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Editorial on the Research Topic

NewMacrocycles and Their Supramolecular Perspectives

After more than half a century from the discovery of crown-ethers by Pedersen, macrocyclic hosts
continue to be protagonists in supramolecular chemistry. Their peculiar structures make them
ideal candidates to perform supramolecular functions such as catalysis, molecular and biomolecular
recognition, sensing, self-assembly, and threading to give interpenetrated architectures. In addition,
thanks to their synthetic versatility, the macrocycles are useful platforms for the design of more
elaborated structures for the self-assembly of supramolecular polymers and for applications in
biomimetic chemistry. These aspects have stimulated the creativeness of the scientists that in
this way started imagining novel macrocyclic structures with the aim to perform ever more
advanced supramolecular functions and properties. Thus, in the last years, in addition to the most
innovative aspects regarding the “old” macrocycles, much attention has also been focused on the
synthesis of new macrocycles. These studies have led to the discovery of novel classes of hosts
such as pillararenes, cycloparaphenylene, biphenarenes, oxatubarene, large resorcinarenes, and a
wide class of heteracalixarenes, coronarenes, which have found applications in several areas of
supramolecular chemistry.

Starting by these considerations, we organized this article collection in which a considerable
attention was devoted to the study of new macrocycles, and their applications in the field of
molecular recognition and biological application, biomimetic chemistry, including supramolecular
catalysis in nanoconfined spaces.

Regarding the biological applications, the review by Hadrovic et al. shows the potentialities
of water-soluble molecular tweezers (MTs) which are able to complex the cationic side chains of
lysine and arginine inside their cavities. The complexation is driven by secondary interactions
between the cationic parts and the electron rich aromatic cavity of MTs. Interestingly, the inclusion
of the cationic side chains of biologically-relevant amino acids inside the cavity of MTs prevents
the pathologic protein aggregations. The toxic aggregates of protein species are dissolved and
redirected to form amorphous, benign assemblies. Thus, MTs can be considered as promising
candidates for disease-modifying therapy in early stages of neurodegenerative diseases.

In the last decades many efforts have been directed toward the design of macrocyclic derivatives
with applications in the biomedical field. Das et al. show that the cucurbit[n]urils (CBs) are ideal
candidates for applications in the area of medicinal-chemistry and chemical-biology thanks to their
low toxicity and host-guest properties. In particular, CBs are able to encapsulate drugs for their
formulation and delivery and finally show interesting properties in the controlled drug-release.
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The host-guest complexes of CBs have found interesting
applications for sensing, diagnostic, theranostic, and other
relevant medicinal or bioanalytical applications.

The exploration of ever-new biomedical applications led to
metal-calix[4]arene complexes able to inhibit the growth of
bacteria, fungi, and cancerous tumor cells. As described by
Noruzi et al., the biological activity is ascribable to the inorganic
ions rather than calixarene ligand.

In the field of biomedical applications of macrocyclic
compounds, an interesting review has been reported by
Mostovaya et al.. The authors show some examples in which the
PLA has been modified with various macrocyclic fragments to
obtain derivatives with promising properties for drug-delivery
systems, photosensitizers in photodynamic therapy, protein
binding and biosensing.

Anions play important roles in a wide range of natural
and biological processes. Thus, the development of synthetic
molecules designed to mimic the efficiency of the natural
anion-receptors is an intensively active area of research in
supramolecular chemistry. In their work, Miranda et al.
report the synthesis of two bidentate dihomooxacalix[4]arene
receptors bearing phenylurea moieties substituted with electron-
withdrawing groups at the lower rim via a butyl spacer. The
binding affinity of these receptors toward several relevant
anions was investigated and some of them were also studied
as ditopic receptors for organic ion pairs, namely monoamine
neurotransmitters and trace amine hydrochlorides.

Supramolecular chemistry is always inspired by biological
systems and therefore biomimicry plays a crucial role in
the design of novel macrocyclic hosts. Among the natural
supramolecular systems, Gramicidin A (gA) is a natural peptide
channel with a well-established, simple structure, and function:
cations and water are transported together along the channel.
In their review, Sun and Barboiu report examples of synthetic
compounds able to mimic the functions of the natural gA.
These systems are channel-type superstructures formed by self-
assembly and provide remarkable combinations of functions
similar to gA channel: water permeability, proton conductance
via Grottus mechanism, cation vs. anion selectivity, single-
channel activity.

In the context of the biomimetic systems, the self-assembled
hexameric resorcinarene capsule shows peculiar features that
make it an efficient biomimetic catalyst for organic reaction. Like
a natural enzyme, the resorcinarene capsule shows an internal
cavity able to host complementary guests, and able to accelerate
the reactions by (i) nano-confinement effect; (ii) stabilization of
intermediates and/or transition states. Gambaro et al., in their
research article show that the hexameric resorcinarene capsule
is able to catalyze the formation of bis(heteroaryl)methanes by
reaction between pyrroles or indoles and carbonyl compounds
(α-ketoesters or aldehydes) in excellent yield and selectivity. The
authors suggested that the capsule can play a double catalytic role
as a H-bond catalyst, for the initial activation of the carbonyl
substrate, and as a Brønsted acid catalyst, for the dehydration of
the intermediate alcohol.

In natural systems, the receptor-substrate association takes
account of the chirality of the individual components and

consequently the preference of a receptor for the given substrate
and vice versa, depends on the spatial relationships between
the individual interacting species. Taking inspiration from this,
many scientists focused their attention on the study of host-
guest interactions between chiral species. Guo et al. synthesized
a couple of water-soluble chiral 2,6-helic[6]arene macrocycles
and showed that they form stable 1:1 complexes with fluorescent
cationic pyridinium guests in water. Compared with the free
guest, the host-guest complex exhibited enhanced fluorescence.
The host-guest complexes between 2,6-helic[6]arene and the
cationic pyridinium guest were self-assembled in water to
obtain supramolecular aggregates which showed rectangular or
hexagonal nanostructures by SEM images. Interestingly, it was
found that the assemblies showed clear mirror-image CD and
CPL spectra in aqueous solution, which revealed a consecutive
chirality transfer from the chiral macrocycle to the achiral guest.

Regarding the chiral recognition, in their paper, Gangemi
et al., show that a chiral fluorescent-uranyl salen host acts as
a receptor for the enantiomeric recognition of α-aminoacids
derivatives, with high association constants and an excellent
enantiomeric discrimination between the two enantiomers
of phenylalanine.

The design and the synthesis of chiral macrocyclic hosts
has attracted much attention, and therefore the planar chirality
shown by pillar[n]arenes was considered very useful for chiral
molecular recognition, chirality switches, and catalysis. The
planar chirality of pillar[n]arenes is mainly caused by the
inherent substitution pattern of the aromatic units. Usually,
the synthesized pillar[5]arenes are racemic mixtures and
racemization takes place by rotation of its aromatic units. In their
work, Sun et al. show that the introduction of β-galactose units
on both the rims of the pillar[5]arene prevents the racemization
according to dynamic 1HNMR studies. After separation, the two
stable diastereoisomers (Sp-D)-GP5 and (Rp-D)-GP5 were able
to capture a guest molecule (DNS-CPT) to form a host-guest
supramolecular amphiphile. This can further self-assemble into
chiral nanoparticles with the Sp and Rp planar chirality of (Sp-
D)-GP5 and (Rp-D)-GP5 still being retained, suggesting GP5
could be as reliable chiral sources to transfer the Sp and Rp
planar chirality.

The research for new macrocyclic structures often brings to
the discovery of new recognition motifs. Thus, in the last years
the cycloparaphenylene (CPP) macrocycles and π-extended
carbon-nanohoops have attracted much attention due to their
intriguing abilities to establish π···π and cation···π interactions
with complementary guests. In their review, Lu et al. highlight
the supramolecular properties of CPPs and π-extended carbon-
nanohoops mainly focusing on the size-selective encapsulation
of fullerenes, endohedral metallofullerenes, small molecules, and
CPP-based mechanomolecules.

Regarding the synthesis of mechanomolecules, Zhang R.
et al. reported the synthesis of pillar[5]arene-based [1]rotaxanes.
Thus, a series of amide-linked pillar[5]arene-based [1]rotaxanes
with ferrocene unit as the stopper were obtained. Interestingly,
the synthesized monofunctionalized pillar[5]arenes show a self-
inclusion property, which gives rise to a pseudo-rotaxane, being
the length of the imine chain the key role in this process. A
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rotaxane is formed through amidation of a ferrocene dicarboxylic
acid which acts as a plug. In addition, due to the ferrocene units,
the pillar[5]arene-based [1]rotaxanes exhibit electrochemically
reversible property.

The fascinating structure of pillararenes and their amazing
supramolecular properties are stimulating the imagination
of many scientists. In their work, Jia et al. report acyclic
pillar[n]naphthalene (n = 2–4, dimer, trimer, and tetramer)
oligomers, which are made up of 2,3-diethoxynaphthalene units
linked bymethylene bridges. The crystal structure of the tetramer
shows an interesting pseudo-cycle-shaped structure in the solid
state. The oligomers show interesting recognition properties
toward cationic guests.

Among the new macrocycles, the heteracalixaromatics or
heteroatom-bridged calix(het)arenes have gained a role of
primary importance thanks to their unique conformational
features and versatile recognition properties. In their work,
Zhang E-X. et al. synthesized a number of hydroxyl-substituted
azacalix[4]pyridines using Pd-catalyzed macrocyclic “2+2”
and “3+1” coupling methods and a protection-deprotection

strategy of hydroxyl group. The conformational properties
of these hydroxyl-substituted azacalix[4]pyridines have been
studied both in solution and in the solid state by X-ray
analysis. Taking the hydroxyl substituted azacalix[4]pyridines as
molecular platforms, multi macrocycle-containing architectures
and functional building blocks were then constructed.
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Pillar[5]arene Based [1]rotaxane
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Host-Guest Property: Design,
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Length
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Pillar[n]arenes are a new type of macrocyclic compounds, which were first reported

in 2008 by Ogoshi. They not only have cylindrical, symmetrical, and rigid structures,

but also have many advantages, including easy functionalization and rich host-guest

properties. On the other hand, mechanically interlocked molecules (MIMs) exist

extensively in nature which have been artificially synthesized and widely applied in

the fields of nanotechnology and biology. Although pillar[5]arene-based MIMs have

been investigated much over recent years, pillar[5]arene-based [1]rotaxanes are very

limited. In this report, we synthesized a series of amide-linked pillar[5]arene-based

[1]rotaxanes with ferrocene unit as the stopper. Under the catalysis of HOBT/EDCL,

the mono-amido-functionalized pillar[5]arenes were amidated with ferrocene carboxylic

acid to constructed ferrocene-based [1]rotaxanes, respectively. The structure of

the [1]rotaxanes were characterized by 1H NMR, 13C NMR, 2D NMR, mass

spectroscopy, and single-crystal X-ray structural determination. In the experiment, the

monofunctionalized pillar[5]arene was synthesized with a self-inclusion property, which

allows for forming a pseudo-rotaxane. The key role is the length of the imine chain in

this process. The formation of a rotaxane was realized through amidation of ferrocene

dicarboxylic acid, which acted as a plug. In addition, due to the ferrocene units, the

pillar[5]arene-based [1]rotaxanes perform electrochemically reversible property. Based

on this nature, we hope these pillar[5]arene-based [1]rotaxanes can be applied in battery

devices in the future.

Keywords: pillar[n]arenes, rotaxanes, electrochemically reversible, single-crystal X-ray, ferrocene

INTRODUCTION

Mechanically interlocked molecules (MIMs) are a type of “star” molecule due to their beautiful
and interesting architectures and wide applications in the area of biology and nanoscience (Bissell
et al., 1994; Brouwer et al., 2001; Zhu and Chen, 2005; Crowley et al., 2009; Yonath, 2010; Zhang
et al., 2011; Li et al., 2014; Wang et al., 2015, 2018). Among various MIMs, rotaxanes, which have
dumbbell-like structures with a wheel sliding along an axle, have attracted great interest due to their
wide application in preparation of artificial molecular machines (Green et al., 2007; Lewandowski
et al., 2013; Zhang et al., 2013). [1]rotaxanes, whose wheels and axles are connected in one molecule

8
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by covalent bonds, have a stable threaded form in both solution
and solid state (Hiratani et al., 2004; Franchi et al., 2008; Li
et al., 2012). However, the efficient synthesis of [1]rotaxanes is
very difficult due to their subtle structure. To the best of our
knowledge, there are very limited studies about the synthesis and
properties of macrocycle based [1]rotaxanes. For example, Prof.
Yang et al. prepared a functionalized [1]rotaxane and applied it to
catalysis Knoevenagel reaction in CHCl3 (Du et al., 2017). Prof.
Qu et al. fabricated a novel [1]rotaxane-based molecular motion
modified with ferrocene groups (Li et al., 2012).

Pillar[n]arenes (Ogoshi et al., 2008; Cragg and Sharma, 2012;
Xue et al., 2012; Si et al., 2015; Wang et al., 2015, 2016; Sun et al.,
2018; Xiao and Wang, 2018; Xiao et al., 2019a,b), which are the
newest host compounds in supramolecular chemistry after crown
ethers (Liu et al., 2017; Yoo et al., 2019), cyclodextrins (Fu et al.,
2019), calix[n]arenes (Dalgarno et al., 2007), and cucurbiturils
(Murray et al., 2017), have attracted extensive investigations
due to their pillar-like topology, rigid structures, electron-rich
cavities, and rich host-guest properties (Song and Yang, 2015;
Li et al., 2019; Wang et al., 2019). Up to now, pillar[n]arene-
based pseudo[1]rotaxanes with ammonium units, urea groups,
pyridinium salt or biotin units as the axles have been investigated
a lot (Strutt et al., 2012; Ni et al., 2014; Wu et al., 2015), but the
further formation of [1]rotaxanes is difficult due to the lack of
reactivity with stoppers. With the constant efforts by scientists,
several examples of pillar[n]arene-based [1]rotaxanes have been
fabricated successfully. For example, Prof. Xue et al. combined
C-H·π and ion-pair interactions to construct a pillar[5]arene-
based [1]rotaxane in a yield of 73% (Xia and Xue, 2014). Prof. Yan
et al. prepared a series of pillar[5]arene-based [1]rotaxanes from
mono-amide-modified pillar[5]arenes with different lengths of
the axles (Han et al., 2016).

Herein, we designed and synthesized a series of pillar[5]arene-
based [1]rotaxanes with N-aminoalkyl amides as the axles and
ferrocenecarboxylic acid as the stoppers through a method called
“threading-followed-by-stoppering” (Cao et al., 2000). Self-
included pillar[5]arene-based pseudo[1]-rotaxanes P[5]nPRs

were prepared from monoester modified copillar[5]arene
according previous research. Then pillar[5]arene based
[1]rotaxanes P[5]nRs were directly obtained by P[5]nPRs

reacted with ferrocenecarboxylic acid as the stopper under
the catalysis of HOBT/EDCL. Importantly, we found that
the length of N-aminoalkyl chains play a key role in the
formation of [1]rotaxanes—only when the number of
carbon on the N-aminoalkyl chains larger than three can
it form [1]rotaxanes. Moreover, these [1]rotaxanes showed
electrochemically reversible properties due to the ferrocene unit
on them.

MATERIALS AND METHODS

Synthesis of Pillar[5]arenes-Based
[1]rotaxanes and Mono-ferrocene Modified
Pillar[5]arene
Based on previous work (Han et al., 2016), P[5]nPRs were
obtained directly from mono-ester modified pillar[5]arene

SCHEME 1 | Synthetic route to a series of pillar[5]arene based [1]rotaxanes.

(Scheme 1). Then, P[5]nRs and mono-ferrocene modified
pillar[5]arene were successfully synthesized by P[5]nPRs reacted
with ferrocene-carboxylic acid as the stopper under the
catalysis of HOBT/EDCL. We take when n = 4 as a model
reaction, P[5]4PR (0.203 g, 0.2 mmol), ferrocenecarboxylic
acid (0.052 g, 0.2 mmol), HOBT(0.038 g, 0.25 mmol), and
EDCL (0.055 g,0.25 mmol) were stirred in 10mL dry CHCl3
over night at room temperature. The reaction solvent was
evaporated and the residue was purified by flash column
chromatography on silica gel (CH2Cl2/CH3OH, v/v 15:1) to give
P[5]4R as a yellow solid (0.195 g). Other P[5]nPRs and mono-
ferrocene modified pillar[5]arene were prepared with the similar
method (Scheme 1).

P[5]2R

Yellow solid, 78.6%, m.p. 106.9-108.5◦C; 1H NMR (400 MHz,
CDCl3) δ: 7.05–6.89 (m, 7H, ArH), 6.84 (d, J= 2.5Hz, 1H, ArH),
6.80 (s, 1H, ArH), 6.60 (s, 1H, ArH), 5.04–4.81 (m, 4H, CH2),
4.50 (s, 2H, ArH), 4.39 (s, 2H, ArH), 4.24 (d, J = 2.5Hz, 5H,
ArH), 4.05–3.95 (m, 2H, CH2), 3.95–3.60 (m, 32H, 24 CH3, 8
CH2), 3.54 (s, 4H, CH2), 1.80 (d, J = 8.1Hz, 2H, CH2), 1.55 (d, J
= 7.6Hz, 2H, CH2), 1.02 (d, J = 7.5Hz, 3H, CH2),−1.90 (d, J =
50.7Hz, 2H, CH2), −2.19 (d, J = 42.0Hz, 2H, CH2);

13C NMR
(101 MHz, CDCl3) (Figure S9) δ = 169.0, 168.9, 168.9, 166.7,
151.4, 150.6, 150.6, 150.5, 150.3, 150.3, 150.2, 150.2, 150.2, 150.1,
150.1, 149.7, 148.9, 129.8, 128.8, 128.8, 128.5, 128.4, 128.0, 127.7,
126.6, 126.4, 119.0, 115.5, 113.8, 113.7, 113.5, 113.4, 113.0, 112.9,
112.5, 112.5, 112.4, 112.4, 77.3, 71.8, 71.8, 69.9, 69.9, 69.9, 69.6,
68.5, 67.8, 66.0, 57.0, 56.4, 56.0, 55.8, 55.6, 55.5, 55.3, 55.2, 39.5,
37.5, 31.9, 31.7, 29.8, 29.7, 28.6, 28.5, 27.2, 23.2, 22.3, 22.3, 19.5,
14.1; MS (m/z): HRMS (ESI) Calcd. for C64H75FeN2O

+

12 ([M +

H]+): 1119.4671, found: 1119.4669 (Figure S10).

P[5]4R

Yellow solid, 42.9%, m.p. 107.4-109.2◦C; 1H NMR (400 MHz,
CDCl3) δ 7.02–6.76 (m, 10H, ArH), 5.67 (s, 1H, NH), 5.26
(s, 1H, NH), 4.75 (s, 2H, CH2), 4.59 (s, 2H, ArH), 4.40 (s,
2H, ArH), 4.24 (d, J = 2.4Hz, 5H, ArH), 4.05–3.54 (m, 36H,
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24 OCH3, 12 CH2), 2.72–2.47 (m, 4H, CH2), 1.76 (dd, J
= 15.2, 8.0Hz, 2H, CH2), 1.52 (q, J = 7.6Hz, 2H, CH2),
0.96 (t, J = 7.6Hz, 3H, CH3), −0.18 (s, 2H, CH2), −0.90
(s, 1H, CH2), −1.09 (s, 1H, CH2), −1.61 (d, J = 23.6Hz,
2H, CH2), −2.21 (s, 2H, CH2);

13C NMR (101 MHz, CDCl3)
(Figure S13) δ = 169.25, 167.51, 150.91, 150.73, 150.56, 150.45,
150.40, 150.36, 150.32, 150.21, 150.12, 147.21, 129.75, 129.29,
128.75, 128.48, 128.45,128.19, 127.87, 127.82, 127.05, 115.82,
115.08, 114.71, 114.43, 114.00, 112.80, 112.78, 112.73, 112.23,
70.21, 68.88, 68.09, 67.81, 65.85, 56.83, 56.44, 56.29, 56.26, 56.08,
55.48, 55.43, 55.31, 55.10, 39.73, 37.87, 31.95, 30.15, 29.36, 28.89,
28.60, 28.44, 26.37, 24.41, 23.25, 19.57, 14.06; HRMS (ESI) Calcd.
for C66H79FeN2O

+

12 ([M + H]+): 1147.4981, found: 1147.4982
(Figure S14).

P[5]6R

Yellow solid, 38.9%, m.p. 109.9-112.1◦C; 1H NMR (400 MHz,
CDCl3) δ: 6.98–6.70 (m, 10H, ArH), 5.85 (s, 1H, NH), 5.18 (s,
1H, NH), 4.72 (s, 2H, CH2), 4.58 (s, 2H, ArH), 4.39 (s, 2H,
ArH), 4.24 (s, 5H, ArH), 4.00–3.59 (m, 36H, 24 OCH3, 12 CH2),
3.42 (s, 2H, CH2), 3.29 (s, 2H, CH2), 1.86–1.79 (m, 2H, CH2),
1.60 (q, J = 7.6Hz, 2H, CH2), 1.35 (s, 2H, CH2), 1.03 (t, J
= 6.3Hz, 3H, CH3), 0.72 (s, 2H, CH2), −0.17 (s, 2H, CH2),
−1.11 (s, 1H, CH2), −1.25 (s, 1H, CH2), −1.50 (s, 2H, CH2),
−2.32 (s, 2H, CH2);

13C NMR (101 MHz, CDCl3) (Figure S17)
δ= 169.86, 150.81, 150.52, 150.48, 150.30, 150.20, 149.99, 129.41,
129.05, 128.35, 128.24, 128.09, 127.85, 127.34, 115.04, 114.18,
114.13, 113.70, 112.76, 112.33, 77.34, 70.43, 69.72, 68.19, 68.11,
55.99, 55.69, 55.46, 55.39, 55.29, 55.12, 40.01, 37.99, 32.02, 30.71,
30.11, 29.27, 29.01, 28.89, 28.62, 28.41, 28.27, 27.72, 19.65, 14.14;
MS (m/z): HRMS (ESI) Calcd. for C68H83FeN2O

+

12 ([M + H]+):
1175.5294, found: 1175.5295 (Figure S18).

P[5]8R

Yellow solid, 25.9%, m.p. 114.6-116.8◦C; 1H NMR (400 MHz,
CDCl3) δ 6.95–6.80 (m, 9H, ArH), 6.71 (s, 1H, ArH), 5.23 (s, 1H,
NH), 5.02 (s, 1H, NH), 4.68 (t, J = 1.9Hz, 2H, CH2), 4.56 (s, 2H,
ArH), 4.37 (t, J = 2.0Hz, 2H, ArH), 4.22 (s, 5H, ArH), 3.92–3.63
(m, 36H, 24OCH3, 12CH2), 3.42 (q, J = 7.0Hz, 2H, CH2), 2.41 (s,
2H, CH2), 1.88–1.79 (m, 2H, CH2), 1.62 (td, J = 7.4, 2.6Hz, 4H,
CH2), 1.37 (p, J = 7.7Hz, 2H, CH2), 1.20 (t, J = 7.9Hz, 2H, CH2),
1.04 (t, J = 7.4Hz, 3H, CH3), 0.80 (s, 2H, CH2),−0.05 (s, 2H,
CH2), −1.34 (s, 4H, CH2), −2.38 (s, 2H, CH2);

13C NMR (101
MHz, CDCl3) (Figure S21) δ = 170.09, 167.19, 150.80, 150.37,
150.24, 150.12, 150.06, 149.95, 146.97, 129.40, 129.01, 128.32,
128.20, 128.11, 127.94, 127.84, 127.83, 127.08, 114.73, 113.92,
113.58, 113.25, 112.73, 112.42, 76.31, 70.43, 69.72, 68.00, 67.82,
55.48, 55.45, 55.36, 55.32, 55.13, 39.72, 38.02, 32.05, 30.96, 30.66,
30.60, 30.21, 29.64, 29.26, 28.83, 28.76, 28.64, 28.22, 27.94, 19.65,
14.17; IR (KBr) υ: 3410, 2932, 2854, 1681, 1499, 1465, 1399, 1295,
1213, 1104, 1047, 929, 879, 855, 774, 704, 647cm−1; MS (m/z):
HRMS (ESI) Calcd. for C70H87FeN2O

+

12 ([M+H]+): 1203.5602,
found: 1203.5508 (Figure S22).

Mono-ferrocene Modified Pillar[5]arene P[5]0R

Yellow solid, 78.6%, m.p. 104.4–106.2◦C; 1H NMR (400 MHz,
CDCl3) (Figure S1) δ: 6.78–6.82 (m, 4H, ArH), 6.76 (d, J =

SCHEME 2 | Synthetic route to monomer M3.

2.7Hz, 2H, ArH), 6.70 (s, 1H, ArH), 6.65 (s, 1H, ArH), 4.68
(t, J = 1.9Hz, 2H, ArH), 4.37 (s, 2H, CH2), 4.32 (t, J =

1.9Hz, 2H, ArH), 4.19 (s, 5H, ArH), 3.88 (t, J = 6.4Hz,
2H, CH2), 3.85–3.62 (m, 28H, 24 OCH3, 4 CH2), 3.60 (s,
3H, CH2), 3.56 (s, 3H, CH2), 3.24 (s, 2H, CH2), 3.11 (s,
2H, CH2), 1.72–1.82 (m, 2H, CH2), 1.53 (h, J = 7.4Hz, 2H,
CH2), 0.97 (t, J = 7.4Hz, 3H, CH3);

13C NMR (101 MHz,
CDCl3) (Figure S2) δ = 170.70, 151.19, 150.87, 150.82, 150.77,
150.76, 150.69, 150.66, 148.15, 129.28,129.23, 128.62, 128.46,
128.36, 128.08, 127.84, 127.72, 115.41, 115.34, 114.37, 114.31,
114.06, 114.03, 113.97, 113.90, 113.79, 76.13, 70.33, 69.70, 68.37,
68.24, 67.67, 56.68, 56.17, 56.06, 55.91, 55.87, 55.80, 55.77, 41.21,
38.87, 31.80, 30.21, 29.70, 29.64, 28.76, 19.50, 13.96; MS (m/z):
HRMS (ESI) Calcd. for C62H71FeN2O

+

12 ([M+H]+): 1091.4357,
found: 1091.4356 (Figure S3).

P[5]1R

Yellow solid, 71.9 %, m.p. 105.6-107.3◦C;1H NMR (400 MHz,
CDCl3) (Figure S5) δ: 6.75–6.98 (m, 10H, ArH), 6.60 (s, 2H,
NH), 4.77 (t, J = 2.0Hz, 2H, ArH), 4.39 (s, 2H, CH2), 4.34
(t, J = 1.9Hz, 2H, ArH), 4.20 (s, 5H, ArH), 3.46–3.97 (m,
36H, 24 OCH3, 12 CH2), 1.81 (p, J = 6.9Hz, 2H, CH2),
1.68 (s, 2H, CH2), 1.56 (q, J = 7.5Hz, CH2), 1.01 (t, J =

7.4Hz, 3H, CH3);
13C NMR (101 MHz,CDCl3) (Figure S6) δ

= 150.7, 150.6, 150.4, 148.6, 128.8, 128.3, 128.1, 128.1, 114.6,
114.6, 114.5, 114.4, 113.7, 113.4, 113.3, 113.2, 70.0, 70.0, 69.6,
68.2, 66.9, 56.2, 56.2, 56.2, 56.2, 55.9, 55.9, 55.7, 55.5, 39.4, 35.7,
34.8, 31.9, 29.7, 29.4, 19.5, 14.1; MS (m/z): HRMS (ESI) Calcd.
for C63H73FeN2O

+

12 ([M + H]+): 1105.4512, found: 1105.4513
(Figure S7).

Synthesis of Monomer M3

AM3 was obtained from a previous report. Then the monomer
M3 was synthesized from AM3 (Figure S23) and ferrocene-
carboxylic acid with BOBT and EDCL as the catalyst (Scheme 2).
AM3 (0.08g, 0.25 mmol), ferrocenecarboxylic acid (0.057 g,
0.25 mmol), HOBT (0.054 g, 0.40 mmol), and EDCL (0.076,
0.40 mmol) were stirred in 15mL dry CHCl3 over night at
room temperature. The reaction solvent was evaporated and
the residue was purified by flash column chromatography on
silica gel (CH2Cl2/CH3OH, v/v 25:1) to give M3 as a yellow
solid (0.031 g). 1H NMR (400 MHz, CDCl3) (Figure S24)
δ 6.84 (s, 4H, ArH), 6.65 (s, 1H, NH), 5.87 (s, 1H,
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FIGURE 1 | 1H NMR spectra (400 MHz, 298K) of: (A) AM3 in CDCl3; (B) P[5]
4PR in CDCl3; (C) P[5]

4R in CDCl3; (D) P[5]
4R in DMSO-d6; (E) M

3 in CDCl3.

FIGURE 2 | Partial 2D NOESY spectrum of a choroform-d solution of P[5]4R at 298K.

NH), 4.68 (s, 2H, CH2), 4.44 (s, 2H, ArH), 4.33 (s,
2H, ArH), 4.19 (s, 5H, ArH), 3.91 (t, J = 5.8Hz, 2H,
CH2), 3.36 (d, J = 6.2Hz, 4H, CH2), 1.80–1.68 (m, 4H,
CH2), 1.58 (d, J = 5.9Hz, 4H, CH2), 1.48 (dd, J = 14.6,
7.1Hz, 2H, CH2), 1.39 (s, 2H, CH2), 0.97 (t, J = 6.9Hz,
3H, CH3).

MATERIALS

All reactions were performed in atmosphere unless noted. All
reagents were commercially available and used as supplied
without further purification. NMR spectra were collected on
either a Bruker AVIII-400MHz spectrometer or a Bruker AV-600
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MHz spectrometer with internal standard tetramethylsilane
(TMS) and signals as internal references, and the chemical
shifts (δ) were expressed in ppm. High-resolution Mass (ESI)
spectra were obtained with a Bruker Micro-TOF spectrometer.
X-ray data were collected on a Bruker Smart APEX-2
CCD diffractometer.

RESULTS AND DISSCUSSION
1H NMR Investigation
The 1H NMR spectra of AM3 and P[5]4PR were taken into
consideration first. As shown in Figure 1B, the chemical shift
of four groups of peaks shift below 0 ppm field, indicating that
the alkyl chain penetrated into the cavity of pillar[5]arene to
form either pseudo[1] rotaxane or [c2]daisy chain (Du et al.,
2017). Then P[5]4R was prepared from P[5]4PR reacted with
ferrocenecarboxylic acid as the stopper. 1H NMR spectra of
monomer M3 and [1] rotaxane P[5]4R in CDCl3 at 293K are
shown in Figure 1 (spectra c and e). Compared with M3, we
found that the signals of protons on the alkyl chain attaching
onto the pillar[5]arene platform shifted upfield obviously due to
the shielding effect (Figure 1C). Then we used a polar solvent,
DMSO-d6, for

1H NMR investigations to confirm the formation
of [1] rotaxane. In DMSO-d6, we also found that the signals of
protons on the alkyl chains upfield were below 0 ppm due to
the shielding effect (Figure 1D), which indicated the formation
of a mechanically interlocked structure (Dong et al., 2014).
The 1H NMR of P[5]2R, P[5]4R, P[5]6R, P[5]8R all showed
several groups of protons on the alkyl chains upfield obviously
(Figures S8, S12, S16, S20), and the formation of [1] rotaxanes
was also confirmed. However, the 1H NMR of P[5]0R and
P[5]1R showed no signal below 0 ppm, indicating the side-
chain stayed outside of the cavity of the pillar[5]arene platform
(Figures S1, S5). The reason for this phenomenon is due to the
relatively short length of the axle (only two or three CH2 groups)
of P[5]0R, and P[5]1R, which was not able to allow the large
ferrocene group to connect it from the cavity. Thus, the amino-
group of the side-chain of P[5]0PR (or P[5]1PR) stayed outside
of the cavity and was then reacted with ferrocene-carboxylic
acid to obtain free form P[5]0R (or P[5]1R). Furthermore, the
temperature-dependent 1H NMR of P[5]4R showed that the
peaks became broad as the temperature increased, indicating the
chain in the cavity (Figures S15, S19, S26).

2D NOESY Studies
The formation of [1]rotaxane was then confirmed by 2D Nuclear
Overhauser Effect Spectroscopy (NOESY). Here we also take
P[5]4R as the model compound. As shown in Figure 2, the
hydrogens of the alkyl chain on P[5]4R were close to the
pillar[5]arene platform because H1−4 showed strong correlation
with Ha and Hb, indicating that the alkyl chain was in close
proximity to the cavity. The -NH- groupHc is close to H1−2 while
Hd is close to H3−4. Furthermore, ArH-3 from the ferrocene
group showed space correction to the hydrogen–OCH3 and
-OCH2- on the pillar[5]arene platform (Data Sheets 1–4).

FIGURE 3 | X-ray single-crystal structure of: (A) P[5]0R; (B) P[5]2R. Color

code: C, blue; O, green; Fe, red; N, purple.

FIGURE 4 | Cyclic voltammogram (scan rate = 100mV s−1) of the P[5]4R

(5.00 × 10−4 M) in CH2Cl2.

Single Crystal Structures
The direct evidence for the formation of [1] rotaxanes only when
the length of axle longer than three CH2 groups is from single
crystal investigation. As shown in Figure 3A and Figure S4,
the whole side chain of P[5]0R stayed outside of the cavity of
pillar[5]arene. It should be pointed that we observed hydrogen
bonding between the hydrogen atom of the amine group and
the oxygen atom of carbonyl group (Figure 3A, pink dash line).
However, for P[5]2R, we can clearly see that the alkyl chain
penetrated into the cavity of pillar[5]arene to form a [1] rotaxane
(Figure 3B and Figure S11). The C-H···π interactions and C-
H···O interactions were the driving forces for the formation of
[1] rotaxane.

Cyclic Voltammetry Investigation
With the [1]rotaxanes in hand, we then investigated their
reversible redox property by electrochemistry methods. Take
P[5]4R as an example, in cyclic voltammetry (CV) experiment
(Figure 4), the cyclic voltammogram was quasi-reversible with
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nearly equal ipa and ipc, in which the potential difference
1Ep was around 0.090V. Compared with ferrocene, P[5]4R
has a larger half wave potential (E1/2 = 612mV). Further
study showed that the free state P[5]0R has the similar
redox property with P[5]4R due to the same ferrocene
unit (Figure S25).

CONCLUSIONS

In this paper, we synthesized a series of amide-linked
pillar[5]arene-based [1]rotaxanes with ferrocene unit as the
stopper. Under the catalysis of HOBT/EDCL, the mono-
amido-functionalized pillar[5]arenes were amidated with
ferrocene carboxylic acid, to constructed ferrocene-based
[1]rotaxanes, respectively. The structure of the [1]rotaxanes
were characterized by 1H NMR, 13C NMR, 2D NMR,
mass spectroscopy and single-crystal X-ray structural
determination. In the formation of [1]rotaxane, the key
role is the length of the alkyl chain in this process, and
only when the number of C on the alkyl chain is larger
than three can the formation of [1]rotaxane occur. In
addition, due to the ferrocene units, the pillar[5]arene-
based [1]rotaxanes display electrochemically reversible
properties. Based on this nature, we hope these pillar[5]arene-
based [1]rotaxanes can be applied in battery devices
in future.
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Products of lactic acid polycondensation (poly- and oligolactic acids) are widely used

as packaging materials, drug delivery agents, implants etc. Variety of their applications

is caused by a number of practically important properties, e.g., biocompatibility

and biodegradability, non-toxicity, and mechanical durability. Modification of these

polymers with different additives allows improving their properties and extending future

applications. In this manner, stability toward degradation, recognition of some substrates,

extended thermal stability etc. can be improved. Macrocyclic compounds are promising

candidates as modifiers. They are able to provide polymer materials with additional

binding sites, impart certain orientation to spatial arrangement of polymer chains,

change hydrophilic-lipophilic balance, and redox properties. The latter one can be used

for assembling various electrochemical sensors and biosensors that combine steric

discrimination of the analytes caused by oligolactides and highly sensitive response to

their quantities caused by redox labels introduced. Different composite materials based

on oligolactides as matrices for such redox labels were described in the assemblies of

biosensors for drugs, pesticides, and antioxidants detection. In this mini-review, methods

for the synthesis of the lactic acid oligomers and those modified with the macrocyclic

fragments (porphyrin, cyclodextrin, and cyclophane) have been described. The effects

of modifiers on complexation, thermal, and aggregation properties of materials are

described. Analytical performance of oligolactide based sensors and biosensors has

been considered with particular emphasis to the mechanism of signal generation.

Keywords: oligolactide, polylactide, synthesis, calixarene, cyclodextrin, tetrapyrrole, porphyrin, macrocycle

INTRODUCTION

Recently, polylactic acids (PLA) and their modification products have found increasing attention
as functional materials due to non-toxicity, biodegradability, biocompatibility, and mechanical
durability (Garlotta, 2001). Hydrophilicity, chemical, and thermal stability of such materials was
varied by introduction of appropriate modifiers (Marcincinova-Benabdillah et al., 2001; Kumar
et al., 2017). As a result, PLA was utilized in drug delivery systems [1986, Decapeptyl R© (Jain
et al., 2016)] and as a component of drug formulations. A particular PLA advantage is that drug
can release from such a matrix for several months (Andreopoulos et al., 2000). Inflammatory
reactions mentioned as a negative effect of PLA application related to the removal of the polymer
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degradation products can be suppressed by addition magnesium
hydroxide or calcium carbonate able to neutralize lactic acid (LA)
(Kum et al., 2013; Murariu and Dubois, 2016).

The PLA is usually synthesized in three ways, LA
condensation/coupling, azeotropic dehydrative condensation,
and by ring opening polymerization (ROP) of lactide (Garlotta,
2001; Pretula et al., 2016; Ren et al., 2016). Polymer modification
is achieved by introduction of additives containing carboxyl or
hydroxyl groups and acid anhydrides into the reaction media.
Recently, macrocyclic fragments have been actively studied for
this purpose. They offer fixed spatial separation of the binding
groups to get variety of ligands toward different molecules to be
recognized (Poulsen et al., 2015; Imran et al., 2018) (Figure 1).

HYBRIDS WITH CYCLODEXTRINS

Cyclodextrins applied in the pharmacy, food and cosmetic
industries, biotechnology are produced by enzymatic
degradation of starch (van de Manakker et al., 2009; Crini,
2014) (Figure 1A). They contain spatially stable hydrophobic
cavity that captures small molecules.

In 2008, one-handed lactide derivative of β-cyclodextrin
(CD) was obtained by ROP of 3,6-dimethyl-1,4-dioxane-2,5-
dione (lactide) in the absence of any catalyst (Shen et al., 2008;
Figure 2A). Its functionalization was carried out via primary
hydroxyl group farthest from the macrocycle (Figure 1A, R1).
Introduction of oligomeric lactic acid (OLA) into the CD
platform increased solubility of the product in the water. The
resulting hybrid formed an inclusion complex with amoxicillin,
a common antibiotic.

In the same year, copolymers with 14 polylactic “arms” were
obtained from tosylated CD via secondary hydroxyl groups
by ROP with lactide (Figure 1A, R2; Adeli et al., 2008).
Further ROP with 2-ethyl-2-oxazoline resulted in formation of
block copolymers consisting of the CD core, PLA and seven
polyoxazoline fragments. They formed micelles in chloroform
and encapsulated the Congo red dye. The rate of the dye
release increased with the length of both types of fragments
(Adeli et al., 2008).

The CD substituted by a single amino group was
functionalized with the PLA in the presence of N,N′-
dicyclohexylcarbodiimide (DCC) as an activating agent (1,
Figure 2B; Gao et al., 2005). The TG/DSC showed that grafting
the PLA onto the CD reduced the glass transition temperature
(Tg). Introduction of a hydrophilic CD fragment led to significant
increase in the biodegradation rate of the copolymer compared
with unmodified PLA due to increased water diffusion into the
copolymer. Resulting copolymers formed in aqueous solution
negatively charged monodisperse particles of submicron size.
The higher the content of CD in the copolymer the smaller their
size and the lower their charge were (Gao et al., 2005). Micelles
described could encapsulate BSA. Again, the higher the content
of the CD fragment the more pronounced this ability was.

Block-copolymers 2 containing poly(ethylene glycol)
fragments together with PLA were synthesized in a similar
manner (Figure 2; Qiu et al., 2010). They could bind

doxorubicin, an anticancer drug. A series of poly(ethylene
glycol) copolymers with PLA was obtained by ROP of lactide
with monomethoxypoly(ethylene glycol) as an initiator in
the presence of stannous 2-ethylhexanoate (Kricheldorf and
Serra, 1985). Terminal hydroxyl group of the polylactic unit
was replaced by a carboxyl group by interaction with succinic
anhydride in dioxane. Then, CD derivative containing seven
ethylenediamine fragments was functionalized at primary
amino groups by resulting acid in the presence of DCC and
4-(dimethylamino)pyridine (DMAP). Hybrids obtained could
formmicelles. Increase in the content of hydrophobic polylactide
fragments decreased their critical micelle concentration and
size. Most complete doxorubicin release was observed at pH
5.0. Cytotoxicity of the systems was observed only after the
doxorubicin implementation. It significantly depended on the
length of the polylactic chain. Longer chain showed higher
cytotoxicity measured with the MCF-7/ADR cells.

21 polylactide fragments (Figure 1A, R1, R2) were introduced
in the CD platform by ROP of D,L-lactide in the presence of
tin octoate as catalyst (Yao et al., 2016). The substitution was
observed at both primary and secondary hydroxyl groups of CD.
The resulting 21-arm star copolymer was further modified with
2-(dimethylamino)ethylmethacrylate and 2-ethyl-2-oxazoline
to corresponding block-copolymer. 2-(Dimethylamino)ethyl
methacrylate block containing tertiary amino group was chosen
to in situ reduction of the Au3+ ions to zero-valent gold
via coordination—reduction mechanism without additional
reductants. Monodisperse and structurally stable spherical
unimolecular micelles containing CD and PLA as an inner
core, poly(2- (dimethylamino)ethyl methacrylate) block as the
middle layer and poly[oligo(2-ethyl-2-oxazoline)methacrylate
block as the outer shell have been obtained by dialysis. The size
of the micelles depended on the degree of polymerization of
the monomers in the blocks and ranged from 20.9 to 28.5 nm
(Yao et al., 2016; Zhang et al., 2016). The resulting products
showed low cytotoxicity indicating advantages of the products
as a nanoplatform for anticancer drug delivery and as contrast
agents in computed tomography. They could also accumulate
doxorubicin (Lin et al., 2017) separated betweenmiddle layer and
micellar core (PLA block). The release of doxorubicin was pH
dependent (max at pH 5.0) due to protonation of nitrogen atoms
and accelerated PLA degradation in acidic media (Qiu et al.,
2010). Doxorubicin loaded micelles were tested for antitumor
efficiency against HepG2 cells (Yao et al., 2016; Lin et al., 2017).

The block-copolymer was also able to load imiquimod
(synthetic immune response modifier) and plasmid DNA
(Lin et al., 2016). Imiquimod was released most rapidly in
acidic conditions in agreement with the above mentioned
mechanism (Qiu et al., 2010; Lin et al., 2017). Cationic poly(2-
(dimethylamino)ethyl methacrylate) block played a key role in
formation of the complex with plasmid DNA.

In 2016, the synthesis of dendrimer like star polymer
by click chemistry was reported (Tungala et al., 2016;
Figure 1A, R1, Figure 2A). The CD primary hydroxyl
groups were replaced by azide groups. Then three
types of polymers (poly(methyl methacrylate), poly(N-
isopropylacrylamide), PLA) were synthesized. The core was
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FIGURE 1 | Applications of PLA functionalized with macrocyclic structures [β-cyclodextrins (A), tetrapyrroles (B), calixarenes (C), R1, R2 indicate possible

modification by PLA fragments].

functionalized with polymethylmethacrylate and then re-
azidated. The polylactide fragment was obtained by ROP
of D,L-lactide at room temperature in the presence of 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) as a catalyst. Further, this
fragment was modified by poly(N-isopropylacrylamide)
to amphiphilic block-copolymer containing terminal
alkyne group involved in the click reaction with an
azide-polymethylmethacrylate block.

Pseudo-block copolymer based on the CD terminated
poly(N-acryloylmorpholine) and adamantine-terminated linear
poly(D,L-lactide) was obtained 2 years later (Ramesh et al., 2018)
by ROP in the presence of DBU as a catalyst. The reaction was
based on host-guest interactions, in which the inclusion complex
of adamantane and CD moiety was formed. The obtained
copolymer formed micelles with the size of 103 nm that were able
to incorporate doxorubicin into the core. Doxorubicin release
from the micelles was faster in acidic medium (Qiu et al., 2010;
Lin et al., 2016, 2017).

HYBRIDS WITH TETRAPYRROLES

Porphyrins represent a unique class of synthetic and natural
tetrapyrrole heterocyclic organic molecules (Imran et al., 2018),
in which four pyrrole rings are linked together by methine
bridges to form a plane macrocyclic structure with conjugated
π-electrons (Figure 1B). Aromatic properties combined with
the presence of a cavity make for them possible to bind
various substrates.

In 2011, a star-shaped four-arm copolymer based on meso-
tetra-(p-hydroxymethylphenyl) porphyrin was obtained by ROP
of lactide in the presence of 2-[(2-dimethylamino-ethylimino)
methyl] phenol) as a catalyst (Shieh et al., 2011; Hsu et al.,
2012; Figures 1B, 2A). The photosensitizing properties caused
by porphyrin macrocycle and ability to accumulate doxorubicin
resulted in cytotoxic effect of the product toward MCF-7 cells
resistant to doxorubicin.

A year later, poly(lactide-co-glycolide) with chlorine
containing polymer 3 was synthesized using Steglich
esterification (Lee et al., 2012; Figure 2). Further combination
with a poly(lactide-co-glycolide) block-copolymer- polyethylene
glycol gave water soluble product with low immune response
and photo-sensitizing properties. Nanoparticles of about 160 nm
were obtained which encapsulated magnetite required for high
contrast magnetic resonance tumor imaging in vivo.

In 2016, poly(lactide-co-glycolide) fragment was covalently
linked to porphyrin blocks by click reaction (Boix-Garriga et al.,
2016; Figure 2A). The resulting copolymers 4 and 5 (Figure 2B)
formed in aqueous solutions negatively charged nanoparticles of
114–148 nm in size, in which porphyrin fragments were located
at the outer layer. They showed high photosensitizing ability to
generate singlet oxygen, especially in the case of a hydrophilic
porphyrin derivative 5.

Four-armed copolymer was obtained from
tetra(hydroxyethyl) terminated porphyrin and L-lactide by ROP
in the presence of DMAP (Figure 1B; Dai et al., 2011, 2014a,b,c,
2015). Terminal hydroxyl groups of the copolymer were then
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FIGURE 2 | (A) Synthetic approaches to PLA modification by macrocycles. (B) Macrocycles functionalized by PLA fragments.

modified with benzylsulfanylthiocarbonylsufanylpropionic acid
(Dai et al., 2015). The poly(N-isopropylacrylamide) block was
polymerized with corresponding monomer in the presence
of azobisisobutyronitrile as an initiator. Resulting hybrid
formed micelles in aqueous media able to change their shape
(through cylinders to vesicles) at temperature near that of a
body (37.2◦C). It was also proved to be effective in generation
of the singlet oxygen and inhibited BEL-7402 cancer cells.
Similar hybrid with poly(ethylene glycol) block instead of
poly(N-isopropylacrylamide) (Dai et al., 2014a) formed micelles
in aqueous media that encapsulated doxorubicin released in
acidic media (Qiu et al., 2010; Lin et al., 2016, 2017). The ability
to generate singlet oxygen was retained.

Glycopolymers based on porphyrin containing four-arm
copolymer were in 1-methyl-2-pyrrolidinone solution at 70◦C

obtained (Dai et al., 2014b,c). The copolymers generate singlet
oxygen and fluorescence with a high quantum yield. Low dark
cytotoxicity of the block-copolymers toward the COS-7 cells was
shown (Dai et al., 2014b).

Based on tetrakis(4-aminophenyl) porphyrin, a four-arm
star-shaped block copolymer including PLA fragment was
obtained (Wang et al., 2015). First, D-α-tocopheryl polyethylene
glycol 1,000 succinate was modified by D,L-lactide using the
ROP in the presence of tin octoate. Further modification
of block-copolymer with porphyrin was carried out in the
presence of DCC and DMAP. For this purpose, terminal
hydroxyl group of the polylactide block was first converted
into carboxyl group with N-hydroxysuccinimide. Negatively
charged nanoparticles up to 130 nm in size were obtained by
nanoprecipitation from the copolymer to encapsulate cytostatic
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drug Docetaxel (Dai et al., 2014a) released back in acidic
media (pH 5.0).

Nanocomposite based on carbon nanotubes and a four-
arm PLA copolymer with zinc p-tetraaminophenylporphyrin
was obtained by sonication due to non-covalent interactions
caused by strong π-π interactions between carbon nanotubes
and the porphyrin block of the copolymer (Li et al., 2016).
Polymer with fully retained structure part was positioned outside
the nanotubes.

HYBRIDS WITH CALIXARENES

Calixarenes are fully synthetic macrocycles of cup-shaped form
produced by cyclic oligomerization of phenol with formaldehyde
(Figure 1C; Gutsche, 1998). The presence of a hydrophobic
cavity and the possibility of combining with hydrophilic
substituents open up wide possibilities for their use as catalytic
systems and receptors for recognition of numerous substrates
(Gutsche, 1998; Ludwig and Dzung, 2002). Derivatives of
classical calixarene and resorcinarene were first examples of
hybrids with cyclophanes (Dria et al., 2012) obtained by
ROP of lactide using stannous (II) octoate (Figure 1C). Using
macrocycles with unsubstituted phenolic groups as “knot”
elements, functionalization with lactide fragments proceeded
slowly and not fully. Separation of the reaction centers from
the macrocyclic platform showed possibility of the synthesis of
target copolyesters with good yields and formation of completely
substituted products (with 4 or 8 “arms”). The authors noted
the effect of the macrocyclic center on thermal properties of
the copolyesters. With smaller number of arms, both average
molecular weight of the “arm” fragment and crystallinity degree
of the sample decreased.

Thiacalixarene platform is favorably different from classical
calixarene by the possibility of easy synthesis of different
spatial isomers with intended position of the binding groups
against cyclophane platform (Morohashi et al., 2006). Rather
rigid fixation of the binding sites in the space allows high
binding selectivity for different types of guests. All of this in
combination with the non-toxicity of the macrocycle (Perret and
Coleman, 2011) offers wide opportunities for its application. In
2018, amino derivative of p-tert-butylthiacalix[4]arene was firstly
modified by L-lactide (Mostovaya et al., 2018) with preservation
of the lactide fragment configuration. The resulting compound
could bind dopamine. Fragments of the substituent but not the
macrocycle itself played key role in the recognition. Endohedral
complex was formed with dopamine coordinated outside the
macrocycle cavity.

