlaps due to chance. This
approach maintains the local genomic architecture, including the
number of tested SNPs in LD, the number of annotations and the
distance between the features, therefore controlling for hidden
confounders. GoShifter confirmed a significant enrichment of
rheumatoid arthritis variants in promoter regions specific to
CD4+memory T cells and also detected an enrichment of breast
cancer variants in human mammary epithelial cells (Trynka et al.,
2015). Both of these cell types are known to be involved in disease.

Given a well powered GWAS, SNP enrichment analysis
can provide important insights into disease pathogenic tissues
from leveraging the genetic signals. For example, Onengut-
Gumuscu et al. (2015) asked if credible sets of type 1
diabetes SNPs (defined with a Bayesian fine-mapping approach)
were enriched in functional annotations from the ENCODE
(ENCODE Project Consortium, 2012) and Roadmap (Roadmap
Epigenomics Consortium et al., 2015) projects (Onengut-
Gumuscu et al., 2015). They did so by comparing the
proportion of disease-associated SNPs and non-disease SNPs
which overlapped functional elements, stratifying variants by
their minor allele frequency. Interestingly, type 1 diabetes
credible sets were strongly enriched in immune cell enhancers,
particularly enhancers active in CD4+ and CD8+ T cells.
Conversely, there was no detectable enrichment in enhancers
active in pancreatic islets, in agreement with type 1 diabetes being
an immune-mediated pathology. In contrast, a separate study
profiled open chromatin, TF binding and gene expression in
human pancreatic islets and integrated these profiles with GWAS
loci for type 2 diabetes and fasting glycemia (Pasquali et al.,
2014). The authors used a permutation-based test to estimate
enrichments and concluded that glycemia and type 2 diabetes
SNPs were strongly enriched in pancreatic islet enhancers, where
they disrupted DNA binding by key islet TFs. This illustrates how
SNP enrichment can distinguish different disease etiologies based
solely on genetic associations, despite the traits sharing similar
physiological manifestations.

Once the disease-relevant cell types are identified, subsequent
experiments can be carried out to further refine the observed
enrichments to the most relevant cell states. For example,
we recently followed up the previously reported enrichment
of immune disease variants in naive and memory CD4+ T
cells, and macrophages (Hu et al., 2011; Fairfax et al., 2014;
Trynka et al., 2013, 2015) by stimulating these cell types
in the presence of different cytokine cocktails and profiling
chromatin landscape with ATAC-seq and H3K27ac ChIP-seq
across 55 cell states (Soskic et al., 2019). We observed that,
in closely related cell types, the induction of different cell
states results in quantitative changes in ATAC-seq and H3K27ac
peaks, rather than in the induction of new cell state specific
peaks. The broadly applied SNP enrichment methods, which
rely on binary SNP-peak overlaps, failed to distinguish disease
SNP enrichment between the different cell states. Therefore, we

developed a new method (CHEERS) to tease apart enrichments
in closely related cell types or cell states (Soskic et al., 2019).
CHEERS asks whether GWAS variants tend to accumulate in
regions with highly cell type-specific regulatory activity. SNPs
are first intersected with chromatin elements (e.g., chromatin
accessibility or ChIP-seq peaks) and are then assigned a score
reflecting cell type specific regulatory activity of the region (i.e.,
how many sequencing reads exist within that region in one
cell type as compared to the other cell types). Because this
approach is based on cell type-specificity rather than absolute
regulatory activity, it can disentangle enrichment patterns across
highly similar cell types. We applied this approach to GWAS
variants for 11 diseases, using chromatin annotations from our
cytokine-stimulated dataset. Variants associated with different
subtypes of inflammatory bowel disease (IBD) were enriched in
chromatin elements specifically active in the Th1 cell state. For
the remaining immune diseases, the strongest enrichment was
in early stages of memory T cell activation. This enrichment
pattern is important, as it not only nominates T cells as a
relevant cell type, but also begins to explain which specific cellular
processes are altered in disease. Additionally, a separate study
performed SNP enrichment analysis for nine immune diseases
using gene expression and chromatin accessibility profiles of 25
immune cell types in resting and activated states (Calderon et al.,
2019). Here too, the strongest enrichment was observed among
stimulated T cells.

Genome-Wide Snp Enrichment Analysis
The approaches described so far leverage the signal from genome
wide significant variants as shown in Table 1. However, complex
traits result from thousands of risk alleles and the majority of
trait-associated variants remain undiscovered (Visscher et al.,
2017). Thus, restricting the analysis to genome-wide significant
variants could limit statistical power to detect biologically
important enrichments. This has motivated the development of
a number of methods which use all the common variants to
estimate enrichments.

In a method called fGWAS, Pickrell reasoned that if GWAS
variants were enriched in a given functional category, then SNPs
belonging to that category would be more likely to have an effect
on the trait (Pickrell, 2014). Using whole genome variants from
imputation (Pasaniuc et al., 2014), he modeled the probability
of a locus being associated with a disease as a function of its
annotations using a hierarchical Bayesian model. When applied
to chromatin regulatory maps from 402 tissues and 18 complex
traits, fGWAS identified enrichment of HDL-associated variants
in enhancers specifically active in the liver. Moreover, variants
were generally depleted from repressed chromatin regions across
all traits. By integrating functional annotations with GWAS
statistics, fGWAS can also “re-weigh” and discover association
signals for variants which did not originally reach genome-wide
significance (Pickrell, 2014). An example is the SNP rs6659176,
upweighted by fGWAS and confirmed to be associated with
HDL through an independent study (Global Lipids Genetics
Consortium et al., 2013).

In another study, Iotchkova et al. used a logistic regression
framework to assess SNP enrichment (GARFIELD) and modeled
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TABLE 1 | Methods for SNP enrichment analysis.

Method Publications Hypothesis tested Input data

SNPsea Hu et al., 2011;
Slowikowski et al., 2014

Accumulation of GWAS variants near genes with high tissue specificity Gene expression, GWAS index variants

EpiGWAS Trynka et al., 2013 Accumulation of GWAS variants near highly active regulatory elements Chromatin marks, GWAS index variants

GREGOR Schmidt et al., 2015 Accumulation of GWAS variants in regulatory elements Chromatin marks, GWAS index variants

GoShifter Trynka et al., 2015 Intersection of GWAS variants with regulatory annotations (based on
local-shifting of annotations)

Functional annotations, GWAS index variants

fGWAS Pickrell, 2014 Higher GWAS effect sizes observed if a loci and a SNP overlap a
functional annotation

Functional annotations, GWAS summary
statistics

CHEERS Soskic et al., 2019 Accumulation of GWAS variants in regulatory elements with high tissue
specificity

Chromatin marks (quantitative), GWAS index
variants

GARFIELD Iotchkova et al., 2019 Higher GWAS effect sizes observed in variants that overlap regulatory
annotations

Chromatin annotations, full GWAS summary
statistics

RolyPoly Calderon et al., 2017 Higher GWAS effect sizes observed near highly expressed genes Gene expression, full GWAS summary statistics

LDSC Finucane et al., 2015 Accumulation of heritability in variants overlapping a functional
annotation

Chromatin annotations, full GWAS summary
statistics

LDSC-SEG Finucane et al., 2018 Accumulation of heritability near tissue specific genes Gene expression, full GWAS summary statistics

Selected approaches and methods for enrichment testing of GWAS SNPs in functional annotations included in this review.

the trait association status of each SNP as a probability (Iotchkova
et al., 2019), defined as a function of the variant’s features (i.e.,
overlap with a functional annotation, distance to the nearest
TSS and number of LD proxies). The significant association
of a SNP (a binary variable) was tested at several significance
thresholds, thus allowing more SNPs to be included in the
calculation. The authors applied GARFIELD to DHS regions
and functional annotations from ENCODE (Ernst and Kellis,
2012) and found that variants associated with height were
enriched in DHS elements across all tissues, while ulcerative
colitis variants showed tissue-specific enrichment mostly in
blood cell types. Interestingly, the authors observed some of the
enrichments only at lower significance thresholds. For example,
variants associated with beta cell activity index were enriched in
pancreatic islets enhancers only at lower significance thresholds
(P value < 1 × 10−5). This suggests that including more trait-
associated variants can improve enrichment estimates.

Enrichment Analysis Based on Snp
Heritability
Heritability is the proportion of a trait’s variance that is due to
genetic variation. In particular, SNP heritability is the amount of
phenotypic variance explained by a given set of SNPs (Yang et al.,
2017). A number of methods have been developed to estimate the
SNP heritability of a trait using either individual-level genotypes
or summary statistics (Yang et al., 2010; Bulik-Sullivan et al.,
2015) from GWAS. This gave rise to partitioning heritability
approaches, which test for a significant accumulation of trait
heritability in different functional categories of the genome.
The authors of stratified LD-score regression (LDSC) (Finucane
et al., 2015) argue that if GWAS variants are enriched in a
functional category, then variants falling within that category
will explain more trait heritability than other variants. To test
for this, Finucane et al., 2015 partitioned all common SNPs into
categories based on the functional elements that they overlapped.

These categories included 24 unspecific annotations (coding
regions, promoters, enhancers, introns, conserved elements and
DHSs, among others) as well as histone modification profiles
acquired from a variety of cell types. The authors calculated
the SNP heritability of variants in each category using GWAS
data for 17 traits and defined an enrichment score as the
proportion of SNP heritability in a category divided by the
proportion of SNPs in that category (Finucane et al., 2015). The
authors found that, in general, conserved regions of the genome
explained more heritability. Moreover, variants within enhancers
specific to disease-relevant cell types also explained a substantial
proportion of heritability. For example, liver-specific enhancers
were enriched for HDL heritability and enhancers active in
the central nervous system captured more SNP heritability of
psychiatric traits (e.g., schizophrenia and bipolar disorder) than
variants residing in enhancers present in other cell types.

However, one limitation of the LDSC method is its
dependency on chromatin activity profiles, which are not always
available. In contrast, gene expression profiles are available
for a far greater number of cell types, including the less
abundant ones. LD-score regression applied to specifically
expressed genes (LDSC-SEG) extends the LDSC framework to
partition heritability using gene expression profiles (Finucane
et al., 2018). If first identifies the top 10% most specific
genes expressed in each tissue and extends the regions on
each side of the genes by 100 kb. The resulting regions
are used as tissue-specific annotations in which variants are
partitioned. Because gene expression is available for a wider
set of tissues than epigenetic data, this enabled the analysis
of less common cell types. The authors used LDSC-SEG to
integrate expression profiles form GTEx with GWAS data for
psychiatric traits and showed evidence of differential heritability
enrichment across brain regions. For example, while only
cells from the cortex were enriched for schizophrenia SNP
heritability, both the cortex and the cerebellum were enriched
for bipolar disorder SNP heritability. Subsequent application of

Frontiers in Genetics | www.frontiersin.org 6 May 2020 | Volume 11 | Article 42496

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00424 May 11, 2020 Time: 19:24 # 7

Cano-Gamez and Trynka From GWAS to Function

LDSC-SEG to brain expression data from the PsychENCODE
project (The PsychENCODE Consortium et al., 2015) revealed
that schizophrenia SNP heritability enrichment was driven by
glutamatergic neurons, while bipolar disorder SNP heritability
enrichment was driven by GABAergic neurons. Importantly,
these psychiatric traits had not been analyzed for SNP enrichment
before because of the insufficient number of GWAS-significant
variants. This highlights the increased statistical power enabled
by including all common variants in the analysis.

Finally, the RolyPoly method models the polygenic
architecture of complex traits to estimate SNP enrichment
(Calderon et al., 2017). In brief, the authors reasoned that
variants with higher GWAS effect sizes would tend to be close
to genes with higher expression in the causal tissues. Using
a regression model, RolyPoly estimates the influence of cell
type specific gene expression on the variance of GWAS effect
sizes in each tissue. The authors applied RolyPoly to tissue-
specific expression data from GTEx and confirmed a significant
enrichment of variants affecting cholesterol levels in genes
expressed in the liver and the small intestine. Moreover, they
integrated GWAS data with single-cell gene expression profiles
from brain tissue (Darmanis et al., 2015) and found a significant
enrichment of risk variants for Alzheimer’s disease in genes
specific to microglia (Calderon et al., 2017). This agrees with
increasing evidence suggesting the immune system is involved in
Alzheimer’s pathology (Gosselin et al., 2017).

In summary, SNP enrichment analysis leverages GWAS
signals and functional annotations to pinpoint disease-relevant
cell types. Multiple approaches have been proposed to estimate
enrichment, such as integrating genome-wide significant variants
with chromatin or gene expression profiles, as well as partitioning
the SNP heritability of a trait based on the functional annotations
of the genome. The increasing availability of expression and
chromatin data for more cell types and states is expected to
improve the granularity of these enrichment signals. This will
allow us to confidently nominate the specific cell types and states
causally involved in disease.

PRIORITIZING CAUSAL GENES AT
GWAS LOCI

Once the most relevant cell types are identified, the next step
is to prioritize genes causally involved in disease. Identification
of candidate genes is most straightforward for coding variants,
which directly disrupt the structure of a protein. One notable
example is a locus containing the TYK2 gene, as well as several
gene members of the ICAM family. Variants at this locus have
been associated with a number of immune diseases such as
rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis
and IBD (Franke et al., 2010; Jostins et al., 2012; International
Genetics of Ankylosing Spondylitis Consortium et al., 2013;
Okada et al., 2014). Importantly, a number of these SNPs are
TYK2 missense variants. Of three independent signals at this
locus, at least one is entirely explained by a single coding
SNP which confers disease protection (Diogo et al., 2015). This
SNP induces a proline to alanine substitution in the catalytic

domain of TYK2, a kinase that mediates signal transduction
downstream of various cytokine receptors (Dendrou et al., 2016).
This substitution significantly impairs cytokine signaling, thus
altering the communication between immune cells. Surprisingly,
even though this variant protects against more than 10 different
autoimmune diseases, complete knock-out of TYK2 causes severe
susceptibility to infections (Kreins et al., 2015). This led to the
theory that TYK2 function constitutes a spectrum, with complete
abrogation causing immunodeficiency and augmented function
increasing susceptibility to autoimmunity (Dendrou et al., 2016).
Thus, a compound able to modulate the kinase activity of TYK2
could be a successful drug candidate for autoimmune disorders.

However, 90% of the variants identified by GWAS are
non-coding (Farh et al., 2015) and cannot be easily linked
to a candidate causal gene. In contrast, these variants are
thought to regulate gene expression via mechanisms such as
modification of promoter and enhancer activity or disruption
of binding sites for TFs. An example is the 1q13 locus, which
contains a variant significantly associated with LDL cholesterol
levels and myocardial infarction (Myocardial Infarction Genetics
Consortium et al., 2009; Teslovich et al., 2010). This variant was
shown to create a new TF binding site, which in turn causes the
recruitment of an enhancer-binding protein, sharply increasing
the expression of the nearby gene SORT1 (Musunuru et al.,
2010), a regulator of lipoprotein levels in plasma. SORT1 in
turn downregulates the levels of LDL. This makes SORT1 an
interesting drug target in myocardial infarction.