Modification of hydrazide derivatives of p-tert-
butylthiacalix[4]arene in different conformations by LA led
to formation of various products depending on the spatial
loading of the reaction centers. In the case of their proximity
(cone conformation), product 6 (Figure 2B) with four LA
residues in oligolactide (OLA) fragments was obtained. More
freely spaced substituents (1,3-alternate) were acylated with
six residues (7, Figure 2B; Gorbachuk et al., 2018). The OLA
obtained were able to self-association in methylene chloride.

The associate size essentially depended on the spatial structure
of thiacalix[4]arene stereoisomers. In cone conformation, all the
OLA fragments were on one side of the macrocyclic rim. For
the 1,3-alternate, the OLA fragments interfere with the efficient
packing of cyclophane, which results in much larger size of
self-associates. The addition of silver nitrate to the copolymers
resulted in disaggregation of self-associates.

Modification of the thiacalixarene platform by L-lactide
could be carried out rather easily. However, a number of
difficulties appeared in functionalization of the macrocycle
directly with L-LA even for the most spatially unloaded
1,3-alternate (Vavilova et al., 2019). “Knot” element of the
tetracarboxyl macrocycle catalyzes the LA condensation with
the formation of its pentamer. The replacement of carboxyl
groups by ethoxycarbonyl did not lead to the positive result
either. However, in the presence of MgSO4/p-toluenesulfonic
acid mixture, the tetraester was modified by trilactide fragments
over all ethoxycarbonyl groups (Figure 2A).

Introduction of a macrocyclic fragment significantly increased
the decomposition temperature against that of unmodified
pentalactide. Besides, resulting product was able to self-associate
in polar solvents (Vavilova et al., 2019).

p-tert-Butylthiacalix[4]arene in cone, partial cone, and
1,3-alternate conformations containing five lactide units in
substituents was obtained by co-polycondensation in the
melt (180◦C) with pentameric LA (Gorbachuk et al., 2017;
Gorbatchuk et al., 2017). Although a mixture of appropriate
products was obtained, it was thermally more stable than
unmodified penta-LA (Vavilova et al., 2019). In CH2Cl2, the
mixture formed submicron particles by self-association. Their
size significantly depended on the conformation of the “knot.”
The largest associates were observed for 1,3-alternate and the
smallest ones for cone. Inverse relationship was found in water
solution (Gorbachuk et al., 2017). Probably, decrease in the
associate size with a higher solvent polarity could be explained by
different packaging of the self-associates formed. They swell in
dichloromethane by forming loose package, but do not swell in
water. This significantly reduced particle size due to the denser
packing of the copolyester molecules in micelles.

Largest oligolactide fragments were obtained by
copolycondensation with penta-LA and tetra(penta-LA)
derivatives of p-tert-butylthiacalix[4]arene (Gorbachuk et al.,
2017) at 180◦C in the presence of tin octoate (Mostovaya
et al., 2019) (Figure 2A). In these conditions, lengthening of
the chain of lactide residues to eight fragments in average
occurred. However, the products obtained showed lower
thermal stability (Gorbachuk et al., 2017; Vavilova et al.,
2019). Probably, higher number of monomer units increased
energy of inter- and intramolecular bonds. This explained
higher decomposition temperature of unmodified octa-LA
compared to penta-LA. The macrocyclic block acts as additional
“loosening” element that weakens the bonds between OLA
chains (Mostovaya et al., 2019). The resulting copolyesters
form stable negatively charged submicron particles able to
bind proteins. The coagulation was observed in the presence of
positively charged lysozyme. In the case of BSA and hemoglobin,
the associates retain submicron size exceeding 400 nm for
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1,3-alternate, and <200 nm for other isomers of the core. OLA
modified by partial cone macrocycle interacted most efficiently
with all the model proteins, while unmodified octalactide
did not interact with them at all. Probably, interactions
with biopolymers is mostly dependent on hydrophobic force
between macrocyclic fragments of copolyesters and protein
binding sites.

Self-association of the OLA modified thiacalixarenes has
been used for assembling of electrochemical sensors where
modifiers provided both accumulation of auxiliary agents and
analytes. This resulted in significant improvement of analytical
performance of the sensors. The permeability of the surface
layer formed by drop-casting of the thiacalixarenes bearing
five OLA fragments in each substituent was explored using
electrochemical impedance spectroscopy and direct current
voltammetry (Gorbatchuk et al., 2017). In both cases, negatively
charged ferricyanide ion was utilized as redox probe. Its signals,
i.e., cathodic current or charge transfer resistance, were sensitive
to the charge density of the surface layer caused by carboxylic
terminal groups of OLA fragments. The surface concentration
and configuration of thiacalixarene core both influenced
above parameters. Treatment of the OLA-thiacalixarene hybrids
with AgNO3 followed by cathodic reduction of accumulated
Ag+ ions resulted in formation of nanodendrites exerting
electrocatalytic signals toward hydrogen peroxide, thiocholine,
hydroquinone, tryptophan (Porifreva et al., 2018). As a
result, their working concentrations have been decreased
by more than one order of magnitude against bare glassy
carbon electrode. OLA-thiacalixarene hybrids were also used as
transducers in acetylcholinesterase sensors for determination of

organophosphate pesticides and anti-dementia drugs exerting
inhibitory effect on immobilized enzyme (Gorbatchuk et al.,
2017; Shamagsumova et al., 2019).

CONCLUSIONS

PLA has been modified by various macrocyclic fragments
to obtain derivatives with the properties promising for drug
delivery systems, photosensitizers in photodynamic therapy,
and protein binding. These properties are determined by both
the types of macrocyclic block and the number of lactide
fragments in them. Variation in the above parameters as well
as introduction of other substituents with functional groups
can offer new opportunities for directional design of synthetic
receptors and drug delivery systems with specific properties
sensitive to the analyte properties and structural factors of
macrocyclic core. Some of the advantages described have been
already shown on the example of electrochemical sensors and
biosensors with extended characteristics of drug, metabolite,
antioxidant determination.
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A couple of water-soluble chiral 2,6-helic[6]arene derivatives P-H1 and M-H1

were synthesized, and they could form 1:1 stable complexes with 4-[(4′-N,

N-diphenylamino)-styryl]-N-methylpyridinium iodide (G) in water. Compared with G, the

host-guest complexes exhibited enhanced fluorescence, whichmight be attributed to the

spatial confinement of G and restriction of aggregation-caused quenching (ACQ) effects.

Based on the host-guest complexation, the first helic[6]arene-based chiral assemblies

were then constructed, and they showed rectangular or hexagonal nanostructures by

scanning electron microscopy (SEM) images. Interestingly, the assemblies showed clear

mirror-image circular dichroism (CD) and circularly polarized luminescence (CPL) spectra

in aqueous solution, revealing a consecutive chirality transfer from the chiral macrocyclic

cavities of the hosts to G. Moreover, the supramolecular chirality of the assemblies could

also show responsiveness to the pH values and temperatures of the system.

Keywords: helic[6]arene, host-guest complexation, self-assembly, chirality transfer, circularly polarized

luminescence

INTRODUCTION

Circularly polarized luminescent (CPL) materials have aroused extensively interest for their
potential applications in the fields of biological probes (Carr et al., 2012), photoelectric devices
(Grell et al., 2001; Shimada et al., 2017; Li et al., 2018a), asymmetric synthesis (Kawasaki et al.,
2005; Xu et al., 2014), and chiral sensing (Yang et al., 2013). It is well-known that chirality and
luminophores are two essential factors to realize CPL, and most organic CPL materials combined
the two factors, but the construction of the materials is generally inconvenient (Han et al., 2017;
Li et al., 2017; Chen et al., 2018). As an alternative way, supramolecular assembling based on
the complexation motif between a chiral host and an achiral organic fluorescent dye will be
convenient and efficient for construction of the CPL materials (Liu et al., 2015). Recently, Inouye’s
group reported two doubly threaded [4]rotaxanes with strong CPL based on γ-cyclodextrins
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(Inouye et al., 2014; Hayashi et al., 2018). Liu’s group reported
a pyrene-cyclodextrin supra-dendron which showed 1D and
2D nanostructures with CPL activities (Zhang Y. et al., 2018).
Because of their commercial availability and chiral cavities,
cyclodextrins were often utilized as hosts to construct chiral
assemblies or nanostructures based on the chirality transfer
motifs (Maeda et al., 2011; Yamaguchi et al., 2011; Sun et al.,
2013; Yoshihara et al., 2013; Zhang et al., 2014; Zhang W.
et al., 2016; Krishnan and Gopidas, 2017; Zhang B. et al., 2018).
However, single enantiomer of cyclodextrins would affect their
potential applications in chiral functional materials to some
extent. Especially, the lack of chiral macrocyclic hosts could
limit the development of such a research area in the host-guest
complexation induced CLP materials. As a result, the examples
on supramolecular assemblies with CPL properties based on
host-guest complexation motif are very limited. Moreover, still
no such assemblies with responsive CPL activities have been
reported so far.

Recently, we reported a new type of chiral macrocyclic arenes,
2,6-helic[6]arenes (Zhang G. W. et al., 2016; Chen and Han,
2018), which could not only show efficient and enantioselective
recognition toward chiral organic ammonium salts, but also
form host-guest complexes with various organic guests (Shi and
Chen, 2017; Shi et al., 2017; Zhang et al., 2017a,b,c; Wang et al.,
2018). It was further deduced that chiral macrocyclic arenes
could provide an opportunity to develop the CPL materials
based on the host-guest complexation. In this paper, we report
a couple of water-soluble chiral 2,6-helic[6]arene derivatives P-
H1 and M-H1, which could form 1:1 stable complexes with
4-[(4′-N, N-diphenylamino)styryl]-N-methylpyridinium iodide
(G) in water (Figure 1). Compared with G, the host-guest
complexes exhibited enhanced fluorescence, which might be
attributed to the spatial confinement of G and restriction of
aggregation-caused quenching (ACQ) effects. Based on the
host-guest complexation, the first helic[6]arene-based chiral
assemblies with rectangular or hexagonal nanostructures were
then constructed. Interestingly, the supramolecular assemblies
showed clear mirror-image CD and CPL spectra in aqueous
solution, revealing a consecutive chirality transfer from the
chiral macrocyclic cavities to G. Moreover, the assemblies
could also show the pH and temperature responsive CD and
CPL properties.

RESULTS AND DISCUSSION

Synthesis
As shown in Scheme 1, treatment of P-H4 and methyl
bromoacetate in acetonitrile in the presence of K2CO3 provided
methoxycarbonyl-substituted 2,6-helic[6]arene P-H3 in 93%
yield, which were then followed by the hydrolysis with
sodium hydroxide aqueous solution and acidification with
hydrochloric acid to give the 2,6-helic[6]arene derivative
P-H2. Finally, the water-soluble P-H1 was obtained in
100% yield by treatment of P-H2 with equivalent sodium
hydroxide. According to the same method as described
above, 2,6-helic[6]arene derivative M-H1 could also be
conveniently synthesized starting from M-H4. The new

compounds were all characterized by NMR and MS spectra
(Figures S1–S4, S12, S13).

Host-Guest Complexation
Enantiomers P-H1 and M-H1 should show the same host-
guest complexation with the guest, so P-H1 as an example was
used to investigate the complexation, which was carried out in
solution by 1H NMR spectroscopy (Figure 2 and Figure S6 for
P-H1·G, Figures S5, S7 for M-H1·G). As shown in Figure 2,
when 1.0 equiv of host P-H1 was added into a solution of
G, significant chemical shift changes of the protons on P-
H1 and G appeared. It was found that protons H1, H2, H3,
and H4 of the guest shifted upfield dramatically by 0.47,
1.02, 0.50, and 0.48 ppm, respectively. While the resonance
peaks related to protons H7, H8, H10 showed downfield shifts
compared with free guest G (1δ = 0.11, 0.08 and 0.06 ppm,
respectively). Moreover, the signals of protons Ha, Hb, Hc, and
Hd on P-H1 also showed upfield shifts due to the host-guest
interaction. These observations suggested that host P-H1 could
form 1:1 stable complex with guest G, and the complexation
between P-H1 and G was a fast exchange process on the NMR
spectroscopic timescale. From the 2D ROESY spectrum of a
solution of 2.0mM P-H1 and 2.0mM G (Figures S10, S11),
correlations were observed between protons H2, H3 of guest
G and protons Ha on P-H1, which further indicated that in
the complex, the methylpyridinium group of G was located
inside the cavity of P-H1, while the benzene ring connected
with the double bond of G might be located outside the cavity.
Furthermore, the electrospray ionization (ESI) mass spectra
confirmed the formation of the 1:1 complex between P-H1 and
G (Figures S14, S15) as well, in which the signal corresponding
to [P-H1·G-6Na+3H-I]2+ was monitored at m/z 801.24776.
To quantitatively investigate the complexation between P-H1

and G, isothermal titration calorimetry (ITC) experiments
were then carried out in aqueous solution (Figure S16).
Consequently, it was found that the association constant (Ka)
for 1:1 complex P-H1·G was determined to be (3.84 ± 0.24)
× 105 M−1. Similarly, M-H1 could also form 1:1 stable
complex with guest G in water, and the Ka value for the
1:1 complex M-H1·G was determined to be (3.21 ± 0.23) ×

105 M−1.
UV/Vis and fluorescence experiments were also performed

to investigate the host-guest complexation. As shown in
Figure S17, the absorption and emission spectra of 2.00
× 10−5 M G in aqueous solution exhibited an absorption
maximum at 450 nm and a weak emission band at about
600 nm, respectively. When equimolar P-H1 was added
into the solution of G, distinct bathochromic shifts of
absorption maximum occurred from 450 to 475 nm, while a
new emission band centered at 618 nm appeared. Probably
due to the cavity inclusion and rotation restriction of
G, the ACQ effects of G were avoided and an intensive
emission signal was observed in the aqueous solution
of P-H1·G.

Since P-H1 contained six carboxyl groups, we further
explored the acid/base controlled complexation of P-H1·G by
1H NMR spectroscopy. As shown in Figures S8, S9, upon the
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SCHEME 1 | Synthesis of P-H1 and M-H1.

FIGURE 1 | Structures and proton designations of hosts P-H1/M-H1 and guest G.

addition of an aqueous DCl solution into complex P-H1·G

in D2O, the carboxylate groups in P-H1 were acidified into
carboxylic acids, and the protonated host was then precipitated

from the solution. Although the guest was also protonated
and possessed good water solubility, most of them might be
absorbed by the P-H1 sediment, leading to no signals in the
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FIGURE 2 | Partial 1H NMR spectra (400 MHz D2O, 298K) of (A) free P-H1, (B) P-H1 with 1.0 equiv. G, (C) free G. [P-H1] = [G] = 2.0mM.

FIGURE 3 | Cartoon representation of pH responsive complex P-H1·G.
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FIGURE 4 | (A) SEM image, (B) enlarged SEM image, (C) hydrodynamic diameter measured by DLS and (D) Tyndall effect of the self-assembled P-H1·G ([P-H1·G] =

0.6mM in H2O, pH 7.00).

spectrum. Followed by adding an excess of NaOD aqueous
solution to the above system, the protonated host dissolved
in the solution, and the proton signals of complex P-H1·G

recovered, which suggested that complex P-H1·G formed again.
These results indicated that the acid/base stimuli-responsive
complexation betweenP-H1 andG could be efficiently controlled
(Figure 3).

Morphology of the Aggregates
Based on the formation of complex P-H1·G, we further
constructed the supramolecular assemblies in water by the
reported method (Li et al., 2018b). Consequently, 100 or 600
µL aqueous solution of P-H1·G (5mM) was rapidly injected
into 9mL of water/THF 2:1 (v/v) solution under ultrasonic
condition. After the ultrasound was sustained for 5min, the
solution was bubbled by Ar for about 1 h to remove the
THF. Then, by continual bubbling, the obtained solution was
heated to 100◦C until 5mL of water remained. Thus, the
uniformly distributed self-assemblies in H2O were obtained
with 0.1 and 0.6mM, respectively. To study the topological
influence of P-H1 and G on the self-assemblies, the similar
assembled experiments for free P-H1 and free G were also
carried out, respectively. Scanning electron microscopy (SEM)

FIGURE 5 | CD spectra of the enantiomeric macrocycles P-H1/M-H1 and the

self-assemblies from P-H1·G/M-H1·G in H2O ([P-H1] = [M-H1] = [P-H1·G]

= [M-H1·G] = 0.1mM).

and dynamic light scattering (DLS) were used to investigate
the assembled structures of P-H1·G. SEM images of the
assembled P-H1·G (0.6mM) showed hexagon nanostructures
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FIGURE 6 | CD spectra of the assemblies from P-H1·G andM-H1·G by gradually increasing (A) the temperature and (B) tuning the pH. (C) Influence of pH on UV/vis

spectra of P-H1·G assembled solution. (D) Photograph showing color changes with different pH of assembled P-H1·G solution. [P-H1·G] = [M-H1·G] = [G] =

0.1mM, solvent: H2O.

with diameters of about 160 nm (Figures 4A,B). Meanwhile,
DLS data showed that the assemblies possessed an average
hydrodynamic diameter of 180.4 nm in solution with an obvious
Tyndall effect (Figures 4C,D). For the assemblies from the
0.1mM complex, rectangular nanosheets with the length ranging
from 100 to 150 nm were found, which were in agreement
with the DLS results (Figures S21–S23). Comparatively, the
morphologies of both P-H1 and G showed strip-like structures
with a length of several micrometers (Figure S18), which were
distinctly different from that of complex P-H1·G. For the
assemblies of M-H1·G formed under the same conditions,
similar nanostructures to complex P-H1·G were obtained
(Figures S20, S24). These results suggested that the macrocyclic
compounds have a dramatic influence on the spatial alignment
of G, and the morphological modulation of the assemblies
from the complex could also be realized by simply tuning the
concentration of host-gust complex.

Since complex P-H1·G could be easily destroyed by acid
(Zhang et al., 2017b), we found that when the pH of
the assembled solution of P-H1·G (0.6mM) decreased to
3.00, the self-assembly morphology of P-H1·G changed from
nanohexagon to irregular structures (Figure S19). Moreover, it
was also found that when the pH of above system reached

9.00 by adding NaOH solution, irregular aggregates were also
generated probably because the existence of excess NaOH could
increase the ionic strength of the system and subsequently
weaken the host-guest interaction of P-H1·G (Figure S19)
[17a]. Similarly, the regular nanosheets for the assemblies of
0.1mM system could also be destroyed upon addition of HCl
or NaOH (Figures S21, S22). These results indicated that the
self-assembly morphology based on complex P-H1·G showed
pH responsiveness.

CD and CPL Properties of the Aggregates
Based on the spatial confinement of G by the chiral cavity of the
macrocycles and strong absorption and emission properties of
the complexes, we deduced that the assembled nanostructures
could show induced CD and CPL properties, attributed to the
chiral transfer from the chiral cavity of P-H1/M-H1 to the dye
guest G. As shown in Figure 5, mirror-image CD signals for
P-H1 and M-H1 at 285 nm were observed in agreement with
their absorption regions. For the assemblies from complexes P-
H1·G/M-H1·G, a pair of new mirror-image CD signals at 425
and 475 nm appeared, which could be ascribed to the host-guest
complexation induced chiral transfer from the enantiomeric
macrocycles toG. Moreover, when 0.6mM solution of assembled
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FIGURE 7 | (A) CPL spectra of the assemblies from P-H1·G and M-H1·G in water. (B) CPL spectra, (C) FL spectra, and (D) photograph showing color changes with

different pH values of the assemblies from P-H1·G and M-H1·G in water ([P-H1·G] = [M-H1·G] = 0.6mM, λex = 450 nm).

complexes P-H1·G/M-H1·G was used, the CD signals enhanced
distinctly, suggesting that the system with higher concentration
could induce stronger chirality.

We further explored the CD changes of the assemblies under
alternative temperatures and pH values. It was found that with
the increase of temperature from 20 to 70◦C, the intensity of the
mirror-image CD signals induced by the host-guest complexation
decreased gradually (Figure 6A). These changes implied that
the accelerated rotation and motion of the chiral macrocycle
and guest G emerged under heating conditions, which resulted
in the interruptive chirality transfer. It was also found that
when dilute HCl solution was added into the neutral system,
the mirror-image CD signals exhibited reduced intensity as
well as bathochromic shifts (Figure 6B), indicating that the
assemblies dissociated gradually while the host and the guest
were protonated. Simultaneously, when pH increased to 9.00,
only the weakened CD signal intensities were observed due to
no structural change of guest G. The pH responsive CD signal
changes of the assemblies from the complexes were basically in
agreement with the change tendency of UV/vis spectra and color
changes in Figures 6C,D.

The CPL properties of the assemblies form the complexes were
further explored. As shown in Figure 7A, it is found that with
chiral microenvironment of the macrocycles and luminophore
of the guest, the P-H1·G/M-H1·G assembled solution (0.6mM)

also showed a pair of mirror-image CPL signals ranging from
500 to 850 nm, which might be attributed to the chirality transfer
from the macrocycles to guest G by the strong host-guest
interactions and the well-ordered assembled nanostructures.
Correspondingly, the maximum glum values of CPL for P-H1·G

and M-H1·G were determined to be −2.67 × 10−4 and 1.48 ×

10−4 at 655 nm, respectively. Moreover, the pH values dependent
on CPL signal changes of the assembled solution could also be
found. As shown in Figure 7B, the mirror-image CPL signals
weakened under either the acidic or basic conditions. These
observations might be due to the destruction of the assemblies
from complex P-H1·G/M-H1·G by acid, and the weakened host-
guest interactions by base, which were further proved by FL
spectra and photograph showing color changes (Figures 7C,D).
The acid/base controlled CPL properties of the assemblies could
provide an opportunity to further design and construct new
chiral assembled materials with responsive properties.

CONCLUSION

In summary, we have synthesized a couple of water-soluble
chiral 2,6-helic[6]arene derivatives P-H1 and M-H1, and found
that they could form 1:1 stable complexes with 4-[(4’-N,
N-diphenylamino)styryl]-N-methylpyridinium iodide in water.
Compared with the guest, the host-guest complexes exhibited
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enhanced fluorescence, which might be attributed to the spatial
confinement of the guest and restriction of ACQ effects. Based on
the host-guest complexation, the first helic[6]arene-based chiral
assemblies were then constructed, and they showed rectangular
or hexagonal nanostructures by SEM images. Interestingly, it was
found that the assemblies showed clear mirror-image CD and
CPL spectra in aqueous solution, which revealed a consecutive
chirality transfer from the chiral macrocycles to the achiral
guest. Moreover, the assemblies could also show the responsive
CD and CPL activities to the pH and temperatures, which
would provide an opportunity to further construct new chiral
functional materials.
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A number of hydroxyl-substituted azacalix[4]pyridines were synthesized using
Pd-catalyzed macrocyclic “2+2” and “3+1” coupling methods and the
protection–deprotection strategy of hydroxyl group. While the conformation of the
these hydroxyl-substituted azacalix[4]pyridines is fluxional in solution, in the solid
state, they adopted shape-persistent 1,3-alternate conformations. Besides, X-ray
analysis revealed that the existence of hydroxy groups on the para-position of pyridine
facilitated the formation of solvent-bridged intermolecular hydrogen bonding for
mono-hydroxyl-substituted while partial tautomerization for four-hydroxyl-substituted
macrocycles, respectively. Taking the hydroxyl-substituted azacalix[4]pyridines as
molecular platforms, multi-macrocycle-containing architectures and functional building
blocks were constructed. The self-assembly behavior of the resulting building blocks
was investigated in crystalline state.

Keywords: heteracalixaromatics, azacalix[4]pyridine, fragment coupling, functionalization, self-assembly

INTRODUCTION

Design of ingenious macrocyclic molecules has been one of the driving forces to promote the major
advances of supramolecular chemistry, which has been manifested by examples of crownether,
cyclodextrin, calixarene, resorcinarene, cucurbituril, calixpyrrole, pillarenes, etc. (Lehn et al., 1996).
Indeed, macrocyclic compounds provide unique models in the study of non-covalent interactions,
and they have been serving as building blocks in the construction of high-level supramolecular
architectures. Typical examples such as by anchoring derivative groups on the macrocycles,
versatile building blocks, have been prepared and widely applied to the fabrication of molecular
devices and smart materials (Chen and Liu, 2010; Guo and Liu, 2014; Ma and Tian, 2014; Strutt
et al., 2014; Caricato et al., 2015; Le Poul et al., 2015; Parisi et al., 2016; Murray et al., 2017; Pazos
et al., 2018; Wang, 2018; Ogoshi et al., 2019).

Heteracalixaromatics, or heteroatom-bridged calix(het)arenes, are a new type of macrocyclic
host molecules (König and Fonseca, 2000; Lhoták, 2004; Morohashi et al., 2006; Maes and Dehaen,
2008; Wang, 2008, 2012; Thomas et al., 2012; Ma and Chen, 2014; Chen and Han, 2018). In
comparison with the classical calix[n]arenes in which the phenol moieties are linked by methylene
units, heteracalixaromatics enjoy much richer molecular diversity and complexity as the different
combinations of various heteroatoms and heteroaromatic rings afford almost limitless macrocyclic
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compounds. Because of the electronic nature of heteroatoms
are different from that of carbon and they are able to conjugate
differently with their adjacent aromatics, the incorporation
of heteroatoms into the bridging positions and aromatic
rings endows heteracalixaromatics unique conformational
structures and versatile recognition properties. In particular,
heteracalixaromatics show unique association property toward
ionic species including cations (Gong et al., 2006a;Ma et al., 2009;
Zhang et al., 2009; Fang et al., 2012; Wu et al., 2012, 2013), metal
clusters (Gao et al., 2011, Gao et al., 2012; Zhang and Zhao, 2018),
anions (Wang et al., 2008, 2010; Wang and Wang, 2013; Luo
et al., 2018), and neutral molecules (Wang et al., 2004; Gong et al.,
2007; Hu and Chen, 2010). Despite the powerful ability as host
molecules, surprisingly, the application of heteracalixaromatics
as functional building blocks is obviously underexplored.
Herein, we report the facile synthesis and structure of a
number of hydroxy-substituted azacalix[4]pyridines. These
functionalized macrocycles as molecular platform to construct
high-level architectures and functional building blocks were
also demonstrated.

RESULTS AND DISCUSSION

Synthesis
We attempted to synthesize the hydroxyl-substituted
macrocycles from deprotection of the 4-methoxyphenyl
(PMB) protected macrocycles. The PMB-protected macrocycle
could be obtained from a Pd-catalyzed 3 + 1 coupling method.
To access the target macrocycles, the mono-PMB-protected
macrocycle 3 was initially examined (Scheme 1). 1a, which
was prepared from nucleophilic substitution reaction between
4-(methoxyphenl)oxy-substituted 2,6-dibromopyridine 1a′ and
CH3NH2 (Figure S1), was applied as the monomeric fragment
and reacted with a nitrogen-linked linear trimeric aromatic
fragment 2a (Gong et al., 2006b). The effects of catalyst, ligand
and solvent, temperature, and concentration of the substrate were
carefully examined (Table S1). It was found that Pd2(dba)3 (dba
= trans,trans-dibenzylideneacetone) showed higher catalytic
efficiency than PdCl2 and Pd(OAc)2 (entries 1–3, Table S1).
Dppp [1,3-bis(diphenyphosphino)propane] was shown a
better ligand than dppe [1,2-bis(diphenylphosphino)ethane],
P(c-Hex)3 (tricyclohexylphosphine), and DPEphos [bis(2-
dicyclohexylphosphinophenyl)ether] (entries 3–6, Table S1).
Among the tested solvents including THF, 1,4-dioxane, o-xylene,
and toluene, toluene turned out to be the best to facilitate
the macrocyclization (entries 3 and 7–9, Table S1). Reaction
temperature is crucial to the cross-coupling reaction. While
lower temperature (70◦C and 90◦C) had a detrimental effect
on the reaction, reaction in refluxing toluene could give the
macrocyclic product 3 in chemical yield of 32% (entries 3, 10,
and 11, Table S1). When 10% mol Pd2(dba)3, 20% mol dppp,
and monomer 1a at a concentration of 10mM were employed in
refluxing toluene, the macrocyclization gave the highest chemical
yield of 40% (entries 12–20, Table S1).

Encouraged by the synthesis of 3, the synthesis of
other PMB-protected macrocycles was then attempted. We
envisioned that the 3 + 1 and 2 + 2 coupling strategy could

be applicable to obtain these macrocycles. Based on such
hypothesis, we prepared different 4-(methoxyphenl)oxy-
substituted di-bromopyridine and di-methylaminopyridine
fragments, respectively (Figure S1). Pleasantly, both 3
+ 1 and 2 + 2 cross-coupling methods worked equally
well. Under the optimized conditions for synthesis 3, the
macrocycles 6–9 bearing different numbers (n = 2–4) of (4-
methoxybenzyl)oxy groups were obtained in acceptable yields
(30–34%) (Table 1).

For the synthesis of hydroxyl-substituted azacalix[4]pyridines
10–14, the Pb/C-catalyzed hydrogenation reactions were
performed on the different protected macrocycles. As
shown in Scheme 2, all the reactions proceeded with high
efficiency to afford the desired products in the yields ranging
from 95 to 99%.

Structure
The characterization of 10–14 was established on spectroscopic
data and elemental analysis. In solution, all the macrocyclic
compounds gave one set of 1H and 13C NMR signals, indicating
that they are very fluxional at room temperature and the
various conformational structures most probably interconvert
rapidly relative to the NMR time scale (Figures S2, S3). Under
decreased temperatures (from 298 to 178K), the conformational
interconversion became slow and coexistence of different
conformations was clearly observed at 178K (Figure S4). To
probe the structure in solid state, single crystals were cultivated
and analyzed by X-ray diffraction method. Pleasantly, slow
evaporation of the solutions of 10 (Supplementary Data Sheet 2)
and 14 (Supplementary Data Sheet 3) produced single crystals
with high quality; the structural details are demonstrated in
Figures 1, 2, and Table S2 respectively. In the case of 10,
the molecule shows a similar 1,3-alternate conformation with
other azacalix[4]pyridines (Figures 1A,B). While the existence
of hydroxyl group on the para-position of one pyridine does
not affect the conformation of the macrocyclic backbone; it
leads to interesting hydrogen-bonded packing. For example, each
hydroxyl group as hydrogen bond donor interacts with the
oxygen of DMSO; an infinite DMSO-separated layer structure is
then produced (Figure 1C).

Surprisingly, the structure crystallized from 14 might not be
this compound itself. Representative parameters such as two
of the C–O distances (dC8−O2 = 1.291 Å) is shorter than the
other pair (dC3−O1 = 1.349 Å). The former distance is typical
of C = O double bond, while the latter is C–O single bond
as expected (Figure 2). Besides, a dimer structure linked by an
O2–O1–O3–O2 hydrogen bonding network could be observed.
Here, O2 serves as a hydrogen bond acceptor while the hydroxyl
group (O1) or a water molecule (O3) serves as a hydrogen bond
donor (Figure 2B). The function of O2 in the hydrogen bonding
network is consistent with the nature of carbonyl oxygen. These
structural features therefore indicate that the obtained structure
is a partially tautomerized compound 14′, i.e., two of the 4-
hydroxyl pyridine of 14 turn to pyridine-4-one moieties. As
in solution, 14 gives one set of NMR signals, and the partial
tautomerization product is most probably facilitated in solid
state (Scheme 3).
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SCHEME 1 | Synthesis of mono-PMB-protected macrocycle 3.

TABLE 1 | Synthesis of (4-methoxybenzyl)oxy-protected macrocycles 6–9.

Entry Method Product Yield (%)a

1 3+1 6: R1 = R3 = OPMB, R2 = R4 = H 33

2 2+2 7: R1 = R2 = OPMB, R3 = R4 = H 30

3 3+1 8: R1 = R2 = R3 = OPMB, R4 = H 34

4 2+2 9: R1 = R2 = R3 = R4 = OPMB 32

a Isolated yields.

Application of the Hydroxyl-Substituted

Azacalix[4]pyridines
We took the mono- and tetrahydroxy-substituted
azacalix[4]pyridines as representative molecular platforms
and tested the possibility to construct high-level architectures
and functional building blocks. As illustrated in Scheme 4,
treatment of 10 with 1,3-bis(bromomethyl)benzene 15 in the
presence of NaH in DMF proceeded smoothly to afford a
di-cavity compound 16 in 80% yield. When a linker compound
1,3,5-tris(bromomethyl)benzene 17 was applied under the same
reaction condition, the tri-cavity compound 18 was obtained in
46% yield (Scheme 4).

On the other hand, we applied 14 as the starting materials
to react with pyridine-2-acylchloride hydrochloride 19 and
pyridine-4-acylchloride hydrochloride 20, respectively. The
reactions in the presence of trimethylammonium in CH2Cl2

resulted in two pyridine-contained functional building blocks 21
and 22 in 64 and 52% yields, respectively (Scheme 5).

The introduction of the pyridine substituents on

azacalix[4]pyridine provides diverse binding sites to facilitate

intermolecular self-assembly. To demonstrate the application
of the functional building blocks, the self-assembly of 21

and 22 in crystalline state was investigated (Table S3). It
is worth addressing that the different pyridine substituents
caused significant changes in the conformations. In the case
of 21, the azacalix[4]pyridine backbone maintains the typical
1,3-alternate conformation, i.e., two of the pyridines tend
to be edge-to-edge flattened while the other two pyridines
tend to be face-to-face paralleled (Figure 3A). For 22, the
molecule exhibits a non-typical orthorhombic 1,3-alternate
conformation (Figure 4A). Moreover, due to the different
shapes of the building block and different position of nitrogen
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SCHEME 2 | Synthesis of hydroxyl-substituted azacalix[4]pyridines 10–14.

FIGURE 1 | Crystal structure of 10, top view (A) and side view (B), DMSO-separated layer structure through hydrogen bonding (C). Probability is 25%, parts of the
hydrogens are omitted for clarity.

on the substituent pyridines, the intermolecular hydrogen
bonding between pyridine-N and pyridine-H yielded different
2D networks for 21 (Supplementary Data Sheet 4) and 22

(Supplementary Data Sheet 5), respectively. For building

block 21, hydrogen bonding is formed between the substituent
pyridines; the interaction of pyridine-N with pyridine-2-H or
pyridine-4-H contributes to the formation of hydrogen bond
network (Figure 3B), while for 22, the substituent pyridine-N
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FIGURE 2 | Crystal structure of 14′, top view (A) and dimer structure linked by hydrogen bonding network (B). Selected bond length (Å): C8–O2 1.291, C3–O1
1.349. Selected distance (Å): O2–O1 2.574, O2–O3 2.700, O3–O1 2.887.

SCHEME 3 | Tautomerization of 14.

forms hydrogen bond with the aryl hydrogen of pyridine
on the backbone, which produces network with rhombic
porosity (Figure 4B).

CONCLUSION

In summary, we have synthesized hydroxyl-substituted
azacalix[4]pyridines using an efficient protection–deprotection

strategy and Pd-catalyzed macrocyclic “2+2” and “3+1”
coupling methods. The unique structure and tautomerization
of the macrocycle in solid state were revealed by X-ray analysis.
This work demonstrated that the synthesized macrocycles
could be useful molecular platforms for highly efficient
construction of multi-macrocycle-containing architectures and
functional building blocks. The high-level architectures and the
functional building blocks could find the potential application in
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SCHEME 4 | Synthesis of di- and tri-cavity architectures 17 and 18.

fabricating supramolecular or metal-organic porous framework
in the future.

EXPERIMENTAL

General Information
Chemical shifts are reported in parts per million vs.
tetramethylsilane with either tetramethylsilane or the residual
solvent resonance used as an internal standard. Melting points
are uncorrected. Elemental analyses, mass spectrometry, and X-
ray crystallography were performed at the Analytical Laboratory
of the Institute. All solvents were dried according to standard
procedures prior to use. All other major chemicals were obtained
from commercial sources and used without further purification.

General Procedure for the Synthesis of

(4-methoxybenzyl)Oxy-substituted

Macrocycles 3, 6–9
Under argon protection, a mixture of di-methylaminopyridine
fragment (2 mmol) and di-bromopyridine fragment (2.2 mmol),
Pd2(dba)3 (184mg, 0.2 mmol), dppp (164mg, 0.2 mmol),
and sodium tert-butoxide (576mg, 3 mmol) in anhydrous
toluene (400ml) was heated at reflux for 5 h. The reaction
mixture was cooled down to room temperature and filtered
through a Celite pad. The filtrate was concentrated under
vacuum to remove toluene and the residue was dissolved in
dichloromethane (50ml) and washed with brine (3 × 15ml).
The aqueous phase was re-extracted with dichloromethane (3
× 20ml), and the combined organic phase was dried over
anhydrous Na2SO4. After removal of solvent, the residue was
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SCHEME 5 | Construction of functional building blocks 21 and 22.

FIGURE 3 | Self-assembly of 21, (A) side view of building block and (B) self-assembly structure. Selected hydrogen bonding distance (Å): N9...H36 2.721, N12...H40
2.626. Selected hydrogen bonding angle (◦): N9–H36–C36 159.6, N12–H40–C40 139.5.
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FIGURE 4 | Self-assembly of 22, (A) side view of building block and (B) self-assembly structure. Selected hydrogen bonding distance (Å): N6...H16 2.555. Selected
hydrogen bonding angle (◦): N6–H16–C16 172.3.

chromatographed on a silica gel column (100–200) with a
mixture of petroleum ether and acetone as the mobile phase to
give the products.

(4-Methoxybenzyl)Oxy-Substituted Macrocycle 3
A white solid (449mg, 40% yield); mp 191–193◦C; 1H NMR
(300 MHz, CDCl3) δ7.39–7.32 (m, 5H), 6.94 (d, J = 8.7
Hz, 2H), 6.39 (d, J = 8.7 Hz, 2H), 6.34–6.30 (m, 4H),
6.04 (s, 2H), 4.97 (s, 2H), 3.82 (s, 3H), 3.20 (s, 6H), 3.17
(s, 6H); 13C NMR (75 MHz, CDCl3) δ 167.2, 160.2, 159.6,
159.2, 159.0, 138.3, 137.8, 129.2, 128.5, 114.1, 109.5, 107.5,
96.9, 69.4, 55.3, 36.6; IR (KBr) v 1,578, 1,559, 1,515, and
1,473 cm−1; MS (MALDI-TOF) m/z (%) 599 [M+K]+ (28),
583 [M+Na]+ (50), 561 [M+H]+ (100). Anal. Calcd. for
C32H32N8O2: C, 68.55; H, 5.75; N, 19.99. Found: C, 68.49; H,
5.83; N, 19.91.

(4-Methoxybenzyl)Oxy-substituted Macrocycle 6
A white solid (457mg, 33% yield); mp 273–274◦C; 1HNMR (300
MHz, CDCl3) 7.35 (t, J = 7.8 Hz, 2H), 7.30 (d, J = 8.6 Hz, 4H),
6.86 (d, J= 8.6Hz, 4H), 6.42 (d, J= 7.8Hz, 4H), 5.96 (s, 4H), 4.96
(s, 4H), 3.81 (s, 6H), 3.18 (s, 12H); 13C NMR (75 MHz, CDCl3)
δ 167.7, 160.2, 159.5, 159.1, 138.0, 129.2, 128.7, 114.0, 111.9, 92.4,
69.4, 55.2, 36.6; IR (KBr) v 1,580, 1,559, and 1,515 cm−1; MS
(MALDI-TOF)m/z (%) 719 [M+Na]+ (40), 697 [M+H]+ (100).
Anal. Calcd. for C40H40N8O4: C, 68.95; H, 5.79; N, 16.08. Found:
C, 68.77; H, 5.49; N, 16.28.

(4-Methoxybenzyl)Oxy-substituted Macrocycle 7
A white solid (415mg, 30% yield); mp 98–99◦C; 1H NMR (300
MHz, CDCl3) 7.38 (d, J = 8.5 Hz, 4H), 7.35 (t, J = 7.8 Hz, 2H),
6.94 (d, J = 8.5 Hz, 4H), 6.37 (d, J = 7.8 Hz, 2H), 6.36 (d, J =
7.8 Hz, 2H), 6.01 (s, 2H), 6.00 (s, 2H), 4.97 (s, 4H), 3.82 (s, 6H),
3.21 (s, 3H), 3.18 (s, 6H), 3.15 (s, 3H); δ 167.3, 160.1, 159.6, 159.1,
137.9, 129.3, 128.4, 114.1, 108.6, 95.9, 69.4, 55.4, 36.6; IR (KBr) v
1,581, 1,560, 1,514, and 1,468 cm−1; MS (MALDI-TOF) m/z (%)
735 [M+K]+ (6), 719 [M+Na]+ (14), 697 [M+H]+ (100). Anal.
Calcd. for C40H40N8O4: C, 68.95; H, 5.79; N, 16.08. Found: C,
68.75; H, 5.70; N, 16.21.

(4-Methoxybenzyl)Oxy-substituted Macrocycle 8
A white solid (566mg, 34% yield); mp 101–102◦C; 1HNMR (300
MHz, CDCl3) 7.37 (d, J = 8.6 Hz, 2H), 7.30 (t, J = 7.8 Hz, 1H),
7.29 (d, J = 8.6 Hz, 4H), 6.94 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6
Hz, 4H), 6.45 (d, J = 7.8 Hz, 2H), 6.10 (s, 2H), 5.93 (s, 2H), 5.92
(s, 2H), 4.96 (s, 6H), 3.82 (s, 3H), 3.80 (s, 6H), 3.18 (s, 6H), 3.14
(s, 6H); 13C NMR (75 MHz, CDCl3) δ 167.7, 166.8, 160.2, 160.1,
159.7, 159.4, 159.1, 137.5, 129.3, 129.2, 128.6, 128.4, 114.2, 114.0,
112.6, 100.0, 91.7, 69.4, 55.3(4), 55.2(8), 36.6; IR (KBr) v 1,583,
1,559, and 1,514 cm−1; MS (MALDI-TOF)m/z (%) 871 [M+K]+

(1), 855 [M+Na]+ (26), 833 [M+H]+ (100). Anal. Calcd. for
C48H48N8O6: C, 69.21; H, 5.81; N, 13.45. Found: C, 69.19; H,
5.93; N, 13.45.

(4-Methoxybenzyl)Oxy-substituted Macrocycle 9
A white solid (620mg, 32% yield); mp 203–204◦C; 1HNMR (300
MHz, CDCl3) 7.26 (d, J = 8.6 Hz, 8H), 6.83 (d, J = 8.6 Hz, 8H),
6.03 (s, 8H), 4.92 (s, 8H), 3.79 (s, 12H), 3.16 (s, 12H); 13C NMR
(75 MHz, CDCl3) δ 167.4, 160.1, 159.4, 129.3, 128.5, 113.9, 95.7,
69.4, 55.2, 36.8; IR (KBr) v 1,583, 1,559, and 1,514 cm−1; MS
(MALDI-TOF)m/z (%) 991 [M+Na]+ (39), 969 [M+H]+ (100).
Anal. Calcd. for C56H56N8O8: C, 69.41; H, 5.82; N, 11.56. Found:
C, 69.29; H, 5.89; N, 11.63.

General Procedure for the Synthesis of

Hydroxyl-Substituted Azacalix[4]pyridines 10–14
Under nitrogen protection, Pd/C (150mg, 10 wt%) was added
rapidly in a 100-ml round bottom flask with a mixture of PMB-
protected macrocycles (2 mmol), THF (20ml), and methanol
(20ml). The flask was switched three times with hydrogen
balloon. The reaction was stopped after reacting at room
temperature for 24 h. The reaction mixture was worked up in two
ways. Method A: After filtration of the catalyst and removal of the
solvent, the residue was chromatographed on a silica gel column
(100–200) with a mixture of dichloromethane and methanol
as the mobile phase to give the product. Method B: Before
filtration of catalyst, the concentrated aqueous ammonia solution
was added to the reaction mixture to dissolve the precipitated
product. After filtration of the catalyst and removal of the solvent,
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acetone was added to slurry the residue. The solid was filtered
out and washed with a small amount of acetone and dried to give
the product.

Hydroxyl-Substituted Azacalix[4]pyridine 10
Workup by method A, the product was a white solid (872mg,
99% yield): 260–262◦C; 1H NMR (300 MHz, d6-DMSO) 10.05
(s, 1H), 7.49–7.40 (m, 3H), 6.40–6.34 (m, 6H), 5.82 (s, 2H), 3.10
(s, 6H), 3.03 (s, 6H); 13C NMR (75 MHz, d6-DMSO) δ 166.2,
159.4, 158.4, 158.3, 158.2, 138.6, 138.3, 108.4, 108.2, 96.5, 36.2;
IR (KBr) v 3,388, 1,578, and 1,470 cm−1; MS (MALDI-TOF)m/z
(%) 479 [M+K]+ (5), 463 [M+Na]+ (45), 441 [M+H]+ (100).
Anal. Calcd. for C24H24N8O: C, 65.44; H, 5.49; N, 25.44. Found:
C, 65.21; H, 5.54; N, 25.34.

Hydroxyl-Substituted Azacalix[4]pyridine 11
Workup by method A, the product was obtained as a white solid
(904mg, 99% yield): > 300◦C; 1H NMR (300 MHz, d6-DMSO)
9.93 (s, 2H), 7.39 (t, J= 7.7Hz, 2H), 6.48 (d, J= 7.7Hz, 4H), 5.70
(s, 4H), 3.03 (s, 12H); 13C NMR (75 MHz, d6-DMSO) δ 166.6,
159.4, 158.5, 138.0, 116.2, 88.6, 36.3; IR (KBr) v 3,368, 3,260,
1,588, and 1,475 cm−1; MS (MALDI-TOF)m/z (%) 495 [M+K]+

(5), 479 [M+Na]+ (20), 457 [M+H]+ (100). exact mass (HRESI)
found 457.2092, C24H25N8O2 requires: 457.2095.

Hydroxyl-Substituted Azacalix[4]pyridine 12
Workup by method A, the product was obtained as a white
solid (886mg, 97% yield): 239–241◦C; 1H NMR (300 MHz, d6-
DMSO) 10.08 (s, 2H), 7.46 (t, J = 7.8 Hz, 2H), 6.41 (d, J =
7.8 Hz, 2H), 6.38 (d, J = 7.8 Hz, 2H), 5.85 (s, 4H), 3.12 (s,
3H), 3.05 (s, 6H), 2.99 (s, 3H); 13C NMR (75 MHz, d6-DMSO)
δ 158.1, 138.3, 108.3, 96.8, 36.3, 36.2; IR (KBr) v 3,401, 1,573,
and 1,477 cm−1; MS (MALDI-TOF) m/z (%) 479 [M+Na]+

(25), 457 [M+H]+ (100). Exact mass (HRESI) found 457.2094,
C24H25N8O2 requires: 457.2095.

Hydroxyl-Substituted Azacalix[4]pyridine 13
Workup by method A, the product was obtained as a white solid
(936mg, 99% yield): > 300◦C; 1H NMR (300 MHz, d6-DMSO)
10.08 (s, 1H), 9.90 (s, 2H), 7.41 (t, J = 7.8 Hz, 1H), 6.49 (d, J
= 7.8 Hz, 2H), 5.92 (s, 2H), 5.67 (s, 2H), 5.64 (s, 2H), 3.06 (s,
6H), 2.96 (s, 6H); 13C NMR (75 MHz, d6-DMSO) δ 166.6, 165.4,
159.5, 159.4, 159.3, 158.4, 137.3, 116.2, 104.5, 88.5, 36.3; IR (KBr)
v 3,259, 1,586, and 1,477 cm−1; MS (MALDI-TOF) m/z (%) 495
[M+Na]+ (100), 473 [M+H]+ (20). Exact mass (HRESI) found
473.2033, C24H25N8O3 requires: 473.2044.

Hydroxyl-Substituted Azacalix[4]pyridine 14
Workup by method B, the product was obtained as a white solid
(928mg, 95% yield): > 300◦C; 1H NMR (300 MHz, d6-DMSO)
9.90 (s, 4H), 5.79 (s, 8H), 2.96 (s, 12H); 13C NMR (75 MHz, d6-
DMSO) δ 166.0, 159.4, 95.9, 36.6; IR (KBr) v 3,512, 3,398, 1,578,
and 1,490 cm−1; MS (MALDI-TOF) m/z (%) 511 [M+Na]+

(74), 489 [M+H]+ (100). Exact mass (HRESI) found 489.1983,
C24H25N8O4 requires: 489.1993.

Preparation of Di-Cavity Compound 17
To a solution of 10 (92.5mg, 0.21 mmol) in dry DMF (2ml) at
room temperature was added NaH (7.2mg, 0.3 mmol) slowly and
the mixture was agitated for 1 h. 1,3-Bis(bromomethyl)benzene
15 (26mg, 0.1 mmol) was added to the mixture slowly and
the reaction mixture was agitated for another 4 h, and then
water (20mL) was added and extracted by ethyl acetate (3 ×

20ml). The organic phase was washed by saturated brine (2
× 20ml) and dried over anhydrous Na2SO4. After removal
of solvent, the residue was chromatographed on a silica gel
column (100–200) with a mixture of dichloromethane and ethyl
acetate as the mobile phase to give pure 16 (79mg, 80%) as
a white solid: 253–254◦C; 1H NMR (300 MHz, CDCl3) 7.56
(s, 1H), 7.46–7.45 (m, 3H), 7.35 (t, J = 7.8 Hz, 6H), 6.38 (d,
J = 7.8 Hz, 4H), 6.35 (d, J = 7.8 Hz, 4H), 6.33 (d, J = 7.8
Hz, 4H), 6.04 (s, 4H), 5.10 (s, 4H), 3.20 (s, 12H), 3.17 (s,
12H); 13C NMR (75 MHz, CDCl3) δ 167.1, 160.2, 159.1, 159.0,
158.9, 138.4, 137.9, 137.0, 129.1, 127.2, 126.4, 108.8, 108.2, 96.1,
69.3, 36.6; IR (KBr) v 1,583 cm−1; MS (MALDI-TOF) m/z
(%) 1,005 [M+Na]+ (7), 983 [M+H]+ (100). Anal. Calcd. for
C56H54N16O2: C, 68.41; H, 5.54; N, 22.80. Found: C, 68.44;
H, 5.55; N, 22.71.

Preparation of Tri-Cavity Compound 18
Compound 18 was prepared from 10 and 1,3,5-
tribromomesitylene 17 by a similar procedure to the synthesis
of 16. Quantities: 10 (132mg, 0.3 mmol), NaH (10.8mg, 0.45
mmol), 1,3,5-tribromomesitylene 17 (35.7mg, 0.1 mmol), and
DMF (2mL). The product was obtained as a light yellow solid
(66mg, 46%): 208–210◦C; 1H NMR (300 MHz, CDCl3) 7.54
(s, 3H), 7.38–7.33 (m, 9H), 6.39–6.35 (m, 18H), 6.04 (s, 6H),
5.14 (s, 6H), 3.20 (s, 18H), 3.18 (s, 18H); 13C NMR (75 MHz,
CDCl3) δ 167.1, 160.1, 159.1, 159.0, 158.9, 138.4, 138.0, 137.6,
125.9, 108.8(1), 108.7(6), 108.4, 95.6, 69.1, 36.6(4), 36.6(2); IR
(KBr) v 1,582 cm−1; MS (MALDI-TOF) m/z (%) 1,473 [M+K]+

(2), 1,457 [M+Na]+ (9), 1,435 [M+H]+ (100). Anal. Calcd. for
C81H78N24O3:C, 67.77; H, 5.48; N, 23.42. Found: C, 67.60; H,
5.58; N, 23.02.

Preparation of Functional Building Block 21
To a solution of 14 (98mg, 0.2 mmol) in dry dicholormethane
(20ml) at room temperature was added pyridine-2-acylchloride
hydrochloride 19 (156mg, 0.88 mmol) and triethylamine
(0.55ml). After reacting for 24 h, the reaction mixture was
washed by saturated Na2CO3 solution (10ml) and saturated
brine (3 × 20ml) and then dried over anhydrous Na2SO4.
After removal of solvent, the residue was crystallized by
dichloromethane and ethyl acetate to give pure 21 as a light
yellow solid (117mg, 64%): > 300◦C; 1H NMR (300 MHz,
CDCl3) 8.68 (d, J = 4.6 Hz, 4H), 8.13 (d, J = 7.8 Hz,
4H), 7.76–7.70 (m, 4H), 7.44–7.39 (m, 4H), 6.50 (s, 8H), 3.25
(s, 12H); 13C NMR (75 MHz, CDCl3) δ 162.5, 160.1, 159.8,
150.0, 147.2, 137.0, 127.2, 125.8, 102.2, 36.8; IR (KBr) v 1,763,
1,744, and 1,581 cm−1; MS (ESI) m/z (%) 931 [M+Na]+

(100), 909 [M+H]+ (86). Exact mass (HRESI) found 909.2828,
C48H37N12O8 requires: 909.2852.
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Preparation of Functional Building Block 22
Compound 22was prepared from 14 and pyridine-4-acylchloride
hydrochloride 20 by a similar procedure to the synthesis
of 21. Quantities: 14 (195mg, 0.4 mmol), 20 (331mg, 1.76
mmol), dichloromethane (20ml), and triethylamine (1.11ml).
The product was obtained as a light yellow solid (190mg, 52%):
289–291◦C; 1HNMR (300MHz, CDCl3) 8.74 (d, J= 6.0Hz, 8H),
7.84 (d, J = 6.0 Hz, 8H), 6.46 (s, 8H), 3.26 (s, 12H); 13C NMR
(75 MHz, CDCl3) δ 162.5, 159.8, 159.7, 150.7, 136.4, 123.0, 101.9,
36.8; IR (KBr) v 1,748, 1,607, and 1,571 cm−1; MS (ESI) m/z
(%) 931 [M+Na]+ (100), 909 [M+H]+ (40). Exact mass (HRESI)
found 909.2848, C48H37N12O8 requires: 909.2852.
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Gramicidin A, gA is a natural protein channel with a well-established, simple structure,
and function: cations and water are transported together along the channel. Importantly,
the dipolar orientation of water molecules within the pore can influence the ionic
translocation. The need for simple artificial systems biomimicking the gA functions
has been desired and they were until last decade unknown. Several interesting
papers highlighted in this minireview have been published and supramolecular systems
described here can be considered as primitive gA mimics. The dynamics of ions/water
and protons confined within gA channels is difficult to structurally analyze and simpler
artificial systems designed at the atomic level would have a crucial relevance for
understanding such translocation scenarios at the molecular level. The directional
ordering of confined water-wires or ions, as observed inside primitive gA channels is
reminiscent with specific interactions between water and the natural gA. This dipolar
orientation may induce specific dielectric properties which most probably influence
the biological recognition at bio-interfaces or translocation of charge species along
artificial channel pathways.

Keywords: gramicidin A, biomimetic, ion channels, hydrophobic, hydrophilic

INTRODUCTION

Gramicidin A, gA discovered during the late 30 s (Dubos, 1939), is one of the most studied natural
channels (Burkhart et al., 1998; Roux, 2002; Allen et al., 2007) and important insights were obtained
with synthetically modified gAs to improve their membrane transport activity (Pfeifer et al., 2006).

Concerning translocation mechanisms along gA pore, its polarized structure helps to
compensate the high energy barrier to water and ion dehydration, which are transported sharing
the unique pore pathway, through the bilayer membrane (Burkhart et al., 1998; Roux, 2002).
Importantly, the dipolar orientation of water molecules within the pore can influence the
ionic translocation and this process is also a determinant for their selective pumping in other
protein-channels (Allen et al., 2007).Water, can influence, by its dynamic structure and orientation,
ion and proton translocation and ion-valence selectivity of the gA channel.

The field of artificial ion channels have been extensively reviewed (Gokel and Mukhopadhyay,
2001; Sakai et al., 2005; Sakai and Matile, 2013). Understanding the dynamics of water
molecules at the molecular level, hydrated ions, and protons within structurally simpler
artificial channels would have a crucial relevance in order to understand many biological
translocation processes involving dynamic transport through complicated protein channels
(Barboiu, 2012; Barboiu and Gilles, 2013). The ability to know how ions or water-clusters
are confined in structurally well-defined architectures might shed-light on the water
structural behaviors within pores as observed with biological water (Kocsis et al., 2018),
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with properties at the boundaries between solid and liquid
phases. Despite multiple studies of entrapping water or water/ion
clusters within complex supramolecular structures, few synthetic
channels have been tested to selectively transport water (Le Duc
et al., 2011) and ions (Barboiu et al., 2014) efficiently through
bilayer membranes.

Among the successful investigations for the construction of
active artificial channels, one way is to use unimolecular channels
(Hu et al., 2012). Another way is the bottom-up supramolecular
strategy, in which biomimetic or bio-inspired artificial channel
architectures are constructed via the self-assembly of synthetic
molecular components through non-covalent self-assembly
(Sakai et al., 2005; Cazacu et al., 2006; Ma et al., 2008).

Graphical Abstract | X-ray crystal structures of gA (left) and the hydrophilic T-channel of triazole 3 (right) at the same dimensional scale.

FIGURE 1 | Artificial Gramicidin A ion channel forming compounds: aromatic foldameric polyamide 1, aromatic foldameric hydrazides 2a–2e. bola-amphiphile triazole
3 and arylene-ethynylene macrocycle 4.

Within this context, the need for simplest artificial systems
biomimicking the complex natural gA functions has been desired
and they were unknown until last 5 years. This Minireview
will focus on recent accomplishments on artificial biomimetic
ion channels, which can be envisioned as primitive gA mimics,
presenting ion/proton, and water-channel conductance states in
lipid bilayer membranes.

ARTIFICIAL gA CHANNELS

Although gA is one of the most-simple and well-studied natural
channels, important works in improving natural transport
activity has been described in several findings, showing that gA
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can be bio-mimicked using artificial compounds with similar
functions like the natural gA, in order to obtain artificial
gAs by using simple compounds approaches. These systems
are channel-type superstructures formed by self-assembly and
provide remarkable combinations of functions similar to gA
channel: water permeability, proton conductance via Grottus
mechanism, cation vs. anion selectivity, single-channel activity.
Within this context, the novel artificial systems may provide
interesting information about the translocation mechanisms
of water molecules or ions through channels within lipid
bilayers. Meanwhile, their functions are close or comparable,
even superior to the natural ion channel proteins.

Among the numerous investigations on ion channels, the
bottom-up supramolecular biomimetic strategy uses simple
synthetic molecules that self-assemble through non-covalent
interactions: H- bonding, charge compensation or hydrophobic
effects. Due to their easy manipulation, convenient modification
and versatility, supramolecular biomimetic strategies are
envisioned as an excellent method to further understand the
functions, structures and mechanisms of ion channels, even to
create substitutes for natural channels. Supramolecular chemists
have concentrated their research on the study on artificial
biomimetic structures of gA.

Zeng et al. prepared foldameric channels for synergetic
transport of protons and of water (Zhao et al., 2014).
They discovered that pentamer 1 (Figure 1) made from 6-
aminopyridine-2-carboxylic components, which clearly shows
the formation of a chiral helical structure, providing like in

natural gA, a perfect pore dimensionally adapted (∼2.8 Å) for
water recognition. This structure is regarded as a model for
the building of ion channels using a bottom-up self-assembling
method. Interestingly, oriented water wires are oriented in one
direction following the supramolecular chiral orientation of the
helical molecules (Figure 2a). After unsuccessful tests on water
transport under salt-induced osmotic conditions, the helical
channels can effectively transport water only when a proton
gradient is applied. Using the dynamic light scattering, the
size of LUVs containing the pentamer 1 rapidly increased 40%
within the first 15min, in comparison to the inactivity of gA
under the same conditions. The authors define this behavior as
“proton gradient-induced water transport.” More interestingly,
the pentamer 1 facilitates transmembrane proton transport,
which is efficient and very similar to that of gA.

Li et al. have constructed hydrogen bonding-mediated
hydrazide foldamers and have focused on building artificial
biomimetic structures and responsive materials based on
hydrogen bonding-mediated hydrazides and amides (Zhang
et al., 2014). They have conceived and carried out a series
of unimolecular channels (2a–e, Figure 1), whose selectivities
and permeabilies even outmatch the natural gA. The structural
stabilization in the lipid bilayers results from the multiple
intramolecular hydrogen bonding, which direct half of the
carbonyl groups toward the internal cavity, similar to gA and
from the phenylalanine tripeptides acting as the lipophilic
anchors. Patch clamp experiments show that the selectivities
toward alkali ions correspond to the energetic penalty for ions

FIGURE 2 | (a) Single crystal structure of 1 and the accompanying water wires; (b) X-ray crystal structures of gA (top) and the hydrophilic T-channel of triazole 3

(bottom) at the same dimensional scale, (c) Probability plots describing the average distribution of water molecules confined within the T-channels (d) simulated
hydrophobic tubular pores from macrocycle 4. Schematic representation on reconstitution of (e) 2b and 2c and (f) 3 in bilayer membrane models.
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TABLE 1 | A summary of various artificial gA channels.

Compound Nature of the channel Net permeability/selectivity/single

channel permeability or ion flux

References

1 Hydrophilic helical channel (2.8 Å) via π-π
stacking of aromatic units

No permeability reported/high selectivity
for water, reject all ions except protons

Zhao et al., 2014

2a–2e Hydrophilic helical channel (1.0 nm) via
intramolecular hydrogen bonding in
aromatic hydrazide foldamers

No permeability reported/higher NH+

4 /K+

selectivity than that of gA
Xin et al., 2014

3 Self-assembled helical pores (∼2.5–4 Å);
double helical water channels with double
helix net-dipolar orientation

No permeability reported for
water/enhanced conduction states for
alkali cations and for protons

Barboiu et al., 2015

4 Hydrophobic tubular channel (6.4 A) via
tubular π-π stacking of macrocyclic
arylene-ethynylenes and H-bonding of
marginal dipeptides

51µm s−1/no selectivity for water, high
conduction for K+, and protons/4.9*107

water molecules per s per channel

Zhou et al., 2012

5 Inherent hydrophobic cavity (∼2.4–5.5 Å) No permeability reported for
water/enhanced conduction states for
alkali cations and for protons/∼3*107 Cs+

ions per s per channel

Jeon et al., 2004

dehydration. The helical 2d and 2e show higher NH+

4 /K
+

selectivity than gA, under the identical performed conditions.
The authors attribute this feature to the addition hydrogen
bonding between ammonium cations and the hydrazide carbonyl
moieties, which is supported by the increasing transporting
ability toward ammonium with the elongation of the channel-
forming compounds. In addition, stopped-flow experiments
point out that these hydrazides display positive transporting
activities toward Tl+ ions and function as a unimolecular channel
process. Interestingly, the short helical 2b transports Tl+ almost
as effectively as gramicidin A does (Xin et al., 2014). According to
stopped-flow experiments for the transport of Tl+, compounds
2b and 2cmost probably formed a unimolecular channel in lipid
bilayers (Figure 2e).

Barboiu et al. have described one of the most appropriate
primitive artificial gA channels, showing amazing similarities
in both structure and function aspects (Barboiu et al., 2014).
The synthesis of a bola-amphiphile compound 3 (Figure 1)
is the result of serendipity. It results in the formation of
T-channels with a water filled interior free channel of 5 Å
in van der Waals diameter, which is dimensionally similar
to the gA channel (Figures 2b,c). The chiral T-channel is
regarded as hydrophilic, because the carbonyl groups directing
the channel inward toward the transport void, are in close
contact with water like the carbonyl strings in gA. The total
dipolar orientation of water molecules within the chiral pore
determine the translocation of both protons and ions, that
diffuse along such hydrophilic directional pathways. From a
functional aspect, compound 3 is able to form transmembrane
channels to facilitate water permeability and selective ion/proton
transporting as well as single channel ion transporting. Based on
molecular simulations and the transport data, compound 3 was
likely to form T-channels in lipid bilayers (Figure 2e). Dynamic
light scattering measurements prove that 3 effectively transports
water. Compound 3 shows fifty times higher water permeability
than the control. In addition, compound 3 constructs channels to
transport protons via the inside water wires through the Grothuss

mechanism. Furthermore, both cations and anions are effectively
transmembrane moved, thus good cation/anion selectivity is
accomplished. Theoretical simulations and experimental assays
reveal that the conduction through the T-channel, like in gA,
presents proton/water conduction, cation/anion selectivity, and
large open channel-conductance states. The strong interactions
between water molecules and the groups at the inner surface
of the T-channel groups determine a net-dipole orientation
of confined water molecules. Moreover, even when different
ions are present within the channel, confined water remains
significantly localized and still presents directional orientation
and ordering within the T-channel (Barboiu et al., 2015). The T-
channels—associating supramolecular chirality and dipolar water
orientation—represent an interesting artificial mimic of gA.

Hydrophobic effects play an important role in biology,
such as they are a significant driving force controlling the
protein folding or facilitating the transmembrane ion and water
transport. Within this context, Gong et al. have constructed a
series of tubular hydrophobic adjustable nanopores (Figure 2D)
generated via multiple hydrogen bonding and stacking (Zhou
et al., 2012). Meanwhile, the internal pores are adjustable through
the choice of appropriate monomers. Computational studies, X-
ray diffraction, and microscopy results are in agreement with the
construction of well-defined shaped-persistent nanotubes able to
define stable nanopores.

The cyclic arylene-ethynylene macrocycle 4 (Figure 1)
demonstrates excellent selective ion transport and high-water
permeability. Its conductance reaches ∼5.8 pS for K+ cations,
while no transport is observed for Li+ or Na+ cations. The
authors attribute this selectivity to the dehydration energy
of cations based on MD simulations. Compound 4 also
shows significant water permeability (2.6 ± 0.4 × 10−14 cm3

s−1, ∼22% that of Aquaporin-AQP1) and single ion channel
transport behaviors.

In addition, Kim and co-workers developed macrocyclic
cucurbit[n]uril (CB[n]) derivatives as artificial ion channels
(Jeon et al., 2004). By introduction of 3-octylsulfanylpropyl-O
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moieties into CB[n] (n = 6, 5), novel CB[n] derivatives
effectively mediate the transmembrane proton/ion transport by
a membrane mechanism. The results showed that the inherent
cavity of the CB[n] play an important role in the transport
of ions. With different hydrophobic cavities (CB[6], diameter
∼5.5 A; CB[5], diameter ∼4.4 A), the two CB[n]s show different
ion selectivities. Based on the transport data and selectivity, the
authors imply that CB[n] derivatives transport ions through their
inherent cavities. Yet, the authors do not study the reconstitution
of CB[6] derivatives in lipid bilayers and how they form ion
channels. Notably, CB[6] derivative shows high ion flux of
∼3∗107 ion/s, comparable to that of gA.

DISCUSSIONS

The aforementioned five artificial gA mimics demonstrate
some similarities but also some differences. With respect to
similarities, all of them were generated via self-assembly of
molecular components through non-covalent interactions. All
of the channels forming compounds are amphiphilic so that
they present good partition into the lipid bilayers and facilitate
the water/ion transporting. The absence of ion-exclusion sites
causes them to form the non-exclusive channels but show
many similarities with the natural gA. With respect to the
differences, the first three channels 1-3 provide the hydrophilic
pores for ion/water transport. The last two systems, 4 and CB[n]
derivatives, offer a hydrophobic pore, able to provide a high flow
velocity for ions and/or water owing to less friction like carbon
nanotubes. The pores formed by 1 and 3 are chiral and contain
oriented water wires in their confined space (Table 1).

The behaviors of channels presented here may lead to more
general conclusions. Structured water and derived physical
theories have been the sources of continuous controversies.
However, it should be stressed that moving from conventional
bulk water to confined water is not simply a change of the
scale, as the dynamics of confined water is quite fundamentally
complex and different from that observed in bulk liquid water.
Compartmentalization and chiral surfaces are basic features of
biomolecules. The directional ordering of confined water-wires,
as observed inside all presented gA mimics, is reminiscent with
specific interactions between water and the biosurfaces, of which
most are chiral. This dipolar orientation may induce important

dielectric behaviors, which may certainly influence the biological
recognition at biointerfaces or inside biocavities. The dipolar
orientation of waters within ion-water single file through gA
channel is an important driving force for the permeation of ions.
The single-file columns of water are like a lubricant between
the inner surface of the pore and the diffusing ions. On the
other hand, such association of simple asymmetric properties: the
chirality of the pore structures and one directional orientation of
the dipolar water-wires, enables the idea for a novel strategy of
much interest for artificial ion-pumping processes.

OUTLOOK

Nature has developed various ion/water channels over a million
years or more. As an example of natural channels, gA has showed
interesting and important functions, especially on water/ion
transport. However, biomimetic on artificial ion/water channels
has emerged in <4 decades, dating back to the seminal paper
published in Tetrahedron Letters in 1982 by Tabushi et al.
(1982) when Co2+ ions have been efficiently transported by a
functionalized cyclodextrin carrier, with the rate 4.5 × 10−4

sec−1, through a bilayer membrane. Since this period, some
artificial ion channels have surpassed gA in both cation/anion
selectivity and proton/water transport efficiency, as well as active
open channel-activity in bilayer membranes. It shows the bright
future of research on artificial gA. It is still challenging for
researchers to design the structures of artificial gA with expected
selectivity and efficiency. The development of this field not only
relies on further understanding on biology but also on organic
synthetic strategies.With its progress, the applications of artificial
gA will blossom.
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The supramolecular chemistry of cucurbit[n]urils (CBn) has been rapidly developing

to encompass diverse medicinal applications, including drug formulation and delivery,

controlled drug release, and sensing for bioanalytical purposes. This is made possible by

their unique recognition properties and very low cytotoxicity. In this review, we summarize

the host-guest complexation of biologically important molecules with CBn, and highlight

their implementation in medicinal chemistry and chemical biology.

Keywords: molecular containers, host-guest complexes, drug delivery, supramolecular chemistry, drug release,

molecular recognition, chemosensing

INTRODUCTION

One of the major challenges in modern-day pharmacology and medicine is the stable formulation
and targeted delivery of therapeutics (Ghosh and Nau, 2012; Sreenivasolu, 2012; Sanku et al., 2019).
A major effort in pharmaceutical research is being invested with the aim to achieve the highest
impact of a particular therapeutic agent or drug on living systems by creating appropriate delivery
vehicles that affect, on one hand, delivery at the desired target and that protect, on the other hand,
drug molecules from degradation. In part, the focus of pharmaceutical research has recently moved
more toward the development of new nanoscale biocompatible delivery vehicles and away from the
de-novo design of new drugs.

Macrocyclic receptors, such as cyclodextrins (CDs), calixarenes (CXs), and cucurbiturils (CBs),
have received enormous attention owing to their ability to encapsulate therapeutic agents non-
covalently and to release them by appropriate stimuli (Saleh et al., 2013; Liu, 2017). Macrocyclic
hosts show considerable advantages over other forms of nano-sized drug carriers (Schneider and
Yatsimirsky, 2008). The thermal and chemical stability, formation of different nano-structured
assemblies, availability of various sizes, and most importantly, the biocompatibility of these
macrocyclic hosts are some of the essential features which differentiate them from alternative
drug-delivery vehicles such as dendrimers, liposomes, hydrogels, micelles, carbon nanotubes,
or polymers.

Amidst macrocyclic hosts, CDs (Li and Loh, 2008) are the most common choice due to their
ready availability, low cost, and high water solubility. However, there are several limitations arising
from their poor selectivity and low affinity (Ka < 104 M−1) (Rekharsky and Inoue, 1998).Moreover,
their use in clinical formulations is generally limited to oral and topical drug delivery because
they can be nephrotoxic if administered in non-metabolized form (Shchepotina et al., 2011).
The low binding constants, especially toward drug molecules, lead to the requirement of excess
concentrations of CDs in order to form host-guest complexes quantitatively.
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Several other macrocyclic hosts are under the scanner for
development of effective host-guest complexes with drugs in
order to stabilize and effectively deliver them. In recent years,
CBs (Figure 1) have come out as attractive macrocyclic hosts for
applications in medicinal chemistry and chemical biology (Ma
and Zhao, 2015; Masson, 2017; Yin and Wang, 2018; Yin et al.,
2019). The binding constants (Ka) of their host-guest complexes
are several orders of magnitude higher than those of CDs in
aqueous medium (Cao et al., 2014; Assaf and Nau, 2015; Barrow
et al., 2015; Shetty et al., 2015). Most importantly, CBs hold
promise as being non-toxic and highly biocompatible (Montes-
Navajas et al., 2009; Hettiarachchi et al., 2010; Uzunova et al.,
2010; Zhang et al., 2018b).

CBn (n = 5–10, 9 yet to be isolated, Figure 1 and Table 1)
are readily synthesized from the condensation of glycoluril and
formaldehyde in strongly acidic media. Interestingly, though
the synthesis was reported back in 1905 by Behrend et al.
(1905) the determination of the chemical structure of CB6
took 70 years when Mock and coworkers refined it for the
first time crystallographically (Freeman et al., 1981). CB9 is
yet to be isolated, but other homologs of CBs (5–10) have
in the meantime been purified. Structural analysis of these
analogs showed that CBs are macrocycles containing 5 to 10
glycoluril units connected by two methylene bridges on each
side of the glycoluril segments. The cyclic structure, thus, creates
two identical partially negatively charged hydrophilic carbonyl
portals on each sides and a hydrophobic cavity with low polarity
and polarizability (Figure 1) (Márquez andNau, 2001a; Assaf and
Nau, 2014).

The first two decades on research with CBs were mostly
focused on synthesis, structural evaluation, and their guest
binding properties. However, with the newer, more economic
synthetic and purification strategies, along with considerable
knowledge about their properties, the focus has shifted
toward applications of this interesting family of water-soluble
macrocycles. One of the prominent dimensions of recent
publications on CBs is their use in the areas of medicinal
chemistry and chemical biology. Though in vivo applications
of CBs for medicinal and diagnostic purposes are emerging
relatively slowly, the increasing number of reports on CB-based
drug delivery systems has become overwhelming in the last
decade. In this review, we aim to provide an overview of the
recent achievements in the area of drug delivery and diagnostics
involving host-guest chemistry of CBs. The review focuses on
the applications of the parent macrocyclic homologs in medicinal
chemistry and chemical biology; applications of acyclic and other
variants or derivatives are reviewed elsewhere (Ganapati and
Isaacs, 2018).

CBs are well-known to bind a wide range of guest molecules,
including small organic molecules, amino acids, peptides, and
proteins (Macartney, 2011; Shchepotina et al., 2011; Barrow et al.,
2015; Sanku et al., 2019). The association of guest molecules to
CBs is generally driven by ion-dipole interactions, as well as the
classical and non-classical hydrophobic effect (Nau et al., 2011;
Assaf and Nau, 2015). The CB cavity provides a hydrophobic
void for the binding of neutral hydrophobic molecules, while
the two identical carbonyl rims represent docking sites for

positively charged groups, in most cases ammonium groups or
other cations. The complexation of hydrophobic residues inside
the cavity is associated with the release of high-energy water
molecules from the CB cavity, which contributes to the high
association constants (Biedermann et al., 2012b, 2014). The size
and shape of the guest molecules also modulate the binding
process (Nau et al., 2011; Lee et al., 2013; Assaf and Nau, 2015;
Assaf et al., 2017). An ideal binding is generally obtained when
the guest volume is around 55% of that of the inner cavity of
CBs (Mecozzi and Rebek, 1998; Nau et al., 2011). Among the
CB homologs, CB7 can bind guest molecules with extremely high
binding affinities, which exceed that of the biotin-avidin pair, the
strongest non-covalent interaction between two partners found
in nature (Moghaddam et al., 2011; Cao et al., 2014). The highest
binding affinity measured with CBs is 7.2 × 1017 M−1, observed
between CB7 and a diamantane diammonium guest molecule
(Cao et al., 2014).

The encapsulation of molecules inside the CB cavity leads
usually to (real or apparent) changes in their physical and
chemical properties due to an altered microenvironment as well
as confinement and isolation from the surrounding medium
(Koner and Nau, 2007; Dsouza et al., 2011; Koner et al., 2011).
For example, the solubility of poorly soluble drug molecules
can be significantly enhanced upon complexation with CBs
(Zhao et al., 2008; Koner et al., 2011; Ma et al., 2012a; Lazar
et al., 2016). The use of even-numbered CBn homologs (n =

6 and 8) as drug solubilizing agents is limited due to their low
intrinsic solubilities (µM, see Table 1) in water, which can
be enhanced to a certain degree in the presence of cations or
positively charged guest molecules (Lagona et al., 2005; Masson
et al., 2012). Guest molecules can also take advantage of isolation
or protection from the bulk solvent upon complexation with
CBs. Mohanty et al. reported that CB7 can induce deaggregation
and photostabilization of fluorescent dyes, such as Rhodamine
6G, which is commonly used in cell-biological applications
such as fluorescence microscopy and fluorescence correlation
spectroscopy (Mohanty and Nau, 2005; Nau and Mohanty,
2005). CBs are also known to affect the pKa values of the guest
molecules and, thereby, alter their chemical reactivities (Koner
et al., 2011; Barooah et al., 2012; Ghosh and Nau, 2012; Lazar
et al., 2017). The preferential binding of the protonated form of
the guest molecule over its neutral form increases the pKa values
of the conjugate acids of basic guests, leading to complexation-
induced pKa shifts. The high affinity of the protonated guest is
mainly attributed to additional ion-dipole interactions between
the cationic sites of the guest molecules with the carbonyl portals
of CBs (Márquez et al., 2004b). Also important, the high thermal
stability of CBs allows their implementation to improve the
thermal stability of many drugs in the solid state (Bardelang
et al., 2011; Saleh et al., 2012).

ENCAPSULATION OF DRUGS

CB complexation has been established for different classes of
drug molecules, pharmaceutical agents, and other bioactive
molecules (Hettiarachchi et al., 2010; Huang et al., 2011;
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FIGURE 1 | Chemical and model representations of CBn.

TABLE 1 | Structural parametersa of CBn (see Figure 1) and selected physicochemical properties.

n CBn Molecular weight Inner diameter

a [Å]

Outer diameter

b [Å]

Height c [Å] Inner cavity

volume [Å3]

Aqueous solubility

SH2O [mM]

5 CB5 830 4.4 13.1 9.1 68 20–30b

6 CB6 996 5.8 14.4 9.1 142 0.03c

7 CB7 1163 7.3 16.0 9.1 242 5d

8 CB8 1329 8.8 17.5 9.1 367 <0.01b

10 CB10 1661 11.7 20.0 9.1 691 <0.05e

aFrom Assaf and Nau (2015).
bFrom Lagona et al. (2005).
cFrom Márquez et al. (2004b).
dFrom Márquez et al. (2004a).
eFrom Liu et al. (2005b).

Walker et al., 2011; Day and Collins, 2012; Yin et al., 2019).
Drug molecules that have been studied for their inclusion
complexation with CBs to date include anti-neoplastic, anti-
pathogenic, antagonist agents, vitamins and hormones, enzyme
inhibitors, neurotransmitters, neuromuscular blockers, anti-
tuberculosis agents, local anesthetics, and others. In this section,
we provide an overview of the different types of biologically
relevant guest molecules in regard to their encapsulation
inside CBs.

The supramolecular complexation of benzimidazole-based
drugs (Figure 2) has been systematically studied by Nau
and coworkers (Saleh et al., 2008; Koner et al., 2011). CB7,
in particular, is capable of encapsulating the benzimidazole
derivatives albendazole, carbendazim, thiabendazole, and
fuberidazole (Saleh et al., 2008; Koner et al., 2011; Tang et al.,
2018). These molecules possess very low water solubility in
their neutral forms. The pKa values of this class of molecules
are in the range of 3.5–4.8, and, therefore, they are neutral at
physiological pH, which hinders their usability. The binding
affinities of benzimidazole derivatives to CB7 in their neutral
forms are in the millimolar range; these increase significantly
for the protonated forms, reaching micromolar values (Koner
et al., 2011). The preferential binding of the protonated forms
increases the pKa values of the conjugate acids of these drug
molecules by 2–5 units and, thereby, improves their solubilities
by stabilizing the protonated forms at pH 7.2. For example, CB7
increased the aqueous solubility of albendazole by 2,000-fold

(Zhao et al., 2008). Other CBn homologs and acyclic derivatives
can also enhance the solubility of albendazole (Ma et al., 2012a;
Vinciguerra et al., 2012). Beyond the enhanced solubility, CB7
was found to improve the photostability of several benzimidazole
drugs (Koner et al., 2011). For example, fuberidazole, and
thiabendazole photobleached less effectively in the presence
of CB7, with photostabilization factors amounting to 7 and 3,
respectively. In addition, CB7 prevents the interconversion of
crystal polymorphs of albendazole and retained the amorphous
structure in the resulting complex (Saleh et al., 2012).

Sanguinarine (Figure 2), which has anti-oxidant, anti-tumor,
anti-bacterial, and anti-inflammatory properties, forms a stable
complex with CB7 (Miskolczy et al., 2011). The binding inside
CB7 stabilizes the active form of sanguinarine by a complexation-
induced pKa shift of the alkanolamine from 7.2 to 10.8,
allowing its usability in the active form at higher pH values.
Further, the complexed sanguinarine was stabilized toward
photoirradiation relative to the free drug. CB7 forms a stable
host-guest complex with berberine (Figure 2), an antimicrobial
agent. The binding was monitored by the fluorescence change
of berberine upon complexation, in which the fluorescence of
berberine was enhanced by a factor of 500 upon complexation
with CB7 (Miskolczy and Biczók, 2014a). With CB8, two
berberine units are encapsulated (Miskolczy and Biczók, 2014b).
The antimicrobial alkaloid coptisine forms also complexes with
CBs, as reflected again in fluorescence changes. The fluorescence
intensity of coptisine was greatly enhanced in the presence
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FIGURE 2 | Chemical structures of benzimidazole derivatives and alkaloids which form host-guest complexes with CBn.

of CB7, affording a highly sensitive and selective method for
the determination of coptisine in aqueous solution (Li et al.,
2010). CB7 binds to isoquinoline alkaloids, namely palmatine and
dehydrocorydaline (Figure 2) with binding affinities of 2.4× 106

and 3.2 × 104 M−1, respectively (Li et al., 2009). The dramatic
fluorescence enhancement upon complexation with CB7 can be
observed by naked eye.

Dye displacement was employed to study the complexation
of nicotine (Figure 3) by CB7 in aqueous solution (Zhou et al.,
2009a). Methylene blue was used as a dye that forms an
inclusion complex with CB7 and shows a significant fluorescence
response upon complexation. The addition of nicotine, as a
competitor guest and analyte, displaced the dye, leading to
the restoration of the original dye fluorescence. This allows
for the detection of nicotine in concentrations as low as
0.05 µg mL−1 (Zhou et al., 2009a). Tropicamide (Figure 3),
an antimuscarinic drug routinely applied in eye drops to
cause a mydriatic response (pupil dilation) in preparation for
ophthalmological examinations and surgery, forms inclusion
complexes with CB7 and CB8 in aqueous solution (Saleh
et al., 2011). The protonated tropicamide showed high binding
affinity with both hosts (Ka = 1.3 × 103 and 4 × 104 M−1

with CB7 and CB8, respectively) (Saleh et al., 2011). Saleh
et al. also reported the formation of a host-guest complex
between CB7 and the antihistamine drug tripelennamine (Saleh
et al., 2016). The binding was studied by means of optical

and NMR titrations (Saleh et al., 2016). Macartney and
coworkers studied the complexation of local anesthetics with
CB7 (Wyman and Macartney, 2010). They found that CB7
can bind procaine (Ka = 3.5 × 104 M−1), tetracaine (Ka

= 1.5 × 104 M−1), procainamide (Ka = 7.8 × 104 M−1),
dibucaine (Ka = 1.8 × 105 M−1), and prilocaine (Ka =

2.6 × 104 M−1) in acidic aqueous solution. These binding
affinities are much higher than those measured for CDs
(Wyman and Macartney, 2010). Recently, benzocaine, and its
metabolite, p-aminobenzoic acid, have been reported to form
host-guest complexes with CB7 in water (Li et al., 2016a).
The binding affinities are 2.2 × 104 M−1 and 1.5 × 104

M−1 for the protonated guests, respectively (Li et al., 2016a).
The supramolecular interactions of a bactericidal agent against
tuberculosis, namely isonicotinic acid hydrazide, commonly
known as isoniazid, have been studied with CB6 and CB7
(Cong et al., 2011). The complexation with the macrocyclic hosts
hindered the acylation reaction of isonicotinic acid hydrazide
(Cong et al., 2011). Complexation of carboxin, a fungicide, with
CB8 was found to promote the inhibition activity of carboxin
on mycelial growth of Rhizoctonia solani (Liu et al., 2011).
Relative improvement was evaluated in terms of area covered
by the mycelia of R. solani and their growth inhibition rate
(Liu et al., 2011).

The binding of drug molecules to biomacromolecules can
be mediated by the complexation to macrocyclic hosts. For
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FIGURE 3 | Chemical structures of a first set of selected drug molecules which form host-guest complexes with CBn.

example, the binding affinity of Brilliant Green (BG) to bovine
serum albumin (BSA) was enhanced in the presence of CB7
(Bhasikuttan et al., 2007). The CB7 cavity can encapsulate part
of the BG molecule, while the unencapsulated part remained
accessible to associate to BSA.Mitoxantrone, an anthracenedione
antineoplastic agent used to treat certain types of cancer,
forms a 2:1 host:guest complex with CB8 (Konda et al.,
2017). The complexation increased the mitoxantrone uptake in
mouse breast cancer cells and decreased its toxicity (Konda
et al., 2017). The complexation of capecitabine with CB7 was
investigated by Wang et al. (2018). ITC experiments revealed
a 1:1 binding stoichiometry with Ka = 2.8 × 105 M−1. The
encapsulation of platinum anticancer drug was reported by Kim
and coworkers (Jeon et al., 2005). Oxaliplatin was found to
form a 1:1 inclusion complex with CB7 in aqueous solution
with a Ka value of 2.3 × 106 M−1. The complexation inside

the cavity of CB7 resulted in an enhanced stability (Jeon et al.,
2005). The CB7•oxaliplatin complex exhibited cooperatively
enhanced antitumor activity compared to oxaliplatin itself
(Chen et al., 2017). Phenanthriplatin, an anticancer drug, forms
supramolecular complexes with CBs as well (Kahwajy et al.,
2017). CB7 accommodates one phenanthriplatin molecule, while
the larger cavity of CB8 can simultaneously bind two molecules.
The release of phenanthriplatin can be achieved by the addition
of cations. NMR studies suggest that cisplatin forms an inclusion
complex with CB7, while cis-[PtCl(NH3)2(H2O)]

+ only binds
at the portals (Wheate et al., 2006). The formation of a 1:1
riboflavin•CB7 complex in aqueous solution (Ka = 1.25 × 104

M−1) has also been reported (Zhou et al., 2009b). Coumarin,
an anti-coagulent, was found to form stable inclusion complexes
with CB7 and CB8 in aqueous solution (Wang et al., 2009). The
binding constant with CB7 was measured as 2.6 × 105 M−1.
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Crystal structures revealed the encapsulation of two coumarin
units inside CB8 (Wang et al., 2009). Fasudil (FSD), a roh kinase
inhibitor, forms a stable supramolecular host-guest inclusion
complex with CB7 with a binding constant of Ka = 4.28 × 106

M−1 under acidic conditions (pH = 2.0) (Yin et al., 2017). The
effect of camptothecin complexation with CBn (n = 7 and 8) on
its solubility and reactivity as an anticancer drug was reported by
Dong et al. (2008). The solubility of camptothecin was enhanced
up to 70 and 8 times at pH 2 due to the formation of host-guest
complexes with CB7 and CB8, respectively. Further, the formed
host-guest complexes retained the characteristic camptothecin
activity (Dong et al., 2008). Kinetin (Figure 3), a plant hormone
that promotes cell division, forms inclusion complexes with CB7
and substituted CB6 derivatives in aqueous solution as well as
in the solid state (Huang et al., 2008b). A magnetic perhydroxy-
CB8material was prepared that showed good adsorption capacity
for cytokinins (Zhang et al., 2016). CB7 was reported to form
stable complexes with the H2-receptor antagonist ranitidine, the
administration of which is one of the most popular treatments
of stomach ulcer symptoms (Wang and Macartney, 2008). The
stability of the ranitidine complexes varies for the diprotonated
(Ka1 = 1.8× 108 M−1), monoprotonated (Ka2 = 1.0× 107 M−1),
and neutral form (Ka3 = 1.2 × 103 M−1). The CB7 complex was
also found to improve the thermal stability of the drug (Wang
and Macartney, 2008).

The complexation of diphenyleneiodonium (Figure 3), a
bioactive halonium ion, with CB7 and CB8 has been recently
reported (Yin et al., 2018). Host-guest binding experiments
revealed a 1:1 complexation stoichiometry with CB7 (Ka =

3 × 104 M−1) and a 1:2 one with CB8 (Ka = 2 × 1012

M−1). Interestingly, the complexation was shown to modulate
the inhibitory activity of diphenyleneiodonium against reactive
oxygen species generation and to alleviate its cardiotoxicity.

Recently, the complexation of a third-generation
fluoroquinone, danofloxacin (Figure 3), by CB7 has been
investigated (El-Sheshtawy et al., 2018). The complex was found
to be stable at different pH values (Ka = 103-105 M−1). The
antibacterial activity of danofloxacin, and two additional second-
generation fluoroquinones, i.e., norfloxacin and ofloxacin,
was enhanced in the presence of CB7. Feng et al. studied the
interaction between CB7 and the hepatitis B drug Adefovir
(Figure 3) (Feng et al., 2019). Adefovir forms a 1:1 complex
with CB7 with Ka = 4.25 × 103 M−1. The thermal stability of
Adefovir was enhanced upon complexation.

The CB6 derivative (allyloxy)12CB6 forms a stable
supramolecular host-guest complex with acetylcholine (Ka

= 5 × 103 M−1, Figure 4) and a much weaker complex with
choline (Kim et al., 2012; Ghale and Nau, 2014). An indicator
displacement strategy was developed for the detection of
ethambutol (Figure 4) in water as well as in biological fluids
(Wu et al., 2011). The complexation of ethambutol to CB7 was
observed upon the release of the precomplexed fluorescent dye
(Wu et al., 2011). Adamantane derivatives have found practical
application as drugs. The hydrophobic nature of the adamantane
residue is well-known in the CB field as a gold-standard with
high-binding affinity (Liu et al., 2005a; Assaf and Nau, 2015).
For example, amantadine and memantine form exceptionally

stable complexes with CBn (n = 7 and 8) (Vázquez et al., 2014;
Assaf and Nau, 2015). Pyridoxine, also known as vitamin B6
or pyridoxol, could be encapsulated inside the CB7 cavity in
aqueous solution (Ka = 4.0 × 103 M−1) (Li et al., 2016d).
The 1:1 complexation pattern was characterized by 1H NMR
and UV-Visible spectroscopy (Li et al., 2016d). The interaction
between the CB7 macrocycle and pilocarpine was investigated
in aqueous solution by using 1H NMR and circular dichroism
spectroscopic techniques (Saleh et al., 2014). The protection
of the lactone group showed a significant enhancement upon
the chemical stability of pilocarpine against hydrolysis in basic
aqueous solution (Saleh et al., 2014). Thiamine, thiamine
monophosphate, and thiamine pyrophosphate form 1:1 host-
guest complexes with CB7 as well (Li et al., 2016b). The
host–guest stability constants were determined by UV-Visible
titrations. The presence of an anionic phosphate/diphosphate
group on the molecular structures lowered the binding affinity
(Li et al., 2016b).

Collins and Day investigated the interactions of the antibiotic
drugs trans-[(PtCl(NH3)2)2(µ-NH2(CH2)8NH2)]

2+ and
[(Ru(phen)2)2(m-bb5)]

4+ {phen = 1,10-phenanthroline; bb5 =

1,5-bis[4(4’-methyl-2,2’-bipyridyl)]-pentane) (Rubb5, Figure 4)
with CB macrocycles. 1H NMR experiments indicated that the
platinum group at both ends of the trans-[(PtCl(NH3)2)2(µ-
NH2(CH2)8NH2)]

2+ were too large to allow the threading
through the portal of CB6. On other hand, CB7 and CB8 were
able to bind the platinum complex, in which all methylene
groups are located inside the cavity, while the platinum centers
docked at the CB portals (Pisani et al., 2010). The complexation
with CBs prevented the degradation by biological nucleophiles.
The large cavity of CB10 could also serve as a delivery vehicle for
these potential drugs (Pisani et al., 2010; Deng et al., 2018).

CBn (n = 7 and 8) act as artificial organic receptors
for steroids (Figure 5), including the hormones testosterone
and estradiol, the inflammation inhibitor cortisol, as well as
the muscle relaxants pancuronium and vercuronium, with
extraordinarily high binding affinities (Lazar et al., 2016).
For example, CB8 binds preferentially estranes, androstanes,
and pregnanes, while CB7 binds nandrolone selectively. The
high affinities are also retained in buffered water as well as
in biological media such as gastric acid and blood serum.
Three steroidal neuromuscular blocking agents, rocuronium,
vecuronium, and pancuronium have been investigated as
candidate guest molecules for CB7. In aqueous solution, CB7
binds the steroidal neuromuscular blockers with high affinity,
following the order: vecuronium > pancuronium > rocuronium
(Gamal-Eldin and Macartney, 2014).

CBs can selectively accommodate and interact with amino
acids and small peptides in water (Bush et al., 2005; Urbach
and Ramalingam, 2011; Gamal-Eldin and Macartney, 2013;
Biedermann and Nau, 2014; Lee et al., 2015; Smith et al.,
2015; Kovalenko et al., 2016; Bai et al., 2017). The binding of
amino acids and their corresponding decarboxylated adducts to
CB7 was explored by Bailey et al. The study revealed a higher
affinity for the decarboxylated molecules (Bailey et al., 2008).
Urbach and coworkers showed that the binary CB8•methyl
viologen complex can selectively bind peptides with N-terminal
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FIGURE 4 | Chemical structures of a second set of selected drug-based molecules which form host-guest complexes with CBn.

tryptophan compared to C-terminal or internal tryptophan
residues through the formation of a ternary complex (Bush
et al., 2005). Recently, selective peptide recognition has also been
documented for methionine-terminated peptides with CB8 as a
receptor without any auxiliary guest (Hirani et al., 2018). The
binding of human insulin by CB7 in vitro was also reported
(Chinai et al., 2011). Its recognition relies on the binding of N-
terminal phenylalanine to CB7 (Ka = 1.5 × 106 M−1) (Chinai
et al., 2011).

MECHANISMS OF DRUG RELEASE FROM
CUCURBITURIL-BASED SYSTEMS

A schematic presentation of various ways to release encapsulated
drugs from CB•drug complexes is shown in Figure 6.

Dilution Effect
Dissociation of CB•drug complexes to release the drug molecules

in general follows a fast kinetics and the association and
dissociation rate constants fall in the order of seconds or faster

which ensures a fast dynamic equilibrium for rapid drug release.

However, very slow release with dissociation rate constants in
the range of hours has also been reported, potentially suitable
for sustained release. Albendazole (Figure 2), an antiparasitic
agent, was found to be released within seconds from CB7, while
the release of dinuclear ruthenium complexes (Figure 4) from
the cavity of CB10 takes several hours (Zhao et al., 2008; Pisani
et al., 2010). One important factor controlling the dissociation is
the dilution, which inevitably occurs when a CB•drug complex
enters the body fluid. Complexes with macrocycles are held
together by weak non-covalent forces, which can be disrupted
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FIGURE 5 | Chemical structures of steroids which form host-guest complexes with CB7 and CB8.

after administration, such that the CB•drug complexes encounter
a lowering in concentration. Invariably, dilution decreases the
degree of complexation. Thus, the release of the administered
drug will spontaneously occur simply because of the associated
dilution effect. It is worth mentioning that an accelerated
release of drugs is not always desirable; for certain treatments,
a sustained and slow release may be preferred to achieve the
highest therapeutic effect. In the case of cis-platin (Figure 3), as
reported byWheate and coworkers, the encapsulated drug inside
CB7 showed a much slower release rate in vivo than in the in
vitro experiments (Plumb et al., 2012). A direct consequence is
the retention of complexed cis-platin in circulation for a longer

time than of the free drug which leads to better efficacy of the
drug. In this regard, one also needs to consider that the absolute
binding affinities of the guest molecules with CBs are not always
a useful measure of the kinetics of drug release; the tight carbonyl
portals of CBs may present a steric/mechanical barrier toward
ingression and egression of larger guests, a phenomenon known
as constrictive binding (Márquez and Nau, 2001b; Márquez et al.,
2004b; Pisani et al., 2010). Though the dynamic complexation-
decomplexation of the drug molecules from the CB cavity
is found effective in certain cases, it is equally important to
incorporate stimuli responsiveness to the complexes which may
lead to the release of drugs at a specific location, time, or rate.
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FIGURE 6 | Graphical presentation of various mechanisms for the release of drug molecules from CB•drug complexes.

Effect of Additives
Another viable way of releasing encapsulated drugs is the use
of inorganic cations. Inorganic cations competitively displace
cationic guests (Shaikh et al., 2008) from the CB cavity by binding
at the portals. As a consequence, the effective binding constants
of the guests always get reduced in the presence of salts (Márquez
et al., 2004b; Bhasikuttan et al., 2011). Importantly, biological
fluids naturally contain large amounts of salts which can trigger
the release of drugs from CB complexes. As a proof of concept, it
was shown that salts can shift the equilibrium from CB7-bound
methyl red to the dye bound in the hydrophobic pocket of BSA
(Shaikh et al., 2008). Shaikh et al. have shown that the 1:1 and
1:2 complexes of Thioflavin T (ThT, Figure 3) and CB7 respond
differently to the presence of salts. In case of the 1:1 complex, the
consequence of addition of salts is the release of the dye while
in case of the 1:2 complex, metal ions result in the formation
of a capsule-like structure (Choudhury et al., 2009, 2010). The
addition of a competitive guest in the form of 1-adamantylamine
(ADA), an antiviral and antiparkinsonian drug itself, leads to
the destruction of the capsular complex. A competitive guest
can also be effective in releasing the drug molecules from the
CB cavity. Kim et al. demonstrated that CB7-stabilized amine-
functionalized gold nanoparticles (AuNP-NH2) can be ruptured
by ADA to release AuNP-NH2 (Figure 7) and, thereby, enhance
their cytotoxicity toward MCF-7 cells (Kim et al., 2010a).

The release of entrapped drugs from self-assembled systems
can also be achieved by addition of macrocycles other
than the ones used to form the self-assembly (Wu et al.,
2016). The affinity of two macrocycles for different regions
of the drug can be used to disassemble the system. As
demonstrated by Wu et al., noncovalent association of alkyl-
chain modified polyamines with CB6 decreased the critical
aggregation concentration significantly and led to the formation
of self-aggregated nanoparticles (Wu et al., 2016). CDs, which
have a higher binding affinity to the hydrophobic chain,
disrupt these doxorubicin-(DOX)-loaded nanoparticles to release

the drug molecules. The DOX-loaded nanoassembly exhibited
better anticancer activity toward MCF-7 cancer cells, but
was safe to normal cells. Singharoy et al. showed that the
release of a naphthalimide derivative, [2-(2-aminoethyl)-1H-
benzo[deisoquinoline-1,3(2H)-dione], from the cavity of CB7
can be modulated by the addition of surfactants (Singharoy et al.,
2017). In the presence of non-ionic surfactants, e.g., Ig-720, the
drug can be effectively released from CB7, while ionic surfactants
were less effective (Singharoy et al., 2017).

Changes in pH
The inclusion of protonated guests by macrocyclic hosts often
results in a shift in the pKa values of the guests (Márquez and
Nau, 2001b; Saleh et al., 2008). The observed direction of the
shift depends on the host and its inclination for binding with
the protonated guest compared to its conjugate base. In case of
CBs, in general, the pKa values of basic guests increase as they
are encapsulated inside the CB cavity. The switch in the pKavalue
can be of great importance for the release of the guest molecule. A
subtle change in pH of the system can lead to the decomplexation
of the CB•drug complexes. A pH jump of the medium from
below the pKa’ (the pKa value of the complex) to above effectively
reduces the binding constant of the drug and affects its fast
release through changes of the chemical equilibrium toward the
uncomplexed guest (and host).

A pH-responsive drug release was demonstrated by Zink and
Stoddart in the form of surface-immobilized pseudorotaxane-
based nanovalves (Figure 8) (Angelos et al., 2008, 2009).
Mesoporous silica nanoparticles functionalized with alkyne
groups were loaded with Rhodamine B and, subsequently,
the surface was functionalized by means of an interfacial
CB6-catalyzed 1,3-dipolar cycloaddition of the alkyne groups
and 2-azidoethylamine. This resulted in the formation of
CB6/disubstituted 1,2,3-triazole[2]pseudorotaxanes which acted
as nanovalves. An increase in pH of the system leads to the
opening of nanovalves as the inclusion complex breaks and
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FIGURE 7 | (A) Schematic illustration for the use of intracellular supramolecular host–guest complexation to trigger nanoparticle cytotoxicity; (B,C) Cytotoxicity of

AuNP–NH2 and AuNP–NH2-CB7 and modulation of cytotoxicity of the gold nanoparticles (Kim et al., 2010a) (Reproduced with permission, Copyright 2010, Nature

publishing group).

consequently, the loaded dye gets released. The pH-dependent
binding of CB6 with the bisammonium stalks presents the
operational principle of these nanovalves.