Most disease-associated variants are thought to act by
mechanisms analogous to those at the SORT1 locus. However,
GWAS loci often contain multiple genes and identifying the
causal genes is challenging. Profiling molecular traits (e.g.,
gene expression, DNA methylation, TF binding) and integrating
them with GWAS results can be useful in linking non-coding
variants to their target genes and unveiling the underlying
regulatory events.

Colocalization Analysis
The quantification of molecular traits such as gene expression
across thousands of individuals with different genotypes enables
the association of genetic variants with intermediate traits
(quantitative trait loci mapping, QTL) (Figure 3A and Table 2).
The decreasing costs of high-throughput sequencing have
resulted in dozens of QTL-mapping studies, profiling traits as
diverse as gene expression (eQTLs) (Nica and Dermitzakis,
2013), protein expression (pQTLs) (Melzer et al., 2008; Yao
et al., 2018), exon splicing (sQTLs) (Monlong et al., 2014;
Ongen and Dermitzakis, 2015; Li et al., 2018), DNA methylation
(mQTLs) (Banovich et al., 2014; Hannon et al., 2016), chromatin
acetylation (acQTLs) (Sun et al., 2016; Pelikan et al., 2018), and
chromatin accessibility (caQTLs) (Degner et al., 2012; Kumasaka
et al., 2016). Of these, eQTLs are the most common, partly
because of the robustness of RNA-sequencing technologies. One
of the most comprehensive eQTL resources is the Genotype-
Tissue expression project (GTEx), which profiled 53 tissues across
nearly 1,000 individuals (GTEx Consortium, 2013; Melé et al.,
2015). Another initiative, the BLUEPRINT project, measured
the transcriptome, together with DNA methylation and histone
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FIGURE 3 | Overview of eQTL-mapping and colocalization. (A) In eQTL-mapping gene expression is profiled in thousands of individuals and the expression level of
each gene is tested for association with genotypes at nearby (cis) SNPs. (B) Colocalization compares the association patterns of GWAS and eQTLs at a locus to find
if both signals are driven by the same causal variants. (C) GWAS and eQTL signals can overlap for three reasons: two independent causal variants in LD (linkage), a
single causal variant affecting the GWAS trait via gene expression modulation (causality) or a single causal variant affecting both traits independently (pleiotropy).
A positive colocalization supports causality or pleiotropy in favor of linkage.
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TABLE 2 | Methods for colocalization analysis.

Method Publication Approach Input data

Regulatory trait concordance (RTC) Nica et al., 2010 Conditional regression Individual genotypes

Proportionality test Wallace et al., 2012 Test for concordance of effects Individual genotypes

Sherlock He et al., 2013 Genome-wide comparison of association “signatures” Summary statistics

COLOC Giambartolomei et al., 2014 Bayesian test Summary statistics

gwas-pw Pickrell et al., 2016 Bayesian test Summary statistics

eCAVIAR Hormozdiari et al., 2016 Bayesian fine-mapping and colocalization Summary statistics

enloc Wen et al., 2017 Bayesian test for enrichment, fine-mapping and colocalization Summary statistics

MOLOC Giambartolomei et al., 2018 Bayesian test for multiple traits Summary statistics

Selected approaches and methods used to test for colocalization between GWAS and QTL signals included in this review.

modifications, in the most abundant cell types in peripheral blood
from 197 individuals (Chen et al., 2016).

Integrating QTL maps with GWAS can identify potential
molecular mechanisms underlying disease associations. Early
examples of this simply assessed whether GWAS variants were
also significant eQTLs. A study by Nicolae et al. (2010) combined
GWAS results with eQTLs from human lymphoblastoid cell lines
and concluded that GWAS SNPs are almost twice as likely to be
eQTLs than random sets of SNPs. Similarly, a study by Dubois
et al. (2010) concluded that 20 out of 38 (52%) risk loci for
celiac disease were eQTLs in primary immune cells. However,
these early approaches did not sufficiently control for the genetic
architecture underlying GWAS and eQTL signals, resulting in
high numbers of false positives findings. In particular, linkage
disequilibrium between SNPs makes it challenging to identify
which variants within a GWAS and a QTL locus are causally
driving the associations. Overlapping eQTL and GWAS signals
can be explained by three possible scenarios: (1) two independent
causal SNPs in LD with each other (linkage), (2) a single-causal
SNP which affects the trait by modulating the expression of a gene
(causality), or (3) a single-causal SNP with independent effects
on trait and gene expression (pleiotropy). Distinguishing between
these scenarios is crucial to appropriately interpret GWAS results
(Figures 3B,C). Additionally, eQTLs are abundant (Lappalainen
et al., 2013) with 48% of common genetic variants estimated
to act as eQTLs for at least one gene (Liu B. et al., 2019),
making the overlap between GWAS and eQTL signals likely
to happen due to chance. This motivated the development of
formal statistical tests that estimate the probability of the overlaps
between the two signals being due to chance. These methods are
called colocalization tests.

A study by Plagnol et al. (2009) focused on a potentially
causal relationship between the 12q13 locus, associated with type
1 diabetes, and the nearby gene RPS26. The authors reasoned
that if the locus in question increased disease susceptibility via
regulation of RPS26 expression, then the effect sizes inferred
from the GWAS and the RPS26 eQTL (i.e., odds ratios and
regression coefficients, respectively) should be proportional. In
other words, the SNPs with the highest effects on type 1 diabetes
would tend to also have the highest effects on RPS26 expression,
and the direction of effects would be consistent. The authors
developed a statistical test for this proportionality (QTLmatch)
and concluded that there was no evidence for colocalization at

the 12q13 locus. Subsequently, Wallace et al. (2012) revisited this
approach and implemented a generalized version into a more
robust statistical framework.

An alternative approach described by Nica et al. (2010) first
identifies loci with potential colocalizations and next regresses
from the eQTL effect the most significant GWAS SNP in a locus.
The eQTL association is then re-tested using the residuals from
regression. To account for LD in the region, the procedure is
repeated for all the SNPs in the region and the impact of the
top GWAS SNP is compared to that of other variants. In the
presence of a true colocalization, the regression coefficient of the
top GWAS SNP results in a significantly larger impact than that
of any other variant in the region. This process was implemented
into a method called Regulatory-Trait Concordance (RTC).

Despite the usefulness of these approaches, neither of the
two formally compares the odds of colocalization versus a
null hypothesis. Instead, they are based on the proportionality
of effects or the conditional association between two traits,
which can be biased by LD and variable selection (Wallace,
2013). This can result in a large proportion of false positives.
Additionally, both approaches require individual-level genotype
data, which is seldom available. This motivated the development
of methods which could be applied to GWAS summary statistics.
Giambartolomei et al. (2014) proposed a colocalization test
(COLOC) which computes the odds of colocalization compared
to the null hypothesis using GWAS summary statistics. The
authors identified five mutually exclusive scenarios at any given
locus: either (1) the locus is not associated with any of the traits
(the null hypothesis, H0), (2) the locus is only significant in the
GWAS (H1), (3) the locus is only a significant eQTL (H2), (4) the
locus is associated with both traits due to two independent signals
(linkage, H3) or (5) the locus is associated with both traits due to
a single colocalizing SNP (colocalization, H4). The probability of
each of these scenarios is estimated using a Bayesian framework
and any locus where the probability of H4 is significantly higher
than that of H3 (and of any other scenario) is said to colocalize.