Light-Triggered Release of Drugs From
Cucurbituril•Drug Complexes
A photo-triggered change in pH and associated release of the
guest from the complexed form is also possible, as demonstrated
by Carvalho et al. (2011). In this model, the authors used
Hoechst 33258 as a guest for CB7 and malachite green leuco
hydroxide (MGOH) as a photo-base. The binding constant of
protonated Hoechst 33258 with CB7 is 100 times higher than
that of the neutral form of the dye. Upon irradiation with
UV light, MGOH generates OH− and increases the pH of
the solution from 7 to 9. This stimulus affects the release of
Hoechst 33258 from the host cavity (Figure 9). A negative control
in buffer resulted in no release of the drug. Photo-induced
release of drugs can also be materialized by using appropriate
photo-responsive molecules. Basílio and Pischel described the
photo-controlled release of a widely used Alzheimer’s drug, 3,5-
dimethyl-1-aminoadamantane, also known as memantine, based
on the photo-induced transformation of chalcone to flavylium
(Basílio and Pischel, 2016). Charged flavylium can be generated
by irradiating non-charged chalcone (three orders of magnitude
lower affinity to CB7 than flavylium), which can effectively release
the drug from its CB7•drug complex. Recently, Romero et al.
reported a light-induced release of a tripeptide from the cavity
of CB8 by employing the chalcone/flavylium photo-switch in
conjunction with light and acid as input signals (Romero et al.,
2018). The flavylium cation, which resulted from a pH-dependent
and light-induced transformation of chalcone upon irradiation at

365 nm, acts as a competitive binder for CB8 and, thus, triggers
the release of the tripeptide from the cavity (Romero et al., 2018).

The concept of nanovalves onmesoporous silica nanoparticles
(Figure 8) was further extended to the controlled release of
entrapped guests by light through a photothermal mechanism
involving the plasmonic properties of a gold nanoparticle core
(Croissant and Zink, 2012). For the preloaded guests (inside the
pores) of a mesoporous silica matrix containing embedded gold
nanoparticles, the release of the guest molecule could be triggered
by laser irradiation. Laser irradiation with low intensity at the
wavelength corresponding to the plasmon resonance of the gold
nanoparticles causes a local internal heating through dissipation
of the photonic energy, which raises the local temperature above
60◦C to significantly decrease the ring-stalk binding and, thus,
release the guest molecules. This light-sensitive nanostructure
can increase the local temperature without significantly changing
the bulk temperature, which could potentially be used for
(spatially) controlled dual therapy involving the delivery of drug
molecules to cells and necrosis through hyperthermia.

Release From Micro-Heterogeneous
Systems
Apart from inclusion complexation-based drug release,
CBs were successfully implemented in constructing micro-
heterogeneous systems which can entrap and release drug
molecules. Construction of supramolecular peptide-amphiphiles
using ternary complexation presents one example (Jiao
et al., 2012; Mondal et al., 2015). Supramolecular peptide
amphiphiles (SPAs) and their vesicle formation were reported
where the SPAs were prepared with a viologen amphiphile
and peptides containing an appropriate second guest. In
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FIGURE 8 | Graphical representations of operational supramolecular nanovalves (Angelos et al., 2008) (Reproduced with permission, Copyright 2008, Wiley-VCH

Verlag GmbH and Co. KGaA, Weinheim).

FIGURE 9 | Graphical representation of a photo-triggered pH jump-induced release of an encapsulated dye (MGOH, malachite green leuco hydroxide) from the cavity

of CB7 (Carvalho et al., 2011) (Reproduced with permission, Copyright 2011, The Royal Society of Chemistry).

their pioneering work, Scherman and coworkers have shown
that the vesicles formed by the SPAs were taken up by HeLa
cells and responded to multiple external triggers, which
could modulate the toxicity of the supramolecular system
(Jiao et al., 2012).

Hydrogels are another class of materials, which are being
considered as potential targeted drug delivery vehicles. CB6-
containing alginate hydrogel beads were found to load an anti-
cancer drug, 5-fluorocil (FU), with a loading capacity of 3.87–
6.13 wt%. These drugs can then be slowly released. The optimal
(slowest) release, with a half-life of 2.7 h, was found for a loading
of 5.94% (Huang et al., 2008a).

Nano-assemblies of CBs with proteins were also used as
an effective way for the construction of stimuli-responsive
materials for controlled release of drugs. A hybrid of bovine
serum albumin (BSA) and CB7 formed a non-toxic nano-
assembly which can load an anti-cancer drug, DOX and
effectively release it in the presence of ADA or a change
in pH. Importantly, the dis-assembly of the composite led
to restoration of the BSA structure and its recognition
property. The DOX-loaded assembly was observed to mask
the cytotoxicity of DOX and the toxicity can be restored
at the target on demand, triggering its therapeutic activity
(Barooah et al., 2017).
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FIGURE 10 | Preparation of CB-capped drug-loaded nanoparticles (NP) and illustration of a pH-triggered drug release mechanism (Pennakalathil et al., 2014)

(Reproduced with permission, Copyright 2014, American Chemical Society).

Another important type of nanoscale assemblies are
supramolecular polymers (Yang et al., 2015). In recent years,
a considerable number of such supramolecular polymers
have been reported that are based on CBs (Appel et al., 2012;
Stoffelen et al., 2015; Ahmed et al., 2016). Loh et al. reported
a micelle-like structure formed by supramolecular assembly of
poly(N-isopropylacrylamide (as a thermoresponsive block) and
poly(dimethylamino-ethylmethacrylate) (as the pH-responsive
block) (Loh et al., 2012). These two blocks are held together by
ternary complexation of CB8. DOX was encapsulated inside this
micelle-like structure and intracellular delivery of the drug was
demonstrated using three stimuli, namely, pH, temperature, and
a competitive binder. The micellar structure disrupted upon
changing the pH from 7 to 4, upon lowering the temperature
from 37◦C of 15◦C, and upon addition of ADA. The release of
DOX from the micellar core to the nuclei of HeLa cells was also
observed within a desirable time frame.

In a recent study, Tuncel and coworkers reported the synthesis
of nanoparticles based on a conjugated oligomer (Pennakalathil
et al., 2014). The nanoparticles could carry camptothecin, an
anticancer drug, with high loading efficiency. The cell viability
studies with breast cancer cell lines showed that the IC50 values
of the nanoparticles for MCF7 and MDA-MB-231 were 44.7
and 24.8µM, respectively. The cytotoxicity of the nanoparticles
was further decreased by capping the amine groups with CB7.
IC50 values for camptothecin in the presence of nanoparticles
with or without CB7 were significantly reduced in MCF7
and MDAMB-231 cells. CB7-capped drug-loaded nanoparticles
regulated the release rate by providing much slower release
at pH 7.4 than the nanoparticles in the absence of CB7
(Figure 10).

Alternatively, a redox trigger can be applied to release
entrapped drug molecules from polymeric materials. Methyl
viologen-(MV)-functionalized hyperbranched polyphosphate
(HPHEEP-MV) and indole-terminated poly(D,L-lactide) (PLA-
IPA) can be conjugated via ternary complexation inside CB8
(Figure 11) (Chen et al., 2013). The amphiphilic ternary complex
could form micelles where HPHEEP remains at the surface while
the interior is made of PLA. The micelles could be disrupted
by the addition of ADA or Na2S2O4 through competitive
binding or formation of radical cations of MV, respectively. The
disruption of the micellar structure results in the release of the
loaded hydrophobic drug Coumarin 102 (Figure 3). In another
example, the team has reported a micellar assembly via ternary
complexation of viologen-functionalized poly(ethylene oxide)
(PEO) and PLAIPA (Zhao et al., 2014). The micelles were loaded
with DOX and the release of the drug could be triggered by
reduction with Na2S2O4. In vitro cell viability studies indicated
good biocompatibility of the micelles toward two cell lines,
that is, human umbilical vein endothelial cells (HUVEC)
and human liver cancer HepG2 cells. Enhanced toxicity
was observed.

TARGETED DRUG DELIVERY FROM
CUCURBITURIL-BASED SYSTEMS

In the previous section, we have discussed the different
mechanisms which can be used to release encapsulated drugs
from either inside CBs or CB-based self-assemblies. However,
the bigger challenge is to create the “magic bullet” which can
specifically target the diseased cell and deliver the therapeutic
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FIGURE 11 | Methyl viologen-functionalized hyperbranched polyphosphate

(HPHEEP-MV) and indole-terminated poly(D,L-lactide) (PLA-IPA) assembly via

ternary complexation inside CB8 (Chen et al., 2013) (Reproduced with

permission, Copyright 2013, The Royal Society of Chemistry).

site-selectively. Researchers have recently concentrated their
efforts on preparing new CB-based systems which can deliver
drugs at the targeted site. The present section encompasses a
summary for most of the reports on such CB-based targeted drug
delivery systems.

Targeting can be achieved via appropriate functionalization
of the carrier system with functional groups that are recognized
by specific receptors present at the cell surface. Incorporation of
these functional groups into the system can either be achieved by
covalent or non-covalent attachment of such groups to the self-
assembled delivery vehicle. A promising example is the synthesis
of a functionalized CB6 derivative that assembles into vesicles
(Lee et al., 2005). The surface of the vesicles can be decorated via
non-covalent interactions of alkylammonium-tagged guests with
free CB6 cavities. When the surface of the vesicles was decorated
with a thiourea-linked α-mannose-spermidine conjugate and

mixed with a solution containing Concanavalin A (ConA),
a lectin that shows specificity toward α-mannose, immediate
aggregation was observed. The use of a galactose derivative
instead of mannose did not show any aggregation. The resulting
system can be potentially applied to diseases where mannose
receptors are over-expressed.

Functionalized CB6 was also used to prepare nanoparticles
loaded with Nile red (NR, as a model hydrophobic drug)
and decorated with spermidine-conjugated folate via host-guest
chemistry of CB6 and spermidine (Park et al., 2009). The folate-
decorated system showed effective uptake of the dye into HeLa
cells whose surface has overexpressed folate receptors. A negative
control with nanoparticles lacking folate resulted in no or
minimal uptake of the dye. Folate receptor-mediated endocytosis
was confirmed as uptake mechanism. After endocytosis, Nile
red was released, as monitored by confocal laser scanning
microscopy. Building on these findings, the unloading of the
antitumor drug, PTX, to HeLa cells was also established. A
galactose-functionalized CB6-based carbohydrate wheel was also
used to demonstrate galactose-receptor mediated endocytosis
into HepG2 hepatocellular carcinoma cells (Kim et al., 2007).
In a complementary study, the same CB6-galactose conjugate
was utilized to non-covalently encapsulate dextran-spermine
conjugates into hepatocyte cells containing asialoglycoprotein
(ASGPR) receptors. This model was also used to demonstrate
the viability of a non-toxic and biocompatible receptor-mediated
gene delivery system (Kim et al., 2010c).

A polymeric nanocapsule consisting of a disulfide-
bridged CB6 was reported by Kim et al. Treatment with
dithiothreitol (DDT), a reducing agent, breaks the disulfide
linkage and ruptures the nanocapsule to release the pre-
loaded dye (Kim et al., 2010b). The potential application
of this system in targeted drug delivery was illustrated by
encapsulating a galactose-spermidine conjugate into the CB
cavity and, thereby, bringing the galactose moiety to the
surface of the nanocapsules. Carboxyfluorescein was used as
an imaging probe. After incubation with HepG2 hepatocellular
carcinoma cells, a change in fluorescence inside the cells
was observed, indicating the cellular uptake of the entire
system. Controlled in vitro targeted release of DOX in HeLa
cells has also been reported according to the same principle
(Park et al., 2010).

In another work, CB6-conjugated hyaluronate (CB6-
HA) was synthesized and non-covalently decorated with
a peptide-spermidine conjugate (Jung et al., 2011). The
peptide-spermidine was used as a model for a drug that
binds to and activates the formyl peptide receptor (FPRL1).
A FITC-spermidine conjugate was used as imaging probe
(Figure 12). Controlled drug targeting into B16F1 cells with HA
receptors was confirmed in vitro by simultaneous bioimaging
of FITC-spermidine-conjugated CB6-HA. Activation of the
FPRL1 receptor results in enhanced intracellular Ca2+ levels,
through which the delivery of the CB6-HA-peptide-spermidine
conjugate could be demonstrated in FPRL1-expressing human
breast adenocarcinoma (FPRL1/MCF-7) cells. The bright
fluorescence signal of FLUO-3/AM served as indicator for
enhanced Ca2+ concentrations. The stability of the system
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FIGURE 12 | (A) Schematic illustration of a multi-functional theranostic system using CB6-HA tethered with various functional “tag”-spermidine conjugates by the

host-guest complexation between spermidine and CB6. (B) Preparation of a CB6-HA conjugate by UV photoreaction of thiolated hyaluronate (HS-HA) with

(allyloxy)12CB6. FITC, fluorescein isothiocyanate (Jung et al., 2011) (Reproduced with permission, Copyright 2013, Elsevier).

in biological media was also demonstrated in vitro as well as
in vivo.

Recently, a CB7-PEG copolymer was developed as drug
carrier. The accessible cavity of CB7 was able to encapsulate
the anticancer drug oxaliplatin. The supramolecular polymeric
material displayed low cytotoxicity to normal cells. However,
the cytotoxicity of the encapsulated oxaliplatin was recovered in
cancer cells. The release of the anticancer drug is attributed to
the high concentration of spermine in cancer cells, which acts
as a competitive guest and, thereby, trigger the release of the
complexed drug in a targeted manner (Chen et al., 2018).

Zhang and coworkers selected MV as model antitumor agent
and demonstrated an elegant targeted delivery application, which
is also based on overexpressed spermine (Chen et al., 2016).
MV is highly toxic in nature and affects both tumor and
normal cells without specificity. When encapsulated in CB7,
the cytotoxicity of MV to normal cells decreased significantly.

However, for tumor cells, the overexpressed spermine displaces
the encapsulated MV from the complex, thereby allowing the
recovery of cytotoxicity of MV.

CUCURBITURIL•DRUG COMPLEXES IN
PHARMACEUTICAL FORMULATIONS

As discussed before, the stability of CB•drug complexes depends
on the medium and presence of other components in the system.
Similarly, the property and, hence, the preferred administration
mode also depends on the biological media. The presence of
salt and acid in biological media affect the solubility of CBs
significantly (Steed and Gale, 2012). For example, the solubility
of CB6 in simulated gastric fluid increases up to 4mM (Walker
et al., 2010) compared to 0.03mM (Márquez et al., 2004a)
in water. Moreover, the different solubilities of the members
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of the CB family may dictate the most promising way of
administration of the CB•drug complexes (Steed and Gale, 2012;
Venkataramanan et al., 2012; Saleh et al., 2013).

The production of CB-based host-guest complexes as solid
products involves mixing of the hosts and guests in appropriate
stoichiometry, isolation of the complexes in solid form using
either lyophilization (Zhao et al., 2008), co-solvent processing
(Blanch et al., 2002), or ball-mill grinding (Constabel and
Geckeler, 2004; Jiang and Li, 2006; Walker et al., 2010). A
fundamental issue which needs to be taken care of is to
ensure that the components are held together by non-covalent
interactions. To shift the dynamic chemical equilibrium toward
the bound drug in solution, the concentration of the host needs
to be adjusted such that the drugs are mostly present in their
complexed forms. As an asset, the guest binding affinity of CBs is
exceptionally high which facilitates the preparation of solutions
with 99% or even higher content of the complexed drug even at
relatively low (excess) CB concentrations.

The simplest, safest, most convenient, and most common
drug administration way is the oral route. Thus, formulation
and production of CB-drug complexes in the form of tablets
is essential (Walker et al., 2011). These cannot be produced
from the CB•drug complexes alone but several pharmaceutical
adjuvants need to be incorporated in the formulation. Walker
et al. reported a tablet formulation in which up to 50%
microcrystalline CB6 (w/w) was mixed with other excipients
such as lactose (as diluent/bulking agent), Avicel (aids tablet
compaction), talc, magnesium stearate (as lubricants and
glidants), and Ac-Di-Sol (as disintegrant) (Walker et al., 2010).
The compatibility of CB6 with other excipients was confirmed
by various techniques (Walker et al., 2010, 2011). The same
group has successfully used CB6 in a nasal drug formulation
containing hydroxypropyl methylcellulose (HPMC) and sodium
carboxymethylcellulose (NaCMC) (Walker et al., 2011).

Use of CB7 in drug formulation was found to have the
additional advantage that it prevents interconversion of crystal
polymorphs of the drugs and allows them to retain the
amorphous structure in the resulting CB7 complex (Jeon et al.,
2005; Kennedy et al., 2009; Wheate et al., 2010; Saleh et al., 2012).
It is also noteworthy that CB7 does not affect the surface area
and pore size distribution which is beneficial for processing and
robust formulation (Saleh et al., 2012).

In a very recent report, a “Trojan antibiotic” has been
formulated by a host-guest complex of CB7 and a bola-
type azobenzene compound with glycosylamine heads at both
ends (Wang et al., 2019). Similar to the bacterial wall, this
supramolecular assembly displays a surface that is fully decorated
with sugar-like components. This Trojan antibiotic was found
to be benign to a wide spectrum of bacteria at a weak basic
pH of approximately 9.0 under daylight conditions but became
a potent bactericide toward both Gram-negative and Gram-
positive bacteria at pH 4.0 under 365 nm UV irradiation. The
dual use of pH and UV light greatly enhanced the efficacy of
the bactericidal effect such that the MIC50 value of the Trojan
antibiotic was observed to be at least 10 times smaller than
that of conventional drugs. The activity of the Trojan antibiotic
automatically stopped upon removal of the UV source and

reversal of pH which prevents the buildup of active antimicrobial
materials in the environment. This novel approach may pave the
way to a new era in the fight against bacterial resistance.

CUCURBITURILS IN PHOTODYNAMIC
THERAPY

CBs have also been explored in regard to their potential to
serve as enhancement agents for photosensitizer drugs utilized in
photodynamic therapy (PDT), which has recently been reviewed
(Robinson-Duggon et al., 2018). PDT applications have been
extended from discrete CB•photosensitizer host-guest complexes
to elaborate nanomaterials and supramolecular assemblies.Wang
and coworkers prepared, for example, CB6-based nano-capsules
through direct alkylation of perhydroxycucurbit[6]uril with a
ditopic linker. A photosensitive therapeutic payload, such as
chlorin e6, was encapsulated within these nano-capsules for
targeted PDT against cancer cells (Sun et al., 2019).

Another nanoscale CB-based PDT agent was constructed
through a multi-step assembly by using a dipolar fluorescence
compound (with carbazole as the electron-donor motif and
pyridinium as the electron acceptor), CB8, and α-cyclodextrin-
modified hyaluronic acid (HA-CD) (Wu et al., 2019). The
carbazole fluorophore was a non-NIR emissive dye with an
emission wavelength of 568 nm that was used as photosensitizer.
Host–guest complexation with CB8 exhibited a marked red
shift of the emission maxima of the dye to 662 nm, such that
the binary assembly could not only be used as an efficient
PDT agent but also as a targeted NIR lysosome imaging probe.
When HA-CD was incorporated into the assembly, owing to
the strong interactions between α-CD and the alkyl chain, the
mixture resulted in a ternary nano-supramolecular assembly with
targeting properties. In the presence of overexpressed acceptors
on cancer cell surfaces, the assembly showed light toxicity toward
cancer cells (A549) while the light cytotoxicity was found to be
remarkably reduced for normal cells (293T). Thus, a complex
system with an ability for NIR imaging and enhanced targeted
PDT efficiency was successfully constructed using the orthogonal
host–guest recognition with different macrocyclic molecules.

CUCURBITURILS FOR ALLEVIATING AND
MODULATING SIDE EFFECTS OF DRUG
ADMINISTRATION

CBs can also reduce the toxicity or mask other properties of
encapsulated guest molecules. The reversal of the action of
neuromuscular blocking agents is a prominent example in this
line of successful applications of the action of CBs and their
derivatives (Ma et al., 2012b). CB7 was found to reduce the
cytotoxicity of polycations such as polyethylenimine or cationic
dendrimers through complexation (Lim et al., 2002; Li et al.,
2017; Huang et al., 2018c). At the same time, these systems
were demonstrated to act as efficient gene carriers. It has also
been demonstrated recently that CB7 complexation of paraquat
(methyl viologen dichloride hydrate), a widely used herbicide,
decreases under various conditions and effectively the toxicity in
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vitro and in vivo (Zhang et al., 2019b). In a recent report, CB7
was shown to inhibit seizures induced by small toxic molecules in
both, zebrafish and mice models (Huang et al., 2018b), which has
also been related to their complexation potential, which results
in an effective detoxification. It has also been demonstrated that
hexadimethrine bromide (HB), an agent which causes internal
blood coagulation, can be efficiently captured by CB7 to control
blood coagulation both in vitro and in vivo (Huang et al., 2018a).
In another interesting application, it was found that CB7 is able to
conceal the taste of the bitterest substance, denatonium benzoate
(Yang et al., 2017).

A pH-induced toxicity switch has also been described by
employing CB7 (Cheng et al., 2018). A triple-station guest
(viologen-phenylene-imidazole or V–P–I) is used for CB7
complexation. The complex exhibits pH-directed translocation
with high fatigue resistance (up to more than 100 cycles). Under
basic pH, due to deprotonation of the imidazolium group (I
station), CB7 positions itself around the viologen moiety (V
station) and, thus, masks the toxicity of the viologen. Decreasing
the pH into the acidic region protonates the imidazole group,
affects a locomotion of CB7 to the phenylene (P) station, and
thereby, the toxicity of the viologen unit becomes prominent.
Cytotoxicity testing was performed in vitro on RAW 264.7
(murine macrophage) and BEL 7402 (human liver cancer) cell
lines. It was observed that, in case of normal non-cancerous RAW
264.7 cells, there is significant masking of the toxicity when the
guest is complexed within CB7. However, for cancerous BEL 7402
cells, no such difference could be observed. In RAW 264.7 cells
CB7 is presumed to remain on station V since the local pH is
∼7.4 while in the case of BEL 7402 cells, it shuttles to station P as
their pH is significantly lower, around 6.8 (similar to the pKa of
the guest).

CUCURBITURIL-BASED SYSTEMS FOR
DIAGNOSTICS AND OTHER BIOMEDICAL
APPLICATIONS

Host-guest complexes of CBs have also been used for
sensing, diagnostic, theranostic, and other relevant medicinal
or bioanalytical applications. Monitoring enzymatic reactions by
the tandem assay principle has been successfully implemented.
The basic principle applied here is to form an inclusion complex
of CB with an appropriate fluorescent dye whose affinity with CB
lies ideally in between the binding constant of the substrate and
the product of the enzymatic reaction of interest. For example,
by using the Dapoxyl (a fluorescent dye)/CB7 reporter pair,
the decarboxylation processes of different amino acids (Lys,
Arg, His, Tyr, and Trp) to their corresponding biogenic amines
(cadaverine, agmatine, histamine, tyramine, and tryptamine)
can be conveniently monitored (Hennig et al., 2007; Nau
et al., 2009). By using this principle along with the intrinsic
enantiospecificity of decarboxylases for L-amino acid substrates,
multi-parameter sensor arrays (for measuring concentrations of
several amino acids in parallel) were designed that selectively
signal the presence of a reactive pair of an L-amino acid and its
corresponding decarboxylase (Bailey et al., 2008).

Numerous reports by Urbach and others have demonstrated
binding of CBs to amino acids, peptides, proteins, biomolecules
(e.g., neurotransmitters), and dyes, signifying applicability to
extremely accurate biosensing applications at sub-nanomolar
concentrations (Bush et al., 2005; Chinai et al., 2011; Smith
et al., 2015). Indeed, sensors for various biomolecules using host-
guest chemistry have been developed by several research groups
(Biedermann et al., 2012a; Minami et al., 2012; Kasera et al., 2014;
Sinn and Biedermann, 2018). The sequence-specific recognition
property of CB7 can be transferred from sensing to separation
applications. The groups of Urbach and Isaacs have, for example,
coated mono-functionalized CB7 on a solid sepharose resin in
order to separate proteins, namely human growth hormone as
well as native insulin, in complex mixtures (Li et al., 2016c).

The binding pairs between CB7 and adamantyl- (AdA) or
ferrocenyl-ammonium (FcA) were recently utilized by Kim as a
supramolecular latching system for protein imaging, overcoming
the limitations of protein-based binding pairs (Kim et al., 2018).
Proteins in (or on) the cells were adamantylated/ferrocenylated
using various labeling approaches. The strong affinity of AdA
or FcA allows these proteins to latch to Cy3-CB7 which
results in the successful visualization of the proteins with
cells and Caenorhabditis elegans. Importantly, no interference
from endogenous biomolecules was observed, enabling clear
fluorescence images for accurate and precise analysis of protein
locations using fluorescence microscopy.

Application of the sequence selectivity of CBs for aromatic
peptides has been utilized to determine protease substrate
selectivity and inhibition (Ghale et al., 2011). The selectivity of
thermolysin to cleave the amide bond at the nitrogen side of Phe
residues in peptides leads to the formation of peptide fragments
with N-terminal Phe residues. The selectivity of CB7 toward N-
terminal Phe residues has been used to create the assay. Scherman
et al. have utilized this sequence selectivity of CBs to create a
surface immobilized CB8 system which can be used to separate
peptides with N-terminal tryptophan (Tian et al., 2011). Larger
structures such as cells can also be adsorbed and released using
surface-bound CB8 ternary complexes as shown by Sankaran
et al. (2017). RGD-based tripeptide ligands were immobilized
onto gold substrates fabricating an electrochemically controlled
cell-adhesive surface (An et al., 2012). The RGD sequence can
selectively adsorb cells on the surface. Electrochemical activation
led to the dissociation of the host-guest complex and, thereby,
the release of the adsorbed cells. A bio-interface has been
developed by Kim and coworkers for isolating plasma membrane
proteins by using highly selective binding of CB7 and a ferrocene
derivative (AFc, Figure 13) (Lee et al., 2011). The system can
capture model proteins from protein mixtures and the captured
proteins were readily removed from the interface via addition of
a second ferrocene derivative (BAFc) with higher binding affinity
for CB7 than AFc. In a recent work, iron oxide nanoparticle
surfaces were immobilized with CB7 and the modified particles
were observed to be stable under a wide range of pH (2–12)
(Benyettou et al., 2013). Nile red (NR) was loaded on the surface-
bound CB7 and the nanoparticles were used for intracellular
delivery of the dye and as MRI contrast agent demonstrating its
potential for theranostics.
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FIGURE 13 | Schematic illustration for the isolation of plasma membrane proteins using a synthetic binding pair. EDC, 1-ethyl-3-(3-dimethylaminopropyl)

carbodiimide; NHS, N-hydroxysuccimidyl sepharose (Lee et al., 2011) (Reproduced with permission, Copyright 2011, Nature Publishing Group).

FIGURE 14 | Schematic illustration for in situ formation of supramolecular biocompatible hydrogels (PA-HA, polyamine-hyaluronic acid assembly) and their modular

modification using highly selective and strong supramolecular host-guest complexation (Park et al., 2012) (Reproduced with permission, Copyright 2013, American

Chemical Society).

Tissue culture is another area where CBs have recently
been successfully used. A facile in situ supramolecular
assembly and modular modification of biocompatible
hydrogels were demonstrated by Kim and coworkers (Park
et al., 2012). CB6-conjugated hyaluronic acid (CB6-HA),
diaminohexaneconjugated HA (DAH-HA), and tags-CB6 were
used to create the hydrogel. When these hydrogels were modified
with the c(RGDyK) peptide, the entrapped NHDF human
fibroblast cells and NIH3T3 mouse fibroblast cells proliferated
5-fold within 14 and 3 days, respectively, compared to the
untreated hydrogels (Figure 14). The 3D environment of the
hydrogel was modularly modified by the simple treatment
with various multifunctional tags-CB6. Furthermore, in situ
formation of CB6/DAH-HA hydrogels under the skin of nude
mice by sequential subcutaneous injections of CB6-HA and

DAH-HA solutions was also confirmed. The fluorescence of
modified FITC-CB6 in the hydrogels could be monitored
for up to 11 days, showing the feasibility to deliver signals
for cellular proliferation and differentiation in the body. To
extend the work, the same group prepared 3D tissue-engineered
supramolecular hydrogels using CB6-HA, DAH-HA, and drug-
conjugated CB6 (drug-CB6) for the controlled chondrogenesis
of human mesenchymal stem cells (hMSCs) (Jung et al.,
2014). The system can be used as a platform for controlled
drug delivery for cartilage regeneration and other various
tissue-engineering applications.

In a recent study, Dowari et al. reported a three-way cross-
linked peptide-based polymer (Dowari et al., 2018). The cross-
linking was achieved via disulfide bond formation, enzymatic
cross-linking by HRP-mediated dimerization of tyrosine, and
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supramolecular linkage using homoternary complexation by
CB8. The supramolecular cross-linking was found to play
a crucial role in controlling the size of the polymer. The
surfaces of the polymer particles were decorated with an RGDS
sequence which was utilized for efficient cell adhesion and
proliferation of RAW 264.7 cells. The cross-linked polymers
could bind cells effectively and the cells proliferated significantly.
Jonkheijm and coworkers studied cell adhesion on multivalent
knottins displaying RGD ligands with high affinity for integrin
receptors (Sankaran et al., 2017). The integrin receptors were
assembled on CB8/viologen-modified surfaces. The number
of tryptophan units in the knottins varied between 0 and
4 which can form a heteroternary complex with CB8 and
surface-tethered viologen. Specific binding occurred, and the
affinity increased with the valency of the tryptophan residues
on the knottin. Additionally, increased multilayer formation was
observed, attributed to homoternary complex formation between
tryptophan residues of different knottins and CB8. Control over
the surface coverage of the knottins could thus be achieved by
valency and concentration. Experiments with mouse myoblast
(C2C12) cells on the self-assembled knottin surfaces showed
specific integrin recognition by the RGD-displaying knottins.
Cells were observed to elongate more on the knottin surfaces
with higher valency. Moreover, more pronounced focal adhesion
formation was observed on the higher-valency knottin surfaces.

TOXICITY AND PERMEABILITY OF
CUCURBITURIL MACROCYCLES

Any potential biological or medicinal application depends on the
cytotoxicity and biocompatibility of the employed formulations.
In regard to CB-based compounds and nanomaterials, Kim and
coworkers demonstrated the non-toxicity of CB molecules with
ED50 levels of more than 100µM against human lung and
ovarian cancer cells (Jeon et al., 2005). In vitro cell viability
testing of CB7 by using MTT assay in CHO-K1 cells showed no
significant cytotoxicity up to 1mM and 3 h incubation time; after
48 h incubation time an IC50 value of 0.53mM was determined
(Uzunova et al., 2010). Owing to the low solubility of CB8, a
precise determination of its toxicity level is difficult. However,
20µM CB8 caused a minor drop in cell viability (86%) within
48 h of incubation. A single oral dose of CB7 and CB8 as a
mixture in equal proportions showed no toxicity up to 600mg
kg−1 (Uzunova et al., 2010). CB5, CB7, and several acyclic CB
containers were also tested for their toxicology and bioactivity;
they were found to be non-toxic within the desired concentration
range (Hettiarachchi et al., 2010).

Another important question which needs to be addressed
before using any system for biological application is their cell

permeability. Acridine orange and pyronine Y complexes of
CB7 and CB8 were employed to show that the complexes can
penetrate the cell membrane of mouse embryo muscle cells
(Montes-Navajas et al., 2009). CB7 complexes with dye molecules
(fluorophores conjugated with spermidine and adamantylamine)
were shown by Isaacs and coworkers to be able to cross the cell
membranes of murine macrophage cells; within 20min, 86% of

the cells incorporated the complex. The host-guest complex was
observed to be stable within the cells up to 2 h (Hettiarachchi
et al., 2010). A CB7-labeled antibody has also been reported to
be spontaneously taken up into living cells (Sasmal et al., 2018).

CONCLUSIONS

We provided an overview of the recent achievements in the
area of medicinal-chemical and chemical-biological applications
utilizing the host-guest chemistry of CBs. Over the last decade,
there has been a paradigm shift in the research with CBs and
the focus is now more on the actual applications of these
fascinating macrocyclic hosts. A major thrust is in the area of
biological and specifically toward biomedical applications. CBs
have been widely used to bind bioactive molecules, which helps
to overcome the poor solubility of hydrophobic molecules, in
particular drug candidates. The unique recognition properties
and biocompatibility enables their implementation as excipients
(Lim et al., 2002; Kuok et al., 2017). Recent achievements
in the preparation of CB derivatives and analogs allow their
incorporation into more intricate and applied research lines
(Ayhan et al., 2015; Kim et al., 2018; Koc et al., 2018; Park
et al., 2018; Sun et al., 2018; Zhang et al., 2018a, 2019a) in an
effort to by-pass intrinsic limitations of the parent CBs, such as
their stringent selectivity for guest binding and the low intrinsic
solubility of CB6 and CB8. We contend that this account will
provide a platform for understanding the potential of CBs toward
applications in pharmaceutically and medicinally research and
assist us in designing and creating new CB-based assemblies.
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Molecular tweezers (MTs) are supramolecular host molecules equippedwith two aromatic

pincers linked together by a spacer (Gakh, 2018). They are endowed with fascinating

properties originating from their ability to hold guests between their aromatic pincers

(Chen and Whitlock, 1978; Zimmerman, 1991; Harmata, 2004). MTs are finding an

increasing number of medicinal applications, e.g., as bis-intercalators for DNA such

as the anticancer drug Ditercalinium (Gao et al., 1991), drug activity reverters such

as the bisglycoluril tweezers Calabadion 1 (Ma et al., 2012) as well as radioimmuno

detectors such as Venus flytrap clusters (Paxton et al., 1991). We recently embarked

on a program to create water-soluble tweezers which selectively bind the side chains

of lysine and arginine inside their cavity. This unique recognition mode is enabled by a

torus-shaped, polycyclic framework, which is equipped with two hydrophilic phosphate

groups. Cationic amino acid residues are bound by the synergistic effect of disperse,

hydrophobic, and electrostatic interactions in a kinetically fast reversible process.

Interactions of the same kind play a key role in numerous protein-protein interactions,

as well as in pathologic protein aggregation. Therefore, these particular MTs show a

high potential to disrupt such events, and indeed inhibit misfolding and self-assembly of

amyloidogenic polypeptides without toxic side effects. The mini-review provides insight

into the unique binding mode of MTs both toward peptides and aggregating proteins. It

presents the synthesis of the lead compound CLR01 and its control, CLR03. Different

biophysical experiments are explained which elucidate and help to better understand

their mechanism of action. Specifically, we show how toxic aggregates of oligomeric

and fibrillar protein species are dissolved and redirected to form amorphous, benign

assemblies. Importantly, these new chemical tools are shown to be essentially non-toxic

in vivo. Due to their reversible moderately tight binding, these agents are not protein-,

but rather process-specific, which suggests a broad range of applications in protein

misfolding events. Thus, MTs are highly promising candidates for disease-modifying

therapy in early stages of neurodegenerative diseases. This is an outstanding example

in the evolution of supramolecular concepts toward biological application.
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INTRODUCTION

A major challenge in modern medicine is the field of
neurodegenerative diseases. Their pathology is dominated
by misfolding and subsequent aggregation of characteristic
peptides or proteins in the brain, which is correlated with severe
impairment of cognitive functions. As the most prominent
example, the amyloid β-peptide (Aβ) plays a key role in the
development and progression of Alzheimer’s disease (AD)
(Hardy and Higgins, 1992; Hardy and Selkoe, 2002). Senile
plaques composed of aggregated Aβ , forming extracellular
β-sheet fibril morphologies, are histopathological hallmarks
found in the brains of AD patients. In recent years however,
small soluble Aβ oligomers were identified as the most
neurotoxic species (Shankar et al., 2008; Zhao et al., 2012;
Sengupta et al., 2016). Despite intense research, the underlying
mechanisms of spontaneous misfolding, aggregation, and
lesion of nerve cells are still poorly understood. To date
only symptom-relieving drugs are clinically approved for
AD treatment. Strategically, it seems desirable to develop
drug candidates which are able to interfere with the early
stages of the disease mechanism. Classical approaches
include the reduction of Aβ production by inhibitors of β-
and γ - secretase, the increase of Aβ removal via anti-Aβ

immunotherapy, and direct interference with Aβ aggregation
(Hardy and Selkoe, 2002; Roland and Jacobsen, 2009). The
latter can be achieved with a diverse set of peptides and small
molecules. Well-known milestones in this field are Congo
red (Podlisny et al., 1998), scyllo-Inositol (McLaurin et al.,
2000), amino-propane sulfonic acid (Gervais et al., 2007),
Clioquinol (Cherny et al., 2001), methylene blue (Necula
et al., 2007), and polyphenol (–)-epigallocatechin (EGCG)
(Ehrnhoefer et al., 2008).

However, some of these compounds are toxic, others
are only active in cell culture or animal experiments, and

until today no drug candidate made it through clinical trial.
In addition, little structural information is available about

the direct interaction between Aβ and most aggregation

inhibitors. Thus, there is clearly a need for new rational
approaches. Supramolecular Chemistry has gained a much-
improved understanding and quantitative description of
those non-covalent interactions which are involved in protein
aggregation. In addition, molecular modeling now allows
extended MD simulations of complex ensembles with large
sampling times and discrete solvent treatment—resulting in
predictive power for new supramolecular binders. In our
group we developed a highly selective host molecule for
lysine and arginine, which is able to draw their side chains
into its cavity and shield them from the environment. These
molecular tweezers turned out to completely disrupt existing
β-sheets formed by amyloidogenic proteins. Our discovery
started an intense and very fruitful collaboration between
supramolecular chemists and neurologists, which has reached
the state of animal experiments and behavioral testing with
transgenic mice and holds promise for the development of
disease-modifying therapy. This mini-review summarizes
the chemical aspects of the endeavor—from deciphering the

binding mode of the tweezers over structural elucidation of their
complexes with aggregating proteins to the characterization
of their anti-aggregatory effect on various proteins. Finally,
toxicity, metabolism, and bioavailability issues will also be
briefly discussed.

THE DEVELOPMENT OF MOLECULAR
TWEEZERS AS LYSINE AND ARGININE
BINDERS

Structure and Binding Mode of Molecular
Tweezers
There are numerous artificial binding motifs for naturally
occurring amino acids, but only a few of them are selective and
mild enough to find biological application (Crini, 2014; Barrow
et al., 2015; Neri et al., 2016). Molecular tweezers were designed
rationally, combining supramolecular knowledge, and total
synthesis to obtain water-soluble horseshoe-shaped molecules.
They are characterized by their well-preorganized torus-shaped,
polycyclic non-polar framework, equipped with two hydrophilic
phosphate groups. The uniqueness of MTs is reflected in
their capability to selectively accommodate exclusively the
side chains of basic amino acids, namely lysine and arginine,
inside their cavity under physiological conditions. Electrostatic
potential surface (EPS) calculations demonstrate that their cavity
construction is electron-rich, perfectly symmetric, and open
to receive cationic appropriately shaped guests (Figure 1B). It
appears that even in PBS buffer tweezer dimerization is negligible
(Dutt et al., 2013; Heid et al., 2018).

MTs bind cationic amino acid residues via threading their
side chains through the cavity in a non-covalent fashion followed
by formation of a salt bridge between the tweezer phosphate
and the included ammonium or guanidinium cation. This is
facilitated by exploiting in a synergistic way van der Waals
interactions, substantial electrostatic contributions, and the non-
classical hydrophobic effect; this binding mode results in a
kinetically fast and reversible recognition process. Quantum
chemical and molecular mechanics (QM/MM) calculations and
various analytical experiments strongly support this postulated
binding mode between MTs and their amino acid guests.
Monte Carlo (MC) and molecular dynamics (MD) simulations,
isothermal titration calorimetry (ITC) measurements, NMR,
and fluorescence titrations, as well as NOESY and variable
temperature (VT) experiments clearly point to inclusion of
the lysine and arginine side chain inside the tweezer cavity in
an enthalpy-driven process. QM/MM calculations confirm the
existence of these favorable host-guest complexes in buffered
aqueous solution formed via the threading mode (Fokkens et al.,
2005; Dutt et al., 2013).

Recently, a crystal structure of the complex between MT and
a 14-3-3 protein beautifully demonstrated the threading of the
well accessible Lys-214 side chain through the tweezers’ cavity
accompanied in solution with a substantial inhibition of the
complex formation between the 14-3-3 and its natural cargo
proteins (Bier et al., 2013).
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FIGURE 1 | (A) Synthesis of the molecular tweezer CLR01 (Talbiersky et al., 2008) and negative control CLR03 (Kirsch et al., 2009). (B) Electrostatic Surface Potential

of CLR01 calculated by PM3 implemented in SPARTAN 04 (Wavefunction Inc.) Color code spans from −25 kcal/mol (red) to +25 kcal/mol (blue), taken from (Heid

et al., 2018, Figure 5). (C) 2Fo–Fc electron density (contoured at 1s) for the molecular tweezers bound to 14-3-3σ (Bier et al., 2013, Figure 4B).

Tweezer Synthesis
The characteristic MT framework consists of nine annulated
6-membered rings, which are alternating phenyl and
norbornadiene ring systems. The construction of this
hydrocarbon torus is achieved in the key step via double
Diels-Alder (DA) cycloaddition using two equivalents of diene
1 which forms the walls and one equivalent of dienophile 2

which is the center-piece (Figure 1A). The exocyclic diene is
obtained in six steps from indene and maleic acid anhydride
while the dienophile is made from 1,4-benzophenone in a
four-step sequence. The neutral DA reaction requires elevated
temperatures; it proceeds stereoselectively endo in 1 and exo
in 2 and thus leads after DDQ (2,3-dichloro-5,6-dicyano-1,4-
benzoquinone) oxidation to the desired tweezer (3) having
the four methylene bridges in all-syn configuration (Klärner
et al., 1996, 1999; Talbiersky et al., 2008; Schrader et al., 2016).

The two acetoxy-groups can be cleaved in a symmetric or
asymmetric fashion, releasing hydroquinone OH groups which
can be further functionalized with negatively charged groups
for enhanced water-solubility (e.g., phosphates, carboxylates,
and sulfates) (Dutt et al., 2013). In the course of several years of
intense biophysical and biological testing, the tweezers CLR01
with its two phosphate esters evolved as a lead compound, while
its truncated derivative without the side walls, CLR03, served as
a negative control. CLR03 represents the central part of the MT
molecule; due to the lack of the torus-shaped cavity, it is not able
to bind Lys and Arg by inclusion (Schrader et al., 2016).

INTERACTION WITH BIOACTIVE PEPTIDES

CLR01 was initially tested with small, biologically relevant
small peptides (Fokkens et al., 2005). The KLVFF peptide
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is located inside the central hydrophobic part of the
amyloid-β protein, and it was identified as a nucleation
site for pathologic protein aggregation, fibril formation, and
subsequent plaque occurrence in Alzheimer’s disease. NMR
and fluorescence titrations with this small peptide revealed
inclusion of the N-terminal lysine inside CLR01 and a moderate
affinity of 10 µM (Kd) in buffered aqueous solution (PBS)
(Dutt et al., 2013).

ITC measurements provide further insight into the postulated
binding mode. The binding event between host CLR01 and
its KLVFF guest was shown to be a favorable, strongly
exothermic process. Here the MT peptide affinity was found
to be 15 µM, with a 1:1 stoichiometry, and an enthalpic
contribution 1H of −6.6 kcal/mol, which is prevailing over
the small entropy term –T1S of −0.2 kcal/mol. Arginine
complexation in other peptides was found to be slightly weaker,
in the range of 30 µM, most likely due to its delocalized
guanidinium ion and shorter side chain. The remarkably
exothermic character of the binding event correlates well with
the assumed threading procedure and the resulting van der
Waals interactions between the host cavity and the respective
amino acid side chain. The above-reported Kd values, although
moderate in biological terms, place these MT among the most
efficient receptor molecules for basic amino acids known today
(Fokkens et al., 2005; Dutt et al., 2013).

In general, dissociation constants obtained from ITC
measurements agree well with the data determined
independently by fluorescence or 1H NMR titrations, in
spite of the different concentration regimes (NMR 10−3 M, ITC
10−4 M, Fluoresc. 10−5 M). The emission intensity maximum of
MTs in fluorescence spectra is found around 330 nm, while the
excitation maximum is located at 285 nm (π,π∗). Trapping of
guest molecules inside the tweezers cavity results in significant
quenching of the fluorescence emission. This proves guest
inclusion and allows quantification of the binding event at
low concentrations. In most cases affinities for a single lysine
inclusion determined by fluorometric titrations are in the range
of 5–20 µM Kd. Structurally, the MT’s preference for lysine
inclusion has been proven in numerous 1H NMR titrations
in buffer, which reveal drastic upfield shifts of up to 4 ppm
(δ1max) at the δ- and ε- methylene protons of the basic amino
acid side chains. NOESY measurements as well as variable
temperature experiments strongly support the guest inclusion
(Fokkens et al., 2005).

Molecular tweezers with their unique binding mode for
lysine and arginine and their unexpected powerful effect as
aggregation inhibitors have attracted the attention of many
research groups worldwide in the last decade. Numerous
fruitful collaborations demonstrated that these lysine binders
represent a widely applicable useful tool against pathologic
protein misfolding. In addition, sophisticated analytical methods
opened our understanding of the underlying supramolecular
mechanism of action. Today we know that advancedMTs are able
to specifically disrupt undesired protein-protein interactions;
however perhaps even more important is the fact that MTs
indeed inhibit misfolding and self-assembly of amyloidogenic
polypeptides without toxic side effects (Sinha et al., 2011).

INTERACTION BETWEEN MOLECULAR
TWEEZERS AND AGGREGATING
PROTEINS

The pathogenesis of every amyloidosis is caused by aberrant
protein aggregation and most likely begins with protein
misfolding. AD, Parkinson’s disease and type-2 diabetes are
the best examined examples of this pathologic process. In
the course of AD, the largely unstructured naturally occurring
monomeric state of the amyloid-β peptides was shown to adopt a
conformation rich in β-sheets and which aberrantly forms toxic
oligomers and aggregates (Billings et al., 2005). Aβ40, Aβ42 and
the group of tau proteins mainly participate in this neurologically
highly relevant aggregation process which ultimately disposes
extracellular plaque formed from β-sheet-rich fibrils. Lysine
residues are reported to play an important role in this particular
assembly (Usui et al., 2009; Sinha et al., 2012).

Gratifyingly, MT were found to interfere with the aggregation
process of most amyloidogenic proteins. In recent years,
many different experiments have been designed and conducted
which confirmed CLR01 to be capable of dissolving fibrils,
preventing their formation as well as eliminating their toxic
precursor oligomers. Structurally, it was important to identify
the tweezer binding sites on these proteins. For the most
prominent representative, the Alzheimer’s peptide, the preferred
complexation sites of the tweezers were validated by electron
capture dissociation (ECD) mass experiments (EDC-MS/MS) as
well as by NMR spectroscopy (Sinha et al., 2011).

ECD-MS/MS
In the monomeric form of Aβ40 and Aβ42 there are three
basic residues, Arg-5, Lys-16, and Lys-28. All of these are
simultaneously complexed as confirmed by mass spectrometry.
In EDC-MS/MS experiments complexes of MT and a Aβ protein
were collected in a linear ion trap and smoothly fragmented
inside. The recorded MS spectra found MT bound to many
overlapping protein fragments. The mass spectra show peaks
for Aβ40 bound by one, two and three MTs, respectively. In
the fragmentation pattern CLR01-Aβ-fragment peaks were only
found for fragments bearing a Lys or Arg residue, indicating
a retained amino acid selectivity in Aβ complexation. Most
importantly, peptide cleavage did not occur around the two lysine
binding sites, because these were protected by the tweezers. The
exact binding mode of this complexation event was subsequently
investigated by NMR experiments (Sinha et al., 2011).

NMR Experiments
1H–15N and 1H–13C heteronuclear single quantum coherence
(HSQC) NMR experiments confirmed these results. An HSQC
spectrum of Aβ40 alone and together with 0.5 equivalents of
MT were compared. Upon tweezer binding, the cross peaks
of the complexed residue as well as its neighboring amino
acids show a significant chemical shift perturbation (CSP) due
to the altered magnetic environment. Some signals vanished
completely, indicated by red circles in Figure 2A. In two-
dimensional H(N)CO experiments MT were titrated to a protein
solution; already at a 1:10 ratio of CLR01 relative to Aβ40 the CSP
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FIGURE 2 | (A) 15N–1H HSQC spectrum of Aβ40 in the presence of 30 µM CLR01 (cyan). Red circles indicate resonances that disappeared completely upon addition

of CLR01 to Aβ40 solution (Sinha et al., 2011). (B) Time-dependent ThT fluorescence intensities of incubated solution of: pure IAPP (red); IAPP + CLR01 (1:1) (blue);

IAPP+CLR03 (1:1) (green) (Sinha et al., 2011). (C) EM images of the solutions after titration. CLR01 (middle) clearly shows inhibition of fibril formation (Sinha et al.,

2011). (D) Effects CLR01 on Aβ42 early oligomerization. Arrival time distributions (by ion-mobility spectrometry) of z/n = −5/2 Aβ42 (m/z = 1805) in an Aβ42 sample

without CLR01 (left) and z/n = −5/2 Aβ42 and CLR01 1:1-complex (m/z = 1,950). Oligomeric species (n = 6;12) vanish after CLR01 addition (Zheng et al., 2015).

became significant. Amino acid residues surrounding Lys-16 and
Lys-28 showed a higher degree of perturbation compared to those
in proximity to Arg-5. This implies a stronger affinity of MT for
the Aβ Lys residues, consistent with the general Lysine preference
of CLR01. At elevated CLR01 concentration all three positions
were occupied. The negative control CLR03 showed no effects
in the whole NMR-setup (Sinha et al., 2011). Similarly, a three-
dimensional HN(CO)CACB NMR experiment was recently used
to detect binding sites of MT in the phosphorylated and
unphosphorylated tau protein (Despres et al., 2019).

The combination of EDC-MS/MS and NMR spectroscopy
underlines the importance of the tweezer cavity for complex

formation with Aβ40 and Aβ42, and strongly supports the
binding mode elucidated with small peptides (Figure 1C).