Since its release, COLOC has become a reference method for
colocalization testing. However, a limitation is that it only tests
for two traits at a time. Elucidating the full chain of events that
connects sequence variation to organismal phenotypes involves
more than one molecular trait. For example, a variant can
increase DNA methylation, in turn reducing the expression of
a nearby gene, impairing cell function and increasing disease
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risk. Disentangling these effects requires a joint colocalization
test for signals from DNA methylation, gene expression and
cell function. MOLOC expanded the original formulation of
COLOC to include multiple traits (Giambartolomei et al., 2018).
These traits can be independent GWAS, molecular traits or a
combination of both. To show the utility of their framework,
the authors considered an example case with three traits:
GWAS variants for schizophrenia, gene expression and DNA
methylation (mQTLs) in the human brain. They showed that
adding a third trait significantly increased the power to link
variants to genes, as evidenced by 39 new candidate target genes
which could only be identified when combining mQTLs and
eQTLs. However, these improvements come at the expense of
interpretability, increasing the number of possible hypotheses at a
locus to 15. Further increases in the number of traits would make
the interpretation of colocalization results even more challenging.

Importantly, a trait association signal can result from multiple
causal variants (allelic heterogeneity, AH) and recent studies
estimate that 20% of the loci identified by GWAS or eQTL-
mapping could show AH (Hormozdiari et al., 2017). Methods
which assume a single causal variant could potentially misclassify
AH cases as colocalizations (Giambartolomei et al., 2014). One
method that accounts for multiple causal SNPs per locus is
eCAVIAR (Hormozdiari et al., 2016) a modified version of
the Bayesian method CAVIAR, originally designed to perform
statistical fine-mapping (Hormozdiari et al., 2014) by estimating
the posterior probability of causality for each variant at a GWAS
locus (Schaid et al., 2018). Hormozdiari et al. (2016) proposed
that fine-mapping could be applied independently to GWAS
and QTL associations, and then integrated. Specifically, they
defined the probability of a colocalization as the product of the
probabilities that the variant was causal in the GWAS and in
the eQTL (i.e., the product of the posterior probabilities derived
from fine-mapping). Because this approach estimates a posterior
probability for each SNP, it does not assume a single causal
variant per locus. Instead, eCAVIAR can be extended to find
colocalizations under the assumption of any number of causal
SNPs while accounting for LD.

Colocalization can also be combined with SNP-enrichment,
as demonstrated by the statistical method ENLOC (Wen et al.,
2017). In brief, the authors reasoned that if the majority of GWAS
SNPs for a trait are also eQTLs in a given cell type (i.e., if GWAS
SNPs are enriched in eQTLs), then most overlaps between the two
traits will be driven by true colocalizations. In contrast, if GWAS
SNPs are not enriched in eQTLs in that cell type, more of the
overlaps are expected to be due to chance. Thus, the authors first
estimate an SNP enrichment score and then weigh the priors of
their Bayesian model by the identified scores. The authors argue
that this approach significantly improves the performance of both
fine-mapping and colocalization.

Finally, the effects of GWAS variants are not restricted locally
to the genes in close proximity and could have more distal effects
(trans eQTLs). For example, a GWAS variant could affect the
expression of a TF, which would result in a cascade of effects
on downstream genes. Trans eQTLs are located far away from
their target genes and tend to have small effect sizes, which
makes them extremely challenging to map at moderate sample

sizes due to the burden imposed by multiple testing. In addition,
trans eQTLs are estimated to be substantially more numerous
than cis eQTLs (Liu X. et al., 2019), potentially leading to many
false positive colocalizations. However, He et al. (2013) reasoned
that, while a colocalization between one trans eQTL and one
GWAS SNP is very likely to be a false positive, the presence of
colocalizations between multiple trans eQTLs for the same gene
and multiple SNPs from the same GWAS is unlikely to be due
to chance. Thus, they proposed that the association signals for
two traits (e.g., a complex trait and the expression of a gene)
could be compared not locally but genome-wide, analogously to
comparing two “fingerprints” or “signatures.” If two traits tend to
have the same signature, they are said to colocalize. The authors
applied their method (Sherlock) to integrate summary statistics
from a GWAS for type 2 diabetes (T2D) with 3,210 cis and 242
trans eQTLs specific to the liver (Schadt et al., 2008). This analysis
identified four candidate genes regulated by T2D variants, two
of which acted in trans and would have thus been missed by
traditional colocalization approaches. Importantly, three of these
four genes (TSPAN8, GNB5, and JAZF1) were supported by
previous functional studies. The increasing sample sizes of gene
expression studies are allowing us to systematically map trans
eQTLs (Westra et al., 2013) and will provide more statistical
power to detect meaningful colocalizations between GWAS and
trans eQTLs.

Application of Colocalization to Complex
Diseases
One of the areas where colocalization analysis has been
particularly informative is in identifying the mechanisms
underlying immune-mediated diseases. A study by Fortune et al.
(2015) used colocalization to investigate the shared etiology of
complex immune diseases. The authors investigated 126 GWAS
loci associated with type 1 diabetes, rheumatoid arthritis, celiac
disease and multiple sclerosis and identified 33 to be shared
across these four diseases. Colocalization revealed that at 14
of these regions the causal variants were likely to be different.
In contrast, the remaining loci showed evidence of a single
causal variant affecting all traits. For example, the associations
at the CTLA4 locus colocalized between the three tested
diseases. Interestingly, the authors also found three significant
colocalizations between type 1 and type 2 diabetes loci, suggesting
that these diseases could share certain aspects of their etiology,
despite type 1 diabetes having an immune origin.

Colocalization has also pointed to genes and functional
elements involved in these diseases. A study by
Huang et al. (2017) fine-mapped variants associated with IBD
and integrated them with eQTLs mapped in immune cells. The
authors found that a large number of IBD variants colocalized
with eQTLs in CD4+ T cells (Huang et al., 2017). However, in
a separate study immune disease risk variants (including IBD
variants) were tested for colocalization with eQTLs across three
immune cell types (lymphoblastoid cells, CD4+ T cells and
monocytes) (Chun et al., 2017) and it was found that the majority
of loci did not colocalize with eQTLs. The authors concluded
that GWAS variants could act via more complicated mechanisms
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and regulate other molecular traits rather than gene expression.
A study by Bossini-Castillo et al. (2019) mapped QTLs for gene
expression and chromatin traits (histone modifications and
chromatin accessibility) in regulatory CD4+ T cells, a rare cell
type that plays a central role in regulating the immune response.
The authors integrated chromatin and gene expression QTLs
with GWAS loci for 14 immune-mediated diseases and identified
253 colocalizations, the majority of which implicated histone
acetylation (H3K27ac) QTLs (acQTL). Interestingly, over 70%
of these acQTLs were not linked to any eQTL effects, i.e., the
loci were associated with local chromatin regulatory activity
but not with the expression of nearby genes. A proportion of
these colocalizations could represent context-specific eQTLs,
which would only be detected upon exposure of the cells to
the correct environmental cues. This is known to be the case
for other immune cells such as human macrophages, where
exposure to cytokines or pathogens has been shown to induce
context-specific chromatin accessibility and expression QTLs
(Alasoo et al., 2018).