If CLR01 binds to every sterically accessible basic residue on
a peptide or protein, why is it not toxic then? It was indeed
shown that the MT are non-toxic in biological applications
at concentrations necessary to inhibit protein aggregation. We
believe, that the key lies in kinetically fast reversible binding and
moderate affinity. Biophysical experiments indicate fast on and
off rates and labile complexation as well as moderate dissociation
constants in the low µM range (Talbiersky et al., 2008; Bier et al.,
2013). These key features of our MT safeguard healthy proteins
from damage induced by conformational changes, so that they
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retain their natural biological function. Indeed, enzymes could
be inhibited by MT, albeit only at millimolar concentrations,
100 times higher than those required for the anti-aggregatory
effect. The specificity of CLR01 toward the process of aberrant
protein aggregation is outstanding because it is a new principle
which may be transferred to other drugs as well. It appears that
MTs bind their protein guests with the same combination of
non-covalent interactions which is also active in the unwanted
aggregation process. This unique way of action toward protein
aggregation, represents the first example of a “process-specific”
aggregation inhibitor; it was examined with various biophysical
methods (Schrader et al., 2016).

PREVENTION OF PATHOLOGIC PROTEIN
AGGREGATION

Until 2011 experimental evidence was accumulated for the
fact that lysine-specific MT are active against a wide range of
aggregating proteins, with detailed experiments performed on
the assembly and toxicity of nine prominent amyloid proteins
(Sinha et al., 2011).

In this comprehensive investigation a synopsis of various
state-of-the-art biophysical experiments gave the full picture:
Thioflavin T (ThT) fluorescence, Electron Microscopy
(EM), Circular Dichroism spectroscopy (CD), Dynamic
Light Scattering (DLS), Mass Spectrometry (MS), and
NMR Spectroscopy.

Thioflavin T (ThT) Fluorescence
ThT is an amyloid dye indicator which turns highly fluorescent
upon binding to existing β-sheets (LeVine, 1999). ThT
fluorescence was used to monitor the kinetics of β-sheet
formation for various amyloid proteins in the presence or
absence of CLR01. The tweezers represented the active drug,
whereas their truncated derivative, CLR03, was used as negative
control. Measurements were performed regularly during a time
span of up to 120 h at pH 7.4 in 10 mM phosphate buffer.
CLR01 was added in up to 10-fold excess relative to the
protein and was able to completely suppress the typical drastic
fluorescence enhancement caused by aggregation and protein
misfolding. Equimolar concentration of CLR01 was likewise
shown to totally disrupt β-sheets of the tau protein. CLR03
displayed no effect in any of the investigated proteins because
it lacks the hydrophobic side walls and consequently, the ability
to complex Lys residues. Importantly, CLR01 not only inhibited
the de novo aggregation of amyloidogenic proteins such as
Aβ40/Aβ42, α-synuclein and IAPP (Figure 2B) (Prabhudesai
et al., 2012), but also disaggregated pre-formed fibrils over several
weeks when added at a 10-fold excess, as being confirmed
by EM.

Electron Microscopy (EM)
EM measurements were carried out in parallel to ThT assays, by
spotting 10 µL aliquots taken from each aggregation reaction,
on glow discharged, carbon-coated Formvar grids, using a
CX 100 transmission electron microscope. Visualization of the

protein morphology showed that IAPP and other examined
amyloidogenic protein samples incubated in the presence
of MTs did not form fibrils anymore, strongly supporting
conclusions drawn from the ThT measurements (Figure 2C)
(Sinha et al., 2011).

CD Spectroscopy
All β-sheets and therefore also all pathologic protein aggregates
produce a dominant characteristic β-sheet band at 215 nm
in the CD spectrum. In the presence of a 3-fold excess
of CLR01, this band was rapidly reduced and completely
disappeared after 1 h, indicating efficient inhibition of β-sheet
formation in case of Aβ40 and Aβ42. Equimolar CLR01 lead to
partial inhibition. Interestingly, CLR01 completely inhibited tau
aggregation already at the equimolar level, which correlates with
the higher number of exposed Lys residues in the tau sequence in
comparison to Aβ (Sinha et al., 2011).

Dynamic Light Scattering (DLS)
Dynamic light scattering provides a direct and non-invasive way
to monitor the formation of larger aggregates. It was employed to
monitor the influence of CLR01 on oligomer size and distribution
of Aβ. Experiments were performed with CLR01 in 10-fold
excess or equimolar relative to Aβ , controls were run with
Aβ alone. Intriguingly, the DLS results indicate that CLR01
does not prevent oligomer formation but rather modulates
Aß self-assembly into formation of structures that are neither
amyloidogenic nor toxic (Sinha et al., 2011).

Mass Spectrometry (MS)
In recent years, advanced methods in mass spectrometry have
been exploited for the mechanistic elucidation of protein
aggregating events. Thus, Bowers et al. used mild ionization
conditions and high resolution to monitor the impact of small
molecule modulators on Aβ oligomerization (Zheng et al., 2015).
The effect of different concentrations of CLR01 and its related
derivate, CLR03 on the Aβ assembly was investigated with
a custom-built ion mobility spectrometry-mass spectrometer
(IMS-MS) which consisted of a nano electrospray ionization
(nano-ESI) source, an ion funnel, a temperature-controlled drift
cell, and a quadrupole mass filter followed by an electron
multiplier for ion detection (Wyttenbach et al., 2001). Consistent
with earlier studies (Sinha et al., 2011), these experiments
confirmed Arg-5, Lys-16, and Lys-28 as preferred binding sites
for MT on Aβ . The authors associated four distinct peaks
with Aβ42 alone, while in the presence of a 10-fold CLR01-
excess three sets of peaks occurred corresponding to different
charge states of the complexes of Aβ42 with up to four bound
tweezers (Bernstein et al., 2009). No dimers or higher oligomers
were observed (Figure 2D). This is a good indication that
CLR01 not only prevents formation of Aβ42 dimers, but also
of higher order oligomers. Importantly, no free, unbound Aβ42
was found in the mass spectrum, supporting the assumption
that MT bind directly to Aβ42 with rather high affinity (∼ 1
µM). The authors concluded that CLR01 can remodel the early
oligomerization of Aβ42 not only immediately upon dissolution
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but also after the oligomers have already been formed (Zheng
et al., 2015).

Native Top-Down Mass Spectrometry and IMS were likewise
used to characterize the interaction between MT and the Tau
Protein (Nshanian et al., 2018).

Very recently, Loo also reported that no toxic oligomers are
left as the result of the efficient interaction between MT and
SOD1 (Superoxide Dismutase 1).With ECD, the covalent peptide
bonds of the polypeptide could be cleaved, whereas non-covalent
forces sufficed to hold the ligand bound to the macromolecule.
Tandem MS (MS/MS) or “top-down” MS of the protein–ligand
complex allowed to explore the main binding site(s) of MT on
the SOD1 surface. Surprisingly, MT preferred to bind to Lys-70
and/or Lys-75 although none of these residues is directly involved
in the aggregation process of SOD1. This may explain why at least
a 5-fold MT excess is required to affect the aggregation (Malik
et al., 2019).

In this investigation, CLR01 inhibited abnormal SOD1 self-
assembly in vitro, as well as in vivo, as being shown on the G93A-
SOD1 mouse model of amyotrophic lateral sclerosis (ALS). By
applying therapeutic amounts of CLR01 to recombinant wild
type and mutant SOD1, their in vitro aggregation speed was
significantly lowered for all SOD1 forms. In vivo, misfolded
SOD1 in the spinal cord was significantly reduced, yet not
enough to overcome motor deficits, most likely due to the
fast disease progression. Further insight came from experiments
on SOD1 with ThT and EM at the end of each aggregation.
For a potential SOD1 treatment, advanced tweezer derivatives
with improved performance must be designed in the future
(Malik et al., 2019).

CONCLUSION AND OUTLOOK

The above-discussed synopsis of structural and biophysical
experiments strongly suggests that molecular tweezers dock onto
sterically accessible lysine and arginine on aggregating proteins.
The resulting Lys/Arg shielding prevents misfolding and/or
subsequent protein aggregation into toxic oligomers. It also
dissolves existing β-sheets and redirects their path of aggregation
to benign amorphous structures.

The same effects are observed with a large number of
aggregating proteins, so that these lysine binders seem to act in
a process-specific manner and are clearly not protein-specific.
In all cases where lysine or arginine residues are involved in
the aggregation process, molecular tweezers seem to prevent
their ordered aggregation into fibrillar toxic structures. It may
be argued that unselective multiple lysine binding should greatly
disturb protein function; however, their moderate affinity (10–30
µM Kd) and fast on- and off-rates apparently preserve natural
protein folding and function. Indeed, for enzyme inhibition 100-
fold higher concentrations are needed (1 mM), providing a large
potential therapeutic window.

After the initial aggregation assays with isolated proteins, cell
culture experiments demonstrated powerful protection against

oligomer or fibril lesion from exactly those proteins whose
aggregation could also be rescued in vitro (Xu et al., 2017; Malik
et al., 2018). Finally, triply transgenic mice were treated with low
daily doses of CLR01 (40 µg/kg) and showed dramatic reduction
of plaque load in their cortices (stained histological brain slices).
Subsequent behavioral tests (Y-Maze, Pole climbing) revealed
significant memory and mobility improvement after treatment
with CLR01 (Richter et al., 2017).

Although no systematic metabolism studies have been carried
out yet, no degradation product could be found so far, e.g.,
after treatment with strong acid (pH 0) and base (pH 12) and
common phosphatases. We assume that the steric demand of
the tweezer skeleton prevents most chemical transformations at
the two phosphate groups, and that the doubly phosphorylated
stage is recognized as a water-soluble metabolite ready for
urinary excretion.

CLR01 was tritium-labeled and could be detected in mouse
brains. In addition, HPLC-MS assays of brain extracts revealed
2-3 nM concentrations of CLR01. We are currently optimizing
the tweezer structure to generate aggregation inhibitors of lower
polarity which will cross the blood-brain barrier (BBB) much
more efficiently, hopefully even after oral administration. In some
of these projects the results are so promising that we hope to enter
clinical trial within the next few years.

Thus, a supramolecular host molecule for basic amino
acids was turned into a powerful tool against pathologic
protein aggregation and showed highly promising effects in
various cell types and animal models. This is an outstanding
example in the evolution of supramolecular concepts toward
biological application.
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Cycloparaphenylenes (CPPs) and their analogs have recently attracted much attention

due to their aesthetical structures and optoelectronic properties with radial π-conjugation

systems. The past 10 years have witnessed a remarkable advancement in CPPs

research, from synthetic methodology to optoelectronic investigations. In this present

minireview, we highlight the supramolecular chemistry of CPPs and their analogs, mainly

focusing on the size-selective encapsulation of fullerenes, endohedral metallofullerenes,

and small molecules by these hoop-shaped macrocycles. We will also discuss

the assembly of molecular bearings using some belt-persistent tubular cycloarylene

molecules and fullerenes, photoinduced electron transfer properties in supramolecular

systems containing carbon nanohoop hosts and fullerene guests, as well as the shape

recognition properties for structure self-sorting by using dumbbell-shaped dimer of

[60]fullerene ligand. Besides, the supramolecular complexes with guest molecules other

than fullerenes, such as CPPs themselves, iodine, pyridinium cations, and bowl-shaped

corannulene, are also discussed.

Keywords: supramolecular chemistry, fullerene guest, non-fullerene guest, carbon nanohoop,

cycloparaphenylene

INTRODUCTION

Supramolecular chemistry is the subject of the association of two or more chemical species held
together by intermolecular forces, such as electrostatic interactions, hydrogen bonding, van der
Waals forces, etc., which could lead to organized entities of higher complexity (Lehn, 1985, 1988).
It is one of today’s fastest growing disciplines, crossing a range of subjects from biological chemistry
to materials science, and shows great potential in the fields of catalysis, drug delivery, biotherapy,
electrochemical sensor, self-healing materials (Zhang andWang, 2011; Yan et al., 2012; Dong et al.,
2015; Yang et al., 2015; Zhang et al., 2017a; Zhou et al., 2017). As one of themost important aspect of
supramolecular chemistry, the host-guest molecular recognition requires that the two species must
complement each other both in geometry (size and shape) and binding sites (Lehn, 1985, 1988).
Macrocyclic structures, in principle, meet the requirements as they usually contain the cavities,
clefts, and pockets with appropriate size and shape that provide the framework for substrate
species by multiple non-covalent interactions. The representative macrocyclic molecules during
the development of supramolecular chemistry, such as crown ether, cyclodextrins, calixarenes, and
cucurbiturils, have been the classical structures in this field (Yang et al., 2015; Zhou et al., 2017).
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Recently, the introduction of pillar[n]arenes (Figure 1A) as
new types of macrocyclic hosts by Ogoshi et al. (2008),
rapidly received significant attention for their prominent host-
guest properties.

Meanwhile, another type of carbon-rich macrocyclic
molecules with radially oriented π systems pointing inwards to
the cavity have emerged as a new class of strained, non-planar
aromatic structures, which were named as cycloparaphenylenes
(CPPs) or carbon nanohoops because of their structural
relationship with carbon nanotubes (CNTs) (Jasti et al., 2008;
Jasti and Bertozzi, 2010). Despite their simple structures,
however, the synthesis of CPPs was only achieved in 2008 from
curved molecular precursors after intensive efforts (Jasti et al.,
2008) Following this work, several other novel strategies for
CPP synthesis were developed and a number of CPP-related
carbon nanorings with various sizes and atomic compositions
were prepared (Darzi et al., 2015; Segawa et al., 2016). More
importantly, Itami et al. reported the successful synthesis of a
carbon nanobelt, [12]carbon nanobelt ([12]CNB) comprising
a closed loop of fully fused edge-sharing benzene rings in 2017
(Povie et al., 2017). Furthermore, development of this synthetic
strategy to the preparation of [16]CNB and [24]CNB analogs
were also reported by the same group (Povie et al., 2018).
Using a new ligand system, the yield of the final belt-forming,
nickel-mediated reaction for [12]CNB was improved from 1
to 7%, and [16]CNB and [24]CNB were obtained in 6 and 2%
yield, respectively. These studies are important steps toward the
bottom-up synthesis of other carbon nanobelt structures and
CNTs. Another interesting and valuable work which should be
mentioned is the thermally induced cycloreversion strategy for
the synthesis of carbon nanohoops reported by Huang et al.
(2016). They converted the anthracene photodimer synthon
into anthracene-incorporated aromatic macrocycle through
ring expansion reaction based on the cycloreversion of its
dianthracene core. This work sheds light on the utility of
the anthracene photodimerization-cycloreversion method for
“bottom-up” carbon nanohoop synthesis. The past 10 years have
witnessed a remarkable advancement in CPPs research, from
synthetic methodology to optoelectronic investigations due to
their size-dependent behavior and promising applications in
materials (Segawa et al., 2012; Wu et al., 2018; Huang et al., 2019;
Toyota and Tsurumaki, 2019; Xu and Delius, 2019).

In a recent work, Delius et al. overviewed the host-guest
chemistry of carbon nanohoops, the preparation of mechanically
interlocked architectures, and crystal engineering (Xu and
Delius, 2019). In this present minireview, we only highlight
the supramolecular chemistry of CPPs and their analogs,
mainly focusing on the size-selective encapsulation of fullerenes,
endohedral metallofullerenes, and small molecules by these
hoop-shaped macrocycles. We will also discuss the assembly
of molecular bearings using some belt-persistent tubular
cycloarylene molecules and fullerenes, photoinduced electron
transfer properties in supramolecular systems containing carbon
nanohoop hosts and fullerene guests, as well as the shape
recognition properties for structure self-sorting by using
dumbbell-shaped dimer of [60]fullerene ligand. Besides, the
supramolecular complexes with guest molecules other than

fullerenes, such as CPPs themselves, iodine, pyridinium cations,
and bowl-shaped corannulene, are also discussed.

SUPRAMOLECULAR COMPLEXES

CONSISTING OF CPPS AND FULLERENES

The first series of macrocyclic hosts was the molecules with
sp2/sp-hybridized carbon atoms, cyclic paraphenyleneacetylenes
(CPPAs) (Figure 1B), reported by Kawase et al. (1996). The
complexation between CPPA congeners and fullerenes were
extensively studied (Kawase et al., 2003a,b, 2007; Miki et al.,
2013). Although CPPA derivatives tend to form tight complexes
with C60, their unstable nature hindered further experimental
studies. In contrast, the solely sp2-hybridized CPP derivatives
without acetylene linkers are sufficiently stable, and could
similarly encapsulate fullerene molecules.

The initial example of the host-guest complex of this type
was reported by Iwamoto et al. (2011). The CPP receptor
with 10 phenylene units ([10]CPP) has an ideal diameter
(1.38 nm) to accommodate C60 (0.71 nm) (Figure 1C), showing
a binding constant Ka of 2.79 × 106 M−1 in toluene
determined by fluorescence quenching titration, which was
two orders of magnitude higher than those obtained for
[6]CPPA⊃C60 (Kawase et al., 2003a). The variable-temperature
NMR (VT-NMR) spectroscopy experiments showed that the
rapid exchange between free [10]CPP and [10]CPP⊃C60 took
place at room temperature, and the energy barrier for the
exchange was determined to be 59 kJmol−1. The crystal structure
of [10]CPP⊃C60 obtained by Jasti’ group revealed the presence
of convex-concave π-π interactions (Xia et al., 2012). It is
noteworthy that C60 can be selectively encapsulated by [10]CPP
among the mixture of [8]-[12]CPPs, indicating that the cavity
sizes of other CPPs were not appropriate for constructing a strong
complex with C60. Interestingly, it was found that C70, which
has an ellipsoidal shape with long axis of 0.796 nm and short
axis of 0.712 nm, could also be encapsulated by [10]CPP in its
“lying” orientation with its long axis perpendicular to [10]CPP
plane (Figure 1D), but with reduced association constant Ka (8.4
× 104 M−1 in toluene) compared with [10]CPP⊃C60 (Iwamoto
et al., 2013). Nevertheless, C70 was adopted the “standing”
orientations to be accommodated in the cavity of [11]CPP with
its long axis within the [11]CPP plane (Figure 1E). Besides,
[11]CPP deformed into an ellipsoidal shape to maximize the
van der Waals interactions with the long axis of C70. All these
results indicated the size- and orientation selectivity for the
CPP⊃fullerene systems. Furthermore, a deep exploration by
analyzing geometry structures through theoretical calculations
revealed that C70 selectively adopts lying, standing, and half-
lying orientations when combined with [10]CPP, [11]CPP, and
[12]CPP, respectively (Yuan et al., 2015).

In 2014, Shinohara et al. demonstrated the high
binding abilities of [11]CPP toward C82-based endohedral
metallofullerenes, including Gd@C2v-C82, Tm@C2v-C82, and
Lu2@C2v-C82, which provided a facile non-chromatographic
strategy for Gd@C82 extraction and enrichment from crude
fullerene mixtures (Nakanishi et al., 2014). Later, another
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FIGURE 1 | Examples of pillar[n]arenes, CPPAs and supramolecular complexes of carbon nanohoops with fullerenes: (A) The structure of pillar[5]arene. (B) The

structure of [6]CPPA. (C) The supramolecular structure of [10]CPP⊃C60. (D) [10]CPP⊃C70 in its “lying” orientation with its long axis perpendicular to [10]CPP plane.

(E) [11]CPP⊃C70 in its “standing” orientations with its long axis within the [11]CPP plane. (F) Li+@C60⊂[10]CPP. (G) The 2:1 complex of porphyrin-[10]CPP and

fullerene dimer: porphyrin-[10]CPP⊃C120⊂porphyrin-[10]CPP. (H) [10]CPP-fullerene rotaxane. (I) [10]CPP⊃(C59N)2⊂[10]CPP complex. (J) [4]CHBC⊃C70.

(K) tripodal-[2]HBC⊃C70. (L) TCR⊃C60 and HCR⊃C60. (M) (P)-(12,8)-[4]CC⊃C60 or C70. (N) The π-lengthened version of (P)-(12,8)-[4]CA⊃C60 or C70.

(O) [7]CaNAP⊃C70. (P) The ligand-induced self-sorting process for two diastereomers.

example of C82-based endohedral metallofullerene peapod,
[11]CPP⊃La@C82 was reported (Iwamoto et al., 2014). The
solid structure of the complex was determined by X-ray
crystallographic analysis, which showed that the La atom was

located near the periphery of [11]CPP rather than the tube axis
with the dipole moment of La@C82 nearly perpendicular to the
CPP axis. These evidence demonstrated the different orientations
of La@C82 in CPP and CNT peapods, which suggests that the

Frontiers in Chemistry | www.frontiersin.org 3 October 2019 | Volume 7 | Article 66882

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Lu et al. Supramolecular Chemistry of Molecular Nanohoops

orientation of La@C82 in CNT was mainly determined by
interactions among the adjacent ones. More importantly, due
to the strong electron accepting properties of La@C82, partial
charge transfer (CT) from [11]CPP to La@C82 in the ground
state was firstly observed by electrochemical experiments
combined with UV/Vis-near-infrared (NIR) titration studies
and density functional theory (DFT) calculations, but no fully
ionized complex was formed.

The CPP-based fully ionized complex, Li+@C60⊂[10]CPP,
was synthesized and characterized by Ueno et al. (2015)
(Figure 1F). The ionic crystal structure was confirmed by X-
ray crystallographic analysis. Unlike the empty C60, the cationic
Li+@C60 core drastically increased the electron accepting ability
which could induce strong charge transfer from the electron
donors. Cyclic voltammetry experiments revealed that Li+@C60

was harder to be reduced when accommodated by [10]CPP than
Li+@C60 itself, which could be ascribed to the higher electron
density around the Li+@C60 cage through CPP to Li+@C60

charge transfer interaction. The strong charge transfer interaction
also caused the positive charge of the lithium cation delocalized
to the outer CPP ring. The broadened absorption bands at around
350 nm and in the NIR region was also related to this interaction.
Besides, photoluminescence (PL) lifetime of Li+@C60⊂[10]CPP
(2.5 ns) is shorter than that of [10]CPP (4.3 ns) and C60⊂[10]CPP
(4.3 ns), suggesting that the charge transfer (CT) interaction
may occur.

Recently, Delius et al. reported the synthesis of a porphyrin-
[10]CPP conjugate, in which [10]CPP moiety served as a
supramolecular junction for charge transfer between a zinc
porphyrin electron donor and fullerene electron acceptor (Xu
et al., 2018b). Efficient photoinduced electron transfer was
observed with a lifetime of charge separation state up to 0.5
µs in the 2:1 complex between [10]CPP and the fullerene
dimer (Figure 1G). The intramolecular energy transfer between
[10]CPP and porphyrin was also observed. Later, the same
group achieved the synthesis of two [2]rotaxanes consisting
of one [10]CPP moiety binding to a central fullerene with
bis-adduct binding site and another two fullerene hexakis-
adduct stoppers using a concave-convex π-π template strategy
(Figure 1H) (Xu et al., 2018a). [10]CPP served as an effective
supramolecular directing group with the central fullerene as
an efficient convex template, steering the reaction exclusively
toward two trans regioisomers in the final step. The mechanically
interlocked structures of [2]rotaxanes were analyzed by variable-
temperature NMR (VT-NMR) and mass spectrometry. Transient
absorption spectra revealed the interesting consequences of

the mechanical bond on charge transfer processes. A later

work conducted by Wegner et al. used a dumbbell-shaped

dimeric azafullerene [(C59N)2] as the ligand to combine with

two [10]CPP rings, giving [10]CPP⊃(C59N)2⊂[10]CPP complex
(Figure 1I) (Rio et al., 2018). Two stage binding constants

were determined to be Ka1 = 8.4 × 106 M−1 and Ka2 =

3.0 × 106 M−1, respectively, with weak interactions between
the two CPP rings. Photoinduced partial charge transfer was
observed from [10]CPP to (C59N)2 by differential pulsed
voltammetry experiments.

SUPRAMOLECULAR COMPLEXES

CONSISTING OF π-EXTENDED CARBON

NANOHOOPS AND FULLERENES

As the π-π interaction operates via the surface-to-surface
contacts in supramolecular chemistry, it becomes important for
large aromatic moieties with increasing π-surface areas. Based
on the rapid development of the synthesis strategies, carbon
nanohoops with embedded polycyclic aromatic hydrocarbon
(PAH) structures, such as hexa-peri-hexabenzocoronene (HBC)
(Quernheim et al., 2015; Lu et al., 2016; Huang et al., 2019), were
subsequently prepared. These π-extended macrocycles usually
show larger binding constants with guest molecules due to their
larger contact area compared with simple CPP hosts.

The [4]cyclo-2,11-para-hexa-peri-hexabenzocoronene
([4]CHBC) synthesized in our laboratory was found to
selectively incorporate C70 with a binding constant Ka of
1.07 × 106 M−1 in toluene (Figure 1J), but no evidence of
complexation with C60 guest was observed, which could be due
to the “standing” or “lying” orientations of C70 in the cavity of
the carbon nanoring (Lu et al., 2017). Similarly, another HBC-
containing three-dimensional capsule-like carbon nanocage,
tripodal-[2]HBC also exhibited the preference of affinity toward
C70 (Ka = 1.03 × 105 M−1 in toluene) rather than C60, which
was demonstrated by MS, NMR, and photophysical experiments
(Figure 1K) (Cui et al., 2018). More recently, our group achieved
the synthesis of two novel π-extended crown-like molecules
(TCR and HCR) with embedded curved nanographene units,
HBC or TBP (tribenzo[fj,ij,rst]pentaphene) (Huang et al., 2019).
These two species were found to show high binding affinity
toward guest molecule C60 with the association constants Ka

of 3.34 × 106 M−1 for TCR⊃C60, and 2.33 × 107 M−1 for
HCR⊃C60, respectively (Figure 1L). The gradual increasement
in binding constants from [10]CPP⊃C60 (Ka = 2.79× 106 M−1)
(Iwamoto et al., 2011) to TCR⊃C60, then HCR⊃C60, should
be ascribed to the increasing π-surfaces that could provide
stronger π-π interactions between the hosts and C60. Besides,
photocurrents were generated when using these molecular
crowns or their supramolecular complexes on FTO electrodes
under visible light irradiation. Time-resolved spectroscopic
measurements suggested fast photoinduced electron transfer in
the supramolecular heterojunctions.

The recently reported shape-persistent tubular carbon
nanorings demonstrated the binding ability with fullerenes.
Five structural isomers of [4]cyclo-2,8-chrysenylene ([4]CC)
(Hitosugi et al., 2011), which were named as (P)-(12,8)-, (P)-
(11,9)-, (10,10)AABB-, (10,10)ABAB-, and (+)-(16,0)-[4]CC, can
form 1:1 complex with C60 in solution (Isobe et al., 2013). The
highest binding constant among similar complexes was recorded
for (P)-(12,8)-[4]CC⊃C60 (Figure 1M) in o-DCB with Ka =

4.0 × 109 M−1, while isomers of (P)-(11,9)-, (10,10)AABB-, and
(10,10)ABAB-[4]CC also showed the binding constant above 109

M−1. The lowest Ka was recorded for (+)-(16,0)-[4]CC⊃C60

(2.0 ×104 M−1 in o-DCB), but was still higher than that for
[10]CPP⊃C60 (6.0 ×103 M−1 in o-DCB) (Iwamoto et al., 2011).
These results clearly show that the belt-persistency in tubular
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structures also plays a crucial role in binding with fullerenes
besides the cavity size. Therefore, a molecular rolling bearing
with C60 in the [4]CC bearing was constructed as the bearing
can hold the fullerene molecule tightly to prevent its run-out
motion. The C60 molecule did not exchange and took rapid
relative rolling motion on the NMR timescale within the bearing
from the 1HNMR analysis of (P)-(12,8)-[4]CC⊃C60. The crystal
structures of this molecular bearing was further analyzed by
X-ray diffraction, demonstrating the presence of smoothly
curved surface that allows the dynamic motion of C60 even in
the solid state (Sato et al., 2014). Theoretical studies by density
functional theory (DFT) indicates that the calculated association
energies were quite method-dependent, and the energy barriers
for the rolling motions within the bearing were as low as 2–3 kcal
mol−1 with two distinct rolling motions (precession and spin)
(Isobe et al., 2015).

Besides C60 guest, another twelve fullerenes, including C70,
nine exohedral functionalized fullerenes, and two endohedral
fullerenes, were selected and assessed as rolling journals in
the belt-persistent [4]CC bearing (Hitosugi et al., 2013). [4]CC
tolerated the modified fullerenes but with reduced binding
constant. C70 was found to be superior guest not only for the high
binding constant (Ka = 5.0 × 109 M−1 in DCB), but also for its
tolerance of introduction of bulky shaft without obvious decrease
in binding constant. A lengthened version of (P)-(12,8)-[4]cyclo-
2,8-anthanthrenylene ((P)-(12,8)-[4]CA) can also bind with C60

and C70 (Figure 1N) with enhanced association enthalpy as the
increase of the C-C contact area compared with the shorter
congener (P)-(12,8)-[4]CC (Matsuno et al., 2013, 2015).

The electronic properties of the molecular bearings were then
systematically studied. The bearing systems can generate charge-
separated species under light irradiation. (P)-(12,8)-[4]CC⊃C60

system exhibits a rapid back electron transfer to give triplet C60

journal after the formation of triplet charge-separated species
via photoinduced electron-transfer (Hitosugi et al., 2014). The
lengthened version of [4]CA⊃C60 could generate a triplet excited
state at the outer bearing, whereas the endohedral fullerene
Li+@C60 enabled the back electron transfer processes without
triplet excited species (Hitosugi et al., 2015).

Although there existed tight association between (P)-(12,8)-
[4]CC and C60, the solid-state dynamic rotations of C60 still
enabled reorientation by a small energy barrier (+2 kcal mol−1).
The solid-state rotational motions reached a non-Brownian,
inertial regime at 335K (Matsuno et al., 2018b).

Unlike the relatively rigid conformation of the arylene panels
in [4]CC, [7]cyclo-amphi-naphthylene ([7]CaNAP) was rather
flexible with its panels rotate rapidly at ambient temperature
(Sun et al., 2016). However, this rotation did not significantly
affect its binding ability for C70 with the Ka in the range of
107-109 M−1 (depending on the solvents) (Figure 1O) (Sun et al.,
2019). More importantly, the structure of [7]CaNAP deformed
during the rotation to track the orientation changes of the
ellipsoidal C70.

By using dumbbell-shaped C60 dimer (C120) as the ligand

with two binding sites, two-wheeled composites can be assembled

with the shape-persistent macrocycles as the receptors (Matsuno
et al., 2016, 2017). The thermodynamics of the 2:1 complex

revealed the two-stage association constants, for example Ka1

of 7.3 × 1011 M−1 for the formation of the 1:1 complex
[(P)-(12,8)-[4]CC⊃C120], and Ka2 of 9.7 × 107 M−1 for the
2:1 complex [(P)-(12,8)-[4]CC⊃C120⊂(P)-(12,8)-[4]CC]. There
was no self-assembly of the two [4]CC hosts without C120.
The ligand-induced self-sorting phenomena was observed from
the [4]CC family⊃C120. A moderate level of self-sorting was
obtained when mixing a racemic mixture ([4]CC ((P)-(12,8)-
[4]CC [(P)-D4] and (M)-(12,8)-[4]CC [(M)-D4]) and C120 with
equivalent molar ratio: yielding 70% amount of the racemate
complexes [(P)-D4⊃C120⊂(P)-D4 + (M)-D4⊃C120⊂(M)-D4],
and 30% amount of the meso-form [(P)-D4⊃C120⊂(M)-D4]. A
complete self-sorting was obtained when two diastereomers of
[4]CC ([(P)-D4] and (10,10)ABAB-[4]CC [D2d]) were applied:
yielding 50% amount of (P)-D4⊃C120⊂(P)-D4, 50% amount
of D2d⊃C120⊂D2d, and no (P)-D4⊃C120⊂D2d was detected
(Figure 1P). This shape recognition can be explained by the
repulsive van der Waals interactions between aliphatic side
chains caused by the H–H contacts at the interfaces of the
receptors as revealed by the crystal structures.

SUPRAMOLECULAR COMPLEXES WITH

NON-FULLERENE COMPOUNDS

When two aromatic moieties stack in a face-to-face fashion,
the π-π interaction could hold the two species together,
such as the case of CPP analogs with fullerenes. Besides,
other non-covalent interactions, such as CH-π, metal-π
interactions also play important roles in various supramolecular
systems. The CH-π interaction, which is a kind of atom-
to-surface hydrogen bond and relatively weak, could also
assemble host-guest complex. On the other hand, the
metal-π coordination usually could strongly stabilize the
associated architecture.

In 2013, Petrukhina et al. reported the potassium salt of a
CPP tetraanion (4 K+/[8]CPP4−) by direct reduction of [8]CPP
with potassium metal (Figure 2A) (Zabula et al., 2013). The
X-ray diffraction analysis revealed that [8]CPP4− functions as
a multisite ligand with its endo- and exo- surfaces engaged
in coordination with the potassium. Similarly, [6]CPP were
also demonstrated to be reduced by alkali-metal to its mono-
and di-anions, [6]CPP1− and [6]CPP2− (Spisak et al., 2018).
Itami et al. synthesized η6 mono-coordinated CPP complexes
[n]CPP-M(CO)3 where n = 9, 12 and M = Cr, Mo, W
(Figure 2B) (Kubota et al., 2015). The crystal structure of
[9]CPP-Cr(CO)3 showed that chromium coordinated on the
convex surface of [9]CPP. Later, Yamago’s group succeeded in
the preparation of mono-, di-, and tri-coordinated complexes
of ruthenium with [n]CPP (n = 5 and 6) (Kayahara et al.,
2016). Ru selectively coordinated to alternate phenylene units in
multi-coordinated complexes (Figure 2C). Single-crystal analysis
indicated that Ru also coordinated on the convex surface
of CPPs. More recently, Jasti illustrated a general strategy
for building up nanohoops that could easily coordinate to
transition metals (Van Raden et al., 2017). 2,2′-bipyridine-
embedded [8]CPP (bipy-[8]CPP) synthesized in this work
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FIGURE 2 | Supramolecular complexes with non-fullerene compounds: (A) The potassium salt of a CPP tetraanion: 4 K+/[8]CPP4−. (B) The η6 mono-coordinated

CPP complexes. (C) Tri-coordinated complex of ruthenium with [6]CPP. (D) Pd(II) coordinated with two 2,2′-bipyridine-embedded [8]CPPs (bipy-[8]CPP) to form

(bipy-[8]CPP)-Pd(II)-(bipy-[8]CPP) complex. (E) A ternary complex: [15]CPP⊃[10]CPP⊃C60. (F) [18]CPP catenane. (G) Emissive triazole rotaxanes and non-emissive

diyne rotaxane. (H) The bowl-shaped corannulenes were encapsulated by [4]CC host through multiple weak CH-π contacts.

can readily coordinate to Pd(II) or Ru(II) metal centers,
forming (bipy-[8]CPP)-Pd(II)-(bipy-[8]CPP) (Figure 2D) or
Ru(II)-(bipy-[8]CPP) complexes, respectively.

Besides the role as supramolecular hosts, CPP molecules
can also serve as guests to be included in larger nanohoops
with the “Russian doll” fashion. The strongest binding was
predicted when the host and guest differed by five phenyl
rings through theoretical calculations (Fomine et al., 2012;
Bachrach and Zayat, 2016). Yamago et al. demonstrated
these predictions by experimental studies: [n]CPPs (n = 5,
6, 7, 8, and 10) did selectively interact with [n+5]CPPs,
forming [n+5]CPP⊃[n]CPP complexes (Hashimoto et al., 2017).
A ternary complex, [15]CPP⊃[10]CPP⊃C60, could also be
assembled (Figure 2E).

By analyzing the ions in the gas phase of the complex
mixture from CPP synthesis through matrix assisted laser
desorption ionization (MALDI) together with ion-mobility

mass spectrometry (IMMS), Müllen’s group provided evidence
for the existence of possible catenanes composed of CPPs,
such as [12]CPP+[24]CPP, 2×[18]CPP (Figure 2F), or even
a trefoil knot (Zhang et al., 2017b). Most recently, Itami
et al. reported the synthesis of all-benzene catenanes and
trefoil knot through silicon-based template method which
adjoined two neighboring CPP fragments in a crossing pattern
followed by removal of the silicon tether after macrocyclization
(Segawa et al., 2019). Interestingly, the trefoil knot shows
only a single proton resonance in 1H-NMR spectrum even
at −95◦C, indicating its ultrafast motion on the NMR time
scale. The [2]heterocatenane, in which [12]CPP and [9]CPP are
mechanically interlocked shows energy transfer from [12]CPP to
[9]CPP via the mechanical bond under light irradiation. Cong
et al. reported the synthesis of a catenane consisting of two
interlocked phenanthroline-containing nanohoops by copper(I)-
templated method (Fan et al., 2018). The solid state structure
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shows a Möbius topology stabilized by non-covalentinteractions.
A 2,6-pyridyl embedded nanohoops were recently synthesized
for the preparation of nanohoop-based rotaxanes through
active metal template reactions (Figure 2G; Van Raden et al.,
2019). The triazole-embedded [2]rotaxanes showed dramatic
changes in fluorescence emission (turn-off) when Pd(II) salt
was added, suggesting its possible applications in ion sensing.
Inspired by this study, another non-emissive [2]rotaxane
was devised and synthesized, which has a fluorescence-
quenching 3,5-dinitrobenzyl stopper and a fluoride-cleavable
triisopropylsilyl (TIPS) stopper. Upon the addition of tetra-
n-butylammonium fluoride (TBAF), 123-fold emission was
recovered as the nanohoop fluorophore was released, indicating
that the nanohoop rotaxanes could effectively serve as turn-on
fluorescence sensors.

Itami et al. described the assembly of iodine within [n]CPPs
(n = 9, 10, and 12) (Ozaki et al., 2017). Upon electric
stimuli, [10]CPP-I turned out to emit white light, caused by
the formation of polyiodide chains inside the [10]CPP cavity
through charge transfer between [10]CPP tubes and encapsulated
iodine chains.

Gaeta reported the 1,4-dimethoxy modified [8]CPP
which exhibits binding ability toward pyridinium cations
(Della Sala et al., 2017). Density functional theory (DFT)
calculations indicated that the CH···π and N+

···πDMB

(DMB = 1,4-dimethoxybenzene) interactions between the
host and pyridinium guest played a crucial role in this
supramolecular system. Another multi-(1,4-dimethoxy)
modified [9]CPP synthesized by our group showed only
weak supramolecular interactions for cationic molecules
(Lu et al., 2018).

A novel type of host-guest complex assembled solely by CH-
π hydrogen bonds rather than π-π interactions was devised
by the Isobe group (Matsuno et al., 2018a). A bowl-shaped
corannulene can be encapsulated by a [4]CC host through
multiple weak CH-π contacts to form a 1:1 complex in
solution, driven by a large association enthalpy. The 1:2 host-
guest combination was unveiled in the crystalline solid state
(Figure 2H). Despite the multiple weak hydrogen bonds, the
guest was still allowed dynamic rotational motions in the host.
Solid state analysis revealed a single-axis rotation of the bowl in
the tube.

SUMMARY AND OUTLOOK

In this featured article, we overviewed recent progress on
supramolecular properties of CPPs and their analogs. Various
types of new carbon nanohoops were prepared by transition
metal-catalyzed coupling reactions. These macrocycles usually
possess well-defined cavities with rigid conformation and fixed
diameters, which makes them good supramolecular hosts for
incorporating a wide range of compounds, such as spherical
fullerenes through π-π, metal-π, and/or CH-π interactions.
These non-covalent interactions enabled efficient molecular
recognitions and host-guest energy transfer. Although the
synthesis of new carbon nanohoops and related supramolecular
complexes has been growing very fast during the past decade,
the applications of these carbon-rich architectures in some
fields, such as, organic electronic devices, molecular sensing,
and molecular machines, is still far from satisfaction. For
further advancement, research efforts should be devoted to
explore robust synthetic strategies which are essential for the
diversification of carbon nanohoop family. Interdisciplinary
studies with cooperative material sciences, analytical, biological,
physical, and theoretical chemistry, will dramatically expand
the understanding and application of the macrocycles and their
supramolecular complexes. It is reasonable to expect that these
carbon-rich structures will attract further research interests, and
lead to the preparation of unique and unprecedented molecular
tools and materials in the future.
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In this study, we synthesized a new thiosemicarbazide-functionalized calix[4]arene L

and its Co2+, Ni2+, Cu2+, and Zn2+ transition metal complexes. For characterization

several techniques were employed: Fourier-transform infrared (FT-IR), 1H nuclear

magnetic resonance (NMR), 13C-NMR, 15N-NMR, correlation spectroscopy (COZY),

nuclear Overhauser enhancement spectroscopy (NOESY), electrospray ionization

(ESI)–mass spectroscopy, scanning electron microscopy (SEM), energy-dispersive

X-ray spectroscopy (EDS), and elemental analysis. To explore the capability of the

thiosemicarbazide function hosted on a calix[4]arene scaffold for growth inhibition

of bacteria, fungi, and cancerous tumor cells, a series of biological evaluations

were performed. For L, the antimicrobial tests revealed a higher antibacterial activity

against gram-positive Bacillus subtilis and a lower activity against gram-negative

bacteria (Escherichia coli and Pseudomonas aeruginosa), whereas the gram-positive

Staphylococcus aureus shows resistance. All examined metal derivatives show an

enhancement of the antibacterial activity against gram-negative E. coli bacteria, with a

more significant improvement for the Ni2+ and Zn2+ complexes. MTT assays showed

a considerable in vitro anticancer activity of Co2+, Ni2+, and Cu2+ complexes against

Saos-2 bone cancer cell lines. The activity is ascribable to the inorganic ions rather than

calixarene ligand. Hemolysis assay results demonstrated that all compounds have high

blood compatibility.

Keywords: thiosemicarbazide, calix[4]arene, ligand, transition metal complex, antimicrobial, anticancer
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INTRODUCTION

As the third generation of supramolecular hosts,
calix[n]arenes have attracted considerable attention in a
wide range of either demonstrated or potential applications on
the basis of their molecular recognition capabilities (Gutsche,
2008; Neri et al., 2016). These applications most notably include
direct chemical sensing systems for both ions and neutral
molecules (Sliwa and Girek, 2010; Brunetti et al., 2016; Sun
et al., 2016; Yeon et al., 2016; Teixeira et al., 2017; Augusto et al.,
2018; Cindro et al., 2018; Sarkar et al., 2018), but the host–guest
chemistry of calix[n]arenes has also been investigated for use
in chemical extraction (Du et al., 2018), catalysis (Homden and
Redshaw, 2008; Shirakawa and Shimizu, 2018), and various
biological/biomedical uses (Perret and Coleman, 2011; Nimse
and Kim, 2013; Durso et al., 2016).

The extensive interest in calix[n]arenes is correlated
with their ease of synthesis and the possibility of successive
functionalization of both the upper and lower rims. This
offers the possibility to introduce a wide variety of functional
groups with different binding properties to fine-tune their
supramolecular chemistry. Furthermore, the possibility
to functionalize several arms in theory permits them to
be multifunctional molecules. Specifically in the case of
calix[4]arenes, the high degree of the cavity pre-organization
of the cone conformation, combined with this possibility
to introduce different functional groups, make them ideal
candidates as molecular scaffolds in the design of novel receptors
even for metal ions (Sgarlata et al., 2017; Borges et al., 2018;
Gaber et al., 2018; Yousef et al., 2018).

Functionalized calixarenes are of particular interest as
molecular recognition systems for biomedical applications, and
they have been investigated as direct therapeutic agents (William
Anthony Coleman, 2010), in drug delivery applications (Rahimi
et al., 2018a, 2019), in protein recognition (Doolan et al., 2018),
and in imaging applications (Mayer et al., 2018). From this point
of view, a potentially interesting strategy that can be applied
to calixarenes is functionalization with thiosemicarbazide
groups. Thiosemicarbazide groups are functional groups
whose derivatives display pharmacological properties that
may be further enhanced by incorporation of metal ions
(Salah et al., 2018). Thus, both free thiosemicarbazides and
their metal complexes have been investigated as anticancer
(Güniz Küçükgüzel and Coşkun, 2016; Xie and Peng,
2018; Xie et al., 2018), antiviral (Cihan-Üstündag et al.,
2016), and antibacterial (Brahma et al., 2018; Molnar et al.,
2018) agents.

The application of calix[4]arenes as receptor of hard metal
ions, such as alkaline and alkaline-earth ions, is well-known
(Sliwa and Girek, 2010). The incorporation of sulfur atoms
introduces the possible coordination of softer transition metal
ions, such as Co2+, Ni2+, Cu2+, and Zn2+, which are of particular
biological interest. The metal complexation can occur through
S and terminal N atoms in various ways (Campbell, 1975). For
example, the metal complexes of the thiosemicarbazide molecule
exhibit square planar (Yang et al., 2006), octahedral (Burrows
et al., 1996), square pyramidal (Chiesi Villa et al., 1972), or

tetrahedral coordination (Tong et al., 2000) for Co2+, Ni2+,
Cu2+, and Zn2+, respectively.

The rigid structure of tert-butyl-calix[4]arenes means that up
to four ligands can be introduced onto the framework through
the hydroxy groups in a controlled manner. In general, two
thiosemicarbazide groups would be necessary for each calixarene
molecule to satisfy the coordination of a single ion. Therefore,
the synthetic strategy adopted was to functionalize the 1, 3
positions of the lower rim of the tert-butyl-calix[4]arene in
cone conformation.

Herein, we report the synthesis and molecular
characterization of this novel calix[4]arene-based
thiosemicarbazide ligand and its related complexes with
some transition metal ions, expressly Co2+, Ni2+, Cu2+, and
Zn2+. For these compounds, antimicrobial and anticancer
activities and biocompatibility were evaluated.

EXPERIMENTAL

Materials
All chemical reagents (Merck) and solvents (Merck and Aldrich)
were used as purchased without further purification. Human
blood was obtained from the Iranian Blood Transfusion Institute.
Mueller–Hinton agar (MHA) and Mueller–Hinton broth (MHB)
were purchased from Quelab and Merck, respectively. All
microorganism strains—Staphylococcus aureus (ATCC R©

29213TM), Bacillus subtilis (ATCC R© 6633TM), Escherichia
coli (ATCC R© 25922TM), Pseudomonas aeruginosa (ATCC R©

27853TM), Candida albicans (ATCC R© 10231TM), and Candida
glabrata (ATCC R© 2001TM) were provided from Persian Type
Culture Collection (PTCC, Karaj, Iran) or Microbiology
Department of Drug Applied Research Centre (DARC, Tabriz
University, Iran).

Instrumentation
Fourier-transform infrared (FT-IR) spectra were recorded on
a Bruker Tensor 27 spectrometer in the region 4,000–500
cm−1 using KBr pellets. Nuclear magnetic resonance [1H-
NMR, 13C-NMR, 15N-NMR, correlation spectroscopy (COZY),
and nuclear Overhauser enhancement spectroscopy (NOESY)]
spectra were taken on a Bruker Spectrospin Avance 400 MHz,
Varian 400 and 500 MHz, and Ultra Shield spectrometer with
CDCl3 solvent. For L, Zn2+ titration, aliquots of 4 µL of
1M Zn(NO3)2·6H2O in perdeuterated methanol were added
to 0.016 mmol of L in 0.6mL of CDCl3 and followed by
1H-NMR. NMR spectra were recorded at 25◦C after 10min
of equilibration time. Mass spectra were recorded on an ion
trap Bruker Esquire 4000 and on a Bruker microTOF-Q,
both equipped with an electrospray ionization (ESI) system.
Microanalyses were carried out using a Heraeus CHN-O-Rapid
analyzer. Melting points were measured on an Electrothermal
9100 apparatus. The morphology characteristic, size distribution,
and percentage elemental analysis of samples were conducted
via scanning electron microscopy (SEM) (field emission SEM–
energy-dispersive X-ray (FESEM-EDX); TESCAN 5001). Prior
to examination, samples were mounted onto a metal stub
using double-sided carbon adhesive tape and covered with a
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thin layer of gold, with the aid of a direct current sputter
technique (Emitech k450×, England). Furthermore, to evaluate
the complexation process, elemental analysis by the energy-
dispersive X-ray spectroscopy (EDS) technique was performed.

Synthesis
p-tert-Butylcalix[4]arene 1 was synthesized using the
method published by Gutsche et al. (1981). Compound
2 (5,11,17,23-tetra-p-tert-butyl-25,27-bis[cianomethoxy]-26,28-
dihyroxycalix[4]arene), compound 3 (5,11,17,23-tetra-p-tert
-butyl-25,27-bis[aminoethoxy]-26,28-dihyroxycalix[4]arene),
and compound 4 (5,11,17,23-tetra-p-tert-butyl-25,27-bis
[2-isothiocyanoethoxy]-26,28-dihydroxycalix[4]arene) were
synthesized using procedures reported by Collins et al. (1991),
Zhang and Huang (1997), and Quiroga-Campano et al.
(2017), respectively.

Preparation of

5,11,17,23-tetra-tert-butyl-26,28-dihydroxy-25,27-

bis(thiosemicarbazidoethoxy)calix[4]arene

(L)
Compound 4 (0.15 g, 0.18mmol) was added at room temperature
to a stirred solution of hydrazine hydrate (90 µL, 1.8 mmol)
in ethanol (5mL). Stirring was continued for 3 h until a clear
yellow solution was obtained. The solvent was evaporated, and
the final product was recrystallized from ethanol. Yield 83%. mp:
280◦C (dec.). ESI–high-resolution mass spectroscopy (HRMS):
[C50H70N6O4S2+Na]+ calcd: 905.4972 m/z; found: 905.4970
m/z; FT-IR (KBr, cm−1); 583, 798, 875, 937, 1,043, 1,109, 1,200,
1,297, 1,363, 1,476, 1,542, 1,618, 2,871, 2,957, 3,049, 3,437; 1H-
NMR: (400 MHz, CDCl3, tetramethylsilane (TMS), 25◦C, δ

ppm), 8.35 (s, 2H; CNHCS), 7.63 (s, 2H; NNHCS), 7.34 (s,
2H; OH), 7.06 (s, 4H; ArH), 6.86 (s, 4H; ArH), 4.21 (d, 4H;
ArCH2Ar), 4.27–4.17 (m, 8H; OCH2CH2NCS), 4.12–3.95 (NH2;
bs, 4H), 3.37 (d, 4H; ArCH2Ar), 1.28 (s, 18H; t-Bu), 1.00 (s,
18H; t-Bu). 13C-NMR (101 MHz, CDCl3) δ ppm: 183.26 (C-
S), 150.22, 149.14, 147.81, 142.45, 132.64, 127.82, 125.99, 125.53,
74.60 (CH2O), 44.71 (CH2N), 34.20 (C(CH3)3), 34.02 (C(CH3)3),
32.05 (ArCH2Ar), 31.79 (CH3), 31.16 (CH3).