Another area where colocalization has been particularly
informative is cardiovascular disease. Franceschini et al. (2018)
performed GWAS meta-analyses of two cardiovascular traits
(carotid plaque burden and carotid artery thickness) and tested
the variants for colocalization with vascular tissue eQTLs,
with the aim of investigating the molecular mechanisms
underlying cardiac phenotypes. This analysis prioritized two
candidate genes (CCDC71L and PRKAR2B) which colocalized
with both traits, suggesting potential disease mechanisms in
which regulation of gene expression in arterial smooth muscle
impacts artery thickness and plaque formation, ultimately leading
to atherosclerosis. In a separate study Liu et al. (2018) integrated
GWAS loci for coronary artery disease (CAD) with expression
and splicing QTLs mapped in smooth muscle cells from 52
individuals. The authors identified five significant colocalizations
(FES, SMAD3, TCF21, PDGFRA, and SIPA1) and found that
increased levels of TCF21 and FES were associated with reduced
risk of CAD. Importantly, all of the genes were involved in
vascular remodeling, strengthening the hypothesis that gene
expression in arterial smooth muscle could have an important
impact in local tissue architecture, thus modifying the risk of
several correlated cardiovascular traits.

Finally, colocalization analysis can also inform about the
relationship between shared genetic architectures across complex
traits. A study by Pickrell et al. (2016) used results from
43 GWAS for 42 traits, including neurological phenotypes,
anthropometric traits, social traits, immune-mediated disease,
metabolic phenotypes, and hematopoietic traits. The authors
developed a method (gwas-pw) which tested for colocalization
between all possible pairwise combinations of these 42 traits
and then grouped together those for which there was substantial
evidence of colocalization across multiple loci (Pickrell et al.,
2016). Most of the traits showed few colocalizations with
each other. Nonetheless, the analysis identified two groups
of traits (10 traits in total) with a higher number of
colocalizations with each other than expected by chance. The
first group contained metabolic phenotypes (triglycerides, HDL
cholesterol, LDL cholesterol, and CAD), while the second

group contained hematopoietic traits (red blood cell volume,
hemoglobin concentration and platelet count, among others).
The large number of colocalizations in the second group
suggests pleiotropic effects across the associated variants, which
could indicate that the same variants are able to regulate the
differentiation of several independent hematopoietic lineages.

Twas: Direct Association of Genes and
Traits
The examples outlined so far rely on colocalization analyses
using genome-wide significant SNPs to nominate causal genes for
complex traits. However, the majority of variants contributing to
complex phenotypes have not yet been identified, as their effect
sizes are too small to be detected at current GWAS sample sizes
(Visscher et al., 2017). Another way to gain insights into the
biology of complex traits is by directly testing for association
between a trait and gene expression (i.e., identifying which
genes are expressed at a significantly different level in cases
compared to controls in disease-relevant cell types). Given that
the number of genes is substantially lower than the number of
common variants, using gene expression rather than genotypes
for association benefits from a reduced multiple testing burden.
Nonetheless, carrying out such a study is currently unfeasible,
as it would require profiling gene expression across hundreds
of thousands of individuals in both cases and controls, and
across dozens of tissues. Alternatively, cell type-specific gene
expression profiles can be predicted (i.e., imputed) based on
genotypes, thus obviating the need to perform costly RNA-
sequencing experiments. Transcriptome-wide association studies
(TWAS) leverage information from GWAS and eQTL catalogs
to predict the transcriptome of cases and controls, thus allowing
the direct association of traits and genes without directly profiling
gene expression in every individual included in the GWAS
(Wainberg et al., 2019).

Predicting expression of a gene based on genotypes is possible
because gene expression is highly heritable (Wright et al., 2014)
and most of the gene expression heritability is attributable
to variants in proximity (in cis) to the genes (Lloyd-Jones
et al., 2017). TWAS uses tissue-specific eQTL maps as reference
datasets to train predictors that take an individual’s genotype as
an input and estimate their transcriptome levels (Gamazon et al.,
2015; Gusev et al., 2016; Figure 4A). These predictors use only
information from SNPs in cis to the genes and are restricted to
genes with highly heritable expression. This prediction process
is analogous to genotype imputation and allows for direct
association between a trait and the expression of each gene
(Figure 4B). Moreover, by focusing on the heritable component
of gene expression, it minimizes the confounding by disease-
caused changes in gene expression.

PrediXcan (Gamazon et al., 2015), an implementation of
TWAS, uses an elastic net model to predict gene expression
from eQTL catalogs. The authors applied this approach to data
from the Wellcome Trust Case Control Consortium (WTCCC)
(Wellcome Trust Case Control Consortium, 2007) and identified
41 genes associated with five complex diseases. The majority of
these genes were known candidates from GWAS, while others
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FIGURE 4 | Overview of transcriptome-wide association studies TWAS leverage information from eQTL catalogs and GWAS studies to directly associate traits to
genes. (A) TWAS use eQTL maps (which contain tissue-specific gene expression and genotypes for thousands of individuals) as a training set to build gene
expression predictors. These predictors take the SNPs in cis to a gene and estimate its expression levels. (B) The resulting predictors are used to impute gene
expression values across the hundreds of thousands of individuals in a GWAS study (which contains genotypes but no gene expression data). Finally, the imputed
gene expression values are directly tested for association with the GWAS trait, resulting in a set of genes which positively or negatively influence it.
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(e.g., KCNN4 and PTPRE) had not been implicated in the diseases
before. Importantly, because TWAS directly associates traits to
genes, the associations have a clear directionality of effects. As an
illustration, a SNP nearby ERBB3 had been previously associated
with type 1 diabetes (Hakonarson et al., 2008). PrediXcan
confirmed the association between ERBB3 and type 1 diabetes
and found that low ERBB3 expression increased disease risk
(Gamazon et al., 2015). Defining the directionality of effects of
GWAS variants, and particularly identifying risk variants which
increase gene expression, can nominate effective drug targets and
accelerate the development of new therapies.

To overcome the requirement for individual-level genotypes,
the authors of PrediXcan subsequently derived a mathematical
formulation (S-PrediXcan) which achieves comparable results
using GWAS summary statistics (Barbeira et al., 2018). The
authors applied S-PrediXcan to over 100 phenotypes across
44 GTEx tissues and found that most of the associations
detected were tissue-specific, highlighting the need to profile gene
expression in disease-relevant cell types. For example, LDL levels
were positively associated with SORT1 expression only in the
liver and negatively associated with PCSK9 only in tibial nerve.
In contrast, schizophrenia was negatively associated with C4A
expression across 42 of the 44 tissues tested (Barbeira et al., 2018).

Because most of the SNPs used to predict gene expression
in TWAS are enriched in regulatory DNA (Trynka and
Raychaudhuri, 2013), including epigenetic annotations in the
model can improve transcriptome imputation. EpiXcan is
an implementation of PrediXcan which takes into account
annotations such as DNA methylation or histone modifications
(Zhang et al., 2019). The contribution of each SNP in the
prediction is weighted by its overlap with regulatory elements
in a Bayesian hierarchical model. When applied to 58 traits
and 14 eQTL data sets, EpiXcan increased the number of gene-
trait associations by over 18% compared to PrediXcan. Most
of these associations were tissue-specific. For example, TWAS
associations with CAD were only detected in arterial tissue, while
schizophrenia associations were specific to the brain (Zhang
et al., 2019). Moreover, integrating EpiXcan with a catalog of
chemical perturbations revealed drug repurposing opportunities.
An example is ursolic acid, which can reverse the gene expression
changes associated with BMI. This compound is currently under
investigation for the treatment of obesity (Kunkel et al., 2012).