15N-NMR (50
MHz, CDCl3, δ ppm (from CH3NO2): −274.3 (CH2NH); other
N’s are not detected by 1H–15N inverse correlation due to proton
exchange. Anal. Calcd. for C50H70N6O4S2 (883.27): C, 67.99; H,
7.99; N, 9.51; found: C, 67.54; H, 8.24; N, 10.04.

Synthesis of Metal Complexes
All of the complexes were synthesized as follows.

An appropriate amount of metal salts (0.11 mmol) was
dissolved in methanol (5mL), and the solution was added to
a tetrahydrofuran (THF) solution (10mL) of ligand L (0.11
mmol). The mixture was stirred and refluxed for 24 h, after
which the precipitate was filtered and the solvent was eliminated
under reduced pressure. The solid obtained was purified by
crystallization using THF.

Cobalt compound
Co(NO3)2·6H2O salt (0.029 g, 0.11 mmol) was used as the
Co2+ ion source. A dark brown powder was obtained. Yield:

90%. mp: 230◦C (dec.). FT-IR (KBr, cm−1), 588, 635, 674,
783, 819, 873, 920, 1,039, 1,120, 1,199, 1,384, 1,482, 1,637,
2,871, 2,958, 3,345. ESI-MS: [C50H69N6O4S2Co]

+ calcd: 940.4
m/z; found: 940.4 m/z; [C50H68N6O4S2Co]

+ calcd: 939.4 m/z;
found: 939.4m/z.

Nickel compound
Ni(NO3)2·6H2O salt (0.029 g, 0.11 mmol) was used as the Ni2+

ion source. A pale green powder was obtained. Yield: 44%. mp:
276◦C (dec.). FT-IR (KBr, cm−1), 587, 685, 747, 814, 873, 922,
1,038, 1,121, 1,197, 1,238, 1,370, 1,481, 1,564, 1,634, 2,095, 2,958,
3,278. ESI-MS: [C50H69N6O4S2Ni]

+ calcd: 939.4 m/z; found:
939.4m/z.

Copper compound
Cu(NO3)2·3H2O salt (0.27 g, 0.11 mmol) was used as the Cu2+

ion source. A green-brown powder was obtained. Yield: 68%.
mp: 270◦C (dec.). FT-IR (KBr, cm−1), 583, 632, 689, 806, 873,
1,034, 1,108, 1,196, 1,304, 1,367, 1,479, 1,576, 1,635, 2,957, 3,047,
3,397. ESI-MS: [C50H69N6O4S2Cu]

+ calcd: 944.4 m/z; found:
944.4m/z.

Zinc compound
Zn(NO3)2·4H2O salt (0.026 g, 0.11 mmol) was used as the Zn2+

ion source. A pale green powder was obtained. Yield: 83%. mp:
208◦C (dec.). FT-IR (KBr, cm−1) 581, 674, 783, 1,036, 1,115,
1,198, 1,373, 1,481, 1,635, 2,564, 2,958, 3,270. 1H-NMR: (400
MHz, CDCl3, TMS, 25◦C, δ ppm), 8.49 (s, 2H; –NHCS), 7.00
(bs, 8H; ArH), 4.15 (bs, 4H; ArCH2Ar and 8H; OCH2CH2NCS),
3.4 (bs, 4H; ArCH2Ar), 1.19 (s, 18H; t-Bu), 1.13 (s, 18H; t-Bu).
13C-NMR (101 MHz, CDCl3) δ ppm: 149.2 (s), 148.7 (s), 148.0
(s), 143.0 (s), 133.2 (s), 127.5 (d), 127.1 (d) 125.6 (d), 34.4 (s,
C(CH3)3), 34.0 (s, C(CH3)3), 32.6 (t, ArCH2Ar), 31.6 (q, CH3),
31.2 (q, CH3). ESI-MS: [C50H69N6O4S2Zn]

+ calcd: 945.4 m/z;
found: 945.5m/z.

Antimicrobial and Antifungal Studies
The minimum inhibitory concentration (MIC) and minimum
bactericidal concentration (MBC) of the ligand and related
complexes were measured using the microbroth dilution
method according to the protocols described by Clinical and
Laboratory Standards Institute (CLSI) (Weinstein et al., 2018).
Concentration series (15.62–2,000 ppm) of the compounds were
prepared in nutrient broth medium. A total of 180 µL of
prepared diluted solutions was transferred into sterile 96-well
microtiter plates, and then 20 µL of standardized microorganism
suspensions was added and mixed gently to get a homogenous
suspension. The concentration of the microorganisms was
adjusted to 5 × 105 CFU mL−1 by 0.5 McFarland solution.
Then, the plates were incubated at 37◦C for 24 h (Bahlouli et al.,
2018). After incubation, turbidity was evaluated to determine
bacterial growth, and the dilution with no turbidity (lack of
growth) was considered as MIC. Finally, to determine the
MBC, samples (5 µL) from tubes in which no growth was
observed were cultured in plate (containing MHA medium)
and incubated for 24 h at 37◦C. In each test, microorganism
strain in MHB (without chemicals) and MHB alone (without
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bacteria) were used as positive and negative growth controls,
respectively (Karimi et al., 2018). This method was applied with
S. aureus (ATCC R© 29213TM) and B. subtilis (ATCC R© 6633TM)
as gram-positive bacteria, E. coli (ATCC R© 25922TM) and P.
aeruginosa (ATCC R© 27853TM), as gram-negative bacteria, and C.
albicans (ATCC R© 10231TM) and C. glabrata (ATCC R© 2001TM) as
fungal strains.

Cell Culture
MCF-7 cells (human breast cancer cells) and Saos-2 cells (human
bone cancer cells) were collected from the Pasteur Institute
of Iran, Tehran, Iran, and maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum (FBS) and 1%
benzylpenicillin/streptomycin. Further, the MCF-7 and Saos-2
cell lines were maintained at 5% CO2 in a CO2 incubator at 37

◦C
for 24 h. Cultures were continuously viewed under a microscope
to evaluate the quantity of confluence, and the absence of
bacterial and fungal contaminants was confirmed. After 90%
confluence was reached, the cells were detached by adding trypsin
to the flask. The cell suspensions were collected and centrifuged
at 1,500 rpm for 5min and re-suspended in the growth medium
for further steps (Rahimi et al., 2017a).

MTT Assay
To determine the cytotoxic effect of the synthesized ligand and
its related metal compounds, a cell viability study was done
with the MTT reduction assay. MCF-7 and Saos-2 cells were
seeded at a density of 1 × 104 cells/well in 96-well plates. The
cells were incubated overnight and treated with L or one of
the metal complexes at the concentrations of 200, 100, and 50
ppm for 48 h using untreated cells as control. Afterward, the
culture media were exchanged with 180mL of fresh culture
media and 20mL of MTT solution (2mg mL−1) and incubated
at 37◦C for 4 h. The MTT solution was removed and replaced
with 200 µL of dimethyl sulfoxide (DMSO) followed by 20-
min incubation time. The absorbance of each well (dissolved
formazan crystals) wasmeasured at a wavelength of 570 nm using
an enzyme-linked immunosorbent assay (ELISA) reader (Shafiei-
Irannejad et al., 2018). The results were given as the mean of
three independent experiments. The percentage of viability was
calculated by absorbance values using the following formula:

Cell viability (%) =
Asample

Acontrol
× 100 (1)

FIGURE 1 | Route followed for the synthesis of ligand L; (i) chloroacetonitrile, K2CO3, NaI, reflux, 7 h; (ii) LiAlH4, (0
◦C), 4 h; (iii) CSCl2, BaCO3, 24 h; (iv) hydrazine

hydrate, room temperature, 3 h.
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Hemolysis Assay
Blood Collection and Erythrocyte Isolation
Hemolysis assay was performed using fresh human blood.
Approximately 5mL of blood that was stabilized using EDTAwas
placed into a 15-mL centrifuge tube. Phosphate-buffered saline
(PBS) measuring 10mL was added to wash away blood proteins
and serum from the red blood cells (RBCs). The erythrocytes
were collected by centrifugation at 4,000 rpm for 10min at
room temperature. The upper layer (plasma) was discarded, and
erythrocytes (RBCs) were isolated. The RBCs were washed three
times with PBS (pH= 7.4) to obtain a clear supernatant (Rahimi
et al., 2018b).

Hemolytic Activity and RBC Aggregation
The total isolated RBCs were diluted 10 times with PBS. In each
microtube, 0.5mL of ligand L or one of the metal complexes was
mixed at different concentrations (62.5, 125, 250, 500, and 1,000
ppm) with 0.5mL of diluted RBCs and incubated at 37◦C for
3 h in an incubator shaker. Diluted RBCs treated with 0.5mL of
water and PBS were used as positive and negative controls with
100% and 0% hemolytic effects, respectively. After incubation, all
samples were centrifuged at 4,000 rpm for 5min. The supernatant
was taken out and transferred to a 96-well plate (Rahimi et al.,
2018b). An ELISA plate reader was used to measure the released
hemoglobin (at a wavelength of 540 nm), and the hemolysis rate
was calculated via the following formula:

Hemolysis (%) =
Asample − Anegative

Apositive − Anegative
× 100, (2)

whereAsample is the absorbance of the testing sample, andApositive

and Anegative are the absorbance of the positive control and the
negative control, respectively.

RESULTS AND DISCUSSION

Development of a New

calix[4]arene-thiosemicarbazide Ligand

and Related Metal Derivatives
The synthetic route for the preparation of
5,11,17,23-tetra-tert-butyl-26, 28-dihydroxy-25,27-
bis(thiosemicarbazidoethoxy)calix[4]arene (L) is shown in
Figure 1.

Briefly, starting from p-tert-butylcalix[4]arene (1), a couple
of hydroxyl groups on the lower rim in 1, 3 alternate positions
were transformed to cyanomethoxy by chloroacetonitrile (2).
The reduction of cyano functional groups with LiAlH4 gave the
corresponding diamine derivative (3). Then, the diisothiocyanate
derivative (4) was obtained by the reaction of compound 3 with
thiophosgene in high yield. Finally, the reaction of compound 4

with an excess amount of hydrazine hydrate in ethanol at room
temperature resulted in the new calixarene-thiosemicarbazide
derivative (L).

Several divalent metal derivatives of L (Co2+, Ni2+, Cu2+, and
Zn2+) were prepared by mixing one equivalent of the metal salt
in MeOH with one equivalent of ligand L in THF followed by
reflux for 24 h.

Characterization
Several techniques (FT-IR, 1H-NMR, 13C-NMR, 15N-NMR,
COZY, NOESY, MS, CHN analysis, SEM, and EDS analysis) were

FIGURE 2 | Fourier-transform infrared (FT-IR) spectra of compound 4 (A) and ligand L (B).
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performed to confirm the preparation route of the ligand and
metal derivatives.

FT-IR
The success of the final step of synthesis is confirmed by the
analysis of the FT-IR spectra. The absence of the strong peak at
2,094 cm−1 from the spectrum of L, assigned to the stretching
mode of CN in the NCS group of 4 (Yamamoto et al., 1992), is
the most noteworthy feature that indicates the transformation of
isothiocyanate functional group (Figure 2). The disappearance
of this peak should be accompanied by the appearance of new
bands related to stretching and bending vibrations of the formed
thiosemicarbazide group, such as the new bands observed at
1,620–1,540 cm−1, which can be attributed to the υ(–N–C=S)
vibrations (Rao and Venkataraghavan, 1962). The band at 875
cm−1 can be attributed to the stretching of the C=S group
(Mostafa, 2007). Furthermore, the absence of any bands in the
2,600–2,550 cm−1 range assignable to υ(SH) stretching suggests
that the CS group remains in thione form (Mostafa, 2007). The
expected N–H bond stretching of the thiosemicarbazide group
lies within the broad envelope of the peak centered at 3,437
cm−1, which also contains the O–H stretching (Silverstein et al.,
1991; Rastogi et al., 2002). The other bands, corresponding to C–
H, C=C, and C–C vibrational modes of aromatic rings (Baldini
et al., 2003; Hernández et al., 2016), are conserved in both 4 and
L spectra.

The comparison of the FT-IR spectra of L and the derivative
metal complexes evidences a main feature that supports themetal
coordination by L. The characteristic double peak of the N–C=S
vibration observed for L in the 1,620–1,540 cm−1 region shifts to
higher wave number in all metal derivatives. These differences
are summarized in Table 1, and the corresponding spectra are
reported in the Supporting Information.

This observation is in agreement with the hypothesis of a
metal coordination by L for all bivalent ions, with a possible
formation of a five-member cycle involving the terminal N-atom
and S-atom responsible for the profile change of the N–C=S
vibration bands.

NMR
The 1H-NMR spectra of compound 4 (Figure 3A) show two
singlet signals for two sets of 18 t-Bu protons (δ 0.97 and 1.29
ppm), two doublet signals (δ 3.36 ppm, 4 protons; and δ 4.25 ppm,
4 protons) assigned to the calixarene –CH2- bridging groups,
a multiplet peak (δ 4.22–4.14 ppm) corresponding to the eight
OCH2CH2NCS protons, two types of aromatic protons (δ 6.86
ppm, 4 protons; and δ 7.06 ppm, 4 protons) as two singlet signals,

and one singlet peak related to two OH protons (δ 6.89 ppm) in
agreement with literature data (Quiroga-Campano et al., 2017).

The 1H-NMR spectra of ligand L (Figure 3B) show analogous
signals for the protons that correspond to those in 4, in addition
to a broad singlet for the four terminal NH2 protons (δ 4.12–
3.95 ppm), a singlet peak attributed to two thiosemicarbazide NH
protons (δ 7.63 ppm), and a singlet signal attributed to twoNHCS
protons (δ 8.35 ppm). The singlet peak corresponding to two OH
proton (δ 7.34 ppm) appears at a significantly higher chemical
shift than observed for compound 4 (δ 6.89 ppm). The 1H-NMR
assignment was supported by the H-H andH-C two-dimensional
(2D) NMR spectra (see Supporting Information). Thus, these
spectra are in agreement with the synthesis of the new calixarene
derivative L.

The complexation of the metal ions was investigated by NMR
only for the diamagnetic Zn2+ ion. The addition of a Zn(NO3)2
solution to the L sample provokes a general broadening and shift
of 1H-NMR signals depending of the type of protons involved.
In particular, the signals of protons of the p-tert-butyl of phenyl
groups functionalized by the thiosemicarbazide arms (a) and
the corresponding aromatic hydrogens (f) are the most affected
(Figure 4).

Owing to the overall broadening of the signals, the two
strongest singlets due to sets of 18 tert-butyl protons (a, b) are the
best indicators to follow the complexation process. The stepwise
addition of Zn2+ ions causes a downfield shift of the (a) protons,
whereas the (b) protons are shifted upfield. In particular, the (a)
signal shows a slight shift upon the first addition of a Zn2+. Then
with the second addition of Zn2+ ion (L:Zn2+ ratio = 1:0.5), a
split of the (a) signal becomes evident. The two signals (a′ and
a′′) 0.1 ppm apart that have approximately equal intensity can
be attributed to species with unbound and bound Zn2+ ions,
respectively. When the titration reaches the 1-to-1 ratio, the (a′)
signal disappears in favor to the (a′′) signal of the Zn2+ complex.
Contemporarily, a significant downfield shift of the aromatic
proton (f) is observed. This titration experiment clearly shows
the coordination properties of the L ligand and the formation of
a 1-to-1 stoichiometric complex.

ESI-MS
The HRMS of ligand L showed molecular ion peaks
corresponding to the sodium adduct of the L ligand
(Supporting Information). The most intense peak of
905.4790 m/z perfectly agrees with a compound with formula
C50H70N6O4S2 (theoretical [M + Na]+ equal to 905.4792 m/z)
and confirms the proposed structure for L.

Evidence of formation of the complexes was obtained by
ESI-MS (Supporting Information). All spectra show peaks

TABLE 1 | IR spectral data (cm−1) of the ligand and its corresponding complexes in KBr pellets.

Vibrational mode Frequency (cm−1)

Ligand L Complex Co Complex Ni Complex Cu Complex Zn

N–C = S 1,618, 1,542 1,637, sh 1,634, 1,564 1,635, 1,576 1,635, sh

IR, infrared.
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FIGURE 3 | Selected portion of the 1H-NMR spectra of compound 4 (A) and ligand L (B).

related to multiple species along with evidence for formation
of the metal ion complexes. The spectrum for the Co adduct
shows the presence of Co2+ bound by a deprotonated L

ligand ([C50H69N6O4S2Co]
+, m/z 940.4) superimposed with

an amount of Co3+ species bound by a doubly deprotonated
L ligand ([C50H68N6O4S2Co]

+, m/z 939.4). It should be
noted that the deprotonation of two hydroxy groups of
calix[4]arene is consistent with formation of an octahedral
coordination environment ideal for complexation of Co3+

species. The spectrum of Ni derivative, in which an ion is
usually involved in octahedral coordination, shows the clearest
evidence of metal complexation of those investigated. The

most intense peaks are related to the mono-deprotonated
L ligand coordinated to Ni2+ ion ([C50H69N6O4S2Ni]

+,
m/z 939.4). In the case of Cu2+ and Zn2+, the MS show a
series of peaks related to the [C50H69N6O4S2Cu]

+ (944.4
m/z) and [C50H69N6O4S2Zn]

+ (945.5 m/z) complexes,
respectively. For both species, the isotopic distribution shows
some small discrepancy in the intensity with respect to the
calculated distributions.

SEM
The morphological characteristics of the solid-state aggregation
of ligand L and its metal derivatives were evaluated using a SEM
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FIGURE 4 | 1H-NMR spectrum sequence of titration of L by Zn2+ ions. The bottom spectra of L are scaled by a factor of 0.2.

by applying 15-kV electron acceleration voltage. Figures 5A–D
shows the SEM images of ligand L and of its metal derivatives at
20× magnification. In comparison with L, each metal derivative
shows a different morphology of the aggregation state, with
a more crystalline tendency in the case of the Zn derivative
(Figure 5E).

EDS
EDS or EDX was used to semi-quantitatively measure chemical
elements of compounds. As indicated by the EDS chemical maps,
the presence of Co, Ni, Cu, and Zn metals is confirmed in the
corresponding metal derivative samples (Figure 6). The analysis
of the data suggests that the percentage of metal ions in the Cu2+

and Zn2+ samples is somewhat higher than that observed for the
Ni2+ and Co2+ derivatives.

In vitro Antimicrobial Activity and

Antifungal Evaluation
The biological properties of thiosemicarbazide derivatives have
been studied extensively in recent years by different research
groups (Liesen et al., 2010; Plech et al., 2011; Shebl et al.,
2013; Rane et al., 2014). Herein, the in vitro antimicrobial
and antifungal activities of the synthesized compounds (L
and complexes of Co, Ni, Cu, and Zn) were evaluated using
the microbroth dilution method against the aforementioned
standard strains. None of the investigated compounds show a
measurable antifungal activity. However, as shown in Table 2,
the free ligand L has an effective antibacterial activity against
gram-positive B. subtilis, whereas the gram-positive S. aureus

was resistant to it. A lower activity was observed for both
investigated gram-negative pathogens (E. coli and P. aeruginosa).
The cobalt complex showed a moderate antibacterial activity
against all of the bacteria except B. subtilis that showed
resistance. The antibacterial properties against the gram-negative
strains were significantly enhanced upon coordination of nickel
to the thiosemicarbazide ligand, whereas no variations are
observed for gram-positive bacteria. Specifically, in the case
of E. coli strain, the MIC and MBC values show four-
fold and two-fold decreases, respectively. The coordination
of copper metal to the ligand improved the MIC and MBC
values against S. aureus and E. coli strains. On the other
hand, the MIC values against B. subtilis and P. aeruginosa
were not affected by this metal addition, whereas the MBC
values against these two strains were enhanced. In comparison
with L, the zinc complex improved the antibacterial activity
toward S. aureus and both gram-negative bacteria. In the
case of E. coli and P. aeruginosa strains, the MIC values
show eight-fold and two-fold decreases, respectively. On the
other hand, the MBC values against all of the microorganisms
(except P. aeruginosa) were improved significantly, with a 16-
fold decrease against E. coli. Overall, all compounds have
some antibacterial activities against gram-negative strains, and
some of them showed an antibacterial activity against gram-
positive bacteria. The decreased MIC and MBC values of
metal derivatives are consistent with the possibility that they

disturb the respiration process of the bacterial cell, blocking

the synthesis of proteins, which restricts growth of the
microorganism (Dharmaraj et al., 2001).
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FIGURE 5 | Scanning electron microscopy (SEM) images of ligand L (A) and complexes Co (B), Ni (C), Cu (D), and Zn (E) at the scale of 1µm.

MTT Assay
According to previous studies, the anticancer activities of
calixarene-based compounds are related to their enzyme
inhibition potential (Cherenok et al., 2006, 2012), inhibiting
tumor angiogenesis (Dings et al., 2006) and DNA replication
of cancer cells (Consoli et al., 2007). The cytotoxicity of the
ligand and complexes was studied against the MCF-7 and
Saos-2 cell lines by MTT assay. All of the compounds were
dispersed in water (and 10%DMSO) and diluted with cell culture
medium to reach three required concentrations (50, 100, and

200 ppm). The cytotoxicity impact on cell growth is shown in
Figure 7. In general, all of the compounds showed a very low
antiproliferative activity against MCF-7, whereas for the Saos-2
cells, a more significant dose-dependent antiproliferative activity
was observed with exclusion of L and the Zn derivative. The
Co derivative showed an excellent anticancer activity against the
Saos-2 cell line even at a lower concentration (42.13%), although
the most effective toxicity is revealed at a higher concentration
(16.34%). At a higher concentration, the activities of Ni and Cu

derivatives are also evident, with inhibition concentrations (IC50)
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FIGURE 6 | Scanning electron microscopy–energy-dispersive X-ray (SEM-EDX) elemental analysis of ligand L and complexes Co, Ni, Cu, and Zn.

TABLE 2 | Antibacterial activity of synthesized compounds against different microorganisms in with the microbroth dilution method.

Microorganisms Gram positive Gram negative

Staphylococcus aureus Bacillus subtilis Escherichia coli Pseudomonas aeruginosa

MIC Ligand L – 31.25 250 62.50

Complex Co 250 – 125 125

Complex Ni – 31.25 62.50 31.25

Complex Cu 250 31.25 125 62.50

Complex Zn 500 125 31.25 31.25

Gentamicin* 0.12 2 0.5 2

MBC Ligand L – – 500 –

Complex Co – – 500 500

Complex Ni – – 250 –

Complex Cu 250 31.25 250 250

Complex Zn 500 125 31.25 –

Gentamicin* 0.25 2 0.5 2

The antibacterial activity is expressed as the MIC and MBC (ppm). MIC, minimum inhibitory concentration; MBC, minimum bactericidal concentration.
*Gentamicin used as standard control for bacteria.
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FIGURE 7 | Cytotoxicity evaluation of synthesized compounds at various concentrations against cancer cell lines; (A) MCF-7 cell lines; (B,C), Saos-2 cell lines.

over 48 h of 200 and 170 ppm, respectively. However, control
assays performed with the corresponding inorganic salts show
that the activity is mainly ascribable to the inorganic component
rather than the organic calixarene component. Actually, the
L ligand appears to protect the cells against the inherent
cytotoxicity of the bivalent ions present in the inorganic salts of
these metals.

Hemolysis Assay
Hemolysis assay was performed to examine the biocompatibility
and the cytotoxic effect of ligand and complexes on RBCs at
different concentrations. As shown in Figure 8, dose-dependent
hemolytic effects of the prepared compounds on RBCs were
observed, and the results confirm that there are only slight
hemolytic effects from the compounds at high dosages. RBCs
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FIGURE 8 | Hemolysis rate of human red blood cells (HRBCs) in the presence of the synthesized samples and the visual observation of hemoglobin in the

supernatant at different concentrations (ppm).
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were also treated with PBS and deionized water as negative
and positive controls, respectively. With regard to the results, at
the highest concentration investigated (1,000 ppm), the lowest
hemolytic activity was observed for the Ni derivative (2.6%),
whereas at the lowest concentration investigated (62.5 ppm),
the lowest hemolytic activity was observed for the Co derivative
(0.3%). Therefore, on the basis of biocompatibility of the various
compound investigated, the Ni and Co complexes could be
the best choices for biological applications in higher and lower
concentrations, respectively. Also, the hemolytic activity of the
ligand itself is very low (3.18%) and<4.5%, which is an acceptable
threshold for hemolytic activity (Rahimi et al., 2017b).

CONCLUSION

In this study, we designed and synthetized a new calix[4]arene-
based thiosemicarbazide molecule, and we used it as a quadri-
dentate ligand to prepare a series of transition metal complexes.
The characterization with multiple techniques (FT-IR, 1H-
NMR, 13C-NMR, 15N-NMR, COZY, NOESY, ESI-MS, SEM,
EDS, and elemental analysis) demonstrated the success of
the synthesis of the target ligand, L. The ability of L to
complex metal ions was demonstrated by 1H-NMR titration
experiments with the diamagnetic Zn2+ ions. On the basis of
the known biological properties of thiosemicarbazide derivatives,
we performed antimicrobial and anticancer evaluations against
human cancer cell lines and biocompatibility studies on L

and the series of its metal complexes to investigate Co2+,
Ni2+, Cu2+, and Zn2+. L showed a higher antibacterial activity
against gram-positive B. subtilis and a lower activity against
gram-negative bacteria (E. coli and P. aeruginosa), whereas the
gram-positive S. aureus shows resistance. All metal derivatives
show an enhancement of the antibacterial activity against gram-
negative bacteria (except for the Co2+ and Cu2+ derivatives
for P. aeruginosa), with a more significant improvement for
the Ni2+ and Zn2+ complexes. The anticancer activities of
all compounds against the MCF-7 cell line were not relevant,
even if the activities of the Co and Cu complexes slightly
improved at a higher concentration. On the other hand,
the MTT assay appeared to show a significant anticancer
activity of Co2+, Ni2+, and Cu2+ complexes against Saos-2
cell line. However, control assays show that this activity is
mainly ascribable to the metal ions rather than the organic

calixarene component. Hemolysis assays demonstrated no
significant hemolysis rate for all of the compounds even at
higher concentrations.
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The Hexameric Resorcinarene
Capsule as a Brønsted Acid Catalyst
for the Synthesis of
Bis(heteroaryl)methanes in a
Nanoconfined Space
Stefania Gambaro, Pellegrino La Manna, Margherita De Rosa*, Annunziata Soriente,

Carmen Talotta*, Carmine Gaeta and Placido Neri

Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno,

Salerno, Italy

Herein, we show that the hexameric resorcinarene capsule C is able to catalyze
the formation of bis(heteroaryl)methanes by reaction between pyrroles or indoles and
carbonyl compounds (α-ketoesters or aldehydes) in excellent yields and selectivity. Our
results suggest that the capsule can play a double catalytic role as a H-bond catalyst,
for the initial activation of the carbonyl substrate, and as a Brønsted acid catalyst, for the
dehydration of the intermediate alcohol.

Keywords: supramolecular organocatalysis, resorcinarene hexameric capsule, bis(heteroaryl)methanes, self-

assembly, H-bond catalyst, Brønsted acid catalyst

INTRODUCTION

Supramolecular organocatalysis is an emerging area in supramolecular chemistry whose principal
aim is the design of novel systems able to perform catalytic functions mimicking the chemo-,
regio-, and stereoselectivity of the natural enzymes (Conn and Rebek, 1997). At this regard, much
attention has been focused on designing self-assembled molecular capsules (MCs) able to catalyze
organic reaction by confinement of the reactants in their internal cavity (Borsato and Scarso,
2016; Catti et al., 2016; Gaeta et al., 2019). MCs are self-assembled structures sealed by weak
non-covalent interactions between the single complementary units. Resembling to an enzyme
pocket, the nanoconfined space inside a self-assembled molecular capsule allows the formation
of a microenvironment with different physical and chemical features with respect to the external
medium. In fact, the nanoconfinement of the reactants inside a MC slows down their molecular
mobility determining a different stereo- and regiochemical outcome of the reaction with respect to
the bulk conditions. Analogously to the natural systems, when the reactants are hosted inside aMC,
the proximity effect between them and the stabilization of the intermediates and transition states
induces a reaction acceleration.

Interestingly, Atwood and MacGillivray reported an interesting example of self-assembled
capsule C (1)6·(H2O)8 (Figure 1; MacGillivray and Atwood, 1997), which is constituted by six
resorcin[4]arene units 1 sealed by eight water molecules, and shows an hydrophobic cavity with
an internal volume of 1,375 Å3. The six resorcinarene units and the eight water molecules are
located, respectively, on the sides and on the corners of a cube, and the aggregate is sealed by 60
(O-H....O) hydrogen bonding interactions. The 8 bridged-water molecules establish H-bonds with
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FIGURE 1 | Chemical drawing of the C-undecyl-resorcin[4]arene 1. Tube model of the hexameric capsule C, the undecyl chains have been omitted for clarity.
Chemical drawing of the model representing the hydrogen bond belt between the eight bridged water molecules and the six resorcinarene molecules, in blue the
bridging water molecule with one H-bond donating free valence.

the adjacent resorcinol OH groups and, in particular, four of
them act as double H-bonds donor (Figure 1, H2O drawing in
red) and single H-bond acceptor, saturating in this way their
H-bonding valence. The other four bridged-water molecules act
as single H-bond acceptor and single H-bond donor (Figure 1,
blu), remaining with one H-bond donating free valence. Cohen
et al. (Avram and Cohen, 2002b) demonstrated by NMR
diffusion experiments, that the capsuleC is self–assembled also in
solution when water-saturated chloroform or benzene is used as
a solvent.

The capsule C is able to accommodate eight benzene (or
chloroform) molecules inside its cavity (Avram and Cohen,
2002a,b, 2004; Shivanyuk and Rebek, 2003). Numerous studies
showed that C is also able to host in its π-electron rich
cavity, complementary guests by H-bonding and/or cation–π
interactions (Shivanyuk and Rebek, 2001; Avram and Cohen,
2002a; Yamanaka et al., 2004; Evan-Salem et al., 2006).
Tiefenbacher et al. demostrated that C behaves as a Brønsted
acid (Zhang and Tiefenbacher, 2013; Köster and Tiefenbacher,
2018). In particular, their studies revealed that the hexameric
aggregate has an estimated pKa value of about 5.5–6.0, a value
certainly not comparable with that of the single resorcinarene
unit. The acidic behavior of C is explained by the stabilization of
its conjugate-base due to the delocalization of its negative charge
over the phenolic groups and water molecules of the assembly.
QM calculations, recently reported by our group (La Manna
et al., 2018b) estimated a local pKa of≈2.5 for the bridged-water

molecules with one H-bond donating free valence (in blue in
Figure 1), while the mean pKa value of all OH groups of C is 6.1,
in agreement with the experimental datum.

Several reports clearly show that the mild Brønsted acidity
of C and its ability to stabilize cationic transition states, are
crucial factors for the catalytic activity of the capsule (Borsato
and Scarso, 2016; Catti et al., 2016; Gaeta et al., 2019). Thus,
amazing results have been reported in the last decade regarding
the catalysis of chemical reactions into the nanoconfined space
of the self-assembled capsule C, including the cyclization of
terpenes (Zhang and Tiefenbacher, 2015, 2019; Zhang et al., 2017,
2018, 2019; Pahima et al., 2019), the hydration of the alkynes (La
Sorella et al., 2016a), the carbonyl-olefin metathesis (Catti and
Tiefenbacher, 2018), the sulfoxidation of thioethers (La Sorella
et al., 2016b), the synthesis of substituted 1-H-tetrazoles (Giust
et al., 2015), the activation of C-F bonds (Köster et al., 2019), and
the iminium catalysis (Bräuer et al., 2017; LaManna et al., 2018a).
Recently, we showed that the capsule C acts as a nanoreactor
for a Friedel-Crafts alkylation of arenes and heteroarenes with
benzyl chloride (La Manna et al., 2018b) under mild metal-free
conditions. We showed that the bridged-water molecules with
one H-bond donating free valence exert a crucial role in the
activation of the C-Cl bond of benzyl chloride by H-bonding

interaction. Analogously, the H-bond donor abilities of the water
molecules of C have been exploited in the activation of β-
nitrostyrenes toward the Michael reaction using pyrroles and
indoles as nucleophiles (Gambaro et al., 2019).
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TABLE 1 | Optimization of reaction conditions for the synthesis of BHMs catalyzed by C.

Entrya Capsule T (◦C) 2a/3a Yield (%)b 4aa (%)c 5aa (%)c 6aa (%)c

1
No

30 1/1
— — — —

Yes 35 23 4 8

2
No

50 1/1
— — — —

Yes 43 30 4 9

3
No

10 1/1
— — — —

Yes 20 10 5 5

4
No

30 2/1
— — — —

Yes 60 40 5 15

5
No

30 4/1
— — — —

Yes 98 60 10 28

aReactions were performed on a 0.16 mmol scale using 2a (from 1 to 4 equiv.), 3a (1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h.
bOverall yield of all the isolated products. cYields of the isolated products by chromatography on column.

As a part of our research program focused on the extension of
the catalytic opportunities offered by the hexameric capsuleC, we
turned our attention to the synthesis of bis(heteroaryl)methanes
(BHM) (Palmieri et al., 2010; Shiri et al., 2010; Shiri, 2012).
BHM are fundamental building blocks in the synthesis of natural
and unnatural porphyrin derivatives (Cho and Lee, 1998; Burrell
et al., 2001; Laha et al., 2003). Moreover, they find applications
in several fields, ranging from medicine (Sivaprasad et al.,
2006; Awuah and You, 2012; Josefsen and Boyle, 2012) to
environment and industry (Kursunlu et al., 2012). In particular,
bis(indol)methanes (BIM) and bis(pyrrole)methanes, containing
two simple or two substituted heteroaryl moieties are molecules
with interesting biological properties (Sakemi and Sun, 1991;
Gunasekera et al., 1994; Fürstner, 2003; Bao et al., 2005). This
class of products is generally obtained by means of strategies
relying upon the use of Brønsted (Palmieri et al., 2010; Shiri
et al., 2010; Shiri, 2012) and Lewis acids (Ji et al., 2004; Guo
et al., 2009; Ling et al., 2019; Qiang et al., 2019; Wu et al., 2019),
strong Brønsted acids (Biaggi et al., 2006; Singh et al., 2011;
Lucarini et al., 2013; Norouzi et al., 2018; Tran et al., 2018), and
electrochemical methods (Du and Huang, 2018).

RESULTS AND DISCUSSION

Prompted by these considerations and considering our interest
in the development of novel organocatalytic strategies, we
attempted the synthesis of BHMs derivatives by reaction between

aromatic heterocycles and aldehydes and pyruvates in the
presence of capsule C as a Brønsted acid catalyst. At this regard,
as a model reaction for investigating the catalytic performance of
C, we chose the reaction between pyrrole 2a and ethyl pyruvate
3a in Table 1.

We started performing the reaction in Table 1 in the presence
of capsule C in water-saturated CDCl3 at 30◦C and with a 1/1
ratio of 2a/3a. It was found that the reaction proceeded smoothly
to afford preferentiallymeso-α,α-substituted dipyrromethane 4aa
in 23% yield, accompanied by a negligible amount of α,β-linked
dipyrromethane 5aa and monoalkylated adduct 6aa (entry 1,
Table 1). No evidence was detected of higher oligomers and
other side products. In contrast, when the reaction in Table 1

was carried out under the same reaction conditions but in the
absence of capsule C, no products could be evidenced (entry 1,
Table 1). This result encouraged us to carry out a study for the
optimisation of the reaction parameters in order to improve the
reaction efficiency.

Initially, the influence of the reaction temperature was
investigated (Table 1, entries 1–3). When the temperature was
decreased to 10◦C, both reaction efficiency and selectivity
dropped (entry 3, Table 1), while an increase in the temperature
had a little positive effect on the reaction outcome (entry 4,
Table 1). Next, we moved to examine the molar ratio of 2a/3a
on the yield of the reaction in Table 1. When an excess of
2a was used, an increase of the reaction efficiency in terms of
yield was observed while keeping the selectivity for the adducts
substantially unchanged, with the preferential formation of 4aa
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(entries 4–5, Table 1). These preliminary results indicated that
capsule C was capable to promote the reaction in selective and
efficient way and suggested that the reaction took place inside the
cavity of C.

In order to confirm this conclusion, and in accord to a
protocol previously reported by us and other groups (Bräuer
et al., 2017; La Manna et al., 2018a), we performed a series
of control experiments. In details, when the reaction between

TABLE 2 | Scope of the reaction between different pyrroles 2a–d and α-ketoesters 3a–f.

Entrya Capsule 2 3 Yield (%)b % (4xx)c % (5xx)c % (6xx)c % (7xx)c

1
No

2a 3a
— — — — —

Yes 98 60 (4aa) 10 (5aa) 28 (6aa) —

2d
No

2a 3b
— — — — —

Yes 99 90 (4ab) — — —

3
No

2a 3c
— — — — —

Yes 55 — — 55 (6ac) —

4
No

2a 3d
— — — — —

Yes 76 38 (4ad) 38 (5ad) — —

5e
No

2a 3e
— — — — —

Yes 64 — — — —

6
No

2a 3f
35 — — 35 (6af) —

Yes 99 — — 99 (6af) —

7
No

2b 3a
— — — — —

Yes 99 99 (4ba) — — —

8
No

2b 3f
38 — — 38 (6bf) —

Yes 98 — — 98 (6bf) —

9
No

2c 3a
— — — — —

Yes 50 — — — 50 (7ca)

10
No

2d 3a
— — — — —

Yes 65 — — 65 (6da) —

aReactions were performed on a 0.16 mmol scale using 2a–d (4 equiv.), 3a–e (1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 30
◦C.

bOverall yield of all the isolated products. cYields of the isolated products by chromatography on column. d9% of adduct of pyrrole with two molecules of pyruvate is present; see

Supporting Information. eDecarboxylated product is present, see Supporting Information.
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2a and 3a was conducted under the conditions reported in
Table 1 in the presence of C and of tetraethylammonium
tetrafluoroborate, which is a known competitive guest, no hint
of products were detected after 16 h at 50◦C. Under these
conditions, the ammonium guest occupying the cavity of capsule
C acts as an inhibitor. In addition, the 1H NMR spectrum of
the reaction mixture in the presence of tetraethylammonium
tetrafluoroborate in Figure S3 featured shielded signals at
negative chemical shifts values attributable to the cation inside
the cavity of C. Finally, no hint of products was observed when
the reaction reported in Table 1was performed in the presence of
DMSO (Figure S4), a hydrogen-bonding competitor solvent able
to disaggregate the capsule C.

With these results in hand, we next studied the generality of
the reaction with regard to both reactants (Table 2). Initially,
we evaluated the influence of the α-ketoester structure on the
reaction outcome. When α-ketoester 3c, bearing an isopropyl
group, was reacted with 2a in the presence of C (26 mol%),
the formation of the mono-alkylated adduct 6ac was observed
with a yield of 55% (entry 3, Table 2), while no hint of other
products was detected. Interestingly, under analogous conditions
the α-ketoester 3b (R = Me) reacted with 2a giving the
meso-dipyrromethane product 4ab (entry 2, Table 2) in 90%
yield. Probably, by increasing the steric encumbrance of the R
group of 3 from methyl (3b) to isopropyl (3c) the formation of
the di-pyrromethane was hindered. When 3d (entry 4, Table 2),
bearing a benzyloxy group, was used as substrate alongside 2a,
then the formation of the double alkylated adducts α,α and α,β
4ad and 5ad was observed in a 1/1 ratio and with a complete
loss of selectivity. Differently, using 3b (entry 2, Table 2) only
the α,α adduct 4ab was obtained. Interestingly, when 3f bearing
an electron-withdrawing trifluoromethyl group was used, the
reaction in Table 2was almost quantitative displaying a complete
selectivity for the mono-alkylated adduct 6af and no evidence of
bis-adduct or other side products (entry 6, Table 2). Finally, with
α-ketoacid 3e no reaction took place and a decarboxylate product
was recovered.

At this point, we examined effect of the substitution at

the pyrrole nitrogen atom on the reaction outcome. The
reaction between pyrrole 2b and 3a selectively delivered the

meso bis-adduct 4ba in high yield (entry 7, Table 2). Even
with pyrrole 2b, the reaction with 3f afforded to mono-adduct
6bf as the only reaction product (entry 8, Table 2), indicating
that the choice of the ketoester influenced the outcome of
the reaction.

When a more sterically demanding group was introduced

on the nitrogen atom of pyrrole, the yield of the reaction
in Table 2 decreased and the selectivity of the products was
influenced. In fact, when pyrrole 2c, bearing a N-benzyl group,
was used with 3a under the conditions reported in Table 2,
then the mono-adduct 6da was obtained selectively and in
good yield (entry 10, Table 2), whereas with N-phenyl pyrrole
2d we observed for the first time the selective formation of
a β, β-di-adduct (7ca) (entry 9, Table 2). When the reaction
was performed using indole derivatives (Table 3), only the
formation of di-pyrromethane β, β-9 was observed in high yield

TABLE 3 | Scope of the reaction with different indoles.

Entrya Capsule 8 3 Yield (%)b

1
No

8a 3b
—

Yes 86

2
No

8b 3b
—

Yes 90

3
No

8c 3b
—

Yes 88

4
No

8d 3b
—

Yes 85

5
No

8a 3d
—

Yes 80

aReactions were performed on a 0.16 mmol scale using 8 (4 equiv.), 3 (1 equiv.), and

capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 30
◦C.

b Isolated yield.

independently of the substituents present on the benzene and
pyrrole rings.

Themechanism proposed for the formation of α,α-substituted
dipyrromethane 4xx and monoalkylated adduct 6xx in the
nanoconfined space inside the capsuleC, is outlined in Scheme 1.
In detail, α-ketoester 3 is probably stabilized inside the capsule C
through the formation of a H-bonding interaction with a bridged
water molecule (Scheme 1).

Previously, we have already shown that pyrrole derivatives
are hosted inside the cavity of C (La Manna et al., 2018b).
At this point, an α-attack of pyrrole to the activated ketone
group of 3 occurs inside the capsule, leading to intermediate
I (Scheme 1) stabilized through H-bonding and cation···π
interactions, which is re-aromatizated to 6xx. On the basis of
the local acidity (pKa of ≈ 2.5) of the bridged water molecules
with H-bond donating free valence, the product 6xx can be
protonated inside the capsule C (II in Scheme 1) and converted
to carbocation III by losing a water molecule. III undergoes
an α-attack of a new pyrrole molecule to give the carbocation
IV which is stabilized by cation···π interactions. This latter is
rearomatizated to 4xx, by losing the β-proton and recovering
the electroneutrality of the capsule C. The mechanism proposed
in Scheme 1 is corroborated by the finding that α-ketoester
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SCHEME 1 | Mechanism proposed for the formation of the products 4xx and 6xx in the nano-confined space inside the cavity of C.

TABLE 4 | Optimization of reaction conditions for the reaction between 2a and
10a.

Entrya Capsule T (◦C) 2a/10a Yield

(%)b
11a (%)c 12a (%)c

1
No

50◦C 1/1
— — —

Yes 38 34 4d

2
No

50◦C 2/1
— — —

Yes 60 54 6

3
No

50◦C 4/1
— — —

Yes 97 87 10

4
No

25◦C 4/1
— — —

Yes 20 18 2d

aReactions were performed on a 0.16 mmol scale using 2a (from 1 to 4 equiv.), 3a

(1 equiv.), and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring

for 16 h. bOverall yield of all the isolated products. cYields of the isolated products by

chromatography on column. dThe column gave an inseparable mixture with regioisomer

and the yield was calculated by integration of the respective 1H-NMR signals of the

regioisomers in the isolated fraction.

3f, bearing an electron-withdrawing trifluoromethyl moiety in
α-position to ketone group, in the presence of C and 2a or
2b gives the mono-alkylated adduct 6af and 6bf in almost
quantitative yields, while no evidence of di-adduct was detected.
Probably, under these conditions, the presence of the electron-
withdrawing trifluoromethyl group disfavours the formation
of carbocation IV, which would have a positive charge on
the carbon atom directly bonded to the electron-withdrawing
trifluoromethyl group.

On the basis of these results and in order to extend the
scope of the reaction between 2 and carbonyl compounds in
the presence of C, we studied the procedure with a different
carbonyl compound such as benzaldehyde 10a (Table 4). When
the substrates 2a and 10a were mixed in 1/1 ratio in the presence
ofC in water-saturated CDCl3 then α,α-dipyrromethane 11awas
obtained in 34% yield with a regioselectivity ratio of 8.5/1 (entry
1,Table 4) with respect to the α,β-isomer 12a. Interestingly, when
the 2a/10a molar ratio was progressively increased to 2/1 and
to 4/1 then the efficiency of the reaction was improved with a
54 and 87% yield of 11a, respectively (entries 2 and 3, Table 4).
Interestingly, no hint of product 11a and 12awere detected in the
reaction mixture in the absence of capsule C. The lowering of the
reaction temperature from 50 to 25◦C (entry 4 in Table 4) gives
rise to a drop in the yield of 11a. Once the reaction conditions
were optimized (Table 4), the substrate scope was then evaluated
in order to determine the generality of the reaction.
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TABLE 5 | Scope of the reaction with different pyrroles 2a–d and aldehydes
10a–j.

Entrya Capsule 2 10 Yield(%)b % (11)c % (12)c

1
No

2b 10a
— — —

Yes 70 70
(11ba)e

—

2
No

2c 10a
— — —

Yes — — —

3
No

2d 10a
— — —

Yes — — —

4
No

2a 10b
— — —

Yes 99 90
(11ab)

9 (12ab)

5
No

2a 10c
— — —

Yes 98 96
(11ac)

2 (12ac)d

6
No

2a 10d
— — —

Yes 98 88
(11ad)

10
(12ad)

7
No

2a 10e
— — —

Yes 95 93
(11ae)

2 (11ae)d

8f
No

2a 10f
— — —

Yes 98 96 (11af) 2 (12af)d

9f
No

2a 10g
— — —

Yes 98 96
(11ag)

2 (12ag)d

10
No

2a 10h
— — —

Yes 97 95
(11ah)

2 (12ah)d

(Continued)

TABLE 5 | Continued

Entrya Capsule 2 10 Yield(%)b % (11)c % (12)c

11
No

2a 10i
— — 6 (12ai)

Yes 97 91 (11ai)

12
No

2a 10j
— — —

Yes 85 76
(11aj)d

9 (12aj)d

aReactions were performed on a 0.16 mmol scale using 2a–d (4 equiv.), 10a–j (1 equiv.),

and capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h

at 50◦C. bOverall yield of all the isolated products. cYields of the isolated products

by chromatography on column. dThe column gave an inseparable mixture with the

regioisomer and the yield was calculated by integration of the respective 1H-NMR signals

of the regioisomers in the isolated fraction. e1H NMR spectrum on crude reaction mixture

showed presence of other species obtained after chromathography purification as a

complex and inseparable fraction not characterized. fThese reactions were performed

under stirring for 48 h at 50◦C.

TABLE 6 | Scope of the reaction between indole 8e and various aldehydes 10a,

b, d, e, j.

Entrya Capsule Yield (%)b

1
No

10a
—

Yes 97 (11ea)

2
No

10b
—

Yes 99 (11eb)

3
No

10d
—

Yes 98 (11ed)

4
No

10e
—

Yes 98 (11ee)

5
No

(10j)
—

Yes 98 (11ej)

aReactions were performed on a 0.16 mmol scale using 8e (4 equiv.), 10 (1 equiv.), and

capsule C (0.26 equiv.) in water saturated CDCl3 (1.1mL) under stirring for 16 h at 50
◦C.

b Isolated yield.
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As regards the effect of the substitution at the pyrrole nitrogen
atom, we found that the introduction of a more hindering
group, such as a phenyl or benzyl group, caused a complete loss
of reactivity (entries 2–3, Table 5). Instead, the reaction with
unsubstituted pyrrole 2b proceeded with a small decrease in yield
but preserving the selectivity for adduct 11a (entry 1, Table 5).
Interestingly, under the conditions reported in Table 5 no hint of
mono-adduct heteroaryl methane was observed. Successively, we
investigated the generality of the reaction between 2a and several
aromatic aldehydes bearing electron-donating or -withdrawing
groups (Table 5).

The protocol was found to be tolerant to a variety of aromatic
aldehydes 10a–j, independently by the electronic nature and
position of the substituents on the aryl group, affording α,α-
adducts 11 in high yields and excellent regioselectivities. In fact,
the double attack took place in a completely regioselective way to
give 11 as almost the only product with a negligible amount of the
corresponding isomer 12. No evidence of monoalkylated adduct
was observed. Additionally, when the protocol was extended
to the N-methyl indole 8e, the reaction proceeded smoothly
and the adduct 13 was obtained as the only product in high
yield (Table 6).

CONCLUSIONS

The resorcinarene hexameric capsule C is able to catalyze
the reaction between pyrroles or indoles and α-ketoesters or
aldehydes for the formation of bis(heteroaryl)methanes. The
reactions take place in the nanoconfined space inside the capsule
C. The observed results suggested its double catalytic function: C
can act as H-bond catalyst for the initial activation of the carbonyl
functions and as a Brønsted acid catalyst for the dehydration

of the intermediate alcohol. Generally, in the presence of C

the formation of the α,α-bis(heteroaryl)methanes occurs with
excellent yields and regioselectivity with respect to the α,β-
or β,β-regioisomers.
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Two bidentate dihomooxacalix[4]arene receptors bearing phenylurea moieties
substituted with electron-withdrawing groups at the lower rim via a butyl spacer
(CF3-Phurea 5b and NO2 Phurea 5c) were obtained in the cone conformation in
solution, as shown by NMR. The X-ray crystal structure of 5b is reported. The binding
affinity of these receptors toward several relevant anions was investigated by 1H NMR,
UV-Vis absorption in different solvents, and fluorescence titrations. Compounds 5b

and 5c were also tested as ditopic receptors for organic ion pairs, namely monoamine
neurotransmitters and trace amine hydrochlorides by 1H NMR studies. The data showed
that both receptors follow the same trend and, in comparison with the unsubstituted
phenylurea 5a, they exhibit a significant enhancement on their host-guest properties,
owing to the increased acidity of their urea NH protons. NO2-Phurea 5c is the best
anion receptor, displaying the strongest complexation for F−, closely followed by the
oxoanions BzO−, AcO−, and HSO−

4 . Concerning ion pair recognition, both ditopic
receptors presented an outstanding efficiency for the amine hydrochlorides, mainly
5c, with association constants higher than 109 M−2 in the case of phenylethylamine
and tyramine.