Another TWAS approach proposed by Gusev et al. (2016) uses
a Bayesian predictor to impute gene expression from genotypes.
First, the method determines the weights of the Bayesian
predictor based on a reference eQTL catalog. The contributions
of each variant to the predictions are proportional to its eQTL
effects on each gene. Next, gene expression is imputed directly
from the GWAS summary statistics. To do this, the authors first
use the summary statistics to impute the GWAS effect sizes of all
common variants (Pasaniuc et al., 2014) and then multiply these
effect sizes by the Bayesian weight of each variant (determined
from the eQTL catalog as previously described). Each variant
is then re-weighed by its LD with other variants in the locus.
Finally, the contribution of all variants proximal to a gene is
combined into a single expression-trait association estimate.
The authors used this approach to find genes involved in the

regulation of circulating lipid levels (HDL, LDL, total cholesterol,
and triglycerides). This analysis nominated 665 lipid-associated
genes, of which 66 had not been previously identified by any
of the independent GWAS (Gusev et al., 2016). The majority of
these novel genes showed additional functional evidence from
mouse studies. For example, FTSJ3 expression correlated with fat
mass and glucose-to-insulin ratio in mice, while ITIH4 correlated
with LDL levels.

Gusev et al. (2018) subsequently extended their approach
to epigenetic data. The authors performed a TWAS to test
for association between gene expression in brain tissue and
risk for schizophrenia, including as an additional layer of
information chromatin marks (i.e., H3K27ac, H3K4me1, and
H3K4me3) assayed in 76 lymphoblastoid cell lines. This
allowed them to nominate both genes and regulatory elements
involved in disease. For example, the authors found two
chromatin elements associated with MAPK3 expression, which
was in turn associated with schizophrenia risk. They then
functionally validated this association, showing that MAPK3
is involved in a neuro-proliferation phenotype in zebrafish
(Gusev et al., 2018).

Finally, summary data-based Mendelian randomization (SMR)
uses a Mendelian randomization (MR) framework to perform
a TWAS analysis (Zhu et al., 2016). MR takes advantage
of the fact that an individual’s genotype is independent of
confounding factors such as nurture or environmental covariates.
In traditional MR, genotypes are used as an instrumental variable
to infer causal relationships between an exposure (e.g., the levels
of a metabolite or protein) and a trait (e.g., a disease) (Evans and
Davey Smith, 2015). In SMR, an analogous approach is used to
infer associations between gene expression and a trait. In brief,
the authors use genetic variants as instrumental variables and
estimate the effect size of a gene in a trait as the ratio of the
GWAS effect size to the eQTL effect size of a variant affecting
the expression of the gene (Zhu et al., 2016). Traditional TWAS
approaches impute gene expression from genotypes and then
associate genes to traits. However, because imputation is based
on the combined effects of multiple proximal variants, TWAS
cannot directly point to the individual variants underlying gene-
trait associations. In contrast, SMR estimates a separate gene-trait
effect size from each individual SNP in a locus, thus making it
possible to link variants to genes. By comparing the effect-sizes
derived from all the SNPs in a locus, SMR is able to identify
cases in which a single variant affects both gene expression and
a complex trait. This test (HEIDI) is a form of colocalization
analysis (Zhu et al., 2016). However, since most gene-trait effects
are small due to polygenicity (Boyle et al., 2017), SMR requires
eQTL catalogs of very large sample size. The authors applied SMR
to a large peripheral blood eQTL study (5,311 samples) (Westra
et al., 2013) and identified 289 genes associated with body-mass
index, waist-hip ratio, rheumatoid arthritis and schizophrenia. Of
these, 104 genes showed evidence of a single causal variant. An
interesting example includes a locus associated with rheumatoid
arthritis which contains the genes TRAF1 and C5. Based on its
function, TRAF1 had been prioritized as the most likely target
gene. SMR confirmed the prioritization of TRAF1 and provided
evidence of a single causal variant in the region (Zhu et al., 2016).
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In summary, colocalization and TWAS prioritize the genes
causally involved in complex diseases. Colocalization analysis
integrates association signals from GWAS and QTLs in a locus by
locus basis to identify instances in which both traits share a causal
variant. In contrast, TWAS leverages information from eQTL
catalogs to impute gene expression values and directly associate
genes to traits. The availability of QTL catalogs from a wider
variety of cell types, as well as of larger sample sizes, will improve
gene prioritization and translate GWAS results to refined sets of
disease-causal genes.

FUTURE PERSPECTIVES IN
INTERPRETING GWAS ASSOCIATIONS

Enrichment and colocalization analyses have prioritized
tissues and genes involved in complex diseases. However,
these approaches are largely limited by the availability of
comprehensive reference functional data sets. For example,
enrichment and colocalization mostly rely on gene expression
data from bulk tissues. However, gene expression profiles from
bulk tissue are dominated by the most abundant cell types
and do not capture information about cell composition and
cell type frequencies (Trapnell, 2015). Moreover, colocalization
methods are purely observational and cannot establish causality.
For example, a SNP could affect both a gene and a trait via
independent mechanisms (i.e., pleiotropy), and colocalization
cannot conclusively distinguish this scenario from a single causal
variant. Thus, candidate genes require additional experimental
validation to unambiguously establish causality, for example, by
integrating GWAS variants with single-cell assays, or validating
candidate genes with gene-editing technologies.

Integration of Gwas With Single-Cell
Genomics
Single-cell genomic assays enable quantification of molecular
traits at the single-cell level. For example, multiple existing
methods allow profiling gene expression (Picelli et al., 2013;
Macosko et al., 2015; Kimmerling et al., 2016; Zheng et al.,
2017), chromatin accessibility (Buenrostro et al., 2015), and TF
occupancy (Rotem et al., 2015; Grosselin et al., 2019) with single-
cell resolution. These assays can resolve the cellular composition
of complex organs and tissues, and are used to assemble cells into
reference tissue atlases (Regev et al., 2017). Moreover, they can
order differentiating cells into time-course trajectories that span
different stages of differentiation, an approach called pseudotime
ordering (Saelens et al., 2019).

The high resolution of single-cell genomic maps makes
them a promising resource for SNP enrichment analysis.
This is illustrated by a recent GWAS of hematological traits
like hematocrit, hemoglobin and blood cell counts (Ulirsch
et al., 2019). In this study, the authors integrated fine-
mapped GWAS variants with bulk and single-cell chromatin
accessibility profiles spanning a large number of hematopoietic
and progenitor cell lineages. The authors developed a SNP
enrichment test (g-chromVAR) which integrates the quantitative
levels of chromatin accessibility in each single cell with the

posterior probabilities of causality of each variant inferred
from fine-mapping. Enrichment estimates varied throughout the
differentiation trajectory and concentrated at specific stages of
hematopoiesis. For example, variants associated with platelet
counts were progressively more enriched as cells differentiated
into megakaryocytes, the precursors of platelets. Conversely,
enrichment decreased along differentiation toward the lymphoid
lineage. With the rapid increase in the number, depth and size of
single-cell datasets, more studies like this will soon be possible
and applicable to a whole range of complex traits. However,
single-cell genomic approaches introduce new challenges to the
current statistical methods, such as data size, sparsity, and high
dropout rates (Lähnemann et al., 2020). Thus, it will be essential
to develop new statistical methods designed to deal with the
intricacies of single-cell data.