Keywords: dihomooxacalix[4]arenes, phenylurea anion receptors, biogenic amine hydrochlorides, ditopic

receptors, proton NMR titrations, UV-Vis absorption studies, fluorescence studies, X-ray diffraction

INTRODUCTION

Anion recognition by synthetic receptors continues to attract much attention, as documented by
the reviews published recently (Evans and Beer, 2014; Busschaert et al., 2015; Gale et al., 2016).
Anions play essential roles in numerous biological systems, as well as in many environmental and
industrial processes.

Macrocyclic compounds have been developed as anion receptors, in which the interactions are
mainly established by hydrogen bond donor groups, such as ureas and thioureas, incorporated in
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the macrocycle scaffolds. These receptors are able to recognize
anions with different geometries through effective and directional
H-bonds. However, to bind a charged species these monotopic
receptors need to overcome the tendency of the target ion to
form an ion pair with its counter ion, especially in non-polar
solvents. Thus, heteroditopic receptors, molecules capable of
simultaneously bind both ions of a given ion pair, have been
obtained and are an emerging area in supramolecular chemistry
(Kim and Sessler, 2010; McConnell and Beer, 2012). These
systems have important applications, as membrane transport
agents, and in salt extraction and solubilisation. The binding
ability of these ditopic receptors toward organic ion pairs, namely
ammonium and amino acid salts, has been more investigated in
the last years. Alkylammonium moieties are a constant presence
in compounds of biological interest, such as biogenic amines,
trace amines and amino acids (Mutihac et al., 2011).

Calixarenes are a particularly attractive class of macrocyclic
compounds owing to the relatively ease functionalization of both
the upper and the lower rims, and to the presence of a pre-
organized cavity available in different sizes and conformations
(Gutsche, 2008). These compounds have been largely used as
anion receptors. In particular, calix[4]arenes (Quinlan et al., 2007;
Babu et al., 2009; Curinova et al., 2009; De Solis et al., 2015;
Klejch et al., 2016; Rezankova et al., 2017) and calix[6]arenes
(Hamon et al., 2008; Nehra et al., 2016) bearing phenylurea
moieties incorporating electron-withdrawing groups, such as
NO2 and CF3, have been investigated. These groups are expected
to increase the acidity of the urea NHprotons, thus enhancing the
anion binding ability of the receptors. Calixarenes have also been
used as building blocks for the construction of ditopic receptors
able of simultaneous binding of anions and cations. Examples of
such receptors based on calix[4] (Pescatori et al., 2009), calix[5]
(Capici et al., 2010), and mainly calix[6]arenes (Hamon et al.,
2008; Lascaux et al., 2010; Cornut et al., 2015; Moerkerke et al.,
2017) are reported in the literature.

In the course of our studies on anion binding by disubstituted
dihomooxacalix[4]arenes (calix[4]arene analogs in which one
CH2 bridge is replaced by one CH2OCH2 group) (Marcos, 2016)
with phenylurea units (Marcos et al., 2014a,b), we were interested
in determine the enhancement on the anion binding affinity
of the receptors by the introduction of electron-withdrawing
groups. Along with this research, the phenylurea derivatives were
also evaluated as ditopic receptors (Gattuso et al., 2015). They
combine in the same molecule two different binding sites, i.e.,
an ureido anionic site and a hydrophobic cavity suitable for
organic cations.

In this paper we describe the synthesis of two new
disubstituted dihomooxacalix[4]arenes bearing, via a butyl
spacer, para CF3- (5b) or NO2-phenylurea (5c) moieties, at the
1,3-positions of the lower rim. The host-guest properties of these
receptors, obtained in the cone conformation, toward several
relevant anions were established by proton NMR and UV-Vis
absorption titrations in chloroform (or dichloromethane) and
acetonitrile. Some photophysical properties of these receptors
(due to their intrinsic fluorescence) were evaluated and, in
a few cases, fluorescence studies were also performed to
investigate the calixarene binding affinity. These dihomooxa

derivatives were also tested as heteroditopic receptors for n-
alkylammonium chlorides, and monoamine neurotransmitters
and trace amine hydrochlorides by proton NMR studies.
The results are compared to those obtained with the analog
unsubstituted phenylurea (5a). The solid state structure of 5b is
also presented.

RESULTS AND DISCUSSION

Synthesis and Structural Analysis
Previously, we have reported the synthesis of a lower rim
1,3-disubstituted dihomooxacalix[4]arene receptor containing
two phenylurea moieties and two n-butyl groups (Marcos
et al., 2014a). Following this line of research, we synthesized
two new ureido-dihomooxacalix[4]arenes bearing CF3 or NO2

groups at the p-position of the phenylurea moiety, via a butyl
spacer. The binding ability of these receptors is expected to
be increased by the introduction of the electron-withdrawing
groups. Thus, the alkylation reaction of the parent p-tert-
butyldihomooxacalix[4]arene (1) with 4-bromobutyronitrile and
K2CO3 gave the dicyano-dihydroxy compound 2, which was
further alkylated with n-butyl iodide and NaH, yielding the
dicyano-dibutoxy derivative 3. Reduction of the cyano groups
with NaBH4/CoCl2 afforded diamine 4. These reactions and
products were already described (Marcos et al., 2014a). Diamine
4 reacted with p-(trifluoromethyl)- or p-nitro-phenylisocyanate
to yield the corresponding p-CF3-phenylurea 5b and p-NO2-
phenylurea 5c, in the cone conformation (Scheme 1).

These receptors are inherently chiral, as indicated by their
NMR spectra in CDCl3. The proton spectra show four singlets
for the tert-butyl groups, five AB quartets for the CH2 bridge
protons, four pairs of doublets for the aromatic protons, and
two triplets and two singlets for the NHa and NHb protons,
respectively. The aromatic and NH region of the three phenyl
ureas is shown in Figure 1. Increasing downfield shifts for the
NH protons, mainly the NHb, can be observed from Phurea
5a to NO2-Phurea 5c, indicating the increased acidity of these
protons. Moreover, the proton spectra display two triplets and
several multiplets for the methyl and methylene protons of the
butyl spacers and n-butyl groups. The 13C spectra exhibit three
ArCH2Ar resonances in the range 28.8–31.5 ppm, indicative of a
cone conformation (Jaime et al., 1991). The proton assignments
were confirmed by COSY spectra.

Small colorless single crystal needles were obtained by slow
evaporation of a chloroform solution containing compound
5b. The X-ray structure was determined using synchrotron
radiation with crystals frozen at 100K. The asymmetric unit
of the monoclinic crystal (space group P21/c) is composed of
one molecule of 5b and a disordered co-crystallized chloroform
solvent molecule with a total occupancy factor of 0.7. The
dihomooxacalixarene macrocycle adopts the expected cone
conformation, producing an inherently chiral molecule due to
the 1,3-substitution pattern on the lower rim (Figure 2, rings A
and C). The centrosymmetric space group implies the presence
of a racemic mixture of the two enantiomers in the crystals.
The mean planes of the two ureido substituted phenyl rings
(A and C) make large outward (dihedral) angles of 125◦ and
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SCHEME 1 | Synthesis of the phenylurea receptors 5a–5c.

FIGURE 1 | 1H NMR partial spectra (500 MHz, CDCl3, 25◦C) of: (A) Phurea
5a, (B) CF3-Phurea 5b, and (C) NO2-Phurea 5c.

131◦, respectively, with respect to the dihomooxacalixarenemean
plane, defined by the methylene bridging groups (Figure 2B).
With regard to the butoxy substituted phenyl rings, the one
connected with the homooxo bridge (B) shows a mean plane
of the phenyl ring inclined inwards with a dihedral angle of
66◦. As a result, its p-tert-butyl group partially occupies the
calixarene cavity. The facing butoxy substituted phenyl ring (D)
is inclined slightly outwards, with a dihedral angle of 101◦.
Consistently with previous reports, the ureido groups form
an intramolecular N–H···O bifurcated hydrogen bond (Marcos
et al., 2014b; Augusto et al., 2018). In this case the H-bond is
rather asymmetric, with the N···O distance of the NH directly
bonded to the phenyl ring, para to the electron-withdrawing CF3
group, shorter with respect to the other N···O distance (2.89 vs.
3.06 Å). The relative orientations of the skeletons of the NCON
ureido moieties show a mean plane dihedral angle of 28◦, while
the terminal phenyl groups form dihedral angles of about 20◦

(Ring A) and 40◦ (Ring C) with respect to their corresponding

planar ureido groups. The overall result is that these phenyl
groups show a dihedral angle of about 74◦ between their mean
planes (Figure 2).

The crystal packing shows that the ureido groups are
involved in an intermolecular N–H···Ohydrogen bonds network.
More specifically, one-dimensional chains of bifurcated H-
bonds, formed by iso-orientated calixarenes (generated by
crystallographic glide planes), are propagated antiparallel along
the c-axis (Figure 3). The resulting intermolecular N···O
distances show that these bifurcated intermolecular H-bonds
are even more asymmetric than the intramolecular H-bonds.
In this case the NH group directly bound to the phenyl ring
forms a weaker H-bond with the carbonyl oxygen of a symmetry
related molecule in comparison to the second NH group (N···O
distances are 3.14 and 2.85 Å, respectively). The antiparallel
chains are related by crystallographic screw axes and stacked
along the b-axis with the calix cups facing the CF3-phenyl rings
(Figure 3). The chloroformmolecules at partial occupancy fill the
voids created by the crystal packing of the calixarene molecules.

The comparison with the solid state structure of 5a containing
two crystallographic independent molecules, previously reported
(Gattuso et al., 2015), shows an analogous crystal packing
arrangement, despite the significant differences in the unit
cells and the different space groups. However, in 5a the
orientations of the NHCONH ureido moieties are quite different
in the two crystallographic independent molecules, being almost
parallel in one (similar to the conformation found in 5b) and
orthogonally oriented in the other (Gattuso et al., 2015). For
each independent molecules of 5a, the cone macrocycle adopts
a similar conformation to 5b, in which the p-tert-butyl groups
of the B rings lean into the cavity. More specifically, for the
molecule with the almost parallel orientation of the ureido
groups, the four dihedral angles formed by the mean planes of
the phenyl rings and the dihomooxacalixarene bridging mean
plane are within two degrees of the molecule found in 5b.
On the other hand, the 5a molecule having an orthogonal
orientation of the NHCONH ureido moiety shows a more
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FIGURE 2 | Solid state structure of CF3-Phurea 5b. (A) The molecule shows a cone conformation, with the phenylureido moieties involved in an intramolecular
N–H···O bifurcated hydrogen bond. (B) Orthogonal view of 5b with respect to the dihomooxacalixarene mean plane (yellow) defined by the methylene bridging groups.

FIGURE 3 | Crystal packing of 5b shows two chains of bifurcated N–H···O
hydrogen bonds from NH donors to O acceptor. The one-dimensional chains
propagate along the c axis in antiparallel fashion.

open cone conformation (121, 74, 137, 97◦ for A, B, C,
and D angles, respectively). This comparison suggests that
the openness of the cone is to some degree related to the
conformation and reciprocal orientation of the NHCONH
ureido moieties.

Photophysical Properties
Owing to the intrinsic fluorescence of receptors 5, and to evaluate
the changes caused by the introduction of the substituent groups
at the p-position of the phenylurea ring, some photophysical
properties of 5a and 5b were determined, following previous
studies (Miranda et al., 2017).

The absorption and steady-state fluorescence spectra of
Phurea 5a and CF3-Phurea 5b in dichloromethane are shown

in Figure 4. The compounds present a well-defined absorption
in the UV region, exhibiting a blue shift of 28 nm for 5b

(Figure 4A). The same trend is observed in the emission
spectrum, the normalized spectra being again similar for both
compounds (Figure 4B).

Relevant photophysical properties of the two Phureas are
collected inTable 1. Stokes shifts were calculated as the difference
between the excitation and the emission peak wavelengths.
The results show that CF3-Phurea 5b presents a higher value
compared to 5a. The fluorescence lifetimes (τf) and quantum
yields (φF) were also determined. Overall, fluorescence lifetimes
and yields do not change much upon para substitution,
the fluorescence quantum yields are significant (0.2–0.6) and
lifetimes moderate (1–2 ns). The quantum yield decreases
and the lifetime increases upon para substitution, both effects
resulting mainly from a decrease of the radiative rate constant
(kr) (Table 1).

Anion Recognition
Proton NMR Studies
The binding properties of bidentate CF3-Phurea 5b and NO2-
Phurea 5c toward several relevant anions of different geometries
(spherical, linear, trigonal planar, and tetrahedral) were studied in
CDCl3 through 1H NMR titrations using tetrabutylammonium
(TBA) salts. The association constants (as log Kass) reported
in Table 2 were determined using the WinEQNMR2 program
(Hynes, 1993) and following the urea NH chemical shifts. In a
few cases where those protons became broad or disappeared, the
association constants were calculated through the complexation
induced shifts of the aromatic protons of the calixarene skeleton.

Hydrogen bonding interactions between the anions and
the urea groups of the receptors were clearly evidenced
by the downfield shifts of their NH protons, as shown
in Figure 5. In all the studied cases, the complexation
process occurs under fast exchange conditions on the
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FIGURE 4 | Normalized spectra of 5a (5.0 × 10−5 M; solid line) and 5b (5.0 × 10−6 M; dashed line) in CH2Cl2. (A) Absorption and (B) emission.

TABLE 1 | Photophysical properties of Phureas 5a and 5b in CH2Cl2 at 25◦C.

λmax,abs (nm) λmax,em (nm) ε (M−1 cm−1) Stokes shifta (nm) τ f (ns) φF kr (ns
−1) knr (ns

−1)

5a 278 316 5.0× 103 38 1.15 0.59b 0.51 0.36

5b 250 310 7.1× 104 60 1.57 0.21c 0.13 0.50

aCompute as λmax,em − λmax,abs.
bAgainst quinine sulfate φF = 0.60 in HCl 0.1 M.
cAgainst tryptophan φF = 0.12 in water.

TABLE 2 | Association constants (log Kass)a of dihomooxa ureas 5a-5c determined by 1H NMR in CDCl3 at 25◦C.

Spherical Linear Trigonal planar Tetrahedral

F− Cl− Br− I− CN− SCN− NO−

3 AcO− BzO− HSO−

4 H2PO
−

4 ClO−

4

I. Radius/Åb 1.33 1.81 1.96 2.20 1.91 2.13 1.79 2.32 — 1.90 2.00 2.40

Phurea 5ac 3.10 2.73 2.23 1.59 2.71 1.90 2.42 2.88 2.93 2.58 2.69 1.65

CF3-Phurea 5b 3.48 3.12 2.68 2.18 3.13 2.18 2.68 3.34 3.46 3.07 3.15 2.04

NO2-Phurea 5c 3.88 3.65 3.07 2.65 3.66 2.67 3.15 3.67 3.83 3.61 3.49 2.37

aEstimated error <10%.
bData quoted in Marcus (1997).
cData taken from Marcos et al. (2014a).

NMR time scale at room temperature. The titration curves
obtained (Figure S1) indicate the formation of 1:1 host-guest
complexes. This stoichiometry was also confirmed by Job
plots (Figure S2).

The anion binding results obtained by proton NMR titrations
(Table 2) show that both phenylureas bearing the electron-
withdrawing groups CF3 and NO2 are better receptors than
Phurea 5a (with no substituents), due to the increased acidity
of their NH protons. All the receptors follow the same trend:
the association constants decrease in general with decreasing
anion basicity. The data show that NO2-Phurea 5c is the best
anion receptor, exhibiting high association constants. Among
the spherical halides, 5c displays the strongest complexation
for F− (log Kass = 3.88). The results with F− showed no
evidence for the formation of the HF−2 species (Amendola
et al., 2006, 2010; Babu et al., 2009) Although the acidity
of Phureas 5b and 5c is higher compared to that of 5a,
the solvent used, chloroform, is a weakly competitive one,

contributing to stabilize the H-bond complexes. Moreover,
small downfield and upfield shifts for the ortho and meta
protons, respectively, of the phenylurea groups of 5c were
also observed (Figure S3), corroborating the expected effects
for the formation of hydrogen-bonding complexes (Amendola
et al., 2010). In the case of the pseudo-halides, the more
basic CN− anion was complexed with higher selectivity with
respect to SCN− (Kass CN−/Kass SCN−

= 8.9 and 9.8 for
5b and 5c, respectively). With regard to the planar oxoanions,
receptors 5b and especially 5c show a very efficient binding
toward the carboxylates BzO− and AcO− (log Kass = 3.83
and 3.67, respectively, for 5c). As observed before with 5a and
with other dihomooxa ureas (Marcos et al., 2014b; Teixeira
et al., 2017), there is a slight inversion of the basicity order.
π staking interactions may contribute to this slight increase
of the BzO− complexation over that of AcO−. The inorganic
oxoanions, HSO−

4 and H2PO
−

4 , are also tightly bound by
these receptors.
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UV-Vis Absorption and Fluorescence Studies
The binding properties of CF3- and NO2-Phureas (5b and
5c) were complemented through UV-Vis absorption titrations.
Thus, the interactions between these receptors and some selected
anions of different geometries (F−, Cl−, Br−, NO−

3 , AcO−,
BzO−, HSO−

4 , and H2PO
−

4 ) as TBA salts were studied in
chloroform (or dichloromethane) and acetonitrile solvents.

In chloroform, NO2-Phurea 5c displays an absorption band
centered at approximately 335 nm. Upon addition of increasing
amounts of F− ion, this band decreases in intensity while a new
one is progressively formed, reaching a maximum at 356 nm (red
shift of 21 nm) and exhibiting an isosbestic point at 341 nm,
which reveals the existence of only two species (Figure 6A).
Similar absorption spectral changes were observed for the
carboxylates AcO− and BzO−, both leading to red shifts of 15 nm
and presenting isosbestic points, as well as for the inorganic
oxoanions HSO−

4 and H2PO
−

4 , although to a smaller extent. In
the case of addition of the spherical Cl− and Br− anions, and
the planar NO−

3 , successive increases of the absorption were
recorded, but with almost no shifts in their maxima. Similar
absorption spectra were obtain for NO2-Phureido-calix[4]arene
analogs (Babu et al., 2009; Curinova et al., 2009). CF3-Phurea
5b exhibits a similar behavior in dichloromethane. In this case
it was not possible to use chloroform solvent due to absorption
overlapping with urea 5b. The addition of increasing amounts of
F−, AcO−, BzO−, and H2PO

−

4 anions to a solution of 5b leads
to a decrease of the intensity of its absorption peak at 250 nm,
while a new band appears and progressively moves to longer
wavelength. Isosbestic points can also be observed, as illustrated
in Figure 7A for the BzO− anion. The other anions studied
showed no new band formation at higher wavelengths; only a
gradual increase of the absorption band centered at 250 nm was
observed as the anion concentration increased. In acetonitrile,
both receptors showed identical behaviors toward all the anions:
a successive increase of the absorption in the presence of the
anions, with no significant modification of their band shapes
(Figures 6B, 7B).

FIGURE 5 | Partial 1H NMR spectra of NO2-Phurea 5c (500 MHz, CDCl3,
25◦C) with several equiv of TBA Cl.

In all cases, the spectral variations were sufficiently important
to allow the determination of the corresponding binding
constants. The data presented in Table 3 show a stronger
complexation in chloroform (or dichloromethane in the case
of 5b) than in acetonitrile for both ureas, in agreement with
the competitiveness of the solvents. The association constants
in both solvents are higher than those obtained by NMR, but
follow the same trend: F−, AcO−, and BzO− are the best bound
anions. The UV concentrations are more than 200 times less than
those used in the NMR titrations, and this fact influences the
association constants. The more diluted solutions used in the UV
experiments favor the dissociation of the salts, thereby providing
a higher concentration of the anions available for binding and
resulting in higher association constants.

The NO−

3 and HSO−

4 anion binding constants with CF3-
Phurea 5b were also determined by fluorescence in CH2Cl2. The
data obtained (log Kass: NO

−

3 = 3.87 and HSO−

4 = 4.00) are

FIGURE 6 | Changes in the UV spectra of NO2-Phurea 5c (1.0 × 10−5 M)
upon addition of TBA F (up to 10 equiv) in: (A) CHCl3 and (B) MeCN. The
dotted circle indicates the isosbestic point. The arrows indicate the decreasing
or increasing amounts of salt and maximum displacement.
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higher, as expected, than those obtained for 5a (logKass = 3.5 and
3.7) (Miranda et al., 2017), but follow the same trend. The results
are also similar to those obtained byUV-Vis absorption (Table 3),
indicating that fluorescence can also be a good method for the
determination of the receptor-anion association constants.

FIGURE 7 | Changes in the UV spectra of CF3-Phurea 5b (5.0 × 10 −6 M)
upon addition of TBA BzO (up to 10 equiv) in: (A) CH2Cl2 and (B) MeCN. The
dotted circle indicates the isosbestic point. The arrows indicate the decreasing
or increasing amounts of salt and maximum displacement.

Organic Ion Pair Recognition
Based on our earlier good results obtained with Phurea
5a (Gattuso et al., 2015), dihomooxa receptors 5b and 5c

have also been tested as heteroditopic receptors for n-propyl
and n-butylammonium chlorides in a preliminary study to
evaluate their complexation behavior. Besides the presence of
a hydrophobic cavity and an anionic binding site in close
proximity, CF3- and NO2-Phureas displayed an enhancement of
their binding efficiency for Cl− anion compared to that of 5a
(almost one log unity in the case of 5c), being expected a higher
positive effect on the salt complexation.

Proton NMR titrations were performed in CDCl3 by adding
increasing amounts (up to two equiv) of the salts to solutions of
the receptors 5b and 5c. Three sets of resonances corresponding
to the free and complexed receptors, and to the guest bound to the
host were observed on addition of the first aliquot of the salts. The
alkylammonium cation inclusion inside the dihomooxa cavity is
demonstrated by the appearance of the alkyl group resonances
in the negative region of the spectrum. On the other side,
simultaneous chloride binding to the urea moiety is shown by
the downfield shifts observed for all the NH protons, indicating
complexation of the anion through hydrogen-bond interactions
(Figure 8). This Figure also shows the pairs of enantiotopic
hydrogen atoms of the α- and β-CH2 groups of the included

FIGURE 8 | 1H NMR spectra (500 MHz, CDCl3, 25◦C) of: (A) NO2-Phurea 5c,
(B) 5c + 1 eq of n-PrNH2·HCl. *Denotes residual solvent signals.

TABLE 3 | Association constants (log Kass)a of dihomooxa ureas 5b and 5c determined by UV-Vis absorption at 25◦C.

Spherical Trigonal planar Tetrahedral

Solvent F− Cl− Br− NO−

3 AcO− BzO− HSO−

4 H2PO
−

4

CF3-Phurea 5b CH2Cl2 4.57 4.02 3.66 3.72 4.54 4.65 3.93 3.93

MeCN 4.10 3.81 3.54 3.50 4.03 4.20 3.81 3.60

NO2-Phurea 5c CHCl3 4.74 4.30 3.90 3.97 4.65 4.72 4.19 4.24

MeCN 4.52 4.04 3.61 3.63 4.13 4.30 3.77 3.83

Estimated error <10%.
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guest displaying non-equivalent signals owing to the chiral
environment of the host. The free host signals disappeared with
subsequent additions of the salts. This binding process occurs
under slow exchange condition on the NMR time scale. All these
host-guest pairs studied displayed percentages of complexation
higher than 95%, corresponding to association constants higher
than 109 M−2.

These ureas were then tested in the recognition of the
monoamine neurotransmitter and trace amine hydrochlorides

shown in Figure 9. The studies were done in a CDCl3/CD3OD
solvent mixture (5:1, v/v) for a better solubility of the guests. The
addition of one equiv. of the guests to a solution of the hosts at
room temperature (Figure 10A) induced a large broadening of all
signals, indicating a strong host-guest interaction (Figure 10B).
To obtain a clear interpretation of the spectra, it was however
necessary to lower the temperature to 233K. As illustrated in
Figure 10C for 5b with dopamine·HCl, four high field signals
for the α- and β-CH2 protons of the guest were observed,

FIGURE 9 | Structures of the monoamine neurotransmitters and trace amine hydrochlorides studied: 2-phenylethylamine (Pea·HCl), tyramine (Tyrm·HCl), dopamine
(Dopa·HCl), serotonin (Sert·HCl), histamine (Hist·2HCl), and norepinephrine (Nore·HCl).

FIGURE 10 | 1H NMR spectra (500 MHz, CDCl3/CD3OD, 5:1, v/v) of: (A) [CF3-Phurea 5b] = 1.0mM at 298K, (B) [5b] = [Dopa·HCl] = 1.0mM at 298K, and (C) [5b]
= [Dopa·HCl] = 1.0mM at 233K. *Residual solvent signals.
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showing their inclusion inside the asymmetric cavity of the host.
The slow exchange rate between the free and the complexed
receptors allowed the determination of the percentages of
complexation and of the corresponding association constants,
by direct integration of the peaks. The data (Table 4) show
that both ureas display an outstanding efficiency toward the
biogenic amines, being as expected better than Phurea 5a.
Both ureas present very high percentages of complexation and
association constants, even preventing us from calculating Kass

for phenylethylamine and also tyramine in the case of NO2-
Phurea 5c. This urea is more efficient than CF3-Phurea 5b, but
the latter is slightly more selective. Ureas 5b and 5c display
a similar affinity trend, comparable with 5a, showing some
selectivity for Pea and Tyrm and no interaction with histamine
and norepinephrine. As mentioned before (Gattuso et al., 2015),
it seems that the less bulky Pea and Tyrm guests fit better inside
the dihomooxa cavity.

CONCLUSIONS

Two new 1,3-disubstituted dihomooxacalix[4]arene receptors
containing para CF3- (5b) or NO2-phenylurea (5c) moieties on
the lower rim linked by a butyl spacer were obtained in the cone
conformation in solution. The X-ray structure of 5bwas obtained
and confirms the cone conformation with one tert-butyl-phenyl
group oriented toward the center of the cup. The 1,3-substitution
pattern on the lower rim results in inherently chiral molecules,
present as racemic mixture in the centrosymmetric crystals.
In the crystal structure, the ureido groups are involved in
asymmetric intra- and inter-molecular bifurcated H-bonds.

The anion binding affinity of 5b and 5c was established by
1H NMR, UV-Vis and fluorescence studies. These receptors
form 1:1 complexes with anions of different geometries through
hydrogen bonding. Comparing to the unsubstituted phenylurea
5a, CF3-Phurea and especially NO2-Phurea showed, as expected,
a relevant enhancement on their binding efficiency, due to
the increased acidity of their urea NH protons. Compound 5c

displayed the strongest complexation for F− (log Kass = 3.88),
closely followed by the oxoanions BzO−, AcO−, and HSO−

4 . The
association constants obtained by UV-Vis absorption titrations
followed the same trend of those obtained by NMR, and were
higher in CHCl3 (or CH2Cl2) than in MeCN, according to the
competitiveness of the solvents.

As heteroditopic receptors, both compounds exhibited
remarkable ion pair recognition, displaying very high association

constants for the monoamine neurotransmitters tyramine,
dopamine and serotonin, and the trace amine phenylethylamine
hydrochlorides. The more efficient ditopic receptor 5c presented
Kass higher than 109 M−2 in the case of Pea and Tyrm,
which turns it into a potential candidate for biogenic amine
chemosensors in biological fluids.

EXPERIMENT

Synthesis
All chemicals were reagent grade and were used without further
purification. Chromatographic separations were performed on
Merck silica gel 60 (particle size 40–63µm, 230–400 mesh).
Melting points were measured on a Stuart Scientific apparatus
and are uncorrected. FTIR spectra were recorded on a Shimadzu
Model IRaffinity-1 spectrophotometer. 1H and 13C NMR spectra
were recorded on a Bruker Avance III 500 MHz spectrometer,
with TMS as internal reference. The conventional COSY
experiment was collected as 256× 2K complex points. Elemental
analysis was determined on a Fisons EA 1108 microanalyser.

Procedure for the Synthesis of Ureas 5b and 5c
To a solution of 4 (0.71 g, 0.762 mmol) in CHCl3 (35mL) was
added 1.53 mmol of the appropriate isocyanate. The mixture was
stirred at room temperature under N2 for 4 h. Evaporation of
the solvent yielded the crude products which were purified as
described below.

7,13,19,25-Tetra-Tert-Butyl-27,29-Bis[[N′-(p-

Trifluoromethylphenylureido)butyl]oxy]-28,30-

dibutoxy-2,3-dihomo-3-oxacalix[4]arene (5b)
Flash chromatography (SiO2, eluent CH2Cl2/MeOH, 99.7:0.3):
it was obtained in 51% yield (0.51 g); mp 151–152◦C; IR (KBr)
3,350 cm−1 (NH), 1,647 cm−1 (CO); 1H NMR (CDCl3, 500
MHz) δ 0.55, 1.10, 1.34, 1.37 [4s, 36H, C(CH3)], 0.89, 0.93 (2t,
6H, J = 7.4Hz, CH3), 1.33–1.54 (m, 8H, OCH2CH2CH2CH3

and OCH2CH2CH2CH2NHa), 1.77, 1.89, 2.31 (3m, 8H,
OCH2CH2CH2CH3 and OCH2CH2CH2CH2NHa), 3.16, 3.37,
3.59 (3m, 4H, OCH2CH2CH2CH2NHa), 3.20, 4.28 (ABq, 2H, J =
12.6Hz, ArCH2Ar), 3.22, 4.26 (ABq, 2H, J = 14.1Hz, ArCH2Ar),
3.24, 4.38 (ABq, 2H, J = 12.5Hz, ArCH2Ar), 3.45, 3.71, 3.90,
4.07 (4m, 4H, OCH2CH2CH2CH2NHa), 3.59, 3.66, 3.82 (3m,
4H, OCH2CH2CH2CH3), 4.32, 5.26 (ABq, 2H, J = 12.4Hz,
CH2OCH2), 4.33, 5.04 (ABq, 2H, J = 12.7Hz, CH2OCH2), 5.87,
6.57 (2t, 2H, NHa), 6.11, 6.35, 6.78, 6.98, 7.12, 7.20, 7.27, 7.37

TABLE 4 | Percentages of complex formation and corresponding association constants, Kass (M−2)a.

Pea·HCl Tyrm·HCl Dopa·HCl Sert·HCl Hist·2HCl Nore·HCl

Phurea 5ab 86% 41,000 85% 36,000 67% 6,300 61% 4,100 c c

CF3-Phurea 5b >95% >109 91% 1,23,000 79% 18,000 81% 22,000 c c

NO2-Phurea 5c >95% >109 >95% >109 87% 51,000 86% 42,000 c c

aCDCl3/CD3OD (5:1, v/v), 233K; Estimated error ≤15%.
bData taken from Gattuso et al. (2015).
cNo complexation observed.
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(8d, 8H, ArH), 7.50, 7.53 (2d, 4H, Ph-Ho), 7.60, 7.61 (2d, 4H, Ph-
Hm), 8.45, 8.79 (2s, 2H, NHb);

13C NMR (CDCl3, 125.8 MHz) δ

13.9, 14.1 [O(CH2)3CH3], 19.3, 19.4 (OCH2CH2CH2CH3),
25.0, 25.5, 25.8, 28.8 (OCH2CH2CH2CH2NHa), 28.9.
31.0, 31.3 (ArCH2Ar), 31.2, 31.4, 31.6, 31.7 [C(CH3)],
32.2, 32.6 (OCH2CH2CH2CH3), 33.6, 33.9, 34.21, 34.22
[C(CH3)], 39.3, 39.4 (OCH2CH2CH2CH2NHa), 71.7, 71.9
(CH2OCH2), 73.2, 74.8, 75.0, 75.6 (OCH2CH2CH2CH2NHa and
OCH2CH2CH2CH3), 117.7, 1,178, 123.7, 125.4, 125.6, 126.0,
126.1, 126.3, 126.49, 126.52, 126.9, 129.5 (ArH), 123.3, 124.1 (q,
J = 32Hz, CF3), 128.6, 130.2, 131.8, 132.7, 133.1, 134.3, 134.6,
136.2, 143.1, 143.4, 144.4, 145.0, 145.1, 145.7, 152.7, 153.1, 153.9,
155.3 (Ar), 155.6, 156.7 (CO). Anal. Calcd for C77H100N4O7F6:
C, 70.73; H, 7.71; N, 4.28. Found: C, 70.78; H, 8.01; N, 4.02.

7,13,19,25-Tetra-Tert-Butyl-27,29-Bis[[N′-(p-

Nitrophenylureido)Butyl]oxy]-28,30-dibutoxy-2,3-

dihomo-3-oxacalix[4]arene (5c)
Flash chromatography (SiO2, eluent CH2Cl2/MeOH, 99.7:0.3)
followed by recrystallization from CH2Cl2/n-hexane: it was
obtained in 40% yield (0.38 g); mp 157–159◦C; IR (KBr) 3,367
cm−1 (NH), 1,647 cm−1 (CO); 1H NMR (CDCl3, 500 MHz)
δ 0.54, 1.11, 1.35, 1.37 [4s, 36H, C(CH3)], 0.88, 0.93 (2t, 6H,
J = 7.4Hz, CH3), 1.38–1.50 (m, 4H, OCH2CH2CH2CH3),
1.48, 1.76, 1.87, 2.34 (4m, 12H, OCH2CH2CH2CH2NHa

and OCH2CH2CH2CH3), 3.09, 3.34, 3.45, 3.59 (4m, 4H,
OCH2CH2CH2CH2NHa), 3.20, 4.26 (ABq, 2H, J = 12.7Hz,
ArCH2Ar), 3.23, 4.24 (ABq, 2H, J = 14.0Hz, ArCH2Ar),
3.26, 4.37 (ABq, 2H, J = 12.6Hz, ArCH2Ar), 3.45, 3.59,
3.66, 4.14 (4m, 4H, OCH2CH2CH2CH2NHa), 3.66, 3.87 (2m,
4H, OCH2CH2CH2CH3), 4.31, 5.33 (ABq, 2H, J = 12.3Hz,
CH2OCH2), 4.33, 5.12 (ABq, 2H, J = 12.3Hz, CH2OCH2), 5.85,
6.79 (2t, 2H, NHa), 6.10, 6.29, 6.79, 7.00, 7.12, 7.21, 7.26, 7.41
(8d, 8H, ArH), 7.68, 7.71 (2d, 4H, Ph-Ho), 8.20, 8.23 (2d, 4H,
Ph-Hm), 8.83, 9.31 (2s, 2H, NHb);

13CNMR (CDCl3, 125.8MHz)
δ 13.9, 14.1 [O(CH2)3CH3], 19.3, 19.4 (OCH2CH2CH2CH3),
24.8, 25.2, 25.7, 28.81 (OCH2CH2CH2CH2NHa), 28.84,
31.1, 31.4 (ArCH2Ar), 31.2, 31.4, 31.5, 31.7 [C(CH3)],
32.2, 32.6 (OCH2CH2CH2CH3), 33.6, 34.0, 34.24, 34.23
[C(CH3)], 39.3 (2C) (OCH2CH2CH2CH2NHa), 71.7, 72.1
(CH2OCH2), 73.9, 74.9, 75.1, 75.6 (OCH2CH2CH2CH2NHa and
OCH2CH2CH2CH3), 117.0, 117.1, 123.6, 125.3, 125.56, 125.60,
125.63, 126.0, 126.1, 126.6, 126.9, 130.0 (ArH), 128.3, 129.7,
131.6, 132.7, 133.1, 134.3, 134.6, 136.2, 141.6, 142.1, 144.4, 145.1,
145.2, 145.8, 146.1, 146.7, 152.7, 153.2, 153.8, 154.9 (Ar), 155.7,
156.3 (CO). Anal. Calcd for C75H100N6O11: C, 71.40; H, 7.99; N,
6.66. Found: C, 70.99; H, 7.99; N, 6.48.

Determination of the Crystallographic
Structure of Compound 5b
Small colorless single crystal needles were obtained by slow
evaporation of a chloroform solution containing compound 5b.
The single crystals investigated were very small (0.01, 0.01,
0.05mm) and synchrotron radiation was necessary to obtain
a dataset suitable to solve the structure. The data was also
collected with frozen crystal at 100K. Despite these provisions,
the best small crystal showed poor diffraction data with a

maximum resolution of 0.98 Å. Data collection was carried
out at the Macromolecular crystallography XRD1 beamline of
the Elettra synchrotron (Trieste, Italy), employing the rotating-
crystal method with a Dectris Pilatus 2M area detector. Single
crystals were dipped in PEG200 cryoprotectant, mounted on
a loop and flash-frozen under a liquid nitrogen stream at a
100K. Diffraction data were indexed and integrated using the
XDS package (Kabsch, 2010a), while scaling was carried out with
XSCALE (Kabsch, 2010b). The structure was solved using the
SHELXT program (Sheldrick, 2015) and structure refinement
was performed with SHELXL-14 (Sheldrick, 2008), operating
through the WinGX GUI (Farrugia, 2012) by full-matrix least-
squares (FMLS) methods on F2.

The structure was solved using the SHELXT program
(Sheldrick, 2015). The asymmetric unit of the monoclinic crystal
(space group P21/c) is composed of one molecule of 5b and
disordered co-crystallized chloroform solvent molecule with a
total occupancy factor of 0.7. The chloroform molecule shows
disorder over two positions, which were isotropically refined at
0.4/0.3 partial occupancies. All other non-hydrogen atoms were
anisotropically refined at full occupancy. Hydrogen atoms were
added at the calculated positions and refined using the riding
model. Crystallographic data and refinement details are reported
in Table S1.

1H NMR Titrations
The anion association constants (as log Kass) were determined
in CDCl3 by 1H NMR titration experiments. Several aliquots
(up to 10 equiv) of the anion solutions (as tetrabutylammonium
salts) were added to 0.5mL solution of the receptors (2.5× 10−3

– 5 × 10−3 M) directly in the NMR tube. The spectra were
recorded after each addition of the salts, and the temperature
of the NMR probe was kept constant at 25◦C. For each anion-
receptor system titrations were repeated at least two times. The
association constants were evaluated using the WinEQNMR2
program (Hynes, 1993) by following the urea NH chemical shifts.
When possible, Kass was calculated as a mean value of the four
NH chemical shifts. The Job plots were performed keeping the
total concentration in the same range as before. Concerning
ion-pair recognition experiments, the percentage of complex
formation, necessary for the calculation of the corresponding
Kass, was determined by direct 1H NMR integration of the free
and complexed resonances of the hosts and/or the guests, present
at equilibrium. The samples were prepared by mixing aliquots
of stock solutions of the host (600 µl) and guests (60 µl) to
obtain a final equimolar host-guest solution of 1.0 × 10−3 M.
Details related to these experiments have already been described
(Gattuso et al., 2015).

UV-Vis Absorption and Fluorescence
Studies
Absorption and fluorescence studies were done using an
UV-3101PC UV-Vis-NIR spectrophotometer and a Fluorolog
F112A fluorimeter in right-angle configuration, respectively. The
association constants were determined in CHCl3 (or CH2Cl2)
and MeCN by UV-Vis absorption spectrophotometry at 25◦C. A
few anion complexation studies were also done by steady-state
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fluorescence in CH2Cl2. The spectra were recorded between 230
and 300 nm or 280–440 nm, in the case of NO2-Phurea 5c, and
using quartz cells with an optical path length of 1 cm. Several
aliquots (up to 10 equiv) of the anion solutions (as TBA salts)
were added to a 2mL solution of the receptors (5.0 × 10−6 –
5.0 × 10−5 M) directly in the cell. The spectral changes were
interpreted using the HypSpec 2014 program (Gans et al., 1996).
Details concerning the photophysical properties determination
are given in the Supporting Information.
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1 Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Jiangsu Key Laboratory of Advanced Organic Materials,

School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China, 2College of Material Science and

Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 3 School of Petrochemical Engineering,

Changzhou University, Changzhou, China, 4 State Key Laboratory of Pollution Control and Resource Reuse, School of

Environment, Nanjing University, Nanjing, China

Planar-chiral pillar[5]arenes bearing β-D-galactose substituents on both rims have been

successfully synthesized and effectively separated by silica gel chromatography with

a high yield. The obtained (Sp)- and (Rp)-β-D-galactose functionalized pillar[5]arenes

[(Sp-D)-GP5 and (Rp-D)-GP5] exhibit the Sp and Rp planar chirality. Furthermore,

(Sp-D)-GP5 and (Rp-D)-GP5 can not racemize according to dynamic 1H NMR and

CD spectra. Notably, GP5 is able to capture a guest molecule (DNS-CPT) to form

a host-guest supramolecular amphiphile, which can further self-assemble into chiral

nanoparticles with the Sp and Rp planar chirality of (Sp-D)-GP5 and (Rp-D)-GP5 still being

retained, suggesting GP5 could be as reliable chiral sources to transfer the Sp and Rp

planar chirality.

Keywords: supramolecular macrocycles, β-D-galactose-functionalized pillar[5]arenes, planar chirality, self-

assembly, nanoparticles

INTRODUCTION

Supramolecular macrocycles, such as cyclodextrins, cucurbiturils, and calixarenes, have played a
very important role in supramolecular chemistry (Moghaddam et al., 2011; Zhang andWang, 2011;
Jie et al., 2015; Choi et al., 2017). Compared with these traditional macrocycles, pillar[n]arenes
have attracted more attention due to their unique planar chirality (Ogoshi et al., 2011b). The planar
chirality of pillar[n]arenes is very useful for chiral molecular recognition, chirality switches, and
catalysis because of the outstanding host-guest properties of pillar[n]arenes to capture different
guest molecules (Yao et al., 2017; Lee et al., 2018; Park et al., 2019).

As many literatures have presented (Ogoshi et al., 2011a, 2012, 2013a,b, 2016; Kitajima
et al., 2014), the planar chirality of pillar[n]arenes is mainly caused by the substitution position
of the alkoxy moieties. Ogoshi et al. (2012) and Kitajima et al. (2014) found that all of the
synthesized pillar[5]arenes are racemic mixtures and racemization takes place by rotation of
units. These racemic mixtures could be divided into eight conformers including diastereomeric
conformers: (Sp, Sp, Sp, Sp, Sp), (Rp, Sp, Sp, Sp, Sp), (Rp, Rp, Sp, Sp, Sp), (Rp, Sp, Rp, Sp, Sp)
and their antipodal enantiomers: (Rp, Rp, Rp, Rp, Rp), (Sp, Rp, Rp, Rp, Rp), (Sp, Sp, Rp, Rp,
Rp), (Sp, Rp, Sp, Rp, Rp). In order to isolate the different pillar[5]arene enantiomers, they have
functionalized pillar[5]arene with 10 bulky cyclohexylmethyl groups at both rims to inhibit the
rotation of the units (Ogoshi et al., 2011a). Then, two special enantiomers [(Sp, Sp, Sp, Sp, Sp) and
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(Rp, Rp, Rp, Rp, Rp)] were successfully separated by chiral
high performance liquid chromatography (HPLC). The circular
dichroism (CD) spectra of the two enantiomers were clearly
defined with a complete mirror image, which was defined
as (Sp)- and (Rp)-pillar[5]arenes, respectively. Simultaneously,
Strutt et al. (2012, 2014) reported the separation of pillararene-
based enantiomers by introducing one π-conjugated unit, which
expressed good and selective encapsulation of neutral and
positively charged electron poor aromatic guests. Moreover,
some other researches (Yao et al., 2017; Lee et al., 2018; Park
et al., 2019) about planar chirality of pillar[5]arenes have been
performed to achieve chiral inversion, chiral transfer and so
on. Besides the above mentioned pillar[n]arene derivatives,
β-D-galactose-functionalized pillar[5]arene (GP5), as a new-
type of sugar modified supramolecular amphiphile, has been
widely used in biologically relevant fields for the construction of
antibacterial and targeted drug delivery systems (Nierengarten
et al., 2013; Yu et al., 2013; Liu et al., 2017; Wu et al.,
2017). However, all the results above never revealed the planar
chirality of GP5, and there was no report about the investigation
of (Sp)- and (Rp)-β-D-galactose-functionalized pillar[5]arene
[(Sp-D)-GP5 and (Rp-D)-GP5]. In our previous work (Liu
et al., 2017), we have obtained a similar β-D-galactose-based
water-soluble pillar[5]arene (GalP5), which showed no planar
chirality, because GalP5 possessed one methylene group at
the position of β-D-galactose, resulting in the disappearance
of planar chirality induced in the progress of functionalized
pillar[5]arenes. Herein, we have successfully designed a new β-
D-galactose functionalized pillar[5]arene without the presence
of methylene group connected with β-D-galactose, and first
achieved the separation of diastereoisomers possessing planar
chirality by silica gel chromatography to obtain (Sp-D)-GP5
and (Rp-D)-GP5 with a high yield. Their rotational and planar
chiral properties were investigated by NMR, UV-Vis and CD
measurements, respectively.

RESULTS AND DISCUSSION

Planar Chirality of GP5
The synthesis of GP5 relies on the copper-catalyzed alkyne-azide
cycloaddition (CuAAC) reaction, which was used to introduce
the bulky β-D-acetylgalactose moieties on both rims of the
pillar[5]arene building block. In this way, it can effectively inhibit
the rotation of the units and thus achieve the separation of
the (Sp)- and (Rp)-β-D-acetyl-galactose pillar[5]arene [(Sp-D)-
AP5 and (Rp-D)-AP5] (Figures 1, 9). From the 1H NMR
spectrum of AP5, we can clearly find that the resonances of
the aromatic protons (H1) show two single peaks, identifying
the existence of (Sp-D)-AP5 and (Rp-D)-AP5 (Figure S19). In
order to further investigate the planar chirality of AP5, (Sp-D)-
AP5 and (Rp-D)-AP5 were successfully obtained by silica gel
chromatography with DCM/MeOH = 40:1 as fluent solvent. As
shown in Figure S19, every signal of (Sp-D)-AP5 and (Rp-D)-
AP5 is different from each other, but corresponding well to the
protons of AP5.

The circular dichroism (CD) and UV-Vis spectra of (Sp-D)-
AP5, (Rp-D)-AP5, and AP5 were further investigated to explain
the planar chirality of AP5. As expected, two different kinds

of CD signals could be observed between (Sp-D)-AP5 and
(Rp-D)-AP5, andAP5 showed no obvious signal, which suggested
(Sp-D)-AP5 and (Rp-D)-AP5 were mirror images in the planar
chirality and they were separated effectively by silica gel
chromatography (Figure 2).

With compounds (Sp-D)-AP5 and (Rp-D)-AP5 in hand, (Sp-D)-
GP5 and (Rp-D)-GP5 were successfully obtained by reacting
with sodium methoxide solution, respectively. Similar to (Sp-D)-
AP5 and (Rp-D)-AP5,

1H NMR and 13C NMR spetra of (Sp-D)-
GP5 and (Rp-D)-GP5 are different. However, there is no obvious
difference between (Sp-D)-GP5 and (Rp-D)-GP5 in

1H-1H COSY,
NOESY, and HSQC spectra. To further investigate the planar
chirality of (Sp-D)-GP5 and (Rp-D)- GP5, CD and UV-Vis spectra
were performed and two kinds of chiral signals were observed.
As shown in Figure 3, the CD signals of (Sp-D)-GP5 and (Rp-D)-
GP5 were fully symmetrical, which indicated (Sp-D)-GP5 and
(Rp-D)-GP5 were mirror images in the planar chirality. However,
no obvious CD signal could be found from GP5, which further
confirmed (Sp-D)-GP5 and (Rp-D)-GP5 owned opposite planar
chirality. For comparation, a control molecule (compound 4) was
synthesized (Scheme S2 and Figure 10) and no CD signal could
be observed, which showed the planar chirality of pillar[5]arene
was mainly attributed to the cyclization of moiety to form the
pillararene backbone.

As we all know, CD spectroscopy is a well-established tool
for detecting and tracking the dynamic behavior of molecule
and supramolecular chirality. Pillar[5]arene derivatives could
show strong CD extrema (CDex) at ca. 310 nm in the absence
of any other attached chromophoric groups. According to
previous reports (Ogoshi et al., 2012; Yao et al., 2017), the
results showed (Sp)-pillar[5]arene derivatives exhibited negative
CDex and (Rp)-pillar[5]arene derivatives exhibited positive CDex.
Therefore, combining the CD spectra calculated by DFT method
(Figure 4 and Figure S21), we deduced the compound with
higher retention factor (Rf) value obtained from silica gel
chromatography should be the Sp comformer and show negative
CDex signal. The compound with lower Rf value was the Rp
comformer and positive CDex signal.

Racemization Investigation of (Sp-D)-GP5

and (Rp-D)-GP5
According to previous literatures (Ogoshi et al., 2010a,b, 2011a;
Nierengarten et al., 2013), the planar chirality of pillar[5]arene
is unstable and will be racemized. In order to explore whether
(Sp-D)-GP5 and (Rp-D)-GP5 could exchange with each other,
dynamic 1H NMR and CD measurements were further carried
out. According to the planar chirality of (Sp-D)-GP5 and
(Rp-D)-GP5, the two protons from the methylene moieties
adjacent to the O atoms (H4) were different in chemical
environment and could split into two groups of double peak
in 1:1 integration ratio at 298K (Figure S20). Thus, the split
proton resonances are a useful marker to determine whether
the rotation of pillar[5]arenes takes place on the NMR time
scale (Ogoshi et al., 2010a,b, 2011b). Moreover, as shown
in Figure 5, although the chemical shift of D2O exhibited
upfield shift changes due to the weakening of intermolecular
hydrogen bonding of D2O with increasing temperature, almost
no peak changes for (Sp-D)-GP5 and (Rp-D)-GP5 could
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FIGURE 1 | Schematic structure illustration of AP5 and GP5.

be observed (TMS as the reference). More important, the
split of H4′ and H4 still retained during the progress of
heating, indicating (Sp-D)-GP5 and (Rp-D)-GP5 were stable and
hardly racemized on the NMR time scale in the measured
temperature range.

Subsequently, dynamic CD experiments were investigated,
and the results indicated the intensity of (Sp-D)-GP5 and (Rp-D)-
GP5 were stable and symmetric, confirming the planar chirality
of (Sp-D)-GP5 and (Rp-D)-GP5 was absolutely independent

and the racemization of (Sp-D)-GP5 and (Rp-D)-GP5 didn’t
happen even under higher temperature. Whereas, when more
attention was paid to the wavelength from 290 to 310 nm,
which was ascribed to π-π∗ transitions of the aromatic moieties
in the pillar[5]arene backbone, both (Sp-D)-GP5 and (Rp-D)-
GP5 trended to racemize with increasing temperature (Figure 6
and Figure S22). However, due to the large molecular size of
bulky substituent on the rim of GP5, neither (Sp-D)-GP5 nor
(Rp-D)-GP5 could racemize actually, which is consistent with
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FIGURE 2 | CD and UV-Vis spectra of (Sp-D)-AP5 (8µM in CHCl3), (Rp-D)-AP5 (8µM in CHCl3), and AP5 (8µM in CHCl3).