Single-cell technologies can also expand the current scope of
colocalization. Because the throughput of these assays is growing
at an unprecedented scale, it is now possible to profile single-cell
transcriptomes in large scale populations of individuals, allowing
to map single-cell eQTLs (sc-eQTLs). One such study profiled
gene expression in 45,000 single-cells isolated from peripheral
blood of 45 healthy individuals (van der Wijst et al., 2018) and
identified eQTLs with opposite effects in different cell types
in blood. For example, rs4804315 increased the expression of
ZNF414 in NK cells but decreased it in T cells. Moreover, the
authors also recapitulated two previously reported monocyte
eQTLs for the HLA-DQA1 and CTSC genes and showed that they
were specific to the classical monocyte subpopulation (van der
Wijst et al., 2018). These results would be difficult to obtain from
bulk gene expression measurements. This study serves as a proof
of concept and shows how single-cell eQTL associations could
rapidly become available for integration with GWAS.

An additional advantage of single-cell sequencing is the
possibility of ordering cells into time-course trajectories, thus
adding a temporal component to the association models used
for eQTL-mapping. This permits the identification of eQTLs
with different effect sizes at different stages of differentiation
(dynamic eQTLs). Two studies mapped dynamic eQTLs during
the differentiation of human induced pluripotent stem cells
(iPSCs). The first study investigated iPSC differentiation into
endoderm (Cuomo et al., 2020). The authors profiled single-cell
gene expression at four time points across 125 iPS cell lines and
ordered cells into a time-course trajectory spanning distinct cell
states. This uncovered 785 dynamic eQTLs. Interestingly, this
study was able to map eQTLs with a cell cycle-dependent effect
size. The second study focused on cardiomyocyte differentiation
and mapped eQTLs at 16 time points across 19 iPS cell
lines (Strober et al., 2019). Here, the authors ordered cells in
time-course trajectories based on bulk RNA expression profiles
and identified modules of genes which increase or decrease
along differentiation. Next, they performed eQTL-mapping
using a Gaussian model which accounted for the interaction
between genotypes and differentiation time. This resulted in
the identification of 550 genes with linear and 693 genes with
non-linear dynamic eQTL effects. Interestingly, two dynamic
eQTLs which regulated the expression of SCN5A (a gene altered
in dilated cardiomyopathy) were also GWAS variants for QRS
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and QT interval duration, thus suggesting that dysregulation
of gene expression dynamics could have important phenotypic
consequences. Until now, colocalization has not been applied
to this type of data. However, as the sample sizes of sc-
eQTL and dynamic eQTL catalogs grow, they will become an
increasingly important resource for identifying subtle changes in
gene expression dynamics which lead to disease.

Integration of Polygenic Risk Scores
With Functional Annotations
Genome-wide association studies variants can be used to identify
individuals at high risk of disease. This can be achieved by
combining hundreds of disease associated-variants carried by an
individual into a single score that reflects their overall genetic
risk, a polygenic risk score (PRS) (Chatterjee et al., 2016). The
integration of PRSs with epidemiological risk factors such as
age, sex, smoking status, diet, or family history of disease could
improve the stratification of individuals, potentially resulting in
more effective clinical interventions (Torkamani et al., 2018).
To build a PRS, a subset of variants is selected based on their
GWAS association. Next, each variant is assigned a weight, which
corresponds to its standardized effect size (i.e., the odds ratio
from the GWAS multiplied by the effect direction). Finally,
the genetic dosage of each individual variant (i.e., 0, 1, and 2
according to the number of risk alleles carried) is multiplied by
its weight, and all loci across the genome are added into a single
score. PRSs are often normally distributed and individuals can
be grouped by PRS decile, with those in the top deciles being
at highest risk (for a detailed discussion refer to the review by
Chatterjee et al., 2016).

Polygenic risk scores performance has increased as GWAS
studies increased in sample sizes and larger validation cohorts
became available, as shown in CAD (Ripatti et al., 2010;
Mega et al., 2015; Abraham et al., 2016; Khera et al., 2016)
and cancer (Garcia-Closas et al., 2013; Mavaddat et al., 2015;
Maas et al., 2016). The availability of large-scale biobanks
(Gaziano et al., 2016; Nagai et al., 2017; Bycroft et al., 2018)
has enabled unparalleled improvements in this area by linking
genetic information with electronic health records for hundreds
of thousands of individuals. Two of the largest PRS studies
leveraged UK BioBank data to estimate CAD risk using up to
6.6 million SNPs (Abraham et al., 2016; Khera et al., 2018).
Khera et al. (2018) demonstrated that individuals at the highest
PRS percentiles were at a risk equivalent to that of carrying a
monogenic mutation for familial hypercholesterolemia. Another
study used 2.1 million SNPs to build an obesity PRS (Khera et al.,
2019) and demonstrated that PRSs can stratify individuals before
phenotypic differences appear. While the authors observed no
differences in birthweight of individuals at different PRS deciles,
these became apparent when individuals reached puberty.

Despite these advancements, polygenic scores face severe
challenges. Firstly, prediction accuracy remains low. Secondly,
PRSs are based on European GWASs and their transferability
between populations is low (Martin et al., 2017, 2019). This
is alarming, as it could result in misdiagnosis of individuals
in underrepresented populations (Manrai et al., 2016). Finally,

little is known about the functional mechanisms underlying
PRSs. Some of these challenges are now being tackled using
functional annotations.

Prediction accuracy is dependent on the SNPs used to build
the PRS. In particular, GWAS effect sizes can be confounded
by LD (Bulik-Sullivan et al., 2015). To minimize this, SNPs
are pruned by LD and thresholded by P value, but this can
eliminate causal SNPs in LD with each other. To circumvent
this, LDpred uses a Bayeseian model to shrink the effect sizes
of each variant (Vilhjálmsson et al., 2015) based on a prior
that models the effect sizes with an LD-informed normal
distribution. The PRS constructed in this way outperformed
other methods. LDpred-func extended LDpred by including the
overlap between variants and functional elements in the Bayesian
prior (Márquez-Luna et al., 2018). By segmenting the genome
into coding, conserved, and regulatory elements, LDpred-func
improved prediction estimates for height. An equivalent method,
AnnoPred, also uses a Bayesian model to create functionally
informed polygenic scores, outperforming traditional PRSs for
breast cancer (Hu et al., 2017). A further study leveraged gene
co-expression networks in the brain to identify modules of genes
with a common regulation (Hari Dass et al., 2019). Based on
these modules, the authors identified genes co-expressed with
the insulin receptor and used SNPs in proximity to build a
PRS that incorporates known disease biology. Nonetheless, using
prior knowledge to design PRSs can introduce bias and requires
further evaluation.

Functional annotations can also improve transferability
of PRS across populations. Despite the LD difference
between populations, most causal variants are thought to
be shared (Marigorta and Navarro, 2013). Moreover, they
often overlap functional annotations which are also shared
between populations (Tehranchi et al., 2019). Thus, overlapping
GWAS signals with functional annotations (i.e., functional fine-
mapping) can increase the chance of including the functional
SNPs in a PRS regardless of the population. A recent study
leveraged cell type-specific binding of TFs and epigenetic marks
in 245 cell types to identify the annotations most enriched
for disease heritability. SNPs overlapping these annotations
were used to build PRSs for 29 traits (Amariuta et al., 2020).
Using the UK and Japan BioBanks, the authors demonstrated
that population transferability improved when incorporating
functional annotations.