FIGURE 3 | CD and UV-Vis spectra of (Sp-D)-GP5 (8µM in H2O), (Rp-D)-GP5 (8µM in H2O), and GP5 (8µM in H2O), and control molecule (40µM in H2O).
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FIGURE 4 | Optimized structure: (A) (Sp-D)-GP5 and (B) (Rp-D)-GP5.

FIGURE 5 | Dynamic 1H NMR spectra of (A) (Sp-D)-GP5 (4mM in D2O) and (B) (Rp-D)-GP5 (4mM in D2O).

the dynamic 1H NMR results (Ogoshi et al., 2011a, 2016).
In summary, different from many traditional pillar[5]arene
derivatives, the planar chirality of (Sp-D)-GP5 and (Rp-D)-GP5
are very stable and unchangeable, which can be used as a reliable
chiral source to induce and transfer the Sp and Rp planar chirality.

Simultaneously, after dialysis with distilled water, the CD
spectra of the (Sp-D)-nanoparticles and (Rp-D)-nanoparticles
were obtained, respectively. The results confirmed the planar
chirality of these chiral nanoparticles still existed and displayed
symmetrical signal, indicating that (Sp-D)-GP5 and (Rp-D)-GP5
could be used as reliable chiral sources to transfer the Sp and Rp
planar chirality (Figure 8).

The Construction of Chiral Nanoparticles
Based on the outstanding host-guest properities of pillar[5]arene,
one of our previously reported guest molecule (DNS-CPT) (Sun

et al., 2019) was used to investigate the construction of
nanoparticles with planar chirality (Figure 11). As shown
in Figure 7, when (Sp-D)-GP5 or (Rp-D)-GP5 was added
into the DNS-CPT solution, an obvious Tyndall effect
could be observed, indicating the formation of large sized
aggregates. The diameter of these nanoparticles was confirmed
to be 39 and 38 nm by dynamic light scattering (DLS),
respectively. The morphology of the nanoparticles was
further investigated by transmission electron microscopy

(TEM), and the results showed both (Sp-D)- and (Rp-D)-GP5
could form nanoparticles with the presence of the guest

molecule DNS-CPT (Figure 7 and Figure S23). Moreover,
Zeta potential measurements showed that the obtained
nanoparticles possess relatively high positive ζ- potentials (32.85
and 35.93mV, respectively), suggesting their good stability in
solution (Figure S24).
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EXPERIMENTAL

Synthesis of GP5
As shown in Figure 9, GP5 was synthesized based on the click

reaction between compound 1 and 2 to generate compound

AP5 successfully. Then,AP5was reacted with sodiummethoxide

in methanol for 24 h under an inert atmosphere at ambient

temperature. The resulting reaction mixture was filtered and

washed with methanol, which gave the target macrocycle GP5

in 99% yield. A combination of 1H, 13C, 1H-1H COSY, NOESY,

FIGURE 6 | Dynamic CD spectra of (Sp-D)-GP5 [(A–C) 8µM in H2O] and

(Rp-D)-GP5 [(D–F) 8µM in H2O] at 298, 313, and 323K, respectively.

and HSQC nuclear magnetic resonance spectroscopy (NMR)
confirmed (Figures S7–S16) the formation of GP5.

Synthesis of Compound 4
Compound 4 was synthesized based on the click reaction
between 1,4-bis(prop-2-yn-1-yloxy)benzene and compound 2
to generate compound 3 successfully. Then, compound 3 was
reacted with sodium methoxide in methanol for 24 h under
an inert atmosphere at ambient temperature. The resulting
reaction mixture was filtered and washed with methanol,

FIGURE 8 | CD spectrum of chiral nanoparticles.

FIGURE 7 | DLS data of chiral nanoparticles: (a) (Sp-D)-nanoparticles. Inset photo: Tyndall effect. (b) (Rp-D)-nanoparticles. Inset photo: Tyndall effect. TEM images of

chiral nanoparticles: (c) (Sp-D)-nanoparticles. (d) (Rp-D)-nanoparticles.
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FIGURE 9 | Synthesis route of GP5.

FIGURE 10 | Synthesis route of compound 4.

which gave the control molecule compound 4 in 99% yield.
1H NMR (Figures S17, S18) confirmed the formation of
compounds 3 and 4.

Synthesis of DNS-CPT
DNS-CPT was synthesized and characterized according to our
previous work (Sun et al., 2019).

Fourier Transform Infrared Spectrometer

(FT-IR) Spectrum
FT-IR experiments of 1,2,3,4,6-penta-o-acetyl-β-D-
galactopyranose, compound 1, compound 2, (Sp-D)-AP5,
(Rp-D)-AP5, (Sp-D)-GP5, and (Rp-D)-GP5 were carried out
to track the functionalization process of pillar[5]arene. As
shown in Figure 12, after reaction with trimethylsilyl azide
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FIGURE 11 | Synthesis route of DNS-CPT.

FIGURE 12 | FT-IR spectrum: (a) Penta-O-acetyl-β-D-galactopyranose, (b)

Compound 2, (c) Compound 1, (Sp-D)-AP5, (e) (Rp-D)-AP5, (f) (Sp-D)-GP5,

and (g) (Rp-D)-GP5, respectively.

(TMS-N3), a typical N=N=N peak at 2,100 cm−1 could be
observed. However, the N=N=N peak disappeared after
the click reaction with compound 1, which indicated the
1,2,3,4,6-penta-o-acetyl-β-D-galactopyranose group had
been modified to pillar[5]arene to obtain AP5 successfully.
Meanwhile, the stretching vibration peak of C=O was detected
at 1750 cm−1. Moreover, when the acetyl group of AP5

was removed, the characteristic absorption peak of C=O
disappeared and a wide peak of O-H at 3300 cm−1 was observed
at the same time, which showed the successful formation
of GP5.

CONCLUSION

In conclusion, we successfully obtained (Sp-D)-AP5, (Rp-D)-AP5,
(Sp-D)-GP5, and (Rp-D)-GP5 through silica gel chromatography
with a high yield at room temperature. Dynamic CD and

1H NMR experiments revealed the Sp and Rp planar chirality
of these pillar[5]arene derivatives (GP5) were very stable
and unracemized, which could be used as reliable chiral
sources to construct chiral nanoparticles, showing the Sp
and Rp planar chirality of GP5 could be transferred by
the host-guest interaction based on GP5 and DNS-CPT.
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A novel uranyl salen-bis-porphyrin complex, in which two porphyrin subunits and salen
moiety were directly linked, was synthesized for the recognition of tetrabutylammonium
(TBA) amino acids. This uranyl salen complex, due to the presence of porphyrins
with their fluorescence properties, represents the first example of a luminescence of
uranyl salen complexes. UV/Vis measurements indicate the formation of 1:1 host–guest
complexes, whereas UV-vis and fluorescence studies revealed that this complex acts
as a receptor for the enantiomeric recognition of α-aminoacids derivatives, with high
association constants and an excellent enantiomeric discrimination between the two
enantiomers of phenylalanine–TBA.

Keywords: porphyrins, salen ligands, uranyl complexes, luminescence, enantiomeric recognition

INTRODUCTION

Salen ligands are a class of molecules that have been widely explored in the field of supramolecular
chemistry. The most fascinating and promising use of salen derivatives is due to their chiral
complexes with numerous metals. The salen structure, due to two contiguous stereogenic carbon
atoms in the diimine bridge, creates a chiral pocket which can coordinate a metal cation (via imine
nitrogen and phenolic oxygen atoms). Salen ligands rose to prominence thanks to the pioneering
work of Jacobsen and Katsuki that paved the way to one of the most well-designed protocol for
the enantioselective epoxidation of unfunctionalized alkenes catalyzed by chiral manganese salen
complexes (Jacobsen, 1993; Katsuki, 2000; Yoon and Jacobsen, 2003; La Paglia Fragola et al., 2012;
Trusso Sfrazzetto et al., 2015; Ballistreri et al., 2016, 2018; Zammataro et al., 2019). Furthermore,
salen ligands are structures of great value in homogeneous catalysis (Katsuki, 1995; Jacobsen, 2000;
Cozzi, 2004;McGarrigle andGilheany, 2005; Baleizao andGarcia, 2006;Wezenberg and Kleij, 2008;
Whiteoak et al., 2012).

In recent years, our research group exploited these chiral salen-metal complexes as enantiomeric
receptors for chiral guests. In fact, depending on the metal ion and different substituents in
the aromatic ring of salen framework, these salen-metal complexes can be used as efficient
enantioselective catalysts and highly sensitive chemosensors (D’Urso et al., 2014; Puglisi et al., 2017,
2018, 2019). In particular, chiral uranyl salen complexes have proved to be excellent receptors for
amino acid salts (Amato et al., 2007, 2010, 2011; Ballistreri et al., 2010; Pappalardo et al., 2012a),
since the uranyl metal center, acting as a Lewis acid, possesses an equatorial fifth position able
to coordinate one molecule of carboxylate anion (Ballistreri et al., 2012; Brancatelli et al., 2013).
These synthetic enantioselective receptors could help to better understand themechanisms of drugs
action; processes that are involved in immunological responses and processes of the storage of
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genetic information. Besides, slightly modification of their
structures could lead to chemosensors, which due to their simple
use, relatively low cost and high sensitivity are particularly
significant in the chemical analysis.

Taking into account the salen ligand applications in the
field of catalysis and enantiomeric recognition, previous studies
have inspired us to extend current research on the synthesis of
salen receptors comprising porphyrin macrocycles which, with
their high stability and fluorescence properties, could greatly
extend the use of salen ligands as chemosensors. Porphyrins,
due to their rigid molecular structure, tunable substituents, large
skeleton dimensions, and additional metallation sites in the
core, are very attractive macrocycles for their applications in
many technological fields (Beletskaya et al., 2009; Drain et al.,
2009). In our strategy, the rational combination of porphyrin
derivatives with chiral uranyl-salen ligands in one structure,
would lead to chemosensors that possess unprecedented
luminescence properties, that till now were precluded in
uranyl-salen complexes due to the presence of uranyl metal
center. Here we report on the synthesis of a novel uranyl
salen-bis-porphyrin complex, in which two porphyrin subunits
and the salen ligand are directly connected, and the enantiomeric
recognition properties of this receptor toward selected α-
aminoacids derivatives assessed by UV-vis and fluorescence
measurements (Figure 1).

MATERIALS AND METHODS

General Experimental Methods
The NMR experiments were carried out at 27◦C on a
Varian UNITY Inova 500 MHz spectrometer (1H at 499.88
MHz, 13C NMR at 125.7 MHz) equipped with pulse field
gradient module (Z axis) and a tuneable 5mm Varian
inverse detection probe (ID-PFG). ESI mass spectra were
acquired on a API 2000– ABSciex using CH3OH (positive
ion mode). A JASCO V-560 UV-Vis spectrophotometer
equipped with a 1 cm path-length cell was used for the UV-Vis
measurements. Luminescence measurements were carried
out using a Cary Eclipse Fluorescence spectrophotometer
with resolution of 0.5 nm, at room temperature. The
emission was recorded at 90◦ with respect to the exciting
line beam using 10:10 slit-widths for all measurements.
All chemicals were reagent grade and were used without
further purification.

General Procedure for the Synthesis of
TBA Amino Acid Derivates (Ballistreri et al.,
2010)
An aqueous solution of tetrabutylammonium hydroxide (40%
w/w, 13 mmol) was added to an aqueous suspension of the
desired amino acid (13 mmol). The resultant reaction mixture
was heated at 60◦C for 2 h. Water was removed in vacuo at
80◦C. The residue was dissolved in CH2Cl2 (10mL), filtered and
the solvent was evaporated in vacuo to afford in high yield the
desired product.

Procedure for UV-vis and Fluorescence
Titrations
Two stock solutions of host and guest (1.0 × 10−3 M) in
dry chloroform were prepared. From these, different solutions
with different ratio receptor/guest (host concentration = 1.0
× 10−6 M) were prepared, and UV-vis and emission spectra
were recorded at 25◦C. Fluorescence titrations were carried out
using λex = 350 nm in dry chloroform, recording at λem = 650
and 715 nm. With this data treatment, the apparent binding
affinities of receptor with amino acid guests were estimated using
HypSpec (version 1.1.33) (Pappalardo et al., 2012b), a software
designed to extract equilibrium constants from potentiometric
and/or spectrophotometric titration data. HypSpec starts with
an assumed complex formation scheme and uses a least-squares
approach to derive the spectra of the complexes and the stability
constants. χ2-test (chi-square) was applied, where the residuals
follow a normal distribution (for a distribution approximately
normal, the χ2-test value is around 12 or less). In all of the
cases, χ2

≤ 10 were found, as obtained by 3 independent
measurement sets.

Synthesis of Compound 4 (Johansson
et al., 2003)
5.0 g (0.0300mol) of compound 2 (Dalla Cort et al., 2006) and
5.97 g of potassium phthalimide 3 (0.0322mol) were placed in
a 250mL round-bottom flask. The reagents were dissolved in
100mL of DMF. The reaction mixture was allowed to stir at
room temperature for 48 h and then was heated at 55◦C for 4 h.
The reaction mixture was cooled down to room temperature
and diluted with 250mL of EtOAc and washed with water (3 ×

200mL). The organic layer was dried over anhydrous Na2SO4,
filtered and evaporated. The product was purified by silica gel
column chromatography (CHCl3) to afford 3.37 g (40 % yield)
of compound 4. 1H NMR (500 MHz, CDCl3): δ = 10.99 (s, 1H);
9.88 (s, 1H); 7.86-7.84 (m, 2H); 7.73-7.71 (m, 2H); 7.67 (s, 1H);
7.65-7.63 (dd, J = 8.5Hz, J = 2.0Hz, 1H); 6.95 (d, J = 8.5Hz,
1H); 4.82 (s, 2H).

Synthesis of Compound 5
0.662 g (2.36 mmol) of compound 4 and 0.0171 g (0.036 mmol)
of tetrabutylammonium tribromide were placed in a 20mL
round-bottom flask. In this flask 3.60mL of 1,3-propanediol
and 3.90mL of triethyl orthoformate were added. The reaction
mixture was allowed to stir at room temperature for 48 h, then
diluted with 45mL of EtOAc. The organic solution was washed
with water (3 × 20mL), dried over anhydrous Na2SO4, filtered
and evaporated. The product was purified by silica gel column
chromatography (cyclohexane/EtOAc 3:1) affording 0.732 g of
white compound 5 (92% yield). 1HNMR (500MHz, CDCl3): δ =

7.85 (s, 1H); 7.83–7.81 (m, 2H); 7.70–7.68 (m, 2H); 7.36–7.34 (dd,
J = 8.5Hz, J = 2.5Hz, 1H); 7.28 (s, 1H); 6.84 (d, J = 8.5Hz, 1H);
5.61 (s, 1H); 4.74 (s, 2H); 4.30–4.27 (m, 2H); 4.02–3.96 (m, 2H);
2.30– 2.20 (m, 1H); 1.52-1.48 (m, 1H). 13C (125 MHz, CDCl3):
δ = 25.6, 31.4, 40.9, 67.2, 102.9, 117.4, 122.1, 123.2, 127.6, 128.6,
131.3, 132.1, 133.9, 154.9, 168.0.
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FIGURE 1 | Uranyl salen-bis-porphyrin complex 1 and amino acid salts used as guests.

Synthesis of Compound 6
0.440 g (1.298 mmol) of compound 5 and 0.704mL (0.713 mmol)
of hydrazine monohydrate in 30mL of EtOH were added in
a round-bottomed flask of 50mL. The reaction was heated at
90◦C and monitored by TLC. After 20min, the heating was
interrupted. The reaction mixture was cooled down to room
temperature and solvent was evaporated. The obtained white
precipitate was diluted in 30mL of water. The aqueous solution
was extracted with CHCl3 (2 × 20mL) which was previously
passed through Al2O3 layer. The CHCl3 solution was dried
over anhydrous Na2SO4, filtered and evaporated. Compound 6

(0.154 g, 57%) was obtained as a yellow oil. 1H NMR (500 MHz,
CDCl3): δ = 7.18–7.16 (dd, J = 8.5Hz, J = 2.0Hz, 1H); 7.14 (s,
1H); 6.87–6.85 (d, J= 8.5Hz, 1H); 5.65 (s, 1H); 4.33-4.30 (m, 2H);
4.04–3.99 (m, 2H); 3.77 (s, 2H); 2.32–2.30 (m, 1H); 1.54–1.50 (m,
1H). 13C NMR (125 MHz, CDCl3): 26.6; 45.7; 67.4; 102.4; 117.1;
122.2; 126.3; 129.2; 134.3; 154.0.

Synthesis of Compound 8
0.394 g (0.598 mmol) of compound 7 (Gaware et al., 2017) were
dissolved in 20mL of anhydrous DMF, in a round-bottomed
flask. To this stirred solution 0.273 g (0.718 mmol) of HATU
was added, and the resulting mixture was left to stir under N2

atmosphere at room temperature for 20min. Then, solution of
0.130 g (0.623 mmol) of compound 6 in 5mL of anhydrous
DMF was poured into the reaction mixture, which was stirred
under N2 atmosphere and room temperature, for other 40min.
Finally, 0.105mL (0.623 mmol) of N’N-diisopropylethylamine
was added to the reaction mixture. The reaction was carried
out in N2 atmosphere for 70 h. After this period, the reaction
mixture was evaporated. The resulting precipitate was dissolved
in 30mL of CH2Cl2. The organic solution was washed with
water (3 × 40mL), dried over anhydrous Na2SO4 filtered and
evaporated. Compound 8 was purified by silica gel column
chromatography (CH2Cl2/MeOH 100:2) affording 80mg (16%
yield) of a purple solid. 1HNMR (500 MHz, CDCl3): δ = 8.85–
8.61 (m, 8H); 8.29–8.26 (d, J = 8.0Hz, 2H); 8.24–8.18 (m, 6H);
8.11–8.05 (d, J = 8.0Hz, 2H); 7.90 (s, 1H); 7.78–7.72 (m, 9H);
7.37–7.33 (dd, J = 8.5Hz, J = 2.0Hz, 1H); 7.31 (d, J = 2.0Hz,
1H); 6.96–6.93 (d, J = 8.5Hz, 1H); 6.57 (s, 1H); 5.70 (s, 1H);
4.64 (d, 2H); 4.38–4.32 (m, 2H); 4.20–4.02 (m, 2H); 2.35–2.25
(m, 1H); 1.52-1.48 (m, 1H); −2.81 (s, 2H). 13C (125 MHz,
CDCl3): δ = 25.7, 29.7, 43.9, 67.5, 102.9, 117.8, 118.5, 120.3,
125.3, 126.5 (x3), 126.7 (x3), 127.5 (x3) 127.7 (x3), 127.9, 129.2,
130.6, 131.7, 132.1, 134.4 (x2), 134.5, 134.6, 142.0, 142.7, 145.6,
150.3, 155.0.
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SCHEME 1 | Synthesis of the uranyl salen-bis-porphyrin complex 1.

Synthesis of Compound 9
0.080 g (0.094 mmmol) of compound 8were dissolved in 1.74mL
of TFA, in a round-bottomed flask, and the resulting mixture
was allowed to stir at room temperature for 3 h. Then, 10mL of
diethyl ether were added to the organic solution affording a green
precipitate, that was filtered and crystallized usingMeOH, to give
50mg (67% yield) of a red solid. 1HNMR (500 MHz, CDCl3): δ

= 11.04 (s, 1H); 9.96 (s, 1H); 8.96–8.86 (m, 8H); 8.33–8.29 (d, J
= 8.0Hz, 2H); 8.24–8.19 (m, 6H); 8.26–8.22 (d, J = 8.0Hz, 2H);
7.80–7.72 (m, 9H); 7.70 (d, J = 2.0Hz, 1H); 7.68–7.64 (dd, J =
8.5Hz, J = 2.0Hz, 1H); 7.05 (d, J = 8.5Hz, 1H); 6.77 (t, 1H); 4.76
(d, 2H); −2.77 (s, 2H). 13C (125 MHz, CDCl3): δ = 43.0, 118.0,
118.1, 120.4, 121.2, 125.0, 125.2, 126.5, 126.7, 127.5, 127.8, 128.5,
129.0, 131.4, 132.1, 132.2, 132.6, 132.8, 132.9, 134.4, 134.5, 134.6,
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136.6, 136.7, 142.0, 142.8, 149.5, 150.1, 150.3, 150.4, 167.2, 196.3.
MS (ESI):m/z = 790.2 [M+H]+.

Synthesis of Salen-Bis-Porphyrin Ligand 10
In a round bottom flask, to a solution of 27.6mg of
salicylic-porphyrin 9 (0.0349 mmol) in absolute EtOH (10mL)
was added (1R,2R)-(+)-1,2-diphenylethylendiamine (3.7mg,
0.0175 mmol). The reaction was stirred for 48 h at room
temperature and monitored by TLC (CH2Cl2/CH3OH, 100:2).
The reaction was quenched by evaporation of the solvent under
reduced pressure, and salen-bis-porphyrin ligand 10was purified
by PLC (CH2Cl2/CH3OH, 100:2) to afford 24mg of a red/purple
solid compound (78% yield). 1HNMR (500 MHz, CDCl3): δ =

14.41 (bs, 2H); 8.86-8.74 (m, 16H); 8.30 (s, 2H); 8.25–8.07 (m,
20H); 7.77–7.66 (m, 20H); 7.29–7.15 (m, 12H); 6.97 (d, J =

8.5Hz, 2H); 6.83 (t, 2H); 4.73 (s, 2H); 4.56 (d, 4H);−2.78 (s, 4H).
13C (125 MHz, CDCl3): δ = 43.3, 80.1, 117.2 (x2), 118.47, 118.53,
120.3 (x2), 120.5, 125.4 (x2), 126.3, 126.7 (x2), 127.7 (x3), 127.8
(x2), 128.4, 128.6, 131.0, 132.3, 133.5, 134.4 (x3), 134.5 (x2), 134.6,
139.0, 141.9, 142.0, 145.6, 160.4, 166.2, 167.4. MS (ESI): m/z =

1760.4 [M+H]+,m/z = 891.0 [M+ Na]2+.

Synthesis of Uranyl Salen-Bis-Porphyrin
Complex 1
To a solution of 10 (22mg, 0.0125 mmol) dissolved in absolute
ethanol (10mL) was added uranyl acetate (5.3mg, 0.0125 mmol).
The reaction was stirred overnight at room temperature, and the
resulting solid was filtered and dried to yield 27mg of uranyl
salen-bis-porphyrin complex 1 as a red powder (98% yield).
1HNMR (500 MHz, DMSO-d6): δ = 9.49 (s, 2H); 9.33 (s, 2H)
8.82–8.76 (m, 16H); 8.32–8.20 (m, 20H); 7.83–7.80 (m, 20H);
7.74–7.59 (m, 8H); 7.21 (t, 2H); 7.15 (m, 2H); 7.05 (d, 2H); 6.35
(s, 2H); 4.67–4.57 (m, 4H);−2.93 (s, 4H). 13C (125MHz, DMSO-
d6): δ= 42.2, 79.5, 119.0 (x2), 120.1, 120.2 (x2), 120.3, 122.7, 125.9
(x3), 126.6 (x2), 127.0 (x3), 127.2 (x2), 127.4 (x3), 127.5, 128.1,
128.2, 133.7, 133.9, 134.2 (x3), 135.2, 141.1, 141.6, 144.0, 166.0,
168.6, 171.2. MS (ESI): m/z = 1058 [M+2EtOH+2H]2+; m/z =
1077 [M+2EtOH+Na+H]2+.

RESULTS AND DISCUSSION

Target uranyl salen-bis-porphyrin complex 1 was synthesized
in seven steps starting from 5-Cl-methyl-salycilaldheyde 2
(Dalla Cort et al., 2006; Saffar-Telur, 2015) as shown in
Scheme 1. In the first step potassium phtalimide was treated
with compound 2 to yield compound 4 (40%), which was then
reacted with 1,3-propandiol to afford the acetal intermediate 5
(92%). Conversion of the phthalimido moiety into an amino
group by treatment with hydrazine, under standard Gabriel
conditions, yielded the compound 6 (57%). The condensation
reaction between compound 6 and 5-(4-Carboxyphenyl)-
10,15,20-triphenylporphyrin 7 (Gaware et al., 2017) which was
activated using HATU (Gangemi et al., 2015), afforded the
porphyrin derivative 8 (16%), which was then treated with
TFA to remove the acetal moiety and yield the salicylic-
porphyrin 9 (67%). Condensation of 9 with the (1R,2R)-(+)-1,2-
diphenylethylendiamine yielded salen ligand 10 (78%), which

was finally converted into the corresponding salen complex
1 (98 %) by uranyl acetate. The proposed structures for this
new chiral uranyl–salen complex and all the intermediates
compounds are consistent with the 1H and 13C NMR
spectroscopy data as well as the ESI mass spectrometry data (see
Supplementary Material).

The UV-vis spectrum of uranyl salen-bis-porphyrin complex
1 dissolved in CHCl3 solution shows an intense Soret band
centered at 419 nm (ε = 6,26·105 M−1 cm−1) and four Q-bands
(515 nm; 550 nm; 590 nm; 646 nm) (Figure 2). The UV-vis
spectrum is similar to the 5-(4-Methoxycarbonylphenyl)-
10,15,20-triphenylporphyrin (TPPCOOMe, the precursor of
5-(4-Carboxyphenyl)-10,15,20-triphenylporphyrin 7) in the
same solvent (Rong et al., 2012), suggesting that the insertion of
the salen-UO2 does not change the spectroscopic behavior of the
porphyrin. Furthermore, there is no evidence of aggregation even
at higher concentration (2.5µM), as confirmed by UV-Vis and
fluorescence data. In addition, the luminescence measurements
are in accordance with literature data for similar porphyrins,
with two main emission bands centered at 650 and 715 nm (λex

350 nm), respectively (Figure 2).
After proving the luminescent properties of uranyl salen-

bis-porphyrin complex 1, enantioselective recognition properties
were evaluated by UV-vis and fluorescence measurements in
chloroform, in particular for fluorescence titrations, following
the emission changes at these two emission wavelengths of
porphyrin moiety (650 nm and 715 nm, by using λex 350 nm).
Unfortunately, the fluorescence titrations showed a small
intensity variation with all the selected amino acid guests except
for the L-tryptophan derivative, which led to a poor data
fitting. For that reasons, binding constant values between uranyl
salen-bis-porphyrin complex 1 and amino acid derivatives were
determined by UV-vis titrations, following a decrease of the
absorption at 419 nm upon addition of increasing aliquots of
guests. A representative example of UV-vis titration and the
fluorescence titration of uranyl salen-bis-porphyrin complex 1

with L-Trp-TBA are shown in Figure 3.
Table 1 reports the pertinent binding constant values with

selected amino acid derivatives, the detection limit observed (DL)
and the corresponding enantiomeric excess. In all cases, binding
constant values have been calculated using 1:1 stoichiometry,
suggested by Job’s plots (see Supplementary Material).

Notably, due to the presence of the porphyrin moieties,
receptor 1 is able to detect the amino acid guests at low
concentration. In fact, 1µM solution of uranyl salen-bis-
porphyrin complex 1 is able to detect amino acid derivatives at
very low concentrations (ppb).

Enantiomeric recognition is very efficient with the
L-Phe-TBA, which is recognized more than 8 times respect
to the D-enantiomer (KL/KD = 8.51). A good enantioselectivity
is also observed for the D- and L-Trp-TBA pair (KD/KL = 4.04).
Moreover, for the L-Trp-TBA we were able to determine the
binding constant value by fluorescence titration (K (M−1

= 2.63
± 0.03 × 106), in good agreement with the value calculated
by UV-vis titration. In particular, a decrease of the emission
intensity has been observed, probably due to a photoinduced
electron transfer mechanism (PET) (Trusso Sfrazzetto et al.,
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FIGURE 2 | UV-Vis spectra (Left) and fluorescence spectra (Right) of uranyl salen-bis-porphyrin complex 1 in CHCl3 (1µM).

FIGURE 3 | Representative UV-vis titration (Left) and fluorescence titration (Right) of uranyl salen-bis-porphyrin complex 1 with L-Trp-TBA (λex = 350 nm in dry
chloroform).

2016). Only the D- and L-Ala-TBA (KD/KL = 1.70) pair shows
a slight selective recognition. With the smaller amino acid
guest, coordination to the uranyl metal center appears less
susceptible to the different configurations of the carbon atom
stereocenter and then the molecular recognition is less selective.
With aromatic amino acid derivatives, the possibility for the
carboxylate anion to bind the fifth equatorial coordination
site of the uranyl metal and, at the same time, to exploit
CH-π interactions with the salen moiety and the porphyrin

macrocycles of receptor 1 might be responsible for the strong
observed enantioselectivity. Moreover, the strong recognition
for the L-Phe-TBA enantiomer is in contrast with respect to
those observed with our previous receptors having the same
configuration of the chiral diamine bridge (R, R) (Ballistreri et al.,
2010; Amato et al., 2011; Pappalardo et al., 2012a; Forte et al.,
2015). Probably, the presence of the two porphyrin arms not only
increase the limit of detection by the presence of a fluorescence
signal, but also plays a fundamental role in the recognition event.
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TABLE 1 | Binding constant values K (M−1) with selected amino acid derivatives,
detection limit observed (DL), and enantiomeric excess calculated by UV-vis
titrations in dry chloroform at 25◦C.

Guest DLb K (M−1)a e.e.

D-Phe-TBA 2.5 ppb (8.13 ± 0.08) × 104 KL/KD = 8.51

L-Phe-TBA 1.6 ppb (6.92 ± 0.07) × 105

D-Ala-TBA 1.7 ppb (9.77 ± 0.59) × 106 KD/KL = 1.70

L-Ala-TBA 1.3 ppb (5.75 ± 0.05) × 106

D-Trp-TBA 1.6 ppb (4.33 ± 0.09) × 106 KD/KL = 4.04

L-Trp-TBA 1.1 ppb (1.07 ± 0.01) × 106

aCalculated by HypSpec v1.1.33.
bCaculated by method of the calibration curve using the formula DL = 3σ/K, where σ is

the standard deviation of the blank, and K is the slope of the calibration curve.

CONCLUSION

We have synthesized a new chiral uranyl salen complex bearing
two porphyrin macrocycles and evaluated the enantiomeric
recognition properties of this complex toward α-amino acid
derivatives by UV-vis titrations. The presence of porphyrin arms
lead to a receptor that possesses luminescence properties that are
not quenched by the coordination with the uranyl cation, which
decreases the fluorescence intensity in uranyl salen complexes.
UV/Vis measurements and Job plots indicate the formation of
1:1 host–guest complexes. This receptor displays a very high
selectivity toward amino acid derivatives, in particular for the
two enantiomers of Phe-TBA. The two porphyrin macrocycles
play a key role in the enantioselectivity interacting through

CH–π with the aromatic moiety of aminoacids, leading to high
binding affinities. Work is in progress in our laboratory to better
understand the rules governing the interactions of this salen
receptor with amino acid guests in order to design new host–
guest systems that possess luminescence properties.
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Here we report a new class of synthetic receptors, acyclic pillar[n]naphthalene
(n = 2–4, Dimer, Trimer, and Tetramer) oligomers, which are made up of
2,3-diethoxynaphthalene units linked by methylene bridges at the 1- and 4-positions.
They can be synthesized through a one-step condensation of 2,3-diethoxynaphthalene
monomer and paraformaldehyde in the presence of BF3•(Et)2O catalyst. The crystal
structure of Tetramer has an interesting pseudo-cycle shaped structure in the solid
state. Their complexation behaviors toward several organic ammonium cations (1+-15+)
and electron–deficient neutral guests (16–17), were examined by means of 1H NMR
spectroscopy. Tetramer shows good host-guest properties toward the ammonium
guests, giving association constants (Ka) in the magnitude of 102-104 M−1, which are
comparable with those for some macrocyclic hosts.

Keywords: pillararenes, calixarenes, acyclic hosts, molecular recognition, host-guest chemistry

INTRODUCTION

Since the discover of crown ethers, the development of hosts for recognizing various guest species
has mainly focused on macrocyclic structures (Cram, 1988; Lehn, 1988; Pedersen, 1988; Gong
et al., 2010; Chun et al., 2013; Jurícek et al., 2014; Liu et al., 2019). Methylene–bridged macrocyclic
arenes, for example calixarenes (Baldini et al., 2007; Guo and Liu, 2012), pillararenes (Ogoshi
et al., 2008; Xue et al., 2012; Wang et al., 2016; Yang et al., 2016), coronarenes (Wang, 2018),
helic[6]arene (Zhang et al., 2016), biphenarenes (Chen et al., 2015; Dai et al., 2017; Li et al.,
2019; Wang et al., 2019b), and etc. (Guo et al., 2018; Luo et al., 2018; Ma et al., 2018) have been
widely used in host-guest chemistry, self-assembly materials, and biomedical field (Song and Yang,
2015; Alsbaiee et al., 2016; Li et al., 2017; Jie et al., 2018; Chen et al., 2019; Yang et al., 2019).
Naphthalene-based macrocyclic arenes, termed as calixnaphthalenes, have also been produced
(Poh et al., 1989; Andreetti et al., 1993; Shorthill et al., 2004; AlHujran et al., 2012; Avetta et al.,
2012). However, calixnaphthalenes have not become highly popular receptors because they do
not have unique molecular recognition properties. Considering that pillararenes with pillar-shape
topologic structures have shown nice host-guest properties, we wondered whether we can create
acyclic pillarnaphthalenes (Scheme 1), which would have deep, pillar-shape, and π-rich cavities,
and maybe better binding abilities than calixnaphthalenes. As detailed below, we did not get such
macrocycles, but succeed in making acyclic pillarnaphthalene oligomers.

Acyclic hosts that contain partially enclosed cavities capable of binding guests provided
alternatives with unique synthetic and functional advantages (Goodman et al., 2007; Seebach and
Gardiner, 2008; Pan et al., 2017; Wang et al., 2019a). For example, foldamers may provide cavities
that are adaptive in recognizing different guest molecules (Zhang et al., 2012; Yashima et al., 2016).
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SCHEME 1 | Structures of pillar[n]arenes and our designed
pillar[n]naphthalenes.

Molecular tweezers have made the way from a supramolecular
host to a drug candidate, due to their ability to inhibit peptide
and protein aggregation through the complexation toward amino
acids (Sinha et al., 2011; Schrader et al., 2016).

Isaacs and his co-workers created acyclic cucurbit[n]uril-
type receptors, which can function as solubilizing agents
for insoluble drugs. Interestingly, the solubility of paclitaxel
was increased 2,750 times through the formation of soluble
container–drug complex (Ma et al., 2012). These highly soluble
acyclic cucurbiturils could also solubilize individual single-walled
carbon nanotubes (SWNTs) in water even at a concentration
100–1,000 times lower than typically required for surfactants
(Shen et al., 2012). The groups of Schrader and Yoshizawa
synthesized beautiful water-soluble clip and tweezer-shaped hosts
based on norbornene and anthracene building blocks (Bier et al.,
2013; Jono et al., 2017).

Herein, we wish to report the synthesis of a new type
of receptors, acyclic pillar[n]naphthalene (n = 2–4, Dimer,
Trimer, and Tetramer) oligomers, which are made up of 2,3-
diethoxynaphthalene units linked by methylene bridges at the
1- and 4-positions. Tetramer, bearing a pseudo-cavity, has
good host-guest properties toward a series of model organic
cationic guests.

MATERIALS AND METHODS

All the reagents involved in this research were commercially
available and used without further purification unless otherwise
noted. 1H NMR, 13C NMR, 2D NOESY, and COSY spectra (see
Supplementary Material) were recorded with a Bruker AVANCE
III 500 MHz instrument. Chemical shifts were referred to TMS.
Highresolution mass spectra (HRMS) were determined on a
Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS instrument.
The single crystal X-ray data were measured by direct methods
using SHELXS-971 and refined by fullmatrix least-squares
procedures on F2 with SHELXL-97.2. All non-hydrogen atoms
were obtained from the difference Fourier map and subjected
to anisotropic refinement by full-matrix least squares on F2.
Hydrogen atoms were obtained geometrically and treated as
riding on the parent atoms or were constrained in the locations
during refinements. Test parameters and detailed experimental
data are shown in the Supplementary Material.

Synthesis and Characterization
To the solution of 2,3-diethoxy naphthalene (2.6 g, 12 mmol)
in CHCl3 (150mL) was added paraformaldehyde (0.36 g, 12

mmol). Boron trifluoride diethyl etherate (2.5ml, 20 mmol) was
then added to the reaction mixture. The mixture was stirred at
25◦C for 1 h. Then the reaction was quenched by addition of
50mL water. The organic phase was separated and washed with
saturated aqueous NaHCO3, and water. The organic layer was
dried over anhydrous Na2SO4 and concentrated. The residue was
purified by column chromatography on silica gel (eluent: 1/1, v/v,
dichloromethane: petrol ether) to afford Dimer (21%), Trimer

(9%), and Tetramer (15%), as white solids.
Dimer. m.p. 155–156◦C. 1H NMR (500 MHz, CDCl3, 298K):

δ (ppm): 8.10 (d, J = 8.4Hz, 2H), 7.61 (d, J = 7.7Hz, 2H), 7.28–
7.24 (m, 2H), 7.23–7.20 (m, 2H), 7.07 (s, 2H), 5.00 (s, 2H), 4.22
(q, J = 7.0Hz, 4H), 4.02 (q, J = 7.0Hz, 4H), 1.57 (t, J = 7.0Hz,
6H), 1.33 (t, J = 7.0Hz, 6H). 13CNMR (125MHz, CDCl3, 298K):
δ (ppm): 151.36, 146.37, 131.43, 129.97, 128.57, 126.80, 124.88,
124.65, 123.71, 106.85 (C of acyclic dimer), 69.11, 63.80 (C of
methylene in ethoxy group), 23.55 (C of methylene bridge of
acyclic dimer), 15.58, 14.86 (C of methyl in ethoxy group). HRMS
(ESI): C29H32O4NH

+

4 , calcd m/z 462.2644; found m/z 462.2641.
Trimer. m.p. 171–172◦C. 1HNMR (500MHz, CDCl3, 298K):

δ (ppm): 8.17 (d, J = 8.6Hz, 2H), 8.04 (dd, J = 6.5, 3.3Hz, 2H),
7.57 (d, J = 7.8Hz, 2H), 7.23 (dd, J = 11.0, 4.0Hz, 2H), 7.14–
7.09 (m, 4H), 7.01 (s, 2H), 4.93 (s, 4H), 4.20 – 4.11 (m, 8H), 3.87
(q, J = 7.0Hz, 4H), 1.51 (t, J = 7.0Hz, 6H), 1.35 (t, J = 7.0Hz,
6H), 1.13 (t, J = 7.0Hz, 6H). 13CNMR (125MHz, CDCl3, 298K):
δ (ppm): 151.37, 148.98, 146.30, 131.42, 130.70, 130.15, 128.93,
128.49, 126.81, 125.16, 124.90, 124.53, 124.39, 123.24, 106.78 (C
of acyclic trimer), 69.21, 69.10, 63.79 (C of methylene in ethoxy
group), 23.37 (C of methylene bridge of acyclic trimer), 15.77,
15.43, 14.84, 14.22 (C of methyl in ethoxy group). HRMS (ESI):
C44H48O6NH

+

4 , calcd m/z 690.3795; found m/z 690.3786.
Tetramer. m.p. 212–213◦C. 1H NMR (500 MHz, CDCl3,

298K): δ (ppm): 8.19 (d, J = 8.2Hz, 2H), 8.13 (d, J = 8.5Hz,
2H), 8.02 (d, J = 8.2Hz, 2H), 7.58 (d, J = 8.0Hz, 2H), 7.23 (t, J
= 7.6Hz, 2H), 7.16–7.04 (m, 6H), 7.02 (s, 2H), 4.92 (s, 4H), 4.89
(s, 2H), 4.17 (q, J= 7.0Hz, 4H), 4.13 (q, J = 7.0Hz, 4H), 3.95
(q, J = 7.0Hz, 4H), 3.88 (q, J = 7.0Hz, 4H), 1.52 (t, J = 6.9Hz,
6H), 1.33 (t, J = 7.0Hz, 3H), 1.16 (t, J = 7.0Hz, 6H), 1.05 (t,
J = 7.0Hz, 6H). 13C NMR (125 MHz, CDCl3, 298K): δ (ppm):
151.36, 149.00, 148.89, 146.25, 131.42, 130.71, 130.66, 130.17,
129.29, 128.78, 128.46, 126.80, 125.21, 125.19, 124.91, 124.56,
124.29, 123.92, 123.18, 106.72 (C of acyclic tetramer), 69.25,
69.13, 69.08, 63.77 (C of methylene in ethoxy group), 23.34 (C of
methylene bridge of acyclic tetramer), 15.78, 15.48, 15.46, 14.85
(C of methyl in ethoxy group). HRMS (ESI): C59H64O8NH

+

4 ,
calcd m/z 918.4945; found m/z 918.4922.

RESULTS AND DISCUSSION

2,3-Diethoxy naphthalene was selected as the building block to
condense with paraformaldehyde. Due to the electron-donating
ethoxy groups, great regioselectivity can be rationalized, and
the reactive sites should be 1- and 4-positions in Friedel–Crafts
reaction. It was expected to produce pillar-shape macrocycles,
pillar[n]naphthalenes. However, no cyclic oligomers have been
obtained after many attempts; a possible reason is that big
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SCHEME 2 | Synthesis of acyclic pillar[n]naphthalenes Dimer, Trimer, and Tetramer.

FIGURE 1 | 1H NMR spectra (500 MHz, 2.0mM, CDCl3) of Dimer, Trimer, and Tetramer.

naphthalene units make the final cyclization quite difficult
due to the steric hindrance. Fortunately, we got acyclic
pillar[n]naphthalenes (n= 2–4).

Using BF3·(Et)2O as the catalyst, the condensation reaction
of 2,3-diethoxy naphthalene and paraformaldehyde in CHCl3
at room temperature (Scheme 2) produced oligomers Dimer,
Trimer, and Tetramerwith yields of 21, 9, and 15%, respectively.
Other Lewis acid catalysts, for example TfOH, FeCl3, and AlCl3,
could also work, but the reaction yields were lower than that
for BF3·(Et)2O. The synthesis was considerably easy since it just
involved a one–step reaction of commercial starting materials

and the isolation was also convenient by column chromatography
on silica gel.

Dimer, Trimer, and Tetramer were well characterized by
1H NMR, 13C NMR, NOESY, and COSY spectra (Figure 1
and Supplementary Figures 1–11), and high-resolution mass
spectrometry (HRMS). They have rather complex patterns of
aromatic and ethoxy peaks in 1H NMR spectra (Figure 1)
because they are not highly symmetrical macrocycles, but acyclic
oligomers with low symmetry.

Single crystals ofDimer, Trimer, andTetramer suitable for X-
ray analysis were obtained by diffusion of hexane into a solution
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FIGURE 2 | Crystal structures of Dimer (A), Trimer (B), and Tetramer (C). (D) A pair of enantiomers of Tetramer. (E) Packing mode of Tetramer.

of the compounds in dichloromethane at room temperature
(Figure 2). As expected, these three acyclic oligomers had
the same connecting style, i.e., 2,3-diethoxy naphthalene units
were connected by methylene at 1,4-positions. As shown in
Figures 2A,B, the acyclicDimer and Trimer, possessing two and
three naphthalenemoieties, have ill–defined cavities. Particularly,
the Tetramer exhibits a pseudocycle–shaped structure, with
all the methylene bridges being orientated outwardly. There
exist intramolecular sextuple C–H···π interactions, with H···ring
center distances of 2.75–3.23 Å (Supplementary Figure 12),
between the middle two ethoxy groups and naphthalenes,
resulting in the formation of a pseudo cycle rather than a zigzag
structure. More interestingly, the single crystal structures of
Tetramer molecules exist in a pair of enantiomers in the solid
state (Figure 2D).

The host-guest properties of the acyclic receptors were
then tested. Since they possess π-rich cavities, several cationic
guests (1+-15+) and electron–deficient neutral guests (16–17)
(Scheme 3) were chosen as model guest molecules to investigate
their host-guest chemistry. In most cases, CDCl3 was used as
solvent during the 1H NMR experiments of host-guest mixture
and following NMR titrations; for guests 72+, 92+, and 102+,
CD2Cl2 was used because of their poor solubility in CDCl3.

Figure 3 shows the 1HNMR spectra recorded for quarternary
ammonium guest 1+ in the absence and presence of Tetramer.
As can be readily seen, upon addition of Tetramer, protons
Ha, Hb and Hc of 1+ display substantial upfield shifts (1δ =

−0.39, −0.29, and −0.21 ppm) due to complexation–induced
shielding effects, indicating that 1+ was located inside the acyclic
host’s pseudo-cavity to form a host-guest inclusion complex,
and the main binding site is the N+(Me)3 moiety. In contrast,
protons Hh−i undergo indistinct NMR changes, suggesting

they are located outside the cavity of Tetramer. [24] In the
NOESY spectrum of 1+ and Tetramer, NOE correlations were
observed between methyl protons Ha of the guest and the
aromatic protons H5, H7 and H8 of Tetramer, also suggesting
the host-guest encapsulation (Supplementary Figure 13). The
formation of 1+

•Tetramer complex was further supported by
ESI mass spectrometry analysis of an equimolar mixture of
1•BArF and Tetramer, where an intense peak for the 1:1
complex (m/z 1072.66, calcd. for 1+

•Tetramer = 1072.67)
was observed (Supplementary Figure 14). The encapsulation
could also be rationalized by energy-minimized molecular
modeling (Figure 3D): the oligomers wrapped around the guest
to enhance the host-guest contacts driven by cation···π/ C–
H···π interactions.

The addition of Dimer and Trimer could also induce the
upfield shifts of guest 1+, but the 1δ values are smaller
than those for Tetramer (Supplementary Figure 15). These
results indicated relatively weak binding interactions occurred
for Dimer and Trimer in comparison with Tetramer. These
observations were consistent with the association constants
(Ka) obtained from 1H NMR titration experiments. As shown
in Table 1, the Ka value of 1+ with Tetramer [(4.4±0.6)
× 102 M−1] is 18 times larger than that for Trimer,
and the affinity for Dimer was too small to be accurately
calculated (< 5 M−1).

Since Tetramer showed interesting structure and good
recognition behavior, we then examined its binding
capacity toward other cationic guests (Table 1 and
Supplementary Figures 16–29), revealing that Tetramer

can form host–guest complexes with them but the binding
affinities are totally different. For the trimethyl ammonium
guests 1+-6+, 3+ [Ka = (1.2 ± 0.2) × 103 M−1] and 4+ [Ka =
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SCHEME 3 | Structures of guest molecules. The counter anions of 1+-15+ are tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (BArF−).

FIGURE 3 | 1H NMR spectra (CDCl3, 298K, 1.0 mmol) of (A) guest 1+, (B) 1+ and Tetramer (1:1 mixture), (C) Tetramer. (D) Energy-minimized structures of
1+

•Tetramer at the semiempirical PM6 level of theory.
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TABLE 1 | Association constants (M−1) of Dimer, Trimer, and Tetramer with
different guests (500 MHz, 298 K).

Guest Host Solvent Ka (M−1)a

1+ Dimer CDCl3 –b

1+ Trimer CDCl3 25±7

1+ Tetramer CDCl3 (4.4 ± 0.6) × 102

2+ Tetramer CDCl3 (2.9 ± 0.4) × 102

3+ Tetramer CDCl3 (1.2 ± 0.2) × 103

4+ Tetramer CDCl3 (2.1 ± 0.4) × 103

5+ Tetramer CDCl3 (1.6 ± 0.2) × 102

6+ Tetramer CDCl3 (1.8 ± 0.2) × 102

72+ Tetramer CDCl3 (2.0 ± 0.1) × 102

8+ Tetramer CD2Cl2 (1.4 ± 0.1) × 102

92+ Tetramer CD2Cl2 (1.2 ± 0.2) × 102

102+ Tetramer CD2Cl2 (1.7 ± 0.3) × 102

11+ Tetramer CDCl3 (2.5 ± 0.4) × 104

12+ Tetramer CDCl3 (4.3 ± 0.3) × 103

13+ Tetramer CDCl3 (1.4 ± 0.1) × 104

14+ Tetramer CDCl3 (1.4 ± 0.2) × 103

15+ Tetramer CDCl3 (3.0 ± 0.3) × 102

16–17 Tetramer CDCl3 —c

aThe Ka values were determined by NMR titrations (Supplementary Figure 30).
bThe Ka value was too small (<5 M

−1) to be accurately calculated.
cNo interactions were found (Supplementary Figures 28, 29).

(2.1±0.4) × 103 M−1] bearing naphthyl moieties give stronger
affinities, which should be due to host-guest fitted π · · · π

interactions and large contacts. The substitution of naphthyl for
smaller phenyl or bigger pyrenyl in 3+ and 4+, affording 1+

or 5+, considerably decreases the association constants by one
order of magnitude.

Binding affinities of Tetramer toward primary ammonium
guests 11+–13+ were stronger than those of the corresponding
quaternary ammonium guests 1+–3+. For example, the Ka value
of Tetramer and octylammonium 11+ [(2.5±0.4) × 104 M−1]
is about 56-fold higher than that for trimethyloctylammonium
1+ [(4.4±0.6) × 102 M−1]. Similarly, the selectivity factors of
12+/2+ and 13+/2+ are 15 and 12, respectively. The reason
for such high selectivity would be that big and spherical
N+(Me)3 group is too larger compared with Tetramer’s size,
and small NH+

3 is a suitable one. It should be noted that
the binding affinities of Tetramer and organic ammonium
salts, with Ka values in the magnitude of 102-104 M−1, are

comparable to those for macrocyclic arenes such as pillararenes
and biphenarenes.

Due to its π-electron rich cavity, the complexation of
Tetramer and two π-deficient neutral guests, 16 and 17,
were also investigated. From Supplementary Figures 28, 29, no
obvious NMR changes were detected, indicating no stable
complexes can be formed.

CONCLUSIONS

In summary, acyclic pillarnaphthalenes with 2,3-
diethoxynaphthalene units bridged by methylenes at
1,4-positions were synthesized through a one-pot reaction
of 2,3-diethoxy naphthalene monomer and paraformaldehyde
by using Lewis acid as the catalyst. Acyclic pillar[4]naphthalene
Tetramer is able to interact organic ammonium guests
cations by wrapping around them, giving association
constants in the magnitude of 102-104 M−1. We expect
that Tetramer bearing pseudo-cycle cavity, could have
significant potential for the applications in host-guest chemistry
and self-assembly.
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