Biobanks can also help in functionally interpreting PRSs.
Richardson et al. (2019) used GWAS variants and UK
BioBank data to build 162 PRSs spanning traits as varied as
anthropometric measurements, cardiovascular traits, and ICD10
codes. They identified traits correlated with each other based
on their polygenic scores and used MR to infer causality.
Polygenic scores for triglyceride levels, urate levels, LDL, and
gout were significantly correlated with each other. MR analysis
revealed evidence that elevated triglycerides cause higher urate
production, which in turn increases risk of gout. A similar study
derived PRSs for blood traits such as hematocrit and cell counts
(Xu et al., 2020) and correlated them with disease PRSs. This
pinpointed disease-relevant traits, e.g., the PRS for eosinophil
counts was highly correlated with the PRS for allergies.
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Finally, gene expression is also beginning to be integrated with
PRSs. Võsa et al. (2018) mapped cis and trans eQTLs in a meta-
analysis of 31,684 samples from 37 cohorts. They subsequently
identified genes affected by dozens of trans eQTLs and proposed
that such genes could act as hubs where biological processes
converge, potentially accumulating a disproportionate amount
of genetic risk for complex diseases. These genes are roughly
equivalent to the core genes proposed by the omnigenic model
(Boyle et al., 2017; Liu X. et al., 2019). To identify these hubs, the
authors defined quantitative trait scores (QTS) as the associations
between the expression of a gene and the PRS of a disease.
They mapped 2,658 eQTS genes, including a group of IFN-
regulated genes which were correlated with lupus PRS. In the
future, increases in the sample sizes of eQTL studies may enable
systematic mapping of cell-type specific eQTSs.

Validation of Gwas Findings Using Gene
Editing
Recent years have seen a rapid expansion in the number and
efficacy of gene-editing tools. In particular, CRISPR/Cas9 allows
the deletion of specific sections of the genome with high accuracy
(Wang et al., 2016). CRISPR-based approaches have been used
to systematically knock down genes genome-wide, an approach
referred to as CRISPR screening (Koike-Yusa et al., 2014). The
applications of CRISPR screening are numerous. For example, it
can be used to investigate which genes are essential for cancer
growth, which in turn provides a platform for drug target
identification (Behan et al., 2019).

Coupling CRISPR-editing platforms with informative
functional readouts could be a powerful approach to validate
GWAS results. For example, a recent study asked which genes
are essential for T cell activation by systematically knocking-
down all genes in primary human T cells and measuring
proliferation upon stimulation (Shifrut et al., 2018). A second
study used a similar approach to investigate T helper cell
differentiation in mice (Henriksson et al., 2019). These studies
are relevant in the context of complex immune diseases, for
which GWAS variants are thought to act during T cell activation
and differentiation (Calderon et al., 2019; Soskic et al., 2019).
Nonetheless, using CRISPR to follow-up candidate genes
requires previous knowledge regarding which functional assays
are the most disease-relevant. For example, neuronal cell types
are thought to be implicated in psychiatric traits (Finucane et al.,
2018), but it is not known which specific neuronal functions are
compromised in disease, and thus it is uncertain what the best
readout for a CRISPR-screen would be. Selecting informative
assays may require mapping the genetic architecture of cellular
and intermediate traits. A recent study showed that variants
which modulate secretion of monocyte cytokines (cytokine-
QTLs) tend to be associated with susceptibility to infection
(Li et al., 2016). Thus, a CRISPR-screen to validate infection
susceptibility genes should probably assess cytokine secretion.
Alternatively, single-cell gene expression can also be used as a
readout for CRISPR-screens. Due to its high resolution, single-
cell sequencing can match the transcriptome of cells with their
corresponding guide RNAs. This is the basis of methods like

CROP-seq and Perturb-seq (Dixit et al., 2016; Datlinger et al.,
2017) that have been used to investigate which genes are essential
in processes such as dendritic cell response with single-cell
resolution. In the future, high-throughput phenotyping of
human cells will be crucial for identifying the best assays to
validate candidate GWAS genes.

Gene-editing approaches can also be used to study the non-
coding genome. For example, CRISPR-interference (CRISPRi)
uses guide RNAs and a defective version of the Cas9 enzyme to
prevent regulatory elements from contacting their target genes
(Qi et al., 2013). In contrast, CRISPR-activation (CRISPRa)
uses a transcriptional activator fused to the Cas9 protein to
enhance transcription (Bikard et al., 2013). These tools can
be used to map the function of disease-associated regulatory
elements. Moreover, deep mutagenesis employs error-prone PCR
to randomly mutate all the nucleotides in a regulatory sequence
one at a time (McCullum et al., 2010). Mutagenesis is often
coupled either with the expression of a reporter gene like
luciferase or with a sequencing-based readout. A recent study
used deep-mutagenesis followed by sequencing to study the
function of each nucleotide in 20 regulatory elements associated
with rare and common diseases (Kircher et al., 2019), including
the well-known LDL-associated locus near SORT1 (Musunuru
et al., 2010). This enabled the systematic identification of
clusters of nucleotides for which mutation significantly alters
gene expression. Importantly, these sites often contained known
GWAS SNPs and corresponded to TF binding sites, thus
suggesting a molecular mechanism for the implicated variants.
Another study investigated loci associated with hematological
traits using fine-mapping followed by deep mutagenesis (Ulirsch
et al., 2016). The authors found strong regulatory effects for
32 variants (corresponding to 23 lead SNPs from GWAS) of
which three had a clear molecular mechanism. These approaches
could transform our understanding of how genetic variants affect
organismal phenotypes.

Ideally, gene-editing should be performed in disease-relevant
cell types (for example, in cells prioritized by SNP enrichment).
However, current gene-editing approaches are mostly limited to
cell lines. The reasons for this are varied. The application of
mutagenesis to primary cells is hindered by the large numbers
of cells required and the need to keep cells in culture for
prolonged periods of time. CRISPR-editing is further limited by
the p53-dependent cellular toxicity which accompanies Cas9-
induced double-strand breaks (Ihry et al., 2018). Methodological
advances such as better systems for Cas9 delivery (DeWitt
et al., 2017; Shifrut et al., 2018) will likely overcome some of
these limitations. However, further technological development
is needed to routinely apply gene-editing as a follow up
strategy for GWAS.

CONCLUSION

The integration of GWAS associations with cell type-specific
functional data has significantly furthered our understanding
of how genetic variation leads to disease. On the one hand,
SNP enrichment approaches have enabled the prioritization of
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cell types and tissues based on their disease-relevance. These
methods work by testing for the accumulation of variants
in regulatory elements specific to a given cell type. They
can either be restricted to genome-wide significant variants
or estimate enrichments based on the contributions of all
common SNPs. On the other hand, colocalization analysis
integrates eQTL and GWAS associations to identify the
target genes of GWAS loci, leveraging LD information and
association patterns. Moreover, TWAS allows the direct
association of genes with phenotypes via transcriptome
imputation. These approaches are beginning to reveal the tissues
and genes affected in complex diseases like autoimmunity,
schizophrenia and coronary heart disease. However, they
are limited by the resolution of current functional datasets
and cannot establish causality. In the future, we anticipate
that the integration of GWAS with single-cell data and the

validation of candidate genes via gene-editing and cellular
phenotyping will help us translate GWAS findings into clinically
actionable gene sets.
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